xref: /openbmc/linux/kernel/events/core.c (revision 2596e07a)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 typedef int (*remote_function_f)(void *);
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	remote_function_f	func;
57 	void			*info;
58 	int			ret;
59 };
60 
61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		/* -EAGAIN */
68 		if (task_cpu(p) != smp_processor_id())
69 			return;
70 
71 		/*
72 		 * Now that we're on right CPU with IRQs disabled, we can test
73 		 * if we hit the right task without races.
74 		 */
75 
76 		tfc->ret = -ESRCH; /* No such (running) process */
77 		if (p != current)
78 			return;
79 	}
80 
81 	tfc->ret = tfc->func(tfc->info);
82 }
83 
84 /**
85  * task_function_call - call a function on the cpu on which a task runs
86  * @p:		the task to evaluate
87  * @func:	the function to be called
88  * @info:	the function call argument
89  *
90  * Calls the function @func when the task is currently running. This might
91  * be on the current CPU, which just calls the function directly
92  *
93  * returns: @func return value, or
94  *	    -ESRCH  - when the process isn't running
95  *	    -EAGAIN - when the process moved away
96  */
97 static int
98 task_function_call(struct task_struct *p, remote_function_f func, void *info)
99 {
100 	struct remote_function_call data = {
101 		.p	= p,
102 		.func	= func,
103 		.info	= info,
104 		.ret	= -EAGAIN,
105 	};
106 	int ret;
107 
108 	do {
109 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
110 		if (!ret)
111 			ret = data.ret;
112 	} while (ret == -EAGAIN);
113 
114 	return ret;
115 }
116 
117 /**
118  * cpu_function_call - call a function on the cpu
119  * @func:	the function to be called
120  * @info:	the function call argument
121  *
122  * Calls the function @func on the remote cpu.
123  *
124  * returns: @func return value or -ENXIO when the cpu is offline
125  */
126 static int cpu_function_call(int cpu, remote_function_f func, void *info)
127 {
128 	struct remote_function_call data = {
129 		.p	= NULL,
130 		.func	= func,
131 		.info	= info,
132 		.ret	= -ENXIO, /* No such CPU */
133 	};
134 
135 	smp_call_function_single(cpu, remote_function, &data, 1);
136 
137 	return data.ret;
138 }
139 
140 static inline struct perf_cpu_context *
141 __get_cpu_context(struct perf_event_context *ctx)
142 {
143 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
144 }
145 
146 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
147 			  struct perf_event_context *ctx)
148 {
149 	raw_spin_lock(&cpuctx->ctx.lock);
150 	if (ctx)
151 		raw_spin_lock(&ctx->lock);
152 }
153 
154 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
155 			    struct perf_event_context *ctx)
156 {
157 	if (ctx)
158 		raw_spin_unlock(&ctx->lock);
159 	raw_spin_unlock(&cpuctx->ctx.lock);
160 }
161 
162 #define TASK_TOMBSTONE ((void *)-1L)
163 
164 static bool is_kernel_event(struct perf_event *event)
165 {
166 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
167 }
168 
169 /*
170  * On task ctx scheduling...
171  *
172  * When !ctx->nr_events a task context will not be scheduled. This means
173  * we can disable the scheduler hooks (for performance) without leaving
174  * pending task ctx state.
175  *
176  * This however results in two special cases:
177  *
178  *  - removing the last event from a task ctx; this is relatively straight
179  *    forward and is done in __perf_remove_from_context.
180  *
181  *  - adding the first event to a task ctx; this is tricky because we cannot
182  *    rely on ctx->is_active and therefore cannot use event_function_call().
183  *    See perf_install_in_context().
184  *
185  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
186  */
187 
188 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
189 			struct perf_event_context *, void *);
190 
191 struct event_function_struct {
192 	struct perf_event *event;
193 	event_f func;
194 	void *data;
195 };
196 
197 static int event_function(void *info)
198 {
199 	struct event_function_struct *efs = info;
200 	struct perf_event *event = efs->event;
201 	struct perf_event_context *ctx = event->ctx;
202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
203 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
204 	int ret = 0;
205 
206 	WARN_ON_ONCE(!irqs_disabled());
207 
208 	perf_ctx_lock(cpuctx, task_ctx);
209 	/*
210 	 * Since we do the IPI call without holding ctx->lock things can have
211 	 * changed, double check we hit the task we set out to hit.
212 	 */
213 	if (ctx->task) {
214 		if (ctx->task != current) {
215 			ret = -ESRCH;
216 			goto unlock;
217 		}
218 
219 		/*
220 		 * We only use event_function_call() on established contexts,
221 		 * and event_function() is only ever called when active (or
222 		 * rather, we'll have bailed in task_function_call() or the
223 		 * above ctx->task != current test), therefore we must have
224 		 * ctx->is_active here.
225 		 */
226 		WARN_ON_ONCE(!ctx->is_active);
227 		/*
228 		 * And since we have ctx->is_active, cpuctx->task_ctx must
229 		 * match.
230 		 */
231 		WARN_ON_ONCE(task_ctx != ctx);
232 	} else {
233 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
234 	}
235 
236 	efs->func(event, cpuctx, ctx, efs->data);
237 unlock:
238 	perf_ctx_unlock(cpuctx, task_ctx);
239 
240 	return ret;
241 }
242 
243 static void event_function_local(struct perf_event *event, event_f func, void *data)
244 {
245 	struct event_function_struct efs = {
246 		.event = event,
247 		.func = func,
248 		.data = data,
249 	};
250 
251 	int ret = event_function(&efs);
252 	WARN_ON_ONCE(ret);
253 }
254 
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257 	struct perf_event_context *ctx = event->ctx;
258 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259 	struct event_function_struct efs = {
260 		.event = event,
261 		.func = func,
262 		.data = data,
263 	};
264 
265 	if (!event->parent) {
266 		/*
267 		 * If this is a !child event, we must hold ctx::mutex to
268 		 * stabilize the the event->ctx relation. See
269 		 * perf_event_ctx_lock().
270 		 */
271 		lockdep_assert_held(&ctx->mutex);
272 	}
273 
274 	if (!task) {
275 		cpu_function_call(event->cpu, event_function, &efs);
276 		return;
277 	}
278 
279 	if (task == TASK_TOMBSTONE)
280 		return;
281 
282 again:
283 	if (!task_function_call(task, event_function, &efs))
284 		return;
285 
286 	raw_spin_lock_irq(&ctx->lock);
287 	/*
288 	 * Reload the task pointer, it might have been changed by
289 	 * a concurrent perf_event_context_sched_out().
290 	 */
291 	task = ctx->task;
292 	if (task == TASK_TOMBSTONE) {
293 		raw_spin_unlock_irq(&ctx->lock);
294 		return;
295 	}
296 	if (ctx->is_active) {
297 		raw_spin_unlock_irq(&ctx->lock);
298 		goto again;
299 	}
300 	func(event, NULL, ctx, data);
301 	raw_spin_unlock_irq(&ctx->lock);
302 }
303 
304 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 		       PERF_FLAG_FD_OUTPUT  |\
306 		       PERF_FLAG_PID_CGROUP |\
307 		       PERF_FLAG_FD_CLOEXEC)
308 
309 /*
310  * branch priv levels that need permission checks
311  */
312 #define PERF_SAMPLE_BRANCH_PERM_PLM \
313 	(PERF_SAMPLE_BRANCH_KERNEL |\
314 	 PERF_SAMPLE_BRANCH_HV)
315 
316 enum event_type_t {
317 	EVENT_FLEXIBLE = 0x1,
318 	EVENT_PINNED = 0x2,
319 	EVENT_TIME = 0x4,
320 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
321 };
322 
323 /*
324  * perf_sched_events : >0 events exist
325  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
326  */
327 
328 static void perf_sched_delayed(struct work_struct *work);
329 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
330 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
331 static DEFINE_MUTEX(perf_sched_mutex);
332 static atomic_t perf_sched_count;
333 
334 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
335 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
336 
337 static atomic_t nr_mmap_events __read_mostly;
338 static atomic_t nr_comm_events __read_mostly;
339 static atomic_t nr_task_events __read_mostly;
340 static atomic_t nr_freq_events __read_mostly;
341 static atomic_t nr_switch_events __read_mostly;
342 
343 static LIST_HEAD(pmus);
344 static DEFINE_MUTEX(pmus_lock);
345 static struct srcu_struct pmus_srcu;
346 
347 /*
348  * perf event paranoia level:
349  *  -1 - not paranoid at all
350  *   0 - disallow raw tracepoint access for unpriv
351  *   1 - disallow cpu events for unpriv
352  *   2 - disallow kernel profiling for unpriv
353  */
354 int sysctl_perf_event_paranoid __read_mostly = 1;
355 
356 /* Minimum for 512 kiB + 1 user control page */
357 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
358 
359 /*
360  * max perf event sample rate
361  */
362 #define DEFAULT_MAX_SAMPLE_RATE		100000
363 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
364 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
365 
366 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
367 
368 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
369 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
370 
371 static int perf_sample_allowed_ns __read_mostly =
372 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
373 
374 static void update_perf_cpu_limits(void)
375 {
376 	u64 tmp = perf_sample_period_ns;
377 
378 	tmp *= sysctl_perf_cpu_time_max_percent;
379 	do_div(tmp, 100);
380 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
381 }
382 
383 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
384 
385 int perf_proc_update_handler(struct ctl_table *table, int write,
386 		void __user *buffer, size_t *lenp,
387 		loff_t *ppos)
388 {
389 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
390 
391 	if (ret || !write)
392 		return ret;
393 
394 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
395 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
396 	update_perf_cpu_limits();
397 
398 	return 0;
399 }
400 
401 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
402 
403 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
404 				void __user *buffer, size_t *lenp,
405 				loff_t *ppos)
406 {
407 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
408 
409 	if (ret || !write)
410 		return ret;
411 
412 	update_perf_cpu_limits();
413 
414 	return 0;
415 }
416 
417 /*
418  * perf samples are done in some very critical code paths (NMIs).
419  * If they take too much CPU time, the system can lock up and not
420  * get any real work done.  This will drop the sample rate when
421  * we detect that events are taking too long.
422  */
423 #define NR_ACCUMULATED_SAMPLES 128
424 static DEFINE_PER_CPU(u64, running_sample_length);
425 
426 static void perf_duration_warn(struct irq_work *w)
427 {
428 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
429 	u64 avg_local_sample_len;
430 	u64 local_samples_len;
431 
432 	local_samples_len = __this_cpu_read(running_sample_length);
433 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
434 
435 	printk_ratelimited(KERN_WARNING
436 			"perf interrupt took too long (%lld > %lld), lowering "
437 			"kernel.perf_event_max_sample_rate to %d\n",
438 			avg_local_sample_len, allowed_ns >> 1,
439 			sysctl_perf_event_sample_rate);
440 }
441 
442 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
443 
444 void perf_sample_event_took(u64 sample_len_ns)
445 {
446 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
447 	u64 avg_local_sample_len;
448 	u64 local_samples_len;
449 
450 	if (allowed_ns == 0)
451 		return;
452 
453 	/* decay the counter by 1 average sample */
454 	local_samples_len = __this_cpu_read(running_sample_length);
455 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
456 	local_samples_len += sample_len_ns;
457 	__this_cpu_write(running_sample_length, local_samples_len);
458 
459 	/*
460 	 * note: this will be biased artifically low until we have
461 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
462 	 * from having to maintain a count.
463 	 */
464 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
465 
466 	if (avg_local_sample_len <= allowed_ns)
467 		return;
468 
469 	if (max_samples_per_tick <= 1)
470 		return;
471 
472 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
473 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
474 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
475 
476 	update_perf_cpu_limits();
477 
478 	if (!irq_work_queue(&perf_duration_work)) {
479 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
480 			     "kernel.perf_event_max_sample_rate to %d\n",
481 			     avg_local_sample_len, allowed_ns >> 1,
482 			     sysctl_perf_event_sample_rate);
483 	}
484 }
485 
486 static atomic64_t perf_event_id;
487 
488 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
489 			      enum event_type_t event_type);
490 
491 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
492 			     enum event_type_t event_type,
493 			     struct task_struct *task);
494 
495 static void update_context_time(struct perf_event_context *ctx);
496 static u64 perf_event_time(struct perf_event *event);
497 
498 void __weak perf_event_print_debug(void)	{ }
499 
500 extern __weak const char *perf_pmu_name(void)
501 {
502 	return "pmu";
503 }
504 
505 static inline u64 perf_clock(void)
506 {
507 	return local_clock();
508 }
509 
510 static inline u64 perf_event_clock(struct perf_event *event)
511 {
512 	return event->clock();
513 }
514 
515 #ifdef CONFIG_CGROUP_PERF
516 
517 static inline bool
518 perf_cgroup_match(struct perf_event *event)
519 {
520 	struct perf_event_context *ctx = event->ctx;
521 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
522 
523 	/* @event doesn't care about cgroup */
524 	if (!event->cgrp)
525 		return true;
526 
527 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
528 	if (!cpuctx->cgrp)
529 		return false;
530 
531 	/*
532 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
533 	 * also enabled for all its descendant cgroups.  If @cpuctx's
534 	 * cgroup is a descendant of @event's (the test covers identity
535 	 * case), it's a match.
536 	 */
537 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
538 				    event->cgrp->css.cgroup);
539 }
540 
541 static inline void perf_detach_cgroup(struct perf_event *event)
542 {
543 	css_put(&event->cgrp->css);
544 	event->cgrp = NULL;
545 }
546 
547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 	return event->cgrp != NULL;
550 }
551 
552 static inline u64 perf_cgroup_event_time(struct perf_event *event)
553 {
554 	struct perf_cgroup_info *t;
555 
556 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
557 	return t->time;
558 }
559 
560 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
561 {
562 	struct perf_cgroup_info *info;
563 	u64 now;
564 
565 	now = perf_clock();
566 
567 	info = this_cpu_ptr(cgrp->info);
568 
569 	info->time += now - info->timestamp;
570 	info->timestamp = now;
571 }
572 
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574 {
575 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
576 	if (cgrp_out)
577 		__update_cgrp_time(cgrp_out);
578 }
579 
580 static inline void update_cgrp_time_from_event(struct perf_event *event)
581 {
582 	struct perf_cgroup *cgrp;
583 
584 	/*
585 	 * ensure we access cgroup data only when needed and
586 	 * when we know the cgroup is pinned (css_get)
587 	 */
588 	if (!is_cgroup_event(event))
589 		return;
590 
591 	cgrp = perf_cgroup_from_task(current, event->ctx);
592 	/*
593 	 * Do not update time when cgroup is not active
594 	 */
595 	if (cgrp == event->cgrp)
596 		__update_cgrp_time(event->cgrp);
597 }
598 
599 static inline void
600 perf_cgroup_set_timestamp(struct task_struct *task,
601 			  struct perf_event_context *ctx)
602 {
603 	struct perf_cgroup *cgrp;
604 	struct perf_cgroup_info *info;
605 
606 	/*
607 	 * ctx->lock held by caller
608 	 * ensure we do not access cgroup data
609 	 * unless we have the cgroup pinned (css_get)
610 	 */
611 	if (!task || !ctx->nr_cgroups)
612 		return;
613 
614 	cgrp = perf_cgroup_from_task(task, ctx);
615 	info = this_cpu_ptr(cgrp->info);
616 	info->timestamp = ctx->timestamp;
617 }
618 
619 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
620 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
621 
622 /*
623  * reschedule events based on the cgroup constraint of task.
624  *
625  * mode SWOUT : schedule out everything
626  * mode SWIN : schedule in based on cgroup for next
627  */
628 static void perf_cgroup_switch(struct task_struct *task, int mode)
629 {
630 	struct perf_cpu_context *cpuctx;
631 	struct pmu *pmu;
632 	unsigned long flags;
633 
634 	/*
635 	 * disable interrupts to avoid geting nr_cgroup
636 	 * changes via __perf_event_disable(). Also
637 	 * avoids preemption.
638 	 */
639 	local_irq_save(flags);
640 
641 	/*
642 	 * we reschedule only in the presence of cgroup
643 	 * constrained events.
644 	 */
645 
646 	list_for_each_entry_rcu(pmu, &pmus, entry) {
647 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
648 		if (cpuctx->unique_pmu != pmu)
649 			continue; /* ensure we process each cpuctx once */
650 
651 		/*
652 		 * perf_cgroup_events says at least one
653 		 * context on this CPU has cgroup events.
654 		 *
655 		 * ctx->nr_cgroups reports the number of cgroup
656 		 * events for a context.
657 		 */
658 		if (cpuctx->ctx.nr_cgroups > 0) {
659 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
660 			perf_pmu_disable(cpuctx->ctx.pmu);
661 
662 			if (mode & PERF_CGROUP_SWOUT) {
663 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
664 				/*
665 				 * must not be done before ctxswout due
666 				 * to event_filter_match() in event_sched_out()
667 				 */
668 				cpuctx->cgrp = NULL;
669 			}
670 
671 			if (mode & PERF_CGROUP_SWIN) {
672 				WARN_ON_ONCE(cpuctx->cgrp);
673 				/*
674 				 * set cgrp before ctxsw in to allow
675 				 * event_filter_match() to not have to pass
676 				 * task around
677 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
678 				 * because cgorup events are only per-cpu
679 				 */
680 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
681 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
682 			}
683 			perf_pmu_enable(cpuctx->ctx.pmu);
684 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
685 		}
686 	}
687 
688 	local_irq_restore(flags);
689 }
690 
691 static inline void perf_cgroup_sched_out(struct task_struct *task,
692 					 struct task_struct *next)
693 {
694 	struct perf_cgroup *cgrp1;
695 	struct perf_cgroup *cgrp2 = NULL;
696 
697 	rcu_read_lock();
698 	/*
699 	 * we come here when we know perf_cgroup_events > 0
700 	 * we do not need to pass the ctx here because we know
701 	 * we are holding the rcu lock
702 	 */
703 	cgrp1 = perf_cgroup_from_task(task, NULL);
704 	cgrp2 = perf_cgroup_from_task(next, NULL);
705 
706 	/*
707 	 * only schedule out current cgroup events if we know
708 	 * that we are switching to a different cgroup. Otherwise,
709 	 * do no touch the cgroup events.
710 	 */
711 	if (cgrp1 != cgrp2)
712 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
713 
714 	rcu_read_unlock();
715 }
716 
717 static inline void perf_cgroup_sched_in(struct task_struct *prev,
718 					struct task_struct *task)
719 {
720 	struct perf_cgroup *cgrp1;
721 	struct perf_cgroup *cgrp2 = NULL;
722 
723 	rcu_read_lock();
724 	/*
725 	 * we come here when we know perf_cgroup_events > 0
726 	 * we do not need to pass the ctx here because we know
727 	 * we are holding the rcu lock
728 	 */
729 	cgrp1 = perf_cgroup_from_task(task, NULL);
730 	cgrp2 = perf_cgroup_from_task(prev, NULL);
731 
732 	/*
733 	 * only need to schedule in cgroup events if we are changing
734 	 * cgroup during ctxsw. Cgroup events were not scheduled
735 	 * out of ctxsw out if that was not the case.
736 	 */
737 	if (cgrp1 != cgrp2)
738 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
739 
740 	rcu_read_unlock();
741 }
742 
743 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
744 				      struct perf_event_attr *attr,
745 				      struct perf_event *group_leader)
746 {
747 	struct perf_cgroup *cgrp;
748 	struct cgroup_subsys_state *css;
749 	struct fd f = fdget(fd);
750 	int ret = 0;
751 
752 	if (!f.file)
753 		return -EBADF;
754 
755 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
756 					 &perf_event_cgrp_subsys);
757 	if (IS_ERR(css)) {
758 		ret = PTR_ERR(css);
759 		goto out;
760 	}
761 
762 	cgrp = container_of(css, struct perf_cgroup, css);
763 	event->cgrp = cgrp;
764 
765 	/*
766 	 * all events in a group must monitor
767 	 * the same cgroup because a task belongs
768 	 * to only one perf cgroup at a time
769 	 */
770 	if (group_leader && group_leader->cgrp != cgrp) {
771 		perf_detach_cgroup(event);
772 		ret = -EINVAL;
773 	}
774 out:
775 	fdput(f);
776 	return ret;
777 }
778 
779 static inline void
780 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
781 {
782 	struct perf_cgroup_info *t;
783 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
784 	event->shadow_ctx_time = now - t->timestamp;
785 }
786 
787 static inline void
788 perf_cgroup_defer_enabled(struct perf_event *event)
789 {
790 	/*
791 	 * when the current task's perf cgroup does not match
792 	 * the event's, we need to remember to call the
793 	 * perf_mark_enable() function the first time a task with
794 	 * a matching perf cgroup is scheduled in.
795 	 */
796 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
797 		event->cgrp_defer_enabled = 1;
798 }
799 
800 static inline void
801 perf_cgroup_mark_enabled(struct perf_event *event,
802 			 struct perf_event_context *ctx)
803 {
804 	struct perf_event *sub;
805 	u64 tstamp = perf_event_time(event);
806 
807 	if (!event->cgrp_defer_enabled)
808 		return;
809 
810 	event->cgrp_defer_enabled = 0;
811 
812 	event->tstamp_enabled = tstamp - event->total_time_enabled;
813 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
814 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
815 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
816 			sub->cgrp_defer_enabled = 0;
817 		}
818 	}
819 }
820 #else /* !CONFIG_CGROUP_PERF */
821 
822 static inline bool
823 perf_cgroup_match(struct perf_event *event)
824 {
825 	return true;
826 }
827 
828 static inline void perf_detach_cgroup(struct perf_event *event)
829 {}
830 
831 static inline int is_cgroup_event(struct perf_event *event)
832 {
833 	return 0;
834 }
835 
836 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
837 {
838 	return 0;
839 }
840 
841 static inline void update_cgrp_time_from_event(struct perf_event *event)
842 {
843 }
844 
845 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
846 {
847 }
848 
849 static inline void perf_cgroup_sched_out(struct task_struct *task,
850 					 struct task_struct *next)
851 {
852 }
853 
854 static inline void perf_cgroup_sched_in(struct task_struct *prev,
855 					struct task_struct *task)
856 {
857 }
858 
859 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
860 				      struct perf_event_attr *attr,
861 				      struct perf_event *group_leader)
862 {
863 	return -EINVAL;
864 }
865 
866 static inline void
867 perf_cgroup_set_timestamp(struct task_struct *task,
868 			  struct perf_event_context *ctx)
869 {
870 }
871 
872 void
873 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
874 {
875 }
876 
877 static inline void
878 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
879 {
880 }
881 
882 static inline u64 perf_cgroup_event_time(struct perf_event *event)
883 {
884 	return 0;
885 }
886 
887 static inline void
888 perf_cgroup_defer_enabled(struct perf_event *event)
889 {
890 }
891 
892 static inline void
893 perf_cgroup_mark_enabled(struct perf_event *event,
894 			 struct perf_event_context *ctx)
895 {
896 }
897 #endif
898 
899 /*
900  * set default to be dependent on timer tick just
901  * like original code
902  */
903 #define PERF_CPU_HRTIMER (1000 / HZ)
904 /*
905  * function must be called with interrupts disbled
906  */
907 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
908 {
909 	struct perf_cpu_context *cpuctx;
910 	int rotations = 0;
911 
912 	WARN_ON(!irqs_disabled());
913 
914 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
915 	rotations = perf_rotate_context(cpuctx);
916 
917 	raw_spin_lock(&cpuctx->hrtimer_lock);
918 	if (rotations)
919 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
920 	else
921 		cpuctx->hrtimer_active = 0;
922 	raw_spin_unlock(&cpuctx->hrtimer_lock);
923 
924 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
925 }
926 
927 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
928 {
929 	struct hrtimer *timer = &cpuctx->hrtimer;
930 	struct pmu *pmu = cpuctx->ctx.pmu;
931 	u64 interval;
932 
933 	/* no multiplexing needed for SW PMU */
934 	if (pmu->task_ctx_nr == perf_sw_context)
935 		return;
936 
937 	/*
938 	 * check default is sane, if not set then force to
939 	 * default interval (1/tick)
940 	 */
941 	interval = pmu->hrtimer_interval_ms;
942 	if (interval < 1)
943 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
944 
945 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
946 
947 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
948 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
949 	timer->function = perf_mux_hrtimer_handler;
950 }
951 
952 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
953 {
954 	struct hrtimer *timer = &cpuctx->hrtimer;
955 	struct pmu *pmu = cpuctx->ctx.pmu;
956 	unsigned long flags;
957 
958 	/* not for SW PMU */
959 	if (pmu->task_ctx_nr == perf_sw_context)
960 		return 0;
961 
962 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
963 	if (!cpuctx->hrtimer_active) {
964 		cpuctx->hrtimer_active = 1;
965 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
966 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
967 	}
968 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
969 
970 	return 0;
971 }
972 
973 void perf_pmu_disable(struct pmu *pmu)
974 {
975 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 	if (!(*count)++)
977 		pmu->pmu_disable(pmu);
978 }
979 
980 void perf_pmu_enable(struct pmu *pmu)
981 {
982 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
983 	if (!--(*count))
984 		pmu->pmu_enable(pmu);
985 }
986 
987 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
988 
989 /*
990  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
991  * perf_event_task_tick() are fully serialized because they're strictly cpu
992  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
993  * disabled, while perf_event_task_tick is called from IRQ context.
994  */
995 static void perf_event_ctx_activate(struct perf_event_context *ctx)
996 {
997 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
998 
999 	WARN_ON(!irqs_disabled());
1000 
1001 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1002 
1003 	list_add(&ctx->active_ctx_list, head);
1004 }
1005 
1006 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1007 {
1008 	WARN_ON(!irqs_disabled());
1009 
1010 	WARN_ON(list_empty(&ctx->active_ctx_list));
1011 
1012 	list_del_init(&ctx->active_ctx_list);
1013 }
1014 
1015 static void get_ctx(struct perf_event_context *ctx)
1016 {
1017 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1018 }
1019 
1020 static void free_ctx(struct rcu_head *head)
1021 {
1022 	struct perf_event_context *ctx;
1023 
1024 	ctx = container_of(head, struct perf_event_context, rcu_head);
1025 	kfree(ctx->task_ctx_data);
1026 	kfree(ctx);
1027 }
1028 
1029 static void put_ctx(struct perf_event_context *ctx)
1030 {
1031 	if (atomic_dec_and_test(&ctx->refcount)) {
1032 		if (ctx->parent_ctx)
1033 			put_ctx(ctx->parent_ctx);
1034 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1035 			put_task_struct(ctx->task);
1036 		call_rcu(&ctx->rcu_head, free_ctx);
1037 	}
1038 }
1039 
1040 /*
1041  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1042  * perf_pmu_migrate_context() we need some magic.
1043  *
1044  * Those places that change perf_event::ctx will hold both
1045  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1046  *
1047  * Lock ordering is by mutex address. There are two other sites where
1048  * perf_event_context::mutex nests and those are:
1049  *
1050  *  - perf_event_exit_task_context()	[ child , 0 ]
1051  *      perf_event_exit_event()
1052  *        put_event()			[ parent, 1 ]
1053  *
1054  *  - perf_event_init_context()		[ parent, 0 ]
1055  *      inherit_task_group()
1056  *        inherit_group()
1057  *          inherit_event()
1058  *            perf_event_alloc()
1059  *              perf_init_event()
1060  *                perf_try_init_event()	[ child , 1 ]
1061  *
1062  * While it appears there is an obvious deadlock here -- the parent and child
1063  * nesting levels are inverted between the two. This is in fact safe because
1064  * life-time rules separate them. That is an exiting task cannot fork, and a
1065  * spawning task cannot (yet) exit.
1066  *
1067  * But remember that that these are parent<->child context relations, and
1068  * migration does not affect children, therefore these two orderings should not
1069  * interact.
1070  *
1071  * The change in perf_event::ctx does not affect children (as claimed above)
1072  * because the sys_perf_event_open() case will install a new event and break
1073  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1074  * concerned with cpuctx and that doesn't have children.
1075  *
1076  * The places that change perf_event::ctx will issue:
1077  *
1078  *   perf_remove_from_context();
1079  *   synchronize_rcu();
1080  *   perf_install_in_context();
1081  *
1082  * to affect the change. The remove_from_context() + synchronize_rcu() should
1083  * quiesce the event, after which we can install it in the new location. This
1084  * means that only external vectors (perf_fops, prctl) can perturb the event
1085  * while in transit. Therefore all such accessors should also acquire
1086  * perf_event_context::mutex to serialize against this.
1087  *
1088  * However; because event->ctx can change while we're waiting to acquire
1089  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1090  * function.
1091  *
1092  * Lock order:
1093  *	task_struct::perf_event_mutex
1094  *	  perf_event_context::mutex
1095  *	    perf_event::child_mutex;
1096  *	      perf_event_context::lock
1097  *	    perf_event::mmap_mutex
1098  *	    mmap_sem
1099  */
1100 static struct perf_event_context *
1101 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1102 {
1103 	struct perf_event_context *ctx;
1104 
1105 again:
1106 	rcu_read_lock();
1107 	ctx = ACCESS_ONCE(event->ctx);
1108 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1109 		rcu_read_unlock();
1110 		goto again;
1111 	}
1112 	rcu_read_unlock();
1113 
1114 	mutex_lock_nested(&ctx->mutex, nesting);
1115 	if (event->ctx != ctx) {
1116 		mutex_unlock(&ctx->mutex);
1117 		put_ctx(ctx);
1118 		goto again;
1119 	}
1120 
1121 	return ctx;
1122 }
1123 
1124 static inline struct perf_event_context *
1125 perf_event_ctx_lock(struct perf_event *event)
1126 {
1127 	return perf_event_ctx_lock_nested(event, 0);
1128 }
1129 
1130 static void perf_event_ctx_unlock(struct perf_event *event,
1131 				  struct perf_event_context *ctx)
1132 {
1133 	mutex_unlock(&ctx->mutex);
1134 	put_ctx(ctx);
1135 }
1136 
1137 /*
1138  * This must be done under the ctx->lock, such as to serialize against
1139  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1140  * calling scheduler related locks and ctx->lock nests inside those.
1141  */
1142 static __must_check struct perf_event_context *
1143 unclone_ctx(struct perf_event_context *ctx)
1144 {
1145 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1146 
1147 	lockdep_assert_held(&ctx->lock);
1148 
1149 	if (parent_ctx)
1150 		ctx->parent_ctx = NULL;
1151 	ctx->generation++;
1152 
1153 	return parent_ctx;
1154 }
1155 
1156 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1157 {
1158 	/*
1159 	 * only top level events have the pid namespace they were created in
1160 	 */
1161 	if (event->parent)
1162 		event = event->parent;
1163 
1164 	return task_tgid_nr_ns(p, event->ns);
1165 }
1166 
1167 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1168 {
1169 	/*
1170 	 * only top level events have the pid namespace they were created in
1171 	 */
1172 	if (event->parent)
1173 		event = event->parent;
1174 
1175 	return task_pid_nr_ns(p, event->ns);
1176 }
1177 
1178 /*
1179  * If we inherit events we want to return the parent event id
1180  * to userspace.
1181  */
1182 static u64 primary_event_id(struct perf_event *event)
1183 {
1184 	u64 id = event->id;
1185 
1186 	if (event->parent)
1187 		id = event->parent->id;
1188 
1189 	return id;
1190 }
1191 
1192 /*
1193  * Get the perf_event_context for a task and lock it.
1194  *
1195  * This has to cope with with the fact that until it is locked,
1196  * the context could get moved to another task.
1197  */
1198 static struct perf_event_context *
1199 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1200 {
1201 	struct perf_event_context *ctx;
1202 
1203 retry:
1204 	/*
1205 	 * One of the few rules of preemptible RCU is that one cannot do
1206 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1207 	 * part of the read side critical section was irqs-enabled -- see
1208 	 * rcu_read_unlock_special().
1209 	 *
1210 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1211 	 * side critical section has interrupts disabled.
1212 	 */
1213 	local_irq_save(*flags);
1214 	rcu_read_lock();
1215 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1216 	if (ctx) {
1217 		/*
1218 		 * If this context is a clone of another, it might
1219 		 * get swapped for another underneath us by
1220 		 * perf_event_task_sched_out, though the
1221 		 * rcu_read_lock() protects us from any context
1222 		 * getting freed.  Lock the context and check if it
1223 		 * got swapped before we could get the lock, and retry
1224 		 * if so.  If we locked the right context, then it
1225 		 * can't get swapped on us any more.
1226 		 */
1227 		raw_spin_lock(&ctx->lock);
1228 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1229 			raw_spin_unlock(&ctx->lock);
1230 			rcu_read_unlock();
1231 			local_irq_restore(*flags);
1232 			goto retry;
1233 		}
1234 
1235 		if (ctx->task == TASK_TOMBSTONE ||
1236 		    !atomic_inc_not_zero(&ctx->refcount)) {
1237 			raw_spin_unlock(&ctx->lock);
1238 			ctx = NULL;
1239 		} else {
1240 			WARN_ON_ONCE(ctx->task != task);
1241 		}
1242 	}
1243 	rcu_read_unlock();
1244 	if (!ctx)
1245 		local_irq_restore(*flags);
1246 	return ctx;
1247 }
1248 
1249 /*
1250  * Get the context for a task and increment its pin_count so it
1251  * can't get swapped to another task.  This also increments its
1252  * reference count so that the context can't get freed.
1253  */
1254 static struct perf_event_context *
1255 perf_pin_task_context(struct task_struct *task, int ctxn)
1256 {
1257 	struct perf_event_context *ctx;
1258 	unsigned long flags;
1259 
1260 	ctx = perf_lock_task_context(task, ctxn, &flags);
1261 	if (ctx) {
1262 		++ctx->pin_count;
1263 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1264 	}
1265 	return ctx;
1266 }
1267 
1268 static void perf_unpin_context(struct perf_event_context *ctx)
1269 {
1270 	unsigned long flags;
1271 
1272 	raw_spin_lock_irqsave(&ctx->lock, flags);
1273 	--ctx->pin_count;
1274 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1275 }
1276 
1277 /*
1278  * Update the record of the current time in a context.
1279  */
1280 static void update_context_time(struct perf_event_context *ctx)
1281 {
1282 	u64 now = perf_clock();
1283 
1284 	ctx->time += now - ctx->timestamp;
1285 	ctx->timestamp = now;
1286 }
1287 
1288 static u64 perf_event_time(struct perf_event *event)
1289 {
1290 	struct perf_event_context *ctx = event->ctx;
1291 
1292 	if (is_cgroup_event(event))
1293 		return perf_cgroup_event_time(event);
1294 
1295 	return ctx ? ctx->time : 0;
1296 }
1297 
1298 /*
1299  * Update the total_time_enabled and total_time_running fields for a event.
1300  */
1301 static void update_event_times(struct perf_event *event)
1302 {
1303 	struct perf_event_context *ctx = event->ctx;
1304 	u64 run_end;
1305 
1306 	lockdep_assert_held(&ctx->lock);
1307 
1308 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1309 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1310 		return;
1311 
1312 	/*
1313 	 * in cgroup mode, time_enabled represents
1314 	 * the time the event was enabled AND active
1315 	 * tasks were in the monitored cgroup. This is
1316 	 * independent of the activity of the context as
1317 	 * there may be a mix of cgroup and non-cgroup events.
1318 	 *
1319 	 * That is why we treat cgroup events differently
1320 	 * here.
1321 	 */
1322 	if (is_cgroup_event(event))
1323 		run_end = perf_cgroup_event_time(event);
1324 	else if (ctx->is_active)
1325 		run_end = ctx->time;
1326 	else
1327 		run_end = event->tstamp_stopped;
1328 
1329 	event->total_time_enabled = run_end - event->tstamp_enabled;
1330 
1331 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1332 		run_end = event->tstamp_stopped;
1333 	else
1334 		run_end = perf_event_time(event);
1335 
1336 	event->total_time_running = run_end - event->tstamp_running;
1337 
1338 }
1339 
1340 /*
1341  * Update total_time_enabled and total_time_running for all events in a group.
1342  */
1343 static void update_group_times(struct perf_event *leader)
1344 {
1345 	struct perf_event *event;
1346 
1347 	update_event_times(leader);
1348 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1349 		update_event_times(event);
1350 }
1351 
1352 static struct list_head *
1353 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1354 {
1355 	if (event->attr.pinned)
1356 		return &ctx->pinned_groups;
1357 	else
1358 		return &ctx->flexible_groups;
1359 }
1360 
1361 /*
1362  * Add a event from the lists for its context.
1363  * Must be called with ctx->mutex and ctx->lock held.
1364  */
1365 static void
1366 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1367 {
1368 	lockdep_assert_held(&ctx->lock);
1369 
1370 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1371 	event->attach_state |= PERF_ATTACH_CONTEXT;
1372 
1373 	/*
1374 	 * If we're a stand alone event or group leader, we go to the context
1375 	 * list, group events are kept attached to the group so that
1376 	 * perf_group_detach can, at all times, locate all siblings.
1377 	 */
1378 	if (event->group_leader == event) {
1379 		struct list_head *list;
1380 
1381 		if (is_software_event(event))
1382 			event->group_flags |= PERF_GROUP_SOFTWARE;
1383 
1384 		list = ctx_group_list(event, ctx);
1385 		list_add_tail(&event->group_entry, list);
1386 	}
1387 
1388 	if (is_cgroup_event(event))
1389 		ctx->nr_cgroups++;
1390 
1391 	list_add_rcu(&event->event_entry, &ctx->event_list);
1392 	ctx->nr_events++;
1393 	if (event->attr.inherit_stat)
1394 		ctx->nr_stat++;
1395 
1396 	ctx->generation++;
1397 }
1398 
1399 /*
1400  * Initialize event state based on the perf_event_attr::disabled.
1401  */
1402 static inline void perf_event__state_init(struct perf_event *event)
1403 {
1404 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1405 					      PERF_EVENT_STATE_INACTIVE;
1406 }
1407 
1408 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1409 {
1410 	int entry = sizeof(u64); /* value */
1411 	int size = 0;
1412 	int nr = 1;
1413 
1414 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1415 		size += sizeof(u64);
1416 
1417 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1418 		size += sizeof(u64);
1419 
1420 	if (event->attr.read_format & PERF_FORMAT_ID)
1421 		entry += sizeof(u64);
1422 
1423 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1424 		nr += nr_siblings;
1425 		size += sizeof(u64);
1426 	}
1427 
1428 	size += entry * nr;
1429 	event->read_size = size;
1430 }
1431 
1432 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1433 {
1434 	struct perf_sample_data *data;
1435 	u16 size = 0;
1436 
1437 	if (sample_type & PERF_SAMPLE_IP)
1438 		size += sizeof(data->ip);
1439 
1440 	if (sample_type & PERF_SAMPLE_ADDR)
1441 		size += sizeof(data->addr);
1442 
1443 	if (sample_type & PERF_SAMPLE_PERIOD)
1444 		size += sizeof(data->period);
1445 
1446 	if (sample_type & PERF_SAMPLE_WEIGHT)
1447 		size += sizeof(data->weight);
1448 
1449 	if (sample_type & PERF_SAMPLE_READ)
1450 		size += event->read_size;
1451 
1452 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1453 		size += sizeof(data->data_src.val);
1454 
1455 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1456 		size += sizeof(data->txn);
1457 
1458 	event->header_size = size;
1459 }
1460 
1461 /*
1462  * Called at perf_event creation and when events are attached/detached from a
1463  * group.
1464  */
1465 static void perf_event__header_size(struct perf_event *event)
1466 {
1467 	__perf_event_read_size(event,
1468 			       event->group_leader->nr_siblings);
1469 	__perf_event_header_size(event, event->attr.sample_type);
1470 }
1471 
1472 static void perf_event__id_header_size(struct perf_event *event)
1473 {
1474 	struct perf_sample_data *data;
1475 	u64 sample_type = event->attr.sample_type;
1476 	u16 size = 0;
1477 
1478 	if (sample_type & PERF_SAMPLE_TID)
1479 		size += sizeof(data->tid_entry);
1480 
1481 	if (sample_type & PERF_SAMPLE_TIME)
1482 		size += sizeof(data->time);
1483 
1484 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1485 		size += sizeof(data->id);
1486 
1487 	if (sample_type & PERF_SAMPLE_ID)
1488 		size += sizeof(data->id);
1489 
1490 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1491 		size += sizeof(data->stream_id);
1492 
1493 	if (sample_type & PERF_SAMPLE_CPU)
1494 		size += sizeof(data->cpu_entry);
1495 
1496 	event->id_header_size = size;
1497 }
1498 
1499 static bool perf_event_validate_size(struct perf_event *event)
1500 {
1501 	/*
1502 	 * The values computed here will be over-written when we actually
1503 	 * attach the event.
1504 	 */
1505 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1506 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1507 	perf_event__id_header_size(event);
1508 
1509 	/*
1510 	 * Sum the lot; should not exceed the 64k limit we have on records.
1511 	 * Conservative limit to allow for callchains and other variable fields.
1512 	 */
1513 	if (event->read_size + event->header_size +
1514 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1515 		return false;
1516 
1517 	return true;
1518 }
1519 
1520 static void perf_group_attach(struct perf_event *event)
1521 {
1522 	struct perf_event *group_leader = event->group_leader, *pos;
1523 
1524 	/*
1525 	 * We can have double attach due to group movement in perf_event_open.
1526 	 */
1527 	if (event->attach_state & PERF_ATTACH_GROUP)
1528 		return;
1529 
1530 	event->attach_state |= PERF_ATTACH_GROUP;
1531 
1532 	if (group_leader == event)
1533 		return;
1534 
1535 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1536 
1537 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1538 			!is_software_event(event))
1539 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1540 
1541 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1542 	group_leader->nr_siblings++;
1543 
1544 	perf_event__header_size(group_leader);
1545 
1546 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1547 		perf_event__header_size(pos);
1548 }
1549 
1550 /*
1551  * Remove a event from the lists for its context.
1552  * Must be called with ctx->mutex and ctx->lock held.
1553  */
1554 static void
1555 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1556 {
1557 	struct perf_cpu_context *cpuctx;
1558 
1559 	WARN_ON_ONCE(event->ctx != ctx);
1560 	lockdep_assert_held(&ctx->lock);
1561 
1562 	/*
1563 	 * We can have double detach due to exit/hot-unplug + close.
1564 	 */
1565 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1566 		return;
1567 
1568 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1569 
1570 	if (is_cgroup_event(event)) {
1571 		ctx->nr_cgroups--;
1572 		/*
1573 		 * Because cgroup events are always per-cpu events, this will
1574 		 * always be called from the right CPU.
1575 		 */
1576 		cpuctx = __get_cpu_context(ctx);
1577 		/*
1578 		 * If there are no more cgroup events then clear cgrp to avoid
1579 		 * stale pointer in update_cgrp_time_from_cpuctx().
1580 		 */
1581 		if (!ctx->nr_cgroups)
1582 			cpuctx->cgrp = NULL;
1583 	}
1584 
1585 	ctx->nr_events--;
1586 	if (event->attr.inherit_stat)
1587 		ctx->nr_stat--;
1588 
1589 	list_del_rcu(&event->event_entry);
1590 
1591 	if (event->group_leader == event)
1592 		list_del_init(&event->group_entry);
1593 
1594 	update_group_times(event);
1595 
1596 	/*
1597 	 * If event was in error state, then keep it
1598 	 * that way, otherwise bogus counts will be
1599 	 * returned on read(). The only way to get out
1600 	 * of error state is by explicit re-enabling
1601 	 * of the event
1602 	 */
1603 	if (event->state > PERF_EVENT_STATE_OFF)
1604 		event->state = PERF_EVENT_STATE_OFF;
1605 
1606 	ctx->generation++;
1607 }
1608 
1609 static void perf_group_detach(struct perf_event *event)
1610 {
1611 	struct perf_event *sibling, *tmp;
1612 	struct list_head *list = NULL;
1613 
1614 	/*
1615 	 * We can have double detach due to exit/hot-unplug + close.
1616 	 */
1617 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1618 		return;
1619 
1620 	event->attach_state &= ~PERF_ATTACH_GROUP;
1621 
1622 	/*
1623 	 * If this is a sibling, remove it from its group.
1624 	 */
1625 	if (event->group_leader != event) {
1626 		list_del_init(&event->group_entry);
1627 		event->group_leader->nr_siblings--;
1628 		goto out;
1629 	}
1630 
1631 	if (!list_empty(&event->group_entry))
1632 		list = &event->group_entry;
1633 
1634 	/*
1635 	 * If this was a group event with sibling events then
1636 	 * upgrade the siblings to singleton events by adding them
1637 	 * to whatever list we are on.
1638 	 */
1639 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1640 		if (list)
1641 			list_move_tail(&sibling->group_entry, list);
1642 		sibling->group_leader = sibling;
1643 
1644 		/* Inherit group flags from the previous leader */
1645 		sibling->group_flags = event->group_flags;
1646 
1647 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1648 	}
1649 
1650 out:
1651 	perf_event__header_size(event->group_leader);
1652 
1653 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1654 		perf_event__header_size(tmp);
1655 }
1656 
1657 static bool is_orphaned_event(struct perf_event *event)
1658 {
1659 	return event->state == PERF_EVENT_STATE_DEAD;
1660 }
1661 
1662 static inline int pmu_filter_match(struct perf_event *event)
1663 {
1664 	struct pmu *pmu = event->pmu;
1665 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1666 }
1667 
1668 static inline int
1669 event_filter_match(struct perf_event *event)
1670 {
1671 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1672 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1673 }
1674 
1675 static void
1676 event_sched_out(struct perf_event *event,
1677 		  struct perf_cpu_context *cpuctx,
1678 		  struct perf_event_context *ctx)
1679 {
1680 	u64 tstamp = perf_event_time(event);
1681 	u64 delta;
1682 
1683 	WARN_ON_ONCE(event->ctx != ctx);
1684 	lockdep_assert_held(&ctx->lock);
1685 
1686 	/*
1687 	 * An event which could not be activated because of
1688 	 * filter mismatch still needs to have its timings
1689 	 * maintained, otherwise bogus information is return
1690 	 * via read() for time_enabled, time_running:
1691 	 */
1692 	if (event->state == PERF_EVENT_STATE_INACTIVE
1693 	    && !event_filter_match(event)) {
1694 		delta = tstamp - event->tstamp_stopped;
1695 		event->tstamp_running += delta;
1696 		event->tstamp_stopped = tstamp;
1697 	}
1698 
1699 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1700 		return;
1701 
1702 	perf_pmu_disable(event->pmu);
1703 
1704 	event->tstamp_stopped = tstamp;
1705 	event->pmu->del(event, 0);
1706 	event->oncpu = -1;
1707 	event->state = PERF_EVENT_STATE_INACTIVE;
1708 	if (event->pending_disable) {
1709 		event->pending_disable = 0;
1710 		event->state = PERF_EVENT_STATE_OFF;
1711 	}
1712 
1713 	if (!is_software_event(event))
1714 		cpuctx->active_oncpu--;
1715 	if (!--ctx->nr_active)
1716 		perf_event_ctx_deactivate(ctx);
1717 	if (event->attr.freq && event->attr.sample_freq)
1718 		ctx->nr_freq--;
1719 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1720 		cpuctx->exclusive = 0;
1721 
1722 	perf_pmu_enable(event->pmu);
1723 }
1724 
1725 static void
1726 group_sched_out(struct perf_event *group_event,
1727 		struct perf_cpu_context *cpuctx,
1728 		struct perf_event_context *ctx)
1729 {
1730 	struct perf_event *event;
1731 	int state = group_event->state;
1732 
1733 	event_sched_out(group_event, cpuctx, ctx);
1734 
1735 	/*
1736 	 * Schedule out siblings (if any):
1737 	 */
1738 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1739 		event_sched_out(event, cpuctx, ctx);
1740 
1741 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1742 		cpuctx->exclusive = 0;
1743 }
1744 
1745 #define DETACH_GROUP	0x01UL
1746 
1747 /*
1748  * Cross CPU call to remove a performance event
1749  *
1750  * We disable the event on the hardware level first. After that we
1751  * remove it from the context list.
1752  */
1753 static void
1754 __perf_remove_from_context(struct perf_event *event,
1755 			   struct perf_cpu_context *cpuctx,
1756 			   struct perf_event_context *ctx,
1757 			   void *info)
1758 {
1759 	unsigned long flags = (unsigned long)info;
1760 
1761 	event_sched_out(event, cpuctx, ctx);
1762 	if (flags & DETACH_GROUP)
1763 		perf_group_detach(event);
1764 	list_del_event(event, ctx);
1765 
1766 	if (!ctx->nr_events && ctx->is_active) {
1767 		ctx->is_active = 0;
1768 		if (ctx->task) {
1769 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1770 			cpuctx->task_ctx = NULL;
1771 		}
1772 	}
1773 }
1774 
1775 /*
1776  * Remove the event from a task's (or a CPU's) list of events.
1777  *
1778  * If event->ctx is a cloned context, callers must make sure that
1779  * every task struct that event->ctx->task could possibly point to
1780  * remains valid.  This is OK when called from perf_release since
1781  * that only calls us on the top-level context, which can't be a clone.
1782  * When called from perf_event_exit_task, it's OK because the
1783  * context has been detached from its task.
1784  */
1785 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1786 {
1787 	lockdep_assert_held(&event->ctx->mutex);
1788 
1789 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1790 }
1791 
1792 /*
1793  * Cross CPU call to disable a performance event
1794  */
1795 static void __perf_event_disable(struct perf_event *event,
1796 				 struct perf_cpu_context *cpuctx,
1797 				 struct perf_event_context *ctx,
1798 				 void *info)
1799 {
1800 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1801 		return;
1802 
1803 	update_context_time(ctx);
1804 	update_cgrp_time_from_event(event);
1805 	update_group_times(event);
1806 	if (event == event->group_leader)
1807 		group_sched_out(event, cpuctx, ctx);
1808 	else
1809 		event_sched_out(event, cpuctx, ctx);
1810 	event->state = PERF_EVENT_STATE_OFF;
1811 }
1812 
1813 /*
1814  * Disable a event.
1815  *
1816  * If event->ctx is a cloned context, callers must make sure that
1817  * every task struct that event->ctx->task could possibly point to
1818  * remains valid.  This condition is satisifed when called through
1819  * perf_event_for_each_child or perf_event_for_each because they
1820  * hold the top-level event's child_mutex, so any descendant that
1821  * goes to exit will block in perf_event_exit_event().
1822  *
1823  * When called from perf_pending_event it's OK because event->ctx
1824  * is the current context on this CPU and preemption is disabled,
1825  * hence we can't get into perf_event_task_sched_out for this context.
1826  */
1827 static void _perf_event_disable(struct perf_event *event)
1828 {
1829 	struct perf_event_context *ctx = event->ctx;
1830 
1831 	raw_spin_lock_irq(&ctx->lock);
1832 	if (event->state <= PERF_EVENT_STATE_OFF) {
1833 		raw_spin_unlock_irq(&ctx->lock);
1834 		return;
1835 	}
1836 	raw_spin_unlock_irq(&ctx->lock);
1837 
1838 	event_function_call(event, __perf_event_disable, NULL);
1839 }
1840 
1841 void perf_event_disable_local(struct perf_event *event)
1842 {
1843 	event_function_local(event, __perf_event_disable, NULL);
1844 }
1845 
1846 /*
1847  * Strictly speaking kernel users cannot create groups and therefore this
1848  * interface does not need the perf_event_ctx_lock() magic.
1849  */
1850 void perf_event_disable(struct perf_event *event)
1851 {
1852 	struct perf_event_context *ctx;
1853 
1854 	ctx = perf_event_ctx_lock(event);
1855 	_perf_event_disable(event);
1856 	perf_event_ctx_unlock(event, ctx);
1857 }
1858 EXPORT_SYMBOL_GPL(perf_event_disable);
1859 
1860 static void perf_set_shadow_time(struct perf_event *event,
1861 				 struct perf_event_context *ctx,
1862 				 u64 tstamp)
1863 {
1864 	/*
1865 	 * use the correct time source for the time snapshot
1866 	 *
1867 	 * We could get by without this by leveraging the
1868 	 * fact that to get to this function, the caller
1869 	 * has most likely already called update_context_time()
1870 	 * and update_cgrp_time_xx() and thus both timestamp
1871 	 * are identical (or very close). Given that tstamp is,
1872 	 * already adjusted for cgroup, we could say that:
1873 	 *    tstamp - ctx->timestamp
1874 	 * is equivalent to
1875 	 *    tstamp - cgrp->timestamp.
1876 	 *
1877 	 * Then, in perf_output_read(), the calculation would
1878 	 * work with no changes because:
1879 	 * - event is guaranteed scheduled in
1880 	 * - no scheduled out in between
1881 	 * - thus the timestamp would be the same
1882 	 *
1883 	 * But this is a bit hairy.
1884 	 *
1885 	 * So instead, we have an explicit cgroup call to remain
1886 	 * within the time time source all along. We believe it
1887 	 * is cleaner and simpler to understand.
1888 	 */
1889 	if (is_cgroup_event(event))
1890 		perf_cgroup_set_shadow_time(event, tstamp);
1891 	else
1892 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1893 }
1894 
1895 #define MAX_INTERRUPTS (~0ULL)
1896 
1897 static void perf_log_throttle(struct perf_event *event, int enable);
1898 static void perf_log_itrace_start(struct perf_event *event);
1899 
1900 static int
1901 event_sched_in(struct perf_event *event,
1902 		 struct perf_cpu_context *cpuctx,
1903 		 struct perf_event_context *ctx)
1904 {
1905 	u64 tstamp = perf_event_time(event);
1906 	int ret = 0;
1907 
1908 	lockdep_assert_held(&ctx->lock);
1909 
1910 	if (event->state <= PERF_EVENT_STATE_OFF)
1911 		return 0;
1912 
1913 	event->state = PERF_EVENT_STATE_ACTIVE;
1914 	event->oncpu = smp_processor_id();
1915 
1916 	/*
1917 	 * Unthrottle events, since we scheduled we might have missed several
1918 	 * ticks already, also for a heavily scheduling task there is little
1919 	 * guarantee it'll get a tick in a timely manner.
1920 	 */
1921 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1922 		perf_log_throttle(event, 1);
1923 		event->hw.interrupts = 0;
1924 	}
1925 
1926 	/*
1927 	 * The new state must be visible before we turn it on in the hardware:
1928 	 */
1929 	smp_wmb();
1930 
1931 	perf_pmu_disable(event->pmu);
1932 
1933 	perf_set_shadow_time(event, ctx, tstamp);
1934 
1935 	perf_log_itrace_start(event);
1936 
1937 	if (event->pmu->add(event, PERF_EF_START)) {
1938 		event->state = PERF_EVENT_STATE_INACTIVE;
1939 		event->oncpu = -1;
1940 		ret = -EAGAIN;
1941 		goto out;
1942 	}
1943 
1944 	event->tstamp_running += tstamp - event->tstamp_stopped;
1945 
1946 	if (!is_software_event(event))
1947 		cpuctx->active_oncpu++;
1948 	if (!ctx->nr_active++)
1949 		perf_event_ctx_activate(ctx);
1950 	if (event->attr.freq && event->attr.sample_freq)
1951 		ctx->nr_freq++;
1952 
1953 	if (event->attr.exclusive)
1954 		cpuctx->exclusive = 1;
1955 
1956 out:
1957 	perf_pmu_enable(event->pmu);
1958 
1959 	return ret;
1960 }
1961 
1962 static int
1963 group_sched_in(struct perf_event *group_event,
1964 	       struct perf_cpu_context *cpuctx,
1965 	       struct perf_event_context *ctx)
1966 {
1967 	struct perf_event *event, *partial_group = NULL;
1968 	struct pmu *pmu = ctx->pmu;
1969 	u64 now = ctx->time;
1970 	bool simulate = false;
1971 
1972 	if (group_event->state == PERF_EVENT_STATE_OFF)
1973 		return 0;
1974 
1975 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1976 
1977 	if (event_sched_in(group_event, cpuctx, ctx)) {
1978 		pmu->cancel_txn(pmu);
1979 		perf_mux_hrtimer_restart(cpuctx);
1980 		return -EAGAIN;
1981 	}
1982 
1983 	/*
1984 	 * Schedule in siblings as one group (if any):
1985 	 */
1986 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1987 		if (event_sched_in(event, cpuctx, ctx)) {
1988 			partial_group = event;
1989 			goto group_error;
1990 		}
1991 	}
1992 
1993 	if (!pmu->commit_txn(pmu))
1994 		return 0;
1995 
1996 group_error:
1997 	/*
1998 	 * Groups can be scheduled in as one unit only, so undo any
1999 	 * partial group before returning:
2000 	 * The events up to the failed event are scheduled out normally,
2001 	 * tstamp_stopped will be updated.
2002 	 *
2003 	 * The failed events and the remaining siblings need to have
2004 	 * their timings updated as if they had gone thru event_sched_in()
2005 	 * and event_sched_out(). This is required to get consistent timings
2006 	 * across the group. This also takes care of the case where the group
2007 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2008 	 * the time the event was actually stopped, such that time delta
2009 	 * calculation in update_event_times() is correct.
2010 	 */
2011 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2012 		if (event == partial_group)
2013 			simulate = true;
2014 
2015 		if (simulate) {
2016 			event->tstamp_running += now - event->tstamp_stopped;
2017 			event->tstamp_stopped = now;
2018 		} else {
2019 			event_sched_out(event, cpuctx, ctx);
2020 		}
2021 	}
2022 	event_sched_out(group_event, cpuctx, ctx);
2023 
2024 	pmu->cancel_txn(pmu);
2025 
2026 	perf_mux_hrtimer_restart(cpuctx);
2027 
2028 	return -EAGAIN;
2029 }
2030 
2031 /*
2032  * Work out whether we can put this event group on the CPU now.
2033  */
2034 static int group_can_go_on(struct perf_event *event,
2035 			   struct perf_cpu_context *cpuctx,
2036 			   int can_add_hw)
2037 {
2038 	/*
2039 	 * Groups consisting entirely of software events can always go on.
2040 	 */
2041 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2042 		return 1;
2043 	/*
2044 	 * If an exclusive group is already on, no other hardware
2045 	 * events can go on.
2046 	 */
2047 	if (cpuctx->exclusive)
2048 		return 0;
2049 	/*
2050 	 * If this group is exclusive and there are already
2051 	 * events on the CPU, it can't go on.
2052 	 */
2053 	if (event->attr.exclusive && cpuctx->active_oncpu)
2054 		return 0;
2055 	/*
2056 	 * Otherwise, try to add it if all previous groups were able
2057 	 * to go on.
2058 	 */
2059 	return can_add_hw;
2060 }
2061 
2062 static void add_event_to_ctx(struct perf_event *event,
2063 			       struct perf_event_context *ctx)
2064 {
2065 	u64 tstamp = perf_event_time(event);
2066 
2067 	list_add_event(event, ctx);
2068 	perf_group_attach(event);
2069 	event->tstamp_enabled = tstamp;
2070 	event->tstamp_running = tstamp;
2071 	event->tstamp_stopped = tstamp;
2072 }
2073 
2074 static void ctx_sched_out(struct perf_event_context *ctx,
2075 			  struct perf_cpu_context *cpuctx,
2076 			  enum event_type_t event_type);
2077 static void
2078 ctx_sched_in(struct perf_event_context *ctx,
2079 	     struct perf_cpu_context *cpuctx,
2080 	     enum event_type_t event_type,
2081 	     struct task_struct *task);
2082 
2083 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2084 			       struct perf_event_context *ctx)
2085 {
2086 	if (!cpuctx->task_ctx)
2087 		return;
2088 
2089 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2090 		return;
2091 
2092 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2093 }
2094 
2095 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2096 				struct perf_event_context *ctx,
2097 				struct task_struct *task)
2098 {
2099 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2100 	if (ctx)
2101 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2102 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2103 	if (ctx)
2104 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2105 }
2106 
2107 static void ctx_resched(struct perf_cpu_context *cpuctx,
2108 			struct perf_event_context *task_ctx)
2109 {
2110 	perf_pmu_disable(cpuctx->ctx.pmu);
2111 	if (task_ctx)
2112 		task_ctx_sched_out(cpuctx, task_ctx);
2113 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2114 	perf_event_sched_in(cpuctx, task_ctx, current);
2115 	perf_pmu_enable(cpuctx->ctx.pmu);
2116 }
2117 
2118 /*
2119  * Cross CPU call to install and enable a performance event
2120  *
2121  * Very similar to remote_function() + event_function() but cannot assume that
2122  * things like ctx->is_active and cpuctx->task_ctx are set.
2123  */
2124 static int  __perf_install_in_context(void *info)
2125 {
2126 	struct perf_event *event = info;
2127 	struct perf_event_context *ctx = event->ctx;
2128 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2129 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2130 	bool activate = true;
2131 	int ret = 0;
2132 
2133 	raw_spin_lock(&cpuctx->ctx.lock);
2134 	if (ctx->task) {
2135 		raw_spin_lock(&ctx->lock);
2136 		task_ctx = ctx;
2137 
2138 		/* If we're on the wrong CPU, try again */
2139 		if (task_cpu(ctx->task) != smp_processor_id()) {
2140 			ret = -ESRCH;
2141 			goto unlock;
2142 		}
2143 
2144 		/*
2145 		 * If we're on the right CPU, see if the task we target is
2146 		 * current, if not we don't have to activate the ctx, a future
2147 		 * context switch will do that for us.
2148 		 */
2149 		if (ctx->task != current)
2150 			activate = false;
2151 		else
2152 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2153 
2154 	} else if (task_ctx) {
2155 		raw_spin_lock(&task_ctx->lock);
2156 	}
2157 
2158 	if (activate) {
2159 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2160 		add_event_to_ctx(event, ctx);
2161 		ctx_resched(cpuctx, task_ctx);
2162 	} else {
2163 		add_event_to_ctx(event, ctx);
2164 	}
2165 
2166 unlock:
2167 	perf_ctx_unlock(cpuctx, task_ctx);
2168 
2169 	return ret;
2170 }
2171 
2172 /*
2173  * Attach a performance event to a context.
2174  *
2175  * Very similar to event_function_call, see comment there.
2176  */
2177 static void
2178 perf_install_in_context(struct perf_event_context *ctx,
2179 			struct perf_event *event,
2180 			int cpu)
2181 {
2182 	struct task_struct *task = READ_ONCE(ctx->task);
2183 
2184 	lockdep_assert_held(&ctx->mutex);
2185 
2186 	event->ctx = ctx;
2187 	if (event->cpu != -1)
2188 		event->cpu = cpu;
2189 
2190 	if (!task) {
2191 		cpu_function_call(cpu, __perf_install_in_context, event);
2192 		return;
2193 	}
2194 
2195 	/*
2196 	 * Should not happen, we validate the ctx is still alive before calling.
2197 	 */
2198 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2199 		return;
2200 
2201 	/*
2202 	 * Installing events is tricky because we cannot rely on ctx->is_active
2203 	 * to be set in case this is the nr_events 0 -> 1 transition.
2204 	 */
2205 again:
2206 	/*
2207 	 * Cannot use task_function_call() because we need to run on the task's
2208 	 * CPU regardless of whether its current or not.
2209 	 */
2210 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2211 		return;
2212 
2213 	raw_spin_lock_irq(&ctx->lock);
2214 	task = ctx->task;
2215 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2216 		/*
2217 		 * Cannot happen because we already checked above (which also
2218 		 * cannot happen), and we hold ctx->mutex, which serializes us
2219 		 * against perf_event_exit_task_context().
2220 		 */
2221 		raw_spin_unlock_irq(&ctx->lock);
2222 		return;
2223 	}
2224 	raw_spin_unlock_irq(&ctx->lock);
2225 	/*
2226 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2227 	 * unconditionally.
2228 	 */
2229 	goto again;
2230 }
2231 
2232 /*
2233  * Put a event into inactive state and update time fields.
2234  * Enabling the leader of a group effectively enables all
2235  * the group members that aren't explicitly disabled, so we
2236  * have to update their ->tstamp_enabled also.
2237  * Note: this works for group members as well as group leaders
2238  * since the non-leader members' sibling_lists will be empty.
2239  */
2240 static void __perf_event_mark_enabled(struct perf_event *event)
2241 {
2242 	struct perf_event *sub;
2243 	u64 tstamp = perf_event_time(event);
2244 
2245 	event->state = PERF_EVENT_STATE_INACTIVE;
2246 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2247 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2248 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2249 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2250 	}
2251 }
2252 
2253 /*
2254  * Cross CPU call to enable a performance event
2255  */
2256 static void __perf_event_enable(struct perf_event *event,
2257 				struct perf_cpu_context *cpuctx,
2258 				struct perf_event_context *ctx,
2259 				void *info)
2260 {
2261 	struct perf_event *leader = event->group_leader;
2262 	struct perf_event_context *task_ctx;
2263 
2264 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2265 	    event->state <= PERF_EVENT_STATE_ERROR)
2266 		return;
2267 
2268 	if (ctx->is_active)
2269 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2270 
2271 	__perf_event_mark_enabled(event);
2272 
2273 	if (!ctx->is_active)
2274 		return;
2275 
2276 	if (!event_filter_match(event)) {
2277 		if (is_cgroup_event(event))
2278 			perf_cgroup_defer_enabled(event);
2279 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2280 		return;
2281 	}
2282 
2283 	/*
2284 	 * If the event is in a group and isn't the group leader,
2285 	 * then don't put it on unless the group is on.
2286 	 */
2287 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2288 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2289 		return;
2290 	}
2291 
2292 	task_ctx = cpuctx->task_ctx;
2293 	if (ctx->task)
2294 		WARN_ON_ONCE(task_ctx != ctx);
2295 
2296 	ctx_resched(cpuctx, task_ctx);
2297 }
2298 
2299 /*
2300  * Enable a event.
2301  *
2302  * If event->ctx is a cloned context, callers must make sure that
2303  * every task struct that event->ctx->task could possibly point to
2304  * remains valid.  This condition is satisfied when called through
2305  * perf_event_for_each_child or perf_event_for_each as described
2306  * for perf_event_disable.
2307  */
2308 static void _perf_event_enable(struct perf_event *event)
2309 {
2310 	struct perf_event_context *ctx = event->ctx;
2311 
2312 	raw_spin_lock_irq(&ctx->lock);
2313 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2314 	    event->state <  PERF_EVENT_STATE_ERROR) {
2315 		raw_spin_unlock_irq(&ctx->lock);
2316 		return;
2317 	}
2318 
2319 	/*
2320 	 * If the event is in error state, clear that first.
2321 	 *
2322 	 * That way, if we see the event in error state below, we know that it
2323 	 * has gone back into error state, as distinct from the task having
2324 	 * been scheduled away before the cross-call arrived.
2325 	 */
2326 	if (event->state == PERF_EVENT_STATE_ERROR)
2327 		event->state = PERF_EVENT_STATE_OFF;
2328 	raw_spin_unlock_irq(&ctx->lock);
2329 
2330 	event_function_call(event, __perf_event_enable, NULL);
2331 }
2332 
2333 /*
2334  * See perf_event_disable();
2335  */
2336 void perf_event_enable(struct perf_event *event)
2337 {
2338 	struct perf_event_context *ctx;
2339 
2340 	ctx = perf_event_ctx_lock(event);
2341 	_perf_event_enable(event);
2342 	perf_event_ctx_unlock(event, ctx);
2343 }
2344 EXPORT_SYMBOL_GPL(perf_event_enable);
2345 
2346 static int _perf_event_refresh(struct perf_event *event, int refresh)
2347 {
2348 	/*
2349 	 * not supported on inherited events
2350 	 */
2351 	if (event->attr.inherit || !is_sampling_event(event))
2352 		return -EINVAL;
2353 
2354 	atomic_add(refresh, &event->event_limit);
2355 	_perf_event_enable(event);
2356 
2357 	return 0;
2358 }
2359 
2360 /*
2361  * See perf_event_disable()
2362  */
2363 int perf_event_refresh(struct perf_event *event, int refresh)
2364 {
2365 	struct perf_event_context *ctx;
2366 	int ret;
2367 
2368 	ctx = perf_event_ctx_lock(event);
2369 	ret = _perf_event_refresh(event, refresh);
2370 	perf_event_ctx_unlock(event, ctx);
2371 
2372 	return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(perf_event_refresh);
2375 
2376 static void ctx_sched_out(struct perf_event_context *ctx,
2377 			  struct perf_cpu_context *cpuctx,
2378 			  enum event_type_t event_type)
2379 {
2380 	int is_active = ctx->is_active;
2381 	struct perf_event *event;
2382 
2383 	lockdep_assert_held(&ctx->lock);
2384 
2385 	if (likely(!ctx->nr_events)) {
2386 		/*
2387 		 * See __perf_remove_from_context().
2388 		 */
2389 		WARN_ON_ONCE(ctx->is_active);
2390 		if (ctx->task)
2391 			WARN_ON_ONCE(cpuctx->task_ctx);
2392 		return;
2393 	}
2394 
2395 	ctx->is_active &= ~event_type;
2396 	if (!(ctx->is_active & EVENT_ALL))
2397 		ctx->is_active = 0;
2398 
2399 	if (ctx->task) {
2400 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2401 		if (!ctx->is_active)
2402 			cpuctx->task_ctx = NULL;
2403 	}
2404 
2405 	is_active ^= ctx->is_active; /* changed bits */
2406 
2407 	if (is_active & EVENT_TIME) {
2408 		/* update (and stop) ctx time */
2409 		update_context_time(ctx);
2410 		update_cgrp_time_from_cpuctx(cpuctx);
2411 	}
2412 
2413 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2414 		return;
2415 
2416 	perf_pmu_disable(ctx->pmu);
2417 	if (is_active & EVENT_PINNED) {
2418 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2419 			group_sched_out(event, cpuctx, ctx);
2420 	}
2421 
2422 	if (is_active & EVENT_FLEXIBLE) {
2423 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2424 			group_sched_out(event, cpuctx, ctx);
2425 	}
2426 	perf_pmu_enable(ctx->pmu);
2427 }
2428 
2429 /*
2430  * Test whether two contexts are equivalent, i.e. whether they have both been
2431  * cloned from the same version of the same context.
2432  *
2433  * Equivalence is measured using a generation number in the context that is
2434  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2435  * and list_del_event().
2436  */
2437 static int context_equiv(struct perf_event_context *ctx1,
2438 			 struct perf_event_context *ctx2)
2439 {
2440 	lockdep_assert_held(&ctx1->lock);
2441 	lockdep_assert_held(&ctx2->lock);
2442 
2443 	/* Pinning disables the swap optimization */
2444 	if (ctx1->pin_count || ctx2->pin_count)
2445 		return 0;
2446 
2447 	/* If ctx1 is the parent of ctx2 */
2448 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2449 		return 1;
2450 
2451 	/* If ctx2 is the parent of ctx1 */
2452 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2453 		return 1;
2454 
2455 	/*
2456 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2457 	 * hierarchy, see perf_event_init_context().
2458 	 */
2459 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2460 			ctx1->parent_gen == ctx2->parent_gen)
2461 		return 1;
2462 
2463 	/* Unmatched */
2464 	return 0;
2465 }
2466 
2467 static void __perf_event_sync_stat(struct perf_event *event,
2468 				     struct perf_event *next_event)
2469 {
2470 	u64 value;
2471 
2472 	if (!event->attr.inherit_stat)
2473 		return;
2474 
2475 	/*
2476 	 * Update the event value, we cannot use perf_event_read()
2477 	 * because we're in the middle of a context switch and have IRQs
2478 	 * disabled, which upsets smp_call_function_single(), however
2479 	 * we know the event must be on the current CPU, therefore we
2480 	 * don't need to use it.
2481 	 */
2482 	switch (event->state) {
2483 	case PERF_EVENT_STATE_ACTIVE:
2484 		event->pmu->read(event);
2485 		/* fall-through */
2486 
2487 	case PERF_EVENT_STATE_INACTIVE:
2488 		update_event_times(event);
2489 		break;
2490 
2491 	default:
2492 		break;
2493 	}
2494 
2495 	/*
2496 	 * In order to keep per-task stats reliable we need to flip the event
2497 	 * values when we flip the contexts.
2498 	 */
2499 	value = local64_read(&next_event->count);
2500 	value = local64_xchg(&event->count, value);
2501 	local64_set(&next_event->count, value);
2502 
2503 	swap(event->total_time_enabled, next_event->total_time_enabled);
2504 	swap(event->total_time_running, next_event->total_time_running);
2505 
2506 	/*
2507 	 * Since we swizzled the values, update the user visible data too.
2508 	 */
2509 	perf_event_update_userpage(event);
2510 	perf_event_update_userpage(next_event);
2511 }
2512 
2513 static void perf_event_sync_stat(struct perf_event_context *ctx,
2514 				   struct perf_event_context *next_ctx)
2515 {
2516 	struct perf_event *event, *next_event;
2517 
2518 	if (!ctx->nr_stat)
2519 		return;
2520 
2521 	update_context_time(ctx);
2522 
2523 	event = list_first_entry(&ctx->event_list,
2524 				   struct perf_event, event_entry);
2525 
2526 	next_event = list_first_entry(&next_ctx->event_list,
2527 					struct perf_event, event_entry);
2528 
2529 	while (&event->event_entry != &ctx->event_list &&
2530 	       &next_event->event_entry != &next_ctx->event_list) {
2531 
2532 		__perf_event_sync_stat(event, next_event);
2533 
2534 		event = list_next_entry(event, event_entry);
2535 		next_event = list_next_entry(next_event, event_entry);
2536 	}
2537 }
2538 
2539 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2540 					 struct task_struct *next)
2541 {
2542 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2543 	struct perf_event_context *next_ctx;
2544 	struct perf_event_context *parent, *next_parent;
2545 	struct perf_cpu_context *cpuctx;
2546 	int do_switch = 1;
2547 
2548 	if (likely(!ctx))
2549 		return;
2550 
2551 	cpuctx = __get_cpu_context(ctx);
2552 	if (!cpuctx->task_ctx)
2553 		return;
2554 
2555 	rcu_read_lock();
2556 	next_ctx = next->perf_event_ctxp[ctxn];
2557 	if (!next_ctx)
2558 		goto unlock;
2559 
2560 	parent = rcu_dereference(ctx->parent_ctx);
2561 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2562 
2563 	/* If neither context have a parent context; they cannot be clones. */
2564 	if (!parent && !next_parent)
2565 		goto unlock;
2566 
2567 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2568 		/*
2569 		 * Looks like the two contexts are clones, so we might be
2570 		 * able to optimize the context switch.  We lock both
2571 		 * contexts and check that they are clones under the
2572 		 * lock (including re-checking that neither has been
2573 		 * uncloned in the meantime).  It doesn't matter which
2574 		 * order we take the locks because no other cpu could
2575 		 * be trying to lock both of these tasks.
2576 		 */
2577 		raw_spin_lock(&ctx->lock);
2578 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2579 		if (context_equiv(ctx, next_ctx)) {
2580 			WRITE_ONCE(ctx->task, next);
2581 			WRITE_ONCE(next_ctx->task, task);
2582 
2583 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2584 
2585 			/*
2586 			 * RCU_INIT_POINTER here is safe because we've not
2587 			 * modified the ctx and the above modification of
2588 			 * ctx->task and ctx->task_ctx_data are immaterial
2589 			 * since those values are always verified under
2590 			 * ctx->lock which we're now holding.
2591 			 */
2592 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2593 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2594 
2595 			do_switch = 0;
2596 
2597 			perf_event_sync_stat(ctx, next_ctx);
2598 		}
2599 		raw_spin_unlock(&next_ctx->lock);
2600 		raw_spin_unlock(&ctx->lock);
2601 	}
2602 unlock:
2603 	rcu_read_unlock();
2604 
2605 	if (do_switch) {
2606 		raw_spin_lock(&ctx->lock);
2607 		task_ctx_sched_out(cpuctx, ctx);
2608 		raw_spin_unlock(&ctx->lock);
2609 	}
2610 }
2611 
2612 void perf_sched_cb_dec(struct pmu *pmu)
2613 {
2614 	this_cpu_dec(perf_sched_cb_usages);
2615 }
2616 
2617 void perf_sched_cb_inc(struct pmu *pmu)
2618 {
2619 	this_cpu_inc(perf_sched_cb_usages);
2620 }
2621 
2622 /*
2623  * This function provides the context switch callback to the lower code
2624  * layer. It is invoked ONLY when the context switch callback is enabled.
2625  */
2626 static void perf_pmu_sched_task(struct task_struct *prev,
2627 				struct task_struct *next,
2628 				bool sched_in)
2629 {
2630 	struct perf_cpu_context *cpuctx;
2631 	struct pmu *pmu;
2632 	unsigned long flags;
2633 
2634 	if (prev == next)
2635 		return;
2636 
2637 	local_irq_save(flags);
2638 
2639 	rcu_read_lock();
2640 
2641 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2642 		if (pmu->sched_task) {
2643 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2644 
2645 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2646 
2647 			perf_pmu_disable(pmu);
2648 
2649 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2650 
2651 			perf_pmu_enable(pmu);
2652 
2653 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2654 		}
2655 	}
2656 
2657 	rcu_read_unlock();
2658 
2659 	local_irq_restore(flags);
2660 }
2661 
2662 static void perf_event_switch(struct task_struct *task,
2663 			      struct task_struct *next_prev, bool sched_in);
2664 
2665 #define for_each_task_context_nr(ctxn)					\
2666 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2667 
2668 /*
2669  * Called from scheduler to remove the events of the current task,
2670  * with interrupts disabled.
2671  *
2672  * We stop each event and update the event value in event->count.
2673  *
2674  * This does not protect us against NMI, but disable()
2675  * sets the disabled bit in the control field of event _before_
2676  * accessing the event control register. If a NMI hits, then it will
2677  * not restart the event.
2678  */
2679 void __perf_event_task_sched_out(struct task_struct *task,
2680 				 struct task_struct *next)
2681 {
2682 	int ctxn;
2683 
2684 	if (__this_cpu_read(perf_sched_cb_usages))
2685 		perf_pmu_sched_task(task, next, false);
2686 
2687 	if (atomic_read(&nr_switch_events))
2688 		perf_event_switch(task, next, false);
2689 
2690 	for_each_task_context_nr(ctxn)
2691 		perf_event_context_sched_out(task, ctxn, next);
2692 
2693 	/*
2694 	 * if cgroup events exist on this CPU, then we need
2695 	 * to check if we have to switch out PMU state.
2696 	 * cgroup event are system-wide mode only
2697 	 */
2698 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2699 		perf_cgroup_sched_out(task, next);
2700 }
2701 
2702 /*
2703  * Called with IRQs disabled
2704  */
2705 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2706 			      enum event_type_t event_type)
2707 {
2708 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2709 }
2710 
2711 static void
2712 ctx_pinned_sched_in(struct perf_event_context *ctx,
2713 		    struct perf_cpu_context *cpuctx)
2714 {
2715 	struct perf_event *event;
2716 
2717 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2718 		if (event->state <= PERF_EVENT_STATE_OFF)
2719 			continue;
2720 		if (!event_filter_match(event))
2721 			continue;
2722 
2723 		/* may need to reset tstamp_enabled */
2724 		if (is_cgroup_event(event))
2725 			perf_cgroup_mark_enabled(event, ctx);
2726 
2727 		if (group_can_go_on(event, cpuctx, 1))
2728 			group_sched_in(event, cpuctx, ctx);
2729 
2730 		/*
2731 		 * If this pinned group hasn't been scheduled,
2732 		 * put it in error state.
2733 		 */
2734 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2735 			update_group_times(event);
2736 			event->state = PERF_EVENT_STATE_ERROR;
2737 		}
2738 	}
2739 }
2740 
2741 static void
2742 ctx_flexible_sched_in(struct perf_event_context *ctx,
2743 		      struct perf_cpu_context *cpuctx)
2744 {
2745 	struct perf_event *event;
2746 	int can_add_hw = 1;
2747 
2748 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2749 		/* Ignore events in OFF or ERROR state */
2750 		if (event->state <= PERF_EVENT_STATE_OFF)
2751 			continue;
2752 		/*
2753 		 * Listen to the 'cpu' scheduling filter constraint
2754 		 * of events:
2755 		 */
2756 		if (!event_filter_match(event))
2757 			continue;
2758 
2759 		/* may need to reset tstamp_enabled */
2760 		if (is_cgroup_event(event))
2761 			perf_cgroup_mark_enabled(event, ctx);
2762 
2763 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2764 			if (group_sched_in(event, cpuctx, ctx))
2765 				can_add_hw = 0;
2766 		}
2767 	}
2768 }
2769 
2770 static void
2771 ctx_sched_in(struct perf_event_context *ctx,
2772 	     struct perf_cpu_context *cpuctx,
2773 	     enum event_type_t event_type,
2774 	     struct task_struct *task)
2775 {
2776 	int is_active = ctx->is_active;
2777 	u64 now;
2778 
2779 	lockdep_assert_held(&ctx->lock);
2780 
2781 	if (likely(!ctx->nr_events))
2782 		return;
2783 
2784 	ctx->is_active |= (event_type | EVENT_TIME);
2785 	if (ctx->task) {
2786 		if (!is_active)
2787 			cpuctx->task_ctx = ctx;
2788 		else
2789 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2790 	}
2791 
2792 	is_active ^= ctx->is_active; /* changed bits */
2793 
2794 	if (is_active & EVENT_TIME) {
2795 		/* start ctx time */
2796 		now = perf_clock();
2797 		ctx->timestamp = now;
2798 		perf_cgroup_set_timestamp(task, ctx);
2799 	}
2800 
2801 	/*
2802 	 * First go through the list and put on any pinned groups
2803 	 * in order to give them the best chance of going on.
2804 	 */
2805 	if (is_active & EVENT_PINNED)
2806 		ctx_pinned_sched_in(ctx, cpuctx);
2807 
2808 	/* Then walk through the lower prio flexible groups */
2809 	if (is_active & EVENT_FLEXIBLE)
2810 		ctx_flexible_sched_in(ctx, cpuctx);
2811 }
2812 
2813 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2814 			     enum event_type_t event_type,
2815 			     struct task_struct *task)
2816 {
2817 	struct perf_event_context *ctx = &cpuctx->ctx;
2818 
2819 	ctx_sched_in(ctx, cpuctx, event_type, task);
2820 }
2821 
2822 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2823 					struct task_struct *task)
2824 {
2825 	struct perf_cpu_context *cpuctx;
2826 
2827 	cpuctx = __get_cpu_context(ctx);
2828 	if (cpuctx->task_ctx == ctx)
2829 		return;
2830 
2831 	perf_ctx_lock(cpuctx, ctx);
2832 	perf_pmu_disable(ctx->pmu);
2833 	/*
2834 	 * We want to keep the following priority order:
2835 	 * cpu pinned (that don't need to move), task pinned,
2836 	 * cpu flexible, task flexible.
2837 	 */
2838 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2839 	perf_event_sched_in(cpuctx, ctx, task);
2840 	perf_pmu_enable(ctx->pmu);
2841 	perf_ctx_unlock(cpuctx, ctx);
2842 }
2843 
2844 /*
2845  * Called from scheduler to add the events of the current task
2846  * with interrupts disabled.
2847  *
2848  * We restore the event value and then enable it.
2849  *
2850  * This does not protect us against NMI, but enable()
2851  * sets the enabled bit in the control field of event _before_
2852  * accessing the event control register. If a NMI hits, then it will
2853  * keep the event running.
2854  */
2855 void __perf_event_task_sched_in(struct task_struct *prev,
2856 				struct task_struct *task)
2857 {
2858 	struct perf_event_context *ctx;
2859 	int ctxn;
2860 
2861 	/*
2862 	 * If cgroup events exist on this CPU, then we need to check if we have
2863 	 * to switch in PMU state; cgroup event are system-wide mode only.
2864 	 *
2865 	 * Since cgroup events are CPU events, we must schedule these in before
2866 	 * we schedule in the task events.
2867 	 */
2868 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2869 		perf_cgroup_sched_in(prev, task);
2870 
2871 	for_each_task_context_nr(ctxn) {
2872 		ctx = task->perf_event_ctxp[ctxn];
2873 		if (likely(!ctx))
2874 			continue;
2875 
2876 		perf_event_context_sched_in(ctx, task);
2877 	}
2878 
2879 	if (atomic_read(&nr_switch_events))
2880 		perf_event_switch(task, prev, true);
2881 
2882 	if (__this_cpu_read(perf_sched_cb_usages))
2883 		perf_pmu_sched_task(prev, task, true);
2884 }
2885 
2886 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2887 {
2888 	u64 frequency = event->attr.sample_freq;
2889 	u64 sec = NSEC_PER_SEC;
2890 	u64 divisor, dividend;
2891 
2892 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2893 
2894 	count_fls = fls64(count);
2895 	nsec_fls = fls64(nsec);
2896 	frequency_fls = fls64(frequency);
2897 	sec_fls = 30;
2898 
2899 	/*
2900 	 * We got @count in @nsec, with a target of sample_freq HZ
2901 	 * the target period becomes:
2902 	 *
2903 	 *             @count * 10^9
2904 	 * period = -------------------
2905 	 *          @nsec * sample_freq
2906 	 *
2907 	 */
2908 
2909 	/*
2910 	 * Reduce accuracy by one bit such that @a and @b converge
2911 	 * to a similar magnitude.
2912 	 */
2913 #define REDUCE_FLS(a, b)		\
2914 do {					\
2915 	if (a##_fls > b##_fls) {	\
2916 		a >>= 1;		\
2917 		a##_fls--;		\
2918 	} else {			\
2919 		b >>= 1;		\
2920 		b##_fls--;		\
2921 	}				\
2922 } while (0)
2923 
2924 	/*
2925 	 * Reduce accuracy until either term fits in a u64, then proceed with
2926 	 * the other, so that finally we can do a u64/u64 division.
2927 	 */
2928 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2929 		REDUCE_FLS(nsec, frequency);
2930 		REDUCE_FLS(sec, count);
2931 	}
2932 
2933 	if (count_fls + sec_fls > 64) {
2934 		divisor = nsec * frequency;
2935 
2936 		while (count_fls + sec_fls > 64) {
2937 			REDUCE_FLS(count, sec);
2938 			divisor >>= 1;
2939 		}
2940 
2941 		dividend = count * sec;
2942 	} else {
2943 		dividend = count * sec;
2944 
2945 		while (nsec_fls + frequency_fls > 64) {
2946 			REDUCE_FLS(nsec, frequency);
2947 			dividend >>= 1;
2948 		}
2949 
2950 		divisor = nsec * frequency;
2951 	}
2952 
2953 	if (!divisor)
2954 		return dividend;
2955 
2956 	return div64_u64(dividend, divisor);
2957 }
2958 
2959 static DEFINE_PER_CPU(int, perf_throttled_count);
2960 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2961 
2962 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2963 {
2964 	struct hw_perf_event *hwc = &event->hw;
2965 	s64 period, sample_period;
2966 	s64 delta;
2967 
2968 	period = perf_calculate_period(event, nsec, count);
2969 
2970 	delta = (s64)(period - hwc->sample_period);
2971 	delta = (delta + 7) / 8; /* low pass filter */
2972 
2973 	sample_period = hwc->sample_period + delta;
2974 
2975 	if (!sample_period)
2976 		sample_period = 1;
2977 
2978 	hwc->sample_period = sample_period;
2979 
2980 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2981 		if (disable)
2982 			event->pmu->stop(event, PERF_EF_UPDATE);
2983 
2984 		local64_set(&hwc->period_left, 0);
2985 
2986 		if (disable)
2987 			event->pmu->start(event, PERF_EF_RELOAD);
2988 	}
2989 }
2990 
2991 /*
2992  * combine freq adjustment with unthrottling to avoid two passes over the
2993  * events. At the same time, make sure, having freq events does not change
2994  * the rate of unthrottling as that would introduce bias.
2995  */
2996 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2997 					   int needs_unthr)
2998 {
2999 	struct perf_event *event;
3000 	struct hw_perf_event *hwc;
3001 	u64 now, period = TICK_NSEC;
3002 	s64 delta;
3003 
3004 	/*
3005 	 * only need to iterate over all events iff:
3006 	 * - context have events in frequency mode (needs freq adjust)
3007 	 * - there are events to unthrottle on this cpu
3008 	 */
3009 	if (!(ctx->nr_freq || needs_unthr))
3010 		return;
3011 
3012 	raw_spin_lock(&ctx->lock);
3013 	perf_pmu_disable(ctx->pmu);
3014 
3015 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3016 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3017 			continue;
3018 
3019 		if (!event_filter_match(event))
3020 			continue;
3021 
3022 		perf_pmu_disable(event->pmu);
3023 
3024 		hwc = &event->hw;
3025 
3026 		if (hwc->interrupts == MAX_INTERRUPTS) {
3027 			hwc->interrupts = 0;
3028 			perf_log_throttle(event, 1);
3029 			event->pmu->start(event, 0);
3030 		}
3031 
3032 		if (!event->attr.freq || !event->attr.sample_freq)
3033 			goto next;
3034 
3035 		/*
3036 		 * stop the event and update event->count
3037 		 */
3038 		event->pmu->stop(event, PERF_EF_UPDATE);
3039 
3040 		now = local64_read(&event->count);
3041 		delta = now - hwc->freq_count_stamp;
3042 		hwc->freq_count_stamp = now;
3043 
3044 		/*
3045 		 * restart the event
3046 		 * reload only if value has changed
3047 		 * we have stopped the event so tell that
3048 		 * to perf_adjust_period() to avoid stopping it
3049 		 * twice.
3050 		 */
3051 		if (delta > 0)
3052 			perf_adjust_period(event, period, delta, false);
3053 
3054 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3055 	next:
3056 		perf_pmu_enable(event->pmu);
3057 	}
3058 
3059 	perf_pmu_enable(ctx->pmu);
3060 	raw_spin_unlock(&ctx->lock);
3061 }
3062 
3063 /*
3064  * Round-robin a context's events:
3065  */
3066 static void rotate_ctx(struct perf_event_context *ctx)
3067 {
3068 	/*
3069 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3070 	 * disabled by the inheritance code.
3071 	 */
3072 	if (!ctx->rotate_disable)
3073 		list_rotate_left(&ctx->flexible_groups);
3074 }
3075 
3076 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3077 {
3078 	struct perf_event_context *ctx = NULL;
3079 	int rotate = 0;
3080 
3081 	if (cpuctx->ctx.nr_events) {
3082 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3083 			rotate = 1;
3084 	}
3085 
3086 	ctx = cpuctx->task_ctx;
3087 	if (ctx && ctx->nr_events) {
3088 		if (ctx->nr_events != ctx->nr_active)
3089 			rotate = 1;
3090 	}
3091 
3092 	if (!rotate)
3093 		goto done;
3094 
3095 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3096 	perf_pmu_disable(cpuctx->ctx.pmu);
3097 
3098 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3099 	if (ctx)
3100 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3101 
3102 	rotate_ctx(&cpuctx->ctx);
3103 	if (ctx)
3104 		rotate_ctx(ctx);
3105 
3106 	perf_event_sched_in(cpuctx, ctx, current);
3107 
3108 	perf_pmu_enable(cpuctx->ctx.pmu);
3109 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3110 done:
3111 
3112 	return rotate;
3113 }
3114 
3115 #ifdef CONFIG_NO_HZ_FULL
3116 bool perf_event_can_stop_tick(void)
3117 {
3118 	if (atomic_read(&nr_freq_events) ||
3119 	    __this_cpu_read(perf_throttled_count))
3120 		return false;
3121 	else
3122 		return true;
3123 }
3124 #endif
3125 
3126 void perf_event_task_tick(void)
3127 {
3128 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3129 	struct perf_event_context *ctx, *tmp;
3130 	int throttled;
3131 
3132 	WARN_ON(!irqs_disabled());
3133 
3134 	__this_cpu_inc(perf_throttled_seq);
3135 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3136 
3137 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3138 		perf_adjust_freq_unthr_context(ctx, throttled);
3139 }
3140 
3141 static int event_enable_on_exec(struct perf_event *event,
3142 				struct perf_event_context *ctx)
3143 {
3144 	if (!event->attr.enable_on_exec)
3145 		return 0;
3146 
3147 	event->attr.enable_on_exec = 0;
3148 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3149 		return 0;
3150 
3151 	__perf_event_mark_enabled(event);
3152 
3153 	return 1;
3154 }
3155 
3156 /*
3157  * Enable all of a task's events that have been marked enable-on-exec.
3158  * This expects task == current.
3159  */
3160 static void perf_event_enable_on_exec(int ctxn)
3161 {
3162 	struct perf_event_context *ctx, *clone_ctx = NULL;
3163 	struct perf_cpu_context *cpuctx;
3164 	struct perf_event *event;
3165 	unsigned long flags;
3166 	int enabled = 0;
3167 
3168 	local_irq_save(flags);
3169 	ctx = current->perf_event_ctxp[ctxn];
3170 	if (!ctx || !ctx->nr_events)
3171 		goto out;
3172 
3173 	cpuctx = __get_cpu_context(ctx);
3174 	perf_ctx_lock(cpuctx, ctx);
3175 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3176 	list_for_each_entry(event, &ctx->event_list, event_entry)
3177 		enabled |= event_enable_on_exec(event, ctx);
3178 
3179 	/*
3180 	 * Unclone and reschedule this context if we enabled any event.
3181 	 */
3182 	if (enabled) {
3183 		clone_ctx = unclone_ctx(ctx);
3184 		ctx_resched(cpuctx, ctx);
3185 	}
3186 	perf_ctx_unlock(cpuctx, ctx);
3187 
3188 out:
3189 	local_irq_restore(flags);
3190 
3191 	if (clone_ctx)
3192 		put_ctx(clone_ctx);
3193 }
3194 
3195 void perf_event_exec(void)
3196 {
3197 	int ctxn;
3198 
3199 	rcu_read_lock();
3200 	for_each_task_context_nr(ctxn)
3201 		perf_event_enable_on_exec(ctxn);
3202 	rcu_read_unlock();
3203 }
3204 
3205 struct perf_read_data {
3206 	struct perf_event *event;
3207 	bool group;
3208 	int ret;
3209 };
3210 
3211 /*
3212  * Cross CPU call to read the hardware event
3213  */
3214 static void __perf_event_read(void *info)
3215 {
3216 	struct perf_read_data *data = info;
3217 	struct perf_event *sub, *event = data->event;
3218 	struct perf_event_context *ctx = event->ctx;
3219 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3220 	struct pmu *pmu = event->pmu;
3221 
3222 	/*
3223 	 * If this is a task context, we need to check whether it is
3224 	 * the current task context of this cpu.  If not it has been
3225 	 * scheduled out before the smp call arrived.  In that case
3226 	 * event->count would have been updated to a recent sample
3227 	 * when the event was scheduled out.
3228 	 */
3229 	if (ctx->task && cpuctx->task_ctx != ctx)
3230 		return;
3231 
3232 	raw_spin_lock(&ctx->lock);
3233 	if (ctx->is_active) {
3234 		update_context_time(ctx);
3235 		update_cgrp_time_from_event(event);
3236 	}
3237 
3238 	update_event_times(event);
3239 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3240 		goto unlock;
3241 
3242 	if (!data->group) {
3243 		pmu->read(event);
3244 		data->ret = 0;
3245 		goto unlock;
3246 	}
3247 
3248 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3249 
3250 	pmu->read(event);
3251 
3252 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3253 		update_event_times(sub);
3254 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3255 			/*
3256 			 * Use sibling's PMU rather than @event's since
3257 			 * sibling could be on different (eg: software) PMU.
3258 			 */
3259 			sub->pmu->read(sub);
3260 		}
3261 	}
3262 
3263 	data->ret = pmu->commit_txn(pmu);
3264 
3265 unlock:
3266 	raw_spin_unlock(&ctx->lock);
3267 }
3268 
3269 static inline u64 perf_event_count(struct perf_event *event)
3270 {
3271 	if (event->pmu->count)
3272 		return event->pmu->count(event);
3273 
3274 	return __perf_event_count(event);
3275 }
3276 
3277 /*
3278  * NMI-safe method to read a local event, that is an event that
3279  * is:
3280  *   - either for the current task, or for this CPU
3281  *   - does not have inherit set, for inherited task events
3282  *     will not be local and we cannot read them atomically
3283  *   - must not have a pmu::count method
3284  */
3285 u64 perf_event_read_local(struct perf_event *event)
3286 {
3287 	unsigned long flags;
3288 	u64 val;
3289 
3290 	/*
3291 	 * Disabling interrupts avoids all counter scheduling (context
3292 	 * switches, timer based rotation and IPIs).
3293 	 */
3294 	local_irq_save(flags);
3295 
3296 	/* If this is a per-task event, it must be for current */
3297 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3298 		     event->hw.target != current);
3299 
3300 	/* If this is a per-CPU event, it must be for this CPU */
3301 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3302 		     event->cpu != smp_processor_id());
3303 
3304 	/*
3305 	 * It must not be an event with inherit set, we cannot read
3306 	 * all child counters from atomic context.
3307 	 */
3308 	WARN_ON_ONCE(event->attr.inherit);
3309 
3310 	/*
3311 	 * It must not have a pmu::count method, those are not
3312 	 * NMI safe.
3313 	 */
3314 	WARN_ON_ONCE(event->pmu->count);
3315 
3316 	/*
3317 	 * If the event is currently on this CPU, its either a per-task event,
3318 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3319 	 * oncpu == -1).
3320 	 */
3321 	if (event->oncpu == smp_processor_id())
3322 		event->pmu->read(event);
3323 
3324 	val = local64_read(&event->count);
3325 	local_irq_restore(flags);
3326 
3327 	return val;
3328 }
3329 
3330 static int perf_event_read(struct perf_event *event, bool group)
3331 {
3332 	int ret = 0;
3333 
3334 	/*
3335 	 * If event is enabled and currently active on a CPU, update the
3336 	 * value in the event structure:
3337 	 */
3338 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3339 		struct perf_read_data data = {
3340 			.event = event,
3341 			.group = group,
3342 			.ret = 0,
3343 		};
3344 		smp_call_function_single(event->oncpu,
3345 					 __perf_event_read, &data, 1);
3346 		ret = data.ret;
3347 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3348 		struct perf_event_context *ctx = event->ctx;
3349 		unsigned long flags;
3350 
3351 		raw_spin_lock_irqsave(&ctx->lock, flags);
3352 		/*
3353 		 * may read while context is not active
3354 		 * (e.g., thread is blocked), in that case
3355 		 * we cannot update context time
3356 		 */
3357 		if (ctx->is_active) {
3358 			update_context_time(ctx);
3359 			update_cgrp_time_from_event(event);
3360 		}
3361 		if (group)
3362 			update_group_times(event);
3363 		else
3364 			update_event_times(event);
3365 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3366 	}
3367 
3368 	return ret;
3369 }
3370 
3371 /*
3372  * Initialize the perf_event context in a task_struct:
3373  */
3374 static void __perf_event_init_context(struct perf_event_context *ctx)
3375 {
3376 	raw_spin_lock_init(&ctx->lock);
3377 	mutex_init(&ctx->mutex);
3378 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3379 	INIT_LIST_HEAD(&ctx->pinned_groups);
3380 	INIT_LIST_HEAD(&ctx->flexible_groups);
3381 	INIT_LIST_HEAD(&ctx->event_list);
3382 	atomic_set(&ctx->refcount, 1);
3383 }
3384 
3385 static struct perf_event_context *
3386 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3387 {
3388 	struct perf_event_context *ctx;
3389 
3390 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3391 	if (!ctx)
3392 		return NULL;
3393 
3394 	__perf_event_init_context(ctx);
3395 	if (task) {
3396 		ctx->task = task;
3397 		get_task_struct(task);
3398 	}
3399 	ctx->pmu = pmu;
3400 
3401 	return ctx;
3402 }
3403 
3404 static struct task_struct *
3405 find_lively_task_by_vpid(pid_t vpid)
3406 {
3407 	struct task_struct *task;
3408 	int err;
3409 
3410 	rcu_read_lock();
3411 	if (!vpid)
3412 		task = current;
3413 	else
3414 		task = find_task_by_vpid(vpid);
3415 	if (task)
3416 		get_task_struct(task);
3417 	rcu_read_unlock();
3418 
3419 	if (!task)
3420 		return ERR_PTR(-ESRCH);
3421 
3422 	/* Reuse ptrace permission checks for now. */
3423 	err = -EACCES;
3424 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3425 		goto errout;
3426 
3427 	return task;
3428 errout:
3429 	put_task_struct(task);
3430 	return ERR_PTR(err);
3431 
3432 }
3433 
3434 /*
3435  * Returns a matching context with refcount and pincount.
3436  */
3437 static struct perf_event_context *
3438 find_get_context(struct pmu *pmu, struct task_struct *task,
3439 		struct perf_event *event)
3440 {
3441 	struct perf_event_context *ctx, *clone_ctx = NULL;
3442 	struct perf_cpu_context *cpuctx;
3443 	void *task_ctx_data = NULL;
3444 	unsigned long flags;
3445 	int ctxn, err;
3446 	int cpu = event->cpu;
3447 
3448 	if (!task) {
3449 		/* Must be root to operate on a CPU event: */
3450 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3451 			return ERR_PTR(-EACCES);
3452 
3453 		/*
3454 		 * We could be clever and allow to attach a event to an
3455 		 * offline CPU and activate it when the CPU comes up, but
3456 		 * that's for later.
3457 		 */
3458 		if (!cpu_online(cpu))
3459 			return ERR_PTR(-ENODEV);
3460 
3461 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3462 		ctx = &cpuctx->ctx;
3463 		get_ctx(ctx);
3464 		++ctx->pin_count;
3465 
3466 		return ctx;
3467 	}
3468 
3469 	err = -EINVAL;
3470 	ctxn = pmu->task_ctx_nr;
3471 	if (ctxn < 0)
3472 		goto errout;
3473 
3474 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3475 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3476 		if (!task_ctx_data) {
3477 			err = -ENOMEM;
3478 			goto errout;
3479 		}
3480 	}
3481 
3482 retry:
3483 	ctx = perf_lock_task_context(task, ctxn, &flags);
3484 	if (ctx) {
3485 		clone_ctx = unclone_ctx(ctx);
3486 		++ctx->pin_count;
3487 
3488 		if (task_ctx_data && !ctx->task_ctx_data) {
3489 			ctx->task_ctx_data = task_ctx_data;
3490 			task_ctx_data = NULL;
3491 		}
3492 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3493 
3494 		if (clone_ctx)
3495 			put_ctx(clone_ctx);
3496 	} else {
3497 		ctx = alloc_perf_context(pmu, task);
3498 		err = -ENOMEM;
3499 		if (!ctx)
3500 			goto errout;
3501 
3502 		if (task_ctx_data) {
3503 			ctx->task_ctx_data = task_ctx_data;
3504 			task_ctx_data = NULL;
3505 		}
3506 
3507 		err = 0;
3508 		mutex_lock(&task->perf_event_mutex);
3509 		/*
3510 		 * If it has already passed perf_event_exit_task().
3511 		 * we must see PF_EXITING, it takes this mutex too.
3512 		 */
3513 		if (task->flags & PF_EXITING)
3514 			err = -ESRCH;
3515 		else if (task->perf_event_ctxp[ctxn])
3516 			err = -EAGAIN;
3517 		else {
3518 			get_ctx(ctx);
3519 			++ctx->pin_count;
3520 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3521 		}
3522 		mutex_unlock(&task->perf_event_mutex);
3523 
3524 		if (unlikely(err)) {
3525 			put_ctx(ctx);
3526 
3527 			if (err == -EAGAIN)
3528 				goto retry;
3529 			goto errout;
3530 		}
3531 	}
3532 
3533 	kfree(task_ctx_data);
3534 	return ctx;
3535 
3536 errout:
3537 	kfree(task_ctx_data);
3538 	return ERR_PTR(err);
3539 }
3540 
3541 static void perf_event_free_filter(struct perf_event *event);
3542 static void perf_event_free_bpf_prog(struct perf_event *event);
3543 
3544 static void free_event_rcu(struct rcu_head *head)
3545 {
3546 	struct perf_event *event;
3547 
3548 	event = container_of(head, struct perf_event, rcu_head);
3549 	if (event->ns)
3550 		put_pid_ns(event->ns);
3551 	perf_event_free_filter(event);
3552 	kfree(event);
3553 }
3554 
3555 static void ring_buffer_attach(struct perf_event *event,
3556 			       struct ring_buffer *rb);
3557 
3558 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3559 {
3560 	if (event->parent)
3561 		return;
3562 
3563 	if (is_cgroup_event(event))
3564 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3565 }
3566 
3567 static void unaccount_event(struct perf_event *event)
3568 {
3569 	bool dec = false;
3570 
3571 	if (event->parent)
3572 		return;
3573 
3574 	if (event->attach_state & PERF_ATTACH_TASK)
3575 		dec = true;
3576 	if (event->attr.mmap || event->attr.mmap_data)
3577 		atomic_dec(&nr_mmap_events);
3578 	if (event->attr.comm)
3579 		atomic_dec(&nr_comm_events);
3580 	if (event->attr.task)
3581 		atomic_dec(&nr_task_events);
3582 	if (event->attr.freq)
3583 		atomic_dec(&nr_freq_events);
3584 	if (event->attr.context_switch) {
3585 		dec = true;
3586 		atomic_dec(&nr_switch_events);
3587 	}
3588 	if (is_cgroup_event(event))
3589 		dec = true;
3590 	if (has_branch_stack(event))
3591 		dec = true;
3592 
3593 	if (dec) {
3594 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3595 			schedule_delayed_work(&perf_sched_work, HZ);
3596 	}
3597 
3598 	unaccount_event_cpu(event, event->cpu);
3599 }
3600 
3601 static void perf_sched_delayed(struct work_struct *work)
3602 {
3603 	mutex_lock(&perf_sched_mutex);
3604 	if (atomic_dec_and_test(&perf_sched_count))
3605 		static_branch_disable(&perf_sched_events);
3606 	mutex_unlock(&perf_sched_mutex);
3607 }
3608 
3609 /*
3610  * The following implement mutual exclusion of events on "exclusive" pmus
3611  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3612  * at a time, so we disallow creating events that might conflict, namely:
3613  *
3614  *  1) cpu-wide events in the presence of per-task events,
3615  *  2) per-task events in the presence of cpu-wide events,
3616  *  3) two matching events on the same context.
3617  *
3618  * The former two cases are handled in the allocation path (perf_event_alloc(),
3619  * _free_event()), the latter -- before the first perf_install_in_context().
3620  */
3621 static int exclusive_event_init(struct perf_event *event)
3622 {
3623 	struct pmu *pmu = event->pmu;
3624 
3625 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3626 		return 0;
3627 
3628 	/*
3629 	 * Prevent co-existence of per-task and cpu-wide events on the
3630 	 * same exclusive pmu.
3631 	 *
3632 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3633 	 * events on this "exclusive" pmu, positive means there are
3634 	 * per-task events.
3635 	 *
3636 	 * Since this is called in perf_event_alloc() path, event::ctx
3637 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3638 	 * to mean "per-task event", because unlike other attach states it
3639 	 * never gets cleared.
3640 	 */
3641 	if (event->attach_state & PERF_ATTACH_TASK) {
3642 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3643 			return -EBUSY;
3644 	} else {
3645 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3646 			return -EBUSY;
3647 	}
3648 
3649 	return 0;
3650 }
3651 
3652 static void exclusive_event_destroy(struct perf_event *event)
3653 {
3654 	struct pmu *pmu = event->pmu;
3655 
3656 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3657 		return;
3658 
3659 	/* see comment in exclusive_event_init() */
3660 	if (event->attach_state & PERF_ATTACH_TASK)
3661 		atomic_dec(&pmu->exclusive_cnt);
3662 	else
3663 		atomic_inc(&pmu->exclusive_cnt);
3664 }
3665 
3666 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3667 {
3668 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3669 	    (e1->cpu == e2->cpu ||
3670 	     e1->cpu == -1 ||
3671 	     e2->cpu == -1))
3672 		return true;
3673 	return false;
3674 }
3675 
3676 /* Called under the same ctx::mutex as perf_install_in_context() */
3677 static bool exclusive_event_installable(struct perf_event *event,
3678 					struct perf_event_context *ctx)
3679 {
3680 	struct perf_event *iter_event;
3681 	struct pmu *pmu = event->pmu;
3682 
3683 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3684 		return true;
3685 
3686 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3687 		if (exclusive_event_match(iter_event, event))
3688 			return false;
3689 	}
3690 
3691 	return true;
3692 }
3693 
3694 static void _free_event(struct perf_event *event)
3695 {
3696 	irq_work_sync(&event->pending);
3697 
3698 	unaccount_event(event);
3699 
3700 	if (event->rb) {
3701 		/*
3702 		 * Can happen when we close an event with re-directed output.
3703 		 *
3704 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3705 		 * over us; possibly making our ring_buffer_put() the last.
3706 		 */
3707 		mutex_lock(&event->mmap_mutex);
3708 		ring_buffer_attach(event, NULL);
3709 		mutex_unlock(&event->mmap_mutex);
3710 	}
3711 
3712 	if (is_cgroup_event(event))
3713 		perf_detach_cgroup(event);
3714 
3715 	if (!event->parent) {
3716 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3717 			put_callchain_buffers();
3718 	}
3719 
3720 	perf_event_free_bpf_prog(event);
3721 
3722 	if (event->destroy)
3723 		event->destroy(event);
3724 
3725 	if (event->ctx)
3726 		put_ctx(event->ctx);
3727 
3728 	if (event->pmu) {
3729 		exclusive_event_destroy(event);
3730 		module_put(event->pmu->module);
3731 	}
3732 
3733 	call_rcu(&event->rcu_head, free_event_rcu);
3734 }
3735 
3736 /*
3737  * Used to free events which have a known refcount of 1, such as in error paths
3738  * where the event isn't exposed yet and inherited events.
3739  */
3740 static void free_event(struct perf_event *event)
3741 {
3742 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3743 				"unexpected event refcount: %ld; ptr=%p\n",
3744 				atomic_long_read(&event->refcount), event)) {
3745 		/* leak to avoid use-after-free */
3746 		return;
3747 	}
3748 
3749 	_free_event(event);
3750 }
3751 
3752 /*
3753  * Remove user event from the owner task.
3754  */
3755 static void perf_remove_from_owner(struct perf_event *event)
3756 {
3757 	struct task_struct *owner;
3758 
3759 	rcu_read_lock();
3760 	/*
3761 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3762 	 * observe !owner it means the list deletion is complete and we can
3763 	 * indeed free this event, otherwise we need to serialize on
3764 	 * owner->perf_event_mutex.
3765 	 */
3766 	owner = lockless_dereference(event->owner);
3767 	if (owner) {
3768 		/*
3769 		 * Since delayed_put_task_struct() also drops the last
3770 		 * task reference we can safely take a new reference
3771 		 * while holding the rcu_read_lock().
3772 		 */
3773 		get_task_struct(owner);
3774 	}
3775 	rcu_read_unlock();
3776 
3777 	if (owner) {
3778 		/*
3779 		 * If we're here through perf_event_exit_task() we're already
3780 		 * holding ctx->mutex which would be an inversion wrt. the
3781 		 * normal lock order.
3782 		 *
3783 		 * However we can safely take this lock because its the child
3784 		 * ctx->mutex.
3785 		 */
3786 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3787 
3788 		/*
3789 		 * We have to re-check the event->owner field, if it is cleared
3790 		 * we raced with perf_event_exit_task(), acquiring the mutex
3791 		 * ensured they're done, and we can proceed with freeing the
3792 		 * event.
3793 		 */
3794 		if (event->owner) {
3795 			list_del_init(&event->owner_entry);
3796 			smp_store_release(&event->owner, NULL);
3797 		}
3798 		mutex_unlock(&owner->perf_event_mutex);
3799 		put_task_struct(owner);
3800 	}
3801 }
3802 
3803 static void put_event(struct perf_event *event)
3804 {
3805 	if (!atomic_long_dec_and_test(&event->refcount))
3806 		return;
3807 
3808 	_free_event(event);
3809 }
3810 
3811 /*
3812  * Kill an event dead; while event:refcount will preserve the event
3813  * object, it will not preserve its functionality. Once the last 'user'
3814  * gives up the object, we'll destroy the thing.
3815  */
3816 int perf_event_release_kernel(struct perf_event *event)
3817 {
3818 	struct perf_event_context *ctx = event->ctx;
3819 	struct perf_event *child, *tmp;
3820 
3821 	/*
3822 	 * If we got here through err_file: fput(event_file); we will not have
3823 	 * attached to a context yet.
3824 	 */
3825 	if (!ctx) {
3826 		WARN_ON_ONCE(event->attach_state &
3827 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3828 		goto no_ctx;
3829 	}
3830 
3831 	if (!is_kernel_event(event))
3832 		perf_remove_from_owner(event);
3833 
3834 	ctx = perf_event_ctx_lock(event);
3835 	WARN_ON_ONCE(ctx->parent_ctx);
3836 	perf_remove_from_context(event, DETACH_GROUP);
3837 
3838 	raw_spin_lock_irq(&ctx->lock);
3839 	/*
3840 	 * Mark this even as STATE_DEAD, there is no external reference to it
3841 	 * anymore.
3842 	 *
3843 	 * Anybody acquiring event->child_mutex after the below loop _must_
3844 	 * also see this, most importantly inherit_event() which will avoid
3845 	 * placing more children on the list.
3846 	 *
3847 	 * Thus this guarantees that we will in fact observe and kill _ALL_
3848 	 * child events.
3849 	 */
3850 	event->state = PERF_EVENT_STATE_DEAD;
3851 	raw_spin_unlock_irq(&ctx->lock);
3852 
3853 	perf_event_ctx_unlock(event, ctx);
3854 
3855 again:
3856 	mutex_lock(&event->child_mutex);
3857 	list_for_each_entry(child, &event->child_list, child_list) {
3858 
3859 		/*
3860 		 * Cannot change, child events are not migrated, see the
3861 		 * comment with perf_event_ctx_lock_nested().
3862 		 */
3863 		ctx = lockless_dereference(child->ctx);
3864 		/*
3865 		 * Since child_mutex nests inside ctx::mutex, we must jump
3866 		 * through hoops. We start by grabbing a reference on the ctx.
3867 		 *
3868 		 * Since the event cannot get freed while we hold the
3869 		 * child_mutex, the context must also exist and have a !0
3870 		 * reference count.
3871 		 */
3872 		get_ctx(ctx);
3873 
3874 		/*
3875 		 * Now that we have a ctx ref, we can drop child_mutex, and
3876 		 * acquire ctx::mutex without fear of it going away. Then we
3877 		 * can re-acquire child_mutex.
3878 		 */
3879 		mutex_unlock(&event->child_mutex);
3880 		mutex_lock(&ctx->mutex);
3881 		mutex_lock(&event->child_mutex);
3882 
3883 		/*
3884 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
3885 		 * state, if child is still the first entry, it didn't get freed
3886 		 * and we can continue doing so.
3887 		 */
3888 		tmp = list_first_entry_or_null(&event->child_list,
3889 					       struct perf_event, child_list);
3890 		if (tmp == child) {
3891 			perf_remove_from_context(child, DETACH_GROUP);
3892 			list_del(&child->child_list);
3893 			free_event(child);
3894 			/*
3895 			 * This matches the refcount bump in inherit_event();
3896 			 * this can't be the last reference.
3897 			 */
3898 			put_event(event);
3899 		}
3900 
3901 		mutex_unlock(&event->child_mutex);
3902 		mutex_unlock(&ctx->mutex);
3903 		put_ctx(ctx);
3904 		goto again;
3905 	}
3906 	mutex_unlock(&event->child_mutex);
3907 
3908 no_ctx:
3909 	put_event(event); /* Must be the 'last' reference */
3910 	return 0;
3911 }
3912 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3913 
3914 /*
3915  * Called when the last reference to the file is gone.
3916  */
3917 static int perf_release(struct inode *inode, struct file *file)
3918 {
3919 	perf_event_release_kernel(file->private_data);
3920 	return 0;
3921 }
3922 
3923 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3924 {
3925 	struct perf_event *child;
3926 	u64 total = 0;
3927 
3928 	*enabled = 0;
3929 	*running = 0;
3930 
3931 	mutex_lock(&event->child_mutex);
3932 
3933 	(void)perf_event_read(event, false);
3934 	total += perf_event_count(event);
3935 
3936 	*enabled += event->total_time_enabled +
3937 			atomic64_read(&event->child_total_time_enabled);
3938 	*running += event->total_time_running +
3939 			atomic64_read(&event->child_total_time_running);
3940 
3941 	list_for_each_entry(child, &event->child_list, child_list) {
3942 		(void)perf_event_read(child, false);
3943 		total += perf_event_count(child);
3944 		*enabled += child->total_time_enabled;
3945 		*running += child->total_time_running;
3946 	}
3947 	mutex_unlock(&event->child_mutex);
3948 
3949 	return total;
3950 }
3951 EXPORT_SYMBOL_GPL(perf_event_read_value);
3952 
3953 static int __perf_read_group_add(struct perf_event *leader,
3954 					u64 read_format, u64 *values)
3955 {
3956 	struct perf_event *sub;
3957 	int n = 1; /* skip @nr */
3958 	int ret;
3959 
3960 	ret = perf_event_read(leader, true);
3961 	if (ret)
3962 		return ret;
3963 
3964 	/*
3965 	 * Since we co-schedule groups, {enabled,running} times of siblings
3966 	 * will be identical to those of the leader, so we only publish one
3967 	 * set.
3968 	 */
3969 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3970 		values[n++] += leader->total_time_enabled +
3971 			atomic64_read(&leader->child_total_time_enabled);
3972 	}
3973 
3974 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3975 		values[n++] += leader->total_time_running +
3976 			atomic64_read(&leader->child_total_time_running);
3977 	}
3978 
3979 	/*
3980 	 * Write {count,id} tuples for every sibling.
3981 	 */
3982 	values[n++] += perf_event_count(leader);
3983 	if (read_format & PERF_FORMAT_ID)
3984 		values[n++] = primary_event_id(leader);
3985 
3986 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3987 		values[n++] += perf_event_count(sub);
3988 		if (read_format & PERF_FORMAT_ID)
3989 			values[n++] = primary_event_id(sub);
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 static int perf_read_group(struct perf_event *event,
3996 				   u64 read_format, char __user *buf)
3997 {
3998 	struct perf_event *leader = event->group_leader, *child;
3999 	struct perf_event_context *ctx = leader->ctx;
4000 	int ret;
4001 	u64 *values;
4002 
4003 	lockdep_assert_held(&ctx->mutex);
4004 
4005 	values = kzalloc(event->read_size, GFP_KERNEL);
4006 	if (!values)
4007 		return -ENOMEM;
4008 
4009 	values[0] = 1 + leader->nr_siblings;
4010 
4011 	/*
4012 	 * By locking the child_mutex of the leader we effectively
4013 	 * lock the child list of all siblings.. XXX explain how.
4014 	 */
4015 	mutex_lock(&leader->child_mutex);
4016 
4017 	ret = __perf_read_group_add(leader, read_format, values);
4018 	if (ret)
4019 		goto unlock;
4020 
4021 	list_for_each_entry(child, &leader->child_list, child_list) {
4022 		ret = __perf_read_group_add(child, read_format, values);
4023 		if (ret)
4024 			goto unlock;
4025 	}
4026 
4027 	mutex_unlock(&leader->child_mutex);
4028 
4029 	ret = event->read_size;
4030 	if (copy_to_user(buf, values, event->read_size))
4031 		ret = -EFAULT;
4032 	goto out;
4033 
4034 unlock:
4035 	mutex_unlock(&leader->child_mutex);
4036 out:
4037 	kfree(values);
4038 	return ret;
4039 }
4040 
4041 static int perf_read_one(struct perf_event *event,
4042 				 u64 read_format, char __user *buf)
4043 {
4044 	u64 enabled, running;
4045 	u64 values[4];
4046 	int n = 0;
4047 
4048 	values[n++] = perf_event_read_value(event, &enabled, &running);
4049 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4050 		values[n++] = enabled;
4051 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4052 		values[n++] = running;
4053 	if (read_format & PERF_FORMAT_ID)
4054 		values[n++] = primary_event_id(event);
4055 
4056 	if (copy_to_user(buf, values, n * sizeof(u64)))
4057 		return -EFAULT;
4058 
4059 	return n * sizeof(u64);
4060 }
4061 
4062 static bool is_event_hup(struct perf_event *event)
4063 {
4064 	bool no_children;
4065 
4066 	if (event->state > PERF_EVENT_STATE_EXIT)
4067 		return false;
4068 
4069 	mutex_lock(&event->child_mutex);
4070 	no_children = list_empty(&event->child_list);
4071 	mutex_unlock(&event->child_mutex);
4072 	return no_children;
4073 }
4074 
4075 /*
4076  * Read the performance event - simple non blocking version for now
4077  */
4078 static ssize_t
4079 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4080 {
4081 	u64 read_format = event->attr.read_format;
4082 	int ret;
4083 
4084 	/*
4085 	 * Return end-of-file for a read on a event that is in
4086 	 * error state (i.e. because it was pinned but it couldn't be
4087 	 * scheduled on to the CPU at some point).
4088 	 */
4089 	if (event->state == PERF_EVENT_STATE_ERROR)
4090 		return 0;
4091 
4092 	if (count < event->read_size)
4093 		return -ENOSPC;
4094 
4095 	WARN_ON_ONCE(event->ctx->parent_ctx);
4096 	if (read_format & PERF_FORMAT_GROUP)
4097 		ret = perf_read_group(event, read_format, buf);
4098 	else
4099 		ret = perf_read_one(event, read_format, buf);
4100 
4101 	return ret;
4102 }
4103 
4104 static ssize_t
4105 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4106 {
4107 	struct perf_event *event = file->private_data;
4108 	struct perf_event_context *ctx;
4109 	int ret;
4110 
4111 	ctx = perf_event_ctx_lock(event);
4112 	ret = __perf_read(event, buf, count);
4113 	perf_event_ctx_unlock(event, ctx);
4114 
4115 	return ret;
4116 }
4117 
4118 static unsigned int perf_poll(struct file *file, poll_table *wait)
4119 {
4120 	struct perf_event *event = file->private_data;
4121 	struct ring_buffer *rb;
4122 	unsigned int events = POLLHUP;
4123 
4124 	poll_wait(file, &event->waitq, wait);
4125 
4126 	if (is_event_hup(event))
4127 		return events;
4128 
4129 	/*
4130 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4131 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4132 	 */
4133 	mutex_lock(&event->mmap_mutex);
4134 	rb = event->rb;
4135 	if (rb)
4136 		events = atomic_xchg(&rb->poll, 0);
4137 	mutex_unlock(&event->mmap_mutex);
4138 	return events;
4139 }
4140 
4141 static void _perf_event_reset(struct perf_event *event)
4142 {
4143 	(void)perf_event_read(event, false);
4144 	local64_set(&event->count, 0);
4145 	perf_event_update_userpage(event);
4146 }
4147 
4148 /*
4149  * Holding the top-level event's child_mutex means that any
4150  * descendant process that has inherited this event will block
4151  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4152  * task existence requirements of perf_event_enable/disable.
4153  */
4154 static void perf_event_for_each_child(struct perf_event *event,
4155 					void (*func)(struct perf_event *))
4156 {
4157 	struct perf_event *child;
4158 
4159 	WARN_ON_ONCE(event->ctx->parent_ctx);
4160 
4161 	mutex_lock(&event->child_mutex);
4162 	func(event);
4163 	list_for_each_entry(child, &event->child_list, child_list)
4164 		func(child);
4165 	mutex_unlock(&event->child_mutex);
4166 }
4167 
4168 static void perf_event_for_each(struct perf_event *event,
4169 				  void (*func)(struct perf_event *))
4170 {
4171 	struct perf_event_context *ctx = event->ctx;
4172 	struct perf_event *sibling;
4173 
4174 	lockdep_assert_held(&ctx->mutex);
4175 
4176 	event = event->group_leader;
4177 
4178 	perf_event_for_each_child(event, func);
4179 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4180 		perf_event_for_each_child(sibling, func);
4181 }
4182 
4183 static void __perf_event_period(struct perf_event *event,
4184 				struct perf_cpu_context *cpuctx,
4185 				struct perf_event_context *ctx,
4186 				void *info)
4187 {
4188 	u64 value = *((u64 *)info);
4189 	bool active;
4190 
4191 	if (event->attr.freq) {
4192 		event->attr.sample_freq = value;
4193 	} else {
4194 		event->attr.sample_period = value;
4195 		event->hw.sample_period = value;
4196 	}
4197 
4198 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4199 	if (active) {
4200 		perf_pmu_disable(ctx->pmu);
4201 		event->pmu->stop(event, PERF_EF_UPDATE);
4202 	}
4203 
4204 	local64_set(&event->hw.period_left, 0);
4205 
4206 	if (active) {
4207 		event->pmu->start(event, PERF_EF_RELOAD);
4208 		perf_pmu_enable(ctx->pmu);
4209 	}
4210 }
4211 
4212 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4213 {
4214 	u64 value;
4215 
4216 	if (!is_sampling_event(event))
4217 		return -EINVAL;
4218 
4219 	if (copy_from_user(&value, arg, sizeof(value)))
4220 		return -EFAULT;
4221 
4222 	if (!value)
4223 		return -EINVAL;
4224 
4225 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4226 		return -EINVAL;
4227 
4228 	event_function_call(event, __perf_event_period, &value);
4229 
4230 	return 0;
4231 }
4232 
4233 static const struct file_operations perf_fops;
4234 
4235 static inline int perf_fget_light(int fd, struct fd *p)
4236 {
4237 	struct fd f = fdget(fd);
4238 	if (!f.file)
4239 		return -EBADF;
4240 
4241 	if (f.file->f_op != &perf_fops) {
4242 		fdput(f);
4243 		return -EBADF;
4244 	}
4245 	*p = f;
4246 	return 0;
4247 }
4248 
4249 static int perf_event_set_output(struct perf_event *event,
4250 				 struct perf_event *output_event);
4251 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4252 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4253 
4254 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4255 {
4256 	void (*func)(struct perf_event *);
4257 	u32 flags = arg;
4258 
4259 	switch (cmd) {
4260 	case PERF_EVENT_IOC_ENABLE:
4261 		func = _perf_event_enable;
4262 		break;
4263 	case PERF_EVENT_IOC_DISABLE:
4264 		func = _perf_event_disable;
4265 		break;
4266 	case PERF_EVENT_IOC_RESET:
4267 		func = _perf_event_reset;
4268 		break;
4269 
4270 	case PERF_EVENT_IOC_REFRESH:
4271 		return _perf_event_refresh(event, arg);
4272 
4273 	case PERF_EVENT_IOC_PERIOD:
4274 		return perf_event_period(event, (u64 __user *)arg);
4275 
4276 	case PERF_EVENT_IOC_ID:
4277 	{
4278 		u64 id = primary_event_id(event);
4279 
4280 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4281 			return -EFAULT;
4282 		return 0;
4283 	}
4284 
4285 	case PERF_EVENT_IOC_SET_OUTPUT:
4286 	{
4287 		int ret;
4288 		if (arg != -1) {
4289 			struct perf_event *output_event;
4290 			struct fd output;
4291 			ret = perf_fget_light(arg, &output);
4292 			if (ret)
4293 				return ret;
4294 			output_event = output.file->private_data;
4295 			ret = perf_event_set_output(event, output_event);
4296 			fdput(output);
4297 		} else {
4298 			ret = perf_event_set_output(event, NULL);
4299 		}
4300 		return ret;
4301 	}
4302 
4303 	case PERF_EVENT_IOC_SET_FILTER:
4304 		return perf_event_set_filter(event, (void __user *)arg);
4305 
4306 	case PERF_EVENT_IOC_SET_BPF:
4307 		return perf_event_set_bpf_prog(event, arg);
4308 
4309 	default:
4310 		return -ENOTTY;
4311 	}
4312 
4313 	if (flags & PERF_IOC_FLAG_GROUP)
4314 		perf_event_for_each(event, func);
4315 	else
4316 		perf_event_for_each_child(event, func);
4317 
4318 	return 0;
4319 }
4320 
4321 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4322 {
4323 	struct perf_event *event = file->private_data;
4324 	struct perf_event_context *ctx;
4325 	long ret;
4326 
4327 	ctx = perf_event_ctx_lock(event);
4328 	ret = _perf_ioctl(event, cmd, arg);
4329 	perf_event_ctx_unlock(event, ctx);
4330 
4331 	return ret;
4332 }
4333 
4334 #ifdef CONFIG_COMPAT
4335 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4336 				unsigned long arg)
4337 {
4338 	switch (_IOC_NR(cmd)) {
4339 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4340 	case _IOC_NR(PERF_EVENT_IOC_ID):
4341 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4342 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4343 			cmd &= ~IOCSIZE_MASK;
4344 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4345 		}
4346 		break;
4347 	}
4348 	return perf_ioctl(file, cmd, arg);
4349 }
4350 #else
4351 # define perf_compat_ioctl NULL
4352 #endif
4353 
4354 int perf_event_task_enable(void)
4355 {
4356 	struct perf_event_context *ctx;
4357 	struct perf_event *event;
4358 
4359 	mutex_lock(&current->perf_event_mutex);
4360 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4361 		ctx = perf_event_ctx_lock(event);
4362 		perf_event_for_each_child(event, _perf_event_enable);
4363 		perf_event_ctx_unlock(event, ctx);
4364 	}
4365 	mutex_unlock(&current->perf_event_mutex);
4366 
4367 	return 0;
4368 }
4369 
4370 int perf_event_task_disable(void)
4371 {
4372 	struct perf_event_context *ctx;
4373 	struct perf_event *event;
4374 
4375 	mutex_lock(&current->perf_event_mutex);
4376 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4377 		ctx = perf_event_ctx_lock(event);
4378 		perf_event_for_each_child(event, _perf_event_disable);
4379 		perf_event_ctx_unlock(event, ctx);
4380 	}
4381 	mutex_unlock(&current->perf_event_mutex);
4382 
4383 	return 0;
4384 }
4385 
4386 static int perf_event_index(struct perf_event *event)
4387 {
4388 	if (event->hw.state & PERF_HES_STOPPED)
4389 		return 0;
4390 
4391 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4392 		return 0;
4393 
4394 	return event->pmu->event_idx(event);
4395 }
4396 
4397 static void calc_timer_values(struct perf_event *event,
4398 				u64 *now,
4399 				u64 *enabled,
4400 				u64 *running)
4401 {
4402 	u64 ctx_time;
4403 
4404 	*now = perf_clock();
4405 	ctx_time = event->shadow_ctx_time + *now;
4406 	*enabled = ctx_time - event->tstamp_enabled;
4407 	*running = ctx_time - event->tstamp_running;
4408 }
4409 
4410 static void perf_event_init_userpage(struct perf_event *event)
4411 {
4412 	struct perf_event_mmap_page *userpg;
4413 	struct ring_buffer *rb;
4414 
4415 	rcu_read_lock();
4416 	rb = rcu_dereference(event->rb);
4417 	if (!rb)
4418 		goto unlock;
4419 
4420 	userpg = rb->user_page;
4421 
4422 	/* Allow new userspace to detect that bit 0 is deprecated */
4423 	userpg->cap_bit0_is_deprecated = 1;
4424 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4425 	userpg->data_offset = PAGE_SIZE;
4426 	userpg->data_size = perf_data_size(rb);
4427 
4428 unlock:
4429 	rcu_read_unlock();
4430 }
4431 
4432 void __weak arch_perf_update_userpage(
4433 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4434 {
4435 }
4436 
4437 /*
4438  * Callers need to ensure there can be no nesting of this function, otherwise
4439  * the seqlock logic goes bad. We can not serialize this because the arch
4440  * code calls this from NMI context.
4441  */
4442 void perf_event_update_userpage(struct perf_event *event)
4443 {
4444 	struct perf_event_mmap_page *userpg;
4445 	struct ring_buffer *rb;
4446 	u64 enabled, running, now;
4447 
4448 	rcu_read_lock();
4449 	rb = rcu_dereference(event->rb);
4450 	if (!rb)
4451 		goto unlock;
4452 
4453 	/*
4454 	 * compute total_time_enabled, total_time_running
4455 	 * based on snapshot values taken when the event
4456 	 * was last scheduled in.
4457 	 *
4458 	 * we cannot simply called update_context_time()
4459 	 * because of locking issue as we can be called in
4460 	 * NMI context
4461 	 */
4462 	calc_timer_values(event, &now, &enabled, &running);
4463 
4464 	userpg = rb->user_page;
4465 	/*
4466 	 * Disable preemption so as to not let the corresponding user-space
4467 	 * spin too long if we get preempted.
4468 	 */
4469 	preempt_disable();
4470 	++userpg->lock;
4471 	barrier();
4472 	userpg->index = perf_event_index(event);
4473 	userpg->offset = perf_event_count(event);
4474 	if (userpg->index)
4475 		userpg->offset -= local64_read(&event->hw.prev_count);
4476 
4477 	userpg->time_enabled = enabled +
4478 			atomic64_read(&event->child_total_time_enabled);
4479 
4480 	userpg->time_running = running +
4481 			atomic64_read(&event->child_total_time_running);
4482 
4483 	arch_perf_update_userpage(event, userpg, now);
4484 
4485 	barrier();
4486 	++userpg->lock;
4487 	preempt_enable();
4488 unlock:
4489 	rcu_read_unlock();
4490 }
4491 
4492 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4493 {
4494 	struct perf_event *event = vma->vm_file->private_data;
4495 	struct ring_buffer *rb;
4496 	int ret = VM_FAULT_SIGBUS;
4497 
4498 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4499 		if (vmf->pgoff == 0)
4500 			ret = 0;
4501 		return ret;
4502 	}
4503 
4504 	rcu_read_lock();
4505 	rb = rcu_dereference(event->rb);
4506 	if (!rb)
4507 		goto unlock;
4508 
4509 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4510 		goto unlock;
4511 
4512 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4513 	if (!vmf->page)
4514 		goto unlock;
4515 
4516 	get_page(vmf->page);
4517 	vmf->page->mapping = vma->vm_file->f_mapping;
4518 	vmf->page->index   = vmf->pgoff;
4519 
4520 	ret = 0;
4521 unlock:
4522 	rcu_read_unlock();
4523 
4524 	return ret;
4525 }
4526 
4527 static void ring_buffer_attach(struct perf_event *event,
4528 			       struct ring_buffer *rb)
4529 {
4530 	struct ring_buffer *old_rb = NULL;
4531 	unsigned long flags;
4532 
4533 	if (event->rb) {
4534 		/*
4535 		 * Should be impossible, we set this when removing
4536 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4537 		 */
4538 		WARN_ON_ONCE(event->rcu_pending);
4539 
4540 		old_rb = event->rb;
4541 		spin_lock_irqsave(&old_rb->event_lock, flags);
4542 		list_del_rcu(&event->rb_entry);
4543 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4544 
4545 		event->rcu_batches = get_state_synchronize_rcu();
4546 		event->rcu_pending = 1;
4547 	}
4548 
4549 	if (rb) {
4550 		if (event->rcu_pending) {
4551 			cond_synchronize_rcu(event->rcu_batches);
4552 			event->rcu_pending = 0;
4553 		}
4554 
4555 		spin_lock_irqsave(&rb->event_lock, flags);
4556 		list_add_rcu(&event->rb_entry, &rb->event_list);
4557 		spin_unlock_irqrestore(&rb->event_lock, flags);
4558 	}
4559 
4560 	rcu_assign_pointer(event->rb, rb);
4561 
4562 	if (old_rb) {
4563 		ring_buffer_put(old_rb);
4564 		/*
4565 		 * Since we detached before setting the new rb, so that we
4566 		 * could attach the new rb, we could have missed a wakeup.
4567 		 * Provide it now.
4568 		 */
4569 		wake_up_all(&event->waitq);
4570 	}
4571 }
4572 
4573 static void ring_buffer_wakeup(struct perf_event *event)
4574 {
4575 	struct ring_buffer *rb;
4576 
4577 	rcu_read_lock();
4578 	rb = rcu_dereference(event->rb);
4579 	if (rb) {
4580 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4581 			wake_up_all(&event->waitq);
4582 	}
4583 	rcu_read_unlock();
4584 }
4585 
4586 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4587 {
4588 	struct ring_buffer *rb;
4589 
4590 	rcu_read_lock();
4591 	rb = rcu_dereference(event->rb);
4592 	if (rb) {
4593 		if (!atomic_inc_not_zero(&rb->refcount))
4594 			rb = NULL;
4595 	}
4596 	rcu_read_unlock();
4597 
4598 	return rb;
4599 }
4600 
4601 void ring_buffer_put(struct ring_buffer *rb)
4602 {
4603 	if (!atomic_dec_and_test(&rb->refcount))
4604 		return;
4605 
4606 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4607 
4608 	call_rcu(&rb->rcu_head, rb_free_rcu);
4609 }
4610 
4611 static void perf_mmap_open(struct vm_area_struct *vma)
4612 {
4613 	struct perf_event *event = vma->vm_file->private_data;
4614 
4615 	atomic_inc(&event->mmap_count);
4616 	atomic_inc(&event->rb->mmap_count);
4617 
4618 	if (vma->vm_pgoff)
4619 		atomic_inc(&event->rb->aux_mmap_count);
4620 
4621 	if (event->pmu->event_mapped)
4622 		event->pmu->event_mapped(event);
4623 }
4624 
4625 /*
4626  * A buffer can be mmap()ed multiple times; either directly through the same
4627  * event, or through other events by use of perf_event_set_output().
4628  *
4629  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4630  * the buffer here, where we still have a VM context. This means we need
4631  * to detach all events redirecting to us.
4632  */
4633 static void perf_mmap_close(struct vm_area_struct *vma)
4634 {
4635 	struct perf_event *event = vma->vm_file->private_data;
4636 
4637 	struct ring_buffer *rb = ring_buffer_get(event);
4638 	struct user_struct *mmap_user = rb->mmap_user;
4639 	int mmap_locked = rb->mmap_locked;
4640 	unsigned long size = perf_data_size(rb);
4641 
4642 	if (event->pmu->event_unmapped)
4643 		event->pmu->event_unmapped(event);
4644 
4645 	/*
4646 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4647 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4648 	 * serialize with perf_mmap here.
4649 	 */
4650 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4651 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4652 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4653 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4654 
4655 		rb_free_aux(rb);
4656 		mutex_unlock(&event->mmap_mutex);
4657 	}
4658 
4659 	atomic_dec(&rb->mmap_count);
4660 
4661 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4662 		goto out_put;
4663 
4664 	ring_buffer_attach(event, NULL);
4665 	mutex_unlock(&event->mmap_mutex);
4666 
4667 	/* If there's still other mmap()s of this buffer, we're done. */
4668 	if (atomic_read(&rb->mmap_count))
4669 		goto out_put;
4670 
4671 	/*
4672 	 * No other mmap()s, detach from all other events that might redirect
4673 	 * into the now unreachable buffer. Somewhat complicated by the
4674 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4675 	 */
4676 again:
4677 	rcu_read_lock();
4678 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4679 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4680 			/*
4681 			 * This event is en-route to free_event() which will
4682 			 * detach it and remove it from the list.
4683 			 */
4684 			continue;
4685 		}
4686 		rcu_read_unlock();
4687 
4688 		mutex_lock(&event->mmap_mutex);
4689 		/*
4690 		 * Check we didn't race with perf_event_set_output() which can
4691 		 * swizzle the rb from under us while we were waiting to
4692 		 * acquire mmap_mutex.
4693 		 *
4694 		 * If we find a different rb; ignore this event, a next
4695 		 * iteration will no longer find it on the list. We have to
4696 		 * still restart the iteration to make sure we're not now
4697 		 * iterating the wrong list.
4698 		 */
4699 		if (event->rb == rb)
4700 			ring_buffer_attach(event, NULL);
4701 
4702 		mutex_unlock(&event->mmap_mutex);
4703 		put_event(event);
4704 
4705 		/*
4706 		 * Restart the iteration; either we're on the wrong list or
4707 		 * destroyed its integrity by doing a deletion.
4708 		 */
4709 		goto again;
4710 	}
4711 	rcu_read_unlock();
4712 
4713 	/*
4714 	 * It could be there's still a few 0-ref events on the list; they'll
4715 	 * get cleaned up by free_event() -- they'll also still have their
4716 	 * ref on the rb and will free it whenever they are done with it.
4717 	 *
4718 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4719 	 * undo the VM accounting.
4720 	 */
4721 
4722 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4723 	vma->vm_mm->pinned_vm -= mmap_locked;
4724 	free_uid(mmap_user);
4725 
4726 out_put:
4727 	ring_buffer_put(rb); /* could be last */
4728 }
4729 
4730 static const struct vm_operations_struct perf_mmap_vmops = {
4731 	.open		= perf_mmap_open,
4732 	.close		= perf_mmap_close, /* non mergable */
4733 	.fault		= perf_mmap_fault,
4734 	.page_mkwrite	= perf_mmap_fault,
4735 };
4736 
4737 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4738 {
4739 	struct perf_event *event = file->private_data;
4740 	unsigned long user_locked, user_lock_limit;
4741 	struct user_struct *user = current_user();
4742 	unsigned long locked, lock_limit;
4743 	struct ring_buffer *rb = NULL;
4744 	unsigned long vma_size;
4745 	unsigned long nr_pages;
4746 	long user_extra = 0, extra = 0;
4747 	int ret = 0, flags = 0;
4748 
4749 	/*
4750 	 * Don't allow mmap() of inherited per-task counters. This would
4751 	 * create a performance issue due to all children writing to the
4752 	 * same rb.
4753 	 */
4754 	if (event->cpu == -1 && event->attr.inherit)
4755 		return -EINVAL;
4756 
4757 	if (!(vma->vm_flags & VM_SHARED))
4758 		return -EINVAL;
4759 
4760 	vma_size = vma->vm_end - vma->vm_start;
4761 
4762 	if (vma->vm_pgoff == 0) {
4763 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4764 	} else {
4765 		/*
4766 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4767 		 * mapped, all subsequent mappings should have the same size
4768 		 * and offset. Must be above the normal perf buffer.
4769 		 */
4770 		u64 aux_offset, aux_size;
4771 
4772 		if (!event->rb)
4773 			return -EINVAL;
4774 
4775 		nr_pages = vma_size / PAGE_SIZE;
4776 
4777 		mutex_lock(&event->mmap_mutex);
4778 		ret = -EINVAL;
4779 
4780 		rb = event->rb;
4781 		if (!rb)
4782 			goto aux_unlock;
4783 
4784 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4785 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4786 
4787 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4788 			goto aux_unlock;
4789 
4790 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4791 			goto aux_unlock;
4792 
4793 		/* already mapped with a different offset */
4794 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4795 			goto aux_unlock;
4796 
4797 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4798 			goto aux_unlock;
4799 
4800 		/* already mapped with a different size */
4801 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4802 			goto aux_unlock;
4803 
4804 		if (!is_power_of_2(nr_pages))
4805 			goto aux_unlock;
4806 
4807 		if (!atomic_inc_not_zero(&rb->mmap_count))
4808 			goto aux_unlock;
4809 
4810 		if (rb_has_aux(rb)) {
4811 			atomic_inc(&rb->aux_mmap_count);
4812 			ret = 0;
4813 			goto unlock;
4814 		}
4815 
4816 		atomic_set(&rb->aux_mmap_count, 1);
4817 		user_extra = nr_pages;
4818 
4819 		goto accounting;
4820 	}
4821 
4822 	/*
4823 	 * If we have rb pages ensure they're a power-of-two number, so we
4824 	 * can do bitmasks instead of modulo.
4825 	 */
4826 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4827 		return -EINVAL;
4828 
4829 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4830 		return -EINVAL;
4831 
4832 	WARN_ON_ONCE(event->ctx->parent_ctx);
4833 again:
4834 	mutex_lock(&event->mmap_mutex);
4835 	if (event->rb) {
4836 		if (event->rb->nr_pages != nr_pages) {
4837 			ret = -EINVAL;
4838 			goto unlock;
4839 		}
4840 
4841 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4842 			/*
4843 			 * Raced against perf_mmap_close() through
4844 			 * perf_event_set_output(). Try again, hope for better
4845 			 * luck.
4846 			 */
4847 			mutex_unlock(&event->mmap_mutex);
4848 			goto again;
4849 		}
4850 
4851 		goto unlock;
4852 	}
4853 
4854 	user_extra = nr_pages + 1;
4855 
4856 accounting:
4857 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4858 
4859 	/*
4860 	 * Increase the limit linearly with more CPUs:
4861 	 */
4862 	user_lock_limit *= num_online_cpus();
4863 
4864 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4865 
4866 	if (user_locked > user_lock_limit)
4867 		extra = user_locked - user_lock_limit;
4868 
4869 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4870 	lock_limit >>= PAGE_SHIFT;
4871 	locked = vma->vm_mm->pinned_vm + extra;
4872 
4873 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4874 		!capable(CAP_IPC_LOCK)) {
4875 		ret = -EPERM;
4876 		goto unlock;
4877 	}
4878 
4879 	WARN_ON(!rb && event->rb);
4880 
4881 	if (vma->vm_flags & VM_WRITE)
4882 		flags |= RING_BUFFER_WRITABLE;
4883 
4884 	if (!rb) {
4885 		rb = rb_alloc(nr_pages,
4886 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4887 			      event->cpu, flags);
4888 
4889 		if (!rb) {
4890 			ret = -ENOMEM;
4891 			goto unlock;
4892 		}
4893 
4894 		atomic_set(&rb->mmap_count, 1);
4895 		rb->mmap_user = get_current_user();
4896 		rb->mmap_locked = extra;
4897 
4898 		ring_buffer_attach(event, rb);
4899 
4900 		perf_event_init_userpage(event);
4901 		perf_event_update_userpage(event);
4902 	} else {
4903 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4904 				   event->attr.aux_watermark, flags);
4905 		if (!ret)
4906 			rb->aux_mmap_locked = extra;
4907 	}
4908 
4909 unlock:
4910 	if (!ret) {
4911 		atomic_long_add(user_extra, &user->locked_vm);
4912 		vma->vm_mm->pinned_vm += extra;
4913 
4914 		atomic_inc(&event->mmap_count);
4915 	} else if (rb) {
4916 		atomic_dec(&rb->mmap_count);
4917 	}
4918 aux_unlock:
4919 	mutex_unlock(&event->mmap_mutex);
4920 
4921 	/*
4922 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4923 	 * vma.
4924 	 */
4925 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4926 	vma->vm_ops = &perf_mmap_vmops;
4927 
4928 	if (event->pmu->event_mapped)
4929 		event->pmu->event_mapped(event);
4930 
4931 	return ret;
4932 }
4933 
4934 static int perf_fasync(int fd, struct file *filp, int on)
4935 {
4936 	struct inode *inode = file_inode(filp);
4937 	struct perf_event *event = filp->private_data;
4938 	int retval;
4939 
4940 	inode_lock(inode);
4941 	retval = fasync_helper(fd, filp, on, &event->fasync);
4942 	inode_unlock(inode);
4943 
4944 	if (retval < 0)
4945 		return retval;
4946 
4947 	return 0;
4948 }
4949 
4950 static const struct file_operations perf_fops = {
4951 	.llseek			= no_llseek,
4952 	.release		= perf_release,
4953 	.read			= perf_read,
4954 	.poll			= perf_poll,
4955 	.unlocked_ioctl		= perf_ioctl,
4956 	.compat_ioctl		= perf_compat_ioctl,
4957 	.mmap			= perf_mmap,
4958 	.fasync			= perf_fasync,
4959 };
4960 
4961 /*
4962  * Perf event wakeup
4963  *
4964  * If there's data, ensure we set the poll() state and publish everything
4965  * to user-space before waking everybody up.
4966  */
4967 
4968 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4969 {
4970 	/* only the parent has fasync state */
4971 	if (event->parent)
4972 		event = event->parent;
4973 	return &event->fasync;
4974 }
4975 
4976 void perf_event_wakeup(struct perf_event *event)
4977 {
4978 	ring_buffer_wakeup(event);
4979 
4980 	if (event->pending_kill) {
4981 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4982 		event->pending_kill = 0;
4983 	}
4984 }
4985 
4986 static void perf_pending_event(struct irq_work *entry)
4987 {
4988 	struct perf_event *event = container_of(entry,
4989 			struct perf_event, pending);
4990 	int rctx;
4991 
4992 	rctx = perf_swevent_get_recursion_context();
4993 	/*
4994 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4995 	 * and we won't recurse 'further'.
4996 	 */
4997 
4998 	if (event->pending_disable) {
4999 		event->pending_disable = 0;
5000 		perf_event_disable_local(event);
5001 	}
5002 
5003 	if (event->pending_wakeup) {
5004 		event->pending_wakeup = 0;
5005 		perf_event_wakeup(event);
5006 	}
5007 
5008 	if (rctx >= 0)
5009 		perf_swevent_put_recursion_context(rctx);
5010 }
5011 
5012 /*
5013  * We assume there is only KVM supporting the callbacks.
5014  * Later on, we might change it to a list if there is
5015  * another virtualization implementation supporting the callbacks.
5016  */
5017 struct perf_guest_info_callbacks *perf_guest_cbs;
5018 
5019 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5020 {
5021 	perf_guest_cbs = cbs;
5022 	return 0;
5023 }
5024 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5025 
5026 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5027 {
5028 	perf_guest_cbs = NULL;
5029 	return 0;
5030 }
5031 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5032 
5033 static void
5034 perf_output_sample_regs(struct perf_output_handle *handle,
5035 			struct pt_regs *regs, u64 mask)
5036 {
5037 	int bit;
5038 
5039 	for_each_set_bit(bit, (const unsigned long *) &mask,
5040 			 sizeof(mask) * BITS_PER_BYTE) {
5041 		u64 val;
5042 
5043 		val = perf_reg_value(regs, bit);
5044 		perf_output_put(handle, val);
5045 	}
5046 }
5047 
5048 static void perf_sample_regs_user(struct perf_regs *regs_user,
5049 				  struct pt_regs *regs,
5050 				  struct pt_regs *regs_user_copy)
5051 {
5052 	if (user_mode(regs)) {
5053 		regs_user->abi = perf_reg_abi(current);
5054 		regs_user->regs = regs;
5055 	} else if (current->mm) {
5056 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5057 	} else {
5058 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5059 		regs_user->regs = NULL;
5060 	}
5061 }
5062 
5063 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5064 				  struct pt_regs *regs)
5065 {
5066 	regs_intr->regs = regs;
5067 	regs_intr->abi  = perf_reg_abi(current);
5068 }
5069 
5070 
5071 /*
5072  * Get remaining task size from user stack pointer.
5073  *
5074  * It'd be better to take stack vma map and limit this more
5075  * precisly, but there's no way to get it safely under interrupt,
5076  * so using TASK_SIZE as limit.
5077  */
5078 static u64 perf_ustack_task_size(struct pt_regs *regs)
5079 {
5080 	unsigned long addr = perf_user_stack_pointer(regs);
5081 
5082 	if (!addr || addr >= TASK_SIZE)
5083 		return 0;
5084 
5085 	return TASK_SIZE - addr;
5086 }
5087 
5088 static u16
5089 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5090 			struct pt_regs *regs)
5091 {
5092 	u64 task_size;
5093 
5094 	/* No regs, no stack pointer, no dump. */
5095 	if (!regs)
5096 		return 0;
5097 
5098 	/*
5099 	 * Check if we fit in with the requested stack size into the:
5100 	 * - TASK_SIZE
5101 	 *   If we don't, we limit the size to the TASK_SIZE.
5102 	 *
5103 	 * - remaining sample size
5104 	 *   If we don't, we customize the stack size to
5105 	 *   fit in to the remaining sample size.
5106 	 */
5107 
5108 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5109 	stack_size = min(stack_size, (u16) task_size);
5110 
5111 	/* Current header size plus static size and dynamic size. */
5112 	header_size += 2 * sizeof(u64);
5113 
5114 	/* Do we fit in with the current stack dump size? */
5115 	if ((u16) (header_size + stack_size) < header_size) {
5116 		/*
5117 		 * If we overflow the maximum size for the sample,
5118 		 * we customize the stack dump size to fit in.
5119 		 */
5120 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5121 		stack_size = round_up(stack_size, sizeof(u64));
5122 	}
5123 
5124 	return stack_size;
5125 }
5126 
5127 static void
5128 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5129 			  struct pt_regs *regs)
5130 {
5131 	/* Case of a kernel thread, nothing to dump */
5132 	if (!regs) {
5133 		u64 size = 0;
5134 		perf_output_put(handle, size);
5135 	} else {
5136 		unsigned long sp;
5137 		unsigned int rem;
5138 		u64 dyn_size;
5139 
5140 		/*
5141 		 * We dump:
5142 		 * static size
5143 		 *   - the size requested by user or the best one we can fit
5144 		 *     in to the sample max size
5145 		 * data
5146 		 *   - user stack dump data
5147 		 * dynamic size
5148 		 *   - the actual dumped size
5149 		 */
5150 
5151 		/* Static size. */
5152 		perf_output_put(handle, dump_size);
5153 
5154 		/* Data. */
5155 		sp = perf_user_stack_pointer(regs);
5156 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5157 		dyn_size = dump_size - rem;
5158 
5159 		perf_output_skip(handle, rem);
5160 
5161 		/* Dynamic size. */
5162 		perf_output_put(handle, dyn_size);
5163 	}
5164 }
5165 
5166 static void __perf_event_header__init_id(struct perf_event_header *header,
5167 					 struct perf_sample_data *data,
5168 					 struct perf_event *event)
5169 {
5170 	u64 sample_type = event->attr.sample_type;
5171 
5172 	data->type = sample_type;
5173 	header->size += event->id_header_size;
5174 
5175 	if (sample_type & PERF_SAMPLE_TID) {
5176 		/* namespace issues */
5177 		data->tid_entry.pid = perf_event_pid(event, current);
5178 		data->tid_entry.tid = perf_event_tid(event, current);
5179 	}
5180 
5181 	if (sample_type & PERF_SAMPLE_TIME)
5182 		data->time = perf_event_clock(event);
5183 
5184 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5185 		data->id = primary_event_id(event);
5186 
5187 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5188 		data->stream_id = event->id;
5189 
5190 	if (sample_type & PERF_SAMPLE_CPU) {
5191 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5192 		data->cpu_entry.reserved = 0;
5193 	}
5194 }
5195 
5196 void perf_event_header__init_id(struct perf_event_header *header,
5197 				struct perf_sample_data *data,
5198 				struct perf_event *event)
5199 {
5200 	if (event->attr.sample_id_all)
5201 		__perf_event_header__init_id(header, data, event);
5202 }
5203 
5204 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5205 					   struct perf_sample_data *data)
5206 {
5207 	u64 sample_type = data->type;
5208 
5209 	if (sample_type & PERF_SAMPLE_TID)
5210 		perf_output_put(handle, data->tid_entry);
5211 
5212 	if (sample_type & PERF_SAMPLE_TIME)
5213 		perf_output_put(handle, data->time);
5214 
5215 	if (sample_type & PERF_SAMPLE_ID)
5216 		perf_output_put(handle, data->id);
5217 
5218 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5219 		perf_output_put(handle, data->stream_id);
5220 
5221 	if (sample_type & PERF_SAMPLE_CPU)
5222 		perf_output_put(handle, data->cpu_entry);
5223 
5224 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5225 		perf_output_put(handle, data->id);
5226 }
5227 
5228 void perf_event__output_id_sample(struct perf_event *event,
5229 				  struct perf_output_handle *handle,
5230 				  struct perf_sample_data *sample)
5231 {
5232 	if (event->attr.sample_id_all)
5233 		__perf_event__output_id_sample(handle, sample);
5234 }
5235 
5236 static void perf_output_read_one(struct perf_output_handle *handle,
5237 				 struct perf_event *event,
5238 				 u64 enabled, u64 running)
5239 {
5240 	u64 read_format = event->attr.read_format;
5241 	u64 values[4];
5242 	int n = 0;
5243 
5244 	values[n++] = perf_event_count(event);
5245 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5246 		values[n++] = enabled +
5247 			atomic64_read(&event->child_total_time_enabled);
5248 	}
5249 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5250 		values[n++] = running +
5251 			atomic64_read(&event->child_total_time_running);
5252 	}
5253 	if (read_format & PERF_FORMAT_ID)
5254 		values[n++] = primary_event_id(event);
5255 
5256 	__output_copy(handle, values, n * sizeof(u64));
5257 }
5258 
5259 /*
5260  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5261  */
5262 static void perf_output_read_group(struct perf_output_handle *handle,
5263 			    struct perf_event *event,
5264 			    u64 enabled, u64 running)
5265 {
5266 	struct perf_event *leader = event->group_leader, *sub;
5267 	u64 read_format = event->attr.read_format;
5268 	u64 values[5];
5269 	int n = 0;
5270 
5271 	values[n++] = 1 + leader->nr_siblings;
5272 
5273 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5274 		values[n++] = enabled;
5275 
5276 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5277 		values[n++] = running;
5278 
5279 	if (leader != event)
5280 		leader->pmu->read(leader);
5281 
5282 	values[n++] = perf_event_count(leader);
5283 	if (read_format & PERF_FORMAT_ID)
5284 		values[n++] = primary_event_id(leader);
5285 
5286 	__output_copy(handle, values, n * sizeof(u64));
5287 
5288 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5289 		n = 0;
5290 
5291 		if ((sub != event) &&
5292 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5293 			sub->pmu->read(sub);
5294 
5295 		values[n++] = perf_event_count(sub);
5296 		if (read_format & PERF_FORMAT_ID)
5297 			values[n++] = primary_event_id(sub);
5298 
5299 		__output_copy(handle, values, n * sizeof(u64));
5300 	}
5301 }
5302 
5303 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5304 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5305 
5306 static void perf_output_read(struct perf_output_handle *handle,
5307 			     struct perf_event *event)
5308 {
5309 	u64 enabled = 0, running = 0, now;
5310 	u64 read_format = event->attr.read_format;
5311 
5312 	/*
5313 	 * compute total_time_enabled, total_time_running
5314 	 * based on snapshot values taken when the event
5315 	 * was last scheduled in.
5316 	 *
5317 	 * we cannot simply called update_context_time()
5318 	 * because of locking issue as we are called in
5319 	 * NMI context
5320 	 */
5321 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5322 		calc_timer_values(event, &now, &enabled, &running);
5323 
5324 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5325 		perf_output_read_group(handle, event, enabled, running);
5326 	else
5327 		perf_output_read_one(handle, event, enabled, running);
5328 }
5329 
5330 void perf_output_sample(struct perf_output_handle *handle,
5331 			struct perf_event_header *header,
5332 			struct perf_sample_data *data,
5333 			struct perf_event *event)
5334 {
5335 	u64 sample_type = data->type;
5336 
5337 	perf_output_put(handle, *header);
5338 
5339 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5340 		perf_output_put(handle, data->id);
5341 
5342 	if (sample_type & PERF_SAMPLE_IP)
5343 		perf_output_put(handle, data->ip);
5344 
5345 	if (sample_type & PERF_SAMPLE_TID)
5346 		perf_output_put(handle, data->tid_entry);
5347 
5348 	if (sample_type & PERF_SAMPLE_TIME)
5349 		perf_output_put(handle, data->time);
5350 
5351 	if (sample_type & PERF_SAMPLE_ADDR)
5352 		perf_output_put(handle, data->addr);
5353 
5354 	if (sample_type & PERF_SAMPLE_ID)
5355 		perf_output_put(handle, data->id);
5356 
5357 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5358 		perf_output_put(handle, data->stream_id);
5359 
5360 	if (sample_type & PERF_SAMPLE_CPU)
5361 		perf_output_put(handle, data->cpu_entry);
5362 
5363 	if (sample_type & PERF_SAMPLE_PERIOD)
5364 		perf_output_put(handle, data->period);
5365 
5366 	if (sample_type & PERF_SAMPLE_READ)
5367 		perf_output_read(handle, event);
5368 
5369 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5370 		if (data->callchain) {
5371 			int size = 1;
5372 
5373 			if (data->callchain)
5374 				size += data->callchain->nr;
5375 
5376 			size *= sizeof(u64);
5377 
5378 			__output_copy(handle, data->callchain, size);
5379 		} else {
5380 			u64 nr = 0;
5381 			perf_output_put(handle, nr);
5382 		}
5383 	}
5384 
5385 	if (sample_type & PERF_SAMPLE_RAW) {
5386 		if (data->raw) {
5387 			u32 raw_size = data->raw->size;
5388 			u32 real_size = round_up(raw_size + sizeof(u32),
5389 						 sizeof(u64)) - sizeof(u32);
5390 			u64 zero = 0;
5391 
5392 			perf_output_put(handle, real_size);
5393 			__output_copy(handle, data->raw->data, raw_size);
5394 			if (real_size - raw_size)
5395 				__output_copy(handle, &zero, real_size - raw_size);
5396 		} else {
5397 			struct {
5398 				u32	size;
5399 				u32	data;
5400 			} raw = {
5401 				.size = sizeof(u32),
5402 				.data = 0,
5403 			};
5404 			perf_output_put(handle, raw);
5405 		}
5406 	}
5407 
5408 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5409 		if (data->br_stack) {
5410 			size_t size;
5411 
5412 			size = data->br_stack->nr
5413 			     * sizeof(struct perf_branch_entry);
5414 
5415 			perf_output_put(handle, data->br_stack->nr);
5416 			perf_output_copy(handle, data->br_stack->entries, size);
5417 		} else {
5418 			/*
5419 			 * we always store at least the value of nr
5420 			 */
5421 			u64 nr = 0;
5422 			perf_output_put(handle, nr);
5423 		}
5424 	}
5425 
5426 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5427 		u64 abi = data->regs_user.abi;
5428 
5429 		/*
5430 		 * If there are no regs to dump, notice it through
5431 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5432 		 */
5433 		perf_output_put(handle, abi);
5434 
5435 		if (abi) {
5436 			u64 mask = event->attr.sample_regs_user;
5437 			perf_output_sample_regs(handle,
5438 						data->regs_user.regs,
5439 						mask);
5440 		}
5441 	}
5442 
5443 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5444 		perf_output_sample_ustack(handle,
5445 					  data->stack_user_size,
5446 					  data->regs_user.regs);
5447 	}
5448 
5449 	if (sample_type & PERF_SAMPLE_WEIGHT)
5450 		perf_output_put(handle, data->weight);
5451 
5452 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5453 		perf_output_put(handle, data->data_src.val);
5454 
5455 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5456 		perf_output_put(handle, data->txn);
5457 
5458 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5459 		u64 abi = data->regs_intr.abi;
5460 		/*
5461 		 * If there are no regs to dump, notice it through
5462 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5463 		 */
5464 		perf_output_put(handle, abi);
5465 
5466 		if (abi) {
5467 			u64 mask = event->attr.sample_regs_intr;
5468 
5469 			perf_output_sample_regs(handle,
5470 						data->regs_intr.regs,
5471 						mask);
5472 		}
5473 	}
5474 
5475 	if (!event->attr.watermark) {
5476 		int wakeup_events = event->attr.wakeup_events;
5477 
5478 		if (wakeup_events) {
5479 			struct ring_buffer *rb = handle->rb;
5480 			int events = local_inc_return(&rb->events);
5481 
5482 			if (events >= wakeup_events) {
5483 				local_sub(wakeup_events, &rb->events);
5484 				local_inc(&rb->wakeup);
5485 			}
5486 		}
5487 	}
5488 }
5489 
5490 void perf_prepare_sample(struct perf_event_header *header,
5491 			 struct perf_sample_data *data,
5492 			 struct perf_event *event,
5493 			 struct pt_regs *regs)
5494 {
5495 	u64 sample_type = event->attr.sample_type;
5496 
5497 	header->type = PERF_RECORD_SAMPLE;
5498 	header->size = sizeof(*header) + event->header_size;
5499 
5500 	header->misc = 0;
5501 	header->misc |= perf_misc_flags(regs);
5502 
5503 	__perf_event_header__init_id(header, data, event);
5504 
5505 	if (sample_type & PERF_SAMPLE_IP)
5506 		data->ip = perf_instruction_pointer(regs);
5507 
5508 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5509 		int size = 1;
5510 
5511 		data->callchain = perf_callchain(event, regs);
5512 
5513 		if (data->callchain)
5514 			size += data->callchain->nr;
5515 
5516 		header->size += size * sizeof(u64);
5517 	}
5518 
5519 	if (sample_type & PERF_SAMPLE_RAW) {
5520 		int size = sizeof(u32);
5521 
5522 		if (data->raw)
5523 			size += data->raw->size;
5524 		else
5525 			size += sizeof(u32);
5526 
5527 		header->size += round_up(size, sizeof(u64));
5528 	}
5529 
5530 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5531 		int size = sizeof(u64); /* nr */
5532 		if (data->br_stack) {
5533 			size += data->br_stack->nr
5534 			      * sizeof(struct perf_branch_entry);
5535 		}
5536 		header->size += size;
5537 	}
5538 
5539 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5540 		perf_sample_regs_user(&data->regs_user, regs,
5541 				      &data->regs_user_copy);
5542 
5543 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5544 		/* regs dump ABI info */
5545 		int size = sizeof(u64);
5546 
5547 		if (data->regs_user.regs) {
5548 			u64 mask = event->attr.sample_regs_user;
5549 			size += hweight64(mask) * sizeof(u64);
5550 		}
5551 
5552 		header->size += size;
5553 	}
5554 
5555 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5556 		/*
5557 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5558 		 * processed as the last one or have additional check added
5559 		 * in case new sample type is added, because we could eat
5560 		 * up the rest of the sample size.
5561 		 */
5562 		u16 stack_size = event->attr.sample_stack_user;
5563 		u16 size = sizeof(u64);
5564 
5565 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5566 						     data->regs_user.regs);
5567 
5568 		/*
5569 		 * If there is something to dump, add space for the dump
5570 		 * itself and for the field that tells the dynamic size,
5571 		 * which is how many have been actually dumped.
5572 		 */
5573 		if (stack_size)
5574 			size += sizeof(u64) + stack_size;
5575 
5576 		data->stack_user_size = stack_size;
5577 		header->size += size;
5578 	}
5579 
5580 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5581 		/* regs dump ABI info */
5582 		int size = sizeof(u64);
5583 
5584 		perf_sample_regs_intr(&data->regs_intr, regs);
5585 
5586 		if (data->regs_intr.regs) {
5587 			u64 mask = event->attr.sample_regs_intr;
5588 
5589 			size += hweight64(mask) * sizeof(u64);
5590 		}
5591 
5592 		header->size += size;
5593 	}
5594 }
5595 
5596 void perf_event_output(struct perf_event *event,
5597 			struct perf_sample_data *data,
5598 			struct pt_regs *regs)
5599 {
5600 	struct perf_output_handle handle;
5601 	struct perf_event_header header;
5602 
5603 	/* protect the callchain buffers */
5604 	rcu_read_lock();
5605 
5606 	perf_prepare_sample(&header, data, event, regs);
5607 
5608 	if (perf_output_begin(&handle, event, header.size))
5609 		goto exit;
5610 
5611 	perf_output_sample(&handle, &header, data, event);
5612 
5613 	perf_output_end(&handle);
5614 
5615 exit:
5616 	rcu_read_unlock();
5617 }
5618 
5619 /*
5620  * read event_id
5621  */
5622 
5623 struct perf_read_event {
5624 	struct perf_event_header	header;
5625 
5626 	u32				pid;
5627 	u32				tid;
5628 };
5629 
5630 static void
5631 perf_event_read_event(struct perf_event *event,
5632 			struct task_struct *task)
5633 {
5634 	struct perf_output_handle handle;
5635 	struct perf_sample_data sample;
5636 	struct perf_read_event read_event = {
5637 		.header = {
5638 			.type = PERF_RECORD_READ,
5639 			.misc = 0,
5640 			.size = sizeof(read_event) + event->read_size,
5641 		},
5642 		.pid = perf_event_pid(event, task),
5643 		.tid = perf_event_tid(event, task),
5644 	};
5645 	int ret;
5646 
5647 	perf_event_header__init_id(&read_event.header, &sample, event);
5648 	ret = perf_output_begin(&handle, event, read_event.header.size);
5649 	if (ret)
5650 		return;
5651 
5652 	perf_output_put(&handle, read_event);
5653 	perf_output_read(&handle, event);
5654 	perf_event__output_id_sample(event, &handle, &sample);
5655 
5656 	perf_output_end(&handle);
5657 }
5658 
5659 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5660 
5661 static void
5662 perf_event_aux_ctx(struct perf_event_context *ctx,
5663 		   perf_event_aux_output_cb output,
5664 		   void *data)
5665 {
5666 	struct perf_event *event;
5667 
5668 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5669 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5670 			continue;
5671 		if (!event_filter_match(event))
5672 			continue;
5673 		output(event, data);
5674 	}
5675 }
5676 
5677 static void
5678 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5679 			struct perf_event_context *task_ctx)
5680 {
5681 	rcu_read_lock();
5682 	preempt_disable();
5683 	perf_event_aux_ctx(task_ctx, output, data);
5684 	preempt_enable();
5685 	rcu_read_unlock();
5686 }
5687 
5688 static void
5689 perf_event_aux(perf_event_aux_output_cb output, void *data,
5690 	       struct perf_event_context *task_ctx)
5691 {
5692 	struct perf_cpu_context *cpuctx;
5693 	struct perf_event_context *ctx;
5694 	struct pmu *pmu;
5695 	int ctxn;
5696 
5697 	/*
5698 	 * If we have task_ctx != NULL we only notify
5699 	 * the task context itself. The task_ctx is set
5700 	 * only for EXIT events before releasing task
5701 	 * context.
5702 	 */
5703 	if (task_ctx) {
5704 		perf_event_aux_task_ctx(output, data, task_ctx);
5705 		return;
5706 	}
5707 
5708 	rcu_read_lock();
5709 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5710 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5711 		if (cpuctx->unique_pmu != pmu)
5712 			goto next;
5713 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5714 		ctxn = pmu->task_ctx_nr;
5715 		if (ctxn < 0)
5716 			goto next;
5717 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5718 		if (ctx)
5719 			perf_event_aux_ctx(ctx, output, data);
5720 next:
5721 		put_cpu_ptr(pmu->pmu_cpu_context);
5722 	}
5723 	rcu_read_unlock();
5724 }
5725 
5726 /*
5727  * task tracking -- fork/exit
5728  *
5729  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5730  */
5731 
5732 struct perf_task_event {
5733 	struct task_struct		*task;
5734 	struct perf_event_context	*task_ctx;
5735 
5736 	struct {
5737 		struct perf_event_header	header;
5738 
5739 		u32				pid;
5740 		u32				ppid;
5741 		u32				tid;
5742 		u32				ptid;
5743 		u64				time;
5744 	} event_id;
5745 };
5746 
5747 static int perf_event_task_match(struct perf_event *event)
5748 {
5749 	return event->attr.comm  || event->attr.mmap ||
5750 	       event->attr.mmap2 || event->attr.mmap_data ||
5751 	       event->attr.task;
5752 }
5753 
5754 static void perf_event_task_output(struct perf_event *event,
5755 				   void *data)
5756 {
5757 	struct perf_task_event *task_event = data;
5758 	struct perf_output_handle handle;
5759 	struct perf_sample_data	sample;
5760 	struct task_struct *task = task_event->task;
5761 	int ret, size = task_event->event_id.header.size;
5762 
5763 	if (!perf_event_task_match(event))
5764 		return;
5765 
5766 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5767 
5768 	ret = perf_output_begin(&handle, event,
5769 				task_event->event_id.header.size);
5770 	if (ret)
5771 		goto out;
5772 
5773 	task_event->event_id.pid = perf_event_pid(event, task);
5774 	task_event->event_id.ppid = perf_event_pid(event, current);
5775 
5776 	task_event->event_id.tid = perf_event_tid(event, task);
5777 	task_event->event_id.ptid = perf_event_tid(event, current);
5778 
5779 	task_event->event_id.time = perf_event_clock(event);
5780 
5781 	perf_output_put(&handle, task_event->event_id);
5782 
5783 	perf_event__output_id_sample(event, &handle, &sample);
5784 
5785 	perf_output_end(&handle);
5786 out:
5787 	task_event->event_id.header.size = size;
5788 }
5789 
5790 static void perf_event_task(struct task_struct *task,
5791 			      struct perf_event_context *task_ctx,
5792 			      int new)
5793 {
5794 	struct perf_task_event task_event;
5795 
5796 	if (!atomic_read(&nr_comm_events) &&
5797 	    !atomic_read(&nr_mmap_events) &&
5798 	    !atomic_read(&nr_task_events))
5799 		return;
5800 
5801 	task_event = (struct perf_task_event){
5802 		.task	  = task,
5803 		.task_ctx = task_ctx,
5804 		.event_id    = {
5805 			.header = {
5806 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5807 				.misc = 0,
5808 				.size = sizeof(task_event.event_id),
5809 			},
5810 			/* .pid  */
5811 			/* .ppid */
5812 			/* .tid  */
5813 			/* .ptid */
5814 			/* .time */
5815 		},
5816 	};
5817 
5818 	perf_event_aux(perf_event_task_output,
5819 		       &task_event,
5820 		       task_ctx);
5821 }
5822 
5823 void perf_event_fork(struct task_struct *task)
5824 {
5825 	perf_event_task(task, NULL, 1);
5826 }
5827 
5828 /*
5829  * comm tracking
5830  */
5831 
5832 struct perf_comm_event {
5833 	struct task_struct	*task;
5834 	char			*comm;
5835 	int			comm_size;
5836 
5837 	struct {
5838 		struct perf_event_header	header;
5839 
5840 		u32				pid;
5841 		u32				tid;
5842 	} event_id;
5843 };
5844 
5845 static int perf_event_comm_match(struct perf_event *event)
5846 {
5847 	return event->attr.comm;
5848 }
5849 
5850 static void perf_event_comm_output(struct perf_event *event,
5851 				   void *data)
5852 {
5853 	struct perf_comm_event *comm_event = data;
5854 	struct perf_output_handle handle;
5855 	struct perf_sample_data sample;
5856 	int size = comm_event->event_id.header.size;
5857 	int ret;
5858 
5859 	if (!perf_event_comm_match(event))
5860 		return;
5861 
5862 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5863 	ret = perf_output_begin(&handle, event,
5864 				comm_event->event_id.header.size);
5865 
5866 	if (ret)
5867 		goto out;
5868 
5869 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5870 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5871 
5872 	perf_output_put(&handle, comm_event->event_id);
5873 	__output_copy(&handle, comm_event->comm,
5874 				   comm_event->comm_size);
5875 
5876 	perf_event__output_id_sample(event, &handle, &sample);
5877 
5878 	perf_output_end(&handle);
5879 out:
5880 	comm_event->event_id.header.size = size;
5881 }
5882 
5883 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5884 {
5885 	char comm[TASK_COMM_LEN];
5886 	unsigned int size;
5887 
5888 	memset(comm, 0, sizeof(comm));
5889 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5890 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5891 
5892 	comm_event->comm = comm;
5893 	comm_event->comm_size = size;
5894 
5895 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5896 
5897 	perf_event_aux(perf_event_comm_output,
5898 		       comm_event,
5899 		       NULL);
5900 }
5901 
5902 void perf_event_comm(struct task_struct *task, bool exec)
5903 {
5904 	struct perf_comm_event comm_event;
5905 
5906 	if (!atomic_read(&nr_comm_events))
5907 		return;
5908 
5909 	comm_event = (struct perf_comm_event){
5910 		.task	= task,
5911 		/* .comm      */
5912 		/* .comm_size */
5913 		.event_id  = {
5914 			.header = {
5915 				.type = PERF_RECORD_COMM,
5916 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5917 				/* .size */
5918 			},
5919 			/* .pid */
5920 			/* .tid */
5921 		},
5922 	};
5923 
5924 	perf_event_comm_event(&comm_event);
5925 }
5926 
5927 /*
5928  * mmap tracking
5929  */
5930 
5931 struct perf_mmap_event {
5932 	struct vm_area_struct	*vma;
5933 
5934 	const char		*file_name;
5935 	int			file_size;
5936 	int			maj, min;
5937 	u64			ino;
5938 	u64			ino_generation;
5939 	u32			prot, flags;
5940 
5941 	struct {
5942 		struct perf_event_header	header;
5943 
5944 		u32				pid;
5945 		u32				tid;
5946 		u64				start;
5947 		u64				len;
5948 		u64				pgoff;
5949 	} event_id;
5950 };
5951 
5952 static int perf_event_mmap_match(struct perf_event *event,
5953 				 void *data)
5954 {
5955 	struct perf_mmap_event *mmap_event = data;
5956 	struct vm_area_struct *vma = mmap_event->vma;
5957 	int executable = vma->vm_flags & VM_EXEC;
5958 
5959 	return (!executable && event->attr.mmap_data) ||
5960 	       (executable && (event->attr.mmap || event->attr.mmap2));
5961 }
5962 
5963 static void perf_event_mmap_output(struct perf_event *event,
5964 				   void *data)
5965 {
5966 	struct perf_mmap_event *mmap_event = data;
5967 	struct perf_output_handle handle;
5968 	struct perf_sample_data sample;
5969 	int size = mmap_event->event_id.header.size;
5970 	int ret;
5971 
5972 	if (!perf_event_mmap_match(event, data))
5973 		return;
5974 
5975 	if (event->attr.mmap2) {
5976 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5977 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5978 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5979 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5980 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5981 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5982 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5983 	}
5984 
5985 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5986 	ret = perf_output_begin(&handle, event,
5987 				mmap_event->event_id.header.size);
5988 	if (ret)
5989 		goto out;
5990 
5991 	mmap_event->event_id.pid = perf_event_pid(event, current);
5992 	mmap_event->event_id.tid = perf_event_tid(event, current);
5993 
5994 	perf_output_put(&handle, mmap_event->event_id);
5995 
5996 	if (event->attr.mmap2) {
5997 		perf_output_put(&handle, mmap_event->maj);
5998 		perf_output_put(&handle, mmap_event->min);
5999 		perf_output_put(&handle, mmap_event->ino);
6000 		perf_output_put(&handle, mmap_event->ino_generation);
6001 		perf_output_put(&handle, mmap_event->prot);
6002 		perf_output_put(&handle, mmap_event->flags);
6003 	}
6004 
6005 	__output_copy(&handle, mmap_event->file_name,
6006 				   mmap_event->file_size);
6007 
6008 	perf_event__output_id_sample(event, &handle, &sample);
6009 
6010 	perf_output_end(&handle);
6011 out:
6012 	mmap_event->event_id.header.size = size;
6013 }
6014 
6015 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6016 {
6017 	struct vm_area_struct *vma = mmap_event->vma;
6018 	struct file *file = vma->vm_file;
6019 	int maj = 0, min = 0;
6020 	u64 ino = 0, gen = 0;
6021 	u32 prot = 0, flags = 0;
6022 	unsigned int size;
6023 	char tmp[16];
6024 	char *buf = NULL;
6025 	char *name;
6026 
6027 	if (file) {
6028 		struct inode *inode;
6029 		dev_t dev;
6030 
6031 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6032 		if (!buf) {
6033 			name = "//enomem";
6034 			goto cpy_name;
6035 		}
6036 		/*
6037 		 * d_path() works from the end of the rb backwards, so we
6038 		 * need to add enough zero bytes after the string to handle
6039 		 * the 64bit alignment we do later.
6040 		 */
6041 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6042 		if (IS_ERR(name)) {
6043 			name = "//toolong";
6044 			goto cpy_name;
6045 		}
6046 		inode = file_inode(vma->vm_file);
6047 		dev = inode->i_sb->s_dev;
6048 		ino = inode->i_ino;
6049 		gen = inode->i_generation;
6050 		maj = MAJOR(dev);
6051 		min = MINOR(dev);
6052 
6053 		if (vma->vm_flags & VM_READ)
6054 			prot |= PROT_READ;
6055 		if (vma->vm_flags & VM_WRITE)
6056 			prot |= PROT_WRITE;
6057 		if (vma->vm_flags & VM_EXEC)
6058 			prot |= PROT_EXEC;
6059 
6060 		if (vma->vm_flags & VM_MAYSHARE)
6061 			flags = MAP_SHARED;
6062 		else
6063 			flags = MAP_PRIVATE;
6064 
6065 		if (vma->vm_flags & VM_DENYWRITE)
6066 			flags |= MAP_DENYWRITE;
6067 		if (vma->vm_flags & VM_MAYEXEC)
6068 			flags |= MAP_EXECUTABLE;
6069 		if (vma->vm_flags & VM_LOCKED)
6070 			flags |= MAP_LOCKED;
6071 		if (vma->vm_flags & VM_HUGETLB)
6072 			flags |= MAP_HUGETLB;
6073 
6074 		goto got_name;
6075 	} else {
6076 		if (vma->vm_ops && vma->vm_ops->name) {
6077 			name = (char *) vma->vm_ops->name(vma);
6078 			if (name)
6079 				goto cpy_name;
6080 		}
6081 
6082 		name = (char *)arch_vma_name(vma);
6083 		if (name)
6084 			goto cpy_name;
6085 
6086 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6087 				vma->vm_end >= vma->vm_mm->brk) {
6088 			name = "[heap]";
6089 			goto cpy_name;
6090 		}
6091 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6092 				vma->vm_end >= vma->vm_mm->start_stack) {
6093 			name = "[stack]";
6094 			goto cpy_name;
6095 		}
6096 
6097 		name = "//anon";
6098 		goto cpy_name;
6099 	}
6100 
6101 cpy_name:
6102 	strlcpy(tmp, name, sizeof(tmp));
6103 	name = tmp;
6104 got_name:
6105 	/*
6106 	 * Since our buffer works in 8 byte units we need to align our string
6107 	 * size to a multiple of 8. However, we must guarantee the tail end is
6108 	 * zero'd out to avoid leaking random bits to userspace.
6109 	 */
6110 	size = strlen(name)+1;
6111 	while (!IS_ALIGNED(size, sizeof(u64)))
6112 		name[size++] = '\0';
6113 
6114 	mmap_event->file_name = name;
6115 	mmap_event->file_size = size;
6116 	mmap_event->maj = maj;
6117 	mmap_event->min = min;
6118 	mmap_event->ino = ino;
6119 	mmap_event->ino_generation = gen;
6120 	mmap_event->prot = prot;
6121 	mmap_event->flags = flags;
6122 
6123 	if (!(vma->vm_flags & VM_EXEC))
6124 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6125 
6126 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6127 
6128 	perf_event_aux(perf_event_mmap_output,
6129 		       mmap_event,
6130 		       NULL);
6131 
6132 	kfree(buf);
6133 }
6134 
6135 void perf_event_mmap(struct vm_area_struct *vma)
6136 {
6137 	struct perf_mmap_event mmap_event;
6138 
6139 	if (!atomic_read(&nr_mmap_events))
6140 		return;
6141 
6142 	mmap_event = (struct perf_mmap_event){
6143 		.vma	= vma,
6144 		/* .file_name */
6145 		/* .file_size */
6146 		.event_id  = {
6147 			.header = {
6148 				.type = PERF_RECORD_MMAP,
6149 				.misc = PERF_RECORD_MISC_USER,
6150 				/* .size */
6151 			},
6152 			/* .pid */
6153 			/* .tid */
6154 			.start  = vma->vm_start,
6155 			.len    = vma->vm_end - vma->vm_start,
6156 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6157 		},
6158 		/* .maj (attr_mmap2 only) */
6159 		/* .min (attr_mmap2 only) */
6160 		/* .ino (attr_mmap2 only) */
6161 		/* .ino_generation (attr_mmap2 only) */
6162 		/* .prot (attr_mmap2 only) */
6163 		/* .flags (attr_mmap2 only) */
6164 	};
6165 
6166 	perf_event_mmap_event(&mmap_event);
6167 }
6168 
6169 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6170 			  unsigned long size, u64 flags)
6171 {
6172 	struct perf_output_handle handle;
6173 	struct perf_sample_data sample;
6174 	struct perf_aux_event {
6175 		struct perf_event_header	header;
6176 		u64				offset;
6177 		u64				size;
6178 		u64				flags;
6179 	} rec = {
6180 		.header = {
6181 			.type = PERF_RECORD_AUX,
6182 			.misc = 0,
6183 			.size = sizeof(rec),
6184 		},
6185 		.offset		= head,
6186 		.size		= size,
6187 		.flags		= flags,
6188 	};
6189 	int ret;
6190 
6191 	perf_event_header__init_id(&rec.header, &sample, event);
6192 	ret = perf_output_begin(&handle, event, rec.header.size);
6193 
6194 	if (ret)
6195 		return;
6196 
6197 	perf_output_put(&handle, rec);
6198 	perf_event__output_id_sample(event, &handle, &sample);
6199 
6200 	perf_output_end(&handle);
6201 }
6202 
6203 /*
6204  * Lost/dropped samples logging
6205  */
6206 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6207 {
6208 	struct perf_output_handle handle;
6209 	struct perf_sample_data sample;
6210 	int ret;
6211 
6212 	struct {
6213 		struct perf_event_header	header;
6214 		u64				lost;
6215 	} lost_samples_event = {
6216 		.header = {
6217 			.type = PERF_RECORD_LOST_SAMPLES,
6218 			.misc = 0,
6219 			.size = sizeof(lost_samples_event),
6220 		},
6221 		.lost		= lost,
6222 	};
6223 
6224 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6225 
6226 	ret = perf_output_begin(&handle, event,
6227 				lost_samples_event.header.size);
6228 	if (ret)
6229 		return;
6230 
6231 	perf_output_put(&handle, lost_samples_event);
6232 	perf_event__output_id_sample(event, &handle, &sample);
6233 	perf_output_end(&handle);
6234 }
6235 
6236 /*
6237  * context_switch tracking
6238  */
6239 
6240 struct perf_switch_event {
6241 	struct task_struct	*task;
6242 	struct task_struct	*next_prev;
6243 
6244 	struct {
6245 		struct perf_event_header	header;
6246 		u32				next_prev_pid;
6247 		u32				next_prev_tid;
6248 	} event_id;
6249 };
6250 
6251 static int perf_event_switch_match(struct perf_event *event)
6252 {
6253 	return event->attr.context_switch;
6254 }
6255 
6256 static void perf_event_switch_output(struct perf_event *event, void *data)
6257 {
6258 	struct perf_switch_event *se = data;
6259 	struct perf_output_handle handle;
6260 	struct perf_sample_data sample;
6261 	int ret;
6262 
6263 	if (!perf_event_switch_match(event))
6264 		return;
6265 
6266 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6267 	if (event->ctx->task) {
6268 		se->event_id.header.type = PERF_RECORD_SWITCH;
6269 		se->event_id.header.size = sizeof(se->event_id.header);
6270 	} else {
6271 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6272 		se->event_id.header.size = sizeof(se->event_id);
6273 		se->event_id.next_prev_pid =
6274 					perf_event_pid(event, se->next_prev);
6275 		se->event_id.next_prev_tid =
6276 					perf_event_tid(event, se->next_prev);
6277 	}
6278 
6279 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6280 
6281 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6282 	if (ret)
6283 		return;
6284 
6285 	if (event->ctx->task)
6286 		perf_output_put(&handle, se->event_id.header);
6287 	else
6288 		perf_output_put(&handle, se->event_id);
6289 
6290 	perf_event__output_id_sample(event, &handle, &sample);
6291 
6292 	perf_output_end(&handle);
6293 }
6294 
6295 static void perf_event_switch(struct task_struct *task,
6296 			      struct task_struct *next_prev, bool sched_in)
6297 {
6298 	struct perf_switch_event switch_event;
6299 
6300 	/* N.B. caller checks nr_switch_events != 0 */
6301 
6302 	switch_event = (struct perf_switch_event){
6303 		.task		= task,
6304 		.next_prev	= next_prev,
6305 		.event_id	= {
6306 			.header = {
6307 				/* .type */
6308 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6309 				/* .size */
6310 			},
6311 			/* .next_prev_pid */
6312 			/* .next_prev_tid */
6313 		},
6314 	};
6315 
6316 	perf_event_aux(perf_event_switch_output,
6317 		       &switch_event,
6318 		       NULL);
6319 }
6320 
6321 /*
6322  * IRQ throttle logging
6323  */
6324 
6325 static void perf_log_throttle(struct perf_event *event, int enable)
6326 {
6327 	struct perf_output_handle handle;
6328 	struct perf_sample_data sample;
6329 	int ret;
6330 
6331 	struct {
6332 		struct perf_event_header	header;
6333 		u64				time;
6334 		u64				id;
6335 		u64				stream_id;
6336 	} throttle_event = {
6337 		.header = {
6338 			.type = PERF_RECORD_THROTTLE,
6339 			.misc = 0,
6340 			.size = sizeof(throttle_event),
6341 		},
6342 		.time		= perf_event_clock(event),
6343 		.id		= primary_event_id(event),
6344 		.stream_id	= event->id,
6345 	};
6346 
6347 	if (enable)
6348 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6349 
6350 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6351 
6352 	ret = perf_output_begin(&handle, event,
6353 				throttle_event.header.size);
6354 	if (ret)
6355 		return;
6356 
6357 	perf_output_put(&handle, throttle_event);
6358 	perf_event__output_id_sample(event, &handle, &sample);
6359 	perf_output_end(&handle);
6360 }
6361 
6362 static void perf_log_itrace_start(struct perf_event *event)
6363 {
6364 	struct perf_output_handle handle;
6365 	struct perf_sample_data sample;
6366 	struct perf_aux_event {
6367 		struct perf_event_header        header;
6368 		u32				pid;
6369 		u32				tid;
6370 	} rec;
6371 	int ret;
6372 
6373 	if (event->parent)
6374 		event = event->parent;
6375 
6376 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6377 	    event->hw.itrace_started)
6378 		return;
6379 
6380 	rec.header.type	= PERF_RECORD_ITRACE_START;
6381 	rec.header.misc	= 0;
6382 	rec.header.size	= sizeof(rec);
6383 	rec.pid	= perf_event_pid(event, current);
6384 	rec.tid	= perf_event_tid(event, current);
6385 
6386 	perf_event_header__init_id(&rec.header, &sample, event);
6387 	ret = perf_output_begin(&handle, event, rec.header.size);
6388 
6389 	if (ret)
6390 		return;
6391 
6392 	perf_output_put(&handle, rec);
6393 	perf_event__output_id_sample(event, &handle, &sample);
6394 
6395 	perf_output_end(&handle);
6396 }
6397 
6398 /*
6399  * Generic event overflow handling, sampling.
6400  */
6401 
6402 static int __perf_event_overflow(struct perf_event *event,
6403 				   int throttle, struct perf_sample_data *data,
6404 				   struct pt_regs *regs)
6405 {
6406 	int events = atomic_read(&event->event_limit);
6407 	struct hw_perf_event *hwc = &event->hw;
6408 	u64 seq;
6409 	int ret = 0;
6410 
6411 	/*
6412 	 * Non-sampling counters might still use the PMI to fold short
6413 	 * hardware counters, ignore those.
6414 	 */
6415 	if (unlikely(!is_sampling_event(event)))
6416 		return 0;
6417 
6418 	seq = __this_cpu_read(perf_throttled_seq);
6419 	if (seq != hwc->interrupts_seq) {
6420 		hwc->interrupts_seq = seq;
6421 		hwc->interrupts = 1;
6422 	} else {
6423 		hwc->interrupts++;
6424 		if (unlikely(throttle
6425 			     && hwc->interrupts >= max_samples_per_tick)) {
6426 			__this_cpu_inc(perf_throttled_count);
6427 			hwc->interrupts = MAX_INTERRUPTS;
6428 			perf_log_throttle(event, 0);
6429 			tick_nohz_full_kick();
6430 			ret = 1;
6431 		}
6432 	}
6433 
6434 	if (event->attr.freq) {
6435 		u64 now = perf_clock();
6436 		s64 delta = now - hwc->freq_time_stamp;
6437 
6438 		hwc->freq_time_stamp = now;
6439 
6440 		if (delta > 0 && delta < 2*TICK_NSEC)
6441 			perf_adjust_period(event, delta, hwc->last_period, true);
6442 	}
6443 
6444 	/*
6445 	 * XXX event_limit might not quite work as expected on inherited
6446 	 * events
6447 	 */
6448 
6449 	event->pending_kill = POLL_IN;
6450 	if (events && atomic_dec_and_test(&event->event_limit)) {
6451 		ret = 1;
6452 		event->pending_kill = POLL_HUP;
6453 		event->pending_disable = 1;
6454 		irq_work_queue(&event->pending);
6455 	}
6456 
6457 	if (event->overflow_handler)
6458 		event->overflow_handler(event, data, regs);
6459 	else
6460 		perf_event_output(event, data, regs);
6461 
6462 	if (*perf_event_fasync(event) && event->pending_kill) {
6463 		event->pending_wakeup = 1;
6464 		irq_work_queue(&event->pending);
6465 	}
6466 
6467 	return ret;
6468 }
6469 
6470 int perf_event_overflow(struct perf_event *event,
6471 			  struct perf_sample_data *data,
6472 			  struct pt_regs *regs)
6473 {
6474 	return __perf_event_overflow(event, 1, data, regs);
6475 }
6476 
6477 /*
6478  * Generic software event infrastructure
6479  */
6480 
6481 struct swevent_htable {
6482 	struct swevent_hlist		*swevent_hlist;
6483 	struct mutex			hlist_mutex;
6484 	int				hlist_refcount;
6485 
6486 	/* Recursion avoidance in each contexts */
6487 	int				recursion[PERF_NR_CONTEXTS];
6488 };
6489 
6490 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6491 
6492 /*
6493  * We directly increment event->count and keep a second value in
6494  * event->hw.period_left to count intervals. This period event
6495  * is kept in the range [-sample_period, 0] so that we can use the
6496  * sign as trigger.
6497  */
6498 
6499 u64 perf_swevent_set_period(struct perf_event *event)
6500 {
6501 	struct hw_perf_event *hwc = &event->hw;
6502 	u64 period = hwc->last_period;
6503 	u64 nr, offset;
6504 	s64 old, val;
6505 
6506 	hwc->last_period = hwc->sample_period;
6507 
6508 again:
6509 	old = val = local64_read(&hwc->period_left);
6510 	if (val < 0)
6511 		return 0;
6512 
6513 	nr = div64_u64(period + val, period);
6514 	offset = nr * period;
6515 	val -= offset;
6516 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6517 		goto again;
6518 
6519 	return nr;
6520 }
6521 
6522 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6523 				    struct perf_sample_data *data,
6524 				    struct pt_regs *regs)
6525 {
6526 	struct hw_perf_event *hwc = &event->hw;
6527 	int throttle = 0;
6528 
6529 	if (!overflow)
6530 		overflow = perf_swevent_set_period(event);
6531 
6532 	if (hwc->interrupts == MAX_INTERRUPTS)
6533 		return;
6534 
6535 	for (; overflow; overflow--) {
6536 		if (__perf_event_overflow(event, throttle,
6537 					    data, regs)) {
6538 			/*
6539 			 * We inhibit the overflow from happening when
6540 			 * hwc->interrupts == MAX_INTERRUPTS.
6541 			 */
6542 			break;
6543 		}
6544 		throttle = 1;
6545 	}
6546 }
6547 
6548 static void perf_swevent_event(struct perf_event *event, u64 nr,
6549 			       struct perf_sample_data *data,
6550 			       struct pt_regs *regs)
6551 {
6552 	struct hw_perf_event *hwc = &event->hw;
6553 
6554 	local64_add(nr, &event->count);
6555 
6556 	if (!regs)
6557 		return;
6558 
6559 	if (!is_sampling_event(event))
6560 		return;
6561 
6562 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6563 		data->period = nr;
6564 		return perf_swevent_overflow(event, 1, data, regs);
6565 	} else
6566 		data->period = event->hw.last_period;
6567 
6568 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6569 		return perf_swevent_overflow(event, 1, data, regs);
6570 
6571 	if (local64_add_negative(nr, &hwc->period_left))
6572 		return;
6573 
6574 	perf_swevent_overflow(event, 0, data, regs);
6575 }
6576 
6577 static int perf_exclude_event(struct perf_event *event,
6578 			      struct pt_regs *regs)
6579 {
6580 	if (event->hw.state & PERF_HES_STOPPED)
6581 		return 1;
6582 
6583 	if (regs) {
6584 		if (event->attr.exclude_user && user_mode(regs))
6585 			return 1;
6586 
6587 		if (event->attr.exclude_kernel && !user_mode(regs))
6588 			return 1;
6589 	}
6590 
6591 	return 0;
6592 }
6593 
6594 static int perf_swevent_match(struct perf_event *event,
6595 				enum perf_type_id type,
6596 				u32 event_id,
6597 				struct perf_sample_data *data,
6598 				struct pt_regs *regs)
6599 {
6600 	if (event->attr.type != type)
6601 		return 0;
6602 
6603 	if (event->attr.config != event_id)
6604 		return 0;
6605 
6606 	if (perf_exclude_event(event, regs))
6607 		return 0;
6608 
6609 	return 1;
6610 }
6611 
6612 static inline u64 swevent_hash(u64 type, u32 event_id)
6613 {
6614 	u64 val = event_id | (type << 32);
6615 
6616 	return hash_64(val, SWEVENT_HLIST_BITS);
6617 }
6618 
6619 static inline struct hlist_head *
6620 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6621 {
6622 	u64 hash = swevent_hash(type, event_id);
6623 
6624 	return &hlist->heads[hash];
6625 }
6626 
6627 /* For the read side: events when they trigger */
6628 static inline struct hlist_head *
6629 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6630 {
6631 	struct swevent_hlist *hlist;
6632 
6633 	hlist = rcu_dereference(swhash->swevent_hlist);
6634 	if (!hlist)
6635 		return NULL;
6636 
6637 	return __find_swevent_head(hlist, type, event_id);
6638 }
6639 
6640 /* For the event head insertion and removal in the hlist */
6641 static inline struct hlist_head *
6642 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6643 {
6644 	struct swevent_hlist *hlist;
6645 	u32 event_id = event->attr.config;
6646 	u64 type = event->attr.type;
6647 
6648 	/*
6649 	 * Event scheduling is always serialized against hlist allocation
6650 	 * and release. Which makes the protected version suitable here.
6651 	 * The context lock guarantees that.
6652 	 */
6653 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6654 					  lockdep_is_held(&event->ctx->lock));
6655 	if (!hlist)
6656 		return NULL;
6657 
6658 	return __find_swevent_head(hlist, type, event_id);
6659 }
6660 
6661 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6662 				    u64 nr,
6663 				    struct perf_sample_data *data,
6664 				    struct pt_regs *regs)
6665 {
6666 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6667 	struct perf_event *event;
6668 	struct hlist_head *head;
6669 
6670 	rcu_read_lock();
6671 	head = find_swevent_head_rcu(swhash, type, event_id);
6672 	if (!head)
6673 		goto end;
6674 
6675 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6676 		if (perf_swevent_match(event, type, event_id, data, regs))
6677 			perf_swevent_event(event, nr, data, regs);
6678 	}
6679 end:
6680 	rcu_read_unlock();
6681 }
6682 
6683 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6684 
6685 int perf_swevent_get_recursion_context(void)
6686 {
6687 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6688 
6689 	return get_recursion_context(swhash->recursion);
6690 }
6691 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6692 
6693 inline void perf_swevent_put_recursion_context(int rctx)
6694 {
6695 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6696 
6697 	put_recursion_context(swhash->recursion, rctx);
6698 }
6699 
6700 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6701 {
6702 	struct perf_sample_data data;
6703 
6704 	if (WARN_ON_ONCE(!regs))
6705 		return;
6706 
6707 	perf_sample_data_init(&data, addr, 0);
6708 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6709 }
6710 
6711 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6712 {
6713 	int rctx;
6714 
6715 	preempt_disable_notrace();
6716 	rctx = perf_swevent_get_recursion_context();
6717 	if (unlikely(rctx < 0))
6718 		goto fail;
6719 
6720 	___perf_sw_event(event_id, nr, regs, addr);
6721 
6722 	perf_swevent_put_recursion_context(rctx);
6723 fail:
6724 	preempt_enable_notrace();
6725 }
6726 
6727 static void perf_swevent_read(struct perf_event *event)
6728 {
6729 }
6730 
6731 static int perf_swevent_add(struct perf_event *event, int flags)
6732 {
6733 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6734 	struct hw_perf_event *hwc = &event->hw;
6735 	struct hlist_head *head;
6736 
6737 	if (is_sampling_event(event)) {
6738 		hwc->last_period = hwc->sample_period;
6739 		perf_swevent_set_period(event);
6740 	}
6741 
6742 	hwc->state = !(flags & PERF_EF_START);
6743 
6744 	head = find_swevent_head(swhash, event);
6745 	if (WARN_ON_ONCE(!head))
6746 		return -EINVAL;
6747 
6748 	hlist_add_head_rcu(&event->hlist_entry, head);
6749 	perf_event_update_userpage(event);
6750 
6751 	return 0;
6752 }
6753 
6754 static void perf_swevent_del(struct perf_event *event, int flags)
6755 {
6756 	hlist_del_rcu(&event->hlist_entry);
6757 }
6758 
6759 static void perf_swevent_start(struct perf_event *event, int flags)
6760 {
6761 	event->hw.state = 0;
6762 }
6763 
6764 static void perf_swevent_stop(struct perf_event *event, int flags)
6765 {
6766 	event->hw.state = PERF_HES_STOPPED;
6767 }
6768 
6769 /* Deref the hlist from the update side */
6770 static inline struct swevent_hlist *
6771 swevent_hlist_deref(struct swevent_htable *swhash)
6772 {
6773 	return rcu_dereference_protected(swhash->swevent_hlist,
6774 					 lockdep_is_held(&swhash->hlist_mutex));
6775 }
6776 
6777 static void swevent_hlist_release(struct swevent_htable *swhash)
6778 {
6779 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6780 
6781 	if (!hlist)
6782 		return;
6783 
6784 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6785 	kfree_rcu(hlist, rcu_head);
6786 }
6787 
6788 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6789 {
6790 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6791 
6792 	mutex_lock(&swhash->hlist_mutex);
6793 
6794 	if (!--swhash->hlist_refcount)
6795 		swevent_hlist_release(swhash);
6796 
6797 	mutex_unlock(&swhash->hlist_mutex);
6798 }
6799 
6800 static void swevent_hlist_put(struct perf_event *event)
6801 {
6802 	int cpu;
6803 
6804 	for_each_possible_cpu(cpu)
6805 		swevent_hlist_put_cpu(event, cpu);
6806 }
6807 
6808 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6809 {
6810 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6811 	int err = 0;
6812 
6813 	mutex_lock(&swhash->hlist_mutex);
6814 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6815 		struct swevent_hlist *hlist;
6816 
6817 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6818 		if (!hlist) {
6819 			err = -ENOMEM;
6820 			goto exit;
6821 		}
6822 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6823 	}
6824 	swhash->hlist_refcount++;
6825 exit:
6826 	mutex_unlock(&swhash->hlist_mutex);
6827 
6828 	return err;
6829 }
6830 
6831 static int swevent_hlist_get(struct perf_event *event)
6832 {
6833 	int err;
6834 	int cpu, failed_cpu;
6835 
6836 	get_online_cpus();
6837 	for_each_possible_cpu(cpu) {
6838 		err = swevent_hlist_get_cpu(event, cpu);
6839 		if (err) {
6840 			failed_cpu = cpu;
6841 			goto fail;
6842 		}
6843 	}
6844 	put_online_cpus();
6845 
6846 	return 0;
6847 fail:
6848 	for_each_possible_cpu(cpu) {
6849 		if (cpu == failed_cpu)
6850 			break;
6851 		swevent_hlist_put_cpu(event, cpu);
6852 	}
6853 
6854 	put_online_cpus();
6855 	return err;
6856 }
6857 
6858 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6859 
6860 static void sw_perf_event_destroy(struct perf_event *event)
6861 {
6862 	u64 event_id = event->attr.config;
6863 
6864 	WARN_ON(event->parent);
6865 
6866 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6867 	swevent_hlist_put(event);
6868 }
6869 
6870 static int perf_swevent_init(struct perf_event *event)
6871 {
6872 	u64 event_id = event->attr.config;
6873 
6874 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6875 		return -ENOENT;
6876 
6877 	/*
6878 	 * no branch sampling for software events
6879 	 */
6880 	if (has_branch_stack(event))
6881 		return -EOPNOTSUPP;
6882 
6883 	switch (event_id) {
6884 	case PERF_COUNT_SW_CPU_CLOCK:
6885 	case PERF_COUNT_SW_TASK_CLOCK:
6886 		return -ENOENT;
6887 
6888 	default:
6889 		break;
6890 	}
6891 
6892 	if (event_id >= PERF_COUNT_SW_MAX)
6893 		return -ENOENT;
6894 
6895 	if (!event->parent) {
6896 		int err;
6897 
6898 		err = swevent_hlist_get(event);
6899 		if (err)
6900 			return err;
6901 
6902 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6903 		event->destroy = sw_perf_event_destroy;
6904 	}
6905 
6906 	return 0;
6907 }
6908 
6909 static struct pmu perf_swevent = {
6910 	.task_ctx_nr	= perf_sw_context,
6911 
6912 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6913 
6914 	.event_init	= perf_swevent_init,
6915 	.add		= perf_swevent_add,
6916 	.del		= perf_swevent_del,
6917 	.start		= perf_swevent_start,
6918 	.stop		= perf_swevent_stop,
6919 	.read		= perf_swevent_read,
6920 };
6921 
6922 #ifdef CONFIG_EVENT_TRACING
6923 
6924 static int perf_tp_filter_match(struct perf_event *event,
6925 				struct perf_sample_data *data)
6926 {
6927 	void *record = data->raw->data;
6928 
6929 	/* only top level events have filters set */
6930 	if (event->parent)
6931 		event = event->parent;
6932 
6933 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6934 		return 1;
6935 	return 0;
6936 }
6937 
6938 static int perf_tp_event_match(struct perf_event *event,
6939 				struct perf_sample_data *data,
6940 				struct pt_regs *regs)
6941 {
6942 	if (event->hw.state & PERF_HES_STOPPED)
6943 		return 0;
6944 	/*
6945 	 * All tracepoints are from kernel-space.
6946 	 */
6947 	if (event->attr.exclude_kernel)
6948 		return 0;
6949 
6950 	if (!perf_tp_filter_match(event, data))
6951 		return 0;
6952 
6953 	return 1;
6954 }
6955 
6956 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6957 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6958 		   struct task_struct *task)
6959 {
6960 	struct perf_sample_data data;
6961 	struct perf_event *event;
6962 
6963 	struct perf_raw_record raw = {
6964 		.size = entry_size,
6965 		.data = record,
6966 	};
6967 
6968 	perf_sample_data_init(&data, addr, 0);
6969 	data.raw = &raw;
6970 
6971 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6972 		if (perf_tp_event_match(event, &data, regs))
6973 			perf_swevent_event(event, count, &data, regs);
6974 	}
6975 
6976 	/*
6977 	 * If we got specified a target task, also iterate its context and
6978 	 * deliver this event there too.
6979 	 */
6980 	if (task && task != current) {
6981 		struct perf_event_context *ctx;
6982 		struct trace_entry *entry = record;
6983 
6984 		rcu_read_lock();
6985 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6986 		if (!ctx)
6987 			goto unlock;
6988 
6989 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6990 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6991 				continue;
6992 			if (event->attr.config != entry->type)
6993 				continue;
6994 			if (perf_tp_event_match(event, &data, regs))
6995 				perf_swevent_event(event, count, &data, regs);
6996 		}
6997 unlock:
6998 		rcu_read_unlock();
6999 	}
7000 
7001 	perf_swevent_put_recursion_context(rctx);
7002 }
7003 EXPORT_SYMBOL_GPL(perf_tp_event);
7004 
7005 static void tp_perf_event_destroy(struct perf_event *event)
7006 {
7007 	perf_trace_destroy(event);
7008 }
7009 
7010 static int perf_tp_event_init(struct perf_event *event)
7011 {
7012 	int err;
7013 
7014 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7015 		return -ENOENT;
7016 
7017 	/*
7018 	 * no branch sampling for tracepoint events
7019 	 */
7020 	if (has_branch_stack(event))
7021 		return -EOPNOTSUPP;
7022 
7023 	err = perf_trace_init(event);
7024 	if (err)
7025 		return err;
7026 
7027 	event->destroy = tp_perf_event_destroy;
7028 
7029 	return 0;
7030 }
7031 
7032 static struct pmu perf_tracepoint = {
7033 	.task_ctx_nr	= perf_sw_context,
7034 
7035 	.event_init	= perf_tp_event_init,
7036 	.add		= perf_trace_add,
7037 	.del		= perf_trace_del,
7038 	.start		= perf_swevent_start,
7039 	.stop		= perf_swevent_stop,
7040 	.read		= perf_swevent_read,
7041 };
7042 
7043 static inline void perf_tp_register(void)
7044 {
7045 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7046 }
7047 
7048 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7049 {
7050 	char *filter_str;
7051 	int ret;
7052 
7053 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7054 		return -EINVAL;
7055 
7056 	filter_str = strndup_user(arg, PAGE_SIZE);
7057 	if (IS_ERR(filter_str))
7058 		return PTR_ERR(filter_str);
7059 
7060 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7061 
7062 	kfree(filter_str);
7063 	return ret;
7064 }
7065 
7066 static void perf_event_free_filter(struct perf_event *event)
7067 {
7068 	ftrace_profile_free_filter(event);
7069 }
7070 
7071 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7072 {
7073 	struct bpf_prog *prog;
7074 
7075 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7076 		return -EINVAL;
7077 
7078 	if (event->tp_event->prog)
7079 		return -EEXIST;
7080 
7081 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7082 		/* bpf programs can only be attached to u/kprobes */
7083 		return -EINVAL;
7084 
7085 	prog = bpf_prog_get(prog_fd);
7086 	if (IS_ERR(prog))
7087 		return PTR_ERR(prog);
7088 
7089 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7090 		/* valid fd, but invalid bpf program type */
7091 		bpf_prog_put(prog);
7092 		return -EINVAL;
7093 	}
7094 
7095 	event->tp_event->prog = prog;
7096 
7097 	return 0;
7098 }
7099 
7100 static void perf_event_free_bpf_prog(struct perf_event *event)
7101 {
7102 	struct bpf_prog *prog;
7103 
7104 	if (!event->tp_event)
7105 		return;
7106 
7107 	prog = event->tp_event->prog;
7108 	if (prog) {
7109 		event->tp_event->prog = NULL;
7110 		bpf_prog_put(prog);
7111 	}
7112 }
7113 
7114 #else
7115 
7116 static inline void perf_tp_register(void)
7117 {
7118 }
7119 
7120 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7121 {
7122 	return -ENOENT;
7123 }
7124 
7125 static void perf_event_free_filter(struct perf_event *event)
7126 {
7127 }
7128 
7129 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7130 {
7131 	return -ENOENT;
7132 }
7133 
7134 static void perf_event_free_bpf_prog(struct perf_event *event)
7135 {
7136 }
7137 #endif /* CONFIG_EVENT_TRACING */
7138 
7139 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7140 void perf_bp_event(struct perf_event *bp, void *data)
7141 {
7142 	struct perf_sample_data sample;
7143 	struct pt_regs *regs = data;
7144 
7145 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7146 
7147 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7148 		perf_swevent_event(bp, 1, &sample, regs);
7149 }
7150 #endif
7151 
7152 /*
7153  * hrtimer based swevent callback
7154  */
7155 
7156 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7157 {
7158 	enum hrtimer_restart ret = HRTIMER_RESTART;
7159 	struct perf_sample_data data;
7160 	struct pt_regs *regs;
7161 	struct perf_event *event;
7162 	u64 period;
7163 
7164 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7165 
7166 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7167 		return HRTIMER_NORESTART;
7168 
7169 	event->pmu->read(event);
7170 
7171 	perf_sample_data_init(&data, 0, event->hw.last_period);
7172 	regs = get_irq_regs();
7173 
7174 	if (regs && !perf_exclude_event(event, regs)) {
7175 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7176 			if (__perf_event_overflow(event, 1, &data, regs))
7177 				ret = HRTIMER_NORESTART;
7178 	}
7179 
7180 	period = max_t(u64, 10000, event->hw.sample_period);
7181 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7182 
7183 	return ret;
7184 }
7185 
7186 static void perf_swevent_start_hrtimer(struct perf_event *event)
7187 {
7188 	struct hw_perf_event *hwc = &event->hw;
7189 	s64 period;
7190 
7191 	if (!is_sampling_event(event))
7192 		return;
7193 
7194 	period = local64_read(&hwc->period_left);
7195 	if (period) {
7196 		if (period < 0)
7197 			period = 10000;
7198 
7199 		local64_set(&hwc->period_left, 0);
7200 	} else {
7201 		period = max_t(u64, 10000, hwc->sample_period);
7202 	}
7203 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7204 		      HRTIMER_MODE_REL_PINNED);
7205 }
7206 
7207 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7208 {
7209 	struct hw_perf_event *hwc = &event->hw;
7210 
7211 	if (is_sampling_event(event)) {
7212 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7213 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7214 
7215 		hrtimer_cancel(&hwc->hrtimer);
7216 	}
7217 }
7218 
7219 static void perf_swevent_init_hrtimer(struct perf_event *event)
7220 {
7221 	struct hw_perf_event *hwc = &event->hw;
7222 
7223 	if (!is_sampling_event(event))
7224 		return;
7225 
7226 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7227 	hwc->hrtimer.function = perf_swevent_hrtimer;
7228 
7229 	/*
7230 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7231 	 * mapping and avoid the whole period adjust feedback stuff.
7232 	 */
7233 	if (event->attr.freq) {
7234 		long freq = event->attr.sample_freq;
7235 
7236 		event->attr.sample_period = NSEC_PER_SEC / freq;
7237 		hwc->sample_period = event->attr.sample_period;
7238 		local64_set(&hwc->period_left, hwc->sample_period);
7239 		hwc->last_period = hwc->sample_period;
7240 		event->attr.freq = 0;
7241 	}
7242 }
7243 
7244 /*
7245  * Software event: cpu wall time clock
7246  */
7247 
7248 static void cpu_clock_event_update(struct perf_event *event)
7249 {
7250 	s64 prev;
7251 	u64 now;
7252 
7253 	now = local_clock();
7254 	prev = local64_xchg(&event->hw.prev_count, now);
7255 	local64_add(now - prev, &event->count);
7256 }
7257 
7258 static void cpu_clock_event_start(struct perf_event *event, int flags)
7259 {
7260 	local64_set(&event->hw.prev_count, local_clock());
7261 	perf_swevent_start_hrtimer(event);
7262 }
7263 
7264 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7265 {
7266 	perf_swevent_cancel_hrtimer(event);
7267 	cpu_clock_event_update(event);
7268 }
7269 
7270 static int cpu_clock_event_add(struct perf_event *event, int flags)
7271 {
7272 	if (flags & PERF_EF_START)
7273 		cpu_clock_event_start(event, flags);
7274 	perf_event_update_userpage(event);
7275 
7276 	return 0;
7277 }
7278 
7279 static void cpu_clock_event_del(struct perf_event *event, int flags)
7280 {
7281 	cpu_clock_event_stop(event, flags);
7282 }
7283 
7284 static void cpu_clock_event_read(struct perf_event *event)
7285 {
7286 	cpu_clock_event_update(event);
7287 }
7288 
7289 static int cpu_clock_event_init(struct perf_event *event)
7290 {
7291 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7292 		return -ENOENT;
7293 
7294 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7295 		return -ENOENT;
7296 
7297 	/*
7298 	 * no branch sampling for software events
7299 	 */
7300 	if (has_branch_stack(event))
7301 		return -EOPNOTSUPP;
7302 
7303 	perf_swevent_init_hrtimer(event);
7304 
7305 	return 0;
7306 }
7307 
7308 static struct pmu perf_cpu_clock = {
7309 	.task_ctx_nr	= perf_sw_context,
7310 
7311 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7312 
7313 	.event_init	= cpu_clock_event_init,
7314 	.add		= cpu_clock_event_add,
7315 	.del		= cpu_clock_event_del,
7316 	.start		= cpu_clock_event_start,
7317 	.stop		= cpu_clock_event_stop,
7318 	.read		= cpu_clock_event_read,
7319 };
7320 
7321 /*
7322  * Software event: task time clock
7323  */
7324 
7325 static void task_clock_event_update(struct perf_event *event, u64 now)
7326 {
7327 	u64 prev;
7328 	s64 delta;
7329 
7330 	prev = local64_xchg(&event->hw.prev_count, now);
7331 	delta = now - prev;
7332 	local64_add(delta, &event->count);
7333 }
7334 
7335 static void task_clock_event_start(struct perf_event *event, int flags)
7336 {
7337 	local64_set(&event->hw.prev_count, event->ctx->time);
7338 	perf_swevent_start_hrtimer(event);
7339 }
7340 
7341 static void task_clock_event_stop(struct perf_event *event, int flags)
7342 {
7343 	perf_swevent_cancel_hrtimer(event);
7344 	task_clock_event_update(event, event->ctx->time);
7345 }
7346 
7347 static int task_clock_event_add(struct perf_event *event, int flags)
7348 {
7349 	if (flags & PERF_EF_START)
7350 		task_clock_event_start(event, flags);
7351 	perf_event_update_userpage(event);
7352 
7353 	return 0;
7354 }
7355 
7356 static void task_clock_event_del(struct perf_event *event, int flags)
7357 {
7358 	task_clock_event_stop(event, PERF_EF_UPDATE);
7359 }
7360 
7361 static void task_clock_event_read(struct perf_event *event)
7362 {
7363 	u64 now = perf_clock();
7364 	u64 delta = now - event->ctx->timestamp;
7365 	u64 time = event->ctx->time + delta;
7366 
7367 	task_clock_event_update(event, time);
7368 }
7369 
7370 static int task_clock_event_init(struct perf_event *event)
7371 {
7372 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7373 		return -ENOENT;
7374 
7375 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7376 		return -ENOENT;
7377 
7378 	/*
7379 	 * no branch sampling for software events
7380 	 */
7381 	if (has_branch_stack(event))
7382 		return -EOPNOTSUPP;
7383 
7384 	perf_swevent_init_hrtimer(event);
7385 
7386 	return 0;
7387 }
7388 
7389 static struct pmu perf_task_clock = {
7390 	.task_ctx_nr	= perf_sw_context,
7391 
7392 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7393 
7394 	.event_init	= task_clock_event_init,
7395 	.add		= task_clock_event_add,
7396 	.del		= task_clock_event_del,
7397 	.start		= task_clock_event_start,
7398 	.stop		= task_clock_event_stop,
7399 	.read		= task_clock_event_read,
7400 };
7401 
7402 static void perf_pmu_nop_void(struct pmu *pmu)
7403 {
7404 }
7405 
7406 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7407 {
7408 }
7409 
7410 static int perf_pmu_nop_int(struct pmu *pmu)
7411 {
7412 	return 0;
7413 }
7414 
7415 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7416 
7417 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7418 {
7419 	__this_cpu_write(nop_txn_flags, flags);
7420 
7421 	if (flags & ~PERF_PMU_TXN_ADD)
7422 		return;
7423 
7424 	perf_pmu_disable(pmu);
7425 }
7426 
7427 static int perf_pmu_commit_txn(struct pmu *pmu)
7428 {
7429 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7430 
7431 	__this_cpu_write(nop_txn_flags, 0);
7432 
7433 	if (flags & ~PERF_PMU_TXN_ADD)
7434 		return 0;
7435 
7436 	perf_pmu_enable(pmu);
7437 	return 0;
7438 }
7439 
7440 static void perf_pmu_cancel_txn(struct pmu *pmu)
7441 {
7442 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7443 
7444 	__this_cpu_write(nop_txn_flags, 0);
7445 
7446 	if (flags & ~PERF_PMU_TXN_ADD)
7447 		return;
7448 
7449 	perf_pmu_enable(pmu);
7450 }
7451 
7452 static int perf_event_idx_default(struct perf_event *event)
7453 {
7454 	return 0;
7455 }
7456 
7457 /*
7458  * Ensures all contexts with the same task_ctx_nr have the same
7459  * pmu_cpu_context too.
7460  */
7461 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7462 {
7463 	struct pmu *pmu;
7464 
7465 	if (ctxn < 0)
7466 		return NULL;
7467 
7468 	list_for_each_entry(pmu, &pmus, entry) {
7469 		if (pmu->task_ctx_nr == ctxn)
7470 			return pmu->pmu_cpu_context;
7471 	}
7472 
7473 	return NULL;
7474 }
7475 
7476 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7477 {
7478 	int cpu;
7479 
7480 	for_each_possible_cpu(cpu) {
7481 		struct perf_cpu_context *cpuctx;
7482 
7483 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7484 
7485 		if (cpuctx->unique_pmu == old_pmu)
7486 			cpuctx->unique_pmu = pmu;
7487 	}
7488 }
7489 
7490 static void free_pmu_context(struct pmu *pmu)
7491 {
7492 	struct pmu *i;
7493 
7494 	mutex_lock(&pmus_lock);
7495 	/*
7496 	 * Like a real lame refcount.
7497 	 */
7498 	list_for_each_entry(i, &pmus, entry) {
7499 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7500 			update_pmu_context(i, pmu);
7501 			goto out;
7502 		}
7503 	}
7504 
7505 	free_percpu(pmu->pmu_cpu_context);
7506 out:
7507 	mutex_unlock(&pmus_lock);
7508 }
7509 static struct idr pmu_idr;
7510 
7511 static ssize_t
7512 type_show(struct device *dev, struct device_attribute *attr, char *page)
7513 {
7514 	struct pmu *pmu = dev_get_drvdata(dev);
7515 
7516 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7517 }
7518 static DEVICE_ATTR_RO(type);
7519 
7520 static ssize_t
7521 perf_event_mux_interval_ms_show(struct device *dev,
7522 				struct device_attribute *attr,
7523 				char *page)
7524 {
7525 	struct pmu *pmu = dev_get_drvdata(dev);
7526 
7527 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7528 }
7529 
7530 static DEFINE_MUTEX(mux_interval_mutex);
7531 
7532 static ssize_t
7533 perf_event_mux_interval_ms_store(struct device *dev,
7534 				 struct device_attribute *attr,
7535 				 const char *buf, size_t count)
7536 {
7537 	struct pmu *pmu = dev_get_drvdata(dev);
7538 	int timer, cpu, ret;
7539 
7540 	ret = kstrtoint(buf, 0, &timer);
7541 	if (ret)
7542 		return ret;
7543 
7544 	if (timer < 1)
7545 		return -EINVAL;
7546 
7547 	/* same value, noting to do */
7548 	if (timer == pmu->hrtimer_interval_ms)
7549 		return count;
7550 
7551 	mutex_lock(&mux_interval_mutex);
7552 	pmu->hrtimer_interval_ms = timer;
7553 
7554 	/* update all cpuctx for this PMU */
7555 	get_online_cpus();
7556 	for_each_online_cpu(cpu) {
7557 		struct perf_cpu_context *cpuctx;
7558 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7559 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7560 
7561 		cpu_function_call(cpu,
7562 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7563 	}
7564 	put_online_cpus();
7565 	mutex_unlock(&mux_interval_mutex);
7566 
7567 	return count;
7568 }
7569 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7570 
7571 static struct attribute *pmu_dev_attrs[] = {
7572 	&dev_attr_type.attr,
7573 	&dev_attr_perf_event_mux_interval_ms.attr,
7574 	NULL,
7575 };
7576 ATTRIBUTE_GROUPS(pmu_dev);
7577 
7578 static int pmu_bus_running;
7579 static struct bus_type pmu_bus = {
7580 	.name		= "event_source",
7581 	.dev_groups	= pmu_dev_groups,
7582 };
7583 
7584 static void pmu_dev_release(struct device *dev)
7585 {
7586 	kfree(dev);
7587 }
7588 
7589 static int pmu_dev_alloc(struct pmu *pmu)
7590 {
7591 	int ret = -ENOMEM;
7592 
7593 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7594 	if (!pmu->dev)
7595 		goto out;
7596 
7597 	pmu->dev->groups = pmu->attr_groups;
7598 	device_initialize(pmu->dev);
7599 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7600 	if (ret)
7601 		goto free_dev;
7602 
7603 	dev_set_drvdata(pmu->dev, pmu);
7604 	pmu->dev->bus = &pmu_bus;
7605 	pmu->dev->release = pmu_dev_release;
7606 	ret = device_add(pmu->dev);
7607 	if (ret)
7608 		goto free_dev;
7609 
7610 out:
7611 	return ret;
7612 
7613 free_dev:
7614 	put_device(pmu->dev);
7615 	goto out;
7616 }
7617 
7618 static struct lock_class_key cpuctx_mutex;
7619 static struct lock_class_key cpuctx_lock;
7620 
7621 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7622 {
7623 	int cpu, ret;
7624 
7625 	mutex_lock(&pmus_lock);
7626 	ret = -ENOMEM;
7627 	pmu->pmu_disable_count = alloc_percpu(int);
7628 	if (!pmu->pmu_disable_count)
7629 		goto unlock;
7630 
7631 	pmu->type = -1;
7632 	if (!name)
7633 		goto skip_type;
7634 	pmu->name = name;
7635 
7636 	if (type < 0) {
7637 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7638 		if (type < 0) {
7639 			ret = type;
7640 			goto free_pdc;
7641 		}
7642 	}
7643 	pmu->type = type;
7644 
7645 	if (pmu_bus_running) {
7646 		ret = pmu_dev_alloc(pmu);
7647 		if (ret)
7648 			goto free_idr;
7649 	}
7650 
7651 skip_type:
7652 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7653 	if (pmu->pmu_cpu_context)
7654 		goto got_cpu_context;
7655 
7656 	ret = -ENOMEM;
7657 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7658 	if (!pmu->pmu_cpu_context)
7659 		goto free_dev;
7660 
7661 	for_each_possible_cpu(cpu) {
7662 		struct perf_cpu_context *cpuctx;
7663 
7664 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7665 		__perf_event_init_context(&cpuctx->ctx);
7666 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7667 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7668 		cpuctx->ctx.pmu = pmu;
7669 
7670 		__perf_mux_hrtimer_init(cpuctx, cpu);
7671 
7672 		cpuctx->unique_pmu = pmu;
7673 	}
7674 
7675 got_cpu_context:
7676 	if (!pmu->start_txn) {
7677 		if (pmu->pmu_enable) {
7678 			/*
7679 			 * If we have pmu_enable/pmu_disable calls, install
7680 			 * transaction stubs that use that to try and batch
7681 			 * hardware accesses.
7682 			 */
7683 			pmu->start_txn  = perf_pmu_start_txn;
7684 			pmu->commit_txn = perf_pmu_commit_txn;
7685 			pmu->cancel_txn = perf_pmu_cancel_txn;
7686 		} else {
7687 			pmu->start_txn  = perf_pmu_nop_txn;
7688 			pmu->commit_txn = perf_pmu_nop_int;
7689 			pmu->cancel_txn = perf_pmu_nop_void;
7690 		}
7691 	}
7692 
7693 	if (!pmu->pmu_enable) {
7694 		pmu->pmu_enable  = perf_pmu_nop_void;
7695 		pmu->pmu_disable = perf_pmu_nop_void;
7696 	}
7697 
7698 	if (!pmu->event_idx)
7699 		pmu->event_idx = perf_event_idx_default;
7700 
7701 	list_add_rcu(&pmu->entry, &pmus);
7702 	atomic_set(&pmu->exclusive_cnt, 0);
7703 	ret = 0;
7704 unlock:
7705 	mutex_unlock(&pmus_lock);
7706 
7707 	return ret;
7708 
7709 free_dev:
7710 	device_del(pmu->dev);
7711 	put_device(pmu->dev);
7712 
7713 free_idr:
7714 	if (pmu->type >= PERF_TYPE_MAX)
7715 		idr_remove(&pmu_idr, pmu->type);
7716 
7717 free_pdc:
7718 	free_percpu(pmu->pmu_disable_count);
7719 	goto unlock;
7720 }
7721 EXPORT_SYMBOL_GPL(perf_pmu_register);
7722 
7723 void perf_pmu_unregister(struct pmu *pmu)
7724 {
7725 	mutex_lock(&pmus_lock);
7726 	list_del_rcu(&pmu->entry);
7727 	mutex_unlock(&pmus_lock);
7728 
7729 	/*
7730 	 * We dereference the pmu list under both SRCU and regular RCU, so
7731 	 * synchronize against both of those.
7732 	 */
7733 	synchronize_srcu(&pmus_srcu);
7734 	synchronize_rcu();
7735 
7736 	free_percpu(pmu->pmu_disable_count);
7737 	if (pmu->type >= PERF_TYPE_MAX)
7738 		idr_remove(&pmu_idr, pmu->type);
7739 	device_del(pmu->dev);
7740 	put_device(pmu->dev);
7741 	free_pmu_context(pmu);
7742 }
7743 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7744 
7745 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7746 {
7747 	struct perf_event_context *ctx = NULL;
7748 	int ret;
7749 
7750 	if (!try_module_get(pmu->module))
7751 		return -ENODEV;
7752 
7753 	if (event->group_leader != event) {
7754 		/*
7755 		 * This ctx->mutex can nest when we're called through
7756 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7757 		 */
7758 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7759 						 SINGLE_DEPTH_NESTING);
7760 		BUG_ON(!ctx);
7761 	}
7762 
7763 	event->pmu = pmu;
7764 	ret = pmu->event_init(event);
7765 
7766 	if (ctx)
7767 		perf_event_ctx_unlock(event->group_leader, ctx);
7768 
7769 	if (ret)
7770 		module_put(pmu->module);
7771 
7772 	return ret;
7773 }
7774 
7775 static struct pmu *perf_init_event(struct perf_event *event)
7776 {
7777 	struct pmu *pmu = NULL;
7778 	int idx;
7779 	int ret;
7780 
7781 	idx = srcu_read_lock(&pmus_srcu);
7782 
7783 	rcu_read_lock();
7784 	pmu = idr_find(&pmu_idr, event->attr.type);
7785 	rcu_read_unlock();
7786 	if (pmu) {
7787 		ret = perf_try_init_event(pmu, event);
7788 		if (ret)
7789 			pmu = ERR_PTR(ret);
7790 		goto unlock;
7791 	}
7792 
7793 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7794 		ret = perf_try_init_event(pmu, event);
7795 		if (!ret)
7796 			goto unlock;
7797 
7798 		if (ret != -ENOENT) {
7799 			pmu = ERR_PTR(ret);
7800 			goto unlock;
7801 		}
7802 	}
7803 	pmu = ERR_PTR(-ENOENT);
7804 unlock:
7805 	srcu_read_unlock(&pmus_srcu, idx);
7806 
7807 	return pmu;
7808 }
7809 
7810 static void account_event_cpu(struct perf_event *event, int cpu)
7811 {
7812 	if (event->parent)
7813 		return;
7814 
7815 	if (is_cgroup_event(event))
7816 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7817 }
7818 
7819 static void account_event(struct perf_event *event)
7820 {
7821 	bool inc = false;
7822 
7823 	if (event->parent)
7824 		return;
7825 
7826 	if (event->attach_state & PERF_ATTACH_TASK)
7827 		inc = true;
7828 	if (event->attr.mmap || event->attr.mmap_data)
7829 		atomic_inc(&nr_mmap_events);
7830 	if (event->attr.comm)
7831 		atomic_inc(&nr_comm_events);
7832 	if (event->attr.task)
7833 		atomic_inc(&nr_task_events);
7834 	if (event->attr.freq) {
7835 		if (atomic_inc_return(&nr_freq_events) == 1)
7836 			tick_nohz_full_kick_all();
7837 	}
7838 	if (event->attr.context_switch) {
7839 		atomic_inc(&nr_switch_events);
7840 		inc = true;
7841 	}
7842 	if (has_branch_stack(event))
7843 		inc = true;
7844 	if (is_cgroup_event(event))
7845 		inc = true;
7846 
7847 	if (inc) {
7848 		if (atomic_inc_not_zero(&perf_sched_count))
7849 			goto enabled;
7850 
7851 		mutex_lock(&perf_sched_mutex);
7852 		if (!atomic_read(&perf_sched_count)) {
7853 			static_branch_enable(&perf_sched_events);
7854 			/*
7855 			 * Guarantee that all CPUs observe they key change and
7856 			 * call the perf scheduling hooks before proceeding to
7857 			 * install events that need them.
7858 			 */
7859 			synchronize_sched();
7860 		}
7861 		/*
7862 		 * Now that we have waited for the sync_sched(), allow further
7863 		 * increments to by-pass the mutex.
7864 		 */
7865 		atomic_inc(&perf_sched_count);
7866 		mutex_unlock(&perf_sched_mutex);
7867 	}
7868 enabled:
7869 
7870 	account_event_cpu(event, event->cpu);
7871 }
7872 
7873 /*
7874  * Allocate and initialize a event structure
7875  */
7876 static struct perf_event *
7877 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7878 		 struct task_struct *task,
7879 		 struct perf_event *group_leader,
7880 		 struct perf_event *parent_event,
7881 		 perf_overflow_handler_t overflow_handler,
7882 		 void *context, int cgroup_fd)
7883 {
7884 	struct pmu *pmu;
7885 	struct perf_event *event;
7886 	struct hw_perf_event *hwc;
7887 	long err = -EINVAL;
7888 
7889 	if ((unsigned)cpu >= nr_cpu_ids) {
7890 		if (!task || cpu != -1)
7891 			return ERR_PTR(-EINVAL);
7892 	}
7893 
7894 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7895 	if (!event)
7896 		return ERR_PTR(-ENOMEM);
7897 
7898 	/*
7899 	 * Single events are their own group leaders, with an
7900 	 * empty sibling list:
7901 	 */
7902 	if (!group_leader)
7903 		group_leader = event;
7904 
7905 	mutex_init(&event->child_mutex);
7906 	INIT_LIST_HEAD(&event->child_list);
7907 
7908 	INIT_LIST_HEAD(&event->group_entry);
7909 	INIT_LIST_HEAD(&event->event_entry);
7910 	INIT_LIST_HEAD(&event->sibling_list);
7911 	INIT_LIST_HEAD(&event->rb_entry);
7912 	INIT_LIST_HEAD(&event->active_entry);
7913 	INIT_HLIST_NODE(&event->hlist_entry);
7914 
7915 
7916 	init_waitqueue_head(&event->waitq);
7917 	init_irq_work(&event->pending, perf_pending_event);
7918 
7919 	mutex_init(&event->mmap_mutex);
7920 
7921 	atomic_long_set(&event->refcount, 1);
7922 	event->cpu		= cpu;
7923 	event->attr		= *attr;
7924 	event->group_leader	= group_leader;
7925 	event->pmu		= NULL;
7926 	event->oncpu		= -1;
7927 
7928 	event->parent		= parent_event;
7929 
7930 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7931 	event->id		= atomic64_inc_return(&perf_event_id);
7932 
7933 	event->state		= PERF_EVENT_STATE_INACTIVE;
7934 
7935 	if (task) {
7936 		event->attach_state = PERF_ATTACH_TASK;
7937 		/*
7938 		 * XXX pmu::event_init needs to know what task to account to
7939 		 * and we cannot use the ctx information because we need the
7940 		 * pmu before we get a ctx.
7941 		 */
7942 		event->hw.target = task;
7943 	}
7944 
7945 	event->clock = &local_clock;
7946 	if (parent_event)
7947 		event->clock = parent_event->clock;
7948 
7949 	if (!overflow_handler && parent_event) {
7950 		overflow_handler = parent_event->overflow_handler;
7951 		context = parent_event->overflow_handler_context;
7952 	}
7953 
7954 	event->overflow_handler	= overflow_handler;
7955 	event->overflow_handler_context = context;
7956 
7957 	perf_event__state_init(event);
7958 
7959 	pmu = NULL;
7960 
7961 	hwc = &event->hw;
7962 	hwc->sample_period = attr->sample_period;
7963 	if (attr->freq && attr->sample_freq)
7964 		hwc->sample_period = 1;
7965 	hwc->last_period = hwc->sample_period;
7966 
7967 	local64_set(&hwc->period_left, hwc->sample_period);
7968 
7969 	/*
7970 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7971 	 */
7972 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7973 		goto err_ns;
7974 
7975 	if (!has_branch_stack(event))
7976 		event->attr.branch_sample_type = 0;
7977 
7978 	if (cgroup_fd != -1) {
7979 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7980 		if (err)
7981 			goto err_ns;
7982 	}
7983 
7984 	pmu = perf_init_event(event);
7985 	if (!pmu)
7986 		goto err_ns;
7987 	else if (IS_ERR(pmu)) {
7988 		err = PTR_ERR(pmu);
7989 		goto err_ns;
7990 	}
7991 
7992 	err = exclusive_event_init(event);
7993 	if (err)
7994 		goto err_pmu;
7995 
7996 	if (!event->parent) {
7997 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7998 			err = get_callchain_buffers();
7999 			if (err)
8000 				goto err_per_task;
8001 		}
8002 	}
8003 
8004 	return event;
8005 
8006 err_per_task:
8007 	exclusive_event_destroy(event);
8008 
8009 err_pmu:
8010 	if (event->destroy)
8011 		event->destroy(event);
8012 	module_put(pmu->module);
8013 err_ns:
8014 	if (is_cgroup_event(event))
8015 		perf_detach_cgroup(event);
8016 	if (event->ns)
8017 		put_pid_ns(event->ns);
8018 	kfree(event);
8019 
8020 	return ERR_PTR(err);
8021 }
8022 
8023 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8024 			  struct perf_event_attr *attr)
8025 {
8026 	u32 size;
8027 	int ret;
8028 
8029 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8030 		return -EFAULT;
8031 
8032 	/*
8033 	 * zero the full structure, so that a short copy will be nice.
8034 	 */
8035 	memset(attr, 0, sizeof(*attr));
8036 
8037 	ret = get_user(size, &uattr->size);
8038 	if (ret)
8039 		return ret;
8040 
8041 	if (size > PAGE_SIZE)	/* silly large */
8042 		goto err_size;
8043 
8044 	if (!size)		/* abi compat */
8045 		size = PERF_ATTR_SIZE_VER0;
8046 
8047 	if (size < PERF_ATTR_SIZE_VER0)
8048 		goto err_size;
8049 
8050 	/*
8051 	 * If we're handed a bigger struct than we know of,
8052 	 * ensure all the unknown bits are 0 - i.e. new
8053 	 * user-space does not rely on any kernel feature
8054 	 * extensions we dont know about yet.
8055 	 */
8056 	if (size > sizeof(*attr)) {
8057 		unsigned char __user *addr;
8058 		unsigned char __user *end;
8059 		unsigned char val;
8060 
8061 		addr = (void __user *)uattr + sizeof(*attr);
8062 		end  = (void __user *)uattr + size;
8063 
8064 		for (; addr < end; addr++) {
8065 			ret = get_user(val, addr);
8066 			if (ret)
8067 				return ret;
8068 			if (val)
8069 				goto err_size;
8070 		}
8071 		size = sizeof(*attr);
8072 	}
8073 
8074 	ret = copy_from_user(attr, uattr, size);
8075 	if (ret)
8076 		return -EFAULT;
8077 
8078 	if (attr->__reserved_1)
8079 		return -EINVAL;
8080 
8081 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8082 		return -EINVAL;
8083 
8084 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8085 		return -EINVAL;
8086 
8087 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8088 		u64 mask = attr->branch_sample_type;
8089 
8090 		/* only using defined bits */
8091 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8092 			return -EINVAL;
8093 
8094 		/* at least one branch bit must be set */
8095 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8096 			return -EINVAL;
8097 
8098 		/* propagate priv level, when not set for branch */
8099 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8100 
8101 			/* exclude_kernel checked on syscall entry */
8102 			if (!attr->exclude_kernel)
8103 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8104 
8105 			if (!attr->exclude_user)
8106 				mask |= PERF_SAMPLE_BRANCH_USER;
8107 
8108 			if (!attr->exclude_hv)
8109 				mask |= PERF_SAMPLE_BRANCH_HV;
8110 			/*
8111 			 * adjust user setting (for HW filter setup)
8112 			 */
8113 			attr->branch_sample_type = mask;
8114 		}
8115 		/* privileged levels capture (kernel, hv): check permissions */
8116 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8117 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8118 			return -EACCES;
8119 	}
8120 
8121 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8122 		ret = perf_reg_validate(attr->sample_regs_user);
8123 		if (ret)
8124 			return ret;
8125 	}
8126 
8127 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8128 		if (!arch_perf_have_user_stack_dump())
8129 			return -ENOSYS;
8130 
8131 		/*
8132 		 * We have __u32 type for the size, but so far
8133 		 * we can only use __u16 as maximum due to the
8134 		 * __u16 sample size limit.
8135 		 */
8136 		if (attr->sample_stack_user >= USHRT_MAX)
8137 			ret = -EINVAL;
8138 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8139 			ret = -EINVAL;
8140 	}
8141 
8142 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8143 		ret = perf_reg_validate(attr->sample_regs_intr);
8144 out:
8145 	return ret;
8146 
8147 err_size:
8148 	put_user(sizeof(*attr), &uattr->size);
8149 	ret = -E2BIG;
8150 	goto out;
8151 }
8152 
8153 static int
8154 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8155 {
8156 	struct ring_buffer *rb = NULL;
8157 	int ret = -EINVAL;
8158 
8159 	if (!output_event)
8160 		goto set;
8161 
8162 	/* don't allow circular references */
8163 	if (event == output_event)
8164 		goto out;
8165 
8166 	/*
8167 	 * Don't allow cross-cpu buffers
8168 	 */
8169 	if (output_event->cpu != event->cpu)
8170 		goto out;
8171 
8172 	/*
8173 	 * If its not a per-cpu rb, it must be the same task.
8174 	 */
8175 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8176 		goto out;
8177 
8178 	/*
8179 	 * Mixing clocks in the same buffer is trouble you don't need.
8180 	 */
8181 	if (output_event->clock != event->clock)
8182 		goto out;
8183 
8184 	/*
8185 	 * If both events generate aux data, they must be on the same PMU
8186 	 */
8187 	if (has_aux(event) && has_aux(output_event) &&
8188 	    event->pmu != output_event->pmu)
8189 		goto out;
8190 
8191 set:
8192 	mutex_lock(&event->mmap_mutex);
8193 	/* Can't redirect output if we've got an active mmap() */
8194 	if (atomic_read(&event->mmap_count))
8195 		goto unlock;
8196 
8197 	if (output_event) {
8198 		/* get the rb we want to redirect to */
8199 		rb = ring_buffer_get(output_event);
8200 		if (!rb)
8201 			goto unlock;
8202 	}
8203 
8204 	ring_buffer_attach(event, rb);
8205 
8206 	ret = 0;
8207 unlock:
8208 	mutex_unlock(&event->mmap_mutex);
8209 
8210 out:
8211 	return ret;
8212 }
8213 
8214 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8215 {
8216 	if (b < a)
8217 		swap(a, b);
8218 
8219 	mutex_lock(a);
8220 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8221 }
8222 
8223 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8224 {
8225 	bool nmi_safe = false;
8226 
8227 	switch (clk_id) {
8228 	case CLOCK_MONOTONIC:
8229 		event->clock = &ktime_get_mono_fast_ns;
8230 		nmi_safe = true;
8231 		break;
8232 
8233 	case CLOCK_MONOTONIC_RAW:
8234 		event->clock = &ktime_get_raw_fast_ns;
8235 		nmi_safe = true;
8236 		break;
8237 
8238 	case CLOCK_REALTIME:
8239 		event->clock = &ktime_get_real_ns;
8240 		break;
8241 
8242 	case CLOCK_BOOTTIME:
8243 		event->clock = &ktime_get_boot_ns;
8244 		break;
8245 
8246 	case CLOCK_TAI:
8247 		event->clock = &ktime_get_tai_ns;
8248 		break;
8249 
8250 	default:
8251 		return -EINVAL;
8252 	}
8253 
8254 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8255 		return -EINVAL;
8256 
8257 	return 0;
8258 }
8259 
8260 /**
8261  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8262  *
8263  * @attr_uptr:	event_id type attributes for monitoring/sampling
8264  * @pid:		target pid
8265  * @cpu:		target cpu
8266  * @group_fd:		group leader event fd
8267  */
8268 SYSCALL_DEFINE5(perf_event_open,
8269 		struct perf_event_attr __user *, attr_uptr,
8270 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8271 {
8272 	struct perf_event *group_leader = NULL, *output_event = NULL;
8273 	struct perf_event *event, *sibling;
8274 	struct perf_event_attr attr;
8275 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8276 	struct file *event_file = NULL;
8277 	struct fd group = {NULL, 0};
8278 	struct task_struct *task = NULL;
8279 	struct pmu *pmu;
8280 	int event_fd;
8281 	int move_group = 0;
8282 	int err;
8283 	int f_flags = O_RDWR;
8284 	int cgroup_fd = -1;
8285 
8286 	/* for future expandability... */
8287 	if (flags & ~PERF_FLAG_ALL)
8288 		return -EINVAL;
8289 
8290 	err = perf_copy_attr(attr_uptr, &attr);
8291 	if (err)
8292 		return err;
8293 
8294 	if (!attr.exclude_kernel) {
8295 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8296 			return -EACCES;
8297 	}
8298 
8299 	if (attr.freq) {
8300 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8301 			return -EINVAL;
8302 	} else {
8303 		if (attr.sample_period & (1ULL << 63))
8304 			return -EINVAL;
8305 	}
8306 
8307 	/*
8308 	 * In cgroup mode, the pid argument is used to pass the fd
8309 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8310 	 * designates the cpu on which to monitor threads from that
8311 	 * cgroup.
8312 	 */
8313 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8314 		return -EINVAL;
8315 
8316 	if (flags & PERF_FLAG_FD_CLOEXEC)
8317 		f_flags |= O_CLOEXEC;
8318 
8319 	event_fd = get_unused_fd_flags(f_flags);
8320 	if (event_fd < 0)
8321 		return event_fd;
8322 
8323 	if (group_fd != -1) {
8324 		err = perf_fget_light(group_fd, &group);
8325 		if (err)
8326 			goto err_fd;
8327 		group_leader = group.file->private_data;
8328 		if (flags & PERF_FLAG_FD_OUTPUT)
8329 			output_event = group_leader;
8330 		if (flags & PERF_FLAG_FD_NO_GROUP)
8331 			group_leader = NULL;
8332 	}
8333 
8334 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8335 		task = find_lively_task_by_vpid(pid);
8336 		if (IS_ERR(task)) {
8337 			err = PTR_ERR(task);
8338 			goto err_group_fd;
8339 		}
8340 	}
8341 
8342 	if (task && group_leader &&
8343 	    group_leader->attr.inherit != attr.inherit) {
8344 		err = -EINVAL;
8345 		goto err_task;
8346 	}
8347 
8348 	get_online_cpus();
8349 
8350 	if (flags & PERF_FLAG_PID_CGROUP)
8351 		cgroup_fd = pid;
8352 
8353 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8354 				 NULL, NULL, cgroup_fd);
8355 	if (IS_ERR(event)) {
8356 		err = PTR_ERR(event);
8357 		goto err_cpus;
8358 	}
8359 
8360 	if (is_sampling_event(event)) {
8361 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8362 			err = -ENOTSUPP;
8363 			goto err_alloc;
8364 		}
8365 	}
8366 
8367 	account_event(event);
8368 
8369 	/*
8370 	 * Special case software events and allow them to be part of
8371 	 * any hardware group.
8372 	 */
8373 	pmu = event->pmu;
8374 
8375 	if (attr.use_clockid) {
8376 		err = perf_event_set_clock(event, attr.clockid);
8377 		if (err)
8378 			goto err_alloc;
8379 	}
8380 
8381 	if (group_leader &&
8382 	    (is_software_event(event) != is_software_event(group_leader))) {
8383 		if (is_software_event(event)) {
8384 			/*
8385 			 * If event and group_leader are not both a software
8386 			 * event, and event is, then group leader is not.
8387 			 *
8388 			 * Allow the addition of software events to !software
8389 			 * groups, this is safe because software events never
8390 			 * fail to schedule.
8391 			 */
8392 			pmu = group_leader->pmu;
8393 		} else if (is_software_event(group_leader) &&
8394 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8395 			/*
8396 			 * In case the group is a pure software group, and we
8397 			 * try to add a hardware event, move the whole group to
8398 			 * the hardware context.
8399 			 */
8400 			move_group = 1;
8401 		}
8402 	}
8403 
8404 	/*
8405 	 * Get the target context (task or percpu):
8406 	 */
8407 	ctx = find_get_context(pmu, task, event);
8408 	if (IS_ERR(ctx)) {
8409 		err = PTR_ERR(ctx);
8410 		goto err_alloc;
8411 	}
8412 
8413 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8414 		err = -EBUSY;
8415 		goto err_context;
8416 	}
8417 
8418 	if (task) {
8419 		put_task_struct(task);
8420 		task = NULL;
8421 	}
8422 
8423 	/*
8424 	 * Look up the group leader (we will attach this event to it):
8425 	 */
8426 	if (group_leader) {
8427 		err = -EINVAL;
8428 
8429 		/*
8430 		 * Do not allow a recursive hierarchy (this new sibling
8431 		 * becoming part of another group-sibling):
8432 		 */
8433 		if (group_leader->group_leader != group_leader)
8434 			goto err_context;
8435 
8436 		/* All events in a group should have the same clock */
8437 		if (group_leader->clock != event->clock)
8438 			goto err_context;
8439 
8440 		/*
8441 		 * Do not allow to attach to a group in a different
8442 		 * task or CPU context:
8443 		 */
8444 		if (move_group) {
8445 			/*
8446 			 * Make sure we're both on the same task, or both
8447 			 * per-cpu events.
8448 			 */
8449 			if (group_leader->ctx->task != ctx->task)
8450 				goto err_context;
8451 
8452 			/*
8453 			 * Make sure we're both events for the same CPU;
8454 			 * grouping events for different CPUs is broken; since
8455 			 * you can never concurrently schedule them anyhow.
8456 			 */
8457 			if (group_leader->cpu != event->cpu)
8458 				goto err_context;
8459 		} else {
8460 			if (group_leader->ctx != ctx)
8461 				goto err_context;
8462 		}
8463 
8464 		/*
8465 		 * Only a group leader can be exclusive or pinned
8466 		 */
8467 		if (attr.exclusive || attr.pinned)
8468 			goto err_context;
8469 	}
8470 
8471 	if (output_event) {
8472 		err = perf_event_set_output(event, output_event);
8473 		if (err)
8474 			goto err_context;
8475 	}
8476 
8477 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8478 					f_flags);
8479 	if (IS_ERR(event_file)) {
8480 		err = PTR_ERR(event_file);
8481 		goto err_context;
8482 	}
8483 
8484 	if (move_group) {
8485 		gctx = group_leader->ctx;
8486 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8487 		if (gctx->task == TASK_TOMBSTONE) {
8488 			err = -ESRCH;
8489 			goto err_locked;
8490 		}
8491 	} else {
8492 		mutex_lock(&ctx->mutex);
8493 	}
8494 
8495 	if (ctx->task == TASK_TOMBSTONE) {
8496 		err = -ESRCH;
8497 		goto err_locked;
8498 	}
8499 
8500 	if (!perf_event_validate_size(event)) {
8501 		err = -E2BIG;
8502 		goto err_locked;
8503 	}
8504 
8505 	/*
8506 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8507 	 * because we need to serialize with concurrent event creation.
8508 	 */
8509 	if (!exclusive_event_installable(event, ctx)) {
8510 		/* exclusive and group stuff are assumed mutually exclusive */
8511 		WARN_ON_ONCE(move_group);
8512 
8513 		err = -EBUSY;
8514 		goto err_locked;
8515 	}
8516 
8517 	WARN_ON_ONCE(ctx->parent_ctx);
8518 
8519 	if (move_group) {
8520 		/*
8521 		 * See perf_event_ctx_lock() for comments on the details
8522 		 * of swizzling perf_event::ctx.
8523 		 */
8524 		perf_remove_from_context(group_leader, 0);
8525 
8526 		list_for_each_entry(sibling, &group_leader->sibling_list,
8527 				    group_entry) {
8528 			perf_remove_from_context(sibling, 0);
8529 			put_ctx(gctx);
8530 		}
8531 
8532 		/*
8533 		 * Wait for everybody to stop referencing the events through
8534 		 * the old lists, before installing it on new lists.
8535 		 */
8536 		synchronize_rcu();
8537 
8538 		/*
8539 		 * Install the group siblings before the group leader.
8540 		 *
8541 		 * Because a group leader will try and install the entire group
8542 		 * (through the sibling list, which is still in-tact), we can
8543 		 * end up with siblings installed in the wrong context.
8544 		 *
8545 		 * By installing siblings first we NO-OP because they're not
8546 		 * reachable through the group lists.
8547 		 */
8548 		list_for_each_entry(sibling, &group_leader->sibling_list,
8549 				    group_entry) {
8550 			perf_event__state_init(sibling);
8551 			perf_install_in_context(ctx, sibling, sibling->cpu);
8552 			get_ctx(ctx);
8553 		}
8554 
8555 		/*
8556 		 * Removing from the context ends up with disabled
8557 		 * event. What we want here is event in the initial
8558 		 * startup state, ready to be add into new context.
8559 		 */
8560 		perf_event__state_init(group_leader);
8561 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8562 		get_ctx(ctx);
8563 
8564 		/*
8565 		 * Now that all events are installed in @ctx, nothing
8566 		 * references @gctx anymore, so drop the last reference we have
8567 		 * on it.
8568 		 */
8569 		put_ctx(gctx);
8570 	}
8571 
8572 	/*
8573 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8574 	 * that we're serialized against further additions and before
8575 	 * perf_install_in_context() which is the point the event is active and
8576 	 * can use these values.
8577 	 */
8578 	perf_event__header_size(event);
8579 	perf_event__id_header_size(event);
8580 
8581 	event->owner = current;
8582 
8583 	perf_install_in_context(ctx, event, event->cpu);
8584 	perf_unpin_context(ctx);
8585 
8586 	if (move_group)
8587 		mutex_unlock(&gctx->mutex);
8588 	mutex_unlock(&ctx->mutex);
8589 
8590 	put_online_cpus();
8591 
8592 	mutex_lock(&current->perf_event_mutex);
8593 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8594 	mutex_unlock(&current->perf_event_mutex);
8595 
8596 	/*
8597 	 * Drop the reference on the group_event after placing the
8598 	 * new event on the sibling_list. This ensures destruction
8599 	 * of the group leader will find the pointer to itself in
8600 	 * perf_group_detach().
8601 	 */
8602 	fdput(group);
8603 	fd_install(event_fd, event_file);
8604 	return event_fd;
8605 
8606 err_locked:
8607 	if (move_group)
8608 		mutex_unlock(&gctx->mutex);
8609 	mutex_unlock(&ctx->mutex);
8610 /* err_file: */
8611 	fput(event_file);
8612 err_context:
8613 	perf_unpin_context(ctx);
8614 	put_ctx(ctx);
8615 err_alloc:
8616 	/*
8617 	 * If event_file is set, the fput() above will have called ->release()
8618 	 * and that will take care of freeing the event.
8619 	 */
8620 	if (!event_file)
8621 		free_event(event);
8622 err_cpus:
8623 	put_online_cpus();
8624 err_task:
8625 	if (task)
8626 		put_task_struct(task);
8627 err_group_fd:
8628 	fdput(group);
8629 err_fd:
8630 	put_unused_fd(event_fd);
8631 	return err;
8632 }
8633 
8634 /**
8635  * perf_event_create_kernel_counter
8636  *
8637  * @attr: attributes of the counter to create
8638  * @cpu: cpu in which the counter is bound
8639  * @task: task to profile (NULL for percpu)
8640  */
8641 struct perf_event *
8642 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8643 				 struct task_struct *task,
8644 				 perf_overflow_handler_t overflow_handler,
8645 				 void *context)
8646 {
8647 	struct perf_event_context *ctx;
8648 	struct perf_event *event;
8649 	int err;
8650 
8651 	/*
8652 	 * Get the target context (task or percpu):
8653 	 */
8654 
8655 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8656 				 overflow_handler, context, -1);
8657 	if (IS_ERR(event)) {
8658 		err = PTR_ERR(event);
8659 		goto err;
8660 	}
8661 
8662 	/* Mark owner so we could distinguish it from user events. */
8663 	event->owner = TASK_TOMBSTONE;
8664 
8665 	account_event(event);
8666 
8667 	ctx = find_get_context(event->pmu, task, event);
8668 	if (IS_ERR(ctx)) {
8669 		err = PTR_ERR(ctx);
8670 		goto err_free;
8671 	}
8672 
8673 	WARN_ON_ONCE(ctx->parent_ctx);
8674 	mutex_lock(&ctx->mutex);
8675 	if (ctx->task == TASK_TOMBSTONE) {
8676 		err = -ESRCH;
8677 		goto err_unlock;
8678 	}
8679 
8680 	if (!exclusive_event_installable(event, ctx)) {
8681 		err = -EBUSY;
8682 		goto err_unlock;
8683 	}
8684 
8685 	perf_install_in_context(ctx, event, cpu);
8686 	perf_unpin_context(ctx);
8687 	mutex_unlock(&ctx->mutex);
8688 
8689 	return event;
8690 
8691 err_unlock:
8692 	mutex_unlock(&ctx->mutex);
8693 	perf_unpin_context(ctx);
8694 	put_ctx(ctx);
8695 err_free:
8696 	free_event(event);
8697 err:
8698 	return ERR_PTR(err);
8699 }
8700 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8701 
8702 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8703 {
8704 	struct perf_event_context *src_ctx;
8705 	struct perf_event_context *dst_ctx;
8706 	struct perf_event *event, *tmp;
8707 	LIST_HEAD(events);
8708 
8709 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8710 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8711 
8712 	/*
8713 	 * See perf_event_ctx_lock() for comments on the details
8714 	 * of swizzling perf_event::ctx.
8715 	 */
8716 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8717 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8718 				 event_entry) {
8719 		perf_remove_from_context(event, 0);
8720 		unaccount_event_cpu(event, src_cpu);
8721 		put_ctx(src_ctx);
8722 		list_add(&event->migrate_entry, &events);
8723 	}
8724 
8725 	/*
8726 	 * Wait for the events to quiesce before re-instating them.
8727 	 */
8728 	synchronize_rcu();
8729 
8730 	/*
8731 	 * Re-instate events in 2 passes.
8732 	 *
8733 	 * Skip over group leaders and only install siblings on this first
8734 	 * pass, siblings will not get enabled without a leader, however a
8735 	 * leader will enable its siblings, even if those are still on the old
8736 	 * context.
8737 	 */
8738 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8739 		if (event->group_leader == event)
8740 			continue;
8741 
8742 		list_del(&event->migrate_entry);
8743 		if (event->state >= PERF_EVENT_STATE_OFF)
8744 			event->state = PERF_EVENT_STATE_INACTIVE;
8745 		account_event_cpu(event, dst_cpu);
8746 		perf_install_in_context(dst_ctx, event, dst_cpu);
8747 		get_ctx(dst_ctx);
8748 	}
8749 
8750 	/*
8751 	 * Once all the siblings are setup properly, install the group leaders
8752 	 * to make it go.
8753 	 */
8754 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8755 		list_del(&event->migrate_entry);
8756 		if (event->state >= PERF_EVENT_STATE_OFF)
8757 			event->state = PERF_EVENT_STATE_INACTIVE;
8758 		account_event_cpu(event, dst_cpu);
8759 		perf_install_in_context(dst_ctx, event, dst_cpu);
8760 		get_ctx(dst_ctx);
8761 	}
8762 	mutex_unlock(&dst_ctx->mutex);
8763 	mutex_unlock(&src_ctx->mutex);
8764 }
8765 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8766 
8767 static void sync_child_event(struct perf_event *child_event,
8768 			       struct task_struct *child)
8769 {
8770 	struct perf_event *parent_event = child_event->parent;
8771 	u64 child_val;
8772 
8773 	if (child_event->attr.inherit_stat)
8774 		perf_event_read_event(child_event, child);
8775 
8776 	child_val = perf_event_count(child_event);
8777 
8778 	/*
8779 	 * Add back the child's count to the parent's count:
8780 	 */
8781 	atomic64_add(child_val, &parent_event->child_count);
8782 	atomic64_add(child_event->total_time_enabled,
8783 		     &parent_event->child_total_time_enabled);
8784 	atomic64_add(child_event->total_time_running,
8785 		     &parent_event->child_total_time_running);
8786 }
8787 
8788 static void
8789 perf_event_exit_event(struct perf_event *child_event,
8790 		      struct perf_event_context *child_ctx,
8791 		      struct task_struct *child)
8792 {
8793 	struct perf_event *parent_event = child_event->parent;
8794 
8795 	/*
8796 	 * Do not destroy the 'original' grouping; because of the context
8797 	 * switch optimization the original events could've ended up in a
8798 	 * random child task.
8799 	 *
8800 	 * If we were to destroy the original group, all group related
8801 	 * operations would cease to function properly after this random
8802 	 * child dies.
8803 	 *
8804 	 * Do destroy all inherited groups, we don't care about those
8805 	 * and being thorough is better.
8806 	 */
8807 	raw_spin_lock_irq(&child_ctx->lock);
8808 	WARN_ON_ONCE(child_ctx->is_active);
8809 
8810 	if (parent_event)
8811 		perf_group_detach(child_event);
8812 	list_del_event(child_event, child_ctx);
8813 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
8814 	raw_spin_unlock_irq(&child_ctx->lock);
8815 
8816 	/*
8817 	 * Parent events are governed by their filedesc, retain them.
8818 	 */
8819 	if (!parent_event) {
8820 		perf_event_wakeup(child_event);
8821 		return;
8822 	}
8823 	/*
8824 	 * Child events can be cleaned up.
8825 	 */
8826 
8827 	sync_child_event(child_event, child);
8828 
8829 	/*
8830 	 * Remove this event from the parent's list
8831 	 */
8832 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8833 	mutex_lock(&parent_event->child_mutex);
8834 	list_del_init(&child_event->child_list);
8835 	mutex_unlock(&parent_event->child_mutex);
8836 
8837 	/*
8838 	 * Kick perf_poll() for is_event_hup().
8839 	 */
8840 	perf_event_wakeup(parent_event);
8841 	free_event(child_event);
8842 	put_event(parent_event);
8843 }
8844 
8845 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8846 {
8847 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8848 	struct perf_event *child_event, *next;
8849 
8850 	WARN_ON_ONCE(child != current);
8851 
8852 	child_ctx = perf_pin_task_context(child, ctxn);
8853 	if (!child_ctx)
8854 		return;
8855 
8856 	/*
8857 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
8858 	 * ctx::mutex over the entire thing. This serializes against almost
8859 	 * everything that wants to access the ctx.
8860 	 *
8861 	 * The exception is sys_perf_event_open() /
8862 	 * perf_event_create_kernel_count() which does find_get_context()
8863 	 * without ctx::mutex (it cannot because of the move_group double mutex
8864 	 * lock thing). See the comments in perf_install_in_context().
8865 	 */
8866 	mutex_lock(&child_ctx->mutex);
8867 
8868 	/*
8869 	 * In a single ctx::lock section, de-schedule the events and detach the
8870 	 * context from the task such that we cannot ever get it scheduled back
8871 	 * in.
8872 	 */
8873 	raw_spin_lock_irq(&child_ctx->lock);
8874 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
8875 
8876 	/*
8877 	 * Now that the context is inactive, destroy the task <-> ctx relation
8878 	 * and mark the context dead.
8879 	 */
8880 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8881 	put_ctx(child_ctx); /* cannot be last */
8882 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8883 	put_task_struct(current); /* cannot be last */
8884 
8885 	clone_ctx = unclone_ctx(child_ctx);
8886 	raw_spin_unlock_irq(&child_ctx->lock);
8887 
8888 	if (clone_ctx)
8889 		put_ctx(clone_ctx);
8890 
8891 	/*
8892 	 * Report the task dead after unscheduling the events so that we
8893 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8894 	 * get a few PERF_RECORD_READ events.
8895 	 */
8896 	perf_event_task(child, child_ctx, 0);
8897 
8898 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8899 		perf_event_exit_event(child_event, child_ctx, child);
8900 
8901 	mutex_unlock(&child_ctx->mutex);
8902 
8903 	put_ctx(child_ctx);
8904 }
8905 
8906 /*
8907  * When a child task exits, feed back event values to parent events.
8908  */
8909 void perf_event_exit_task(struct task_struct *child)
8910 {
8911 	struct perf_event *event, *tmp;
8912 	int ctxn;
8913 
8914 	mutex_lock(&child->perf_event_mutex);
8915 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8916 				 owner_entry) {
8917 		list_del_init(&event->owner_entry);
8918 
8919 		/*
8920 		 * Ensure the list deletion is visible before we clear
8921 		 * the owner, closes a race against perf_release() where
8922 		 * we need to serialize on the owner->perf_event_mutex.
8923 		 */
8924 		smp_store_release(&event->owner, NULL);
8925 	}
8926 	mutex_unlock(&child->perf_event_mutex);
8927 
8928 	for_each_task_context_nr(ctxn)
8929 		perf_event_exit_task_context(child, ctxn);
8930 
8931 	/*
8932 	 * The perf_event_exit_task_context calls perf_event_task
8933 	 * with child's task_ctx, which generates EXIT events for
8934 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
8935 	 * At this point we need to send EXIT events to cpu contexts.
8936 	 */
8937 	perf_event_task(child, NULL, 0);
8938 }
8939 
8940 static void perf_free_event(struct perf_event *event,
8941 			    struct perf_event_context *ctx)
8942 {
8943 	struct perf_event *parent = event->parent;
8944 
8945 	if (WARN_ON_ONCE(!parent))
8946 		return;
8947 
8948 	mutex_lock(&parent->child_mutex);
8949 	list_del_init(&event->child_list);
8950 	mutex_unlock(&parent->child_mutex);
8951 
8952 	put_event(parent);
8953 
8954 	raw_spin_lock_irq(&ctx->lock);
8955 	perf_group_detach(event);
8956 	list_del_event(event, ctx);
8957 	raw_spin_unlock_irq(&ctx->lock);
8958 	free_event(event);
8959 }
8960 
8961 /*
8962  * Free an unexposed, unused context as created by inheritance by
8963  * perf_event_init_task below, used by fork() in case of fail.
8964  *
8965  * Not all locks are strictly required, but take them anyway to be nice and
8966  * help out with the lockdep assertions.
8967  */
8968 void perf_event_free_task(struct task_struct *task)
8969 {
8970 	struct perf_event_context *ctx;
8971 	struct perf_event *event, *tmp;
8972 	int ctxn;
8973 
8974 	for_each_task_context_nr(ctxn) {
8975 		ctx = task->perf_event_ctxp[ctxn];
8976 		if (!ctx)
8977 			continue;
8978 
8979 		mutex_lock(&ctx->mutex);
8980 again:
8981 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8982 				group_entry)
8983 			perf_free_event(event, ctx);
8984 
8985 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8986 				group_entry)
8987 			perf_free_event(event, ctx);
8988 
8989 		if (!list_empty(&ctx->pinned_groups) ||
8990 				!list_empty(&ctx->flexible_groups))
8991 			goto again;
8992 
8993 		mutex_unlock(&ctx->mutex);
8994 
8995 		put_ctx(ctx);
8996 	}
8997 }
8998 
8999 void perf_event_delayed_put(struct task_struct *task)
9000 {
9001 	int ctxn;
9002 
9003 	for_each_task_context_nr(ctxn)
9004 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9005 }
9006 
9007 struct file *perf_event_get(unsigned int fd)
9008 {
9009 	struct file *file;
9010 
9011 	file = fget_raw(fd);
9012 	if (!file)
9013 		return ERR_PTR(-EBADF);
9014 
9015 	if (file->f_op != &perf_fops) {
9016 		fput(file);
9017 		return ERR_PTR(-EBADF);
9018 	}
9019 
9020 	return file;
9021 }
9022 
9023 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9024 {
9025 	if (!event)
9026 		return ERR_PTR(-EINVAL);
9027 
9028 	return &event->attr;
9029 }
9030 
9031 /*
9032  * inherit a event from parent task to child task:
9033  */
9034 static struct perf_event *
9035 inherit_event(struct perf_event *parent_event,
9036 	      struct task_struct *parent,
9037 	      struct perf_event_context *parent_ctx,
9038 	      struct task_struct *child,
9039 	      struct perf_event *group_leader,
9040 	      struct perf_event_context *child_ctx)
9041 {
9042 	enum perf_event_active_state parent_state = parent_event->state;
9043 	struct perf_event *child_event;
9044 	unsigned long flags;
9045 
9046 	/*
9047 	 * Instead of creating recursive hierarchies of events,
9048 	 * we link inherited events back to the original parent,
9049 	 * which has a filp for sure, which we use as the reference
9050 	 * count:
9051 	 */
9052 	if (parent_event->parent)
9053 		parent_event = parent_event->parent;
9054 
9055 	child_event = perf_event_alloc(&parent_event->attr,
9056 					   parent_event->cpu,
9057 					   child,
9058 					   group_leader, parent_event,
9059 					   NULL, NULL, -1);
9060 	if (IS_ERR(child_event))
9061 		return child_event;
9062 
9063 	/*
9064 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
9065 	 * must be under the same lock in order to serialize against
9066 	 * perf_event_release_kernel(), such that either we must observe
9067 	 * is_orphaned_event() or they will observe us on the child_list.
9068 	 */
9069 	mutex_lock(&parent_event->child_mutex);
9070 	if (is_orphaned_event(parent_event) ||
9071 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9072 		mutex_unlock(&parent_event->child_mutex);
9073 		free_event(child_event);
9074 		return NULL;
9075 	}
9076 
9077 	get_ctx(child_ctx);
9078 
9079 	/*
9080 	 * Make the child state follow the state of the parent event,
9081 	 * not its attr.disabled bit.  We hold the parent's mutex,
9082 	 * so we won't race with perf_event_{en, dis}able_family.
9083 	 */
9084 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9085 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9086 	else
9087 		child_event->state = PERF_EVENT_STATE_OFF;
9088 
9089 	if (parent_event->attr.freq) {
9090 		u64 sample_period = parent_event->hw.sample_period;
9091 		struct hw_perf_event *hwc = &child_event->hw;
9092 
9093 		hwc->sample_period = sample_period;
9094 		hwc->last_period   = sample_period;
9095 
9096 		local64_set(&hwc->period_left, sample_period);
9097 	}
9098 
9099 	child_event->ctx = child_ctx;
9100 	child_event->overflow_handler = parent_event->overflow_handler;
9101 	child_event->overflow_handler_context
9102 		= parent_event->overflow_handler_context;
9103 
9104 	/*
9105 	 * Precalculate sample_data sizes
9106 	 */
9107 	perf_event__header_size(child_event);
9108 	perf_event__id_header_size(child_event);
9109 
9110 	/*
9111 	 * Link it up in the child's context:
9112 	 */
9113 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9114 	add_event_to_ctx(child_event, child_ctx);
9115 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9116 
9117 	/*
9118 	 * Link this into the parent event's child list
9119 	 */
9120 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9121 	mutex_unlock(&parent_event->child_mutex);
9122 
9123 	return child_event;
9124 }
9125 
9126 static int inherit_group(struct perf_event *parent_event,
9127 	      struct task_struct *parent,
9128 	      struct perf_event_context *parent_ctx,
9129 	      struct task_struct *child,
9130 	      struct perf_event_context *child_ctx)
9131 {
9132 	struct perf_event *leader;
9133 	struct perf_event *sub;
9134 	struct perf_event *child_ctr;
9135 
9136 	leader = inherit_event(parent_event, parent, parent_ctx,
9137 				 child, NULL, child_ctx);
9138 	if (IS_ERR(leader))
9139 		return PTR_ERR(leader);
9140 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9141 		child_ctr = inherit_event(sub, parent, parent_ctx,
9142 					    child, leader, child_ctx);
9143 		if (IS_ERR(child_ctr))
9144 			return PTR_ERR(child_ctr);
9145 	}
9146 	return 0;
9147 }
9148 
9149 static int
9150 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9151 		   struct perf_event_context *parent_ctx,
9152 		   struct task_struct *child, int ctxn,
9153 		   int *inherited_all)
9154 {
9155 	int ret;
9156 	struct perf_event_context *child_ctx;
9157 
9158 	if (!event->attr.inherit) {
9159 		*inherited_all = 0;
9160 		return 0;
9161 	}
9162 
9163 	child_ctx = child->perf_event_ctxp[ctxn];
9164 	if (!child_ctx) {
9165 		/*
9166 		 * This is executed from the parent task context, so
9167 		 * inherit events that have been marked for cloning.
9168 		 * First allocate and initialize a context for the
9169 		 * child.
9170 		 */
9171 
9172 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9173 		if (!child_ctx)
9174 			return -ENOMEM;
9175 
9176 		child->perf_event_ctxp[ctxn] = child_ctx;
9177 	}
9178 
9179 	ret = inherit_group(event, parent, parent_ctx,
9180 			    child, child_ctx);
9181 
9182 	if (ret)
9183 		*inherited_all = 0;
9184 
9185 	return ret;
9186 }
9187 
9188 /*
9189  * Initialize the perf_event context in task_struct
9190  */
9191 static int perf_event_init_context(struct task_struct *child, int ctxn)
9192 {
9193 	struct perf_event_context *child_ctx, *parent_ctx;
9194 	struct perf_event_context *cloned_ctx;
9195 	struct perf_event *event;
9196 	struct task_struct *parent = current;
9197 	int inherited_all = 1;
9198 	unsigned long flags;
9199 	int ret = 0;
9200 
9201 	if (likely(!parent->perf_event_ctxp[ctxn]))
9202 		return 0;
9203 
9204 	/*
9205 	 * If the parent's context is a clone, pin it so it won't get
9206 	 * swapped under us.
9207 	 */
9208 	parent_ctx = perf_pin_task_context(parent, ctxn);
9209 	if (!parent_ctx)
9210 		return 0;
9211 
9212 	/*
9213 	 * No need to check if parent_ctx != NULL here; since we saw
9214 	 * it non-NULL earlier, the only reason for it to become NULL
9215 	 * is if we exit, and since we're currently in the middle of
9216 	 * a fork we can't be exiting at the same time.
9217 	 */
9218 
9219 	/*
9220 	 * Lock the parent list. No need to lock the child - not PID
9221 	 * hashed yet and not running, so nobody can access it.
9222 	 */
9223 	mutex_lock(&parent_ctx->mutex);
9224 
9225 	/*
9226 	 * We dont have to disable NMIs - we are only looking at
9227 	 * the list, not manipulating it:
9228 	 */
9229 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9230 		ret = inherit_task_group(event, parent, parent_ctx,
9231 					 child, ctxn, &inherited_all);
9232 		if (ret)
9233 			break;
9234 	}
9235 
9236 	/*
9237 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9238 	 * to allocations, but we need to prevent rotation because
9239 	 * rotate_ctx() will change the list from interrupt context.
9240 	 */
9241 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9242 	parent_ctx->rotate_disable = 1;
9243 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9244 
9245 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9246 		ret = inherit_task_group(event, parent, parent_ctx,
9247 					 child, ctxn, &inherited_all);
9248 		if (ret)
9249 			break;
9250 	}
9251 
9252 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9253 	parent_ctx->rotate_disable = 0;
9254 
9255 	child_ctx = child->perf_event_ctxp[ctxn];
9256 
9257 	if (child_ctx && inherited_all) {
9258 		/*
9259 		 * Mark the child context as a clone of the parent
9260 		 * context, or of whatever the parent is a clone of.
9261 		 *
9262 		 * Note that if the parent is a clone, the holding of
9263 		 * parent_ctx->lock avoids it from being uncloned.
9264 		 */
9265 		cloned_ctx = parent_ctx->parent_ctx;
9266 		if (cloned_ctx) {
9267 			child_ctx->parent_ctx = cloned_ctx;
9268 			child_ctx->parent_gen = parent_ctx->parent_gen;
9269 		} else {
9270 			child_ctx->parent_ctx = parent_ctx;
9271 			child_ctx->parent_gen = parent_ctx->generation;
9272 		}
9273 		get_ctx(child_ctx->parent_ctx);
9274 	}
9275 
9276 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9277 	mutex_unlock(&parent_ctx->mutex);
9278 
9279 	perf_unpin_context(parent_ctx);
9280 	put_ctx(parent_ctx);
9281 
9282 	return ret;
9283 }
9284 
9285 /*
9286  * Initialize the perf_event context in task_struct
9287  */
9288 int perf_event_init_task(struct task_struct *child)
9289 {
9290 	int ctxn, ret;
9291 
9292 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9293 	mutex_init(&child->perf_event_mutex);
9294 	INIT_LIST_HEAD(&child->perf_event_list);
9295 
9296 	for_each_task_context_nr(ctxn) {
9297 		ret = perf_event_init_context(child, ctxn);
9298 		if (ret) {
9299 			perf_event_free_task(child);
9300 			return ret;
9301 		}
9302 	}
9303 
9304 	return 0;
9305 }
9306 
9307 static void __init perf_event_init_all_cpus(void)
9308 {
9309 	struct swevent_htable *swhash;
9310 	int cpu;
9311 
9312 	for_each_possible_cpu(cpu) {
9313 		swhash = &per_cpu(swevent_htable, cpu);
9314 		mutex_init(&swhash->hlist_mutex);
9315 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9316 	}
9317 }
9318 
9319 static void perf_event_init_cpu(int cpu)
9320 {
9321 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9322 
9323 	mutex_lock(&swhash->hlist_mutex);
9324 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
9325 		struct swevent_hlist *hlist;
9326 
9327 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9328 		WARN_ON(!hlist);
9329 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9330 	}
9331 	mutex_unlock(&swhash->hlist_mutex);
9332 }
9333 
9334 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9335 static void __perf_event_exit_context(void *__info)
9336 {
9337 	struct perf_event_context *ctx = __info;
9338 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9339 	struct perf_event *event;
9340 
9341 	raw_spin_lock(&ctx->lock);
9342 	list_for_each_entry(event, &ctx->event_list, event_entry)
9343 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
9344 	raw_spin_unlock(&ctx->lock);
9345 }
9346 
9347 static void perf_event_exit_cpu_context(int cpu)
9348 {
9349 	struct perf_event_context *ctx;
9350 	struct pmu *pmu;
9351 	int idx;
9352 
9353 	idx = srcu_read_lock(&pmus_srcu);
9354 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9355 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9356 
9357 		mutex_lock(&ctx->mutex);
9358 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9359 		mutex_unlock(&ctx->mutex);
9360 	}
9361 	srcu_read_unlock(&pmus_srcu, idx);
9362 }
9363 
9364 static void perf_event_exit_cpu(int cpu)
9365 {
9366 	perf_event_exit_cpu_context(cpu);
9367 }
9368 #else
9369 static inline void perf_event_exit_cpu(int cpu) { }
9370 #endif
9371 
9372 static int
9373 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9374 {
9375 	int cpu;
9376 
9377 	for_each_online_cpu(cpu)
9378 		perf_event_exit_cpu(cpu);
9379 
9380 	return NOTIFY_OK;
9381 }
9382 
9383 /*
9384  * Run the perf reboot notifier at the very last possible moment so that
9385  * the generic watchdog code runs as long as possible.
9386  */
9387 static struct notifier_block perf_reboot_notifier = {
9388 	.notifier_call = perf_reboot,
9389 	.priority = INT_MIN,
9390 };
9391 
9392 static int
9393 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9394 {
9395 	unsigned int cpu = (long)hcpu;
9396 
9397 	switch (action & ~CPU_TASKS_FROZEN) {
9398 
9399 	case CPU_UP_PREPARE:
9400 		perf_event_init_cpu(cpu);
9401 		break;
9402 
9403 	case CPU_DOWN_PREPARE:
9404 		perf_event_exit_cpu(cpu);
9405 		break;
9406 	default:
9407 		break;
9408 	}
9409 
9410 	return NOTIFY_OK;
9411 }
9412 
9413 void __init perf_event_init(void)
9414 {
9415 	int ret;
9416 
9417 	idr_init(&pmu_idr);
9418 
9419 	perf_event_init_all_cpus();
9420 	init_srcu_struct(&pmus_srcu);
9421 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9422 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9423 	perf_pmu_register(&perf_task_clock, NULL, -1);
9424 	perf_tp_register();
9425 	perf_cpu_notifier(perf_cpu_notify);
9426 	register_reboot_notifier(&perf_reboot_notifier);
9427 
9428 	ret = init_hw_breakpoint();
9429 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9430 
9431 	/*
9432 	 * Build time assertion that we keep the data_head at the intended
9433 	 * location.  IOW, validation we got the __reserved[] size right.
9434 	 */
9435 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9436 		     != 1024);
9437 }
9438 
9439 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9440 			      char *page)
9441 {
9442 	struct perf_pmu_events_attr *pmu_attr =
9443 		container_of(attr, struct perf_pmu_events_attr, attr);
9444 
9445 	if (pmu_attr->event_str)
9446 		return sprintf(page, "%s\n", pmu_attr->event_str);
9447 
9448 	return 0;
9449 }
9450 
9451 static int __init perf_event_sysfs_init(void)
9452 {
9453 	struct pmu *pmu;
9454 	int ret;
9455 
9456 	mutex_lock(&pmus_lock);
9457 
9458 	ret = bus_register(&pmu_bus);
9459 	if (ret)
9460 		goto unlock;
9461 
9462 	list_for_each_entry(pmu, &pmus, entry) {
9463 		if (!pmu->name || pmu->type < 0)
9464 			continue;
9465 
9466 		ret = pmu_dev_alloc(pmu);
9467 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9468 	}
9469 	pmu_bus_running = 1;
9470 	ret = 0;
9471 
9472 unlock:
9473 	mutex_unlock(&pmus_lock);
9474 
9475 	return ret;
9476 }
9477 device_initcall(perf_event_sysfs_init);
9478 
9479 #ifdef CONFIG_CGROUP_PERF
9480 static struct cgroup_subsys_state *
9481 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9482 {
9483 	struct perf_cgroup *jc;
9484 
9485 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9486 	if (!jc)
9487 		return ERR_PTR(-ENOMEM);
9488 
9489 	jc->info = alloc_percpu(struct perf_cgroup_info);
9490 	if (!jc->info) {
9491 		kfree(jc);
9492 		return ERR_PTR(-ENOMEM);
9493 	}
9494 
9495 	return &jc->css;
9496 }
9497 
9498 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9499 {
9500 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9501 
9502 	free_percpu(jc->info);
9503 	kfree(jc);
9504 }
9505 
9506 static int __perf_cgroup_move(void *info)
9507 {
9508 	struct task_struct *task = info;
9509 	rcu_read_lock();
9510 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9511 	rcu_read_unlock();
9512 	return 0;
9513 }
9514 
9515 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9516 {
9517 	struct task_struct *task;
9518 	struct cgroup_subsys_state *css;
9519 
9520 	cgroup_taskset_for_each(task, css, tset)
9521 		task_function_call(task, __perf_cgroup_move, task);
9522 }
9523 
9524 struct cgroup_subsys perf_event_cgrp_subsys = {
9525 	.css_alloc	= perf_cgroup_css_alloc,
9526 	.css_free	= perf_cgroup_css_free,
9527 	.attach		= perf_cgroup_attach,
9528 };
9529 #endif /* CONFIG_CGROUP_PERF */
9530