xref: /openbmc/linux/kernel/events/core.c (revision 23c2b932)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247 	struct event_function_struct efs = {
248 		.event = event,
249 		.func = func,
250 		.data = data,
251 	};
252 
253 	int ret = event_function(&efs);
254 	WARN_ON_ONCE(ret);
255 }
256 
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259 	struct perf_event_context *ctx = event->ctx;
260 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261 	struct event_function_struct efs = {
262 		.event = event,
263 		.func = func,
264 		.data = data,
265 	};
266 
267 	if (!event->parent) {
268 		/*
269 		 * If this is a !child event, we must hold ctx::mutex to
270 		 * stabilize the the event->ctx relation. See
271 		 * perf_event_ctx_lock().
272 		 */
273 		lockdep_assert_held(&ctx->mutex);
274 	}
275 
276 	if (!task) {
277 		cpu_function_call(event->cpu, event_function, &efs);
278 		return;
279 	}
280 
281 	if (task == TASK_TOMBSTONE)
282 		return;
283 
284 again:
285 	if (!task_function_call(task, event_function, &efs))
286 		return;
287 
288 	raw_spin_lock_irq(&ctx->lock);
289 	/*
290 	 * Reload the task pointer, it might have been changed by
291 	 * a concurrent perf_event_context_sched_out().
292 	 */
293 	task = ctx->task;
294 	if (task == TASK_TOMBSTONE) {
295 		raw_spin_unlock_irq(&ctx->lock);
296 		return;
297 	}
298 	if (ctx->is_active) {
299 		raw_spin_unlock_irq(&ctx->lock);
300 		goto again;
301 	}
302 	func(event, NULL, ctx, data);
303 	raw_spin_unlock_irq(&ctx->lock);
304 }
305 
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 		       PERF_FLAG_FD_OUTPUT  |\
308 		       PERF_FLAG_PID_CGROUP |\
309 		       PERF_FLAG_FD_CLOEXEC)
310 
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315 	(PERF_SAMPLE_BRANCH_KERNEL |\
316 	 PERF_SAMPLE_BRANCH_HV)
317 
318 enum event_type_t {
319 	EVENT_FLEXIBLE = 0x1,
320 	EVENT_PINNED = 0x2,
321 	EVENT_TIME = 0x4,
322 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324 
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329 
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335 
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 
339 static atomic_t nr_mmap_events __read_mostly;
340 static atomic_t nr_comm_events __read_mostly;
341 static atomic_t nr_task_events __read_mostly;
342 static atomic_t nr_freq_events __read_mostly;
343 static atomic_t nr_switch_events __read_mostly;
344 
345 static LIST_HEAD(pmus);
346 static DEFINE_MUTEX(pmus_lock);
347 static struct srcu_struct pmus_srcu;
348 
349 /*
350  * perf event paranoia level:
351  *  -1 - not paranoid at all
352  *   0 - disallow raw tracepoint access for unpriv
353  *   1 - disallow cpu events for unpriv
354  *   2 - disallow kernel profiling for unpriv
355  */
356 int sysctl_perf_event_paranoid __read_mostly = 2;
357 
358 /* Minimum for 512 kiB + 1 user control page */
359 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
360 
361 /*
362  * max perf event sample rate
363  */
364 #define DEFAULT_MAX_SAMPLE_RATE		100000
365 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
366 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
367 
368 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
369 
370 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
371 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
372 
373 static int perf_sample_allowed_ns __read_mostly =
374 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
375 
376 static void update_perf_cpu_limits(void)
377 {
378 	u64 tmp = perf_sample_period_ns;
379 
380 	tmp *= sysctl_perf_cpu_time_max_percent;
381 	tmp = div_u64(tmp, 100);
382 	if (!tmp)
383 		tmp = 1;
384 
385 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
386 }
387 
388 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
389 
390 int perf_proc_update_handler(struct ctl_table *table, int write,
391 		void __user *buffer, size_t *lenp,
392 		loff_t *ppos)
393 {
394 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
395 
396 	if (ret || !write)
397 		return ret;
398 
399 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
400 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
401 	update_perf_cpu_limits();
402 
403 	return 0;
404 }
405 
406 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
407 
408 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
409 				void __user *buffer, size_t *lenp,
410 				loff_t *ppos)
411 {
412 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
413 
414 	if (ret || !write)
415 		return ret;
416 
417 	if (sysctl_perf_cpu_time_max_percent == 100 ||
418 	    sysctl_perf_cpu_time_max_percent == 0) {
419 		printk(KERN_WARNING
420 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
421 		WRITE_ONCE(perf_sample_allowed_ns, 0);
422 	} else {
423 		update_perf_cpu_limits();
424 	}
425 
426 	return 0;
427 }
428 
429 /*
430  * perf samples are done in some very critical code paths (NMIs).
431  * If they take too much CPU time, the system can lock up and not
432  * get any real work done.  This will drop the sample rate when
433  * we detect that events are taking too long.
434  */
435 #define NR_ACCUMULATED_SAMPLES 128
436 static DEFINE_PER_CPU(u64, running_sample_length);
437 
438 static u64 __report_avg;
439 static u64 __report_allowed;
440 
441 static void perf_duration_warn(struct irq_work *w)
442 {
443 	printk_ratelimited(KERN_WARNING
444 		"perf: interrupt took too long (%lld > %lld), lowering "
445 		"kernel.perf_event_max_sample_rate to %d\n",
446 		__report_avg, __report_allowed,
447 		sysctl_perf_event_sample_rate);
448 }
449 
450 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
451 
452 void perf_sample_event_took(u64 sample_len_ns)
453 {
454 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
455 	u64 running_len;
456 	u64 avg_len;
457 	u32 max;
458 
459 	if (max_len == 0)
460 		return;
461 
462 	/* Decay the counter by 1 average sample. */
463 	running_len = __this_cpu_read(running_sample_length);
464 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
465 	running_len += sample_len_ns;
466 	__this_cpu_write(running_sample_length, running_len);
467 
468 	/*
469 	 * Note: this will be biased artifically low until we have
470 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
471 	 * from having to maintain a count.
472 	 */
473 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
474 	if (avg_len <= max_len)
475 		return;
476 
477 	__report_avg = avg_len;
478 	__report_allowed = max_len;
479 
480 	/*
481 	 * Compute a throttle threshold 25% below the current duration.
482 	 */
483 	avg_len += avg_len / 4;
484 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
485 	if (avg_len < max)
486 		max /= (u32)avg_len;
487 	else
488 		max = 1;
489 
490 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
491 	WRITE_ONCE(max_samples_per_tick, max);
492 
493 	sysctl_perf_event_sample_rate = max * HZ;
494 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
495 
496 	if (!irq_work_queue(&perf_duration_work)) {
497 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
498 			     "kernel.perf_event_max_sample_rate to %d\n",
499 			     __report_avg, __report_allowed,
500 			     sysctl_perf_event_sample_rate);
501 	}
502 }
503 
504 static atomic64_t perf_event_id;
505 
506 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
507 			      enum event_type_t event_type);
508 
509 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
510 			     enum event_type_t event_type,
511 			     struct task_struct *task);
512 
513 static void update_context_time(struct perf_event_context *ctx);
514 static u64 perf_event_time(struct perf_event *event);
515 
516 void __weak perf_event_print_debug(void)	{ }
517 
518 extern __weak const char *perf_pmu_name(void)
519 {
520 	return "pmu";
521 }
522 
523 static inline u64 perf_clock(void)
524 {
525 	return local_clock();
526 }
527 
528 static inline u64 perf_event_clock(struct perf_event *event)
529 {
530 	return event->clock();
531 }
532 
533 #ifdef CONFIG_CGROUP_PERF
534 
535 static inline bool
536 perf_cgroup_match(struct perf_event *event)
537 {
538 	struct perf_event_context *ctx = event->ctx;
539 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
540 
541 	/* @event doesn't care about cgroup */
542 	if (!event->cgrp)
543 		return true;
544 
545 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
546 	if (!cpuctx->cgrp)
547 		return false;
548 
549 	/*
550 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
551 	 * also enabled for all its descendant cgroups.  If @cpuctx's
552 	 * cgroup is a descendant of @event's (the test covers identity
553 	 * case), it's a match.
554 	 */
555 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
556 				    event->cgrp->css.cgroup);
557 }
558 
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {
561 	css_put(&event->cgrp->css);
562 	event->cgrp = NULL;
563 }
564 
565 static inline int is_cgroup_event(struct perf_event *event)
566 {
567 	return event->cgrp != NULL;
568 }
569 
570 static inline u64 perf_cgroup_event_time(struct perf_event *event)
571 {
572 	struct perf_cgroup_info *t;
573 
574 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
575 	return t->time;
576 }
577 
578 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
579 {
580 	struct perf_cgroup_info *info;
581 	u64 now;
582 
583 	now = perf_clock();
584 
585 	info = this_cpu_ptr(cgrp->info);
586 
587 	info->time += now - info->timestamp;
588 	info->timestamp = now;
589 }
590 
591 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
592 {
593 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
594 	if (cgrp_out)
595 		__update_cgrp_time(cgrp_out);
596 }
597 
598 static inline void update_cgrp_time_from_event(struct perf_event *event)
599 {
600 	struct perf_cgroup *cgrp;
601 
602 	/*
603 	 * ensure we access cgroup data only when needed and
604 	 * when we know the cgroup is pinned (css_get)
605 	 */
606 	if (!is_cgroup_event(event))
607 		return;
608 
609 	cgrp = perf_cgroup_from_task(current, event->ctx);
610 	/*
611 	 * Do not update time when cgroup is not active
612 	 */
613 	if (cgrp == event->cgrp)
614 		__update_cgrp_time(event->cgrp);
615 }
616 
617 static inline void
618 perf_cgroup_set_timestamp(struct task_struct *task,
619 			  struct perf_event_context *ctx)
620 {
621 	struct perf_cgroup *cgrp;
622 	struct perf_cgroup_info *info;
623 
624 	/*
625 	 * ctx->lock held by caller
626 	 * ensure we do not access cgroup data
627 	 * unless we have the cgroup pinned (css_get)
628 	 */
629 	if (!task || !ctx->nr_cgroups)
630 		return;
631 
632 	cgrp = perf_cgroup_from_task(task, ctx);
633 	info = this_cpu_ptr(cgrp->info);
634 	info->timestamp = ctx->timestamp;
635 }
636 
637 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
638 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
639 
640 /*
641  * reschedule events based on the cgroup constraint of task.
642  *
643  * mode SWOUT : schedule out everything
644  * mode SWIN : schedule in based on cgroup for next
645  */
646 static void perf_cgroup_switch(struct task_struct *task, int mode)
647 {
648 	struct perf_cpu_context *cpuctx;
649 	struct pmu *pmu;
650 	unsigned long flags;
651 
652 	/*
653 	 * disable interrupts to avoid geting nr_cgroup
654 	 * changes via __perf_event_disable(). Also
655 	 * avoids preemption.
656 	 */
657 	local_irq_save(flags);
658 
659 	/*
660 	 * we reschedule only in the presence of cgroup
661 	 * constrained events.
662 	 */
663 
664 	list_for_each_entry_rcu(pmu, &pmus, entry) {
665 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
666 		if (cpuctx->unique_pmu != pmu)
667 			continue; /* ensure we process each cpuctx once */
668 
669 		/*
670 		 * perf_cgroup_events says at least one
671 		 * context on this CPU has cgroup events.
672 		 *
673 		 * ctx->nr_cgroups reports the number of cgroup
674 		 * events for a context.
675 		 */
676 		if (cpuctx->ctx.nr_cgroups > 0) {
677 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
678 			perf_pmu_disable(cpuctx->ctx.pmu);
679 
680 			if (mode & PERF_CGROUP_SWOUT) {
681 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
682 				/*
683 				 * must not be done before ctxswout due
684 				 * to event_filter_match() in event_sched_out()
685 				 */
686 				cpuctx->cgrp = NULL;
687 			}
688 
689 			if (mode & PERF_CGROUP_SWIN) {
690 				WARN_ON_ONCE(cpuctx->cgrp);
691 				/*
692 				 * set cgrp before ctxsw in to allow
693 				 * event_filter_match() to not have to pass
694 				 * task around
695 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
696 				 * because cgorup events are only per-cpu
697 				 */
698 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
699 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
700 			}
701 			perf_pmu_enable(cpuctx->ctx.pmu);
702 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
703 		}
704 	}
705 
706 	local_irq_restore(flags);
707 }
708 
709 static inline void perf_cgroup_sched_out(struct task_struct *task,
710 					 struct task_struct *next)
711 {
712 	struct perf_cgroup *cgrp1;
713 	struct perf_cgroup *cgrp2 = NULL;
714 
715 	rcu_read_lock();
716 	/*
717 	 * we come here when we know perf_cgroup_events > 0
718 	 * we do not need to pass the ctx here because we know
719 	 * we are holding the rcu lock
720 	 */
721 	cgrp1 = perf_cgroup_from_task(task, NULL);
722 	cgrp2 = perf_cgroup_from_task(next, NULL);
723 
724 	/*
725 	 * only schedule out current cgroup events if we know
726 	 * that we are switching to a different cgroup. Otherwise,
727 	 * do no touch the cgroup events.
728 	 */
729 	if (cgrp1 != cgrp2)
730 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
731 
732 	rcu_read_unlock();
733 }
734 
735 static inline void perf_cgroup_sched_in(struct task_struct *prev,
736 					struct task_struct *task)
737 {
738 	struct perf_cgroup *cgrp1;
739 	struct perf_cgroup *cgrp2 = NULL;
740 
741 	rcu_read_lock();
742 	/*
743 	 * we come here when we know perf_cgroup_events > 0
744 	 * we do not need to pass the ctx here because we know
745 	 * we are holding the rcu lock
746 	 */
747 	cgrp1 = perf_cgroup_from_task(task, NULL);
748 	cgrp2 = perf_cgroup_from_task(prev, NULL);
749 
750 	/*
751 	 * only need to schedule in cgroup events if we are changing
752 	 * cgroup during ctxsw. Cgroup events were not scheduled
753 	 * out of ctxsw out if that was not the case.
754 	 */
755 	if (cgrp1 != cgrp2)
756 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
757 
758 	rcu_read_unlock();
759 }
760 
761 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
762 				      struct perf_event_attr *attr,
763 				      struct perf_event *group_leader)
764 {
765 	struct perf_cgroup *cgrp;
766 	struct cgroup_subsys_state *css;
767 	struct fd f = fdget(fd);
768 	int ret = 0;
769 
770 	if (!f.file)
771 		return -EBADF;
772 
773 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
774 					 &perf_event_cgrp_subsys);
775 	if (IS_ERR(css)) {
776 		ret = PTR_ERR(css);
777 		goto out;
778 	}
779 
780 	cgrp = container_of(css, struct perf_cgroup, css);
781 	event->cgrp = cgrp;
782 
783 	/*
784 	 * all events in a group must monitor
785 	 * the same cgroup because a task belongs
786 	 * to only one perf cgroup at a time
787 	 */
788 	if (group_leader && group_leader->cgrp != cgrp) {
789 		perf_detach_cgroup(event);
790 		ret = -EINVAL;
791 	}
792 out:
793 	fdput(f);
794 	return ret;
795 }
796 
797 static inline void
798 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
799 {
800 	struct perf_cgroup_info *t;
801 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
802 	event->shadow_ctx_time = now - t->timestamp;
803 }
804 
805 static inline void
806 perf_cgroup_defer_enabled(struct perf_event *event)
807 {
808 	/*
809 	 * when the current task's perf cgroup does not match
810 	 * the event's, we need to remember to call the
811 	 * perf_mark_enable() function the first time a task with
812 	 * a matching perf cgroup is scheduled in.
813 	 */
814 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
815 		event->cgrp_defer_enabled = 1;
816 }
817 
818 static inline void
819 perf_cgroup_mark_enabled(struct perf_event *event,
820 			 struct perf_event_context *ctx)
821 {
822 	struct perf_event *sub;
823 	u64 tstamp = perf_event_time(event);
824 
825 	if (!event->cgrp_defer_enabled)
826 		return;
827 
828 	event->cgrp_defer_enabled = 0;
829 
830 	event->tstamp_enabled = tstamp - event->total_time_enabled;
831 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
832 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
833 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
834 			sub->cgrp_defer_enabled = 0;
835 		}
836 	}
837 }
838 #else /* !CONFIG_CGROUP_PERF */
839 
840 static inline bool
841 perf_cgroup_match(struct perf_event *event)
842 {
843 	return true;
844 }
845 
846 static inline void perf_detach_cgroup(struct perf_event *event)
847 {}
848 
849 static inline int is_cgroup_event(struct perf_event *event)
850 {
851 	return 0;
852 }
853 
854 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
855 {
856 	return 0;
857 }
858 
859 static inline void update_cgrp_time_from_event(struct perf_event *event)
860 {
861 }
862 
863 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
864 {
865 }
866 
867 static inline void perf_cgroup_sched_out(struct task_struct *task,
868 					 struct task_struct *next)
869 {
870 }
871 
872 static inline void perf_cgroup_sched_in(struct task_struct *prev,
873 					struct task_struct *task)
874 {
875 }
876 
877 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
878 				      struct perf_event_attr *attr,
879 				      struct perf_event *group_leader)
880 {
881 	return -EINVAL;
882 }
883 
884 static inline void
885 perf_cgroup_set_timestamp(struct task_struct *task,
886 			  struct perf_event_context *ctx)
887 {
888 }
889 
890 void
891 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
892 {
893 }
894 
895 static inline void
896 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
897 {
898 }
899 
900 static inline u64 perf_cgroup_event_time(struct perf_event *event)
901 {
902 	return 0;
903 }
904 
905 static inline void
906 perf_cgroup_defer_enabled(struct perf_event *event)
907 {
908 }
909 
910 static inline void
911 perf_cgroup_mark_enabled(struct perf_event *event,
912 			 struct perf_event_context *ctx)
913 {
914 }
915 #endif
916 
917 /*
918  * set default to be dependent on timer tick just
919  * like original code
920  */
921 #define PERF_CPU_HRTIMER (1000 / HZ)
922 /*
923  * function must be called with interrupts disbled
924  */
925 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
926 {
927 	struct perf_cpu_context *cpuctx;
928 	int rotations = 0;
929 
930 	WARN_ON(!irqs_disabled());
931 
932 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
933 	rotations = perf_rotate_context(cpuctx);
934 
935 	raw_spin_lock(&cpuctx->hrtimer_lock);
936 	if (rotations)
937 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
938 	else
939 		cpuctx->hrtimer_active = 0;
940 	raw_spin_unlock(&cpuctx->hrtimer_lock);
941 
942 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
943 }
944 
945 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
946 {
947 	struct hrtimer *timer = &cpuctx->hrtimer;
948 	struct pmu *pmu = cpuctx->ctx.pmu;
949 	u64 interval;
950 
951 	/* no multiplexing needed for SW PMU */
952 	if (pmu->task_ctx_nr == perf_sw_context)
953 		return;
954 
955 	/*
956 	 * check default is sane, if not set then force to
957 	 * default interval (1/tick)
958 	 */
959 	interval = pmu->hrtimer_interval_ms;
960 	if (interval < 1)
961 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
962 
963 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
964 
965 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
966 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
967 	timer->function = perf_mux_hrtimer_handler;
968 }
969 
970 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
971 {
972 	struct hrtimer *timer = &cpuctx->hrtimer;
973 	struct pmu *pmu = cpuctx->ctx.pmu;
974 	unsigned long flags;
975 
976 	/* not for SW PMU */
977 	if (pmu->task_ctx_nr == perf_sw_context)
978 		return 0;
979 
980 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
981 	if (!cpuctx->hrtimer_active) {
982 		cpuctx->hrtimer_active = 1;
983 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
984 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
985 	}
986 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
987 
988 	return 0;
989 }
990 
991 void perf_pmu_disable(struct pmu *pmu)
992 {
993 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
994 	if (!(*count)++)
995 		pmu->pmu_disable(pmu);
996 }
997 
998 void perf_pmu_enable(struct pmu *pmu)
999 {
1000 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1001 	if (!--(*count))
1002 		pmu->pmu_enable(pmu);
1003 }
1004 
1005 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1006 
1007 /*
1008  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1009  * perf_event_task_tick() are fully serialized because they're strictly cpu
1010  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1011  * disabled, while perf_event_task_tick is called from IRQ context.
1012  */
1013 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1014 {
1015 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1016 
1017 	WARN_ON(!irqs_disabled());
1018 
1019 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1020 
1021 	list_add(&ctx->active_ctx_list, head);
1022 }
1023 
1024 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1025 {
1026 	WARN_ON(!irqs_disabled());
1027 
1028 	WARN_ON(list_empty(&ctx->active_ctx_list));
1029 
1030 	list_del_init(&ctx->active_ctx_list);
1031 }
1032 
1033 static void get_ctx(struct perf_event_context *ctx)
1034 {
1035 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1036 }
1037 
1038 static void free_ctx(struct rcu_head *head)
1039 {
1040 	struct perf_event_context *ctx;
1041 
1042 	ctx = container_of(head, struct perf_event_context, rcu_head);
1043 	kfree(ctx->task_ctx_data);
1044 	kfree(ctx);
1045 }
1046 
1047 static void put_ctx(struct perf_event_context *ctx)
1048 {
1049 	if (atomic_dec_and_test(&ctx->refcount)) {
1050 		if (ctx->parent_ctx)
1051 			put_ctx(ctx->parent_ctx);
1052 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1053 			put_task_struct(ctx->task);
1054 		call_rcu(&ctx->rcu_head, free_ctx);
1055 	}
1056 }
1057 
1058 /*
1059  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1060  * perf_pmu_migrate_context() we need some magic.
1061  *
1062  * Those places that change perf_event::ctx will hold both
1063  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1064  *
1065  * Lock ordering is by mutex address. There are two other sites where
1066  * perf_event_context::mutex nests and those are:
1067  *
1068  *  - perf_event_exit_task_context()	[ child , 0 ]
1069  *      perf_event_exit_event()
1070  *        put_event()			[ parent, 1 ]
1071  *
1072  *  - perf_event_init_context()		[ parent, 0 ]
1073  *      inherit_task_group()
1074  *        inherit_group()
1075  *          inherit_event()
1076  *            perf_event_alloc()
1077  *              perf_init_event()
1078  *                perf_try_init_event()	[ child , 1 ]
1079  *
1080  * While it appears there is an obvious deadlock here -- the parent and child
1081  * nesting levels are inverted between the two. This is in fact safe because
1082  * life-time rules separate them. That is an exiting task cannot fork, and a
1083  * spawning task cannot (yet) exit.
1084  *
1085  * But remember that that these are parent<->child context relations, and
1086  * migration does not affect children, therefore these two orderings should not
1087  * interact.
1088  *
1089  * The change in perf_event::ctx does not affect children (as claimed above)
1090  * because the sys_perf_event_open() case will install a new event and break
1091  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1092  * concerned with cpuctx and that doesn't have children.
1093  *
1094  * The places that change perf_event::ctx will issue:
1095  *
1096  *   perf_remove_from_context();
1097  *   synchronize_rcu();
1098  *   perf_install_in_context();
1099  *
1100  * to affect the change. The remove_from_context() + synchronize_rcu() should
1101  * quiesce the event, after which we can install it in the new location. This
1102  * means that only external vectors (perf_fops, prctl) can perturb the event
1103  * while in transit. Therefore all such accessors should also acquire
1104  * perf_event_context::mutex to serialize against this.
1105  *
1106  * However; because event->ctx can change while we're waiting to acquire
1107  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1108  * function.
1109  *
1110  * Lock order:
1111  *    cred_guard_mutex
1112  *	task_struct::perf_event_mutex
1113  *	  perf_event_context::mutex
1114  *	    perf_event::child_mutex;
1115  *	      perf_event_context::lock
1116  *	    perf_event::mmap_mutex
1117  *	    mmap_sem
1118  */
1119 static struct perf_event_context *
1120 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1121 {
1122 	struct perf_event_context *ctx;
1123 
1124 again:
1125 	rcu_read_lock();
1126 	ctx = ACCESS_ONCE(event->ctx);
1127 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1128 		rcu_read_unlock();
1129 		goto again;
1130 	}
1131 	rcu_read_unlock();
1132 
1133 	mutex_lock_nested(&ctx->mutex, nesting);
1134 	if (event->ctx != ctx) {
1135 		mutex_unlock(&ctx->mutex);
1136 		put_ctx(ctx);
1137 		goto again;
1138 	}
1139 
1140 	return ctx;
1141 }
1142 
1143 static inline struct perf_event_context *
1144 perf_event_ctx_lock(struct perf_event *event)
1145 {
1146 	return perf_event_ctx_lock_nested(event, 0);
1147 }
1148 
1149 static void perf_event_ctx_unlock(struct perf_event *event,
1150 				  struct perf_event_context *ctx)
1151 {
1152 	mutex_unlock(&ctx->mutex);
1153 	put_ctx(ctx);
1154 }
1155 
1156 /*
1157  * This must be done under the ctx->lock, such as to serialize against
1158  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1159  * calling scheduler related locks and ctx->lock nests inside those.
1160  */
1161 static __must_check struct perf_event_context *
1162 unclone_ctx(struct perf_event_context *ctx)
1163 {
1164 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1165 
1166 	lockdep_assert_held(&ctx->lock);
1167 
1168 	if (parent_ctx)
1169 		ctx->parent_ctx = NULL;
1170 	ctx->generation++;
1171 
1172 	return parent_ctx;
1173 }
1174 
1175 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1176 {
1177 	/*
1178 	 * only top level events have the pid namespace they were created in
1179 	 */
1180 	if (event->parent)
1181 		event = event->parent;
1182 
1183 	return task_tgid_nr_ns(p, event->ns);
1184 }
1185 
1186 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1187 {
1188 	/*
1189 	 * only top level events have the pid namespace they were created in
1190 	 */
1191 	if (event->parent)
1192 		event = event->parent;
1193 
1194 	return task_pid_nr_ns(p, event->ns);
1195 }
1196 
1197 /*
1198  * If we inherit events we want to return the parent event id
1199  * to userspace.
1200  */
1201 static u64 primary_event_id(struct perf_event *event)
1202 {
1203 	u64 id = event->id;
1204 
1205 	if (event->parent)
1206 		id = event->parent->id;
1207 
1208 	return id;
1209 }
1210 
1211 /*
1212  * Get the perf_event_context for a task and lock it.
1213  *
1214  * This has to cope with with the fact that until it is locked,
1215  * the context could get moved to another task.
1216  */
1217 static struct perf_event_context *
1218 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1219 {
1220 	struct perf_event_context *ctx;
1221 
1222 retry:
1223 	/*
1224 	 * One of the few rules of preemptible RCU is that one cannot do
1225 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1226 	 * part of the read side critical section was irqs-enabled -- see
1227 	 * rcu_read_unlock_special().
1228 	 *
1229 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1230 	 * side critical section has interrupts disabled.
1231 	 */
1232 	local_irq_save(*flags);
1233 	rcu_read_lock();
1234 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1235 	if (ctx) {
1236 		/*
1237 		 * If this context is a clone of another, it might
1238 		 * get swapped for another underneath us by
1239 		 * perf_event_task_sched_out, though the
1240 		 * rcu_read_lock() protects us from any context
1241 		 * getting freed.  Lock the context and check if it
1242 		 * got swapped before we could get the lock, and retry
1243 		 * if so.  If we locked the right context, then it
1244 		 * can't get swapped on us any more.
1245 		 */
1246 		raw_spin_lock(&ctx->lock);
1247 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1248 			raw_spin_unlock(&ctx->lock);
1249 			rcu_read_unlock();
1250 			local_irq_restore(*flags);
1251 			goto retry;
1252 		}
1253 
1254 		if (ctx->task == TASK_TOMBSTONE ||
1255 		    !atomic_inc_not_zero(&ctx->refcount)) {
1256 			raw_spin_unlock(&ctx->lock);
1257 			ctx = NULL;
1258 		} else {
1259 			WARN_ON_ONCE(ctx->task != task);
1260 		}
1261 	}
1262 	rcu_read_unlock();
1263 	if (!ctx)
1264 		local_irq_restore(*flags);
1265 	return ctx;
1266 }
1267 
1268 /*
1269  * Get the context for a task and increment its pin_count so it
1270  * can't get swapped to another task.  This also increments its
1271  * reference count so that the context can't get freed.
1272  */
1273 static struct perf_event_context *
1274 perf_pin_task_context(struct task_struct *task, int ctxn)
1275 {
1276 	struct perf_event_context *ctx;
1277 	unsigned long flags;
1278 
1279 	ctx = perf_lock_task_context(task, ctxn, &flags);
1280 	if (ctx) {
1281 		++ctx->pin_count;
1282 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1283 	}
1284 	return ctx;
1285 }
1286 
1287 static void perf_unpin_context(struct perf_event_context *ctx)
1288 {
1289 	unsigned long flags;
1290 
1291 	raw_spin_lock_irqsave(&ctx->lock, flags);
1292 	--ctx->pin_count;
1293 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1294 }
1295 
1296 /*
1297  * Update the record of the current time in a context.
1298  */
1299 static void update_context_time(struct perf_event_context *ctx)
1300 {
1301 	u64 now = perf_clock();
1302 
1303 	ctx->time += now - ctx->timestamp;
1304 	ctx->timestamp = now;
1305 }
1306 
1307 static u64 perf_event_time(struct perf_event *event)
1308 {
1309 	struct perf_event_context *ctx = event->ctx;
1310 
1311 	if (is_cgroup_event(event))
1312 		return perf_cgroup_event_time(event);
1313 
1314 	return ctx ? ctx->time : 0;
1315 }
1316 
1317 /*
1318  * Update the total_time_enabled and total_time_running fields for a event.
1319  */
1320 static void update_event_times(struct perf_event *event)
1321 {
1322 	struct perf_event_context *ctx = event->ctx;
1323 	u64 run_end;
1324 
1325 	lockdep_assert_held(&ctx->lock);
1326 
1327 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1328 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1329 		return;
1330 
1331 	/*
1332 	 * in cgroup mode, time_enabled represents
1333 	 * the time the event was enabled AND active
1334 	 * tasks were in the monitored cgroup. This is
1335 	 * independent of the activity of the context as
1336 	 * there may be a mix of cgroup and non-cgroup events.
1337 	 *
1338 	 * That is why we treat cgroup events differently
1339 	 * here.
1340 	 */
1341 	if (is_cgroup_event(event))
1342 		run_end = perf_cgroup_event_time(event);
1343 	else if (ctx->is_active)
1344 		run_end = ctx->time;
1345 	else
1346 		run_end = event->tstamp_stopped;
1347 
1348 	event->total_time_enabled = run_end - event->tstamp_enabled;
1349 
1350 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1351 		run_end = event->tstamp_stopped;
1352 	else
1353 		run_end = perf_event_time(event);
1354 
1355 	event->total_time_running = run_end - event->tstamp_running;
1356 
1357 }
1358 
1359 /*
1360  * Update total_time_enabled and total_time_running for all events in a group.
1361  */
1362 static void update_group_times(struct perf_event *leader)
1363 {
1364 	struct perf_event *event;
1365 
1366 	update_event_times(leader);
1367 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1368 		update_event_times(event);
1369 }
1370 
1371 static struct list_head *
1372 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1373 {
1374 	if (event->attr.pinned)
1375 		return &ctx->pinned_groups;
1376 	else
1377 		return &ctx->flexible_groups;
1378 }
1379 
1380 /*
1381  * Add a event from the lists for its context.
1382  * Must be called with ctx->mutex and ctx->lock held.
1383  */
1384 static void
1385 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1386 {
1387 	lockdep_assert_held(&ctx->lock);
1388 
1389 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1390 	event->attach_state |= PERF_ATTACH_CONTEXT;
1391 
1392 	/*
1393 	 * If we're a stand alone event or group leader, we go to the context
1394 	 * list, group events are kept attached to the group so that
1395 	 * perf_group_detach can, at all times, locate all siblings.
1396 	 */
1397 	if (event->group_leader == event) {
1398 		struct list_head *list;
1399 
1400 		if (is_software_event(event))
1401 			event->group_flags |= PERF_GROUP_SOFTWARE;
1402 
1403 		list = ctx_group_list(event, ctx);
1404 		list_add_tail(&event->group_entry, list);
1405 	}
1406 
1407 	if (is_cgroup_event(event))
1408 		ctx->nr_cgroups++;
1409 
1410 	list_add_rcu(&event->event_entry, &ctx->event_list);
1411 	ctx->nr_events++;
1412 	if (event->attr.inherit_stat)
1413 		ctx->nr_stat++;
1414 
1415 	ctx->generation++;
1416 }
1417 
1418 /*
1419  * Initialize event state based on the perf_event_attr::disabled.
1420  */
1421 static inline void perf_event__state_init(struct perf_event *event)
1422 {
1423 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1424 					      PERF_EVENT_STATE_INACTIVE;
1425 }
1426 
1427 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1428 {
1429 	int entry = sizeof(u64); /* value */
1430 	int size = 0;
1431 	int nr = 1;
1432 
1433 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1434 		size += sizeof(u64);
1435 
1436 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1437 		size += sizeof(u64);
1438 
1439 	if (event->attr.read_format & PERF_FORMAT_ID)
1440 		entry += sizeof(u64);
1441 
1442 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1443 		nr += nr_siblings;
1444 		size += sizeof(u64);
1445 	}
1446 
1447 	size += entry * nr;
1448 	event->read_size = size;
1449 }
1450 
1451 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1452 {
1453 	struct perf_sample_data *data;
1454 	u16 size = 0;
1455 
1456 	if (sample_type & PERF_SAMPLE_IP)
1457 		size += sizeof(data->ip);
1458 
1459 	if (sample_type & PERF_SAMPLE_ADDR)
1460 		size += sizeof(data->addr);
1461 
1462 	if (sample_type & PERF_SAMPLE_PERIOD)
1463 		size += sizeof(data->period);
1464 
1465 	if (sample_type & PERF_SAMPLE_WEIGHT)
1466 		size += sizeof(data->weight);
1467 
1468 	if (sample_type & PERF_SAMPLE_READ)
1469 		size += event->read_size;
1470 
1471 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1472 		size += sizeof(data->data_src.val);
1473 
1474 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1475 		size += sizeof(data->txn);
1476 
1477 	event->header_size = size;
1478 }
1479 
1480 /*
1481  * Called at perf_event creation and when events are attached/detached from a
1482  * group.
1483  */
1484 static void perf_event__header_size(struct perf_event *event)
1485 {
1486 	__perf_event_read_size(event,
1487 			       event->group_leader->nr_siblings);
1488 	__perf_event_header_size(event, event->attr.sample_type);
1489 }
1490 
1491 static void perf_event__id_header_size(struct perf_event *event)
1492 {
1493 	struct perf_sample_data *data;
1494 	u64 sample_type = event->attr.sample_type;
1495 	u16 size = 0;
1496 
1497 	if (sample_type & PERF_SAMPLE_TID)
1498 		size += sizeof(data->tid_entry);
1499 
1500 	if (sample_type & PERF_SAMPLE_TIME)
1501 		size += sizeof(data->time);
1502 
1503 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1504 		size += sizeof(data->id);
1505 
1506 	if (sample_type & PERF_SAMPLE_ID)
1507 		size += sizeof(data->id);
1508 
1509 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1510 		size += sizeof(data->stream_id);
1511 
1512 	if (sample_type & PERF_SAMPLE_CPU)
1513 		size += sizeof(data->cpu_entry);
1514 
1515 	event->id_header_size = size;
1516 }
1517 
1518 static bool perf_event_validate_size(struct perf_event *event)
1519 {
1520 	/*
1521 	 * The values computed here will be over-written when we actually
1522 	 * attach the event.
1523 	 */
1524 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1525 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1526 	perf_event__id_header_size(event);
1527 
1528 	/*
1529 	 * Sum the lot; should not exceed the 64k limit we have on records.
1530 	 * Conservative limit to allow for callchains and other variable fields.
1531 	 */
1532 	if (event->read_size + event->header_size +
1533 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1534 		return false;
1535 
1536 	return true;
1537 }
1538 
1539 static void perf_group_attach(struct perf_event *event)
1540 {
1541 	struct perf_event *group_leader = event->group_leader, *pos;
1542 
1543 	/*
1544 	 * We can have double attach due to group movement in perf_event_open.
1545 	 */
1546 	if (event->attach_state & PERF_ATTACH_GROUP)
1547 		return;
1548 
1549 	event->attach_state |= PERF_ATTACH_GROUP;
1550 
1551 	if (group_leader == event)
1552 		return;
1553 
1554 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1555 
1556 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1557 			!is_software_event(event))
1558 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1559 
1560 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1561 	group_leader->nr_siblings++;
1562 
1563 	perf_event__header_size(group_leader);
1564 
1565 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1566 		perf_event__header_size(pos);
1567 }
1568 
1569 /*
1570  * Remove a event from the lists for its context.
1571  * Must be called with ctx->mutex and ctx->lock held.
1572  */
1573 static void
1574 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1575 {
1576 	struct perf_cpu_context *cpuctx;
1577 
1578 	WARN_ON_ONCE(event->ctx != ctx);
1579 	lockdep_assert_held(&ctx->lock);
1580 
1581 	/*
1582 	 * We can have double detach due to exit/hot-unplug + close.
1583 	 */
1584 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1585 		return;
1586 
1587 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1588 
1589 	if (is_cgroup_event(event)) {
1590 		ctx->nr_cgroups--;
1591 		/*
1592 		 * Because cgroup events are always per-cpu events, this will
1593 		 * always be called from the right CPU.
1594 		 */
1595 		cpuctx = __get_cpu_context(ctx);
1596 		/*
1597 		 * If there are no more cgroup events then clear cgrp to avoid
1598 		 * stale pointer in update_cgrp_time_from_cpuctx().
1599 		 */
1600 		if (!ctx->nr_cgroups)
1601 			cpuctx->cgrp = NULL;
1602 	}
1603 
1604 	ctx->nr_events--;
1605 	if (event->attr.inherit_stat)
1606 		ctx->nr_stat--;
1607 
1608 	list_del_rcu(&event->event_entry);
1609 
1610 	if (event->group_leader == event)
1611 		list_del_init(&event->group_entry);
1612 
1613 	update_group_times(event);
1614 
1615 	/*
1616 	 * If event was in error state, then keep it
1617 	 * that way, otherwise bogus counts will be
1618 	 * returned on read(). The only way to get out
1619 	 * of error state is by explicit re-enabling
1620 	 * of the event
1621 	 */
1622 	if (event->state > PERF_EVENT_STATE_OFF)
1623 		event->state = PERF_EVENT_STATE_OFF;
1624 
1625 	ctx->generation++;
1626 }
1627 
1628 static void perf_group_detach(struct perf_event *event)
1629 {
1630 	struct perf_event *sibling, *tmp;
1631 	struct list_head *list = NULL;
1632 
1633 	/*
1634 	 * We can have double detach due to exit/hot-unplug + close.
1635 	 */
1636 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1637 		return;
1638 
1639 	event->attach_state &= ~PERF_ATTACH_GROUP;
1640 
1641 	/*
1642 	 * If this is a sibling, remove it from its group.
1643 	 */
1644 	if (event->group_leader != event) {
1645 		list_del_init(&event->group_entry);
1646 		event->group_leader->nr_siblings--;
1647 		goto out;
1648 	}
1649 
1650 	if (!list_empty(&event->group_entry))
1651 		list = &event->group_entry;
1652 
1653 	/*
1654 	 * If this was a group event with sibling events then
1655 	 * upgrade the siblings to singleton events by adding them
1656 	 * to whatever list we are on.
1657 	 */
1658 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1659 		if (list)
1660 			list_move_tail(&sibling->group_entry, list);
1661 		sibling->group_leader = sibling;
1662 
1663 		/* Inherit group flags from the previous leader */
1664 		sibling->group_flags = event->group_flags;
1665 
1666 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1667 	}
1668 
1669 out:
1670 	perf_event__header_size(event->group_leader);
1671 
1672 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1673 		perf_event__header_size(tmp);
1674 }
1675 
1676 static bool is_orphaned_event(struct perf_event *event)
1677 {
1678 	return event->state == PERF_EVENT_STATE_DEAD;
1679 }
1680 
1681 static inline int __pmu_filter_match(struct perf_event *event)
1682 {
1683 	struct pmu *pmu = event->pmu;
1684 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1685 }
1686 
1687 /*
1688  * Check whether we should attempt to schedule an event group based on
1689  * PMU-specific filtering. An event group can consist of HW and SW events,
1690  * potentially with a SW leader, so we must check all the filters, to
1691  * determine whether a group is schedulable:
1692  */
1693 static inline int pmu_filter_match(struct perf_event *event)
1694 {
1695 	struct perf_event *child;
1696 
1697 	if (!__pmu_filter_match(event))
1698 		return 0;
1699 
1700 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1701 		if (!__pmu_filter_match(child))
1702 			return 0;
1703 	}
1704 
1705 	return 1;
1706 }
1707 
1708 static inline int
1709 event_filter_match(struct perf_event *event)
1710 {
1711 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1712 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1713 }
1714 
1715 static void
1716 event_sched_out(struct perf_event *event,
1717 		  struct perf_cpu_context *cpuctx,
1718 		  struct perf_event_context *ctx)
1719 {
1720 	u64 tstamp = perf_event_time(event);
1721 	u64 delta;
1722 
1723 	WARN_ON_ONCE(event->ctx != ctx);
1724 	lockdep_assert_held(&ctx->lock);
1725 
1726 	/*
1727 	 * An event which could not be activated because of
1728 	 * filter mismatch still needs to have its timings
1729 	 * maintained, otherwise bogus information is return
1730 	 * via read() for time_enabled, time_running:
1731 	 */
1732 	if (event->state == PERF_EVENT_STATE_INACTIVE
1733 	    && !event_filter_match(event)) {
1734 		delta = tstamp - event->tstamp_stopped;
1735 		event->tstamp_running += delta;
1736 		event->tstamp_stopped = tstamp;
1737 	}
1738 
1739 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1740 		return;
1741 
1742 	perf_pmu_disable(event->pmu);
1743 
1744 	event->tstamp_stopped = tstamp;
1745 	event->pmu->del(event, 0);
1746 	event->oncpu = -1;
1747 	event->state = PERF_EVENT_STATE_INACTIVE;
1748 	if (event->pending_disable) {
1749 		event->pending_disable = 0;
1750 		event->state = PERF_EVENT_STATE_OFF;
1751 	}
1752 
1753 	if (!is_software_event(event))
1754 		cpuctx->active_oncpu--;
1755 	if (!--ctx->nr_active)
1756 		perf_event_ctx_deactivate(ctx);
1757 	if (event->attr.freq && event->attr.sample_freq)
1758 		ctx->nr_freq--;
1759 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1760 		cpuctx->exclusive = 0;
1761 
1762 	perf_pmu_enable(event->pmu);
1763 }
1764 
1765 static void
1766 group_sched_out(struct perf_event *group_event,
1767 		struct perf_cpu_context *cpuctx,
1768 		struct perf_event_context *ctx)
1769 {
1770 	struct perf_event *event;
1771 	int state = group_event->state;
1772 
1773 	event_sched_out(group_event, cpuctx, ctx);
1774 
1775 	/*
1776 	 * Schedule out siblings (if any):
1777 	 */
1778 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1779 		event_sched_out(event, cpuctx, ctx);
1780 
1781 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1782 		cpuctx->exclusive = 0;
1783 }
1784 
1785 #define DETACH_GROUP	0x01UL
1786 
1787 /*
1788  * Cross CPU call to remove a performance event
1789  *
1790  * We disable the event on the hardware level first. After that we
1791  * remove it from the context list.
1792  */
1793 static void
1794 __perf_remove_from_context(struct perf_event *event,
1795 			   struct perf_cpu_context *cpuctx,
1796 			   struct perf_event_context *ctx,
1797 			   void *info)
1798 {
1799 	unsigned long flags = (unsigned long)info;
1800 
1801 	event_sched_out(event, cpuctx, ctx);
1802 	if (flags & DETACH_GROUP)
1803 		perf_group_detach(event);
1804 	list_del_event(event, ctx);
1805 
1806 	if (!ctx->nr_events && ctx->is_active) {
1807 		ctx->is_active = 0;
1808 		if (ctx->task) {
1809 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1810 			cpuctx->task_ctx = NULL;
1811 		}
1812 	}
1813 }
1814 
1815 /*
1816  * Remove the event from a task's (or a CPU's) list of events.
1817  *
1818  * If event->ctx is a cloned context, callers must make sure that
1819  * every task struct that event->ctx->task could possibly point to
1820  * remains valid.  This is OK when called from perf_release since
1821  * that only calls us on the top-level context, which can't be a clone.
1822  * When called from perf_event_exit_task, it's OK because the
1823  * context has been detached from its task.
1824  */
1825 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1826 {
1827 	lockdep_assert_held(&event->ctx->mutex);
1828 
1829 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1830 }
1831 
1832 /*
1833  * Cross CPU call to disable a performance event
1834  */
1835 static void __perf_event_disable(struct perf_event *event,
1836 				 struct perf_cpu_context *cpuctx,
1837 				 struct perf_event_context *ctx,
1838 				 void *info)
1839 {
1840 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1841 		return;
1842 
1843 	update_context_time(ctx);
1844 	update_cgrp_time_from_event(event);
1845 	update_group_times(event);
1846 	if (event == event->group_leader)
1847 		group_sched_out(event, cpuctx, ctx);
1848 	else
1849 		event_sched_out(event, cpuctx, ctx);
1850 	event->state = PERF_EVENT_STATE_OFF;
1851 }
1852 
1853 /*
1854  * Disable a event.
1855  *
1856  * If event->ctx is a cloned context, callers must make sure that
1857  * every task struct that event->ctx->task could possibly point to
1858  * remains valid.  This condition is satisifed when called through
1859  * perf_event_for_each_child or perf_event_for_each because they
1860  * hold the top-level event's child_mutex, so any descendant that
1861  * goes to exit will block in perf_event_exit_event().
1862  *
1863  * When called from perf_pending_event it's OK because event->ctx
1864  * is the current context on this CPU and preemption is disabled,
1865  * hence we can't get into perf_event_task_sched_out for this context.
1866  */
1867 static void _perf_event_disable(struct perf_event *event)
1868 {
1869 	struct perf_event_context *ctx = event->ctx;
1870 
1871 	raw_spin_lock_irq(&ctx->lock);
1872 	if (event->state <= PERF_EVENT_STATE_OFF) {
1873 		raw_spin_unlock_irq(&ctx->lock);
1874 		return;
1875 	}
1876 	raw_spin_unlock_irq(&ctx->lock);
1877 
1878 	event_function_call(event, __perf_event_disable, NULL);
1879 }
1880 
1881 void perf_event_disable_local(struct perf_event *event)
1882 {
1883 	event_function_local(event, __perf_event_disable, NULL);
1884 }
1885 
1886 /*
1887  * Strictly speaking kernel users cannot create groups and therefore this
1888  * interface does not need the perf_event_ctx_lock() magic.
1889  */
1890 void perf_event_disable(struct perf_event *event)
1891 {
1892 	struct perf_event_context *ctx;
1893 
1894 	ctx = perf_event_ctx_lock(event);
1895 	_perf_event_disable(event);
1896 	perf_event_ctx_unlock(event, ctx);
1897 }
1898 EXPORT_SYMBOL_GPL(perf_event_disable);
1899 
1900 static void perf_set_shadow_time(struct perf_event *event,
1901 				 struct perf_event_context *ctx,
1902 				 u64 tstamp)
1903 {
1904 	/*
1905 	 * use the correct time source for the time snapshot
1906 	 *
1907 	 * We could get by without this by leveraging the
1908 	 * fact that to get to this function, the caller
1909 	 * has most likely already called update_context_time()
1910 	 * and update_cgrp_time_xx() and thus both timestamp
1911 	 * are identical (or very close). Given that tstamp is,
1912 	 * already adjusted for cgroup, we could say that:
1913 	 *    tstamp - ctx->timestamp
1914 	 * is equivalent to
1915 	 *    tstamp - cgrp->timestamp.
1916 	 *
1917 	 * Then, in perf_output_read(), the calculation would
1918 	 * work with no changes because:
1919 	 * - event is guaranteed scheduled in
1920 	 * - no scheduled out in between
1921 	 * - thus the timestamp would be the same
1922 	 *
1923 	 * But this is a bit hairy.
1924 	 *
1925 	 * So instead, we have an explicit cgroup call to remain
1926 	 * within the time time source all along. We believe it
1927 	 * is cleaner and simpler to understand.
1928 	 */
1929 	if (is_cgroup_event(event))
1930 		perf_cgroup_set_shadow_time(event, tstamp);
1931 	else
1932 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1933 }
1934 
1935 #define MAX_INTERRUPTS (~0ULL)
1936 
1937 static void perf_log_throttle(struct perf_event *event, int enable);
1938 static void perf_log_itrace_start(struct perf_event *event);
1939 
1940 static int
1941 event_sched_in(struct perf_event *event,
1942 		 struct perf_cpu_context *cpuctx,
1943 		 struct perf_event_context *ctx)
1944 {
1945 	u64 tstamp = perf_event_time(event);
1946 	int ret = 0;
1947 
1948 	lockdep_assert_held(&ctx->lock);
1949 
1950 	if (event->state <= PERF_EVENT_STATE_OFF)
1951 		return 0;
1952 
1953 	WRITE_ONCE(event->oncpu, smp_processor_id());
1954 	/*
1955 	 * Order event::oncpu write to happen before the ACTIVE state
1956 	 * is visible.
1957 	 */
1958 	smp_wmb();
1959 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1960 
1961 	/*
1962 	 * Unthrottle events, since we scheduled we might have missed several
1963 	 * ticks already, also for a heavily scheduling task there is little
1964 	 * guarantee it'll get a tick in a timely manner.
1965 	 */
1966 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1967 		perf_log_throttle(event, 1);
1968 		event->hw.interrupts = 0;
1969 	}
1970 
1971 	/*
1972 	 * The new state must be visible before we turn it on in the hardware:
1973 	 */
1974 	smp_wmb();
1975 
1976 	perf_pmu_disable(event->pmu);
1977 
1978 	perf_set_shadow_time(event, ctx, tstamp);
1979 
1980 	perf_log_itrace_start(event);
1981 
1982 	if (event->pmu->add(event, PERF_EF_START)) {
1983 		event->state = PERF_EVENT_STATE_INACTIVE;
1984 		event->oncpu = -1;
1985 		ret = -EAGAIN;
1986 		goto out;
1987 	}
1988 
1989 	event->tstamp_running += tstamp - event->tstamp_stopped;
1990 
1991 	if (!is_software_event(event))
1992 		cpuctx->active_oncpu++;
1993 	if (!ctx->nr_active++)
1994 		perf_event_ctx_activate(ctx);
1995 	if (event->attr.freq && event->attr.sample_freq)
1996 		ctx->nr_freq++;
1997 
1998 	if (event->attr.exclusive)
1999 		cpuctx->exclusive = 1;
2000 
2001 out:
2002 	perf_pmu_enable(event->pmu);
2003 
2004 	return ret;
2005 }
2006 
2007 static int
2008 group_sched_in(struct perf_event *group_event,
2009 	       struct perf_cpu_context *cpuctx,
2010 	       struct perf_event_context *ctx)
2011 {
2012 	struct perf_event *event, *partial_group = NULL;
2013 	struct pmu *pmu = ctx->pmu;
2014 	u64 now = ctx->time;
2015 	bool simulate = false;
2016 
2017 	if (group_event->state == PERF_EVENT_STATE_OFF)
2018 		return 0;
2019 
2020 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2021 
2022 	if (event_sched_in(group_event, cpuctx, ctx)) {
2023 		pmu->cancel_txn(pmu);
2024 		perf_mux_hrtimer_restart(cpuctx);
2025 		return -EAGAIN;
2026 	}
2027 
2028 	/*
2029 	 * Schedule in siblings as one group (if any):
2030 	 */
2031 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2032 		if (event_sched_in(event, cpuctx, ctx)) {
2033 			partial_group = event;
2034 			goto group_error;
2035 		}
2036 	}
2037 
2038 	if (!pmu->commit_txn(pmu))
2039 		return 0;
2040 
2041 group_error:
2042 	/*
2043 	 * Groups can be scheduled in as one unit only, so undo any
2044 	 * partial group before returning:
2045 	 * The events up to the failed event are scheduled out normally,
2046 	 * tstamp_stopped will be updated.
2047 	 *
2048 	 * The failed events and the remaining siblings need to have
2049 	 * their timings updated as if they had gone thru event_sched_in()
2050 	 * and event_sched_out(). This is required to get consistent timings
2051 	 * across the group. This also takes care of the case where the group
2052 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2053 	 * the time the event was actually stopped, such that time delta
2054 	 * calculation in update_event_times() is correct.
2055 	 */
2056 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2057 		if (event == partial_group)
2058 			simulate = true;
2059 
2060 		if (simulate) {
2061 			event->tstamp_running += now - event->tstamp_stopped;
2062 			event->tstamp_stopped = now;
2063 		} else {
2064 			event_sched_out(event, cpuctx, ctx);
2065 		}
2066 	}
2067 	event_sched_out(group_event, cpuctx, ctx);
2068 
2069 	pmu->cancel_txn(pmu);
2070 
2071 	perf_mux_hrtimer_restart(cpuctx);
2072 
2073 	return -EAGAIN;
2074 }
2075 
2076 /*
2077  * Work out whether we can put this event group on the CPU now.
2078  */
2079 static int group_can_go_on(struct perf_event *event,
2080 			   struct perf_cpu_context *cpuctx,
2081 			   int can_add_hw)
2082 {
2083 	/*
2084 	 * Groups consisting entirely of software events can always go on.
2085 	 */
2086 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2087 		return 1;
2088 	/*
2089 	 * If an exclusive group is already on, no other hardware
2090 	 * events can go on.
2091 	 */
2092 	if (cpuctx->exclusive)
2093 		return 0;
2094 	/*
2095 	 * If this group is exclusive and there are already
2096 	 * events on the CPU, it can't go on.
2097 	 */
2098 	if (event->attr.exclusive && cpuctx->active_oncpu)
2099 		return 0;
2100 	/*
2101 	 * Otherwise, try to add it if all previous groups were able
2102 	 * to go on.
2103 	 */
2104 	return can_add_hw;
2105 }
2106 
2107 static void add_event_to_ctx(struct perf_event *event,
2108 			       struct perf_event_context *ctx)
2109 {
2110 	u64 tstamp = perf_event_time(event);
2111 
2112 	list_add_event(event, ctx);
2113 	perf_group_attach(event);
2114 	event->tstamp_enabled = tstamp;
2115 	event->tstamp_running = tstamp;
2116 	event->tstamp_stopped = tstamp;
2117 }
2118 
2119 static void ctx_sched_out(struct perf_event_context *ctx,
2120 			  struct perf_cpu_context *cpuctx,
2121 			  enum event_type_t event_type);
2122 static void
2123 ctx_sched_in(struct perf_event_context *ctx,
2124 	     struct perf_cpu_context *cpuctx,
2125 	     enum event_type_t event_type,
2126 	     struct task_struct *task);
2127 
2128 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2129 			       struct perf_event_context *ctx)
2130 {
2131 	if (!cpuctx->task_ctx)
2132 		return;
2133 
2134 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2135 		return;
2136 
2137 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2138 }
2139 
2140 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2141 				struct perf_event_context *ctx,
2142 				struct task_struct *task)
2143 {
2144 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2145 	if (ctx)
2146 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2147 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2148 	if (ctx)
2149 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2150 }
2151 
2152 static void ctx_resched(struct perf_cpu_context *cpuctx,
2153 			struct perf_event_context *task_ctx)
2154 {
2155 	perf_pmu_disable(cpuctx->ctx.pmu);
2156 	if (task_ctx)
2157 		task_ctx_sched_out(cpuctx, task_ctx);
2158 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2159 	perf_event_sched_in(cpuctx, task_ctx, current);
2160 	perf_pmu_enable(cpuctx->ctx.pmu);
2161 }
2162 
2163 /*
2164  * Cross CPU call to install and enable a performance event
2165  *
2166  * Very similar to remote_function() + event_function() but cannot assume that
2167  * things like ctx->is_active and cpuctx->task_ctx are set.
2168  */
2169 static int  __perf_install_in_context(void *info)
2170 {
2171 	struct perf_event *event = info;
2172 	struct perf_event_context *ctx = event->ctx;
2173 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2174 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2175 	bool activate = true;
2176 	int ret = 0;
2177 
2178 	raw_spin_lock(&cpuctx->ctx.lock);
2179 	if (ctx->task) {
2180 		raw_spin_lock(&ctx->lock);
2181 		task_ctx = ctx;
2182 
2183 		/* If we're on the wrong CPU, try again */
2184 		if (task_cpu(ctx->task) != smp_processor_id()) {
2185 			ret = -ESRCH;
2186 			goto unlock;
2187 		}
2188 
2189 		/*
2190 		 * If we're on the right CPU, see if the task we target is
2191 		 * current, if not we don't have to activate the ctx, a future
2192 		 * context switch will do that for us.
2193 		 */
2194 		if (ctx->task != current)
2195 			activate = false;
2196 		else
2197 			WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2198 
2199 	} else if (task_ctx) {
2200 		raw_spin_lock(&task_ctx->lock);
2201 	}
2202 
2203 	if (activate) {
2204 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2205 		add_event_to_ctx(event, ctx);
2206 		ctx_resched(cpuctx, task_ctx);
2207 	} else {
2208 		add_event_to_ctx(event, ctx);
2209 	}
2210 
2211 unlock:
2212 	perf_ctx_unlock(cpuctx, task_ctx);
2213 
2214 	return ret;
2215 }
2216 
2217 /*
2218  * Attach a performance event to a context.
2219  *
2220  * Very similar to event_function_call, see comment there.
2221  */
2222 static void
2223 perf_install_in_context(struct perf_event_context *ctx,
2224 			struct perf_event *event,
2225 			int cpu)
2226 {
2227 	struct task_struct *task = READ_ONCE(ctx->task);
2228 
2229 	lockdep_assert_held(&ctx->mutex);
2230 
2231 	event->ctx = ctx;
2232 	if (event->cpu != -1)
2233 		event->cpu = cpu;
2234 
2235 	if (!task) {
2236 		cpu_function_call(cpu, __perf_install_in_context, event);
2237 		return;
2238 	}
2239 
2240 	/*
2241 	 * Should not happen, we validate the ctx is still alive before calling.
2242 	 */
2243 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2244 		return;
2245 
2246 	/*
2247 	 * Installing events is tricky because we cannot rely on ctx->is_active
2248 	 * to be set in case this is the nr_events 0 -> 1 transition.
2249 	 */
2250 again:
2251 	/*
2252 	 * Cannot use task_function_call() because we need to run on the task's
2253 	 * CPU regardless of whether its current or not.
2254 	 */
2255 	if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2256 		return;
2257 
2258 	raw_spin_lock_irq(&ctx->lock);
2259 	task = ctx->task;
2260 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2261 		/*
2262 		 * Cannot happen because we already checked above (which also
2263 		 * cannot happen), and we hold ctx->mutex, which serializes us
2264 		 * against perf_event_exit_task_context().
2265 		 */
2266 		raw_spin_unlock_irq(&ctx->lock);
2267 		return;
2268 	}
2269 	raw_spin_unlock_irq(&ctx->lock);
2270 	/*
2271 	 * Since !ctx->is_active doesn't mean anything, we must IPI
2272 	 * unconditionally.
2273 	 */
2274 	goto again;
2275 }
2276 
2277 /*
2278  * Put a event into inactive state and update time fields.
2279  * Enabling the leader of a group effectively enables all
2280  * the group members that aren't explicitly disabled, so we
2281  * have to update their ->tstamp_enabled also.
2282  * Note: this works for group members as well as group leaders
2283  * since the non-leader members' sibling_lists will be empty.
2284  */
2285 static void __perf_event_mark_enabled(struct perf_event *event)
2286 {
2287 	struct perf_event *sub;
2288 	u64 tstamp = perf_event_time(event);
2289 
2290 	event->state = PERF_EVENT_STATE_INACTIVE;
2291 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2292 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2293 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2294 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2295 	}
2296 }
2297 
2298 /*
2299  * Cross CPU call to enable a performance event
2300  */
2301 static void __perf_event_enable(struct perf_event *event,
2302 				struct perf_cpu_context *cpuctx,
2303 				struct perf_event_context *ctx,
2304 				void *info)
2305 {
2306 	struct perf_event *leader = event->group_leader;
2307 	struct perf_event_context *task_ctx;
2308 
2309 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2310 	    event->state <= PERF_EVENT_STATE_ERROR)
2311 		return;
2312 
2313 	if (ctx->is_active)
2314 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2315 
2316 	__perf_event_mark_enabled(event);
2317 
2318 	if (!ctx->is_active)
2319 		return;
2320 
2321 	if (!event_filter_match(event)) {
2322 		if (is_cgroup_event(event))
2323 			perf_cgroup_defer_enabled(event);
2324 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2325 		return;
2326 	}
2327 
2328 	/*
2329 	 * If the event is in a group and isn't the group leader,
2330 	 * then don't put it on unless the group is on.
2331 	 */
2332 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2333 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2334 		return;
2335 	}
2336 
2337 	task_ctx = cpuctx->task_ctx;
2338 	if (ctx->task)
2339 		WARN_ON_ONCE(task_ctx != ctx);
2340 
2341 	ctx_resched(cpuctx, task_ctx);
2342 }
2343 
2344 /*
2345  * Enable a event.
2346  *
2347  * If event->ctx is a cloned context, callers must make sure that
2348  * every task struct that event->ctx->task could possibly point to
2349  * remains valid.  This condition is satisfied when called through
2350  * perf_event_for_each_child or perf_event_for_each as described
2351  * for perf_event_disable.
2352  */
2353 static void _perf_event_enable(struct perf_event *event)
2354 {
2355 	struct perf_event_context *ctx = event->ctx;
2356 
2357 	raw_spin_lock_irq(&ctx->lock);
2358 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2359 	    event->state <  PERF_EVENT_STATE_ERROR) {
2360 		raw_spin_unlock_irq(&ctx->lock);
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * If the event is in error state, clear that first.
2366 	 *
2367 	 * That way, if we see the event in error state below, we know that it
2368 	 * has gone back into error state, as distinct from the task having
2369 	 * been scheduled away before the cross-call arrived.
2370 	 */
2371 	if (event->state == PERF_EVENT_STATE_ERROR)
2372 		event->state = PERF_EVENT_STATE_OFF;
2373 	raw_spin_unlock_irq(&ctx->lock);
2374 
2375 	event_function_call(event, __perf_event_enable, NULL);
2376 }
2377 
2378 /*
2379  * See perf_event_disable();
2380  */
2381 void perf_event_enable(struct perf_event *event)
2382 {
2383 	struct perf_event_context *ctx;
2384 
2385 	ctx = perf_event_ctx_lock(event);
2386 	_perf_event_enable(event);
2387 	perf_event_ctx_unlock(event, ctx);
2388 }
2389 EXPORT_SYMBOL_GPL(perf_event_enable);
2390 
2391 struct stop_event_data {
2392 	struct perf_event	*event;
2393 	unsigned int		restart;
2394 };
2395 
2396 static int __perf_event_stop(void *info)
2397 {
2398 	struct stop_event_data *sd = info;
2399 	struct perf_event *event = sd->event;
2400 
2401 	/* if it's already INACTIVE, do nothing */
2402 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2403 		return 0;
2404 
2405 	/* matches smp_wmb() in event_sched_in() */
2406 	smp_rmb();
2407 
2408 	/*
2409 	 * There is a window with interrupts enabled before we get here,
2410 	 * so we need to check again lest we try to stop another CPU's event.
2411 	 */
2412 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2413 		return -EAGAIN;
2414 
2415 	event->pmu->stop(event, PERF_EF_UPDATE);
2416 
2417 	/*
2418 	 * May race with the actual stop (through perf_pmu_output_stop()),
2419 	 * but it is only used for events with AUX ring buffer, and such
2420 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2421 	 * see comments in perf_aux_output_begin().
2422 	 *
2423 	 * Since this is happening on a event-local CPU, no trace is lost
2424 	 * while restarting.
2425 	 */
2426 	if (sd->restart)
2427 		event->pmu->start(event, PERF_EF_START);
2428 
2429 	return 0;
2430 }
2431 
2432 static int perf_event_restart(struct perf_event *event)
2433 {
2434 	struct stop_event_data sd = {
2435 		.event		= event,
2436 		.restart	= 1,
2437 	};
2438 	int ret = 0;
2439 
2440 	do {
2441 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2442 			return 0;
2443 
2444 		/* matches smp_wmb() in event_sched_in() */
2445 		smp_rmb();
2446 
2447 		/*
2448 		 * We only want to restart ACTIVE events, so if the event goes
2449 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2450 		 * fall through with ret==-ENXIO.
2451 		 */
2452 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2453 					__perf_event_stop, &sd);
2454 	} while (ret == -EAGAIN);
2455 
2456 	return ret;
2457 }
2458 
2459 /*
2460  * In order to contain the amount of racy and tricky in the address filter
2461  * configuration management, it is a two part process:
2462  *
2463  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2464  *      we update the addresses of corresponding vmas in
2465  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2466  * (p2) when an event is scheduled in (pmu::add), it calls
2467  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2468  *      if the generation has changed since the previous call.
2469  *
2470  * If (p1) happens while the event is active, we restart it to force (p2).
2471  *
2472  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2473  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2474  *     ioctl;
2475  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2476  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2477  *     for reading;
2478  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2479  *     of exec.
2480  */
2481 void perf_event_addr_filters_sync(struct perf_event *event)
2482 {
2483 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2484 
2485 	if (!has_addr_filter(event))
2486 		return;
2487 
2488 	raw_spin_lock(&ifh->lock);
2489 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2490 		event->pmu->addr_filters_sync(event);
2491 		event->hw.addr_filters_gen = event->addr_filters_gen;
2492 	}
2493 	raw_spin_unlock(&ifh->lock);
2494 }
2495 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2496 
2497 static int _perf_event_refresh(struct perf_event *event, int refresh)
2498 {
2499 	/*
2500 	 * not supported on inherited events
2501 	 */
2502 	if (event->attr.inherit || !is_sampling_event(event))
2503 		return -EINVAL;
2504 
2505 	atomic_add(refresh, &event->event_limit);
2506 	_perf_event_enable(event);
2507 
2508 	return 0;
2509 }
2510 
2511 /*
2512  * See perf_event_disable()
2513  */
2514 int perf_event_refresh(struct perf_event *event, int refresh)
2515 {
2516 	struct perf_event_context *ctx;
2517 	int ret;
2518 
2519 	ctx = perf_event_ctx_lock(event);
2520 	ret = _perf_event_refresh(event, refresh);
2521 	perf_event_ctx_unlock(event, ctx);
2522 
2523 	return ret;
2524 }
2525 EXPORT_SYMBOL_GPL(perf_event_refresh);
2526 
2527 static void ctx_sched_out(struct perf_event_context *ctx,
2528 			  struct perf_cpu_context *cpuctx,
2529 			  enum event_type_t event_type)
2530 {
2531 	int is_active = ctx->is_active;
2532 	struct perf_event *event;
2533 
2534 	lockdep_assert_held(&ctx->lock);
2535 
2536 	if (likely(!ctx->nr_events)) {
2537 		/*
2538 		 * See __perf_remove_from_context().
2539 		 */
2540 		WARN_ON_ONCE(ctx->is_active);
2541 		if (ctx->task)
2542 			WARN_ON_ONCE(cpuctx->task_ctx);
2543 		return;
2544 	}
2545 
2546 	ctx->is_active &= ~event_type;
2547 	if (!(ctx->is_active & EVENT_ALL))
2548 		ctx->is_active = 0;
2549 
2550 	if (ctx->task) {
2551 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2552 		if (!ctx->is_active)
2553 			cpuctx->task_ctx = NULL;
2554 	}
2555 
2556 	/*
2557 	 * Always update time if it was set; not only when it changes.
2558 	 * Otherwise we can 'forget' to update time for any but the last
2559 	 * context we sched out. For example:
2560 	 *
2561 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2562 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2563 	 *
2564 	 * would only update time for the pinned events.
2565 	 */
2566 	if (is_active & EVENT_TIME) {
2567 		/* update (and stop) ctx time */
2568 		update_context_time(ctx);
2569 		update_cgrp_time_from_cpuctx(cpuctx);
2570 	}
2571 
2572 	is_active ^= ctx->is_active; /* changed bits */
2573 
2574 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2575 		return;
2576 
2577 	perf_pmu_disable(ctx->pmu);
2578 	if (is_active & EVENT_PINNED) {
2579 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2580 			group_sched_out(event, cpuctx, ctx);
2581 	}
2582 
2583 	if (is_active & EVENT_FLEXIBLE) {
2584 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2585 			group_sched_out(event, cpuctx, ctx);
2586 	}
2587 	perf_pmu_enable(ctx->pmu);
2588 }
2589 
2590 /*
2591  * Test whether two contexts are equivalent, i.e. whether they have both been
2592  * cloned from the same version of the same context.
2593  *
2594  * Equivalence is measured using a generation number in the context that is
2595  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2596  * and list_del_event().
2597  */
2598 static int context_equiv(struct perf_event_context *ctx1,
2599 			 struct perf_event_context *ctx2)
2600 {
2601 	lockdep_assert_held(&ctx1->lock);
2602 	lockdep_assert_held(&ctx2->lock);
2603 
2604 	/* Pinning disables the swap optimization */
2605 	if (ctx1->pin_count || ctx2->pin_count)
2606 		return 0;
2607 
2608 	/* If ctx1 is the parent of ctx2 */
2609 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2610 		return 1;
2611 
2612 	/* If ctx2 is the parent of ctx1 */
2613 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2614 		return 1;
2615 
2616 	/*
2617 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2618 	 * hierarchy, see perf_event_init_context().
2619 	 */
2620 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2621 			ctx1->parent_gen == ctx2->parent_gen)
2622 		return 1;
2623 
2624 	/* Unmatched */
2625 	return 0;
2626 }
2627 
2628 static void __perf_event_sync_stat(struct perf_event *event,
2629 				     struct perf_event *next_event)
2630 {
2631 	u64 value;
2632 
2633 	if (!event->attr.inherit_stat)
2634 		return;
2635 
2636 	/*
2637 	 * Update the event value, we cannot use perf_event_read()
2638 	 * because we're in the middle of a context switch and have IRQs
2639 	 * disabled, which upsets smp_call_function_single(), however
2640 	 * we know the event must be on the current CPU, therefore we
2641 	 * don't need to use it.
2642 	 */
2643 	switch (event->state) {
2644 	case PERF_EVENT_STATE_ACTIVE:
2645 		event->pmu->read(event);
2646 		/* fall-through */
2647 
2648 	case PERF_EVENT_STATE_INACTIVE:
2649 		update_event_times(event);
2650 		break;
2651 
2652 	default:
2653 		break;
2654 	}
2655 
2656 	/*
2657 	 * In order to keep per-task stats reliable we need to flip the event
2658 	 * values when we flip the contexts.
2659 	 */
2660 	value = local64_read(&next_event->count);
2661 	value = local64_xchg(&event->count, value);
2662 	local64_set(&next_event->count, value);
2663 
2664 	swap(event->total_time_enabled, next_event->total_time_enabled);
2665 	swap(event->total_time_running, next_event->total_time_running);
2666 
2667 	/*
2668 	 * Since we swizzled the values, update the user visible data too.
2669 	 */
2670 	perf_event_update_userpage(event);
2671 	perf_event_update_userpage(next_event);
2672 }
2673 
2674 static void perf_event_sync_stat(struct perf_event_context *ctx,
2675 				   struct perf_event_context *next_ctx)
2676 {
2677 	struct perf_event *event, *next_event;
2678 
2679 	if (!ctx->nr_stat)
2680 		return;
2681 
2682 	update_context_time(ctx);
2683 
2684 	event = list_first_entry(&ctx->event_list,
2685 				   struct perf_event, event_entry);
2686 
2687 	next_event = list_first_entry(&next_ctx->event_list,
2688 					struct perf_event, event_entry);
2689 
2690 	while (&event->event_entry != &ctx->event_list &&
2691 	       &next_event->event_entry != &next_ctx->event_list) {
2692 
2693 		__perf_event_sync_stat(event, next_event);
2694 
2695 		event = list_next_entry(event, event_entry);
2696 		next_event = list_next_entry(next_event, event_entry);
2697 	}
2698 }
2699 
2700 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2701 					 struct task_struct *next)
2702 {
2703 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2704 	struct perf_event_context *next_ctx;
2705 	struct perf_event_context *parent, *next_parent;
2706 	struct perf_cpu_context *cpuctx;
2707 	int do_switch = 1;
2708 
2709 	if (likely(!ctx))
2710 		return;
2711 
2712 	cpuctx = __get_cpu_context(ctx);
2713 	if (!cpuctx->task_ctx)
2714 		return;
2715 
2716 	rcu_read_lock();
2717 	next_ctx = next->perf_event_ctxp[ctxn];
2718 	if (!next_ctx)
2719 		goto unlock;
2720 
2721 	parent = rcu_dereference(ctx->parent_ctx);
2722 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2723 
2724 	/* If neither context have a parent context; they cannot be clones. */
2725 	if (!parent && !next_parent)
2726 		goto unlock;
2727 
2728 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2729 		/*
2730 		 * Looks like the two contexts are clones, so we might be
2731 		 * able to optimize the context switch.  We lock both
2732 		 * contexts and check that they are clones under the
2733 		 * lock (including re-checking that neither has been
2734 		 * uncloned in the meantime).  It doesn't matter which
2735 		 * order we take the locks because no other cpu could
2736 		 * be trying to lock both of these tasks.
2737 		 */
2738 		raw_spin_lock(&ctx->lock);
2739 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2740 		if (context_equiv(ctx, next_ctx)) {
2741 			WRITE_ONCE(ctx->task, next);
2742 			WRITE_ONCE(next_ctx->task, task);
2743 
2744 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2745 
2746 			/*
2747 			 * RCU_INIT_POINTER here is safe because we've not
2748 			 * modified the ctx and the above modification of
2749 			 * ctx->task and ctx->task_ctx_data are immaterial
2750 			 * since those values are always verified under
2751 			 * ctx->lock which we're now holding.
2752 			 */
2753 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2754 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2755 
2756 			do_switch = 0;
2757 
2758 			perf_event_sync_stat(ctx, next_ctx);
2759 		}
2760 		raw_spin_unlock(&next_ctx->lock);
2761 		raw_spin_unlock(&ctx->lock);
2762 	}
2763 unlock:
2764 	rcu_read_unlock();
2765 
2766 	if (do_switch) {
2767 		raw_spin_lock(&ctx->lock);
2768 		task_ctx_sched_out(cpuctx, ctx);
2769 		raw_spin_unlock(&ctx->lock);
2770 	}
2771 }
2772 
2773 void perf_sched_cb_dec(struct pmu *pmu)
2774 {
2775 	this_cpu_dec(perf_sched_cb_usages);
2776 }
2777 
2778 void perf_sched_cb_inc(struct pmu *pmu)
2779 {
2780 	this_cpu_inc(perf_sched_cb_usages);
2781 }
2782 
2783 /*
2784  * This function provides the context switch callback to the lower code
2785  * layer. It is invoked ONLY when the context switch callback is enabled.
2786  */
2787 static void perf_pmu_sched_task(struct task_struct *prev,
2788 				struct task_struct *next,
2789 				bool sched_in)
2790 {
2791 	struct perf_cpu_context *cpuctx;
2792 	struct pmu *pmu;
2793 	unsigned long flags;
2794 
2795 	if (prev == next)
2796 		return;
2797 
2798 	local_irq_save(flags);
2799 
2800 	rcu_read_lock();
2801 
2802 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2803 		if (pmu->sched_task) {
2804 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2805 
2806 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2807 
2808 			perf_pmu_disable(pmu);
2809 
2810 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2811 
2812 			perf_pmu_enable(pmu);
2813 
2814 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2815 		}
2816 	}
2817 
2818 	rcu_read_unlock();
2819 
2820 	local_irq_restore(flags);
2821 }
2822 
2823 static void perf_event_switch(struct task_struct *task,
2824 			      struct task_struct *next_prev, bool sched_in);
2825 
2826 #define for_each_task_context_nr(ctxn)					\
2827 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2828 
2829 /*
2830  * Called from scheduler to remove the events of the current task,
2831  * with interrupts disabled.
2832  *
2833  * We stop each event and update the event value in event->count.
2834  *
2835  * This does not protect us against NMI, but disable()
2836  * sets the disabled bit in the control field of event _before_
2837  * accessing the event control register. If a NMI hits, then it will
2838  * not restart the event.
2839  */
2840 void __perf_event_task_sched_out(struct task_struct *task,
2841 				 struct task_struct *next)
2842 {
2843 	int ctxn;
2844 
2845 	if (__this_cpu_read(perf_sched_cb_usages))
2846 		perf_pmu_sched_task(task, next, false);
2847 
2848 	if (atomic_read(&nr_switch_events))
2849 		perf_event_switch(task, next, false);
2850 
2851 	for_each_task_context_nr(ctxn)
2852 		perf_event_context_sched_out(task, ctxn, next);
2853 
2854 	/*
2855 	 * if cgroup events exist on this CPU, then we need
2856 	 * to check if we have to switch out PMU state.
2857 	 * cgroup event are system-wide mode only
2858 	 */
2859 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2860 		perf_cgroup_sched_out(task, next);
2861 }
2862 
2863 /*
2864  * Called with IRQs disabled
2865  */
2866 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2867 			      enum event_type_t event_type)
2868 {
2869 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2870 }
2871 
2872 static void
2873 ctx_pinned_sched_in(struct perf_event_context *ctx,
2874 		    struct perf_cpu_context *cpuctx)
2875 {
2876 	struct perf_event *event;
2877 
2878 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2879 		if (event->state <= PERF_EVENT_STATE_OFF)
2880 			continue;
2881 		if (!event_filter_match(event))
2882 			continue;
2883 
2884 		/* may need to reset tstamp_enabled */
2885 		if (is_cgroup_event(event))
2886 			perf_cgroup_mark_enabled(event, ctx);
2887 
2888 		if (group_can_go_on(event, cpuctx, 1))
2889 			group_sched_in(event, cpuctx, ctx);
2890 
2891 		/*
2892 		 * If this pinned group hasn't been scheduled,
2893 		 * put it in error state.
2894 		 */
2895 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2896 			update_group_times(event);
2897 			event->state = PERF_EVENT_STATE_ERROR;
2898 		}
2899 	}
2900 }
2901 
2902 static void
2903 ctx_flexible_sched_in(struct perf_event_context *ctx,
2904 		      struct perf_cpu_context *cpuctx)
2905 {
2906 	struct perf_event *event;
2907 	int can_add_hw = 1;
2908 
2909 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2910 		/* Ignore events in OFF or ERROR state */
2911 		if (event->state <= PERF_EVENT_STATE_OFF)
2912 			continue;
2913 		/*
2914 		 * Listen to the 'cpu' scheduling filter constraint
2915 		 * of events:
2916 		 */
2917 		if (!event_filter_match(event))
2918 			continue;
2919 
2920 		/* may need to reset tstamp_enabled */
2921 		if (is_cgroup_event(event))
2922 			perf_cgroup_mark_enabled(event, ctx);
2923 
2924 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2925 			if (group_sched_in(event, cpuctx, ctx))
2926 				can_add_hw = 0;
2927 		}
2928 	}
2929 }
2930 
2931 static void
2932 ctx_sched_in(struct perf_event_context *ctx,
2933 	     struct perf_cpu_context *cpuctx,
2934 	     enum event_type_t event_type,
2935 	     struct task_struct *task)
2936 {
2937 	int is_active = ctx->is_active;
2938 	u64 now;
2939 
2940 	lockdep_assert_held(&ctx->lock);
2941 
2942 	if (likely(!ctx->nr_events))
2943 		return;
2944 
2945 	ctx->is_active |= (event_type | EVENT_TIME);
2946 	if (ctx->task) {
2947 		if (!is_active)
2948 			cpuctx->task_ctx = ctx;
2949 		else
2950 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2951 	}
2952 
2953 	is_active ^= ctx->is_active; /* changed bits */
2954 
2955 	if (is_active & EVENT_TIME) {
2956 		/* start ctx time */
2957 		now = perf_clock();
2958 		ctx->timestamp = now;
2959 		perf_cgroup_set_timestamp(task, ctx);
2960 	}
2961 
2962 	/*
2963 	 * First go through the list and put on any pinned groups
2964 	 * in order to give them the best chance of going on.
2965 	 */
2966 	if (is_active & EVENT_PINNED)
2967 		ctx_pinned_sched_in(ctx, cpuctx);
2968 
2969 	/* Then walk through the lower prio flexible groups */
2970 	if (is_active & EVENT_FLEXIBLE)
2971 		ctx_flexible_sched_in(ctx, cpuctx);
2972 }
2973 
2974 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2975 			     enum event_type_t event_type,
2976 			     struct task_struct *task)
2977 {
2978 	struct perf_event_context *ctx = &cpuctx->ctx;
2979 
2980 	ctx_sched_in(ctx, cpuctx, event_type, task);
2981 }
2982 
2983 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2984 					struct task_struct *task)
2985 {
2986 	struct perf_cpu_context *cpuctx;
2987 
2988 	cpuctx = __get_cpu_context(ctx);
2989 	if (cpuctx->task_ctx == ctx)
2990 		return;
2991 
2992 	perf_ctx_lock(cpuctx, ctx);
2993 	perf_pmu_disable(ctx->pmu);
2994 	/*
2995 	 * We want to keep the following priority order:
2996 	 * cpu pinned (that don't need to move), task pinned,
2997 	 * cpu flexible, task flexible.
2998 	 */
2999 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3000 	perf_event_sched_in(cpuctx, ctx, task);
3001 	perf_pmu_enable(ctx->pmu);
3002 	perf_ctx_unlock(cpuctx, ctx);
3003 }
3004 
3005 /*
3006  * Called from scheduler to add the events of the current task
3007  * with interrupts disabled.
3008  *
3009  * We restore the event value and then enable it.
3010  *
3011  * This does not protect us against NMI, but enable()
3012  * sets the enabled bit in the control field of event _before_
3013  * accessing the event control register. If a NMI hits, then it will
3014  * keep the event running.
3015  */
3016 void __perf_event_task_sched_in(struct task_struct *prev,
3017 				struct task_struct *task)
3018 {
3019 	struct perf_event_context *ctx;
3020 	int ctxn;
3021 
3022 	/*
3023 	 * If cgroup events exist on this CPU, then we need to check if we have
3024 	 * to switch in PMU state; cgroup event are system-wide mode only.
3025 	 *
3026 	 * Since cgroup events are CPU events, we must schedule these in before
3027 	 * we schedule in the task events.
3028 	 */
3029 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3030 		perf_cgroup_sched_in(prev, task);
3031 
3032 	for_each_task_context_nr(ctxn) {
3033 		ctx = task->perf_event_ctxp[ctxn];
3034 		if (likely(!ctx))
3035 			continue;
3036 
3037 		perf_event_context_sched_in(ctx, task);
3038 	}
3039 
3040 	if (atomic_read(&nr_switch_events))
3041 		perf_event_switch(task, prev, true);
3042 
3043 	if (__this_cpu_read(perf_sched_cb_usages))
3044 		perf_pmu_sched_task(prev, task, true);
3045 }
3046 
3047 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3048 {
3049 	u64 frequency = event->attr.sample_freq;
3050 	u64 sec = NSEC_PER_SEC;
3051 	u64 divisor, dividend;
3052 
3053 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3054 
3055 	count_fls = fls64(count);
3056 	nsec_fls = fls64(nsec);
3057 	frequency_fls = fls64(frequency);
3058 	sec_fls = 30;
3059 
3060 	/*
3061 	 * We got @count in @nsec, with a target of sample_freq HZ
3062 	 * the target period becomes:
3063 	 *
3064 	 *             @count * 10^9
3065 	 * period = -------------------
3066 	 *          @nsec * sample_freq
3067 	 *
3068 	 */
3069 
3070 	/*
3071 	 * Reduce accuracy by one bit such that @a and @b converge
3072 	 * to a similar magnitude.
3073 	 */
3074 #define REDUCE_FLS(a, b)		\
3075 do {					\
3076 	if (a##_fls > b##_fls) {	\
3077 		a >>= 1;		\
3078 		a##_fls--;		\
3079 	} else {			\
3080 		b >>= 1;		\
3081 		b##_fls--;		\
3082 	}				\
3083 } while (0)
3084 
3085 	/*
3086 	 * Reduce accuracy until either term fits in a u64, then proceed with
3087 	 * the other, so that finally we can do a u64/u64 division.
3088 	 */
3089 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3090 		REDUCE_FLS(nsec, frequency);
3091 		REDUCE_FLS(sec, count);
3092 	}
3093 
3094 	if (count_fls + sec_fls > 64) {
3095 		divisor = nsec * frequency;
3096 
3097 		while (count_fls + sec_fls > 64) {
3098 			REDUCE_FLS(count, sec);
3099 			divisor >>= 1;
3100 		}
3101 
3102 		dividend = count * sec;
3103 	} else {
3104 		dividend = count * sec;
3105 
3106 		while (nsec_fls + frequency_fls > 64) {
3107 			REDUCE_FLS(nsec, frequency);
3108 			dividend >>= 1;
3109 		}
3110 
3111 		divisor = nsec * frequency;
3112 	}
3113 
3114 	if (!divisor)
3115 		return dividend;
3116 
3117 	return div64_u64(dividend, divisor);
3118 }
3119 
3120 static DEFINE_PER_CPU(int, perf_throttled_count);
3121 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3122 
3123 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3124 {
3125 	struct hw_perf_event *hwc = &event->hw;
3126 	s64 period, sample_period;
3127 	s64 delta;
3128 
3129 	period = perf_calculate_period(event, nsec, count);
3130 
3131 	delta = (s64)(period - hwc->sample_period);
3132 	delta = (delta + 7) / 8; /* low pass filter */
3133 
3134 	sample_period = hwc->sample_period + delta;
3135 
3136 	if (!sample_period)
3137 		sample_period = 1;
3138 
3139 	hwc->sample_period = sample_period;
3140 
3141 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3142 		if (disable)
3143 			event->pmu->stop(event, PERF_EF_UPDATE);
3144 
3145 		local64_set(&hwc->period_left, 0);
3146 
3147 		if (disable)
3148 			event->pmu->start(event, PERF_EF_RELOAD);
3149 	}
3150 }
3151 
3152 /*
3153  * combine freq adjustment with unthrottling to avoid two passes over the
3154  * events. At the same time, make sure, having freq events does not change
3155  * the rate of unthrottling as that would introduce bias.
3156  */
3157 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3158 					   int needs_unthr)
3159 {
3160 	struct perf_event *event;
3161 	struct hw_perf_event *hwc;
3162 	u64 now, period = TICK_NSEC;
3163 	s64 delta;
3164 
3165 	/*
3166 	 * only need to iterate over all events iff:
3167 	 * - context have events in frequency mode (needs freq adjust)
3168 	 * - there are events to unthrottle on this cpu
3169 	 */
3170 	if (!(ctx->nr_freq || needs_unthr))
3171 		return;
3172 
3173 	raw_spin_lock(&ctx->lock);
3174 	perf_pmu_disable(ctx->pmu);
3175 
3176 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3177 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3178 			continue;
3179 
3180 		if (!event_filter_match(event))
3181 			continue;
3182 
3183 		perf_pmu_disable(event->pmu);
3184 
3185 		hwc = &event->hw;
3186 
3187 		if (hwc->interrupts == MAX_INTERRUPTS) {
3188 			hwc->interrupts = 0;
3189 			perf_log_throttle(event, 1);
3190 			event->pmu->start(event, 0);
3191 		}
3192 
3193 		if (!event->attr.freq || !event->attr.sample_freq)
3194 			goto next;
3195 
3196 		/*
3197 		 * stop the event and update event->count
3198 		 */
3199 		event->pmu->stop(event, PERF_EF_UPDATE);
3200 
3201 		now = local64_read(&event->count);
3202 		delta = now - hwc->freq_count_stamp;
3203 		hwc->freq_count_stamp = now;
3204 
3205 		/*
3206 		 * restart the event
3207 		 * reload only if value has changed
3208 		 * we have stopped the event so tell that
3209 		 * to perf_adjust_period() to avoid stopping it
3210 		 * twice.
3211 		 */
3212 		if (delta > 0)
3213 			perf_adjust_period(event, period, delta, false);
3214 
3215 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3216 	next:
3217 		perf_pmu_enable(event->pmu);
3218 	}
3219 
3220 	perf_pmu_enable(ctx->pmu);
3221 	raw_spin_unlock(&ctx->lock);
3222 }
3223 
3224 /*
3225  * Round-robin a context's events:
3226  */
3227 static void rotate_ctx(struct perf_event_context *ctx)
3228 {
3229 	/*
3230 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3231 	 * disabled by the inheritance code.
3232 	 */
3233 	if (!ctx->rotate_disable)
3234 		list_rotate_left(&ctx->flexible_groups);
3235 }
3236 
3237 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3238 {
3239 	struct perf_event_context *ctx = NULL;
3240 	int rotate = 0;
3241 
3242 	if (cpuctx->ctx.nr_events) {
3243 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3244 			rotate = 1;
3245 	}
3246 
3247 	ctx = cpuctx->task_ctx;
3248 	if (ctx && ctx->nr_events) {
3249 		if (ctx->nr_events != ctx->nr_active)
3250 			rotate = 1;
3251 	}
3252 
3253 	if (!rotate)
3254 		goto done;
3255 
3256 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3257 	perf_pmu_disable(cpuctx->ctx.pmu);
3258 
3259 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3260 	if (ctx)
3261 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3262 
3263 	rotate_ctx(&cpuctx->ctx);
3264 	if (ctx)
3265 		rotate_ctx(ctx);
3266 
3267 	perf_event_sched_in(cpuctx, ctx, current);
3268 
3269 	perf_pmu_enable(cpuctx->ctx.pmu);
3270 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3271 done:
3272 
3273 	return rotate;
3274 }
3275 
3276 void perf_event_task_tick(void)
3277 {
3278 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3279 	struct perf_event_context *ctx, *tmp;
3280 	int throttled;
3281 
3282 	WARN_ON(!irqs_disabled());
3283 
3284 	__this_cpu_inc(perf_throttled_seq);
3285 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3286 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3287 
3288 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3289 		perf_adjust_freq_unthr_context(ctx, throttled);
3290 }
3291 
3292 static int event_enable_on_exec(struct perf_event *event,
3293 				struct perf_event_context *ctx)
3294 {
3295 	if (!event->attr.enable_on_exec)
3296 		return 0;
3297 
3298 	event->attr.enable_on_exec = 0;
3299 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3300 		return 0;
3301 
3302 	__perf_event_mark_enabled(event);
3303 
3304 	return 1;
3305 }
3306 
3307 /*
3308  * Enable all of a task's events that have been marked enable-on-exec.
3309  * This expects task == current.
3310  */
3311 static void perf_event_enable_on_exec(int ctxn)
3312 {
3313 	struct perf_event_context *ctx, *clone_ctx = NULL;
3314 	struct perf_cpu_context *cpuctx;
3315 	struct perf_event *event;
3316 	unsigned long flags;
3317 	int enabled = 0;
3318 
3319 	local_irq_save(flags);
3320 	ctx = current->perf_event_ctxp[ctxn];
3321 	if (!ctx || !ctx->nr_events)
3322 		goto out;
3323 
3324 	cpuctx = __get_cpu_context(ctx);
3325 	perf_ctx_lock(cpuctx, ctx);
3326 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3327 	list_for_each_entry(event, &ctx->event_list, event_entry)
3328 		enabled |= event_enable_on_exec(event, ctx);
3329 
3330 	/*
3331 	 * Unclone and reschedule this context if we enabled any event.
3332 	 */
3333 	if (enabled) {
3334 		clone_ctx = unclone_ctx(ctx);
3335 		ctx_resched(cpuctx, ctx);
3336 	}
3337 	perf_ctx_unlock(cpuctx, ctx);
3338 
3339 out:
3340 	local_irq_restore(flags);
3341 
3342 	if (clone_ctx)
3343 		put_ctx(clone_ctx);
3344 }
3345 
3346 struct perf_read_data {
3347 	struct perf_event *event;
3348 	bool group;
3349 	int ret;
3350 };
3351 
3352 /*
3353  * Cross CPU call to read the hardware event
3354  */
3355 static void __perf_event_read(void *info)
3356 {
3357 	struct perf_read_data *data = info;
3358 	struct perf_event *sub, *event = data->event;
3359 	struct perf_event_context *ctx = event->ctx;
3360 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3361 	struct pmu *pmu = event->pmu;
3362 
3363 	/*
3364 	 * If this is a task context, we need to check whether it is
3365 	 * the current task context of this cpu.  If not it has been
3366 	 * scheduled out before the smp call arrived.  In that case
3367 	 * event->count would have been updated to a recent sample
3368 	 * when the event was scheduled out.
3369 	 */
3370 	if (ctx->task && cpuctx->task_ctx != ctx)
3371 		return;
3372 
3373 	raw_spin_lock(&ctx->lock);
3374 	if (ctx->is_active) {
3375 		update_context_time(ctx);
3376 		update_cgrp_time_from_event(event);
3377 	}
3378 
3379 	update_event_times(event);
3380 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3381 		goto unlock;
3382 
3383 	if (!data->group) {
3384 		pmu->read(event);
3385 		data->ret = 0;
3386 		goto unlock;
3387 	}
3388 
3389 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3390 
3391 	pmu->read(event);
3392 
3393 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3394 		update_event_times(sub);
3395 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3396 			/*
3397 			 * Use sibling's PMU rather than @event's since
3398 			 * sibling could be on different (eg: software) PMU.
3399 			 */
3400 			sub->pmu->read(sub);
3401 		}
3402 	}
3403 
3404 	data->ret = pmu->commit_txn(pmu);
3405 
3406 unlock:
3407 	raw_spin_unlock(&ctx->lock);
3408 }
3409 
3410 static inline u64 perf_event_count(struct perf_event *event)
3411 {
3412 	if (event->pmu->count)
3413 		return event->pmu->count(event);
3414 
3415 	return __perf_event_count(event);
3416 }
3417 
3418 /*
3419  * NMI-safe method to read a local event, that is an event that
3420  * is:
3421  *   - either for the current task, or for this CPU
3422  *   - does not have inherit set, for inherited task events
3423  *     will not be local and we cannot read them atomically
3424  *   - must not have a pmu::count method
3425  */
3426 u64 perf_event_read_local(struct perf_event *event)
3427 {
3428 	unsigned long flags;
3429 	u64 val;
3430 
3431 	/*
3432 	 * Disabling interrupts avoids all counter scheduling (context
3433 	 * switches, timer based rotation and IPIs).
3434 	 */
3435 	local_irq_save(flags);
3436 
3437 	/* If this is a per-task event, it must be for current */
3438 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3439 		     event->hw.target != current);
3440 
3441 	/* If this is a per-CPU event, it must be for this CPU */
3442 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3443 		     event->cpu != smp_processor_id());
3444 
3445 	/*
3446 	 * It must not be an event with inherit set, we cannot read
3447 	 * all child counters from atomic context.
3448 	 */
3449 	WARN_ON_ONCE(event->attr.inherit);
3450 
3451 	/*
3452 	 * It must not have a pmu::count method, those are not
3453 	 * NMI safe.
3454 	 */
3455 	WARN_ON_ONCE(event->pmu->count);
3456 
3457 	/*
3458 	 * If the event is currently on this CPU, its either a per-task event,
3459 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3460 	 * oncpu == -1).
3461 	 */
3462 	if (event->oncpu == smp_processor_id())
3463 		event->pmu->read(event);
3464 
3465 	val = local64_read(&event->count);
3466 	local_irq_restore(flags);
3467 
3468 	return val;
3469 }
3470 
3471 static int perf_event_read(struct perf_event *event, bool group)
3472 {
3473 	int ret = 0;
3474 
3475 	/*
3476 	 * If event is enabled and currently active on a CPU, update the
3477 	 * value in the event structure:
3478 	 */
3479 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3480 		struct perf_read_data data = {
3481 			.event = event,
3482 			.group = group,
3483 			.ret = 0,
3484 		};
3485 		smp_call_function_single(event->oncpu,
3486 					 __perf_event_read, &data, 1);
3487 		ret = data.ret;
3488 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3489 		struct perf_event_context *ctx = event->ctx;
3490 		unsigned long flags;
3491 
3492 		raw_spin_lock_irqsave(&ctx->lock, flags);
3493 		/*
3494 		 * may read while context is not active
3495 		 * (e.g., thread is blocked), in that case
3496 		 * we cannot update context time
3497 		 */
3498 		if (ctx->is_active) {
3499 			update_context_time(ctx);
3500 			update_cgrp_time_from_event(event);
3501 		}
3502 		if (group)
3503 			update_group_times(event);
3504 		else
3505 			update_event_times(event);
3506 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3507 	}
3508 
3509 	return ret;
3510 }
3511 
3512 /*
3513  * Initialize the perf_event context in a task_struct:
3514  */
3515 static void __perf_event_init_context(struct perf_event_context *ctx)
3516 {
3517 	raw_spin_lock_init(&ctx->lock);
3518 	mutex_init(&ctx->mutex);
3519 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3520 	INIT_LIST_HEAD(&ctx->pinned_groups);
3521 	INIT_LIST_HEAD(&ctx->flexible_groups);
3522 	INIT_LIST_HEAD(&ctx->event_list);
3523 	atomic_set(&ctx->refcount, 1);
3524 }
3525 
3526 static struct perf_event_context *
3527 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3528 {
3529 	struct perf_event_context *ctx;
3530 
3531 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3532 	if (!ctx)
3533 		return NULL;
3534 
3535 	__perf_event_init_context(ctx);
3536 	if (task) {
3537 		ctx->task = task;
3538 		get_task_struct(task);
3539 	}
3540 	ctx->pmu = pmu;
3541 
3542 	return ctx;
3543 }
3544 
3545 static struct task_struct *
3546 find_lively_task_by_vpid(pid_t vpid)
3547 {
3548 	struct task_struct *task;
3549 
3550 	rcu_read_lock();
3551 	if (!vpid)
3552 		task = current;
3553 	else
3554 		task = find_task_by_vpid(vpid);
3555 	if (task)
3556 		get_task_struct(task);
3557 	rcu_read_unlock();
3558 
3559 	if (!task)
3560 		return ERR_PTR(-ESRCH);
3561 
3562 	return task;
3563 }
3564 
3565 /*
3566  * Returns a matching context with refcount and pincount.
3567  */
3568 static struct perf_event_context *
3569 find_get_context(struct pmu *pmu, struct task_struct *task,
3570 		struct perf_event *event)
3571 {
3572 	struct perf_event_context *ctx, *clone_ctx = NULL;
3573 	struct perf_cpu_context *cpuctx;
3574 	void *task_ctx_data = NULL;
3575 	unsigned long flags;
3576 	int ctxn, err;
3577 	int cpu = event->cpu;
3578 
3579 	if (!task) {
3580 		/* Must be root to operate on a CPU event: */
3581 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3582 			return ERR_PTR(-EACCES);
3583 
3584 		/*
3585 		 * We could be clever and allow to attach a event to an
3586 		 * offline CPU and activate it when the CPU comes up, but
3587 		 * that's for later.
3588 		 */
3589 		if (!cpu_online(cpu))
3590 			return ERR_PTR(-ENODEV);
3591 
3592 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3593 		ctx = &cpuctx->ctx;
3594 		get_ctx(ctx);
3595 		++ctx->pin_count;
3596 
3597 		return ctx;
3598 	}
3599 
3600 	err = -EINVAL;
3601 	ctxn = pmu->task_ctx_nr;
3602 	if (ctxn < 0)
3603 		goto errout;
3604 
3605 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3606 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3607 		if (!task_ctx_data) {
3608 			err = -ENOMEM;
3609 			goto errout;
3610 		}
3611 	}
3612 
3613 retry:
3614 	ctx = perf_lock_task_context(task, ctxn, &flags);
3615 	if (ctx) {
3616 		clone_ctx = unclone_ctx(ctx);
3617 		++ctx->pin_count;
3618 
3619 		if (task_ctx_data && !ctx->task_ctx_data) {
3620 			ctx->task_ctx_data = task_ctx_data;
3621 			task_ctx_data = NULL;
3622 		}
3623 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3624 
3625 		if (clone_ctx)
3626 			put_ctx(clone_ctx);
3627 	} else {
3628 		ctx = alloc_perf_context(pmu, task);
3629 		err = -ENOMEM;
3630 		if (!ctx)
3631 			goto errout;
3632 
3633 		if (task_ctx_data) {
3634 			ctx->task_ctx_data = task_ctx_data;
3635 			task_ctx_data = NULL;
3636 		}
3637 
3638 		err = 0;
3639 		mutex_lock(&task->perf_event_mutex);
3640 		/*
3641 		 * If it has already passed perf_event_exit_task().
3642 		 * we must see PF_EXITING, it takes this mutex too.
3643 		 */
3644 		if (task->flags & PF_EXITING)
3645 			err = -ESRCH;
3646 		else if (task->perf_event_ctxp[ctxn])
3647 			err = -EAGAIN;
3648 		else {
3649 			get_ctx(ctx);
3650 			++ctx->pin_count;
3651 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3652 		}
3653 		mutex_unlock(&task->perf_event_mutex);
3654 
3655 		if (unlikely(err)) {
3656 			put_ctx(ctx);
3657 
3658 			if (err == -EAGAIN)
3659 				goto retry;
3660 			goto errout;
3661 		}
3662 	}
3663 
3664 	kfree(task_ctx_data);
3665 	return ctx;
3666 
3667 errout:
3668 	kfree(task_ctx_data);
3669 	return ERR_PTR(err);
3670 }
3671 
3672 static void perf_event_free_filter(struct perf_event *event);
3673 static void perf_event_free_bpf_prog(struct perf_event *event);
3674 
3675 static void free_event_rcu(struct rcu_head *head)
3676 {
3677 	struct perf_event *event;
3678 
3679 	event = container_of(head, struct perf_event, rcu_head);
3680 	if (event->ns)
3681 		put_pid_ns(event->ns);
3682 	perf_event_free_filter(event);
3683 	kfree(event);
3684 }
3685 
3686 static void ring_buffer_attach(struct perf_event *event,
3687 			       struct ring_buffer *rb);
3688 
3689 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3690 {
3691 	if (event->parent)
3692 		return;
3693 
3694 	if (is_cgroup_event(event))
3695 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3696 }
3697 
3698 #ifdef CONFIG_NO_HZ_FULL
3699 static DEFINE_SPINLOCK(nr_freq_lock);
3700 #endif
3701 
3702 static void unaccount_freq_event_nohz(void)
3703 {
3704 #ifdef CONFIG_NO_HZ_FULL
3705 	spin_lock(&nr_freq_lock);
3706 	if (atomic_dec_and_test(&nr_freq_events))
3707 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3708 	spin_unlock(&nr_freq_lock);
3709 #endif
3710 }
3711 
3712 static void unaccount_freq_event(void)
3713 {
3714 	if (tick_nohz_full_enabled())
3715 		unaccount_freq_event_nohz();
3716 	else
3717 		atomic_dec(&nr_freq_events);
3718 }
3719 
3720 static void unaccount_event(struct perf_event *event)
3721 {
3722 	bool dec = false;
3723 
3724 	if (event->parent)
3725 		return;
3726 
3727 	if (event->attach_state & PERF_ATTACH_TASK)
3728 		dec = true;
3729 	if (event->attr.mmap || event->attr.mmap_data)
3730 		atomic_dec(&nr_mmap_events);
3731 	if (event->attr.comm)
3732 		atomic_dec(&nr_comm_events);
3733 	if (event->attr.task)
3734 		atomic_dec(&nr_task_events);
3735 	if (event->attr.freq)
3736 		unaccount_freq_event();
3737 	if (event->attr.context_switch) {
3738 		dec = true;
3739 		atomic_dec(&nr_switch_events);
3740 	}
3741 	if (is_cgroup_event(event))
3742 		dec = true;
3743 	if (has_branch_stack(event))
3744 		dec = true;
3745 
3746 	if (dec) {
3747 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3748 			schedule_delayed_work(&perf_sched_work, HZ);
3749 	}
3750 
3751 	unaccount_event_cpu(event, event->cpu);
3752 }
3753 
3754 static void perf_sched_delayed(struct work_struct *work)
3755 {
3756 	mutex_lock(&perf_sched_mutex);
3757 	if (atomic_dec_and_test(&perf_sched_count))
3758 		static_branch_disable(&perf_sched_events);
3759 	mutex_unlock(&perf_sched_mutex);
3760 }
3761 
3762 /*
3763  * The following implement mutual exclusion of events on "exclusive" pmus
3764  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3765  * at a time, so we disallow creating events that might conflict, namely:
3766  *
3767  *  1) cpu-wide events in the presence of per-task events,
3768  *  2) per-task events in the presence of cpu-wide events,
3769  *  3) two matching events on the same context.
3770  *
3771  * The former two cases are handled in the allocation path (perf_event_alloc(),
3772  * _free_event()), the latter -- before the first perf_install_in_context().
3773  */
3774 static int exclusive_event_init(struct perf_event *event)
3775 {
3776 	struct pmu *pmu = event->pmu;
3777 
3778 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3779 		return 0;
3780 
3781 	/*
3782 	 * Prevent co-existence of per-task and cpu-wide events on the
3783 	 * same exclusive pmu.
3784 	 *
3785 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3786 	 * events on this "exclusive" pmu, positive means there are
3787 	 * per-task events.
3788 	 *
3789 	 * Since this is called in perf_event_alloc() path, event::ctx
3790 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3791 	 * to mean "per-task event", because unlike other attach states it
3792 	 * never gets cleared.
3793 	 */
3794 	if (event->attach_state & PERF_ATTACH_TASK) {
3795 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3796 			return -EBUSY;
3797 	} else {
3798 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3799 			return -EBUSY;
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 static void exclusive_event_destroy(struct perf_event *event)
3806 {
3807 	struct pmu *pmu = event->pmu;
3808 
3809 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3810 		return;
3811 
3812 	/* see comment in exclusive_event_init() */
3813 	if (event->attach_state & PERF_ATTACH_TASK)
3814 		atomic_dec(&pmu->exclusive_cnt);
3815 	else
3816 		atomic_inc(&pmu->exclusive_cnt);
3817 }
3818 
3819 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3820 {
3821 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3822 	    (e1->cpu == e2->cpu ||
3823 	     e1->cpu == -1 ||
3824 	     e2->cpu == -1))
3825 		return true;
3826 	return false;
3827 }
3828 
3829 /* Called under the same ctx::mutex as perf_install_in_context() */
3830 static bool exclusive_event_installable(struct perf_event *event,
3831 					struct perf_event_context *ctx)
3832 {
3833 	struct perf_event *iter_event;
3834 	struct pmu *pmu = event->pmu;
3835 
3836 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3837 		return true;
3838 
3839 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3840 		if (exclusive_event_match(iter_event, event))
3841 			return false;
3842 	}
3843 
3844 	return true;
3845 }
3846 
3847 static void perf_addr_filters_splice(struct perf_event *event,
3848 				       struct list_head *head);
3849 
3850 static void _free_event(struct perf_event *event)
3851 {
3852 	irq_work_sync(&event->pending);
3853 
3854 	unaccount_event(event);
3855 
3856 	if (event->rb) {
3857 		/*
3858 		 * Can happen when we close an event with re-directed output.
3859 		 *
3860 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3861 		 * over us; possibly making our ring_buffer_put() the last.
3862 		 */
3863 		mutex_lock(&event->mmap_mutex);
3864 		ring_buffer_attach(event, NULL);
3865 		mutex_unlock(&event->mmap_mutex);
3866 	}
3867 
3868 	if (is_cgroup_event(event))
3869 		perf_detach_cgroup(event);
3870 
3871 	if (!event->parent) {
3872 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3873 			put_callchain_buffers();
3874 	}
3875 
3876 	perf_event_free_bpf_prog(event);
3877 	perf_addr_filters_splice(event, NULL);
3878 	kfree(event->addr_filters_offs);
3879 
3880 	if (event->destroy)
3881 		event->destroy(event);
3882 
3883 	if (event->ctx)
3884 		put_ctx(event->ctx);
3885 
3886 	exclusive_event_destroy(event);
3887 	module_put(event->pmu->module);
3888 
3889 	call_rcu(&event->rcu_head, free_event_rcu);
3890 }
3891 
3892 /*
3893  * Used to free events which have a known refcount of 1, such as in error paths
3894  * where the event isn't exposed yet and inherited events.
3895  */
3896 static void free_event(struct perf_event *event)
3897 {
3898 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3899 				"unexpected event refcount: %ld; ptr=%p\n",
3900 				atomic_long_read(&event->refcount), event)) {
3901 		/* leak to avoid use-after-free */
3902 		return;
3903 	}
3904 
3905 	_free_event(event);
3906 }
3907 
3908 /*
3909  * Remove user event from the owner task.
3910  */
3911 static void perf_remove_from_owner(struct perf_event *event)
3912 {
3913 	struct task_struct *owner;
3914 
3915 	rcu_read_lock();
3916 	/*
3917 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
3918 	 * observe !owner it means the list deletion is complete and we can
3919 	 * indeed free this event, otherwise we need to serialize on
3920 	 * owner->perf_event_mutex.
3921 	 */
3922 	owner = lockless_dereference(event->owner);
3923 	if (owner) {
3924 		/*
3925 		 * Since delayed_put_task_struct() also drops the last
3926 		 * task reference we can safely take a new reference
3927 		 * while holding the rcu_read_lock().
3928 		 */
3929 		get_task_struct(owner);
3930 	}
3931 	rcu_read_unlock();
3932 
3933 	if (owner) {
3934 		/*
3935 		 * If we're here through perf_event_exit_task() we're already
3936 		 * holding ctx->mutex which would be an inversion wrt. the
3937 		 * normal lock order.
3938 		 *
3939 		 * However we can safely take this lock because its the child
3940 		 * ctx->mutex.
3941 		 */
3942 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3943 
3944 		/*
3945 		 * We have to re-check the event->owner field, if it is cleared
3946 		 * we raced with perf_event_exit_task(), acquiring the mutex
3947 		 * ensured they're done, and we can proceed with freeing the
3948 		 * event.
3949 		 */
3950 		if (event->owner) {
3951 			list_del_init(&event->owner_entry);
3952 			smp_store_release(&event->owner, NULL);
3953 		}
3954 		mutex_unlock(&owner->perf_event_mutex);
3955 		put_task_struct(owner);
3956 	}
3957 }
3958 
3959 static void put_event(struct perf_event *event)
3960 {
3961 	if (!atomic_long_dec_and_test(&event->refcount))
3962 		return;
3963 
3964 	_free_event(event);
3965 }
3966 
3967 /*
3968  * Kill an event dead; while event:refcount will preserve the event
3969  * object, it will not preserve its functionality. Once the last 'user'
3970  * gives up the object, we'll destroy the thing.
3971  */
3972 int perf_event_release_kernel(struct perf_event *event)
3973 {
3974 	struct perf_event_context *ctx = event->ctx;
3975 	struct perf_event *child, *tmp;
3976 
3977 	/*
3978 	 * If we got here through err_file: fput(event_file); we will not have
3979 	 * attached to a context yet.
3980 	 */
3981 	if (!ctx) {
3982 		WARN_ON_ONCE(event->attach_state &
3983 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3984 		goto no_ctx;
3985 	}
3986 
3987 	if (!is_kernel_event(event))
3988 		perf_remove_from_owner(event);
3989 
3990 	ctx = perf_event_ctx_lock(event);
3991 	WARN_ON_ONCE(ctx->parent_ctx);
3992 	perf_remove_from_context(event, DETACH_GROUP);
3993 
3994 	raw_spin_lock_irq(&ctx->lock);
3995 	/*
3996 	 * Mark this even as STATE_DEAD, there is no external reference to it
3997 	 * anymore.
3998 	 *
3999 	 * Anybody acquiring event->child_mutex after the below loop _must_
4000 	 * also see this, most importantly inherit_event() which will avoid
4001 	 * placing more children on the list.
4002 	 *
4003 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4004 	 * child events.
4005 	 */
4006 	event->state = PERF_EVENT_STATE_DEAD;
4007 	raw_spin_unlock_irq(&ctx->lock);
4008 
4009 	perf_event_ctx_unlock(event, ctx);
4010 
4011 again:
4012 	mutex_lock(&event->child_mutex);
4013 	list_for_each_entry(child, &event->child_list, child_list) {
4014 
4015 		/*
4016 		 * Cannot change, child events are not migrated, see the
4017 		 * comment with perf_event_ctx_lock_nested().
4018 		 */
4019 		ctx = lockless_dereference(child->ctx);
4020 		/*
4021 		 * Since child_mutex nests inside ctx::mutex, we must jump
4022 		 * through hoops. We start by grabbing a reference on the ctx.
4023 		 *
4024 		 * Since the event cannot get freed while we hold the
4025 		 * child_mutex, the context must also exist and have a !0
4026 		 * reference count.
4027 		 */
4028 		get_ctx(ctx);
4029 
4030 		/*
4031 		 * Now that we have a ctx ref, we can drop child_mutex, and
4032 		 * acquire ctx::mutex without fear of it going away. Then we
4033 		 * can re-acquire child_mutex.
4034 		 */
4035 		mutex_unlock(&event->child_mutex);
4036 		mutex_lock(&ctx->mutex);
4037 		mutex_lock(&event->child_mutex);
4038 
4039 		/*
4040 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4041 		 * state, if child is still the first entry, it didn't get freed
4042 		 * and we can continue doing so.
4043 		 */
4044 		tmp = list_first_entry_or_null(&event->child_list,
4045 					       struct perf_event, child_list);
4046 		if (tmp == child) {
4047 			perf_remove_from_context(child, DETACH_GROUP);
4048 			list_del(&child->child_list);
4049 			free_event(child);
4050 			/*
4051 			 * This matches the refcount bump in inherit_event();
4052 			 * this can't be the last reference.
4053 			 */
4054 			put_event(event);
4055 		}
4056 
4057 		mutex_unlock(&event->child_mutex);
4058 		mutex_unlock(&ctx->mutex);
4059 		put_ctx(ctx);
4060 		goto again;
4061 	}
4062 	mutex_unlock(&event->child_mutex);
4063 
4064 no_ctx:
4065 	put_event(event); /* Must be the 'last' reference */
4066 	return 0;
4067 }
4068 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4069 
4070 /*
4071  * Called when the last reference to the file is gone.
4072  */
4073 static int perf_release(struct inode *inode, struct file *file)
4074 {
4075 	perf_event_release_kernel(file->private_data);
4076 	return 0;
4077 }
4078 
4079 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4080 {
4081 	struct perf_event *child;
4082 	u64 total = 0;
4083 
4084 	*enabled = 0;
4085 	*running = 0;
4086 
4087 	mutex_lock(&event->child_mutex);
4088 
4089 	(void)perf_event_read(event, false);
4090 	total += perf_event_count(event);
4091 
4092 	*enabled += event->total_time_enabled +
4093 			atomic64_read(&event->child_total_time_enabled);
4094 	*running += event->total_time_running +
4095 			atomic64_read(&event->child_total_time_running);
4096 
4097 	list_for_each_entry(child, &event->child_list, child_list) {
4098 		(void)perf_event_read(child, false);
4099 		total += perf_event_count(child);
4100 		*enabled += child->total_time_enabled;
4101 		*running += child->total_time_running;
4102 	}
4103 	mutex_unlock(&event->child_mutex);
4104 
4105 	return total;
4106 }
4107 EXPORT_SYMBOL_GPL(perf_event_read_value);
4108 
4109 static int __perf_read_group_add(struct perf_event *leader,
4110 					u64 read_format, u64 *values)
4111 {
4112 	struct perf_event *sub;
4113 	int n = 1; /* skip @nr */
4114 	int ret;
4115 
4116 	ret = perf_event_read(leader, true);
4117 	if (ret)
4118 		return ret;
4119 
4120 	/*
4121 	 * Since we co-schedule groups, {enabled,running} times of siblings
4122 	 * will be identical to those of the leader, so we only publish one
4123 	 * set.
4124 	 */
4125 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4126 		values[n++] += leader->total_time_enabled +
4127 			atomic64_read(&leader->child_total_time_enabled);
4128 	}
4129 
4130 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4131 		values[n++] += leader->total_time_running +
4132 			atomic64_read(&leader->child_total_time_running);
4133 	}
4134 
4135 	/*
4136 	 * Write {count,id} tuples for every sibling.
4137 	 */
4138 	values[n++] += perf_event_count(leader);
4139 	if (read_format & PERF_FORMAT_ID)
4140 		values[n++] = primary_event_id(leader);
4141 
4142 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4143 		values[n++] += perf_event_count(sub);
4144 		if (read_format & PERF_FORMAT_ID)
4145 			values[n++] = primary_event_id(sub);
4146 	}
4147 
4148 	return 0;
4149 }
4150 
4151 static int perf_read_group(struct perf_event *event,
4152 				   u64 read_format, char __user *buf)
4153 {
4154 	struct perf_event *leader = event->group_leader, *child;
4155 	struct perf_event_context *ctx = leader->ctx;
4156 	int ret;
4157 	u64 *values;
4158 
4159 	lockdep_assert_held(&ctx->mutex);
4160 
4161 	values = kzalloc(event->read_size, GFP_KERNEL);
4162 	if (!values)
4163 		return -ENOMEM;
4164 
4165 	values[0] = 1 + leader->nr_siblings;
4166 
4167 	/*
4168 	 * By locking the child_mutex of the leader we effectively
4169 	 * lock the child list of all siblings.. XXX explain how.
4170 	 */
4171 	mutex_lock(&leader->child_mutex);
4172 
4173 	ret = __perf_read_group_add(leader, read_format, values);
4174 	if (ret)
4175 		goto unlock;
4176 
4177 	list_for_each_entry(child, &leader->child_list, child_list) {
4178 		ret = __perf_read_group_add(child, read_format, values);
4179 		if (ret)
4180 			goto unlock;
4181 	}
4182 
4183 	mutex_unlock(&leader->child_mutex);
4184 
4185 	ret = event->read_size;
4186 	if (copy_to_user(buf, values, event->read_size))
4187 		ret = -EFAULT;
4188 	goto out;
4189 
4190 unlock:
4191 	mutex_unlock(&leader->child_mutex);
4192 out:
4193 	kfree(values);
4194 	return ret;
4195 }
4196 
4197 static int perf_read_one(struct perf_event *event,
4198 				 u64 read_format, char __user *buf)
4199 {
4200 	u64 enabled, running;
4201 	u64 values[4];
4202 	int n = 0;
4203 
4204 	values[n++] = perf_event_read_value(event, &enabled, &running);
4205 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4206 		values[n++] = enabled;
4207 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4208 		values[n++] = running;
4209 	if (read_format & PERF_FORMAT_ID)
4210 		values[n++] = primary_event_id(event);
4211 
4212 	if (copy_to_user(buf, values, n * sizeof(u64)))
4213 		return -EFAULT;
4214 
4215 	return n * sizeof(u64);
4216 }
4217 
4218 static bool is_event_hup(struct perf_event *event)
4219 {
4220 	bool no_children;
4221 
4222 	if (event->state > PERF_EVENT_STATE_EXIT)
4223 		return false;
4224 
4225 	mutex_lock(&event->child_mutex);
4226 	no_children = list_empty(&event->child_list);
4227 	mutex_unlock(&event->child_mutex);
4228 	return no_children;
4229 }
4230 
4231 /*
4232  * Read the performance event - simple non blocking version for now
4233  */
4234 static ssize_t
4235 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4236 {
4237 	u64 read_format = event->attr.read_format;
4238 	int ret;
4239 
4240 	/*
4241 	 * Return end-of-file for a read on a event that is in
4242 	 * error state (i.e. because it was pinned but it couldn't be
4243 	 * scheduled on to the CPU at some point).
4244 	 */
4245 	if (event->state == PERF_EVENT_STATE_ERROR)
4246 		return 0;
4247 
4248 	if (count < event->read_size)
4249 		return -ENOSPC;
4250 
4251 	WARN_ON_ONCE(event->ctx->parent_ctx);
4252 	if (read_format & PERF_FORMAT_GROUP)
4253 		ret = perf_read_group(event, read_format, buf);
4254 	else
4255 		ret = perf_read_one(event, read_format, buf);
4256 
4257 	return ret;
4258 }
4259 
4260 static ssize_t
4261 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4262 {
4263 	struct perf_event *event = file->private_data;
4264 	struct perf_event_context *ctx;
4265 	int ret;
4266 
4267 	ctx = perf_event_ctx_lock(event);
4268 	ret = __perf_read(event, buf, count);
4269 	perf_event_ctx_unlock(event, ctx);
4270 
4271 	return ret;
4272 }
4273 
4274 static unsigned int perf_poll(struct file *file, poll_table *wait)
4275 {
4276 	struct perf_event *event = file->private_data;
4277 	struct ring_buffer *rb;
4278 	unsigned int events = POLLHUP;
4279 
4280 	poll_wait(file, &event->waitq, wait);
4281 
4282 	if (is_event_hup(event))
4283 		return events;
4284 
4285 	/*
4286 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4287 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4288 	 */
4289 	mutex_lock(&event->mmap_mutex);
4290 	rb = event->rb;
4291 	if (rb)
4292 		events = atomic_xchg(&rb->poll, 0);
4293 	mutex_unlock(&event->mmap_mutex);
4294 	return events;
4295 }
4296 
4297 static void _perf_event_reset(struct perf_event *event)
4298 {
4299 	(void)perf_event_read(event, false);
4300 	local64_set(&event->count, 0);
4301 	perf_event_update_userpage(event);
4302 }
4303 
4304 /*
4305  * Holding the top-level event's child_mutex means that any
4306  * descendant process that has inherited this event will block
4307  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4308  * task existence requirements of perf_event_enable/disable.
4309  */
4310 static void perf_event_for_each_child(struct perf_event *event,
4311 					void (*func)(struct perf_event *))
4312 {
4313 	struct perf_event *child;
4314 
4315 	WARN_ON_ONCE(event->ctx->parent_ctx);
4316 
4317 	mutex_lock(&event->child_mutex);
4318 	func(event);
4319 	list_for_each_entry(child, &event->child_list, child_list)
4320 		func(child);
4321 	mutex_unlock(&event->child_mutex);
4322 }
4323 
4324 static void perf_event_for_each(struct perf_event *event,
4325 				  void (*func)(struct perf_event *))
4326 {
4327 	struct perf_event_context *ctx = event->ctx;
4328 	struct perf_event *sibling;
4329 
4330 	lockdep_assert_held(&ctx->mutex);
4331 
4332 	event = event->group_leader;
4333 
4334 	perf_event_for_each_child(event, func);
4335 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4336 		perf_event_for_each_child(sibling, func);
4337 }
4338 
4339 static void __perf_event_period(struct perf_event *event,
4340 				struct perf_cpu_context *cpuctx,
4341 				struct perf_event_context *ctx,
4342 				void *info)
4343 {
4344 	u64 value = *((u64 *)info);
4345 	bool active;
4346 
4347 	if (event->attr.freq) {
4348 		event->attr.sample_freq = value;
4349 	} else {
4350 		event->attr.sample_period = value;
4351 		event->hw.sample_period = value;
4352 	}
4353 
4354 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4355 	if (active) {
4356 		perf_pmu_disable(ctx->pmu);
4357 		/*
4358 		 * We could be throttled; unthrottle now to avoid the tick
4359 		 * trying to unthrottle while we already re-started the event.
4360 		 */
4361 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4362 			event->hw.interrupts = 0;
4363 			perf_log_throttle(event, 1);
4364 		}
4365 		event->pmu->stop(event, PERF_EF_UPDATE);
4366 	}
4367 
4368 	local64_set(&event->hw.period_left, 0);
4369 
4370 	if (active) {
4371 		event->pmu->start(event, PERF_EF_RELOAD);
4372 		perf_pmu_enable(ctx->pmu);
4373 	}
4374 }
4375 
4376 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4377 {
4378 	u64 value;
4379 
4380 	if (!is_sampling_event(event))
4381 		return -EINVAL;
4382 
4383 	if (copy_from_user(&value, arg, sizeof(value)))
4384 		return -EFAULT;
4385 
4386 	if (!value)
4387 		return -EINVAL;
4388 
4389 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4390 		return -EINVAL;
4391 
4392 	event_function_call(event, __perf_event_period, &value);
4393 
4394 	return 0;
4395 }
4396 
4397 static const struct file_operations perf_fops;
4398 
4399 static inline int perf_fget_light(int fd, struct fd *p)
4400 {
4401 	struct fd f = fdget(fd);
4402 	if (!f.file)
4403 		return -EBADF;
4404 
4405 	if (f.file->f_op != &perf_fops) {
4406 		fdput(f);
4407 		return -EBADF;
4408 	}
4409 	*p = f;
4410 	return 0;
4411 }
4412 
4413 static int perf_event_set_output(struct perf_event *event,
4414 				 struct perf_event *output_event);
4415 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4416 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4417 
4418 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4419 {
4420 	void (*func)(struct perf_event *);
4421 	u32 flags = arg;
4422 
4423 	switch (cmd) {
4424 	case PERF_EVENT_IOC_ENABLE:
4425 		func = _perf_event_enable;
4426 		break;
4427 	case PERF_EVENT_IOC_DISABLE:
4428 		func = _perf_event_disable;
4429 		break;
4430 	case PERF_EVENT_IOC_RESET:
4431 		func = _perf_event_reset;
4432 		break;
4433 
4434 	case PERF_EVENT_IOC_REFRESH:
4435 		return _perf_event_refresh(event, arg);
4436 
4437 	case PERF_EVENT_IOC_PERIOD:
4438 		return perf_event_period(event, (u64 __user *)arg);
4439 
4440 	case PERF_EVENT_IOC_ID:
4441 	{
4442 		u64 id = primary_event_id(event);
4443 
4444 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4445 			return -EFAULT;
4446 		return 0;
4447 	}
4448 
4449 	case PERF_EVENT_IOC_SET_OUTPUT:
4450 	{
4451 		int ret;
4452 		if (arg != -1) {
4453 			struct perf_event *output_event;
4454 			struct fd output;
4455 			ret = perf_fget_light(arg, &output);
4456 			if (ret)
4457 				return ret;
4458 			output_event = output.file->private_data;
4459 			ret = perf_event_set_output(event, output_event);
4460 			fdput(output);
4461 		} else {
4462 			ret = perf_event_set_output(event, NULL);
4463 		}
4464 		return ret;
4465 	}
4466 
4467 	case PERF_EVENT_IOC_SET_FILTER:
4468 		return perf_event_set_filter(event, (void __user *)arg);
4469 
4470 	case PERF_EVENT_IOC_SET_BPF:
4471 		return perf_event_set_bpf_prog(event, arg);
4472 
4473 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4474 		struct ring_buffer *rb;
4475 
4476 		rcu_read_lock();
4477 		rb = rcu_dereference(event->rb);
4478 		if (!rb || !rb->nr_pages) {
4479 			rcu_read_unlock();
4480 			return -EINVAL;
4481 		}
4482 		rb_toggle_paused(rb, !!arg);
4483 		rcu_read_unlock();
4484 		return 0;
4485 	}
4486 	default:
4487 		return -ENOTTY;
4488 	}
4489 
4490 	if (flags & PERF_IOC_FLAG_GROUP)
4491 		perf_event_for_each(event, func);
4492 	else
4493 		perf_event_for_each_child(event, func);
4494 
4495 	return 0;
4496 }
4497 
4498 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4499 {
4500 	struct perf_event *event = file->private_data;
4501 	struct perf_event_context *ctx;
4502 	long ret;
4503 
4504 	ctx = perf_event_ctx_lock(event);
4505 	ret = _perf_ioctl(event, cmd, arg);
4506 	perf_event_ctx_unlock(event, ctx);
4507 
4508 	return ret;
4509 }
4510 
4511 #ifdef CONFIG_COMPAT
4512 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4513 				unsigned long arg)
4514 {
4515 	switch (_IOC_NR(cmd)) {
4516 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4517 	case _IOC_NR(PERF_EVENT_IOC_ID):
4518 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4519 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4520 			cmd &= ~IOCSIZE_MASK;
4521 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4522 		}
4523 		break;
4524 	}
4525 	return perf_ioctl(file, cmd, arg);
4526 }
4527 #else
4528 # define perf_compat_ioctl NULL
4529 #endif
4530 
4531 int perf_event_task_enable(void)
4532 {
4533 	struct perf_event_context *ctx;
4534 	struct perf_event *event;
4535 
4536 	mutex_lock(&current->perf_event_mutex);
4537 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4538 		ctx = perf_event_ctx_lock(event);
4539 		perf_event_for_each_child(event, _perf_event_enable);
4540 		perf_event_ctx_unlock(event, ctx);
4541 	}
4542 	mutex_unlock(&current->perf_event_mutex);
4543 
4544 	return 0;
4545 }
4546 
4547 int perf_event_task_disable(void)
4548 {
4549 	struct perf_event_context *ctx;
4550 	struct perf_event *event;
4551 
4552 	mutex_lock(&current->perf_event_mutex);
4553 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4554 		ctx = perf_event_ctx_lock(event);
4555 		perf_event_for_each_child(event, _perf_event_disable);
4556 		perf_event_ctx_unlock(event, ctx);
4557 	}
4558 	mutex_unlock(&current->perf_event_mutex);
4559 
4560 	return 0;
4561 }
4562 
4563 static int perf_event_index(struct perf_event *event)
4564 {
4565 	if (event->hw.state & PERF_HES_STOPPED)
4566 		return 0;
4567 
4568 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4569 		return 0;
4570 
4571 	return event->pmu->event_idx(event);
4572 }
4573 
4574 static void calc_timer_values(struct perf_event *event,
4575 				u64 *now,
4576 				u64 *enabled,
4577 				u64 *running)
4578 {
4579 	u64 ctx_time;
4580 
4581 	*now = perf_clock();
4582 	ctx_time = event->shadow_ctx_time + *now;
4583 	*enabled = ctx_time - event->tstamp_enabled;
4584 	*running = ctx_time - event->tstamp_running;
4585 }
4586 
4587 static void perf_event_init_userpage(struct perf_event *event)
4588 {
4589 	struct perf_event_mmap_page *userpg;
4590 	struct ring_buffer *rb;
4591 
4592 	rcu_read_lock();
4593 	rb = rcu_dereference(event->rb);
4594 	if (!rb)
4595 		goto unlock;
4596 
4597 	userpg = rb->user_page;
4598 
4599 	/* Allow new userspace to detect that bit 0 is deprecated */
4600 	userpg->cap_bit0_is_deprecated = 1;
4601 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4602 	userpg->data_offset = PAGE_SIZE;
4603 	userpg->data_size = perf_data_size(rb);
4604 
4605 unlock:
4606 	rcu_read_unlock();
4607 }
4608 
4609 void __weak arch_perf_update_userpage(
4610 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4611 {
4612 }
4613 
4614 /*
4615  * Callers need to ensure there can be no nesting of this function, otherwise
4616  * the seqlock logic goes bad. We can not serialize this because the arch
4617  * code calls this from NMI context.
4618  */
4619 void perf_event_update_userpage(struct perf_event *event)
4620 {
4621 	struct perf_event_mmap_page *userpg;
4622 	struct ring_buffer *rb;
4623 	u64 enabled, running, now;
4624 
4625 	rcu_read_lock();
4626 	rb = rcu_dereference(event->rb);
4627 	if (!rb)
4628 		goto unlock;
4629 
4630 	/*
4631 	 * compute total_time_enabled, total_time_running
4632 	 * based on snapshot values taken when the event
4633 	 * was last scheduled in.
4634 	 *
4635 	 * we cannot simply called update_context_time()
4636 	 * because of locking issue as we can be called in
4637 	 * NMI context
4638 	 */
4639 	calc_timer_values(event, &now, &enabled, &running);
4640 
4641 	userpg = rb->user_page;
4642 	/*
4643 	 * Disable preemption so as to not let the corresponding user-space
4644 	 * spin too long if we get preempted.
4645 	 */
4646 	preempt_disable();
4647 	++userpg->lock;
4648 	barrier();
4649 	userpg->index = perf_event_index(event);
4650 	userpg->offset = perf_event_count(event);
4651 	if (userpg->index)
4652 		userpg->offset -= local64_read(&event->hw.prev_count);
4653 
4654 	userpg->time_enabled = enabled +
4655 			atomic64_read(&event->child_total_time_enabled);
4656 
4657 	userpg->time_running = running +
4658 			atomic64_read(&event->child_total_time_running);
4659 
4660 	arch_perf_update_userpage(event, userpg, now);
4661 
4662 	barrier();
4663 	++userpg->lock;
4664 	preempt_enable();
4665 unlock:
4666 	rcu_read_unlock();
4667 }
4668 
4669 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4670 {
4671 	struct perf_event *event = vma->vm_file->private_data;
4672 	struct ring_buffer *rb;
4673 	int ret = VM_FAULT_SIGBUS;
4674 
4675 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4676 		if (vmf->pgoff == 0)
4677 			ret = 0;
4678 		return ret;
4679 	}
4680 
4681 	rcu_read_lock();
4682 	rb = rcu_dereference(event->rb);
4683 	if (!rb)
4684 		goto unlock;
4685 
4686 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4687 		goto unlock;
4688 
4689 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4690 	if (!vmf->page)
4691 		goto unlock;
4692 
4693 	get_page(vmf->page);
4694 	vmf->page->mapping = vma->vm_file->f_mapping;
4695 	vmf->page->index   = vmf->pgoff;
4696 
4697 	ret = 0;
4698 unlock:
4699 	rcu_read_unlock();
4700 
4701 	return ret;
4702 }
4703 
4704 static void ring_buffer_attach(struct perf_event *event,
4705 			       struct ring_buffer *rb)
4706 {
4707 	struct ring_buffer *old_rb = NULL;
4708 	unsigned long flags;
4709 
4710 	if (event->rb) {
4711 		/*
4712 		 * Should be impossible, we set this when removing
4713 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4714 		 */
4715 		WARN_ON_ONCE(event->rcu_pending);
4716 
4717 		old_rb = event->rb;
4718 		spin_lock_irqsave(&old_rb->event_lock, flags);
4719 		list_del_rcu(&event->rb_entry);
4720 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4721 
4722 		event->rcu_batches = get_state_synchronize_rcu();
4723 		event->rcu_pending = 1;
4724 	}
4725 
4726 	if (rb) {
4727 		if (event->rcu_pending) {
4728 			cond_synchronize_rcu(event->rcu_batches);
4729 			event->rcu_pending = 0;
4730 		}
4731 
4732 		spin_lock_irqsave(&rb->event_lock, flags);
4733 		list_add_rcu(&event->rb_entry, &rb->event_list);
4734 		spin_unlock_irqrestore(&rb->event_lock, flags);
4735 	}
4736 
4737 	rcu_assign_pointer(event->rb, rb);
4738 
4739 	if (old_rb) {
4740 		ring_buffer_put(old_rb);
4741 		/*
4742 		 * Since we detached before setting the new rb, so that we
4743 		 * could attach the new rb, we could have missed a wakeup.
4744 		 * Provide it now.
4745 		 */
4746 		wake_up_all(&event->waitq);
4747 	}
4748 }
4749 
4750 static void ring_buffer_wakeup(struct perf_event *event)
4751 {
4752 	struct ring_buffer *rb;
4753 
4754 	rcu_read_lock();
4755 	rb = rcu_dereference(event->rb);
4756 	if (rb) {
4757 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4758 			wake_up_all(&event->waitq);
4759 	}
4760 	rcu_read_unlock();
4761 }
4762 
4763 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4764 {
4765 	struct ring_buffer *rb;
4766 
4767 	rcu_read_lock();
4768 	rb = rcu_dereference(event->rb);
4769 	if (rb) {
4770 		if (!atomic_inc_not_zero(&rb->refcount))
4771 			rb = NULL;
4772 	}
4773 	rcu_read_unlock();
4774 
4775 	return rb;
4776 }
4777 
4778 void ring_buffer_put(struct ring_buffer *rb)
4779 {
4780 	if (!atomic_dec_and_test(&rb->refcount))
4781 		return;
4782 
4783 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4784 
4785 	call_rcu(&rb->rcu_head, rb_free_rcu);
4786 }
4787 
4788 static void perf_mmap_open(struct vm_area_struct *vma)
4789 {
4790 	struct perf_event *event = vma->vm_file->private_data;
4791 
4792 	atomic_inc(&event->mmap_count);
4793 	atomic_inc(&event->rb->mmap_count);
4794 
4795 	if (vma->vm_pgoff)
4796 		atomic_inc(&event->rb->aux_mmap_count);
4797 
4798 	if (event->pmu->event_mapped)
4799 		event->pmu->event_mapped(event);
4800 }
4801 
4802 static void perf_pmu_output_stop(struct perf_event *event);
4803 
4804 /*
4805  * A buffer can be mmap()ed multiple times; either directly through the same
4806  * event, or through other events by use of perf_event_set_output().
4807  *
4808  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4809  * the buffer here, where we still have a VM context. This means we need
4810  * to detach all events redirecting to us.
4811  */
4812 static void perf_mmap_close(struct vm_area_struct *vma)
4813 {
4814 	struct perf_event *event = vma->vm_file->private_data;
4815 
4816 	struct ring_buffer *rb = ring_buffer_get(event);
4817 	struct user_struct *mmap_user = rb->mmap_user;
4818 	int mmap_locked = rb->mmap_locked;
4819 	unsigned long size = perf_data_size(rb);
4820 
4821 	if (event->pmu->event_unmapped)
4822 		event->pmu->event_unmapped(event);
4823 
4824 	/*
4825 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4826 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4827 	 * serialize with perf_mmap here.
4828 	 */
4829 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4830 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4831 		/*
4832 		 * Stop all AUX events that are writing to this buffer,
4833 		 * so that we can free its AUX pages and corresponding PMU
4834 		 * data. Note that after rb::aux_mmap_count dropped to zero,
4835 		 * they won't start any more (see perf_aux_output_begin()).
4836 		 */
4837 		perf_pmu_output_stop(event);
4838 
4839 		/* now it's safe to free the pages */
4840 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4841 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4842 
4843 		/* this has to be the last one */
4844 		rb_free_aux(rb);
4845 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4846 
4847 		mutex_unlock(&event->mmap_mutex);
4848 	}
4849 
4850 	atomic_dec(&rb->mmap_count);
4851 
4852 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4853 		goto out_put;
4854 
4855 	ring_buffer_attach(event, NULL);
4856 	mutex_unlock(&event->mmap_mutex);
4857 
4858 	/* If there's still other mmap()s of this buffer, we're done. */
4859 	if (atomic_read(&rb->mmap_count))
4860 		goto out_put;
4861 
4862 	/*
4863 	 * No other mmap()s, detach from all other events that might redirect
4864 	 * into the now unreachable buffer. Somewhat complicated by the
4865 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4866 	 */
4867 again:
4868 	rcu_read_lock();
4869 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4870 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4871 			/*
4872 			 * This event is en-route to free_event() which will
4873 			 * detach it and remove it from the list.
4874 			 */
4875 			continue;
4876 		}
4877 		rcu_read_unlock();
4878 
4879 		mutex_lock(&event->mmap_mutex);
4880 		/*
4881 		 * Check we didn't race with perf_event_set_output() which can
4882 		 * swizzle the rb from under us while we were waiting to
4883 		 * acquire mmap_mutex.
4884 		 *
4885 		 * If we find a different rb; ignore this event, a next
4886 		 * iteration will no longer find it on the list. We have to
4887 		 * still restart the iteration to make sure we're not now
4888 		 * iterating the wrong list.
4889 		 */
4890 		if (event->rb == rb)
4891 			ring_buffer_attach(event, NULL);
4892 
4893 		mutex_unlock(&event->mmap_mutex);
4894 		put_event(event);
4895 
4896 		/*
4897 		 * Restart the iteration; either we're on the wrong list or
4898 		 * destroyed its integrity by doing a deletion.
4899 		 */
4900 		goto again;
4901 	}
4902 	rcu_read_unlock();
4903 
4904 	/*
4905 	 * It could be there's still a few 0-ref events on the list; they'll
4906 	 * get cleaned up by free_event() -- they'll also still have their
4907 	 * ref on the rb and will free it whenever they are done with it.
4908 	 *
4909 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4910 	 * undo the VM accounting.
4911 	 */
4912 
4913 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4914 	vma->vm_mm->pinned_vm -= mmap_locked;
4915 	free_uid(mmap_user);
4916 
4917 out_put:
4918 	ring_buffer_put(rb); /* could be last */
4919 }
4920 
4921 static const struct vm_operations_struct perf_mmap_vmops = {
4922 	.open		= perf_mmap_open,
4923 	.close		= perf_mmap_close, /* non mergable */
4924 	.fault		= perf_mmap_fault,
4925 	.page_mkwrite	= perf_mmap_fault,
4926 };
4927 
4928 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4929 {
4930 	struct perf_event *event = file->private_data;
4931 	unsigned long user_locked, user_lock_limit;
4932 	struct user_struct *user = current_user();
4933 	unsigned long locked, lock_limit;
4934 	struct ring_buffer *rb = NULL;
4935 	unsigned long vma_size;
4936 	unsigned long nr_pages;
4937 	long user_extra = 0, extra = 0;
4938 	int ret = 0, flags = 0;
4939 
4940 	/*
4941 	 * Don't allow mmap() of inherited per-task counters. This would
4942 	 * create a performance issue due to all children writing to the
4943 	 * same rb.
4944 	 */
4945 	if (event->cpu == -1 && event->attr.inherit)
4946 		return -EINVAL;
4947 
4948 	if (!(vma->vm_flags & VM_SHARED))
4949 		return -EINVAL;
4950 
4951 	vma_size = vma->vm_end - vma->vm_start;
4952 
4953 	if (vma->vm_pgoff == 0) {
4954 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4955 	} else {
4956 		/*
4957 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4958 		 * mapped, all subsequent mappings should have the same size
4959 		 * and offset. Must be above the normal perf buffer.
4960 		 */
4961 		u64 aux_offset, aux_size;
4962 
4963 		if (!event->rb)
4964 			return -EINVAL;
4965 
4966 		nr_pages = vma_size / PAGE_SIZE;
4967 
4968 		mutex_lock(&event->mmap_mutex);
4969 		ret = -EINVAL;
4970 
4971 		rb = event->rb;
4972 		if (!rb)
4973 			goto aux_unlock;
4974 
4975 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4976 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4977 
4978 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4979 			goto aux_unlock;
4980 
4981 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4982 			goto aux_unlock;
4983 
4984 		/* already mapped with a different offset */
4985 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4986 			goto aux_unlock;
4987 
4988 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4989 			goto aux_unlock;
4990 
4991 		/* already mapped with a different size */
4992 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4993 			goto aux_unlock;
4994 
4995 		if (!is_power_of_2(nr_pages))
4996 			goto aux_unlock;
4997 
4998 		if (!atomic_inc_not_zero(&rb->mmap_count))
4999 			goto aux_unlock;
5000 
5001 		if (rb_has_aux(rb)) {
5002 			atomic_inc(&rb->aux_mmap_count);
5003 			ret = 0;
5004 			goto unlock;
5005 		}
5006 
5007 		atomic_set(&rb->aux_mmap_count, 1);
5008 		user_extra = nr_pages;
5009 
5010 		goto accounting;
5011 	}
5012 
5013 	/*
5014 	 * If we have rb pages ensure they're a power-of-two number, so we
5015 	 * can do bitmasks instead of modulo.
5016 	 */
5017 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5018 		return -EINVAL;
5019 
5020 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5021 		return -EINVAL;
5022 
5023 	WARN_ON_ONCE(event->ctx->parent_ctx);
5024 again:
5025 	mutex_lock(&event->mmap_mutex);
5026 	if (event->rb) {
5027 		if (event->rb->nr_pages != nr_pages) {
5028 			ret = -EINVAL;
5029 			goto unlock;
5030 		}
5031 
5032 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5033 			/*
5034 			 * Raced against perf_mmap_close() through
5035 			 * perf_event_set_output(). Try again, hope for better
5036 			 * luck.
5037 			 */
5038 			mutex_unlock(&event->mmap_mutex);
5039 			goto again;
5040 		}
5041 
5042 		goto unlock;
5043 	}
5044 
5045 	user_extra = nr_pages + 1;
5046 
5047 accounting:
5048 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5049 
5050 	/*
5051 	 * Increase the limit linearly with more CPUs:
5052 	 */
5053 	user_lock_limit *= num_online_cpus();
5054 
5055 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5056 
5057 	if (user_locked > user_lock_limit)
5058 		extra = user_locked - user_lock_limit;
5059 
5060 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5061 	lock_limit >>= PAGE_SHIFT;
5062 	locked = vma->vm_mm->pinned_vm + extra;
5063 
5064 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5065 		!capable(CAP_IPC_LOCK)) {
5066 		ret = -EPERM;
5067 		goto unlock;
5068 	}
5069 
5070 	WARN_ON(!rb && event->rb);
5071 
5072 	if (vma->vm_flags & VM_WRITE)
5073 		flags |= RING_BUFFER_WRITABLE;
5074 
5075 	if (!rb) {
5076 		rb = rb_alloc(nr_pages,
5077 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5078 			      event->cpu, flags);
5079 
5080 		if (!rb) {
5081 			ret = -ENOMEM;
5082 			goto unlock;
5083 		}
5084 
5085 		atomic_set(&rb->mmap_count, 1);
5086 		rb->mmap_user = get_current_user();
5087 		rb->mmap_locked = extra;
5088 
5089 		ring_buffer_attach(event, rb);
5090 
5091 		perf_event_init_userpage(event);
5092 		perf_event_update_userpage(event);
5093 	} else {
5094 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5095 				   event->attr.aux_watermark, flags);
5096 		if (!ret)
5097 			rb->aux_mmap_locked = extra;
5098 	}
5099 
5100 unlock:
5101 	if (!ret) {
5102 		atomic_long_add(user_extra, &user->locked_vm);
5103 		vma->vm_mm->pinned_vm += extra;
5104 
5105 		atomic_inc(&event->mmap_count);
5106 	} else if (rb) {
5107 		atomic_dec(&rb->mmap_count);
5108 	}
5109 aux_unlock:
5110 	mutex_unlock(&event->mmap_mutex);
5111 
5112 	/*
5113 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5114 	 * vma.
5115 	 */
5116 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5117 	vma->vm_ops = &perf_mmap_vmops;
5118 
5119 	if (event->pmu->event_mapped)
5120 		event->pmu->event_mapped(event);
5121 
5122 	return ret;
5123 }
5124 
5125 static int perf_fasync(int fd, struct file *filp, int on)
5126 {
5127 	struct inode *inode = file_inode(filp);
5128 	struct perf_event *event = filp->private_data;
5129 	int retval;
5130 
5131 	inode_lock(inode);
5132 	retval = fasync_helper(fd, filp, on, &event->fasync);
5133 	inode_unlock(inode);
5134 
5135 	if (retval < 0)
5136 		return retval;
5137 
5138 	return 0;
5139 }
5140 
5141 static const struct file_operations perf_fops = {
5142 	.llseek			= no_llseek,
5143 	.release		= perf_release,
5144 	.read			= perf_read,
5145 	.poll			= perf_poll,
5146 	.unlocked_ioctl		= perf_ioctl,
5147 	.compat_ioctl		= perf_compat_ioctl,
5148 	.mmap			= perf_mmap,
5149 	.fasync			= perf_fasync,
5150 };
5151 
5152 /*
5153  * Perf event wakeup
5154  *
5155  * If there's data, ensure we set the poll() state and publish everything
5156  * to user-space before waking everybody up.
5157  */
5158 
5159 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5160 {
5161 	/* only the parent has fasync state */
5162 	if (event->parent)
5163 		event = event->parent;
5164 	return &event->fasync;
5165 }
5166 
5167 void perf_event_wakeup(struct perf_event *event)
5168 {
5169 	ring_buffer_wakeup(event);
5170 
5171 	if (event->pending_kill) {
5172 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5173 		event->pending_kill = 0;
5174 	}
5175 }
5176 
5177 static void perf_pending_event(struct irq_work *entry)
5178 {
5179 	struct perf_event *event = container_of(entry,
5180 			struct perf_event, pending);
5181 	int rctx;
5182 
5183 	rctx = perf_swevent_get_recursion_context();
5184 	/*
5185 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5186 	 * and we won't recurse 'further'.
5187 	 */
5188 
5189 	if (event->pending_disable) {
5190 		event->pending_disable = 0;
5191 		perf_event_disable_local(event);
5192 	}
5193 
5194 	if (event->pending_wakeup) {
5195 		event->pending_wakeup = 0;
5196 		perf_event_wakeup(event);
5197 	}
5198 
5199 	if (rctx >= 0)
5200 		perf_swevent_put_recursion_context(rctx);
5201 }
5202 
5203 /*
5204  * We assume there is only KVM supporting the callbacks.
5205  * Later on, we might change it to a list if there is
5206  * another virtualization implementation supporting the callbacks.
5207  */
5208 struct perf_guest_info_callbacks *perf_guest_cbs;
5209 
5210 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5211 {
5212 	perf_guest_cbs = cbs;
5213 	return 0;
5214 }
5215 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5216 
5217 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5218 {
5219 	perf_guest_cbs = NULL;
5220 	return 0;
5221 }
5222 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5223 
5224 static void
5225 perf_output_sample_regs(struct perf_output_handle *handle,
5226 			struct pt_regs *regs, u64 mask)
5227 {
5228 	int bit;
5229 
5230 	for_each_set_bit(bit, (const unsigned long *) &mask,
5231 			 sizeof(mask) * BITS_PER_BYTE) {
5232 		u64 val;
5233 
5234 		val = perf_reg_value(regs, bit);
5235 		perf_output_put(handle, val);
5236 	}
5237 }
5238 
5239 static void perf_sample_regs_user(struct perf_regs *regs_user,
5240 				  struct pt_regs *regs,
5241 				  struct pt_regs *regs_user_copy)
5242 {
5243 	if (user_mode(regs)) {
5244 		regs_user->abi = perf_reg_abi(current);
5245 		regs_user->regs = regs;
5246 	} else if (current->mm) {
5247 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5248 	} else {
5249 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5250 		regs_user->regs = NULL;
5251 	}
5252 }
5253 
5254 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5255 				  struct pt_regs *regs)
5256 {
5257 	regs_intr->regs = regs;
5258 	regs_intr->abi  = perf_reg_abi(current);
5259 }
5260 
5261 
5262 /*
5263  * Get remaining task size from user stack pointer.
5264  *
5265  * It'd be better to take stack vma map and limit this more
5266  * precisly, but there's no way to get it safely under interrupt,
5267  * so using TASK_SIZE as limit.
5268  */
5269 static u64 perf_ustack_task_size(struct pt_regs *regs)
5270 {
5271 	unsigned long addr = perf_user_stack_pointer(regs);
5272 
5273 	if (!addr || addr >= TASK_SIZE)
5274 		return 0;
5275 
5276 	return TASK_SIZE - addr;
5277 }
5278 
5279 static u16
5280 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5281 			struct pt_regs *regs)
5282 {
5283 	u64 task_size;
5284 
5285 	/* No regs, no stack pointer, no dump. */
5286 	if (!regs)
5287 		return 0;
5288 
5289 	/*
5290 	 * Check if we fit in with the requested stack size into the:
5291 	 * - TASK_SIZE
5292 	 *   If we don't, we limit the size to the TASK_SIZE.
5293 	 *
5294 	 * - remaining sample size
5295 	 *   If we don't, we customize the stack size to
5296 	 *   fit in to the remaining sample size.
5297 	 */
5298 
5299 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5300 	stack_size = min(stack_size, (u16) task_size);
5301 
5302 	/* Current header size plus static size and dynamic size. */
5303 	header_size += 2 * sizeof(u64);
5304 
5305 	/* Do we fit in with the current stack dump size? */
5306 	if ((u16) (header_size + stack_size) < header_size) {
5307 		/*
5308 		 * If we overflow the maximum size for the sample,
5309 		 * we customize the stack dump size to fit in.
5310 		 */
5311 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5312 		stack_size = round_up(stack_size, sizeof(u64));
5313 	}
5314 
5315 	return stack_size;
5316 }
5317 
5318 static void
5319 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5320 			  struct pt_regs *regs)
5321 {
5322 	/* Case of a kernel thread, nothing to dump */
5323 	if (!regs) {
5324 		u64 size = 0;
5325 		perf_output_put(handle, size);
5326 	} else {
5327 		unsigned long sp;
5328 		unsigned int rem;
5329 		u64 dyn_size;
5330 
5331 		/*
5332 		 * We dump:
5333 		 * static size
5334 		 *   - the size requested by user or the best one we can fit
5335 		 *     in to the sample max size
5336 		 * data
5337 		 *   - user stack dump data
5338 		 * dynamic size
5339 		 *   - the actual dumped size
5340 		 */
5341 
5342 		/* Static size. */
5343 		perf_output_put(handle, dump_size);
5344 
5345 		/* Data. */
5346 		sp = perf_user_stack_pointer(regs);
5347 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5348 		dyn_size = dump_size - rem;
5349 
5350 		perf_output_skip(handle, rem);
5351 
5352 		/* Dynamic size. */
5353 		perf_output_put(handle, dyn_size);
5354 	}
5355 }
5356 
5357 static void __perf_event_header__init_id(struct perf_event_header *header,
5358 					 struct perf_sample_data *data,
5359 					 struct perf_event *event)
5360 {
5361 	u64 sample_type = event->attr.sample_type;
5362 
5363 	data->type = sample_type;
5364 	header->size += event->id_header_size;
5365 
5366 	if (sample_type & PERF_SAMPLE_TID) {
5367 		/* namespace issues */
5368 		data->tid_entry.pid = perf_event_pid(event, current);
5369 		data->tid_entry.tid = perf_event_tid(event, current);
5370 	}
5371 
5372 	if (sample_type & PERF_SAMPLE_TIME)
5373 		data->time = perf_event_clock(event);
5374 
5375 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5376 		data->id = primary_event_id(event);
5377 
5378 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5379 		data->stream_id = event->id;
5380 
5381 	if (sample_type & PERF_SAMPLE_CPU) {
5382 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5383 		data->cpu_entry.reserved = 0;
5384 	}
5385 }
5386 
5387 void perf_event_header__init_id(struct perf_event_header *header,
5388 				struct perf_sample_data *data,
5389 				struct perf_event *event)
5390 {
5391 	if (event->attr.sample_id_all)
5392 		__perf_event_header__init_id(header, data, event);
5393 }
5394 
5395 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5396 					   struct perf_sample_data *data)
5397 {
5398 	u64 sample_type = data->type;
5399 
5400 	if (sample_type & PERF_SAMPLE_TID)
5401 		perf_output_put(handle, data->tid_entry);
5402 
5403 	if (sample_type & PERF_SAMPLE_TIME)
5404 		perf_output_put(handle, data->time);
5405 
5406 	if (sample_type & PERF_SAMPLE_ID)
5407 		perf_output_put(handle, data->id);
5408 
5409 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5410 		perf_output_put(handle, data->stream_id);
5411 
5412 	if (sample_type & PERF_SAMPLE_CPU)
5413 		perf_output_put(handle, data->cpu_entry);
5414 
5415 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5416 		perf_output_put(handle, data->id);
5417 }
5418 
5419 void perf_event__output_id_sample(struct perf_event *event,
5420 				  struct perf_output_handle *handle,
5421 				  struct perf_sample_data *sample)
5422 {
5423 	if (event->attr.sample_id_all)
5424 		__perf_event__output_id_sample(handle, sample);
5425 }
5426 
5427 static void perf_output_read_one(struct perf_output_handle *handle,
5428 				 struct perf_event *event,
5429 				 u64 enabled, u64 running)
5430 {
5431 	u64 read_format = event->attr.read_format;
5432 	u64 values[4];
5433 	int n = 0;
5434 
5435 	values[n++] = perf_event_count(event);
5436 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5437 		values[n++] = enabled +
5438 			atomic64_read(&event->child_total_time_enabled);
5439 	}
5440 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5441 		values[n++] = running +
5442 			atomic64_read(&event->child_total_time_running);
5443 	}
5444 	if (read_format & PERF_FORMAT_ID)
5445 		values[n++] = primary_event_id(event);
5446 
5447 	__output_copy(handle, values, n * sizeof(u64));
5448 }
5449 
5450 /*
5451  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5452  */
5453 static void perf_output_read_group(struct perf_output_handle *handle,
5454 			    struct perf_event *event,
5455 			    u64 enabled, u64 running)
5456 {
5457 	struct perf_event *leader = event->group_leader, *sub;
5458 	u64 read_format = event->attr.read_format;
5459 	u64 values[5];
5460 	int n = 0;
5461 
5462 	values[n++] = 1 + leader->nr_siblings;
5463 
5464 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5465 		values[n++] = enabled;
5466 
5467 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5468 		values[n++] = running;
5469 
5470 	if (leader != event)
5471 		leader->pmu->read(leader);
5472 
5473 	values[n++] = perf_event_count(leader);
5474 	if (read_format & PERF_FORMAT_ID)
5475 		values[n++] = primary_event_id(leader);
5476 
5477 	__output_copy(handle, values, n * sizeof(u64));
5478 
5479 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5480 		n = 0;
5481 
5482 		if ((sub != event) &&
5483 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5484 			sub->pmu->read(sub);
5485 
5486 		values[n++] = perf_event_count(sub);
5487 		if (read_format & PERF_FORMAT_ID)
5488 			values[n++] = primary_event_id(sub);
5489 
5490 		__output_copy(handle, values, n * sizeof(u64));
5491 	}
5492 }
5493 
5494 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5495 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5496 
5497 static void perf_output_read(struct perf_output_handle *handle,
5498 			     struct perf_event *event)
5499 {
5500 	u64 enabled = 0, running = 0, now;
5501 	u64 read_format = event->attr.read_format;
5502 
5503 	/*
5504 	 * compute total_time_enabled, total_time_running
5505 	 * based on snapshot values taken when the event
5506 	 * was last scheduled in.
5507 	 *
5508 	 * we cannot simply called update_context_time()
5509 	 * because of locking issue as we are called in
5510 	 * NMI context
5511 	 */
5512 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5513 		calc_timer_values(event, &now, &enabled, &running);
5514 
5515 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5516 		perf_output_read_group(handle, event, enabled, running);
5517 	else
5518 		perf_output_read_one(handle, event, enabled, running);
5519 }
5520 
5521 void perf_output_sample(struct perf_output_handle *handle,
5522 			struct perf_event_header *header,
5523 			struct perf_sample_data *data,
5524 			struct perf_event *event)
5525 {
5526 	u64 sample_type = data->type;
5527 
5528 	perf_output_put(handle, *header);
5529 
5530 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5531 		perf_output_put(handle, data->id);
5532 
5533 	if (sample_type & PERF_SAMPLE_IP)
5534 		perf_output_put(handle, data->ip);
5535 
5536 	if (sample_type & PERF_SAMPLE_TID)
5537 		perf_output_put(handle, data->tid_entry);
5538 
5539 	if (sample_type & PERF_SAMPLE_TIME)
5540 		perf_output_put(handle, data->time);
5541 
5542 	if (sample_type & PERF_SAMPLE_ADDR)
5543 		perf_output_put(handle, data->addr);
5544 
5545 	if (sample_type & PERF_SAMPLE_ID)
5546 		perf_output_put(handle, data->id);
5547 
5548 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5549 		perf_output_put(handle, data->stream_id);
5550 
5551 	if (sample_type & PERF_SAMPLE_CPU)
5552 		perf_output_put(handle, data->cpu_entry);
5553 
5554 	if (sample_type & PERF_SAMPLE_PERIOD)
5555 		perf_output_put(handle, data->period);
5556 
5557 	if (sample_type & PERF_SAMPLE_READ)
5558 		perf_output_read(handle, event);
5559 
5560 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5561 		if (data->callchain) {
5562 			int size = 1;
5563 
5564 			if (data->callchain)
5565 				size += data->callchain->nr;
5566 
5567 			size *= sizeof(u64);
5568 
5569 			__output_copy(handle, data->callchain, size);
5570 		} else {
5571 			u64 nr = 0;
5572 			perf_output_put(handle, nr);
5573 		}
5574 	}
5575 
5576 	if (sample_type & PERF_SAMPLE_RAW) {
5577 		if (data->raw) {
5578 			u32 raw_size = data->raw->size;
5579 			u32 real_size = round_up(raw_size + sizeof(u32),
5580 						 sizeof(u64)) - sizeof(u32);
5581 			u64 zero = 0;
5582 
5583 			perf_output_put(handle, real_size);
5584 			__output_copy(handle, data->raw->data, raw_size);
5585 			if (real_size - raw_size)
5586 				__output_copy(handle, &zero, real_size - raw_size);
5587 		} else {
5588 			struct {
5589 				u32	size;
5590 				u32	data;
5591 			} raw = {
5592 				.size = sizeof(u32),
5593 				.data = 0,
5594 			};
5595 			perf_output_put(handle, raw);
5596 		}
5597 	}
5598 
5599 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5600 		if (data->br_stack) {
5601 			size_t size;
5602 
5603 			size = data->br_stack->nr
5604 			     * sizeof(struct perf_branch_entry);
5605 
5606 			perf_output_put(handle, data->br_stack->nr);
5607 			perf_output_copy(handle, data->br_stack->entries, size);
5608 		} else {
5609 			/*
5610 			 * we always store at least the value of nr
5611 			 */
5612 			u64 nr = 0;
5613 			perf_output_put(handle, nr);
5614 		}
5615 	}
5616 
5617 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5618 		u64 abi = data->regs_user.abi;
5619 
5620 		/*
5621 		 * If there are no regs to dump, notice it through
5622 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5623 		 */
5624 		perf_output_put(handle, abi);
5625 
5626 		if (abi) {
5627 			u64 mask = event->attr.sample_regs_user;
5628 			perf_output_sample_regs(handle,
5629 						data->regs_user.regs,
5630 						mask);
5631 		}
5632 	}
5633 
5634 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5635 		perf_output_sample_ustack(handle,
5636 					  data->stack_user_size,
5637 					  data->regs_user.regs);
5638 	}
5639 
5640 	if (sample_type & PERF_SAMPLE_WEIGHT)
5641 		perf_output_put(handle, data->weight);
5642 
5643 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5644 		perf_output_put(handle, data->data_src.val);
5645 
5646 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5647 		perf_output_put(handle, data->txn);
5648 
5649 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5650 		u64 abi = data->regs_intr.abi;
5651 		/*
5652 		 * If there are no regs to dump, notice it through
5653 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5654 		 */
5655 		perf_output_put(handle, abi);
5656 
5657 		if (abi) {
5658 			u64 mask = event->attr.sample_regs_intr;
5659 
5660 			perf_output_sample_regs(handle,
5661 						data->regs_intr.regs,
5662 						mask);
5663 		}
5664 	}
5665 
5666 	if (!event->attr.watermark) {
5667 		int wakeup_events = event->attr.wakeup_events;
5668 
5669 		if (wakeup_events) {
5670 			struct ring_buffer *rb = handle->rb;
5671 			int events = local_inc_return(&rb->events);
5672 
5673 			if (events >= wakeup_events) {
5674 				local_sub(wakeup_events, &rb->events);
5675 				local_inc(&rb->wakeup);
5676 			}
5677 		}
5678 	}
5679 }
5680 
5681 void perf_prepare_sample(struct perf_event_header *header,
5682 			 struct perf_sample_data *data,
5683 			 struct perf_event *event,
5684 			 struct pt_regs *regs)
5685 {
5686 	u64 sample_type = event->attr.sample_type;
5687 
5688 	header->type = PERF_RECORD_SAMPLE;
5689 	header->size = sizeof(*header) + event->header_size;
5690 
5691 	header->misc = 0;
5692 	header->misc |= perf_misc_flags(regs);
5693 
5694 	__perf_event_header__init_id(header, data, event);
5695 
5696 	if (sample_type & PERF_SAMPLE_IP)
5697 		data->ip = perf_instruction_pointer(regs);
5698 
5699 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5700 		int size = 1;
5701 
5702 		data->callchain = perf_callchain(event, regs);
5703 
5704 		if (data->callchain)
5705 			size += data->callchain->nr;
5706 
5707 		header->size += size * sizeof(u64);
5708 	}
5709 
5710 	if (sample_type & PERF_SAMPLE_RAW) {
5711 		int size = sizeof(u32);
5712 
5713 		if (data->raw)
5714 			size += data->raw->size;
5715 		else
5716 			size += sizeof(u32);
5717 
5718 		header->size += round_up(size, sizeof(u64));
5719 	}
5720 
5721 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5722 		int size = sizeof(u64); /* nr */
5723 		if (data->br_stack) {
5724 			size += data->br_stack->nr
5725 			      * sizeof(struct perf_branch_entry);
5726 		}
5727 		header->size += size;
5728 	}
5729 
5730 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5731 		perf_sample_regs_user(&data->regs_user, regs,
5732 				      &data->regs_user_copy);
5733 
5734 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5735 		/* regs dump ABI info */
5736 		int size = sizeof(u64);
5737 
5738 		if (data->regs_user.regs) {
5739 			u64 mask = event->attr.sample_regs_user;
5740 			size += hweight64(mask) * sizeof(u64);
5741 		}
5742 
5743 		header->size += size;
5744 	}
5745 
5746 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5747 		/*
5748 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5749 		 * processed as the last one or have additional check added
5750 		 * in case new sample type is added, because we could eat
5751 		 * up the rest of the sample size.
5752 		 */
5753 		u16 stack_size = event->attr.sample_stack_user;
5754 		u16 size = sizeof(u64);
5755 
5756 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5757 						     data->regs_user.regs);
5758 
5759 		/*
5760 		 * If there is something to dump, add space for the dump
5761 		 * itself and for the field that tells the dynamic size,
5762 		 * which is how many have been actually dumped.
5763 		 */
5764 		if (stack_size)
5765 			size += sizeof(u64) + stack_size;
5766 
5767 		data->stack_user_size = stack_size;
5768 		header->size += size;
5769 	}
5770 
5771 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5772 		/* regs dump ABI info */
5773 		int size = sizeof(u64);
5774 
5775 		perf_sample_regs_intr(&data->regs_intr, regs);
5776 
5777 		if (data->regs_intr.regs) {
5778 			u64 mask = event->attr.sample_regs_intr;
5779 
5780 			size += hweight64(mask) * sizeof(u64);
5781 		}
5782 
5783 		header->size += size;
5784 	}
5785 }
5786 
5787 static void __always_inline
5788 __perf_event_output(struct perf_event *event,
5789 		    struct perf_sample_data *data,
5790 		    struct pt_regs *regs,
5791 		    int (*output_begin)(struct perf_output_handle *,
5792 					struct perf_event *,
5793 					unsigned int))
5794 {
5795 	struct perf_output_handle handle;
5796 	struct perf_event_header header;
5797 
5798 	/* protect the callchain buffers */
5799 	rcu_read_lock();
5800 
5801 	perf_prepare_sample(&header, data, event, regs);
5802 
5803 	if (output_begin(&handle, event, header.size))
5804 		goto exit;
5805 
5806 	perf_output_sample(&handle, &header, data, event);
5807 
5808 	perf_output_end(&handle);
5809 
5810 exit:
5811 	rcu_read_unlock();
5812 }
5813 
5814 void
5815 perf_event_output_forward(struct perf_event *event,
5816 			 struct perf_sample_data *data,
5817 			 struct pt_regs *regs)
5818 {
5819 	__perf_event_output(event, data, regs, perf_output_begin_forward);
5820 }
5821 
5822 void
5823 perf_event_output_backward(struct perf_event *event,
5824 			   struct perf_sample_data *data,
5825 			   struct pt_regs *regs)
5826 {
5827 	__perf_event_output(event, data, regs, perf_output_begin_backward);
5828 }
5829 
5830 void
5831 perf_event_output(struct perf_event *event,
5832 		  struct perf_sample_data *data,
5833 		  struct pt_regs *regs)
5834 {
5835 	__perf_event_output(event, data, regs, perf_output_begin);
5836 }
5837 
5838 /*
5839  * read event_id
5840  */
5841 
5842 struct perf_read_event {
5843 	struct perf_event_header	header;
5844 
5845 	u32				pid;
5846 	u32				tid;
5847 };
5848 
5849 static void
5850 perf_event_read_event(struct perf_event *event,
5851 			struct task_struct *task)
5852 {
5853 	struct perf_output_handle handle;
5854 	struct perf_sample_data sample;
5855 	struct perf_read_event read_event = {
5856 		.header = {
5857 			.type = PERF_RECORD_READ,
5858 			.misc = 0,
5859 			.size = sizeof(read_event) + event->read_size,
5860 		},
5861 		.pid = perf_event_pid(event, task),
5862 		.tid = perf_event_tid(event, task),
5863 	};
5864 	int ret;
5865 
5866 	perf_event_header__init_id(&read_event.header, &sample, event);
5867 	ret = perf_output_begin(&handle, event, read_event.header.size);
5868 	if (ret)
5869 		return;
5870 
5871 	perf_output_put(&handle, read_event);
5872 	perf_output_read(&handle, event);
5873 	perf_event__output_id_sample(event, &handle, &sample);
5874 
5875 	perf_output_end(&handle);
5876 }
5877 
5878 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5879 
5880 static void
5881 perf_event_aux_ctx(struct perf_event_context *ctx,
5882 		   perf_event_aux_output_cb output,
5883 		   void *data, bool all)
5884 {
5885 	struct perf_event *event;
5886 
5887 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5888 		if (!all) {
5889 			if (event->state < PERF_EVENT_STATE_INACTIVE)
5890 				continue;
5891 			if (!event_filter_match(event))
5892 				continue;
5893 		}
5894 
5895 		output(event, data);
5896 	}
5897 }
5898 
5899 static void
5900 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5901 			struct perf_event_context *task_ctx)
5902 {
5903 	rcu_read_lock();
5904 	preempt_disable();
5905 	perf_event_aux_ctx(task_ctx, output, data, false);
5906 	preempt_enable();
5907 	rcu_read_unlock();
5908 }
5909 
5910 static void
5911 perf_event_aux(perf_event_aux_output_cb output, void *data,
5912 	       struct perf_event_context *task_ctx)
5913 {
5914 	struct perf_cpu_context *cpuctx;
5915 	struct perf_event_context *ctx;
5916 	struct pmu *pmu;
5917 	int ctxn;
5918 
5919 	/*
5920 	 * If we have task_ctx != NULL we only notify
5921 	 * the task context itself. The task_ctx is set
5922 	 * only for EXIT events before releasing task
5923 	 * context.
5924 	 */
5925 	if (task_ctx) {
5926 		perf_event_aux_task_ctx(output, data, task_ctx);
5927 		return;
5928 	}
5929 
5930 	rcu_read_lock();
5931 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5932 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5933 		if (cpuctx->unique_pmu != pmu)
5934 			goto next;
5935 		perf_event_aux_ctx(&cpuctx->ctx, output, data, false);
5936 		ctxn = pmu->task_ctx_nr;
5937 		if (ctxn < 0)
5938 			goto next;
5939 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5940 		if (ctx)
5941 			perf_event_aux_ctx(ctx, output, data, false);
5942 next:
5943 		put_cpu_ptr(pmu->pmu_cpu_context);
5944 	}
5945 	rcu_read_unlock();
5946 }
5947 
5948 /*
5949  * Clear all file-based filters at exec, they'll have to be
5950  * re-instated when/if these objects are mmapped again.
5951  */
5952 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5953 {
5954 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5955 	struct perf_addr_filter *filter;
5956 	unsigned int restart = 0, count = 0;
5957 	unsigned long flags;
5958 
5959 	if (!has_addr_filter(event))
5960 		return;
5961 
5962 	raw_spin_lock_irqsave(&ifh->lock, flags);
5963 	list_for_each_entry(filter, &ifh->list, entry) {
5964 		if (filter->inode) {
5965 			event->addr_filters_offs[count] = 0;
5966 			restart++;
5967 		}
5968 
5969 		count++;
5970 	}
5971 
5972 	if (restart)
5973 		event->addr_filters_gen++;
5974 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
5975 
5976 	if (restart)
5977 		perf_event_restart(event);
5978 }
5979 
5980 void perf_event_exec(void)
5981 {
5982 	struct perf_event_context *ctx;
5983 	int ctxn;
5984 
5985 	rcu_read_lock();
5986 	for_each_task_context_nr(ctxn) {
5987 		ctx = current->perf_event_ctxp[ctxn];
5988 		if (!ctx)
5989 			continue;
5990 
5991 		perf_event_enable_on_exec(ctxn);
5992 
5993 		perf_event_aux_ctx(ctx, perf_event_addr_filters_exec, NULL,
5994 				   true);
5995 	}
5996 	rcu_read_unlock();
5997 }
5998 
5999 struct remote_output {
6000 	struct ring_buffer	*rb;
6001 	int			err;
6002 };
6003 
6004 static void __perf_event_output_stop(struct perf_event *event, void *data)
6005 {
6006 	struct perf_event *parent = event->parent;
6007 	struct remote_output *ro = data;
6008 	struct ring_buffer *rb = ro->rb;
6009 	struct stop_event_data sd = {
6010 		.event	= event,
6011 	};
6012 
6013 	if (!has_aux(event))
6014 		return;
6015 
6016 	if (!parent)
6017 		parent = event;
6018 
6019 	/*
6020 	 * In case of inheritance, it will be the parent that links to the
6021 	 * ring-buffer, but it will be the child that's actually using it:
6022 	 */
6023 	if (rcu_dereference(parent->rb) == rb)
6024 		ro->err = __perf_event_stop(&sd);
6025 }
6026 
6027 static int __perf_pmu_output_stop(void *info)
6028 {
6029 	struct perf_event *event = info;
6030 	struct pmu *pmu = event->pmu;
6031 	struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6032 	struct remote_output ro = {
6033 		.rb	= event->rb,
6034 	};
6035 
6036 	rcu_read_lock();
6037 	perf_event_aux_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6038 	if (cpuctx->task_ctx)
6039 		perf_event_aux_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6040 				   &ro, false);
6041 	rcu_read_unlock();
6042 
6043 	return ro.err;
6044 }
6045 
6046 static void perf_pmu_output_stop(struct perf_event *event)
6047 {
6048 	struct perf_event *iter;
6049 	int err, cpu;
6050 
6051 restart:
6052 	rcu_read_lock();
6053 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6054 		/*
6055 		 * For per-CPU events, we need to make sure that neither they
6056 		 * nor their children are running; for cpu==-1 events it's
6057 		 * sufficient to stop the event itself if it's active, since
6058 		 * it can't have children.
6059 		 */
6060 		cpu = iter->cpu;
6061 		if (cpu == -1)
6062 			cpu = READ_ONCE(iter->oncpu);
6063 
6064 		if (cpu == -1)
6065 			continue;
6066 
6067 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6068 		if (err == -EAGAIN) {
6069 			rcu_read_unlock();
6070 			goto restart;
6071 		}
6072 	}
6073 	rcu_read_unlock();
6074 }
6075 
6076 /*
6077  * task tracking -- fork/exit
6078  *
6079  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6080  */
6081 
6082 struct perf_task_event {
6083 	struct task_struct		*task;
6084 	struct perf_event_context	*task_ctx;
6085 
6086 	struct {
6087 		struct perf_event_header	header;
6088 
6089 		u32				pid;
6090 		u32				ppid;
6091 		u32				tid;
6092 		u32				ptid;
6093 		u64				time;
6094 	} event_id;
6095 };
6096 
6097 static int perf_event_task_match(struct perf_event *event)
6098 {
6099 	return event->attr.comm  || event->attr.mmap ||
6100 	       event->attr.mmap2 || event->attr.mmap_data ||
6101 	       event->attr.task;
6102 }
6103 
6104 static void perf_event_task_output(struct perf_event *event,
6105 				   void *data)
6106 {
6107 	struct perf_task_event *task_event = data;
6108 	struct perf_output_handle handle;
6109 	struct perf_sample_data	sample;
6110 	struct task_struct *task = task_event->task;
6111 	int ret, size = task_event->event_id.header.size;
6112 
6113 	if (!perf_event_task_match(event))
6114 		return;
6115 
6116 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6117 
6118 	ret = perf_output_begin(&handle, event,
6119 				task_event->event_id.header.size);
6120 	if (ret)
6121 		goto out;
6122 
6123 	task_event->event_id.pid = perf_event_pid(event, task);
6124 	task_event->event_id.ppid = perf_event_pid(event, current);
6125 
6126 	task_event->event_id.tid = perf_event_tid(event, task);
6127 	task_event->event_id.ptid = perf_event_tid(event, current);
6128 
6129 	task_event->event_id.time = perf_event_clock(event);
6130 
6131 	perf_output_put(&handle, task_event->event_id);
6132 
6133 	perf_event__output_id_sample(event, &handle, &sample);
6134 
6135 	perf_output_end(&handle);
6136 out:
6137 	task_event->event_id.header.size = size;
6138 }
6139 
6140 static void perf_event_task(struct task_struct *task,
6141 			      struct perf_event_context *task_ctx,
6142 			      int new)
6143 {
6144 	struct perf_task_event task_event;
6145 
6146 	if (!atomic_read(&nr_comm_events) &&
6147 	    !atomic_read(&nr_mmap_events) &&
6148 	    !atomic_read(&nr_task_events))
6149 		return;
6150 
6151 	task_event = (struct perf_task_event){
6152 		.task	  = task,
6153 		.task_ctx = task_ctx,
6154 		.event_id    = {
6155 			.header = {
6156 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6157 				.misc = 0,
6158 				.size = sizeof(task_event.event_id),
6159 			},
6160 			/* .pid  */
6161 			/* .ppid */
6162 			/* .tid  */
6163 			/* .ptid */
6164 			/* .time */
6165 		},
6166 	};
6167 
6168 	perf_event_aux(perf_event_task_output,
6169 		       &task_event,
6170 		       task_ctx);
6171 }
6172 
6173 void perf_event_fork(struct task_struct *task)
6174 {
6175 	perf_event_task(task, NULL, 1);
6176 }
6177 
6178 /*
6179  * comm tracking
6180  */
6181 
6182 struct perf_comm_event {
6183 	struct task_struct	*task;
6184 	char			*comm;
6185 	int			comm_size;
6186 
6187 	struct {
6188 		struct perf_event_header	header;
6189 
6190 		u32				pid;
6191 		u32				tid;
6192 	} event_id;
6193 };
6194 
6195 static int perf_event_comm_match(struct perf_event *event)
6196 {
6197 	return event->attr.comm;
6198 }
6199 
6200 static void perf_event_comm_output(struct perf_event *event,
6201 				   void *data)
6202 {
6203 	struct perf_comm_event *comm_event = data;
6204 	struct perf_output_handle handle;
6205 	struct perf_sample_data sample;
6206 	int size = comm_event->event_id.header.size;
6207 	int ret;
6208 
6209 	if (!perf_event_comm_match(event))
6210 		return;
6211 
6212 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6213 	ret = perf_output_begin(&handle, event,
6214 				comm_event->event_id.header.size);
6215 
6216 	if (ret)
6217 		goto out;
6218 
6219 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6220 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6221 
6222 	perf_output_put(&handle, comm_event->event_id);
6223 	__output_copy(&handle, comm_event->comm,
6224 				   comm_event->comm_size);
6225 
6226 	perf_event__output_id_sample(event, &handle, &sample);
6227 
6228 	perf_output_end(&handle);
6229 out:
6230 	comm_event->event_id.header.size = size;
6231 }
6232 
6233 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6234 {
6235 	char comm[TASK_COMM_LEN];
6236 	unsigned int size;
6237 
6238 	memset(comm, 0, sizeof(comm));
6239 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6240 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6241 
6242 	comm_event->comm = comm;
6243 	comm_event->comm_size = size;
6244 
6245 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6246 
6247 	perf_event_aux(perf_event_comm_output,
6248 		       comm_event,
6249 		       NULL);
6250 }
6251 
6252 void perf_event_comm(struct task_struct *task, bool exec)
6253 {
6254 	struct perf_comm_event comm_event;
6255 
6256 	if (!atomic_read(&nr_comm_events))
6257 		return;
6258 
6259 	comm_event = (struct perf_comm_event){
6260 		.task	= task,
6261 		/* .comm      */
6262 		/* .comm_size */
6263 		.event_id  = {
6264 			.header = {
6265 				.type = PERF_RECORD_COMM,
6266 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6267 				/* .size */
6268 			},
6269 			/* .pid */
6270 			/* .tid */
6271 		},
6272 	};
6273 
6274 	perf_event_comm_event(&comm_event);
6275 }
6276 
6277 /*
6278  * mmap tracking
6279  */
6280 
6281 struct perf_mmap_event {
6282 	struct vm_area_struct	*vma;
6283 
6284 	const char		*file_name;
6285 	int			file_size;
6286 	int			maj, min;
6287 	u64			ino;
6288 	u64			ino_generation;
6289 	u32			prot, flags;
6290 
6291 	struct {
6292 		struct perf_event_header	header;
6293 
6294 		u32				pid;
6295 		u32				tid;
6296 		u64				start;
6297 		u64				len;
6298 		u64				pgoff;
6299 	} event_id;
6300 };
6301 
6302 static int perf_event_mmap_match(struct perf_event *event,
6303 				 void *data)
6304 {
6305 	struct perf_mmap_event *mmap_event = data;
6306 	struct vm_area_struct *vma = mmap_event->vma;
6307 	int executable = vma->vm_flags & VM_EXEC;
6308 
6309 	return (!executable && event->attr.mmap_data) ||
6310 	       (executable && (event->attr.mmap || event->attr.mmap2));
6311 }
6312 
6313 static void perf_event_mmap_output(struct perf_event *event,
6314 				   void *data)
6315 {
6316 	struct perf_mmap_event *mmap_event = data;
6317 	struct perf_output_handle handle;
6318 	struct perf_sample_data sample;
6319 	int size = mmap_event->event_id.header.size;
6320 	int ret;
6321 
6322 	if (!perf_event_mmap_match(event, data))
6323 		return;
6324 
6325 	if (event->attr.mmap2) {
6326 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6327 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6328 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6329 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6330 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6331 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6332 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6333 	}
6334 
6335 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6336 	ret = perf_output_begin(&handle, event,
6337 				mmap_event->event_id.header.size);
6338 	if (ret)
6339 		goto out;
6340 
6341 	mmap_event->event_id.pid = perf_event_pid(event, current);
6342 	mmap_event->event_id.tid = perf_event_tid(event, current);
6343 
6344 	perf_output_put(&handle, mmap_event->event_id);
6345 
6346 	if (event->attr.mmap2) {
6347 		perf_output_put(&handle, mmap_event->maj);
6348 		perf_output_put(&handle, mmap_event->min);
6349 		perf_output_put(&handle, mmap_event->ino);
6350 		perf_output_put(&handle, mmap_event->ino_generation);
6351 		perf_output_put(&handle, mmap_event->prot);
6352 		perf_output_put(&handle, mmap_event->flags);
6353 	}
6354 
6355 	__output_copy(&handle, mmap_event->file_name,
6356 				   mmap_event->file_size);
6357 
6358 	perf_event__output_id_sample(event, &handle, &sample);
6359 
6360 	perf_output_end(&handle);
6361 out:
6362 	mmap_event->event_id.header.size = size;
6363 }
6364 
6365 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6366 {
6367 	struct vm_area_struct *vma = mmap_event->vma;
6368 	struct file *file = vma->vm_file;
6369 	int maj = 0, min = 0;
6370 	u64 ino = 0, gen = 0;
6371 	u32 prot = 0, flags = 0;
6372 	unsigned int size;
6373 	char tmp[16];
6374 	char *buf = NULL;
6375 	char *name;
6376 
6377 	if (file) {
6378 		struct inode *inode;
6379 		dev_t dev;
6380 
6381 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6382 		if (!buf) {
6383 			name = "//enomem";
6384 			goto cpy_name;
6385 		}
6386 		/*
6387 		 * d_path() works from the end of the rb backwards, so we
6388 		 * need to add enough zero bytes after the string to handle
6389 		 * the 64bit alignment we do later.
6390 		 */
6391 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6392 		if (IS_ERR(name)) {
6393 			name = "//toolong";
6394 			goto cpy_name;
6395 		}
6396 		inode = file_inode(vma->vm_file);
6397 		dev = inode->i_sb->s_dev;
6398 		ino = inode->i_ino;
6399 		gen = inode->i_generation;
6400 		maj = MAJOR(dev);
6401 		min = MINOR(dev);
6402 
6403 		if (vma->vm_flags & VM_READ)
6404 			prot |= PROT_READ;
6405 		if (vma->vm_flags & VM_WRITE)
6406 			prot |= PROT_WRITE;
6407 		if (vma->vm_flags & VM_EXEC)
6408 			prot |= PROT_EXEC;
6409 
6410 		if (vma->vm_flags & VM_MAYSHARE)
6411 			flags = MAP_SHARED;
6412 		else
6413 			flags = MAP_PRIVATE;
6414 
6415 		if (vma->vm_flags & VM_DENYWRITE)
6416 			flags |= MAP_DENYWRITE;
6417 		if (vma->vm_flags & VM_MAYEXEC)
6418 			flags |= MAP_EXECUTABLE;
6419 		if (vma->vm_flags & VM_LOCKED)
6420 			flags |= MAP_LOCKED;
6421 		if (vma->vm_flags & VM_HUGETLB)
6422 			flags |= MAP_HUGETLB;
6423 
6424 		goto got_name;
6425 	} else {
6426 		if (vma->vm_ops && vma->vm_ops->name) {
6427 			name = (char *) vma->vm_ops->name(vma);
6428 			if (name)
6429 				goto cpy_name;
6430 		}
6431 
6432 		name = (char *)arch_vma_name(vma);
6433 		if (name)
6434 			goto cpy_name;
6435 
6436 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6437 				vma->vm_end >= vma->vm_mm->brk) {
6438 			name = "[heap]";
6439 			goto cpy_name;
6440 		}
6441 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6442 				vma->vm_end >= vma->vm_mm->start_stack) {
6443 			name = "[stack]";
6444 			goto cpy_name;
6445 		}
6446 
6447 		name = "//anon";
6448 		goto cpy_name;
6449 	}
6450 
6451 cpy_name:
6452 	strlcpy(tmp, name, sizeof(tmp));
6453 	name = tmp;
6454 got_name:
6455 	/*
6456 	 * Since our buffer works in 8 byte units we need to align our string
6457 	 * size to a multiple of 8. However, we must guarantee the tail end is
6458 	 * zero'd out to avoid leaking random bits to userspace.
6459 	 */
6460 	size = strlen(name)+1;
6461 	while (!IS_ALIGNED(size, sizeof(u64)))
6462 		name[size++] = '\0';
6463 
6464 	mmap_event->file_name = name;
6465 	mmap_event->file_size = size;
6466 	mmap_event->maj = maj;
6467 	mmap_event->min = min;
6468 	mmap_event->ino = ino;
6469 	mmap_event->ino_generation = gen;
6470 	mmap_event->prot = prot;
6471 	mmap_event->flags = flags;
6472 
6473 	if (!(vma->vm_flags & VM_EXEC))
6474 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6475 
6476 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6477 
6478 	perf_event_aux(perf_event_mmap_output,
6479 		       mmap_event,
6480 		       NULL);
6481 
6482 	kfree(buf);
6483 }
6484 
6485 /*
6486  * Whether this @filter depends on a dynamic object which is not loaded
6487  * yet or its load addresses are not known.
6488  */
6489 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6490 {
6491 	return filter->filter && filter->inode;
6492 }
6493 
6494 /*
6495  * Check whether inode and address range match filter criteria.
6496  */
6497 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6498 				     struct file *file, unsigned long offset,
6499 				     unsigned long size)
6500 {
6501 	if (filter->inode != file->f_inode)
6502 		return false;
6503 
6504 	if (filter->offset > offset + size)
6505 		return false;
6506 
6507 	if (filter->offset + filter->size < offset)
6508 		return false;
6509 
6510 	return true;
6511 }
6512 
6513 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6514 {
6515 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6516 	struct vm_area_struct *vma = data;
6517 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6518 	struct file *file = vma->vm_file;
6519 	struct perf_addr_filter *filter;
6520 	unsigned int restart = 0, count = 0;
6521 
6522 	if (!has_addr_filter(event))
6523 		return;
6524 
6525 	if (!file)
6526 		return;
6527 
6528 	raw_spin_lock_irqsave(&ifh->lock, flags);
6529 	list_for_each_entry(filter, &ifh->list, entry) {
6530 		if (perf_addr_filter_match(filter, file, off,
6531 					     vma->vm_end - vma->vm_start)) {
6532 			event->addr_filters_offs[count] = vma->vm_start;
6533 			restart++;
6534 		}
6535 
6536 		count++;
6537 	}
6538 
6539 	if (restart)
6540 		event->addr_filters_gen++;
6541 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6542 
6543 	if (restart)
6544 		perf_event_restart(event);
6545 }
6546 
6547 /*
6548  * Adjust all task's events' filters to the new vma
6549  */
6550 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6551 {
6552 	struct perf_event_context *ctx;
6553 	int ctxn;
6554 
6555 	rcu_read_lock();
6556 	for_each_task_context_nr(ctxn) {
6557 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6558 		if (!ctx)
6559 			continue;
6560 
6561 		perf_event_aux_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6562 	}
6563 	rcu_read_unlock();
6564 }
6565 
6566 void perf_event_mmap(struct vm_area_struct *vma)
6567 {
6568 	struct perf_mmap_event mmap_event;
6569 
6570 	if (!atomic_read(&nr_mmap_events))
6571 		return;
6572 
6573 	mmap_event = (struct perf_mmap_event){
6574 		.vma	= vma,
6575 		/* .file_name */
6576 		/* .file_size */
6577 		.event_id  = {
6578 			.header = {
6579 				.type = PERF_RECORD_MMAP,
6580 				.misc = PERF_RECORD_MISC_USER,
6581 				/* .size */
6582 			},
6583 			/* .pid */
6584 			/* .tid */
6585 			.start  = vma->vm_start,
6586 			.len    = vma->vm_end - vma->vm_start,
6587 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6588 		},
6589 		/* .maj (attr_mmap2 only) */
6590 		/* .min (attr_mmap2 only) */
6591 		/* .ino (attr_mmap2 only) */
6592 		/* .ino_generation (attr_mmap2 only) */
6593 		/* .prot (attr_mmap2 only) */
6594 		/* .flags (attr_mmap2 only) */
6595 	};
6596 
6597 	perf_addr_filters_adjust(vma);
6598 	perf_event_mmap_event(&mmap_event);
6599 }
6600 
6601 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6602 			  unsigned long size, u64 flags)
6603 {
6604 	struct perf_output_handle handle;
6605 	struct perf_sample_data sample;
6606 	struct perf_aux_event {
6607 		struct perf_event_header	header;
6608 		u64				offset;
6609 		u64				size;
6610 		u64				flags;
6611 	} rec = {
6612 		.header = {
6613 			.type = PERF_RECORD_AUX,
6614 			.misc = 0,
6615 			.size = sizeof(rec),
6616 		},
6617 		.offset		= head,
6618 		.size		= size,
6619 		.flags		= flags,
6620 	};
6621 	int ret;
6622 
6623 	perf_event_header__init_id(&rec.header, &sample, event);
6624 	ret = perf_output_begin(&handle, event, rec.header.size);
6625 
6626 	if (ret)
6627 		return;
6628 
6629 	perf_output_put(&handle, rec);
6630 	perf_event__output_id_sample(event, &handle, &sample);
6631 
6632 	perf_output_end(&handle);
6633 }
6634 
6635 /*
6636  * Lost/dropped samples logging
6637  */
6638 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6639 {
6640 	struct perf_output_handle handle;
6641 	struct perf_sample_data sample;
6642 	int ret;
6643 
6644 	struct {
6645 		struct perf_event_header	header;
6646 		u64				lost;
6647 	} lost_samples_event = {
6648 		.header = {
6649 			.type = PERF_RECORD_LOST_SAMPLES,
6650 			.misc = 0,
6651 			.size = sizeof(lost_samples_event),
6652 		},
6653 		.lost		= lost,
6654 	};
6655 
6656 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6657 
6658 	ret = perf_output_begin(&handle, event,
6659 				lost_samples_event.header.size);
6660 	if (ret)
6661 		return;
6662 
6663 	perf_output_put(&handle, lost_samples_event);
6664 	perf_event__output_id_sample(event, &handle, &sample);
6665 	perf_output_end(&handle);
6666 }
6667 
6668 /*
6669  * context_switch tracking
6670  */
6671 
6672 struct perf_switch_event {
6673 	struct task_struct	*task;
6674 	struct task_struct	*next_prev;
6675 
6676 	struct {
6677 		struct perf_event_header	header;
6678 		u32				next_prev_pid;
6679 		u32				next_prev_tid;
6680 	} event_id;
6681 };
6682 
6683 static int perf_event_switch_match(struct perf_event *event)
6684 {
6685 	return event->attr.context_switch;
6686 }
6687 
6688 static void perf_event_switch_output(struct perf_event *event, void *data)
6689 {
6690 	struct perf_switch_event *se = data;
6691 	struct perf_output_handle handle;
6692 	struct perf_sample_data sample;
6693 	int ret;
6694 
6695 	if (!perf_event_switch_match(event))
6696 		return;
6697 
6698 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6699 	if (event->ctx->task) {
6700 		se->event_id.header.type = PERF_RECORD_SWITCH;
6701 		se->event_id.header.size = sizeof(se->event_id.header);
6702 	} else {
6703 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6704 		se->event_id.header.size = sizeof(se->event_id);
6705 		se->event_id.next_prev_pid =
6706 					perf_event_pid(event, se->next_prev);
6707 		se->event_id.next_prev_tid =
6708 					perf_event_tid(event, se->next_prev);
6709 	}
6710 
6711 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6712 
6713 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6714 	if (ret)
6715 		return;
6716 
6717 	if (event->ctx->task)
6718 		perf_output_put(&handle, se->event_id.header);
6719 	else
6720 		perf_output_put(&handle, se->event_id);
6721 
6722 	perf_event__output_id_sample(event, &handle, &sample);
6723 
6724 	perf_output_end(&handle);
6725 }
6726 
6727 static void perf_event_switch(struct task_struct *task,
6728 			      struct task_struct *next_prev, bool sched_in)
6729 {
6730 	struct perf_switch_event switch_event;
6731 
6732 	/* N.B. caller checks nr_switch_events != 0 */
6733 
6734 	switch_event = (struct perf_switch_event){
6735 		.task		= task,
6736 		.next_prev	= next_prev,
6737 		.event_id	= {
6738 			.header = {
6739 				/* .type */
6740 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6741 				/* .size */
6742 			},
6743 			/* .next_prev_pid */
6744 			/* .next_prev_tid */
6745 		},
6746 	};
6747 
6748 	perf_event_aux(perf_event_switch_output,
6749 		       &switch_event,
6750 		       NULL);
6751 }
6752 
6753 /*
6754  * IRQ throttle logging
6755  */
6756 
6757 static void perf_log_throttle(struct perf_event *event, int enable)
6758 {
6759 	struct perf_output_handle handle;
6760 	struct perf_sample_data sample;
6761 	int ret;
6762 
6763 	struct {
6764 		struct perf_event_header	header;
6765 		u64				time;
6766 		u64				id;
6767 		u64				stream_id;
6768 	} throttle_event = {
6769 		.header = {
6770 			.type = PERF_RECORD_THROTTLE,
6771 			.misc = 0,
6772 			.size = sizeof(throttle_event),
6773 		},
6774 		.time		= perf_event_clock(event),
6775 		.id		= primary_event_id(event),
6776 		.stream_id	= event->id,
6777 	};
6778 
6779 	if (enable)
6780 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6781 
6782 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6783 
6784 	ret = perf_output_begin(&handle, event,
6785 				throttle_event.header.size);
6786 	if (ret)
6787 		return;
6788 
6789 	perf_output_put(&handle, throttle_event);
6790 	perf_event__output_id_sample(event, &handle, &sample);
6791 	perf_output_end(&handle);
6792 }
6793 
6794 static void perf_log_itrace_start(struct perf_event *event)
6795 {
6796 	struct perf_output_handle handle;
6797 	struct perf_sample_data sample;
6798 	struct perf_aux_event {
6799 		struct perf_event_header        header;
6800 		u32				pid;
6801 		u32				tid;
6802 	} rec;
6803 	int ret;
6804 
6805 	if (event->parent)
6806 		event = event->parent;
6807 
6808 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6809 	    event->hw.itrace_started)
6810 		return;
6811 
6812 	rec.header.type	= PERF_RECORD_ITRACE_START;
6813 	rec.header.misc	= 0;
6814 	rec.header.size	= sizeof(rec);
6815 	rec.pid	= perf_event_pid(event, current);
6816 	rec.tid	= perf_event_tid(event, current);
6817 
6818 	perf_event_header__init_id(&rec.header, &sample, event);
6819 	ret = perf_output_begin(&handle, event, rec.header.size);
6820 
6821 	if (ret)
6822 		return;
6823 
6824 	perf_output_put(&handle, rec);
6825 	perf_event__output_id_sample(event, &handle, &sample);
6826 
6827 	perf_output_end(&handle);
6828 }
6829 
6830 /*
6831  * Generic event overflow handling, sampling.
6832  */
6833 
6834 static int __perf_event_overflow(struct perf_event *event,
6835 				   int throttle, struct perf_sample_data *data,
6836 				   struct pt_regs *regs)
6837 {
6838 	int events = atomic_read(&event->event_limit);
6839 	struct hw_perf_event *hwc = &event->hw;
6840 	u64 seq;
6841 	int ret = 0;
6842 
6843 	/*
6844 	 * Non-sampling counters might still use the PMI to fold short
6845 	 * hardware counters, ignore those.
6846 	 */
6847 	if (unlikely(!is_sampling_event(event)))
6848 		return 0;
6849 
6850 	seq = __this_cpu_read(perf_throttled_seq);
6851 	if (seq != hwc->interrupts_seq) {
6852 		hwc->interrupts_seq = seq;
6853 		hwc->interrupts = 1;
6854 	} else {
6855 		hwc->interrupts++;
6856 		if (unlikely(throttle
6857 			     && hwc->interrupts >= max_samples_per_tick)) {
6858 			__this_cpu_inc(perf_throttled_count);
6859 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6860 			hwc->interrupts = MAX_INTERRUPTS;
6861 			perf_log_throttle(event, 0);
6862 			ret = 1;
6863 		}
6864 	}
6865 
6866 	if (event->attr.freq) {
6867 		u64 now = perf_clock();
6868 		s64 delta = now - hwc->freq_time_stamp;
6869 
6870 		hwc->freq_time_stamp = now;
6871 
6872 		if (delta > 0 && delta < 2*TICK_NSEC)
6873 			perf_adjust_period(event, delta, hwc->last_period, true);
6874 	}
6875 
6876 	/*
6877 	 * XXX event_limit might not quite work as expected on inherited
6878 	 * events
6879 	 */
6880 
6881 	event->pending_kill = POLL_IN;
6882 	if (events && atomic_dec_and_test(&event->event_limit)) {
6883 		ret = 1;
6884 		event->pending_kill = POLL_HUP;
6885 		event->pending_disable = 1;
6886 		irq_work_queue(&event->pending);
6887 	}
6888 
6889 	event->overflow_handler(event, data, regs);
6890 
6891 	if (*perf_event_fasync(event) && event->pending_kill) {
6892 		event->pending_wakeup = 1;
6893 		irq_work_queue(&event->pending);
6894 	}
6895 
6896 	return ret;
6897 }
6898 
6899 int perf_event_overflow(struct perf_event *event,
6900 			  struct perf_sample_data *data,
6901 			  struct pt_regs *regs)
6902 {
6903 	return __perf_event_overflow(event, 1, data, regs);
6904 }
6905 
6906 /*
6907  * Generic software event infrastructure
6908  */
6909 
6910 struct swevent_htable {
6911 	struct swevent_hlist		*swevent_hlist;
6912 	struct mutex			hlist_mutex;
6913 	int				hlist_refcount;
6914 
6915 	/* Recursion avoidance in each contexts */
6916 	int				recursion[PERF_NR_CONTEXTS];
6917 };
6918 
6919 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6920 
6921 /*
6922  * We directly increment event->count and keep a second value in
6923  * event->hw.period_left to count intervals. This period event
6924  * is kept in the range [-sample_period, 0] so that we can use the
6925  * sign as trigger.
6926  */
6927 
6928 u64 perf_swevent_set_period(struct perf_event *event)
6929 {
6930 	struct hw_perf_event *hwc = &event->hw;
6931 	u64 period = hwc->last_period;
6932 	u64 nr, offset;
6933 	s64 old, val;
6934 
6935 	hwc->last_period = hwc->sample_period;
6936 
6937 again:
6938 	old = val = local64_read(&hwc->period_left);
6939 	if (val < 0)
6940 		return 0;
6941 
6942 	nr = div64_u64(period + val, period);
6943 	offset = nr * period;
6944 	val -= offset;
6945 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6946 		goto again;
6947 
6948 	return nr;
6949 }
6950 
6951 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6952 				    struct perf_sample_data *data,
6953 				    struct pt_regs *regs)
6954 {
6955 	struct hw_perf_event *hwc = &event->hw;
6956 	int throttle = 0;
6957 
6958 	if (!overflow)
6959 		overflow = perf_swevent_set_period(event);
6960 
6961 	if (hwc->interrupts == MAX_INTERRUPTS)
6962 		return;
6963 
6964 	for (; overflow; overflow--) {
6965 		if (__perf_event_overflow(event, throttle,
6966 					    data, regs)) {
6967 			/*
6968 			 * We inhibit the overflow from happening when
6969 			 * hwc->interrupts == MAX_INTERRUPTS.
6970 			 */
6971 			break;
6972 		}
6973 		throttle = 1;
6974 	}
6975 }
6976 
6977 static void perf_swevent_event(struct perf_event *event, u64 nr,
6978 			       struct perf_sample_data *data,
6979 			       struct pt_regs *regs)
6980 {
6981 	struct hw_perf_event *hwc = &event->hw;
6982 
6983 	local64_add(nr, &event->count);
6984 
6985 	if (!regs)
6986 		return;
6987 
6988 	if (!is_sampling_event(event))
6989 		return;
6990 
6991 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6992 		data->period = nr;
6993 		return perf_swevent_overflow(event, 1, data, regs);
6994 	} else
6995 		data->period = event->hw.last_period;
6996 
6997 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6998 		return perf_swevent_overflow(event, 1, data, regs);
6999 
7000 	if (local64_add_negative(nr, &hwc->period_left))
7001 		return;
7002 
7003 	perf_swevent_overflow(event, 0, data, regs);
7004 }
7005 
7006 static int perf_exclude_event(struct perf_event *event,
7007 			      struct pt_regs *regs)
7008 {
7009 	if (event->hw.state & PERF_HES_STOPPED)
7010 		return 1;
7011 
7012 	if (regs) {
7013 		if (event->attr.exclude_user && user_mode(regs))
7014 			return 1;
7015 
7016 		if (event->attr.exclude_kernel && !user_mode(regs))
7017 			return 1;
7018 	}
7019 
7020 	return 0;
7021 }
7022 
7023 static int perf_swevent_match(struct perf_event *event,
7024 				enum perf_type_id type,
7025 				u32 event_id,
7026 				struct perf_sample_data *data,
7027 				struct pt_regs *regs)
7028 {
7029 	if (event->attr.type != type)
7030 		return 0;
7031 
7032 	if (event->attr.config != event_id)
7033 		return 0;
7034 
7035 	if (perf_exclude_event(event, regs))
7036 		return 0;
7037 
7038 	return 1;
7039 }
7040 
7041 static inline u64 swevent_hash(u64 type, u32 event_id)
7042 {
7043 	u64 val = event_id | (type << 32);
7044 
7045 	return hash_64(val, SWEVENT_HLIST_BITS);
7046 }
7047 
7048 static inline struct hlist_head *
7049 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7050 {
7051 	u64 hash = swevent_hash(type, event_id);
7052 
7053 	return &hlist->heads[hash];
7054 }
7055 
7056 /* For the read side: events when they trigger */
7057 static inline struct hlist_head *
7058 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7059 {
7060 	struct swevent_hlist *hlist;
7061 
7062 	hlist = rcu_dereference(swhash->swevent_hlist);
7063 	if (!hlist)
7064 		return NULL;
7065 
7066 	return __find_swevent_head(hlist, type, event_id);
7067 }
7068 
7069 /* For the event head insertion and removal in the hlist */
7070 static inline struct hlist_head *
7071 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7072 {
7073 	struct swevent_hlist *hlist;
7074 	u32 event_id = event->attr.config;
7075 	u64 type = event->attr.type;
7076 
7077 	/*
7078 	 * Event scheduling is always serialized against hlist allocation
7079 	 * and release. Which makes the protected version suitable here.
7080 	 * The context lock guarantees that.
7081 	 */
7082 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7083 					  lockdep_is_held(&event->ctx->lock));
7084 	if (!hlist)
7085 		return NULL;
7086 
7087 	return __find_swevent_head(hlist, type, event_id);
7088 }
7089 
7090 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7091 				    u64 nr,
7092 				    struct perf_sample_data *data,
7093 				    struct pt_regs *regs)
7094 {
7095 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7096 	struct perf_event *event;
7097 	struct hlist_head *head;
7098 
7099 	rcu_read_lock();
7100 	head = find_swevent_head_rcu(swhash, type, event_id);
7101 	if (!head)
7102 		goto end;
7103 
7104 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7105 		if (perf_swevent_match(event, type, event_id, data, regs))
7106 			perf_swevent_event(event, nr, data, regs);
7107 	}
7108 end:
7109 	rcu_read_unlock();
7110 }
7111 
7112 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7113 
7114 int perf_swevent_get_recursion_context(void)
7115 {
7116 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7117 
7118 	return get_recursion_context(swhash->recursion);
7119 }
7120 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7121 
7122 void perf_swevent_put_recursion_context(int rctx)
7123 {
7124 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7125 
7126 	put_recursion_context(swhash->recursion, rctx);
7127 }
7128 
7129 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7130 {
7131 	struct perf_sample_data data;
7132 
7133 	if (WARN_ON_ONCE(!regs))
7134 		return;
7135 
7136 	perf_sample_data_init(&data, addr, 0);
7137 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7138 }
7139 
7140 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7141 {
7142 	int rctx;
7143 
7144 	preempt_disable_notrace();
7145 	rctx = perf_swevent_get_recursion_context();
7146 	if (unlikely(rctx < 0))
7147 		goto fail;
7148 
7149 	___perf_sw_event(event_id, nr, regs, addr);
7150 
7151 	perf_swevent_put_recursion_context(rctx);
7152 fail:
7153 	preempt_enable_notrace();
7154 }
7155 
7156 static void perf_swevent_read(struct perf_event *event)
7157 {
7158 }
7159 
7160 static int perf_swevent_add(struct perf_event *event, int flags)
7161 {
7162 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7163 	struct hw_perf_event *hwc = &event->hw;
7164 	struct hlist_head *head;
7165 
7166 	if (is_sampling_event(event)) {
7167 		hwc->last_period = hwc->sample_period;
7168 		perf_swevent_set_period(event);
7169 	}
7170 
7171 	hwc->state = !(flags & PERF_EF_START);
7172 
7173 	head = find_swevent_head(swhash, event);
7174 	if (WARN_ON_ONCE(!head))
7175 		return -EINVAL;
7176 
7177 	hlist_add_head_rcu(&event->hlist_entry, head);
7178 	perf_event_update_userpage(event);
7179 
7180 	return 0;
7181 }
7182 
7183 static void perf_swevent_del(struct perf_event *event, int flags)
7184 {
7185 	hlist_del_rcu(&event->hlist_entry);
7186 }
7187 
7188 static void perf_swevent_start(struct perf_event *event, int flags)
7189 {
7190 	event->hw.state = 0;
7191 }
7192 
7193 static void perf_swevent_stop(struct perf_event *event, int flags)
7194 {
7195 	event->hw.state = PERF_HES_STOPPED;
7196 }
7197 
7198 /* Deref the hlist from the update side */
7199 static inline struct swevent_hlist *
7200 swevent_hlist_deref(struct swevent_htable *swhash)
7201 {
7202 	return rcu_dereference_protected(swhash->swevent_hlist,
7203 					 lockdep_is_held(&swhash->hlist_mutex));
7204 }
7205 
7206 static void swevent_hlist_release(struct swevent_htable *swhash)
7207 {
7208 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7209 
7210 	if (!hlist)
7211 		return;
7212 
7213 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7214 	kfree_rcu(hlist, rcu_head);
7215 }
7216 
7217 static void swevent_hlist_put_cpu(int cpu)
7218 {
7219 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7220 
7221 	mutex_lock(&swhash->hlist_mutex);
7222 
7223 	if (!--swhash->hlist_refcount)
7224 		swevent_hlist_release(swhash);
7225 
7226 	mutex_unlock(&swhash->hlist_mutex);
7227 }
7228 
7229 static void swevent_hlist_put(void)
7230 {
7231 	int cpu;
7232 
7233 	for_each_possible_cpu(cpu)
7234 		swevent_hlist_put_cpu(cpu);
7235 }
7236 
7237 static int swevent_hlist_get_cpu(int cpu)
7238 {
7239 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7240 	int err = 0;
7241 
7242 	mutex_lock(&swhash->hlist_mutex);
7243 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7244 		struct swevent_hlist *hlist;
7245 
7246 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7247 		if (!hlist) {
7248 			err = -ENOMEM;
7249 			goto exit;
7250 		}
7251 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7252 	}
7253 	swhash->hlist_refcount++;
7254 exit:
7255 	mutex_unlock(&swhash->hlist_mutex);
7256 
7257 	return err;
7258 }
7259 
7260 static int swevent_hlist_get(void)
7261 {
7262 	int err, cpu, failed_cpu;
7263 
7264 	get_online_cpus();
7265 	for_each_possible_cpu(cpu) {
7266 		err = swevent_hlist_get_cpu(cpu);
7267 		if (err) {
7268 			failed_cpu = cpu;
7269 			goto fail;
7270 		}
7271 	}
7272 	put_online_cpus();
7273 
7274 	return 0;
7275 fail:
7276 	for_each_possible_cpu(cpu) {
7277 		if (cpu == failed_cpu)
7278 			break;
7279 		swevent_hlist_put_cpu(cpu);
7280 	}
7281 
7282 	put_online_cpus();
7283 	return err;
7284 }
7285 
7286 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7287 
7288 static void sw_perf_event_destroy(struct perf_event *event)
7289 {
7290 	u64 event_id = event->attr.config;
7291 
7292 	WARN_ON(event->parent);
7293 
7294 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7295 	swevent_hlist_put();
7296 }
7297 
7298 static int perf_swevent_init(struct perf_event *event)
7299 {
7300 	u64 event_id = event->attr.config;
7301 
7302 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7303 		return -ENOENT;
7304 
7305 	/*
7306 	 * no branch sampling for software events
7307 	 */
7308 	if (has_branch_stack(event))
7309 		return -EOPNOTSUPP;
7310 
7311 	switch (event_id) {
7312 	case PERF_COUNT_SW_CPU_CLOCK:
7313 	case PERF_COUNT_SW_TASK_CLOCK:
7314 		return -ENOENT;
7315 
7316 	default:
7317 		break;
7318 	}
7319 
7320 	if (event_id >= PERF_COUNT_SW_MAX)
7321 		return -ENOENT;
7322 
7323 	if (!event->parent) {
7324 		int err;
7325 
7326 		err = swevent_hlist_get();
7327 		if (err)
7328 			return err;
7329 
7330 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7331 		event->destroy = sw_perf_event_destroy;
7332 	}
7333 
7334 	return 0;
7335 }
7336 
7337 static struct pmu perf_swevent = {
7338 	.task_ctx_nr	= perf_sw_context,
7339 
7340 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7341 
7342 	.event_init	= perf_swevent_init,
7343 	.add		= perf_swevent_add,
7344 	.del		= perf_swevent_del,
7345 	.start		= perf_swevent_start,
7346 	.stop		= perf_swevent_stop,
7347 	.read		= perf_swevent_read,
7348 };
7349 
7350 #ifdef CONFIG_EVENT_TRACING
7351 
7352 static int perf_tp_filter_match(struct perf_event *event,
7353 				struct perf_sample_data *data)
7354 {
7355 	void *record = data->raw->data;
7356 
7357 	/* only top level events have filters set */
7358 	if (event->parent)
7359 		event = event->parent;
7360 
7361 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7362 		return 1;
7363 	return 0;
7364 }
7365 
7366 static int perf_tp_event_match(struct perf_event *event,
7367 				struct perf_sample_data *data,
7368 				struct pt_regs *regs)
7369 {
7370 	if (event->hw.state & PERF_HES_STOPPED)
7371 		return 0;
7372 	/*
7373 	 * All tracepoints are from kernel-space.
7374 	 */
7375 	if (event->attr.exclude_kernel)
7376 		return 0;
7377 
7378 	if (!perf_tp_filter_match(event, data))
7379 		return 0;
7380 
7381 	return 1;
7382 }
7383 
7384 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7385 			       struct trace_event_call *call, u64 count,
7386 			       struct pt_regs *regs, struct hlist_head *head,
7387 			       struct task_struct *task)
7388 {
7389 	struct bpf_prog *prog = call->prog;
7390 
7391 	if (prog) {
7392 		*(struct pt_regs **)raw_data = regs;
7393 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7394 			perf_swevent_put_recursion_context(rctx);
7395 			return;
7396 		}
7397 	}
7398 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7399 		      rctx, task);
7400 }
7401 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7402 
7403 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7404 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7405 		   struct task_struct *task)
7406 {
7407 	struct perf_sample_data data;
7408 	struct perf_event *event;
7409 
7410 	struct perf_raw_record raw = {
7411 		.size = entry_size,
7412 		.data = record,
7413 	};
7414 
7415 	perf_sample_data_init(&data, 0, 0);
7416 	data.raw = &raw;
7417 
7418 	perf_trace_buf_update(record, event_type);
7419 
7420 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7421 		if (perf_tp_event_match(event, &data, regs))
7422 			perf_swevent_event(event, count, &data, regs);
7423 	}
7424 
7425 	/*
7426 	 * If we got specified a target task, also iterate its context and
7427 	 * deliver this event there too.
7428 	 */
7429 	if (task && task != current) {
7430 		struct perf_event_context *ctx;
7431 		struct trace_entry *entry = record;
7432 
7433 		rcu_read_lock();
7434 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7435 		if (!ctx)
7436 			goto unlock;
7437 
7438 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7439 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7440 				continue;
7441 			if (event->attr.config != entry->type)
7442 				continue;
7443 			if (perf_tp_event_match(event, &data, regs))
7444 				perf_swevent_event(event, count, &data, regs);
7445 		}
7446 unlock:
7447 		rcu_read_unlock();
7448 	}
7449 
7450 	perf_swevent_put_recursion_context(rctx);
7451 }
7452 EXPORT_SYMBOL_GPL(perf_tp_event);
7453 
7454 static void tp_perf_event_destroy(struct perf_event *event)
7455 {
7456 	perf_trace_destroy(event);
7457 }
7458 
7459 static int perf_tp_event_init(struct perf_event *event)
7460 {
7461 	int err;
7462 
7463 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7464 		return -ENOENT;
7465 
7466 	/*
7467 	 * no branch sampling for tracepoint events
7468 	 */
7469 	if (has_branch_stack(event))
7470 		return -EOPNOTSUPP;
7471 
7472 	err = perf_trace_init(event);
7473 	if (err)
7474 		return err;
7475 
7476 	event->destroy = tp_perf_event_destroy;
7477 
7478 	return 0;
7479 }
7480 
7481 static struct pmu perf_tracepoint = {
7482 	.task_ctx_nr	= perf_sw_context,
7483 
7484 	.event_init	= perf_tp_event_init,
7485 	.add		= perf_trace_add,
7486 	.del		= perf_trace_del,
7487 	.start		= perf_swevent_start,
7488 	.stop		= perf_swevent_stop,
7489 	.read		= perf_swevent_read,
7490 };
7491 
7492 static inline void perf_tp_register(void)
7493 {
7494 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7495 }
7496 
7497 static void perf_event_free_filter(struct perf_event *event)
7498 {
7499 	ftrace_profile_free_filter(event);
7500 }
7501 
7502 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7503 {
7504 	bool is_kprobe, is_tracepoint;
7505 	struct bpf_prog *prog;
7506 
7507 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7508 		return -EINVAL;
7509 
7510 	if (event->tp_event->prog)
7511 		return -EEXIST;
7512 
7513 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7514 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7515 	if (!is_kprobe && !is_tracepoint)
7516 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7517 		return -EINVAL;
7518 
7519 	prog = bpf_prog_get(prog_fd);
7520 	if (IS_ERR(prog))
7521 		return PTR_ERR(prog);
7522 
7523 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7524 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7525 		/* valid fd, but invalid bpf program type */
7526 		bpf_prog_put(prog);
7527 		return -EINVAL;
7528 	}
7529 
7530 	if (is_tracepoint) {
7531 		int off = trace_event_get_offsets(event->tp_event);
7532 
7533 		if (prog->aux->max_ctx_offset > off) {
7534 			bpf_prog_put(prog);
7535 			return -EACCES;
7536 		}
7537 	}
7538 	event->tp_event->prog = prog;
7539 
7540 	return 0;
7541 }
7542 
7543 static void perf_event_free_bpf_prog(struct perf_event *event)
7544 {
7545 	struct bpf_prog *prog;
7546 
7547 	if (!event->tp_event)
7548 		return;
7549 
7550 	prog = event->tp_event->prog;
7551 	if (prog) {
7552 		event->tp_event->prog = NULL;
7553 		bpf_prog_put_rcu(prog);
7554 	}
7555 }
7556 
7557 #else
7558 
7559 static inline void perf_tp_register(void)
7560 {
7561 }
7562 
7563 static void perf_event_free_filter(struct perf_event *event)
7564 {
7565 }
7566 
7567 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7568 {
7569 	return -ENOENT;
7570 }
7571 
7572 static void perf_event_free_bpf_prog(struct perf_event *event)
7573 {
7574 }
7575 #endif /* CONFIG_EVENT_TRACING */
7576 
7577 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7578 void perf_bp_event(struct perf_event *bp, void *data)
7579 {
7580 	struct perf_sample_data sample;
7581 	struct pt_regs *regs = data;
7582 
7583 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7584 
7585 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7586 		perf_swevent_event(bp, 1, &sample, regs);
7587 }
7588 #endif
7589 
7590 /*
7591  * Allocate a new address filter
7592  */
7593 static struct perf_addr_filter *
7594 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7595 {
7596 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7597 	struct perf_addr_filter *filter;
7598 
7599 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7600 	if (!filter)
7601 		return NULL;
7602 
7603 	INIT_LIST_HEAD(&filter->entry);
7604 	list_add_tail(&filter->entry, filters);
7605 
7606 	return filter;
7607 }
7608 
7609 static void free_filters_list(struct list_head *filters)
7610 {
7611 	struct perf_addr_filter *filter, *iter;
7612 
7613 	list_for_each_entry_safe(filter, iter, filters, entry) {
7614 		if (filter->inode)
7615 			iput(filter->inode);
7616 		list_del(&filter->entry);
7617 		kfree(filter);
7618 	}
7619 }
7620 
7621 /*
7622  * Free existing address filters and optionally install new ones
7623  */
7624 static void perf_addr_filters_splice(struct perf_event *event,
7625 				     struct list_head *head)
7626 {
7627 	unsigned long flags;
7628 	LIST_HEAD(list);
7629 
7630 	if (!has_addr_filter(event))
7631 		return;
7632 
7633 	/* don't bother with children, they don't have their own filters */
7634 	if (event->parent)
7635 		return;
7636 
7637 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7638 
7639 	list_splice_init(&event->addr_filters.list, &list);
7640 	if (head)
7641 		list_splice(head, &event->addr_filters.list);
7642 
7643 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7644 
7645 	free_filters_list(&list);
7646 }
7647 
7648 /*
7649  * Scan through mm's vmas and see if one of them matches the
7650  * @filter; if so, adjust filter's address range.
7651  * Called with mm::mmap_sem down for reading.
7652  */
7653 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7654 					    struct mm_struct *mm)
7655 {
7656 	struct vm_area_struct *vma;
7657 
7658 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7659 		struct file *file = vma->vm_file;
7660 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7661 		unsigned long vma_size = vma->vm_end - vma->vm_start;
7662 
7663 		if (!file)
7664 			continue;
7665 
7666 		if (!perf_addr_filter_match(filter, file, off, vma_size))
7667 			continue;
7668 
7669 		return vma->vm_start;
7670 	}
7671 
7672 	return 0;
7673 }
7674 
7675 /*
7676  * Update event's address range filters based on the
7677  * task's existing mappings, if any.
7678  */
7679 static void perf_event_addr_filters_apply(struct perf_event *event)
7680 {
7681 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7682 	struct task_struct *task = READ_ONCE(event->ctx->task);
7683 	struct perf_addr_filter *filter;
7684 	struct mm_struct *mm = NULL;
7685 	unsigned int count = 0;
7686 	unsigned long flags;
7687 
7688 	/*
7689 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7690 	 * will stop on the parent's child_mutex that our caller is also holding
7691 	 */
7692 	if (task == TASK_TOMBSTONE)
7693 		return;
7694 
7695 	mm = get_task_mm(event->ctx->task);
7696 	if (!mm)
7697 		goto restart;
7698 
7699 	down_read(&mm->mmap_sem);
7700 
7701 	raw_spin_lock_irqsave(&ifh->lock, flags);
7702 	list_for_each_entry(filter, &ifh->list, entry) {
7703 		event->addr_filters_offs[count] = 0;
7704 
7705 		if (perf_addr_filter_needs_mmap(filter))
7706 			event->addr_filters_offs[count] =
7707 				perf_addr_filter_apply(filter, mm);
7708 
7709 		count++;
7710 	}
7711 
7712 	event->addr_filters_gen++;
7713 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7714 
7715 	up_read(&mm->mmap_sem);
7716 
7717 	mmput(mm);
7718 
7719 restart:
7720 	perf_event_restart(event);
7721 }
7722 
7723 /*
7724  * Address range filtering: limiting the data to certain
7725  * instruction address ranges. Filters are ioctl()ed to us from
7726  * userspace as ascii strings.
7727  *
7728  * Filter string format:
7729  *
7730  * ACTION RANGE_SPEC
7731  * where ACTION is one of the
7732  *  * "filter": limit the trace to this region
7733  *  * "start": start tracing from this address
7734  *  * "stop": stop tracing at this address/region;
7735  * RANGE_SPEC is
7736  *  * for kernel addresses: <start address>[/<size>]
7737  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7738  *
7739  * if <size> is not specified, the range is treated as a single address.
7740  */
7741 enum {
7742 	IF_ACT_FILTER,
7743 	IF_ACT_START,
7744 	IF_ACT_STOP,
7745 	IF_SRC_FILE,
7746 	IF_SRC_KERNEL,
7747 	IF_SRC_FILEADDR,
7748 	IF_SRC_KERNELADDR,
7749 };
7750 
7751 enum {
7752 	IF_STATE_ACTION = 0,
7753 	IF_STATE_SOURCE,
7754 	IF_STATE_END,
7755 };
7756 
7757 static const match_table_t if_tokens = {
7758 	{ IF_ACT_FILTER,	"filter" },
7759 	{ IF_ACT_START,		"start" },
7760 	{ IF_ACT_STOP,		"stop" },
7761 	{ IF_SRC_FILE,		"%u/%u@%s" },
7762 	{ IF_SRC_KERNEL,	"%u/%u" },
7763 	{ IF_SRC_FILEADDR,	"%u@%s" },
7764 	{ IF_SRC_KERNELADDR,	"%u" },
7765 };
7766 
7767 /*
7768  * Address filter string parser
7769  */
7770 static int
7771 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7772 			     struct list_head *filters)
7773 {
7774 	struct perf_addr_filter *filter = NULL;
7775 	char *start, *orig, *filename = NULL;
7776 	struct path path;
7777 	substring_t args[MAX_OPT_ARGS];
7778 	int state = IF_STATE_ACTION, token;
7779 	unsigned int kernel = 0;
7780 	int ret = -EINVAL;
7781 
7782 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
7783 	if (!fstr)
7784 		return -ENOMEM;
7785 
7786 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
7787 		ret = -EINVAL;
7788 
7789 		if (!*start)
7790 			continue;
7791 
7792 		/* filter definition begins */
7793 		if (state == IF_STATE_ACTION) {
7794 			filter = perf_addr_filter_new(event, filters);
7795 			if (!filter)
7796 				goto fail;
7797 		}
7798 
7799 		token = match_token(start, if_tokens, args);
7800 		switch (token) {
7801 		case IF_ACT_FILTER:
7802 		case IF_ACT_START:
7803 			filter->filter = 1;
7804 
7805 		case IF_ACT_STOP:
7806 			if (state != IF_STATE_ACTION)
7807 				goto fail;
7808 
7809 			state = IF_STATE_SOURCE;
7810 			break;
7811 
7812 		case IF_SRC_KERNELADDR:
7813 		case IF_SRC_KERNEL:
7814 			kernel = 1;
7815 
7816 		case IF_SRC_FILEADDR:
7817 		case IF_SRC_FILE:
7818 			if (state != IF_STATE_SOURCE)
7819 				goto fail;
7820 
7821 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7822 				filter->range = 1;
7823 
7824 			*args[0].to = 0;
7825 			ret = kstrtoul(args[0].from, 0, &filter->offset);
7826 			if (ret)
7827 				goto fail;
7828 
7829 			if (filter->range) {
7830 				*args[1].to = 0;
7831 				ret = kstrtoul(args[1].from, 0, &filter->size);
7832 				if (ret)
7833 					goto fail;
7834 			}
7835 
7836 			if (token == IF_SRC_FILE) {
7837 				filename = match_strdup(&args[2]);
7838 				if (!filename) {
7839 					ret = -ENOMEM;
7840 					goto fail;
7841 				}
7842 			}
7843 
7844 			state = IF_STATE_END;
7845 			break;
7846 
7847 		default:
7848 			goto fail;
7849 		}
7850 
7851 		/*
7852 		 * Filter definition is fully parsed, validate and install it.
7853 		 * Make sure that it doesn't contradict itself or the event's
7854 		 * attribute.
7855 		 */
7856 		if (state == IF_STATE_END) {
7857 			if (kernel && event->attr.exclude_kernel)
7858 				goto fail;
7859 
7860 			if (!kernel) {
7861 				if (!filename)
7862 					goto fail;
7863 
7864 				/* look up the path and grab its inode */
7865 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7866 				if (ret)
7867 					goto fail_free_name;
7868 
7869 				filter->inode = igrab(d_inode(path.dentry));
7870 				path_put(&path);
7871 				kfree(filename);
7872 				filename = NULL;
7873 
7874 				ret = -EINVAL;
7875 				if (!filter->inode ||
7876 				    !S_ISREG(filter->inode->i_mode))
7877 					/* free_filters_list() will iput() */
7878 					goto fail;
7879 			}
7880 
7881 			/* ready to consume more filters */
7882 			state = IF_STATE_ACTION;
7883 			filter = NULL;
7884 		}
7885 	}
7886 
7887 	if (state != IF_STATE_ACTION)
7888 		goto fail;
7889 
7890 	kfree(orig);
7891 
7892 	return 0;
7893 
7894 fail_free_name:
7895 	kfree(filename);
7896 fail:
7897 	free_filters_list(filters);
7898 	kfree(orig);
7899 
7900 	return ret;
7901 }
7902 
7903 static int
7904 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7905 {
7906 	LIST_HEAD(filters);
7907 	int ret;
7908 
7909 	/*
7910 	 * Since this is called in perf_ioctl() path, we're already holding
7911 	 * ctx::mutex.
7912 	 */
7913 	lockdep_assert_held(&event->ctx->mutex);
7914 
7915 	if (WARN_ON_ONCE(event->parent))
7916 		return -EINVAL;
7917 
7918 	/*
7919 	 * For now, we only support filtering in per-task events; doing so
7920 	 * for CPU-wide events requires additional context switching trickery,
7921 	 * since same object code will be mapped at different virtual
7922 	 * addresses in different processes.
7923 	 */
7924 	if (!event->ctx->task)
7925 		return -EOPNOTSUPP;
7926 
7927 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7928 	if (ret)
7929 		return ret;
7930 
7931 	ret = event->pmu->addr_filters_validate(&filters);
7932 	if (ret) {
7933 		free_filters_list(&filters);
7934 		return ret;
7935 	}
7936 
7937 	/* remove existing filters, if any */
7938 	perf_addr_filters_splice(event, &filters);
7939 
7940 	/* install new filters */
7941 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
7942 
7943 	return ret;
7944 }
7945 
7946 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7947 {
7948 	char *filter_str;
7949 	int ret = -EINVAL;
7950 
7951 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7952 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7953 	    !has_addr_filter(event))
7954 		return -EINVAL;
7955 
7956 	filter_str = strndup_user(arg, PAGE_SIZE);
7957 	if (IS_ERR(filter_str))
7958 		return PTR_ERR(filter_str);
7959 
7960 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7961 	    event->attr.type == PERF_TYPE_TRACEPOINT)
7962 		ret = ftrace_profile_set_filter(event, event->attr.config,
7963 						filter_str);
7964 	else if (has_addr_filter(event))
7965 		ret = perf_event_set_addr_filter(event, filter_str);
7966 
7967 	kfree(filter_str);
7968 	return ret;
7969 }
7970 
7971 /*
7972  * hrtimer based swevent callback
7973  */
7974 
7975 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7976 {
7977 	enum hrtimer_restart ret = HRTIMER_RESTART;
7978 	struct perf_sample_data data;
7979 	struct pt_regs *regs;
7980 	struct perf_event *event;
7981 	u64 period;
7982 
7983 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7984 
7985 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7986 		return HRTIMER_NORESTART;
7987 
7988 	event->pmu->read(event);
7989 
7990 	perf_sample_data_init(&data, 0, event->hw.last_period);
7991 	regs = get_irq_regs();
7992 
7993 	if (regs && !perf_exclude_event(event, regs)) {
7994 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7995 			if (__perf_event_overflow(event, 1, &data, regs))
7996 				ret = HRTIMER_NORESTART;
7997 	}
7998 
7999 	period = max_t(u64, 10000, event->hw.sample_period);
8000 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8001 
8002 	return ret;
8003 }
8004 
8005 static void perf_swevent_start_hrtimer(struct perf_event *event)
8006 {
8007 	struct hw_perf_event *hwc = &event->hw;
8008 	s64 period;
8009 
8010 	if (!is_sampling_event(event))
8011 		return;
8012 
8013 	period = local64_read(&hwc->period_left);
8014 	if (period) {
8015 		if (period < 0)
8016 			period = 10000;
8017 
8018 		local64_set(&hwc->period_left, 0);
8019 	} else {
8020 		period = max_t(u64, 10000, hwc->sample_period);
8021 	}
8022 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8023 		      HRTIMER_MODE_REL_PINNED);
8024 }
8025 
8026 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8027 {
8028 	struct hw_perf_event *hwc = &event->hw;
8029 
8030 	if (is_sampling_event(event)) {
8031 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8032 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8033 
8034 		hrtimer_cancel(&hwc->hrtimer);
8035 	}
8036 }
8037 
8038 static void perf_swevent_init_hrtimer(struct perf_event *event)
8039 {
8040 	struct hw_perf_event *hwc = &event->hw;
8041 
8042 	if (!is_sampling_event(event))
8043 		return;
8044 
8045 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8046 	hwc->hrtimer.function = perf_swevent_hrtimer;
8047 
8048 	/*
8049 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8050 	 * mapping and avoid the whole period adjust feedback stuff.
8051 	 */
8052 	if (event->attr.freq) {
8053 		long freq = event->attr.sample_freq;
8054 
8055 		event->attr.sample_period = NSEC_PER_SEC / freq;
8056 		hwc->sample_period = event->attr.sample_period;
8057 		local64_set(&hwc->period_left, hwc->sample_period);
8058 		hwc->last_period = hwc->sample_period;
8059 		event->attr.freq = 0;
8060 	}
8061 }
8062 
8063 /*
8064  * Software event: cpu wall time clock
8065  */
8066 
8067 static void cpu_clock_event_update(struct perf_event *event)
8068 {
8069 	s64 prev;
8070 	u64 now;
8071 
8072 	now = local_clock();
8073 	prev = local64_xchg(&event->hw.prev_count, now);
8074 	local64_add(now - prev, &event->count);
8075 }
8076 
8077 static void cpu_clock_event_start(struct perf_event *event, int flags)
8078 {
8079 	local64_set(&event->hw.prev_count, local_clock());
8080 	perf_swevent_start_hrtimer(event);
8081 }
8082 
8083 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8084 {
8085 	perf_swevent_cancel_hrtimer(event);
8086 	cpu_clock_event_update(event);
8087 }
8088 
8089 static int cpu_clock_event_add(struct perf_event *event, int flags)
8090 {
8091 	if (flags & PERF_EF_START)
8092 		cpu_clock_event_start(event, flags);
8093 	perf_event_update_userpage(event);
8094 
8095 	return 0;
8096 }
8097 
8098 static void cpu_clock_event_del(struct perf_event *event, int flags)
8099 {
8100 	cpu_clock_event_stop(event, flags);
8101 }
8102 
8103 static void cpu_clock_event_read(struct perf_event *event)
8104 {
8105 	cpu_clock_event_update(event);
8106 }
8107 
8108 static int cpu_clock_event_init(struct perf_event *event)
8109 {
8110 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8111 		return -ENOENT;
8112 
8113 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8114 		return -ENOENT;
8115 
8116 	/*
8117 	 * no branch sampling for software events
8118 	 */
8119 	if (has_branch_stack(event))
8120 		return -EOPNOTSUPP;
8121 
8122 	perf_swevent_init_hrtimer(event);
8123 
8124 	return 0;
8125 }
8126 
8127 static struct pmu perf_cpu_clock = {
8128 	.task_ctx_nr	= perf_sw_context,
8129 
8130 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8131 
8132 	.event_init	= cpu_clock_event_init,
8133 	.add		= cpu_clock_event_add,
8134 	.del		= cpu_clock_event_del,
8135 	.start		= cpu_clock_event_start,
8136 	.stop		= cpu_clock_event_stop,
8137 	.read		= cpu_clock_event_read,
8138 };
8139 
8140 /*
8141  * Software event: task time clock
8142  */
8143 
8144 static void task_clock_event_update(struct perf_event *event, u64 now)
8145 {
8146 	u64 prev;
8147 	s64 delta;
8148 
8149 	prev = local64_xchg(&event->hw.prev_count, now);
8150 	delta = now - prev;
8151 	local64_add(delta, &event->count);
8152 }
8153 
8154 static void task_clock_event_start(struct perf_event *event, int flags)
8155 {
8156 	local64_set(&event->hw.prev_count, event->ctx->time);
8157 	perf_swevent_start_hrtimer(event);
8158 }
8159 
8160 static void task_clock_event_stop(struct perf_event *event, int flags)
8161 {
8162 	perf_swevent_cancel_hrtimer(event);
8163 	task_clock_event_update(event, event->ctx->time);
8164 }
8165 
8166 static int task_clock_event_add(struct perf_event *event, int flags)
8167 {
8168 	if (flags & PERF_EF_START)
8169 		task_clock_event_start(event, flags);
8170 	perf_event_update_userpage(event);
8171 
8172 	return 0;
8173 }
8174 
8175 static void task_clock_event_del(struct perf_event *event, int flags)
8176 {
8177 	task_clock_event_stop(event, PERF_EF_UPDATE);
8178 }
8179 
8180 static void task_clock_event_read(struct perf_event *event)
8181 {
8182 	u64 now = perf_clock();
8183 	u64 delta = now - event->ctx->timestamp;
8184 	u64 time = event->ctx->time + delta;
8185 
8186 	task_clock_event_update(event, time);
8187 }
8188 
8189 static int task_clock_event_init(struct perf_event *event)
8190 {
8191 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8192 		return -ENOENT;
8193 
8194 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8195 		return -ENOENT;
8196 
8197 	/*
8198 	 * no branch sampling for software events
8199 	 */
8200 	if (has_branch_stack(event))
8201 		return -EOPNOTSUPP;
8202 
8203 	perf_swevent_init_hrtimer(event);
8204 
8205 	return 0;
8206 }
8207 
8208 static struct pmu perf_task_clock = {
8209 	.task_ctx_nr	= perf_sw_context,
8210 
8211 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8212 
8213 	.event_init	= task_clock_event_init,
8214 	.add		= task_clock_event_add,
8215 	.del		= task_clock_event_del,
8216 	.start		= task_clock_event_start,
8217 	.stop		= task_clock_event_stop,
8218 	.read		= task_clock_event_read,
8219 };
8220 
8221 static void perf_pmu_nop_void(struct pmu *pmu)
8222 {
8223 }
8224 
8225 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8226 {
8227 }
8228 
8229 static int perf_pmu_nop_int(struct pmu *pmu)
8230 {
8231 	return 0;
8232 }
8233 
8234 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8235 
8236 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8237 {
8238 	__this_cpu_write(nop_txn_flags, flags);
8239 
8240 	if (flags & ~PERF_PMU_TXN_ADD)
8241 		return;
8242 
8243 	perf_pmu_disable(pmu);
8244 }
8245 
8246 static int perf_pmu_commit_txn(struct pmu *pmu)
8247 {
8248 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8249 
8250 	__this_cpu_write(nop_txn_flags, 0);
8251 
8252 	if (flags & ~PERF_PMU_TXN_ADD)
8253 		return 0;
8254 
8255 	perf_pmu_enable(pmu);
8256 	return 0;
8257 }
8258 
8259 static void perf_pmu_cancel_txn(struct pmu *pmu)
8260 {
8261 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8262 
8263 	__this_cpu_write(nop_txn_flags, 0);
8264 
8265 	if (flags & ~PERF_PMU_TXN_ADD)
8266 		return;
8267 
8268 	perf_pmu_enable(pmu);
8269 }
8270 
8271 static int perf_event_idx_default(struct perf_event *event)
8272 {
8273 	return 0;
8274 }
8275 
8276 /*
8277  * Ensures all contexts with the same task_ctx_nr have the same
8278  * pmu_cpu_context too.
8279  */
8280 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8281 {
8282 	struct pmu *pmu;
8283 
8284 	if (ctxn < 0)
8285 		return NULL;
8286 
8287 	list_for_each_entry(pmu, &pmus, entry) {
8288 		if (pmu->task_ctx_nr == ctxn)
8289 			return pmu->pmu_cpu_context;
8290 	}
8291 
8292 	return NULL;
8293 }
8294 
8295 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8296 {
8297 	int cpu;
8298 
8299 	for_each_possible_cpu(cpu) {
8300 		struct perf_cpu_context *cpuctx;
8301 
8302 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8303 
8304 		if (cpuctx->unique_pmu == old_pmu)
8305 			cpuctx->unique_pmu = pmu;
8306 	}
8307 }
8308 
8309 static void free_pmu_context(struct pmu *pmu)
8310 {
8311 	struct pmu *i;
8312 
8313 	mutex_lock(&pmus_lock);
8314 	/*
8315 	 * Like a real lame refcount.
8316 	 */
8317 	list_for_each_entry(i, &pmus, entry) {
8318 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8319 			update_pmu_context(i, pmu);
8320 			goto out;
8321 		}
8322 	}
8323 
8324 	free_percpu(pmu->pmu_cpu_context);
8325 out:
8326 	mutex_unlock(&pmus_lock);
8327 }
8328 
8329 /*
8330  * Let userspace know that this PMU supports address range filtering:
8331  */
8332 static ssize_t nr_addr_filters_show(struct device *dev,
8333 				    struct device_attribute *attr,
8334 				    char *page)
8335 {
8336 	struct pmu *pmu = dev_get_drvdata(dev);
8337 
8338 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8339 }
8340 DEVICE_ATTR_RO(nr_addr_filters);
8341 
8342 static struct idr pmu_idr;
8343 
8344 static ssize_t
8345 type_show(struct device *dev, struct device_attribute *attr, char *page)
8346 {
8347 	struct pmu *pmu = dev_get_drvdata(dev);
8348 
8349 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8350 }
8351 static DEVICE_ATTR_RO(type);
8352 
8353 static ssize_t
8354 perf_event_mux_interval_ms_show(struct device *dev,
8355 				struct device_attribute *attr,
8356 				char *page)
8357 {
8358 	struct pmu *pmu = dev_get_drvdata(dev);
8359 
8360 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8361 }
8362 
8363 static DEFINE_MUTEX(mux_interval_mutex);
8364 
8365 static ssize_t
8366 perf_event_mux_interval_ms_store(struct device *dev,
8367 				 struct device_attribute *attr,
8368 				 const char *buf, size_t count)
8369 {
8370 	struct pmu *pmu = dev_get_drvdata(dev);
8371 	int timer, cpu, ret;
8372 
8373 	ret = kstrtoint(buf, 0, &timer);
8374 	if (ret)
8375 		return ret;
8376 
8377 	if (timer < 1)
8378 		return -EINVAL;
8379 
8380 	/* same value, noting to do */
8381 	if (timer == pmu->hrtimer_interval_ms)
8382 		return count;
8383 
8384 	mutex_lock(&mux_interval_mutex);
8385 	pmu->hrtimer_interval_ms = timer;
8386 
8387 	/* update all cpuctx for this PMU */
8388 	get_online_cpus();
8389 	for_each_online_cpu(cpu) {
8390 		struct perf_cpu_context *cpuctx;
8391 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8392 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8393 
8394 		cpu_function_call(cpu,
8395 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8396 	}
8397 	put_online_cpus();
8398 	mutex_unlock(&mux_interval_mutex);
8399 
8400 	return count;
8401 }
8402 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8403 
8404 static struct attribute *pmu_dev_attrs[] = {
8405 	&dev_attr_type.attr,
8406 	&dev_attr_perf_event_mux_interval_ms.attr,
8407 	NULL,
8408 };
8409 ATTRIBUTE_GROUPS(pmu_dev);
8410 
8411 static int pmu_bus_running;
8412 static struct bus_type pmu_bus = {
8413 	.name		= "event_source",
8414 	.dev_groups	= pmu_dev_groups,
8415 };
8416 
8417 static void pmu_dev_release(struct device *dev)
8418 {
8419 	kfree(dev);
8420 }
8421 
8422 static int pmu_dev_alloc(struct pmu *pmu)
8423 {
8424 	int ret = -ENOMEM;
8425 
8426 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8427 	if (!pmu->dev)
8428 		goto out;
8429 
8430 	pmu->dev->groups = pmu->attr_groups;
8431 	device_initialize(pmu->dev);
8432 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8433 	if (ret)
8434 		goto free_dev;
8435 
8436 	dev_set_drvdata(pmu->dev, pmu);
8437 	pmu->dev->bus = &pmu_bus;
8438 	pmu->dev->release = pmu_dev_release;
8439 	ret = device_add(pmu->dev);
8440 	if (ret)
8441 		goto free_dev;
8442 
8443 	/* For PMUs with address filters, throw in an extra attribute: */
8444 	if (pmu->nr_addr_filters)
8445 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8446 
8447 	if (ret)
8448 		goto del_dev;
8449 
8450 out:
8451 	return ret;
8452 
8453 del_dev:
8454 	device_del(pmu->dev);
8455 
8456 free_dev:
8457 	put_device(pmu->dev);
8458 	goto out;
8459 }
8460 
8461 static struct lock_class_key cpuctx_mutex;
8462 static struct lock_class_key cpuctx_lock;
8463 
8464 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8465 {
8466 	int cpu, ret;
8467 
8468 	mutex_lock(&pmus_lock);
8469 	ret = -ENOMEM;
8470 	pmu->pmu_disable_count = alloc_percpu(int);
8471 	if (!pmu->pmu_disable_count)
8472 		goto unlock;
8473 
8474 	pmu->type = -1;
8475 	if (!name)
8476 		goto skip_type;
8477 	pmu->name = name;
8478 
8479 	if (type < 0) {
8480 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8481 		if (type < 0) {
8482 			ret = type;
8483 			goto free_pdc;
8484 		}
8485 	}
8486 	pmu->type = type;
8487 
8488 	if (pmu_bus_running) {
8489 		ret = pmu_dev_alloc(pmu);
8490 		if (ret)
8491 			goto free_idr;
8492 	}
8493 
8494 skip_type:
8495 	if (pmu->task_ctx_nr == perf_hw_context) {
8496 		static int hw_context_taken = 0;
8497 
8498 		/*
8499 		 * Other than systems with heterogeneous CPUs, it never makes
8500 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8501 		 * uncore must use perf_invalid_context.
8502 		 */
8503 		if (WARN_ON_ONCE(hw_context_taken &&
8504 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8505 			pmu->task_ctx_nr = perf_invalid_context;
8506 
8507 		hw_context_taken = 1;
8508 	}
8509 
8510 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8511 	if (pmu->pmu_cpu_context)
8512 		goto got_cpu_context;
8513 
8514 	ret = -ENOMEM;
8515 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8516 	if (!pmu->pmu_cpu_context)
8517 		goto free_dev;
8518 
8519 	for_each_possible_cpu(cpu) {
8520 		struct perf_cpu_context *cpuctx;
8521 
8522 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8523 		__perf_event_init_context(&cpuctx->ctx);
8524 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8525 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8526 		cpuctx->ctx.pmu = pmu;
8527 
8528 		__perf_mux_hrtimer_init(cpuctx, cpu);
8529 
8530 		cpuctx->unique_pmu = pmu;
8531 	}
8532 
8533 got_cpu_context:
8534 	if (!pmu->start_txn) {
8535 		if (pmu->pmu_enable) {
8536 			/*
8537 			 * If we have pmu_enable/pmu_disable calls, install
8538 			 * transaction stubs that use that to try and batch
8539 			 * hardware accesses.
8540 			 */
8541 			pmu->start_txn  = perf_pmu_start_txn;
8542 			pmu->commit_txn = perf_pmu_commit_txn;
8543 			pmu->cancel_txn = perf_pmu_cancel_txn;
8544 		} else {
8545 			pmu->start_txn  = perf_pmu_nop_txn;
8546 			pmu->commit_txn = perf_pmu_nop_int;
8547 			pmu->cancel_txn = perf_pmu_nop_void;
8548 		}
8549 	}
8550 
8551 	if (!pmu->pmu_enable) {
8552 		pmu->pmu_enable  = perf_pmu_nop_void;
8553 		pmu->pmu_disable = perf_pmu_nop_void;
8554 	}
8555 
8556 	if (!pmu->event_idx)
8557 		pmu->event_idx = perf_event_idx_default;
8558 
8559 	list_add_rcu(&pmu->entry, &pmus);
8560 	atomic_set(&pmu->exclusive_cnt, 0);
8561 	ret = 0;
8562 unlock:
8563 	mutex_unlock(&pmus_lock);
8564 
8565 	return ret;
8566 
8567 free_dev:
8568 	device_del(pmu->dev);
8569 	put_device(pmu->dev);
8570 
8571 free_idr:
8572 	if (pmu->type >= PERF_TYPE_MAX)
8573 		idr_remove(&pmu_idr, pmu->type);
8574 
8575 free_pdc:
8576 	free_percpu(pmu->pmu_disable_count);
8577 	goto unlock;
8578 }
8579 EXPORT_SYMBOL_GPL(perf_pmu_register);
8580 
8581 void perf_pmu_unregister(struct pmu *pmu)
8582 {
8583 	mutex_lock(&pmus_lock);
8584 	list_del_rcu(&pmu->entry);
8585 	mutex_unlock(&pmus_lock);
8586 
8587 	/*
8588 	 * We dereference the pmu list under both SRCU and regular RCU, so
8589 	 * synchronize against both of those.
8590 	 */
8591 	synchronize_srcu(&pmus_srcu);
8592 	synchronize_rcu();
8593 
8594 	free_percpu(pmu->pmu_disable_count);
8595 	if (pmu->type >= PERF_TYPE_MAX)
8596 		idr_remove(&pmu_idr, pmu->type);
8597 	if (pmu->nr_addr_filters)
8598 		device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8599 	device_del(pmu->dev);
8600 	put_device(pmu->dev);
8601 	free_pmu_context(pmu);
8602 }
8603 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8604 
8605 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8606 {
8607 	struct perf_event_context *ctx = NULL;
8608 	int ret;
8609 
8610 	if (!try_module_get(pmu->module))
8611 		return -ENODEV;
8612 
8613 	if (event->group_leader != event) {
8614 		/*
8615 		 * This ctx->mutex can nest when we're called through
8616 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8617 		 */
8618 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8619 						 SINGLE_DEPTH_NESTING);
8620 		BUG_ON(!ctx);
8621 	}
8622 
8623 	event->pmu = pmu;
8624 	ret = pmu->event_init(event);
8625 
8626 	if (ctx)
8627 		perf_event_ctx_unlock(event->group_leader, ctx);
8628 
8629 	if (ret)
8630 		module_put(pmu->module);
8631 
8632 	return ret;
8633 }
8634 
8635 static struct pmu *perf_init_event(struct perf_event *event)
8636 {
8637 	struct pmu *pmu = NULL;
8638 	int idx;
8639 	int ret;
8640 
8641 	idx = srcu_read_lock(&pmus_srcu);
8642 
8643 	rcu_read_lock();
8644 	pmu = idr_find(&pmu_idr, event->attr.type);
8645 	rcu_read_unlock();
8646 	if (pmu) {
8647 		ret = perf_try_init_event(pmu, event);
8648 		if (ret)
8649 			pmu = ERR_PTR(ret);
8650 		goto unlock;
8651 	}
8652 
8653 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8654 		ret = perf_try_init_event(pmu, event);
8655 		if (!ret)
8656 			goto unlock;
8657 
8658 		if (ret != -ENOENT) {
8659 			pmu = ERR_PTR(ret);
8660 			goto unlock;
8661 		}
8662 	}
8663 	pmu = ERR_PTR(-ENOENT);
8664 unlock:
8665 	srcu_read_unlock(&pmus_srcu, idx);
8666 
8667 	return pmu;
8668 }
8669 
8670 static void account_event_cpu(struct perf_event *event, int cpu)
8671 {
8672 	if (event->parent)
8673 		return;
8674 
8675 	if (is_cgroup_event(event))
8676 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8677 }
8678 
8679 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8680 static void account_freq_event_nohz(void)
8681 {
8682 #ifdef CONFIG_NO_HZ_FULL
8683 	/* Lock so we don't race with concurrent unaccount */
8684 	spin_lock(&nr_freq_lock);
8685 	if (atomic_inc_return(&nr_freq_events) == 1)
8686 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8687 	spin_unlock(&nr_freq_lock);
8688 #endif
8689 }
8690 
8691 static void account_freq_event(void)
8692 {
8693 	if (tick_nohz_full_enabled())
8694 		account_freq_event_nohz();
8695 	else
8696 		atomic_inc(&nr_freq_events);
8697 }
8698 
8699 
8700 static void account_event(struct perf_event *event)
8701 {
8702 	bool inc = false;
8703 
8704 	if (event->parent)
8705 		return;
8706 
8707 	if (event->attach_state & PERF_ATTACH_TASK)
8708 		inc = true;
8709 	if (event->attr.mmap || event->attr.mmap_data)
8710 		atomic_inc(&nr_mmap_events);
8711 	if (event->attr.comm)
8712 		atomic_inc(&nr_comm_events);
8713 	if (event->attr.task)
8714 		atomic_inc(&nr_task_events);
8715 	if (event->attr.freq)
8716 		account_freq_event();
8717 	if (event->attr.context_switch) {
8718 		atomic_inc(&nr_switch_events);
8719 		inc = true;
8720 	}
8721 	if (has_branch_stack(event))
8722 		inc = true;
8723 	if (is_cgroup_event(event))
8724 		inc = true;
8725 
8726 	if (inc) {
8727 		if (atomic_inc_not_zero(&perf_sched_count))
8728 			goto enabled;
8729 
8730 		mutex_lock(&perf_sched_mutex);
8731 		if (!atomic_read(&perf_sched_count)) {
8732 			static_branch_enable(&perf_sched_events);
8733 			/*
8734 			 * Guarantee that all CPUs observe they key change and
8735 			 * call the perf scheduling hooks before proceeding to
8736 			 * install events that need them.
8737 			 */
8738 			synchronize_sched();
8739 		}
8740 		/*
8741 		 * Now that we have waited for the sync_sched(), allow further
8742 		 * increments to by-pass the mutex.
8743 		 */
8744 		atomic_inc(&perf_sched_count);
8745 		mutex_unlock(&perf_sched_mutex);
8746 	}
8747 enabled:
8748 
8749 	account_event_cpu(event, event->cpu);
8750 }
8751 
8752 /*
8753  * Allocate and initialize a event structure
8754  */
8755 static struct perf_event *
8756 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8757 		 struct task_struct *task,
8758 		 struct perf_event *group_leader,
8759 		 struct perf_event *parent_event,
8760 		 perf_overflow_handler_t overflow_handler,
8761 		 void *context, int cgroup_fd)
8762 {
8763 	struct pmu *pmu;
8764 	struct perf_event *event;
8765 	struct hw_perf_event *hwc;
8766 	long err = -EINVAL;
8767 
8768 	if ((unsigned)cpu >= nr_cpu_ids) {
8769 		if (!task || cpu != -1)
8770 			return ERR_PTR(-EINVAL);
8771 	}
8772 
8773 	event = kzalloc(sizeof(*event), GFP_KERNEL);
8774 	if (!event)
8775 		return ERR_PTR(-ENOMEM);
8776 
8777 	/*
8778 	 * Single events are their own group leaders, with an
8779 	 * empty sibling list:
8780 	 */
8781 	if (!group_leader)
8782 		group_leader = event;
8783 
8784 	mutex_init(&event->child_mutex);
8785 	INIT_LIST_HEAD(&event->child_list);
8786 
8787 	INIT_LIST_HEAD(&event->group_entry);
8788 	INIT_LIST_HEAD(&event->event_entry);
8789 	INIT_LIST_HEAD(&event->sibling_list);
8790 	INIT_LIST_HEAD(&event->rb_entry);
8791 	INIT_LIST_HEAD(&event->active_entry);
8792 	INIT_LIST_HEAD(&event->addr_filters.list);
8793 	INIT_HLIST_NODE(&event->hlist_entry);
8794 
8795 
8796 	init_waitqueue_head(&event->waitq);
8797 	init_irq_work(&event->pending, perf_pending_event);
8798 
8799 	mutex_init(&event->mmap_mutex);
8800 	raw_spin_lock_init(&event->addr_filters.lock);
8801 
8802 	atomic_long_set(&event->refcount, 1);
8803 	event->cpu		= cpu;
8804 	event->attr		= *attr;
8805 	event->group_leader	= group_leader;
8806 	event->pmu		= NULL;
8807 	event->oncpu		= -1;
8808 
8809 	event->parent		= parent_event;
8810 
8811 	event->ns		= get_pid_ns(task_active_pid_ns(current));
8812 	event->id		= atomic64_inc_return(&perf_event_id);
8813 
8814 	event->state		= PERF_EVENT_STATE_INACTIVE;
8815 
8816 	if (task) {
8817 		event->attach_state = PERF_ATTACH_TASK;
8818 		/*
8819 		 * XXX pmu::event_init needs to know what task to account to
8820 		 * and we cannot use the ctx information because we need the
8821 		 * pmu before we get a ctx.
8822 		 */
8823 		event->hw.target = task;
8824 	}
8825 
8826 	event->clock = &local_clock;
8827 	if (parent_event)
8828 		event->clock = parent_event->clock;
8829 
8830 	if (!overflow_handler && parent_event) {
8831 		overflow_handler = parent_event->overflow_handler;
8832 		context = parent_event->overflow_handler_context;
8833 	}
8834 
8835 	if (overflow_handler) {
8836 		event->overflow_handler	= overflow_handler;
8837 		event->overflow_handler_context = context;
8838 	} else if (is_write_backward(event)){
8839 		event->overflow_handler = perf_event_output_backward;
8840 		event->overflow_handler_context = NULL;
8841 	} else {
8842 		event->overflow_handler = perf_event_output_forward;
8843 		event->overflow_handler_context = NULL;
8844 	}
8845 
8846 	perf_event__state_init(event);
8847 
8848 	pmu = NULL;
8849 
8850 	hwc = &event->hw;
8851 	hwc->sample_period = attr->sample_period;
8852 	if (attr->freq && attr->sample_freq)
8853 		hwc->sample_period = 1;
8854 	hwc->last_period = hwc->sample_period;
8855 
8856 	local64_set(&hwc->period_left, hwc->sample_period);
8857 
8858 	/*
8859 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
8860 	 */
8861 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8862 		goto err_ns;
8863 
8864 	if (!has_branch_stack(event))
8865 		event->attr.branch_sample_type = 0;
8866 
8867 	if (cgroup_fd != -1) {
8868 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8869 		if (err)
8870 			goto err_ns;
8871 	}
8872 
8873 	pmu = perf_init_event(event);
8874 	if (!pmu)
8875 		goto err_ns;
8876 	else if (IS_ERR(pmu)) {
8877 		err = PTR_ERR(pmu);
8878 		goto err_ns;
8879 	}
8880 
8881 	err = exclusive_event_init(event);
8882 	if (err)
8883 		goto err_pmu;
8884 
8885 	if (has_addr_filter(event)) {
8886 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8887 						   sizeof(unsigned long),
8888 						   GFP_KERNEL);
8889 		if (!event->addr_filters_offs)
8890 			goto err_per_task;
8891 
8892 		/* force hw sync on the address filters */
8893 		event->addr_filters_gen = 1;
8894 	}
8895 
8896 	if (!event->parent) {
8897 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8898 			err = get_callchain_buffers();
8899 			if (err)
8900 				goto err_addr_filters;
8901 		}
8902 	}
8903 
8904 	/* symmetric to unaccount_event() in _free_event() */
8905 	account_event(event);
8906 
8907 	return event;
8908 
8909 err_addr_filters:
8910 	kfree(event->addr_filters_offs);
8911 
8912 err_per_task:
8913 	exclusive_event_destroy(event);
8914 
8915 err_pmu:
8916 	if (event->destroy)
8917 		event->destroy(event);
8918 	module_put(pmu->module);
8919 err_ns:
8920 	if (is_cgroup_event(event))
8921 		perf_detach_cgroup(event);
8922 	if (event->ns)
8923 		put_pid_ns(event->ns);
8924 	kfree(event);
8925 
8926 	return ERR_PTR(err);
8927 }
8928 
8929 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8930 			  struct perf_event_attr *attr)
8931 {
8932 	u32 size;
8933 	int ret;
8934 
8935 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8936 		return -EFAULT;
8937 
8938 	/*
8939 	 * zero the full structure, so that a short copy will be nice.
8940 	 */
8941 	memset(attr, 0, sizeof(*attr));
8942 
8943 	ret = get_user(size, &uattr->size);
8944 	if (ret)
8945 		return ret;
8946 
8947 	if (size > PAGE_SIZE)	/* silly large */
8948 		goto err_size;
8949 
8950 	if (!size)		/* abi compat */
8951 		size = PERF_ATTR_SIZE_VER0;
8952 
8953 	if (size < PERF_ATTR_SIZE_VER0)
8954 		goto err_size;
8955 
8956 	/*
8957 	 * If we're handed a bigger struct than we know of,
8958 	 * ensure all the unknown bits are 0 - i.e. new
8959 	 * user-space does not rely on any kernel feature
8960 	 * extensions we dont know about yet.
8961 	 */
8962 	if (size > sizeof(*attr)) {
8963 		unsigned char __user *addr;
8964 		unsigned char __user *end;
8965 		unsigned char val;
8966 
8967 		addr = (void __user *)uattr + sizeof(*attr);
8968 		end  = (void __user *)uattr + size;
8969 
8970 		for (; addr < end; addr++) {
8971 			ret = get_user(val, addr);
8972 			if (ret)
8973 				return ret;
8974 			if (val)
8975 				goto err_size;
8976 		}
8977 		size = sizeof(*attr);
8978 	}
8979 
8980 	ret = copy_from_user(attr, uattr, size);
8981 	if (ret)
8982 		return -EFAULT;
8983 
8984 	if (attr->__reserved_1)
8985 		return -EINVAL;
8986 
8987 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8988 		return -EINVAL;
8989 
8990 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8991 		return -EINVAL;
8992 
8993 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8994 		u64 mask = attr->branch_sample_type;
8995 
8996 		/* only using defined bits */
8997 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8998 			return -EINVAL;
8999 
9000 		/* at least one branch bit must be set */
9001 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9002 			return -EINVAL;
9003 
9004 		/* propagate priv level, when not set for branch */
9005 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9006 
9007 			/* exclude_kernel checked on syscall entry */
9008 			if (!attr->exclude_kernel)
9009 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9010 
9011 			if (!attr->exclude_user)
9012 				mask |= PERF_SAMPLE_BRANCH_USER;
9013 
9014 			if (!attr->exclude_hv)
9015 				mask |= PERF_SAMPLE_BRANCH_HV;
9016 			/*
9017 			 * adjust user setting (for HW filter setup)
9018 			 */
9019 			attr->branch_sample_type = mask;
9020 		}
9021 		/* privileged levels capture (kernel, hv): check permissions */
9022 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9023 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9024 			return -EACCES;
9025 	}
9026 
9027 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9028 		ret = perf_reg_validate(attr->sample_regs_user);
9029 		if (ret)
9030 			return ret;
9031 	}
9032 
9033 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9034 		if (!arch_perf_have_user_stack_dump())
9035 			return -ENOSYS;
9036 
9037 		/*
9038 		 * We have __u32 type for the size, but so far
9039 		 * we can only use __u16 as maximum due to the
9040 		 * __u16 sample size limit.
9041 		 */
9042 		if (attr->sample_stack_user >= USHRT_MAX)
9043 			ret = -EINVAL;
9044 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9045 			ret = -EINVAL;
9046 	}
9047 
9048 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9049 		ret = perf_reg_validate(attr->sample_regs_intr);
9050 out:
9051 	return ret;
9052 
9053 err_size:
9054 	put_user(sizeof(*attr), &uattr->size);
9055 	ret = -E2BIG;
9056 	goto out;
9057 }
9058 
9059 static int
9060 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9061 {
9062 	struct ring_buffer *rb = NULL;
9063 	int ret = -EINVAL;
9064 
9065 	if (!output_event)
9066 		goto set;
9067 
9068 	/* don't allow circular references */
9069 	if (event == output_event)
9070 		goto out;
9071 
9072 	/*
9073 	 * Don't allow cross-cpu buffers
9074 	 */
9075 	if (output_event->cpu != event->cpu)
9076 		goto out;
9077 
9078 	/*
9079 	 * If its not a per-cpu rb, it must be the same task.
9080 	 */
9081 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9082 		goto out;
9083 
9084 	/*
9085 	 * Mixing clocks in the same buffer is trouble you don't need.
9086 	 */
9087 	if (output_event->clock != event->clock)
9088 		goto out;
9089 
9090 	/*
9091 	 * Either writing ring buffer from beginning or from end.
9092 	 * Mixing is not allowed.
9093 	 */
9094 	if (is_write_backward(output_event) != is_write_backward(event))
9095 		goto out;
9096 
9097 	/*
9098 	 * If both events generate aux data, they must be on the same PMU
9099 	 */
9100 	if (has_aux(event) && has_aux(output_event) &&
9101 	    event->pmu != output_event->pmu)
9102 		goto out;
9103 
9104 set:
9105 	mutex_lock(&event->mmap_mutex);
9106 	/* Can't redirect output if we've got an active mmap() */
9107 	if (atomic_read(&event->mmap_count))
9108 		goto unlock;
9109 
9110 	if (output_event) {
9111 		/* get the rb we want to redirect to */
9112 		rb = ring_buffer_get(output_event);
9113 		if (!rb)
9114 			goto unlock;
9115 	}
9116 
9117 	ring_buffer_attach(event, rb);
9118 
9119 	ret = 0;
9120 unlock:
9121 	mutex_unlock(&event->mmap_mutex);
9122 
9123 out:
9124 	return ret;
9125 }
9126 
9127 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9128 {
9129 	if (b < a)
9130 		swap(a, b);
9131 
9132 	mutex_lock(a);
9133 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9134 }
9135 
9136 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9137 {
9138 	bool nmi_safe = false;
9139 
9140 	switch (clk_id) {
9141 	case CLOCK_MONOTONIC:
9142 		event->clock = &ktime_get_mono_fast_ns;
9143 		nmi_safe = true;
9144 		break;
9145 
9146 	case CLOCK_MONOTONIC_RAW:
9147 		event->clock = &ktime_get_raw_fast_ns;
9148 		nmi_safe = true;
9149 		break;
9150 
9151 	case CLOCK_REALTIME:
9152 		event->clock = &ktime_get_real_ns;
9153 		break;
9154 
9155 	case CLOCK_BOOTTIME:
9156 		event->clock = &ktime_get_boot_ns;
9157 		break;
9158 
9159 	case CLOCK_TAI:
9160 		event->clock = &ktime_get_tai_ns;
9161 		break;
9162 
9163 	default:
9164 		return -EINVAL;
9165 	}
9166 
9167 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9168 		return -EINVAL;
9169 
9170 	return 0;
9171 }
9172 
9173 /**
9174  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9175  *
9176  * @attr_uptr:	event_id type attributes for monitoring/sampling
9177  * @pid:		target pid
9178  * @cpu:		target cpu
9179  * @group_fd:		group leader event fd
9180  */
9181 SYSCALL_DEFINE5(perf_event_open,
9182 		struct perf_event_attr __user *, attr_uptr,
9183 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9184 {
9185 	struct perf_event *group_leader = NULL, *output_event = NULL;
9186 	struct perf_event *event, *sibling;
9187 	struct perf_event_attr attr;
9188 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9189 	struct file *event_file = NULL;
9190 	struct fd group = {NULL, 0};
9191 	struct task_struct *task = NULL;
9192 	struct pmu *pmu;
9193 	int event_fd;
9194 	int move_group = 0;
9195 	int err;
9196 	int f_flags = O_RDWR;
9197 	int cgroup_fd = -1;
9198 
9199 	/* for future expandability... */
9200 	if (flags & ~PERF_FLAG_ALL)
9201 		return -EINVAL;
9202 
9203 	err = perf_copy_attr(attr_uptr, &attr);
9204 	if (err)
9205 		return err;
9206 
9207 	if (!attr.exclude_kernel) {
9208 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9209 			return -EACCES;
9210 	}
9211 
9212 	if (attr.freq) {
9213 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9214 			return -EINVAL;
9215 	} else {
9216 		if (attr.sample_period & (1ULL << 63))
9217 			return -EINVAL;
9218 	}
9219 
9220 	/*
9221 	 * In cgroup mode, the pid argument is used to pass the fd
9222 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9223 	 * designates the cpu on which to monitor threads from that
9224 	 * cgroup.
9225 	 */
9226 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9227 		return -EINVAL;
9228 
9229 	if (flags & PERF_FLAG_FD_CLOEXEC)
9230 		f_flags |= O_CLOEXEC;
9231 
9232 	event_fd = get_unused_fd_flags(f_flags);
9233 	if (event_fd < 0)
9234 		return event_fd;
9235 
9236 	if (group_fd != -1) {
9237 		err = perf_fget_light(group_fd, &group);
9238 		if (err)
9239 			goto err_fd;
9240 		group_leader = group.file->private_data;
9241 		if (flags & PERF_FLAG_FD_OUTPUT)
9242 			output_event = group_leader;
9243 		if (flags & PERF_FLAG_FD_NO_GROUP)
9244 			group_leader = NULL;
9245 	}
9246 
9247 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9248 		task = find_lively_task_by_vpid(pid);
9249 		if (IS_ERR(task)) {
9250 			err = PTR_ERR(task);
9251 			goto err_group_fd;
9252 		}
9253 	}
9254 
9255 	if (task && group_leader &&
9256 	    group_leader->attr.inherit != attr.inherit) {
9257 		err = -EINVAL;
9258 		goto err_task;
9259 	}
9260 
9261 	get_online_cpus();
9262 
9263 	if (task) {
9264 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9265 		if (err)
9266 			goto err_cpus;
9267 
9268 		/*
9269 		 * Reuse ptrace permission checks for now.
9270 		 *
9271 		 * We must hold cred_guard_mutex across this and any potential
9272 		 * perf_install_in_context() call for this new event to
9273 		 * serialize against exec() altering our credentials (and the
9274 		 * perf_event_exit_task() that could imply).
9275 		 */
9276 		err = -EACCES;
9277 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9278 			goto err_cred;
9279 	}
9280 
9281 	if (flags & PERF_FLAG_PID_CGROUP)
9282 		cgroup_fd = pid;
9283 
9284 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9285 				 NULL, NULL, cgroup_fd);
9286 	if (IS_ERR(event)) {
9287 		err = PTR_ERR(event);
9288 		goto err_cred;
9289 	}
9290 
9291 	if (is_sampling_event(event)) {
9292 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9293 			err = -ENOTSUPP;
9294 			goto err_alloc;
9295 		}
9296 	}
9297 
9298 	/*
9299 	 * Special case software events and allow them to be part of
9300 	 * any hardware group.
9301 	 */
9302 	pmu = event->pmu;
9303 
9304 	if (attr.use_clockid) {
9305 		err = perf_event_set_clock(event, attr.clockid);
9306 		if (err)
9307 			goto err_alloc;
9308 	}
9309 
9310 	if (group_leader &&
9311 	    (is_software_event(event) != is_software_event(group_leader))) {
9312 		if (is_software_event(event)) {
9313 			/*
9314 			 * If event and group_leader are not both a software
9315 			 * event, and event is, then group leader is not.
9316 			 *
9317 			 * Allow the addition of software events to !software
9318 			 * groups, this is safe because software events never
9319 			 * fail to schedule.
9320 			 */
9321 			pmu = group_leader->pmu;
9322 		} else if (is_software_event(group_leader) &&
9323 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9324 			/*
9325 			 * In case the group is a pure software group, and we
9326 			 * try to add a hardware event, move the whole group to
9327 			 * the hardware context.
9328 			 */
9329 			move_group = 1;
9330 		}
9331 	}
9332 
9333 	/*
9334 	 * Get the target context (task or percpu):
9335 	 */
9336 	ctx = find_get_context(pmu, task, event);
9337 	if (IS_ERR(ctx)) {
9338 		err = PTR_ERR(ctx);
9339 		goto err_alloc;
9340 	}
9341 
9342 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9343 		err = -EBUSY;
9344 		goto err_context;
9345 	}
9346 
9347 	/*
9348 	 * Look up the group leader (we will attach this event to it):
9349 	 */
9350 	if (group_leader) {
9351 		err = -EINVAL;
9352 
9353 		/*
9354 		 * Do not allow a recursive hierarchy (this new sibling
9355 		 * becoming part of another group-sibling):
9356 		 */
9357 		if (group_leader->group_leader != group_leader)
9358 			goto err_context;
9359 
9360 		/* All events in a group should have the same clock */
9361 		if (group_leader->clock != event->clock)
9362 			goto err_context;
9363 
9364 		/*
9365 		 * Do not allow to attach to a group in a different
9366 		 * task or CPU context:
9367 		 */
9368 		if (move_group) {
9369 			/*
9370 			 * Make sure we're both on the same task, or both
9371 			 * per-cpu events.
9372 			 */
9373 			if (group_leader->ctx->task != ctx->task)
9374 				goto err_context;
9375 
9376 			/*
9377 			 * Make sure we're both events for the same CPU;
9378 			 * grouping events for different CPUs is broken; since
9379 			 * you can never concurrently schedule them anyhow.
9380 			 */
9381 			if (group_leader->cpu != event->cpu)
9382 				goto err_context;
9383 		} else {
9384 			if (group_leader->ctx != ctx)
9385 				goto err_context;
9386 		}
9387 
9388 		/*
9389 		 * Only a group leader can be exclusive or pinned
9390 		 */
9391 		if (attr.exclusive || attr.pinned)
9392 			goto err_context;
9393 	}
9394 
9395 	if (output_event) {
9396 		err = perf_event_set_output(event, output_event);
9397 		if (err)
9398 			goto err_context;
9399 	}
9400 
9401 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9402 					f_flags);
9403 	if (IS_ERR(event_file)) {
9404 		err = PTR_ERR(event_file);
9405 		event_file = NULL;
9406 		goto err_context;
9407 	}
9408 
9409 	if (move_group) {
9410 		gctx = group_leader->ctx;
9411 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
9412 		if (gctx->task == TASK_TOMBSTONE) {
9413 			err = -ESRCH;
9414 			goto err_locked;
9415 		}
9416 	} else {
9417 		mutex_lock(&ctx->mutex);
9418 	}
9419 
9420 	if (ctx->task == TASK_TOMBSTONE) {
9421 		err = -ESRCH;
9422 		goto err_locked;
9423 	}
9424 
9425 	if (!perf_event_validate_size(event)) {
9426 		err = -E2BIG;
9427 		goto err_locked;
9428 	}
9429 
9430 	/*
9431 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9432 	 * because we need to serialize with concurrent event creation.
9433 	 */
9434 	if (!exclusive_event_installable(event, ctx)) {
9435 		/* exclusive and group stuff are assumed mutually exclusive */
9436 		WARN_ON_ONCE(move_group);
9437 
9438 		err = -EBUSY;
9439 		goto err_locked;
9440 	}
9441 
9442 	WARN_ON_ONCE(ctx->parent_ctx);
9443 
9444 	/*
9445 	 * This is the point on no return; we cannot fail hereafter. This is
9446 	 * where we start modifying current state.
9447 	 */
9448 
9449 	if (move_group) {
9450 		/*
9451 		 * See perf_event_ctx_lock() for comments on the details
9452 		 * of swizzling perf_event::ctx.
9453 		 */
9454 		perf_remove_from_context(group_leader, 0);
9455 
9456 		list_for_each_entry(sibling, &group_leader->sibling_list,
9457 				    group_entry) {
9458 			perf_remove_from_context(sibling, 0);
9459 			put_ctx(gctx);
9460 		}
9461 
9462 		/*
9463 		 * Wait for everybody to stop referencing the events through
9464 		 * the old lists, before installing it on new lists.
9465 		 */
9466 		synchronize_rcu();
9467 
9468 		/*
9469 		 * Install the group siblings before the group leader.
9470 		 *
9471 		 * Because a group leader will try and install the entire group
9472 		 * (through the sibling list, which is still in-tact), we can
9473 		 * end up with siblings installed in the wrong context.
9474 		 *
9475 		 * By installing siblings first we NO-OP because they're not
9476 		 * reachable through the group lists.
9477 		 */
9478 		list_for_each_entry(sibling, &group_leader->sibling_list,
9479 				    group_entry) {
9480 			perf_event__state_init(sibling);
9481 			perf_install_in_context(ctx, sibling, sibling->cpu);
9482 			get_ctx(ctx);
9483 		}
9484 
9485 		/*
9486 		 * Removing from the context ends up with disabled
9487 		 * event. What we want here is event in the initial
9488 		 * startup state, ready to be add into new context.
9489 		 */
9490 		perf_event__state_init(group_leader);
9491 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9492 		get_ctx(ctx);
9493 
9494 		/*
9495 		 * Now that all events are installed in @ctx, nothing
9496 		 * references @gctx anymore, so drop the last reference we have
9497 		 * on it.
9498 		 */
9499 		put_ctx(gctx);
9500 	}
9501 
9502 	/*
9503 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9504 	 * that we're serialized against further additions and before
9505 	 * perf_install_in_context() which is the point the event is active and
9506 	 * can use these values.
9507 	 */
9508 	perf_event__header_size(event);
9509 	perf_event__id_header_size(event);
9510 
9511 	event->owner = current;
9512 
9513 	perf_install_in_context(ctx, event, event->cpu);
9514 	perf_unpin_context(ctx);
9515 
9516 	if (move_group)
9517 		mutex_unlock(&gctx->mutex);
9518 	mutex_unlock(&ctx->mutex);
9519 
9520 	if (task) {
9521 		mutex_unlock(&task->signal->cred_guard_mutex);
9522 		put_task_struct(task);
9523 	}
9524 
9525 	put_online_cpus();
9526 
9527 	mutex_lock(&current->perf_event_mutex);
9528 	list_add_tail(&event->owner_entry, &current->perf_event_list);
9529 	mutex_unlock(&current->perf_event_mutex);
9530 
9531 	/*
9532 	 * Drop the reference on the group_event after placing the
9533 	 * new event on the sibling_list. This ensures destruction
9534 	 * of the group leader will find the pointer to itself in
9535 	 * perf_group_detach().
9536 	 */
9537 	fdput(group);
9538 	fd_install(event_fd, event_file);
9539 	return event_fd;
9540 
9541 err_locked:
9542 	if (move_group)
9543 		mutex_unlock(&gctx->mutex);
9544 	mutex_unlock(&ctx->mutex);
9545 /* err_file: */
9546 	fput(event_file);
9547 err_context:
9548 	perf_unpin_context(ctx);
9549 	put_ctx(ctx);
9550 err_alloc:
9551 	/*
9552 	 * If event_file is set, the fput() above will have called ->release()
9553 	 * and that will take care of freeing the event.
9554 	 */
9555 	if (!event_file)
9556 		free_event(event);
9557 err_cred:
9558 	if (task)
9559 		mutex_unlock(&task->signal->cred_guard_mutex);
9560 err_cpus:
9561 	put_online_cpus();
9562 err_task:
9563 	if (task)
9564 		put_task_struct(task);
9565 err_group_fd:
9566 	fdput(group);
9567 err_fd:
9568 	put_unused_fd(event_fd);
9569 	return err;
9570 }
9571 
9572 /**
9573  * perf_event_create_kernel_counter
9574  *
9575  * @attr: attributes of the counter to create
9576  * @cpu: cpu in which the counter is bound
9577  * @task: task to profile (NULL for percpu)
9578  */
9579 struct perf_event *
9580 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9581 				 struct task_struct *task,
9582 				 perf_overflow_handler_t overflow_handler,
9583 				 void *context)
9584 {
9585 	struct perf_event_context *ctx;
9586 	struct perf_event *event;
9587 	int err;
9588 
9589 	/*
9590 	 * Get the target context (task or percpu):
9591 	 */
9592 
9593 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9594 				 overflow_handler, context, -1);
9595 	if (IS_ERR(event)) {
9596 		err = PTR_ERR(event);
9597 		goto err;
9598 	}
9599 
9600 	/* Mark owner so we could distinguish it from user events. */
9601 	event->owner = TASK_TOMBSTONE;
9602 
9603 	ctx = find_get_context(event->pmu, task, event);
9604 	if (IS_ERR(ctx)) {
9605 		err = PTR_ERR(ctx);
9606 		goto err_free;
9607 	}
9608 
9609 	WARN_ON_ONCE(ctx->parent_ctx);
9610 	mutex_lock(&ctx->mutex);
9611 	if (ctx->task == TASK_TOMBSTONE) {
9612 		err = -ESRCH;
9613 		goto err_unlock;
9614 	}
9615 
9616 	if (!exclusive_event_installable(event, ctx)) {
9617 		err = -EBUSY;
9618 		goto err_unlock;
9619 	}
9620 
9621 	perf_install_in_context(ctx, event, cpu);
9622 	perf_unpin_context(ctx);
9623 	mutex_unlock(&ctx->mutex);
9624 
9625 	return event;
9626 
9627 err_unlock:
9628 	mutex_unlock(&ctx->mutex);
9629 	perf_unpin_context(ctx);
9630 	put_ctx(ctx);
9631 err_free:
9632 	free_event(event);
9633 err:
9634 	return ERR_PTR(err);
9635 }
9636 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9637 
9638 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9639 {
9640 	struct perf_event_context *src_ctx;
9641 	struct perf_event_context *dst_ctx;
9642 	struct perf_event *event, *tmp;
9643 	LIST_HEAD(events);
9644 
9645 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9646 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9647 
9648 	/*
9649 	 * See perf_event_ctx_lock() for comments on the details
9650 	 * of swizzling perf_event::ctx.
9651 	 */
9652 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9653 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9654 				 event_entry) {
9655 		perf_remove_from_context(event, 0);
9656 		unaccount_event_cpu(event, src_cpu);
9657 		put_ctx(src_ctx);
9658 		list_add(&event->migrate_entry, &events);
9659 	}
9660 
9661 	/*
9662 	 * Wait for the events to quiesce before re-instating them.
9663 	 */
9664 	synchronize_rcu();
9665 
9666 	/*
9667 	 * Re-instate events in 2 passes.
9668 	 *
9669 	 * Skip over group leaders and only install siblings on this first
9670 	 * pass, siblings will not get enabled without a leader, however a
9671 	 * leader will enable its siblings, even if those are still on the old
9672 	 * context.
9673 	 */
9674 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9675 		if (event->group_leader == event)
9676 			continue;
9677 
9678 		list_del(&event->migrate_entry);
9679 		if (event->state >= PERF_EVENT_STATE_OFF)
9680 			event->state = PERF_EVENT_STATE_INACTIVE;
9681 		account_event_cpu(event, dst_cpu);
9682 		perf_install_in_context(dst_ctx, event, dst_cpu);
9683 		get_ctx(dst_ctx);
9684 	}
9685 
9686 	/*
9687 	 * Once all the siblings are setup properly, install the group leaders
9688 	 * to make it go.
9689 	 */
9690 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9691 		list_del(&event->migrate_entry);
9692 		if (event->state >= PERF_EVENT_STATE_OFF)
9693 			event->state = PERF_EVENT_STATE_INACTIVE;
9694 		account_event_cpu(event, dst_cpu);
9695 		perf_install_in_context(dst_ctx, event, dst_cpu);
9696 		get_ctx(dst_ctx);
9697 	}
9698 	mutex_unlock(&dst_ctx->mutex);
9699 	mutex_unlock(&src_ctx->mutex);
9700 }
9701 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9702 
9703 static void sync_child_event(struct perf_event *child_event,
9704 			       struct task_struct *child)
9705 {
9706 	struct perf_event *parent_event = child_event->parent;
9707 	u64 child_val;
9708 
9709 	if (child_event->attr.inherit_stat)
9710 		perf_event_read_event(child_event, child);
9711 
9712 	child_val = perf_event_count(child_event);
9713 
9714 	/*
9715 	 * Add back the child's count to the parent's count:
9716 	 */
9717 	atomic64_add(child_val, &parent_event->child_count);
9718 	atomic64_add(child_event->total_time_enabled,
9719 		     &parent_event->child_total_time_enabled);
9720 	atomic64_add(child_event->total_time_running,
9721 		     &parent_event->child_total_time_running);
9722 }
9723 
9724 static void
9725 perf_event_exit_event(struct perf_event *child_event,
9726 		      struct perf_event_context *child_ctx,
9727 		      struct task_struct *child)
9728 {
9729 	struct perf_event *parent_event = child_event->parent;
9730 
9731 	/*
9732 	 * Do not destroy the 'original' grouping; because of the context
9733 	 * switch optimization the original events could've ended up in a
9734 	 * random child task.
9735 	 *
9736 	 * If we were to destroy the original group, all group related
9737 	 * operations would cease to function properly after this random
9738 	 * child dies.
9739 	 *
9740 	 * Do destroy all inherited groups, we don't care about those
9741 	 * and being thorough is better.
9742 	 */
9743 	raw_spin_lock_irq(&child_ctx->lock);
9744 	WARN_ON_ONCE(child_ctx->is_active);
9745 
9746 	if (parent_event)
9747 		perf_group_detach(child_event);
9748 	list_del_event(child_event, child_ctx);
9749 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9750 	raw_spin_unlock_irq(&child_ctx->lock);
9751 
9752 	/*
9753 	 * Parent events are governed by their filedesc, retain them.
9754 	 */
9755 	if (!parent_event) {
9756 		perf_event_wakeup(child_event);
9757 		return;
9758 	}
9759 	/*
9760 	 * Child events can be cleaned up.
9761 	 */
9762 
9763 	sync_child_event(child_event, child);
9764 
9765 	/*
9766 	 * Remove this event from the parent's list
9767 	 */
9768 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9769 	mutex_lock(&parent_event->child_mutex);
9770 	list_del_init(&child_event->child_list);
9771 	mutex_unlock(&parent_event->child_mutex);
9772 
9773 	/*
9774 	 * Kick perf_poll() for is_event_hup().
9775 	 */
9776 	perf_event_wakeup(parent_event);
9777 	free_event(child_event);
9778 	put_event(parent_event);
9779 }
9780 
9781 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9782 {
9783 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
9784 	struct perf_event *child_event, *next;
9785 
9786 	WARN_ON_ONCE(child != current);
9787 
9788 	child_ctx = perf_pin_task_context(child, ctxn);
9789 	if (!child_ctx)
9790 		return;
9791 
9792 	/*
9793 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
9794 	 * ctx::mutex over the entire thing. This serializes against almost
9795 	 * everything that wants to access the ctx.
9796 	 *
9797 	 * The exception is sys_perf_event_open() /
9798 	 * perf_event_create_kernel_count() which does find_get_context()
9799 	 * without ctx::mutex (it cannot because of the move_group double mutex
9800 	 * lock thing). See the comments in perf_install_in_context().
9801 	 */
9802 	mutex_lock(&child_ctx->mutex);
9803 
9804 	/*
9805 	 * In a single ctx::lock section, de-schedule the events and detach the
9806 	 * context from the task such that we cannot ever get it scheduled back
9807 	 * in.
9808 	 */
9809 	raw_spin_lock_irq(&child_ctx->lock);
9810 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9811 
9812 	/*
9813 	 * Now that the context is inactive, destroy the task <-> ctx relation
9814 	 * and mark the context dead.
9815 	 */
9816 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9817 	put_ctx(child_ctx); /* cannot be last */
9818 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9819 	put_task_struct(current); /* cannot be last */
9820 
9821 	clone_ctx = unclone_ctx(child_ctx);
9822 	raw_spin_unlock_irq(&child_ctx->lock);
9823 
9824 	if (clone_ctx)
9825 		put_ctx(clone_ctx);
9826 
9827 	/*
9828 	 * Report the task dead after unscheduling the events so that we
9829 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
9830 	 * get a few PERF_RECORD_READ events.
9831 	 */
9832 	perf_event_task(child, child_ctx, 0);
9833 
9834 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9835 		perf_event_exit_event(child_event, child_ctx, child);
9836 
9837 	mutex_unlock(&child_ctx->mutex);
9838 
9839 	put_ctx(child_ctx);
9840 }
9841 
9842 /*
9843  * When a child task exits, feed back event values to parent events.
9844  *
9845  * Can be called with cred_guard_mutex held when called from
9846  * install_exec_creds().
9847  */
9848 void perf_event_exit_task(struct task_struct *child)
9849 {
9850 	struct perf_event *event, *tmp;
9851 	int ctxn;
9852 
9853 	mutex_lock(&child->perf_event_mutex);
9854 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9855 				 owner_entry) {
9856 		list_del_init(&event->owner_entry);
9857 
9858 		/*
9859 		 * Ensure the list deletion is visible before we clear
9860 		 * the owner, closes a race against perf_release() where
9861 		 * we need to serialize on the owner->perf_event_mutex.
9862 		 */
9863 		smp_store_release(&event->owner, NULL);
9864 	}
9865 	mutex_unlock(&child->perf_event_mutex);
9866 
9867 	for_each_task_context_nr(ctxn)
9868 		perf_event_exit_task_context(child, ctxn);
9869 
9870 	/*
9871 	 * The perf_event_exit_task_context calls perf_event_task
9872 	 * with child's task_ctx, which generates EXIT events for
9873 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
9874 	 * At this point we need to send EXIT events to cpu contexts.
9875 	 */
9876 	perf_event_task(child, NULL, 0);
9877 }
9878 
9879 static void perf_free_event(struct perf_event *event,
9880 			    struct perf_event_context *ctx)
9881 {
9882 	struct perf_event *parent = event->parent;
9883 
9884 	if (WARN_ON_ONCE(!parent))
9885 		return;
9886 
9887 	mutex_lock(&parent->child_mutex);
9888 	list_del_init(&event->child_list);
9889 	mutex_unlock(&parent->child_mutex);
9890 
9891 	put_event(parent);
9892 
9893 	raw_spin_lock_irq(&ctx->lock);
9894 	perf_group_detach(event);
9895 	list_del_event(event, ctx);
9896 	raw_spin_unlock_irq(&ctx->lock);
9897 	free_event(event);
9898 }
9899 
9900 /*
9901  * Free an unexposed, unused context as created by inheritance by
9902  * perf_event_init_task below, used by fork() in case of fail.
9903  *
9904  * Not all locks are strictly required, but take them anyway to be nice and
9905  * help out with the lockdep assertions.
9906  */
9907 void perf_event_free_task(struct task_struct *task)
9908 {
9909 	struct perf_event_context *ctx;
9910 	struct perf_event *event, *tmp;
9911 	int ctxn;
9912 
9913 	for_each_task_context_nr(ctxn) {
9914 		ctx = task->perf_event_ctxp[ctxn];
9915 		if (!ctx)
9916 			continue;
9917 
9918 		mutex_lock(&ctx->mutex);
9919 again:
9920 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9921 				group_entry)
9922 			perf_free_event(event, ctx);
9923 
9924 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9925 				group_entry)
9926 			perf_free_event(event, ctx);
9927 
9928 		if (!list_empty(&ctx->pinned_groups) ||
9929 				!list_empty(&ctx->flexible_groups))
9930 			goto again;
9931 
9932 		mutex_unlock(&ctx->mutex);
9933 
9934 		put_ctx(ctx);
9935 	}
9936 }
9937 
9938 void perf_event_delayed_put(struct task_struct *task)
9939 {
9940 	int ctxn;
9941 
9942 	for_each_task_context_nr(ctxn)
9943 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9944 }
9945 
9946 struct file *perf_event_get(unsigned int fd)
9947 {
9948 	struct file *file;
9949 
9950 	file = fget_raw(fd);
9951 	if (!file)
9952 		return ERR_PTR(-EBADF);
9953 
9954 	if (file->f_op != &perf_fops) {
9955 		fput(file);
9956 		return ERR_PTR(-EBADF);
9957 	}
9958 
9959 	return file;
9960 }
9961 
9962 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9963 {
9964 	if (!event)
9965 		return ERR_PTR(-EINVAL);
9966 
9967 	return &event->attr;
9968 }
9969 
9970 /*
9971  * inherit a event from parent task to child task:
9972  */
9973 static struct perf_event *
9974 inherit_event(struct perf_event *parent_event,
9975 	      struct task_struct *parent,
9976 	      struct perf_event_context *parent_ctx,
9977 	      struct task_struct *child,
9978 	      struct perf_event *group_leader,
9979 	      struct perf_event_context *child_ctx)
9980 {
9981 	enum perf_event_active_state parent_state = parent_event->state;
9982 	struct perf_event *child_event;
9983 	unsigned long flags;
9984 
9985 	/*
9986 	 * Instead of creating recursive hierarchies of events,
9987 	 * we link inherited events back to the original parent,
9988 	 * which has a filp for sure, which we use as the reference
9989 	 * count:
9990 	 */
9991 	if (parent_event->parent)
9992 		parent_event = parent_event->parent;
9993 
9994 	child_event = perf_event_alloc(&parent_event->attr,
9995 					   parent_event->cpu,
9996 					   child,
9997 					   group_leader, parent_event,
9998 					   NULL, NULL, -1);
9999 	if (IS_ERR(child_event))
10000 		return child_event;
10001 
10002 	/*
10003 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10004 	 * must be under the same lock in order to serialize against
10005 	 * perf_event_release_kernel(), such that either we must observe
10006 	 * is_orphaned_event() or they will observe us on the child_list.
10007 	 */
10008 	mutex_lock(&parent_event->child_mutex);
10009 	if (is_orphaned_event(parent_event) ||
10010 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10011 		mutex_unlock(&parent_event->child_mutex);
10012 		free_event(child_event);
10013 		return NULL;
10014 	}
10015 
10016 	get_ctx(child_ctx);
10017 
10018 	/*
10019 	 * Make the child state follow the state of the parent event,
10020 	 * not its attr.disabled bit.  We hold the parent's mutex,
10021 	 * so we won't race with perf_event_{en, dis}able_family.
10022 	 */
10023 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10024 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10025 	else
10026 		child_event->state = PERF_EVENT_STATE_OFF;
10027 
10028 	if (parent_event->attr.freq) {
10029 		u64 sample_period = parent_event->hw.sample_period;
10030 		struct hw_perf_event *hwc = &child_event->hw;
10031 
10032 		hwc->sample_period = sample_period;
10033 		hwc->last_period   = sample_period;
10034 
10035 		local64_set(&hwc->period_left, sample_period);
10036 	}
10037 
10038 	child_event->ctx = child_ctx;
10039 	child_event->overflow_handler = parent_event->overflow_handler;
10040 	child_event->overflow_handler_context
10041 		= parent_event->overflow_handler_context;
10042 
10043 	/*
10044 	 * Precalculate sample_data sizes
10045 	 */
10046 	perf_event__header_size(child_event);
10047 	perf_event__id_header_size(child_event);
10048 
10049 	/*
10050 	 * Link it up in the child's context:
10051 	 */
10052 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10053 	add_event_to_ctx(child_event, child_ctx);
10054 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10055 
10056 	/*
10057 	 * Link this into the parent event's child list
10058 	 */
10059 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10060 	mutex_unlock(&parent_event->child_mutex);
10061 
10062 	return child_event;
10063 }
10064 
10065 static int inherit_group(struct perf_event *parent_event,
10066 	      struct task_struct *parent,
10067 	      struct perf_event_context *parent_ctx,
10068 	      struct task_struct *child,
10069 	      struct perf_event_context *child_ctx)
10070 {
10071 	struct perf_event *leader;
10072 	struct perf_event *sub;
10073 	struct perf_event *child_ctr;
10074 
10075 	leader = inherit_event(parent_event, parent, parent_ctx,
10076 				 child, NULL, child_ctx);
10077 	if (IS_ERR(leader))
10078 		return PTR_ERR(leader);
10079 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10080 		child_ctr = inherit_event(sub, parent, parent_ctx,
10081 					    child, leader, child_ctx);
10082 		if (IS_ERR(child_ctr))
10083 			return PTR_ERR(child_ctr);
10084 	}
10085 	return 0;
10086 }
10087 
10088 static int
10089 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10090 		   struct perf_event_context *parent_ctx,
10091 		   struct task_struct *child, int ctxn,
10092 		   int *inherited_all)
10093 {
10094 	int ret;
10095 	struct perf_event_context *child_ctx;
10096 
10097 	if (!event->attr.inherit) {
10098 		*inherited_all = 0;
10099 		return 0;
10100 	}
10101 
10102 	child_ctx = child->perf_event_ctxp[ctxn];
10103 	if (!child_ctx) {
10104 		/*
10105 		 * This is executed from the parent task context, so
10106 		 * inherit events that have been marked for cloning.
10107 		 * First allocate and initialize a context for the
10108 		 * child.
10109 		 */
10110 
10111 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10112 		if (!child_ctx)
10113 			return -ENOMEM;
10114 
10115 		child->perf_event_ctxp[ctxn] = child_ctx;
10116 	}
10117 
10118 	ret = inherit_group(event, parent, parent_ctx,
10119 			    child, child_ctx);
10120 
10121 	if (ret)
10122 		*inherited_all = 0;
10123 
10124 	return ret;
10125 }
10126 
10127 /*
10128  * Initialize the perf_event context in task_struct
10129  */
10130 static int perf_event_init_context(struct task_struct *child, int ctxn)
10131 {
10132 	struct perf_event_context *child_ctx, *parent_ctx;
10133 	struct perf_event_context *cloned_ctx;
10134 	struct perf_event *event;
10135 	struct task_struct *parent = current;
10136 	int inherited_all = 1;
10137 	unsigned long flags;
10138 	int ret = 0;
10139 
10140 	if (likely(!parent->perf_event_ctxp[ctxn]))
10141 		return 0;
10142 
10143 	/*
10144 	 * If the parent's context is a clone, pin it so it won't get
10145 	 * swapped under us.
10146 	 */
10147 	parent_ctx = perf_pin_task_context(parent, ctxn);
10148 	if (!parent_ctx)
10149 		return 0;
10150 
10151 	/*
10152 	 * No need to check if parent_ctx != NULL here; since we saw
10153 	 * it non-NULL earlier, the only reason for it to become NULL
10154 	 * is if we exit, and since we're currently in the middle of
10155 	 * a fork we can't be exiting at the same time.
10156 	 */
10157 
10158 	/*
10159 	 * Lock the parent list. No need to lock the child - not PID
10160 	 * hashed yet and not running, so nobody can access it.
10161 	 */
10162 	mutex_lock(&parent_ctx->mutex);
10163 
10164 	/*
10165 	 * We dont have to disable NMIs - we are only looking at
10166 	 * the list, not manipulating it:
10167 	 */
10168 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10169 		ret = inherit_task_group(event, parent, parent_ctx,
10170 					 child, ctxn, &inherited_all);
10171 		if (ret)
10172 			break;
10173 	}
10174 
10175 	/*
10176 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10177 	 * to allocations, but we need to prevent rotation because
10178 	 * rotate_ctx() will change the list from interrupt context.
10179 	 */
10180 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10181 	parent_ctx->rotate_disable = 1;
10182 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10183 
10184 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10185 		ret = inherit_task_group(event, parent, parent_ctx,
10186 					 child, ctxn, &inherited_all);
10187 		if (ret)
10188 			break;
10189 	}
10190 
10191 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10192 	parent_ctx->rotate_disable = 0;
10193 
10194 	child_ctx = child->perf_event_ctxp[ctxn];
10195 
10196 	if (child_ctx && inherited_all) {
10197 		/*
10198 		 * Mark the child context as a clone of the parent
10199 		 * context, or of whatever the parent is a clone of.
10200 		 *
10201 		 * Note that if the parent is a clone, the holding of
10202 		 * parent_ctx->lock avoids it from being uncloned.
10203 		 */
10204 		cloned_ctx = parent_ctx->parent_ctx;
10205 		if (cloned_ctx) {
10206 			child_ctx->parent_ctx = cloned_ctx;
10207 			child_ctx->parent_gen = parent_ctx->parent_gen;
10208 		} else {
10209 			child_ctx->parent_ctx = parent_ctx;
10210 			child_ctx->parent_gen = parent_ctx->generation;
10211 		}
10212 		get_ctx(child_ctx->parent_ctx);
10213 	}
10214 
10215 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10216 	mutex_unlock(&parent_ctx->mutex);
10217 
10218 	perf_unpin_context(parent_ctx);
10219 	put_ctx(parent_ctx);
10220 
10221 	return ret;
10222 }
10223 
10224 /*
10225  * Initialize the perf_event context in task_struct
10226  */
10227 int perf_event_init_task(struct task_struct *child)
10228 {
10229 	int ctxn, ret;
10230 
10231 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10232 	mutex_init(&child->perf_event_mutex);
10233 	INIT_LIST_HEAD(&child->perf_event_list);
10234 
10235 	for_each_task_context_nr(ctxn) {
10236 		ret = perf_event_init_context(child, ctxn);
10237 		if (ret) {
10238 			perf_event_free_task(child);
10239 			return ret;
10240 		}
10241 	}
10242 
10243 	return 0;
10244 }
10245 
10246 static void __init perf_event_init_all_cpus(void)
10247 {
10248 	struct swevent_htable *swhash;
10249 	int cpu;
10250 
10251 	for_each_possible_cpu(cpu) {
10252 		swhash = &per_cpu(swevent_htable, cpu);
10253 		mutex_init(&swhash->hlist_mutex);
10254 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10255 	}
10256 }
10257 
10258 static void perf_event_init_cpu(int cpu)
10259 {
10260 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10261 
10262 	mutex_lock(&swhash->hlist_mutex);
10263 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10264 		struct swevent_hlist *hlist;
10265 
10266 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10267 		WARN_ON(!hlist);
10268 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10269 	}
10270 	mutex_unlock(&swhash->hlist_mutex);
10271 }
10272 
10273 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10274 static void __perf_event_exit_context(void *__info)
10275 {
10276 	struct perf_event_context *ctx = __info;
10277 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10278 	struct perf_event *event;
10279 
10280 	raw_spin_lock(&ctx->lock);
10281 	list_for_each_entry(event, &ctx->event_list, event_entry)
10282 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10283 	raw_spin_unlock(&ctx->lock);
10284 }
10285 
10286 static void perf_event_exit_cpu_context(int cpu)
10287 {
10288 	struct perf_event_context *ctx;
10289 	struct pmu *pmu;
10290 	int idx;
10291 
10292 	idx = srcu_read_lock(&pmus_srcu);
10293 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10294 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10295 
10296 		mutex_lock(&ctx->mutex);
10297 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10298 		mutex_unlock(&ctx->mutex);
10299 	}
10300 	srcu_read_unlock(&pmus_srcu, idx);
10301 }
10302 
10303 static void perf_event_exit_cpu(int cpu)
10304 {
10305 	perf_event_exit_cpu_context(cpu);
10306 }
10307 #else
10308 static inline void perf_event_exit_cpu(int cpu) { }
10309 #endif
10310 
10311 static int
10312 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10313 {
10314 	int cpu;
10315 
10316 	for_each_online_cpu(cpu)
10317 		perf_event_exit_cpu(cpu);
10318 
10319 	return NOTIFY_OK;
10320 }
10321 
10322 /*
10323  * Run the perf reboot notifier at the very last possible moment so that
10324  * the generic watchdog code runs as long as possible.
10325  */
10326 static struct notifier_block perf_reboot_notifier = {
10327 	.notifier_call = perf_reboot,
10328 	.priority = INT_MIN,
10329 };
10330 
10331 static int
10332 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10333 {
10334 	unsigned int cpu = (long)hcpu;
10335 
10336 	switch (action & ~CPU_TASKS_FROZEN) {
10337 
10338 	case CPU_UP_PREPARE:
10339 		/*
10340 		 * This must be done before the CPU comes alive, because the
10341 		 * moment we can run tasks we can encounter (software) events.
10342 		 *
10343 		 * Specifically, someone can have inherited events on kthreadd
10344 		 * or a pre-existing worker thread that gets re-bound.
10345 		 */
10346 		perf_event_init_cpu(cpu);
10347 		break;
10348 
10349 	case CPU_DOWN_PREPARE:
10350 		/*
10351 		 * This must be done before the CPU dies because after that an
10352 		 * active event might want to IPI the CPU and that'll not work
10353 		 * so great for dead CPUs.
10354 		 *
10355 		 * XXX smp_call_function_single() return -ENXIO without a warn
10356 		 * so we could possibly deal with this.
10357 		 *
10358 		 * This is safe against new events arriving because
10359 		 * sys_perf_event_open() serializes against hotplug using
10360 		 * get_online_cpus().
10361 		 */
10362 		perf_event_exit_cpu(cpu);
10363 		break;
10364 	default:
10365 		break;
10366 	}
10367 
10368 	return NOTIFY_OK;
10369 }
10370 
10371 void __init perf_event_init(void)
10372 {
10373 	int ret;
10374 
10375 	idr_init(&pmu_idr);
10376 
10377 	perf_event_init_all_cpus();
10378 	init_srcu_struct(&pmus_srcu);
10379 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10380 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10381 	perf_pmu_register(&perf_task_clock, NULL, -1);
10382 	perf_tp_register();
10383 	perf_cpu_notifier(perf_cpu_notify);
10384 	register_reboot_notifier(&perf_reboot_notifier);
10385 
10386 	ret = init_hw_breakpoint();
10387 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10388 
10389 	/*
10390 	 * Build time assertion that we keep the data_head at the intended
10391 	 * location.  IOW, validation we got the __reserved[] size right.
10392 	 */
10393 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10394 		     != 1024);
10395 }
10396 
10397 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10398 			      char *page)
10399 {
10400 	struct perf_pmu_events_attr *pmu_attr =
10401 		container_of(attr, struct perf_pmu_events_attr, attr);
10402 
10403 	if (pmu_attr->event_str)
10404 		return sprintf(page, "%s\n", pmu_attr->event_str);
10405 
10406 	return 0;
10407 }
10408 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10409 
10410 static int __init perf_event_sysfs_init(void)
10411 {
10412 	struct pmu *pmu;
10413 	int ret;
10414 
10415 	mutex_lock(&pmus_lock);
10416 
10417 	ret = bus_register(&pmu_bus);
10418 	if (ret)
10419 		goto unlock;
10420 
10421 	list_for_each_entry(pmu, &pmus, entry) {
10422 		if (!pmu->name || pmu->type < 0)
10423 			continue;
10424 
10425 		ret = pmu_dev_alloc(pmu);
10426 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10427 	}
10428 	pmu_bus_running = 1;
10429 	ret = 0;
10430 
10431 unlock:
10432 	mutex_unlock(&pmus_lock);
10433 
10434 	return ret;
10435 }
10436 device_initcall(perf_event_sysfs_init);
10437 
10438 #ifdef CONFIG_CGROUP_PERF
10439 static struct cgroup_subsys_state *
10440 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10441 {
10442 	struct perf_cgroup *jc;
10443 
10444 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10445 	if (!jc)
10446 		return ERR_PTR(-ENOMEM);
10447 
10448 	jc->info = alloc_percpu(struct perf_cgroup_info);
10449 	if (!jc->info) {
10450 		kfree(jc);
10451 		return ERR_PTR(-ENOMEM);
10452 	}
10453 
10454 	return &jc->css;
10455 }
10456 
10457 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10458 {
10459 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10460 
10461 	free_percpu(jc->info);
10462 	kfree(jc);
10463 }
10464 
10465 static int __perf_cgroup_move(void *info)
10466 {
10467 	struct task_struct *task = info;
10468 	rcu_read_lock();
10469 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10470 	rcu_read_unlock();
10471 	return 0;
10472 }
10473 
10474 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10475 {
10476 	struct task_struct *task;
10477 	struct cgroup_subsys_state *css;
10478 
10479 	cgroup_taskset_for_each(task, css, tset)
10480 		task_function_call(task, __perf_cgroup_move, task);
10481 }
10482 
10483 struct cgroup_subsys perf_event_cgrp_subsys = {
10484 	.css_alloc	= perf_cgroup_css_alloc,
10485 	.css_free	= perf_cgroup_css_free,
10486 	.attach		= perf_cgroup_attach,
10487 };
10488 #endif /* CONFIG_CGROUP_PERF */
10489