1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 48 #include "internal.h" 49 50 #include <asm/irq_regs.h> 51 52 typedef int (*remote_function_f)(void *); 53 54 struct remote_function_call { 55 struct task_struct *p; 56 remote_function_f func; 57 void *info; 58 int ret; 59 }; 60 61 static void remote_function(void *data) 62 { 63 struct remote_function_call *tfc = data; 64 struct task_struct *p = tfc->p; 65 66 if (p) { 67 /* -EAGAIN */ 68 if (task_cpu(p) != smp_processor_id()) 69 return; 70 71 /* 72 * Now that we're on right CPU with IRQs disabled, we can test 73 * if we hit the right task without races. 74 */ 75 76 tfc->ret = -ESRCH; /* No such (running) process */ 77 if (p != current) 78 return; 79 } 80 81 tfc->ret = tfc->func(tfc->info); 82 } 83 84 /** 85 * task_function_call - call a function on the cpu on which a task runs 86 * @p: the task to evaluate 87 * @func: the function to be called 88 * @info: the function call argument 89 * 90 * Calls the function @func when the task is currently running. This might 91 * be on the current CPU, which just calls the function directly 92 * 93 * returns: @func return value, or 94 * -ESRCH - when the process isn't running 95 * -EAGAIN - when the process moved away 96 */ 97 static int 98 task_function_call(struct task_struct *p, remote_function_f func, void *info) 99 { 100 struct remote_function_call data = { 101 .p = p, 102 .func = func, 103 .info = info, 104 .ret = -EAGAIN, 105 }; 106 int ret; 107 108 do { 109 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 110 if (!ret) 111 ret = data.ret; 112 } while (ret == -EAGAIN); 113 114 return ret; 115 } 116 117 /** 118 * cpu_function_call - call a function on the cpu 119 * @func: the function to be called 120 * @info: the function call argument 121 * 122 * Calls the function @func on the remote cpu. 123 * 124 * returns: @func return value or -ENXIO when the cpu is offline 125 */ 126 static int cpu_function_call(int cpu, remote_function_f func, void *info) 127 { 128 struct remote_function_call data = { 129 .p = NULL, 130 .func = func, 131 .info = info, 132 .ret = -ENXIO, /* No such CPU */ 133 }; 134 135 smp_call_function_single(cpu, remote_function, &data, 1); 136 137 return data.ret; 138 } 139 140 static inline struct perf_cpu_context * 141 __get_cpu_context(struct perf_event_context *ctx) 142 { 143 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 144 } 145 146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 147 struct perf_event_context *ctx) 148 { 149 raw_spin_lock(&cpuctx->ctx.lock); 150 if (ctx) 151 raw_spin_lock(&ctx->lock); 152 } 153 154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 155 struct perf_event_context *ctx) 156 { 157 if (ctx) 158 raw_spin_unlock(&ctx->lock); 159 raw_spin_unlock(&cpuctx->ctx.lock); 160 } 161 162 #define TASK_TOMBSTONE ((void *)-1L) 163 164 static bool is_kernel_event(struct perf_event *event) 165 { 166 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 167 } 168 169 /* 170 * On task ctx scheduling... 171 * 172 * When !ctx->nr_events a task context will not be scheduled. This means 173 * we can disable the scheduler hooks (for performance) without leaving 174 * pending task ctx state. 175 * 176 * This however results in two special cases: 177 * 178 * - removing the last event from a task ctx; this is relatively straight 179 * forward and is done in __perf_remove_from_context. 180 * 181 * - adding the first event to a task ctx; this is tricky because we cannot 182 * rely on ctx->is_active and therefore cannot use event_function_call(). 183 * See perf_install_in_context(). 184 * 185 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 186 */ 187 188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 189 struct perf_event_context *, void *); 190 191 struct event_function_struct { 192 struct perf_event *event; 193 event_f func; 194 void *data; 195 }; 196 197 static int event_function(void *info) 198 { 199 struct event_function_struct *efs = info; 200 struct perf_event *event = efs->event; 201 struct perf_event_context *ctx = event->ctx; 202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 203 struct perf_event_context *task_ctx = cpuctx->task_ctx; 204 int ret = 0; 205 206 WARN_ON_ONCE(!irqs_disabled()); 207 208 perf_ctx_lock(cpuctx, task_ctx); 209 /* 210 * Since we do the IPI call without holding ctx->lock things can have 211 * changed, double check we hit the task we set out to hit. 212 */ 213 if (ctx->task) { 214 if (ctx->task != current) { 215 ret = -ESRCH; 216 goto unlock; 217 } 218 219 /* 220 * We only use event_function_call() on established contexts, 221 * and event_function() is only ever called when active (or 222 * rather, we'll have bailed in task_function_call() or the 223 * above ctx->task != current test), therefore we must have 224 * ctx->is_active here. 225 */ 226 WARN_ON_ONCE(!ctx->is_active); 227 /* 228 * And since we have ctx->is_active, cpuctx->task_ctx must 229 * match. 230 */ 231 WARN_ON_ONCE(task_ctx != ctx); 232 } else { 233 WARN_ON_ONCE(&cpuctx->ctx != ctx); 234 } 235 236 efs->func(event, cpuctx, ctx, efs->data); 237 unlock: 238 perf_ctx_unlock(cpuctx, task_ctx); 239 240 return ret; 241 } 242 243 static void event_function_local(struct perf_event *event, event_f func, void *data) 244 { 245 struct event_function_struct efs = { 246 .event = event, 247 .func = func, 248 .data = data, 249 }; 250 251 int ret = event_function(&efs); 252 WARN_ON_ONCE(ret); 253 } 254 255 static void event_function_call(struct perf_event *event, event_f func, void *data) 256 { 257 struct perf_event_context *ctx = event->ctx; 258 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 259 struct event_function_struct efs = { 260 .event = event, 261 .func = func, 262 .data = data, 263 }; 264 265 if (!event->parent) { 266 /* 267 * If this is a !child event, we must hold ctx::mutex to 268 * stabilize the the event->ctx relation. See 269 * perf_event_ctx_lock(). 270 */ 271 lockdep_assert_held(&ctx->mutex); 272 } 273 274 if (!task) { 275 cpu_function_call(event->cpu, event_function, &efs); 276 return; 277 } 278 279 if (task == TASK_TOMBSTONE) 280 return; 281 282 again: 283 if (!task_function_call(task, event_function, &efs)) 284 return; 285 286 raw_spin_lock_irq(&ctx->lock); 287 /* 288 * Reload the task pointer, it might have been changed by 289 * a concurrent perf_event_context_sched_out(). 290 */ 291 task = ctx->task; 292 if (task == TASK_TOMBSTONE) { 293 raw_spin_unlock_irq(&ctx->lock); 294 return; 295 } 296 if (ctx->is_active) { 297 raw_spin_unlock_irq(&ctx->lock); 298 goto again; 299 } 300 func(event, NULL, ctx, data); 301 raw_spin_unlock_irq(&ctx->lock); 302 } 303 304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 305 PERF_FLAG_FD_OUTPUT |\ 306 PERF_FLAG_PID_CGROUP |\ 307 PERF_FLAG_FD_CLOEXEC) 308 309 /* 310 * branch priv levels that need permission checks 311 */ 312 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 313 (PERF_SAMPLE_BRANCH_KERNEL |\ 314 PERF_SAMPLE_BRANCH_HV) 315 316 enum event_type_t { 317 EVENT_FLEXIBLE = 0x1, 318 EVENT_PINNED = 0x2, 319 EVENT_TIME = 0x4, 320 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 321 }; 322 323 /* 324 * perf_sched_events : >0 events exist 325 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 326 */ 327 328 static void perf_sched_delayed(struct work_struct *work); 329 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 331 static DEFINE_MUTEX(perf_sched_mutex); 332 static atomic_t perf_sched_count; 333 334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 335 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 336 337 static atomic_t nr_mmap_events __read_mostly; 338 static atomic_t nr_comm_events __read_mostly; 339 static atomic_t nr_task_events __read_mostly; 340 static atomic_t nr_freq_events __read_mostly; 341 static atomic_t nr_switch_events __read_mostly; 342 343 static LIST_HEAD(pmus); 344 static DEFINE_MUTEX(pmus_lock); 345 static struct srcu_struct pmus_srcu; 346 347 /* 348 * perf event paranoia level: 349 * -1 - not paranoid at all 350 * 0 - disallow raw tracepoint access for unpriv 351 * 1 - disallow cpu events for unpriv 352 * 2 - disallow kernel profiling for unpriv 353 */ 354 int sysctl_perf_event_paranoid __read_mostly = 1; 355 356 /* Minimum for 512 kiB + 1 user control page */ 357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 358 359 /* 360 * max perf event sample rate 361 */ 362 #define DEFAULT_MAX_SAMPLE_RATE 100000 363 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 364 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 365 366 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 367 368 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 369 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 370 371 static int perf_sample_allowed_ns __read_mostly = 372 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 373 374 static void update_perf_cpu_limits(void) 375 { 376 u64 tmp = perf_sample_period_ns; 377 378 tmp *= sysctl_perf_cpu_time_max_percent; 379 do_div(tmp, 100); 380 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 381 } 382 383 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 384 385 int perf_proc_update_handler(struct ctl_table *table, int write, 386 void __user *buffer, size_t *lenp, 387 loff_t *ppos) 388 { 389 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 390 391 if (ret || !write) 392 return ret; 393 394 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 395 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 396 update_perf_cpu_limits(); 397 398 return 0; 399 } 400 401 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 402 403 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 404 void __user *buffer, size_t *lenp, 405 loff_t *ppos) 406 { 407 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 408 409 if (ret || !write) 410 return ret; 411 412 update_perf_cpu_limits(); 413 414 return 0; 415 } 416 417 /* 418 * perf samples are done in some very critical code paths (NMIs). 419 * If they take too much CPU time, the system can lock up and not 420 * get any real work done. This will drop the sample rate when 421 * we detect that events are taking too long. 422 */ 423 #define NR_ACCUMULATED_SAMPLES 128 424 static DEFINE_PER_CPU(u64, running_sample_length); 425 426 static void perf_duration_warn(struct irq_work *w) 427 { 428 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 429 u64 avg_local_sample_len; 430 u64 local_samples_len; 431 432 local_samples_len = __this_cpu_read(running_sample_length); 433 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 434 435 printk_ratelimited(KERN_WARNING 436 "perf interrupt took too long (%lld > %lld), lowering " 437 "kernel.perf_event_max_sample_rate to %d\n", 438 avg_local_sample_len, allowed_ns >> 1, 439 sysctl_perf_event_sample_rate); 440 } 441 442 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 443 444 void perf_sample_event_took(u64 sample_len_ns) 445 { 446 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 447 u64 avg_local_sample_len; 448 u64 local_samples_len; 449 450 if (allowed_ns == 0) 451 return; 452 453 /* decay the counter by 1 average sample */ 454 local_samples_len = __this_cpu_read(running_sample_length); 455 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 456 local_samples_len += sample_len_ns; 457 __this_cpu_write(running_sample_length, local_samples_len); 458 459 /* 460 * note: this will be biased artifically low until we have 461 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 462 * from having to maintain a count. 463 */ 464 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 465 466 if (avg_local_sample_len <= allowed_ns) 467 return; 468 469 if (max_samples_per_tick <= 1) 470 return; 471 472 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 473 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 474 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 475 476 update_perf_cpu_limits(); 477 478 if (!irq_work_queue(&perf_duration_work)) { 479 early_printk("perf interrupt took too long (%lld > %lld), lowering " 480 "kernel.perf_event_max_sample_rate to %d\n", 481 avg_local_sample_len, allowed_ns >> 1, 482 sysctl_perf_event_sample_rate); 483 } 484 } 485 486 static atomic64_t perf_event_id; 487 488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 489 enum event_type_t event_type); 490 491 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 492 enum event_type_t event_type, 493 struct task_struct *task); 494 495 static void update_context_time(struct perf_event_context *ctx); 496 static u64 perf_event_time(struct perf_event *event); 497 498 void __weak perf_event_print_debug(void) { } 499 500 extern __weak const char *perf_pmu_name(void) 501 { 502 return "pmu"; 503 } 504 505 static inline u64 perf_clock(void) 506 { 507 return local_clock(); 508 } 509 510 static inline u64 perf_event_clock(struct perf_event *event) 511 { 512 return event->clock(); 513 } 514 515 #ifdef CONFIG_CGROUP_PERF 516 517 static inline bool 518 perf_cgroup_match(struct perf_event *event) 519 { 520 struct perf_event_context *ctx = event->ctx; 521 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 522 523 /* @event doesn't care about cgroup */ 524 if (!event->cgrp) 525 return true; 526 527 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 528 if (!cpuctx->cgrp) 529 return false; 530 531 /* 532 * Cgroup scoping is recursive. An event enabled for a cgroup is 533 * also enabled for all its descendant cgroups. If @cpuctx's 534 * cgroup is a descendant of @event's (the test covers identity 535 * case), it's a match. 536 */ 537 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 538 event->cgrp->css.cgroup); 539 } 540 541 static inline void perf_detach_cgroup(struct perf_event *event) 542 { 543 css_put(&event->cgrp->css); 544 event->cgrp = NULL; 545 } 546 547 static inline int is_cgroup_event(struct perf_event *event) 548 { 549 return event->cgrp != NULL; 550 } 551 552 static inline u64 perf_cgroup_event_time(struct perf_event *event) 553 { 554 struct perf_cgroup_info *t; 555 556 t = per_cpu_ptr(event->cgrp->info, event->cpu); 557 return t->time; 558 } 559 560 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 561 { 562 struct perf_cgroup_info *info; 563 u64 now; 564 565 now = perf_clock(); 566 567 info = this_cpu_ptr(cgrp->info); 568 569 info->time += now - info->timestamp; 570 info->timestamp = now; 571 } 572 573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 574 { 575 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 576 if (cgrp_out) 577 __update_cgrp_time(cgrp_out); 578 } 579 580 static inline void update_cgrp_time_from_event(struct perf_event *event) 581 { 582 struct perf_cgroup *cgrp; 583 584 /* 585 * ensure we access cgroup data only when needed and 586 * when we know the cgroup is pinned (css_get) 587 */ 588 if (!is_cgroup_event(event)) 589 return; 590 591 cgrp = perf_cgroup_from_task(current, event->ctx); 592 /* 593 * Do not update time when cgroup is not active 594 */ 595 if (cgrp == event->cgrp) 596 __update_cgrp_time(event->cgrp); 597 } 598 599 static inline void 600 perf_cgroup_set_timestamp(struct task_struct *task, 601 struct perf_event_context *ctx) 602 { 603 struct perf_cgroup *cgrp; 604 struct perf_cgroup_info *info; 605 606 /* 607 * ctx->lock held by caller 608 * ensure we do not access cgroup data 609 * unless we have the cgroup pinned (css_get) 610 */ 611 if (!task || !ctx->nr_cgroups) 612 return; 613 614 cgrp = perf_cgroup_from_task(task, ctx); 615 info = this_cpu_ptr(cgrp->info); 616 info->timestamp = ctx->timestamp; 617 } 618 619 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 620 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 621 622 /* 623 * reschedule events based on the cgroup constraint of task. 624 * 625 * mode SWOUT : schedule out everything 626 * mode SWIN : schedule in based on cgroup for next 627 */ 628 static void perf_cgroup_switch(struct task_struct *task, int mode) 629 { 630 struct perf_cpu_context *cpuctx; 631 struct pmu *pmu; 632 unsigned long flags; 633 634 /* 635 * disable interrupts to avoid geting nr_cgroup 636 * changes via __perf_event_disable(). Also 637 * avoids preemption. 638 */ 639 local_irq_save(flags); 640 641 /* 642 * we reschedule only in the presence of cgroup 643 * constrained events. 644 */ 645 646 list_for_each_entry_rcu(pmu, &pmus, entry) { 647 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 648 if (cpuctx->unique_pmu != pmu) 649 continue; /* ensure we process each cpuctx once */ 650 651 /* 652 * perf_cgroup_events says at least one 653 * context on this CPU has cgroup events. 654 * 655 * ctx->nr_cgroups reports the number of cgroup 656 * events for a context. 657 */ 658 if (cpuctx->ctx.nr_cgroups > 0) { 659 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 660 perf_pmu_disable(cpuctx->ctx.pmu); 661 662 if (mode & PERF_CGROUP_SWOUT) { 663 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 664 /* 665 * must not be done before ctxswout due 666 * to event_filter_match() in event_sched_out() 667 */ 668 cpuctx->cgrp = NULL; 669 } 670 671 if (mode & PERF_CGROUP_SWIN) { 672 WARN_ON_ONCE(cpuctx->cgrp); 673 /* 674 * set cgrp before ctxsw in to allow 675 * event_filter_match() to not have to pass 676 * task around 677 * we pass the cpuctx->ctx to perf_cgroup_from_task() 678 * because cgorup events are only per-cpu 679 */ 680 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx); 681 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 682 } 683 perf_pmu_enable(cpuctx->ctx.pmu); 684 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 685 } 686 } 687 688 local_irq_restore(flags); 689 } 690 691 static inline void perf_cgroup_sched_out(struct task_struct *task, 692 struct task_struct *next) 693 { 694 struct perf_cgroup *cgrp1; 695 struct perf_cgroup *cgrp2 = NULL; 696 697 rcu_read_lock(); 698 /* 699 * we come here when we know perf_cgroup_events > 0 700 * we do not need to pass the ctx here because we know 701 * we are holding the rcu lock 702 */ 703 cgrp1 = perf_cgroup_from_task(task, NULL); 704 cgrp2 = perf_cgroup_from_task(next, NULL); 705 706 /* 707 * only schedule out current cgroup events if we know 708 * that we are switching to a different cgroup. Otherwise, 709 * do no touch the cgroup events. 710 */ 711 if (cgrp1 != cgrp2) 712 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 713 714 rcu_read_unlock(); 715 } 716 717 static inline void perf_cgroup_sched_in(struct task_struct *prev, 718 struct task_struct *task) 719 { 720 struct perf_cgroup *cgrp1; 721 struct perf_cgroup *cgrp2 = NULL; 722 723 rcu_read_lock(); 724 /* 725 * we come here when we know perf_cgroup_events > 0 726 * we do not need to pass the ctx here because we know 727 * we are holding the rcu lock 728 */ 729 cgrp1 = perf_cgroup_from_task(task, NULL); 730 cgrp2 = perf_cgroup_from_task(prev, NULL); 731 732 /* 733 * only need to schedule in cgroup events if we are changing 734 * cgroup during ctxsw. Cgroup events were not scheduled 735 * out of ctxsw out if that was not the case. 736 */ 737 if (cgrp1 != cgrp2) 738 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 739 740 rcu_read_unlock(); 741 } 742 743 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 744 struct perf_event_attr *attr, 745 struct perf_event *group_leader) 746 { 747 struct perf_cgroup *cgrp; 748 struct cgroup_subsys_state *css; 749 struct fd f = fdget(fd); 750 int ret = 0; 751 752 if (!f.file) 753 return -EBADF; 754 755 css = css_tryget_online_from_dir(f.file->f_path.dentry, 756 &perf_event_cgrp_subsys); 757 if (IS_ERR(css)) { 758 ret = PTR_ERR(css); 759 goto out; 760 } 761 762 cgrp = container_of(css, struct perf_cgroup, css); 763 event->cgrp = cgrp; 764 765 /* 766 * all events in a group must monitor 767 * the same cgroup because a task belongs 768 * to only one perf cgroup at a time 769 */ 770 if (group_leader && group_leader->cgrp != cgrp) { 771 perf_detach_cgroup(event); 772 ret = -EINVAL; 773 } 774 out: 775 fdput(f); 776 return ret; 777 } 778 779 static inline void 780 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 781 { 782 struct perf_cgroup_info *t; 783 t = per_cpu_ptr(event->cgrp->info, event->cpu); 784 event->shadow_ctx_time = now - t->timestamp; 785 } 786 787 static inline void 788 perf_cgroup_defer_enabled(struct perf_event *event) 789 { 790 /* 791 * when the current task's perf cgroup does not match 792 * the event's, we need to remember to call the 793 * perf_mark_enable() function the first time a task with 794 * a matching perf cgroup is scheduled in. 795 */ 796 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 797 event->cgrp_defer_enabled = 1; 798 } 799 800 static inline void 801 perf_cgroup_mark_enabled(struct perf_event *event, 802 struct perf_event_context *ctx) 803 { 804 struct perf_event *sub; 805 u64 tstamp = perf_event_time(event); 806 807 if (!event->cgrp_defer_enabled) 808 return; 809 810 event->cgrp_defer_enabled = 0; 811 812 event->tstamp_enabled = tstamp - event->total_time_enabled; 813 list_for_each_entry(sub, &event->sibling_list, group_entry) { 814 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 815 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 816 sub->cgrp_defer_enabled = 0; 817 } 818 } 819 } 820 #else /* !CONFIG_CGROUP_PERF */ 821 822 static inline bool 823 perf_cgroup_match(struct perf_event *event) 824 { 825 return true; 826 } 827 828 static inline void perf_detach_cgroup(struct perf_event *event) 829 {} 830 831 static inline int is_cgroup_event(struct perf_event *event) 832 { 833 return 0; 834 } 835 836 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 837 { 838 return 0; 839 } 840 841 static inline void update_cgrp_time_from_event(struct perf_event *event) 842 { 843 } 844 845 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 846 { 847 } 848 849 static inline void perf_cgroup_sched_out(struct task_struct *task, 850 struct task_struct *next) 851 { 852 } 853 854 static inline void perf_cgroup_sched_in(struct task_struct *prev, 855 struct task_struct *task) 856 { 857 } 858 859 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 860 struct perf_event_attr *attr, 861 struct perf_event *group_leader) 862 { 863 return -EINVAL; 864 } 865 866 static inline void 867 perf_cgroup_set_timestamp(struct task_struct *task, 868 struct perf_event_context *ctx) 869 { 870 } 871 872 void 873 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 874 { 875 } 876 877 static inline void 878 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 879 { 880 } 881 882 static inline u64 perf_cgroup_event_time(struct perf_event *event) 883 { 884 return 0; 885 } 886 887 static inline void 888 perf_cgroup_defer_enabled(struct perf_event *event) 889 { 890 } 891 892 static inline void 893 perf_cgroup_mark_enabled(struct perf_event *event, 894 struct perf_event_context *ctx) 895 { 896 } 897 #endif 898 899 /* 900 * set default to be dependent on timer tick just 901 * like original code 902 */ 903 #define PERF_CPU_HRTIMER (1000 / HZ) 904 /* 905 * function must be called with interrupts disbled 906 */ 907 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 908 { 909 struct perf_cpu_context *cpuctx; 910 int rotations = 0; 911 912 WARN_ON(!irqs_disabled()); 913 914 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 915 rotations = perf_rotate_context(cpuctx); 916 917 raw_spin_lock(&cpuctx->hrtimer_lock); 918 if (rotations) 919 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 920 else 921 cpuctx->hrtimer_active = 0; 922 raw_spin_unlock(&cpuctx->hrtimer_lock); 923 924 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 925 } 926 927 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 928 { 929 struct hrtimer *timer = &cpuctx->hrtimer; 930 struct pmu *pmu = cpuctx->ctx.pmu; 931 u64 interval; 932 933 /* no multiplexing needed for SW PMU */ 934 if (pmu->task_ctx_nr == perf_sw_context) 935 return; 936 937 /* 938 * check default is sane, if not set then force to 939 * default interval (1/tick) 940 */ 941 interval = pmu->hrtimer_interval_ms; 942 if (interval < 1) 943 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 944 945 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 946 947 raw_spin_lock_init(&cpuctx->hrtimer_lock); 948 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 949 timer->function = perf_mux_hrtimer_handler; 950 } 951 952 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 953 { 954 struct hrtimer *timer = &cpuctx->hrtimer; 955 struct pmu *pmu = cpuctx->ctx.pmu; 956 unsigned long flags; 957 958 /* not for SW PMU */ 959 if (pmu->task_ctx_nr == perf_sw_context) 960 return 0; 961 962 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 963 if (!cpuctx->hrtimer_active) { 964 cpuctx->hrtimer_active = 1; 965 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 966 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 967 } 968 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 969 970 return 0; 971 } 972 973 void perf_pmu_disable(struct pmu *pmu) 974 { 975 int *count = this_cpu_ptr(pmu->pmu_disable_count); 976 if (!(*count)++) 977 pmu->pmu_disable(pmu); 978 } 979 980 void perf_pmu_enable(struct pmu *pmu) 981 { 982 int *count = this_cpu_ptr(pmu->pmu_disable_count); 983 if (!--(*count)) 984 pmu->pmu_enable(pmu); 985 } 986 987 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 988 989 /* 990 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 991 * perf_event_task_tick() are fully serialized because they're strictly cpu 992 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 993 * disabled, while perf_event_task_tick is called from IRQ context. 994 */ 995 static void perf_event_ctx_activate(struct perf_event_context *ctx) 996 { 997 struct list_head *head = this_cpu_ptr(&active_ctx_list); 998 999 WARN_ON(!irqs_disabled()); 1000 1001 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1002 1003 list_add(&ctx->active_ctx_list, head); 1004 } 1005 1006 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1007 { 1008 WARN_ON(!irqs_disabled()); 1009 1010 WARN_ON(list_empty(&ctx->active_ctx_list)); 1011 1012 list_del_init(&ctx->active_ctx_list); 1013 } 1014 1015 static void get_ctx(struct perf_event_context *ctx) 1016 { 1017 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1018 } 1019 1020 static void free_ctx(struct rcu_head *head) 1021 { 1022 struct perf_event_context *ctx; 1023 1024 ctx = container_of(head, struct perf_event_context, rcu_head); 1025 kfree(ctx->task_ctx_data); 1026 kfree(ctx); 1027 } 1028 1029 static void put_ctx(struct perf_event_context *ctx) 1030 { 1031 if (atomic_dec_and_test(&ctx->refcount)) { 1032 if (ctx->parent_ctx) 1033 put_ctx(ctx->parent_ctx); 1034 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1035 put_task_struct(ctx->task); 1036 call_rcu(&ctx->rcu_head, free_ctx); 1037 } 1038 } 1039 1040 /* 1041 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1042 * perf_pmu_migrate_context() we need some magic. 1043 * 1044 * Those places that change perf_event::ctx will hold both 1045 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1046 * 1047 * Lock ordering is by mutex address. There are two other sites where 1048 * perf_event_context::mutex nests and those are: 1049 * 1050 * - perf_event_exit_task_context() [ child , 0 ] 1051 * perf_event_exit_event() 1052 * put_event() [ parent, 1 ] 1053 * 1054 * - perf_event_init_context() [ parent, 0 ] 1055 * inherit_task_group() 1056 * inherit_group() 1057 * inherit_event() 1058 * perf_event_alloc() 1059 * perf_init_event() 1060 * perf_try_init_event() [ child , 1 ] 1061 * 1062 * While it appears there is an obvious deadlock here -- the parent and child 1063 * nesting levels are inverted between the two. This is in fact safe because 1064 * life-time rules separate them. That is an exiting task cannot fork, and a 1065 * spawning task cannot (yet) exit. 1066 * 1067 * But remember that that these are parent<->child context relations, and 1068 * migration does not affect children, therefore these two orderings should not 1069 * interact. 1070 * 1071 * The change in perf_event::ctx does not affect children (as claimed above) 1072 * because the sys_perf_event_open() case will install a new event and break 1073 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1074 * concerned with cpuctx and that doesn't have children. 1075 * 1076 * The places that change perf_event::ctx will issue: 1077 * 1078 * perf_remove_from_context(); 1079 * synchronize_rcu(); 1080 * perf_install_in_context(); 1081 * 1082 * to affect the change. The remove_from_context() + synchronize_rcu() should 1083 * quiesce the event, after which we can install it in the new location. This 1084 * means that only external vectors (perf_fops, prctl) can perturb the event 1085 * while in transit. Therefore all such accessors should also acquire 1086 * perf_event_context::mutex to serialize against this. 1087 * 1088 * However; because event->ctx can change while we're waiting to acquire 1089 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1090 * function. 1091 * 1092 * Lock order: 1093 * task_struct::perf_event_mutex 1094 * perf_event_context::mutex 1095 * perf_event::child_mutex; 1096 * perf_event_context::lock 1097 * perf_event::mmap_mutex 1098 * mmap_sem 1099 */ 1100 static struct perf_event_context * 1101 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1102 { 1103 struct perf_event_context *ctx; 1104 1105 again: 1106 rcu_read_lock(); 1107 ctx = ACCESS_ONCE(event->ctx); 1108 if (!atomic_inc_not_zero(&ctx->refcount)) { 1109 rcu_read_unlock(); 1110 goto again; 1111 } 1112 rcu_read_unlock(); 1113 1114 mutex_lock_nested(&ctx->mutex, nesting); 1115 if (event->ctx != ctx) { 1116 mutex_unlock(&ctx->mutex); 1117 put_ctx(ctx); 1118 goto again; 1119 } 1120 1121 return ctx; 1122 } 1123 1124 static inline struct perf_event_context * 1125 perf_event_ctx_lock(struct perf_event *event) 1126 { 1127 return perf_event_ctx_lock_nested(event, 0); 1128 } 1129 1130 static void perf_event_ctx_unlock(struct perf_event *event, 1131 struct perf_event_context *ctx) 1132 { 1133 mutex_unlock(&ctx->mutex); 1134 put_ctx(ctx); 1135 } 1136 1137 /* 1138 * This must be done under the ctx->lock, such as to serialize against 1139 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1140 * calling scheduler related locks and ctx->lock nests inside those. 1141 */ 1142 static __must_check struct perf_event_context * 1143 unclone_ctx(struct perf_event_context *ctx) 1144 { 1145 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1146 1147 lockdep_assert_held(&ctx->lock); 1148 1149 if (parent_ctx) 1150 ctx->parent_ctx = NULL; 1151 ctx->generation++; 1152 1153 return parent_ctx; 1154 } 1155 1156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1157 { 1158 /* 1159 * only top level events have the pid namespace they were created in 1160 */ 1161 if (event->parent) 1162 event = event->parent; 1163 1164 return task_tgid_nr_ns(p, event->ns); 1165 } 1166 1167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1168 { 1169 /* 1170 * only top level events have the pid namespace they were created in 1171 */ 1172 if (event->parent) 1173 event = event->parent; 1174 1175 return task_pid_nr_ns(p, event->ns); 1176 } 1177 1178 /* 1179 * If we inherit events we want to return the parent event id 1180 * to userspace. 1181 */ 1182 static u64 primary_event_id(struct perf_event *event) 1183 { 1184 u64 id = event->id; 1185 1186 if (event->parent) 1187 id = event->parent->id; 1188 1189 return id; 1190 } 1191 1192 /* 1193 * Get the perf_event_context for a task and lock it. 1194 * 1195 * This has to cope with with the fact that until it is locked, 1196 * the context could get moved to another task. 1197 */ 1198 static struct perf_event_context * 1199 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1200 { 1201 struct perf_event_context *ctx; 1202 1203 retry: 1204 /* 1205 * One of the few rules of preemptible RCU is that one cannot do 1206 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1207 * part of the read side critical section was irqs-enabled -- see 1208 * rcu_read_unlock_special(). 1209 * 1210 * Since ctx->lock nests under rq->lock we must ensure the entire read 1211 * side critical section has interrupts disabled. 1212 */ 1213 local_irq_save(*flags); 1214 rcu_read_lock(); 1215 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1216 if (ctx) { 1217 /* 1218 * If this context is a clone of another, it might 1219 * get swapped for another underneath us by 1220 * perf_event_task_sched_out, though the 1221 * rcu_read_lock() protects us from any context 1222 * getting freed. Lock the context and check if it 1223 * got swapped before we could get the lock, and retry 1224 * if so. If we locked the right context, then it 1225 * can't get swapped on us any more. 1226 */ 1227 raw_spin_lock(&ctx->lock); 1228 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1229 raw_spin_unlock(&ctx->lock); 1230 rcu_read_unlock(); 1231 local_irq_restore(*flags); 1232 goto retry; 1233 } 1234 1235 if (ctx->task == TASK_TOMBSTONE || 1236 !atomic_inc_not_zero(&ctx->refcount)) { 1237 raw_spin_unlock(&ctx->lock); 1238 ctx = NULL; 1239 } else { 1240 WARN_ON_ONCE(ctx->task != task); 1241 } 1242 } 1243 rcu_read_unlock(); 1244 if (!ctx) 1245 local_irq_restore(*flags); 1246 return ctx; 1247 } 1248 1249 /* 1250 * Get the context for a task and increment its pin_count so it 1251 * can't get swapped to another task. This also increments its 1252 * reference count so that the context can't get freed. 1253 */ 1254 static struct perf_event_context * 1255 perf_pin_task_context(struct task_struct *task, int ctxn) 1256 { 1257 struct perf_event_context *ctx; 1258 unsigned long flags; 1259 1260 ctx = perf_lock_task_context(task, ctxn, &flags); 1261 if (ctx) { 1262 ++ctx->pin_count; 1263 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1264 } 1265 return ctx; 1266 } 1267 1268 static void perf_unpin_context(struct perf_event_context *ctx) 1269 { 1270 unsigned long flags; 1271 1272 raw_spin_lock_irqsave(&ctx->lock, flags); 1273 --ctx->pin_count; 1274 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1275 } 1276 1277 /* 1278 * Update the record of the current time in a context. 1279 */ 1280 static void update_context_time(struct perf_event_context *ctx) 1281 { 1282 u64 now = perf_clock(); 1283 1284 ctx->time += now - ctx->timestamp; 1285 ctx->timestamp = now; 1286 } 1287 1288 static u64 perf_event_time(struct perf_event *event) 1289 { 1290 struct perf_event_context *ctx = event->ctx; 1291 1292 if (is_cgroup_event(event)) 1293 return perf_cgroup_event_time(event); 1294 1295 return ctx ? ctx->time : 0; 1296 } 1297 1298 /* 1299 * Update the total_time_enabled and total_time_running fields for a event. 1300 */ 1301 static void update_event_times(struct perf_event *event) 1302 { 1303 struct perf_event_context *ctx = event->ctx; 1304 u64 run_end; 1305 1306 lockdep_assert_held(&ctx->lock); 1307 1308 if (event->state < PERF_EVENT_STATE_INACTIVE || 1309 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1310 return; 1311 1312 /* 1313 * in cgroup mode, time_enabled represents 1314 * the time the event was enabled AND active 1315 * tasks were in the monitored cgroup. This is 1316 * independent of the activity of the context as 1317 * there may be a mix of cgroup and non-cgroup events. 1318 * 1319 * That is why we treat cgroup events differently 1320 * here. 1321 */ 1322 if (is_cgroup_event(event)) 1323 run_end = perf_cgroup_event_time(event); 1324 else if (ctx->is_active) 1325 run_end = ctx->time; 1326 else 1327 run_end = event->tstamp_stopped; 1328 1329 event->total_time_enabled = run_end - event->tstamp_enabled; 1330 1331 if (event->state == PERF_EVENT_STATE_INACTIVE) 1332 run_end = event->tstamp_stopped; 1333 else 1334 run_end = perf_event_time(event); 1335 1336 event->total_time_running = run_end - event->tstamp_running; 1337 1338 } 1339 1340 /* 1341 * Update total_time_enabled and total_time_running for all events in a group. 1342 */ 1343 static void update_group_times(struct perf_event *leader) 1344 { 1345 struct perf_event *event; 1346 1347 update_event_times(leader); 1348 list_for_each_entry(event, &leader->sibling_list, group_entry) 1349 update_event_times(event); 1350 } 1351 1352 static struct list_head * 1353 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1354 { 1355 if (event->attr.pinned) 1356 return &ctx->pinned_groups; 1357 else 1358 return &ctx->flexible_groups; 1359 } 1360 1361 /* 1362 * Add a event from the lists for its context. 1363 * Must be called with ctx->mutex and ctx->lock held. 1364 */ 1365 static void 1366 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1367 { 1368 lockdep_assert_held(&ctx->lock); 1369 1370 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1371 event->attach_state |= PERF_ATTACH_CONTEXT; 1372 1373 /* 1374 * If we're a stand alone event or group leader, we go to the context 1375 * list, group events are kept attached to the group so that 1376 * perf_group_detach can, at all times, locate all siblings. 1377 */ 1378 if (event->group_leader == event) { 1379 struct list_head *list; 1380 1381 if (is_software_event(event)) 1382 event->group_flags |= PERF_GROUP_SOFTWARE; 1383 1384 list = ctx_group_list(event, ctx); 1385 list_add_tail(&event->group_entry, list); 1386 } 1387 1388 if (is_cgroup_event(event)) 1389 ctx->nr_cgroups++; 1390 1391 list_add_rcu(&event->event_entry, &ctx->event_list); 1392 ctx->nr_events++; 1393 if (event->attr.inherit_stat) 1394 ctx->nr_stat++; 1395 1396 ctx->generation++; 1397 } 1398 1399 /* 1400 * Initialize event state based on the perf_event_attr::disabled. 1401 */ 1402 static inline void perf_event__state_init(struct perf_event *event) 1403 { 1404 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1405 PERF_EVENT_STATE_INACTIVE; 1406 } 1407 1408 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1409 { 1410 int entry = sizeof(u64); /* value */ 1411 int size = 0; 1412 int nr = 1; 1413 1414 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1415 size += sizeof(u64); 1416 1417 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1418 size += sizeof(u64); 1419 1420 if (event->attr.read_format & PERF_FORMAT_ID) 1421 entry += sizeof(u64); 1422 1423 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1424 nr += nr_siblings; 1425 size += sizeof(u64); 1426 } 1427 1428 size += entry * nr; 1429 event->read_size = size; 1430 } 1431 1432 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1433 { 1434 struct perf_sample_data *data; 1435 u16 size = 0; 1436 1437 if (sample_type & PERF_SAMPLE_IP) 1438 size += sizeof(data->ip); 1439 1440 if (sample_type & PERF_SAMPLE_ADDR) 1441 size += sizeof(data->addr); 1442 1443 if (sample_type & PERF_SAMPLE_PERIOD) 1444 size += sizeof(data->period); 1445 1446 if (sample_type & PERF_SAMPLE_WEIGHT) 1447 size += sizeof(data->weight); 1448 1449 if (sample_type & PERF_SAMPLE_READ) 1450 size += event->read_size; 1451 1452 if (sample_type & PERF_SAMPLE_DATA_SRC) 1453 size += sizeof(data->data_src.val); 1454 1455 if (sample_type & PERF_SAMPLE_TRANSACTION) 1456 size += sizeof(data->txn); 1457 1458 event->header_size = size; 1459 } 1460 1461 /* 1462 * Called at perf_event creation and when events are attached/detached from a 1463 * group. 1464 */ 1465 static void perf_event__header_size(struct perf_event *event) 1466 { 1467 __perf_event_read_size(event, 1468 event->group_leader->nr_siblings); 1469 __perf_event_header_size(event, event->attr.sample_type); 1470 } 1471 1472 static void perf_event__id_header_size(struct perf_event *event) 1473 { 1474 struct perf_sample_data *data; 1475 u64 sample_type = event->attr.sample_type; 1476 u16 size = 0; 1477 1478 if (sample_type & PERF_SAMPLE_TID) 1479 size += sizeof(data->tid_entry); 1480 1481 if (sample_type & PERF_SAMPLE_TIME) 1482 size += sizeof(data->time); 1483 1484 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1485 size += sizeof(data->id); 1486 1487 if (sample_type & PERF_SAMPLE_ID) 1488 size += sizeof(data->id); 1489 1490 if (sample_type & PERF_SAMPLE_STREAM_ID) 1491 size += sizeof(data->stream_id); 1492 1493 if (sample_type & PERF_SAMPLE_CPU) 1494 size += sizeof(data->cpu_entry); 1495 1496 event->id_header_size = size; 1497 } 1498 1499 static bool perf_event_validate_size(struct perf_event *event) 1500 { 1501 /* 1502 * The values computed here will be over-written when we actually 1503 * attach the event. 1504 */ 1505 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1506 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1507 perf_event__id_header_size(event); 1508 1509 /* 1510 * Sum the lot; should not exceed the 64k limit we have on records. 1511 * Conservative limit to allow for callchains and other variable fields. 1512 */ 1513 if (event->read_size + event->header_size + 1514 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1515 return false; 1516 1517 return true; 1518 } 1519 1520 static void perf_group_attach(struct perf_event *event) 1521 { 1522 struct perf_event *group_leader = event->group_leader, *pos; 1523 1524 /* 1525 * We can have double attach due to group movement in perf_event_open. 1526 */ 1527 if (event->attach_state & PERF_ATTACH_GROUP) 1528 return; 1529 1530 event->attach_state |= PERF_ATTACH_GROUP; 1531 1532 if (group_leader == event) 1533 return; 1534 1535 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1536 1537 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1538 !is_software_event(event)) 1539 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1540 1541 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1542 group_leader->nr_siblings++; 1543 1544 perf_event__header_size(group_leader); 1545 1546 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1547 perf_event__header_size(pos); 1548 } 1549 1550 /* 1551 * Remove a event from the lists for its context. 1552 * Must be called with ctx->mutex and ctx->lock held. 1553 */ 1554 static void 1555 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1556 { 1557 struct perf_cpu_context *cpuctx; 1558 1559 WARN_ON_ONCE(event->ctx != ctx); 1560 lockdep_assert_held(&ctx->lock); 1561 1562 /* 1563 * We can have double detach due to exit/hot-unplug + close. 1564 */ 1565 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1566 return; 1567 1568 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1569 1570 if (is_cgroup_event(event)) { 1571 ctx->nr_cgroups--; 1572 /* 1573 * Because cgroup events are always per-cpu events, this will 1574 * always be called from the right CPU. 1575 */ 1576 cpuctx = __get_cpu_context(ctx); 1577 /* 1578 * If there are no more cgroup events then clear cgrp to avoid 1579 * stale pointer in update_cgrp_time_from_cpuctx(). 1580 */ 1581 if (!ctx->nr_cgroups) 1582 cpuctx->cgrp = NULL; 1583 } 1584 1585 ctx->nr_events--; 1586 if (event->attr.inherit_stat) 1587 ctx->nr_stat--; 1588 1589 list_del_rcu(&event->event_entry); 1590 1591 if (event->group_leader == event) 1592 list_del_init(&event->group_entry); 1593 1594 update_group_times(event); 1595 1596 /* 1597 * If event was in error state, then keep it 1598 * that way, otherwise bogus counts will be 1599 * returned on read(). The only way to get out 1600 * of error state is by explicit re-enabling 1601 * of the event 1602 */ 1603 if (event->state > PERF_EVENT_STATE_OFF) 1604 event->state = PERF_EVENT_STATE_OFF; 1605 1606 ctx->generation++; 1607 } 1608 1609 static void perf_group_detach(struct perf_event *event) 1610 { 1611 struct perf_event *sibling, *tmp; 1612 struct list_head *list = NULL; 1613 1614 /* 1615 * We can have double detach due to exit/hot-unplug + close. 1616 */ 1617 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1618 return; 1619 1620 event->attach_state &= ~PERF_ATTACH_GROUP; 1621 1622 /* 1623 * If this is a sibling, remove it from its group. 1624 */ 1625 if (event->group_leader != event) { 1626 list_del_init(&event->group_entry); 1627 event->group_leader->nr_siblings--; 1628 goto out; 1629 } 1630 1631 if (!list_empty(&event->group_entry)) 1632 list = &event->group_entry; 1633 1634 /* 1635 * If this was a group event with sibling events then 1636 * upgrade the siblings to singleton events by adding them 1637 * to whatever list we are on. 1638 */ 1639 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1640 if (list) 1641 list_move_tail(&sibling->group_entry, list); 1642 sibling->group_leader = sibling; 1643 1644 /* Inherit group flags from the previous leader */ 1645 sibling->group_flags = event->group_flags; 1646 1647 WARN_ON_ONCE(sibling->ctx != event->ctx); 1648 } 1649 1650 out: 1651 perf_event__header_size(event->group_leader); 1652 1653 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1654 perf_event__header_size(tmp); 1655 } 1656 1657 static bool is_orphaned_event(struct perf_event *event) 1658 { 1659 return event->state == PERF_EVENT_STATE_DEAD; 1660 } 1661 1662 static inline int pmu_filter_match(struct perf_event *event) 1663 { 1664 struct pmu *pmu = event->pmu; 1665 return pmu->filter_match ? pmu->filter_match(event) : 1; 1666 } 1667 1668 static inline int 1669 event_filter_match(struct perf_event *event) 1670 { 1671 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1672 && perf_cgroup_match(event) && pmu_filter_match(event); 1673 } 1674 1675 static void 1676 event_sched_out(struct perf_event *event, 1677 struct perf_cpu_context *cpuctx, 1678 struct perf_event_context *ctx) 1679 { 1680 u64 tstamp = perf_event_time(event); 1681 u64 delta; 1682 1683 WARN_ON_ONCE(event->ctx != ctx); 1684 lockdep_assert_held(&ctx->lock); 1685 1686 /* 1687 * An event which could not be activated because of 1688 * filter mismatch still needs to have its timings 1689 * maintained, otherwise bogus information is return 1690 * via read() for time_enabled, time_running: 1691 */ 1692 if (event->state == PERF_EVENT_STATE_INACTIVE 1693 && !event_filter_match(event)) { 1694 delta = tstamp - event->tstamp_stopped; 1695 event->tstamp_running += delta; 1696 event->tstamp_stopped = tstamp; 1697 } 1698 1699 if (event->state != PERF_EVENT_STATE_ACTIVE) 1700 return; 1701 1702 perf_pmu_disable(event->pmu); 1703 1704 event->tstamp_stopped = tstamp; 1705 event->pmu->del(event, 0); 1706 event->oncpu = -1; 1707 event->state = PERF_EVENT_STATE_INACTIVE; 1708 if (event->pending_disable) { 1709 event->pending_disable = 0; 1710 event->state = PERF_EVENT_STATE_OFF; 1711 } 1712 1713 if (!is_software_event(event)) 1714 cpuctx->active_oncpu--; 1715 if (!--ctx->nr_active) 1716 perf_event_ctx_deactivate(ctx); 1717 if (event->attr.freq && event->attr.sample_freq) 1718 ctx->nr_freq--; 1719 if (event->attr.exclusive || !cpuctx->active_oncpu) 1720 cpuctx->exclusive = 0; 1721 1722 perf_pmu_enable(event->pmu); 1723 } 1724 1725 static void 1726 group_sched_out(struct perf_event *group_event, 1727 struct perf_cpu_context *cpuctx, 1728 struct perf_event_context *ctx) 1729 { 1730 struct perf_event *event; 1731 int state = group_event->state; 1732 1733 event_sched_out(group_event, cpuctx, ctx); 1734 1735 /* 1736 * Schedule out siblings (if any): 1737 */ 1738 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1739 event_sched_out(event, cpuctx, ctx); 1740 1741 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1742 cpuctx->exclusive = 0; 1743 } 1744 1745 #define DETACH_GROUP 0x01UL 1746 1747 /* 1748 * Cross CPU call to remove a performance event 1749 * 1750 * We disable the event on the hardware level first. After that we 1751 * remove it from the context list. 1752 */ 1753 static void 1754 __perf_remove_from_context(struct perf_event *event, 1755 struct perf_cpu_context *cpuctx, 1756 struct perf_event_context *ctx, 1757 void *info) 1758 { 1759 unsigned long flags = (unsigned long)info; 1760 1761 event_sched_out(event, cpuctx, ctx); 1762 if (flags & DETACH_GROUP) 1763 perf_group_detach(event); 1764 list_del_event(event, ctx); 1765 1766 if (!ctx->nr_events && ctx->is_active) { 1767 ctx->is_active = 0; 1768 if (ctx->task) { 1769 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1770 cpuctx->task_ctx = NULL; 1771 } 1772 } 1773 } 1774 1775 /* 1776 * Remove the event from a task's (or a CPU's) list of events. 1777 * 1778 * If event->ctx is a cloned context, callers must make sure that 1779 * every task struct that event->ctx->task could possibly point to 1780 * remains valid. This is OK when called from perf_release since 1781 * that only calls us on the top-level context, which can't be a clone. 1782 * When called from perf_event_exit_task, it's OK because the 1783 * context has been detached from its task. 1784 */ 1785 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1786 { 1787 lockdep_assert_held(&event->ctx->mutex); 1788 1789 event_function_call(event, __perf_remove_from_context, (void *)flags); 1790 } 1791 1792 /* 1793 * Cross CPU call to disable a performance event 1794 */ 1795 static void __perf_event_disable(struct perf_event *event, 1796 struct perf_cpu_context *cpuctx, 1797 struct perf_event_context *ctx, 1798 void *info) 1799 { 1800 if (event->state < PERF_EVENT_STATE_INACTIVE) 1801 return; 1802 1803 update_context_time(ctx); 1804 update_cgrp_time_from_event(event); 1805 update_group_times(event); 1806 if (event == event->group_leader) 1807 group_sched_out(event, cpuctx, ctx); 1808 else 1809 event_sched_out(event, cpuctx, ctx); 1810 event->state = PERF_EVENT_STATE_OFF; 1811 } 1812 1813 /* 1814 * Disable a event. 1815 * 1816 * If event->ctx is a cloned context, callers must make sure that 1817 * every task struct that event->ctx->task could possibly point to 1818 * remains valid. This condition is satisifed when called through 1819 * perf_event_for_each_child or perf_event_for_each because they 1820 * hold the top-level event's child_mutex, so any descendant that 1821 * goes to exit will block in perf_event_exit_event(). 1822 * 1823 * When called from perf_pending_event it's OK because event->ctx 1824 * is the current context on this CPU and preemption is disabled, 1825 * hence we can't get into perf_event_task_sched_out for this context. 1826 */ 1827 static void _perf_event_disable(struct perf_event *event) 1828 { 1829 struct perf_event_context *ctx = event->ctx; 1830 1831 raw_spin_lock_irq(&ctx->lock); 1832 if (event->state <= PERF_EVENT_STATE_OFF) { 1833 raw_spin_unlock_irq(&ctx->lock); 1834 return; 1835 } 1836 raw_spin_unlock_irq(&ctx->lock); 1837 1838 event_function_call(event, __perf_event_disable, NULL); 1839 } 1840 1841 void perf_event_disable_local(struct perf_event *event) 1842 { 1843 event_function_local(event, __perf_event_disable, NULL); 1844 } 1845 1846 /* 1847 * Strictly speaking kernel users cannot create groups and therefore this 1848 * interface does not need the perf_event_ctx_lock() magic. 1849 */ 1850 void perf_event_disable(struct perf_event *event) 1851 { 1852 struct perf_event_context *ctx; 1853 1854 ctx = perf_event_ctx_lock(event); 1855 _perf_event_disable(event); 1856 perf_event_ctx_unlock(event, ctx); 1857 } 1858 EXPORT_SYMBOL_GPL(perf_event_disable); 1859 1860 static void perf_set_shadow_time(struct perf_event *event, 1861 struct perf_event_context *ctx, 1862 u64 tstamp) 1863 { 1864 /* 1865 * use the correct time source for the time snapshot 1866 * 1867 * We could get by without this by leveraging the 1868 * fact that to get to this function, the caller 1869 * has most likely already called update_context_time() 1870 * and update_cgrp_time_xx() and thus both timestamp 1871 * are identical (or very close). Given that tstamp is, 1872 * already adjusted for cgroup, we could say that: 1873 * tstamp - ctx->timestamp 1874 * is equivalent to 1875 * tstamp - cgrp->timestamp. 1876 * 1877 * Then, in perf_output_read(), the calculation would 1878 * work with no changes because: 1879 * - event is guaranteed scheduled in 1880 * - no scheduled out in between 1881 * - thus the timestamp would be the same 1882 * 1883 * But this is a bit hairy. 1884 * 1885 * So instead, we have an explicit cgroup call to remain 1886 * within the time time source all along. We believe it 1887 * is cleaner and simpler to understand. 1888 */ 1889 if (is_cgroup_event(event)) 1890 perf_cgroup_set_shadow_time(event, tstamp); 1891 else 1892 event->shadow_ctx_time = tstamp - ctx->timestamp; 1893 } 1894 1895 #define MAX_INTERRUPTS (~0ULL) 1896 1897 static void perf_log_throttle(struct perf_event *event, int enable); 1898 static void perf_log_itrace_start(struct perf_event *event); 1899 1900 static int 1901 event_sched_in(struct perf_event *event, 1902 struct perf_cpu_context *cpuctx, 1903 struct perf_event_context *ctx) 1904 { 1905 u64 tstamp = perf_event_time(event); 1906 int ret = 0; 1907 1908 lockdep_assert_held(&ctx->lock); 1909 1910 if (event->state <= PERF_EVENT_STATE_OFF) 1911 return 0; 1912 1913 event->state = PERF_EVENT_STATE_ACTIVE; 1914 event->oncpu = smp_processor_id(); 1915 1916 /* 1917 * Unthrottle events, since we scheduled we might have missed several 1918 * ticks already, also for a heavily scheduling task there is little 1919 * guarantee it'll get a tick in a timely manner. 1920 */ 1921 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1922 perf_log_throttle(event, 1); 1923 event->hw.interrupts = 0; 1924 } 1925 1926 /* 1927 * The new state must be visible before we turn it on in the hardware: 1928 */ 1929 smp_wmb(); 1930 1931 perf_pmu_disable(event->pmu); 1932 1933 perf_set_shadow_time(event, ctx, tstamp); 1934 1935 perf_log_itrace_start(event); 1936 1937 if (event->pmu->add(event, PERF_EF_START)) { 1938 event->state = PERF_EVENT_STATE_INACTIVE; 1939 event->oncpu = -1; 1940 ret = -EAGAIN; 1941 goto out; 1942 } 1943 1944 event->tstamp_running += tstamp - event->tstamp_stopped; 1945 1946 if (!is_software_event(event)) 1947 cpuctx->active_oncpu++; 1948 if (!ctx->nr_active++) 1949 perf_event_ctx_activate(ctx); 1950 if (event->attr.freq && event->attr.sample_freq) 1951 ctx->nr_freq++; 1952 1953 if (event->attr.exclusive) 1954 cpuctx->exclusive = 1; 1955 1956 out: 1957 perf_pmu_enable(event->pmu); 1958 1959 return ret; 1960 } 1961 1962 static int 1963 group_sched_in(struct perf_event *group_event, 1964 struct perf_cpu_context *cpuctx, 1965 struct perf_event_context *ctx) 1966 { 1967 struct perf_event *event, *partial_group = NULL; 1968 struct pmu *pmu = ctx->pmu; 1969 u64 now = ctx->time; 1970 bool simulate = false; 1971 1972 if (group_event->state == PERF_EVENT_STATE_OFF) 1973 return 0; 1974 1975 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 1976 1977 if (event_sched_in(group_event, cpuctx, ctx)) { 1978 pmu->cancel_txn(pmu); 1979 perf_mux_hrtimer_restart(cpuctx); 1980 return -EAGAIN; 1981 } 1982 1983 /* 1984 * Schedule in siblings as one group (if any): 1985 */ 1986 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1987 if (event_sched_in(event, cpuctx, ctx)) { 1988 partial_group = event; 1989 goto group_error; 1990 } 1991 } 1992 1993 if (!pmu->commit_txn(pmu)) 1994 return 0; 1995 1996 group_error: 1997 /* 1998 * Groups can be scheduled in as one unit only, so undo any 1999 * partial group before returning: 2000 * The events up to the failed event are scheduled out normally, 2001 * tstamp_stopped will be updated. 2002 * 2003 * The failed events and the remaining siblings need to have 2004 * their timings updated as if they had gone thru event_sched_in() 2005 * and event_sched_out(). This is required to get consistent timings 2006 * across the group. This also takes care of the case where the group 2007 * could never be scheduled by ensuring tstamp_stopped is set to mark 2008 * the time the event was actually stopped, such that time delta 2009 * calculation in update_event_times() is correct. 2010 */ 2011 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2012 if (event == partial_group) 2013 simulate = true; 2014 2015 if (simulate) { 2016 event->tstamp_running += now - event->tstamp_stopped; 2017 event->tstamp_stopped = now; 2018 } else { 2019 event_sched_out(event, cpuctx, ctx); 2020 } 2021 } 2022 event_sched_out(group_event, cpuctx, ctx); 2023 2024 pmu->cancel_txn(pmu); 2025 2026 perf_mux_hrtimer_restart(cpuctx); 2027 2028 return -EAGAIN; 2029 } 2030 2031 /* 2032 * Work out whether we can put this event group on the CPU now. 2033 */ 2034 static int group_can_go_on(struct perf_event *event, 2035 struct perf_cpu_context *cpuctx, 2036 int can_add_hw) 2037 { 2038 /* 2039 * Groups consisting entirely of software events can always go on. 2040 */ 2041 if (event->group_flags & PERF_GROUP_SOFTWARE) 2042 return 1; 2043 /* 2044 * If an exclusive group is already on, no other hardware 2045 * events can go on. 2046 */ 2047 if (cpuctx->exclusive) 2048 return 0; 2049 /* 2050 * If this group is exclusive and there are already 2051 * events on the CPU, it can't go on. 2052 */ 2053 if (event->attr.exclusive && cpuctx->active_oncpu) 2054 return 0; 2055 /* 2056 * Otherwise, try to add it if all previous groups were able 2057 * to go on. 2058 */ 2059 return can_add_hw; 2060 } 2061 2062 static void add_event_to_ctx(struct perf_event *event, 2063 struct perf_event_context *ctx) 2064 { 2065 u64 tstamp = perf_event_time(event); 2066 2067 list_add_event(event, ctx); 2068 perf_group_attach(event); 2069 event->tstamp_enabled = tstamp; 2070 event->tstamp_running = tstamp; 2071 event->tstamp_stopped = tstamp; 2072 } 2073 2074 static void ctx_sched_out(struct perf_event_context *ctx, 2075 struct perf_cpu_context *cpuctx, 2076 enum event_type_t event_type); 2077 static void 2078 ctx_sched_in(struct perf_event_context *ctx, 2079 struct perf_cpu_context *cpuctx, 2080 enum event_type_t event_type, 2081 struct task_struct *task); 2082 2083 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2084 struct perf_event_context *ctx) 2085 { 2086 if (!cpuctx->task_ctx) 2087 return; 2088 2089 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2090 return; 2091 2092 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2093 } 2094 2095 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2096 struct perf_event_context *ctx, 2097 struct task_struct *task) 2098 { 2099 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2100 if (ctx) 2101 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2102 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2103 if (ctx) 2104 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2105 } 2106 2107 static void ctx_resched(struct perf_cpu_context *cpuctx, 2108 struct perf_event_context *task_ctx) 2109 { 2110 perf_pmu_disable(cpuctx->ctx.pmu); 2111 if (task_ctx) 2112 task_ctx_sched_out(cpuctx, task_ctx); 2113 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 2114 perf_event_sched_in(cpuctx, task_ctx, current); 2115 perf_pmu_enable(cpuctx->ctx.pmu); 2116 } 2117 2118 /* 2119 * Cross CPU call to install and enable a performance event 2120 * 2121 * Very similar to remote_function() + event_function() but cannot assume that 2122 * things like ctx->is_active and cpuctx->task_ctx are set. 2123 */ 2124 static int __perf_install_in_context(void *info) 2125 { 2126 struct perf_event *event = info; 2127 struct perf_event_context *ctx = event->ctx; 2128 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2129 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2130 bool activate = true; 2131 int ret = 0; 2132 2133 raw_spin_lock(&cpuctx->ctx.lock); 2134 if (ctx->task) { 2135 raw_spin_lock(&ctx->lock); 2136 task_ctx = ctx; 2137 2138 /* If we're on the wrong CPU, try again */ 2139 if (task_cpu(ctx->task) != smp_processor_id()) { 2140 ret = -ESRCH; 2141 goto unlock; 2142 } 2143 2144 /* 2145 * If we're on the right CPU, see if the task we target is 2146 * current, if not we don't have to activate the ctx, a future 2147 * context switch will do that for us. 2148 */ 2149 if (ctx->task != current) 2150 activate = false; 2151 else 2152 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2153 2154 } else if (task_ctx) { 2155 raw_spin_lock(&task_ctx->lock); 2156 } 2157 2158 if (activate) { 2159 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2160 add_event_to_ctx(event, ctx); 2161 ctx_resched(cpuctx, task_ctx); 2162 } else { 2163 add_event_to_ctx(event, ctx); 2164 } 2165 2166 unlock: 2167 perf_ctx_unlock(cpuctx, task_ctx); 2168 2169 return ret; 2170 } 2171 2172 /* 2173 * Attach a performance event to a context. 2174 * 2175 * Very similar to event_function_call, see comment there. 2176 */ 2177 static void 2178 perf_install_in_context(struct perf_event_context *ctx, 2179 struct perf_event *event, 2180 int cpu) 2181 { 2182 struct task_struct *task = READ_ONCE(ctx->task); 2183 2184 lockdep_assert_held(&ctx->mutex); 2185 2186 event->ctx = ctx; 2187 if (event->cpu != -1) 2188 event->cpu = cpu; 2189 2190 if (!task) { 2191 cpu_function_call(cpu, __perf_install_in_context, event); 2192 return; 2193 } 2194 2195 /* 2196 * Should not happen, we validate the ctx is still alive before calling. 2197 */ 2198 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2199 return; 2200 2201 /* 2202 * Installing events is tricky because we cannot rely on ctx->is_active 2203 * to be set in case this is the nr_events 0 -> 1 transition. 2204 */ 2205 again: 2206 /* 2207 * Cannot use task_function_call() because we need to run on the task's 2208 * CPU regardless of whether its current or not. 2209 */ 2210 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event)) 2211 return; 2212 2213 raw_spin_lock_irq(&ctx->lock); 2214 task = ctx->task; 2215 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2216 /* 2217 * Cannot happen because we already checked above (which also 2218 * cannot happen), and we hold ctx->mutex, which serializes us 2219 * against perf_event_exit_task_context(). 2220 */ 2221 raw_spin_unlock_irq(&ctx->lock); 2222 return; 2223 } 2224 raw_spin_unlock_irq(&ctx->lock); 2225 /* 2226 * Since !ctx->is_active doesn't mean anything, we must IPI 2227 * unconditionally. 2228 */ 2229 goto again; 2230 } 2231 2232 /* 2233 * Put a event into inactive state and update time fields. 2234 * Enabling the leader of a group effectively enables all 2235 * the group members that aren't explicitly disabled, so we 2236 * have to update their ->tstamp_enabled also. 2237 * Note: this works for group members as well as group leaders 2238 * since the non-leader members' sibling_lists will be empty. 2239 */ 2240 static void __perf_event_mark_enabled(struct perf_event *event) 2241 { 2242 struct perf_event *sub; 2243 u64 tstamp = perf_event_time(event); 2244 2245 event->state = PERF_EVENT_STATE_INACTIVE; 2246 event->tstamp_enabled = tstamp - event->total_time_enabled; 2247 list_for_each_entry(sub, &event->sibling_list, group_entry) { 2248 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 2249 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 2250 } 2251 } 2252 2253 /* 2254 * Cross CPU call to enable a performance event 2255 */ 2256 static void __perf_event_enable(struct perf_event *event, 2257 struct perf_cpu_context *cpuctx, 2258 struct perf_event_context *ctx, 2259 void *info) 2260 { 2261 struct perf_event *leader = event->group_leader; 2262 struct perf_event_context *task_ctx; 2263 2264 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2265 event->state <= PERF_EVENT_STATE_ERROR) 2266 return; 2267 2268 if (ctx->is_active) 2269 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2270 2271 __perf_event_mark_enabled(event); 2272 2273 if (!ctx->is_active) 2274 return; 2275 2276 if (!event_filter_match(event)) { 2277 if (is_cgroup_event(event)) 2278 perf_cgroup_defer_enabled(event); 2279 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2280 return; 2281 } 2282 2283 /* 2284 * If the event is in a group and isn't the group leader, 2285 * then don't put it on unless the group is on. 2286 */ 2287 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2288 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2289 return; 2290 } 2291 2292 task_ctx = cpuctx->task_ctx; 2293 if (ctx->task) 2294 WARN_ON_ONCE(task_ctx != ctx); 2295 2296 ctx_resched(cpuctx, task_ctx); 2297 } 2298 2299 /* 2300 * Enable a event. 2301 * 2302 * If event->ctx is a cloned context, callers must make sure that 2303 * every task struct that event->ctx->task could possibly point to 2304 * remains valid. This condition is satisfied when called through 2305 * perf_event_for_each_child or perf_event_for_each as described 2306 * for perf_event_disable. 2307 */ 2308 static void _perf_event_enable(struct perf_event *event) 2309 { 2310 struct perf_event_context *ctx = event->ctx; 2311 2312 raw_spin_lock_irq(&ctx->lock); 2313 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2314 event->state < PERF_EVENT_STATE_ERROR) { 2315 raw_spin_unlock_irq(&ctx->lock); 2316 return; 2317 } 2318 2319 /* 2320 * If the event is in error state, clear that first. 2321 * 2322 * That way, if we see the event in error state below, we know that it 2323 * has gone back into error state, as distinct from the task having 2324 * been scheduled away before the cross-call arrived. 2325 */ 2326 if (event->state == PERF_EVENT_STATE_ERROR) 2327 event->state = PERF_EVENT_STATE_OFF; 2328 raw_spin_unlock_irq(&ctx->lock); 2329 2330 event_function_call(event, __perf_event_enable, NULL); 2331 } 2332 2333 /* 2334 * See perf_event_disable(); 2335 */ 2336 void perf_event_enable(struct perf_event *event) 2337 { 2338 struct perf_event_context *ctx; 2339 2340 ctx = perf_event_ctx_lock(event); 2341 _perf_event_enable(event); 2342 perf_event_ctx_unlock(event, ctx); 2343 } 2344 EXPORT_SYMBOL_GPL(perf_event_enable); 2345 2346 static int _perf_event_refresh(struct perf_event *event, int refresh) 2347 { 2348 /* 2349 * not supported on inherited events 2350 */ 2351 if (event->attr.inherit || !is_sampling_event(event)) 2352 return -EINVAL; 2353 2354 atomic_add(refresh, &event->event_limit); 2355 _perf_event_enable(event); 2356 2357 return 0; 2358 } 2359 2360 /* 2361 * See perf_event_disable() 2362 */ 2363 int perf_event_refresh(struct perf_event *event, int refresh) 2364 { 2365 struct perf_event_context *ctx; 2366 int ret; 2367 2368 ctx = perf_event_ctx_lock(event); 2369 ret = _perf_event_refresh(event, refresh); 2370 perf_event_ctx_unlock(event, ctx); 2371 2372 return ret; 2373 } 2374 EXPORT_SYMBOL_GPL(perf_event_refresh); 2375 2376 static void ctx_sched_out(struct perf_event_context *ctx, 2377 struct perf_cpu_context *cpuctx, 2378 enum event_type_t event_type) 2379 { 2380 int is_active = ctx->is_active; 2381 struct perf_event *event; 2382 2383 lockdep_assert_held(&ctx->lock); 2384 2385 if (likely(!ctx->nr_events)) { 2386 /* 2387 * See __perf_remove_from_context(). 2388 */ 2389 WARN_ON_ONCE(ctx->is_active); 2390 if (ctx->task) 2391 WARN_ON_ONCE(cpuctx->task_ctx); 2392 return; 2393 } 2394 2395 ctx->is_active &= ~event_type; 2396 if (!(ctx->is_active & EVENT_ALL)) 2397 ctx->is_active = 0; 2398 2399 if (ctx->task) { 2400 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2401 if (!ctx->is_active) 2402 cpuctx->task_ctx = NULL; 2403 } 2404 2405 is_active ^= ctx->is_active; /* changed bits */ 2406 2407 if (is_active & EVENT_TIME) { 2408 /* update (and stop) ctx time */ 2409 update_context_time(ctx); 2410 update_cgrp_time_from_cpuctx(cpuctx); 2411 } 2412 2413 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2414 return; 2415 2416 perf_pmu_disable(ctx->pmu); 2417 if (is_active & EVENT_PINNED) { 2418 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2419 group_sched_out(event, cpuctx, ctx); 2420 } 2421 2422 if (is_active & EVENT_FLEXIBLE) { 2423 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2424 group_sched_out(event, cpuctx, ctx); 2425 } 2426 perf_pmu_enable(ctx->pmu); 2427 } 2428 2429 /* 2430 * Test whether two contexts are equivalent, i.e. whether they have both been 2431 * cloned from the same version of the same context. 2432 * 2433 * Equivalence is measured using a generation number in the context that is 2434 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2435 * and list_del_event(). 2436 */ 2437 static int context_equiv(struct perf_event_context *ctx1, 2438 struct perf_event_context *ctx2) 2439 { 2440 lockdep_assert_held(&ctx1->lock); 2441 lockdep_assert_held(&ctx2->lock); 2442 2443 /* Pinning disables the swap optimization */ 2444 if (ctx1->pin_count || ctx2->pin_count) 2445 return 0; 2446 2447 /* If ctx1 is the parent of ctx2 */ 2448 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2449 return 1; 2450 2451 /* If ctx2 is the parent of ctx1 */ 2452 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2453 return 1; 2454 2455 /* 2456 * If ctx1 and ctx2 have the same parent; we flatten the parent 2457 * hierarchy, see perf_event_init_context(). 2458 */ 2459 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2460 ctx1->parent_gen == ctx2->parent_gen) 2461 return 1; 2462 2463 /* Unmatched */ 2464 return 0; 2465 } 2466 2467 static void __perf_event_sync_stat(struct perf_event *event, 2468 struct perf_event *next_event) 2469 { 2470 u64 value; 2471 2472 if (!event->attr.inherit_stat) 2473 return; 2474 2475 /* 2476 * Update the event value, we cannot use perf_event_read() 2477 * because we're in the middle of a context switch and have IRQs 2478 * disabled, which upsets smp_call_function_single(), however 2479 * we know the event must be on the current CPU, therefore we 2480 * don't need to use it. 2481 */ 2482 switch (event->state) { 2483 case PERF_EVENT_STATE_ACTIVE: 2484 event->pmu->read(event); 2485 /* fall-through */ 2486 2487 case PERF_EVENT_STATE_INACTIVE: 2488 update_event_times(event); 2489 break; 2490 2491 default: 2492 break; 2493 } 2494 2495 /* 2496 * In order to keep per-task stats reliable we need to flip the event 2497 * values when we flip the contexts. 2498 */ 2499 value = local64_read(&next_event->count); 2500 value = local64_xchg(&event->count, value); 2501 local64_set(&next_event->count, value); 2502 2503 swap(event->total_time_enabled, next_event->total_time_enabled); 2504 swap(event->total_time_running, next_event->total_time_running); 2505 2506 /* 2507 * Since we swizzled the values, update the user visible data too. 2508 */ 2509 perf_event_update_userpage(event); 2510 perf_event_update_userpage(next_event); 2511 } 2512 2513 static void perf_event_sync_stat(struct perf_event_context *ctx, 2514 struct perf_event_context *next_ctx) 2515 { 2516 struct perf_event *event, *next_event; 2517 2518 if (!ctx->nr_stat) 2519 return; 2520 2521 update_context_time(ctx); 2522 2523 event = list_first_entry(&ctx->event_list, 2524 struct perf_event, event_entry); 2525 2526 next_event = list_first_entry(&next_ctx->event_list, 2527 struct perf_event, event_entry); 2528 2529 while (&event->event_entry != &ctx->event_list && 2530 &next_event->event_entry != &next_ctx->event_list) { 2531 2532 __perf_event_sync_stat(event, next_event); 2533 2534 event = list_next_entry(event, event_entry); 2535 next_event = list_next_entry(next_event, event_entry); 2536 } 2537 } 2538 2539 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2540 struct task_struct *next) 2541 { 2542 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2543 struct perf_event_context *next_ctx; 2544 struct perf_event_context *parent, *next_parent; 2545 struct perf_cpu_context *cpuctx; 2546 int do_switch = 1; 2547 2548 if (likely(!ctx)) 2549 return; 2550 2551 cpuctx = __get_cpu_context(ctx); 2552 if (!cpuctx->task_ctx) 2553 return; 2554 2555 rcu_read_lock(); 2556 next_ctx = next->perf_event_ctxp[ctxn]; 2557 if (!next_ctx) 2558 goto unlock; 2559 2560 parent = rcu_dereference(ctx->parent_ctx); 2561 next_parent = rcu_dereference(next_ctx->parent_ctx); 2562 2563 /* If neither context have a parent context; they cannot be clones. */ 2564 if (!parent && !next_parent) 2565 goto unlock; 2566 2567 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2568 /* 2569 * Looks like the two contexts are clones, so we might be 2570 * able to optimize the context switch. We lock both 2571 * contexts and check that they are clones under the 2572 * lock (including re-checking that neither has been 2573 * uncloned in the meantime). It doesn't matter which 2574 * order we take the locks because no other cpu could 2575 * be trying to lock both of these tasks. 2576 */ 2577 raw_spin_lock(&ctx->lock); 2578 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2579 if (context_equiv(ctx, next_ctx)) { 2580 WRITE_ONCE(ctx->task, next); 2581 WRITE_ONCE(next_ctx->task, task); 2582 2583 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2584 2585 /* 2586 * RCU_INIT_POINTER here is safe because we've not 2587 * modified the ctx and the above modification of 2588 * ctx->task and ctx->task_ctx_data are immaterial 2589 * since those values are always verified under 2590 * ctx->lock which we're now holding. 2591 */ 2592 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2593 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2594 2595 do_switch = 0; 2596 2597 perf_event_sync_stat(ctx, next_ctx); 2598 } 2599 raw_spin_unlock(&next_ctx->lock); 2600 raw_spin_unlock(&ctx->lock); 2601 } 2602 unlock: 2603 rcu_read_unlock(); 2604 2605 if (do_switch) { 2606 raw_spin_lock(&ctx->lock); 2607 task_ctx_sched_out(cpuctx, ctx); 2608 raw_spin_unlock(&ctx->lock); 2609 } 2610 } 2611 2612 void perf_sched_cb_dec(struct pmu *pmu) 2613 { 2614 this_cpu_dec(perf_sched_cb_usages); 2615 } 2616 2617 void perf_sched_cb_inc(struct pmu *pmu) 2618 { 2619 this_cpu_inc(perf_sched_cb_usages); 2620 } 2621 2622 /* 2623 * This function provides the context switch callback to the lower code 2624 * layer. It is invoked ONLY when the context switch callback is enabled. 2625 */ 2626 static void perf_pmu_sched_task(struct task_struct *prev, 2627 struct task_struct *next, 2628 bool sched_in) 2629 { 2630 struct perf_cpu_context *cpuctx; 2631 struct pmu *pmu; 2632 unsigned long flags; 2633 2634 if (prev == next) 2635 return; 2636 2637 local_irq_save(flags); 2638 2639 rcu_read_lock(); 2640 2641 list_for_each_entry_rcu(pmu, &pmus, entry) { 2642 if (pmu->sched_task) { 2643 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2644 2645 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2646 2647 perf_pmu_disable(pmu); 2648 2649 pmu->sched_task(cpuctx->task_ctx, sched_in); 2650 2651 perf_pmu_enable(pmu); 2652 2653 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2654 } 2655 } 2656 2657 rcu_read_unlock(); 2658 2659 local_irq_restore(flags); 2660 } 2661 2662 static void perf_event_switch(struct task_struct *task, 2663 struct task_struct *next_prev, bool sched_in); 2664 2665 #define for_each_task_context_nr(ctxn) \ 2666 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2667 2668 /* 2669 * Called from scheduler to remove the events of the current task, 2670 * with interrupts disabled. 2671 * 2672 * We stop each event and update the event value in event->count. 2673 * 2674 * This does not protect us against NMI, but disable() 2675 * sets the disabled bit in the control field of event _before_ 2676 * accessing the event control register. If a NMI hits, then it will 2677 * not restart the event. 2678 */ 2679 void __perf_event_task_sched_out(struct task_struct *task, 2680 struct task_struct *next) 2681 { 2682 int ctxn; 2683 2684 if (__this_cpu_read(perf_sched_cb_usages)) 2685 perf_pmu_sched_task(task, next, false); 2686 2687 if (atomic_read(&nr_switch_events)) 2688 perf_event_switch(task, next, false); 2689 2690 for_each_task_context_nr(ctxn) 2691 perf_event_context_sched_out(task, ctxn, next); 2692 2693 /* 2694 * if cgroup events exist on this CPU, then we need 2695 * to check if we have to switch out PMU state. 2696 * cgroup event are system-wide mode only 2697 */ 2698 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2699 perf_cgroup_sched_out(task, next); 2700 } 2701 2702 /* 2703 * Called with IRQs disabled 2704 */ 2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2706 enum event_type_t event_type) 2707 { 2708 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2709 } 2710 2711 static void 2712 ctx_pinned_sched_in(struct perf_event_context *ctx, 2713 struct perf_cpu_context *cpuctx) 2714 { 2715 struct perf_event *event; 2716 2717 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2718 if (event->state <= PERF_EVENT_STATE_OFF) 2719 continue; 2720 if (!event_filter_match(event)) 2721 continue; 2722 2723 /* may need to reset tstamp_enabled */ 2724 if (is_cgroup_event(event)) 2725 perf_cgroup_mark_enabled(event, ctx); 2726 2727 if (group_can_go_on(event, cpuctx, 1)) 2728 group_sched_in(event, cpuctx, ctx); 2729 2730 /* 2731 * If this pinned group hasn't been scheduled, 2732 * put it in error state. 2733 */ 2734 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2735 update_group_times(event); 2736 event->state = PERF_EVENT_STATE_ERROR; 2737 } 2738 } 2739 } 2740 2741 static void 2742 ctx_flexible_sched_in(struct perf_event_context *ctx, 2743 struct perf_cpu_context *cpuctx) 2744 { 2745 struct perf_event *event; 2746 int can_add_hw = 1; 2747 2748 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2749 /* Ignore events in OFF or ERROR state */ 2750 if (event->state <= PERF_EVENT_STATE_OFF) 2751 continue; 2752 /* 2753 * Listen to the 'cpu' scheduling filter constraint 2754 * of events: 2755 */ 2756 if (!event_filter_match(event)) 2757 continue; 2758 2759 /* may need to reset tstamp_enabled */ 2760 if (is_cgroup_event(event)) 2761 perf_cgroup_mark_enabled(event, ctx); 2762 2763 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2764 if (group_sched_in(event, cpuctx, ctx)) 2765 can_add_hw = 0; 2766 } 2767 } 2768 } 2769 2770 static void 2771 ctx_sched_in(struct perf_event_context *ctx, 2772 struct perf_cpu_context *cpuctx, 2773 enum event_type_t event_type, 2774 struct task_struct *task) 2775 { 2776 int is_active = ctx->is_active; 2777 u64 now; 2778 2779 lockdep_assert_held(&ctx->lock); 2780 2781 if (likely(!ctx->nr_events)) 2782 return; 2783 2784 ctx->is_active |= (event_type | EVENT_TIME); 2785 if (ctx->task) { 2786 if (!is_active) 2787 cpuctx->task_ctx = ctx; 2788 else 2789 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2790 } 2791 2792 is_active ^= ctx->is_active; /* changed bits */ 2793 2794 if (is_active & EVENT_TIME) { 2795 /* start ctx time */ 2796 now = perf_clock(); 2797 ctx->timestamp = now; 2798 perf_cgroup_set_timestamp(task, ctx); 2799 } 2800 2801 /* 2802 * First go through the list and put on any pinned groups 2803 * in order to give them the best chance of going on. 2804 */ 2805 if (is_active & EVENT_PINNED) 2806 ctx_pinned_sched_in(ctx, cpuctx); 2807 2808 /* Then walk through the lower prio flexible groups */ 2809 if (is_active & EVENT_FLEXIBLE) 2810 ctx_flexible_sched_in(ctx, cpuctx); 2811 } 2812 2813 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2814 enum event_type_t event_type, 2815 struct task_struct *task) 2816 { 2817 struct perf_event_context *ctx = &cpuctx->ctx; 2818 2819 ctx_sched_in(ctx, cpuctx, event_type, task); 2820 } 2821 2822 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2823 struct task_struct *task) 2824 { 2825 struct perf_cpu_context *cpuctx; 2826 2827 cpuctx = __get_cpu_context(ctx); 2828 if (cpuctx->task_ctx == ctx) 2829 return; 2830 2831 perf_ctx_lock(cpuctx, ctx); 2832 perf_pmu_disable(ctx->pmu); 2833 /* 2834 * We want to keep the following priority order: 2835 * cpu pinned (that don't need to move), task pinned, 2836 * cpu flexible, task flexible. 2837 */ 2838 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2839 perf_event_sched_in(cpuctx, ctx, task); 2840 perf_pmu_enable(ctx->pmu); 2841 perf_ctx_unlock(cpuctx, ctx); 2842 } 2843 2844 /* 2845 * Called from scheduler to add the events of the current task 2846 * with interrupts disabled. 2847 * 2848 * We restore the event value and then enable it. 2849 * 2850 * This does not protect us against NMI, but enable() 2851 * sets the enabled bit in the control field of event _before_ 2852 * accessing the event control register. If a NMI hits, then it will 2853 * keep the event running. 2854 */ 2855 void __perf_event_task_sched_in(struct task_struct *prev, 2856 struct task_struct *task) 2857 { 2858 struct perf_event_context *ctx; 2859 int ctxn; 2860 2861 /* 2862 * If cgroup events exist on this CPU, then we need to check if we have 2863 * to switch in PMU state; cgroup event are system-wide mode only. 2864 * 2865 * Since cgroup events are CPU events, we must schedule these in before 2866 * we schedule in the task events. 2867 */ 2868 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2869 perf_cgroup_sched_in(prev, task); 2870 2871 for_each_task_context_nr(ctxn) { 2872 ctx = task->perf_event_ctxp[ctxn]; 2873 if (likely(!ctx)) 2874 continue; 2875 2876 perf_event_context_sched_in(ctx, task); 2877 } 2878 2879 if (atomic_read(&nr_switch_events)) 2880 perf_event_switch(task, prev, true); 2881 2882 if (__this_cpu_read(perf_sched_cb_usages)) 2883 perf_pmu_sched_task(prev, task, true); 2884 } 2885 2886 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2887 { 2888 u64 frequency = event->attr.sample_freq; 2889 u64 sec = NSEC_PER_SEC; 2890 u64 divisor, dividend; 2891 2892 int count_fls, nsec_fls, frequency_fls, sec_fls; 2893 2894 count_fls = fls64(count); 2895 nsec_fls = fls64(nsec); 2896 frequency_fls = fls64(frequency); 2897 sec_fls = 30; 2898 2899 /* 2900 * We got @count in @nsec, with a target of sample_freq HZ 2901 * the target period becomes: 2902 * 2903 * @count * 10^9 2904 * period = ------------------- 2905 * @nsec * sample_freq 2906 * 2907 */ 2908 2909 /* 2910 * Reduce accuracy by one bit such that @a and @b converge 2911 * to a similar magnitude. 2912 */ 2913 #define REDUCE_FLS(a, b) \ 2914 do { \ 2915 if (a##_fls > b##_fls) { \ 2916 a >>= 1; \ 2917 a##_fls--; \ 2918 } else { \ 2919 b >>= 1; \ 2920 b##_fls--; \ 2921 } \ 2922 } while (0) 2923 2924 /* 2925 * Reduce accuracy until either term fits in a u64, then proceed with 2926 * the other, so that finally we can do a u64/u64 division. 2927 */ 2928 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2929 REDUCE_FLS(nsec, frequency); 2930 REDUCE_FLS(sec, count); 2931 } 2932 2933 if (count_fls + sec_fls > 64) { 2934 divisor = nsec * frequency; 2935 2936 while (count_fls + sec_fls > 64) { 2937 REDUCE_FLS(count, sec); 2938 divisor >>= 1; 2939 } 2940 2941 dividend = count * sec; 2942 } else { 2943 dividend = count * sec; 2944 2945 while (nsec_fls + frequency_fls > 64) { 2946 REDUCE_FLS(nsec, frequency); 2947 dividend >>= 1; 2948 } 2949 2950 divisor = nsec * frequency; 2951 } 2952 2953 if (!divisor) 2954 return dividend; 2955 2956 return div64_u64(dividend, divisor); 2957 } 2958 2959 static DEFINE_PER_CPU(int, perf_throttled_count); 2960 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2961 2962 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2963 { 2964 struct hw_perf_event *hwc = &event->hw; 2965 s64 period, sample_period; 2966 s64 delta; 2967 2968 period = perf_calculate_period(event, nsec, count); 2969 2970 delta = (s64)(period - hwc->sample_period); 2971 delta = (delta + 7) / 8; /* low pass filter */ 2972 2973 sample_period = hwc->sample_period + delta; 2974 2975 if (!sample_period) 2976 sample_period = 1; 2977 2978 hwc->sample_period = sample_period; 2979 2980 if (local64_read(&hwc->period_left) > 8*sample_period) { 2981 if (disable) 2982 event->pmu->stop(event, PERF_EF_UPDATE); 2983 2984 local64_set(&hwc->period_left, 0); 2985 2986 if (disable) 2987 event->pmu->start(event, PERF_EF_RELOAD); 2988 } 2989 } 2990 2991 /* 2992 * combine freq adjustment with unthrottling to avoid two passes over the 2993 * events. At the same time, make sure, having freq events does not change 2994 * the rate of unthrottling as that would introduce bias. 2995 */ 2996 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2997 int needs_unthr) 2998 { 2999 struct perf_event *event; 3000 struct hw_perf_event *hwc; 3001 u64 now, period = TICK_NSEC; 3002 s64 delta; 3003 3004 /* 3005 * only need to iterate over all events iff: 3006 * - context have events in frequency mode (needs freq adjust) 3007 * - there are events to unthrottle on this cpu 3008 */ 3009 if (!(ctx->nr_freq || needs_unthr)) 3010 return; 3011 3012 raw_spin_lock(&ctx->lock); 3013 perf_pmu_disable(ctx->pmu); 3014 3015 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3016 if (event->state != PERF_EVENT_STATE_ACTIVE) 3017 continue; 3018 3019 if (!event_filter_match(event)) 3020 continue; 3021 3022 perf_pmu_disable(event->pmu); 3023 3024 hwc = &event->hw; 3025 3026 if (hwc->interrupts == MAX_INTERRUPTS) { 3027 hwc->interrupts = 0; 3028 perf_log_throttle(event, 1); 3029 event->pmu->start(event, 0); 3030 } 3031 3032 if (!event->attr.freq || !event->attr.sample_freq) 3033 goto next; 3034 3035 /* 3036 * stop the event and update event->count 3037 */ 3038 event->pmu->stop(event, PERF_EF_UPDATE); 3039 3040 now = local64_read(&event->count); 3041 delta = now - hwc->freq_count_stamp; 3042 hwc->freq_count_stamp = now; 3043 3044 /* 3045 * restart the event 3046 * reload only if value has changed 3047 * we have stopped the event so tell that 3048 * to perf_adjust_period() to avoid stopping it 3049 * twice. 3050 */ 3051 if (delta > 0) 3052 perf_adjust_period(event, period, delta, false); 3053 3054 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3055 next: 3056 perf_pmu_enable(event->pmu); 3057 } 3058 3059 perf_pmu_enable(ctx->pmu); 3060 raw_spin_unlock(&ctx->lock); 3061 } 3062 3063 /* 3064 * Round-robin a context's events: 3065 */ 3066 static void rotate_ctx(struct perf_event_context *ctx) 3067 { 3068 /* 3069 * Rotate the first entry last of non-pinned groups. Rotation might be 3070 * disabled by the inheritance code. 3071 */ 3072 if (!ctx->rotate_disable) 3073 list_rotate_left(&ctx->flexible_groups); 3074 } 3075 3076 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3077 { 3078 struct perf_event_context *ctx = NULL; 3079 int rotate = 0; 3080 3081 if (cpuctx->ctx.nr_events) { 3082 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3083 rotate = 1; 3084 } 3085 3086 ctx = cpuctx->task_ctx; 3087 if (ctx && ctx->nr_events) { 3088 if (ctx->nr_events != ctx->nr_active) 3089 rotate = 1; 3090 } 3091 3092 if (!rotate) 3093 goto done; 3094 3095 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3096 perf_pmu_disable(cpuctx->ctx.pmu); 3097 3098 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3099 if (ctx) 3100 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3101 3102 rotate_ctx(&cpuctx->ctx); 3103 if (ctx) 3104 rotate_ctx(ctx); 3105 3106 perf_event_sched_in(cpuctx, ctx, current); 3107 3108 perf_pmu_enable(cpuctx->ctx.pmu); 3109 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3110 done: 3111 3112 return rotate; 3113 } 3114 3115 #ifdef CONFIG_NO_HZ_FULL 3116 bool perf_event_can_stop_tick(void) 3117 { 3118 if (atomic_read(&nr_freq_events) || 3119 __this_cpu_read(perf_throttled_count)) 3120 return false; 3121 else 3122 return true; 3123 } 3124 #endif 3125 3126 void perf_event_task_tick(void) 3127 { 3128 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3129 struct perf_event_context *ctx, *tmp; 3130 int throttled; 3131 3132 WARN_ON(!irqs_disabled()); 3133 3134 __this_cpu_inc(perf_throttled_seq); 3135 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3136 3137 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3138 perf_adjust_freq_unthr_context(ctx, throttled); 3139 } 3140 3141 static int event_enable_on_exec(struct perf_event *event, 3142 struct perf_event_context *ctx) 3143 { 3144 if (!event->attr.enable_on_exec) 3145 return 0; 3146 3147 event->attr.enable_on_exec = 0; 3148 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3149 return 0; 3150 3151 __perf_event_mark_enabled(event); 3152 3153 return 1; 3154 } 3155 3156 /* 3157 * Enable all of a task's events that have been marked enable-on-exec. 3158 * This expects task == current. 3159 */ 3160 static void perf_event_enable_on_exec(int ctxn) 3161 { 3162 struct perf_event_context *ctx, *clone_ctx = NULL; 3163 struct perf_cpu_context *cpuctx; 3164 struct perf_event *event; 3165 unsigned long flags; 3166 int enabled = 0; 3167 3168 local_irq_save(flags); 3169 ctx = current->perf_event_ctxp[ctxn]; 3170 if (!ctx || !ctx->nr_events) 3171 goto out; 3172 3173 cpuctx = __get_cpu_context(ctx); 3174 perf_ctx_lock(cpuctx, ctx); 3175 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3176 list_for_each_entry(event, &ctx->event_list, event_entry) 3177 enabled |= event_enable_on_exec(event, ctx); 3178 3179 /* 3180 * Unclone and reschedule this context if we enabled any event. 3181 */ 3182 if (enabled) { 3183 clone_ctx = unclone_ctx(ctx); 3184 ctx_resched(cpuctx, ctx); 3185 } 3186 perf_ctx_unlock(cpuctx, ctx); 3187 3188 out: 3189 local_irq_restore(flags); 3190 3191 if (clone_ctx) 3192 put_ctx(clone_ctx); 3193 } 3194 3195 void perf_event_exec(void) 3196 { 3197 int ctxn; 3198 3199 rcu_read_lock(); 3200 for_each_task_context_nr(ctxn) 3201 perf_event_enable_on_exec(ctxn); 3202 rcu_read_unlock(); 3203 } 3204 3205 struct perf_read_data { 3206 struct perf_event *event; 3207 bool group; 3208 int ret; 3209 }; 3210 3211 /* 3212 * Cross CPU call to read the hardware event 3213 */ 3214 static void __perf_event_read(void *info) 3215 { 3216 struct perf_read_data *data = info; 3217 struct perf_event *sub, *event = data->event; 3218 struct perf_event_context *ctx = event->ctx; 3219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3220 struct pmu *pmu = event->pmu; 3221 3222 /* 3223 * If this is a task context, we need to check whether it is 3224 * the current task context of this cpu. If not it has been 3225 * scheduled out before the smp call arrived. In that case 3226 * event->count would have been updated to a recent sample 3227 * when the event was scheduled out. 3228 */ 3229 if (ctx->task && cpuctx->task_ctx != ctx) 3230 return; 3231 3232 raw_spin_lock(&ctx->lock); 3233 if (ctx->is_active) { 3234 update_context_time(ctx); 3235 update_cgrp_time_from_event(event); 3236 } 3237 3238 update_event_times(event); 3239 if (event->state != PERF_EVENT_STATE_ACTIVE) 3240 goto unlock; 3241 3242 if (!data->group) { 3243 pmu->read(event); 3244 data->ret = 0; 3245 goto unlock; 3246 } 3247 3248 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3249 3250 pmu->read(event); 3251 3252 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3253 update_event_times(sub); 3254 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3255 /* 3256 * Use sibling's PMU rather than @event's since 3257 * sibling could be on different (eg: software) PMU. 3258 */ 3259 sub->pmu->read(sub); 3260 } 3261 } 3262 3263 data->ret = pmu->commit_txn(pmu); 3264 3265 unlock: 3266 raw_spin_unlock(&ctx->lock); 3267 } 3268 3269 static inline u64 perf_event_count(struct perf_event *event) 3270 { 3271 if (event->pmu->count) 3272 return event->pmu->count(event); 3273 3274 return __perf_event_count(event); 3275 } 3276 3277 /* 3278 * NMI-safe method to read a local event, that is an event that 3279 * is: 3280 * - either for the current task, or for this CPU 3281 * - does not have inherit set, for inherited task events 3282 * will not be local and we cannot read them atomically 3283 * - must not have a pmu::count method 3284 */ 3285 u64 perf_event_read_local(struct perf_event *event) 3286 { 3287 unsigned long flags; 3288 u64 val; 3289 3290 /* 3291 * Disabling interrupts avoids all counter scheduling (context 3292 * switches, timer based rotation and IPIs). 3293 */ 3294 local_irq_save(flags); 3295 3296 /* If this is a per-task event, it must be for current */ 3297 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) && 3298 event->hw.target != current); 3299 3300 /* If this is a per-CPU event, it must be for this CPU */ 3301 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) && 3302 event->cpu != smp_processor_id()); 3303 3304 /* 3305 * It must not be an event with inherit set, we cannot read 3306 * all child counters from atomic context. 3307 */ 3308 WARN_ON_ONCE(event->attr.inherit); 3309 3310 /* 3311 * It must not have a pmu::count method, those are not 3312 * NMI safe. 3313 */ 3314 WARN_ON_ONCE(event->pmu->count); 3315 3316 /* 3317 * If the event is currently on this CPU, its either a per-task event, 3318 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3319 * oncpu == -1). 3320 */ 3321 if (event->oncpu == smp_processor_id()) 3322 event->pmu->read(event); 3323 3324 val = local64_read(&event->count); 3325 local_irq_restore(flags); 3326 3327 return val; 3328 } 3329 3330 static int perf_event_read(struct perf_event *event, bool group) 3331 { 3332 int ret = 0; 3333 3334 /* 3335 * If event is enabled and currently active on a CPU, update the 3336 * value in the event structure: 3337 */ 3338 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3339 struct perf_read_data data = { 3340 .event = event, 3341 .group = group, 3342 .ret = 0, 3343 }; 3344 smp_call_function_single(event->oncpu, 3345 __perf_event_read, &data, 1); 3346 ret = data.ret; 3347 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3348 struct perf_event_context *ctx = event->ctx; 3349 unsigned long flags; 3350 3351 raw_spin_lock_irqsave(&ctx->lock, flags); 3352 /* 3353 * may read while context is not active 3354 * (e.g., thread is blocked), in that case 3355 * we cannot update context time 3356 */ 3357 if (ctx->is_active) { 3358 update_context_time(ctx); 3359 update_cgrp_time_from_event(event); 3360 } 3361 if (group) 3362 update_group_times(event); 3363 else 3364 update_event_times(event); 3365 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3366 } 3367 3368 return ret; 3369 } 3370 3371 /* 3372 * Initialize the perf_event context in a task_struct: 3373 */ 3374 static void __perf_event_init_context(struct perf_event_context *ctx) 3375 { 3376 raw_spin_lock_init(&ctx->lock); 3377 mutex_init(&ctx->mutex); 3378 INIT_LIST_HEAD(&ctx->active_ctx_list); 3379 INIT_LIST_HEAD(&ctx->pinned_groups); 3380 INIT_LIST_HEAD(&ctx->flexible_groups); 3381 INIT_LIST_HEAD(&ctx->event_list); 3382 atomic_set(&ctx->refcount, 1); 3383 } 3384 3385 static struct perf_event_context * 3386 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3387 { 3388 struct perf_event_context *ctx; 3389 3390 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3391 if (!ctx) 3392 return NULL; 3393 3394 __perf_event_init_context(ctx); 3395 if (task) { 3396 ctx->task = task; 3397 get_task_struct(task); 3398 } 3399 ctx->pmu = pmu; 3400 3401 return ctx; 3402 } 3403 3404 static struct task_struct * 3405 find_lively_task_by_vpid(pid_t vpid) 3406 { 3407 struct task_struct *task; 3408 int err; 3409 3410 rcu_read_lock(); 3411 if (!vpid) 3412 task = current; 3413 else 3414 task = find_task_by_vpid(vpid); 3415 if (task) 3416 get_task_struct(task); 3417 rcu_read_unlock(); 3418 3419 if (!task) 3420 return ERR_PTR(-ESRCH); 3421 3422 /* Reuse ptrace permission checks for now. */ 3423 err = -EACCES; 3424 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 3425 goto errout; 3426 3427 return task; 3428 errout: 3429 put_task_struct(task); 3430 return ERR_PTR(err); 3431 3432 } 3433 3434 /* 3435 * Returns a matching context with refcount and pincount. 3436 */ 3437 static struct perf_event_context * 3438 find_get_context(struct pmu *pmu, struct task_struct *task, 3439 struct perf_event *event) 3440 { 3441 struct perf_event_context *ctx, *clone_ctx = NULL; 3442 struct perf_cpu_context *cpuctx; 3443 void *task_ctx_data = NULL; 3444 unsigned long flags; 3445 int ctxn, err; 3446 int cpu = event->cpu; 3447 3448 if (!task) { 3449 /* Must be root to operate on a CPU event: */ 3450 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3451 return ERR_PTR(-EACCES); 3452 3453 /* 3454 * We could be clever and allow to attach a event to an 3455 * offline CPU and activate it when the CPU comes up, but 3456 * that's for later. 3457 */ 3458 if (!cpu_online(cpu)) 3459 return ERR_PTR(-ENODEV); 3460 3461 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3462 ctx = &cpuctx->ctx; 3463 get_ctx(ctx); 3464 ++ctx->pin_count; 3465 3466 return ctx; 3467 } 3468 3469 err = -EINVAL; 3470 ctxn = pmu->task_ctx_nr; 3471 if (ctxn < 0) 3472 goto errout; 3473 3474 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3475 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3476 if (!task_ctx_data) { 3477 err = -ENOMEM; 3478 goto errout; 3479 } 3480 } 3481 3482 retry: 3483 ctx = perf_lock_task_context(task, ctxn, &flags); 3484 if (ctx) { 3485 clone_ctx = unclone_ctx(ctx); 3486 ++ctx->pin_count; 3487 3488 if (task_ctx_data && !ctx->task_ctx_data) { 3489 ctx->task_ctx_data = task_ctx_data; 3490 task_ctx_data = NULL; 3491 } 3492 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3493 3494 if (clone_ctx) 3495 put_ctx(clone_ctx); 3496 } else { 3497 ctx = alloc_perf_context(pmu, task); 3498 err = -ENOMEM; 3499 if (!ctx) 3500 goto errout; 3501 3502 if (task_ctx_data) { 3503 ctx->task_ctx_data = task_ctx_data; 3504 task_ctx_data = NULL; 3505 } 3506 3507 err = 0; 3508 mutex_lock(&task->perf_event_mutex); 3509 /* 3510 * If it has already passed perf_event_exit_task(). 3511 * we must see PF_EXITING, it takes this mutex too. 3512 */ 3513 if (task->flags & PF_EXITING) 3514 err = -ESRCH; 3515 else if (task->perf_event_ctxp[ctxn]) 3516 err = -EAGAIN; 3517 else { 3518 get_ctx(ctx); 3519 ++ctx->pin_count; 3520 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3521 } 3522 mutex_unlock(&task->perf_event_mutex); 3523 3524 if (unlikely(err)) { 3525 put_ctx(ctx); 3526 3527 if (err == -EAGAIN) 3528 goto retry; 3529 goto errout; 3530 } 3531 } 3532 3533 kfree(task_ctx_data); 3534 return ctx; 3535 3536 errout: 3537 kfree(task_ctx_data); 3538 return ERR_PTR(err); 3539 } 3540 3541 static void perf_event_free_filter(struct perf_event *event); 3542 static void perf_event_free_bpf_prog(struct perf_event *event); 3543 3544 static void free_event_rcu(struct rcu_head *head) 3545 { 3546 struct perf_event *event; 3547 3548 event = container_of(head, struct perf_event, rcu_head); 3549 if (event->ns) 3550 put_pid_ns(event->ns); 3551 perf_event_free_filter(event); 3552 kfree(event); 3553 } 3554 3555 static void ring_buffer_attach(struct perf_event *event, 3556 struct ring_buffer *rb); 3557 3558 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3559 { 3560 if (event->parent) 3561 return; 3562 3563 if (is_cgroup_event(event)) 3564 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3565 } 3566 3567 static void unaccount_event(struct perf_event *event) 3568 { 3569 bool dec = false; 3570 3571 if (event->parent) 3572 return; 3573 3574 if (event->attach_state & PERF_ATTACH_TASK) 3575 dec = true; 3576 if (event->attr.mmap || event->attr.mmap_data) 3577 atomic_dec(&nr_mmap_events); 3578 if (event->attr.comm) 3579 atomic_dec(&nr_comm_events); 3580 if (event->attr.task) 3581 atomic_dec(&nr_task_events); 3582 if (event->attr.freq) 3583 atomic_dec(&nr_freq_events); 3584 if (event->attr.context_switch) { 3585 dec = true; 3586 atomic_dec(&nr_switch_events); 3587 } 3588 if (is_cgroup_event(event)) 3589 dec = true; 3590 if (has_branch_stack(event)) 3591 dec = true; 3592 3593 if (dec) { 3594 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3595 schedule_delayed_work(&perf_sched_work, HZ); 3596 } 3597 3598 unaccount_event_cpu(event, event->cpu); 3599 } 3600 3601 static void perf_sched_delayed(struct work_struct *work) 3602 { 3603 mutex_lock(&perf_sched_mutex); 3604 if (atomic_dec_and_test(&perf_sched_count)) 3605 static_branch_disable(&perf_sched_events); 3606 mutex_unlock(&perf_sched_mutex); 3607 } 3608 3609 /* 3610 * The following implement mutual exclusion of events on "exclusive" pmus 3611 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3612 * at a time, so we disallow creating events that might conflict, namely: 3613 * 3614 * 1) cpu-wide events in the presence of per-task events, 3615 * 2) per-task events in the presence of cpu-wide events, 3616 * 3) two matching events on the same context. 3617 * 3618 * The former two cases are handled in the allocation path (perf_event_alloc(), 3619 * _free_event()), the latter -- before the first perf_install_in_context(). 3620 */ 3621 static int exclusive_event_init(struct perf_event *event) 3622 { 3623 struct pmu *pmu = event->pmu; 3624 3625 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3626 return 0; 3627 3628 /* 3629 * Prevent co-existence of per-task and cpu-wide events on the 3630 * same exclusive pmu. 3631 * 3632 * Negative pmu::exclusive_cnt means there are cpu-wide 3633 * events on this "exclusive" pmu, positive means there are 3634 * per-task events. 3635 * 3636 * Since this is called in perf_event_alloc() path, event::ctx 3637 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 3638 * to mean "per-task event", because unlike other attach states it 3639 * never gets cleared. 3640 */ 3641 if (event->attach_state & PERF_ATTACH_TASK) { 3642 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 3643 return -EBUSY; 3644 } else { 3645 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 3646 return -EBUSY; 3647 } 3648 3649 return 0; 3650 } 3651 3652 static void exclusive_event_destroy(struct perf_event *event) 3653 { 3654 struct pmu *pmu = event->pmu; 3655 3656 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3657 return; 3658 3659 /* see comment in exclusive_event_init() */ 3660 if (event->attach_state & PERF_ATTACH_TASK) 3661 atomic_dec(&pmu->exclusive_cnt); 3662 else 3663 atomic_inc(&pmu->exclusive_cnt); 3664 } 3665 3666 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 3667 { 3668 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && 3669 (e1->cpu == e2->cpu || 3670 e1->cpu == -1 || 3671 e2->cpu == -1)) 3672 return true; 3673 return false; 3674 } 3675 3676 /* Called under the same ctx::mutex as perf_install_in_context() */ 3677 static bool exclusive_event_installable(struct perf_event *event, 3678 struct perf_event_context *ctx) 3679 { 3680 struct perf_event *iter_event; 3681 struct pmu *pmu = event->pmu; 3682 3683 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 3684 return true; 3685 3686 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 3687 if (exclusive_event_match(iter_event, event)) 3688 return false; 3689 } 3690 3691 return true; 3692 } 3693 3694 static void _free_event(struct perf_event *event) 3695 { 3696 irq_work_sync(&event->pending); 3697 3698 unaccount_event(event); 3699 3700 if (event->rb) { 3701 /* 3702 * Can happen when we close an event with re-directed output. 3703 * 3704 * Since we have a 0 refcount, perf_mmap_close() will skip 3705 * over us; possibly making our ring_buffer_put() the last. 3706 */ 3707 mutex_lock(&event->mmap_mutex); 3708 ring_buffer_attach(event, NULL); 3709 mutex_unlock(&event->mmap_mutex); 3710 } 3711 3712 if (is_cgroup_event(event)) 3713 perf_detach_cgroup(event); 3714 3715 if (!event->parent) { 3716 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3717 put_callchain_buffers(); 3718 } 3719 3720 perf_event_free_bpf_prog(event); 3721 3722 if (event->destroy) 3723 event->destroy(event); 3724 3725 if (event->ctx) 3726 put_ctx(event->ctx); 3727 3728 if (event->pmu) { 3729 exclusive_event_destroy(event); 3730 module_put(event->pmu->module); 3731 } 3732 3733 call_rcu(&event->rcu_head, free_event_rcu); 3734 } 3735 3736 /* 3737 * Used to free events which have a known refcount of 1, such as in error paths 3738 * where the event isn't exposed yet and inherited events. 3739 */ 3740 static void free_event(struct perf_event *event) 3741 { 3742 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3743 "unexpected event refcount: %ld; ptr=%p\n", 3744 atomic_long_read(&event->refcount), event)) { 3745 /* leak to avoid use-after-free */ 3746 return; 3747 } 3748 3749 _free_event(event); 3750 } 3751 3752 /* 3753 * Remove user event from the owner task. 3754 */ 3755 static void perf_remove_from_owner(struct perf_event *event) 3756 { 3757 struct task_struct *owner; 3758 3759 rcu_read_lock(); 3760 /* 3761 * Matches the smp_store_release() in perf_event_exit_task(). If we 3762 * observe !owner it means the list deletion is complete and we can 3763 * indeed free this event, otherwise we need to serialize on 3764 * owner->perf_event_mutex. 3765 */ 3766 owner = lockless_dereference(event->owner); 3767 if (owner) { 3768 /* 3769 * Since delayed_put_task_struct() also drops the last 3770 * task reference we can safely take a new reference 3771 * while holding the rcu_read_lock(). 3772 */ 3773 get_task_struct(owner); 3774 } 3775 rcu_read_unlock(); 3776 3777 if (owner) { 3778 /* 3779 * If we're here through perf_event_exit_task() we're already 3780 * holding ctx->mutex which would be an inversion wrt. the 3781 * normal lock order. 3782 * 3783 * However we can safely take this lock because its the child 3784 * ctx->mutex. 3785 */ 3786 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 3787 3788 /* 3789 * We have to re-check the event->owner field, if it is cleared 3790 * we raced with perf_event_exit_task(), acquiring the mutex 3791 * ensured they're done, and we can proceed with freeing the 3792 * event. 3793 */ 3794 if (event->owner) { 3795 list_del_init(&event->owner_entry); 3796 smp_store_release(&event->owner, NULL); 3797 } 3798 mutex_unlock(&owner->perf_event_mutex); 3799 put_task_struct(owner); 3800 } 3801 } 3802 3803 static void put_event(struct perf_event *event) 3804 { 3805 if (!atomic_long_dec_and_test(&event->refcount)) 3806 return; 3807 3808 _free_event(event); 3809 } 3810 3811 /* 3812 * Kill an event dead; while event:refcount will preserve the event 3813 * object, it will not preserve its functionality. Once the last 'user' 3814 * gives up the object, we'll destroy the thing. 3815 */ 3816 int perf_event_release_kernel(struct perf_event *event) 3817 { 3818 struct perf_event_context *ctx = event->ctx; 3819 struct perf_event *child, *tmp; 3820 3821 /* 3822 * If we got here through err_file: fput(event_file); we will not have 3823 * attached to a context yet. 3824 */ 3825 if (!ctx) { 3826 WARN_ON_ONCE(event->attach_state & 3827 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 3828 goto no_ctx; 3829 } 3830 3831 if (!is_kernel_event(event)) 3832 perf_remove_from_owner(event); 3833 3834 ctx = perf_event_ctx_lock(event); 3835 WARN_ON_ONCE(ctx->parent_ctx); 3836 perf_remove_from_context(event, DETACH_GROUP); 3837 3838 raw_spin_lock_irq(&ctx->lock); 3839 /* 3840 * Mark this even as STATE_DEAD, there is no external reference to it 3841 * anymore. 3842 * 3843 * Anybody acquiring event->child_mutex after the below loop _must_ 3844 * also see this, most importantly inherit_event() which will avoid 3845 * placing more children on the list. 3846 * 3847 * Thus this guarantees that we will in fact observe and kill _ALL_ 3848 * child events. 3849 */ 3850 event->state = PERF_EVENT_STATE_DEAD; 3851 raw_spin_unlock_irq(&ctx->lock); 3852 3853 perf_event_ctx_unlock(event, ctx); 3854 3855 again: 3856 mutex_lock(&event->child_mutex); 3857 list_for_each_entry(child, &event->child_list, child_list) { 3858 3859 /* 3860 * Cannot change, child events are not migrated, see the 3861 * comment with perf_event_ctx_lock_nested(). 3862 */ 3863 ctx = lockless_dereference(child->ctx); 3864 /* 3865 * Since child_mutex nests inside ctx::mutex, we must jump 3866 * through hoops. We start by grabbing a reference on the ctx. 3867 * 3868 * Since the event cannot get freed while we hold the 3869 * child_mutex, the context must also exist and have a !0 3870 * reference count. 3871 */ 3872 get_ctx(ctx); 3873 3874 /* 3875 * Now that we have a ctx ref, we can drop child_mutex, and 3876 * acquire ctx::mutex without fear of it going away. Then we 3877 * can re-acquire child_mutex. 3878 */ 3879 mutex_unlock(&event->child_mutex); 3880 mutex_lock(&ctx->mutex); 3881 mutex_lock(&event->child_mutex); 3882 3883 /* 3884 * Now that we hold ctx::mutex and child_mutex, revalidate our 3885 * state, if child is still the first entry, it didn't get freed 3886 * and we can continue doing so. 3887 */ 3888 tmp = list_first_entry_or_null(&event->child_list, 3889 struct perf_event, child_list); 3890 if (tmp == child) { 3891 perf_remove_from_context(child, DETACH_GROUP); 3892 list_del(&child->child_list); 3893 free_event(child); 3894 /* 3895 * This matches the refcount bump in inherit_event(); 3896 * this can't be the last reference. 3897 */ 3898 put_event(event); 3899 } 3900 3901 mutex_unlock(&event->child_mutex); 3902 mutex_unlock(&ctx->mutex); 3903 put_ctx(ctx); 3904 goto again; 3905 } 3906 mutex_unlock(&event->child_mutex); 3907 3908 no_ctx: 3909 put_event(event); /* Must be the 'last' reference */ 3910 return 0; 3911 } 3912 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3913 3914 /* 3915 * Called when the last reference to the file is gone. 3916 */ 3917 static int perf_release(struct inode *inode, struct file *file) 3918 { 3919 perf_event_release_kernel(file->private_data); 3920 return 0; 3921 } 3922 3923 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3924 { 3925 struct perf_event *child; 3926 u64 total = 0; 3927 3928 *enabled = 0; 3929 *running = 0; 3930 3931 mutex_lock(&event->child_mutex); 3932 3933 (void)perf_event_read(event, false); 3934 total += perf_event_count(event); 3935 3936 *enabled += event->total_time_enabled + 3937 atomic64_read(&event->child_total_time_enabled); 3938 *running += event->total_time_running + 3939 atomic64_read(&event->child_total_time_running); 3940 3941 list_for_each_entry(child, &event->child_list, child_list) { 3942 (void)perf_event_read(child, false); 3943 total += perf_event_count(child); 3944 *enabled += child->total_time_enabled; 3945 *running += child->total_time_running; 3946 } 3947 mutex_unlock(&event->child_mutex); 3948 3949 return total; 3950 } 3951 EXPORT_SYMBOL_GPL(perf_event_read_value); 3952 3953 static int __perf_read_group_add(struct perf_event *leader, 3954 u64 read_format, u64 *values) 3955 { 3956 struct perf_event *sub; 3957 int n = 1; /* skip @nr */ 3958 int ret; 3959 3960 ret = perf_event_read(leader, true); 3961 if (ret) 3962 return ret; 3963 3964 /* 3965 * Since we co-schedule groups, {enabled,running} times of siblings 3966 * will be identical to those of the leader, so we only publish one 3967 * set. 3968 */ 3969 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3970 values[n++] += leader->total_time_enabled + 3971 atomic64_read(&leader->child_total_time_enabled); 3972 } 3973 3974 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3975 values[n++] += leader->total_time_running + 3976 atomic64_read(&leader->child_total_time_running); 3977 } 3978 3979 /* 3980 * Write {count,id} tuples for every sibling. 3981 */ 3982 values[n++] += perf_event_count(leader); 3983 if (read_format & PERF_FORMAT_ID) 3984 values[n++] = primary_event_id(leader); 3985 3986 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3987 values[n++] += perf_event_count(sub); 3988 if (read_format & PERF_FORMAT_ID) 3989 values[n++] = primary_event_id(sub); 3990 } 3991 3992 return 0; 3993 } 3994 3995 static int perf_read_group(struct perf_event *event, 3996 u64 read_format, char __user *buf) 3997 { 3998 struct perf_event *leader = event->group_leader, *child; 3999 struct perf_event_context *ctx = leader->ctx; 4000 int ret; 4001 u64 *values; 4002 4003 lockdep_assert_held(&ctx->mutex); 4004 4005 values = kzalloc(event->read_size, GFP_KERNEL); 4006 if (!values) 4007 return -ENOMEM; 4008 4009 values[0] = 1 + leader->nr_siblings; 4010 4011 /* 4012 * By locking the child_mutex of the leader we effectively 4013 * lock the child list of all siblings.. XXX explain how. 4014 */ 4015 mutex_lock(&leader->child_mutex); 4016 4017 ret = __perf_read_group_add(leader, read_format, values); 4018 if (ret) 4019 goto unlock; 4020 4021 list_for_each_entry(child, &leader->child_list, child_list) { 4022 ret = __perf_read_group_add(child, read_format, values); 4023 if (ret) 4024 goto unlock; 4025 } 4026 4027 mutex_unlock(&leader->child_mutex); 4028 4029 ret = event->read_size; 4030 if (copy_to_user(buf, values, event->read_size)) 4031 ret = -EFAULT; 4032 goto out; 4033 4034 unlock: 4035 mutex_unlock(&leader->child_mutex); 4036 out: 4037 kfree(values); 4038 return ret; 4039 } 4040 4041 static int perf_read_one(struct perf_event *event, 4042 u64 read_format, char __user *buf) 4043 { 4044 u64 enabled, running; 4045 u64 values[4]; 4046 int n = 0; 4047 4048 values[n++] = perf_event_read_value(event, &enabled, &running); 4049 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4050 values[n++] = enabled; 4051 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4052 values[n++] = running; 4053 if (read_format & PERF_FORMAT_ID) 4054 values[n++] = primary_event_id(event); 4055 4056 if (copy_to_user(buf, values, n * sizeof(u64))) 4057 return -EFAULT; 4058 4059 return n * sizeof(u64); 4060 } 4061 4062 static bool is_event_hup(struct perf_event *event) 4063 { 4064 bool no_children; 4065 4066 if (event->state > PERF_EVENT_STATE_EXIT) 4067 return false; 4068 4069 mutex_lock(&event->child_mutex); 4070 no_children = list_empty(&event->child_list); 4071 mutex_unlock(&event->child_mutex); 4072 return no_children; 4073 } 4074 4075 /* 4076 * Read the performance event - simple non blocking version for now 4077 */ 4078 static ssize_t 4079 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4080 { 4081 u64 read_format = event->attr.read_format; 4082 int ret; 4083 4084 /* 4085 * Return end-of-file for a read on a event that is in 4086 * error state (i.e. because it was pinned but it couldn't be 4087 * scheduled on to the CPU at some point). 4088 */ 4089 if (event->state == PERF_EVENT_STATE_ERROR) 4090 return 0; 4091 4092 if (count < event->read_size) 4093 return -ENOSPC; 4094 4095 WARN_ON_ONCE(event->ctx->parent_ctx); 4096 if (read_format & PERF_FORMAT_GROUP) 4097 ret = perf_read_group(event, read_format, buf); 4098 else 4099 ret = perf_read_one(event, read_format, buf); 4100 4101 return ret; 4102 } 4103 4104 static ssize_t 4105 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4106 { 4107 struct perf_event *event = file->private_data; 4108 struct perf_event_context *ctx; 4109 int ret; 4110 4111 ctx = perf_event_ctx_lock(event); 4112 ret = __perf_read(event, buf, count); 4113 perf_event_ctx_unlock(event, ctx); 4114 4115 return ret; 4116 } 4117 4118 static unsigned int perf_poll(struct file *file, poll_table *wait) 4119 { 4120 struct perf_event *event = file->private_data; 4121 struct ring_buffer *rb; 4122 unsigned int events = POLLHUP; 4123 4124 poll_wait(file, &event->waitq, wait); 4125 4126 if (is_event_hup(event)) 4127 return events; 4128 4129 /* 4130 * Pin the event->rb by taking event->mmap_mutex; otherwise 4131 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4132 */ 4133 mutex_lock(&event->mmap_mutex); 4134 rb = event->rb; 4135 if (rb) 4136 events = atomic_xchg(&rb->poll, 0); 4137 mutex_unlock(&event->mmap_mutex); 4138 return events; 4139 } 4140 4141 static void _perf_event_reset(struct perf_event *event) 4142 { 4143 (void)perf_event_read(event, false); 4144 local64_set(&event->count, 0); 4145 perf_event_update_userpage(event); 4146 } 4147 4148 /* 4149 * Holding the top-level event's child_mutex means that any 4150 * descendant process that has inherited this event will block 4151 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4152 * task existence requirements of perf_event_enable/disable. 4153 */ 4154 static void perf_event_for_each_child(struct perf_event *event, 4155 void (*func)(struct perf_event *)) 4156 { 4157 struct perf_event *child; 4158 4159 WARN_ON_ONCE(event->ctx->parent_ctx); 4160 4161 mutex_lock(&event->child_mutex); 4162 func(event); 4163 list_for_each_entry(child, &event->child_list, child_list) 4164 func(child); 4165 mutex_unlock(&event->child_mutex); 4166 } 4167 4168 static void perf_event_for_each(struct perf_event *event, 4169 void (*func)(struct perf_event *)) 4170 { 4171 struct perf_event_context *ctx = event->ctx; 4172 struct perf_event *sibling; 4173 4174 lockdep_assert_held(&ctx->mutex); 4175 4176 event = event->group_leader; 4177 4178 perf_event_for_each_child(event, func); 4179 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4180 perf_event_for_each_child(sibling, func); 4181 } 4182 4183 static void __perf_event_period(struct perf_event *event, 4184 struct perf_cpu_context *cpuctx, 4185 struct perf_event_context *ctx, 4186 void *info) 4187 { 4188 u64 value = *((u64 *)info); 4189 bool active; 4190 4191 if (event->attr.freq) { 4192 event->attr.sample_freq = value; 4193 } else { 4194 event->attr.sample_period = value; 4195 event->hw.sample_period = value; 4196 } 4197 4198 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4199 if (active) { 4200 perf_pmu_disable(ctx->pmu); 4201 event->pmu->stop(event, PERF_EF_UPDATE); 4202 } 4203 4204 local64_set(&event->hw.period_left, 0); 4205 4206 if (active) { 4207 event->pmu->start(event, PERF_EF_RELOAD); 4208 perf_pmu_enable(ctx->pmu); 4209 } 4210 } 4211 4212 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4213 { 4214 u64 value; 4215 4216 if (!is_sampling_event(event)) 4217 return -EINVAL; 4218 4219 if (copy_from_user(&value, arg, sizeof(value))) 4220 return -EFAULT; 4221 4222 if (!value) 4223 return -EINVAL; 4224 4225 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4226 return -EINVAL; 4227 4228 event_function_call(event, __perf_event_period, &value); 4229 4230 return 0; 4231 } 4232 4233 static const struct file_operations perf_fops; 4234 4235 static inline int perf_fget_light(int fd, struct fd *p) 4236 { 4237 struct fd f = fdget(fd); 4238 if (!f.file) 4239 return -EBADF; 4240 4241 if (f.file->f_op != &perf_fops) { 4242 fdput(f); 4243 return -EBADF; 4244 } 4245 *p = f; 4246 return 0; 4247 } 4248 4249 static int perf_event_set_output(struct perf_event *event, 4250 struct perf_event *output_event); 4251 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4252 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4253 4254 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4255 { 4256 void (*func)(struct perf_event *); 4257 u32 flags = arg; 4258 4259 switch (cmd) { 4260 case PERF_EVENT_IOC_ENABLE: 4261 func = _perf_event_enable; 4262 break; 4263 case PERF_EVENT_IOC_DISABLE: 4264 func = _perf_event_disable; 4265 break; 4266 case PERF_EVENT_IOC_RESET: 4267 func = _perf_event_reset; 4268 break; 4269 4270 case PERF_EVENT_IOC_REFRESH: 4271 return _perf_event_refresh(event, arg); 4272 4273 case PERF_EVENT_IOC_PERIOD: 4274 return perf_event_period(event, (u64 __user *)arg); 4275 4276 case PERF_EVENT_IOC_ID: 4277 { 4278 u64 id = primary_event_id(event); 4279 4280 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4281 return -EFAULT; 4282 return 0; 4283 } 4284 4285 case PERF_EVENT_IOC_SET_OUTPUT: 4286 { 4287 int ret; 4288 if (arg != -1) { 4289 struct perf_event *output_event; 4290 struct fd output; 4291 ret = perf_fget_light(arg, &output); 4292 if (ret) 4293 return ret; 4294 output_event = output.file->private_data; 4295 ret = perf_event_set_output(event, output_event); 4296 fdput(output); 4297 } else { 4298 ret = perf_event_set_output(event, NULL); 4299 } 4300 return ret; 4301 } 4302 4303 case PERF_EVENT_IOC_SET_FILTER: 4304 return perf_event_set_filter(event, (void __user *)arg); 4305 4306 case PERF_EVENT_IOC_SET_BPF: 4307 return perf_event_set_bpf_prog(event, arg); 4308 4309 default: 4310 return -ENOTTY; 4311 } 4312 4313 if (flags & PERF_IOC_FLAG_GROUP) 4314 perf_event_for_each(event, func); 4315 else 4316 perf_event_for_each_child(event, func); 4317 4318 return 0; 4319 } 4320 4321 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4322 { 4323 struct perf_event *event = file->private_data; 4324 struct perf_event_context *ctx; 4325 long ret; 4326 4327 ctx = perf_event_ctx_lock(event); 4328 ret = _perf_ioctl(event, cmd, arg); 4329 perf_event_ctx_unlock(event, ctx); 4330 4331 return ret; 4332 } 4333 4334 #ifdef CONFIG_COMPAT 4335 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4336 unsigned long arg) 4337 { 4338 switch (_IOC_NR(cmd)) { 4339 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4340 case _IOC_NR(PERF_EVENT_IOC_ID): 4341 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4342 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4343 cmd &= ~IOCSIZE_MASK; 4344 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4345 } 4346 break; 4347 } 4348 return perf_ioctl(file, cmd, arg); 4349 } 4350 #else 4351 # define perf_compat_ioctl NULL 4352 #endif 4353 4354 int perf_event_task_enable(void) 4355 { 4356 struct perf_event_context *ctx; 4357 struct perf_event *event; 4358 4359 mutex_lock(¤t->perf_event_mutex); 4360 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4361 ctx = perf_event_ctx_lock(event); 4362 perf_event_for_each_child(event, _perf_event_enable); 4363 perf_event_ctx_unlock(event, ctx); 4364 } 4365 mutex_unlock(¤t->perf_event_mutex); 4366 4367 return 0; 4368 } 4369 4370 int perf_event_task_disable(void) 4371 { 4372 struct perf_event_context *ctx; 4373 struct perf_event *event; 4374 4375 mutex_lock(¤t->perf_event_mutex); 4376 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4377 ctx = perf_event_ctx_lock(event); 4378 perf_event_for_each_child(event, _perf_event_disable); 4379 perf_event_ctx_unlock(event, ctx); 4380 } 4381 mutex_unlock(¤t->perf_event_mutex); 4382 4383 return 0; 4384 } 4385 4386 static int perf_event_index(struct perf_event *event) 4387 { 4388 if (event->hw.state & PERF_HES_STOPPED) 4389 return 0; 4390 4391 if (event->state != PERF_EVENT_STATE_ACTIVE) 4392 return 0; 4393 4394 return event->pmu->event_idx(event); 4395 } 4396 4397 static void calc_timer_values(struct perf_event *event, 4398 u64 *now, 4399 u64 *enabled, 4400 u64 *running) 4401 { 4402 u64 ctx_time; 4403 4404 *now = perf_clock(); 4405 ctx_time = event->shadow_ctx_time + *now; 4406 *enabled = ctx_time - event->tstamp_enabled; 4407 *running = ctx_time - event->tstamp_running; 4408 } 4409 4410 static void perf_event_init_userpage(struct perf_event *event) 4411 { 4412 struct perf_event_mmap_page *userpg; 4413 struct ring_buffer *rb; 4414 4415 rcu_read_lock(); 4416 rb = rcu_dereference(event->rb); 4417 if (!rb) 4418 goto unlock; 4419 4420 userpg = rb->user_page; 4421 4422 /* Allow new userspace to detect that bit 0 is deprecated */ 4423 userpg->cap_bit0_is_deprecated = 1; 4424 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4425 userpg->data_offset = PAGE_SIZE; 4426 userpg->data_size = perf_data_size(rb); 4427 4428 unlock: 4429 rcu_read_unlock(); 4430 } 4431 4432 void __weak arch_perf_update_userpage( 4433 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4434 { 4435 } 4436 4437 /* 4438 * Callers need to ensure there can be no nesting of this function, otherwise 4439 * the seqlock logic goes bad. We can not serialize this because the arch 4440 * code calls this from NMI context. 4441 */ 4442 void perf_event_update_userpage(struct perf_event *event) 4443 { 4444 struct perf_event_mmap_page *userpg; 4445 struct ring_buffer *rb; 4446 u64 enabled, running, now; 4447 4448 rcu_read_lock(); 4449 rb = rcu_dereference(event->rb); 4450 if (!rb) 4451 goto unlock; 4452 4453 /* 4454 * compute total_time_enabled, total_time_running 4455 * based on snapshot values taken when the event 4456 * was last scheduled in. 4457 * 4458 * we cannot simply called update_context_time() 4459 * because of locking issue as we can be called in 4460 * NMI context 4461 */ 4462 calc_timer_values(event, &now, &enabled, &running); 4463 4464 userpg = rb->user_page; 4465 /* 4466 * Disable preemption so as to not let the corresponding user-space 4467 * spin too long if we get preempted. 4468 */ 4469 preempt_disable(); 4470 ++userpg->lock; 4471 barrier(); 4472 userpg->index = perf_event_index(event); 4473 userpg->offset = perf_event_count(event); 4474 if (userpg->index) 4475 userpg->offset -= local64_read(&event->hw.prev_count); 4476 4477 userpg->time_enabled = enabled + 4478 atomic64_read(&event->child_total_time_enabled); 4479 4480 userpg->time_running = running + 4481 atomic64_read(&event->child_total_time_running); 4482 4483 arch_perf_update_userpage(event, userpg, now); 4484 4485 barrier(); 4486 ++userpg->lock; 4487 preempt_enable(); 4488 unlock: 4489 rcu_read_unlock(); 4490 } 4491 4492 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 4493 { 4494 struct perf_event *event = vma->vm_file->private_data; 4495 struct ring_buffer *rb; 4496 int ret = VM_FAULT_SIGBUS; 4497 4498 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4499 if (vmf->pgoff == 0) 4500 ret = 0; 4501 return ret; 4502 } 4503 4504 rcu_read_lock(); 4505 rb = rcu_dereference(event->rb); 4506 if (!rb) 4507 goto unlock; 4508 4509 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4510 goto unlock; 4511 4512 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4513 if (!vmf->page) 4514 goto unlock; 4515 4516 get_page(vmf->page); 4517 vmf->page->mapping = vma->vm_file->f_mapping; 4518 vmf->page->index = vmf->pgoff; 4519 4520 ret = 0; 4521 unlock: 4522 rcu_read_unlock(); 4523 4524 return ret; 4525 } 4526 4527 static void ring_buffer_attach(struct perf_event *event, 4528 struct ring_buffer *rb) 4529 { 4530 struct ring_buffer *old_rb = NULL; 4531 unsigned long flags; 4532 4533 if (event->rb) { 4534 /* 4535 * Should be impossible, we set this when removing 4536 * event->rb_entry and wait/clear when adding event->rb_entry. 4537 */ 4538 WARN_ON_ONCE(event->rcu_pending); 4539 4540 old_rb = event->rb; 4541 spin_lock_irqsave(&old_rb->event_lock, flags); 4542 list_del_rcu(&event->rb_entry); 4543 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4544 4545 event->rcu_batches = get_state_synchronize_rcu(); 4546 event->rcu_pending = 1; 4547 } 4548 4549 if (rb) { 4550 if (event->rcu_pending) { 4551 cond_synchronize_rcu(event->rcu_batches); 4552 event->rcu_pending = 0; 4553 } 4554 4555 spin_lock_irqsave(&rb->event_lock, flags); 4556 list_add_rcu(&event->rb_entry, &rb->event_list); 4557 spin_unlock_irqrestore(&rb->event_lock, flags); 4558 } 4559 4560 rcu_assign_pointer(event->rb, rb); 4561 4562 if (old_rb) { 4563 ring_buffer_put(old_rb); 4564 /* 4565 * Since we detached before setting the new rb, so that we 4566 * could attach the new rb, we could have missed a wakeup. 4567 * Provide it now. 4568 */ 4569 wake_up_all(&event->waitq); 4570 } 4571 } 4572 4573 static void ring_buffer_wakeup(struct perf_event *event) 4574 { 4575 struct ring_buffer *rb; 4576 4577 rcu_read_lock(); 4578 rb = rcu_dereference(event->rb); 4579 if (rb) { 4580 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 4581 wake_up_all(&event->waitq); 4582 } 4583 rcu_read_unlock(); 4584 } 4585 4586 struct ring_buffer *ring_buffer_get(struct perf_event *event) 4587 { 4588 struct ring_buffer *rb; 4589 4590 rcu_read_lock(); 4591 rb = rcu_dereference(event->rb); 4592 if (rb) { 4593 if (!atomic_inc_not_zero(&rb->refcount)) 4594 rb = NULL; 4595 } 4596 rcu_read_unlock(); 4597 4598 return rb; 4599 } 4600 4601 void ring_buffer_put(struct ring_buffer *rb) 4602 { 4603 if (!atomic_dec_and_test(&rb->refcount)) 4604 return; 4605 4606 WARN_ON_ONCE(!list_empty(&rb->event_list)); 4607 4608 call_rcu(&rb->rcu_head, rb_free_rcu); 4609 } 4610 4611 static void perf_mmap_open(struct vm_area_struct *vma) 4612 { 4613 struct perf_event *event = vma->vm_file->private_data; 4614 4615 atomic_inc(&event->mmap_count); 4616 atomic_inc(&event->rb->mmap_count); 4617 4618 if (vma->vm_pgoff) 4619 atomic_inc(&event->rb->aux_mmap_count); 4620 4621 if (event->pmu->event_mapped) 4622 event->pmu->event_mapped(event); 4623 } 4624 4625 /* 4626 * A buffer can be mmap()ed multiple times; either directly through the same 4627 * event, or through other events by use of perf_event_set_output(). 4628 * 4629 * In order to undo the VM accounting done by perf_mmap() we need to destroy 4630 * the buffer here, where we still have a VM context. This means we need 4631 * to detach all events redirecting to us. 4632 */ 4633 static void perf_mmap_close(struct vm_area_struct *vma) 4634 { 4635 struct perf_event *event = vma->vm_file->private_data; 4636 4637 struct ring_buffer *rb = ring_buffer_get(event); 4638 struct user_struct *mmap_user = rb->mmap_user; 4639 int mmap_locked = rb->mmap_locked; 4640 unsigned long size = perf_data_size(rb); 4641 4642 if (event->pmu->event_unmapped) 4643 event->pmu->event_unmapped(event); 4644 4645 /* 4646 * rb->aux_mmap_count will always drop before rb->mmap_count and 4647 * event->mmap_count, so it is ok to use event->mmap_mutex to 4648 * serialize with perf_mmap here. 4649 */ 4650 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 4651 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 4652 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 4653 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 4654 4655 rb_free_aux(rb); 4656 mutex_unlock(&event->mmap_mutex); 4657 } 4658 4659 atomic_dec(&rb->mmap_count); 4660 4661 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4662 goto out_put; 4663 4664 ring_buffer_attach(event, NULL); 4665 mutex_unlock(&event->mmap_mutex); 4666 4667 /* If there's still other mmap()s of this buffer, we're done. */ 4668 if (atomic_read(&rb->mmap_count)) 4669 goto out_put; 4670 4671 /* 4672 * No other mmap()s, detach from all other events that might redirect 4673 * into the now unreachable buffer. Somewhat complicated by the 4674 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4675 */ 4676 again: 4677 rcu_read_lock(); 4678 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4679 if (!atomic_long_inc_not_zero(&event->refcount)) { 4680 /* 4681 * This event is en-route to free_event() which will 4682 * detach it and remove it from the list. 4683 */ 4684 continue; 4685 } 4686 rcu_read_unlock(); 4687 4688 mutex_lock(&event->mmap_mutex); 4689 /* 4690 * Check we didn't race with perf_event_set_output() which can 4691 * swizzle the rb from under us while we were waiting to 4692 * acquire mmap_mutex. 4693 * 4694 * If we find a different rb; ignore this event, a next 4695 * iteration will no longer find it on the list. We have to 4696 * still restart the iteration to make sure we're not now 4697 * iterating the wrong list. 4698 */ 4699 if (event->rb == rb) 4700 ring_buffer_attach(event, NULL); 4701 4702 mutex_unlock(&event->mmap_mutex); 4703 put_event(event); 4704 4705 /* 4706 * Restart the iteration; either we're on the wrong list or 4707 * destroyed its integrity by doing a deletion. 4708 */ 4709 goto again; 4710 } 4711 rcu_read_unlock(); 4712 4713 /* 4714 * It could be there's still a few 0-ref events on the list; they'll 4715 * get cleaned up by free_event() -- they'll also still have their 4716 * ref on the rb and will free it whenever they are done with it. 4717 * 4718 * Aside from that, this buffer is 'fully' detached and unmapped, 4719 * undo the VM accounting. 4720 */ 4721 4722 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4723 vma->vm_mm->pinned_vm -= mmap_locked; 4724 free_uid(mmap_user); 4725 4726 out_put: 4727 ring_buffer_put(rb); /* could be last */ 4728 } 4729 4730 static const struct vm_operations_struct perf_mmap_vmops = { 4731 .open = perf_mmap_open, 4732 .close = perf_mmap_close, /* non mergable */ 4733 .fault = perf_mmap_fault, 4734 .page_mkwrite = perf_mmap_fault, 4735 }; 4736 4737 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4738 { 4739 struct perf_event *event = file->private_data; 4740 unsigned long user_locked, user_lock_limit; 4741 struct user_struct *user = current_user(); 4742 unsigned long locked, lock_limit; 4743 struct ring_buffer *rb = NULL; 4744 unsigned long vma_size; 4745 unsigned long nr_pages; 4746 long user_extra = 0, extra = 0; 4747 int ret = 0, flags = 0; 4748 4749 /* 4750 * Don't allow mmap() of inherited per-task counters. This would 4751 * create a performance issue due to all children writing to the 4752 * same rb. 4753 */ 4754 if (event->cpu == -1 && event->attr.inherit) 4755 return -EINVAL; 4756 4757 if (!(vma->vm_flags & VM_SHARED)) 4758 return -EINVAL; 4759 4760 vma_size = vma->vm_end - vma->vm_start; 4761 4762 if (vma->vm_pgoff == 0) { 4763 nr_pages = (vma_size / PAGE_SIZE) - 1; 4764 } else { 4765 /* 4766 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 4767 * mapped, all subsequent mappings should have the same size 4768 * and offset. Must be above the normal perf buffer. 4769 */ 4770 u64 aux_offset, aux_size; 4771 4772 if (!event->rb) 4773 return -EINVAL; 4774 4775 nr_pages = vma_size / PAGE_SIZE; 4776 4777 mutex_lock(&event->mmap_mutex); 4778 ret = -EINVAL; 4779 4780 rb = event->rb; 4781 if (!rb) 4782 goto aux_unlock; 4783 4784 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset); 4785 aux_size = ACCESS_ONCE(rb->user_page->aux_size); 4786 4787 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 4788 goto aux_unlock; 4789 4790 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 4791 goto aux_unlock; 4792 4793 /* already mapped with a different offset */ 4794 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 4795 goto aux_unlock; 4796 4797 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 4798 goto aux_unlock; 4799 4800 /* already mapped with a different size */ 4801 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 4802 goto aux_unlock; 4803 4804 if (!is_power_of_2(nr_pages)) 4805 goto aux_unlock; 4806 4807 if (!atomic_inc_not_zero(&rb->mmap_count)) 4808 goto aux_unlock; 4809 4810 if (rb_has_aux(rb)) { 4811 atomic_inc(&rb->aux_mmap_count); 4812 ret = 0; 4813 goto unlock; 4814 } 4815 4816 atomic_set(&rb->aux_mmap_count, 1); 4817 user_extra = nr_pages; 4818 4819 goto accounting; 4820 } 4821 4822 /* 4823 * If we have rb pages ensure they're a power-of-two number, so we 4824 * can do bitmasks instead of modulo. 4825 */ 4826 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4827 return -EINVAL; 4828 4829 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4830 return -EINVAL; 4831 4832 WARN_ON_ONCE(event->ctx->parent_ctx); 4833 again: 4834 mutex_lock(&event->mmap_mutex); 4835 if (event->rb) { 4836 if (event->rb->nr_pages != nr_pages) { 4837 ret = -EINVAL; 4838 goto unlock; 4839 } 4840 4841 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4842 /* 4843 * Raced against perf_mmap_close() through 4844 * perf_event_set_output(). Try again, hope for better 4845 * luck. 4846 */ 4847 mutex_unlock(&event->mmap_mutex); 4848 goto again; 4849 } 4850 4851 goto unlock; 4852 } 4853 4854 user_extra = nr_pages + 1; 4855 4856 accounting: 4857 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4858 4859 /* 4860 * Increase the limit linearly with more CPUs: 4861 */ 4862 user_lock_limit *= num_online_cpus(); 4863 4864 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4865 4866 if (user_locked > user_lock_limit) 4867 extra = user_locked - user_lock_limit; 4868 4869 lock_limit = rlimit(RLIMIT_MEMLOCK); 4870 lock_limit >>= PAGE_SHIFT; 4871 locked = vma->vm_mm->pinned_vm + extra; 4872 4873 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4874 !capable(CAP_IPC_LOCK)) { 4875 ret = -EPERM; 4876 goto unlock; 4877 } 4878 4879 WARN_ON(!rb && event->rb); 4880 4881 if (vma->vm_flags & VM_WRITE) 4882 flags |= RING_BUFFER_WRITABLE; 4883 4884 if (!rb) { 4885 rb = rb_alloc(nr_pages, 4886 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4887 event->cpu, flags); 4888 4889 if (!rb) { 4890 ret = -ENOMEM; 4891 goto unlock; 4892 } 4893 4894 atomic_set(&rb->mmap_count, 1); 4895 rb->mmap_user = get_current_user(); 4896 rb->mmap_locked = extra; 4897 4898 ring_buffer_attach(event, rb); 4899 4900 perf_event_init_userpage(event); 4901 perf_event_update_userpage(event); 4902 } else { 4903 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 4904 event->attr.aux_watermark, flags); 4905 if (!ret) 4906 rb->aux_mmap_locked = extra; 4907 } 4908 4909 unlock: 4910 if (!ret) { 4911 atomic_long_add(user_extra, &user->locked_vm); 4912 vma->vm_mm->pinned_vm += extra; 4913 4914 atomic_inc(&event->mmap_count); 4915 } else if (rb) { 4916 atomic_dec(&rb->mmap_count); 4917 } 4918 aux_unlock: 4919 mutex_unlock(&event->mmap_mutex); 4920 4921 /* 4922 * Since pinned accounting is per vm we cannot allow fork() to copy our 4923 * vma. 4924 */ 4925 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4926 vma->vm_ops = &perf_mmap_vmops; 4927 4928 if (event->pmu->event_mapped) 4929 event->pmu->event_mapped(event); 4930 4931 return ret; 4932 } 4933 4934 static int perf_fasync(int fd, struct file *filp, int on) 4935 { 4936 struct inode *inode = file_inode(filp); 4937 struct perf_event *event = filp->private_data; 4938 int retval; 4939 4940 inode_lock(inode); 4941 retval = fasync_helper(fd, filp, on, &event->fasync); 4942 inode_unlock(inode); 4943 4944 if (retval < 0) 4945 return retval; 4946 4947 return 0; 4948 } 4949 4950 static const struct file_operations perf_fops = { 4951 .llseek = no_llseek, 4952 .release = perf_release, 4953 .read = perf_read, 4954 .poll = perf_poll, 4955 .unlocked_ioctl = perf_ioctl, 4956 .compat_ioctl = perf_compat_ioctl, 4957 .mmap = perf_mmap, 4958 .fasync = perf_fasync, 4959 }; 4960 4961 /* 4962 * Perf event wakeup 4963 * 4964 * If there's data, ensure we set the poll() state and publish everything 4965 * to user-space before waking everybody up. 4966 */ 4967 4968 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 4969 { 4970 /* only the parent has fasync state */ 4971 if (event->parent) 4972 event = event->parent; 4973 return &event->fasync; 4974 } 4975 4976 void perf_event_wakeup(struct perf_event *event) 4977 { 4978 ring_buffer_wakeup(event); 4979 4980 if (event->pending_kill) { 4981 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 4982 event->pending_kill = 0; 4983 } 4984 } 4985 4986 static void perf_pending_event(struct irq_work *entry) 4987 { 4988 struct perf_event *event = container_of(entry, 4989 struct perf_event, pending); 4990 int rctx; 4991 4992 rctx = perf_swevent_get_recursion_context(); 4993 /* 4994 * If we 'fail' here, that's OK, it means recursion is already disabled 4995 * and we won't recurse 'further'. 4996 */ 4997 4998 if (event->pending_disable) { 4999 event->pending_disable = 0; 5000 perf_event_disable_local(event); 5001 } 5002 5003 if (event->pending_wakeup) { 5004 event->pending_wakeup = 0; 5005 perf_event_wakeup(event); 5006 } 5007 5008 if (rctx >= 0) 5009 perf_swevent_put_recursion_context(rctx); 5010 } 5011 5012 /* 5013 * We assume there is only KVM supporting the callbacks. 5014 * Later on, we might change it to a list if there is 5015 * another virtualization implementation supporting the callbacks. 5016 */ 5017 struct perf_guest_info_callbacks *perf_guest_cbs; 5018 5019 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5020 { 5021 perf_guest_cbs = cbs; 5022 return 0; 5023 } 5024 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5025 5026 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5027 { 5028 perf_guest_cbs = NULL; 5029 return 0; 5030 } 5031 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5032 5033 static void 5034 perf_output_sample_regs(struct perf_output_handle *handle, 5035 struct pt_regs *regs, u64 mask) 5036 { 5037 int bit; 5038 5039 for_each_set_bit(bit, (const unsigned long *) &mask, 5040 sizeof(mask) * BITS_PER_BYTE) { 5041 u64 val; 5042 5043 val = perf_reg_value(regs, bit); 5044 perf_output_put(handle, val); 5045 } 5046 } 5047 5048 static void perf_sample_regs_user(struct perf_regs *regs_user, 5049 struct pt_regs *regs, 5050 struct pt_regs *regs_user_copy) 5051 { 5052 if (user_mode(regs)) { 5053 regs_user->abi = perf_reg_abi(current); 5054 regs_user->regs = regs; 5055 } else if (current->mm) { 5056 perf_get_regs_user(regs_user, regs, regs_user_copy); 5057 } else { 5058 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5059 regs_user->regs = NULL; 5060 } 5061 } 5062 5063 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5064 struct pt_regs *regs) 5065 { 5066 regs_intr->regs = regs; 5067 regs_intr->abi = perf_reg_abi(current); 5068 } 5069 5070 5071 /* 5072 * Get remaining task size from user stack pointer. 5073 * 5074 * It'd be better to take stack vma map and limit this more 5075 * precisly, but there's no way to get it safely under interrupt, 5076 * so using TASK_SIZE as limit. 5077 */ 5078 static u64 perf_ustack_task_size(struct pt_regs *regs) 5079 { 5080 unsigned long addr = perf_user_stack_pointer(regs); 5081 5082 if (!addr || addr >= TASK_SIZE) 5083 return 0; 5084 5085 return TASK_SIZE - addr; 5086 } 5087 5088 static u16 5089 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5090 struct pt_regs *regs) 5091 { 5092 u64 task_size; 5093 5094 /* No regs, no stack pointer, no dump. */ 5095 if (!regs) 5096 return 0; 5097 5098 /* 5099 * Check if we fit in with the requested stack size into the: 5100 * - TASK_SIZE 5101 * If we don't, we limit the size to the TASK_SIZE. 5102 * 5103 * - remaining sample size 5104 * If we don't, we customize the stack size to 5105 * fit in to the remaining sample size. 5106 */ 5107 5108 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5109 stack_size = min(stack_size, (u16) task_size); 5110 5111 /* Current header size plus static size and dynamic size. */ 5112 header_size += 2 * sizeof(u64); 5113 5114 /* Do we fit in with the current stack dump size? */ 5115 if ((u16) (header_size + stack_size) < header_size) { 5116 /* 5117 * If we overflow the maximum size for the sample, 5118 * we customize the stack dump size to fit in. 5119 */ 5120 stack_size = USHRT_MAX - header_size - sizeof(u64); 5121 stack_size = round_up(stack_size, sizeof(u64)); 5122 } 5123 5124 return stack_size; 5125 } 5126 5127 static void 5128 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5129 struct pt_regs *regs) 5130 { 5131 /* Case of a kernel thread, nothing to dump */ 5132 if (!regs) { 5133 u64 size = 0; 5134 perf_output_put(handle, size); 5135 } else { 5136 unsigned long sp; 5137 unsigned int rem; 5138 u64 dyn_size; 5139 5140 /* 5141 * We dump: 5142 * static size 5143 * - the size requested by user or the best one we can fit 5144 * in to the sample max size 5145 * data 5146 * - user stack dump data 5147 * dynamic size 5148 * - the actual dumped size 5149 */ 5150 5151 /* Static size. */ 5152 perf_output_put(handle, dump_size); 5153 5154 /* Data. */ 5155 sp = perf_user_stack_pointer(regs); 5156 rem = __output_copy_user(handle, (void *) sp, dump_size); 5157 dyn_size = dump_size - rem; 5158 5159 perf_output_skip(handle, rem); 5160 5161 /* Dynamic size. */ 5162 perf_output_put(handle, dyn_size); 5163 } 5164 } 5165 5166 static void __perf_event_header__init_id(struct perf_event_header *header, 5167 struct perf_sample_data *data, 5168 struct perf_event *event) 5169 { 5170 u64 sample_type = event->attr.sample_type; 5171 5172 data->type = sample_type; 5173 header->size += event->id_header_size; 5174 5175 if (sample_type & PERF_SAMPLE_TID) { 5176 /* namespace issues */ 5177 data->tid_entry.pid = perf_event_pid(event, current); 5178 data->tid_entry.tid = perf_event_tid(event, current); 5179 } 5180 5181 if (sample_type & PERF_SAMPLE_TIME) 5182 data->time = perf_event_clock(event); 5183 5184 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5185 data->id = primary_event_id(event); 5186 5187 if (sample_type & PERF_SAMPLE_STREAM_ID) 5188 data->stream_id = event->id; 5189 5190 if (sample_type & PERF_SAMPLE_CPU) { 5191 data->cpu_entry.cpu = raw_smp_processor_id(); 5192 data->cpu_entry.reserved = 0; 5193 } 5194 } 5195 5196 void perf_event_header__init_id(struct perf_event_header *header, 5197 struct perf_sample_data *data, 5198 struct perf_event *event) 5199 { 5200 if (event->attr.sample_id_all) 5201 __perf_event_header__init_id(header, data, event); 5202 } 5203 5204 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5205 struct perf_sample_data *data) 5206 { 5207 u64 sample_type = data->type; 5208 5209 if (sample_type & PERF_SAMPLE_TID) 5210 perf_output_put(handle, data->tid_entry); 5211 5212 if (sample_type & PERF_SAMPLE_TIME) 5213 perf_output_put(handle, data->time); 5214 5215 if (sample_type & PERF_SAMPLE_ID) 5216 perf_output_put(handle, data->id); 5217 5218 if (sample_type & PERF_SAMPLE_STREAM_ID) 5219 perf_output_put(handle, data->stream_id); 5220 5221 if (sample_type & PERF_SAMPLE_CPU) 5222 perf_output_put(handle, data->cpu_entry); 5223 5224 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5225 perf_output_put(handle, data->id); 5226 } 5227 5228 void perf_event__output_id_sample(struct perf_event *event, 5229 struct perf_output_handle *handle, 5230 struct perf_sample_data *sample) 5231 { 5232 if (event->attr.sample_id_all) 5233 __perf_event__output_id_sample(handle, sample); 5234 } 5235 5236 static void perf_output_read_one(struct perf_output_handle *handle, 5237 struct perf_event *event, 5238 u64 enabled, u64 running) 5239 { 5240 u64 read_format = event->attr.read_format; 5241 u64 values[4]; 5242 int n = 0; 5243 5244 values[n++] = perf_event_count(event); 5245 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5246 values[n++] = enabled + 5247 atomic64_read(&event->child_total_time_enabled); 5248 } 5249 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5250 values[n++] = running + 5251 atomic64_read(&event->child_total_time_running); 5252 } 5253 if (read_format & PERF_FORMAT_ID) 5254 values[n++] = primary_event_id(event); 5255 5256 __output_copy(handle, values, n * sizeof(u64)); 5257 } 5258 5259 /* 5260 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 5261 */ 5262 static void perf_output_read_group(struct perf_output_handle *handle, 5263 struct perf_event *event, 5264 u64 enabled, u64 running) 5265 { 5266 struct perf_event *leader = event->group_leader, *sub; 5267 u64 read_format = event->attr.read_format; 5268 u64 values[5]; 5269 int n = 0; 5270 5271 values[n++] = 1 + leader->nr_siblings; 5272 5273 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5274 values[n++] = enabled; 5275 5276 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5277 values[n++] = running; 5278 5279 if (leader != event) 5280 leader->pmu->read(leader); 5281 5282 values[n++] = perf_event_count(leader); 5283 if (read_format & PERF_FORMAT_ID) 5284 values[n++] = primary_event_id(leader); 5285 5286 __output_copy(handle, values, n * sizeof(u64)); 5287 5288 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5289 n = 0; 5290 5291 if ((sub != event) && 5292 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5293 sub->pmu->read(sub); 5294 5295 values[n++] = perf_event_count(sub); 5296 if (read_format & PERF_FORMAT_ID) 5297 values[n++] = primary_event_id(sub); 5298 5299 __output_copy(handle, values, n * sizeof(u64)); 5300 } 5301 } 5302 5303 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5304 PERF_FORMAT_TOTAL_TIME_RUNNING) 5305 5306 static void perf_output_read(struct perf_output_handle *handle, 5307 struct perf_event *event) 5308 { 5309 u64 enabled = 0, running = 0, now; 5310 u64 read_format = event->attr.read_format; 5311 5312 /* 5313 * compute total_time_enabled, total_time_running 5314 * based on snapshot values taken when the event 5315 * was last scheduled in. 5316 * 5317 * we cannot simply called update_context_time() 5318 * because of locking issue as we are called in 5319 * NMI context 5320 */ 5321 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5322 calc_timer_values(event, &now, &enabled, &running); 5323 5324 if (event->attr.read_format & PERF_FORMAT_GROUP) 5325 perf_output_read_group(handle, event, enabled, running); 5326 else 5327 perf_output_read_one(handle, event, enabled, running); 5328 } 5329 5330 void perf_output_sample(struct perf_output_handle *handle, 5331 struct perf_event_header *header, 5332 struct perf_sample_data *data, 5333 struct perf_event *event) 5334 { 5335 u64 sample_type = data->type; 5336 5337 perf_output_put(handle, *header); 5338 5339 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5340 perf_output_put(handle, data->id); 5341 5342 if (sample_type & PERF_SAMPLE_IP) 5343 perf_output_put(handle, data->ip); 5344 5345 if (sample_type & PERF_SAMPLE_TID) 5346 perf_output_put(handle, data->tid_entry); 5347 5348 if (sample_type & PERF_SAMPLE_TIME) 5349 perf_output_put(handle, data->time); 5350 5351 if (sample_type & PERF_SAMPLE_ADDR) 5352 perf_output_put(handle, data->addr); 5353 5354 if (sample_type & PERF_SAMPLE_ID) 5355 perf_output_put(handle, data->id); 5356 5357 if (sample_type & PERF_SAMPLE_STREAM_ID) 5358 perf_output_put(handle, data->stream_id); 5359 5360 if (sample_type & PERF_SAMPLE_CPU) 5361 perf_output_put(handle, data->cpu_entry); 5362 5363 if (sample_type & PERF_SAMPLE_PERIOD) 5364 perf_output_put(handle, data->period); 5365 5366 if (sample_type & PERF_SAMPLE_READ) 5367 perf_output_read(handle, event); 5368 5369 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5370 if (data->callchain) { 5371 int size = 1; 5372 5373 if (data->callchain) 5374 size += data->callchain->nr; 5375 5376 size *= sizeof(u64); 5377 5378 __output_copy(handle, data->callchain, size); 5379 } else { 5380 u64 nr = 0; 5381 perf_output_put(handle, nr); 5382 } 5383 } 5384 5385 if (sample_type & PERF_SAMPLE_RAW) { 5386 if (data->raw) { 5387 u32 raw_size = data->raw->size; 5388 u32 real_size = round_up(raw_size + sizeof(u32), 5389 sizeof(u64)) - sizeof(u32); 5390 u64 zero = 0; 5391 5392 perf_output_put(handle, real_size); 5393 __output_copy(handle, data->raw->data, raw_size); 5394 if (real_size - raw_size) 5395 __output_copy(handle, &zero, real_size - raw_size); 5396 } else { 5397 struct { 5398 u32 size; 5399 u32 data; 5400 } raw = { 5401 .size = sizeof(u32), 5402 .data = 0, 5403 }; 5404 perf_output_put(handle, raw); 5405 } 5406 } 5407 5408 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5409 if (data->br_stack) { 5410 size_t size; 5411 5412 size = data->br_stack->nr 5413 * sizeof(struct perf_branch_entry); 5414 5415 perf_output_put(handle, data->br_stack->nr); 5416 perf_output_copy(handle, data->br_stack->entries, size); 5417 } else { 5418 /* 5419 * we always store at least the value of nr 5420 */ 5421 u64 nr = 0; 5422 perf_output_put(handle, nr); 5423 } 5424 } 5425 5426 if (sample_type & PERF_SAMPLE_REGS_USER) { 5427 u64 abi = data->regs_user.abi; 5428 5429 /* 5430 * If there are no regs to dump, notice it through 5431 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5432 */ 5433 perf_output_put(handle, abi); 5434 5435 if (abi) { 5436 u64 mask = event->attr.sample_regs_user; 5437 perf_output_sample_regs(handle, 5438 data->regs_user.regs, 5439 mask); 5440 } 5441 } 5442 5443 if (sample_type & PERF_SAMPLE_STACK_USER) { 5444 perf_output_sample_ustack(handle, 5445 data->stack_user_size, 5446 data->regs_user.regs); 5447 } 5448 5449 if (sample_type & PERF_SAMPLE_WEIGHT) 5450 perf_output_put(handle, data->weight); 5451 5452 if (sample_type & PERF_SAMPLE_DATA_SRC) 5453 perf_output_put(handle, data->data_src.val); 5454 5455 if (sample_type & PERF_SAMPLE_TRANSACTION) 5456 perf_output_put(handle, data->txn); 5457 5458 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5459 u64 abi = data->regs_intr.abi; 5460 /* 5461 * If there are no regs to dump, notice it through 5462 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5463 */ 5464 perf_output_put(handle, abi); 5465 5466 if (abi) { 5467 u64 mask = event->attr.sample_regs_intr; 5468 5469 perf_output_sample_regs(handle, 5470 data->regs_intr.regs, 5471 mask); 5472 } 5473 } 5474 5475 if (!event->attr.watermark) { 5476 int wakeup_events = event->attr.wakeup_events; 5477 5478 if (wakeup_events) { 5479 struct ring_buffer *rb = handle->rb; 5480 int events = local_inc_return(&rb->events); 5481 5482 if (events >= wakeup_events) { 5483 local_sub(wakeup_events, &rb->events); 5484 local_inc(&rb->wakeup); 5485 } 5486 } 5487 } 5488 } 5489 5490 void perf_prepare_sample(struct perf_event_header *header, 5491 struct perf_sample_data *data, 5492 struct perf_event *event, 5493 struct pt_regs *regs) 5494 { 5495 u64 sample_type = event->attr.sample_type; 5496 5497 header->type = PERF_RECORD_SAMPLE; 5498 header->size = sizeof(*header) + event->header_size; 5499 5500 header->misc = 0; 5501 header->misc |= perf_misc_flags(regs); 5502 5503 __perf_event_header__init_id(header, data, event); 5504 5505 if (sample_type & PERF_SAMPLE_IP) 5506 data->ip = perf_instruction_pointer(regs); 5507 5508 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5509 int size = 1; 5510 5511 data->callchain = perf_callchain(event, regs); 5512 5513 if (data->callchain) 5514 size += data->callchain->nr; 5515 5516 header->size += size * sizeof(u64); 5517 } 5518 5519 if (sample_type & PERF_SAMPLE_RAW) { 5520 int size = sizeof(u32); 5521 5522 if (data->raw) 5523 size += data->raw->size; 5524 else 5525 size += sizeof(u32); 5526 5527 header->size += round_up(size, sizeof(u64)); 5528 } 5529 5530 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5531 int size = sizeof(u64); /* nr */ 5532 if (data->br_stack) { 5533 size += data->br_stack->nr 5534 * sizeof(struct perf_branch_entry); 5535 } 5536 header->size += size; 5537 } 5538 5539 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 5540 perf_sample_regs_user(&data->regs_user, regs, 5541 &data->regs_user_copy); 5542 5543 if (sample_type & PERF_SAMPLE_REGS_USER) { 5544 /* regs dump ABI info */ 5545 int size = sizeof(u64); 5546 5547 if (data->regs_user.regs) { 5548 u64 mask = event->attr.sample_regs_user; 5549 size += hweight64(mask) * sizeof(u64); 5550 } 5551 5552 header->size += size; 5553 } 5554 5555 if (sample_type & PERF_SAMPLE_STACK_USER) { 5556 /* 5557 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 5558 * processed as the last one or have additional check added 5559 * in case new sample type is added, because we could eat 5560 * up the rest of the sample size. 5561 */ 5562 u16 stack_size = event->attr.sample_stack_user; 5563 u16 size = sizeof(u64); 5564 5565 stack_size = perf_sample_ustack_size(stack_size, header->size, 5566 data->regs_user.regs); 5567 5568 /* 5569 * If there is something to dump, add space for the dump 5570 * itself and for the field that tells the dynamic size, 5571 * which is how many have been actually dumped. 5572 */ 5573 if (stack_size) 5574 size += sizeof(u64) + stack_size; 5575 5576 data->stack_user_size = stack_size; 5577 header->size += size; 5578 } 5579 5580 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5581 /* regs dump ABI info */ 5582 int size = sizeof(u64); 5583 5584 perf_sample_regs_intr(&data->regs_intr, regs); 5585 5586 if (data->regs_intr.regs) { 5587 u64 mask = event->attr.sample_regs_intr; 5588 5589 size += hweight64(mask) * sizeof(u64); 5590 } 5591 5592 header->size += size; 5593 } 5594 } 5595 5596 void perf_event_output(struct perf_event *event, 5597 struct perf_sample_data *data, 5598 struct pt_regs *regs) 5599 { 5600 struct perf_output_handle handle; 5601 struct perf_event_header header; 5602 5603 /* protect the callchain buffers */ 5604 rcu_read_lock(); 5605 5606 perf_prepare_sample(&header, data, event, regs); 5607 5608 if (perf_output_begin(&handle, event, header.size)) 5609 goto exit; 5610 5611 perf_output_sample(&handle, &header, data, event); 5612 5613 perf_output_end(&handle); 5614 5615 exit: 5616 rcu_read_unlock(); 5617 } 5618 5619 /* 5620 * read event_id 5621 */ 5622 5623 struct perf_read_event { 5624 struct perf_event_header header; 5625 5626 u32 pid; 5627 u32 tid; 5628 }; 5629 5630 static void 5631 perf_event_read_event(struct perf_event *event, 5632 struct task_struct *task) 5633 { 5634 struct perf_output_handle handle; 5635 struct perf_sample_data sample; 5636 struct perf_read_event read_event = { 5637 .header = { 5638 .type = PERF_RECORD_READ, 5639 .misc = 0, 5640 .size = sizeof(read_event) + event->read_size, 5641 }, 5642 .pid = perf_event_pid(event, task), 5643 .tid = perf_event_tid(event, task), 5644 }; 5645 int ret; 5646 5647 perf_event_header__init_id(&read_event.header, &sample, event); 5648 ret = perf_output_begin(&handle, event, read_event.header.size); 5649 if (ret) 5650 return; 5651 5652 perf_output_put(&handle, read_event); 5653 perf_output_read(&handle, event); 5654 perf_event__output_id_sample(event, &handle, &sample); 5655 5656 perf_output_end(&handle); 5657 } 5658 5659 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 5660 5661 static void 5662 perf_event_aux_ctx(struct perf_event_context *ctx, 5663 perf_event_aux_output_cb output, 5664 void *data) 5665 { 5666 struct perf_event *event; 5667 5668 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5669 if (event->state < PERF_EVENT_STATE_INACTIVE) 5670 continue; 5671 if (!event_filter_match(event)) 5672 continue; 5673 output(event, data); 5674 } 5675 } 5676 5677 static void 5678 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data, 5679 struct perf_event_context *task_ctx) 5680 { 5681 rcu_read_lock(); 5682 preempt_disable(); 5683 perf_event_aux_ctx(task_ctx, output, data); 5684 preempt_enable(); 5685 rcu_read_unlock(); 5686 } 5687 5688 static void 5689 perf_event_aux(perf_event_aux_output_cb output, void *data, 5690 struct perf_event_context *task_ctx) 5691 { 5692 struct perf_cpu_context *cpuctx; 5693 struct perf_event_context *ctx; 5694 struct pmu *pmu; 5695 int ctxn; 5696 5697 /* 5698 * If we have task_ctx != NULL we only notify 5699 * the task context itself. The task_ctx is set 5700 * only for EXIT events before releasing task 5701 * context. 5702 */ 5703 if (task_ctx) { 5704 perf_event_aux_task_ctx(output, data, task_ctx); 5705 return; 5706 } 5707 5708 rcu_read_lock(); 5709 list_for_each_entry_rcu(pmu, &pmus, entry) { 5710 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 5711 if (cpuctx->unique_pmu != pmu) 5712 goto next; 5713 perf_event_aux_ctx(&cpuctx->ctx, output, data); 5714 ctxn = pmu->task_ctx_nr; 5715 if (ctxn < 0) 5716 goto next; 5717 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 5718 if (ctx) 5719 perf_event_aux_ctx(ctx, output, data); 5720 next: 5721 put_cpu_ptr(pmu->pmu_cpu_context); 5722 } 5723 rcu_read_unlock(); 5724 } 5725 5726 /* 5727 * task tracking -- fork/exit 5728 * 5729 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 5730 */ 5731 5732 struct perf_task_event { 5733 struct task_struct *task; 5734 struct perf_event_context *task_ctx; 5735 5736 struct { 5737 struct perf_event_header header; 5738 5739 u32 pid; 5740 u32 ppid; 5741 u32 tid; 5742 u32 ptid; 5743 u64 time; 5744 } event_id; 5745 }; 5746 5747 static int perf_event_task_match(struct perf_event *event) 5748 { 5749 return event->attr.comm || event->attr.mmap || 5750 event->attr.mmap2 || event->attr.mmap_data || 5751 event->attr.task; 5752 } 5753 5754 static void perf_event_task_output(struct perf_event *event, 5755 void *data) 5756 { 5757 struct perf_task_event *task_event = data; 5758 struct perf_output_handle handle; 5759 struct perf_sample_data sample; 5760 struct task_struct *task = task_event->task; 5761 int ret, size = task_event->event_id.header.size; 5762 5763 if (!perf_event_task_match(event)) 5764 return; 5765 5766 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 5767 5768 ret = perf_output_begin(&handle, event, 5769 task_event->event_id.header.size); 5770 if (ret) 5771 goto out; 5772 5773 task_event->event_id.pid = perf_event_pid(event, task); 5774 task_event->event_id.ppid = perf_event_pid(event, current); 5775 5776 task_event->event_id.tid = perf_event_tid(event, task); 5777 task_event->event_id.ptid = perf_event_tid(event, current); 5778 5779 task_event->event_id.time = perf_event_clock(event); 5780 5781 perf_output_put(&handle, task_event->event_id); 5782 5783 perf_event__output_id_sample(event, &handle, &sample); 5784 5785 perf_output_end(&handle); 5786 out: 5787 task_event->event_id.header.size = size; 5788 } 5789 5790 static void perf_event_task(struct task_struct *task, 5791 struct perf_event_context *task_ctx, 5792 int new) 5793 { 5794 struct perf_task_event task_event; 5795 5796 if (!atomic_read(&nr_comm_events) && 5797 !atomic_read(&nr_mmap_events) && 5798 !atomic_read(&nr_task_events)) 5799 return; 5800 5801 task_event = (struct perf_task_event){ 5802 .task = task, 5803 .task_ctx = task_ctx, 5804 .event_id = { 5805 .header = { 5806 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 5807 .misc = 0, 5808 .size = sizeof(task_event.event_id), 5809 }, 5810 /* .pid */ 5811 /* .ppid */ 5812 /* .tid */ 5813 /* .ptid */ 5814 /* .time */ 5815 }, 5816 }; 5817 5818 perf_event_aux(perf_event_task_output, 5819 &task_event, 5820 task_ctx); 5821 } 5822 5823 void perf_event_fork(struct task_struct *task) 5824 { 5825 perf_event_task(task, NULL, 1); 5826 } 5827 5828 /* 5829 * comm tracking 5830 */ 5831 5832 struct perf_comm_event { 5833 struct task_struct *task; 5834 char *comm; 5835 int comm_size; 5836 5837 struct { 5838 struct perf_event_header header; 5839 5840 u32 pid; 5841 u32 tid; 5842 } event_id; 5843 }; 5844 5845 static int perf_event_comm_match(struct perf_event *event) 5846 { 5847 return event->attr.comm; 5848 } 5849 5850 static void perf_event_comm_output(struct perf_event *event, 5851 void *data) 5852 { 5853 struct perf_comm_event *comm_event = data; 5854 struct perf_output_handle handle; 5855 struct perf_sample_data sample; 5856 int size = comm_event->event_id.header.size; 5857 int ret; 5858 5859 if (!perf_event_comm_match(event)) 5860 return; 5861 5862 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5863 ret = perf_output_begin(&handle, event, 5864 comm_event->event_id.header.size); 5865 5866 if (ret) 5867 goto out; 5868 5869 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5870 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5871 5872 perf_output_put(&handle, comm_event->event_id); 5873 __output_copy(&handle, comm_event->comm, 5874 comm_event->comm_size); 5875 5876 perf_event__output_id_sample(event, &handle, &sample); 5877 5878 perf_output_end(&handle); 5879 out: 5880 comm_event->event_id.header.size = size; 5881 } 5882 5883 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5884 { 5885 char comm[TASK_COMM_LEN]; 5886 unsigned int size; 5887 5888 memset(comm, 0, sizeof(comm)); 5889 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5890 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5891 5892 comm_event->comm = comm; 5893 comm_event->comm_size = size; 5894 5895 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5896 5897 perf_event_aux(perf_event_comm_output, 5898 comm_event, 5899 NULL); 5900 } 5901 5902 void perf_event_comm(struct task_struct *task, bool exec) 5903 { 5904 struct perf_comm_event comm_event; 5905 5906 if (!atomic_read(&nr_comm_events)) 5907 return; 5908 5909 comm_event = (struct perf_comm_event){ 5910 .task = task, 5911 /* .comm */ 5912 /* .comm_size */ 5913 .event_id = { 5914 .header = { 5915 .type = PERF_RECORD_COMM, 5916 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5917 /* .size */ 5918 }, 5919 /* .pid */ 5920 /* .tid */ 5921 }, 5922 }; 5923 5924 perf_event_comm_event(&comm_event); 5925 } 5926 5927 /* 5928 * mmap tracking 5929 */ 5930 5931 struct perf_mmap_event { 5932 struct vm_area_struct *vma; 5933 5934 const char *file_name; 5935 int file_size; 5936 int maj, min; 5937 u64 ino; 5938 u64 ino_generation; 5939 u32 prot, flags; 5940 5941 struct { 5942 struct perf_event_header header; 5943 5944 u32 pid; 5945 u32 tid; 5946 u64 start; 5947 u64 len; 5948 u64 pgoff; 5949 } event_id; 5950 }; 5951 5952 static int perf_event_mmap_match(struct perf_event *event, 5953 void *data) 5954 { 5955 struct perf_mmap_event *mmap_event = data; 5956 struct vm_area_struct *vma = mmap_event->vma; 5957 int executable = vma->vm_flags & VM_EXEC; 5958 5959 return (!executable && event->attr.mmap_data) || 5960 (executable && (event->attr.mmap || event->attr.mmap2)); 5961 } 5962 5963 static void perf_event_mmap_output(struct perf_event *event, 5964 void *data) 5965 { 5966 struct perf_mmap_event *mmap_event = data; 5967 struct perf_output_handle handle; 5968 struct perf_sample_data sample; 5969 int size = mmap_event->event_id.header.size; 5970 int ret; 5971 5972 if (!perf_event_mmap_match(event, data)) 5973 return; 5974 5975 if (event->attr.mmap2) { 5976 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5977 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5978 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5979 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5980 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5981 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 5982 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 5983 } 5984 5985 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5986 ret = perf_output_begin(&handle, event, 5987 mmap_event->event_id.header.size); 5988 if (ret) 5989 goto out; 5990 5991 mmap_event->event_id.pid = perf_event_pid(event, current); 5992 mmap_event->event_id.tid = perf_event_tid(event, current); 5993 5994 perf_output_put(&handle, mmap_event->event_id); 5995 5996 if (event->attr.mmap2) { 5997 perf_output_put(&handle, mmap_event->maj); 5998 perf_output_put(&handle, mmap_event->min); 5999 perf_output_put(&handle, mmap_event->ino); 6000 perf_output_put(&handle, mmap_event->ino_generation); 6001 perf_output_put(&handle, mmap_event->prot); 6002 perf_output_put(&handle, mmap_event->flags); 6003 } 6004 6005 __output_copy(&handle, mmap_event->file_name, 6006 mmap_event->file_size); 6007 6008 perf_event__output_id_sample(event, &handle, &sample); 6009 6010 perf_output_end(&handle); 6011 out: 6012 mmap_event->event_id.header.size = size; 6013 } 6014 6015 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6016 { 6017 struct vm_area_struct *vma = mmap_event->vma; 6018 struct file *file = vma->vm_file; 6019 int maj = 0, min = 0; 6020 u64 ino = 0, gen = 0; 6021 u32 prot = 0, flags = 0; 6022 unsigned int size; 6023 char tmp[16]; 6024 char *buf = NULL; 6025 char *name; 6026 6027 if (file) { 6028 struct inode *inode; 6029 dev_t dev; 6030 6031 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6032 if (!buf) { 6033 name = "//enomem"; 6034 goto cpy_name; 6035 } 6036 /* 6037 * d_path() works from the end of the rb backwards, so we 6038 * need to add enough zero bytes after the string to handle 6039 * the 64bit alignment we do later. 6040 */ 6041 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6042 if (IS_ERR(name)) { 6043 name = "//toolong"; 6044 goto cpy_name; 6045 } 6046 inode = file_inode(vma->vm_file); 6047 dev = inode->i_sb->s_dev; 6048 ino = inode->i_ino; 6049 gen = inode->i_generation; 6050 maj = MAJOR(dev); 6051 min = MINOR(dev); 6052 6053 if (vma->vm_flags & VM_READ) 6054 prot |= PROT_READ; 6055 if (vma->vm_flags & VM_WRITE) 6056 prot |= PROT_WRITE; 6057 if (vma->vm_flags & VM_EXEC) 6058 prot |= PROT_EXEC; 6059 6060 if (vma->vm_flags & VM_MAYSHARE) 6061 flags = MAP_SHARED; 6062 else 6063 flags = MAP_PRIVATE; 6064 6065 if (vma->vm_flags & VM_DENYWRITE) 6066 flags |= MAP_DENYWRITE; 6067 if (vma->vm_flags & VM_MAYEXEC) 6068 flags |= MAP_EXECUTABLE; 6069 if (vma->vm_flags & VM_LOCKED) 6070 flags |= MAP_LOCKED; 6071 if (vma->vm_flags & VM_HUGETLB) 6072 flags |= MAP_HUGETLB; 6073 6074 goto got_name; 6075 } else { 6076 if (vma->vm_ops && vma->vm_ops->name) { 6077 name = (char *) vma->vm_ops->name(vma); 6078 if (name) 6079 goto cpy_name; 6080 } 6081 6082 name = (char *)arch_vma_name(vma); 6083 if (name) 6084 goto cpy_name; 6085 6086 if (vma->vm_start <= vma->vm_mm->start_brk && 6087 vma->vm_end >= vma->vm_mm->brk) { 6088 name = "[heap]"; 6089 goto cpy_name; 6090 } 6091 if (vma->vm_start <= vma->vm_mm->start_stack && 6092 vma->vm_end >= vma->vm_mm->start_stack) { 6093 name = "[stack]"; 6094 goto cpy_name; 6095 } 6096 6097 name = "//anon"; 6098 goto cpy_name; 6099 } 6100 6101 cpy_name: 6102 strlcpy(tmp, name, sizeof(tmp)); 6103 name = tmp; 6104 got_name: 6105 /* 6106 * Since our buffer works in 8 byte units we need to align our string 6107 * size to a multiple of 8. However, we must guarantee the tail end is 6108 * zero'd out to avoid leaking random bits to userspace. 6109 */ 6110 size = strlen(name)+1; 6111 while (!IS_ALIGNED(size, sizeof(u64))) 6112 name[size++] = '\0'; 6113 6114 mmap_event->file_name = name; 6115 mmap_event->file_size = size; 6116 mmap_event->maj = maj; 6117 mmap_event->min = min; 6118 mmap_event->ino = ino; 6119 mmap_event->ino_generation = gen; 6120 mmap_event->prot = prot; 6121 mmap_event->flags = flags; 6122 6123 if (!(vma->vm_flags & VM_EXEC)) 6124 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6125 6126 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6127 6128 perf_event_aux(perf_event_mmap_output, 6129 mmap_event, 6130 NULL); 6131 6132 kfree(buf); 6133 } 6134 6135 void perf_event_mmap(struct vm_area_struct *vma) 6136 { 6137 struct perf_mmap_event mmap_event; 6138 6139 if (!atomic_read(&nr_mmap_events)) 6140 return; 6141 6142 mmap_event = (struct perf_mmap_event){ 6143 .vma = vma, 6144 /* .file_name */ 6145 /* .file_size */ 6146 .event_id = { 6147 .header = { 6148 .type = PERF_RECORD_MMAP, 6149 .misc = PERF_RECORD_MISC_USER, 6150 /* .size */ 6151 }, 6152 /* .pid */ 6153 /* .tid */ 6154 .start = vma->vm_start, 6155 .len = vma->vm_end - vma->vm_start, 6156 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 6157 }, 6158 /* .maj (attr_mmap2 only) */ 6159 /* .min (attr_mmap2 only) */ 6160 /* .ino (attr_mmap2 only) */ 6161 /* .ino_generation (attr_mmap2 only) */ 6162 /* .prot (attr_mmap2 only) */ 6163 /* .flags (attr_mmap2 only) */ 6164 }; 6165 6166 perf_event_mmap_event(&mmap_event); 6167 } 6168 6169 void perf_event_aux_event(struct perf_event *event, unsigned long head, 6170 unsigned long size, u64 flags) 6171 { 6172 struct perf_output_handle handle; 6173 struct perf_sample_data sample; 6174 struct perf_aux_event { 6175 struct perf_event_header header; 6176 u64 offset; 6177 u64 size; 6178 u64 flags; 6179 } rec = { 6180 .header = { 6181 .type = PERF_RECORD_AUX, 6182 .misc = 0, 6183 .size = sizeof(rec), 6184 }, 6185 .offset = head, 6186 .size = size, 6187 .flags = flags, 6188 }; 6189 int ret; 6190 6191 perf_event_header__init_id(&rec.header, &sample, event); 6192 ret = perf_output_begin(&handle, event, rec.header.size); 6193 6194 if (ret) 6195 return; 6196 6197 perf_output_put(&handle, rec); 6198 perf_event__output_id_sample(event, &handle, &sample); 6199 6200 perf_output_end(&handle); 6201 } 6202 6203 /* 6204 * Lost/dropped samples logging 6205 */ 6206 void perf_log_lost_samples(struct perf_event *event, u64 lost) 6207 { 6208 struct perf_output_handle handle; 6209 struct perf_sample_data sample; 6210 int ret; 6211 6212 struct { 6213 struct perf_event_header header; 6214 u64 lost; 6215 } lost_samples_event = { 6216 .header = { 6217 .type = PERF_RECORD_LOST_SAMPLES, 6218 .misc = 0, 6219 .size = sizeof(lost_samples_event), 6220 }, 6221 .lost = lost, 6222 }; 6223 6224 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 6225 6226 ret = perf_output_begin(&handle, event, 6227 lost_samples_event.header.size); 6228 if (ret) 6229 return; 6230 6231 perf_output_put(&handle, lost_samples_event); 6232 perf_event__output_id_sample(event, &handle, &sample); 6233 perf_output_end(&handle); 6234 } 6235 6236 /* 6237 * context_switch tracking 6238 */ 6239 6240 struct perf_switch_event { 6241 struct task_struct *task; 6242 struct task_struct *next_prev; 6243 6244 struct { 6245 struct perf_event_header header; 6246 u32 next_prev_pid; 6247 u32 next_prev_tid; 6248 } event_id; 6249 }; 6250 6251 static int perf_event_switch_match(struct perf_event *event) 6252 { 6253 return event->attr.context_switch; 6254 } 6255 6256 static void perf_event_switch_output(struct perf_event *event, void *data) 6257 { 6258 struct perf_switch_event *se = data; 6259 struct perf_output_handle handle; 6260 struct perf_sample_data sample; 6261 int ret; 6262 6263 if (!perf_event_switch_match(event)) 6264 return; 6265 6266 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 6267 if (event->ctx->task) { 6268 se->event_id.header.type = PERF_RECORD_SWITCH; 6269 se->event_id.header.size = sizeof(se->event_id.header); 6270 } else { 6271 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 6272 se->event_id.header.size = sizeof(se->event_id); 6273 se->event_id.next_prev_pid = 6274 perf_event_pid(event, se->next_prev); 6275 se->event_id.next_prev_tid = 6276 perf_event_tid(event, se->next_prev); 6277 } 6278 6279 perf_event_header__init_id(&se->event_id.header, &sample, event); 6280 6281 ret = perf_output_begin(&handle, event, se->event_id.header.size); 6282 if (ret) 6283 return; 6284 6285 if (event->ctx->task) 6286 perf_output_put(&handle, se->event_id.header); 6287 else 6288 perf_output_put(&handle, se->event_id); 6289 6290 perf_event__output_id_sample(event, &handle, &sample); 6291 6292 perf_output_end(&handle); 6293 } 6294 6295 static void perf_event_switch(struct task_struct *task, 6296 struct task_struct *next_prev, bool sched_in) 6297 { 6298 struct perf_switch_event switch_event; 6299 6300 /* N.B. caller checks nr_switch_events != 0 */ 6301 6302 switch_event = (struct perf_switch_event){ 6303 .task = task, 6304 .next_prev = next_prev, 6305 .event_id = { 6306 .header = { 6307 /* .type */ 6308 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 6309 /* .size */ 6310 }, 6311 /* .next_prev_pid */ 6312 /* .next_prev_tid */ 6313 }, 6314 }; 6315 6316 perf_event_aux(perf_event_switch_output, 6317 &switch_event, 6318 NULL); 6319 } 6320 6321 /* 6322 * IRQ throttle logging 6323 */ 6324 6325 static void perf_log_throttle(struct perf_event *event, int enable) 6326 { 6327 struct perf_output_handle handle; 6328 struct perf_sample_data sample; 6329 int ret; 6330 6331 struct { 6332 struct perf_event_header header; 6333 u64 time; 6334 u64 id; 6335 u64 stream_id; 6336 } throttle_event = { 6337 .header = { 6338 .type = PERF_RECORD_THROTTLE, 6339 .misc = 0, 6340 .size = sizeof(throttle_event), 6341 }, 6342 .time = perf_event_clock(event), 6343 .id = primary_event_id(event), 6344 .stream_id = event->id, 6345 }; 6346 6347 if (enable) 6348 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 6349 6350 perf_event_header__init_id(&throttle_event.header, &sample, event); 6351 6352 ret = perf_output_begin(&handle, event, 6353 throttle_event.header.size); 6354 if (ret) 6355 return; 6356 6357 perf_output_put(&handle, throttle_event); 6358 perf_event__output_id_sample(event, &handle, &sample); 6359 perf_output_end(&handle); 6360 } 6361 6362 static void perf_log_itrace_start(struct perf_event *event) 6363 { 6364 struct perf_output_handle handle; 6365 struct perf_sample_data sample; 6366 struct perf_aux_event { 6367 struct perf_event_header header; 6368 u32 pid; 6369 u32 tid; 6370 } rec; 6371 int ret; 6372 6373 if (event->parent) 6374 event = event->parent; 6375 6376 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 6377 event->hw.itrace_started) 6378 return; 6379 6380 rec.header.type = PERF_RECORD_ITRACE_START; 6381 rec.header.misc = 0; 6382 rec.header.size = sizeof(rec); 6383 rec.pid = perf_event_pid(event, current); 6384 rec.tid = perf_event_tid(event, current); 6385 6386 perf_event_header__init_id(&rec.header, &sample, event); 6387 ret = perf_output_begin(&handle, event, rec.header.size); 6388 6389 if (ret) 6390 return; 6391 6392 perf_output_put(&handle, rec); 6393 perf_event__output_id_sample(event, &handle, &sample); 6394 6395 perf_output_end(&handle); 6396 } 6397 6398 /* 6399 * Generic event overflow handling, sampling. 6400 */ 6401 6402 static int __perf_event_overflow(struct perf_event *event, 6403 int throttle, struct perf_sample_data *data, 6404 struct pt_regs *regs) 6405 { 6406 int events = atomic_read(&event->event_limit); 6407 struct hw_perf_event *hwc = &event->hw; 6408 u64 seq; 6409 int ret = 0; 6410 6411 /* 6412 * Non-sampling counters might still use the PMI to fold short 6413 * hardware counters, ignore those. 6414 */ 6415 if (unlikely(!is_sampling_event(event))) 6416 return 0; 6417 6418 seq = __this_cpu_read(perf_throttled_seq); 6419 if (seq != hwc->interrupts_seq) { 6420 hwc->interrupts_seq = seq; 6421 hwc->interrupts = 1; 6422 } else { 6423 hwc->interrupts++; 6424 if (unlikely(throttle 6425 && hwc->interrupts >= max_samples_per_tick)) { 6426 __this_cpu_inc(perf_throttled_count); 6427 hwc->interrupts = MAX_INTERRUPTS; 6428 perf_log_throttle(event, 0); 6429 tick_nohz_full_kick(); 6430 ret = 1; 6431 } 6432 } 6433 6434 if (event->attr.freq) { 6435 u64 now = perf_clock(); 6436 s64 delta = now - hwc->freq_time_stamp; 6437 6438 hwc->freq_time_stamp = now; 6439 6440 if (delta > 0 && delta < 2*TICK_NSEC) 6441 perf_adjust_period(event, delta, hwc->last_period, true); 6442 } 6443 6444 /* 6445 * XXX event_limit might not quite work as expected on inherited 6446 * events 6447 */ 6448 6449 event->pending_kill = POLL_IN; 6450 if (events && atomic_dec_and_test(&event->event_limit)) { 6451 ret = 1; 6452 event->pending_kill = POLL_HUP; 6453 event->pending_disable = 1; 6454 irq_work_queue(&event->pending); 6455 } 6456 6457 if (event->overflow_handler) 6458 event->overflow_handler(event, data, regs); 6459 else 6460 perf_event_output(event, data, regs); 6461 6462 if (*perf_event_fasync(event) && event->pending_kill) { 6463 event->pending_wakeup = 1; 6464 irq_work_queue(&event->pending); 6465 } 6466 6467 return ret; 6468 } 6469 6470 int perf_event_overflow(struct perf_event *event, 6471 struct perf_sample_data *data, 6472 struct pt_regs *regs) 6473 { 6474 return __perf_event_overflow(event, 1, data, regs); 6475 } 6476 6477 /* 6478 * Generic software event infrastructure 6479 */ 6480 6481 struct swevent_htable { 6482 struct swevent_hlist *swevent_hlist; 6483 struct mutex hlist_mutex; 6484 int hlist_refcount; 6485 6486 /* Recursion avoidance in each contexts */ 6487 int recursion[PERF_NR_CONTEXTS]; 6488 }; 6489 6490 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 6491 6492 /* 6493 * We directly increment event->count and keep a second value in 6494 * event->hw.period_left to count intervals. This period event 6495 * is kept in the range [-sample_period, 0] so that we can use the 6496 * sign as trigger. 6497 */ 6498 6499 u64 perf_swevent_set_period(struct perf_event *event) 6500 { 6501 struct hw_perf_event *hwc = &event->hw; 6502 u64 period = hwc->last_period; 6503 u64 nr, offset; 6504 s64 old, val; 6505 6506 hwc->last_period = hwc->sample_period; 6507 6508 again: 6509 old = val = local64_read(&hwc->period_left); 6510 if (val < 0) 6511 return 0; 6512 6513 nr = div64_u64(period + val, period); 6514 offset = nr * period; 6515 val -= offset; 6516 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 6517 goto again; 6518 6519 return nr; 6520 } 6521 6522 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 6523 struct perf_sample_data *data, 6524 struct pt_regs *regs) 6525 { 6526 struct hw_perf_event *hwc = &event->hw; 6527 int throttle = 0; 6528 6529 if (!overflow) 6530 overflow = perf_swevent_set_period(event); 6531 6532 if (hwc->interrupts == MAX_INTERRUPTS) 6533 return; 6534 6535 for (; overflow; overflow--) { 6536 if (__perf_event_overflow(event, throttle, 6537 data, regs)) { 6538 /* 6539 * We inhibit the overflow from happening when 6540 * hwc->interrupts == MAX_INTERRUPTS. 6541 */ 6542 break; 6543 } 6544 throttle = 1; 6545 } 6546 } 6547 6548 static void perf_swevent_event(struct perf_event *event, u64 nr, 6549 struct perf_sample_data *data, 6550 struct pt_regs *regs) 6551 { 6552 struct hw_perf_event *hwc = &event->hw; 6553 6554 local64_add(nr, &event->count); 6555 6556 if (!regs) 6557 return; 6558 6559 if (!is_sampling_event(event)) 6560 return; 6561 6562 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 6563 data->period = nr; 6564 return perf_swevent_overflow(event, 1, data, regs); 6565 } else 6566 data->period = event->hw.last_period; 6567 6568 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 6569 return perf_swevent_overflow(event, 1, data, regs); 6570 6571 if (local64_add_negative(nr, &hwc->period_left)) 6572 return; 6573 6574 perf_swevent_overflow(event, 0, data, regs); 6575 } 6576 6577 static int perf_exclude_event(struct perf_event *event, 6578 struct pt_regs *regs) 6579 { 6580 if (event->hw.state & PERF_HES_STOPPED) 6581 return 1; 6582 6583 if (regs) { 6584 if (event->attr.exclude_user && user_mode(regs)) 6585 return 1; 6586 6587 if (event->attr.exclude_kernel && !user_mode(regs)) 6588 return 1; 6589 } 6590 6591 return 0; 6592 } 6593 6594 static int perf_swevent_match(struct perf_event *event, 6595 enum perf_type_id type, 6596 u32 event_id, 6597 struct perf_sample_data *data, 6598 struct pt_regs *regs) 6599 { 6600 if (event->attr.type != type) 6601 return 0; 6602 6603 if (event->attr.config != event_id) 6604 return 0; 6605 6606 if (perf_exclude_event(event, regs)) 6607 return 0; 6608 6609 return 1; 6610 } 6611 6612 static inline u64 swevent_hash(u64 type, u32 event_id) 6613 { 6614 u64 val = event_id | (type << 32); 6615 6616 return hash_64(val, SWEVENT_HLIST_BITS); 6617 } 6618 6619 static inline struct hlist_head * 6620 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 6621 { 6622 u64 hash = swevent_hash(type, event_id); 6623 6624 return &hlist->heads[hash]; 6625 } 6626 6627 /* For the read side: events when they trigger */ 6628 static inline struct hlist_head * 6629 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 6630 { 6631 struct swevent_hlist *hlist; 6632 6633 hlist = rcu_dereference(swhash->swevent_hlist); 6634 if (!hlist) 6635 return NULL; 6636 6637 return __find_swevent_head(hlist, type, event_id); 6638 } 6639 6640 /* For the event head insertion and removal in the hlist */ 6641 static inline struct hlist_head * 6642 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 6643 { 6644 struct swevent_hlist *hlist; 6645 u32 event_id = event->attr.config; 6646 u64 type = event->attr.type; 6647 6648 /* 6649 * Event scheduling is always serialized against hlist allocation 6650 * and release. Which makes the protected version suitable here. 6651 * The context lock guarantees that. 6652 */ 6653 hlist = rcu_dereference_protected(swhash->swevent_hlist, 6654 lockdep_is_held(&event->ctx->lock)); 6655 if (!hlist) 6656 return NULL; 6657 6658 return __find_swevent_head(hlist, type, event_id); 6659 } 6660 6661 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 6662 u64 nr, 6663 struct perf_sample_data *data, 6664 struct pt_regs *regs) 6665 { 6666 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6667 struct perf_event *event; 6668 struct hlist_head *head; 6669 6670 rcu_read_lock(); 6671 head = find_swevent_head_rcu(swhash, type, event_id); 6672 if (!head) 6673 goto end; 6674 6675 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6676 if (perf_swevent_match(event, type, event_id, data, regs)) 6677 perf_swevent_event(event, nr, data, regs); 6678 } 6679 end: 6680 rcu_read_unlock(); 6681 } 6682 6683 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 6684 6685 int perf_swevent_get_recursion_context(void) 6686 { 6687 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6688 6689 return get_recursion_context(swhash->recursion); 6690 } 6691 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 6692 6693 inline void perf_swevent_put_recursion_context(int rctx) 6694 { 6695 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6696 6697 put_recursion_context(swhash->recursion, rctx); 6698 } 6699 6700 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6701 { 6702 struct perf_sample_data data; 6703 6704 if (WARN_ON_ONCE(!regs)) 6705 return; 6706 6707 perf_sample_data_init(&data, addr, 0); 6708 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 6709 } 6710 6711 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 6712 { 6713 int rctx; 6714 6715 preempt_disable_notrace(); 6716 rctx = perf_swevent_get_recursion_context(); 6717 if (unlikely(rctx < 0)) 6718 goto fail; 6719 6720 ___perf_sw_event(event_id, nr, regs, addr); 6721 6722 perf_swevent_put_recursion_context(rctx); 6723 fail: 6724 preempt_enable_notrace(); 6725 } 6726 6727 static void perf_swevent_read(struct perf_event *event) 6728 { 6729 } 6730 6731 static int perf_swevent_add(struct perf_event *event, int flags) 6732 { 6733 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 6734 struct hw_perf_event *hwc = &event->hw; 6735 struct hlist_head *head; 6736 6737 if (is_sampling_event(event)) { 6738 hwc->last_period = hwc->sample_period; 6739 perf_swevent_set_period(event); 6740 } 6741 6742 hwc->state = !(flags & PERF_EF_START); 6743 6744 head = find_swevent_head(swhash, event); 6745 if (WARN_ON_ONCE(!head)) 6746 return -EINVAL; 6747 6748 hlist_add_head_rcu(&event->hlist_entry, head); 6749 perf_event_update_userpage(event); 6750 6751 return 0; 6752 } 6753 6754 static void perf_swevent_del(struct perf_event *event, int flags) 6755 { 6756 hlist_del_rcu(&event->hlist_entry); 6757 } 6758 6759 static void perf_swevent_start(struct perf_event *event, int flags) 6760 { 6761 event->hw.state = 0; 6762 } 6763 6764 static void perf_swevent_stop(struct perf_event *event, int flags) 6765 { 6766 event->hw.state = PERF_HES_STOPPED; 6767 } 6768 6769 /* Deref the hlist from the update side */ 6770 static inline struct swevent_hlist * 6771 swevent_hlist_deref(struct swevent_htable *swhash) 6772 { 6773 return rcu_dereference_protected(swhash->swevent_hlist, 6774 lockdep_is_held(&swhash->hlist_mutex)); 6775 } 6776 6777 static void swevent_hlist_release(struct swevent_htable *swhash) 6778 { 6779 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 6780 6781 if (!hlist) 6782 return; 6783 6784 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 6785 kfree_rcu(hlist, rcu_head); 6786 } 6787 6788 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 6789 { 6790 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6791 6792 mutex_lock(&swhash->hlist_mutex); 6793 6794 if (!--swhash->hlist_refcount) 6795 swevent_hlist_release(swhash); 6796 6797 mutex_unlock(&swhash->hlist_mutex); 6798 } 6799 6800 static void swevent_hlist_put(struct perf_event *event) 6801 { 6802 int cpu; 6803 6804 for_each_possible_cpu(cpu) 6805 swevent_hlist_put_cpu(event, cpu); 6806 } 6807 6808 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 6809 { 6810 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 6811 int err = 0; 6812 6813 mutex_lock(&swhash->hlist_mutex); 6814 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 6815 struct swevent_hlist *hlist; 6816 6817 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 6818 if (!hlist) { 6819 err = -ENOMEM; 6820 goto exit; 6821 } 6822 rcu_assign_pointer(swhash->swevent_hlist, hlist); 6823 } 6824 swhash->hlist_refcount++; 6825 exit: 6826 mutex_unlock(&swhash->hlist_mutex); 6827 6828 return err; 6829 } 6830 6831 static int swevent_hlist_get(struct perf_event *event) 6832 { 6833 int err; 6834 int cpu, failed_cpu; 6835 6836 get_online_cpus(); 6837 for_each_possible_cpu(cpu) { 6838 err = swevent_hlist_get_cpu(event, cpu); 6839 if (err) { 6840 failed_cpu = cpu; 6841 goto fail; 6842 } 6843 } 6844 put_online_cpus(); 6845 6846 return 0; 6847 fail: 6848 for_each_possible_cpu(cpu) { 6849 if (cpu == failed_cpu) 6850 break; 6851 swevent_hlist_put_cpu(event, cpu); 6852 } 6853 6854 put_online_cpus(); 6855 return err; 6856 } 6857 6858 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 6859 6860 static void sw_perf_event_destroy(struct perf_event *event) 6861 { 6862 u64 event_id = event->attr.config; 6863 6864 WARN_ON(event->parent); 6865 6866 static_key_slow_dec(&perf_swevent_enabled[event_id]); 6867 swevent_hlist_put(event); 6868 } 6869 6870 static int perf_swevent_init(struct perf_event *event) 6871 { 6872 u64 event_id = event->attr.config; 6873 6874 if (event->attr.type != PERF_TYPE_SOFTWARE) 6875 return -ENOENT; 6876 6877 /* 6878 * no branch sampling for software events 6879 */ 6880 if (has_branch_stack(event)) 6881 return -EOPNOTSUPP; 6882 6883 switch (event_id) { 6884 case PERF_COUNT_SW_CPU_CLOCK: 6885 case PERF_COUNT_SW_TASK_CLOCK: 6886 return -ENOENT; 6887 6888 default: 6889 break; 6890 } 6891 6892 if (event_id >= PERF_COUNT_SW_MAX) 6893 return -ENOENT; 6894 6895 if (!event->parent) { 6896 int err; 6897 6898 err = swevent_hlist_get(event); 6899 if (err) 6900 return err; 6901 6902 static_key_slow_inc(&perf_swevent_enabled[event_id]); 6903 event->destroy = sw_perf_event_destroy; 6904 } 6905 6906 return 0; 6907 } 6908 6909 static struct pmu perf_swevent = { 6910 .task_ctx_nr = perf_sw_context, 6911 6912 .capabilities = PERF_PMU_CAP_NO_NMI, 6913 6914 .event_init = perf_swevent_init, 6915 .add = perf_swevent_add, 6916 .del = perf_swevent_del, 6917 .start = perf_swevent_start, 6918 .stop = perf_swevent_stop, 6919 .read = perf_swevent_read, 6920 }; 6921 6922 #ifdef CONFIG_EVENT_TRACING 6923 6924 static int perf_tp_filter_match(struct perf_event *event, 6925 struct perf_sample_data *data) 6926 { 6927 void *record = data->raw->data; 6928 6929 /* only top level events have filters set */ 6930 if (event->parent) 6931 event = event->parent; 6932 6933 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 6934 return 1; 6935 return 0; 6936 } 6937 6938 static int perf_tp_event_match(struct perf_event *event, 6939 struct perf_sample_data *data, 6940 struct pt_regs *regs) 6941 { 6942 if (event->hw.state & PERF_HES_STOPPED) 6943 return 0; 6944 /* 6945 * All tracepoints are from kernel-space. 6946 */ 6947 if (event->attr.exclude_kernel) 6948 return 0; 6949 6950 if (!perf_tp_filter_match(event, data)) 6951 return 0; 6952 6953 return 1; 6954 } 6955 6956 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 6957 struct pt_regs *regs, struct hlist_head *head, int rctx, 6958 struct task_struct *task) 6959 { 6960 struct perf_sample_data data; 6961 struct perf_event *event; 6962 6963 struct perf_raw_record raw = { 6964 .size = entry_size, 6965 .data = record, 6966 }; 6967 6968 perf_sample_data_init(&data, addr, 0); 6969 data.raw = &raw; 6970 6971 hlist_for_each_entry_rcu(event, head, hlist_entry) { 6972 if (perf_tp_event_match(event, &data, regs)) 6973 perf_swevent_event(event, count, &data, regs); 6974 } 6975 6976 /* 6977 * If we got specified a target task, also iterate its context and 6978 * deliver this event there too. 6979 */ 6980 if (task && task != current) { 6981 struct perf_event_context *ctx; 6982 struct trace_entry *entry = record; 6983 6984 rcu_read_lock(); 6985 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 6986 if (!ctx) 6987 goto unlock; 6988 6989 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6990 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6991 continue; 6992 if (event->attr.config != entry->type) 6993 continue; 6994 if (perf_tp_event_match(event, &data, regs)) 6995 perf_swevent_event(event, count, &data, regs); 6996 } 6997 unlock: 6998 rcu_read_unlock(); 6999 } 7000 7001 perf_swevent_put_recursion_context(rctx); 7002 } 7003 EXPORT_SYMBOL_GPL(perf_tp_event); 7004 7005 static void tp_perf_event_destroy(struct perf_event *event) 7006 { 7007 perf_trace_destroy(event); 7008 } 7009 7010 static int perf_tp_event_init(struct perf_event *event) 7011 { 7012 int err; 7013 7014 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7015 return -ENOENT; 7016 7017 /* 7018 * no branch sampling for tracepoint events 7019 */ 7020 if (has_branch_stack(event)) 7021 return -EOPNOTSUPP; 7022 7023 err = perf_trace_init(event); 7024 if (err) 7025 return err; 7026 7027 event->destroy = tp_perf_event_destroy; 7028 7029 return 0; 7030 } 7031 7032 static struct pmu perf_tracepoint = { 7033 .task_ctx_nr = perf_sw_context, 7034 7035 .event_init = perf_tp_event_init, 7036 .add = perf_trace_add, 7037 .del = perf_trace_del, 7038 .start = perf_swevent_start, 7039 .stop = perf_swevent_stop, 7040 .read = perf_swevent_read, 7041 }; 7042 7043 static inline void perf_tp_register(void) 7044 { 7045 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 7046 } 7047 7048 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7049 { 7050 char *filter_str; 7051 int ret; 7052 7053 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7054 return -EINVAL; 7055 7056 filter_str = strndup_user(arg, PAGE_SIZE); 7057 if (IS_ERR(filter_str)) 7058 return PTR_ERR(filter_str); 7059 7060 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 7061 7062 kfree(filter_str); 7063 return ret; 7064 } 7065 7066 static void perf_event_free_filter(struct perf_event *event) 7067 { 7068 ftrace_profile_free_filter(event); 7069 } 7070 7071 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7072 { 7073 struct bpf_prog *prog; 7074 7075 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7076 return -EINVAL; 7077 7078 if (event->tp_event->prog) 7079 return -EEXIST; 7080 7081 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE)) 7082 /* bpf programs can only be attached to u/kprobes */ 7083 return -EINVAL; 7084 7085 prog = bpf_prog_get(prog_fd); 7086 if (IS_ERR(prog)) 7087 return PTR_ERR(prog); 7088 7089 if (prog->type != BPF_PROG_TYPE_KPROBE) { 7090 /* valid fd, but invalid bpf program type */ 7091 bpf_prog_put(prog); 7092 return -EINVAL; 7093 } 7094 7095 event->tp_event->prog = prog; 7096 7097 return 0; 7098 } 7099 7100 static void perf_event_free_bpf_prog(struct perf_event *event) 7101 { 7102 struct bpf_prog *prog; 7103 7104 if (!event->tp_event) 7105 return; 7106 7107 prog = event->tp_event->prog; 7108 if (prog) { 7109 event->tp_event->prog = NULL; 7110 bpf_prog_put(prog); 7111 } 7112 } 7113 7114 #else 7115 7116 static inline void perf_tp_register(void) 7117 { 7118 } 7119 7120 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 7121 { 7122 return -ENOENT; 7123 } 7124 7125 static void perf_event_free_filter(struct perf_event *event) 7126 { 7127 } 7128 7129 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 7130 { 7131 return -ENOENT; 7132 } 7133 7134 static void perf_event_free_bpf_prog(struct perf_event *event) 7135 { 7136 } 7137 #endif /* CONFIG_EVENT_TRACING */ 7138 7139 #ifdef CONFIG_HAVE_HW_BREAKPOINT 7140 void perf_bp_event(struct perf_event *bp, void *data) 7141 { 7142 struct perf_sample_data sample; 7143 struct pt_regs *regs = data; 7144 7145 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 7146 7147 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 7148 perf_swevent_event(bp, 1, &sample, regs); 7149 } 7150 #endif 7151 7152 /* 7153 * hrtimer based swevent callback 7154 */ 7155 7156 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 7157 { 7158 enum hrtimer_restart ret = HRTIMER_RESTART; 7159 struct perf_sample_data data; 7160 struct pt_regs *regs; 7161 struct perf_event *event; 7162 u64 period; 7163 7164 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 7165 7166 if (event->state != PERF_EVENT_STATE_ACTIVE) 7167 return HRTIMER_NORESTART; 7168 7169 event->pmu->read(event); 7170 7171 perf_sample_data_init(&data, 0, event->hw.last_period); 7172 regs = get_irq_regs(); 7173 7174 if (regs && !perf_exclude_event(event, regs)) { 7175 if (!(event->attr.exclude_idle && is_idle_task(current))) 7176 if (__perf_event_overflow(event, 1, &data, regs)) 7177 ret = HRTIMER_NORESTART; 7178 } 7179 7180 period = max_t(u64, 10000, event->hw.sample_period); 7181 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 7182 7183 return ret; 7184 } 7185 7186 static void perf_swevent_start_hrtimer(struct perf_event *event) 7187 { 7188 struct hw_perf_event *hwc = &event->hw; 7189 s64 period; 7190 7191 if (!is_sampling_event(event)) 7192 return; 7193 7194 period = local64_read(&hwc->period_left); 7195 if (period) { 7196 if (period < 0) 7197 period = 10000; 7198 7199 local64_set(&hwc->period_left, 0); 7200 } else { 7201 period = max_t(u64, 10000, hwc->sample_period); 7202 } 7203 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 7204 HRTIMER_MODE_REL_PINNED); 7205 } 7206 7207 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 7208 { 7209 struct hw_perf_event *hwc = &event->hw; 7210 7211 if (is_sampling_event(event)) { 7212 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 7213 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 7214 7215 hrtimer_cancel(&hwc->hrtimer); 7216 } 7217 } 7218 7219 static void perf_swevent_init_hrtimer(struct perf_event *event) 7220 { 7221 struct hw_perf_event *hwc = &event->hw; 7222 7223 if (!is_sampling_event(event)) 7224 return; 7225 7226 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 7227 hwc->hrtimer.function = perf_swevent_hrtimer; 7228 7229 /* 7230 * Since hrtimers have a fixed rate, we can do a static freq->period 7231 * mapping and avoid the whole period adjust feedback stuff. 7232 */ 7233 if (event->attr.freq) { 7234 long freq = event->attr.sample_freq; 7235 7236 event->attr.sample_period = NSEC_PER_SEC / freq; 7237 hwc->sample_period = event->attr.sample_period; 7238 local64_set(&hwc->period_left, hwc->sample_period); 7239 hwc->last_period = hwc->sample_period; 7240 event->attr.freq = 0; 7241 } 7242 } 7243 7244 /* 7245 * Software event: cpu wall time clock 7246 */ 7247 7248 static void cpu_clock_event_update(struct perf_event *event) 7249 { 7250 s64 prev; 7251 u64 now; 7252 7253 now = local_clock(); 7254 prev = local64_xchg(&event->hw.prev_count, now); 7255 local64_add(now - prev, &event->count); 7256 } 7257 7258 static void cpu_clock_event_start(struct perf_event *event, int flags) 7259 { 7260 local64_set(&event->hw.prev_count, local_clock()); 7261 perf_swevent_start_hrtimer(event); 7262 } 7263 7264 static void cpu_clock_event_stop(struct perf_event *event, int flags) 7265 { 7266 perf_swevent_cancel_hrtimer(event); 7267 cpu_clock_event_update(event); 7268 } 7269 7270 static int cpu_clock_event_add(struct perf_event *event, int flags) 7271 { 7272 if (flags & PERF_EF_START) 7273 cpu_clock_event_start(event, flags); 7274 perf_event_update_userpage(event); 7275 7276 return 0; 7277 } 7278 7279 static void cpu_clock_event_del(struct perf_event *event, int flags) 7280 { 7281 cpu_clock_event_stop(event, flags); 7282 } 7283 7284 static void cpu_clock_event_read(struct perf_event *event) 7285 { 7286 cpu_clock_event_update(event); 7287 } 7288 7289 static int cpu_clock_event_init(struct perf_event *event) 7290 { 7291 if (event->attr.type != PERF_TYPE_SOFTWARE) 7292 return -ENOENT; 7293 7294 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 7295 return -ENOENT; 7296 7297 /* 7298 * no branch sampling for software events 7299 */ 7300 if (has_branch_stack(event)) 7301 return -EOPNOTSUPP; 7302 7303 perf_swevent_init_hrtimer(event); 7304 7305 return 0; 7306 } 7307 7308 static struct pmu perf_cpu_clock = { 7309 .task_ctx_nr = perf_sw_context, 7310 7311 .capabilities = PERF_PMU_CAP_NO_NMI, 7312 7313 .event_init = cpu_clock_event_init, 7314 .add = cpu_clock_event_add, 7315 .del = cpu_clock_event_del, 7316 .start = cpu_clock_event_start, 7317 .stop = cpu_clock_event_stop, 7318 .read = cpu_clock_event_read, 7319 }; 7320 7321 /* 7322 * Software event: task time clock 7323 */ 7324 7325 static void task_clock_event_update(struct perf_event *event, u64 now) 7326 { 7327 u64 prev; 7328 s64 delta; 7329 7330 prev = local64_xchg(&event->hw.prev_count, now); 7331 delta = now - prev; 7332 local64_add(delta, &event->count); 7333 } 7334 7335 static void task_clock_event_start(struct perf_event *event, int flags) 7336 { 7337 local64_set(&event->hw.prev_count, event->ctx->time); 7338 perf_swevent_start_hrtimer(event); 7339 } 7340 7341 static void task_clock_event_stop(struct perf_event *event, int flags) 7342 { 7343 perf_swevent_cancel_hrtimer(event); 7344 task_clock_event_update(event, event->ctx->time); 7345 } 7346 7347 static int task_clock_event_add(struct perf_event *event, int flags) 7348 { 7349 if (flags & PERF_EF_START) 7350 task_clock_event_start(event, flags); 7351 perf_event_update_userpage(event); 7352 7353 return 0; 7354 } 7355 7356 static void task_clock_event_del(struct perf_event *event, int flags) 7357 { 7358 task_clock_event_stop(event, PERF_EF_UPDATE); 7359 } 7360 7361 static void task_clock_event_read(struct perf_event *event) 7362 { 7363 u64 now = perf_clock(); 7364 u64 delta = now - event->ctx->timestamp; 7365 u64 time = event->ctx->time + delta; 7366 7367 task_clock_event_update(event, time); 7368 } 7369 7370 static int task_clock_event_init(struct perf_event *event) 7371 { 7372 if (event->attr.type != PERF_TYPE_SOFTWARE) 7373 return -ENOENT; 7374 7375 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 7376 return -ENOENT; 7377 7378 /* 7379 * no branch sampling for software events 7380 */ 7381 if (has_branch_stack(event)) 7382 return -EOPNOTSUPP; 7383 7384 perf_swevent_init_hrtimer(event); 7385 7386 return 0; 7387 } 7388 7389 static struct pmu perf_task_clock = { 7390 .task_ctx_nr = perf_sw_context, 7391 7392 .capabilities = PERF_PMU_CAP_NO_NMI, 7393 7394 .event_init = task_clock_event_init, 7395 .add = task_clock_event_add, 7396 .del = task_clock_event_del, 7397 .start = task_clock_event_start, 7398 .stop = task_clock_event_stop, 7399 .read = task_clock_event_read, 7400 }; 7401 7402 static void perf_pmu_nop_void(struct pmu *pmu) 7403 { 7404 } 7405 7406 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 7407 { 7408 } 7409 7410 static int perf_pmu_nop_int(struct pmu *pmu) 7411 { 7412 return 0; 7413 } 7414 7415 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 7416 7417 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 7418 { 7419 __this_cpu_write(nop_txn_flags, flags); 7420 7421 if (flags & ~PERF_PMU_TXN_ADD) 7422 return; 7423 7424 perf_pmu_disable(pmu); 7425 } 7426 7427 static int perf_pmu_commit_txn(struct pmu *pmu) 7428 { 7429 unsigned int flags = __this_cpu_read(nop_txn_flags); 7430 7431 __this_cpu_write(nop_txn_flags, 0); 7432 7433 if (flags & ~PERF_PMU_TXN_ADD) 7434 return 0; 7435 7436 perf_pmu_enable(pmu); 7437 return 0; 7438 } 7439 7440 static void perf_pmu_cancel_txn(struct pmu *pmu) 7441 { 7442 unsigned int flags = __this_cpu_read(nop_txn_flags); 7443 7444 __this_cpu_write(nop_txn_flags, 0); 7445 7446 if (flags & ~PERF_PMU_TXN_ADD) 7447 return; 7448 7449 perf_pmu_enable(pmu); 7450 } 7451 7452 static int perf_event_idx_default(struct perf_event *event) 7453 { 7454 return 0; 7455 } 7456 7457 /* 7458 * Ensures all contexts with the same task_ctx_nr have the same 7459 * pmu_cpu_context too. 7460 */ 7461 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 7462 { 7463 struct pmu *pmu; 7464 7465 if (ctxn < 0) 7466 return NULL; 7467 7468 list_for_each_entry(pmu, &pmus, entry) { 7469 if (pmu->task_ctx_nr == ctxn) 7470 return pmu->pmu_cpu_context; 7471 } 7472 7473 return NULL; 7474 } 7475 7476 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 7477 { 7478 int cpu; 7479 7480 for_each_possible_cpu(cpu) { 7481 struct perf_cpu_context *cpuctx; 7482 7483 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7484 7485 if (cpuctx->unique_pmu == old_pmu) 7486 cpuctx->unique_pmu = pmu; 7487 } 7488 } 7489 7490 static void free_pmu_context(struct pmu *pmu) 7491 { 7492 struct pmu *i; 7493 7494 mutex_lock(&pmus_lock); 7495 /* 7496 * Like a real lame refcount. 7497 */ 7498 list_for_each_entry(i, &pmus, entry) { 7499 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 7500 update_pmu_context(i, pmu); 7501 goto out; 7502 } 7503 } 7504 7505 free_percpu(pmu->pmu_cpu_context); 7506 out: 7507 mutex_unlock(&pmus_lock); 7508 } 7509 static struct idr pmu_idr; 7510 7511 static ssize_t 7512 type_show(struct device *dev, struct device_attribute *attr, char *page) 7513 { 7514 struct pmu *pmu = dev_get_drvdata(dev); 7515 7516 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 7517 } 7518 static DEVICE_ATTR_RO(type); 7519 7520 static ssize_t 7521 perf_event_mux_interval_ms_show(struct device *dev, 7522 struct device_attribute *attr, 7523 char *page) 7524 { 7525 struct pmu *pmu = dev_get_drvdata(dev); 7526 7527 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 7528 } 7529 7530 static DEFINE_MUTEX(mux_interval_mutex); 7531 7532 static ssize_t 7533 perf_event_mux_interval_ms_store(struct device *dev, 7534 struct device_attribute *attr, 7535 const char *buf, size_t count) 7536 { 7537 struct pmu *pmu = dev_get_drvdata(dev); 7538 int timer, cpu, ret; 7539 7540 ret = kstrtoint(buf, 0, &timer); 7541 if (ret) 7542 return ret; 7543 7544 if (timer < 1) 7545 return -EINVAL; 7546 7547 /* same value, noting to do */ 7548 if (timer == pmu->hrtimer_interval_ms) 7549 return count; 7550 7551 mutex_lock(&mux_interval_mutex); 7552 pmu->hrtimer_interval_ms = timer; 7553 7554 /* update all cpuctx for this PMU */ 7555 get_online_cpus(); 7556 for_each_online_cpu(cpu) { 7557 struct perf_cpu_context *cpuctx; 7558 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7559 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 7560 7561 cpu_function_call(cpu, 7562 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 7563 } 7564 put_online_cpus(); 7565 mutex_unlock(&mux_interval_mutex); 7566 7567 return count; 7568 } 7569 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 7570 7571 static struct attribute *pmu_dev_attrs[] = { 7572 &dev_attr_type.attr, 7573 &dev_attr_perf_event_mux_interval_ms.attr, 7574 NULL, 7575 }; 7576 ATTRIBUTE_GROUPS(pmu_dev); 7577 7578 static int pmu_bus_running; 7579 static struct bus_type pmu_bus = { 7580 .name = "event_source", 7581 .dev_groups = pmu_dev_groups, 7582 }; 7583 7584 static void pmu_dev_release(struct device *dev) 7585 { 7586 kfree(dev); 7587 } 7588 7589 static int pmu_dev_alloc(struct pmu *pmu) 7590 { 7591 int ret = -ENOMEM; 7592 7593 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 7594 if (!pmu->dev) 7595 goto out; 7596 7597 pmu->dev->groups = pmu->attr_groups; 7598 device_initialize(pmu->dev); 7599 ret = dev_set_name(pmu->dev, "%s", pmu->name); 7600 if (ret) 7601 goto free_dev; 7602 7603 dev_set_drvdata(pmu->dev, pmu); 7604 pmu->dev->bus = &pmu_bus; 7605 pmu->dev->release = pmu_dev_release; 7606 ret = device_add(pmu->dev); 7607 if (ret) 7608 goto free_dev; 7609 7610 out: 7611 return ret; 7612 7613 free_dev: 7614 put_device(pmu->dev); 7615 goto out; 7616 } 7617 7618 static struct lock_class_key cpuctx_mutex; 7619 static struct lock_class_key cpuctx_lock; 7620 7621 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 7622 { 7623 int cpu, ret; 7624 7625 mutex_lock(&pmus_lock); 7626 ret = -ENOMEM; 7627 pmu->pmu_disable_count = alloc_percpu(int); 7628 if (!pmu->pmu_disable_count) 7629 goto unlock; 7630 7631 pmu->type = -1; 7632 if (!name) 7633 goto skip_type; 7634 pmu->name = name; 7635 7636 if (type < 0) { 7637 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 7638 if (type < 0) { 7639 ret = type; 7640 goto free_pdc; 7641 } 7642 } 7643 pmu->type = type; 7644 7645 if (pmu_bus_running) { 7646 ret = pmu_dev_alloc(pmu); 7647 if (ret) 7648 goto free_idr; 7649 } 7650 7651 skip_type: 7652 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 7653 if (pmu->pmu_cpu_context) 7654 goto got_cpu_context; 7655 7656 ret = -ENOMEM; 7657 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 7658 if (!pmu->pmu_cpu_context) 7659 goto free_dev; 7660 7661 for_each_possible_cpu(cpu) { 7662 struct perf_cpu_context *cpuctx; 7663 7664 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 7665 __perf_event_init_context(&cpuctx->ctx); 7666 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 7667 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 7668 cpuctx->ctx.pmu = pmu; 7669 7670 __perf_mux_hrtimer_init(cpuctx, cpu); 7671 7672 cpuctx->unique_pmu = pmu; 7673 } 7674 7675 got_cpu_context: 7676 if (!pmu->start_txn) { 7677 if (pmu->pmu_enable) { 7678 /* 7679 * If we have pmu_enable/pmu_disable calls, install 7680 * transaction stubs that use that to try and batch 7681 * hardware accesses. 7682 */ 7683 pmu->start_txn = perf_pmu_start_txn; 7684 pmu->commit_txn = perf_pmu_commit_txn; 7685 pmu->cancel_txn = perf_pmu_cancel_txn; 7686 } else { 7687 pmu->start_txn = perf_pmu_nop_txn; 7688 pmu->commit_txn = perf_pmu_nop_int; 7689 pmu->cancel_txn = perf_pmu_nop_void; 7690 } 7691 } 7692 7693 if (!pmu->pmu_enable) { 7694 pmu->pmu_enable = perf_pmu_nop_void; 7695 pmu->pmu_disable = perf_pmu_nop_void; 7696 } 7697 7698 if (!pmu->event_idx) 7699 pmu->event_idx = perf_event_idx_default; 7700 7701 list_add_rcu(&pmu->entry, &pmus); 7702 atomic_set(&pmu->exclusive_cnt, 0); 7703 ret = 0; 7704 unlock: 7705 mutex_unlock(&pmus_lock); 7706 7707 return ret; 7708 7709 free_dev: 7710 device_del(pmu->dev); 7711 put_device(pmu->dev); 7712 7713 free_idr: 7714 if (pmu->type >= PERF_TYPE_MAX) 7715 idr_remove(&pmu_idr, pmu->type); 7716 7717 free_pdc: 7718 free_percpu(pmu->pmu_disable_count); 7719 goto unlock; 7720 } 7721 EXPORT_SYMBOL_GPL(perf_pmu_register); 7722 7723 void perf_pmu_unregister(struct pmu *pmu) 7724 { 7725 mutex_lock(&pmus_lock); 7726 list_del_rcu(&pmu->entry); 7727 mutex_unlock(&pmus_lock); 7728 7729 /* 7730 * We dereference the pmu list under both SRCU and regular RCU, so 7731 * synchronize against both of those. 7732 */ 7733 synchronize_srcu(&pmus_srcu); 7734 synchronize_rcu(); 7735 7736 free_percpu(pmu->pmu_disable_count); 7737 if (pmu->type >= PERF_TYPE_MAX) 7738 idr_remove(&pmu_idr, pmu->type); 7739 device_del(pmu->dev); 7740 put_device(pmu->dev); 7741 free_pmu_context(pmu); 7742 } 7743 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 7744 7745 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 7746 { 7747 struct perf_event_context *ctx = NULL; 7748 int ret; 7749 7750 if (!try_module_get(pmu->module)) 7751 return -ENODEV; 7752 7753 if (event->group_leader != event) { 7754 /* 7755 * This ctx->mutex can nest when we're called through 7756 * inheritance. See the perf_event_ctx_lock_nested() comment. 7757 */ 7758 ctx = perf_event_ctx_lock_nested(event->group_leader, 7759 SINGLE_DEPTH_NESTING); 7760 BUG_ON(!ctx); 7761 } 7762 7763 event->pmu = pmu; 7764 ret = pmu->event_init(event); 7765 7766 if (ctx) 7767 perf_event_ctx_unlock(event->group_leader, ctx); 7768 7769 if (ret) 7770 module_put(pmu->module); 7771 7772 return ret; 7773 } 7774 7775 static struct pmu *perf_init_event(struct perf_event *event) 7776 { 7777 struct pmu *pmu = NULL; 7778 int idx; 7779 int ret; 7780 7781 idx = srcu_read_lock(&pmus_srcu); 7782 7783 rcu_read_lock(); 7784 pmu = idr_find(&pmu_idr, event->attr.type); 7785 rcu_read_unlock(); 7786 if (pmu) { 7787 ret = perf_try_init_event(pmu, event); 7788 if (ret) 7789 pmu = ERR_PTR(ret); 7790 goto unlock; 7791 } 7792 7793 list_for_each_entry_rcu(pmu, &pmus, entry) { 7794 ret = perf_try_init_event(pmu, event); 7795 if (!ret) 7796 goto unlock; 7797 7798 if (ret != -ENOENT) { 7799 pmu = ERR_PTR(ret); 7800 goto unlock; 7801 } 7802 } 7803 pmu = ERR_PTR(-ENOENT); 7804 unlock: 7805 srcu_read_unlock(&pmus_srcu, idx); 7806 7807 return pmu; 7808 } 7809 7810 static void account_event_cpu(struct perf_event *event, int cpu) 7811 { 7812 if (event->parent) 7813 return; 7814 7815 if (is_cgroup_event(event)) 7816 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 7817 } 7818 7819 static void account_event(struct perf_event *event) 7820 { 7821 bool inc = false; 7822 7823 if (event->parent) 7824 return; 7825 7826 if (event->attach_state & PERF_ATTACH_TASK) 7827 inc = true; 7828 if (event->attr.mmap || event->attr.mmap_data) 7829 atomic_inc(&nr_mmap_events); 7830 if (event->attr.comm) 7831 atomic_inc(&nr_comm_events); 7832 if (event->attr.task) 7833 atomic_inc(&nr_task_events); 7834 if (event->attr.freq) { 7835 if (atomic_inc_return(&nr_freq_events) == 1) 7836 tick_nohz_full_kick_all(); 7837 } 7838 if (event->attr.context_switch) { 7839 atomic_inc(&nr_switch_events); 7840 inc = true; 7841 } 7842 if (has_branch_stack(event)) 7843 inc = true; 7844 if (is_cgroup_event(event)) 7845 inc = true; 7846 7847 if (inc) { 7848 if (atomic_inc_not_zero(&perf_sched_count)) 7849 goto enabled; 7850 7851 mutex_lock(&perf_sched_mutex); 7852 if (!atomic_read(&perf_sched_count)) { 7853 static_branch_enable(&perf_sched_events); 7854 /* 7855 * Guarantee that all CPUs observe they key change and 7856 * call the perf scheduling hooks before proceeding to 7857 * install events that need them. 7858 */ 7859 synchronize_sched(); 7860 } 7861 /* 7862 * Now that we have waited for the sync_sched(), allow further 7863 * increments to by-pass the mutex. 7864 */ 7865 atomic_inc(&perf_sched_count); 7866 mutex_unlock(&perf_sched_mutex); 7867 } 7868 enabled: 7869 7870 account_event_cpu(event, event->cpu); 7871 } 7872 7873 /* 7874 * Allocate and initialize a event structure 7875 */ 7876 static struct perf_event * 7877 perf_event_alloc(struct perf_event_attr *attr, int cpu, 7878 struct task_struct *task, 7879 struct perf_event *group_leader, 7880 struct perf_event *parent_event, 7881 perf_overflow_handler_t overflow_handler, 7882 void *context, int cgroup_fd) 7883 { 7884 struct pmu *pmu; 7885 struct perf_event *event; 7886 struct hw_perf_event *hwc; 7887 long err = -EINVAL; 7888 7889 if ((unsigned)cpu >= nr_cpu_ids) { 7890 if (!task || cpu != -1) 7891 return ERR_PTR(-EINVAL); 7892 } 7893 7894 event = kzalloc(sizeof(*event), GFP_KERNEL); 7895 if (!event) 7896 return ERR_PTR(-ENOMEM); 7897 7898 /* 7899 * Single events are their own group leaders, with an 7900 * empty sibling list: 7901 */ 7902 if (!group_leader) 7903 group_leader = event; 7904 7905 mutex_init(&event->child_mutex); 7906 INIT_LIST_HEAD(&event->child_list); 7907 7908 INIT_LIST_HEAD(&event->group_entry); 7909 INIT_LIST_HEAD(&event->event_entry); 7910 INIT_LIST_HEAD(&event->sibling_list); 7911 INIT_LIST_HEAD(&event->rb_entry); 7912 INIT_LIST_HEAD(&event->active_entry); 7913 INIT_HLIST_NODE(&event->hlist_entry); 7914 7915 7916 init_waitqueue_head(&event->waitq); 7917 init_irq_work(&event->pending, perf_pending_event); 7918 7919 mutex_init(&event->mmap_mutex); 7920 7921 atomic_long_set(&event->refcount, 1); 7922 event->cpu = cpu; 7923 event->attr = *attr; 7924 event->group_leader = group_leader; 7925 event->pmu = NULL; 7926 event->oncpu = -1; 7927 7928 event->parent = parent_event; 7929 7930 event->ns = get_pid_ns(task_active_pid_ns(current)); 7931 event->id = atomic64_inc_return(&perf_event_id); 7932 7933 event->state = PERF_EVENT_STATE_INACTIVE; 7934 7935 if (task) { 7936 event->attach_state = PERF_ATTACH_TASK; 7937 /* 7938 * XXX pmu::event_init needs to know what task to account to 7939 * and we cannot use the ctx information because we need the 7940 * pmu before we get a ctx. 7941 */ 7942 event->hw.target = task; 7943 } 7944 7945 event->clock = &local_clock; 7946 if (parent_event) 7947 event->clock = parent_event->clock; 7948 7949 if (!overflow_handler && parent_event) { 7950 overflow_handler = parent_event->overflow_handler; 7951 context = parent_event->overflow_handler_context; 7952 } 7953 7954 event->overflow_handler = overflow_handler; 7955 event->overflow_handler_context = context; 7956 7957 perf_event__state_init(event); 7958 7959 pmu = NULL; 7960 7961 hwc = &event->hw; 7962 hwc->sample_period = attr->sample_period; 7963 if (attr->freq && attr->sample_freq) 7964 hwc->sample_period = 1; 7965 hwc->last_period = hwc->sample_period; 7966 7967 local64_set(&hwc->period_left, hwc->sample_period); 7968 7969 /* 7970 * we currently do not support PERF_FORMAT_GROUP on inherited events 7971 */ 7972 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 7973 goto err_ns; 7974 7975 if (!has_branch_stack(event)) 7976 event->attr.branch_sample_type = 0; 7977 7978 if (cgroup_fd != -1) { 7979 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 7980 if (err) 7981 goto err_ns; 7982 } 7983 7984 pmu = perf_init_event(event); 7985 if (!pmu) 7986 goto err_ns; 7987 else if (IS_ERR(pmu)) { 7988 err = PTR_ERR(pmu); 7989 goto err_ns; 7990 } 7991 7992 err = exclusive_event_init(event); 7993 if (err) 7994 goto err_pmu; 7995 7996 if (!event->parent) { 7997 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 7998 err = get_callchain_buffers(); 7999 if (err) 8000 goto err_per_task; 8001 } 8002 } 8003 8004 return event; 8005 8006 err_per_task: 8007 exclusive_event_destroy(event); 8008 8009 err_pmu: 8010 if (event->destroy) 8011 event->destroy(event); 8012 module_put(pmu->module); 8013 err_ns: 8014 if (is_cgroup_event(event)) 8015 perf_detach_cgroup(event); 8016 if (event->ns) 8017 put_pid_ns(event->ns); 8018 kfree(event); 8019 8020 return ERR_PTR(err); 8021 } 8022 8023 static int perf_copy_attr(struct perf_event_attr __user *uattr, 8024 struct perf_event_attr *attr) 8025 { 8026 u32 size; 8027 int ret; 8028 8029 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 8030 return -EFAULT; 8031 8032 /* 8033 * zero the full structure, so that a short copy will be nice. 8034 */ 8035 memset(attr, 0, sizeof(*attr)); 8036 8037 ret = get_user(size, &uattr->size); 8038 if (ret) 8039 return ret; 8040 8041 if (size > PAGE_SIZE) /* silly large */ 8042 goto err_size; 8043 8044 if (!size) /* abi compat */ 8045 size = PERF_ATTR_SIZE_VER0; 8046 8047 if (size < PERF_ATTR_SIZE_VER0) 8048 goto err_size; 8049 8050 /* 8051 * If we're handed a bigger struct than we know of, 8052 * ensure all the unknown bits are 0 - i.e. new 8053 * user-space does not rely on any kernel feature 8054 * extensions we dont know about yet. 8055 */ 8056 if (size > sizeof(*attr)) { 8057 unsigned char __user *addr; 8058 unsigned char __user *end; 8059 unsigned char val; 8060 8061 addr = (void __user *)uattr + sizeof(*attr); 8062 end = (void __user *)uattr + size; 8063 8064 for (; addr < end; addr++) { 8065 ret = get_user(val, addr); 8066 if (ret) 8067 return ret; 8068 if (val) 8069 goto err_size; 8070 } 8071 size = sizeof(*attr); 8072 } 8073 8074 ret = copy_from_user(attr, uattr, size); 8075 if (ret) 8076 return -EFAULT; 8077 8078 if (attr->__reserved_1) 8079 return -EINVAL; 8080 8081 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 8082 return -EINVAL; 8083 8084 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 8085 return -EINVAL; 8086 8087 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 8088 u64 mask = attr->branch_sample_type; 8089 8090 /* only using defined bits */ 8091 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 8092 return -EINVAL; 8093 8094 /* at least one branch bit must be set */ 8095 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 8096 return -EINVAL; 8097 8098 /* propagate priv level, when not set for branch */ 8099 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 8100 8101 /* exclude_kernel checked on syscall entry */ 8102 if (!attr->exclude_kernel) 8103 mask |= PERF_SAMPLE_BRANCH_KERNEL; 8104 8105 if (!attr->exclude_user) 8106 mask |= PERF_SAMPLE_BRANCH_USER; 8107 8108 if (!attr->exclude_hv) 8109 mask |= PERF_SAMPLE_BRANCH_HV; 8110 /* 8111 * adjust user setting (for HW filter setup) 8112 */ 8113 attr->branch_sample_type = mask; 8114 } 8115 /* privileged levels capture (kernel, hv): check permissions */ 8116 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 8117 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8118 return -EACCES; 8119 } 8120 8121 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 8122 ret = perf_reg_validate(attr->sample_regs_user); 8123 if (ret) 8124 return ret; 8125 } 8126 8127 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 8128 if (!arch_perf_have_user_stack_dump()) 8129 return -ENOSYS; 8130 8131 /* 8132 * We have __u32 type for the size, but so far 8133 * we can only use __u16 as maximum due to the 8134 * __u16 sample size limit. 8135 */ 8136 if (attr->sample_stack_user >= USHRT_MAX) 8137 ret = -EINVAL; 8138 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 8139 ret = -EINVAL; 8140 } 8141 8142 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 8143 ret = perf_reg_validate(attr->sample_regs_intr); 8144 out: 8145 return ret; 8146 8147 err_size: 8148 put_user(sizeof(*attr), &uattr->size); 8149 ret = -E2BIG; 8150 goto out; 8151 } 8152 8153 static int 8154 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 8155 { 8156 struct ring_buffer *rb = NULL; 8157 int ret = -EINVAL; 8158 8159 if (!output_event) 8160 goto set; 8161 8162 /* don't allow circular references */ 8163 if (event == output_event) 8164 goto out; 8165 8166 /* 8167 * Don't allow cross-cpu buffers 8168 */ 8169 if (output_event->cpu != event->cpu) 8170 goto out; 8171 8172 /* 8173 * If its not a per-cpu rb, it must be the same task. 8174 */ 8175 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 8176 goto out; 8177 8178 /* 8179 * Mixing clocks in the same buffer is trouble you don't need. 8180 */ 8181 if (output_event->clock != event->clock) 8182 goto out; 8183 8184 /* 8185 * If both events generate aux data, they must be on the same PMU 8186 */ 8187 if (has_aux(event) && has_aux(output_event) && 8188 event->pmu != output_event->pmu) 8189 goto out; 8190 8191 set: 8192 mutex_lock(&event->mmap_mutex); 8193 /* Can't redirect output if we've got an active mmap() */ 8194 if (atomic_read(&event->mmap_count)) 8195 goto unlock; 8196 8197 if (output_event) { 8198 /* get the rb we want to redirect to */ 8199 rb = ring_buffer_get(output_event); 8200 if (!rb) 8201 goto unlock; 8202 } 8203 8204 ring_buffer_attach(event, rb); 8205 8206 ret = 0; 8207 unlock: 8208 mutex_unlock(&event->mmap_mutex); 8209 8210 out: 8211 return ret; 8212 } 8213 8214 static void mutex_lock_double(struct mutex *a, struct mutex *b) 8215 { 8216 if (b < a) 8217 swap(a, b); 8218 8219 mutex_lock(a); 8220 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 8221 } 8222 8223 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 8224 { 8225 bool nmi_safe = false; 8226 8227 switch (clk_id) { 8228 case CLOCK_MONOTONIC: 8229 event->clock = &ktime_get_mono_fast_ns; 8230 nmi_safe = true; 8231 break; 8232 8233 case CLOCK_MONOTONIC_RAW: 8234 event->clock = &ktime_get_raw_fast_ns; 8235 nmi_safe = true; 8236 break; 8237 8238 case CLOCK_REALTIME: 8239 event->clock = &ktime_get_real_ns; 8240 break; 8241 8242 case CLOCK_BOOTTIME: 8243 event->clock = &ktime_get_boot_ns; 8244 break; 8245 8246 case CLOCK_TAI: 8247 event->clock = &ktime_get_tai_ns; 8248 break; 8249 8250 default: 8251 return -EINVAL; 8252 } 8253 8254 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 8255 return -EINVAL; 8256 8257 return 0; 8258 } 8259 8260 /** 8261 * sys_perf_event_open - open a performance event, associate it to a task/cpu 8262 * 8263 * @attr_uptr: event_id type attributes for monitoring/sampling 8264 * @pid: target pid 8265 * @cpu: target cpu 8266 * @group_fd: group leader event fd 8267 */ 8268 SYSCALL_DEFINE5(perf_event_open, 8269 struct perf_event_attr __user *, attr_uptr, 8270 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 8271 { 8272 struct perf_event *group_leader = NULL, *output_event = NULL; 8273 struct perf_event *event, *sibling; 8274 struct perf_event_attr attr; 8275 struct perf_event_context *ctx, *uninitialized_var(gctx); 8276 struct file *event_file = NULL; 8277 struct fd group = {NULL, 0}; 8278 struct task_struct *task = NULL; 8279 struct pmu *pmu; 8280 int event_fd; 8281 int move_group = 0; 8282 int err; 8283 int f_flags = O_RDWR; 8284 int cgroup_fd = -1; 8285 8286 /* for future expandability... */ 8287 if (flags & ~PERF_FLAG_ALL) 8288 return -EINVAL; 8289 8290 err = perf_copy_attr(attr_uptr, &attr); 8291 if (err) 8292 return err; 8293 8294 if (!attr.exclude_kernel) { 8295 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 8296 return -EACCES; 8297 } 8298 8299 if (attr.freq) { 8300 if (attr.sample_freq > sysctl_perf_event_sample_rate) 8301 return -EINVAL; 8302 } else { 8303 if (attr.sample_period & (1ULL << 63)) 8304 return -EINVAL; 8305 } 8306 8307 /* 8308 * In cgroup mode, the pid argument is used to pass the fd 8309 * opened to the cgroup directory in cgroupfs. The cpu argument 8310 * designates the cpu on which to monitor threads from that 8311 * cgroup. 8312 */ 8313 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 8314 return -EINVAL; 8315 8316 if (flags & PERF_FLAG_FD_CLOEXEC) 8317 f_flags |= O_CLOEXEC; 8318 8319 event_fd = get_unused_fd_flags(f_flags); 8320 if (event_fd < 0) 8321 return event_fd; 8322 8323 if (group_fd != -1) { 8324 err = perf_fget_light(group_fd, &group); 8325 if (err) 8326 goto err_fd; 8327 group_leader = group.file->private_data; 8328 if (flags & PERF_FLAG_FD_OUTPUT) 8329 output_event = group_leader; 8330 if (flags & PERF_FLAG_FD_NO_GROUP) 8331 group_leader = NULL; 8332 } 8333 8334 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 8335 task = find_lively_task_by_vpid(pid); 8336 if (IS_ERR(task)) { 8337 err = PTR_ERR(task); 8338 goto err_group_fd; 8339 } 8340 } 8341 8342 if (task && group_leader && 8343 group_leader->attr.inherit != attr.inherit) { 8344 err = -EINVAL; 8345 goto err_task; 8346 } 8347 8348 get_online_cpus(); 8349 8350 if (flags & PERF_FLAG_PID_CGROUP) 8351 cgroup_fd = pid; 8352 8353 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 8354 NULL, NULL, cgroup_fd); 8355 if (IS_ERR(event)) { 8356 err = PTR_ERR(event); 8357 goto err_cpus; 8358 } 8359 8360 if (is_sampling_event(event)) { 8361 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 8362 err = -ENOTSUPP; 8363 goto err_alloc; 8364 } 8365 } 8366 8367 account_event(event); 8368 8369 /* 8370 * Special case software events and allow them to be part of 8371 * any hardware group. 8372 */ 8373 pmu = event->pmu; 8374 8375 if (attr.use_clockid) { 8376 err = perf_event_set_clock(event, attr.clockid); 8377 if (err) 8378 goto err_alloc; 8379 } 8380 8381 if (group_leader && 8382 (is_software_event(event) != is_software_event(group_leader))) { 8383 if (is_software_event(event)) { 8384 /* 8385 * If event and group_leader are not both a software 8386 * event, and event is, then group leader is not. 8387 * 8388 * Allow the addition of software events to !software 8389 * groups, this is safe because software events never 8390 * fail to schedule. 8391 */ 8392 pmu = group_leader->pmu; 8393 } else if (is_software_event(group_leader) && 8394 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 8395 /* 8396 * In case the group is a pure software group, and we 8397 * try to add a hardware event, move the whole group to 8398 * the hardware context. 8399 */ 8400 move_group = 1; 8401 } 8402 } 8403 8404 /* 8405 * Get the target context (task or percpu): 8406 */ 8407 ctx = find_get_context(pmu, task, event); 8408 if (IS_ERR(ctx)) { 8409 err = PTR_ERR(ctx); 8410 goto err_alloc; 8411 } 8412 8413 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 8414 err = -EBUSY; 8415 goto err_context; 8416 } 8417 8418 if (task) { 8419 put_task_struct(task); 8420 task = NULL; 8421 } 8422 8423 /* 8424 * Look up the group leader (we will attach this event to it): 8425 */ 8426 if (group_leader) { 8427 err = -EINVAL; 8428 8429 /* 8430 * Do not allow a recursive hierarchy (this new sibling 8431 * becoming part of another group-sibling): 8432 */ 8433 if (group_leader->group_leader != group_leader) 8434 goto err_context; 8435 8436 /* All events in a group should have the same clock */ 8437 if (group_leader->clock != event->clock) 8438 goto err_context; 8439 8440 /* 8441 * Do not allow to attach to a group in a different 8442 * task or CPU context: 8443 */ 8444 if (move_group) { 8445 /* 8446 * Make sure we're both on the same task, or both 8447 * per-cpu events. 8448 */ 8449 if (group_leader->ctx->task != ctx->task) 8450 goto err_context; 8451 8452 /* 8453 * Make sure we're both events for the same CPU; 8454 * grouping events for different CPUs is broken; since 8455 * you can never concurrently schedule them anyhow. 8456 */ 8457 if (group_leader->cpu != event->cpu) 8458 goto err_context; 8459 } else { 8460 if (group_leader->ctx != ctx) 8461 goto err_context; 8462 } 8463 8464 /* 8465 * Only a group leader can be exclusive or pinned 8466 */ 8467 if (attr.exclusive || attr.pinned) 8468 goto err_context; 8469 } 8470 8471 if (output_event) { 8472 err = perf_event_set_output(event, output_event); 8473 if (err) 8474 goto err_context; 8475 } 8476 8477 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 8478 f_flags); 8479 if (IS_ERR(event_file)) { 8480 err = PTR_ERR(event_file); 8481 goto err_context; 8482 } 8483 8484 if (move_group) { 8485 gctx = group_leader->ctx; 8486 mutex_lock_double(&gctx->mutex, &ctx->mutex); 8487 if (gctx->task == TASK_TOMBSTONE) { 8488 err = -ESRCH; 8489 goto err_locked; 8490 } 8491 } else { 8492 mutex_lock(&ctx->mutex); 8493 } 8494 8495 if (ctx->task == TASK_TOMBSTONE) { 8496 err = -ESRCH; 8497 goto err_locked; 8498 } 8499 8500 if (!perf_event_validate_size(event)) { 8501 err = -E2BIG; 8502 goto err_locked; 8503 } 8504 8505 /* 8506 * Must be under the same ctx::mutex as perf_install_in_context(), 8507 * because we need to serialize with concurrent event creation. 8508 */ 8509 if (!exclusive_event_installable(event, ctx)) { 8510 /* exclusive and group stuff are assumed mutually exclusive */ 8511 WARN_ON_ONCE(move_group); 8512 8513 err = -EBUSY; 8514 goto err_locked; 8515 } 8516 8517 WARN_ON_ONCE(ctx->parent_ctx); 8518 8519 if (move_group) { 8520 /* 8521 * See perf_event_ctx_lock() for comments on the details 8522 * of swizzling perf_event::ctx. 8523 */ 8524 perf_remove_from_context(group_leader, 0); 8525 8526 list_for_each_entry(sibling, &group_leader->sibling_list, 8527 group_entry) { 8528 perf_remove_from_context(sibling, 0); 8529 put_ctx(gctx); 8530 } 8531 8532 /* 8533 * Wait for everybody to stop referencing the events through 8534 * the old lists, before installing it on new lists. 8535 */ 8536 synchronize_rcu(); 8537 8538 /* 8539 * Install the group siblings before the group leader. 8540 * 8541 * Because a group leader will try and install the entire group 8542 * (through the sibling list, which is still in-tact), we can 8543 * end up with siblings installed in the wrong context. 8544 * 8545 * By installing siblings first we NO-OP because they're not 8546 * reachable through the group lists. 8547 */ 8548 list_for_each_entry(sibling, &group_leader->sibling_list, 8549 group_entry) { 8550 perf_event__state_init(sibling); 8551 perf_install_in_context(ctx, sibling, sibling->cpu); 8552 get_ctx(ctx); 8553 } 8554 8555 /* 8556 * Removing from the context ends up with disabled 8557 * event. What we want here is event in the initial 8558 * startup state, ready to be add into new context. 8559 */ 8560 perf_event__state_init(group_leader); 8561 perf_install_in_context(ctx, group_leader, group_leader->cpu); 8562 get_ctx(ctx); 8563 8564 /* 8565 * Now that all events are installed in @ctx, nothing 8566 * references @gctx anymore, so drop the last reference we have 8567 * on it. 8568 */ 8569 put_ctx(gctx); 8570 } 8571 8572 /* 8573 * Precalculate sample_data sizes; do while holding ctx::mutex such 8574 * that we're serialized against further additions and before 8575 * perf_install_in_context() which is the point the event is active and 8576 * can use these values. 8577 */ 8578 perf_event__header_size(event); 8579 perf_event__id_header_size(event); 8580 8581 event->owner = current; 8582 8583 perf_install_in_context(ctx, event, event->cpu); 8584 perf_unpin_context(ctx); 8585 8586 if (move_group) 8587 mutex_unlock(&gctx->mutex); 8588 mutex_unlock(&ctx->mutex); 8589 8590 put_online_cpus(); 8591 8592 mutex_lock(¤t->perf_event_mutex); 8593 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 8594 mutex_unlock(¤t->perf_event_mutex); 8595 8596 /* 8597 * Drop the reference on the group_event after placing the 8598 * new event on the sibling_list. This ensures destruction 8599 * of the group leader will find the pointer to itself in 8600 * perf_group_detach(). 8601 */ 8602 fdput(group); 8603 fd_install(event_fd, event_file); 8604 return event_fd; 8605 8606 err_locked: 8607 if (move_group) 8608 mutex_unlock(&gctx->mutex); 8609 mutex_unlock(&ctx->mutex); 8610 /* err_file: */ 8611 fput(event_file); 8612 err_context: 8613 perf_unpin_context(ctx); 8614 put_ctx(ctx); 8615 err_alloc: 8616 /* 8617 * If event_file is set, the fput() above will have called ->release() 8618 * and that will take care of freeing the event. 8619 */ 8620 if (!event_file) 8621 free_event(event); 8622 err_cpus: 8623 put_online_cpus(); 8624 err_task: 8625 if (task) 8626 put_task_struct(task); 8627 err_group_fd: 8628 fdput(group); 8629 err_fd: 8630 put_unused_fd(event_fd); 8631 return err; 8632 } 8633 8634 /** 8635 * perf_event_create_kernel_counter 8636 * 8637 * @attr: attributes of the counter to create 8638 * @cpu: cpu in which the counter is bound 8639 * @task: task to profile (NULL for percpu) 8640 */ 8641 struct perf_event * 8642 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 8643 struct task_struct *task, 8644 perf_overflow_handler_t overflow_handler, 8645 void *context) 8646 { 8647 struct perf_event_context *ctx; 8648 struct perf_event *event; 8649 int err; 8650 8651 /* 8652 * Get the target context (task or percpu): 8653 */ 8654 8655 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 8656 overflow_handler, context, -1); 8657 if (IS_ERR(event)) { 8658 err = PTR_ERR(event); 8659 goto err; 8660 } 8661 8662 /* Mark owner so we could distinguish it from user events. */ 8663 event->owner = TASK_TOMBSTONE; 8664 8665 account_event(event); 8666 8667 ctx = find_get_context(event->pmu, task, event); 8668 if (IS_ERR(ctx)) { 8669 err = PTR_ERR(ctx); 8670 goto err_free; 8671 } 8672 8673 WARN_ON_ONCE(ctx->parent_ctx); 8674 mutex_lock(&ctx->mutex); 8675 if (ctx->task == TASK_TOMBSTONE) { 8676 err = -ESRCH; 8677 goto err_unlock; 8678 } 8679 8680 if (!exclusive_event_installable(event, ctx)) { 8681 err = -EBUSY; 8682 goto err_unlock; 8683 } 8684 8685 perf_install_in_context(ctx, event, cpu); 8686 perf_unpin_context(ctx); 8687 mutex_unlock(&ctx->mutex); 8688 8689 return event; 8690 8691 err_unlock: 8692 mutex_unlock(&ctx->mutex); 8693 perf_unpin_context(ctx); 8694 put_ctx(ctx); 8695 err_free: 8696 free_event(event); 8697 err: 8698 return ERR_PTR(err); 8699 } 8700 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 8701 8702 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 8703 { 8704 struct perf_event_context *src_ctx; 8705 struct perf_event_context *dst_ctx; 8706 struct perf_event *event, *tmp; 8707 LIST_HEAD(events); 8708 8709 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 8710 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 8711 8712 /* 8713 * See perf_event_ctx_lock() for comments on the details 8714 * of swizzling perf_event::ctx. 8715 */ 8716 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 8717 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 8718 event_entry) { 8719 perf_remove_from_context(event, 0); 8720 unaccount_event_cpu(event, src_cpu); 8721 put_ctx(src_ctx); 8722 list_add(&event->migrate_entry, &events); 8723 } 8724 8725 /* 8726 * Wait for the events to quiesce before re-instating them. 8727 */ 8728 synchronize_rcu(); 8729 8730 /* 8731 * Re-instate events in 2 passes. 8732 * 8733 * Skip over group leaders and only install siblings on this first 8734 * pass, siblings will not get enabled without a leader, however a 8735 * leader will enable its siblings, even if those are still on the old 8736 * context. 8737 */ 8738 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8739 if (event->group_leader == event) 8740 continue; 8741 8742 list_del(&event->migrate_entry); 8743 if (event->state >= PERF_EVENT_STATE_OFF) 8744 event->state = PERF_EVENT_STATE_INACTIVE; 8745 account_event_cpu(event, dst_cpu); 8746 perf_install_in_context(dst_ctx, event, dst_cpu); 8747 get_ctx(dst_ctx); 8748 } 8749 8750 /* 8751 * Once all the siblings are setup properly, install the group leaders 8752 * to make it go. 8753 */ 8754 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 8755 list_del(&event->migrate_entry); 8756 if (event->state >= PERF_EVENT_STATE_OFF) 8757 event->state = PERF_EVENT_STATE_INACTIVE; 8758 account_event_cpu(event, dst_cpu); 8759 perf_install_in_context(dst_ctx, event, dst_cpu); 8760 get_ctx(dst_ctx); 8761 } 8762 mutex_unlock(&dst_ctx->mutex); 8763 mutex_unlock(&src_ctx->mutex); 8764 } 8765 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 8766 8767 static void sync_child_event(struct perf_event *child_event, 8768 struct task_struct *child) 8769 { 8770 struct perf_event *parent_event = child_event->parent; 8771 u64 child_val; 8772 8773 if (child_event->attr.inherit_stat) 8774 perf_event_read_event(child_event, child); 8775 8776 child_val = perf_event_count(child_event); 8777 8778 /* 8779 * Add back the child's count to the parent's count: 8780 */ 8781 atomic64_add(child_val, &parent_event->child_count); 8782 atomic64_add(child_event->total_time_enabled, 8783 &parent_event->child_total_time_enabled); 8784 atomic64_add(child_event->total_time_running, 8785 &parent_event->child_total_time_running); 8786 } 8787 8788 static void 8789 perf_event_exit_event(struct perf_event *child_event, 8790 struct perf_event_context *child_ctx, 8791 struct task_struct *child) 8792 { 8793 struct perf_event *parent_event = child_event->parent; 8794 8795 /* 8796 * Do not destroy the 'original' grouping; because of the context 8797 * switch optimization the original events could've ended up in a 8798 * random child task. 8799 * 8800 * If we were to destroy the original group, all group related 8801 * operations would cease to function properly after this random 8802 * child dies. 8803 * 8804 * Do destroy all inherited groups, we don't care about those 8805 * and being thorough is better. 8806 */ 8807 raw_spin_lock_irq(&child_ctx->lock); 8808 WARN_ON_ONCE(child_ctx->is_active); 8809 8810 if (parent_event) 8811 perf_group_detach(child_event); 8812 list_del_event(child_event, child_ctx); 8813 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */ 8814 raw_spin_unlock_irq(&child_ctx->lock); 8815 8816 /* 8817 * Parent events are governed by their filedesc, retain them. 8818 */ 8819 if (!parent_event) { 8820 perf_event_wakeup(child_event); 8821 return; 8822 } 8823 /* 8824 * Child events can be cleaned up. 8825 */ 8826 8827 sync_child_event(child_event, child); 8828 8829 /* 8830 * Remove this event from the parent's list 8831 */ 8832 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 8833 mutex_lock(&parent_event->child_mutex); 8834 list_del_init(&child_event->child_list); 8835 mutex_unlock(&parent_event->child_mutex); 8836 8837 /* 8838 * Kick perf_poll() for is_event_hup(). 8839 */ 8840 perf_event_wakeup(parent_event); 8841 free_event(child_event); 8842 put_event(parent_event); 8843 } 8844 8845 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 8846 { 8847 struct perf_event_context *child_ctx, *clone_ctx = NULL; 8848 struct perf_event *child_event, *next; 8849 8850 WARN_ON_ONCE(child != current); 8851 8852 child_ctx = perf_pin_task_context(child, ctxn); 8853 if (!child_ctx) 8854 return; 8855 8856 /* 8857 * In order to reduce the amount of tricky in ctx tear-down, we hold 8858 * ctx::mutex over the entire thing. This serializes against almost 8859 * everything that wants to access the ctx. 8860 * 8861 * The exception is sys_perf_event_open() / 8862 * perf_event_create_kernel_count() which does find_get_context() 8863 * without ctx::mutex (it cannot because of the move_group double mutex 8864 * lock thing). See the comments in perf_install_in_context(). 8865 */ 8866 mutex_lock(&child_ctx->mutex); 8867 8868 /* 8869 * In a single ctx::lock section, de-schedule the events and detach the 8870 * context from the task such that we cannot ever get it scheduled back 8871 * in. 8872 */ 8873 raw_spin_lock_irq(&child_ctx->lock); 8874 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx); 8875 8876 /* 8877 * Now that the context is inactive, destroy the task <-> ctx relation 8878 * and mark the context dead. 8879 */ 8880 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 8881 put_ctx(child_ctx); /* cannot be last */ 8882 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 8883 put_task_struct(current); /* cannot be last */ 8884 8885 clone_ctx = unclone_ctx(child_ctx); 8886 raw_spin_unlock_irq(&child_ctx->lock); 8887 8888 if (clone_ctx) 8889 put_ctx(clone_ctx); 8890 8891 /* 8892 * Report the task dead after unscheduling the events so that we 8893 * won't get any samples after PERF_RECORD_EXIT. We can however still 8894 * get a few PERF_RECORD_READ events. 8895 */ 8896 perf_event_task(child, child_ctx, 0); 8897 8898 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 8899 perf_event_exit_event(child_event, child_ctx, child); 8900 8901 mutex_unlock(&child_ctx->mutex); 8902 8903 put_ctx(child_ctx); 8904 } 8905 8906 /* 8907 * When a child task exits, feed back event values to parent events. 8908 */ 8909 void perf_event_exit_task(struct task_struct *child) 8910 { 8911 struct perf_event *event, *tmp; 8912 int ctxn; 8913 8914 mutex_lock(&child->perf_event_mutex); 8915 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 8916 owner_entry) { 8917 list_del_init(&event->owner_entry); 8918 8919 /* 8920 * Ensure the list deletion is visible before we clear 8921 * the owner, closes a race against perf_release() where 8922 * we need to serialize on the owner->perf_event_mutex. 8923 */ 8924 smp_store_release(&event->owner, NULL); 8925 } 8926 mutex_unlock(&child->perf_event_mutex); 8927 8928 for_each_task_context_nr(ctxn) 8929 perf_event_exit_task_context(child, ctxn); 8930 8931 /* 8932 * The perf_event_exit_task_context calls perf_event_task 8933 * with child's task_ctx, which generates EXIT events for 8934 * child contexts and sets child->perf_event_ctxp[] to NULL. 8935 * At this point we need to send EXIT events to cpu contexts. 8936 */ 8937 perf_event_task(child, NULL, 0); 8938 } 8939 8940 static void perf_free_event(struct perf_event *event, 8941 struct perf_event_context *ctx) 8942 { 8943 struct perf_event *parent = event->parent; 8944 8945 if (WARN_ON_ONCE(!parent)) 8946 return; 8947 8948 mutex_lock(&parent->child_mutex); 8949 list_del_init(&event->child_list); 8950 mutex_unlock(&parent->child_mutex); 8951 8952 put_event(parent); 8953 8954 raw_spin_lock_irq(&ctx->lock); 8955 perf_group_detach(event); 8956 list_del_event(event, ctx); 8957 raw_spin_unlock_irq(&ctx->lock); 8958 free_event(event); 8959 } 8960 8961 /* 8962 * Free an unexposed, unused context as created by inheritance by 8963 * perf_event_init_task below, used by fork() in case of fail. 8964 * 8965 * Not all locks are strictly required, but take them anyway to be nice and 8966 * help out with the lockdep assertions. 8967 */ 8968 void perf_event_free_task(struct task_struct *task) 8969 { 8970 struct perf_event_context *ctx; 8971 struct perf_event *event, *tmp; 8972 int ctxn; 8973 8974 for_each_task_context_nr(ctxn) { 8975 ctx = task->perf_event_ctxp[ctxn]; 8976 if (!ctx) 8977 continue; 8978 8979 mutex_lock(&ctx->mutex); 8980 again: 8981 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 8982 group_entry) 8983 perf_free_event(event, ctx); 8984 8985 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 8986 group_entry) 8987 perf_free_event(event, ctx); 8988 8989 if (!list_empty(&ctx->pinned_groups) || 8990 !list_empty(&ctx->flexible_groups)) 8991 goto again; 8992 8993 mutex_unlock(&ctx->mutex); 8994 8995 put_ctx(ctx); 8996 } 8997 } 8998 8999 void perf_event_delayed_put(struct task_struct *task) 9000 { 9001 int ctxn; 9002 9003 for_each_task_context_nr(ctxn) 9004 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 9005 } 9006 9007 struct file *perf_event_get(unsigned int fd) 9008 { 9009 struct file *file; 9010 9011 file = fget_raw(fd); 9012 if (!file) 9013 return ERR_PTR(-EBADF); 9014 9015 if (file->f_op != &perf_fops) { 9016 fput(file); 9017 return ERR_PTR(-EBADF); 9018 } 9019 9020 return file; 9021 } 9022 9023 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 9024 { 9025 if (!event) 9026 return ERR_PTR(-EINVAL); 9027 9028 return &event->attr; 9029 } 9030 9031 /* 9032 * inherit a event from parent task to child task: 9033 */ 9034 static struct perf_event * 9035 inherit_event(struct perf_event *parent_event, 9036 struct task_struct *parent, 9037 struct perf_event_context *parent_ctx, 9038 struct task_struct *child, 9039 struct perf_event *group_leader, 9040 struct perf_event_context *child_ctx) 9041 { 9042 enum perf_event_active_state parent_state = parent_event->state; 9043 struct perf_event *child_event; 9044 unsigned long flags; 9045 9046 /* 9047 * Instead of creating recursive hierarchies of events, 9048 * we link inherited events back to the original parent, 9049 * which has a filp for sure, which we use as the reference 9050 * count: 9051 */ 9052 if (parent_event->parent) 9053 parent_event = parent_event->parent; 9054 9055 child_event = perf_event_alloc(&parent_event->attr, 9056 parent_event->cpu, 9057 child, 9058 group_leader, parent_event, 9059 NULL, NULL, -1); 9060 if (IS_ERR(child_event)) 9061 return child_event; 9062 9063 /* 9064 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 9065 * must be under the same lock in order to serialize against 9066 * perf_event_release_kernel(), such that either we must observe 9067 * is_orphaned_event() or they will observe us on the child_list. 9068 */ 9069 mutex_lock(&parent_event->child_mutex); 9070 if (is_orphaned_event(parent_event) || 9071 !atomic_long_inc_not_zero(&parent_event->refcount)) { 9072 mutex_unlock(&parent_event->child_mutex); 9073 free_event(child_event); 9074 return NULL; 9075 } 9076 9077 get_ctx(child_ctx); 9078 9079 /* 9080 * Make the child state follow the state of the parent event, 9081 * not its attr.disabled bit. We hold the parent's mutex, 9082 * so we won't race with perf_event_{en, dis}able_family. 9083 */ 9084 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 9085 child_event->state = PERF_EVENT_STATE_INACTIVE; 9086 else 9087 child_event->state = PERF_EVENT_STATE_OFF; 9088 9089 if (parent_event->attr.freq) { 9090 u64 sample_period = parent_event->hw.sample_period; 9091 struct hw_perf_event *hwc = &child_event->hw; 9092 9093 hwc->sample_period = sample_period; 9094 hwc->last_period = sample_period; 9095 9096 local64_set(&hwc->period_left, sample_period); 9097 } 9098 9099 child_event->ctx = child_ctx; 9100 child_event->overflow_handler = parent_event->overflow_handler; 9101 child_event->overflow_handler_context 9102 = parent_event->overflow_handler_context; 9103 9104 /* 9105 * Precalculate sample_data sizes 9106 */ 9107 perf_event__header_size(child_event); 9108 perf_event__id_header_size(child_event); 9109 9110 /* 9111 * Link it up in the child's context: 9112 */ 9113 raw_spin_lock_irqsave(&child_ctx->lock, flags); 9114 add_event_to_ctx(child_event, child_ctx); 9115 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 9116 9117 /* 9118 * Link this into the parent event's child list 9119 */ 9120 list_add_tail(&child_event->child_list, &parent_event->child_list); 9121 mutex_unlock(&parent_event->child_mutex); 9122 9123 return child_event; 9124 } 9125 9126 static int inherit_group(struct perf_event *parent_event, 9127 struct task_struct *parent, 9128 struct perf_event_context *parent_ctx, 9129 struct task_struct *child, 9130 struct perf_event_context *child_ctx) 9131 { 9132 struct perf_event *leader; 9133 struct perf_event *sub; 9134 struct perf_event *child_ctr; 9135 9136 leader = inherit_event(parent_event, parent, parent_ctx, 9137 child, NULL, child_ctx); 9138 if (IS_ERR(leader)) 9139 return PTR_ERR(leader); 9140 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 9141 child_ctr = inherit_event(sub, parent, parent_ctx, 9142 child, leader, child_ctx); 9143 if (IS_ERR(child_ctr)) 9144 return PTR_ERR(child_ctr); 9145 } 9146 return 0; 9147 } 9148 9149 static int 9150 inherit_task_group(struct perf_event *event, struct task_struct *parent, 9151 struct perf_event_context *parent_ctx, 9152 struct task_struct *child, int ctxn, 9153 int *inherited_all) 9154 { 9155 int ret; 9156 struct perf_event_context *child_ctx; 9157 9158 if (!event->attr.inherit) { 9159 *inherited_all = 0; 9160 return 0; 9161 } 9162 9163 child_ctx = child->perf_event_ctxp[ctxn]; 9164 if (!child_ctx) { 9165 /* 9166 * This is executed from the parent task context, so 9167 * inherit events that have been marked for cloning. 9168 * First allocate and initialize a context for the 9169 * child. 9170 */ 9171 9172 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 9173 if (!child_ctx) 9174 return -ENOMEM; 9175 9176 child->perf_event_ctxp[ctxn] = child_ctx; 9177 } 9178 9179 ret = inherit_group(event, parent, parent_ctx, 9180 child, child_ctx); 9181 9182 if (ret) 9183 *inherited_all = 0; 9184 9185 return ret; 9186 } 9187 9188 /* 9189 * Initialize the perf_event context in task_struct 9190 */ 9191 static int perf_event_init_context(struct task_struct *child, int ctxn) 9192 { 9193 struct perf_event_context *child_ctx, *parent_ctx; 9194 struct perf_event_context *cloned_ctx; 9195 struct perf_event *event; 9196 struct task_struct *parent = current; 9197 int inherited_all = 1; 9198 unsigned long flags; 9199 int ret = 0; 9200 9201 if (likely(!parent->perf_event_ctxp[ctxn])) 9202 return 0; 9203 9204 /* 9205 * If the parent's context is a clone, pin it so it won't get 9206 * swapped under us. 9207 */ 9208 parent_ctx = perf_pin_task_context(parent, ctxn); 9209 if (!parent_ctx) 9210 return 0; 9211 9212 /* 9213 * No need to check if parent_ctx != NULL here; since we saw 9214 * it non-NULL earlier, the only reason for it to become NULL 9215 * is if we exit, and since we're currently in the middle of 9216 * a fork we can't be exiting at the same time. 9217 */ 9218 9219 /* 9220 * Lock the parent list. No need to lock the child - not PID 9221 * hashed yet and not running, so nobody can access it. 9222 */ 9223 mutex_lock(&parent_ctx->mutex); 9224 9225 /* 9226 * We dont have to disable NMIs - we are only looking at 9227 * the list, not manipulating it: 9228 */ 9229 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 9230 ret = inherit_task_group(event, parent, parent_ctx, 9231 child, ctxn, &inherited_all); 9232 if (ret) 9233 break; 9234 } 9235 9236 /* 9237 * We can't hold ctx->lock when iterating the ->flexible_group list due 9238 * to allocations, but we need to prevent rotation because 9239 * rotate_ctx() will change the list from interrupt context. 9240 */ 9241 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9242 parent_ctx->rotate_disable = 1; 9243 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9244 9245 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 9246 ret = inherit_task_group(event, parent, parent_ctx, 9247 child, ctxn, &inherited_all); 9248 if (ret) 9249 break; 9250 } 9251 9252 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 9253 parent_ctx->rotate_disable = 0; 9254 9255 child_ctx = child->perf_event_ctxp[ctxn]; 9256 9257 if (child_ctx && inherited_all) { 9258 /* 9259 * Mark the child context as a clone of the parent 9260 * context, or of whatever the parent is a clone of. 9261 * 9262 * Note that if the parent is a clone, the holding of 9263 * parent_ctx->lock avoids it from being uncloned. 9264 */ 9265 cloned_ctx = parent_ctx->parent_ctx; 9266 if (cloned_ctx) { 9267 child_ctx->parent_ctx = cloned_ctx; 9268 child_ctx->parent_gen = parent_ctx->parent_gen; 9269 } else { 9270 child_ctx->parent_ctx = parent_ctx; 9271 child_ctx->parent_gen = parent_ctx->generation; 9272 } 9273 get_ctx(child_ctx->parent_ctx); 9274 } 9275 9276 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 9277 mutex_unlock(&parent_ctx->mutex); 9278 9279 perf_unpin_context(parent_ctx); 9280 put_ctx(parent_ctx); 9281 9282 return ret; 9283 } 9284 9285 /* 9286 * Initialize the perf_event context in task_struct 9287 */ 9288 int perf_event_init_task(struct task_struct *child) 9289 { 9290 int ctxn, ret; 9291 9292 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 9293 mutex_init(&child->perf_event_mutex); 9294 INIT_LIST_HEAD(&child->perf_event_list); 9295 9296 for_each_task_context_nr(ctxn) { 9297 ret = perf_event_init_context(child, ctxn); 9298 if (ret) { 9299 perf_event_free_task(child); 9300 return ret; 9301 } 9302 } 9303 9304 return 0; 9305 } 9306 9307 static void __init perf_event_init_all_cpus(void) 9308 { 9309 struct swevent_htable *swhash; 9310 int cpu; 9311 9312 for_each_possible_cpu(cpu) { 9313 swhash = &per_cpu(swevent_htable, cpu); 9314 mutex_init(&swhash->hlist_mutex); 9315 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 9316 } 9317 } 9318 9319 static void perf_event_init_cpu(int cpu) 9320 { 9321 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9322 9323 mutex_lock(&swhash->hlist_mutex); 9324 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 9325 struct swevent_hlist *hlist; 9326 9327 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 9328 WARN_ON(!hlist); 9329 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9330 } 9331 mutex_unlock(&swhash->hlist_mutex); 9332 } 9333 9334 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 9335 static void __perf_event_exit_context(void *__info) 9336 { 9337 struct perf_event_context *ctx = __info; 9338 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 9339 struct perf_event *event; 9340 9341 raw_spin_lock(&ctx->lock); 9342 list_for_each_entry(event, &ctx->event_list, event_entry) 9343 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 9344 raw_spin_unlock(&ctx->lock); 9345 } 9346 9347 static void perf_event_exit_cpu_context(int cpu) 9348 { 9349 struct perf_event_context *ctx; 9350 struct pmu *pmu; 9351 int idx; 9352 9353 idx = srcu_read_lock(&pmus_srcu); 9354 list_for_each_entry_rcu(pmu, &pmus, entry) { 9355 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 9356 9357 mutex_lock(&ctx->mutex); 9358 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 9359 mutex_unlock(&ctx->mutex); 9360 } 9361 srcu_read_unlock(&pmus_srcu, idx); 9362 } 9363 9364 static void perf_event_exit_cpu(int cpu) 9365 { 9366 perf_event_exit_cpu_context(cpu); 9367 } 9368 #else 9369 static inline void perf_event_exit_cpu(int cpu) { } 9370 #endif 9371 9372 static int 9373 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 9374 { 9375 int cpu; 9376 9377 for_each_online_cpu(cpu) 9378 perf_event_exit_cpu(cpu); 9379 9380 return NOTIFY_OK; 9381 } 9382 9383 /* 9384 * Run the perf reboot notifier at the very last possible moment so that 9385 * the generic watchdog code runs as long as possible. 9386 */ 9387 static struct notifier_block perf_reboot_notifier = { 9388 .notifier_call = perf_reboot, 9389 .priority = INT_MIN, 9390 }; 9391 9392 static int 9393 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 9394 { 9395 unsigned int cpu = (long)hcpu; 9396 9397 switch (action & ~CPU_TASKS_FROZEN) { 9398 9399 case CPU_UP_PREPARE: 9400 perf_event_init_cpu(cpu); 9401 break; 9402 9403 case CPU_DOWN_PREPARE: 9404 perf_event_exit_cpu(cpu); 9405 break; 9406 default: 9407 break; 9408 } 9409 9410 return NOTIFY_OK; 9411 } 9412 9413 void __init perf_event_init(void) 9414 { 9415 int ret; 9416 9417 idr_init(&pmu_idr); 9418 9419 perf_event_init_all_cpus(); 9420 init_srcu_struct(&pmus_srcu); 9421 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 9422 perf_pmu_register(&perf_cpu_clock, NULL, -1); 9423 perf_pmu_register(&perf_task_clock, NULL, -1); 9424 perf_tp_register(); 9425 perf_cpu_notifier(perf_cpu_notify); 9426 register_reboot_notifier(&perf_reboot_notifier); 9427 9428 ret = init_hw_breakpoint(); 9429 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 9430 9431 /* 9432 * Build time assertion that we keep the data_head at the intended 9433 * location. IOW, validation we got the __reserved[] size right. 9434 */ 9435 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 9436 != 1024); 9437 } 9438 9439 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 9440 char *page) 9441 { 9442 struct perf_pmu_events_attr *pmu_attr = 9443 container_of(attr, struct perf_pmu_events_attr, attr); 9444 9445 if (pmu_attr->event_str) 9446 return sprintf(page, "%s\n", pmu_attr->event_str); 9447 9448 return 0; 9449 } 9450 9451 static int __init perf_event_sysfs_init(void) 9452 { 9453 struct pmu *pmu; 9454 int ret; 9455 9456 mutex_lock(&pmus_lock); 9457 9458 ret = bus_register(&pmu_bus); 9459 if (ret) 9460 goto unlock; 9461 9462 list_for_each_entry(pmu, &pmus, entry) { 9463 if (!pmu->name || pmu->type < 0) 9464 continue; 9465 9466 ret = pmu_dev_alloc(pmu); 9467 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 9468 } 9469 pmu_bus_running = 1; 9470 ret = 0; 9471 9472 unlock: 9473 mutex_unlock(&pmus_lock); 9474 9475 return ret; 9476 } 9477 device_initcall(perf_event_sysfs_init); 9478 9479 #ifdef CONFIG_CGROUP_PERF 9480 static struct cgroup_subsys_state * 9481 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9482 { 9483 struct perf_cgroup *jc; 9484 9485 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 9486 if (!jc) 9487 return ERR_PTR(-ENOMEM); 9488 9489 jc->info = alloc_percpu(struct perf_cgroup_info); 9490 if (!jc->info) { 9491 kfree(jc); 9492 return ERR_PTR(-ENOMEM); 9493 } 9494 9495 return &jc->css; 9496 } 9497 9498 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 9499 { 9500 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 9501 9502 free_percpu(jc->info); 9503 kfree(jc); 9504 } 9505 9506 static int __perf_cgroup_move(void *info) 9507 { 9508 struct task_struct *task = info; 9509 rcu_read_lock(); 9510 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 9511 rcu_read_unlock(); 9512 return 0; 9513 } 9514 9515 static void perf_cgroup_attach(struct cgroup_taskset *tset) 9516 { 9517 struct task_struct *task; 9518 struct cgroup_subsys_state *css; 9519 9520 cgroup_taskset_for_each(task, css, tset) 9521 task_function_call(task, __perf_cgroup_move, task); 9522 } 9523 9524 struct cgroup_subsys perf_event_cgrp_subsys = { 9525 .css_alloc = perf_cgroup_css_alloc, 9526 .css_free = perf_cgroup_css_free, 9527 .attach = perf_cgroup_attach, 9528 }; 9529 #endif /* CONFIG_CGROUP_PERF */ 9530