1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 58 #include "internal.h" 59 60 #include <asm/irq_regs.h> 61 62 typedef int (*remote_function_f)(void *); 63 64 struct remote_function_call { 65 struct task_struct *p; 66 remote_function_f func; 67 void *info; 68 int ret; 69 }; 70 71 static void remote_function(void *data) 72 { 73 struct remote_function_call *tfc = data; 74 struct task_struct *p = tfc->p; 75 76 if (p) { 77 /* -EAGAIN */ 78 if (task_cpu(p) != smp_processor_id()) 79 return; 80 81 /* 82 * Now that we're on right CPU with IRQs disabled, we can test 83 * if we hit the right task without races. 84 */ 85 86 tfc->ret = -ESRCH; /* No such (running) process */ 87 if (p != current) 88 return; 89 } 90 91 tfc->ret = tfc->func(tfc->info); 92 } 93 94 /** 95 * task_function_call - call a function on the cpu on which a task runs 96 * @p: the task to evaluate 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func when the task is currently running. This might 101 * be on the current CPU, which just calls the function directly. This will 102 * retry due to any failures in smp_call_function_single(), such as if the 103 * task_cpu() goes offline concurrently. 104 * 105 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 106 */ 107 static int 108 task_function_call(struct task_struct *p, remote_function_f func, void *info) 109 { 110 struct remote_function_call data = { 111 .p = p, 112 .func = func, 113 .info = info, 114 .ret = -EAGAIN, 115 }; 116 int ret; 117 118 for (;;) { 119 ret = smp_call_function_single(task_cpu(p), remote_function, 120 &data, 1); 121 if (!ret) 122 ret = data.ret; 123 124 if (ret != -EAGAIN) 125 break; 126 127 cond_resched(); 128 } 129 130 return ret; 131 } 132 133 /** 134 * cpu_function_call - call a function on the cpu 135 * @cpu: target cpu to queue this function 136 * @func: the function to be called 137 * @info: the function call argument 138 * 139 * Calls the function @func on the remote cpu. 140 * 141 * returns: @func return value or -ENXIO when the cpu is offline 142 */ 143 static int cpu_function_call(int cpu, remote_function_f func, void *info) 144 { 145 struct remote_function_call data = { 146 .p = NULL, 147 .func = func, 148 .info = info, 149 .ret = -ENXIO, /* No such CPU */ 150 }; 151 152 smp_call_function_single(cpu, remote_function, &data, 1); 153 154 return data.ret; 155 } 156 157 static inline struct perf_cpu_context * 158 __get_cpu_context(struct perf_event_context *ctx) 159 { 160 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 161 } 162 163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 164 struct perf_event_context *ctx) 165 { 166 raw_spin_lock(&cpuctx->ctx.lock); 167 if (ctx) 168 raw_spin_lock(&ctx->lock); 169 } 170 171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 172 struct perf_event_context *ctx) 173 { 174 if (ctx) 175 raw_spin_unlock(&ctx->lock); 176 raw_spin_unlock(&cpuctx->ctx.lock); 177 } 178 179 #define TASK_TOMBSTONE ((void *)-1L) 180 181 static bool is_kernel_event(struct perf_event *event) 182 { 183 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 184 } 185 186 /* 187 * On task ctx scheduling... 188 * 189 * When !ctx->nr_events a task context will not be scheduled. This means 190 * we can disable the scheduler hooks (for performance) without leaving 191 * pending task ctx state. 192 * 193 * This however results in two special cases: 194 * 195 * - removing the last event from a task ctx; this is relatively straight 196 * forward and is done in __perf_remove_from_context. 197 * 198 * - adding the first event to a task ctx; this is tricky because we cannot 199 * rely on ctx->is_active and therefore cannot use event_function_call(). 200 * See perf_install_in_context(). 201 * 202 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 203 */ 204 205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 206 struct perf_event_context *, void *); 207 208 struct event_function_struct { 209 struct perf_event *event; 210 event_f func; 211 void *data; 212 }; 213 214 static int event_function(void *info) 215 { 216 struct event_function_struct *efs = info; 217 struct perf_event *event = efs->event; 218 struct perf_event_context *ctx = event->ctx; 219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 220 struct perf_event_context *task_ctx = cpuctx->task_ctx; 221 int ret = 0; 222 223 lockdep_assert_irqs_disabled(); 224 225 perf_ctx_lock(cpuctx, task_ctx); 226 /* 227 * Since we do the IPI call without holding ctx->lock things can have 228 * changed, double check we hit the task we set out to hit. 229 */ 230 if (ctx->task) { 231 if (ctx->task != current) { 232 ret = -ESRCH; 233 goto unlock; 234 } 235 236 /* 237 * We only use event_function_call() on established contexts, 238 * and event_function() is only ever called when active (or 239 * rather, we'll have bailed in task_function_call() or the 240 * above ctx->task != current test), therefore we must have 241 * ctx->is_active here. 242 */ 243 WARN_ON_ONCE(!ctx->is_active); 244 /* 245 * And since we have ctx->is_active, cpuctx->task_ctx must 246 * match. 247 */ 248 WARN_ON_ONCE(task_ctx != ctx); 249 } else { 250 WARN_ON_ONCE(&cpuctx->ctx != ctx); 251 } 252 253 efs->func(event, cpuctx, ctx, efs->data); 254 unlock: 255 perf_ctx_unlock(cpuctx, task_ctx); 256 257 return ret; 258 } 259 260 static void event_function_call(struct perf_event *event, event_f func, void *data) 261 { 262 struct perf_event_context *ctx = event->ctx; 263 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 264 struct event_function_struct efs = { 265 .event = event, 266 .func = func, 267 .data = data, 268 }; 269 270 if (!event->parent) { 271 /* 272 * If this is a !child event, we must hold ctx::mutex to 273 * stabilize the event->ctx relation. See 274 * perf_event_ctx_lock(). 275 */ 276 lockdep_assert_held(&ctx->mutex); 277 } 278 279 if (!task) { 280 cpu_function_call(event->cpu, event_function, &efs); 281 return; 282 } 283 284 if (task == TASK_TOMBSTONE) 285 return; 286 287 again: 288 if (!task_function_call(task, event_function, &efs)) 289 return; 290 291 raw_spin_lock_irq(&ctx->lock); 292 /* 293 * Reload the task pointer, it might have been changed by 294 * a concurrent perf_event_context_sched_out(). 295 */ 296 task = ctx->task; 297 if (task == TASK_TOMBSTONE) { 298 raw_spin_unlock_irq(&ctx->lock); 299 return; 300 } 301 if (ctx->is_active) { 302 raw_spin_unlock_irq(&ctx->lock); 303 goto again; 304 } 305 func(event, NULL, ctx, data); 306 raw_spin_unlock_irq(&ctx->lock); 307 } 308 309 /* 310 * Similar to event_function_call() + event_function(), but hard assumes IRQs 311 * are already disabled and we're on the right CPU. 312 */ 313 static void event_function_local(struct perf_event *event, event_f func, void *data) 314 { 315 struct perf_event_context *ctx = event->ctx; 316 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 317 struct task_struct *task = READ_ONCE(ctx->task); 318 struct perf_event_context *task_ctx = NULL; 319 320 lockdep_assert_irqs_disabled(); 321 322 if (task) { 323 if (task == TASK_TOMBSTONE) 324 return; 325 326 task_ctx = ctx; 327 } 328 329 perf_ctx_lock(cpuctx, task_ctx); 330 331 task = ctx->task; 332 if (task == TASK_TOMBSTONE) 333 goto unlock; 334 335 if (task) { 336 /* 337 * We must be either inactive or active and the right task, 338 * otherwise we're screwed, since we cannot IPI to somewhere 339 * else. 340 */ 341 if (ctx->is_active) { 342 if (WARN_ON_ONCE(task != current)) 343 goto unlock; 344 345 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 346 goto unlock; 347 } 348 } else { 349 WARN_ON_ONCE(&cpuctx->ctx != ctx); 350 } 351 352 func(event, cpuctx, ctx, data); 353 unlock: 354 perf_ctx_unlock(cpuctx, task_ctx); 355 } 356 357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 358 PERF_FLAG_FD_OUTPUT |\ 359 PERF_FLAG_PID_CGROUP |\ 360 PERF_FLAG_FD_CLOEXEC) 361 362 /* 363 * branch priv levels that need permission checks 364 */ 365 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 366 (PERF_SAMPLE_BRANCH_KERNEL |\ 367 PERF_SAMPLE_BRANCH_HV) 368 369 enum event_type_t { 370 EVENT_FLEXIBLE = 0x1, 371 EVENT_PINNED = 0x2, 372 EVENT_TIME = 0x4, 373 /* see ctx_resched() for details */ 374 EVENT_CPU = 0x8, 375 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 376 }; 377 378 /* 379 * perf_sched_events : >0 events exist 380 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 381 */ 382 383 static void perf_sched_delayed(struct work_struct *work); 384 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 386 static DEFINE_MUTEX(perf_sched_mutex); 387 static atomic_t perf_sched_count; 388 389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 390 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 392 393 static atomic_t nr_mmap_events __read_mostly; 394 static atomic_t nr_comm_events __read_mostly; 395 static atomic_t nr_namespaces_events __read_mostly; 396 static atomic_t nr_task_events __read_mostly; 397 static atomic_t nr_freq_events __read_mostly; 398 static atomic_t nr_switch_events __read_mostly; 399 static atomic_t nr_ksymbol_events __read_mostly; 400 static atomic_t nr_bpf_events __read_mostly; 401 static atomic_t nr_cgroup_events __read_mostly; 402 static atomic_t nr_text_poke_events __read_mostly; 403 static atomic_t nr_build_id_events __read_mostly; 404 405 static LIST_HEAD(pmus); 406 static DEFINE_MUTEX(pmus_lock); 407 static struct srcu_struct pmus_srcu; 408 static cpumask_var_t perf_online_mask; 409 static struct kmem_cache *perf_event_cache; 410 411 /* 412 * perf event paranoia level: 413 * -1 - not paranoid at all 414 * 0 - disallow raw tracepoint access for unpriv 415 * 1 - disallow cpu events for unpriv 416 * 2 - disallow kernel profiling for unpriv 417 */ 418 int sysctl_perf_event_paranoid __read_mostly = 2; 419 420 /* Minimum for 512 kiB + 1 user control page */ 421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 422 423 /* 424 * max perf event sample rate 425 */ 426 #define DEFAULT_MAX_SAMPLE_RATE 100000 427 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 428 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 429 430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 431 432 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 433 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 434 435 static int perf_sample_allowed_ns __read_mostly = 436 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 437 438 static void update_perf_cpu_limits(void) 439 { 440 u64 tmp = perf_sample_period_ns; 441 442 tmp *= sysctl_perf_cpu_time_max_percent; 443 tmp = div_u64(tmp, 100); 444 if (!tmp) 445 tmp = 1; 446 447 WRITE_ONCE(perf_sample_allowed_ns, tmp); 448 } 449 450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 451 452 int perf_proc_update_handler(struct ctl_table *table, int write, 453 void *buffer, size_t *lenp, loff_t *ppos) 454 { 455 int ret; 456 int perf_cpu = sysctl_perf_cpu_time_max_percent; 457 /* 458 * If throttling is disabled don't allow the write: 459 */ 460 if (write && (perf_cpu == 100 || perf_cpu == 0)) 461 return -EINVAL; 462 463 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 464 if (ret || !write) 465 return ret; 466 467 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 468 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 469 update_perf_cpu_limits(); 470 471 return 0; 472 } 473 474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 475 476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 477 void *buffer, size_t *lenp, loff_t *ppos) 478 { 479 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 480 481 if (ret || !write) 482 return ret; 483 484 if (sysctl_perf_cpu_time_max_percent == 100 || 485 sysctl_perf_cpu_time_max_percent == 0) { 486 printk(KERN_WARNING 487 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 488 WRITE_ONCE(perf_sample_allowed_ns, 0); 489 } else { 490 update_perf_cpu_limits(); 491 } 492 493 return 0; 494 } 495 496 /* 497 * perf samples are done in some very critical code paths (NMIs). 498 * If they take too much CPU time, the system can lock up and not 499 * get any real work done. This will drop the sample rate when 500 * we detect that events are taking too long. 501 */ 502 #define NR_ACCUMULATED_SAMPLES 128 503 static DEFINE_PER_CPU(u64, running_sample_length); 504 505 static u64 __report_avg; 506 static u64 __report_allowed; 507 508 static void perf_duration_warn(struct irq_work *w) 509 { 510 printk_ratelimited(KERN_INFO 511 "perf: interrupt took too long (%lld > %lld), lowering " 512 "kernel.perf_event_max_sample_rate to %d\n", 513 __report_avg, __report_allowed, 514 sysctl_perf_event_sample_rate); 515 } 516 517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 518 519 void perf_sample_event_took(u64 sample_len_ns) 520 { 521 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 522 u64 running_len; 523 u64 avg_len; 524 u32 max; 525 526 if (max_len == 0) 527 return; 528 529 /* Decay the counter by 1 average sample. */ 530 running_len = __this_cpu_read(running_sample_length); 531 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 532 running_len += sample_len_ns; 533 __this_cpu_write(running_sample_length, running_len); 534 535 /* 536 * Note: this will be biased artifically low until we have 537 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 538 * from having to maintain a count. 539 */ 540 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 541 if (avg_len <= max_len) 542 return; 543 544 __report_avg = avg_len; 545 __report_allowed = max_len; 546 547 /* 548 * Compute a throttle threshold 25% below the current duration. 549 */ 550 avg_len += avg_len / 4; 551 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 552 if (avg_len < max) 553 max /= (u32)avg_len; 554 else 555 max = 1; 556 557 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 558 WRITE_ONCE(max_samples_per_tick, max); 559 560 sysctl_perf_event_sample_rate = max * HZ; 561 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 562 563 if (!irq_work_queue(&perf_duration_work)) { 564 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 565 "kernel.perf_event_max_sample_rate to %d\n", 566 __report_avg, __report_allowed, 567 sysctl_perf_event_sample_rate); 568 } 569 } 570 571 static atomic64_t perf_event_id; 572 573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 574 enum event_type_t event_type); 575 576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 577 enum event_type_t event_type, 578 struct task_struct *task); 579 580 static void update_context_time(struct perf_event_context *ctx); 581 static u64 perf_event_time(struct perf_event *event); 582 583 void __weak perf_event_print_debug(void) { } 584 585 static inline u64 perf_clock(void) 586 { 587 return local_clock(); 588 } 589 590 static inline u64 perf_event_clock(struct perf_event *event) 591 { 592 return event->clock(); 593 } 594 595 /* 596 * State based event timekeeping... 597 * 598 * The basic idea is to use event->state to determine which (if any) time 599 * fields to increment with the current delta. This means we only need to 600 * update timestamps when we change state or when they are explicitly requested 601 * (read). 602 * 603 * Event groups make things a little more complicated, but not terribly so. The 604 * rules for a group are that if the group leader is OFF the entire group is 605 * OFF, irrespecive of what the group member states are. This results in 606 * __perf_effective_state(). 607 * 608 * A futher ramification is that when a group leader flips between OFF and 609 * !OFF, we need to update all group member times. 610 * 611 * 612 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 613 * need to make sure the relevant context time is updated before we try and 614 * update our timestamps. 615 */ 616 617 static __always_inline enum perf_event_state 618 __perf_effective_state(struct perf_event *event) 619 { 620 struct perf_event *leader = event->group_leader; 621 622 if (leader->state <= PERF_EVENT_STATE_OFF) 623 return leader->state; 624 625 return event->state; 626 } 627 628 static __always_inline void 629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 630 { 631 enum perf_event_state state = __perf_effective_state(event); 632 u64 delta = now - event->tstamp; 633 634 *enabled = event->total_time_enabled; 635 if (state >= PERF_EVENT_STATE_INACTIVE) 636 *enabled += delta; 637 638 *running = event->total_time_running; 639 if (state >= PERF_EVENT_STATE_ACTIVE) 640 *running += delta; 641 } 642 643 static void perf_event_update_time(struct perf_event *event) 644 { 645 u64 now = perf_event_time(event); 646 647 __perf_update_times(event, now, &event->total_time_enabled, 648 &event->total_time_running); 649 event->tstamp = now; 650 } 651 652 static void perf_event_update_sibling_time(struct perf_event *leader) 653 { 654 struct perf_event *sibling; 655 656 for_each_sibling_event(sibling, leader) 657 perf_event_update_time(sibling); 658 } 659 660 static void 661 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 662 { 663 if (event->state == state) 664 return; 665 666 perf_event_update_time(event); 667 /* 668 * If a group leader gets enabled/disabled all its siblings 669 * are affected too. 670 */ 671 if ((event->state < 0) ^ (state < 0)) 672 perf_event_update_sibling_time(event); 673 674 WRITE_ONCE(event->state, state); 675 } 676 677 #ifdef CONFIG_CGROUP_PERF 678 679 static inline bool 680 perf_cgroup_match(struct perf_event *event) 681 { 682 struct perf_event_context *ctx = event->ctx; 683 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 684 685 /* @event doesn't care about cgroup */ 686 if (!event->cgrp) 687 return true; 688 689 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 690 if (!cpuctx->cgrp) 691 return false; 692 693 /* 694 * Cgroup scoping is recursive. An event enabled for a cgroup is 695 * also enabled for all its descendant cgroups. If @cpuctx's 696 * cgroup is a descendant of @event's (the test covers identity 697 * case), it's a match. 698 */ 699 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 700 event->cgrp->css.cgroup); 701 } 702 703 static inline void perf_detach_cgroup(struct perf_event *event) 704 { 705 css_put(&event->cgrp->css); 706 event->cgrp = NULL; 707 } 708 709 static inline int is_cgroup_event(struct perf_event *event) 710 { 711 return event->cgrp != NULL; 712 } 713 714 static inline u64 perf_cgroup_event_time(struct perf_event *event) 715 { 716 struct perf_cgroup_info *t; 717 718 t = per_cpu_ptr(event->cgrp->info, event->cpu); 719 return t->time; 720 } 721 722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 723 { 724 struct perf_cgroup_info *info; 725 u64 now; 726 727 now = perf_clock(); 728 729 info = this_cpu_ptr(cgrp->info); 730 731 info->time += now - info->timestamp; 732 info->timestamp = now; 733 } 734 735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 736 { 737 struct perf_cgroup *cgrp = cpuctx->cgrp; 738 struct cgroup_subsys_state *css; 739 740 if (cgrp) { 741 for (css = &cgrp->css; css; css = css->parent) { 742 cgrp = container_of(css, struct perf_cgroup, css); 743 __update_cgrp_time(cgrp); 744 } 745 } 746 } 747 748 static inline void update_cgrp_time_from_event(struct perf_event *event) 749 { 750 struct perf_cgroup *cgrp; 751 752 /* 753 * ensure we access cgroup data only when needed and 754 * when we know the cgroup is pinned (css_get) 755 */ 756 if (!is_cgroup_event(event)) 757 return; 758 759 cgrp = perf_cgroup_from_task(current, event->ctx); 760 /* 761 * Do not update time when cgroup is not active 762 */ 763 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 764 __update_cgrp_time(event->cgrp); 765 } 766 767 static inline void 768 perf_cgroup_set_timestamp(struct task_struct *task, 769 struct perf_event_context *ctx) 770 { 771 struct perf_cgroup *cgrp; 772 struct perf_cgroup_info *info; 773 struct cgroup_subsys_state *css; 774 775 /* 776 * ctx->lock held by caller 777 * ensure we do not access cgroup data 778 * unless we have the cgroup pinned (css_get) 779 */ 780 if (!task || !ctx->nr_cgroups) 781 return; 782 783 cgrp = perf_cgroup_from_task(task, ctx); 784 785 for (css = &cgrp->css; css; css = css->parent) { 786 cgrp = container_of(css, struct perf_cgroup, css); 787 info = this_cpu_ptr(cgrp->info); 788 info->timestamp = ctx->timestamp; 789 } 790 } 791 792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 793 794 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 795 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 796 797 /* 798 * reschedule events based on the cgroup constraint of task. 799 * 800 * mode SWOUT : schedule out everything 801 * mode SWIN : schedule in based on cgroup for next 802 */ 803 static void perf_cgroup_switch(struct task_struct *task, int mode) 804 { 805 struct perf_cpu_context *cpuctx; 806 struct list_head *list; 807 unsigned long flags; 808 809 /* 810 * Disable interrupts and preemption to avoid this CPU's 811 * cgrp_cpuctx_entry to change under us. 812 */ 813 local_irq_save(flags); 814 815 list = this_cpu_ptr(&cgrp_cpuctx_list); 816 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 817 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 818 819 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 820 perf_pmu_disable(cpuctx->ctx.pmu); 821 822 if (mode & PERF_CGROUP_SWOUT) { 823 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 824 /* 825 * must not be done before ctxswout due 826 * to event_filter_match() in event_sched_out() 827 */ 828 cpuctx->cgrp = NULL; 829 } 830 831 if (mode & PERF_CGROUP_SWIN) { 832 WARN_ON_ONCE(cpuctx->cgrp); 833 /* 834 * set cgrp before ctxsw in to allow 835 * event_filter_match() to not have to pass 836 * task around 837 * we pass the cpuctx->ctx to perf_cgroup_from_task() 838 * because cgorup events are only per-cpu 839 */ 840 cpuctx->cgrp = perf_cgroup_from_task(task, 841 &cpuctx->ctx); 842 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 843 } 844 perf_pmu_enable(cpuctx->ctx.pmu); 845 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 846 } 847 848 local_irq_restore(flags); 849 } 850 851 static inline void perf_cgroup_sched_out(struct task_struct *task, 852 struct task_struct *next) 853 { 854 struct perf_cgroup *cgrp1; 855 struct perf_cgroup *cgrp2 = NULL; 856 857 rcu_read_lock(); 858 /* 859 * we come here when we know perf_cgroup_events > 0 860 * we do not need to pass the ctx here because we know 861 * we are holding the rcu lock 862 */ 863 cgrp1 = perf_cgroup_from_task(task, NULL); 864 cgrp2 = perf_cgroup_from_task(next, NULL); 865 866 /* 867 * only schedule out current cgroup events if we know 868 * that we are switching to a different cgroup. Otherwise, 869 * do no touch the cgroup events. 870 */ 871 if (cgrp1 != cgrp2) 872 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 873 874 rcu_read_unlock(); 875 } 876 877 static inline void perf_cgroup_sched_in(struct task_struct *prev, 878 struct task_struct *task) 879 { 880 struct perf_cgroup *cgrp1; 881 struct perf_cgroup *cgrp2 = NULL; 882 883 rcu_read_lock(); 884 /* 885 * we come here when we know perf_cgroup_events > 0 886 * we do not need to pass the ctx here because we know 887 * we are holding the rcu lock 888 */ 889 cgrp1 = perf_cgroup_from_task(task, NULL); 890 cgrp2 = perf_cgroup_from_task(prev, NULL); 891 892 /* 893 * only need to schedule in cgroup events if we are changing 894 * cgroup during ctxsw. Cgroup events were not scheduled 895 * out of ctxsw out if that was not the case. 896 */ 897 if (cgrp1 != cgrp2) 898 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 899 900 rcu_read_unlock(); 901 } 902 903 static int perf_cgroup_ensure_storage(struct perf_event *event, 904 struct cgroup_subsys_state *css) 905 { 906 struct perf_cpu_context *cpuctx; 907 struct perf_event **storage; 908 int cpu, heap_size, ret = 0; 909 910 /* 911 * Allow storage to have sufficent space for an iterator for each 912 * possibly nested cgroup plus an iterator for events with no cgroup. 913 */ 914 for (heap_size = 1; css; css = css->parent) 915 heap_size++; 916 917 for_each_possible_cpu(cpu) { 918 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu); 919 if (heap_size <= cpuctx->heap_size) 920 continue; 921 922 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 923 GFP_KERNEL, cpu_to_node(cpu)); 924 if (!storage) { 925 ret = -ENOMEM; 926 break; 927 } 928 929 raw_spin_lock_irq(&cpuctx->ctx.lock); 930 if (cpuctx->heap_size < heap_size) { 931 swap(cpuctx->heap, storage); 932 if (storage == cpuctx->heap_default) 933 storage = NULL; 934 cpuctx->heap_size = heap_size; 935 } 936 raw_spin_unlock_irq(&cpuctx->ctx.lock); 937 938 kfree(storage); 939 } 940 941 return ret; 942 } 943 944 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 945 struct perf_event_attr *attr, 946 struct perf_event *group_leader) 947 { 948 struct perf_cgroup *cgrp; 949 struct cgroup_subsys_state *css; 950 struct fd f = fdget(fd); 951 int ret = 0; 952 953 if (!f.file) 954 return -EBADF; 955 956 css = css_tryget_online_from_dir(f.file->f_path.dentry, 957 &perf_event_cgrp_subsys); 958 if (IS_ERR(css)) { 959 ret = PTR_ERR(css); 960 goto out; 961 } 962 963 ret = perf_cgroup_ensure_storage(event, css); 964 if (ret) 965 goto out; 966 967 cgrp = container_of(css, struct perf_cgroup, css); 968 event->cgrp = cgrp; 969 970 /* 971 * all events in a group must monitor 972 * the same cgroup because a task belongs 973 * to only one perf cgroup at a time 974 */ 975 if (group_leader && group_leader->cgrp != cgrp) { 976 perf_detach_cgroup(event); 977 ret = -EINVAL; 978 } 979 out: 980 fdput(f); 981 return ret; 982 } 983 984 static inline void 985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 986 { 987 struct perf_cgroup_info *t; 988 t = per_cpu_ptr(event->cgrp->info, event->cpu); 989 event->shadow_ctx_time = now - t->timestamp; 990 } 991 992 static inline void 993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 994 { 995 struct perf_cpu_context *cpuctx; 996 997 if (!is_cgroup_event(event)) 998 return; 999 1000 /* 1001 * Because cgroup events are always per-cpu events, 1002 * @ctx == &cpuctx->ctx. 1003 */ 1004 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1005 1006 /* 1007 * Since setting cpuctx->cgrp is conditional on the current @cgrp 1008 * matching the event's cgroup, we must do this for every new event, 1009 * because if the first would mismatch, the second would not try again 1010 * and we would leave cpuctx->cgrp unset. 1011 */ 1012 if (ctx->is_active && !cpuctx->cgrp) { 1013 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 1014 1015 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 1016 cpuctx->cgrp = cgrp; 1017 } 1018 1019 if (ctx->nr_cgroups++) 1020 return; 1021 1022 list_add(&cpuctx->cgrp_cpuctx_entry, 1023 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu)); 1024 } 1025 1026 static inline void 1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1028 { 1029 struct perf_cpu_context *cpuctx; 1030 1031 if (!is_cgroup_event(event)) 1032 return; 1033 1034 /* 1035 * Because cgroup events are always per-cpu events, 1036 * @ctx == &cpuctx->ctx. 1037 */ 1038 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1039 1040 if (--ctx->nr_cgroups) 1041 return; 1042 1043 if (ctx->is_active && cpuctx->cgrp) 1044 cpuctx->cgrp = NULL; 1045 1046 list_del(&cpuctx->cgrp_cpuctx_entry); 1047 } 1048 1049 #else /* !CONFIG_CGROUP_PERF */ 1050 1051 static inline bool 1052 perf_cgroup_match(struct perf_event *event) 1053 { 1054 return true; 1055 } 1056 1057 static inline void perf_detach_cgroup(struct perf_event *event) 1058 {} 1059 1060 static inline int is_cgroup_event(struct perf_event *event) 1061 { 1062 return 0; 1063 } 1064 1065 static inline void update_cgrp_time_from_event(struct perf_event *event) 1066 { 1067 } 1068 1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1070 { 1071 } 1072 1073 static inline void perf_cgroup_sched_out(struct task_struct *task, 1074 struct task_struct *next) 1075 { 1076 } 1077 1078 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1079 struct task_struct *task) 1080 { 1081 } 1082 1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1084 struct perf_event_attr *attr, 1085 struct perf_event *group_leader) 1086 { 1087 return -EINVAL; 1088 } 1089 1090 static inline void 1091 perf_cgroup_set_timestamp(struct task_struct *task, 1092 struct perf_event_context *ctx) 1093 { 1094 } 1095 1096 static inline void 1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1098 { 1099 } 1100 1101 static inline void 1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1103 { 1104 } 1105 1106 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1107 { 1108 return 0; 1109 } 1110 1111 static inline void 1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1113 { 1114 } 1115 1116 static inline void 1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1118 { 1119 } 1120 #endif 1121 1122 /* 1123 * set default to be dependent on timer tick just 1124 * like original code 1125 */ 1126 #define PERF_CPU_HRTIMER (1000 / HZ) 1127 /* 1128 * function must be called with interrupts disabled 1129 */ 1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1131 { 1132 struct perf_cpu_context *cpuctx; 1133 bool rotations; 1134 1135 lockdep_assert_irqs_disabled(); 1136 1137 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1138 rotations = perf_rotate_context(cpuctx); 1139 1140 raw_spin_lock(&cpuctx->hrtimer_lock); 1141 if (rotations) 1142 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1143 else 1144 cpuctx->hrtimer_active = 0; 1145 raw_spin_unlock(&cpuctx->hrtimer_lock); 1146 1147 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1148 } 1149 1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1151 { 1152 struct hrtimer *timer = &cpuctx->hrtimer; 1153 struct pmu *pmu = cpuctx->ctx.pmu; 1154 u64 interval; 1155 1156 /* no multiplexing needed for SW PMU */ 1157 if (pmu->task_ctx_nr == perf_sw_context) 1158 return; 1159 1160 /* 1161 * check default is sane, if not set then force to 1162 * default interval (1/tick) 1163 */ 1164 interval = pmu->hrtimer_interval_ms; 1165 if (interval < 1) 1166 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1167 1168 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1169 1170 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1171 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1172 timer->function = perf_mux_hrtimer_handler; 1173 } 1174 1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1176 { 1177 struct hrtimer *timer = &cpuctx->hrtimer; 1178 struct pmu *pmu = cpuctx->ctx.pmu; 1179 unsigned long flags; 1180 1181 /* not for SW PMU */ 1182 if (pmu->task_ctx_nr == perf_sw_context) 1183 return 0; 1184 1185 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1186 if (!cpuctx->hrtimer_active) { 1187 cpuctx->hrtimer_active = 1; 1188 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1189 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1190 } 1191 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1192 1193 return 0; 1194 } 1195 1196 void perf_pmu_disable(struct pmu *pmu) 1197 { 1198 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1199 if (!(*count)++) 1200 pmu->pmu_disable(pmu); 1201 } 1202 1203 void perf_pmu_enable(struct pmu *pmu) 1204 { 1205 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1206 if (!--(*count)) 1207 pmu->pmu_enable(pmu); 1208 } 1209 1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1211 1212 /* 1213 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1214 * perf_event_task_tick() are fully serialized because they're strictly cpu 1215 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1216 * disabled, while perf_event_task_tick is called from IRQ context. 1217 */ 1218 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1219 { 1220 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1221 1222 lockdep_assert_irqs_disabled(); 1223 1224 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1225 1226 list_add(&ctx->active_ctx_list, head); 1227 } 1228 1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1230 { 1231 lockdep_assert_irqs_disabled(); 1232 1233 WARN_ON(list_empty(&ctx->active_ctx_list)); 1234 1235 list_del_init(&ctx->active_ctx_list); 1236 } 1237 1238 static void get_ctx(struct perf_event_context *ctx) 1239 { 1240 refcount_inc(&ctx->refcount); 1241 } 1242 1243 static void *alloc_task_ctx_data(struct pmu *pmu) 1244 { 1245 if (pmu->task_ctx_cache) 1246 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1247 1248 return NULL; 1249 } 1250 1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1252 { 1253 if (pmu->task_ctx_cache && task_ctx_data) 1254 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1255 } 1256 1257 static void free_ctx(struct rcu_head *head) 1258 { 1259 struct perf_event_context *ctx; 1260 1261 ctx = container_of(head, struct perf_event_context, rcu_head); 1262 free_task_ctx_data(ctx->pmu, ctx->task_ctx_data); 1263 kfree(ctx); 1264 } 1265 1266 static void put_ctx(struct perf_event_context *ctx) 1267 { 1268 if (refcount_dec_and_test(&ctx->refcount)) { 1269 if (ctx->parent_ctx) 1270 put_ctx(ctx->parent_ctx); 1271 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1272 put_task_struct(ctx->task); 1273 call_rcu(&ctx->rcu_head, free_ctx); 1274 } 1275 } 1276 1277 /* 1278 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1279 * perf_pmu_migrate_context() we need some magic. 1280 * 1281 * Those places that change perf_event::ctx will hold both 1282 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1283 * 1284 * Lock ordering is by mutex address. There are two other sites where 1285 * perf_event_context::mutex nests and those are: 1286 * 1287 * - perf_event_exit_task_context() [ child , 0 ] 1288 * perf_event_exit_event() 1289 * put_event() [ parent, 1 ] 1290 * 1291 * - perf_event_init_context() [ parent, 0 ] 1292 * inherit_task_group() 1293 * inherit_group() 1294 * inherit_event() 1295 * perf_event_alloc() 1296 * perf_init_event() 1297 * perf_try_init_event() [ child , 1 ] 1298 * 1299 * While it appears there is an obvious deadlock here -- the parent and child 1300 * nesting levels are inverted between the two. This is in fact safe because 1301 * life-time rules separate them. That is an exiting task cannot fork, and a 1302 * spawning task cannot (yet) exit. 1303 * 1304 * But remember that these are parent<->child context relations, and 1305 * migration does not affect children, therefore these two orderings should not 1306 * interact. 1307 * 1308 * The change in perf_event::ctx does not affect children (as claimed above) 1309 * because the sys_perf_event_open() case will install a new event and break 1310 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1311 * concerned with cpuctx and that doesn't have children. 1312 * 1313 * The places that change perf_event::ctx will issue: 1314 * 1315 * perf_remove_from_context(); 1316 * synchronize_rcu(); 1317 * perf_install_in_context(); 1318 * 1319 * to affect the change. The remove_from_context() + synchronize_rcu() should 1320 * quiesce the event, after which we can install it in the new location. This 1321 * means that only external vectors (perf_fops, prctl) can perturb the event 1322 * while in transit. Therefore all such accessors should also acquire 1323 * perf_event_context::mutex to serialize against this. 1324 * 1325 * However; because event->ctx can change while we're waiting to acquire 1326 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1327 * function. 1328 * 1329 * Lock order: 1330 * exec_update_lock 1331 * task_struct::perf_event_mutex 1332 * perf_event_context::mutex 1333 * perf_event::child_mutex; 1334 * perf_event_context::lock 1335 * perf_event::mmap_mutex 1336 * mmap_lock 1337 * perf_addr_filters_head::lock 1338 * 1339 * cpu_hotplug_lock 1340 * pmus_lock 1341 * cpuctx->mutex / perf_event_context::mutex 1342 */ 1343 static struct perf_event_context * 1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1345 { 1346 struct perf_event_context *ctx; 1347 1348 again: 1349 rcu_read_lock(); 1350 ctx = READ_ONCE(event->ctx); 1351 if (!refcount_inc_not_zero(&ctx->refcount)) { 1352 rcu_read_unlock(); 1353 goto again; 1354 } 1355 rcu_read_unlock(); 1356 1357 mutex_lock_nested(&ctx->mutex, nesting); 1358 if (event->ctx != ctx) { 1359 mutex_unlock(&ctx->mutex); 1360 put_ctx(ctx); 1361 goto again; 1362 } 1363 1364 return ctx; 1365 } 1366 1367 static inline struct perf_event_context * 1368 perf_event_ctx_lock(struct perf_event *event) 1369 { 1370 return perf_event_ctx_lock_nested(event, 0); 1371 } 1372 1373 static void perf_event_ctx_unlock(struct perf_event *event, 1374 struct perf_event_context *ctx) 1375 { 1376 mutex_unlock(&ctx->mutex); 1377 put_ctx(ctx); 1378 } 1379 1380 /* 1381 * This must be done under the ctx->lock, such as to serialize against 1382 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1383 * calling scheduler related locks and ctx->lock nests inside those. 1384 */ 1385 static __must_check struct perf_event_context * 1386 unclone_ctx(struct perf_event_context *ctx) 1387 { 1388 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1389 1390 lockdep_assert_held(&ctx->lock); 1391 1392 if (parent_ctx) 1393 ctx->parent_ctx = NULL; 1394 ctx->generation++; 1395 1396 return parent_ctx; 1397 } 1398 1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1400 enum pid_type type) 1401 { 1402 u32 nr; 1403 /* 1404 * only top level events have the pid namespace they were created in 1405 */ 1406 if (event->parent) 1407 event = event->parent; 1408 1409 nr = __task_pid_nr_ns(p, type, event->ns); 1410 /* avoid -1 if it is idle thread or runs in another ns */ 1411 if (!nr && !pid_alive(p)) 1412 nr = -1; 1413 return nr; 1414 } 1415 1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1417 { 1418 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1419 } 1420 1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1422 { 1423 return perf_event_pid_type(event, p, PIDTYPE_PID); 1424 } 1425 1426 /* 1427 * If we inherit events we want to return the parent event id 1428 * to userspace. 1429 */ 1430 static u64 primary_event_id(struct perf_event *event) 1431 { 1432 u64 id = event->id; 1433 1434 if (event->parent) 1435 id = event->parent->id; 1436 1437 return id; 1438 } 1439 1440 /* 1441 * Get the perf_event_context for a task and lock it. 1442 * 1443 * This has to cope with the fact that until it is locked, 1444 * the context could get moved to another task. 1445 */ 1446 static struct perf_event_context * 1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1448 { 1449 struct perf_event_context *ctx; 1450 1451 retry: 1452 /* 1453 * One of the few rules of preemptible RCU is that one cannot do 1454 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1455 * part of the read side critical section was irqs-enabled -- see 1456 * rcu_read_unlock_special(). 1457 * 1458 * Since ctx->lock nests under rq->lock we must ensure the entire read 1459 * side critical section has interrupts disabled. 1460 */ 1461 local_irq_save(*flags); 1462 rcu_read_lock(); 1463 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1464 if (ctx) { 1465 /* 1466 * If this context is a clone of another, it might 1467 * get swapped for another underneath us by 1468 * perf_event_task_sched_out, though the 1469 * rcu_read_lock() protects us from any context 1470 * getting freed. Lock the context and check if it 1471 * got swapped before we could get the lock, and retry 1472 * if so. If we locked the right context, then it 1473 * can't get swapped on us any more. 1474 */ 1475 raw_spin_lock(&ctx->lock); 1476 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1477 raw_spin_unlock(&ctx->lock); 1478 rcu_read_unlock(); 1479 local_irq_restore(*flags); 1480 goto retry; 1481 } 1482 1483 if (ctx->task == TASK_TOMBSTONE || 1484 !refcount_inc_not_zero(&ctx->refcount)) { 1485 raw_spin_unlock(&ctx->lock); 1486 ctx = NULL; 1487 } else { 1488 WARN_ON_ONCE(ctx->task != task); 1489 } 1490 } 1491 rcu_read_unlock(); 1492 if (!ctx) 1493 local_irq_restore(*flags); 1494 return ctx; 1495 } 1496 1497 /* 1498 * Get the context for a task and increment its pin_count so it 1499 * can't get swapped to another task. This also increments its 1500 * reference count so that the context can't get freed. 1501 */ 1502 static struct perf_event_context * 1503 perf_pin_task_context(struct task_struct *task, int ctxn) 1504 { 1505 struct perf_event_context *ctx; 1506 unsigned long flags; 1507 1508 ctx = perf_lock_task_context(task, ctxn, &flags); 1509 if (ctx) { 1510 ++ctx->pin_count; 1511 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1512 } 1513 return ctx; 1514 } 1515 1516 static void perf_unpin_context(struct perf_event_context *ctx) 1517 { 1518 unsigned long flags; 1519 1520 raw_spin_lock_irqsave(&ctx->lock, flags); 1521 --ctx->pin_count; 1522 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1523 } 1524 1525 /* 1526 * Update the record of the current time in a context. 1527 */ 1528 static void update_context_time(struct perf_event_context *ctx) 1529 { 1530 u64 now = perf_clock(); 1531 1532 ctx->time += now - ctx->timestamp; 1533 ctx->timestamp = now; 1534 } 1535 1536 static u64 perf_event_time(struct perf_event *event) 1537 { 1538 struct perf_event_context *ctx = event->ctx; 1539 1540 if (is_cgroup_event(event)) 1541 return perf_cgroup_event_time(event); 1542 1543 return ctx ? ctx->time : 0; 1544 } 1545 1546 static enum event_type_t get_event_type(struct perf_event *event) 1547 { 1548 struct perf_event_context *ctx = event->ctx; 1549 enum event_type_t event_type; 1550 1551 lockdep_assert_held(&ctx->lock); 1552 1553 /* 1554 * It's 'group type', really, because if our group leader is 1555 * pinned, so are we. 1556 */ 1557 if (event->group_leader != event) 1558 event = event->group_leader; 1559 1560 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1561 if (!ctx->task) 1562 event_type |= EVENT_CPU; 1563 1564 return event_type; 1565 } 1566 1567 /* 1568 * Helper function to initialize event group nodes. 1569 */ 1570 static void init_event_group(struct perf_event *event) 1571 { 1572 RB_CLEAR_NODE(&event->group_node); 1573 event->group_index = 0; 1574 } 1575 1576 /* 1577 * Extract pinned or flexible groups from the context 1578 * based on event attrs bits. 1579 */ 1580 static struct perf_event_groups * 1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1582 { 1583 if (event->attr.pinned) 1584 return &ctx->pinned_groups; 1585 else 1586 return &ctx->flexible_groups; 1587 } 1588 1589 /* 1590 * Helper function to initializes perf_event_group trees. 1591 */ 1592 static void perf_event_groups_init(struct perf_event_groups *groups) 1593 { 1594 groups->tree = RB_ROOT; 1595 groups->index = 0; 1596 } 1597 1598 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1599 { 1600 struct cgroup *cgroup = NULL; 1601 1602 #ifdef CONFIG_CGROUP_PERF 1603 if (event->cgrp) 1604 cgroup = event->cgrp->css.cgroup; 1605 #endif 1606 1607 return cgroup; 1608 } 1609 1610 /* 1611 * Compare function for event groups; 1612 * 1613 * Implements complex key that first sorts by CPU and then by virtual index 1614 * which provides ordering when rotating groups for the same CPU. 1615 */ 1616 static __always_inline int 1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup, 1618 const u64 left_group_index, const struct perf_event *right) 1619 { 1620 if (left_cpu < right->cpu) 1621 return -1; 1622 if (left_cpu > right->cpu) 1623 return 1; 1624 1625 #ifdef CONFIG_CGROUP_PERF 1626 { 1627 const struct cgroup *right_cgroup = event_cgroup(right); 1628 1629 if (left_cgroup != right_cgroup) { 1630 if (!left_cgroup) { 1631 /* 1632 * Left has no cgroup but right does, no 1633 * cgroups come first. 1634 */ 1635 return -1; 1636 } 1637 if (!right_cgroup) { 1638 /* 1639 * Right has no cgroup but left does, no 1640 * cgroups come first. 1641 */ 1642 return 1; 1643 } 1644 /* Two dissimilar cgroups, order by id. */ 1645 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1646 return -1; 1647 1648 return 1; 1649 } 1650 } 1651 #endif 1652 1653 if (left_group_index < right->group_index) 1654 return -1; 1655 if (left_group_index > right->group_index) 1656 return 1; 1657 1658 return 0; 1659 } 1660 1661 #define __node_2_pe(node) \ 1662 rb_entry((node), struct perf_event, group_node) 1663 1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1665 { 1666 struct perf_event *e = __node_2_pe(a); 1667 return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index, 1668 __node_2_pe(b)) < 0; 1669 } 1670 1671 struct __group_key { 1672 int cpu; 1673 struct cgroup *cgroup; 1674 }; 1675 1676 static inline int __group_cmp(const void *key, const struct rb_node *node) 1677 { 1678 const struct __group_key *a = key; 1679 const struct perf_event *b = __node_2_pe(node); 1680 1681 /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */ 1682 return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b); 1683 } 1684 1685 /* 1686 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1687 * key (see perf_event_groups_less). This places it last inside the CPU 1688 * subtree. 1689 */ 1690 static void 1691 perf_event_groups_insert(struct perf_event_groups *groups, 1692 struct perf_event *event) 1693 { 1694 event->group_index = ++groups->index; 1695 1696 rb_add(&event->group_node, &groups->tree, __group_less); 1697 } 1698 1699 /* 1700 * Helper function to insert event into the pinned or flexible groups. 1701 */ 1702 static void 1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1704 { 1705 struct perf_event_groups *groups; 1706 1707 groups = get_event_groups(event, ctx); 1708 perf_event_groups_insert(groups, event); 1709 } 1710 1711 /* 1712 * Delete a group from a tree. 1713 */ 1714 static void 1715 perf_event_groups_delete(struct perf_event_groups *groups, 1716 struct perf_event *event) 1717 { 1718 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1719 RB_EMPTY_ROOT(&groups->tree)); 1720 1721 rb_erase(&event->group_node, &groups->tree); 1722 init_event_group(event); 1723 } 1724 1725 /* 1726 * Helper function to delete event from its groups. 1727 */ 1728 static void 1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1730 { 1731 struct perf_event_groups *groups; 1732 1733 groups = get_event_groups(event, ctx); 1734 perf_event_groups_delete(groups, event); 1735 } 1736 1737 /* 1738 * Get the leftmost event in the cpu/cgroup subtree. 1739 */ 1740 static struct perf_event * 1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1742 struct cgroup *cgrp) 1743 { 1744 struct __group_key key = { 1745 .cpu = cpu, 1746 .cgroup = cgrp, 1747 }; 1748 struct rb_node *node; 1749 1750 node = rb_find_first(&key, &groups->tree, __group_cmp); 1751 if (node) 1752 return __node_2_pe(node); 1753 1754 return NULL; 1755 } 1756 1757 /* 1758 * Like rb_entry_next_safe() for the @cpu subtree. 1759 */ 1760 static struct perf_event * 1761 perf_event_groups_next(struct perf_event *event) 1762 { 1763 struct __group_key key = { 1764 .cpu = event->cpu, 1765 .cgroup = event_cgroup(event), 1766 }; 1767 struct rb_node *next; 1768 1769 next = rb_next_match(&key, &event->group_node, __group_cmp); 1770 if (next) 1771 return __node_2_pe(next); 1772 1773 return NULL; 1774 } 1775 1776 /* 1777 * Iterate through the whole groups tree. 1778 */ 1779 #define perf_event_groups_for_each(event, groups) \ 1780 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1781 typeof(*event), group_node); event; \ 1782 event = rb_entry_safe(rb_next(&event->group_node), \ 1783 typeof(*event), group_node)) 1784 1785 /* 1786 * Add an event from the lists for its context. 1787 * Must be called with ctx->mutex and ctx->lock held. 1788 */ 1789 static void 1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1791 { 1792 lockdep_assert_held(&ctx->lock); 1793 1794 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1795 event->attach_state |= PERF_ATTACH_CONTEXT; 1796 1797 event->tstamp = perf_event_time(event); 1798 1799 /* 1800 * If we're a stand alone event or group leader, we go to the context 1801 * list, group events are kept attached to the group so that 1802 * perf_group_detach can, at all times, locate all siblings. 1803 */ 1804 if (event->group_leader == event) { 1805 event->group_caps = event->event_caps; 1806 add_event_to_groups(event, ctx); 1807 } 1808 1809 list_add_rcu(&event->event_entry, &ctx->event_list); 1810 ctx->nr_events++; 1811 if (event->attr.inherit_stat) 1812 ctx->nr_stat++; 1813 1814 if (event->state > PERF_EVENT_STATE_OFF) 1815 perf_cgroup_event_enable(event, ctx); 1816 1817 ctx->generation++; 1818 } 1819 1820 /* 1821 * Initialize event state based on the perf_event_attr::disabled. 1822 */ 1823 static inline void perf_event__state_init(struct perf_event *event) 1824 { 1825 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1826 PERF_EVENT_STATE_INACTIVE; 1827 } 1828 1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1830 { 1831 int entry = sizeof(u64); /* value */ 1832 int size = 0; 1833 int nr = 1; 1834 1835 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1836 size += sizeof(u64); 1837 1838 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1839 size += sizeof(u64); 1840 1841 if (event->attr.read_format & PERF_FORMAT_ID) 1842 entry += sizeof(u64); 1843 1844 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1845 nr += nr_siblings; 1846 size += sizeof(u64); 1847 } 1848 1849 size += entry * nr; 1850 event->read_size = size; 1851 } 1852 1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1854 { 1855 struct perf_sample_data *data; 1856 u16 size = 0; 1857 1858 if (sample_type & PERF_SAMPLE_IP) 1859 size += sizeof(data->ip); 1860 1861 if (sample_type & PERF_SAMPLE_ADDR) 1862 size += sizeof(data->addr); 1863 1864 if (sample_type & PERF_SAMPLE_PERIOD) 1865 size += sizeof(data->period); 1866 1867 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1868 size += sizeof(data->weight.full); 1869 1870 if (sample_type & PERF_SAMPLE_READ) 1871 size += event->read_size; 1872 1873 if (sample_type & PERF_SAMPLE_DATA_SRC) 1874 size += sizeof(data->data_src.val); 1875 1876 if (sample_type & PERF_SAMPLE_TRANSACTION) 1877 size += sizeof(data->txn); 1878 1879 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1880 size += sizeof(data->phys_addr); 1881 1882 if (sample_type & PERF_SAMPLE_CGROUP) 1883 size += sizeof(data->cgroup); 1884 1885 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1886 size += sizeof(data->data_page_size); 1887 1888 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1889 size += sizeof(data->code_page_size); 1890 1891 event->header_size = size; 1892 } 1893 1894 /* 1895 * Called at perf_event creation and when events are attached/detached from a 1896 * group. 1897 */ 1898 static void perf_event__header_size(struct perf_event *event) 1899 { 1900 __perf_event_read_size(event, 1901 event->group_leader->nr_siblings); 1902 __perf_event_header_size(event, event->attr.sample_type); 1903 } 1904 1905 static void perf_event__id_header_size(struct perf_event *event) 1906 { 1907 struct perf_sample_data *data; 1908 u64 sample_type = event->attr.sample_type; 1909 u16 size = 0; 1910 1911 if (sample_type & PERF_SAMPLE_TID) 1912 size += sizeof(data->tid_entry); 1913 1914 if (sample_type & PERF_SAMPLE_TIME) 1915 size += sizeof(data->time); 1916 1917 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1918 size += sizeof(data->id); 1919 1920 if (sample_type & PERF_SAMPLE_ID) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_STREAM_ID) 1924 size += sizeof(data->stream_id); 1925 1926 if (sample_type & PERF_SAMPLE_CPU) 1927 size += sizeof(data->cpu_entry); 1928 1929 event->id_header_size = size; 1930 } 1931 1932 static bool perf_event_validate_size(struct perf_event *event) 1933 { 1934 /* 1935 * The values computed here will be over-written when we actually 1936 * attach the event. 1937 */ 1938 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1939 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1940 perf_event__id_header_size(event); 1941 1942 /* 1943 * Sum the lot; should not exceed the 64k limit we have on records. 1944 * Conservative limit to allow for callchains and other variable fields. 1945 */ 1946 if (event->read_size + event->header_size + 1947 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1948 return false; 1949 1950 return true; 1951 } 1952 1953 static void perf_group_attach(struct perf_event *event) 1954 { 1955 struct perf_event *group_leader = event->group_leader, *pos; 1956 1957 lockdep_assert_held(&event->ctx->lock); 1958 1959 /* 1960 * We can have double attach due to group movement in perf_event_open. 1961 */ 1962 if (event->attach_state & PERF_ATTACH_GROUP) 1963 return; 1964 1965 event->attach_state |= PERF_ATTACH_GROUP; 1966 1967 if (group_leader == event) 1968 return; 1969 1970 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1971 1972 group_leader->group_caps &= event->event_caps; 1973 1974 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1975 group_leader->nr_siblings++; 1976 1977 perf_event__header_size(group_leader); 1978 1979 for_each_sibling_event(pos, group_leader) 1980 perf_event__header_size(pos); 1981 } 1982 1983 /* 1984 * Remove an event from the lists for its context. 1985 * Must be called with ctx->mutex and ctx->lock held. 1986 */ 1987 static void 1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1989 { 1990 WARN_ON_ONCE(event->ctx != ctx); 1991 lockdep_assert_held(&ctx->lock); 1992 1993 /* 1994 * We can have double detach due to exit/hot-unplug + close. 1995 */ 1996 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1997 return; 1998 1999 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2000 2001 ctx->nr_events--; 2002 if (event->attr.inherit_stat) 2003 ctx->nr_stat--; 2004 2005 list_del_rcu(&event->event_entry); 2006 2007 if (event->group_leader == event) 2008 del_event_from_groups(event, ctx); 2009 2010 /* 2011 * If event was in error state, then keep it 2012 * that way, otherwise bogus counts will be 2013 * returned on read(). The only way to get out 2014 * of error state is by explicit re-enabling 2015 * of the event 2016 */ 2017 if (event->state > PERF_EVENT_STATE_OFF) { 2018 perf_cgroup_event_disable(event, ctx); 2019 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2020 } 2021 2022 ctx->generation++; 2023 } 2024 2025 static int 2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2027 { 2028 if (!has_aux(aux_event)) 2029 return 0; 2030 2031 if (!event->pmu->aux_output_match) 2032 return 0; 2033 2034 return event->pmu->aux_output_match(aux_event); 2035 } 2036 2037 static void put_event(struct perf_event *event); 2038 static void event_sched_out(struct perf_event *event, 2039 struct perf_cpu_context *cpuctx, 2040 struct perf_event_context *ctx); 2041 2042 static void perf_put_aux_event(struct perf_event *event) 2043 { 2044 struct perf_event_context *ctx = event->ctx; 2045 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2046 struct perf_event *iter; 2047 2048 /* 2049 * If event uses aux_event tear down the link 2050 */ 2051 if (event->aux_event) { 2052 iter = event->aux_event; 2053 event->aux_event = NULL; 2054 put_event(iter); 2055 return; 2056 } 2057 2058 /* 2059 * If the event is an aux_event, tear down all links to 2060 * it from other events. 2061 */ 2062 for_each_sibling_event(iter, event->group_leader) { 2063 if (iter->aux_event != event) 2064 continue; 2065 2066 iter->aux_event = NULL; 2067 put_event(event); 2068 2069 /* 2070 * If it's ACTIVE, schedule it out and put it into ERROR 2071 * state so that we don't try to schedule it again. Note 2072 * that perf_event_enable() will clear the ERROR status. 2073 */ 2074 event_sched_out(iter, cpuctx, ctx); 2075 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2076 } 2077 } 2078 2079 static bool perf_need_aux_event(struct perf_event *event) 2080 { 2081 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2082 } 2083 2084 static int perf_get_aux_event(struct perf_event *event, 2085 struct perf_event *group_leader) 2086 { 2087 /* 2088 * Our group leader must be an aux event if we want to be 2089 * an aux_output. This way, the aux event will precede its 2090 * aux_output events in the group, and therefore will always 2091 * schedule first. 2092 */ 2093 if (!group_leader) 2094 return 0; 2095 2096 /* 2097 * aux_output and aux_sample_size are mutually exclusive. 2098 */ 2099 if (event->attr.aux_output && event->attr.aux_sample_size) 2100 return 0; 2101 2102 if (event->attr.aux_output && 2103 !perf_aux_output_match(event, group_leader)) 2104 return 0; 2105 2106 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2107 return 0; 2108 2109 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2110 return 0; 2111 2112 /* 2113 * Link aux_outputs to their aux event; this is undone in 2114 * perf_group_detach() by perf_put_aux_event(). When the 2115 * group in torn down, the aux_output events loose their 2116 * link to the aux_event and can't schedule any more. 2117 */ 2118 event->aux_event = group_leader; 2119 2120 return 1; 2121 } 2122 2123 static inline struct list_head *get_event_list(struct perf_event *event) 2124 { 2125 struct perf_event_context *ctx = event->ctx; 2126 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active; 2127 } 2128 2129 /* 2130 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2131 * cannot exist on their own, schedule them out and move them into the ERROR 2132 * state. Also see _perf_event_enable(), it will not be able to recover 2133 * this ERROR state. 2134 */ 2135 static inline void perf_remove_sibling_event(struct perf_event *event) 2136 { 2137 struct perf_event_context *ctx = event->ctx; 2138 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2139 2140 event_sched_out(event, cpuctx, ctx); 2141 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2142 } 2143 2144 static void perf_group_detach(struct perf_event *event) 2145 { 2146 struct perf_event *leader = event->group_leader; 2147 struct perf_event *sibling, *tmp; 2148 struct perf_event_context *ctx = event->ctx; 2149 2150 lockdep_assert_held(&ctx->lock); 2151 2152 /* 2153 * We can have double detach due to exit/hot-unplug + close. 2154 */ 2155 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2156 return; 2157 2158 event->attach_state &= ~PERF_ATTACH_GROUP; 2159 2160 perf_put_aux_event(event); 2161 2162 /* 2163 * If this is a sibling, remove it from its group. 2164 */ 2165 if (leader != event) { 2166 list_del_init(&event->sibling_list); 2167 event->group_leader->nr_siblings--; 2168 goto out; 2169 } 2170 2171 /* 2172 * If this was a group event with sibling events then 2173 * upgrade the siblings to singleton events by adding them 2174 * to whatever list we are on. 2175 */ 2176 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2177 2178 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2179 perf_remove_sibling_event(sibling); 2180 2181 sibling->group_leader = sibling; 2182 list_del_init(&sibling->sibling_list); 2183 2184 /* Inherit group flags from the previous leader */ 2185 sibling->group_caps = event->group_caps; 2186 2187 if (!RB_EMPTY_NODE(&event->group_node)) { 2188 add_event_to_groups(sibling, event->ctx); 2189 2190 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2191 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2192 } 2193 2194 WARN_ON_ONCE(sibling->ctx != event->ctx); 2195 } 2196 2197 out: 2198 for_each_sibling_event(tmp, leader) 2199 perf_event__header_size(tmp); 2200 2201 perf_event__header_size(leader); 2202 } 2203 2204 static void sync_child_event(struct perf_event *child_event); 2205 2206 static void perf_child_detach(struct perf_event *event) 2207 { 2208 struct perf_event *parent_event = event->parent; 2209 2210 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2211 return; 2212 2213 event->attach_state &= ~PERF_ATTACH_CHILD; 2214 2215 if (WARN_ON_ONCE(!parent_event)) 2216 return; 2217 2218 lockdep_assert_held(&parent_event->child_mutex); 2219 2220 sync_child_event(event); 2221 list_del_init(&event->child_list); 2222 } 2223 2224 static bool is_orphaned_event(struct perf_event *event) 2225 { 2226 return event->state == PERF_EVENT_STATE_DEAD; 2227 } 2228 2229 static inline int __pmu_filter_match(struct perf_event *event) 2230 { 2231 struct pmu *pmu = event->pmu; 2232 return pmu->filter_match ? pmu->filter_match(event) : 1; 2233 } 2234 2235 /* 2236 * Check whether we should attempt to schedule an event group based on 2237 * PMU-specific filtering. An event group can consist of HW and SW events, 2238 * potentially with a SW leader, so we must check all the filters, to 2239 * determine whether a group is schedulable: 2240 */ 2241 static inline int pmu_filter_match(struct perf_event *event) 2242 { 2243 struct perf_event *sibling; 2244 2245 if (!__pmu_filter_match(event)) 2246 return 0; 2247 2248 for_each_sibling_event(sibling, event) { 2249 if (!__pmu_filter_match(sibling)) 2250 return 0; 2251 } 2252 2253 return 1; 2254 } 2255 2256 static inline int 2257 event_filter_match(struct perf_event *event) 2258 { 2259 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2260 perf_cgroup_match(event) && pmu_filter_match(event); 2261 } 2262 2263 static void 2264 event_sched_out(struct perf_event *event, 2265 struct perf_cpu_context *cpuctx, 2266 struct perf_event_context *ctx) 2267 { 2268 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2269 2270 WARN_ON_ONCE(event->ctx != ctx); 2271 lockdep_assert_held(&ctx->lock); 2272 2273 if (event->state != PERF_EVENT_STATE_ACTIVE) 2274 return; 2275 2276 /* 2277 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2278 * we can schedule events _OUT_ individually through things like 2279 * __perf_remove_from_context(). 2280 */ 2281 list_del_init(&event->active_list); 2282 2283 perf_pmu_disable(event->pmu); 2284 2285 event->pmu->del(event, 0); 2286 event->oncpu = -1; 2287 2288 if (READ_ONCE(event->pending_disable) >= 0) { 2289 WRITE_ONCE(event->pending_disable, -1); 2290 perf_cgroup_event_disable(event, ctx); 2291 state = PERF_EVENT_STATE_OFF; 2292 } 2293 perf_event_set_state(event, state); 2294 2295 if (!is_software_event(event)) 2296 cpuctx->active_oncpu--; 2297 if (!--ctx->nr_active) 2298 perf_event_ctx_deactivate(ctx); 2299 if (event->attr.freq && event->attr.sample_freq) 2300 ctx->nr_freq--; 2301 if (event->attr.exclusive || !cpuctx->active_oncpu) 2302 cpuctx->exclusive = 0; 2303 2304 perf_pmu_enable(event->pmu); 2305 } 2306 2307 static void 2308 group_sched_out(struct perf_event *group_event, 2309 struct perf_cpu_context *cpuctx, 2310 struct perf_event_context *ctx) 2311 { 2312 struct perf_event *event; 2313 2314 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2315 return; 2316 2317 perf_pmu_disable(ctx->pmu); 2318 2319 event_sched_out(group_event, cpuctx, ctx); 2320 2321 /* 2322 * Schedule out siblings (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) 2325 event_sched_out(event, cpuctx, ctx); 2326 2327 perf_pmu_enable(ctx->pmu); 2328 } 2329 2330 #define DETACH_GROUP 0x01UL 2331 #define DETACH_CHILD 0x02UL 2332 2333 /* 2334 * Cross CPU call to remove a performance event 2335 * 2336 * We disable the event on the hardware level first. After that we 2337 * remove it from the context list. 2338 */ 2339 static void 2340 __perf_remove_from_context(struct perf_event *event, 2341 struct perf_cpu_context *cpuctx, 2342 struct perf_event_context *ctx, 2343 void *info) 2344 { 2345 unsigned long flags = (unsigned long)info; 2346 2347 if (ctx->is_active & EVENT_TIME) { 2348 update_context_time(ctx); 2349 update_cgrp_time_from_cpuctx(cpuctx); 2350 } 2351 2352 event_sched_out(event, cpuctx, ctx); 2353 if (flags & DETACH_GROUP) 2354 perf_group_detach(event); 2355 if (flags & DETACH_CHILD) 2356 perf_child_detach(event); 2357 list_del_event(event, ctx); 2358 2359 if (!ctx->nr_events && ctx->is_active) { 2360 ctx->is_active = 0; 2361 ctx->rotate_necessary = 0; 2362 if (ctx->task) { 2363 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2364 cpuctx->task_ctx = NULL; 2365 } 2366 } 2367 } 2368 2369 /* 2370 * Remove the event from a task's (or a CPU's) list of events. 2371 * 2372 * If event->ctx is a cloned context, callers must make sure that 2373 * every task struct that event->ctx->task could possibly point to 2374 * remains valid. This is OK when called from perf_release since 2375 * that only calls us on the top-level context, which can't be a clone. 2376 * When called from perf_event_exit_task, it's OK because the 2377 * context has been detached from its task. 2378 */ 2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2380 { 2381 struct perf_event_context *ctx = event->ctx; 2382 2383 lockdep_assert_held(&ctx->mutex); 2384 2385 /* 2386 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2387 * to work in the face of TASK_TOMBSTONE, unlike every other 2388 * event_function_call() user. 2389 */ 2390 raw_spin_lock_irq(&ctx->lock); 2391 if (!ctx->is_active) { 2392 __perf_remove_from_context(event, __get_cpu_context(ctx), 2393 ctx, (void *)flags); 2394 raw_spin_unlock_irq(&ctx->lock); 2395 return; 2396 } 2397 raw_spin_unlock_irq(&ctx->lock); 2398 2399 event_function_call(event, __perf_remove_from_context, (void *)flags); 2400 } 2401 2402 /* 2403 * Cross CPU call to disable a performance event 2404 */ 2405 static void __perf_event_disable(struct perf_event *event, 2406 struct perf_cpu_context *cpuctx, 2407 struct perf_event_context *ctx, 2408 void *info) 2409 { 2410 if (event->state < PERF_EVENT_STATE_INACTIVE) 2411 return; 2412 2413 if (ctx->is_active & EVENT_TIME) { 2414 update_context_time(ctx); 2415 update_cgrp_time_from_event(event); 2416 } 2417 2418 if (event == event->group_leader) 2419 group_sched_out(event, cpuctx, ctx); 2420 else 2421 event_sched_out(event, cpuctx, ctx); 2422 2423 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2424 perf_cgroup_event_disable(event, ctx); 2425 } 2426 2427 /* 2428 * Disable an event. 2429 * 2430 * If event->ctx is a cloned context, callers must make sure that 2431 * every task struct that event->ctx->task could possibly point to 2432 * remains valid. This condition is satisfied when called through 2433 * perf_event_for_each_child or perf_event_for_each because they 2434 * hold the top-level event's child_mutex, so any descendant that 2435 * goes to exit will block in perf_event_exit_event(). 2436 * 2437 * When called from perf_pending_event it's OK because event->ctx 2438 * is the current context on this CPU and preemption is disabled, 2439 * hence we can't get into perf_event_task_sched_out for this context. 2440 */ 2441 static void _perf_event_disable(struct perf_event *event) 2442 { 2443 struct perf_event_context *ctx = event->ctx; 2444 2445 raw_spin_lock_irq(&ctx->lock); 2446 if (event->state <= PERF_EVENT_STATE_OFF) { 2447 raw_spin_unlock_irq(&ctx->lock); 2448 return; 2449 } 2450 raw_spin_unlock_irq(&ctx->lock); 2451 2452 event_function_call(event, __perf_event_disable, NULL); 2453 } 2454 2455 void perf_event_disable_local(struct perf_event *event) 2456 { 2457 event_function_local(event, __perf_event_disable, NULL); 2458 } 2459 2460 /* 2461 * Strictly speaking kernel users cannot create groups and therefore this 2462 * interface does not need the perf_event_ctx_lock() magic. 2463 */ 2464 void perf_event_disable(struct perf_event *event) 2465 { 2466 struct perf_event_context *ctx; 2467 2468 ctx = perf_event_ctx_lock(event); 2469 _perf_event_disable(event); 2470 perf_event_ctx_unlock(event, ctx); 2471 } 2472 EXPORT_SYMBOL_GPL(perf_event_disable); 2473 2474 void perf_event_disable_inatomic(struct perf_event *event) 2475 { 2476 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2477 /* can fail, see perf_pending_event_disable() */ 2478 irq_work_queue(&event->pending); 2479 } 2480 2481 static void perf_set_shadow_time(struct perf_event *event, 2482 struct perf_event_context *ctx) 2483 { 2484 /* 2485 * use the correct time source for the time snapshot 2486 * 2487 * We could get by without this by leveraging the 2488 * fact that to get to this function, the caller 2489 * has most likely already called update_context_time() 2490 * and update_cgrp_time_xx() and thus both timestamp 2491 * are identical (or very close). Given that tstamp is, 2492 * already adjusted for cgroup, we could say that: 2493 * tstamp - ctx->timestamp 2494 * is equivalent to 2495 * tstamp - cgrp->timestamp. 2496 * 2497 * Then, in perf_output_read(), the calculation would 2498 * work with no changes because: 2499 * - event is guaranteed scheduled in 2500 * - no scheduled out in between 2501 * - thus the timestamp would be the same 2502 * 2503 * But this is a bit hairy. 2504 * 2505 * So instead, we have an explicit cgroup call to remain 2506 * within the time source all along. We believe it 2507 * is cleaner and simpler to understand. 2508 */ 2509 if (is_cgroup_event(event)) 2510 perf_cgroup_set_shadow_time(event, event->tstamp); 2511 else 2512 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2513 } 2514 2515 #define MAX_INTERRUPTS (~0ULL) 2516 2517 static void perf_log_throttle(struct perf_event *event, int enable); 2518 static void perf_log_itrace_start(struct perf_event *event); 2519 2520 static int 2521 event_sched_in(struct perf_event *event, 2522 struct perf_cpu_context *cpuctx, 2523 struct perf_event_context *ctx) 2524 { 2525 int ret = 0; 2526 2527 WARN_ON_ONCE(event->ctx != ctx); 2528 2529 lockdep_assert_held(&ctx->lock); 2530 2531 if (event->state <= PERF_EVENT_STATE_OFF) 2532 return 0; 2533 2534 WRITE_ONCE(event->oncpu, smp_processor_id()); 2535 /* 2536 * Order event::oncpu write to happen before the ACTIVE state is 2537 * visible. This allows perf_event_{stop,read}() to observe the correct 2538 * ->oncpu if it sees ACTIVE. 2539 */ 2540 smp_wmb(); 2541 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2542 2543 /* 2544 * Unthrottle events, since we scheduled we might have missed several 2545 * ticks already, also for a heavily scheduling task there is little 2546 * guarantee it'll get a tick in a timely manner. 2547 */ 2548 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2549 perf_log_throttle(event, 1); 2550 event->hw.interrupts = 0; 2551 } 2552 2553 perf_pmu_disable(event->pmu); 2554 2555 perf_set_shadow_time(event, ctx); 2556 2557 perf_log_itrace_start(event); 2558 2559 if (event->pmu->add(event, PERF_EF_START)) { 2560 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2561 event->oncpu = -1; 2562 ret = -EAGAIN; 2563 goto out; 2564 } 2565 2566 if (!is_software_event(event)) 2567 cpuctx->active_oncpu++; 2568 if (!ctx->nr_active++) 2569 perf_event_ctx_activate(ctx); 2570 if (event->attr.freq && event->attr.sample_freq) 2571 ctx->nr_freq++; 2572 2573 if (event->attr.exclusive) 2574 cpuctx->exclusive = 1; 2575 2576 out: 2577 perf_pmu_enable(event->pmu); 2578 2579 return ret; 2580 } 2581 2582 static int 2583 group_sched_in(struct perf_event *group_event, 2584 struct perf_cpu_context *cpuctx, 2585 struct perf_event_context *ctx) 2586 { 2587 struct perf_event *event, *partial_group = NULL; 2588 struct pmu *pmu = ctx->pmu; 2589 2590 if (group_event->state == PERF_EVENT_STATE_OFF) 2591 return 0; 2592 2593 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2594 2595 if (event_sched_in(group_event, cpuctx, ctx)) 2596 goto error; 2597 2598 /* 2599 * Schedule in siblings as one group (if any): 2600 */ 2601 for_each_sibling_event(event, group_event) { 2602 if (event_sched_in(event, cpuctx, ctx)) { 2603 partial_group = event; 2604 goto group_error; 2605 } 2606 } 2607 2608 if (!pmu->commit_txn(pmu)) 2609 return 0; 2610 2611 group_error: 2612 /* 2613 * Groups can be scheduled in as one unit only, so undo any 2614 * partial group before returning: 2615 * The events up to the failed event are scheduled out normally. 2616 */ 2617 for_each_sibling_event(event, group_event) { 2618 if (event == partial_group) 2619 break; 2620 2621 event_sched_out(event, cpuctx, ctx); 2622 } 2623 event_sched_out(group_event, cpuctx, ctx); 2624 2625 error: 2626 pmu->cancel_txn(pmu); 2627 return -EAGAIN; 2628 } 2629 2630 /* 2631 * Work out whether we can put this event group on the CPU now. 2632 */ 2633 static int group_can_go_on(struct perf_event *event, 2634 struct perf_cpu_context *cpuctx, 2635 int can_add_hw) 2636 { 2637 /* 2638 * Groups consisting entirely of software events can always go on. 2639 */ 2640 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2641 return 1; 2642 /* 2643 * If an exclusive group is already on, no other hardware 2644 * events can go on. 2645 */ 2646 if (cpuctx->exclusive) 2647 return 0; 2648 /* 2649 * If this group is exclusive and there are already 2650 * events on the CPU, it can't go on. 2651 */ 2652 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2653 return 0; 2654 /* 2655 * Otherwise, try to add it if all previous groups were able 2656 * to go on. 2657 */ 2658 return can_add_hw; 2659 } 2660 2661 static void add_event_to_ctx(struct perf_event *event, 2662 struct perf_event_context *ctx) 2663 { 2664 list_add_event(event, ctx); 2665 perf_group_attach(event); 2666 } 2667 2668 static void ctx_sched_out(struct perf_event_context *ctx, 2669 struct perf_cpu_context *cpuctx, 2670 enum event_type_t event_type); 2671 static void 2672 ctx_sched_in(struct perf_event_context *ctx, 2673 struct perf_cpu_context *cpuctx, 2674 enum event_type_t event_type, 2675 struct task_struct *task); 2676 2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2678 struct perf_event_context *ctx, 2679 enum event_type_t event_type) 2680 { 2681 if (!cpuctx->task_ctx) 2682 return; 2683 2684 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2685 return; 2686 2687 ctx_sched_out(ctx, cpuctx, event_type); 2688 } 2689 2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2691 struct perf_event_context *ctx, 2692 struct task_struct *task) 2693 { 2694 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2695 if (ctx) 2696 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2697 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2698 if (ctx) 2699 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2700 } 2701 2702 /* 2703 * We want to maintain the following priority of scheduling: 2704 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2705 * - task pinned (EVENT_PINNED) 2706 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2707 * - task flexible (EVENT_FLEXIBLE). 2708 * 2709 * In order to avoid unscheduling and scheduling back in everything every 2710 * time an event is added, only do it for the groups of equal priority and 2711 * below. 2712 * 2713 * This can be called after a batch operation on task events, in which case 2714 * event_type is a bit mask of the types of events involved. For CPU events, 2715 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2716 */ 2717 static void ctx_resched(struct perf_cpu_context *cpuctx, 2718 struct perf_event_context *task_ctx, 2719 enum event_type_t event_type) 2720 { 2721 enum event_type_t ctx_event_type; 2722 bool cpu_event = !!(event_type & EVENT_CPU); 2723 2724 /* 2725 * If pinned groups are involved, flexible groups also need to be 2726 * scheduled out. 2727 */ 2728 if (event_type & EVENT_PINNED) 2729 event_type |= EVENT_FLEXIBLE; 2730 2731 ctx_event_type = event_type & EVENT_ALL; 2732 2733 perf_pmu_disable(cpuctx->ctx.pmu); 2734 if (task_ctx) 2735 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2736 2737 /* 2738 * Decide which cpu ctx groups to schedule out based on the types 2739 * of events that caused rescheduling: 2740 * - EVENT_CPU: schedule out corresponding groups; 2741 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2742 * - otherwise, do nothing more. 2743 */ 2744 if (cpu_event) 2745 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2746 else if (ctx_event_type & EVENT_PINNED) 2747 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2748 2749 perf_event_sched_in(cpuctx, task_ctx, current); 2750 perf_pmu_enable(cpuctx->ctx.pmu); 2751 } 2752 2753 void perf_pmu_resched(struct pmu *pmu) 2754 { 2755 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2756 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2757 2758 perf_ctx_lock(cpuctx, task_ctx); 2759 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2760 perf_ctx_unlock(cpuctx, task_ctx); 2761 } 2762 2763 /* 2764 * Cross CPU call to install and enable a performance event 2765 * 2766 * Very similar to remote_function() + event_function() but cannot assume that 2767 * things like ctx->is_active and cpuctx->task_ctx are set. 2768 */ 2769 static int __perf_install_in_context(void *info) 2770 { 2771 struct perf_event *event = info; 2772 struct perf_event_context *ctx = event->ctx; 2773 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2774 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2775 bool reprogram = true; 2776 int ret = 0; 2777 2778 raw_spin_lock(&cpuctx->ctx.lock); 2779 if (ctx->task) { 2780 raw_spin_lock(&ctx->lock); 2781 task_ctx = ctx; 2782 2783 reprogram = (ctx->task == current); 2784 2785 /* 2786 * If the task is running, it must be running on this CPU, 2787 * otherwise we cannot reprogram things. 2788 * 2789 * If its not running, we don't care, ctx->lock will 2790 * serialize against it becoming runnable. 2791 */ 2792 if (task_curr(ctx->task) && !reprogram) { 2793 ret = -ESRCH; 2794 goto unlock; 2795 } 2796 2797 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2798 } else if (task_ctx) { 2799 raw_spin_lock(&task_ctx->lock); 2800 } 2801 2802 #ifdef CONFIG_CGROUP_PERF 2803 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2804 /* 2805 * If the current cgroup doesn't match the event's 2806 * cgroup, we should not try to schedule it. 2807 */ 2808 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2809 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2810 event->cgrp->css.cgroup); 2811 } 2812 #endif 2813 2814 if (reprogram) { 2815 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2816 add_event_to_ctx(event, ctx); 2817 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2818 } else { 2819 add_event_to_ctx(event, ctx); 2820 } 2821 2822 unlock: 2823 perf_ctx_unlock(cpuctx, task_ctx); 2824 2825 return ret; 2826 } 2827 2828 static bool exclusive_event_installable(struct perf_event *event, 2829 struct perf_event_context *ctx); 2830 2831 /* 2832 * Attach a performance event to a context. 2833 * 2834 * Very similar to event_function_call, see comment there. 2835 */ 2836 static void 2837 perf_install_in_context(struct perf_event_context *ctx, 2838 struct perf_event *event, 2839 int cpu) 2840 { 2841 struct task_struct *task = READ_ONCE(ctx->task); 2842 2843 lockdep_assert_held(&ctx->mutex); 2844 2845 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2846 2847 if (event->cpu != -1) 2848 event->cpu = cpu; 2849 2850 /* 2851 * Ensures that if we can observe event->ctx, both the event and ctx 2852 * will be 'complete'. See perf_iterate_sb_cpu(). 2853 */ 2854 smp_store_release(&event->ctx, ctx); 2855 2856 /* 2857 * perf_event_attr::disabled events will not run and can be initialized 2858 * without IPI. Except when this is the first event for the context, in 2859 * that case we need the magic of the IPI to set ctx->is_active. 2860 * 2861 * The IOC_ENABLE that is sure to follow the creation of a disabled 2862 * event will issue the IPI and reprogram the hardware. 2863 */ 2864 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) { 2865 raw_spin_lock_irq(&ctx->lock); 2866 if (ctx->task == TASK_TOMBSTONE) { 2867 raw_spin_unlock_irq(&ctx->lock); 2868 return; 2869 } 2870 add_event_to_ctx(event, ctx); 2871 raw_spin_unlock_irq(&ctx->lock); 2872 return; 2873 } 2874 2875 if (!task) { 2876 cpu_function_call(cpu, __perf_install_in_context, event); 2877 return; 2878 } 2879 2880 /* 2881 * Should not happen, we validate the ctx is still alive before calling. 2882 */ 2883 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2884 return; 2885 2886 /* 2887 * Installing events is tricky because we cannot rely on ctx->is_active 2888 * to be set in case this is the nr_events 0 -> 1 transition. 2889 * 2890 * Instead we use task_curr(), which tells us if the task is running. 2891 * However, since we use task_curr() outside of rq::lock, we can race 2892 * against the actual state. This means the result can be wrong. 2893 * 2894 * If we get a false positive, we retry, this is harmless. 2895 * 2896 * If we get a false negative, things are complicated. If we are after 2897 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2898 * value must be correct. If we're before, it doesn't matter since 2899 * perf_event_context_sched_in() will program the counter. 2900 * 2901 * However, this hinges on the remote context switch having observed 2902 * our task->perf_event_ctxp[] store, such that it will in fact take 2903 * ctx::lock in perf_event_context_sched_in(). 2904 * 2905 * We do this by task_function_call(), if the IPI fails to hit the task 2906 * we know any future context switch of task must see the 2907 * perf_event_ctpx[] store. 2908 */ 2909 2910 /* 2911 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2912 * task_cpu() load, such that if the IPI then does not find the task 2913 * running, a future context switch of that task must observe the 2914 * store. 2915 */ 2916 smp_mb(); 2917 again: 2918 if (!task_function_call(task, __perf_install_in_context, event)) 2919 return; 2920 2921 raw_spin_lock_irq(&ctx->lock); 2922 task = ctx->task; 2923 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2924 /* 2925 * Cannot happen because we already checked above (which also 2926 * cannot happen), and we hold ctx->mutex, which serializes us 2927 * against perf_event_exit_task_context(). 2928 */ 2929 raw_spin_unlock_irq(&ctx->lock); 2930 return; 2931 } 2932 /* 2933 * If the task is not running, ctx->lock will avoid it becoming so, 2934 * thus we can safely install the event. 2935 */ 2936 if (task_curr(task)) { 2937 raw_spin_unlock_irq(&ctx->lock); 2938 goto again; 2939 } 2940 add_event_to_ctx(event, ctx); 2941 raw_spin_unlock_irq(&ctx->lock); 2942 } 2943 2944 /* 2945 * Cross CPU call to enable a performance event 2946 */ 2947 static void __perf_event_enable(struct perf_event *event, 2948 struct perf_cpu_context *cpuctx, 2949 struct perf_event_context *ctx, 2950 void *info) 2951 { 2952 struct perf_event *leader = event->group_leader; 2953 struct perf_event_context *task_ctx; 2954 2955 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2956 event->state <= PERF_EVENT_STATE_ERROR) 2957 return; 2958 2959 if (ctx->is_active) 2960 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2961 2962 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2963 perf_cgroup_event_enable(event, ctx); 2964 2965 if (!ctx->is_active) 2966 return; 2967 2968 if (!event_filter_match(event)) { 2969 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2970 return; 2971 } 2972 2973 /* 2974 * If the event is in a group and isn't the group leader, 2975 * then don't put it on unless the group is on. 2976 */ 2977 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2978 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2979 return; 2980 } 2981 2982 task_ctx = cpuctx->task_ctx; 2983 if (ctx->task) 2984 WARN_ON_ONCE(task_ctx != ctx); 2985 2986 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2987 } 2988 2989 /* 2990 * Enable an event. 2991 * 2992 * If event->ctx is a cloned context, callers must make sure that 2993 * every task struct that event->ctx->task could possibly point to 2994 * remains valid. This condition is satisfied when called through 2995 * perf_event_for_each_child or perf_event_for_each as described 2996 * for perf_event_disable. 2997 */ 2998 static void _perf_event_enable(struct perf_event *event) 2999 { 3000 struct perf_event_context *ctx = event->ctx; 3001 3002 raw_spin_lock_irq(&ctx->lock); 3003 if (event->state >= PERF_EVENT_STATE_INACTIVE || 3004 event->state < PERF_EVENT_STATE_ERROR) { 3005 out: 3006 raw_spin_unlock_irq(&ctx->lock); 3007 return; 3008 } 3009 3010 /* 3011 * If the event is in error state, clear that first. 3012 * 3013 * That way, if we see the event in error state below, we know that it 3014 * has gone back into error state, as distinct from the task having 3015 * been scheduled away before the cross-call arrived. 3016 */ 3017 if (event->state == PERF_EVENT_STATE_ERROR) { 3018 /* 3019 * Detached SIBLING events cannot leave ERROR state. 3020 */ 3021 if (event->event_caps & PERF_EV_CAP_SIBLING && 3022 event->group_leader == event) 3023 goto out; 3024 3025 event->state = PERF_EVENT_STATE_OFF; 3026 } 3027 raw_spin_unlock_irq(&ctx->lock); 3028 3029 event_function_call(event, __perf_event_enable, NULL); 3030 } 3031 3032 /* 3033 * See perf_event_disable(); 3034 */ 3035 void perf_event_enable(struct perf_event *event) 3036 { 3037 struct perf_event_context *ctx; 3038 3039 ctx = perf_event_ctx_lock(event); 3040 _perf_event_enable(event); 3041 perf_event_ctx_unlock(event, ctx); 3042 } 3043 EXPORT_SYMBOL_GPL(perf_event_enable); 3044 3045 struct stop_event_data { 3046 struct perf_event *event; 3047 unsigned int restart; 3048 }; 3049 3050 static int __perf_event_stop(void *info) 3051 { 3052 struct stop_event_data *sd = info; 3053 struct perf_event *event = sd->event; 3054 3055 /* if it's already INACTIVE, do nothing */ 3056 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3057 return 0; 3058 3059 /* matches smp_wmb() in event_sched_in() */ 3060 smp_rmb(); 3061 3062 /* 3063 * There is a window with interrupts enabled before we get here, 3064 * so we need to check again lest we try to stop another CPU's event. 3065 */ 3066 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3067 return -EAGAIN; 3068 3069 event->pmu->stop(event, PERF_EF_UPDATE); 3070 3071 /* 3072 * May race with the actual stop (through perf_pmu_output_stop()), 3073 * but it is only used for events with AUX ring buffer, and such 3074 * events will refuse to restart because of rb::aux_mmap_count==0, 3075 * see comments in perf_aux_output_begin(). 3076 * 3077 * Since this is happening on an event-local CPU, no trace is lost 3078 * while restarting. 3079 */ 3080 if (sd->restart) 3081 event->pmu->start(event, 0); 3082 3083 return 0; 3084 } 3085 3086 static int perf_event_stop(struct perf_event *event, int restart) 3087 { 3088 struct stop_event_data sd = { 3089 .event = event, 3090 .restart = restart, 3091 }; 3092 int ret = 0; 3093 3094 do { 3095 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3096 return 0; 3097 3098 /* matches smp_wmb() in event_sched_in() */ 3099 smp_rmb(); 3100 3101 /* 3102 * We only want to restart ACTIVE events, so if the event goes 3103 * inactive here (event->oncpu==-1), there's nothing more to do; 3104 * fall through with ret==-ENXIO. 3105 */ 3106 ret = cpu_function_call(READ_ONCE(event->oncpu), 3107 __perf_event_stop, &sd); 3108 } while (ret == -EAGAIN); 3109 3110 return ret; 3111 } 3112 3113 /* 3114 * In order to contain the amount of racy and tricky in the address filter 3115 * configuration management, it is a two part process: 3116 * 3117 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3118 * we update the addresses of corresponding vmas in 3119 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3120 * (p2) when an event is scheduled in (pmu::add), it calls 3121 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3122 * if the generation has changed since the previous call. 3123 * 3124 * If (p1) happens while the event is active, we restart it to force (p2). 3125 * 3126 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3127 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3128 * ioctl; 3129 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3130 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3131 * for reading; 3132 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3133 * of exec. 3134 */ 3135 void perf_event_addr_filters_sync(struct perf_event *event) 3136 { 3137 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3138 3139 if (!has_addr_filter(event)) 3140 return; 3141 3142 raw_spin_lock(&ifh->lock); 3143 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3144 event->pmu->addr_filters_sync(event); 3145 event->hw.addr_filters_gen = event->addr_filters_gen; 3146 } 3147 raw_spin_unlock(&ifh->lock); 3148 } 3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3150 3151 static int _perf_event_refresh(struct perf_event *event, int refresh) 3152 { 3153 /* 3154 * not supported on inherited events 3155 */ 3156 if (event->attr.inherit || !is_sampling_event(event)) 3157 return -EINVAL; 3158 3159 atomic_add(refresh, &event->event_limit); 3160 _perf_event_enable(event); 3161 3162 return 0; 3163 } 3164 3165 /* 3166 * See perf_event_disable() 3167 */ 3168 int perf_event_refresh(struct perf_event *event, int refresh) 3169 { 3170 struct perf_event_context *ctx; 3171 int ret; 3172 3173 ctx = perf_event_ctx_lock(event); 3174 ret = _perf_event_refresh(event, refresh); 3175 perf_event_ctx_unlock(event, ctx); 3176 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(perf_event_refresh); 3180 3181 static int perf_event_modify_breakpoint(struct perf_event *bp, 3182 struct perf_event_attr *attr) 3183 { 3184 int err; 3185 3186 _perf_event_disable(bp); 3187 3188 err = modify_user_hw_breakpoint_check(bp, attr, true); 3189 3190 if (!bp->attr.disabled) 3191 _perf_event_enable(bp); 3192 3193 return err; 3194 } 3195 3196 static int perf_event_modify_attr(struct perf_event *event, 3197 struct perf_event_attr *attr) 3198 { 3199 int (*func)(struct perf_event *, struct perf_event_attr *); 3200 struct perf_event *child; 3201 int err; 3202 3203 if (event->attr.type != attr->type) 3204 return -EINVAL; 3205 3206 switch (event->attr.type) { 3207 case PERF_TYPE_BREAKPOINT: 3208 func = perf_event_modify_breakpoint; 3209 break; 3210 default: 3211 /* Place holder for future additions. */ 3212 return -EOPNOTSUPP; 3213 } 3214 3215 WARN_ON_ONCE(event->ctx->parent_ctx); 3216 3217 mutex_lock(&event->child_mutex); 3218 err = func(event, attr); 3219 if (err) 3220 goto out; 3221 list_for_each_entry(child, &event->child_list, child_list) { 3222 err = func(child, attr); 3223 if (err) 3224 goto out; 3225 } 3226 out: 3227 mutex_unlock(&event->child_mutex); 3228 return err; 3229 } 3230 3231 static void ctx_sched_out(struct perf_event_context *ctx, 3232 struct perf_cpu_context *cpuctx, 3233 enum event_type_t event_type) 3234 { 3235 struct perf_event *event, *tmp; 3236 int is_active = ctx->is_active; 3237 3238 lockdep_assert_held(&ctx->lock); 3239 3240 if (likely(!ctx->nr_events)) { 3241 /* 3242 * See __perf_remove_from_context(). 3243 */ 3244 WARN_ON_ONCE(ctx->is_active); 3245 if (ctx->task) 3246 WARN_ON_ONCE(cpuctx->task_ctx); 3247 return; 3248 } 3249 3250 ctx->is_active &= ~event_type; 3251 if (!(ctx->is_active & EVENT_ALL)) 3252 ctx->is_active = 0; 3253 3254 if (ctx->task) { 3255 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3256 if (!ctx->is_active) 3257 cpuctx->task_ctx = NULL; 3258 } 3259 3260 /* 3261 * Always update time if it was set; not only when it changes. 3262 * Otherwise we can 'forget' to update time for any but the last 3263 * context we sched out. For example: 3264 * 3265 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3266 * ctx_sched_out(.event_type = EVENT_PINNED) 3267 * 3268 * would only update time for the pinned events. 3269 */ 3270 if (is_active & EVENT_TIME) { 3271 /* update (and stop) ctx time */ 3272 update_context_time(ctx); 3273 update_cgrp_time_from_cpuctx(cpuctx); 3274 } 3275 3276 is_active ^= ctx->is_active; /* changed bits */ 3277 3278 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 3279 return; 3280 3281 perf_pmu_disable(ctx->pmu); 3282 if (is_active & EVENT_PINNED) { 3283 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 3284 group_sched_out(event, cpuctx, ctx); 3285 } 3286 3287 if (is_active & EVENT_FLEXIBLE) { 3288 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 3289 group_sched_out(event, cpuctx, ctx); 3290 3291 /* 3292 * Since we cleared EVENT_FLEXIBLE, also clear 3293 * rotate_necessary, is will be reset by 3294 * ctx_flexible_sched_in() when needed. 3295 */ 3296 ctx->rotate_necessary = 0; 3297 } 3298 perf_pmu_enable(ctx->pmu); 3299 } 3300 3301 /* 3302 * Test whether two contexts are equivalent, i.e. whether they have both been 3303 * cloned from the same version of the same context. 3304 * 3305 * Equivalence is measured using a generation number in the context that is 3306 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3307 * and list_del_event(). 3308 */ 3309 static int context_equiv(struct perf_event_context *ctx1, 3310 struct perf_event_context *ctx2) 3311 { 3312 lockdep_assert_held(&ctx1->lock); 3313 lockdep_assert_held(&ctx2->lock); 3314 3315 /* Pinning disables the swap optimization */ 3316 if (ctx1->pin_count || ctx2->pin_count) 3317 return 0; 3318 3319 /* If ctx1 is the parent of ctx2 */ 3320 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3321 return 1; 3322 3323 /* If ctx2 is the parent of ctx1 */ 3324 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3325 return 1; 3326 3327 /* 3328 * If ctx1 and ctx2 have the same parent; we flatten the parent 3329 * hierarchy, see perf_event_init_context(). 3330 */ 3331 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3332 ctx1->parent_gen == ctx2->parent_gen) 3333 return 1; 3334 3335 /* Unmatched */ 3336 return 0; 3337 } 3338 3339 static void __perf_event_sync_stat(struct perf_event *event, 3340 struct perf_event *next_event) 3341 { 3342 u64 value; 3343 3344 if (!event->attr.inherit_stat) 3345 return; 3346 3347 /* 3348 * Update the event value, we cannot use perf_event_read() 3349 * because we're in the middle of a context switch and have IRQs 3350 * disabled, which upsets smp_call_function_single(), however 3351 * we know the event must be on the current CPU, therefore we 3352 * don't need to use it. 3353 */ 3354 if (event->state == PERF_EVENT_STATE_ACTIVE) 3355 event->pmu->read(event); 3356 3357 perf_event_update_time(event); 3358 3359 /* 3360 * In order to keep per-task stats reliable we need to flip the event 3361 * values when we flip the contexts. 3362 */ 3363 value = local64_read(&next_event->count); 3364 value = local64_xchg(&event->count, value); 3365 local64_set(&next_event->count, value); 3366 3367 swap(event->total_time_enabled, next_event->total_time_enabled); 3368 swap(event->total_time_running, next_event->total_time_running); 3369 3370 /* 3371 * Since we swizzled the values, update the user visible data too. 3372 */ 3373 perf_event_update_userpage(event); 3374 perf_event_update_userpage(next_event); 3375 } 3376 3377 static void perf_event_sync_stat(struct perf_event_context *ctx, 3378 struct perf_event_context *next_ctx) 3379 { 3380 struct perf_event *event, *next_event; 3381 3382 if (!ctx->nr_stat) 3383 return; 3384 3385 update_context_time(ctx); 3386 3387 event = list_first_entry(&ctx->event_list, 3388 struct perf_event, event_entry); 3389 3390 next_event = list_first_entry(&next_ctx->event_list, 3391 struct perf_event, event_entry); 3392 3393 while (&event->event_entry != &ctx->event_list && 3394 &next_event->event_entry != &next_ctx->event_list) { 3395 3396 __perf_event_sync_stat(event, next_event); 3397 3398 event = list_next_entry(event, event_entry); 3399 next_event = list_next_entry(next_event, event_entry); 3400 } 3401 } 3402 3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3404 struct task_struct *next) 3405 { 3406 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3407 struct perf_event_context *next_ctx; 3408 struct perf_event_context *parent, *next_parent; 3409 struct perf_cpu_context *cpuctx; 3410 int do_switch = 1; 3411 struct pmu *pmu; 3412 3413 if (likely(!ctx)) 3414 return; 3415 3416 pmu = ctx->pmu; 3417 cpuctx = __get_cpu_context(ctx); 3418 if (!cpuctx->task_ctx) 3419 return; 3420 3421 rcu_read_lock(); 3422 next_ctx = next->perf_event_ctxp[ctxn]; 3423 if (!next_ctx) 3424 goto unlock; 3425 3426 parent = rcu_dereference(ctx->parent_ctx); 3427 next_parent = rcu_dereference(next_ctx->parent_ctx); 3428 3429 /* If neither context have a parent context; they cannot be clones. */ 3430 if (!parent && !next_parent) 3431 goto unlock; 3432 3433 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3434 /* 3435 * Looks like the two contexts are clones, so we might be 3436 * able to optimize the context switch. We lock both 3437 * contexts and check that they are clones under the 3438 * lock (including re-checking that neither has been 3439 * uncloned in the meantime). It doesn't matter which 3440 * order we take the locks because no other cpu could 3441 * be trying to lock both of these tasks. 3442 */ 3443 raw_spin_lock(&ctx->lock); 3444 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3445 if (context_equiv(ctx, next_ctx)) { 3446 3447 WRITE_ONCE(ctx->task, next); 3448 WRITE_ONCE(next_ctx->task, task); 3449 3450 perf_pmu_disable(pmu); 3451 3452 if (cpuctx->sched_cb_usage && pmu->sched_task) 3453 pmu->sched_task(ctx, false); 3454 3455 /* 3456 * PMU specific parts of task perf context can require 3457 * additional synchronization. As an example of such 3458 * synchronization see implementation details of Intel 3459 * LBR call stack data profiling; 3460 */ 3461 if (pmu->swap_task_ctx) 3462 pmu->swap_task_ctx(ctx, next_ctx); 3463 else 3464 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3465 3466 perf_pmu_enable(pmu); 3467 3468 /* 3469 * RCU_INIT_POINTER here is safe because we've not 3470 * modified the ctx and the above modification of 3471 * ctx->task and ctx->task_ctx_data are immaterial 3472 * since those values are always verified under 3473 * ctx->lock which we're now holding. 3474 */ 3475 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3476 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3477 3478 do_switch = 0; 3479 3480 perf_event_sync_stat(ctx, next_ctx); 3481 } 3482 raw_spin_unlock(&next_ctx->lock); 3483 raw_spin_unlock(&ctx->lock); 3484 } 3485 unlock: 3486 rcu_read_unlock(); 3487 3488 if (do_switch) { 3489 raw_spin_lock(&ctx->lock); 3490 perf_pmu_disable(pmu); 3491 3492 if (cpuctx->sched_cb_usage && pmu->sched_task) 3493 pmu->sched_task(ctx, false); 3494 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3495 3496 perf_pmu_enable(pmu); 3497 raw_spin_unlock(&ctx->lock); 3498 } 3499 } 3500 3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3502 3503 void perf_sched_cb_dec(struct pmu *pmu) 3504 { 3505 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3506 3507 this_cpu_dec(perf_sched_cb_usages); 3508 3509 if (!--cpuctx->sched_cb_usage) 3510 list_del(&cpuctx->sched_cb_entry); 3511 } 3512 3513 3514 void perf_sched_cb_inc(struct pmu *pmu) 3515 { 3516 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3517 3518 if (!cpuctx->sched_cb_usage++) 3519 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3520 3521 this_cpu_inc(perf_sched_cb_usages); 3522 } 3523 3524 /* 3525 * This function provides the context switch callback to the lower code 3526 * layer. It is invoked ONLY when the context switch callback is enabled. 3527 * 3528 * This callback is relevant even to per-cpu events; for example multi event 3529 * PEBS requires this to provide PID/TID information. This requires we flush 3530 * all queued PEBS records before we context switch to a new task. 3531 */ 3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in) 3533 { 3534 struct pmu *pmu; 3535 3536 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3537 3538 if (WARN_ON_ONCE(!pmu->sched_task)) 3539 return; 3540 3541 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3542 perf_pmu_disable(pmu); 3543 3544 pmu->sched_task(cpuctx->task_ctx, sched_in); 3545 3546 perf_pmu_enable(pmu); 3547 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3548 } 3549 3550 static void perf_pmu_sched_task(struct task_struct *prev, 3551 struct task_struct *next, 3552 bool sched_in) 3553 { 3554 struct perf_cpu_context *cpuctx; 3555 3556 if (prev == next) 3557 return; 3558 3559 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3560 /* will be handled in perf_event_context_sched_in/out */ 3561 if (cpuctx->task_ctx) 3562 continue; 3563 3564 __perf_pmu_sched_task(cpuctx, sched_in); 3565 } 3566 } 3567 3568 static void perf_event_switch(struct task_struct *task, 3569 struct task_struct *next_prev, bool sched_in); 3570 3571 #define for_each_task_context_nr(ctxn) \ 3572 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3573 3574 /* 3575 * Called from scheduler to remove the events of the current task, 3576 * with interrupts disabled. 3577 * 3578 * We stop each event and update the event value in event->count. 3579 * 3580 * This does not protect us against NMI, but disable() 3581 * sets the disabled bit in the control field of event _before_ 3582 * accessing the event control register. If a NMI hits, then it will 3583 * not restart the event. 3584 */ 3585 void __perf_event_task_sched_out(struct task_struct *task, 3586 struct task_struct *next) 3587 { 3588 int ctxn; 3589 3590 if (__this_cpu_read(perf_sched_cb_usages)) 3591 perf_pmu_sched_task(task, next, false); 3592 3593 if (atomic_read(&nr_switch_events)) 3594 perf_event_switch(task, next, false); 3595 3596 for_each_task_context_nr(ctxn) 3597 perf_event_context_sched_out(task, ctxn, next); 3598 3599 /* 3600 * if cgroup events exist on this CPU, then we need 3601 * to check if we have to switch out PMU state. 3602 * cgroup event are system-wide mode only 3603 */ 3604 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3605 perf_cgroup_sched_out(task, next); 3606 } 3607 3608 /* 3609 * Called with IRQs disabled 3610 */ 3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3612 enum event_type_t event_type) 3613 { 3614 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3615 } 3616 3617 static bool perf_less_group_idx(const void *l, const void *r) 3618 { 3619 const struct perf_event *le = *(const struct perf_event **)l; 3620 const struct perf_event *re = *(const struct perf_event **)r; 3621 3622 return le->group_index < re->group_index; 3623 } 3624 3625 static void swap_ptr(void *l, void *r) 3626 { 3627 void **lp = l, **rp = r; 3628 3629 swap(*lp, *rp); 3630 } 3631 3632 static const struct min_heap_callbacks perf_min_heap = { 3633 .elem_size = sizeof(struct perf_event *), 3634 .less = perf_less_group_idx, 3635 .swp = swap_ptr, 3636 }; 3637 3638 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3639 { 3640 struct perf_event **itrs = heap->data; 3641 3642 if (event) { 3643 itrs[heap->nr] = event; 3644 heap->nr++; 3645 } 3646 } 3647 3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx, 3649 struct perf_event_groups *groups, int cpu, 3650 int (*func)(struct perf_event *, void *), 3651 void *data) 3652 { 3653 #ifdef CONFIG_CGROUP_PERF 3654 struct cgroup_subsys_state *css = NULL; 3655 #endif 3656 /* Space for per CPU and/or any CPU event iterators. */ 3657 struct perf_event *itrs[2]; 3658 struct min_heap event_heap; 3659 struct perf_event **evt; 3660 int ret; 3661 3662 if (cpuctx) { 3663 event_heap = (struct min_heap){ 3664 .data = cpuctx->heap, 3665 .nr = 0, 3666 .size = cpuctx->heap_size, 3667 }; 3668 3669 lockdep_assert_held(&cpuctx->ctx.lock); 3670 3671 #ifdef CONFIG_CGROUP_PERF 3672 if (cpuctx->cgrp) 3673 css = &cpuctx->cgrp->css; 3674 #endif 3675 } else { 3676 event_heap = (struct min_heap){ 3677 .data = itrs, 3678 .nr = 0, 3679 .size = ARRAY_SIZE(itrs), 3680 }; 3681 /* Events not within a CPU context may be on any CPU. */ 3682 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL)); 3683 } 3684 evt = event_heap.data; 3685 3686 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL)); 3687 3688 #ifdef CONFIG_CGROUP_PERF 3689 for (; css; css = css->parent) 3690 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup)); 3691 #endif 3692 3693 min_heapify_all(&event_heap, &perf_min_heap); 3694 3695 while (event_heap.nr) { 3696 ret = func(*evt, data); 3697 if (ret) 3698 return ret; 3699 3700 *evt = perf_event_groups_next(*evt); 3701 if (*evt) 3702 min_heapify(&event_heap, 0, &perf_min_heap); 3703 else 3704 min_heap_pop(&event_heap, &perf_min_heap); 3705 } 3706 3707 return 0; 3708 } 3709 3710 static inline bool event_update_userpage(struct perf_event *event) 3711 { 3712 if (likely(!atomic_read(&event->mmap_count))) 3713 return false; 3714 3715 perf_event_update_time(event); 3716 perf_set_shadow_time(event, event->ctx); 3717 perf_event_update_userpage(event); 3718 3719 return true; 3720 } 3721 3722 static inline void group_update_userpage(struct perf_event *group_event) 3723 { 3724 struct perf_event *event; 3725 3726 if (!event_update_userpage(group_event)) 3727 return; 3728 3729 for_each_sibling_event(event, group_event) 3730 event_update_userpage(event); 3731 } 3732 3733 static int merge_sched_in(struct perf_event *event, void *data) 3734 { 3735 struct perf_event_context *ctx = event->ctx; 3736 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3737 int *can_add_hw = data; 3738 3739 if (event->state <= PERF_EVENT_STATE_OFF) 3740 return 0; 3741 3742 if (!event_filter_match(event)) 3743 return 0; 3744 3745 if (group_can_go_on(event, cpuctx, *can_add_hw)) { 3746 if (!group_sched_in(event, cpuctx, ctx)) 3747 list_add_tail(&event->active_list, get_event_list(event)); 3748 } 3749 3750 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3751 *can_add_hw = 0; 3752 if (event->attr.pinned) { 3753 perf_cgroup_event_disable(event, ctx); 3754 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3755 } else { 3756 ctx->rotate_necessary = 1; 3757 perf_mux_hrtimer_restart(cpuctx); 3758 group_update_userpage(event); 3759 } 3760 } 3761 3762 return 0; 3763 } 3764 3765 static void 3766 ctx_pinned_sched_in(struct perf_event_context *ctx, 3767 struct perf_cpu_context *cpuctx) 3768 { 3769 int can_add_hw = 1; 3770 3771 if (ctx != &cpuctx->ctx) 3772 cpuctx = NULL; 3773 3774 visit_groups_merge(cpuctx, &ctx->pinned_groups, 3775 smp_processor_id(), 3776 merge_sched_in, &can_add_hw); 3777 } 3778 3779 static void 3780 ctx_flexible_sched_in(struct perf_event_context *ctx, 3781 struct perf_cpu_context *cpuctx) 3782 { 3783 int can_add_hw = 1; 3784 3785 if (ctx != &cpuctx->ctx) 3786 cpuctx = NULL; 3787 3788 visit_groups_merge(cpuctx, &ctx->flexible_groups, 3789 smp_processor_id(), 3790 merge_sched_in, &can_add_hw); 3791 } 3792 3793 static void 3794 ctx_sched_in(struct perf_event_context *ctx, 3795 struct perf_cpu_context *cpuctx, 3796 enum event_type_t event_type, 3797 struct task_struct *task) 3798 { 3799 int is_active = ctx->is_active; 3800 u64 now; 3801 3802 lockdep_assert_held(&ctx->lock); 3803 3804 if (likely(!ctx->nr_events)) 3805 return; 3806 3807 ctx->is_active |= (event_type | EVENT_TIME); 3808 if (ctx->task) { 3809 if (!is_active) 3810 cpuctx->task_ctx = ctx; 3811 else 3812 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3813 } 3814 3815 is_active ^= ctx->is_active; /* changed bits */ 3816 3817 if (is_active & EVENT_TIME) { 3818 /* start ctx time */ 3819 now = perf_clock(); 3820 ctx->timestamp = now; 3821 perf_cgroup_set_timestamp(task, ctx); 3822 } 3823 3824 /* 3825 * First go through the list and put on any pinned groups 3826 * in order to give them the best chance of going on. 3827 */ 3828 if (is_active & EVENT_PINNED) 3829 ctx_pinned_sched_in(ctx, cpuctx); 3830 3831 /* Then walk through the lower prio flexible groups */ 3832 if (is_active & EVENT_FLEXIBLE) 3833 ctx_flexible_sched_in(ctx, cpuctx); 3834 } 3835 3836 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3837 enum event_type_t event_type, 3838 struct task_struct *task) 3839 { 3840 struct perf_event_context *ctx = &cpuctx->ctx; 3841 3842 ctx_sched_in(ctx, cpuctx, event_type, task); 3843 } 3844 3845 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3846 struct task_struct *task) 3847 { 3848 struct perf_cpu_context *cpuctx; 3849 struct pmu *pmu; 3850 3851 cpuctx = __get_cpu_context(ctx); 3852 3853 /* 3854 * HACK: for HETEROGENEOUS the task context might have switched to a 3855 * different PMU, force (re)set the context, 3856 */ 3857 pmu = ctx->pmu = cpuctx->ctx.pmu; 3858 3859 if (cpuctx->task_ctx == ctx) { 3860 if (cpuctx->sched_cb_usage) 3861 __perf_pmu_sched_task(cpuctx, true); 3862 return; 3863 } 3864 3865 perf_ctx_lock(cpuctx, ctx); 3866 /* 3867 * We must check ctx->nr_events while holding ctx->lock, such 3868 * that we serialize against perf_install_in_context(). 3869 */ 3870 if (!ctx->nr_events) 3871 goto unlock; 3872 3873 perf_pmu_disable(pmu); 3874 /* 3875 * We want to keep the following priority order: 3876 * cpu pinned (that don't need to move), task pinned, 3877 * cpu flexible, task flexible. 3878 * 3879 * However, if task's ctx is not carrying any pinned 3880 * events, no need to flip the cpuctx's events around. 3881 */ 3882 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3883 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3884 perf_event_sched_in(cpuctx, ctx, task); 3885 3886 if (cpuctx->sched_cb_usage && pmu->sched_task) 3887 pmu->sched_task(cpuctx->task_ctx, true); 3888 3889 perf_pmu_enable(pmu); 3890 3891 unlock: 3892 perf_ctx_unlock(cpuctx, ctx); 3893 } 3894 3895 /* 3896 * Called from scheduler to add the events of the current task 3897 * with interrupts disabled. 3898 * 3899 * We restore the event value and then enable it. 3900 * 3901 * This does not protect us against NMI, but enable() 3902 * sets the enabled bit in the control field of event _before_ 3903 * accessing the event control register. If a NMI hits, then it will 3904 * keep the event running. 3905 */ 3906 void __perf_event_task_sched_in(struct task_struct *prev, 3907 struct task_struct *task) 3908 { 3909 struct perf_event_context *ctx; 3910 int ctxn; 3911 3912 /* 3913 * If cgroup events exist on this CPU, then we need to check if we have 3914 * to switch in PMU state; cgroup event are system-wide mode only. 3915 * 3916 * Since cgroup events are CPU events, we must schedule these in before 3917 * we schedule in the task events. 3918 */ 3919 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3920 perf_cgroup_sched_in(prev, task); 3921 3922 for_each_task_context_nr(ctxn) { 3923 ctx = task->perf_event_ctxp[ctxn]; 3924 if (likely(!ctx)) 3925 continue; 3926 3927 perf_event_context_sched_in(ctx, task); 3928 } 3929 3930 if (atomic_read(&nr_switch_events)) 3931 perf_event_switch(task, prev, true); 3932 3933 if (__this_cpu_read(perf_sched_cb_usages)) 3934 perf_pmu_sched_task(prev, task, true); 3935 } 3936 3937 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3938 { 3939 u64 frequency = event->attr.sample_freq; 3940 u64 sec = NSEC_PER_SEC; 3941 u64 divisor, dividend; 3942 3943 int count_fls, nsec_fls, frequency_fls, sec_fls; 3944 3945 count_fls = fls64(count); 3946 nsec_fls = fls64(nsec); 3947 frequency_fls = fls64(frequency); 3948 sec_fls = 30; 3949 3950 /* 3951 * We got @count in @nsec, with a target of sample_freq HZ 3952 * the target period becomes: 3953 * 3954 * @count * 10^9 3955 * period = ------------------- 3956 * @nsec * sample_freq 3957 * 3958 */ 3959 3960 /* 3961 * Reduce accuracy by one bit such that @a and @b converge 3962 * to a similar magnitude. 3963 */ 3964 #define REDUCE_FLS(a, b) \ 3965 do { \ 3966 if (a##_fls > b##_fls) { \ 3967 a >>= 1; \ 3968 a##_fls--; \ 3969 } else { \ 3970 b >>= 1; \ 3971 b##_fls--; \ 3972 } \ 3973 } while (0) 3974 3975 /* 3976 * Reduce accuracy until either term fits in a u64, then proceed with 3977 * the other, so that finally we can do a u64/u64 division. 3978 */ 3979 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3980 REDUCE_FLS(nsec, frequency); 3981 REDUCE_FLS(sec, count); 3982 } 3983 3984 if (count_fls + sec_fls > 64) { 3985 divisor = nsec * frequency; 3986 3987 while (count_fls + sec_fls > 64) { 3988 REDUCE_FLS(count, sec); 3989 divisor >>= 1; 3990 } 3991 3992 dividend = count * sec; 3993 } else { 3994 dividend = count * sec; 3995 3996 while (nsec_fls + frequency_fls > 64) { 3997 REDUCE_FLS(nsec, frequency); 3998 dividend >>= 1; 3999 } 4000 4001 divisor = nsec * frequency; 4002 } 4003 4004 if (!divisor) 4005 return dividend; 4006 4007 return div64_u64(dividend, divisor); 4008 } 4009 4010 static DEFINE_PER_CPU(int, perf_throttled_count); 4011 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4012 4013 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4014 { 4015 struct hw_perf_event *hwc = &event->hw; 4016 s64 period, sample_period; 4017 s64 delta; 4018 4019 period = perf_calculate_period(event, nsec, count); 4020 4021 delta = (s64)(period - hwc->sample_period); 4022 delta = (delta + 7) / 8; /* low pass filter */ 4023 4024 sample_period = hwc->sample_period + delta; 4025 4026 if (!sample_period) 4027 sample_period = 1; 4028 4029 hwc->sample_period = sample_period; 4030 4031 if (local64_read(&hwc->period_left) > 8*sample_period) { 4032 if (disable) 4033 event->pmu->stop(event, PERF_EF_UPDATE); 4034 4035 local64_set(&hwc->period_left, 0); 4036 4037 if (disable) 4038 event->pmu->start(event, PERF_EF_RELOAD); 4039 } 4040 } 4041 4042 /* 4043 * combine freq adjustment with unthrottling to avoid two passes over the 4044 * events. At the same time, make sure, having freq events does not change 4045 * the rate of unthrottling as that would introduce bias. 4046 */ 4047 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 4048 int needs_unthr) 4049 { 4050 struct perf_event *event; 4051 struct hw_perf_event *hwc; 4052 u64 now, period = TICK_NSEC; 4053 s64 delta; 4054 4055 /* 4056 * only need to iterate over all events iff: 4057 * - context have events in frequency mode (needs freq adjust) 4058 * - there are events to unthrottle on this cpu 4059 */ 4060 if (!(ctx->nr_freq || needs_unthr)) 4061 return; 4062 4063 raw_spin_lock(&ctx->lock); 4064 perf_pmu_disable(ctx->pmu); 4065 4066 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4067 if (event->state != PERF_EVENT_STATE_ACTIVE) 4068 continue; 4069 4070 if (!event_filter_match(event)) 4071 continue; 4072 4073 perf_pmu_disable(event->pmu); 4074 4075 hwc = &event->hw; 4076 4077 if (hwc->interrupts == MAX_INTERRUPTS) { 4078 hwc->interrupts = 0; 4079 perf_log_throttle(event, 1); 4080 event->pmu->start(event, 0); 4081 } 4082 4083 if (!event->attr.freq || !event->attr.sample_freq) 4084 goto next; 4085 4086 /* 4087 * stop the event and update event->count 4088 */ 4089 event->pmu->stop(event, PERF_EF_UPDATE); 4090 4091 now = local64_read(&event->count); 4092 delta = now - hwc->freq_count_stamp; 4093 hwc->freq_count_stamp = now; 4094 4095 /* 4096 * restart the event 4097 * reload only if value has changed 4098 * we have stopped the event so tell that 4099 * to perf_adjust_period() to avoid stopping it 4100 * twice. 4101 */ 4102 if (delta > 0) 4103 perf_adjust_period(event, period, delta, false); 4104 4105 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4106 next: 4107 perf_pmu_enable(event->pmu); 4108 } 4109 4110 perf_pmu_enable(ctx->pmu); 4111 raw_spin_unlock(&ctx->lock); 4112 } 4113 4114 /* 4115 * Move @event to the tail of the @ctx's elegible events. 4116 */ 4117 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4118 { 4119 /* 4120 * Rotate the first entry last of non-pinned groups. Rotation might be 4121 * disabled by the inheritance code. 4122 */ 4123 if (ctx->rotate_disable) 4124 return; 4125 4126 perf_event_groups_delete(&ctx->flexible_groups, event); 4127 perf_event_groups_insert(&ctx->flexible_groups, event); 4128 } 4129 4130 /* pick an event from the flexible_groups to rotate */ 4131 static inline struct perf_event * 4132 ctx_event_to_rotate(struct perf_event_context *ctx) 4133 { 4134 struct perf_event *event; 4135 4136 /* pick the first active flexible event */ 4137 event = list_first_entry_or_null(&ctx->flexible_active, 4138 struct perf_event, active_list); 4139 4140 /* if no active flexible event, pick the first event */ 4141 if (!event) { 4142 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree), 4143 typeof(*event), group_node); 4144 } 4145 4146 /* 4147 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4148 * finds there are unschedulable events, it will set it again. 4149 */ 4150 ctx->rotate_necessary = 0; 4151 4152 return event; 4153 } 4154 4155 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 4156 { 4157 struct perf_event *cpu_event = NULL, *task_event = NULL; 4158 struct perf_event_context *task_ctx = NULL; 4159 int cpu_rotate, task_rotate; 4160 4161 /* 4162 * Since we run this from IRQ context, nobody can install new 4163 * events, thus the event count values are stable. 4164 */ 4165 4166 cpu_rotate = cpuctx->ctx.rotate_necessary; 4167 task_ctx = cpuctx->task_ctx; 4168 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0; 4169 4170 if (!(cpu_rotate || task_rotate)) 4171 return false; 4172 4173 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4174 perf_pmu_disable(cpuctx->ctx.pmu); 4175 4176 if (task_rotate) 4177 task_event = ctx_event_to_rotate(task_ctx); 4178 if (cpu_rotate) 4179 cpu_event = ctx_event_to_rotate(&cpuctx->ctx); 4180 4181 /* 4182 * As per the order given at ctx_resched() first 'pop' task flexible 4183 * and then, if needed CPU flexible. 4184 */ 4185 if (task_event || (task_ctx && cpu_event)) 4186 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE); 4187 if (cpu_event) 4188 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 4189 4190 if (task_event) 4191 rotate_ctx(task_ctx, task_event); 4192 if (cpu_event) 4193 rotate_ctx(&cpuctx->ctx, cpu_event); 4194 4195 perf_event_sched_in(cpuctx, task_ctx, current); 4196 4197 perf_pmu_enable(cpuctx->ctx.pmu); 4198 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4199 4200 return true; 4201 } 4202 4203 void perf_event_task_tick(void) 4204 { 4205 struct list_head *head = this_cpu_ptr(&active_ctx_list); 4206 struct perf_event_context *ctx, *tmp; 4207 int throttled; 4208 4209 lockdep_assert_irqs_disabled(); 4210 4211 __this_cpu_inc(perf_throttled_seq); 4212 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4213 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4214 4215 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 4216 perf_adjust_freq_unthr_context(ctx, throttled); 4217 } 4218 4219 static int event_enable_on_exec(struct perf_event *event, 4220 struct perf_event_context *ctx) 4221 { 4222 if (!event->attr.enable_on_exec) 4223 return 0; 4224 4225 event->attr.enable_on_exec = 0; 4226 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4227 return 0; 4228 4229 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4230 4231 return 1; 4232 } 4233 4234 /* 4235 * Enable all of a task's events that have been marked enable-on-exec. 4236 * This expects task == current. 4237 */ 4238 static void perf_event_enable_on_exec(int ctxn) 4239 { 4240 struct perf_event_context *ctx, *clone_ctx = NULL; 4241 enum event_type_t event_type = 0; 4242 struct perf_cpu_context *cpuctx; 4243 struct perf_event *event; 4244 unsigned long flags; 4245 int enabled = 0; 4246 4247 local_irq_save(flags); 4248 ctx = current->perf_event_ctxp[ctxn]; 4249 if (!ctx || !ctx->nr_events) 4250 goto out; 4251 4252 cpuctx = __get_cpu_context(ctx); 4253 perf_ctx_lock(cpuctx, ctx); 4254 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 4255 list_for_each_entry(event, &ctx->event_list, event_entry) { 4256 enabled |= event_enable_on_exec(event, ctx); 4257 event_type |= get_event_type(event); 4258 } 4259 4260 /* 4261 * Unclone and reschedule this context if we enabled any event. 4262 */ 4263 if (enabled) { 4264 clone_ctx = unclone_ctx(ctx); 4265 ctx_resched(cpuctx, ctx, event_type); 4266 } else { 4267 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 4268 } 4269 perf_ctx_unlock(cpuctx, ctx); 4270 4271 out: 4272 local_irq_restore(flags); 4273 4274 if (clone_ctx) 4275 put_ctx(clone_ctx); 4276 } 4277 4278 static void perf_remove_from_owner(struct perf_event *event); 4279 static void perf_event_exit_event(struct perf_event *event, 4280 struct perf_event_context *ctx); 4281 4282 /* 4283 * Removes all events from the current task that have been marked 4284 * remove-on-exec, and feeds their values back to parent events. 4285 */ 4286 static void perf_event_remove_on_exec(int ctxn) 4287 { 4288 struct perf_event_context *ctx, *clone_ctx = NULL; 4289 struct perf_event *event, *next; 4290 LIST_HEAD(free_list); 4291 unsigned long flags; 4292 bool modified = false; 4293 4294 ctx = perf_pin_task_context(current, ctxn); 4295 if (!ctx) 4296 return; 4297 4298 mutex_lock(&ctx->mutex); 4299 4300 if (WARN_ON_ONCE(ctx->task != current)) 4301 goto unlock; 4302 4303 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4304 if (!event->attr.remove_on_exec) 4305 continue; 4306 4307 if (!is_kernel_event(event)) 4308 perf_remove_from_owner(event); 4309 4310 modified = true; 4311 4312 perf_event_exit_event(event, ctx); 4313 } 4314 4315 raw_spin_lock_irqsave(&ctx->lock, flags); 4316 if (modified) 4317 clone_ctx = unclone_ctx(ctx); 4318 --ctx->pin_count; 4319 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4320 4321 unlock: 4322 mutex_unlock(&ctx->mutex); 4323 4324 put_ctx(ctx); 4325 if (clone_ctx) 4326 put_ctx(clone_ctx); 4327 } 4328 4329 struct perf_read_data { 4330 struct perf_event *event; 4331 bool group; 4332 int ret; 4333 }; 4334 4335 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4336 { 4337 u16 local_pkg, event_pkg; 4338 4339 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4340 int local_cpu = smp_processor_id(); 4341 4342 event_pkg = topology_physical_package_id(event_cpu); 4343 local_pkg = topology_physical_package_id(local_cpu); 4344 4345 if (event_pkg == local_pkg) 4346 return local_cpu; 4347 } 4348 4349 return event_cpu; 4350 } 4351 4352 /* 4353 * Cross CPU call to read the hardware event 4354 */ 4355 static void __perf_event_read(void *info) 4356 { 4357 struct perf_read_data *data = info; 4358 struct perf_event *sub, *event = data->event; 4359 struct perf_event_context *ctx = event->ctx; 4360 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 4361 struct pmu *pmu = event->pmu; 4362 4363 /* 4364 * If this is a task context, we need to check whether it is 4365 * the current task context of this cpu. If not it has been 4366 * scheduled out before the smp call arrived. In that case 4367 * event->count would have been updated to a recent sample 4368 * when the event was scheduled out. 4369 */ 4370 if (ctx->task && cpuctx->task_ctx != ctx) 4371 return; 4372 4373 raw_spin_lock(&ctx->lock); 4374 if (ctx->is_active & EVENT_TIME) { 4375 update_context_time(ctx); 4376 update_cgrp_time_from_event(event); 4377 } 4378 4379 perf_event_update_time(event); 4380 if (data->group) 4381 perf_event_update_sibling_time(event); 4382 4383 if (event->state != PERF_EVENT_STATE_ACTIVE) 4384 goto unlock; 4385 4386 if (!data->group) { 4387 pmu->read(event); 4388 data->ret = 0; 4389 goto unlock; 4390 } 4391 4392 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4393 4394 pmu->read(event); 4395 4396 for_each_sibling_event(sub, event) { 4397 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4398 /* 4399 * Use sibling's PMU rather than @event's since 4400 * sibling could be on different (eg: software) PMU. 4401 */ 4402 sub->pmu->read(sub); 4403 } 4404 } 4405 4406 data->ret = pmu->commit_txn(pmu); 4407 4408 unlock: 4409 raw_spin_unlock(&ctx->lock); 4410 } 4411 4412 static inline u64 perf_event_count(struct perf_event *event) 4413 { 4414 return local64_read(&event->count) + atomic64_read(&event->child_count); 4415 } 4416 4417 /* 4418 * NMI-safe method to read a local event, that is an event that 4419 * is: 4420 * - either for the current task, or for this CPU 4421 * - does not have inherit set, for inherited task events 4422 * will not be local and we cannot read them atomically 4423 * - must not have a pmu::count method 4424 */ 4425 int perf_event_read_local(struct perf_event *event, u64 *value, 4426 u64 *enabled, u64 *running) 4427 { 4428 unsigned long flags; 4429 int ret = 0; 4430 4431 /* 4432 * Disabling interrupts avoids all counter scheduling (context 4433 * switches, timer based rotation and IPIs). 4434 */ 4435 local_irq_save(flags); 4436 4437 /* 4438 * It must not be an event with inherit set, we cannot read 4439 * all child counters from atomic context. 4440 */ 4441 if (event->attr.inherit) { 4442 ret = -EOPNOTSUPP; 4443 goto out; 4444 } 4445 4446 /* If this is a per-task event, it must be for current */ 4447 if ((event->attach_state & PERF_ATTACH_TASK) && 4448 event->hw.target != current) { 4449 ret = -EINVAL; 4450 goto out; 4451 } 4452 4453 /* If this is a per-CPU event, it must be for this CPU */ 4454 if (!(event->attach_state & PERF_ATTACH_TASK) && 4455 event->cpu != smp_processor_id()) { 4456 ret = -EINVAL; 4457 goto out; 4458 } 4459 4460 /* If this is a pinned event it must be running on this CPU */ 4461 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4462 ret = -EBUSY; 4463 goto out; 4464 } 4465 4466 /* 4467 * If the event is currently on this CPU, its either a per-task event, 4468 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4469 * oncpu == -1). 4470 */ 4471 if (event->oncpu == smp_processor_id()) 4472 event->pmu->read(event); 4473 4474 *value = local64_read(&event->count); 4475 if (enabled || running) { 4476 u64 now = event->shadow_ctx_time + perf_clock(); 4477 u64 __enabled, __running; 4478 4479 __perf_update_times(event, now, &__enabled, &__running); 4480 if (enabled) 4481 *enabled = __enabled; 4482 if (running) 4483 *running = __running; 4484 } 4485 out: 4486 local_irq_restore(flags); 4487 4488 return ret; 4489 } 4490 4491 static int perf_event_read(struct perf_event *event, bool group) 4492 { 4493 enum perf_event_state state = READ_ONCE(event->state); 4494 int event_cpu, ret = 0; 4495 4496 /* 4497 * If event is enabled and currently active on a CPU, update the 4498 * value in the event structure: 4499 */ 4500 again: 4501 if (state == PERF_EVENT_STATE_ACTIVE) { 4502 struct perf_read_data data; 4503 4504 /* 4505 * Orders the ->state and ->oncpu loads such that if we see 4506 * ACTIVE we must also see the right ->oncpu. 4507 * 4508 * Matches the smp_wmb() from event_sched_in(). 4509 */ 4510 smp_rmb(); 4511 4512 event_cpu = READ_ONCE(event->oncpu); 4513 if ((unsigned)event_cpu >= nr_cpu_ids) 4514 return 0; 4515 4516 data = (struct perf_read_data){ 4517 .event = event, 4518 .group = group, 4519 .ret = 0, 4520 }; 4521 4522 preempt_disable(); 4523 event_cpu = __perf_event_read_cpu(event, event_cpu); 4524 4525 /* 4526 * Purposely ignore the smp_call_function_single() return 4527 * value. 4528 * 4529 * If event_cpu isn't a valid CPU it means the event got 4530 * scheduled out and that will have updated the event count. 4531 * 4532 * Therefore, either way, we'll have an up-to-date event count 4533 * after this. 4534 */ 4535 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4536 preempt_enable(); 4537 ret = data.ret; 4538 4539 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4540 struct perf_event_context *ctx = event->ctx; 4541 unsigned long flags; 4542 4543 raw_spin_lock_irqsave(&ctx->lock, flags); 4544 state = event->state; 4545 if (state != PERF_EVENT_STATE_INACTIVE) { 4546 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4547 goto again; 4548 } 4549 4550 /* 4551 * May read while context is not active (e.g., thread is 4552 * blocked), in that case we cannot update context time 4553 */ 4554 if (ctx->is_active & EVENT_TIME) { 4555 update_context_time(ctx); 4556 update_cgrp_time_from_event(event); 4557 } 4558 4559 perf_event_update_time(event); 4560 if (group) 4561 perf_event_update_sibling_time(event); 4562 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4563 } 4564 4565 return ret; 4566 } 4567 4568 /* 4569 * Initialize the perf_event context in a task_struct: 4570 */ 4571 static void __perf_event_init_context(struct perf_event_context *ctx) 4572 { 4573 raw_spin_lock_init(&ctx->lock); 4574 mutex_init(&ctx->mutex); 4575 INIT_LIST_HEAD(&ctx->active_ctx_list); 4576 perf_event_groups_init(&ctx->pinned_groups); 4577 perf_event_groups_init(&ctx->flexible_groups); 4578 INIT_LIST_HEAD(&ctx->event_list); 4579 INIT_LIST_HEAD(&ctx->pinned_active); 4580 INIT_LIST_HEAD(&ctx->flexible_active); 4581 refcount_set(&ctx->refcount, 1); 4582 } 4583 4584 static struct perf_event_context * 4585 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4586 { 4587 struct perf_event_context *ctx; 4588 4589 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4590 if (!ctx) 4591 return NULL; 4592 4593 __perf_event_init_context(ctx); 4594 if (task) 4595 ctx->task = get_task_struct(task); 4596 ctx->pmu = pmu; 4597 4598 return ctx; 4599 } 4600 4601 static struct task_struct * 4602 find_lively_task_by_vpid(pid_t vpid) 4603 { 4604 struct task_struct *task; 4605 4606 rcu_read_lock(); 4607 if (!vpid) 4608 task = current; 4609 else 4610 task = find_task_by_vpid(vpid); 4611 if (task) 4612 get_task_struct(task); 4613 rcu_read_unlock(); 4614 4615 if (!task) 4616 return ERR_PTR(-ESRCH); 4617 4618 return task; 4619 } 4620 4621 /* 4622 * Returns a matching context with refcount and pincount. 4623 */ 4624 static struct perf_event_context * 4625 find_get_context(struct pmu *pmu, struct task_struct *task, 4626 struct perf_event *event) 4627 { 4628 struct perf_event_context *ctx, *clone_ctx = NULL; 4629 struct perf_cpu_context *cpuctx; 4630 void *task_ctx_data = NULL; 4631 unsigned long flags; 4632 int ctxn, err; 4633 int cpu = event->cpu; 4634 4635 if (!task) { 4636 /* Must be root to operate on a CPU event: */ 4637 err = perf_allow_cpu(&event->attr); 4638 if (err) 4639 return ERR_PTR(err); 4640 4641 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4642 ctx = &cpuctx->ctx; 4643 get_ctx(ctx); 4644 raw_spin_lock_irqsave(&ctx->lock, flags); 4645 ++ctx->pin_count; 4646 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4647 4648 return ctx; 4649 } 4650 4651 err = -EINVAL; 4652 ctxn = pmu->task_ctx_nr; 4653 if (ctxn < 0) 4654 goto errout; 4655 4656 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4657 task_ctx_data = alloc_task_ctx_data(pmu); 4658 if (!task_ctx_data) { 4659 err = -ENOMEM; 4660 goto errout; 4661 } 4662 } 4663 4664 retry: 4665 ctx = perf_lock_task_context(task, ctxn, &flags); 4666 if (ctx) { 4667 clone_ctx = unclone_ctx(ctx); 4668 ++ctx->pin_count; 4669 4670 if (task_ctx_data && !ctx->task_ctx_data) { 4671 ctx->task_ctx_data = task_ctx_data; 4672 task_ctx_data = NULL; 4673 } 4674 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4675 4676 if (clone_ctx) 4677 put_ctx(clone_ctx); 4678 } else { 4679 ctx = alloc_perf_context(pmu, task); 4680 err = -ENOMEM; 4681 if (!ctx) 4682 goto errout; 4683 4684 if (task_ctx_data) { 4685 ctx->task_ctx_data = task_ctx_data; 4686 task_ctx_data = NULL; 4687 } 4688 4689 err = 0; 4690 mutex_lock(&task->perf_event_mutex); 4691 /* 4692 * If it has already passed perf_event_exit_task(). 4693 * we must see PF_EXITING, it takes this mutex too. 4694 */ 4695 if (task->flags & PF_EXITING) 4696 err = -ESRCH; 4697 else if (task->perf_event_ctxp[ctxn]) 4698 err = -EAGAIN; 4699 else { 4700 get_ctx(ctx); 4701 ++ctx->pin_count; 4702 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4703 } 4704 mutex_unlock(&task->perf_event_mutex); 4705 4706 if (unlikely(err)) { 4707 put_ctx(ctx); 4708 4709 if (err == -EAGAIN) 4710 goto retry; 4711 goto errout; 4712 } 4713 } 4714 4715 free_task_ctx_data(pmu, task_ctx_data); 4716 return ctx; 4717 4718 errout: 4719 free_task_ctx_data(pmu, task_ctx_data); 4720 return ERR_PTR(err); 4721 } 4722 4723 static void perf_event_free_filter(struct perf_event *event); 4724 4725 static void free_event_rcu(struct rcu_head *head) 4726 { 4727 struct perf_event *event; 4728 4729 event = container_of(head, struct perf_event, rcu_head); 4730 if (event->ns) 4731 put_pid_ns(event->ns); 4732 perf_event_free_filter(event); 4733 kmem_cache_free(perf_event_cache, event); 4734 } 4735 4736 static void ring_buffer_attach(struct perf_event *event, 4737 struct perf_buffer *rb); 4738 4739 static void detach_sb_event(struct perf_event *event) 4740 { 4741 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4742 4743 raw_spin_lock(&pel->lock); 4744 list_del_rcu(&event->sb_list); 4745 raw_spin_unlock(&pel->lock); 4746 } 4747 4748 static bool is_sb_event(struct perf_event *event) 4749 { 4750 struct perf_event_attr *attr = &event->attr; 4751 4752 if (event->parent) 4753 return false; 4754 4755 if (event->attach_state & PERF_ATTACH_TASK) 4756 return false; 4757 4758 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4759 attr->comm || attr->comm_exec || 4760 attr->task || attr->ksymbol || 4761 attr->context_switch || attr->text_poke || 4762 attr->bpf_event) 4763 return true; 4764 return false; 4765 } 4766 4767 static void unaccount_pmu_sb_event(struct perf_event *event) 4768 { 4769 if (is_sb_event(event)) 4770 detach_sb_event(event); 4771 } 4772 4773 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4774 { 4775 if (event->parent) 4776 return; 4777 4778 if (is_cgroup_event(event)) 4779 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4780 } 4781 4782 #ifdef CONFIG_NO_HZ_FULL 4783 static DEFINE_SPINLOCK(nr_freq_lock); 4784 #endif 4785 4786 static void unaccount_freq_event_nohz(void) 4787 { 4788 #ifdef CONFIG_NO_HZ_FULL 4789 spin_lock(&nr_freq_lock); 4790 if (atomic_dec_and_test(&nr_freq_events)) 4791 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4792 spin_unlock(&nr_freq_lock); 4793 #endif 4794 } 4795 4796 static void unaccount_freq_event(void) 4797 { 4798 if (tick_nohz_full_enabled()) 4799 unaccount_freq_event_nohz(); 4800 else 4801 atomic_dec(&nr_freq_events); 4802 } 4803 4804 static void unaccount_event(struct perf_event *event) 4805 { 4806 bool dec = false; 4807 4808 if (event->parent) 4809 return; 4810 4811 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 4812 dec = true; 4813 if (event->attr.mmap || event->attr.mmap_data) 4814 atomic_dec(&nr_mmap_events); 4815 if (event->attr.build_id) 4816 atomic_dec(&nr_build_id_events); 4817 if (event->attr.comm) 4818 atomic_dec(&nr_comm_events); 4819 if (event->attr.namespaces) 4820 atomic_dec(&nr_namespaces_events); 4821 if (event->attr.cgroup) 4822 atomic_dec(&nr_cgroup_events); 4823 if (event->attr.task) 4824 atomic_dec(&nr_task_events); 4825 if (event->attr.freq) 4826 unaccount_freq_event(); 4827 if (event->attr.context_switch) { 4828 dec = true; 4829 atomic_dec(&nr_switch_events); 4830 } 4831 if (is_cgroup_event(event)) 4832 dec = true; 4833 if (has_branch_stack(event)) 4834 dec = true; 4835 if (event->attr.ksymbol) 4836 atomic_dec(&nr_ksymbol_events); 4837 if (event->attr.bpf_event) 4838 atomic_dec(&nr_bpf_events); 4839 if (event->attr.text_poke) 4840 atomic_dec(&nr_text_poke_events); 4841 4842 if (dec) { 4843 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4844 schedule_delayed_work(&perf_sched_work, HZ); 4845 } 4846 4847 unaccount_event_cpu(event, event->cpu); 4848 4849 unaccount_pmu_sb_event(event); 4850 } 4851 4852 static void perf_sched_delayed(struct work_struct *work) 4853 { 4854 mutex_lock(&perf_sched_mutex); 4855 if (atomic_dec_and_test(&perf_sched_count)) 4856 static_branch_disable(&perf_sched_events); 4857 mutex_unlock(&perf_sched_mutex); 4858 } 4859 4860 /* 4861 * The following implement mutual exclusion of events on "exclusive" pmus 4862 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4863 * at a time, so we disallow creating events that might conflict, namely: 4864 * 4865 * 1) cpu-wide events in the presence of per-task events, 4866 * 2) per-task events in the presence of cpu-wide events, 4867 * 3) two matching events on the same context. 4868 * 4869 * The former two cases are handled in the allocation path (perf_event_alloc(), 4870 * _free_event()), the latter -- before the first perf_install_in_context(). 4871 */ 4872 static int exclusive_event_init(struct perf_event *event) 4873 { 4874 struct pmu *pmu = event->pmu; 4875 4876 if (!is_exclusive_pmu(pmu)) 4877 return 0; 4878 4879 /* 4880 * Prevent co-existence of per-task and cpu-wide events on the 4881 * same exclusive pmu. 4882 * 4883 * Negative pmu::exclusive_cnt means there are cpu-wide 4884 * events on this "exclusive" pmu, positive means there are 4885 * per-task events. 4886 * 4887 * Since this is called in perf_event_alloc() path, event::ctx 4888 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4889 * to mean "per-task event", because unlike other attach states it 4890 * never gets cleared. 4891 */ 4892 if (event->attach_state & PERF_ATTACH_TASK) { 4893 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4894 return -EBUSY; 4895 } else { 4896 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4897 return -EBUSY; 4898 } 4899 4900 return 0; 4901 } 4902 4903 static void exclusive_event_destroy(struct perf_event *event) 4904 { 4905 struct pmu *pmu = event->pmu; 4906 4907 if (!is_exclusive_pmu(pmu)) 4908 return; 4909 4910 /* see comment in exclusive_event_init() */ 4911 if (event->attach_state & PERF_ATTACH_TASK) 4912 atomic_dec(&pmu->exclusive_cnt); 4913 else 4914 atomic_inc(&pmu->exclusive_cnt); 4915 } 4916 4917 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4918 { 4919 if ((e1->pmu == e2->pmu) && 4920 (e1->cpu == e2->cpu || 4921 e1->cpu == -1 || 4922 e2->cpu == -1)) 4923 return true; 4924 return false; 4925 } 4926 4927 static bool exclusive_event_installable(struct perf_event *event, 4928 struct perf_event_context *ctx) 4929 { 4930 struct perf_event *iter_event; 4931 struct pmu *pmu = event->pmu; 4932 4933 lockdep_assert_held(&ctx->mutex); 4934 4935 if (!is_exclusive_pmu(pmu)) 4936 return true; 4937 4938 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4939 if (exclusive_event_match(iter_event, event)) 4940 return false; 4941 } 4942 4943 return true; 4944 } 4945 4946 static void perf_addr_filters_splice(struct perf_event *event, 4947 struct list_head *head); 4948 4949 static void _free_event(struct perf_event *event) 4950 { 4951 irq_work_sync(&event->pending); 4952 4953 unaccount_event(event); 4954 4955 security_perf_event_free(event); 4956 4957 if (event->rb) { 4958 /* 4959 * Can happen when we close an event with re-directed output. 4960 * 4961 * Since we have a 0 refcount, perf_mmap_close() will skip 4962 * over us; possibly making our ring_buffer_put() the last. 4963 */ 4964 mutex_lock(&event->mmap_mutex); 4965 ring_buffer_attach(event, NULL); 4966 mutex_unlock(&event->mmap_mutex); 4967 } 4968 4969 if (is_cgroup_event(event)) 4970 perf_detach_cgroup(event); 4971 4972 if (!event->parent) { 4973 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4974 put_callchain_buffers(); 4975 } 4976 4977 perf_event_free_bpf_prog(event); 4978 perf_addr_filters_splice(event, NULL); 4979 kfree(event->addr_filter_ranges); 4980 4981 if (event->destroy) 4982 event->destroy(event); 4983 4984 /* 4985 * Must be after ->destroy(), due to uprobe_perf_close() using 4986 * hw.target. 4987 */ 4988 if (event->hw.target) 4989 put_task_struct(event->hw.target); 4990 4991 /* 4992 * perf_event_free_task() relies on put_ctx() being 'last', in particular 4993 * all task references must be cleaned up. 4994 */ 4995 if (event->ctx) 4996 put_ctx(event->ctx); 4997 4998 exclusive_event_destroy(event); 4999 module_put(event->pmu->module); 5000 5001 call_rcu(&event->rcu_head, free_event_rcu); 5002 } 5003 5004 /* 5005 * Used to free events which have a known refcount of 1, such as in error paths 5006 * where the event isn't exposed yet and inherited events. 5007 */ 5008 static void free_event(struct perf_event *event) 5009 { 5010 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5011 "unexpected event refcount: %ld; ptr=%p\n", 5012 atomic_long_read(&event->refcount), event)) { 5013 /* leak to avoid use-after-free */ 5014 return; 5015 } 5016 5017 _free_event(event); 5018 } 5019 5020 /* 5021 * Remove user event from the owner task. 5022 */ 5023 static void perf_remove_from_owner(struct perf_event *event) 5024 { 5025 struct task_struct *owner; 5026 5027 rcu_read_lock(); 5028 /* 5029 * Matches the smp_store_release() in perf_event_exit_task(). If we 5030 * observe !owner it means the list deletion is complete and we can 5031 * indeed free this event, otherwise we need to serialize on 5032 * owner->perf_event_mutex. 5033 */ 5034 owner = READ_ONCE(event->owner); 5035 if (owner) { 5036 /* 5037 * Since delayed_put_task_struct() also drops the last 5038 * task reference we can safely take a new reference 5039 * while holding the rcu_read_lock(). 5040 */ 5041 get_task_struct(owner); 5042 } 5043 rcu_read_unlock(); 5044 5045 if (owner) { 5046 /* 5047 * If we're here through perf_event_exit_task() we're already 5048 * holding ctx->mutex which would be an inversion wrt. the 5049 * normal lock order. 5050 * 5051 * However we can safely take this lock because its the child 5052 * ctx->mutex. 5053 */ 5054 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5055 5056 /* 5057 * We have to re-check the event->owner field, if it is cleared 5058 * we raced with perf_event_exit_task(), acquiring the mutex 5059 * ensured they're done, and we can proceed with freeing the 5060 * event. 5061 */ 5062 if (event->owner) { 5063 list_del_init(&event->owner_entry); 5064 smp_store_release(&event->owner, NULL); 5065 } 5066 mutex_unlock(&owner->perf_event_mutex); 5067 put_task_struct(owner); 5068 } 5069 } 5070 5071 static void put_event(struct perf_event *event) 5072 { 5073 if (!atomic_long_dec_and_test(&event->refcount)) 5074 return; 5075 5076 _free_event(event); 5077 } 5078 5079 /* 5080 * Kill an event dead; while event:refcount will preserve the event 5081 * object, it will not preserve its functionality. Once the last 'user' 5082 * gives up the object, we'll destroy the thing. 5083 */ 5084 int perf_event_release_kernel(struct perf_event *event) 5085 { 5086 struct perf_event_context *ctx = event->ctx; 5087 struct perf_event *child, *tmp; 5088 LIST_HEAD(free_list); 5089 5090 /* 5091 * If we got here through err_file: fput(event_file); we will not have 5092 * attached to a context yet. 5093 */ 5094 if (!ctx) { 5095 WARN_ON_ONCE(event->attach_state & 5096 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5097 goto no_ctx; 5098 } 5099 5100 if (!is_kernel_event(event)) 5101 perf_remove_from_owner(event); 5102 5103 ctx = perf_event_ctx_lock(event); 5104 WARN_ON_ONCE(ctx->parent_ctx); 5105 perf_remove_from_context(event, DETACH_GROUP); 5106 5107 raw_spin_lock_irq(&ctx->lock); 5108 /* 5109 * Mark this event as STATE_DEAD, there is no external reference to it 5110 * anymore. 5111 * 5112 * Anybody acquiring event->child_mutex after the below loop _must_ 5113 * also see this, most importantly inherit_event() which will avoid 5114 * placing more children on the list. 5115 * 5116 * Thus this guarantees that we will in fact observe and kill _ALL_ 5117 * child events. 5118 */ 5119 event->state = PERF_EVENT_STATE_DEAD; 5120 raw_spin_unlock_irq(&ctx->lock); 5121 5122 perf_event_ctx_unlock(event, ctx); 5123 5124 again: 5125 mutex_lock(&event->child_mutex); 5126 list_for_each_entry(child, &event->child_list, child_list) { 5127 5128 /* 5129 * Cannot change, child events are not migrated, see the 5130 * comment with perf_event_ctx_lock_nested(). 5131 */ 5132 ctx = READ_ONCE(child->ctx); 5133 /* 5134 * Since child_mutex nests inside ctx::mutex, we must jump 5135 * through hoops. We start by grabbing a reference on the ctx. 5136 * 5137 * Since the event cannot get freed while we hold the 5138 * child_mutex, the context must also exist and have a !0 5139 * reference count. 5140 */ 5141 get_ctx(ctx); 5142 5143 /* 5144 * Now that we have a ctx ref, we can drop child_mutex, and 5145 * acquire ctx::mutex without fear of it going away. Then we 5146 * can re-acquire child_mutex. 5147 */ 5148 mutex_unlock(&event->child_mutex); 5149 mutex_lock(&ctx->mutex); 5150 mutex_lock(&event->child_mutex); 5151 5152 /* 5153 * Now that we hold ctx::mutex and child_mutex, revalidate our 5154 * state, if child is still the first entry, it didn't get freed 5155 * and we can continue doing so. 5156 */ 5157 tmp = list_first_entry_or_null(&event->child_list, 5158 struct perf_event, child_list); 5159 if (tmp == child) { 5160 perf_remove_from_context(child, DETACH_GROUP); 5161 list_move(&child->child_list, &free_list); 5162 /* 5163 * This matches the refcount bump in inherit_event(); 5164 * this can't be the last reference. 5165 */ 5166 put_event(event); 5167 } 5168 5169 mutex_unlock(&event->child_mutex); 5170 mutex_unlock(&ctx->mutex); 5171 put_ctx(ctx); 5172 goto again; 5173 } 5174 mutex_unlock(&event->child_mutex); 5175 5176 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5177 void *var = &child->ctx->refcount; 5178 5179 list_del(&child->child_list); 5180 free_event(child); 5181 5182 /* 5183 * Wake any perf_event_free_task() waiting for this event to be 5184 * freed. 5185 */ 5186 smp_mb(); /* pairs with wait_var_event() */ 5187 wake_up_var(var); 5188 } 5189 5190 no_ctx: 5191 put_event(event); /* Must be the 'last' reference */ 5192 return 0; 5193 } 5194 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5195 5196 /* 5197 * Called when the last reference to the file is gone. 5198 */ 5199 static int perf_release(struct inode *inode, struct file *file) 5200 { 5201 perf_event_release_kernel(file->private_data); 5202 return 0; 5203 } 5204 5205 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5206 { 5207 struct perf_event *child; 5208 u64 total = 0; 5209 5210 *enabled = 0; 5211 *running = 0; 5212 5213 mutex_lock(&event->child_mutex); 5214 5215 (void)perf_event_read(event, false); 5216 total += perf_event_count(event); 5217 5218 *enabled += event->total_time_enabled + 5219 atomic64_read(&event->child_total_time_enabled); 5220 *running += event->total_time_running + 5221 atomic64_read(&event->child_total_time_running); 5222 5223 list_for_each_entry(child, &event->child_list, child_list) { 5224 (void)perf_event_read(child, false); 5225 total += perf_event_count(child); 5226 *enabled += child->total_time_enabled; 5227 *running += child->total_time_running; 5228 } 5229 mutex_unlock(&event->child_mutex); 5230 5231 return total; 5232 } 5233 5234 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5235 { 5236 struct perf_event_context *ctx; 5237 u64 count; 5238 5239 ctx = perf_event_ctx_lock(event); 5240 count = __perf_event_read_value(event, enabled, running); 5241 perf_event_ctx_unlock(event, ctx); 5242 5243 return count; 5244 } 5245 EXPORT_SYMBOL_GPL(perf_event_read_value); 5246 5247 static int __perf_read_group_add(struct perf_event *leader, 5248 u64 read_format, u64 *values) 5249 { 5250 struct perf_event_context *ctx = leader->ctx; 5251 struct perf_event *sub; 5252 unsigned long flags; 5253 int n = 1; /* skip @nr */ 5254 int ret; 5255 5256 ret = perf_event_read(leader, true); 5257 if (ret) 5258 return ret; 5259 5260 raw_spin_lock_irqsave(&ctx->lock, flags); 5261 5262 /* 5263 * Since we co-schedule groups, {enabled,running} times of siblings 5264 * will be identical to those of the leader, so we only publish one 5265 * set. 5266 */ 5267 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5268 values[n++] += leader->total_time_enabled + 5269 atomic64_read(&leader->child_total_time_enabled); 5270 } 5271 5272 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5273 values[n++] += leader->total_time_running + 5274 atomic64_read(&leader->child_total_time_running); 5275 } 5276 5277 /* 5278 * Write {count,id} tuples for every sibling. 5279 */ 5280 values[n++] += perf_event_count(leader); 5281 if (read_format & PERF_FORMAT_ID) 5282 values[n++] = primary_event_id(leader); 5283 5284 for_each_sibling_event(sub, leader) { 5285 values[n++] += perf_event_count(sub); 5286 if (read_format & PERF_FORMAT_ID) 5287 values[n++] = primary_event_id(sub); 5288 } 5289 5290 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5291 return 0; 5292 } 5293 5294 static int perf_read_group(struct perf_event *event, 5295 u64 read_format, char __user *buf) 5296 { 5297 struct perf_event *leader = event->group_leader, *child; 5298 struct perf_event_context *ctx = leader->ctx; 5299 int ret; 5300 u64 *values; 5301 5302 lockdep_assert_held(&ctx->mutex); 5303 5304 values = kzalloc(event->read_size, GFP_KERNEL); 5305 if (!values) 5306 return -ENOMEM; 5307 5308 values[0] = 1 + leader->nr_siblings; 5309 5310 /* 5311 * By locking the child_mutex of the leader we effectively 5312 * lock the child list of all siblings.. XXX explain how. 5313 */ 5314 mutex_lock(&leader->child_mutex); 5315 5316 ret = __perf_read_group_add(leader, read_format, values); 5317 if (ret) 5318 goto unlock; 5319 5320 list_for_each_entry(child, &leader->child_list, child_list) { 5321 ret = __perf_read_group_add(child, read_format, values); 5322 if (ret) 5323 goto unlock; 5324 } 5325 5326 mutex_unlock(&leader->child_mutex); 5327 5328 ret = event->read_size; 5329 if (copy_to_user(buf, values, event->read_size)) 5330 ret = -EFAULT; 5331 goto out; 5332 5333 unlock: 5334 mutex_unlock(&leader->child_mutex); 5335 out: 5336 kfree(values); 5337 return ret; 5338 } 5339 5340 static int perf_read_one(struct perf_event *event, 5341 u64 read_format, char __user *buf) 5342 { 5343 u64 enabled, running; 5344 u64 values[4]; 5345 int n = 0; 5346 5347 values[n++] = __perf_event_read_value(event, &enabled, &running); 5348 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5349 values[n++] = enabled; 5350 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5351 values[n++] = running; 5352 if (read_format & PERF_FORMAT_ID) 5353 values[n++] = primary_event_id(event); 5354 5355 if (copy_to_user(buf, values, n * sizeof(u64))) 5356 return -EFAULT; 5357 5358 return n * sizeof(u64); 5359 } 5360 5361 static bool is_event_hup(struct perf_event *event) 5362 { 5363 bool no_children; 5364 5365 if (event->state > PERF_EVENT_STATE_EXIT) 5366 return false; 5367 5368 mutex_lock(&event->child_mutex); 5369 no_children = list_empty(&event->child_list); 5370 mutex_unlock(&event->child_mutex); 5371 return no_children; 5372 } 5373 5374 /* 5375 * Read the performance event - simple non blocking version for now 5376 */ 5377 static ssize_t 5378 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5379 { 5380 u64 read_format = event->attr.read_format; 5381 int ret; 5382 5383 /* 5384 * Return end-of-file for a read on an event that is in 5385 * error state (i.e. because it was pinned but it couldn't be 5386 * scheduled on to the CPU at some point). 5387 */ 5388 if (event->state == PERF_EVENT_STATE_ERROR) 5389 return 0; 5390 5391 if (count < event->read_size) 5392 return -ENOSPC; 5393 5394 WARN_ON_ONCE(event->ctx->parent_ctx); 5395 if (read_format & PERF_FORMAT_GROUP) 5396 ret = perf_read_group(event, read_format, buf); 5397 else 5398 ret = perf_read_one(event, read_format, buf); 5399 5400 return ret; 5401 } 5402 5403 static ssize_t 5404 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5405 { 5406 struct perf_event *event = file->private_data; 5407 struct perf_event_context *ctx; 5408 int ret; 5409 5410 ret = security_perf_event_read(event); 5411 if (ret) 5412 return ret; 5413 5414 ctx = perf_event_ctx_lock(event); 5415 ret = __perf_read(event, buf, count); 5416 perf_event_ctx_unlock(event, ctx); 5417 5418 return ret; 5419 } 5420 5421 static __poll_t perf_poll(struct file *file, poll_table *wait) 5422 { 5423 struct perf_event *event = file->private_data; 5424 struct perf_buffer *rb; 5425 __poll_t events = EPOLLHUP; 5426 5427 poll_wait(file, &event->waitq, wait); 5428 5429 if (is_event_hup(event)) 5430 return events; 5431 5432 /* 5433 * Pin the event->rb by taking event->mmap_mutex; otherwise 5434 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5435 */ 5436 mutex_lock(&event->mmap_mutex); 5437 rb = event->rb; 5438 if (rb) 5439 events = atomic_xchg(&rb->poll, 0); 5440 mutex_unlock(&event->mmap_mutex); 5441 return events; 5442 } 5443 5444 static void _perf_event_reset(struct perf_event *event) 5445 { 5446 (void)perf_event_read(event, false); 5447 local64_set(&event->count, 0); 5448 perf_event_update_userpage(event); 5449 } 5450 5451 /* Assume it's not an event with inherit set. */ 5452 u64 perf_event_pause(struct perf_event *event, bool reset) 5453 { 5454 struct perf_event_context *ctx; 5455 u64 count; 5456 5457 ctx = perf_event_ctx_lock(event); 5458 WARN_ON_ONCE(event->attr.inherit); 5459 _perf_event_disable(event); 5460 count = local64_read(&event->count); 5461 if (reset) 5462 local64_set(&event->count, 0); 5463 perf_event_ctx_unlock(event, ctx); 5464 5465 return count; 5466 } 5467 EXPORT_SYMBOL_GPL(perf_event_pause); 5468 5469 /* 5470 * Holding the top-level event's child_mutex means that any 5471 * descendant process that has inherited this event will block 5472 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5473 * task existence requirements of perf_event_enable/disable. 5474 */ 5475 static void perf_event_for_each_child(struct perf_event *event, 5476 void (*func)(struct perf_event *)) 5477 { 5478 struct perf_event *child; 5479 5480 WARN_ON_ONCE(event->ctx->parent_ctx); 5481 5482 mutex_lock(&event->child_mutex); 5483 func(event); 5484 list_for_each_entry(child, &event->child_list, child_list) 5485 func(child); 5486 mutex_unlock(&event->child_mutex); 5487 } 5488 5489 static void perf_event_for_each(struct perf_event *event, 5490 void (*func)(struct perf_event *)) 5491 { 5492 struct perf_event_context *ctx = event->ctx; 5493 struct perf_event *sibling; 5494 5495 lockdep_assert_held(&ctx->mutex); 5496 5497 event = event->group_leader; 5498 5499 perf_event_for_each_child(event, func); 5500 for_each_sibling_event(sibling, event) 5501 perf_event_for_each_child(sibling, func); 5502 } 5503 5504 static void __perf_event_period(struct perf_event *event, 5505 struct perf_cpu_context *cpuctx, 5506 struct perf_event_context *ctx, 5507 void *info) 5508 { 5509 u64 value = *((u64 *)info); 5510 bool active; 5511 5512 if (event->attr.freq) { 5513 event->attr.sample_freq = value; 5514 } else { 5515 event->attr.sample_period = value; 5516 event->hw.sample_period = value; 5517 } 5518 5519 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5520 if (active) { 5521 perf_pmu_disable(ctx->pmu); 5522 /* 5523 * We could be throttled; unthrottle now to avoid the tick 5524 * trying to unthrottle while we already re-started the event. 5525 */ 5526 if (event->hw.interrupts == MAX_INTERRUPTS) { 5527 event->hw.interrupts = 0; 5528 perf_log_throttle(event, 1); 5529 } 5530 event->pmu->stop(event, PERF_EF_UPDATE); 5531 } 5532 5533 local64_set(&event->hw.period_left, 0); 5534 5535 if (active) { 5536 event->pmu->start(event, PERF_EF_RELOAD); 5537 perf_pmu_enable(ctx->pmu); 5538 } 5539 } 5540 5541 static int perf_event_check_period(struct perf_event *event, u64 value) 5542 { 5543 return event->pmu->check_period(event, value); 5544 } 5545 5546 static int _perf_event_period(struct perf_event *event, u64 value) 5547 { 5548 if (!is_sampling_event(event)) 5549 return -EINVAL; 5550 5551 if (!value) 5552 return -EINVAL; 5553 5554 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5555 return -EINVAL; 5556 5557 if (perf_event_check_period(event, value)) 5558 return -EINVAL; 5559 5560 if (!event->attr.freq && (value & (1ULL << 63))) 5561 return -EINVAL; 5562 5563 event_function_call(event, __perf_event_period, &value); 5564 5565 return 0; 5566 } 5567 5568 int perf_event_period(struct perf_event *event, u64 value) 5569 { 5570 struct perf_event_context *ctx; 5571 int ret; 5572 5573 ctx = perf_event_ctx_lock(event); 5574 ret = _perf_event_period(event, value); 5575 perf_event_ctx_unlock(event, ctx); 5576 5577 return ret; 5578 } 5579 EXPORT_SYMBOL_GPL(perf_event_period); 5580 5581 static const struct file_operations perf_fops; 5582 5583 static inline int perf_fget_light(int fd, struct fd *p) 5584 { 5585 struct fd f = fdget(fd); 5586 if (!f.file) 5587 return -EBADF; 5588 5589 if (f.file->f_op != &perf_fops) { 5590 fdput(f); 5591 return -EBADF; 5592 } 5593 *p = f; 5594 return 0; 5595 } 5596 5597 static int perf_event_set_output(struct perf_event *event, 5598 struct perf_event *output_event); 5599 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5600 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5601 struct perf_event_attr *attr); 5602 5603 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5604 { 5605 void (*func)(struct perf_event *); 5606 u32 flags = arg; 5607 5608 switch (cmd) { 5609 case PERF_EVENT_IOC_ENABLE: 5610 func = _perf_event_enable; 5611 break; 5612 case PERF_EVENT_IOC_DISABLE: 5613 func = _perf_event_disable; 5614 break; 5615 case PERF_EVENT_IOC_RESET: 5616 func = _perf_event_reset; 5617 break; 5618 5619 case PERF_EVENT_IOC_REFRESH: 5620 return _perf_event_refresh(event, arg); 5621 5622 case PERF_EVENT_IOC_PERIOD: 5623 { 5624 u64 value; 5625 5626 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5627 return -EFAULT; 5628 5629 return _perf_event_period(event, value); 5630 } 5631 case PERF_EVENT_IOC_ID: 5632 { 5633 u64 id = primary_event_id(event); 5634 5635 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5636 return -EFAULT; 5637 return 0; 5638 } 5639 5640 case PERF_EVENT_IOC_SET_OUTPUT: 5641 { 5642 int ret; 5643 if (arg != -1) { 5644 struct perf_event *output_event; 5645 struct fd output; 5646 ret = perf_fget_light(arg, &output); 5647 if (ret) 5648 return ret; 5649 output_event = output.file->private_data; 5650 ret = perf_event_set_output(event, output_event); 5651 fdput(output); 5652 } else { 5653 ret = perf_event_set_output(event, NULL); 5654 } 5655 return ret; 5656 } 5657 5658 case PERF_EVENT_IOC_SET_FILTER: 5659 return perf_event_set_filter(event, (void __user *)arg); 5660 5661 case PERF_EVENT_IOC_SET_BPF: 5662 { 5663 struct bpf_prog *prog; 5664 int err; 5665 5666 prog = bpf_prog_get(arg); 5667 if (IS_ERR(prog)) 5668 return PTR_ERR(prog); 5669 5670 err = perf_event_set_bpf_prog(event, prog, 0); 5671 if (err) { 5672 bpf_prog_put(prog); 5673 return err; 5674 } 5675 5676 return 0; 5677 } 5678 5679 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5680 struct perf_buffer *rb; 5681 5682 rcu_read_lock(); 5683 rb = rcu_dereference(event->rb); 5684 if (!rb || !rb->nr_pages) { 5685 rcu_read_unlock(); 5686 return -EINVAL; 5687 } 5688 rb_toggle_paused(rb, !!arg); 5689 rcu_read_unlock(); 5690 return 0; 5691 } 5692 5693 case PERF_EVENT_IOC_QUERY_BPF: 5694 return perf_event_query_prog_array(event, (void __user *)arg); 5695 5696 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5697 struct perf_event_attr new_attr; 5698 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5699 &new_attr); 5700 5701 if (err) 5702 return err; 5703 5704 return perf_event_modify_attr(event, &new_attr); 5705 } 5706 default: 5707 return -ENOTTY; 5708 } 5709 5710 if (flags & PERF_IOC_FLAG_GROUP) 5711 perf_event_for_each(event, func); 5712 else 5713 perf_event_for_each_child(event, func); 5714 5715 return 0; 5716 } 5717 5718 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5719 { 5720 struct perf_event *event = file->private_data; 5721 struct perf_event_context *ctx; 5722 long ret; 5723 5724 /* Treat ioctl like writes as it is likely a mutating operation. */ 5725 ret = security_perf_event_write(event); 5726 if (ret) 5727 return ret; 5728 5729 ctx = perf_event_ctx_lock(event); 5730 ret = _perf_ioctl(event, cmd, arg); 5731 perf_event_ctx_unlock(event, ctx); 5732 5733 return ret; 5734 } 5735 5736 #ifdef CONFIG_COMPAT 5737 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5738 unsigned long arg) 5739 { 5740 switch (_IOC_NR(cmd)) { 5741 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5742 case _IOC_NR(PERF_EVENT_IOC_ID): 5743 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5744 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5745 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5746 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5747 cmd &= ~IOCSIZE_MASK; 5748 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5749 } 5750 break; 5751 } 5752 return perf_ioctl(file, cmd, arg); 5753 } 5754 #else 5755 # define perf_compat_ioctl NULL 5756 #endif 5757 5758 int perf_event_task_enable(void) 5759 { 5760 struct perf_event_context *ctx; 5761 struct perf_event *event; 5762 5763 mutex_lock(¤t->perf_event_mutex); 5764 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5765 ctx = perf_event_ctx_lock(event); 5766 perf_event_for_each_child(event, _perf_event_enable); 5767 perf_event_ctx_unlock(event, ctx); 5768 } 5769 mutex_unlock(¤t->perf_event_mutex); 5770 5771 return 0; 5772 } 5773 5774 int perf_event_task_disable(void) 5775 { 5776 struct perf_event_context *ctx; 5777 struct perf_event *event; 5778 5779 mutex_lock(¤t->perf_event_mutex); 5780 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5781 ctx = perf_event_ctx_lock(event); 5782 perf_event_for_each_child(event, _perf_event_disable); 5783 perf_event_ctx_unlock(event, ctx); 5784 } 5785 mutex_unlock(¤t->perf_event_mutex); 5786 5787 return 0; 5788 } 5789 5790 static int perf_event_index(struct perf_event *event) 5791 { 5792 if (event->hw.state & PERF_HES_STOPPED) 5793 return 0; 5794 5795 if (event->state != PERF_EVENT_STATE_ACTIVE) 5796 return 0; 5797 5798 return event->pmu->event_idx(event); 5799 } 5800 5801 static void calc_timer_values(struct perf_event *event, 5802 u64 *now, 5803 u64 *enabled, 5804 u64 *running) 5805 { 5806 u64 ctx_time; 5807 5808 *now = perf_clock(); 5809 ctx_time = event->shadow_ctx_time + *now; 5810 __perf_update_times(event, ctx_time, enabled, running); 5811 } 5812 5813 static void perf_event_init_userpage(struct perf_event *event) 5814 { 5815 struct perf_event_mmap_page *userpg; 5816 struct perf_buffer *rb; 5817 5818 rcu_read_lock(); 5819 rb = rcu_dereference(event->rb); 5820 if (!rb) 5821 goto unlock; 5822 5823 userpg = rb->user_page; 5824 5825 /* Allow new userspace to detect that bit 0 is deprecated */ 5826 userpg->cap_bit0_is_deprecated = 1; 5827 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5828 userpg->data_offset = PAGE_SIZE; 5829 userpg->data_size = perf_data_size(rb); 5830 5831 unlock: 5832 rcu_read_unlock(); 5833 } 5834 5835 void __weak arch_perf_update_userpage( 5836 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5837 { 5838 } 5839 5840 /* 5841 * Callers need to ensure there can be no nesting of this function, otherwise 5842 * the seqlock logic goes bad. We can not serialize this because the arch 5843 * code calls this from NMI context. 5844 */ 5845 void perf_event_update_userpage(struct perf_event *event) 5846 { 5847 struct perf_event_mmap_page *userpg; 5848 struct perf_buffer *rb; 5849 u64 enabled, running, now; 5850 5851 rcu_read_lock(); 5852 rb = rcu_dereference(event->rb); 5853 if (!rb) 5854 goto unlock; 5855 5856 /* 5857 * compute total_time_enabled, total_time_running 5858 * based on snapshot values taken when the event 5859 * was last scheduled in. 5860 * 5861 * we cannot simply called update_context_time() 5862 * because of locking issue as we can be called in 5863 * NMI context 5864 */ 5865 calc_timer_values(event, &now, &enabled, &running); 5866 5867 userpg = rb->user_page; 5868 /* 5869 * Disable preemption to guarantee consistent time stamps are stored to 5870 * the user page. 5871 */ 5872 preempt_disable(); 5873 ++userpg->lock; 5874 barrier(); 5875 userpg->index = perf_event_index(event); 5876 userpg->offset = perf_event_count(event); 5877 if (userpg->index) 5878 userpg->offset -= local64_read(&event->hw.prev_count); 5879 5880 userpg->time_enabled = enabled + 5881 atomic64_read(&event->child_total_time_enabled); 5882 5883 userpg->time_running = running + 5884 atomic64_read(&event->child_total_time_running); 5885 5886 arch_perf_update_userpage(event, userpg, now); 5887 5888 barrier(); 5889 ++userpg->lock; 5890 preempt_enable(); 5891 unlock: 5892 rcu_read_unlock(); 5893 } 5894 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5895 5896 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5897 { 5898 struct perf_event *event = vmf->vma->vm_file->private_data; 5899 struct perf_buffer *rb; 5900 vm_fault_t ret = VM_FAULT_SIGBUS; 5901 5902 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5903 if (vmf->pgoff == 0) 5904 ret = 0; 5905 return ret; 5906 } 5907 5908 rcu_read_lock(); 5909 rb = rcu_dereference(event->rb); 5910 if (!rb) 5911 goto unlock; 5912 5913 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5914 goto unlock; 5915 5916 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5917 if (!vmf->page) 5918 goto unlock; 5919 5920 get_page(vmf->page); 5921 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5922 vmf->page->index = vmf->pgoff; 5923 5924 ret = 0; 5925 unlock: 5926 rcu_read_unlock(); 5927 5928 return ret; 5929 } 5930 5931 static void ring_buffer_attach(struct perf_event *event, 5932 struct perf_buffer *rb) 5933 { 5934 struct perf_buffer *old_rb = NULL; 5935 unsigned long flags; 5936 5937 if (event->rb) { 5938 /* 5939 * Should be impossible, we set this when removing 5940 * event->rb_entry and wait/clear when adding event->rb_entry. 5941 */ 5942 WARN_ON_ONCE(event->rcu_pending); 5943 5944 old_rb = event->rb; 5945 spin_lock_irqsave(&old_rb->event_lock, flags); 5946 list_del_rcu(&event->rb_entry); 5947 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5948 5949 event->rcu_batches = get_state_synchronize_rcu(); 5950 event->rcu_pending = 1; 5951 } 5952 5953 if (rb) { 5954 if (event->rcu_pending) { 5955 cond_synchronize_rcu(event->rcu_batches); 5956 event->rcu_pending = 0; 5957 } 5958 5959 spin_lock_irqsave(&rb->event_lock, flags); 5960 list_add_rcu(&event->rb_entry, &rb->event_list); 5961 spin_unlock_irqrestore(&rb->event_lock, flags); 5962 } 5963 5964 /* 5965 * Avoid racing with perf_mmap_close(AUX): stop the event 5966 * before swizzling the event::rb pointer; if it's getting 5967 * unmapped, its aux_mmap_count will be 0 and it won't 5968 * restart. See the comment in __perf_pmu_output_stop(). 5969 * 5970 * Data will inevitably be lost when set_output is done in 5971 * mid-air, but then again, whoever does it like this is 5972 * not in for the data anyway. 5973 */ 5974 if (has_aux(event)) 5975 perf_event_stop(event, 0); 5976 5977 rcu_assign_pointer(event->rb, rb); 5978 5979 if (old_rb) { 5980 ring_buffer_put(old_rb); 5981 /* 5982 * Since we detached before setting the new rb, so that we 5983 * could attach the new rb, we could have missed a wakeup. 5984 * Provide it now. 5985 */ 5986 wake_up_all(&event->waitq); 5987 } 5988 } 5989 5990 static void ring_buffer_wakeup(struct perf_event *event) 5991 { 5992 struct perf_buffer *rb; 5993 5994 rcu_read_lock(); 5995 rb = rcu_dereference(event->rb); 5996 if (rb) { 5997 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5998 wake_up_all(&event->waitq); 5999 } 6000 rcu_read_unlock(); 6001 } 6002 6003 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6004 { 6005 struct perf_buffer *rb; 6006 6007 rcu_read_lock(); 6008 rb = rcu_dereference(event->rb); 6009 if (rb) { 6010 if (!refcount_inc_not_zero(&rb->refcount)) 6011 rb = NULL; 6012 } 6013 rcu_read_unlock(); 6014 6015 return rb; 6016 } 6017 6018 void ring_buffer_put(struct perf_buffer *rb) 6019 { 6020 if (!refcount_dec_and_test(&rb->refcount)) 6021 return; 6022 6023 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6024 6025 call_rcu(&rb->rcu_head, rb_free_rcu); 6026 } 6027 6028 static void perf_mmap_open(struct vm_area_struct *vma) 6029 { 6030 struct perf_event *event = vma->vm_file->private_data; 6031 6032 atomic_inc(&event->mmap_count); 6033 atomic_inc(&event->rb->mmap_count); 6034 6035 if (vma->vm_pgoff) 6036 atomic_inc(&event->rb->aux_mmap_count); 6037 6038 if (event->pmu->event_mapped) 6039 event->pmu->event_mapped(event, vma->vm_mm); 6040 } 6041 6042 static void perf_pmu_output_stop(struct perf_event *event); 6043 6044 /* 6045 * A buffer can be mmap()ed multiple times; either directly through the same 6046 * event, or through other events by use of perf_event_set_output(). 6047 * 6048 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6049 * the buffer here, where we still have a VM context. This means we need 6050 * to detach all events redirecting to us. 6051 */ 6052 static void perf_mmap_close(struct vm_area_struct *vma) 6053 { 6054 struct perf_event *event = vma->vm_file->private_data; 6055 struct perf_buffer *rb = ring_buffer_get(event); 6056 struct user_struct *mmap_user = rb->mmap_user; 6057 int mmap_locked = rb->mmap_locked; 6058 unsigned long size = perf_data_size(rb); 6059 bool detach_rest = false; 6060 6061 if (event->pmu->event_unmapped) 6062 event->pmu->event_unmapped(event, vma->vm_mm); 6063 6064 /* 6065 * rb->aux_mmap_count will always drop before rb->mmap_count and 6066 * event->mmap_count, so it is ok to use event->mmap_mutex to 6067 * serialize with perf_mmap here. 6068 */ 6069 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6070 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6071 /* 6072 * Stop all AUX events that are writing to this buffer, 6073 * so that we can free its AUX pages and corresponding PMU 6074 * data. Note that after rb::aux_mmap_count dropped to zero, 6075 * they won't start any more (see perf_aux_output_begin()). 6076 */ 6077 perf_pmu_output_stop(event); 6078 6079 /* now it's safe to free the pages */ 6080 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6081 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6082 6083 /* this has to be the last one */ 6084 rb_free_aux(rb); 6085 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6086 6087 mutex_unlock(&event->mmap_mutex); 6088 } 6089 6090 if (atomic_dec_and_test(&rb->mmap_count)) 6091 detach_rest = true; 6092 6093 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6094 goto out_put; 6095 6096 ring_buffer_attach(event, NULL); 6097 mutex_unlock(&event->mmap_mutex); 6098 6099 /* If there's still other mmap()s of this buffer, we're done. */ 6100 if (!detach_rest) 6101 goto out_put; 6102 6103 /* 6104 * No other mmap()s, detach from all other events that might redirect 6105 * into the now unreachable buffer. Somewhat complicated by the 6106 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6107 */ 6108 again: 6109 rcu_read_lock(); 6110 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6111 if (!atomic_long_inc_not_zero(&event->refcount)) { 6112 /* 6113 * This event is en-route to free_event() which will 6114 * detach it and remove it from the list. 6115 */ 6116 continue; 6117 } 6118 rcu_read_unlock(); 6119 6120 mutex_lock(&event->mmap_mutex); 6121 /* 6122 * Check we didn't race with perf_event_set_output() which can 6123 * swizzle the rb from under us while we were waiting to 6124 * acquire mmap_mutex. 6125 * 6126 * If we find a different rb; ignore this event, a next 6127 * iteration will no longer find it on the list. We have to 6128 * still restart the iteration to make sure we're not now 6129 * iterating the wrong list. 6130 */ 6131 if (event->rb == rb) 6132 ring_buffer_attach(event, NULL); 6133 6134 mutex_unlock(&event->mmap_mutex); 6135 put_event(event); 6136 6137 /* 6138 * Restart the iteration; either we're on the wrong list or 6139 * destroyed its integrity by doing a deletion. 6140 */ 6141 goto again; 6142 } 6143 rcu_read_unlock(); 6144 6145 /* 6146 * It could be there's still a few 0-ref events on the list; they'll 6147 * get cleaned up by free_event() -- they'll also still have their 6148 * ref on the rb and will free it whenever they are done with it. 6149 * 6150 * Aside from that, this buffer is 'fully' detached and unmapped, 6151 * undo the VM accounting. 6152 */ 6153 6154 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6155 &mmap_user->locked_vm); 6156 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6157 free_uid(mmap_user); 6158 6159 out_put: 6160 ring_buffer_put(rb); /* could be last */ 6161 } 6162 6163 static const struct vm_operations_struct perf_mmap_vmops = { 6164 .open = perf_mmap_open, 6165 .close = perf_mmap_close, /* non mergeable */ 6166 .fault = perf_mmap_fault, 6167 .page_mkwrite = perf_mmap_fault, 6168 }; 6169 6170 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6171 { 6172 struct perf_event *event = file->private_data; 6173 unsigned long user_locked, user_lock_limit; 6174 struct user_struct *user = current_user(); 6175 struct perf_buffer *rb = NULL; 6176 unsigned long locked, lock_limit; 6177 unsigned long vma_size; 6178 unsigned long nr_pages; 6179 long user_extra = 0, extra = 0; 6180 int ret = 0, flags = 0; 6181 6182 /* 6183 * Don't allow mmap() of inherited per-task counters. This would 6184 * create a performance issue due to all children writing to the 6185 * same rb. 6186 */ 6187 if (event->cpu == -1 && event->attr.inherit) 6188 return -EINVAL; 6189 6190 if (!(vma->vm_flags & VM_SHARED)) 6191 return -EINVAL; 6192 6193 ret = security_perf_event_read(event); 6194 if (ret) 6195 return ret; 6196 6197 vma_size = vma->vm_end - vma->vm_start; 6198 6199 if (vma->vm_pgoff == 0) { 6200 nr_pages = (vma_size / PAGE_SIZE) - 1; 6201 } else { 6202 /* 6203 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6204 * mapped, all subsequent mappings should have the same size 6205 * and offset. Must be above the normal perf buffer. 6206 */ 6207 u64 aux_offset, aux_size; 6208 6209 if (!event->rb) 6210 return -EINVAL; 6211 6212 nr_pages = vma_size / PAGE_SIZE; 6213 6214 mutex_lock(&event->mmap_mutex); 6215 ret = -EINVAL; 6216 6217 rb = event->rb; 6218 if (!rb) 6219 goto aux_unlock; 6220 6221 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6222 aux_size = READ_ONCE(rb->user_page->aux_size); 6223 6224 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6225 goto aux_unlock; 6226 6227 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6228 goto aux_unlock; 6229 6230 /* already mapped with a different offset */ 6231 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6232 goto aux_unlock; 6233 6234 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6235 goto aux_unlock; 6236 6237 /* already mapped with a different size */ 6238 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6239 goto aux_unlock; 6240 6241 if (!is_power_of_2(nr_pages)) 6242 goto aux_unlock; 6243 6244 if (!atomic_inc_not_zero(&rb->mmap_count)) 6245 goto aux_unlock; 6246 6247 if (rb_has_aux(rb)) { 6248 atomic_inc(&rb->aux_mmap_count); 6249 ret = 0; 6250 goto unlock; 6251 } 6252 6253 atomic_set(&rb->aux_mmap_count, 1); 6254 user_extra = nr_pages; 6255 6256 goto accounting; 6257 } 6258 6259 /* 6260 * If we have rb pages ensure they're a power-of-two number, so we 6261 * can do bitmasks instead of modulo. 6262 */ 6263 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6264 return -EINVAL; 6265 6266 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6267 return -EINVAL; 6268 6269 WARN_ON_ONCE(event->ctx->parent_ctx); 6270 again: 6271 mutex_lock(&event->mmap_mutex); 6272 if (event->rb) { 6273 if (event->rb->nr_pages != nr_pages) { 6274 ret = -EINVAL; 6275 goto unlock; 6276 } 6277 6278 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6279 /* 6280 * Raced against perf_mmap_close() through 6281 * perf_event_set_output(). Try again, hope for better 6282 * luck. 6283 */ 6284 mutex_unlock(&event->mmap_mutex); 6285 goto again; 6286 } 6287 6288 goto unlock; 6289 } 6290 6291 user_extra = nr_pages + 1; 6292 6293 accounting: 6294 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6295 6296 /* 6297 * Increase the limit linearly with more CPUs: 6298 */ 6299 user_lock_limit *= num_online_cpus(); 6300 6301 user_locked = atomic_long_read(&user->locked_vm); 6302 6303 /* 6304 * sysctl_perf_event_mlock may have changed, so that 6305 * user->locked_vm > user_lock_limit 6306 */ 6307 if (user_locked > user_lock_limit) 6308 user_locked = user_lock_limit; 6309 user_locked += user_extra; 6310 6311 if (user_locked > user_lock_limit) { 6312 /* 6313 * charge locked_vm until it hits user_lock_limit; 6314 * charge the rest from pinned_vm 6315 */ 6316 extra = user_locked - user_lock_limit; 6317 user_extra -= extra; 6318 } 6319 6320 lock_limit = rlimit(RLIMIT_MEMLOCK); 6321 lock_limit >>= PAGE_SHIFT; 6322 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6323 6324 if ((locked > lock_limit) && perf_is_paranoid() && 6325 !capable(CAP_IPC_LOCK)) { 6326 ret = -EPERM; 6327 goto unlock; 6328 } 6329 6330 WARN_ON(!rb && event->rb); 6331 6332 if (vma->vm_flags & VM_WRITE) 6333 flags |= RING_BUFFER_WRITABLE; 6334 6335 if (!rb) { 6336 rb = rb_alloc(nr_pages, 6337 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6338 event->cpu, flags); 6339 6340 if (!rb) { 6341 ret = -ENOMEM; 6342 goto unlock; 6343 } 6344 6345 atomic_set(&rb->mmap_count, 1); 6346 rb->mmap_user = get_current_user(); 6347 rb->mmap_locked = extra; 6348 6349 ring_buffer_attach(event, rb); 6350 6351 perf_event_update_time(event); 6352 perf_set_shadow_time(event, event->ctx); 6353 perf_event_init_userpage(event); 6354 perf_event_update_userpage(event); 6355 } else { 6356 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6357 event->attr.aux_watermark, flags); 6358 if (!ret) 6359 rb->aux_mmap_locked = extra; 6360 } 6361 6362 unlock: 6363 if (!ret) { 6364 atomic_long_add(user_extra, &user->locked_vm); 6365 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6366 6367 atomic_inc(&event->mmap_count); 6368 } else if (rb) { 6369 atomic_dec(&rb->mmap_count); 6370 } 6371 aux_unlock: 6372 mutex_unlock(&event->mmap_mutex); 6373 6374 /* 6375 * Since pinned accounting is per vm we cannot allow fork() to copy our 6376 * vma. 6377 */ 6378 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 6379 vma->vm_ops = &perf_mmap_vmops; 6380 6381 if (event->pmu->event_mapped) 6382 event->pmu->event_mapped(event, vma->vm_mm); 6383 6384 return ret; 6385 } 6386 6387 static int perf_fasync(int fd, struct file *filp, int on) 6388 { 6389 struct inode *inode = file_inode(filp); 6390 struct perf_event *event = filp->private_data; 6391 int retval; 6392 6393 inode_lock(inode); 6394 retval = fasync_helper(fd, filp, on, &event->fasync); 6395 inode_unlock(inode); 6396 6397 if (retval < 0) 6398 return retval; 6399 6400 return 0; 6401 } 6402 6403 static const struct file_operations perf_fops = { 6404 .llseek = no_llseek, 6405 .release = perf_release, 6406 .read = perf_read, 6407 .poll = perf_poll, 6408 .unlocked_ioctl = perf_ioctl, 6409 .compat_ioctl = perf_compat_ioctl, 6410 .mmap = perf_mmap, 6411 .fasync = perf_fasync, 6412 }; 6413 6414 /* 6415 * Perf event wakeup 6416 * 6417 * If there's data, ensure we set the poll() state and publish everything 6418 * to user-space before waking everybody up. 6419 */ 6420 6421 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6422 { 6423 /* only the parent has fasync state */ 6424 if (event->parent) 6425 event = event->parent; 6426 return &event->fasync; 6427 } 6428 6429 void perf_event_wakeup(struct perf_event *event) 6430 { 6431 ring_buffer_wakeup(event); 6432 6433 if (event->pending_kill) { 6434 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6435 event->pending_kill = 0; 6436 } 6437 } 6438 6439 static void perf_sigtrap(struct perf_event *event) 6440 { 6441 /* 6442 * We'd expect this to only occur if the irq_work is delayed and either 6443 * ctx->task or current has changed in the meantime. This can be the 6444 * case on architectures that do not implement arch_irq_work_raise(). 6445 */ 6446 if (WARN_ON_ONCE(event->ctx->task != current)) 6447 return; 6448 6449 /* 6450 * perf_pending_event() can race with the task exiting. 6451 */ 6452 if (current->flags & PF_EXITING) 6453 return; 6454 6455 force_sig_perf((void __user *)event->pending_addr, 6456 event->attr.type, event->attr.sig_data); 6457 } 6458 6459 static void perf_pending_event_disable(struct perf_event *event) 6460 { 6461 int cpu = READ_ONCE(event->pending_disable); 6462 6463 if (cpu < 0) 6464 return; 6465 6466 if (cpu == smp_processor_id()) { 6467 WRITE_ONCE(event->pending_disable, -1); 6468 6469 if (event->attr.sigtrap) { 6470 perf_sigtrap(event); 6471 atomic_set_release(&event->event_limit, 1); /* rearm event */ 6472 return; 6473 } 6474 6475 perf_event_disable_local(event); 6476 return; 6477 } 6478 6479 /* 6480 * CPU-A CPU-B 6481 * 6482 * perf_event_disable_inatomic() 6483 * @pending_disable = CPU-A; 6484 * irq_work_queue(); 6485 * 6486 * sched-out 6487 * @pending_disable = -1; 6488 * 6489 * sched-in 6490 * perf_event_disable_inatomic() 6491 * @pending_disable = CPU-B; 6492 * irq_work_queue(); // FAILS 6493 * 6494 * irq_work_run() 6495 * perf_pending_event() 6496 * 6497 * But the event runs on CPU-B and wants disabling there. 6498 */ 6499 irq_work_queue_on(&event->pending, cpu); 6500 } 6501 6502 static void perf_pending_event(struct irq_work *entry) 6503 { 6504 struct perf_event *event = container_of(entry, struct perf_event, pending); 6505 int rctx; 6506 6507 rctx = perf_swevent_get_recursion_context(); 6508 /* 6509 * If we 'fail' here, that's OK, it means recursion is already disabled 6510 * and we won't recurse 'further'. 6511 */ 6512 6513 perf_pending_event_disable(event); 6514 6515 if (event->pending_wakeup) { 6516 event->pending_wakeup = 0; 6517 perf_event_wakeup(event); 6518 } 6519 6520 if (rctx >= 0) 6521 perf_swevent_put_recursion_context(rctx); 6522 } 6523 6524 /* 6525 * We assume there is only KVM supporting the callbacks. 6526 * Later on, we might change it to a list if there is 6527 * another virtualization implementation supporting the callbacks. 6528 */ 6529 struct perf_guest_info_callbacks *perf_guest_cbs; 6530 6531 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6532 { 6533 perf_guest_cbs = cbs; 6534 return 0; 6535 } 6536 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6537 6538 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6539 { 6540 perf_guest_cbs = NULL; 6541 return 0; 6542 } 6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6544 6545 static void 6546 perf_output_sample_regs(struct perf_output_handle *handle, 6547 struct pt_regs *regs, u64 mask) 6548 { 6549 int bit; 6550 DECLARE_BITMAP(_mask, 64); 6551 6552 bitmap_from_u64(_mask, mask); 6553 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6554 u64 val; 6555 6556 val = perf_reg_value(regs, bit); 6557 perf_output_put(handle, val); 6558 } 6559 } 6560 6561 static void perf_sample_regs_user(struct perf_regs *regs_user, 6562 struct pt_regs *regs) 6563 { 6564 if (user_mode(regs)) { 6565 regs_user->abi = perf_reg_abi(current); 6566 regs_user->regs = regs; 6567 } else if (!(current->flags & PF_KTHREAD)) { 6568 perf_get_regs_user(regs_user, regs); 6569 } else { 6570 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6571 regs_user->regs = NULL; 6572 } 6573 } 6574 6575 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6576 struct pt_regs *regs) 6577 { 6578 regs_intr->regs = regs; 6579 regs_intr->abi = perf_reg_abi(current); 6580 } 6581 6582 6583 /* 6584 * Get remaining task size from user stack pointer. 6585 * 6586 * It'd be better to take stack vma map and limit this more 6587 * precisely, but there's no way to get it safely under interrupt, 6588 * so using TASK_SIZE as limit. 6589 */ 6590 static u64 perf_ustack_task_size(struct pt_regs *regs) 6591 { 6592 unsigned long addr = perf_user_stack_pointer(regs); 6593 6594 if (!addr || addr >= TASK_SIZE) 6595 return 0; 6596 6597 return TASK_SIZE - addr; 6598 } 6599 6600 static u16 6601 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6602 struct pt_regs *regs) 6603 { 6604 u64 task_size; 6605 6606 /* No regs, no stack pointer, no dump. */ 6607 if (!regs) 6608 return 0; 6609 6610 /* 6611 * Check if we fit in with the requested stack size into the: 6612 * - TASK_SIZE 6613 * If we don't, we limit the size to the TASK_SIZE. 6614 * 6615 * - remaining sample size 6616 * If we don't, we customize the stack size to 6617 * fit in to the remaining sample size. 6618 */ 6619 6620 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6621 stack_size = min(stack_size, (u16) task_size); 6622 6623 /* Current header size plus static size and dynamic size. */ 6624 header_size += 2 * sizeof(u64); 6625 6626 /* Do we fit in with the current stack dump size? */ 6627 if ((u16) (header_size + stack_size) < header_size) { 6628 /* 6629 * If we overflow the maximum size for the sample, 6630 * we customize the stack dump size to fit in. 6631 */ 6632 stack_size = USHRT_MAX - header_size - sizeof(u64); 6633 stack_size = round_up(stack_size, sizeof(u64)); 6634 } 6635 6636 return stack_size; 6637 } 6638 6639 static void 6640 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6641 struct pt_regs *regs) 6642 { 6643 /* Case of a kernel thread, nothing to dump */ 6644 if (!regs) { 6645 u64 size = 0; 6646 perf_output_put(handle, size); 6647 } else { 6648 unsigned long sp; 6649 unsigned int rem; 6650 u64 dyn_size; 6651 mm_segment_t fs; 6652 6653 /* 6654 * We dump: 6655 * static size 6656 * - the size requested by user or the best one we can fit 6657 * in to the sample max size 6658 * data 6659 * - user stack dump data 6660 * dynamic size 6661 * - the actual dumped size 6662 */ 6663 6664 /* Static size. */ 6665 perf_output_put(handle, dump_size); 6666 6667 /* Data. */ 6668 sp = perf_user_stack_pointer(regs); 6669 fs = force_uaccess_begin(); 6670 rem = __output_copy_user(handle, (void *) sp, dump_size); 6671 force_uaccess_end(fs); 6672 dyn_size = dump_size - rem; 6673 6674 perf_output_skip(handle, rem); 6675 6676 /* Dynamic size. */ 6677 perf_output_put(handle, dyn_size); 6678 } 6679 } 6680 6681 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6682 struct perf_sample_data *data, 6683 size_t size) 6684 { 6685 struct perf_event *sampler = event->aux_event; 6686 struct perf_buffer *rb; 6687 6688 data->aux_size = 0; 6689 6690 if (!sampler) 6691 goto out; 6692 6693 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6694 goto out; 6695 6696 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6697 goto out; 6698 6699 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6700 if (!rb) 6701 goto out; 6702 6703 /* 6704 * If this is an NMI hit inside sampling code, don't take 6705 * the sample. See also perf_aux_sample_output(). 6706 */ 6707 if (READ_ONCE(rb->aux_in_sampling)) { 6708 data->aux_size = 0; 6709 } else { 6710 size = min_t(size_t, size, perf_aux_size(rb)); 6711 data->aux_size = ALIGN(size, sizeof(u64)); 6712 } 6713 ring_buffer_put(rb); 6714 6715 out: 6716 return data->aux_size; 6717 } 6718 6719 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6720 struct perf_event *event, 6721 struct perf_output_handle *handle, 6722 unsigned long size) 6723 { 6724 unsigned long flags; 6725 long ret; 6726 6727 /* 6728 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 6729 * paths. If we start calling them in NMI context, they may race with 6730 * the IRQ ones, that is, for example, re-starting an event that's just 6731 * been stopped, which is why we're using a separate callback that 6732 * doesn't change the event state. 6733 * 6734 * IRQs need to be disabled to prevent IPIs from racing with us. 6735 */ 6736 local_irq_save(flags); 6737 /* 6738 * Guard against NMI hits inside the critical section; 6739 * see also perf_prepare_sample_aux(). 6740 */ 6741 WRITE_ONCE(rb->aux_in_sampling, 1); 6742 barrier(); 6743 6744 ret = event->pmu->snapshot_aux(event, handle, size); 6745 6746 barrier(); 6747 WRITE_ONCE(rb->aux_in_sampling, 0); 6748 local_irq_restore(flags); 6749 6750 return ret; 6751 } 6752 6753 static void perf_aux_sample_output(struct perf_event *event, 6754 struct perf_output_handle *handle, 6755 struct perf_sample_data *data) 6756 { 6757 struct perf_event *sampler = event->aux_event; 6758 struct perf_buffer *rb; 6759 unsigned long pad; 6760 long size; 6761 6762 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 6763 return; 6764 6765 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler); 6766 if (!rb) 6767 return; 6768 6769 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 6770 6771 /* 6772 * An error here means that perf_output_copy() failed (returned a 6773 * non-zero surplus that it didn't copy), which in its current 6774 * enlightened implementation is not possible. If that changes, we'd 6775 * like to know. 6776 */ 6777 if (WARN_ON_ONCE(size < 0)) 6778 goto out_put; 6779 6780 /* 6781 * The pad comes from ALIGN()ing data->aux_size up to u64 in 6782 * perf_prepare_sample_aux(), so should not be more than that. 6783 */ 6784 pad = data->aux_size - size; 6785 if (WARN_ON_ONCE(pad >= sizeof(u64))) 6786 pad = 8; 6787 6788 if (pad) { 6789 u64 zero = 0; 6790 perf_output_copy(handle, &zero, pad); 6791 } 6792 6793 out_put: 6794 ring_buffer_put(rb); 6795 } 6796 6797 static void __perf_event_header__init_id(struct perf_event_header *header, 6798 struct perf_sample_data *data, 6799 struct perf_event *event) 6800 { 6801 u64 sample_type = event->attr.sample_type; 6802 6803 data->type = sample_type; 6804 header->size += event->id_header_size; 6805 6806 if (sample_type & PERF_SAMPLE_TID) { 6807 /* namespace issues */ 6808 data->tid_entry.pid = perf_event_pid(event, current); 6809 data->tid_entry.tid = perf_event_tid(event, current); 6810 } 6811 6812 if (sample_type & PERF_SAMPLE_TIME) 6813 data->time = perf_event_clock(event); 6814 6815 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6816 data->id = primary_event_id(event); 6817 6818 if (sample_type & PERF_SAMPLE_STREAM_ID) 6819 data->stream_id = event->id; 6820 6821 if (sample_type & PERF_SAMPLE_CPU) { 6822 data->cpu_entry.cpu = raw_smp_processor_id(); 6823 data->cpu_entry.reserved = 0; 6824 } 6825 } 6826 6827 void perf_event_header__init_id(struct perf_event_header *header, 6828 struct perf_sample_data *data, 6829 struct perf_event *event) 6830 { 6831 if (event->attr.sample_id_all) 6832 __perf_event_header__init_id(header, data, event); 6833 } 6834 6835 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6836 struct perf_sample_data *data) 6837 { 6838 u64 sample_type = data->type; 6839 6840 if (sample_type & PERF_SAMPLE_TID) 6841 perf_output_put(handle, data->tid_entry); 6842 6843 if (sample_type & PERF_SAMPLE_TIME) 6844 perf_output_put(handle, data->time); 6845 6846 if (sample_type & PERF_SAMPLE_ID) 6847 perf_output_put(handle, data->id); 6848 6849 if (sample_type & PERF_SAMPLE_STREAM_ID) 6850 perf_output_put(handle, data->stream_id); 6851 6852 if (sample_type & PERF_SAMPLE_CPU) 6853 perf_output_put(handle, data->cpu_entry); 6854 6855 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6856 perf_output_put(handle, data->id); 6857 } 6858 6859 void perf_event__output_id_sample(struct perf_event *event, 6860 struct perf_output_handle *handle, 6861 struct perf_sample_data *sample) 6862 { 6863 if (event->attr.sample_id_all) 6864 __perf_event__output_id_sample(handle, sample); 6865 } 6866 6867 static void perf_output_read_one(struct perf_output_handle *handle, 6868 struct perf_event *event, 6869 u64 enabled, u64 running) 6870 { 6871 u64 read_format = event->attr.read_format; 6872 u64 values[4]; 6873 int n = 0; 6874 6875 values[n++] = perf_event_count(event); 6876 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6877 values[n++] = enabled + 6878 atomic64_read(&event->child_total_time_enabled); 6879 } 6880 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6881 values[n++] = running + 6882 atomic64_read(&event->child_total_time_running); 6883 } 6884 if (read_format & PERF_FORMAT_ID) 6885 values[n++] = primary_event_id(event); 6886 6887 __output_copy(handle, values, n * sizeof(u64)); 6888 } 6889 6890 static void perf_output_read_group(struct perf_output_handle *handle, 6891 struct perf_event *event, 6892 u64 enabled, u64 running) 6893 { 6894 struct perf_event *leader = event->group_leader, *sub; 6895 u64 read_format = event->attr.read_format; 6896 u64 values[5]; 6897 int n = 0; 6898 6899 values[n++] = 1 + leader->nr_siblings; 6900 6901 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6902 values[n++] = enabled; 6903 6904 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6905 values[n++] = running; 6906 6907 if ((leader != event) && 6908 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6909 leader->pmu->read(leader); 6910 6911 values[n++] = perf_event_count(leader); 6912 if (read_format & PERF_FORMAT_ID) 6913 values[n++] = primary_event_id(leader); 6914 6915 __output_copy(handle, values, n * sizeof(u64)); 6916 6917 for_each_sibling_event(sub, leader) { 6918 n = 0; 6919 6920 if ((sub != event) && 6921 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6922 sub->pmu->read(sub); 6923 6924 values[n++] = perf_event_count(sub); 6925 if (read_format & PERF_FORMAT_ID) 6926 values[n++] = primary_event_id(sub); 6927 6928 __output_copy(handle, values, n * sizeof(u64)); 6929 } 6930 } 6931 6932 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6933 PERF_FORMAT_TOTAL_TIME_RUNNING) 6934 6935 /* 6936 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6937 * 6938 * The problem is that its both hard and excessively expensive to iterate the 6939 * child list, not to mention that its impossible to IPI the children running 6940 * on another CPU, from interrupt/NMI context. 6941 */ 6942 static void perf_output_read(struct perf_output_handle *handle, 6943 struct perf_event *event) 6944 { 6945 u64 enabled = 0, running = 0, now; 6946 u64 read_format = event->attr.read_format; 6947 6948 /* 6949 * compute total_time_enabled, total_time_running 6950 * based on snapshot values taken when the event 6951 * was last scheduled in. 6952 * 6953 * we cannot simply called update_context_time() 6954 * because of locking issue as we are called in 6955 * NMI context 6956 */ 6957 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6958 calc_timer_values(event, &now, &enabled, &running); 6959 6960 if (event->attr.read_format & PERF_FORMAT_GROUP) 6961 perf_output_read_group(handle, event, enabled, running); 6962 else 6963 perf_output_read_one(handle, event, enabled, running); 6964 } 6965 6966 static inline bool perf_sample_save_hw_index(struct perf_event *event) 6967 { 6968 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 6969 } 6970 6971 void perf_output_sample(struct perf_output_handle *handle, 6972 struct perf_event_header *header, 6973 struct perf_sample_data *data, 6974 struct perf_event *event) 6975 { 6976 u64 sample_type = data->type; 6977 6978 perf_output_put(handle, *header); 6979 6980 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6981 perf_output_put(handle, data->id); 6982 6983 if (sample_type & PERF_SAMPLE_IP) 6984 perf_output_put(handle, data->ip); 6985 6986 if (sample_type & PERF_SAMPLE_TID) 6987 perf_output_put(handle, data->tid_entry); 6988 6989 if (sample_type & PERF_SAMPLE_TIME) 6990 perf_output_put(handle, data->time); 6991 6992 if (sample_type & PERF_SAMPLE_ADDR) 6993 perf_output_put(handle, data->addr); 6994 6995 if (sample_type & PERF_SAMPLE_ID) 6996 perf_output_put(handle, data->id); 6997 6998 if (sample_type & PERF_SAMPLE_STREAM_ID) 6999 perf_output_put(handle, data->stream_id); 7000 7001 if (sample_type & PERF_SAMPLE_CPU) 7002 perf_output_put(handle, data->cpu_entry); 7003 7004 if (sample_type & PERF_SAMPLE_PERIOD) 7005 perf_output_put(handle, data->period); 7006 7007 if (sample_type & PERF_SAMPLE_READ) 7008 perf_output_read(handle, event); 7009 7010 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7011 int size = 1; 7012 7013 size += data->callchain->nr; 7014 size *= sizeof(u64); 7015 __output_copy(handle, data->callchain, size); 7016 } 7017 7018 if (sample_type & PERF_SAMPLE_RAW) { 7019 struct perf_raw_record *raw = data->raw; 7020 7021 if (raw) { 7022 struct perf_raw_frag *frag = &raw->frag; 7023 7024 perf_output_put(handle, raw->size); 7025 do { 7026 if (frag->copy) { 7027 __output_custom(handle, frag->copy, 7028 frag->data, frag->size); 7029 } else { 7030 __output_copy(handle, frag->data, 7031 frag->size); 7032 } 7033 if (perf_raw_frag_last(frag)) 7034 break; 7035 frag = frag->next; 7036 } while (1); 7037 if (frag->pad) 7038 __output_skip(handle, NULL, frag->pad); 7039 } else { 7040 struct { 7041 u32 size; 7042 u32 data; 7043 } raw = { 7044 .size = sizeof(u32), 7045 .data = 0, 7046 }; 7047 perf_output_put(handle, raw); 7048 } 7049 } 7050 7051 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7052 if (data->br_stack) { 7053 size_t size; 7054 7055 size = data->br_stack->nr 7056 * sizeof(struct perf_branch_entry); 7057 7058 perf_output_put(handle, data->br_stack->nr); 7059 if (perf_sample_save_hw_index(event)) 7060 perf_output_put(handle, data->br_stack->hw_idx); 7061 perf_output_copy(handle, data->br_stack->entries, size); 7062 } else { 7063 /* 7064 * we always store at least the value of nr 7065 */ 7066 u64 nr = 0; 7067 perf_output_put(handle, nr); 7068 } 7069 } 7070 7071 if (sample_type & PERF_SAMPLE_REGS_USER) { 7072 u64 abi = data->regs_user.abi; 7073 7074 /* 7075 * If there are no regs to dump, notice it through 7076 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7077 */ 7078 perf_output_put(handle, abi); 7079 7080 if (abi) { 7081 u64 mask = event->attr.sample_regs_user; 7082 perf_output_sample_regs(handle, 7083 data->regs_user.regs, 7084 mask); 7085 } 7086 } 7087 7088 if (sample_type & PERF_SAMPLE_STACK_USER) { 7089 perf_output_sample_ustack(handle, 7090 data->stack_user_size, 7091 data->regs_user.regs); 7092 } 7093 7094 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7095 perf_output_put(handle, data->weight.full); 7096 7097 if (sample_type & PERF_SAMPLE_DATA_SRC) 7098 perf_output_put(handle, data->data_src.val); 7099 7100 if (sample_type & PERF_SAMPLE_TRANSACTION) 7101 perf_output_put(handle, data->txn); 7102 7103 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7104 u64 abi = data->regs_intr.abi; 7105 /* 7106 * If there are no regs to dump, notice it through 7107 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7108 */ 7109 perf_output_put(handle, abi); 7110 7111 if (abi) { 7112 u64 mask = event->attr.sample_regs_intr; 7113 7114 perf_output_sample_regs(handle, 7115 data->regs_intr.regs, 7116 mask); 7117 } 7118 } 7119 7120 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7121 perf_output_put(handle, data->phys_addr); 7122 7123 if (sample_type & PERF_SAMPLE_CGROUP) 7124 perf_output_put(handle, data->cgroup); 7125 7126 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7127 perf_output_put(handle, data->data_page_size); 7128 7129 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7130 perf_output_put(handle, data->code_page_size); 7131 7132 if (sample_type & PERF_SAMPLE_AUX) { 7133 perf_output_put(handle, data->aux_size); 7134 7135 if (data->aux_size) 7136 perf_aux_sample_output(event, handle, data); 7137 } 7138 7139 if (!event->attr.watermark) { 7140 int wakeup_events = event->attr.wakeup_events; 7141 7142 if (wakeup_events) { 7143 struct perf_buffer *rb = handle->rb; 7144 int events = local_inc_return(&rb->events); 7145 7146 if (events >= wakeup_events) { 7147 local_sub(wakeup_events, &rb->events); 7148 local_inc(&rb->wakeup); 7149 } 7150 } 7151 } 7152 } 7153 7154 static u64 perf_virt_to_phys(u64 virt) 7155 { 7156 u64 phys_addr = 0; 7157 7158 if (!virt) 7159 return 0; 7160 7161 if (virt >= TASK_SIZE) { 7162 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7163 if (virt_addr_valid((void *)(uintptr_t)virt) && 7164 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7165 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7166 } else { 7167 /* 7168 * Walking the pages tables for user address. 7169 * Interrupts are disabled, so it prevents any tear down 7170 * of the page tables. 7171 * Try IRQ-safe get_user_page_fast_only first. 7172 * If failed, leave phys_addr as 0. 7173 */ 7174 if (current->mm != NULL) { 7175 struct page *p; 7176 7177 pagefault_disable(); 7178 if (get_user_page_fast_only(virt, 0, &p)) { 7179 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7180 put_page(p); 7181 } 7182 pagefault_enable(); 7183 } 7184 } 7185 7186 return phys_addr; 7187 } 7188 7189 /* 7190 * Return the pagetable size of a given virtual address. 7191 */ 7192 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7193 { 7194 u64 size = 0; 7195 7196 #ifdef CONFIG_HAVE_FAST_GUP 7197 pgd_t *pgdp, pgd; 7198 p4d_t *p4dp, p4d; 7199 pud_t *pudp, pud; 7200 pmd_t *pmdp, pmd; 7201 pte_t *ptep, pte; 7202 7203 pgdp = pgd_offset(mm, addr); 7204 pgd = READ_ONCE(*pgdp); 7205 if (pgd_none(pgd)) 7206 return 0; 7207 7208 if (pgd_leaf(pgd)) 7209 return pgd_leaf_size(pgd); 7210 7211 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7212 p4d = READ_ONCE(*p4dp); 7213 if (!p4d_present(p4d)) 7214 return 0; 7215 7216 if (p4d_leaf(p4d)) 7217 return p4d_leaf_size(p4d); 7218 7219 pudp = pud_offset_lockless(p4dp, p4d, addr); 7220 pud = READ_ONCE(*pudp); 7221 if (!pud_present(pud)) 7222 return 0; 7223 7224 if (pud_leaf(pud)) 7225 return pud_leaf_size(pud); 7226 7227 pmdp = pmd_offset_lockless(pudp, pud, addr); 7228 pmd = READ_ONCE(*pmdp); 7229 if (!pmd_present(pmd)) 7230 return 0; 7231 7232 if (pmd_leaf(pmd)) 7233 return pmd_leaf_size(pmd); 7234 7235 ptep = pte_offset_map(&pmd, addr); 7236 pte = ptep_get_lockless(ptep); 7237 if (pte_present(pte)) 7238 size = pte_leaf_size(pte); 7239 pte_unmap(ptep); 7240 #endif /* CONFIG_HAVE_FAST_GUP */ 7241 7242 return size; 7243 } 7244 7245 static u64 perf_get_page_size(unsigned long addr) 7246 { 7247 struct mm_struct *mm; 7248 unsigned long flags; 7249 u64 size; 7250 7251 if (!addr) 7252 return 0; 7253 7254 /* 7255 * Software page-table walkers must disable IRQs, 7256 * which prevents any tear down of the page tables. 7257 */ 7258 local_irq_save(flags); 7259 7260 mm = current->mm; 7261 if (!mm) { 7262 /* 7263 * For kernel threads and the like, use init_mm so that 7264 * we can find kernel memory. 7265 */ 7266 mm = &init_mm; 7267 } 7268 7269 size = perf_get_pgtable_size(mm, addr); 7270 7271 local_irq_restore(flags); 7272 7273 return size; 7274 } 7275 7276 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7277 7278 struct perf_callchain_entry * 7279 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7280 { 7281 bool kernel = !event->attr.exclude_callchain_kernel; 7282 bool user = !event->attr.exclude_callchain_user; 7283 /* Disallow cross-task user callchains. */ 7284 bool crosstask = event->ctx->task && event->ctx->task != current; 7285 const u32 max_stack = event->attr.sample_max_stack; 7286 struct perf_callchain_entry *callchain; 7287 7288 if (!kernel && !user) 7289 return &__empty_callchain; 7290 7291 callchain = get_perf_callchain(regs, 0, kernel, user, 7292 max_stack, crosstask, true); 7293 return callchain ?: &__empty_callchain; 7294 } 7295 7296 void perf_prepare_sample(struct perf_event_header *header, 7297 struct perf_sample_data *data, 7298 struct perf_event *event, 7299 struct pt_regs *regs) 7300 { 7301 u64 sample_type = event->attr.sample_type; 7302 7303 header->type = PERF_RECORD_SAMPLE; 7304 header->size = sizeof(*header) + event->header_size; 7305 7306 header->misc = 0; 7307 header->misc |= perf_misc_flags(regs); 7308 7309 __perf_event_header__init_id(header, data, event); 7310 7311 if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE)) 7312 data->ip = perf_instruction_pointer(regs); 7313 7314 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7315 int size = 1; 7316 7317 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 7318 data->callchain = perf_callchain(event, regs); 7319 7320 size += data->callchain->nr; 7321 7322 header->size += size * sizeof(u64); 7323 } 7324 7325 if (sample_type & PERF_SAMPLE_RAW) { 7326 struct perf_raw_record *raw = data->raw; 7327 int size; 7328 7329 if (raw) { 7330 struct perf_raw_frag *frag = &raw->frag; 7331 u32 sum = 0; 7332 7333 do { 7334 sum += frag->size; 7335 if (perf_raw_frag_last(frag)) 7336 break; 7337 frag = frag->next; 7338 } while (1); 7339 7340 size = round_up(sum + sizeof(u32), sizeof(u64)); 7341 raw->size = size - sizeof(u32); 7342 frag->pad = raw->size - sum; 7343 } else { 7344 size = sizeof(u64); 7345 } 7346 7347 header->size += size; 7348 } 7349 7350 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7351 int size = sizeof(u64); /* nr */ 7352 if (data->br_stack) { 7353 if (perf_sample_save_hw_index(event)) 7354 size += sizeof(u64); 7355 7356 size += data->br_stack->nr 7357 * sizeof(struct perf_branch_entry); 7358 } 7359 header->size += size; 7360 } 7361 7362 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 7363 perf_sample_regs_user(&data->regs_user, regs); 7364 7365 if (sample_type & PERF_SAMPLE_REGS_USER) { 7366 /* regs dump ABI info */ 7367 int size = sizeof(u64); 7368 7369 if (data->regs_user.regs) { 7370 u64 mask = event->attr.sample_regs_user; 7371 size += hweight64(mask) * sizeof(u64); 7372 } 7373 7374 header->size += size; 7375 } 7376 7377 if (sample_type & PERF_SAMPLE_STACK_USER) { 7378 /* 7379 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7380 * processed as the last one or have additional check added 7381 * in case new sample type is added, because we could eat 7382 * up the rest of the sample size. 7383 */ 7384 u16 stack_size = event->attr.sample_stack_user; 7385 u16 size = sizeof(u64); 7386 7387 stack_size = perf_sample_ustack_size(stack_size, header->size, 7388 data->regs_user.regs); 7389 7390 /* 7391 * If there is something to dump, add space for the dump 7392 * itself and for the field that tells the dynamic size, 7393 * which is how many have been actually dumped. 7394 */ 7395 if (stack_size) 7396 size += sizeof(u64) + stack_size; 7397 7398 data->stack_user_size = stack_size; 7399 header->size += size; 7400 } 7401 7402 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7403 /* regs dump ABI info */ 7404 int size = sizeof(u64); 7405 7406 perf_sample_regs_intr(&data->regs_intr, regs); 7407 7408 if (data->regs_intr.regs) { 7409 u64 mask = event->attr.sample_regs_intr; 7410 7411 size += hweight64(mask) * sizeof(u64); 7412 } 7413 7414 header->size += size; 7415 } 7416 7417 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7418 data->phys_addr = perf_virt_to_phys(data->addr); 7419 7420 #ifdef CONFIG_CGROUP_PERF 7421 if (sample_type & PERF_SAMPLE_CGROUP) { 7422 struct cgroup *cgrp; 7423 7424 /* protected by RCU */ 7425 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7426 data->cgroup = cgroup_id(cgrp); 7427 } 7428 #endif 7429 7430 /* 7431 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7432 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7433 * but the value will not dump to the userspace. 7434 */ 7435 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7436 data->data_page_size = perf_get_page_size(data->addr); 7437 7438 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7439 data->code_page_size = perf_get_page_size(data->ip); 7440 7441 if (sample_type & PERF_SAMPLE_AUX) { 7442 u64 size; 7443 7444 header->size += sizeof(u64); /* size */ 7445 7446 /* 7447 * Given the 16bit nature of header::size, an AUX sample can 7448 * easily overflow it, what with all the preceding sample bits. 7449 * Make sure this doesn't happen by using up to U16_MAX bytes 7450 * per sample in total (rounded down to 8 byte boundary). 7451 */ 7452 size = min_t(size_t, U16_MAX - header->size, 7453 event->attr.aux_sample_size); 7454 size = rounddown(size, 8); 7455 size = perf_prepare_sample_aux(event, data, size); 7456 7457 WARN_ON_ONCE(size + header->size > U16_MAX); 7458 header->size += size; 7459 } 7460 /* 7461 * If you're adding more sample types here, you likely need to do 7462 * something about the overflowing header::size, like repurpose the 7463 * lowest 3 bits of size, which should be always zero at the moment. 7464 * This raises a more important question, do we really need 512k sized 7465 * samples and why, so good argumentation is in order for whatever you 7466 * do here next. 7467 */ 7468 WARN_ON_ONCE(header->size & 7); 7469 } 7470 7471 static __always_inline int 7472 __perf_event_output(struct perf_event *event, 7473 struct perf_sample_data *data, 7474 struct pt_regs *regs, 7475 int (*output_begin)(struct perf_output_handle *, 7476 struct perf_sample_data *, 7477 struct perf_event *, 7478 unsigned int)) 7479 { 7480 struct perf_output_handle handle; 7481 struct perf_event_header header; 7482 int err; 7483 7484 /* protect the callchain buffers */ 7485 rcu_read_lock(); 7486 7487 perf_prepare_sample(&header, data, event, regs); 7488 7489 err = output_begin(&handle, data, event, header.size); 7490 if (err) 7491 goto exit; 7492 7493 perf_output_sample(&handle, &header, data, event); 7494 7495 perf_output_end(&handle); 7496 7497 exit: 7498 rcu_read_unlock(); 7499 return err; 7500 } 7501 7502 void 7503 perf_event_output_forward(struct perf_event *event, 7504 struct perf_sample_data *data, 7505 struct pt_regs *regs) 7506 { 7507 __perf_event_output(event, data, regs, perf_output_begin_forward); 7508 } 7509 7510 void 7511 perf_event_output_backward(struct perf_event *event, 7512 struct perf_sample_data *data, 7513 struct pt_regs *regs) 7514 { 7515 __perf_event_output(event, data, regs, perf_output_begin_backward); 7516 } 7517 7518 int 7519 perf_event_output(struct perf_event *event, 7520 struct perf_sample_data *data, 7521 struct pt_regs *regs) 7522 { 7523 return __perf_event_output(event, data, regs, perf_output_begin); 7524 } 7525 7526 /* 7527 * read event_id 7528 */ 7529 7530 struct perf_read_event { 7531 struct perf_event_header header; 7532 7533 u32 pid; 7534 u32 tid; 7535 }; 7536 7537 static void 7538 perf_event_read_event(struct perf_event *event, 7539 struct task_struct *task) 7540 { 7541 struct perf_output_handle handle; 7542 struct perf_sample_data sample; 7543 struct perf_read_event read_event = { 7544 .header = { 7545 .type = PERF_RECORD_READ, 7546 .misc = 0, 7547 .size = sizeof(read_event) + event->read_size, 7548 }, 7549 .pid = perf_event_pid(event, task), 7550 .tid = perf_event_tid(event, task), 7551 }; 7552 int ret; 7553 7554 perf_event_header__init_id(&read_event.header, &sample, event); 7555 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7556 if (ret) 7557 return; 7558 7559 perf_output_put(&handle, read_event); 7560 perf_output_read(&handle, event); 7561 perf_event__output_id_sample(event, &handle, &sample); 7562 7563 perf_output_end(&handle); 7564 } 7565 7566 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7567 7568 static void 7569 perf_iterate_ctx(struct perf_event_context *ctx, 7570 perf_iterate_f output, 7571 void *data, bool all) 7572 { 7573 struct perf_event *event; 7574 7575 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7576 if (!all) { 7577 if (event->state < PERF_EVENT_STATE_INACTIVE) 7578 continue; 7579 if (!event_filter_match(event)) 7580 continue; 7581 } 7582 7583 output(event, data); 7584 } 7585 } 7586 7587 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7588 { 7589 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7590 struct perf_event *event; 7591 7592 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7593 /* 7594 * Skip events that are not fully formed yet; ensure that 7595 * if we observe event->ctx, both event and ctx will be 7596 * complete enough. See perf_install_in_context(). 7597 */ 7598 if (!smp_load_acquire(&event->ctx)) 7599 continue; 7600 7601 if (event->state < PERF_EVENT_STATE_INACTIVE) 7602 continue; 7603 if (!event_filter_match(event)) 7604 continue; 7605 output(event, data); 7606 } 7607 } 7608 7609 /* 7610 * Iterate all events that need to receive side-band events. 7611 * 7612 * For new callers; ensure that account_pmu_sb_event() includes 7613 * your event, otherwise it might not get delivered. 7614 */ 7615 static void 7616 perf_iterate_sb(perf_iterate_f output, void *data, 7617 struct perf_event_context *task_ctx) 7618 { 7619 struct perf_event_context *ctx; 7620 int ctxn; 7621 7622 rcu_read_lock(); 7623 preempt_disable(); 7624 7625 /* 7626 * If we have task_ctx != NULL we only notify the task context itself. 7627 * The task_ctx is set only for EXIT events before releasing task 7628 * context. 7629 */ 7630 if (task_ctx) { 7631 perf_iterate_ctx(task_ctx, output, data, false); 7632 goto done; 7633 } 7634 7635 perf_iterate_sb_cpu(output, data); 7636 7637 for_each_task_context_nr(ctxn) { 7638 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7639 if (ctx) 7640 perf_iterate_ctx(ctx, output, data, false); 7641 } 7642 done: 7643 preempt_enable(); 7644 rcu_read_unlock(); 7645 } 7646 7647 /* 7648 * Clear all file-based filters at exec, they'll have to be 7649 * re-instated when/if these objects are mmapped again. 7650 */ 7651 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7652 { 7653 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7654 struct perf_addr_filter *filter; 7655 unsigned int restart = 0, count = 0; 7656 unsigned long flags; 7657 7658 if (!has_addr_filter(event)) 7659 return; 7660 7661 raw_spin_lock_irqsave(&ifh->lock, flags); 7662 list_for_each_entry(filter, &ifh->list, entry) { 7663 if (filter->path.dentry) { 7664 event->addr_filter_ranges[count].start = 0; 7665 event->addr_filter_ranges[count].size = 0; 7666 restart++; 7667 } 7668 7669 count++; 7670 } 7671 7672 if (restart) 7673 event->addr_filters_gen++; 7674 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7675 7676 if (restart) 7677 perf_event_stop(event, 1); 7678 } 7679 7680 void perf_event_exec(void) 7681 { 7682 struct perf_event_context *ctx; 7683 int ctxn; 7684 7685 for_each_task_context_nr(ctxn) { 7686 perf_event_enable_on_exec(ctxn); 7687 perf_event_remove_on_exec(ctxn); 7688 7689 rcu_read_lock(); 7690 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7691 if (ctx) { 7692 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, 7693 NULL, true); 7694 } 7695 rcu_read_unlock(); 7696 } 7697 } 7698 7699 struct remote_output { 7700 struct perf_buffer *rb; 7701 int err; 7702 }; 7703 7704 static void __perf_event_output_stop(struct perf_event *event, void *data) 7705 { 7706 struct perf_event *parent = event->parent; 7707 struct remote_output *ro = data; 7708 struct perf_buffer *rb = ro->rb; 7709 struct stop_event_data sd = { 7710 .event = event, 7711 }; 7712 7713 if (!has_aux(event)) 7714 return; 7715 7716 if (!parent) 7717 parent = event; 7718 7719 /* 7720 * In case of inheritance, it will be the parent that links to the 7721 * ring-buffer, but it will be the child that's actually using it. 7722 * 7723 * We are using event::rb to determine if the event should be stopped, 7724 * however this may race with ring_buffer_attach() (through set_output), 7725 * which will make us skip the event that actually needs to be stopped. 7726 * So ring_buffer_attach() has to stop an aux event before re-assigning 7727 * its rb pointer. 7728 */ 7729 if (rcu_dereference(parent->rb) == rb) 7730 ro->err = __perf_event_stop(&sd); 7731 } 7732 7733 static int __perf_pmu_output_stop(void *info) 7734 { 7735 struct perf_event *event = info; 7736 struct pmu *pmu = event->ctx->pmu; 7737 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7738 struct remote_output ro = { 7739 .rb = event->rb, 7740 }; 7741 7742 rcu_read_lock(); 7743 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 7744 if (cpuctx->task_ctx) 7745 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 7746 &ro, false); 7747 rcu_read_unlock(); 7748 7749 return ro.err; 7750 } 7751 7752 static void perf_pmu_output_stop(struct perf_event *event) 7753 { 7754 struct perf_event *iter; 7755 int err, cpu; 7756 7757 restart: 7758 rcu_read_lock(); 7759 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 7760 /* 7761 * For per-CPU events, we need to make sure that neither they 7762 * nor their children are running; for cpu==-1 events it's 7763 * sufficient to stop the event itself if it's active, since 7764 * it can't have children. 7765 */ 7766 cpu = iter->cpu; 7767 if (cpu == -1) 7768 cpu = READ_ONCE(iter->oncpu); 7769 7770 if (cpu == -1) 7771 continue; 7772 7773 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 7774 if (err == -EAGAIN) { 7775 rcu_read_unlock(); 7776 goto restart; 7777 } 7778 } 7779 rcu_read_unlock(); 7780 } 7781 7782 /* 7783 * task tracking -- fork/exit 7784 * 7785 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 7786 */ 7787 7788 struct perf_task_event { 7789 struct task_struct *task; 7790 struct perf_event_context *task_ctx; 7791 7792 struct { 7793 struct perf_event_header header; 7794 7795 u32 pid; 7796 u32 ppid; 7797 u32 tid; 7798 u32 ptid; 7799 u64 time; 7800 } event_id; 7801 }; 7802 7803 static int perf_event_task_match(struct perf_event *event) 7804 { 7805 return event->attr.comm || event->attr.mmap || 7806 event->attr.mmap2 || event->attr.mmap_data || 7807 event->attr.task; 7808 } 7809 7810 static void perf_event_task_output(struct perf_event *event, 7811 void *data) 7812 { 7813 struct perf_task_event *task_event = data; 7814 struct perf_output_handle handle; 7815 struct perf_sample_data sample; 7816 struct task_struct *task = task_event->task; 7817 int ret, size = task_event->event_id.header.size; 7818 7819 if (!perf_event_task_match(event)) 7820 return; 7821 7822 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 7823 7824 ret = perf_output_begin(&handle, &sample, event, 7825 task_event->event_id.header.size); 7826 if (ret) 7827 goto out; 7828 7829 task_event->event_id.pid = perf_event_pid(event, task); 7830 task_event->event_id.tid = perf_event_tid(event, task); 7831 7832 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 7833 task_event->event_id.ppid = perf_event_pid(event, 7834 task->real_parent); 7835 task_event->event_id.ptid = perf_event_pid(event, 7836 task->real_parent); 7837 } else { /* PERF_RECORD_FORK */ 7838 task_event->event_id.ppid = perf_event_pid(event, current); 7839 task_event->event_id.ptid = perf_event_tid(event, current); 7840 } 7841 7842 task_event->event_id.time = perf_event_clock(event); 7843 7844 perf_output_put(&handle, task_event->event_id); 7845 7846 perf_event__output_id_sample(event, &handle, &sample); 7847 7848 perf_output_end(&handle); 7849 out: 7850 task_event->event_id.header.size = size; 7851 } 7852 7853 static void perf_event_task(struct task_struct *task, 7854 struct perf_event_context *task_ctx, 7855 int new) 7856 { 7857 struct perf_task_event task_event; 7858 7859 if (!atomic_read(&nr_comm_events) && 7860 !atomic_read(&nr_mmap_events) && 7861 !atomic_read(&nr_task_events)) 7862 return; 7863 7864 task_event = (struct perf_task_event){ 7865 .task = task, 7866 .task_ctx = task_ctx, 7867 .event_id = { 7868 .header = { 7869 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 7870 .misc = 0, 7871 .size = sizeof(task_event.event_id), 7872 }, 7873 /* .pid */ 7874 /* .ppid */ 7875 /* .tid */ 7876 /* .ptid */ 7877 /* .time */ 7878 }, 7879 }; 7880 7881 perf_iterate_sb(perf_event_task_output, 7882 &task_event, 7883 task_ctx); 7884 } 7885 7886 void perf_event_fork(struct task_struct *task) 7887 { 7888 perf_event_task(task, NULL, 1); 7889 perf_event_namespaces(task); 7890 } 7891 7892 /* 7893 * comm tracking 7894 */ 7895 7896 struct perf_comm_event { 7897 struct task_struct *task; 7898 char *comm; 7899 int comm_size; 7900 7901 struct { 7902 struct perf_event_header header; 7903 7904 u32 pid; 7905 u32 tid; 7906 } event_id; 7907 }; 7908 7909 static int perf_event_comm_match(struct perf_event *event) 7910 { 7911 return event->attr.comm; 7912 } 7913 7914 static void perf_event_comm_output(struct perf_event *event, 7915 void *data) 7916 { 7917 struct perf_comm_event *comm_event = data; 7918 struct perf_output_handle handle; 7919 struct perf_sample_data sample; 7920 int size = comm_event->event_id.header.size; 7921 int ret; 7922 7923 if (!perf_event_comm_match(event)) 7924 return; 7925 7926 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 7927 ret = perf_output_begin(&handle, &sample, event, 7928 comm_event->event_id.header.size); 7929 7930 if (ret) 7931 goto out; 7932 7933 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 7934 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 7935 7936 perf_output_put(&handle, comm_event->event_id); 7937 __output_copy(&handle, comm_event->comm, 7938 comm_event->comm_size); 7939 7940 perf_event__output_id_sample(event, &handle, &sample); 7941 7942 perf_output_end(&handle); 7943 out: 7944 comm_event->event_id.header.size = size; 7945 } 7946 7947 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7948 { 7949 char comm[TASK_COMM_LEN]; 7950 unsigned int size; 7951 7952 memset(comm, 0, sizeof(comm)); 7953 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7954 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7955 7956 comm_event->comm = comm; 7957 comm_event->comm_size = size; 7958 7959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7960 7961 perf_iterate_sb(perf_event_comm_output, 7962 comm_event, 7963 NULL); 7964 } 7965 7966 void perf_event_comm(struct task_struct *task, bool exec) 7967 { 7968 struct perf_comm_event comm_event; 7969 7970 if (!atomic_read(&nr_comm_events)) 7971 return; 7972 7973 comm_event = (struct perf_comm_event){ 7974 .task = task, 7975 /* .comm */ 7976 /* .comm_size */ 7977 .event_id = { 7978 .header = { 7979 .type = PERF_RECORD_COMM, 7980 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7981 /* .size */ 7982 }, 7983 /* .pid */ 7984 /* .tid */ 7985 }, 7986 }; 7987 7988 perf_event_comm_event(&comm_event); 7989 } 7990 7991 /* 7992 * namespaces tracking 7993 */ 7994 7995 struct perf_namespaces_event { 7996 struct task_struct *task; 7997 7998 struct { 7999 struct perf_event_header header; 8000 8001 u32 pid; 8002 u32 tid; 8003 u64 nr_namespaces; 8004 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8005 } event_id; 8006 }; 8007 8008 static int perf_event_namespaces_match(struct perf_event *event) 8009 { 8010 return event->attr.namespaces; 8011 } 8012 8013 static void perf_event_namespaces_output(struct perf_event *event, 8014 void *data) 8015 { 8016 struct perf_namespaces_event *namespaces_event = data; 8017 struct perf_output_handle handle; 8018 struct perf_sample_data sample; 8019 u16 header_size = namespaces_event->event_id.header.size; 8020 int ret; 8021 8022 if (!perf_event_namespaces_match(event)) 8023 return; 8024 8025 perf_event_header__init_id(&namespaces_event->event_id.header, 8026 &sample, event); 8027 ret = perf_output_begin(&handle, &sample, event, 8028 namespaces_event->event_id.header.size); 8029 if (ret) 8030 goto out; 8031 8032 namespaces_event->event_id.pid = perf_event_pid(event, 8033 namespaces_event->task); 8034 namespaces_event->event_id.tid = perf_event_tid(event, 8035 namespaces_event->task); 8036 8037 perf_output_put(&handle, namespaces_event->event_id); 8038 8039 perf_event__output_id_sample(event, &handle, &sample); 8040 8041 perf_output_end(&handle); 8042 out: 8043 namespaces_event->event_id.header.size = header_size; 8044 } 8045 8046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8047 struct task_struct *task, 8048 const struct proc_ns_operations *ns_ops) 8049 { 8050 struct path ns_path; 8051 struct inode *ns_inode; 8052 int error; 8053 8054 error = ns_get_path(&ns_path, task, ns_ops); 8055 if (!error) { 8056 ns_inode = ns_path.dentry->d_inode; 8057 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8058 ns_link_info->ino = ns_inode->i_ino; 8059 path_put(&ns_path); 8060 } 8061 } 8062 8063 void perf_event_namespaces(struct task_struct *task) 8064 { 8065 struct perf_namespaces_event namespaces_event; 8066 struct perf_ns_link_info *ns_link_info; 8067 8068 if (!atomic_read(&nr_namespaces_events)) 8069 return; 8070 8071 namespaces_event = (struct perf_namespaces_event){ 8072 .task = task, 8073 .event_id = { 8074 .header = { 8075 .type = PERF_RECORD_NAMESPACES, 8076 .misc = 0, 8077 .size = sizeof(namespaces_event.event_id), 8078 }, 8079 /* .pid */ 8080 /* .tid */ 8081 .nr_namespaces = NR_NAMESPACES, 8082 /* .link_info[NR_NAMESPACES] */ 8083 }, 8084 }; 8085 8086 ns_link_info = namespaces_event.event_id.link_info; 8087 8088 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8089 task, &mntns_operations); 8090 8091 #ifdef CONFIG_USER_NS 8092 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8093 task, &userns_operations); 8094 #endif 8095 #ifdef CONFIG_NET_NS 8096 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8097 task, &netns_operations); 8098 #endif 8099 #ifdef CONFIG_UTS_NS 8100 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8101 task, &utsns_operations); 8102 #endif 8103 #ifdef CONFIG_IPC_NS 8104 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8105 task, &ipcns_operations); 8106 #endif 8107 #ifdef CONFIG_PID_NS 8108 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8109 task, &pidns_operations); 8110 #endif 8111 #ifdef CONFIG_CGROUPS 8112 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8113 task, &cgroupns_operations); 8114 #endif 8115 8116 perf_iterate_sb(perf_event_namespaces_output, 8117 &namespaces_event, 8118 NULL); 8119 } 8120 8121 /* 8122 * cgroup tracking 8123 */ 8124 #ifdef CONFIG_CGROUP_PERF 8125 8126 struct perf_cgroup_event { 8127 char *path; 8128 int path_size; 8129 struct { 8130 struct perf_event_header header; 8131 u64 id; 8132 char path[]; 8133 } event_id; 8134 }; 8135 8136 static int perf_event_cgroup_match(struct perf_event *event) 8137 { 8138 return event->attr.cgroup; 8139 } 8140 8141 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8142 { 8143 struct perf_cgroup_event *cgroup_event = data; 8144 struct perf_output_handle handle; 8145 struct perf_sample_data sample; 8146 u16 header_size = cgroup_event->event_id.header.size; 8147 int ret; 8148 8149 if (!perf_event_cgroup_match(event)) 8150 return; 8151 8152 perf_event_header__init_id(&cgroup_event->event_id.header, 8153 &sample, event); 8154 ret = perf_output_begin(&handle, &sample, event, 8155 cgroup_event->event_id.header.size); 8156 if (ret) 8157 goto out; 8158 8159 perf_output_put(&handle, cgroup_event->event_id); 8160 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8161 8162 perf_event__output_id_sample(event, &handle, &sample); 8163 8164 perf_output_end(&handle); 8165 out: 8166 cgroup_event->event_id.header.size = header_size; 8167 } 8168 8169 static void perf_event_cgroup(struct cgroup *cgrp) 8170 { 8171 struct perf_cgroup_event cgroup_event; 8172 char path_enomem[16] = "//enomem"; 8173 char *pathname; 8174 size_t size; 8175 8176 if (!atomic_read(&nr_cgroup_events)) 8177 return; 8178 8179 cgroup_event = (struct perf_cgroup_event){ 8180 .event_id = { 8181 .header = { 8182 .type = PERF_RECORD_CGROUP, 8183 .misc = 0, 8184 .size = sizeof(cgroup_event.event_id), 8185 }, 8186 .id = cgroup_id(cgrp), 8187 }, 8188 }; 8189 8190 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8191 if (pathname == NULL) { 8192 cgroup_event.path = path_enomem; 8193 } else { 8194 /* just to be sure to have enough space for alignment */ 8195 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8196 cgroup_event.path = pathname; 8197 } 8198 8199 /* 8200 * Since our buffer works in 8 byte units we need to align our string 8201 * size to a multiple of 8. However, we must guarantee the tail end is 8202 * zero'd out to avoid leaking random bits to userspace. 8203 */ 8204 size = strlen(cgroup_event.path) + 1; 8205 while (!IS_ALIGNED(size, sizeof(u64))) 8206 cgroup_event.path[size++] = '\0'; 8207 8208 cgroup_event.event_id.header.size += size; 8209 cgroup_event.path_size = size; 8210 8211 perf_iterate_sb(perf_event_cgroup_output, 8212 &cgroup_event, 8213 NULL); 8214 8215 kfree(pathname); 8216 } 8217 8218 #endif 8219 8220 /* 8221 * mmap tracking 8222 */ 8223 8224 struct perf_mmap_event { 8225 struct vm_area_struct *vma; 8226 8227 const char *file_name; 8228 int file_size; 8229 int maj, min; 8230 u64 ino; 8231 u64 ino_generation; 8232 u32 prot, flags; 8233 u8 build_id[BUILD_ID_SIZE_MAX]; 8234 u32 build_id_size; 8235 8236 struct { 8237 struct perf_event_header header; 8238 8239 u32 pid; 8240 u32 tid; 8241 u64 start; 8242 u64 len; 8243 u64 pgoff; 8244 } event_id; 8245 }; 8246 8247 static int perf_event_mmap_match(struct perf_event *event, 8248 void *data) 8249 { 8250 struct perf_mmap_event *mmap_event = data; 8251 struct vm_area_struct *vma = mmap_event->vma; 8252 int executable = vma->vm_flags & VM_EXEC; 8253 8254 return (!executable && event->attr.mmap_data) || 8255 (executable && (event->attr.mmap || event->attr.mmap2)); 8256 } 8257 8258 static void perf_event_mmap_output(struct perf_event *event, 8259 void *data) 8260 { 8261 struct perf_mmap_event *mmap_event = data; 8262 struct perf_output_handle handle; 8263 struct perf_sample_data sample; 8264 int size = mmap_event->event_id.header.size; 8265 u32 type = mmap_event->event_id.header.type; 8266 bool use_build_id; 8267 int ret; 8268 8269 if (!perf_event_mmap_match(event, data)) 8270 return; 8271 8272 if (event->attr.mmap2) { 8273 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8274 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8275 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8276 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8277 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8278 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8279 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8280 } 8281 8282 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8283 ret = perf_output_begin(&handle, &sample, event, 8284 mmap_event->event_id.header.size); 8285 if (ret) 8286 goto out; 8287 8288 mmap_event->event_id.pid = perf_event_pid(event, current); 8289 mmap_event->event_id.tid = perf_event_tid(event, current); 8290 8291 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8292 8293 if (event->attr.mmap2 && use_build_id) 8294 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8295 8296 perf_output_put(&handle, mmap_event->event_id); 8297 8298 if (event->attr.mmap2) { 8299 if (use_build_id) { 8300 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8301 8302 __output_copy(&handle, size, 4); 8303 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8304 } else { 8305 perf_output_put(&handle, mmap_event->maj); 8306 perf_output_put(&handle, mmap_event->min); 8307 perf_output_put(&handle, mmap_event->ino); 8308 perf_output_put(&handle, mmap_event->ino_generation); 8309 } 8310 perf_output_put(&handle, mmap_event->prot); 8311 perf_output_put(&handle, mmap_event->flags); 8312 } 8313 8314 __output_copy(&handle, mmap_event->file_name, 8315 mmap_event->file_size); 8316 8317 perf_event__output_id_sample(event, &handle, &sample); 8318 8319 perf_output_end(&handle); 8320 out: 8321 mmap_event->event_id.header.size = size; 8322 mmap_event->event_id.header.type = type; 8323 } 8324 8325 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8326 { 8327 struct vm_area_struct *vma = mmap_event->vma; 8328 struct file *file = vma->vm_file; 8329 int maj = 0, min = 0; 8330 u64 ino = 0, gen = 0; 8331 u32 prot = 0, flags = 0; 8332 unsigned int size; 8333 char tmp[16]; 8334 char *buf = NULL; 8335 char *name; 8336 8337 if (vma->vm_flags & VM_READ) 8338 prot |= PROT_READ; 8339 if (vma->vm_flags & VM_WRITE) 8340 prot |= PROT_WRITE; 8341 if (vma->vm_flags & VM_EXEC) 8342 prot |= PROT_EXEC; 8343 8344 if (vma->vm_flags & VM_MAYSHARE) 8345 flags = MAP_SHARED; 8346 else 8347 flags = MAP_PRIVATE; 8348 8349 if (vma->vm_flags & VM_LOCKED) 8350 flags |= MAP_LOCKED; 8351 if (is_vm_hugetlb_page(vma)) 8352 flags |= MAP_HUGETLB; 8353 8354 if (file) { 8355 struct inode *inode; 8356 dev_t dev; 8357 8358 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8359 if (!buf) { 8360 name = "//enomem"; 8361 goto cpy_name; 8362 } 8363 /* 8364 * d_path() works from the end of the rb backwards, so we 8365 * need to add enough zero bytes after the string to handle 8366 * the 64bit alignment we do later. 8367 */ 8368 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8369 if (IS_ERR(name)) { 8370 name = "//toolong"; 8371 goto cpy_name; 8372 } 8373 inode = file_inode(vma->vm_file); 8374 dev = inode->i_sb->s_dev; 8375 ino = inode->i_ino; 8376 gen = inode->i_generation; 8377 maj = MAJOR(dev); 8378 min = MINOR(dev); 8379 8380 goto got_name; 8381 } else { 8382 if (vma->vm_ops && vma->vm_ops->name) { 8383 name = (char *) vma->vm_ops->name(vma); 8384 if (name) 8385 goto cpy_name; 8386 } 8387 8388 name = (char *)arch_vma_name(vma); 8389 if (name) 8390 goto cpy_name; 8391 8392 if (vma->vm_start <= vma->vm_mm->start_brk && 8393 vma->vm_end >= vma->vm_mm->brk) { 8394 name = "[heap]"; 8395 goto cpy_name; 8396 } 8397 if (vma->vm_start <= vma->vm_mm->start_stack && 8398 vma->vm_end >= vma->vm_mm->start_stack) { 8399 name = "[stack]"; 8400 goto cpy_name; 8401 } 8402 8403 name = "//anon"; 8404 goto cpy_name; 8405 } 8406 8407 cpy_name: 8408 strlcpy(tmp, name, sizeof(tmp)); 8409 name = tmp; 8410 got_name: 8411 /* 8412 * Since our buffer works in 8 byte units we need to align our string 8413 * size to a multiple of 8. However, we must guarantee the tail end is 8414 * zero'd out to avoid leaking random bits to userspace. 8415 */ 8416 size = strlen(name)+1; 8417 while (!IS_ALIGNED(size, sizeof(u64))) 8418 name[size++] = '\0'; 8419 8420 mmap_event->file_name = name; 8421 mmap_event->file_size = size; 8422 mmap_event->maj = maj; 8423 mmap_event->min = min; 8424 mmap_event->ino = ino; 8425 mmap_event->ino_generation = gen; 8426 mmap_event->prot = prot; 8427 mmap_event->flags = flags; 8428 8429 if (!(vma->vm_flags & VM_EXEC)) 8430 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8431 8432 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8433 8434 if (atomic_read(&nr_build_id_events)) 8435 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8436 8437 perf_iterate_sb(perf_event_mmap_output, 8438 mmap_event, 8439 NULL); 8440 8441 kfree(buf); 8442 } 8443 8444 /* 8445 * Check whether inode and address range match filter criteria. 8446 */ 8447 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8448 struct file *file, unsigned long offset, 8449 unsigned long size) 8450 { 8451 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8452 if (!filter->path.dentry) 8453 return false; 8454 8455 if (d_inode(filter->path.dentry) != file_inode(file)) 8456 return false; 8457 8458 if (filter->offset > offset + size) 8459 return false; 8460 8461 if (filter->offset + filter->size < offset) 8462 return false; 8463 8464 return true; 8465 } 8466 8467 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8468 struct vm_area_struct *vma, 8469 struct perf_addr_filter_range *fr) 8470 { 8471 unsigned long vma_size = vma->vm_end - vma->vm_start; 8472 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8473 struct file *file = vma->vm_file; 8474 8475 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8476 return false; 8477 8478 if (filter->offset < off) { 8479 fr->start = vma->vm_start; 8480 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8481 } else { 8482 fr->start = vma->vm_start + filter->offset - off; 8483 fr->size = min(vma->vm_end - fr->start, filter->size); 8484 } 8485 8486 return true; 8487 } 8488 8489 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8490 { 8491 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8492 struct vm_area_struct *vma = data; 8493 struct perf_addr_filter *filter; 8494 unsigned int restart = 0, count = 0; 8495 unsigned long flags; 8496 8497 if (!has_addr_filter(event)) 8498 return; 8499 8500 if (!vma->vm_file) 8501 return; 8502 8503 raw_spin_lock_irqsave(&ifh->lock, flags); 8504 list_for_each_entry(filter, &ifh->list, entry) { 8505 if (perf_addr_filter_vma_adjust(filter, vma, 8506 &event->addr_filter_ranges[count])) 8507 restart++; 8508 8509 count++; 8510 } 8511 8512 if (restart) 8513 event->addr_filters_gen++; 8514 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8515 8516 if (restart) 8517 perf_event_stop(event, 1); 8518 } 8519 8520 /* 8521 * Adjust all task's events' filters to the new vma 8522 */ 8523 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8524 { 8525 struct perf_event_context *ctx; 8526 int ctxn; 8527 8528 /* 8529 * Data tracing isn't supported yet and as such there is no need 8530 * to keep track of anything that isn't related to executable code: 8531 */ 8532 if (!(vma->vm_flags & VM_EXEC)) 8533 return; 8534 8535 rcu_read_lock(); 8536 for_each_task_context_nr(ctxn) { 8537 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 8538 if (!ctx) 8539 continue; 8540 8541 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8542 } 8543 rcu_read_unlock(); 8544 } 8545 8546 void perf_event_mmap(struct vm_area_struct *vma) 8547 { 8548 struct perf_mmap_event mmap_event; 8549 8550 if (!atomic_read(&nr_mmap_events)) 8551 return; 8552 8553 mmap_event = (struct perf_mmap_event){ 8554 .vma = vma, 8555 /* .file_name */ 8556 /* .file_size */ 8557 .event_id = { 8558 .header = { 8559 .type = PERF_RECORD_MMAP, 8560 .misc = PERF_RECORD_MISC_USER, 8561 /* .size */ 8562 }, 8563 /* .pid */ 8564 /* .tid */ 8565 .start = vma->vm_start, 8566 .len = vma->vm_end - vma->vm_start, 8567 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8568 }, 8569 /* .maj (attr_mmap2 only) */ 8570 /* .min (attr_mmap2 only) */ 8571 /* .ino (attr_mmap2 only) */ 8572 /* .ino_generation (attr_mmap2 only) */ 8573 /* .prot (attr_mmap2 only) */ 8574 /* .flags (attr_mmap2 only) */ 8575 }; 8576 8577 perf_addr_filters_adjust(vma); 8578 perf_event_mmap_event(&mmap_event); 8579 } 8580 8581 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8582 unsigned long size, u64 flags) 8583 { 8584 struct perf_output_handle handle; 8585 struct perf_sample_data sample; 8586 struct perf_aux_event { 8587 struct perf_event_header header; 8588 u64 offset; 8589 u64 size; 8590 u64 flags; 8591 } rec = { 8592 .header = { 8593 .type = PERF_RECORD_AUX, 8594 .misc = 0, 8595 .size = sizeof(rec), 8596 }, 8597 .offset = head, 8598 .size = size, 8599 .flags = flags, 8600 }; 8601 int ret; 8602 8603 perf_event_header__init_id(&rec.header, &sample, event); 8604 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8605 8606 if (ret) 8607 return; 8608 8609 perf_output_put(&handle, rec); 8610 perf_event__output_id_sample(event, &handle, &sample); 8611 8612 perf_output_end(&handle); 8613 } 8614 8615 /* 8616 * Lost/dropped samples logging 8617 */ 8618 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8619 { 8620 struct perf_output_handle handle; 8621 struct perf_sample_data sample; 8622 int ret; 8623 8624 struct { 8625 struct perf_event_header header; 8626 u64 lost; 8627 } lost_samples_event = { 8628 .header = { 8629 .type = PERF_RECORD_LOST_SAMPLES, 8630 .misc = 0, 8631 .size = sizeof(lost_samples_event), 8632 }, 8633 .lost = lost, 8634 }; 8635 8636 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8637 8638 ret = perf_output_begin(&handle, &sample, event, 8639 lost_samples_event.header.size); 8640 if (ret) 8641 return; 8642 8643 perf_output_put(&handle, lost_samples_event); 8644 perf_event__output_id_sample(event, &handle, &sample); 8645 perf_output_end(&handle); 8646 } 8647 8648 /* 8649 * context_switch tracking 8650 */ 8651 8652 struct perf_switch_event { 8653 struct task_struct *task; 8654 struct task_struct *next_prev; 8655 8656 struct { 8657 struct perf_event_header header; 8658 u32 next_prev_pid; 8659 u32 next_prev_tid; 8660 } event_id; 8661 }; 8662 8663 static int perf_event_switch_match(struct perf_event *event) 8664 { 8665 return event->attr.context_switch; 8666 } 8667 8668 static void perf_event_switch_output(struct perf_event *event, void *data) 8669 { 8670 struct perf_switch_event *se = data; 8671 struct perf_output_handle handle; 8672 struct perf_sample_data sample; 8673 int ret; 8674 8675 if (!perf_event_switch_match(event)) 8676 return; 8677 8678 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8679 if (event->ctx->task) { 8680 se->event_id.header.type = PERF_RECORD_SWITCH; 8681 se->event_id.header.size = sizeof(se->event_id.header); 8682 } else { 8683 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8684 se->event_id.header.size = sizeof(se->event_id); 8685 se->event_id.next_prev_pid = 8686 perf_event_pid(event, se->next_prev); 8687 se->event_id.next_prev_tid = 8688 perf_event_tid(event, se->next_prev); 8689 } 8690 8691 perf_event_header__init_id(&se->event_id.header, &sample, event); 8692 8693 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 8694 if (ret) 8695 return; 8696 8697 if (event->ctx->task) 8698 perf_output_put(&handle, se->event_id.header); 8699 else 8700 perf_output_put(&handle, se->event_id); 8701 8702 perf_event__output_id_sample(event, &handle, &sample); 8703 8704 perf_output_end(&handle); 8705 } 8706 8707 static void perf_event_switch(struct task_struct *task, 8708 struct task_struct *next_prev, bool sched_in) 8709 { 8710 struct perf_switch_event switch_event; 8711 8712 /* N.B. caller checks nr_switch_events != 0 */ 8713 8714 switch_event = (struct perf_switch_event){ 8715 .task = task, 8716 .next_prev = next_prev, 8717 .event_id = { 8718 .header = { 8719 /* .type */ 8720 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 8721 /* .size */ 8722 }, 8723 /* .next_prev_pid */ 8724 /* .next_prev_tid */ 8725 }, 8726 }; 8727 8728 if (!sched_in && task->on_rq) { 8729 switch_event.event_id.header.misc |= 8730 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 8731 } 8732 8733 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 8734 } 8735 8736 /* 8737 * IRQ throttle logging 8738 */ 8739 8740 static void perf_log_throttle(struct perf_event *event, int enable) 8741 { 8742 struct perf_output_handle handle; 8743 struct perf_sample_data sample; 8744 int ret; 8745 8746 struct { 8747 struct perf_event_header header; 8748 u64 time; 8749 u64 id; 8750 u64 stream_id; 8751 } throttle_event = { 8752 .header = { 8753 .type = PERF_RECORD_THROTTLE, 8754 .misc = 0, 8755 .size = sizeof(throttle_event), 8756 }, 8757 .time = perf_event_clock(event), 8758 .id = primary_event_id(event), 8759 .stream_id = event->id, 8760 }; 8761 8762 if (enable) 8763 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 8764 8765 perf_event_header__init_id(&throttle_event.header, &sample, event); 8766 8767 ret = perf_output_begin(&handle, &sample, event, 8768 throttle_event.header.size); 8769 if (ret) 8770 return; 8771 8772 perf_output_put(&handle, throttle_event); 8773 perf_event__output_id_sample(event, &handle, &sample); 8774 perf_output_end(&handle); 8775 } 8776 8777 /* 8778 * ksymbol register/unregister tracking 8779 */ 8780 8781 struct perf_ksymbol_event { 8782 const char *name; 8783 int name_len; 8784 struct { 8785 struct perf_event_header header; 8786 u64 addr; 8787 u32 len; 8788 u16 ksym_type; 8789 u16 flags; 8790 } event_id; 8791 }; 8792 8793 static int perf_event_ksymbol_match(struct perf_event *event) 8794 { 8795 return event->attr.ksymbol; 8796 } 8797 8798 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 8799 { 8800 struct perf_ksymbol_event *ksymbol_event = data; 8801 struct perf_output_handle handle; 8802 struct perf_sample_data sample; 8803 int ret; 8804 8805 if (!perf_event_ksymbol_match(event)) 8806 return; 8807 8808 perf_event_header__init_id(&ksymbol_event->event_id.header, 8809 &sample, event); 8810 ret = perf_output_begin(&handle, &sample, event, 8811 ksymbol_event->event_id.header.size); 8812 if (ret) 8813 return; 8814 8815 perf_output_put(&handle, ksymbol_event->event_id); 8816 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 8817 perf_event__output_id_sample(event, &handle, &sample); 8818 8819 perf_output_end(&handle); 8820 } 8821 8822 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 8823 const char *sym) 8824 { 8825 struct perf_ksymbol_event ksymbol_event; 8826 char name[KSYM_NAME_LEN]; 8827 u16 flags = 0; 8828 int name_len; 8829 8830 if (!atomic_read(&nr_ksymbol_events)) 8831 return; 8832 8833 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 8834 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 8835 goto err; 8836 8837 strlcpy(name, sym, KSYM_NAME_LEN); 8838 name_len = strlen(name) + 1; 8839 while (!IS_ALIGNED(name_len, sizeof(u64))) 8840 name[name_len++] = '\0'; 8841 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 8842 8843 if (unregister) 8844 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 8845 8846 ksymbol_event = (struct perf_ksymbol_event){ 8847 .name = name, 8848 .name_len = name_len, 8849 .event_id = { 8850 .header = { 8851 .type = PERF_RECORD_KSYMBOL, 8852 .size = sizeof(ksymbol_event.event_id) + 8853 name_len, 8854 }, 8855 .addr = addr, 8856 .len = len, 8857 .ksym_type = ksym_type, 8858 .flags = flags, 8859 }, 8860 }; 8861 8862 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 8863 return; 8864 err: 8865 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 8866 } 8867 8868 /* 8869 * bpf program load/unload tracking 8870 */ 8871 8872 struct perf_bpf_event { 8873 struct bpf_prog *prog; 8874 struct { 8875 struct perf_event_header header; 8876 u16 type; 8877 u16 flags; 8878 u32 id; 8879 u8 tag[BPF_TAG_SIZE]; 8880 } event_id; 8881 }; 8882 8883 static int perf_event_bpf_match(struct perf_event *event) 8884 { 8885 return event->attr.bpf_event; 8886 } 8887 8888 static void perf_event_bpf_output(struct perf_event *event, void *data) 8889 { 8890 struct perf_bpf_event *bpf_event = data; 8891 struct perf_output_handle handle; 8892 struct perf_sample_data sample; 8893 int ret; 8894 8895 if (!perf_event_bpf_match(event)) 8896 return; 8897 8898 perf_event_header__init_id(&bpf_event->event_id.header, 8899 &sample, event); 8900 ret = perf_output_begin(&handle, data, event, 8901 bpf_event->event_id.header.size); 8902 if (ret) 8903 return; 8904 8905 perf_output_put(&handle, bpf_event->event_id); 8906 perf_event__output_id_sample(event, &handle, &sample); 8907 8908 perf_output_end(&handle); 8909 } 8910 8911 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 8912 enum perf_bpf_event_type type) 8913 { 8914 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 8915 int i; 8916 8917 if (prog->aux->func_cnt == 0) { 8918 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 8919 (u64)(unsigned long)prog->bpf_func, 8920 prog->jited_len, unregister, 8921 prog->aux->ksym.name); 8922 } else { 8923 for (i = 0; i < prog->aux->func_cnt; i++) { 8924 struct bpf_prog *subprog = prog->aux->func[i]; 8925 8926 perf_event_ksymbol( 8927 PERF_RECORD_KSYMBOL_TYPE_BPF, 8928 (u64)(unsigned long)subprog->bpf_func, 8929 subprog->jited_len, unregister, 8930 prog->aux->ksym.name); 8931 } 8932 } 8933 } 8934 8935 void perf_event_bpf_event(struct bpf_prog *prog, 8936 enum perf_bpf_event_type type, 8937 u16 flags) 8938 { 8939 struct perf_bpf_event bpf_event; 8940 8941 if (type <= PERF_BPF_EVENT_UNKNOWN || 8942 type >= PERF_BPF_EVENT_MAX) 8943 return; 8944 8945 switch (type) { 8946 case PERF_BPF_EVENT_PROG_LOAD: 8947 case PERF_BPF_EVENT_PROG_UNLOAD: 8948 if (atomic_read(&nr_ksymbol_events)) 8949 perf_event_bpf_emit_ksymbols(prog, type); 8950 break; 8951 default: 8952 break; 8953 } 8954 8955 if (!atomic_read(&nr_bpf_events)) 8956 return; 8957 8958 bpf_event = (struct perf_bpf_event){ 8959 .prog = prog, 8960 .event_id = { 8961 .header = { 8962 .type = PERF_RECORD_BPF_EVENT, 8963 .size = sizeof(bpf_event.event_id), 8964 }, 8965 .type = type, 8966 .flags = flags, 8967 .id = prog->aux->id, 8968 }, 8969 }; 8970 8971 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 8972 8973 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 8974 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 8975 } 8976 8977 struct perf_text_poke_event { 8978 const void *old_bytes; 8979 const void *new_bytes; 8980 size_t pad; 8981 u16 old_len; 8982 u16 new_len; 8983 8984 struct { 8985 struct perf_event_header header; 8986 8987 u64 addr; 8988 } event_id; 8989 }; 8990 8991 static int perf_event_text_poke_match(struct perf_event *event) 8992 { 8993 return event->attr.text_poke; 8994 } 8995 8996 static void perf_event_text_poke_output(struct perf_event *event, void *data) 8997 { 8998 struct perf_text_poke_event *text_poke_event = data; 8999 struct perf_output_handle handle; 9000 struct perf_sample_data sample; 9001 u64 padding = 0; 9002 int ret; 9003 9004 if (!perf_event_text_poke_match(event)) 9005 return; 9006 9007 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9008 9009 ret = perf_output_begin(&handle, &sample, event, 9010 text_poke_event->event_id.header.size); 9011 if (ret) 9012 return; 9013 9014 perf_output_put(&handle, text_poke_event->event_id); 9015 perf_output_put(&handle, text_poke_event->old_len); 9016 perf_output_put(&handle, text_poke_event->new_len); 9017 9018 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9019 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9020 9021 if (text_poke_event->pad) 9022 __output_copy(&handle, &padding, text_poke_event->pad); 9023 9024 perf_event__output_id_sample(event, &handle, &sample); 9025 9026 perf_output_end(&handle); 9027 } 9028 9029 void perf_event_text_poke(const void *addr, const void *old_bytes, 9030 size_t old_len, const void *new_bytes, size_t new_len) 9031 { 9032 struct perf_text_poke_event text_poke_event; 9033 size_t tot, pad; 9034 9035 if (!atomic_read(&nr_text_poke_events)) 9036 return; 9037 9038 tot = sizeof(text_poke_event.old_len) + old_len; 9039 tot += sizeof(text_poke_event.new_len) + new_len; 9040 pad = ALIGN(tot, sizeof(u64)) - tot; 9041 9042 text_poke_event = (struct perf_text_poke_event){ 9043 .old_bytes = old_bytes, 9044 .new_bytes = new_bytes, 9045 .pad = pad, 9046 .old_len = old_len, 9047 .new_len = new_len, 9048 .event_id = { 9049 .header = { 9050 .type = PERF_RECORD_TEXT_POKE, 9051 .misc = PERF_RECORD_MISC_KERNEL, 9052 .size = sizeof(text_poke_event.event_id) + tot + pad, 9053 }, 9054 .addr = (unsigned long)addr, 9055 }, 9056 }; 9057 9058 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9059 } 9060 9061 void perf_event_itrace_started(struct perf_event *event) 9062 { 9063 event->attach_state |= PERF_ATTACH_ITRACE; 9064 } 9065 9066 static void perf_log_itrace_start(struct perf_event *event) 9067 { 9068 struct perf_output_handle handle; 9069 struct perf_sample_data sample; 9070 struct perf_aux_event { 9071 struct perf_event_header header; 9072 u32 pid; 9073 u32 tid; 9074 } rec; 9075 int ret; 9076 9077 if (event->parent) 9078 event = event->parent; 9079 9080 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9081 event->attach_state & PERF_ATTACH_ITRACE) 9082 return; 9083 9084 rec.header.type = PERF_RECORD_ITRACE_START; 9085 rec.header.misc = 0; 9086 rec.header.size = sizeof(rec); 9087 rec.pid = perf_event_pid(event, current); 9088 rec.tid = perf_event_tid(event, current); 9089 9090 perf_event_header__init_id(&rec.header, &sample, event); 9091 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9092 9093 if (ret) 9094 return; 9095 9096 perf_output_put(&handle, rec); 9097 perf_event__output_id_sample(event, &handle, &sample); 9098 9099 perf_output_end(&handle); 9100 } 9101 9102 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9103 { 9104 struct perf_output_handle handle; 9105 struct perf_sample_data sample; 9106 struct perf_aux_event { 9107 struct perf_event_header header; 9108 u64 hw_id; 9109 } rec; 9110 int ret; 9111 9112 if (event->parent) 9113 event = event->parent; 9114 9115 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9116 rec.header.misc = 0; 9117 rec.header.size = sizeof(rec); 9118 rec.hw_id = hw_id; 9119 9120 perf_event_header__init_id(&rec.header, &sample, event); 9121 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9122 9123 if (ret) 9124 return; 9125 9126 perf_output_put(&handle, rec); 9127 perf_event__output_id_sample(event, &handle, &sample); 9128 9129 perf_output_end(&handle); 9130 } 9131 9132 static int 9133 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9134 { 9135 struct hw_perf_event *hwc = &event->hw; 9136 int ret = 0; 9137 u64 seq; 9138 9139 seq = __this_cpu_read(perf_throttled_seq); 9140 if (seq != hwc->interrupts_seq) { 9141 hwc->interrupts_seq = seq; 9142 hwc->interrupts = 1; 9143 } else { 9144 hwc->interrupts++; 9145 if (unlikely(throttle 9146 && hwc->interrupts >= max_samples_per_tick)) { 9147 __this_cpu_inc(perf_throttled_count); 9148 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9149 hwc->interrupts = MAX_INTERRUPTS; 9150 perf_log_throttle(event, 0); 9151 ret = 1; 9152 } 9153 } 9154 9155 if (event->attr.freq) { 9156 u64 now = perf_clock(); 9157 s64 delta = now - hwc->freq_time_stamp; 9158 9159 hwc->freq_time_stamp = now; 9160 9161 if (delta > 0 && delta < 2*TICK_NSEC) 9162 perf_adjust_period(event, delta, hwc->last_period, true); 9163 } 9164 9165 return ret; 9166 } 9167 9168 int perf_event_account_interrupt(struct perf_event *event) 9169 { 9170 return __perf_event_account_interrupt(event, 1); 9171 } 9172 9173 /* 9174 * Generic event overflow handling, sampling. 9175 */ 9176 9177 static int __perf_event_overflow(struct perf_event *event, 9178 int throttle, struct perf_sample_data *data, 9179 struct pt_regs *regs) 9180 { 9181 int events = atomic_read(&event->event_limit); 9182 int ret = 0; 9183 9184 /* 9185 * Non-sampling counters might still use the PMI to fold short 9186 * hardware counters, ignore those. 9187 */ 9188 if (unlikely(!is_sampling_event(event))) 9189 return 0; 9190 9191 ret = __perf_event_account_interrupt(event, throttle); 9192 9193 /* 9194 * XXX event_limit might not quite work as expected on inherited 9195 * events 9196 */ 9197 9198 event->pending_kill = POLL_IN; 9199 if (events && atomic_dec_and_test(&event->event_limit)) { 9200 ret = 1; 9201 event->pending_kill = POLL_HUP; 9202 event->pending_addr = data->addr; 9203 9204 perf_event_disable_inatomic(event); 9205 } 9206 9207 READ_ONCE(event->overflow_handler)(event, data, regs); 9208 9209 if (*perf_event_fasync(event) && event->pending_kill) { 9210 event->pending_wakeup = 1; 9211 irq_work_queue(&event->pending); 9212 } 9213 9214 return ret; 9215 } 9216 9217 int perf_event_overflow(struct perf_event *event, 9218 struct perf_sample_data *data, 9219 struct pt_regs *regs) 9220 { 9221 return __perf_event_overflow(event, 1, data, regs); 9222 } 9223 9224 /* 9225 * Generic software event infrastructure 9226 */ 9227 9228 struct swevent_htable { 9229 struct swevent_hlist *swevent_hlist; 9230 struct mutex hlist_mutex; 9231 int hlist_refcount; 9232 9233 /* Recursion avoidance in each contexts */ 9234 int recursion[PERF_NR_CONTEXTS]; 9235 }; 9236 9237 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9238 9239 /* 9240 * We directly increment event->count and keep a second value in 9241 * event->hw.period_left to count intervals. This period event 9242 * is kept in the range [-sample_period, 0] so that we can use the 9243 * sign as trigger. 9244 */ 9245 9246 u64 perf_swevent_set_period(struct perf_event *event) 9247 { 9248 struct hw_perf_event *hwc = &event->hw; 9249 u64 period = hwc->last_period; 9250 u64 nr, offset; 9251 s64 old, val; 9252 9253 hwc->last_period = hwc->sample_period; 9254 9255 again: 9256 old = val = local64_read(&hwc->period_left); 9257 if (val < 0) 9258 return 0; 9259 9260 nr = div64_u64(period + val, period); 9261 offset = nr * period; 9262 val -= offset; 9263 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 9264 goto again; 9265 9266 return nr; 9267 } 9268 9269 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9270 struct perf_sample_data *data, 9271 struct pt_regs *regs) 9272 { 9273 struct hw_perf_event *hwc = &event->hw; 9274 int throttle = 0; 9275 9276 if (!overflow) 9277 overflow = perf_swevent_set_period(event); 9278 9279 if (hwc->interrupts == MAX_INTERRUPTS) 9280 return; 9281 9282 for (; overflow; overflow--) { 9283 if (__perf_event_overflow(event, throttle, 9284 data, regs)) { 9285 /* 9286 * We inhibit the overflow from happening when 9287 * hwc->interrupts == MAX_INTERRUPTS. 9288 */ 9289 break; 9290 } 9291 throttle = 1; 9292 } 9293 } 9294 9295 static void perf_swevent_event(struct perf_event *event, u64 nr, 9296 struct perf_sample_data *data, 9297 struct pt_regs *regs) 9298 { 9299 struct hw_perf_event *hwc = &event->hw; 9300 9301 local64_add(nr, &event->count); 9302 9303 if (!regs) 9304 return; 9305 9306 if (!is_sampling_event(event)) 9307 return; 9308 9309 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9310 data->period = nr; 9311 return perf_swevent_overflow(event, 1, data, regs); 9312 } else 9313 data->period = event->hw.last_period; 9314 9315 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9316 return perf_swevent_overflow(event, 1, data, regs); 9317 9318 if (local64_add_negative(nr, &hwc->period_left)) 9319 return; 9320 9321 perf_swevent_overflow(event, 0, data, regs); 9322 } 9323 9324 static int perf_exclude_event(struct perf_event *event, 9325 struct pt_regs *regs) 9326 { 9327 if (event->hw.state & PERF_HES_STOPPED) 9328 return 1; 9329 9330 if (regs) { 9331 if (event->attr.exclude_user && user_mode(regs)) 9332 return 1; 9333 9334 if (event->attr.exclude_kernel && !user_mode(regs)) 9335 return 1; 9336 } 9337 9338 return 0; 9339 } 9340 9341 static int perf_swevent_match(struct perf_event *event, 9342 enum perf_type_id type, 9343 u32 event_id, 9344 struct perf_sample_data *data, 9345 struct pt_regs *regs) 9346 { 9347 if (event->attr.type != type) 9348 return 0; 9349 9350 if (event->attr.config != event_id) 9351 return 0; 9352 9353 if (perf_exclude_event(event, regs)) 9354 return 0; 9355 9356 return 1; 9357 } 9358 9359 static inline u64 swevent_hash(u64 type, u32 event_id) 9360 { 9361 u64 val = event_id | (type << 32); 9362 9363 return hash_64(val, SWEVENT_HLIST_BITS); 9364 } 9365 9366 static inline struct hlist_head * 9367 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9368 { 9369 u64 hash = swevent_hash(type, event_id); 9370 9371 return &hlist->heads[hash]; 9372 } 9373 9374 /* For the read side: events when they trigger */ 9375 static inline struct hlist_head * 9376 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9377 { 9378 struct swevent_hlist *hlist; 9379 9380 hlist = rcu_dereference(swhash->swevent_hlist); 9381 if (!hlist) 9382 return NULL; 9383 9384 return __find_swevent_head(hlist, type, event_id); 9385 } 9386 9387 /* For the event head insertion and removal in the hlist */ 9388 static inline struct hlist_head * 9389 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9390 { 9391 struct swevent_hlist *hlist; 9392 u32 event_id = event->attr.config; 9393 u64 type = event->attr.type; 9394 9395 /* 9396 * Event scheduling is always serialized against hlist allocation 9397 * and release. Which makes the protected version suitable here. 9398 * The context lock guarantees that. 9399 */ 9400 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9401 lockdep_is_held(&event->ctx->lock)); 9402 if (!hlist) 9403 return NULL; 9404 9405 return __find_swevent_head(hlist, type, event_id); 9406 } 9407 9408 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9409 u64 nr, 9410 struct perf_sample_data *data, 9411 struct pt_regs *regs) 9412 { 9413 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9414 struct perf_event *event; 9415 struct hlist_head *head; 9416 9417 rcu_read_lock(); 9418 head = find_swevent_head_rcu(swhash, type, event_id); 9419 if (!head) 9420 goto end; 9421 9422 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9423 if (perf_swevent_match(event, type, event_id, data, regs)) 9424 perf_swevent_event(event, nr, data, regs); 9425 } 9426 end: 9427 rcu_read_unlock(); 9428 } 9429 9430 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9431 9432 int perf_swevent_get_recursion_context(void) 9433 { 9434 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9435 9436 return get_recursion_context(swhash->recursion); 9437 } 9438 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9439 9440 void perf_swevent_put_recursion_context(int rctx) 9441 { 9442 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9443 9444 put_recursion_context(swhash->recursion, rctx); 9445 } 9446 9447 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9448 { 9449 struct perf_sample_data data; 9450 9451 if (WARN_ON_ONCE(!regs)) 9452 return; 9453 9454 perf_sample_data_init(&data, addr, 0); 9455 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9456 } 9457 9458 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9459 { 9460 int rctx; 9461 9462 preempt_disable_notrace(); 9463 rctx = perf_swevent_get_recursion_context(); 9464 if (unlikely(rctx < 0)) 9465 goto fail; 9466 9467 ___perf_sw_event(event_id, nr, regs, addr); 9468 9469 perf_swevent_put_recursion_context(rctx); 9470 fail: 9471 preempt_enable_notrace(); 9472 } 9473 9474 static void perf_swevent_read(struct perf_event *event) 9475 { 9476 } 9477 9478 static int perf_swevent_add(struct perf_event *event, int flags) 9479 { 9480 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9481 struct hw_perf_event *hwc = &event->hw; 9482 struct hlist_head *head; 9483 9484 if (is_sampling_event(event)) { 9485 hwc->last_period = hwc->sample_period; 9486 perf_swevent_set_period(event); 9487 } 9488 9489 hwc->state = !(flags & PERF_EF_START); 9490 9491 head = find_swevent_head(swhash, event); 9492 if (WARN_ON_ONCE(!head)) 9493 return -EINVAL; 9494 9495 hlist_add_head_rcu(&event->hlist_entry, head); 9496 perf_event_update_userpage(event); 9497 9498 return 0; 9499 } 9500 9501 static void perf_swevent_del(struct perf_event *event, int flags) 9502 { 9503 hlist_del_rcu(&event->hlist_entry); 9504 } 9505 9506 static void perf_swevent_start(struct perf_event *event, int flags) 9507 { 9508 event->hw.state = 0; 9509 } 9510 9511 static void perf_swevent_stop(struct perf_event *event, int flags) 9512 { 9513 event->hw.state = PERF_HES_STOPPED; 9514 } 9515 9516 /* Deref the hlist from the update side */ 9517 static inline struct swevent_hlist * 9518 swevent_hlist_deref(struct swevent_htable *swhash) 9519 { 9520 return rcu_dereference_protected(swhash->swevent_hlist, 9521 lockdep_is_held(&swhash->hlist_mutex)); 9522 } 9523 9524 static void swevent_hlist_release(struct swevent_htable *swhash) 9525 { 9526 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9527 9528 if (!hlist) 9529 return; 9530 9531 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9532 kfree_rcu(hlist, rcu_head); 9533 } 9534 9535 static void swevent_hlist_put_cpu(int cpu) 9536 { 9537 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9538 9539 mutex_lock(&swhash->hlist_mutex); 9540 9541 if (!--swhash->hlist_refcount) 9542 swevent_hlist_release(swhash); 9543 9544 mutex_unlock(&swhash->hlist_mutex); 9545 } 9546 9547 static void swevent_hlist_put(void) 9548 { 9549 int cpu; 9550 9551 for_each_possible_cpu(cpu) 9552 swevent_hlist_put_cpu(cpu); 9553 } 9554 9555 static int swevent_hlist_get_cpu(int cpu) 9556 { 9557 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9558 int err = 0; 9559 9560 mutex_lock(&swhash->hlist_mutex); 9561 if (!swevent_hlist_deref(swhash) && 9562 cpumask_test_cpu(cpu, perf_online_mask)) { 9563 struct swevent_hlist *hlist; 9564 9565 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9566 if (!hlist) { 9567 err = -ENOMEM; 9568 goto exit; 9569 } 9570 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9571 } 9572 swhash->hlist_refcount++; 9573 exit: 9574 mutex_unlock(&swhash->hlist_mutex); 9575 9576 return err; 9577 } 9578 9579 static int swevent_hlist_get(void) 9580 { 9581 int err, cpu, failed_cpu; 9582 9583 mutex_lock(&pmus_lock); 9584 for_each_possible_cpu(cpu) { 9585 err = swevent_hlist_get_cpu(cpu); 9586 if (err) { 9587 failed_cpu = cpu; 9588 goto fail; 9589 } 9590 } 9591 mutex_unlock(&pmus_lock); 9592 return 0; 9593 fail: 9594 for_each_possible_cpu(cpu) { 9595 if (cpu == failed_cpu) 9596 break; 9597 swevent_hlist_put_cpu(cpu); 9598 } 9599 mutex_unlock(&pmus_lock); 9600 return err; 9601 } 9602 9603 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9604 9605 static void sw_perf_event_destroy(struct perf_event *event) 9606 { 9607 u64 event_id = event->attr.config; 9608 9609 WARN_ON(event->parent); 9610 9611 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9612 swevent_hlist_put(); 9613 } 9614 9615 static int perf_swevent_init(struct perf_event *event) 9616 { 9617 u64 event_id = event->attr.config; 9618 9619 if (event->attr.type != PERF_TYPE_SOFTWARE) 9620 return -ENOENT; 9621 9622 /* 9623 * no branch sampling for software events 9624 */ 9625 if (has_branch_stack(event)) 9626 return -EOPNOTSUPP; 9627 9628 switch (event_id) { 9629 case PERF_COUNT_SW_CPU_CLOCK: 9630 case PERF_COUNT_SW_TASK_CLOCK: 9631 return -ENOENT; 9632 9633 default: 9634 break; 9635 } 9636 9637 if (event_id >= PERF_COUNT_SW_MAX) 9638 return -ENOENT; 9639 9640 if (!event->parent) { 9641 int err; 9642 9643 err = swevent_hlist_get(); 9644 if (err) 9645 return err; 9646 9647 static_key_slow_inc(&perf_swevent_enabled[event_id]); 9648 event->destroy = sw_perf_event_destroy; 9649 } 9650 9651 return 0; 9652 } 9653 9654 static struct pmu perf_swevent = { 9655 .task_ctx_nr = perf_sw_context, 9656 9657 .capabilities = PERF_PMU_CAP_NO_NMI, 9658 9659 .event_init = perf_swevent_init, 9660 .add = perf_swevent_add, 9661 .del = perf_swevent_del, 9662 .start = perf_swevent_start, 9663 .stop = perf_swevent_stop, 9664 .read = perf_swevent_read, 9665 }; 9666 9667 #ifdef CONFIG_EVENT_TRACING 9668 9669 static int perf_tp_filter_match(struct perf_event *event, 9670 struct perf_sample_data *data) 9671 { 9672 void *record = data->raw->frag.data; 9673 9674 /* only top level events have filters set */ 9675 if (event->parent) 9676 event = event->parent; 9677 9678 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 9679 return 1; 9680 return 0; 9681 } 9682 9683 static int perf_tp_event_match(struct perf_event *event, 9684 struct perf_sample_data *data, 9685 struct pt_regs *regs) 9686 { 9687 if (event->hw.state & PERF_HES_STOPPED) 9688 return 0; 9689 /* 9690 * If exclude_kernel, only trace user-space tracepoints (uprobes) 9691 */ 9692 if (event->attr.exclude_kernel && !user_mode(regs)) 9693 return 0; 9694 9695 if (!perf_tp_filter_match(event, data)) 9696 return 0; 9697 9698 return 1; 9699 } 9700 9701 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 9702 struct trace_event_call *call, u64 count, 9703 struct pt_regs *regs, struct hlist_head *head, 9704 struct task_struct *task) 9705 { 9706 if (bpf_prog_array_valid(call)) { 9707 *(struct pt_regs **)raw_data = regs; 9708 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 9709 perf_swevent_put_recursion_context(rctx); 9710 return; 9711 } 9712 } 9713 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 9714 rctx, task); 9715 } 9716 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 9717 9718 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 9719 struct pt_regs *regs, struct hlist_head *head, int rctx, 9720 struct task_struct *task) 9721 { 9722 struct perf_sample_data data; 9723 struct perf_event *event; 9724 9725 struct perf_raw_record raw = { 9726 .frag = { 9727 .size = entry_size, 9728 .data = record, 9729 }, 9730 }; 9731 9732 perf_sample_data_init(&data, 0, 0); 9733 data.raw = &raw; 9734 9735 perf_trace_buf_update(record, event_type); 9736 9737 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9738 if (perf_tp_event_match(event, &data, regs)) 9739 perf_swevent_event(event, count, &data, regs); 9740 } 9741 9742 /* 9743 * If we got specified a target task, also iterate its context and 9744 * deliver this event there too. 9745 */ 9746 if (task && task != current) { 9747 struct perf_event_context *ctx; 9748 struct trace_entry *entry = record; 9749 9750 rcu_read_lock(); 9751 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 9752 if (!ctx) 9753 goto unlock; 9754 9755 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 9756 if (event->cpu != smp_processor_id()) 9757 continue; 9758 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9759 continue; 9760 if (event->attr.config != entry->type) 9761 continue; 9762 if (perf_tp_event_match(event, &data, regs)) 9763 perf_swevent_event(event, count, &data, regs); 9764 } 9765 unlock: 9766 rcu_read_unlock(); 9767 } 9768 9769 perf_swevent_put_recursion_context(rctx); 9770 } 9771 EXPORT_SYMBOL_GPL(perf_tp_event); 9772 9773 static void tp_perf_event_destroy(struct perf_event *event) 9774 { 9775 perf_trace_destroy(event); 9776 } 9777 9778 static int perf_tp_event_init(struct perf_event *event) 9779 { 9780 int err; 9781 9782 if (event->attr.type != PERF_TYPE_TRACEPOINT) 9783 return -ENOENT; 9784 9785 /* 9786 * no branch sampling for tracepoint events 9787 */ 9788 if (has_branch_stack(event)) 9789 return -EOPNOTSUPP; 9790 9791 err = perf_trace_init(event); 9792 if (err) 9793 return err; 9794 9795 event->destroy = tp_perf_event_destroy; 9796 9797 return 0; 9798 } 9799 9800 static struct pmu perf_tracepoint = { 9801 .task_ctx_nr = perf_sw_context, 9802 9803 .event_init = perf_tp_event_init, 9804 .add = perf_trace_add, 9805 .del = perf_trace_del, 9806 .start = perf_swevent_start, 9807 .stop = perf_swevent_stop, 9808 .read = perf_swevent_read, 9809 }; 9810 9811 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 9812 /* 9813 * Flags in config, used by dynamic PMU kprobe and uprobe 9814 * The flags should match following PMU_FORMAT_ATTR(). 9815 * 9816 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 9817 * if not set, create kprobe/uprobe 9818 * 9819 * The following values specify a reference counter (or semaphore in the 9820 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 9821 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 9822 * 9823 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 9824 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 9825 */ 9826 enum perf_probe_config { 9827 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 9828 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 9829 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 9830 }; 9831 9832 PMU_FORMAT_ATTR(retprobe, "config:0"); 9833 #endif 9834 9835 #ifdef CONFIG_KPROBE_EVENTS 9836 static struct attribute *kprobe_attrs[] = { 9837 &format_attr_retprobe.attr, 9838 NULL, 9839 }; 9840 9841 static struct attribute_group kprobe_format_group = { 9842 .name = "format", 9843 .attrs = kprobe_attrs, 9844 }; 9845 9846 static const struct attribute_group *kprobe_attr_groups[] = { 9847 &kprobe_format_group, 9848 NULL, 9849 }; 9850 9851 static int perf_kprobe_event_init(struct perf_event *event); 9852 static struct pmu perf_kprobe = { 9853 .task_ctx_nr = perf_sw_context, 9854 .event_init = perf_kprobe_event_init, 9855 .add = perf_trace_add, 9856 .del = perf_trace_del, 9857 .start = perf_swevent_start, 9858 .stop = perf_swevent_stop, 9859 .read = perf_swevent_read, 9860 .attr_groups = kprobe_attr_groups, 9861 }; 9862 9863 static int perf_kprobe_event_init(struct perf_event *event) 9864 { 9865 int err; 9866 bool is_retprobe; 9867 9868 if (event->attr.type != perf_kprobe.type) 9869 return -ENOENT; 9870 9871 if (!perfmon_capable()) 9872 return -EACCES; 9873 9874 /* 9875 * no branch sampling for probe events 9876 */ 9877 if (has_branch_stack(event)) 9878 return -EOPNOTSUPP; 9879 9880 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9881 err = perf_kprobe_init(event, is_retprobe); 9882 if (err) 9883 return err; 9884 9885 event->destroy = perf_kprobe_destroy; 9886 9887 return 0; 9888 } 9889 #endif /* CONFIG_KPROBE_EVENTS */ 9890 9891 #ifdef CONFIG_UPROBE_EVENTS 9892 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 9893 9894 static struct attribute *uprobe_attrs[] = { 9895 &format_attr_retprobe.attr, 9896 &format_attr_ref_ctr_offset.attr, 9897 NULL, 9898 }; 9899 9900 static struct attribute_group uprobe_format_group = { 9901 .name = "format", 9902 .attrs = uprobe_attrs, 9903 }; 9904 9905 static const struct attribute_group *uprobe_attr_groups[] = { 9906 &uprobe_format_group, 9907 NULL, 9908 }; 9909 9910 static int perf_uprobe_event_init(struct perf_event *event); 9911 static struct pmu perf_uprobe = { 9912 .task_ctx_nr = perf_sw_context, 9913 .event_init = perf_uprobe_event_init, 9914 .add = perf_trace_add, 9915 .del = perf_trace_del, 9916 .start = perf_swevent_start, 9917 .stop = perf_swevent_stop, 9918 .read = perf_swevent_read, 9919 .attr_groups = uprobe_attr_groups, 9920 }; 9921 9922 static int perf_uprobe_event_init(struct perf_event *event) 9923 { 9924 int err; 9925 unsigned long ref_ctr_offset; 9926 bool is_retprobe; 9927 9928 if (event->attr.type != perf_uprobe.type) 9929 return -ENOENT; 9930 9931 if (!perfmon_capable()) 9932 return -EACCES; 9933 9934 /* 9935 * no branch sampling for probe events 9936 */ 9937 if (has_branch_stack(event)) 9938 return -EOPNOTSUPP; 9939 9940 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 9941 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9942 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 9943 if (err) 9944 return err; 9945 9946 event->destroy = perf_uprobe_destroy; 9947 9948 return 0; 9949 } 9950 #endif /* CONFIG_UPROBE_EVENTS */ 9951 9952 static inline void perf_tp_register(void) 9953 { 9954 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 9955 #ifdef CONFIG_KPROBE_EVENTS 9956 perf_pmu_register(&perf_kprobe, "kprobe", -1); 9957 #endif 9958 #ifdef CONFIG_UPROBE_EVENTS 9959 perf_pmu_register(&perf_uprobe, "uprobe", -1); 9960 #endif 9961 } 9962 9963 static void perf_event_free_filter(struct perf_event *event) 9964 { 9965 ftrace_profile_free_filter(event); 9966 } 9967 9968 #ifdef CONFIG_BPF_SYSCALL 9969 static void bpf_overflow_handler(struct perf_event *event, 9970 struct perf_sample_data *data, 9971 struct pt_regs *regs) 9972 { 9973 struct bpf_perf_event_data_kern ctx = { 9974 .data = data, 9975 .event = event, 9976 }; 9977 struct bpf_prog *prog; 9978 int ret = 0; 9979 9980 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 9981 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 9982 goto out; 9983 rcu_read_lock(); 9984 prog = READ_ONCE(event->prog); 9985 if (prog) 9986 ret = bpf_prog_run(prog, &ctx); 9987 rcu_read_unlock(); 9988 out: 9989 __this_cpu_dec(bpf_prog_active); 9990 if (!ret) 9991 return; 9992 9993 event->orig_overflow_handler(event, data, regs); 9994 } 9995 9996 static int perf_event_set_bpf_handler(struct perf_event *event, 9997 struct bpf_prog *prog, 9998 u64 bpf_cookie) 9999 { 10000 if (event->overflow_handler_context) 10001 /* hw breakpoint or kernel counter */ 10002 return -EINVAL; 10003 10004 if (event->prog) 10005 return -EEXIST; 10006 10007 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10008 return -EINVAL; 10009 10010 if (event->attr.precise_ip && 10011 prog->call_get_stack && 10012 (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) || 10013 event->attr.exclude_callchain_kernel || 10014 event->attr.exclude_callchain_user)) { 10015 /* 10016 * On perf_event with precise_ip, calling bpf_get_stack() 10017 * may trigger unwinder warnings and occasional crashes. 10018 * bpf_get_[stack|stackid] works around this issue by using 10019 * callchain attached to perf_sample_data. If the 10020 * perf_event does not full (kernel and user) callchain 10021 * attached to perf_sample_data, do not allow attaching BPF 10022 * program that calls bpf_get_[stack|stackid]. 10023 */ 10024 return -EPROTO; 10025 } 10026 10027 event->prog = prog; 10028 event->bpf_cookie = bpf_cookie; 10029 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10030 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10031 return 0; 10032 } 10033 10034 static void perf_event_free_bpf_handler(struct perf_event *event) 10035 { 10036 struct bpf_prog *prog = event->prog; 10037 10038 if (!prog) 10039 return; 10040 10041 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10042 event->prog = NULL; 10043 bpf_prog_put(prog); 10044 } 10045 #else 10046 static int perf_event_set_bpf_handler(struct perf_event *event, 10047 struct bpf_prog *prog, 10048 u64 bpf_cookie) 10049 { 10050 return -EOPNOTSUPP; 10051 } 10052 static void perf_event_free_bpf_handler(struct perf_event *event) 10053 { 10054 } 10055 #endif 10056 10057 /* 10058 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10059 * with perf_event_open() 10060 */ 10061 static inline bool perf_event_is_tracing(struct perf_event *event) 10062 { 10063 if (event->pmu == &perf_tracepoint) 10064 return true; 10065 #ifdef CONFIG_KPROBE_EVENTS 10066 if (event->pmu == &perf_kprobe) 10067 return true; 10068 #endif 10069 #ifdef CONFIG_UPROBE_EVENTS 10070 if (event->pmu == &perf_uprobe) 10071 return true; 10072 #endif 10073 return false; 10074 } 10075 10076 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10077 u64 bpf_cookie) 10078 { 10079 bool is_kprobe, is_tracepoint, is_syscall_tp; 10080 10081 if (!perf_event_is_tracing(event)) 10082 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10083 10084 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 10085 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10086 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10087 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 10088 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10089 return -EINVAL; 10090 10091 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 10092 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10093 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10094 return -EINVAL; 10095 10096 /* Kprobe override only works for kprobes, not uprobes. */ 10097 if (prog->kprobe_override && 10098 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) 10099 return -EINVAL; 10100 10101 if (is_tracepoint || is_syscall_tp) { 10102 int off = trace_event_get_offsets(event->tp_event); 10103 10104 if (prog->aux->max_ctx_offset > off) 10105 return -EACCES; 10106 } 10107 10108 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10109 } 10110 10111 void perf_event_free_bpf_prog(struct perf_event *event) 10112 { 10113 if (!perf_event_is_tracing(event)) { 10114 perf_event_free_bpf_handler(event); 10115 return; 10116 } 10117 perf_event_detach_bpf_prog(event); 10118 } 10119 10120 #else 10121 10122 static inline void perf_tp_register(void) 10123 { 10124 } 10125 10126 static void perf_event_free_filter(struct perf_event *event) 10127 { 10128 } 10129 10130 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10131 u64 bpf_cookie) 10132 { 10133 return -ENOENT; 10134 } 10135 10136 void perf_event_free_bpf_prog(struct perf_event *event) 10137 { 10138 } 10139 #endif /* CONFIG_EVENT_TRACING */ 10140 10141 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10142 void perf_bp_event(struct perf_event *bp, void *data) 10143 { 10144 struct perf_sample_data sample; 10145 struct pt_regs *regs = data; 10146 10147 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10148 10149 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10150 perf_swevent_event(bp, 1, &sample, regs); 10151 } 10152 #endif 10153 10154 /* 10155 * Allocate a new address filter 10156 */ 10157 static struct perf_addr_filter * 10158 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10159 { 10160 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10161 struct perf_addr_filter *filter; 10162 10163 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10164 if (!filter) 10165 return NULL; 10166 10167 INIT_LIST_HEAD(&filter->entry); 10168 list_add_tail(&filter->entry, filters); 10169 10170 return filter; 10171 } 10172 10173 static void free_filters_list(struct list_head *filters) 10174 { 10175 struct perf_addr_filter *filter, *iter; 10176 10177 list_for_each_entry_safe(filter, iter, filters, entry) { 10178 path_put(&filter->path); 10179 list_del(&filter->entry); 10180 kfree(filter); 10181 } 10182 } 10183 10184 /* 10185 * Free existing address filters and optionally install new ones 10186 */ 10187 static void perf_addr_filters_splice(struct perf_event *event, 10188 struct list_head *head) 10189 { 10190 unsigned long flags; 10191 LIST_HEAD(list); 10192 10193 if (!has_addr_filter(event)) 10194 return; 10195 10196 /* don't bother with children, they don't have their own filters */ 10197 if (event->parent) 10198 return; 10199 10200 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10201 10202 list_splice_init(&event->addr_filters.list, &list); 10203 if (head) 10204 list_splice(head, &event->addr_filters.list); 10205 10206 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10207 10208 free_filters_list(&list); 10209 } 10210 10211 /* 10212 * Scan through mm's vmas and see if one of them matches the 10213 * @filter; if so, adjust filter's address range. 10214 * Called with mm::mmap_lock down for reading. 10215 */ 10216 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10217 struct mm_struct *mm, 10218 struct perf_addr_filter_range *fr) 10219 { 10220 struct vm_area_struct *vma; 10221 10222 for (vma = mm->mmap; vma; vma = vma->vm_next) { 10223 if (!vma->vm_file) 10224 continue; 10225 10226 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10227 return; 10228 } 10229 } 10230 10231 /* 10232 * Update event's address range filters based on the 10233 * task's existing mappings, if any. 10234 */ 10235 static void perf_event_addr_filters_apply(struct perf_event *event) 10236 { 10237 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10238 struct task_struct *task = READ_ONCE(event->ctx->task); 10239 struct perf_addr_filter *filter; 10240 struct mm_struct *mm = NULL; 10241 unsigned int count = 0; 10242 unsigned long flags; 10243 10244 /* 10245 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10246 * will stop on the parent's child_mutex that our caller is also holding 10247 */ 10248 if (task == TASK_TOMBSTONE) 10249 return; 10250 10251 if (ifh->nr_file_filters) { 10252 mm = get_task_mm(task); 10253 if (!mm) 10254 goto restart; 10255 10256 mmap_read_lock(mm); 10257 } 10258 10259 raw_spin_lock_irqsave(&ifh->lock, flags); 10260 list_for_each_entry(filter, &ifh->list, entry) { 10261 if (filter->path.dentry) { 10262 /* 10263 * Adjust base offset if the filter is associated to a 10264 * binary that needs to be mapped: 10265 */ 10266 event->addr_filter_ranges[count].start = 0; 10267 event->addr_filter_ranges[count].size = 0; 10268 10269 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10270 } else { 10271 event->addr_filter_ranges[count].start = filter->offset; 10272 event->addr_filter_ranges[count].size = filter->size; 10273 } 10274 10275 count++; 10276 } 10277 10278 event->addr_filters_gen++; 10279 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10280 10281 if (ifh->nr_file_filters) { 10282 mmap_read_unlock(mm); 10283 10284 mmput(mm); 10285 } 10286 10287 restart: 10288 perf_event_stop(event, 1); 10289 } 10290 10291 /* 10292 * Address range filtering: limiting the data to certain 10293 * instruction address ranges. Filters are ioctl()ed to us from 10294 * userspace as ascii strings. 10295 * 10296 * Filter string format: 10297 * 10298 * ACTION RANGE_SPEC 10299 * where ACTION is one of the 10300 * * "filter": limit the trace to this region 10301 * * "start": start tracing from this address 10302 * * "stop": stop tracing at this address/region; 10303 * RANGE_SPEC is 10304 * * for kernel addresses: <start address>[/<size>] 10305 * * for object files: <start address>[/<size>]@</path/to/object/file> 10306 * 10307 * if <size> is not specified or is zero, the range is treated as a single 10308 * address; not valid for ACTION=="filter". 10309 */ 10310 enum { 10311 IF_ACT_NONE = -1, 10312 IF_ACT_FILTER, 10313 IF_ACT_START, 10314 IF_ACT_STOP, 10315 IF_SRC_FILE, 10316 IF_SRC_KERNEL, 10317 IF_SRC_FILEADDR, 10318 IF_SRC_KERNELADDR, 10319 }; 10320 10321 enum { 10322 IF_STATE_ACTION = 0, 10323 IF_STATE_SOURCE, 10324 IF_STATE_END, 10325 }; 10326 10327 static const match_table_t if_tokens = { 10328 { IF_ACT_FILTER, "filter" }, 10329 { IF_ACT_START, "start" }, 10330 { IF_ACT_STOP, "stop" }, 10331 { IF_SRC_FILE, "%u/%u@%s" }, 10332 { IF_SRC_KERNEL, "%u/%u" }, 10333 { IF_SRC_FILEADDR, "%u@%s" }, 10334 { IF_SRC_KERNELADDR, "%u" }, 10335 { IF_ACT_NONE, NULL }, 10336 }; 10337 10338 /* 10339 * Address filter string parser 10340 */ 10341 static int 10342 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10343 struct list_head *filters) 10344 { 10345 struct perf_addr_filter *filter = NULL; 10346 char *start, *orig, *filename = NULL; 10347 substring_t args[MAX_OPT_ARGS]; 10348 int state = IF_STATE_ACTION, token; 10349 unsigned int kernel = 0; 10350 int ret = -EINVAL; 10351 10352 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10353 if (!fstr) 10354 return -ENOMEM; 10355 10356 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10357 static const enum perf_addr_filter_action_t actions[] = { 10358 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10359 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10360 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10361 }; 10362 ret = -EINVAL; 10363 10364 if (!*start) 10365 continue; 10366 10367 /* filter definition begins */ 10368 if (state == IF_STATE_ACTION) { 10369 filter = perf_addr_filter_new(event, filters); 10370 if (!filter) 10371 goto fail; 10372 } 10373 10374 token = match_token(start, if_tokens, args); 10375 switch (token) { 10376 case IF_ACT_FILTER: 10377 case IF_ACT_START: 10378 case IF_ACT_STOP: 10379 if (state != IF_STATE_ACTION) 10380 goto fail; 10381 10382 filter->action = actions[token]; 10383 state = IF_STATE_SOURCE; 10384 break; 10385 10386 case IF_SRC_KERNELADDR: 10387 case IF_SRC_KERNEL: 10388 kernel = 1; 10389 fallthrough; 10390 10391 case IF_SRC_FILEADDR: 10392 case IF_SRC_FILE: 10393 if (state != IF_STATE_SOURCE) 10394 goto fail; 10395 10396 *args[0].to = 0; 10397 ret = kstrtoul(args[0].from, 0, &filter->offset); 10398 if (ret) 10399 goto fail; 10400 10401 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10402 *args[1].to = 0; 10403 ret = kstrtoul(args[1].from, 0, &filter->size); 10404 if (ret) 10405 goto fail; 10406 } 10407 10408 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10409 int fpos = token == IF_SRC_FILE ? 2 : 1; 10410 10411 kfree(filename); 10412 filename = match_strdup(&args[fpos]); 10413 if (!filename) { 10414 ret = -ENOMEM; 10415 goto fail; 10416 } 10417 } 10418 10419 state = IF_STATE_END; 10420 break; 10421 10422 default: 10423 goto fail; 10424 } 10425 10426 /* 10427 * Filter definition is fully parsed, validate and install it. 10428 * Make sure that it doesn't contradict itself or the event's 10429 * attribute. 10430 */ 10431 if (state == IF_STATE_END) { 10432 ret = -EINVAL; 10433 if (kernel && event->attr.exclude_kernel) 10434 goto fail; 10435 10436 /* 10437 * ACTION "filter" must have a non-zero length region 10438 * specified. 10439 */ 10440 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10441 !filter->size) 10442 goto fail; 10443 10444 if (!kernel) { 10445 if (!filename) 10446 goto fail; 10447 10448 /* 10449 * For now, we only support file-based filters 10450 * in per-task events; doing so for CPU-wide 10451 * events requires additional context switching 10452 * trickery, since same object code will be 10453 * mapped at different virtual addresses in 10454 * different processes. 10455 */ 10456 ret = -EOPNOTSUPP; 10457 if (!event->ctx->task) 10458 goto fail; 10459 10460 /* look up the path and grab its inode */ 10461 ret = kern_path(filename, LOOKUP_FOLLOW, 10462 &filter->path); 10463 if (ret) 10464 goto fail; 10465 10466 ret = -EINVAL; 10467 if (!filter->path.dentry || 10468 !S_ISREG(d_inode(filter->path.dentry) 10469 ->i_mode)) 10470 goto fail; 10471 10472 event->addr_filters.nr_file_filters++; 10473 } 10474 10475 /* ready to consume more filters */ 10476 state = IF_STATE_ACTION; 10477 filter = NULL; 10478 } 10479 } 10480 10481 if (state != IF_STATE_ACTION) 10482 goto fail; 10483 10484 kfree(filename); 10485 kfree(orig); 10486 10487 return 0; 10488 10489 fail: 10490 kfree(filename); 10491 free_filters_list(filters); 10492 kfree(orig); 10493 10494 return ret; 10495 } 10496 10497 static int 10498 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10499 { 10500 LIST_HEAD(filters); 10501 int ret; 10502 10503 /* 10504 * Since this is called in perf_ioctl() path, we're already holding 10505 * ctx::mutex. 10506 */ 10507 lockdep_assert_held(&event->ctx->mutex); 10508 10509 if (WARN_ON_ONCE(event->parent)) 10510 return -EINVAL; 10511 10512 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10513 if (ret) 10514 goto fail_clear_files; 10515 10516 ret = event->pmu->addr_filters_validate(&filters); 10517 if (ret) 10518 goto fail_free_filters; 10519 10520 /* remove existing filters, if any */ 10521 perf_addr_filters_splice(event, &filters); 10522 10523 /* install new filters */ 10524 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10525 10526 return ret; 10527 10528 fail_free_filters: 10529 free_filters_list(&filters); 10530 10531 fail_clear_files: 10532 event->addr_filters.nr_file_filters = 0; 10533 10534 return ret; 10535 } 10536 10537 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10538 { 10539 int ret = -EINVAL; 10540 char *filter_str; 10541 10542 filter_str = strndup_user(arg, PAGE_SIZE); 10543 if (IS_ERR(filter_str)) 10544 return PTR_ERR(filter_str); 10545 10546 #ifdef CONFIG_EVENT_TRACING 10547 if (perf_event_is_tracing(event)) { 10548 struct perf_event_context *ctx = event->ctx; 10549 10550 /* 10551 * Beware, here be dragons!! 10552 * 10553 * the tracepoint muck will deadlock against ctx->mutex, but 10554 * the tracepoint stuff does not actually need it. So 10555 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10556 * already have a reference on ctx. 10557 * 10558 * This can result in event getting moved to a different ctx, 10559 * but that does not affect the tracepoint state. 10560 */ 10561 mutex_unlock(&ctx->mutex); 10562 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10563 mutex_lock(&ctx->mutex); 10564 } else 10565 #endif 10566 if (has_addr_filter(event)) 10567 ret = perf_event_set_addr_filter(event, filter_str); 10568 10569 kfree(filter_str); 10570 return ret; 10571 } 10572 10573 /* 10574 * hrtimer based swevent callback 10575 */ 10576 10577 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10578 { 10579 enum hrtimer_restart ret = HRTIMER_RESTART; 10580 struct perf_sample_data data; 10581 struct pt_regs *regs; 10582 struct perf_event *event; 10583 u64 period; 10584 10585 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 10586 10587 if (event->state != PERF_EVENT_STATE_ACTIVE) 10588 return HRTIMER_NORESTART; 10589 10590 event->pmu->read(event); 10591 10592 perf_sample_data_init(&data, 0, event->hw.last_period); 10593 regs = get_irq_regs(); 10594 10595 if (regs && !perf_exclude_event(event, regs)) { 10596 if (!(event->attr.exclude_idle && is_idle_task(current))) 10597 if (__perf_event_overflow(event, 1, &data, regs)) 10598 ret = HRTIMER_NORESTART; 10599 } 10600 10601 period = max_t(u64, 10000, event->hw.sample_period); 10602 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 10603 10604 return ret; 10605 } 10606 10607 static void perf_swevent_start_hrtimer(struct perf_event *event) 10608 { 10609 struct hw_perf_event *hwc = &event->hw; 10610 s64 period; 10611 10612 if (!is_sampling_event(event)) 10613 return; 10614 10615 period = local64_read(&hwc->period_left); 10616 if (period) { 10617 if (period < 0) 10618 period = 10000; 10619 10620 local64_set(&hwc->period_left, 0); 10621 } else { 10622 period = max_t(u64, 10000, hwc->sample_period); 10623 } 10624 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 10625 HRTIMER_MODE_REL_PINNED_HARD); 10626 } 10627 10628 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 10629 { 10630 struct hw_perf_event *hwc = &event->hw; 10631 10632 if (is_sampling_event(event)) { 10633 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 10634 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 10635 10636 hrtimer_cancel(&hwc->hrtimer); 10637 } 10638 } 10639 10640 static void perf_swevent_init_hrtimer(struct perf_event *event) 10641 { 10642 struct hw_perf_event *hwc = &event->hw; 10643 10644 if (!is_sampling_event(event)) 10645 return; 10646 10647 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 10648 hwc->hrtimer.function = perf_swevent_hrtimer; 10649 10650 /* 10651 * Since hrtimers have a fixed rate, we can do a static freq->period 10652 * mapping and avoid the whole period adjust feedback stuff. 10653 */ 10654 if (event->attr.freq) { 10655 long freq = event->attr.sample_freq; 10656 10657 event->attr.sample_period = NSEC_PER_SEC / freq; 10658 hwc->sample_period = event->attr.sample_period; 10659 local64_set(&hwc->period_left, hwc->sample_period); 10660 hwc->last_period = hwc->sample_period; 10661 event->attr.freq = 0; 10662 } 10663 } 10664 10665 /* 10666 * Software event: cpu wall time clock 10667 */ 10668 10669 static void cpu_clock_event_update(struct perf_event *event) 10670 { 10671 s64 prev; 10672 u64 now; 10673 10674 now = local_clock(); 10675 prev = local64_xchg(&event->hw.prev_count, now); 10676 local64_add(now - prev, &event->count); 10677 } 10678 10679 static void cpu_clock_event_start(struct perf_event *event, int flags) 10680 { 10681 local64_set(&event->hw.prev_count, local_clock()); 10682 perf_swevent_start_hrtimer(event); 10683 } 10684 10685 static void cpu_clock_event_stop(struct perf_event *event, int flags) 10686 { 10687 perf_swevent_cancel_hrtimer(event); 10688 cpu_clock_event_update(event); 10689 } 10690 10691 static int cpu_clock_event_add(struct perf_event *event, int flags) 10692 { 10693 if (flags & PERF_EF_START) 10694 cpu_clock_event_start(event, flags); 10695 perf_event_update_userpage(event); 10696 10697 return 0; 10698 } 10699 10700 static void cpu_clock_event_del(struct perf_event *event, int flags) 10701 { 10702 cpu_clock_event_stop(event, flags); 10703 } 10704 10705 static void cpu_clock_event_read(struct perf_event *event) 10706 { 10707 cpu_clock_event_update(event); 10708 } 10709 10710 static int cpu_clock_event_init(struct perf_event *event) 10711 { 10712 if (event->attr.type != PERF_TYPE_SOFTWARE) 10713 return -ENOENT; 10714 10715 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 10716 return -ENOENT; 10717 10718 /* 10719 * no branch sampling for software events 10720 */ 10721 if (has_branch_stack(event)) 10722 return -EOPNOTSUPP; 10723 10724 perf_swevent_init_hrtimer(event); 10725 10726 return 0; 10727 } 10728 10729 static struct pmu perf_cpu_clock = { 10730 .task_ctx_nr = perf_sw_context, 10731 10732 .capabilities = PERF_PMU_CAP_NO_NMI, 10733 10734 .event_init = cpu_clock_event_init, 10735 .add = cpu_clock_event_add, 10736 .del = cpu_clock_event_del, 10737 .start = cpu_clock_event_start, 10738 .stop = cpu_clock_event_stop, 10739 .read = cpu_clock_event_read, 10740 }; 10741 10742 /* 10743 * Software event: task time clock 10744 */ 10745 10746 static void task_clock_event_update(struct perf_event *event, u64 now) 10747 { 10748 u64 prev; 10749 s64 delta; 10750 10751 prev = local64_xchg(&event->hw.prev_count, now); 10752 delta = now - prev; 10753 local64_add(delta, &event->count); 10754 } 10755 10756 static void task_clock_event_start(struct perf_event *event, int flags) 10757 { 10758 local64_set(&event->hw.prev_count, event->ctx->time); 10759 perf_swevent_start_hrtimer(event); 10760 } 10761 10762 static void task_clock_event_stop(struct perf_event *event, int flags) 10763 { 10764 perf_swevent_cancel_hrtimer(event); 10765 task_clock_event_update(event, event->ctx->time); 10766 } 10767 10768 static int task_clock_event_add(struct perf_event *event, int flags) 10769 { 10770 if (flags & PERF_EF_START) 10771 task_clock_event_start(event, flags); 10772 perf_event_update_userpage(event); 10773 10774 return 0; 10775 } 10776 10777 static void task_clock_event_del(struct perf_event *event, int flags) 10778 { 10779 task_clock_event_stop(event, PERF_EF_UPDATE); 10780 } 10781 10782 static void task_clock_event_read(struct perf_event *event) 10783 { 10784 u64 now = perf_clock(); 10785 u64 delta = now - event->ctx->timestamp; 10786 u64 time = event->ctx->time + delta; 10787 10788 task_clock_event_update(event, time); 10789 } 10790 10791 static int task_clock_event_init(struct perf_event *event) 10792 { 10793 if (event->attr.type != PERF_TYPE_SOFTWARE) 10794 return -ENOENT; 10795 10796 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 10797 return -ENOENT; 10798 10799 /* 10800 * no branch sampling for software events 10801 */ 10802 if (has_branch_stack(event)) 10803 return -EOPNOTSUPP; 10804 10805 perf_swevent_init_hrtimer(event); 10806 10807 return 0; 10808 } 10809 10810 static struct pmu perf_task_clock = { 10811 .task_ctx_nr = perf_sw_context, 10812 10813 .capabilities = PERF_PMU_CAP_NO_NMI, 10814 10815 .event_init = task_clock_event_init, 10816 .add = task_clock_event_add, 10817 .del = task_clock_event_del, 10818 .start = task_clock_event_start, 10819 .stop = task_clock_event_stop, 10820 .read = task_clock_event_read, 10821 }; 10822 10823 static void perf_pmu_nop_void(struct pmu *pmu) 10824 { 10825 } 10826 10827 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 10828 { 10829 } 10830 10831 static int perf_pmu_nop_int(struct pmu *pmu) 10832 { 10833 return 0; 10834 } 10835 10836 static int perf_event_nop_int(struct perf_event *event, u64 value) 10837 { 10838 return 0; 10839 } 10840 10841 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 10842 10843 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 10844 { 10845 __this_cpu_write(nop_txn_flags, flags); 10846 10847 if (flags & ~PERF_PMU_TXN_ADD) 10848 return; 10849 10850 perf_pmu_disable(pmu); 10851 } 10852 10853 static int perf_pmu_commit_txn(struct pmu *pmu) 10854 { 10855 unsigned int flags = __this_cpu_read(nop_txn_flags); 10856 10857 __this_cpu_write(nop_txn_flags, 0); 10858 10859 if (flags & ~PERF_PMU_TXN_ADD) 10860 return 0; 10861 10862 perf_pmu_enable(pmu); 10863 return 0; 10864 } 10865 10866 static void perf_pmu_cancel_txn(struct pmu *pmu) 10867 { 10868 unsigned int flags = __this_cpu_read(nop_txn_flags); 10869 10870 __this_cpu_write(nop_txn_flags, 0); 10871 10872 if (flags & ~PERF_PMU_TXN_ADD) 10873 return; 10874 10875 perf_pmu_enable(pmu); 10876 } 10877 10878 static int perf_event_idx_default(struct perf_event *event) 10879 { 10880 return 0; 10881 } 10882 10883 /* 10884 * Ensures all contexts with the same task_ctx_nr have the same 10885 * pmu_cpu_context too. 10886 */ 10887 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 10888 { 10889 struct pmu *pmu; 10890 10891 if (ctxn < 0) 10892 return NULL; 10893 10894 list_for_each_entry(pmu, &pmus, entry) { 10895 if (pmu->task_ctx_nr == ctxn) 10896 return pmu->pmu_cpu_context; 10897 } 10898 10899 return NULL; 10900 } 10901 10902 static void free_pmu_context(struct pmu *pmu) 10903 { 10904 /* 10905 * Static contexts such as perf_sw_context have a global lifetime 10906 * and may be shared between different PMUs. Avoid freeing them 10907 * when a single PMU is going away. 10908 */ 10909 if (pmu->task_ctx_nr > perf_invalid_context) 10910 return; 10911 10912 free_percpu(pmu->pmu_cpu_context); 10913 } 10914 10915 /* 10916 * Let userspace know that this PMU supports address range filtering: 10917 */ 10918 static ssize_t nr_addr_filters_show(struct device *dev, 10919 struct device_attribute *attr, 10920 char *page) 10921 { 10922 struct pmu *pmu = dev_get_drvdata(dev); 10923 10924 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 10925 } 10926 DEVICE_ATTR_RO(nr_addr_filters); 10927 10928 static struct idr pmu_idr; 10929 10930 static ssize_t 10931 type_show(struct device *dev, struct device_attribute *attr, char *page) 10932 { 10933 struct pmu *pmu = dev_get_drvdata(dev); 10934 10935 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 10936 } 10937 static DEVICE_ATTR_RO(type); 10938 10939 static ssize_t 10940 perf_event_mux_interval_ms_show(struct device *dev, 10941 struct device_attribute *attr, 10942 char *page) 10943 { 10944 struct pmu *pmu = dev_get_drvdata(dev); 10945 10946 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 10947 } 10948 10949 static DEFINE_MUTEX(mux_interval_mutex); 10950 10951 static ssize_t 10952 perf_event_mux_interval_ms_store(struct device *dev, 10953 struct device_attribute *attr, 10954 const char *buf, size_t count) 10955 { 10956 struct pmu *pmu = dev_get_drvdata(dev); 10957 int timer, cpu, ret; 10958 10959 ret = kstrtoint(buf, 0, &timer); 10960 if (ret) 10961 return ret; 10962 10963 if (timer < 1) 10964 return -EINVAL; 10965 10966 /* same value, noting to do */ 10967 if (timer == pmu->hrtimer_interval_ms) 10968 return count; 10969 10970 mutex_lock(&mux_interval_mutex); 10971 pmu->hrtimer_interval_ms = timer; 10972 10973 /* update all cpuctx for this PMU */ 10974 cpus_read_lock(); 10975 for_each_online_cpu(cpu) { 10976 struct perf_cpu_context *cpuctx; 10977 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 10978 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 10979 10980 cpu_function_call(cpu, 10981 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 10982 } 10983 cpus_read_unlock(); 10984 mutex_unlock(&mux_interval_mutex); 10985 10986 return count; 10987 } 10988 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 10989 10990 static struct attribute *pmu_dev_attrs[] = { 10991 &dev_attr_type.attr, 10992 &dev_attr_perf_event_mux_interval_ms.attr, 10993 NULL, 10994 }; 10995 ATTRIBUTE_GROUPS(pmu_dev); 10996 10997 static int pmu_bus_running; 10998 static struct bus_type pmu_bus = { 10999 .name = "event_source", 11000 .dev_groups = pmu_dev_groups, 11001 }; 11002 11003 static void pmu_dev_release(struct device *dev) 11004 { 11005 kfree(dev); 11006 } 11007 11008 static int pmu_dev_alloc(struct pmu *pmu) 11009 { 11010 int ret = -ENOMEM; 11011 11012 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11013 if (!pmu->dev) 11014 goto out; 11015 11016 pmu->dev->groups = pmu->attr_groups; 11017 device_initialize(pmu->dev); 11018 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11019 if (ret) 11020 goto free_dev; 11021 11022 dev_set_drvdata(pmu->dev, pmu); 11023 pmu->dev->bus = &pmu_bus; 11024 pmu->dev->release = pmu_dev_release; 11025 ret = device_add(pmu->dev); 11026 if (ret) 11027 goto free_dev; 11028 11029 /* For PMUs with address filters, throw in an extra attribute: */ 11030 if (pmu->nr_addr_filters) 11031 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11032 11033 if (ret) 11034 goto del_dev; 11035 11036 if (pmu->attr_update) 11037 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11038 11039 if (ret) 11040 goto del_dev; 11041 11042 out: 11043 return ret; 11044 11045 del_dev: 11046 device_del(pmu->dev); 11047 11048 free_dev: 11049 put_device(pmu->dev); 11050 goto out; 11051 } 11052 11053 static struct lock_class_key cpuctx_mutex; 11054 static struct lock_class_key cpuctx_lock; 11055 11056 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11057 { 11058 int cpu, ret, max = PERF_TYPE_MAX; 11059 11060 mutex_lock(&pmus_lock); 11061 ret = -ENOMEM; 11062 pmu->pmu_disable_count = alloc_percpu(int); 11063 if (!pmu->pmu_disable_count) 11064 goto unlock; 11065 11066 pmu->type = -1; 11067 if (!name) 11068 goto skip_type; 11069 pmu->name = name; 11070 11071 if (type != PERF_TYPE_SOFTWARE) { 11072 if (type >= 0) 11073 max = type; 11074 11075 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11076 if (ret < 0) 11077 goto free_pdc; 11078 11079 WARN_ON(type >= 0 && ret != type); 11080 11081 type = ret; 11082 } 11083 pmu->type = type; 11084 11085 if (pmu_bus_running) { 11086 ret = pmu_dev_alloc(pmu); 11087 if (ret) 11088 goto free_idr; 11089 } 11090 11091 skip_type: 11092 if (pmu->task_ctx_nr == perf_hw_context) { 11093 static int hw_context_taken = 0; 11094 11095 /* 11096 * Other than systems with heterogeneous CPUs, it never makes 11097 * sense for two PMUs to share perf_hw_context. PMUs which are 11098 * uncore must use perf_invalid_context. 11099 */ 11100 if (WARN_ON_ONCE(hw_context_taken && 11101 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 11102 pmu->task_ctx_nr = perf_invalid_context; 11103 11104 hw_context_taken = 1; 11105 } 11106 11107 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 11108 if (pmu->pmu_cpu_context) 11109 goto got_cpu_context; 11110 11111 ret = -ENOMEM; 11112 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 11113 if (!pmu->pmu_cpu_context) 11114 goto free_dev; 11115 11116 for_each_possible_cpu(cpu) { 11117 struct perf_cpu_context *cpuctx; 11118 11119 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11120 __perf_event_init_context(&cpuctx->ctx); 11121 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 11122 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 11123 cpuctx->ctx.pmu = pmu; 11124 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 11125 11126 __perf_mux_hrtimer_init(cpuctx, cpu); 11127 11128 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 11129 cpuctx->heap = cpuctx->heap_default; 11130 } 11131 11132 got_cpu_context: 11133 if (!pmu->start_txn) { 11134 if (pmu->pmu_enable) { 11135 /* 11136 * If we have pmu_enable/pmu_disable calls, install 11137 * transaction stubs that use that to try and batch 11138 * hardware accesses. 11139 */ 11140 pmu->start_txn = perf_pmu_start_txn; 11141 pmu->commit_txn = perf_pmu_commit_txn; 11142 pmu->cancel_txn = perf_pmu_cancel_txn; 11143 } else { 11144 pmu->start_txn = perf_pmu_nop_txn; 11145 pmu->commit_txn = perf_pmu_nop_int; 11146 pmu->cancel_txn = perf_pmu_nop_void; 11147 } 11148 } 11149 11150 if (!pmu->pmu_enable) { 11151 pmu->pmu_enable = perf_pmu_nop_void; 11152 pmu->pmu_disable = perf_pmu_nop_void; 11153 } 11154 11155 if (!pmu->check_period) 11156 pmu->check_period = perf_event_nop_int; 11157 11158 if (!pmu->event_idx) 11159 pmu->event_idx = perf_event_idx_default; 11160 11161 /* 11162 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list, 11163 * since these cannot be in the IDR. This way the linear search 11164 * is fast, provided a valid software event is provided. 11165 */ 11166 if (type == PERF_TYPE_SOFTWARE || !name) 11167 list_add_rcu(&pmu->entry, &pmus); 11168 else 11169 list_add_tail_rcu(&pmu->entry, &pmus); 11170 11171 atomic_set(&pmu->exclusive_cnt, 0); 11172 ret = 0; 11173 unlock: 11174 mutex_unlock(&pmus_lock); 11175 11176 return ret; 11177 11178 free_dev: 11179 device_del(pmu->dev); 11180 put_device(pmu->dev); 11181 11182 free_idr: 11183 if (pmu->type != PERF_TYPE_SOFTWARE) 11184 idr_remove(&pmu_idr, pmu->type); 11185 11186 free_pdc: 11187 free_percpu(pmu->pmu_disable_count); 11188 goto unlock; 11189 } 11190 EXPORT_SYMBOL_GPL(perf_pmu_register); 11191 11192 void perf_pmu_unregister(struct pmu *pmu) 11193 { 11194 mutex_lock(&pmus_lock); 11195 list_del_rcu(&pmu->entry); 11196 11197 /* 11198 * We dereference the pmu list under both SRCU and regular RCU, so 11199 * synchronize against both of those. 11200 */ 11201 synchronize_srcu(&pmus_srcu); 11202 synchronize_rcu(); 11203 11204 free_percpu(pmu->pmu_disable_count); 11205 if (pmu->type != PERF_TYPE_SOFTWARE) 11206 idr_remove(&pmu_idr, pmu->type); 11207 if (pmu_bus_running) { 11208 if (pmu->nr_addr_filters) 11209 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11210 device_del(pmu->dev); 11211 put_device(pmu->dev); 11212 } 11213 free_pmu_context(pmu); 11214 mutex_unlock(&pmus_lock); 11215 } 11216 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11217 11218 static inline bool has_extended_regs(struct perf_event *event) 11219 { 11220 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11221 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11222 } 11223 11224 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11225 { 11226 struct perf_event_context *ctx = NULL; 11227 int ret; 11228 11229 if (!try_module_get(pmu->module)) 11230 return -ENODEV; 11231 11232 /* 11233 * A number of pmu->event_init() methods iterate the sibling_list to, 11234 * for example, validate if the group fits on the PMU. Therefore, 11235 * if this is a sibling event, acquire the ctx->mutex to protect 11236 * the sibling_list. 11237 */ 11238 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11239 /* 11240 * This ctx->mutex can nest when we're called through 11241 * inheritance. See the perf_event_ctx_lock_nested() comment. 11242 */ 11243 ctx = perf_event_ctx_lock_nested(event->group_leader, 11244 SINGLE_DEPTH_NESTING); 11245 BUG_ON(!ctx); 11246 } 11247 11248 event->pmu = pmu; 11249 ret = pmu->event_init(event); 11250 11251 if (ctx) 11252 perf_event_ctx_unlock(event->group_leader, ctx); 11253 11254 if (!ret) { 11255 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11256 has_extended_regs(event)) 11257 ret = -EOPNOTSUPP; 11258 11259 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11260 event_has_any_exclude_flag(event)) 11261 ret = -EINVAL; 11262 11263 if (ret && event->destroy) 11264 event->destroy(event); 11265 } 11266 11267 if (ret) 11268 module_put(pmu->module); 11269 11270 return ret; 11271 } 11272 11273 static struct pmu *perf_init_event(struct perf_event *event) 11274 { 11275 bool extended_type = false; 11276 int idx, type, ret; 11277 struct pmu *pmu; 11278 11279 idx = srcu_read_lock(&pmus_srcu); 11280 11281 /* Try parent's PMU first: */ 11282 if (event->parent && event->parent->pmu) { 11283 pmu = event->parent->pmu; 11284 ret = perf_try_init_event(pmu, event); 11285 if (!ret) 11286 goto unlock; 11287 } 11288 11289 /* 11290 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11291 * are often aliases for PERF_TYPE_RAW. 11292 */ 11293 type = event->attr.type; 11294 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11295 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11296 if (!type) { 11297 type = PERF_TYPE_RAW; 11298 } else { 11299 extended_type = true; 11300 event->attr.config &= PERF_HW_EVENT_MASK; 11301 } 11302 } 11303 11304 again: 11305 rcu_read_lock(); 11306 pmu = idr_find(&pmu_idr, type); 11307 rcu_read_unlock(); 11308 if (pmu) { 11309 if (event->attr.type != type && type != PERF_TYPE_RAW && 11310 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11311 goto fail; 11312 11313 ret = perf_try_init_event(pmu, event); 11314 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11315 type = event->attr.type; 11316 goto again; 11317 } 11318 11319 if (ret) 11320 pmu = ERR_PTR(ret); 11321 11322 goto unlock; 11323 } 11324 11325 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11326 ret = perf_try_init_event(pmu, event); 11327 if (!ret) 11328 goto unlock; 11329 11330 if (ret != -ENOENT) { 11331 pmu = ERR_PTR(ret); 11332 goto unlock; 11333 } 11334 } 11335 fail: 11336 pmu = ERR_PTR(-ENOENT); 11337 unlock: 11338 srcu_read_unlock(&pmus_srcu, idx); 11339 11340 return pmu; 11341 } 11342 11343 static void attach_sb_event(struct perf_event *event) 11344 { 11345 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11346 11347 raw_spin_lock(&pel->lock); 11348 list_add_rcu(&event->sb_list, &pel->list); 11349 raw_spin_unlock(&pel->lock); 11350 } 11351 11352 /* 11353 * We keep a list of all !task (and therefore per-cpu) events 11354 * that need to receive side-band records. 11355 * 11356 * This avoids having to scan all the various PMU per-cpu contexts 11357 * looking for them. 11358 */ 11359 static void account_pmu_sb_event(struct perf_event *event) 11360 { 11361 if (is_sb_event(event)) 11362 attach_sb_event(event); 11363 } 11364 11365 static void account_event_cpu(struct perf_event *event, int cpu) 11366 { 11367 if (event->parent) 11368 return; 11369 11370 if (is_cgroup_event(event)) 11371 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 11372 } 11373 11374 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11375 static void account_freq_event_nohz(void) 11376 { 11377 #ifdef CONFIG_NO_HZ_FULL 11378 /* Lock so we don't race with concurrent unaccount */ 11379 spin_lock(&nr_freq_lock); 11380 if (atomic_inc_return(&nr_freq_events) == 1) 11381 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11382 spin_unlock(&nr_freq_lock); 11383 #endif 11384 } 11385 11386 static void account_freq_event(void) 11387 { 11388 if (tick_nohz_full_enabled()) 11389 account_freq_event_nohz(); 11390 else 11391 atomic_inc(&nr_freq_events); 11392 } 11393 11394 11395 static void account_event(struct perf_event *event) 11396 { 11397 bool inc = false; 11398 11399 if (event->parent) 11400 return; 11401 11402 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11403 inc = true; 11404 if (event->attr.mmap || event->attr.mmap_data) 11405 atomic_inc(&nr_mmap_events); 11406 if (event->attr.build_id) 11407 atomic_inc(&nr_build_id_events); 11408 if (event->attr.comm) 11409 atomic_inc(&nr_comm_events); 11410 if (event->attr.namespaces) 11411 atomic_inc(&nr_namespaces_events); 11412 if (event->attr.cgroup) 11413 atomic_inc(&nr_cgroup_events); 11414 if (event->attr.task) 11415 atomic_inc(&nr_task_events); 11416 if (event->attr.freq) 11417 account_freq_event(); 11418 if (event->attr.context_switch) { 11419 atomic_inc(&nr_switch_events); 11420 inc = true; 11421 } 11422 if (has_branch_stack(event)) 11423 inc = true; 11424 if (is_cgroup_event(event)) 11425 inc = true; 11426 if (event->attr.ksymbol) 11427 atomic_inc(&nr_ksymbol_events); 11428 if (event->attr.bpf_event) 11429 atomic_inc(&nr_bpf_events); 11430 if (event->attr.text_poke) 11431 atomic_inc(&nr_text_poke_events); 11432 11433 if (inc) { 11434 /* 11435 * We need the mutex here because static_branch_enable() 11436 * must complete *before* the perf_sched_count increment 11437 * becomes visible. 11438 */ 11439 if (atomic_inc_not_zero(&perf_sched_count)) 11440 goto enabled; 11441 11442 mutex_lock(&perf_sched_mutex); 11443 if (!atomic_read(&perf_sched_count)) { 11444 static_branch_enable(&perf_sched_events); 11445 /* 11446 * Guarantee that all CPUs observe they key change and 11447 * call the perf scheduling hooks before proceeding to 11448 * install events that need them. 11449 */ 11450 synchronize_rcu(); 11451 } 11452 /* 11453 * Now that we have waited for the sync_sched(), allow further 11454 * increments to by-pass the mutex. 11455 */ 11456 atomic_inc(&perf_sched_count); 11457 mutex_unlock(&perf_sched_mutex); 11458 } 11459 enabled: 11460 11461 account_event_cpu(event, event->cpu); 11462 11463 account_pmu_sb_event(event); 11464 } 11465 11466 /* 11467 * Allocate and initialize an event structure 11468 */ 11469 static struct perf_event * 11470 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11471 struct task_struct *task, 11472 struct perf_event *group_leader, 11473 struct perf_event *parent_event, 11474 perf_overflow_handler_t overflow_handler, 11475 void *context, int cgroup_fd) 11476 { 11477 struct pmu *pmu; 11478 struct perf_event *event; 11479 struct hw_perf_event *hwc; 11480 long err = -EINVAL; 11481 int node; 11482 11483 if ((unsigned)cpu >= nr_cpu_ids) { 11484 if (!task || cpu != -1) 11485 return ERR_PTR(-EINVAL); 11486 } 11487 if (attr->sigtrap && !task) { 11488 /* Requires a task: avoid signalling random tasks. */ 11489 return ERR_PTR(-EINVAL); 11490 } 11491 11492 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11493 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11494 node); 11495 if (!event) 11496 return ERR_PTR(-ENOMEM); 11497 11498 /* 11499 * Single events are their own group leaders, with an 11500 * empty sibling list: 11501 */ 11502 if (!group_leader) 11503 group_leader = event; 11504 11505 mutex_init(&event->child_mutex); 11506 INIT_LIST_HEAD(&event->child_list); 11507 11508 INIT_LIST_HEAD(&event->event_entry); 11509 INIT_LIST_HEAD(&event->sibling_list); 11510 INIT_LIST_HEAD(&event->active_list); 11511 init_event_group(event); 11512 INIT_LIST_HEAD(&event->rb_entry); 11513 INIT_LIST_HEAD(&event->active_entry); 11514 INIT_LIST_HEAD(&event->addr_filters.list); 11515 INIT_HLIST_NODE(&event->hlist_entry); 11516 11517 11518 init_waitqueue_head(&event->waitq); 11519 event->pending_disable = -1; 11520 init_irq_work(&event->pending, perf_pending_event); 11521 11522 mutex_init(&event->mmap_mutex); 11523 raw_spin_lock_init(&event->addr_filters.lock); 11524 11525 atomic_long_set(&event->refcount, 1); 11526 event->cpu = cpu; 11527 event->attr = *attr; 11528 event->group_leader = group_leader; 11529 event->pmu = NULL; 11530 event->oncpu = -1; 11531 11532 event->parent = parent_event; 11533 11534 event->ns = get_pid_ns(task_active_pid_ns(current)); 11535 event->id = atomic64_inc_return(&perf_event_id); 11536 11537 event->state = PERF_EVENT_STATE_INACTIVE; 11538 11539 if (event->attr.sigtrap) 11540 atomic_set(&event->event_limit, 1); 11541 11542 if (task) { 11543 event->attach_state = PERF_ATTACH_TASK; 11544 /* 11545 * XXX pmu::event_init needs to know what task to account to 11546 * and we cannot use the ctx information because we need the 11547 * pmu before we get a ctx. 11548 */ 11549 event->hw.target = get_task_struct(task); 11550 } 11551 11552 event->clock = &local_clock; 11553 if (parent_event) 11554 event->clock = parent_event->clock; 11555 11556 if (!overflow_handler && parent_event) { 11557 overflow_handler = parent_event->overflow_handler; 11558 context = parent_event->overflow_handler_context; 11559 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11560 if (overflow_handler == bpf_overflow_handler) { 11561 struct bpf_prog *prog = parent_event->prog; 11562 11563 bpf_prog_inc(prog); 11564 event->prog = prog; 11565 event->orig_overflow_handler = 11566 parent_event->orig_overflow_handler; 11567 } 11568 #endif 11569 } 11570 11571 if (overflow_handler) { 11572 event->overflow_handler = overflow_handler; 11573 event->overflow_handler_context = context; 11574 } else if (is_write_backward(event)){ 11575 event->overflow_handler = perf_event_output_backward; 11576 event->overflow_handler_context = NULL; 11577 } else { 11578 event->overflow_handler = perf_event_output_forward; 11579 event->overflow_handler_context = NULL; 11580 } 11581 11582 perf_event__state_init(event); 11583 11584 pmu = NULL; 11585 11586 hwc = &event->hw; 11587 hwc->sample_period = attr->sample_period; 11588 if (attr->freq && attr->sample_freq) 11589 hwc->sample_period = 1; 11590 hwc->last_period = hwc->sample_period; 11591 11592 local64_set(&hwc->period_left, hwc->sample_period); 11593 11594 /* 11595 * We currently do not support PERF_SAMPLE_READ on inherited events. 11596 * See perf_output_read(). 11597 */ 11598 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11599 goto err_ns; 11600 11601 if (!has_branch_stack(event)) 11602 event->attr.branch_sample_type = 0; 11603 11604 pmu = perf_init_event(event); 11605 if (IS_ERR(pmu)) { 11606 err = PTR_ERR(pmu); 11607 goto err_ns; 11608 } 11609 11610 /* 11611 * Disallow uncore-cgroup events, they don't make sense as the cgroup will 11612 * be different on other CPUs in the uncore mask. 11613 */ 11614 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) { 11615 err = -EINVAL; 11616 goto err_pmu; 11617 } 11618 11619 if (event->attr.aux_output && 11620 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11621 err = -EOPNOTSUPP; 11622 goto err_pmu; 11623 } 11624 11625 if (cgroup_fd != -1) { 11626 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11627 if (err) 11628 goto err_pmu; 11629 } 11630 11631 err = exclusive_event_init(event); 11632 if (err) 11633 goto err_pmu; 11634 11635 if (has_addr_filter(event)) { 11636 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11637 sizeof(struct perf_addr_filter_range), 11638 GFP_KERNEL); 11639 if (!event->addr_filter_ranges) { 11640 err = -ENOMEM; 11641 goto err_per_task; 11642 } 11643 11644 /* 11645 * Clone the parent's vma offsets: they are valid until exec() 11646 * even if the mm is not shared with the parent. 11647 */ 11648 if (event->parent) { 11649 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 11650 11651 raw_spin_lock_irq(&ifh->lock); 11652 memcpy(event->addr_filter_ranges, 11653 event->parent->addr_filter_ranges, 11654 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 11655 raw_spin_unlock_irq(&ifh->lock); 11656 } 11657 11658 /* force hw sync on the address filters */ 11659 event->addr_filters_gen = 1; 11660 } 11661 11662 if (!event->parent) { 11663 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 11664 err = get_callchain_buffers(attr->sample_max_stack); 11665 if (err) 11666 goto err_addr_filters; 11667 } 11668 } 11669 11670 err = security_perf_event_alloc(event); 11671 if (err) 11672 goto err_callchain_buffer; 11673 11674 /* symmetric to unaccount_event() in _free_event() */ 11675 account_event(event); 11676 11677 return event; 11678 11679 err_callchain_buffer: 11680 if (!event->parent) { 11681 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 11682 put_callchain_buffers(); 11683 } 11684 err_addr_filters: 11685 kfree(event->addr_filter_ranges); 11686 11687 err_per_task: 11688 exclusive_event_destroy(event); 11689 11690 err_pmu: 11691 if (is_cgroup_event(event)) 11692 perf_detach_cgroup(event); 11693 if (event->destroy) 11694 event->destroy(event); 11695 module_put(pmu->module); 11696 err_ns: 11697 if (event->ns) 11698 put_pid_ns(event->ns); 11699 if (event->hw.target) 11700 put_task_struct(event->hw.target); 11701 kmem_cache_free(perf_event_cache, event); 11702 11703 return ERR_PTR(err); 11704 } 11705 11706 static int perf_copy_attr(struct perf_event_attr __user *uattr, 11707 struct perf_event_attr *attr) 11708 { 11709 u32 size; 11710 int ret; 11711 11712 /* Zero the full structure, so that a short copy will be nice. */ 11713 memset(attr, 0, sizeof(*attr)); 11714 11715 ret = get_user(size, &uattr->size); 11716 if (ret) 11717 return ret; 11718 11719 /* ABI compatibility quirk: */ 11720 if (!size) 11721 size = PERF_ATTR_SIZE_VER0; 11722 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 11723 goto err_size; 11724 11725 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 11726 if (ret) { 11727 if (ret == -E2BIG) 11728 goto err_size; 11729 return ret; 11730 } 11731 11732 attr->size = size; 11733 11734 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 11735 return -EINVAL; 11736 11737 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 11738 return -EINVAL; 11739 11740 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 11741 return -EINVAL; 11742 11743 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 11744 u64 mask = attr->branch_sample_type; 11745 11746 /* only using defined bits */ 11747 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 11748 return -EINVAL; 11749 11750 /* at least one branch bit must be set */ 11751 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 11752 return -EINVAL; 11753 11754 /* propagate priv level, when not set for branch */ 11755 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 11756 11757 /* exclude_kernel checked on syscall entry */ 11758 if (!attr->exclude_kernel) 11759 mask |= PERF_SAMPLE_BRANCH_KERNEL; 11760 11761 if (!attr->exclude_user) 11762 mask |= PERF_SAMPLE_BRANCH_USER; 11763 11764 if (!attr->exclude_hv) 11765 mask |= PERF_SAMPLE_BRANCH_HV; 11766 /* 11767 * adjust user setting (for HW filter setup) 11768 */ 11769 attr->branch_sample_type = mask; 11770 } 11771 /* privileged levels capture (kernel, hv): check permissions */ 11772 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 11773 ret = perf_allow_kernel(attr); 11774 if (ret) 11775 return ret; 11776 } 11777 } 11778 11779 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 11780 ret = perf_reg_validate(attr->sample_regs_user); 11781 if (ret) 11782 return ret; 11783 } 11784 11785 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 11786 if (!arch_perf_have_user_stack_dump()) 11787 return -ENOSYS; 11788 11789 /* 11790 * We have __u32 type for the size, but so far 11791 * we can only use __u16 as maximum due to the 11792 * __u16 sample size limit. 11793 */ 11794 if (attr->sample_stack_user >= USHRT_MAX) 11795 return -EINVAL; 11796 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 11797 return -EINVAL; 11798 } 11799 11800 if (!attr->sample_max_stack) 11801 attr->sample_max_stack = sysctl_perf_event_max_stack; 11802 11803 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 11804 ret = perf_reg_validate(attr->sample_regs_intr); 11805 11806 #ifndef CONFIG_CGROUP_PERF 11807 if (attr->sample_type & PERF_SAMPLE_CGROUP) 11808 return -EINVAL; 11809 #endif 11810 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 11811 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 11812 return -EINVAL; 11813 11814 if (!attr->inherit && attr->inherit_thread) 11815 return -EINVAL; 11816 11817 if (attr->remove_on_exec && attr->enable_on_exec) 11818 return -EINVAL; 11819 11820 if (attr->sigtrap && !attr->remove_on_exec) 11821 return -EINVAL; 11822 11823 out: 11824 return ret; 11825 11826 err_size: 11827 put_user(sizeof(*attr), &uattr->size); 11828 ret = -E2BIG; 11829 goto out; 11830 } 11831 11832 static int 11833 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 11834 { 11835 struct perf_buffer *rb = NULL; 11836 int ret = -EINVAL; 11837 11838 if (!output_event) 11839 goto set; 11840 11841 /* don't allow circular references */ 11842 if (event == output_event) 11843 goto out; 11844 11845 /* 11846 * Don't allow cross-cpu buffers 11847 */ 11848 if (output_event->cpu != event->cpu) 11849 goto out; 11850 11851 /* 11852 * If its not a per-cpu rb, it must be the same task. 11853 */ 11854 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 11855 goto out; 11856 11857 /* 11858 * Mixing clocks in the same buffer is trouble you don't need. 11859 */ 11860 if (output_event->clock != event->clock) 11861 goto out; 11862 11863 /* 11864 * Either writing ring buffer from beginning or from end. 11865 * Mixing is not allowed. 11866 */ 11867 if (is_write_backward(output_event) != is_write_backward(event)) 11868 goto out; 11869 11870 /* 11871 * If both events generate aux data, they must be on the same PMU 11872 */ 11873 if (has_aux(event) && has_aux(output_event) && 11874 event->pmu != output_event->pmu) 11875 goto out; 11876 11877 set: 11878 mutex_lock(&event->mmap_mutex); 11879 /* Can't redirect output if we've got an active mmap() */ 11880 if (atomic_read(&event->mmap_count)) 11881 goto unlock; 11882 11883 if (output_event) { 11884 /* get the rb we want to redirect to */ 11885 rb = ring_buffer_get(output_event); 11886 if (!rb) 11887 goto unlock; 11888 } 11889 11890 ring_buffer_attach(event, rb); 11891 11892 ret = 0; 11893 unlock: 11894 mutex_unlock(&event->mmap_mutex); 11895 11896 out: 11897 return ret; 11898 } 11899 11900 static void mutex_lock_double(struct mutex *a, struct mutex *b) 11901 { 11902 if (b < a) 11903 swap(a, b); 11904 11905 mutex_lock(a); 11906 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 11907 } 11908 11909 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 11910 { 11911 bool nmi_safe = false; 11912 11913 switch (clk_id) { 11914 case CLOCK_MONOTONIC: 11915 event->clock = &ktime_get_mono_fast_ns; 11916 nmi_safe = true; 11917 break; 11918 11919 case CLOCK_MONOTONIC_RAW: 11920 event->clock = &ktime_get_raw_fast_ns; 11921 nmi_safe = true; 11922 break; 11923 11924 case CLOCK_REALTIME: 11925 event->clock = &ktime_get_real_ns; 11926 break; 11927 11928 case CLOCK_BOOTTIME: 11929 event->clock = &ktime_get_boottime_ns; 11930 break; 11931 11932 case CLOCK_TAI: 11933 event->clock = &ktime_get_clocktai_ns; 11934 break; 11935 11936 default: 11937 return -EINVAL; 11938 } 11939 11940 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 11941 return -EINVAL; 11942 11943 return 0; 11944 } 11945 11946 /* 11947 * Variation on perf_event_ctx_lock_nested(), except we take two context 11948 * mutexes. 11949 */ 11950 static struct perf_event_context * 11951 __perf_event_ctx_lock_double(struct perf_event *group_leader, 11952 struct perf_event_context *ctx) 11953 { 11954 struct perf_event_context *gctx; 11955 11956 again: 11957 rcu_read_lock(); 11958 gctx = READ_ONCE(group_leader->ctx); 11959 if (!refcount_inc_not_zero(&gctx->refcount)) { 11960 rcu_read_unlock(); 11961 goto again; 11962 } 11963 rcu_read_unlock(); 11964 11965 mutex_lock_double(&gctx->mutex, &ctx->mutex); 11966 11967 if (group_leader->ctx != gctx) { 11968 mutex_unlock(&ctx->mutex); 11969 mutex_unlock(&gctx->mutex); 11970 put_ctx(gctx); 11971 goto again; 11972 } 11973 11974 return gctx; 11975 } 11976 11977 static bool 11978 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 11979 { 11980 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 11981 bool is_capable = perfmon_capable(); 11982 11983 if (attr->sigtrap) { 11984 /* 11985 * perf_event_attr::sigtrap sends signals to the other task. 11986 * Require the current task to also have CAP_KILL. 11987 */ 11988 rcu_read_lock(); 11989 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 11990 rcu_read_unlock(); 11991 11992 /* 11993 * If the required capabilities aren't available, checks for 11994 * ptrace permissions: upgrade to ATTACH, since sending signals 11995 * can effectively change the target task. 11996 */ 11997 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 11998 } 11999 12000 /* 12001 * Preserve ptrace permission check for backwards compatibility. The 12002 * ptrace check also includes checks that the current task and other 12003 * task have matching uids, and is therefore not done here explicitly. 12004 */ 12005 return is_capable || ptrace_may_access(task, ptrace_mode); 12006 } 12007 12008 /** 12009 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12010 * 12011 * @attr_uptr: event_id type attributes for monitoring/sampling 12012 * @pid: target pid 12013 * @cpu: target cpu 12014 * @group_fd: group leader event fd 12015 * @flags: perf event open flags 12016 */ 12017 SYSCALL_DEFINE5(perf_event_open, 12018 struct perf_event_attr __user *, attr_uptr, 12019 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12020 { 12021 struct perf_event *group_leader = NULL, *output_event = NULL; 12022 struct perf_event *event, *sibling; 12023 struct perf_event_attr attr; 12024 struct perf_event_context *ctx, *gctx; 12025 struct file *event_file = NULL; 12026 struct fd group = {NULL, 0}; 12027 struct task_struct *task = NULL; 12028 struct pmu *pmu; 12029 int event_fd; 12030 int move_group = 0; 12031 int err; 12032 int f_flags = O_RDWR; 12033 int cgroup_fd = -1; 12034 12035 /* for future expandability... */ 12036 if (flags & ~PERF_FLAG_ALL) 12037 return -EINVAL; 12038 12039 /* Do we allow access to perf_event_open(2) ? */ 12040 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12041 if (err) 12042 return err; 12043 12044 err = perf_copy_attr(attr_uptr, &attr); 12045 if (err) 12046 return err; 12047 12048 if (!attr.exclude_kernel) { 12049 err = perf_allow_kernel(&attr); 12050 if (err) 12051 return err; 12052 } 12053 12054 if (attr.namespaces) { 12055 if (!perfmon_capable()) 12056 return -EACCES; 12057 } 12058 12059 if (attr.freq) { 12060 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12061 return -EINVAL; 12062 } else { 12063 if (attr.sample_period & (1ULL << 63)) 12064 return -EINVAL; 12065 } 12066 12067 /* Only privileged users can get physical addresses */ 12068 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12069 err = perf_allow_kernel(&attr); 12070 if (err) 12071 return err; 12072 } 12073 12074 /* REGS_INTR can leak data, lockdown must prevent this */ 12075 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12076 err = security_locked_down(LOCKDOWN_PERF); 12077 if (err) 12078 return err; 12079 } 12080 12081 /* 12082 * In cgroup mode, the pid argument is used to pass the fd 12083 * opened to the cgroup directory in cgroupfs. The cpu argument 12084 * designates the cpu on which to monitor threads from that 12085 * cgroup. 12086 */ 12087 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12088 return -EINVAL; 12089 12090 if (flags & PERF_FLAG_FD_CLOEXEC) 12091 f_flags |= O_CLOEXEC; 12092 12093 event_fd = get_unused_fd_flags(f_flags); 12094 if (event_fd < 0) 12095 return event_fd; 12096 12097 if (group_fd != -1) { 12098 err = perf_fget_light(group_fd, &group); 12099 if (err) 12100 goto err_fd; 12101 group_leader = group.file->private_data; 12102 if (flags & PERF_FLAG_FD_OUTPUT) 12103 output_event = group_leader; 12104 if (flags & PERF_FLAG_FD_NO_GROUP) 12105 group_leader = NULL; 12106 } 12107 12108 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12109 task = find_lively_task_by_vpid(pid); 12110 if (IS_ERR(task)) { 12111 err = PTR_ERR(task); 12112 goto err_group_fd; 12113 } 12114 } 12115 12116 if (task && group_leader && 12117 group_leader->attr.inherit != attr.inherit) { 12118 err = -EINVAL; 12119 goto err_task; 12120 } 12121 12122 if (flags & PERF_FLAG_PID_CGROUP) 12123 cgroup_fd = pid; 12124 12125 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12126 NULL, NULL, cgroup_fd); 12127 if (IS_ERR(event)) { 12128 err = PTR_ERR(event); 12129 goto err_task; 12130 } 12131 12132 if (is_sampling_event(event)) { 12133 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12134 err = -EOPNOTSUPP; 12135 goto err_alloc; 12136 } 12137 } 12138 12139 /* 12140 * Special case software events and allow them to be part of 12141 * any hardware group. 12142 */ 12143 pmu = event->pmu; 12144 12145 if (attr.use_clockid) { 12146 err = perf_event_set_clock(event, attr.clockid); 12147 if (err) 12148 goto err_alloc; 12149 } 12150 12151 if (pmu->task_ctx_nr == perf_sw_context) 12152 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12153 12154 if (group_leader) { 12155 if (is_software_event(event) && 12156 !in_software_context(group_leader)) { 12157 /* 12158 * If the event is a sw event, but the group_leader 12159 * is on hw context. 12160 * 12161 * Allow the addition of software events to hw 12162 * groups, this is safe because software events 12163 * never fail to schedule. 12164 */ 12165 pmu = group_leader->ctx->pmu; 12166 } else if (!is_software_event(event) && 12167 is_software_event(group_leader) && 12168 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12169 /* 12170 * In case the group is a pure software group, and we 12171 * try to add a hardware event, move the whole group to 12172 * the hardware context. 12173 */ 12174 move_group = 1; 12175 } 12176 } 12177 12178 /* 12179 * Get the target context (task or percpu): 12180 */ 12181 ctx = find_get_context(pmu, task, event); 12182 if (IS_ERR(ctx)) { 12183 err = PTR_ERR(ctx); 12184 goto err_alloc; 12185 } 12186 12187 /* 12188 * Look up the group leader (we will attach this event to it): 12189 */ 12190 if (group_leader) { 12191 err = -EINVAL; 12192 12193 /* 12194 * Do not allow a recursive hierarchy (this new sibling 12195 * becoming part of another group-sibling): 12196 */ 12197 if (group_leader->group_leader != group_leader) 12198 goto err_context; 12199 12200 /* All events in a group should have the same clock */ 12201 if (group_leader->clock != event->clock) 12202 goto err_context; 12203 12204 /* 12205 * Make sure we're both events for the same CPU; 12206 * grouping events for different CPUs is broken; since 12207 * you can never concurrently schedule them anyhow. 12208 */ 12209 if (group_leader->cpu != event->cpu) 12210 goto err_context; 12211 12212 /* 12213 * Make sure we're both on the same task, or both 12214 * per-CPU events. 12215 */ 12216 if (group_leader->ctx->task != ctx->task) 12217 goto err_context; 12218 12219 /* 12220 * Do not allow to attach to a group in a different task 12221 * or CPU context. If we're moving SW events, we'll fix 12222 * this up later, so allow that. 12223 */ 12224 if (!move_group && group_leader->ctx != ctx) 12225 goto err_context; 12226 12227 /* 12228 * Only a group leader can be exclusive or pinned 12229 */ 12230 if (attr.exclusive || attr.pinned) 12231 goto err_context; 12232 } 12233 12234 if (output_event) { 12235 err = perf_event_set_output(event, output_event); 12236 if (err) 12237 goto err_context; 12238 } 12239 12240 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 12241 f_flags); 12242 if (IS_ERR(event_file)) { 12243 err = PTR_ERR(event_file); 12244 event_file = NULL; 12245 goto err_context; 12246 } 12247 12248 if (task) { 12249 err = down_read_interruptible(&task->signal->exec_update_lock); 12250 if (err) 12251 goto err_file; 12252 12253 /* 12254 * We must hold exec_update_lock across this and any potential 12255 * perf_install_in_context() call for this new event to 12256 * serialize against exec() altering our credentials (and the 12257 * perf_event_exit_task() that could imply). 12258 */ 12259 err = -EACCES; 12260 if (!perf_check_permission(&attr, task)) 12261 goto err_cred; 12262 } 12263 12264 if (move_group) { 12265 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 12266 12267 if (gctx->task == TASK_TOMBSTONE) { 12268 err = -ESRCH; 12269 goto err_locked; 12270 } 12271 12272 /* 12273 * Check if we raced against another sys_perf_event_open() call 12274 * moving the software group underneath us. 12275 */ 12276 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12277 /* 12278 * If someone moved the group out from under us, check 12279 * if this new event wound up on the same ctx, if so 12280 * its the regular !move_group case, otherwise fail. 12281 */ 12282 if (gctx != ctx) { 12283 err = -EINVAL; 12284 goto err_locked; 12285 } else { 12286 perf_event_ctx_unlock(group_leader, gctx); 12287 move_group = 0; 12288 } 12289 } 12290 12291 /* 12292 * Failure to create exclusive events returns -EBUSY. 12293 */ 12294 err = -EBUSY; 12295 if (!exclusive_event_installable(group_leader, ctx)) 12296 goto err_locked; 12297 12298 for_each_sibling_event(sibling, group_leader) { 12299 if (!exclusive_event_installable(sibling, ctx)) 12300 goto err_locked; 12301 } 12302 } else { 12303 mutex_lock(&ctx->mutex); 12304 } 12305 12306 if (ctx->task == TASK_TOMBSTONE) { 12307 err = -ESRCH; 12308 goto err_locked; 12309 } 12310 12311 if (!perf_event_validate_size(event)) { 12312 err = -E2BIG; 12313 goto err_locked; 12314 } 12315 12316 if (!task) { 12317 /* 12318 * Check if the @cpu we're creating an event for is online. 12319 * 12320 * We use the perf_cpu_context::ctx::mutex to serialize against 12321 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12322 */ 12323 struct perf_cpu_context *cpuctx = 12324 container_of(ctx, struct perf_cpu_context, ctx); 12325 12326 if (!cpuctx->online) { 12327 err = -ENODEV; 12328 goto err_locked; 12329 } 12330 } 12331 12332 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12333 err = -EINVAL; 12334 goto err_locked; 12335 } 12336 12337 /* 12338 * Must be under the same ctx::mutex as perf_install_in_context(), 12339 * because we need to serialize with concurrent event creation. 12340 */ 12341 if (!exclusive_event_installable(event, ctx)) { 12342 err = -EBUSY; 12343 goto err_locked; 12344 } 12345 12346 WARN_ON_ONCE(ctx->parent_ctx); 12347 12348 /* 12349 * This is the point on no return; we cannot fail hereafter. This is 12350 * where we start modifying current state. 12351 */ 12352 12353 if (move_group) { 12354 /* 12355 * See perf_event_ctx_lock() for comments on the details 12356 * of swizzling perf_event::ctx. 12357 */ 12358 perf_remove_from_context(group_leader, 0); 12359 put_ctx(gctx); 12360 12361 for_each_sibling_event(sibling, group_leader) { 12362 perf_remove_from_context(sibling, 0); 12363 put_ctx(gctx); 12364 } 12365 12366 /* 12367 * Wait for everybody to stop referencing the events through 12368 * the old lists, before installing it on new lists. 12369 */ 12370 synchronize_rcu(); 12371 12372 /* 12373 * Install the group siblings before the group leader. 12374 * 12375 * Because a group leader will try and install the entire group 12376 * (through the sibling list, which is still in-tact), we can 12377 * end up with siblings installed in the wrong context. 12378 * 12379 * By installing siblings first we NO-OP because they're not 12380 * reachable through the group lists. 12381 */ 12382 for_each_sibling_event(sibling, group_leader) { 12383 perf_event__state_init(sibling); 12384 perf_install_in_context(ctx, sibling, sibling->cpu); 12385 get_ctx(ctx); 12386 } 12387 12388 /* 12389 * Removing from the context ends up with disabled 12390 * event. What we want here is event in the initial 12391 * startup state, ready to be add into new context. 12392 */ 12393 perf_event__state_init(group_leader); 12394 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12395 get_ctx(ctx); 12396 } 12397 12398 /* 12399 * Precalculate sample_data sizes; do while holding ctx::mutex such 12400 * that we're serialized against further additions and before 12401 * perf_install_in_context() which is the point the event is active and 12402 * can use these values. 12403 */ 12404 perf_event__header_size(event); 12405 perf_event__id_header_size(event); 12406 12407 event->owner = current; 12408 12409 perf_install_in_context(ctx, event, event->cpu); 12410 perf_unpin_context(ctx); 12411 12412 if (move_group) 12413 perf_event_ctx_unlock(group_leader, gctx); 12414 mutex_unlock(&ctx->mutex); 12415 12416 if (task) { 12417 up_read(&task->signal->exec_update_lock); 12418 put_task_struct(task); 12419 } 12420 12421 mutex_lock(¤t->perf_event_mutex); 12422 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12423 mutex_unlock(¤t->perf_event_mutex); 12424 12425 /* 12426 * Drop the reference on the group_event after placing the 12427 * new event on the sibling_list. This ensures destruction 12428 * of the group leader will find the pointer to itself in 12429 * perf_group_detach(). 12430 */ 12431 fdput(group); 12432 fd_install(event_fd, event_file); 12433 return event_fd; 12434 12435 err_locked: 12436 if (move_group) 12437 perf_event_ctx_unlock(group_leader, gctx); 12438 mutex_unlock(&ctx->mutex); 12439 err_cred: 12440 if (task) 12441 up_read(&task->signal->exec_update_lock); 12442 err_file: 12443 fput(event_file); 12444 err_context: 12445 perf_unpin_context(ctx); 12446 put_ctx(ctx); 12447 err_alloc: 12448 /* 12449 * If event_file is set, the fput() above will have called ->release() 12450 * and that will take care of freeing the event. 12451 */ 12452 if (!event_file) 12453 free_event(event); 12454 err_task: 12455 if (task) 12456 put_task_struct(task); 12457 err_group_fd: 12458 fdput(group); 12459 err_fd: 12460 put_unused_fd(event_fd); 12461 return err; 12462 } 12463 12464 /** 12465 * perf_event_create_kernel_counter 12466 * 12467 * @attr: attributes of the counter to create 12468 * @cpu: cpu in which the counter is bound 12469 * @task: task to profile (NULL for percpu) 12470 * @overflow_handler: callback to trigger when we hit the event 12471 * @context: context data could be used in overflow_handler callback 12472 */ 12473 struct perf_event * 12474 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12475 struct task_struct *task, 12476 perf_overflow_handler_t overflow_handler, 12477 void *context) 12478 { 12479 struct perf_event_context *ctx; 12480 struct perf_event *event; 12481 int err; 12482 12483 /* 12484 * Grouping is not supported for kernel events, neither is 'AUX', 12485 * make sure the caller's intentions are adjusted. 12486 */ 12487 if (attr->aux_output) 12488 return ERR_PTR(-EINVAL); 12489 12490 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12491 overflow_handler, context, -1); 12492 if (IS_ERR(event)) { 12493 err = PTR_ERR(event); 12494 goto err; 12495 } 12496 12497 /* Mark owner so we could distinguish it from user events. */ 12498 event->owner = TASK_TOMBSTONE; 12499 12500 /* 12501 * Get the target context (task or percpu): 12502 */ 12503 ctx = find_get_context(event->pmu, task, event); 12504 if (IS_ERR(ctx)) { 12505 err = PTR_ERR(ctx); 12506 goto err_free; 12507 } 12508 12509 WARN_ON_ONCE(ctx->parent_ctx); 12510 mutex_lock(&ctx->mutex); 12511 if (ctx->task == TASK_TOMBSTONE) { 12512 err = -ESRCH; 12513 goto err_unlock; 12514 } 12515 12516 if (!task) { 12517 /* 12518 * Check if the @cpu we're creating an event for is online. 12519 * 12520 * We use the perf_cpu_context::ctx::mutex to serialize against 12521 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12522 */ 12523 struct perf_cpu_context *cpuctx = 12524 container_of(ctx, struct perf_cpu_context, ctx); 12525 if (!cpuctx->online) { 12526 err = -ENODEV; 12527 goto err_unlock; 12528 } 12529 } 12530 12531 if (!exclusive_event_installable(event, ctx)) { 12532 err = -EBUSY; 12533 goto err_unlock; 12534 } 12535 12536 perf_install_in_context(ctx, event, event->cpu); 12537 perf_unpin_context(ctx); 12538 mutex_unlock(&ctx->mutex); 12539 12540 return event; 12541 12542 err_unlock: 12543 mutex_unlock(&ctx->mutex); 12544 perf_unpin_context(ctx); 12545 put_ctx(ctx); 12546 err_free: 12547 free_event(event); 12548 err: 12549 return ERR_PTR(err); 12550 } 12551 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12552 12553 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12554 { 12555 struct perf_event_context *src_ctx; 12556 struct perf_event_context *dst_ctx; 12557 struct perf_event *event, *tmp; 12558 LIST_HEAD(events); 12559 12560 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 12561 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 12562 12563 /* 12564 * See perf_event_ctx_lock() for comments on the details 12565 * of swizzling perf_event::ctx. 12566 */ 12567 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12568 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 12569 event_entry) { 12570 perf_remove_from_context(event, 0); 12571 unaccount_event_cpu(event, src_cpu); 12572 put_ctx(src_ctx); 12573 list_add(&event->migrate_entry, &events); 12574 } 12575 12576 /* 12577 * Wait for the events to quiesce before re-instating them. 12578 */ 12579 synchronize_rcu(); 12580 12581 /* 12582 * Re-instate events in 2 passes. 12583 * 12584 * Skip over group leaders and only install siblings on this first 12585 * pass, siblings will not get enabled without a leader, however a 12586 * leader will enable its siblings, even if those are still on the old 12587 * context. 12588 */ 12589 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12590 if (event->group_leader == event) 12591 continue; 12592 12593 list_del(&event->migrate_entry); 12594 if (event->state >= PERF_EVENT_STATE_OFF) 12595 event->state = PERF_EVENT_STATE_INACTIVE; 12596 account_event_cpu(event, dst_cpu); 12597 perf_install_in_context(dst_ctx, event, dst_cpu); 12598 get_ctx(dst_ctx); 12599 } 12600 12601 /* 12602 * Once all the siblings are setup properly, install the group leaders 12603 * to make it go. 12604 */ 12605 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 12606 list_del(&event->migrate_entry); 12607 if (event->state >= PERF_EVENT_STATE_OFF) 12608 event->state = PERF_EVENT_STATE_INACTIVE; 12609 account_event_cpu(event, dst_cpu); 12610 perf_install_in_context(dst_ctx, event, dst_cpu); 12611 get_ctx(dst_ctx); 12612 } 12613 mutex_unlock(&dst_ctx->mutex); 12614 mutex_unlock(&src_ctx->mutex); 12615 } 12616 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12617 12618 static void sync_child_event(struct perf_event *child_event) 12619 { 12620 struct perf_event *parent_event = child_event->parent; 12621 u64 child_val; 12622 12623 if (child_event->attr.inherit_stat) { 12624 struct task_struct *task = child_event->ctx->task; 12625 12626 if (task && task != TASK_TOMBSTONE) 12627 perf_event_read_event(child_event, task); 12628 } 12629 12630 child_val = perf_event_count(child_event); 12631 12632 /* 12633 * Add back the child's count to the parent's count: 12634 */ 12635 atomic64_add(child_val, &parent_event->child_count); 12636 atomic64_add(child_event->total_time_enabled, 12637 &parent_event->child_total_time_enabled); 12638 atomic64_add(child_event->total_time_running, 12639 &parent_event->child_total_time_running); 12640 } 12641 12642 static void 12643 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12644 { 12645 struct perf_event *parent_event = event->parent; 12646 unsigned long detach_flags = 0; 12647 12648 if (parent_event) { 12649 /* 12650 * Do not destroy the 'original' grouping; because of the 12651 * context switch optimization the original events could've 12652 * ended up in a random child task. 12653 * 12654 * If we were to destroy the original group, all group related 12655 * operations would cease to function properly after this 12656 * random child dies. 12657 * 12658 * Do destroy all inherited groups, we don't care about those 12659 * and being thorough is better. 12660 */ 12661 detach_flags = DETACH_GROUP | DETACH_CHILD; 12662 mutex_lock(&parent_event->child_mutex); 12663 } 12664 12665 perf_remove_from_context(event, detach_flags); 12666 12667 raw_spin_lock_irq(&ctx->lock); 12668 if (event->state > PERF_EVENT_STATE_EXIT) 12669 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 12670 raw_spin_unlock_irq(&ctx->lock); 12671 12672 /* 12673 * Child events can be freed. 12674 */ 12675 if (parent_event) { 12676 mutex_unlock(&parent_event->child_mutex); 12677 /* 12678 * Kick perf_poll() for is_event_hup(); 12679 */ 12680 perf_event_wakeup(parent_event); 12681 free_event(event); 12682 put_event(parent_event); 12683 return; 12684 } 12685 12686 /* 12687 * Parent events are governed by their filedesc, retain them. 12688 */ 12689 perf_event_wakeup(event); 12690 } 12691 12692 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 12693 { 12694 struct perf_event_context *child_ctx, *clone_ctx = NULL; 12695 struct perf_event *child_event, *next; 12696 12697 WARN_ON_ONCE(child != current); 12698 12699 child_ctx = perf_pin_task_context(child, ctxn); 12700 if (!child_ctx) 12701 return; 12702 12703 /* 12704 * In order to reduce the amount of tricky in ctx tear-down, we hold 12705 * ctx::mutex over the entire thing. This serializes against almost 12706 * everything that wants to access the ctx. 12707 * 12708 * The exception is sys_perf_event_open() / 12709 * perf_event_create_kernel_count() which does find_get_context() 12710 * without ctx::mutex (it cannot because of the move_group double mutex 12711 * lock thing). See the comments in perf_install_in_context(). 12712 */ 12713 mutex_lock(&child_ctx->mutex); 12714 12715 /* 12716 * In a single ctx::lock section, de-schedule the events and detach the 12717 * context from the task such that we cannot ever get it scheduled back 12718 * in. 12719 */ 12720 raw_spin_lock_irq(&child_ctx->lock); 12721 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 12722 12723 /* 12724 * Now that the context is inactive, destroy the task <-> ctx relation 12725 * and mark the context dead. 12726 */ 12727 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 12728 put_ctx(child_ctx); /* cannot be last */ 12729 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 12730 put_task_struct(current); /* cannot be last */ 12731 12732 clone_ctx = unclone_ctx(child_ctx); 12733 raw_spin_unlock_irq(&child_ctx->lock); 12734 12735 if (clone_ctx) 12736 put_ctx(clone_ctx); 12737 12738 /* 12739 * Report the task dead after unscheduling the events so that we 12740 * won't get any samples after PERF_RECORD_EXIT. We can however still 12741 * get a few PERF_RECORD_READ events. 12742 */ 12743 perf_event_task(child, child_ctx, 0); 12744 12745 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 12746 perf_event_exit_event(child_event, child_ctx); 12747 12748 mutex_unlock(&child_ctx->mutex); 12749 12750 put_ctx(child_ctx); 12751 } 12752 12753 /* 12754 * When a child task exits, feed back event values to parent events. 12755 * 12756 * Can be called with exec_update_lock held when called from 12757 * setup_new_exec(). 12758 */ 12759 void perf_event_exit_task(struct task_struct *child) 12760 { 12761 struct perf_event *event, *tmp; 12762 int ctxn; 12763 12764 mutex_lock(&child->perf_event_mutex); 12765 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 12766 owner_entry) { 12767 list_del_init(&event->owner_entry); 12768 12769 /* 12770 * Ensure the list deletion is visible before we clear 12771 * the owner, closes a race against perf_release() where 12772 * we need to serialize on the owner->perf_event_mutex. 12773 */ 12774 smp_store_release(&event->owner, NULL); 12775 } 12776 mutex_unlock(&child->perf_event_mutex); 12777 12778 for_each_task_context_nr(ctxn) 12779 perf_event_exit_task_context(child, ctxn); 12780 12781 /* 12782 * The perf_event_exit_task_context calls perf_event_task 12783 * with child's task_ctx, which generates EXIT events for 12784 * child contexts and sets child->perf_event_ctxp[] to NULL. 12785 * At this point we need to send EXIT events to cpu contexts. 12786 */ 12787 perf_event_task(child, NULL, 0); 12788 } 12789 12790 static void perf_free_event(struct perf_event *event, 12791 struct perf_event_context *ctx) 12792 { 12793 struct perf_event *parent = event->parent; 12794 12795 if (WARN_ON_ONCE(!parent)) 12796 return; 12797 12798 mutex_lock(&parent->child_mutex); 12799 list_del_init(&event->child_list); 12800 mutex_unlock(&parent->child_mutex); 12801 12802 put_event(parent); 12803 12804 raw_spin_lock_irq(&ctx->lock); 12805 perf_group_detach(event); 12806 list_del_event(event, ctx); 12807 raw_spin_unlock_irq(&ctx->lock); 12808 free_event(event); 12809 } 12810 12811 /* 12812 * Free a context as created by inheritance by perf_event_init_task() below, 12813 * used by fork() in case of fail. 12814 * 12815 * Even though the task has never lived, the context and events have been 12816 * exposed through the child_list, so we must take care tearing it all down. 12817 */ 12818 void perf_event_free_task(struct task_struct *task) 12819 { 12820 struct perf_event_context *ctx; 12821 struct perf_event *event, *tmp; 12822 int ctxn; 12823 12824 for_each_task_context_nr(ctxn) { 12825 ctx = task->perf_event_ctxp[ctxn]; 12826 if (!ctx) 12827 continue; 12828 12829 mutex_lock(&ctx->mutex); 12830 raw_spin_lock_irq(&ctx->lock); 12831 /* 12832 * Destroy the task <-> ctx relation and mark the context dead. 12833 * 12834 * This is important because even though the task hasn't been 12835 * exposed yet the context has been (through child_list). 12836 */ 12837 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 12838 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 12839 put_task_struct(task); /* cannot be last */ 12840 raw_spin_unlock_irq(&ctx->lock); 12841 12842 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 12843 perf_free_event(event, ctx); 12844 12845 mutex_unlock(&ctx->mutex); 12846 12847 /* 12848 * perf_event_release_kernel() could've stolen some of our 12849 * child events and still have them on its free_list. In that 12850 * case we must wait for these events to have been freed (in 12851 * particular all their references to this task must've been 12852 * dropped). 12853 * 12854 * Without this copy_process() will unconditionally free this 12855 * task (irrespective of its reference count) and 12856 * _free_event()'s put_task_struct(event->hw.target) will be a 12857 * use-after-free. 12858 * 12859 * Wait for all events to drop their context reference. 12860 */ 12861 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 12862 put_ctx(ctx); /* must be last */ 12863 } 12864 } 12865 12866 void perf_event_delayed_put(struct task_struct *task) 12867 { 12868 int ctxn; 12869 12870 for_each_task_context_nr(ctxn) 12871 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 12872 } 12873 12874 struct file *perf_event_get(unsigned int fd) 12875 { 12876 struct file *file = fget(fd); 12877 if (!file) 12878 return ERR_PTR(-EBADF); 12879 12880 if (file->f_op != &perf_fops) { 12881 fput(file); 12882 return ERR_PTR(-EBADF); 12883 } 12884 12885 return file; 12886 } 12887 12888 const struct perf_event *perf_get_event(struct file *file) 12889 { 12890 if (file->f_op != &perf_fops) 12891 return ERR_PTR(-EINVAL); 12892 12893 return file->private_data; 12894 } 12895 12896 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 12897 { 12898 if (!event) 12899 return ERR_PTR(-EINVAL); 12900 12901 return &event->attr; 12902 } 12903 12904 /* 12905 * Inherit an event from parent task to child task. 12906 * 12907 * Returns: 12908 * - valid pointer on success 12909 * - NULL for orphaned events 12910 * - IS_ERR() on error 12911 */ 12912 static struct perf_event * 12913 inherit_event(struct perf_event *parent_event, 12914 struct task_struct *parent, 12915 struct perf_event_context *parent_ctx, 12916 struct task_struct *child, 12917 struct perf_event *group_leader, 12918 struct perf_event_context *child_ctx) 12919 { 12920 enum perf_event_state parent_state = parent_event->state; 12921 struct perf_event *child_event; 12922 unsigned long flags; 12923 12924 /* 12925 * Instead of creating recursive hierarchies of events, 12926 * we link inherited events back to the original parent, 12927 * which has a filp for sure, which we use as the reference 12928 * count: 12929 */ 12930 if (parent_event->parent) 12931 parent_event = parent_event->parent; 12932 12933 child_event = perf_event_alloc(&parent_event->attr, 12934 parent_event->cpu, 12935 child, 12936 group_leader, parent_event, 12937 NULL, NULL, -1); 12938 if (IS_ERR(child_event)) 12939 return child_event; 12940 12941 12942 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 12943 !child_ctx->task_ctx_data) { 12944 struct pmu *pmu = child_event->pmu; 12945 12946 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu); 12947 if (!child_ctx->task_ctx_data) { 12948 free_event(child_event); 12949 return ERR_PTR(-ENOMEM); 12950 } 12951 } 12952 12953 /* 12954 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 12955 * must be under the same lock in order to serialize against 12956 * perf_event_release_kernel(), such that either we must observe 12957 * is_orphaned_event() or they will observe us on the child_list. 12958 */ 12959 mutex_lock(&parent_event->child_mutex); 12960 if (is_orphaned_event(parent_event) || 12961 !atomic_long_inc_not_zero(&parent_event->refcount)) { 12962 mutex_unlock(&parent_event->child_mutex); 12963 /* task_ctx_data is freed with child_ctx */ 12964 free_event(child_event); 12965 return NULL; 12966 } 12967 12968 get_ctx(child_ctx); 12969 12970 /* 12971 * Make the child state follow the state of the parent event, 12972 * not its attr.disabled bit. We hold the parent's mutex, 12973 * so we won't race with perf_event_{en, dis}able_family. 12974 */ 12975 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 12976 child_event->state = PERF_EVENT_STATE_INACTIVE; 12977 else 12978 child_event->state = PERF_EVENT_STATE_OFF; 12979 12980 if (parent_event->attr.freq) { 12981 u64 sample_period = parent_event->hw.sample_period; 12982 struct hw_perf_event *hwc = &child_event->hw; 12983 12984 hwc->sample_period = sample_period; 12985 hwc->last_period = sample_period; 12986 12987 local64_set(&hwc->period_left, sample_period); 12988 } 12989 12990 child_event->ctx = child_ctx; 12991 child_event->overflow_handler = parent_event->overflow_handler; 12992 child_event->overflow_handler_context 12993 = parent_event->overflow_handler_context; 12994 12995 /* 12996 * Precalculate sample_data sizes 12997 */ 12998 perf_event__header_size(child_event); 12999 perf_event__id_header_size(child_event); 13000 13001 /* 13002 * Link it up in the child's context: 13003 */ 13004 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13005 add_event_to_ctx(child_event, child_ctx); 13006 child_event->attach_state |= PERF_ATTACH_CHILD; 13007 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13008 13009 /* 13010 * Link this into the parent event's child list 13011 */ 13012 list_add_tail(&child_event->child_list, &parent_event->child_list); 13013 mutex_unlock(&parent_event->child_mutex); 13014 13015 return child_event; 13016 } 13017 13018 /* 13019 * Inherits an event group. 13020 * 13021 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13022 * This matches with perf_event_release_kernel() removing all child events. 13023 * 13024 * Returns: 13025 * - 0 on success 13026 * - <0 on error 13027 */ 13028 static int inherit_group(struct perf_event *parent_event, 13029 struct task_struct *parent, 13030 struct perf_event_context *parent_ctx, 13031 struct task_struct *child, 13032 struct perf_event_context *child_ctx) 13033 { 13034 struct perf_event *leader; 13035 struct perf_event *sub; 13036 struct perf_event *child_ctr; 13037 13038 leader = inherit_event(parent_event, parent, parent_ctx, 13039 child, NULL, child_ctx); 13040 if (IS_ERR(leader)) 13041 return PTR_ERR(leader); 13042 /* 13043 * @leader can be NULL here because of is_orphaned_event(). In this 13044 * case inherit_event() will create individual events, similar to what 13045 * perf_group_detach() would do anyway. 13046 */ 13047 for_each_sibling_event(sub, parent_event) { 13048 child_ctr = inherit_event(sub, parent, parent_ctx, 13049 child, leader, child_ctx); 13050 if (IS_ERR(child_ctr)) 13051 return PTR_ERR(child_ctr); 13052 13053 if (sub->aux_event == parent_event && child_ctr && 13054 !perf_get_aux_event(child_ctr, leader)) 13055 return -EINVAL; 13056 } 13057 return 0; 13058 } 13059 13060 /* 13061 * Creates the child task context and tries to inherit the event-group. 13062 * 13063 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13064 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13065 * consistent with perf_event_release_kernel() removing all child events. 13066 * 13067 * Returns: 13068 * - 0 on success 13069 * - <0 on error 13070 */ 13071 static int 13072 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13073 struct perf_event_context *parent_ctx, 13074 struct task_struct *child, int ctxn, 13075 u64 clone_flags, int *inherited_all) 13076 { 13077 int ret; 13078 struct perf_event_context *child_ctx; 13079 13080 if (!event->attr.inherit || 13081 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13082 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13083 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13084 *inherited_all = 0; 13085 return 0; 13086 } 13087 13088 child_ctx = child->perf_event_ctxp[ctxn]; 13089 if (!child_ctx) { 13090 /* 13091 * This is executed from the parent task context, so 13092 * inherit events that have been marked for cloning. 13093 * First allocate and initialize a context for the 13094 * child. 13095 */ 13096 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 13097 if (!child_ctx) 13098 return -ENOMEM; 13099 13100 child->perf_event_ctxp[ctxn] = child_ctx; 13101 } 13102 13103 ret = inherit_group(event, parent, parent_ctx, 13104 child, child_ctx); 13105 13106 if (ret) 13107 *inherited_all = 0; 13108 13109 return ret; 13110 } 13111 13112 /* 13113 * Initialize the perf_event context in task_struct 13114 */ 13115 static int perf_event_init_context(struct task_struct *child, int ctxn, 13116 u64 clone_flags) 13117 { 13118 struct perf_event_context *child_ctx, *parent_ctx; 13119 struct perf_event_context *cloned_ctx; 13120 struct perf_event *event; 13121 struct task_struct *parent = current; 13122 int inherited_all = 1; 13123 unsigned long flags; 13124 int ret = 0; 13125 13126 if (likely(!parent->perf_event_ctxp[ctxn])) 13127 return 0; 13128 13129 /* 13130 * If the parent's context is a clone, pin it so it won't get 13131 * swapped under us. 13132 */ 13133 parent_ctx = perf_pin_task_context(parent, ctxn); 13134 if (!parent_ctx) 13135 return 0; 13136 13137 /* 13138 * No need to check if parent_ctx != NULL here; since we saw 13139 * it non-NULL earlier, the only reason for it to become NULL 13140 * is if we exit, and since we're currently in the middle of 13141 * a fork we can't be exiting at the same time. 13142 */ 13143 13144 /* 13145 * Lock the parent list. No need to lock the child - not PID 13146 * hashed yet and not running, so nobody can access it. 13147 */ 13148 mutex_lock(&parent_ctx->mutex); 13149 13150 /* 13151 * We dont have to disable NMIs - we are only looking at 13152 * the list, not manipulating it: 13153 */ 13154 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13155 ret = inherit_task_group(event, parent, parent_ctx, 13156 child, ctxn, clone_flags, 13157 &inherited_all); 13158 if (ret) 13159 goto out_unlock; 13160 } 13161 13162 /* 13163 * We can't hold ctx->lock when iterating the ->flexible_group list due 13164 * to allocations, but we need to prevent rotation because 13165 * rotate_ctx() will change the list from interrupt context. 13166 */ 13167 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13168 parent_ctx->rotate_disable = 1; 13169 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13170 13171 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13172 ret = inherit_task_group(event, parent, parent_ctx, 13173 child, ctxn, clone_flags, 13174 &inherited_all); 13175 if (ret) 13176 goto out_unlock; 13177 } 13178 13179 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13180 parent_ctx->rotate_disable = 0; 13181 13182 child_ctx = child->perf_event_ctxp[ctxn]; 13183 13184 if (child_ctx && inherited_all) { 13185 /* 13186 * Mark the child context as a clone of the parent 13187 * context, or of whatever the parent is a clone of. 13188 * 13189 * Note that if the parent is a clone, the holding of 13190 * parent_ctx->lock avoids it from being uncloned. 13191 */ 13192 cloned_ctx = parent_ctx->parent_ctx; 13193 if (cloned_ctx) { 13194 child_ctx->parent_ctx = cloned_ctx; 13195 child_ctx->parent_gen = parent_ctx->parent_gen; 13196 } else { 13197 child_ctx->parent_ctx = parent_ctx; 13198 child_ctx->parent_gen = parent_ctx->generation; 13199 } 13200 get_ctx(child_ctx->parent_ctx); 13201 } 13202 13203 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13204 out_unlock: 13205 mutex_unlock(&parent_ctx->mutex); 13206 13207 perf_unpin_context(parent_ctx); 13208 put_ctx(parent_ctx); 13209 13210 return ret; 13211 } 13212 13213 /* 13214 * Initialize the perf_event context in task_struct 13215 */ 13216 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13217 { 13218 int ctxn, ret; 13219 13220 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 13221 mutex_init(&child->perf_event_mutex); 13222 INIT_LIST_HEAD(&child->perf_event_list); 13223 13224 for_each_task_context_nr(ctxn) { 13225 ret = perf_event_init_context(child, ctxn, clone_flags); 13226 if (ret) { 13227 perf_event_free_task(child); 13228 return ret; 13229 } 13230 } 13231 13232 return 0; 13233 } 13234 13235 static void __init perf_event_init_all_cpus(void) 13236 { 13237 struct swevent_htable *swhash; 13238 int cpu; 13239 13240 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13241 13242 for_each_possible_cpu(cpu) { 13243 swhash = &per_cpu(swevent_htable, cpu); 13244 mutex_init(&swhash->hlist_mutex); 13245 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 13246 13247 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13248 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13249 13250 #ifdef CONFIG_CGROUP_PERF 13251 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 13252 #endif 13253 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13254 } 13255 } 13256 13257 static void perf_swevent_init_cpu(unsigned int cpu) 13258 { 13259 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13260 13261 mutex_lock(&swhash->hlist_mutex); 13262 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13263 struct swevent_hlist *hlist; 13264 13265 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13266 WARN_ON(!hlist); 13267 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13268 } 13269 mutex_unlock(&swhash->hlist_mutex); 13270 } 13271 13272 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13273 static void __perf_event_exit_context(void *__info) 13274 { 13275 struct perf_event_context *ctx = __info; 13276 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 13277 struct perf_event *event; 13278 13279 raw_spin_lock(&ctx->lock); 13280 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 13281 list_for_each_entry(event, &ctx->event_list, event_entry) 13282 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13283 raw_spin_unlock(&ctx->lock); 13284 } 13285 13286 static void perf_event_exit_cpu_context(int cpu) 13287 { 13288 struct perf_cpu_context *cpuctx; 13289 struct perf_event_context *ctx; 13290 struct pmu *pmu; 13291 13292 mutex_lock(&pmus_lock); 13293 list_for_each_entry(pmu, &pmus, entry) { 13294 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13295 ctx = &cpuctx->ctx; 13296 13297 mutex_lock(&ctx->mutex); 13298 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13299 cpuctx->online = 0; 13300 mutex_unlock(&ctx->mutex); 13301 } 13302 cpumask_clear_cpu(cpu, perf_online_mask); 13303 mutex_unlock(&pmus_lock); 13304 } 13305 #else 13306 13307 static void perf_event_exit_cpu_context(int cpu) { } 13308 13309 #endif 13310 13311 int perf_event_init_cpu(unsigned int cpu) 13312 { 13313 struct perf_cpu_context *cpuctx; 13314 struct perf_event_context *ctx; 13315 struct pmu *pmu; 13316 13317 perf_swevent_init_cpu(cpu); 13318 13319 mutex_lock(&pmus_lock); 13320 cpumask_set_cpu(cpu, perf_online_mask); 13321 list_for_each_entry(pmu, &pmus, entry) { 13322 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 13323 ctx = &cpuctx->ctx; 13324 13325 mutex_lock(&ctx->mutex); 13326 cpuctx->online = 1; 13327 mutex_unlock(&ctx->mutex); 13328 } 13329 mutex_unlock(&pmus_lock); 13330 13331 return 0; 13332 } 13333 13334 int perf_event_exit_cpu(unsigned int cpu) 13335 { 13336 perf_event_exit_cpu_context(cpu); 13337 return 0; 13338 } 13339 13340 static int 13341 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13342 { 13343 int cpu; 13344 13345 for_each_online_cpu(cpu) 13346 perf_event_exit_cpu(cpu); 13347 13348 return NOTIFY_OK; 13349 } 13350 13351 /* 13352 * Run the perf reboot notifier at the very last possible moment so that 13353 * the generic watchdog code runs as long as possible. 13354 */ 13355 static struct notifier_block perf_reboot_notifier = { 13356 .notifier_call = perf_reboot, 13357 .priority = INT_MIN, 13358 }; 13359 13360 void __init perf_event_init(void) 13361 { 13362 int ret; 13363 13364 idr_init(&pmu_idr); 13365 13366 perf_event_init_all_cpus(); 13367 init_srcu_struct(&pmus_srcu); 13368 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13369 perf_pmu_register(&perf_cpu_clock, NULL, -1); 13370 perf_pmu_register(&perf_task_clock, NULL, -1); 13371 perf_tp_register(); 13372 perf_event_init_cpu(smp_processor_id()); 13373 register_reboot_notifier(&perf_reboot_notifier); 13374 13375 ret = init_hw_breakpoint(); 13376 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13377 13378 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13379 13380 /* 13381 * Build time assertion that we keep the data_head at the intended 13382 * location. IOW, validation we got the __reserved[] size right. 13383 */ 13384 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13385 != 1024); 13386 } 13387 13388 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13389 char *page) 13390 { 13391 struct perf_pmu_events_attr *pmu_attr = 13392 container_of(attr, struct perf_pmu_events_attr, attr); 13393 13394 if (pmu_attr->event_str) 13395 return sprintf(page, "%s\n", pmu_attr->event_str); 13396 13397 return 0; 13398 } 13399 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13400 13401 static int __init perf_event_sysfs_init(void) 13402 { 13403 struct pmu *pmu; 13404 int ret; 13405 13406 mutex_lock(&pmus_lock); 13407 13408 ret = bus_register(&pmu_bus); 13409 if (ret) 13410 goto unlock; 13411 13412 list_for_each_entry(pmu, &pmus, entry) { 13413 if (!pmu->name || pmu->type < 0) 13414 continue; 13415 13416 ret = pmu_dev_alloc(pmu); 13417 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13418 } 13419 pmu_bus_running = 1; 13420 ret = 0; 13421 13422 unlock: 13423 mutex_unlock(&pmus_lock); 13424 13425 return ret; 13426 } 13427 device_initcall(perf_event_sysfs_init); 13428 13429 #ifdef CONFIG_CGROUP_PERF 13430 static struct cgroup_subsys_state * 13431 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13432 { 13433 struct perf_cgroup *jc; 13434 13435 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13436 if (!jc) 13437 return ERR_PTR(-ENOMEM); 13438 13439 jc->info = alloc_percpu(struct perf_cgroup_info); 13440 if (!jc->info) { 13441 kfree(jc); 13442 return ERR_PTR(-ENOMEM); 13443 } 13444 13445 return &jc->css; 13446 } 13447 13448 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13449 { 13450 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13451 13452 free_percpu(jc->info); 13453 kfree(jc); 13454 } 13455 13456 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13457 { 13458 perf_event_cgroup(css->cgroup); 13459 return 0; 13460 } 13461 13462 static int __perf_cgroup_move(void *info) 13463 { 13464 struct task_struct *task = info; 13465 rcu_read_lock(); 13466 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 13467 rcu_read_unlock(); 13468 return 0; 13469 } 13470 13471 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13472 { 13473 struct task_struct *task; 13474 struct cgroup_subsys_state *css; 13475 13476 cgroup_taskset_for_each(task, css, tset) 13477 task_function_call(task, __perf_cgroup_move, task); 13478 } 13479 13480 struct cgroup_subsys perf_event_cgrp_subsys = { 13481 .css_alloc = perf_cgroup_css_alloc, 13482 .css_free = perf_cgroup_css_free, 13483 .css_online = perf_cgroup_css_online, 13484 .attach = perf_cgroup_attach, 13485 /* 13486 * Implicitly enable on dfl hierarchy so that perf events can 13487 * always be filtered by cgroup2 path as long as perf_event 13488 * controller is not mounted on a legacy hierarchy. 13489 */ 13490 .implicit_on_dfl = true, 13491 .threaded = true, 13492 }; 13493 #endif /* CONFIG_CGROUP_PERF */ 13494 13495 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13496