1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 #include <linux/module.h> 43 44 #include "internal.h" 45 46 #include <asm/irq_regs.h> 47 48 struct remote_function_call { 49 struct task_struct *p; 50 int (*func)(void *info); 51 void *info; 52 int ret; 53 }; 54 55 static void remote_function(void *data) 56 { 57 struct remote_function_call *tfc = data; 58 struct task_struct *p = tfc->p; 59 60 if (p) { 61 tfc->ret = -EAGAIN; 62 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 63 return; 64 } 65 66 tfc->ret = tfc->func(tfc->info); 67 } 68 69 /** 70 * task_function_call - call a function on the cpu on which a task runs 71 * @p: the task to evaluate 72 * @func: the function to be called 73 * @info: the function call argument 74 * 75 * Calls the function @func when the task is currently running. This might 76 * be on the current CPU, which just calls the function directly 77 * 78 * returns: @func return value, or 79 * -ESRCH - when the process isn't running 80 * -EAGAIN - when the process moved away 81 */ 82 static int 83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 84 { 85 struct remote_function_call data = { 86 .p = p, 87 .func = func, 88 .info = info, 89 .ret = -ESRCH, /* No such (running) process */ 90 }; 91 92 if (task_curr(p)) 93 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 94 95 return data.ret; 96 } 97 98 /** 99 * cpu_function_call - call a function on the cpu 100 * @func: the function to be called 101 * @info: the function call argument 102 * 103 * Calls the function @func on the remote cpu. 104 * 105 * returns: @func return value or -ENXIO when the cpu is offline 106 */ 107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 108 { 109 struct remote_function_call data = { 110 .p = NULL, 111 .func = func, 112 .info = info, 113 .ret = -ENXIO, /* No such CPU */ 114 }; 115 116 smp_call_function_single(cpu, remote_function, &data, 1); 117 118 return data.ret; 119 } 120 121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 122 PERF_FLAG_FD_OUTPUT |\ 123 PERF_FLAG_PID_CGROUP |\ 124 PERF_FLAG_FD_CLOEXEC) 125 126 /* 127 * branch priv levels that need permission checks 128 */ 129 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 130 (PERF_SAMPLE_BRANCH_KERNEL |\ 131 PERF_SAMPLE_BRANCH_HV) 132 133 enum event_type_t { 134 EVENT_FLEXIBLE = 0x1, 135 EVENT_PINNED = 0x2, 136 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 137 }; 138 139 /* 140 * perf_sched_events : >0 events exist 141 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 142 */ 143 struct static_key_deferred perf_sched_events __read_mostly; 144 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 145 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 146 147 static atomic_t nr_mmap_events __read_mostly; 148 static atomic_t nr_comm_events __read_mostly; 149 static atomic_t nr_task_events __read_mostly; 150 static atomic_t nr_freq_events __read_mostly; 151 152 static LIST_HEAD(pmus); 153 static DEFINE_MUTEX(pmus_lock); 154 static struct srcu_struct pmus_srcu; 155 156 /* 157 * perf event paranoia level: 158 * -1 - not paranoid at all 159 * 0 - disallow raw tracepoint access for unpriv 160 * 1 - disallow cpu events for unpriv 161 * 2 - disallow kernel profiling for unpriv 162 */ 163 int sysctl_perf_event_paranoid __read_mostly = 1; 164 165 /* Minimum for 512 kiB + 1 user control page */ 166 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 167 168 /* 169 * max perf event sample rate 170 */ 171 #define DEFAULT_MAX_SAMPLE_RATE 100000 172 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 173 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 174 175 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 176 177 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 178 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 179 180 static int perf_sample_allowed_ns __read_mostly = 181 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 182 183 void update_perf_cpu_limits(void) 184 { 185 u64 tmp = perf_sample_period_ns; 186 187 tmp *= sysctl_perf_cpu_time_max_percent; 188 do_div(tmp, 100); 189 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 190 } 191 192 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 193 194 int perf_proc_update_handler(struct ctl_table *table, int write, 195 void __user *buffer, size_t *lenp, 196 loff_t *ppos) 197 { 198 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 199 200 if (ret || !write) 201 return ret; 202 203 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 204 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 205 update_perf_cpu_limits(); 206 207 return 0; 208 } 209 210 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 211 212 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 213 void __user *buffer, size_t *lenp, 214 loff_t *ppos) 215 { 216 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 217 218 if (ret || !write) 219 return ret; 220 221 update_perf_cpu_limits(); 222 223 return 0; 224 } 225 226 /* 227 * perf samples are done in some very critical code paths (NMIs). 228 * If they take too much CPU time, the system can lock up and not 229 * get any real work done. This will drop the sample rate when 230 * we detect that events are taking too long. 231 */ 232 #define NR_ACCUMULATED_SAMPLES 128 233 static DEFINE_PER_CPU(u64, running_sample_length); 234 235 static void perf_duration_warn(struct irq_work *w) 236 { 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 238 u64 avg_local_sample_len; 239 u64 local_samples_len; 240 241 local_samples_len = __get_cpu_var(running_sample_length); 242 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 243 244 printk_ratelimited(KERN_WARNING 245 "perf interrupt took too long (%lld > %lld), lowering " 246 "kernel.perf_event_max_sample_rate to %d\n", 247 avg_local_sample_len, allowed_ns >> 1, 248 sysctl_perf_event_sample_rate); 249 } 250 251 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 252 253 void perf_sample_event_took(u64 sample_len_ns) 254 { 255 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 256 u64 avg_local_sample_len; 257 u64 local_samples_len; 258 259 if (allowed_ns == 0) 260 return; 261 262 /* decay the counter by 1 average sample */ 263 local_samples_len = __get_cpu_var(running_sample_length); 264 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 265 local_samples_len += sample_len_ns; 266 __get_cpu_var(running_sample_length) = local_samples_len; 267 268 /* 269 * note: this will be biased artifically low until we have 270 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 271 * from having to maintain a count. 272 */ 273 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 274 275 if (avg_local_sample_len <= allowed_ns) 276 return; 277 278 if (max_samples_per_tick <= 1) 279 return; 280 281 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 282 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 283 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 284 285 update_perf_cpu_limits(); 286 287 if (!irq_work_queue(&perf_duration_work)) { 288 early_printk("perf interrupt took too long (%lld > %lld), lowering " 289 "kernel.perf_event_max_sample_rate to %d\n", 290 avg_local_sample_len, allowed_ns >> 1, 291 sysctl_perf_event_sample_rate); 292 } 293 } 294 295 static atomic64_t perf_event_id; 296 297 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 298 enum event_type_t event_type); 299 300 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 301 enum event_type_t event_type, 302 struct task_struct *task); 303 304 static void update_context_time(struct perf_event_context *ctx); 305 static u64 perf_event_time(struct perf_event *event); 306 307 void __weak perf_event_print_debug(void) { } 308 309 extern __weak const char *perf_pmu_name(void) 310 { 311 return "pmu"; 312 } 313 314 static inline u64 perf_clock(void) 315 { 316 return local_clock(); 317 } 318 319 static inline struct perf_cpu_context * 320 __get_cpu_context(struct perf_event_context *ctx) 321 { 322 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 323 } 324 325 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 326 struct perf_event_context *ctx) 327 { 328 raw_spin_lock(&cpuctx->ctx.lock); 329 if (ctx) 330 raw_spin_lock(&ctx->lock); 331 } 332 333 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 334 struct perf_event_context *ctx) 335 { 336 if (ctx) 337 raw_spin_unlock(&ctx->lock); 338 raw_spin_unlock(&cpuctx->ctx.lock); 339 } 340 341 #ifdef CONFIG_CGROUP_PERF 342 343 /* 344 * perf_cgroup_info keeps track of time_enabled for a cgroup. 345 * This is a per-cpu dynamically allocated data structure. 346 */ 347 struct perf_cgroup_info { 348 u64 time; 349 u64 timestamp; 350 }; 351 352 struct perf_cgroup { 353 struct cgroup_subsys_state css; 354 struct perf_cgroup_info __percpu *info; 355 }; 356 357 /* 358 * Must ensure cgroup is pinned (css_get) before calling 359 * this function. In other words, we cannot call this function 360 * if there is no cgroup event for the current CPU context. 361 */ 362 static inline struct perf_cgroup * 363 perf_cgroup_from_task(struct task_struct *task) 364 { 365 return container_of(task_css(task, perf_event_cgrp_id), 366 struct perf_cgroup, css); 367 } 368 369 static inline bool 370 perf_cgroup_match(struct perf_event *event) 371 { 372 struct perf_event_context *ctx = event->ctx; 373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 374 375 /* @event doesn't care about cgroup */ 376 if (!event->cgrp) 377 return true; 378 379 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 380 if (!cpuctx->cgrp) 381 return false; 382 383 /* 384 * Cgroup scoping is recursive. An event enabled for a cgroup is 385 * also enabled for all its descendant cgroups. If @cpuctx's 386 * cgroup is a descendant of @event's (the test covers identity 387 * case), it's a match. 388 */ 389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 390 event->cgrp->css.cgroup); 391 } 392 393 static inline void perf_put_cgroup(struct perf_event *event) 394 { 395 css_put(&event->cgrp->css); 396 } 397 398 static inline void perf_detach_cgroup(struct perf_event *event) 399 { 400 perf_put_cgroup(event); 401 event->cgrp = NULL; 402 } 403 404 static inline int is_cgroup_event(struct perf_event *event) 405 { 406 return event->cgrp != NULL; 407 } 408 409 static inline u64 perf_cgroup_event_time(struct perf_event *event) 410 { 411 struct perf_cgroup_info *t; 412 413 t = per_cpu_ptr(event->cgrp->info, event->cpu); 414 return t->time; 415 } 416 417 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 418 { 419 struct perf_cgroup_info *info; 420 u64 now; 421 422 now = perf_clock(); 423 424 info = this_cpu_ptr(cgrp->info); 425 426 info->time += now - info->timestamp; 427 info->timestamp = now; 428 } 429 430 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 431 { 432 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 433 if (cgrp_out) 434 __update_cgrp_time(cgrp_out); 435 } 436 437 static inline void update_cgrp_time_from_event(struct perf_event *event) 438 { 439 struct perf_cgroup *cgrp; 440 441 /* 442 * ensure we access cgroup data only when needed and 443 * when we know the cgroup is pinned (css_get) 444 */ 445 if (!is_cgroup_event(event)) 446 return; 447 448 cgrp = perf_cgroup_from_task(current); 449 /* 450 * Do not update time when cgroup is not active 451 */ 452 if (cgrp == event->cgrp) 453 __update_cgrp_time(event->cgrp); 454 } 455 456 static inline void 457 perf_cgroup_set_timestamp(struct task_struct *task, 458 struct perf_event_context *ctx) 459 { 460 struct perf_cgroup *cgrp; 461 struct perf_cgroup_info *info; 462 463 /* 464 * ctx->lock held by caller 465 * ensure we do not access cgroup data 466 * unless we have the cgroup pinned (css_get) 467 */ 468 if (!task || !ctx->nr_cgroups) 469 return; 470 471 cgrp = perf_cgroup_from_task(task); 472 info = this_cpu_ptr(cgrp->info); 473 info->timestamp = ctx->timestamp; 474 } 475 476 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 477 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 478 479 /* 480 * reschedule events based on the cgroup constraint of task. 481 * 482 * mode SWOUT : schedule out everything 483 * mode SWIN : schedule in based on cgroup for next 484 */ 485 void perf_cgroup_switch(struct task_struct *task, int mode) 486 { 487 struct perf_cpu_context *cpuctx; 488 struct pmu *pmu; 489 unsigned long flags; 490 491 /* 492 * disable interrupts to avoid geting nr_cgroup 493 * changes via __perf_event_disable(). Also 494 * avoids preemption. 495 */ 496 local_irq_save(flags); 497 498 /* 499 * we reschedule only in the presence of cgroup 500 * constrained events. 501 */ 502 rcu_read_lock(); 503 504 list_for_each_entry_rcu(pmu, &pmus, entry) { 505 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 506 if (cpuctx->unique_pmu != pmu) 507 continue; /* ensure we process each cpuctx once */ 508 509 /* 510 * perf_cgroup_events says at least one 511 * context on this CPU has cgroup events. 512 * 513 * ctx->nr_cgroups reports the number of cgroup 514 * events for a context. 515 */ 516 if (cpuctx->ctx.nr_cgroups > 0) { 517 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 518 perf_pmu_disable(cpuctx->ctx.pmu); 519 520 if (mode & PERF_CGROUP_SWOUT) { 521 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 522 /* 523 * must not be done before ctxswout due 524 * to event_filter_match() in event_sched_out() 525 */ 526 cpuctx->cgrp = NULL; 527 } 528 529 if (mode & PERF_CGROUP_SWIN) { 530 WARN_ON_ONCE(cpuctx->cgrp); 531 /* 532 * set cgrp before ctxsw in to allow 533 * event_filter_match() to not have to pass 534 * task around 535 */ 536 cpuctx->cgrp = perf_cgroup_from_task(task); 537 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 538 } 539 perf_pmu_enable(cpuctx->ctx.pmu); 540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 541 } 542 } 543 544 rcu_read_unlock(); 545 546 local_irq_restore(flags); 547 } 548 549 static inline void perf_cgroup_sched_out(struct task_struct *task, 550 struct task_struct *next) 551 { 552 struct perf_cgroup *cgrp1; 553 struct perf_cgroup *cgrp2 = NULL; 554 555 /* 556 * we come here when we know perf_cgroup_events > 0 557 */ 558 cgrp1 = perf_cgroup_from_task(task); 559 560 /* 561 * next is NULL when called from perf_event_enable_on_exec() 562 * that will systematically cause a cgroup_switch() 563 */ 564 if (next) 565 cgrp2 = perf_cgroup_from_task(next); 566 567 /* 568 * only schedule out current cgroup events if we know 569 * that we are switching to a different cgroup. Otherwise, 570 * do no touch the cgroup events. 571 */ 572 if (cgrp1 != cgrp2) 573 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 574 } 575 576 static inline void perf_cgroup_sched_in(struct task_struct *prev, 577 struct task_struct *task) 578 { 579 struct perf_cgroup *cgrp1; 580 struct perf_cgroup *cgrp2 = NULL; 581 582 /* 583 * we come here when we know perf_cgroup_events > 0 584 */ 585 cgrp1 = perf_cgroup_from_task(task); 586 587 /* prev can never be NULL */ 588 cgrp2 = perf_cgroup_from_task(prev); 589 590 /* 591 * only need to schedule in cgroup events if we are changing 592 * cgroup during ctxsw. Cgroup events were not scheduled 593 * out of ctxsw out if that was not the case. 594 */ 595 if (cgrp1 != cgrp2) 596 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 597 } 598 599 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 600 struct perf_event_attr *attr, 601 struct perf_event *group_leader) 602 { 603 struct perf_cgroup *cgrp; 604 struct cgroup_subsys_state *css; 605 struct fd f = fdget(fd); 606 int ret = 0; 607 608 if (!f.file) 609 return -EBADF; 610 611 css = css_tryget_online_from_dir(f.file->f_dentry, 612 &perf_event_cgrp_subsys); 613 if (IS_ERR(css)) { 614 ret = PTR_ERR(css); 615 goto out; 616 } 617 618 cgrp = container_of(css, struct perf_cgroup, css); 619 event->cgrp = cgrp; 620 621 /* 622 * all events in a group must monitor 623 * the same cgroup because a task belongs 624 * to only one perf cgroup at a time 625 */ 626 if (group_leader && group_leader->cgrp != cgrp) { 627 perf_detach_cgroup(event); 628 ret = -EINVAL; 629 } 630 out: 631 fdput(f); 632 return ret; 633 } 634 635 static inline void 636 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 637 { 638 struct perf_cgroup_info *t; 639 t = per_cpu_ptr(event->cgrp->info, event->cpu); 640 event->shadow_ctx_time = now - t->timestamp; 641 } 642 643 static inline void 644 perf_cgroup_defer_enabled(struct perf_event *event) 645 { 646 /* 647 * when the current task's perf cgroup does not match 648 * the event's, we need to remember to call the 649 * perf_mark_enable() function the first time a task with 650 * a matching perf cgroup is scheduled in. 651 */ 652 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 653 event->cgrp_defer_enabled = 1; 654 } 655 656 static inline void 657 perf_cgroup_mark_enabled(struct perf_event *event, 658 struct perf_event_context *ctx) 659 { 660 struct perf_event *sub; 661 u64 tstamp = perf_event_time(event); 662 663 if (!event->cgrp_defer_enabled) 664 return; 665 666 event->cgrp_defer_enabled = 0; 667 668 event->tstamp_enabled = tstamp - event->total_time_enabled; 669 list_for_each_entry(sub, &event->sibling_list, group_entry) { 670 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 671 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 672 sub->cgrp_defer_enabled = 0; 673 } 674 } 675 } 676 #else /* !CONFIG_CGROUP_PERF */ 677 678 static inline bool 679 perf_cgroup_match(struct perf_event *event) 680 { 681 return true; 682 } 683 684 static inline void perf_detach_cgroup(struct perf_event *event) 685 {} 686 687 static inline int is_cgroup_event(struct perf_event *event) 688 { 689 return 0; 690 } 691 692 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 693 { 694 return 0; 695 } 696 697 static inline void update_cgrp_time_from_event(struct perf_event *event) 698 { 699 } 700 701 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 702 { 703 } 704 705 static inline void perf_cgroup_sched_out(struct task_struct *task, 706 struct task_struct *next) 707 { 708 } 709 710 static inline void perf_cgroup_sched_in(struct task_struct *prev, 711 struct task_struct *task) 712 { 713 } 714 715 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 716 struct perf_event_attr *attr, 717 struct perf_event *group_leader) 718 { 719 return -EINVAL; 720 } 721 722 static inline void 723 perf_cgroup_set_timestamp(struct task_struct *task, 724 struct perf_event_context *ctx) 725 { 726 } 727 728 void 729 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 730 { 731 } 732 733 static inline void 734 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 735 { 736 } 737 738 static inline u64 perf_cgroup_event_time(struct perf_event *event) 739 { 740 return 0; 741 } 742 743 static inline void 744 perf_cgroup_defer_enabled(struct perf_event *event) 745 { 746 } 747 748 static inline void 749 perf_cgroup_mark_enabled(struct perf_event *event, 750 struct perf_event_context *ctx) 751 { 752 } 753 #endif 754 755 /* 756 * set default to be dependent on timer tick just 757 * like original code 758 */ 759 #define PERF_CPU_HRTIMER (1000 / HZ) 760 /* 761 * function must be called with interrupts disbled 762 */ 763 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 764 { 765 struct perf_cpu_context *cpuctx; 766 enum hrtimer_restart ret = HRTIMER_NORESTART; 767 int rotations = 0; 768 769 WARN_ON(!irqs_disabled()); 770 771 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 772 773 rotations = perf_rotate_context(cpuctx); 774 775 /* 776 * arm timer if needed 777 */ 778 if (rotations) { 779 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 780 ret = HRTIMER_RESTART; 781 } 782 783 return ret; 784 } 785 786 /* CPU is going down */ 787 void perf_cpu_hrtimer_cancel(int cpu) 788 { 789 struct perf_cpu_context *cpuctx; 790 struct pmu *pmu; 791 unsigned long flags; 792 793 if (WARN_ON(cpu != smp_processor_id())) 794 return; 795 796 local_irq_save(flags); 797 798 rcu_read_lock(); 799 800 list_for_each_entry_rcu(pmu, &pmus, entry) { 801 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 802 803 if (pmu->task_ctx_nr == perf_sw_context) 804 continue; 805 806 hrtimer_cancel(&cpuctx->hrtimer); 807 } 808 809 rcu_read_unlock(); 810 811 local_irq_restore(flags); 812 } 813 814 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 815 { 816 struct hrtimer *hr = &cpuctx->hrtimer; 817 struct pmu *pmu = cpuctx->ctx.pmu; 818 int timer; 819 820 /* no multiplexing needed for SW PMU */ 821 if (pmu->task_ctx_nr == perf_sw_context) 822 return; 823 824 /* 825 * check default is sane, if not set then force to 826 * default interval (1/tick) 827 */ 828 timer = pmu->hrtimer_interval_ms; 829 if (timer < 1) 830 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 831 832 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 833 834 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 835 hr->function = perf_cpu_hrtimer_handler; 836 } 837 838 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 839 { 840 struct hrtimer *hr = &cpuctx->hrtimer; 841 struct pmu *pmu = cpuctx->ctx.pmu; 842 843 /* not for SW PMU */ 844 if (pmu->task_ctx_nr == perf_sw_context) 845 return; 846 847 if (hrtimer_active(hr)) 848 return; 849 850 if (!hrtimer_callback_running(hr)) 851 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 852 0, HRTIMER_MODE_REL_PINNED, 0); 853 } 854 855 void perf_pmu_disable(struct pmu *pmu) 856 { 857 int *count = this_cpu_ptr(pmu->pmu_disable_count); 858 if (!(*count)++) 859 pmu->pmu_disable(pmu); 860 } 861 862 void perf_pmu_enable(struct pmu *pmu) 863 { 864 int *count = this_cpu_ptr(pmu->pmu_disable_count); 865 if (!--(*count)) 866 pmu->pmu_enable(pmu); 867 } 868 869 static DEFINE_PER_CPU(struct list_head, rotation_list); 870 871 /* 872 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 873 * because they're strictly cpu affine and rotate_start is called with IRQs 874 * disabled, while rotate_context is called from IRQ context. 875 */ 876 static void perf_pmu_rotate_start(struct pmu *pmu) 877 { 878 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 879 struct list_head *head = &__get_cpu_var(rotation_list); 880 881 WARN_ON(!irqs_disabled()); 882 883 if (list_empty(&cpuctx->rotation_list)) 884 list_add(&cpuctx->rotation_list, head); 885 } 886 887 static void get_ctx(struct perf_event_context *ctx) 888 { 889 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 890 } 891 892 static void put_ctx(struct perf_event_context *ctx) 893 { 894 if (atomic_dec_and_test(&ctx->refcount)) { 895 if (ctx->parent_ctx) 896 put_ctx(ctx->parent_ctx); 897 if (ctx->task) 898 put_task_struct(ctx->task); 899 kfree_rcu(ctx, rcu_head); 900 } 901 } 902 903 static void unclone_ctx(struct perf_event_context *ctx) 904 { 905 if (ctx->parent_ctx) { 906 put_ctx(ctx->parent_ctx); 907 ctx->parent_ctx = NULL; 908 } 909 ctx->generation++; 910 } 911 912 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 913 { 914 /* 915 * only top level events have the pid namespace they were created in 916 */ 917 if (event->parent) 918 event = event->parent; 919 920 return task_tgid_nr_ns(p, event->ns); 921 } 922 923 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 924 { 925 /* 926 * only top level events have the pid namespace they were created in 927 */ 928 if (event->parent) 929 event = event->parent; 930 931 return task_pid_nr_ns(p, event->ns); 932 } 933 934 /* 935 * If we inherit events we want to return the parent event id 936 * to userspace. 937 */ 938 static u64 primary_event_id(struct perf_event *event) 939 { 940 u64 id = event->id; 941 942 if (event->parent) 943 id = event->parent->id; 944 945 return id; 946 } 947 948 /* 949 * Get the perf_event_context for a task and lock it. 950 * This has to cope with with the fact that until it is locked, 951 * the context could get moved to another task. 952 */ 953 static struct perf_event_context * 954 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 955 { 956 struct perf_event_context *ctx; 957 958 retry: 959 /* 960 * One of the few rules of preemptible RCU is that one cannot do 961 * rcu_read_unlock() while holding a scheduler (or nested) lock when 962 * part of the read side critical section was preemptible -- see 963 * rcu_read_unlock_special(). 964 * 965 * Since ctx->lock nests under rq->lock we must ensure the entire read 966 * side critical section is non-preemptible. 967 */ 968 preempt_disable(); 969 rcu_read_lock(); 970 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 971 if (ctx) { 972 /* 973 * If this context is a clone of another, it might 974 * get swapped for another underneath us by 975 * perf_event_task_sched_out, though the 976 * rcu_read_lock() protects us from any context 977 * getting freed. Lock the context and check if it 978 * got swapped before we could get the lock, and retry 979 * if so. If we locked the right context, then it 980 * can't get swapped on us any more. 981 */ 982 raw_spin_lock_irqsave(&ctx->lock, *flags); 983 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 984 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 985 rcu_read_unlock(); 986 preempt_enable(); 987 goto retry; 988 } 989 990 if (!atomic_inc_not_zero(&ctx->refcount)) { 991 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 992 ctx = NULL; 993 } 994 } 995 rcu_read_unlock(); 996 preempt_enable(); 997 return ctx; 998 } 999 1000 /* 1001 * Get the context for a task and increment its pin_count so it 1002 * can't get swapped to another task. This also increments its 1003 * reference count so that the context can't get freed. 1004 */ 1005 static struct perf_event_context * 1006 perf_pin_task_context(struct task_struct *task, int ctxn) 1007 { 1008 struct perf_event_context *ctx; 1009 unsigned long flags; 1010 1011 ctx = perf_lock_task_context(task, ctxn, &flags); 1012 if (ctx) { 1013 ++ctx->pin_count; 1014 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1015 } 1016 return ctx; 1017 } 1018 1019 static void perf_unpin_context(struct perf_event_context *ctx) 1020 { 1021 unsigned long flags; 1022 1023 raw_spin_lock_irqsave(&ctx->lock, flags); 1024 --ctx->pin_count; 1025 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1026 } 1027 1028 /* 1029 * Update the record of the current time in a context. 1030 */ 1031 static void update_context_time(struct perf_event_context *ctx) 1032 { 1033 u64 now = perf_clock(); 1034 1035 ctx->time += now - ctx->timestamp; 1036 ctx->timestamp = now; 1037 } 1038 1039 static u64 perf_event_time(struct perf_event *event) 1040 { 1041 struct perf_event_context *ctx = event->ctx; 1042 1043 if (is_cgroup_event(event)) 1044 return perf_cgroup_event_time(event); 1045 1046 return ctx ? ctx->time : 0; 1047 } 1048 1049 /* 1050 * Update the total_time_enabled and total_time_running fields for a event. 1051 * The caller of this function needs to hold the ctx->lock. 1052 */ 1053 static void update_event_times(struct perf_event *event) 1054 { 1055 struct perf_event_context *ctx = event->ctx; 1056 u64 run_end; 1057 1058 if (event->state < PERF_EVENT_STATE_INACTIVE || 1059 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1060 return; 1061 /* 1062 * in cgroup mode, time_enabled represents 1063 * the time the event was enabled AND active 1064 * tasks were in the monitored cgroup. This is 1065 * independent of the activity of the context as 1066 * there may be a mix of cgroup and non-cgroup events. 1067 * 1068 * That is why we treat cgroup events differently 1069 * here. 1070 */ 1071 if (is_cgroup_event(event)) 1072 run_end = perf_cgroup_event_time(event); 1073 else if (ctx->is_active) 1074 run_end = ctx->time; 1075 else 1076 run_end = event->tstamp_stopped; 1077 1078 event->total_time_enabled = run_end - event->tstamp_enabled; 1079 1080 if (event->state == PERF_EVENT_STATE_INACTIVE) 1081 run_end = event->tstamp_stopped; 1082 else 1083 run_end = perf_event_time(event); 1084 1085 event->total_time_running = run_end - event->tstamp_running; 1086 1087 } 1088 1089 /* 1090 * Update total_time_enabled and total_time_running for all events in a group. 1091 */ 1092 static void update_group_times(struct perf_event *leader) 1093 { 1094 struct perf_event *event; 1095 1096 update_event_times(leader); 1097 list_for_each_entry(event, &leader->sibling_list, group_entry) 1098 update_event_times(event); 1099 } 1100 1101 static struct list_head * 1102 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1103 { 1104 if (event->attr.pinned) 1105 return &ctx->pinned_groups; 1106 else 1107 return &ctx->flexible_groups; 1108 } 1109 1110 /* 1111 * Add a event from the lists for its context. 1112 * Must be called with ctx->mutex and ctx->lock held. 1113 */ 1114 static void 1115 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1116 { 1117 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1118 event->attach_state |= PERF_ATTACH_CONTEXT; 1119 1120 /* 1121 * If we're a stand alone event or group leader, we go to the context 1122 * list, group events are kept attached to the group so that 1123 * perf_group_detach can, at all times, locate all siblings. 1124 */ 1125 if (event->group_leader == event) { 1126 struct list_head *list; 1127 1128 if (is_software_event(event)) 1129 event->group_flags |= PERF_GROUP_SOFTWARE; 1130 1131 list = ctx_group_list(event, ctx); 1132 list_add_tail(&event->group_entry, list); 1133 } 1134 1135 if (is_cgroup_event(event)) 1136 ctx->nr_cgroups++; 1137 1138 if (has_branch_stack(event)) 1139 ctx->nr_branch_stack++; 1140 1141 list_add_rcu(&event->event_entry, &ctx->event_list); 1142 if (!ctx->nr_events) 1143 perf_pmu_rotate_start(ctx->pmu); 1144 ctx->nr_events++; 1145 if (event->attr.inherit_stat) 1146 ctx->nr_stat++; 1147 1148 ctx->generation++; 1149 } 1150 1151 /* 1152 * Initialize event state based on the perf_event_attr::disabled. 1153 */ 1154 static inline void perf_event__state_init(struct perf_event *event) 1155 { 1156 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1157 PERF_EVENT_STATE_INACTIVE; 1158 } 1159 1160 /* 1161 * Called at perf_event creation and when events are attached/detached from a 1162 * group. 1163 */ 1164 static void perf_event__read_size(struct perf_event *event) 1165 { 1166 int entry = sizeof(u64); /* value */ 1167 int size = 0; 1168 int nr = 1; 1169 1170 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1171 size += sizeof(u64); 1172 1173 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1174 size += sizeof(u64); 1175 1176 if (event->attr.read_format & PERF_FORMAT_ID) 1177 entry += sizeof(u64); 1178 1179 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1180 nr += event->group_leader->nr_siblings; 1181 size += sizeof(u64); 1182 } 1183 1184 size += entry * nr; 1185 event->read_size = size; 1186 } 1187 1188 static void perf_event__header_size(struct perf_event *event) 1189 { 1190 struct perf_sample_data *data; 1191 u64 sample_type = event->attr.sample_type; 1192 u16 size = 0; 1193 1194 perf_event__read_size(event); 1195 1196 if (sample_type & PERF_SAMPLE_IP) 1197 size += sizeof(data->ip); 1198 1199 if (sample_type & PERF_SAMPLE_ADDR) 1200 size += sizeof(data->addr); 1201 1202 if (sample_type & PERF_SAMPLE_PERIOD) 1203 size += sizeof(data->period); 1204 1205 if (sample_type & PERF_SAMPLE_WEIGHT) 1206 size += sizeof(data->weight); 1207 1208 if (sample_type & PERF_SAMPLE_READ) 1209 size += event->read_size; 1210 1211 if (sample_type & PERF_SAMPLE_DATA_SRC) 1212 size += sizeof(data->data_src.val); 1213 1214 if (sample_type & PERF_SAMPLE_TRANSACTION) 1215 size += sizeof(data->txn); 1216 1217 event->header_size = size; 1218 } 1219 1220 static void perf_event__id_header_size(struct perf_event *event) 1221 { 1222 struct perf_sample_data *data; 1223 u64 sample_type = event->attr.sample_type; 1224 u16 size = 0; 1225 1226 if (sample_type & PERF_SAMPLE_TID) 1227 size += sizeof(data->tid_entry); 1228 1229 if (sample_type & PERF_SAMPLE_TIME) 1230 size += sizeof(data->time); 1231 1232 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1233 size += sizeof(data->id); 1234 1235 if (sample_type & PERF_SAMPLE_ID) 1236 size += sizeof(data->id); 1237 1238 if (sample_type & PERF_SAMPLE_STREAM_ID) 1239 size += sizeof(data->stream_id); 1240 1241 if (sample_type & PERF_SAMPLE_CPU) 1242 size += sizeof(data->cpu_entry); 1243 1244 event->id_header_size = size; 1245 } 1246 1247 static void perf_group_attach(struct perf_event *event) 1248 { 1249 struct perf_event *group_leader = event->group_leader, *pos; 1250 1251 /* 1252 * We can have double attach due to group movement in perf_event_open. 1253 */ 1254 if (event->attach_state & PERF_ATTACH_GROUP) 1255 return; 1256 1257 event->attach_state |= PERF_ATTACH_GROUP; 1258 1259 if (group_leader == event) 1260 return; 1261 1262 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1263 !is_software_event(event)) 1264 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1265 1266 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1267 group_leader->nr_siblings++; 1268 1269 perf_event__header_size(group_leader); 1270 1271 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1272 perf_event__header_size(pos); 1273 } 1274 1275 /* 1276 * Remove a event from the lists for its context. 1277 * Must be called with ctx->mutex and ctx->lock held. 1278 */ 1279 static void 1280 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1281 { 1282 struct perf_cpu_context *cpuctx; 1283 /* 1284 * We can have double detach due to exit/hot-unplug + close. 1285 */ 1286 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1287 return; 1288 1289 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1290 1291 if (is_cgroup_event(event)) { 1292 ctx->nr_cgroups--; 1293 cpuctx = __get_cpu_context(ctx); 1294 /* 1295 * if there are no more cgroup events 1296 * then cler cgrp to avoid stale pointer 1297 * in update_cgrp_time_from_cpuctx() 1298 */ 1299 if (!ctx->nr_cgroups) 1300 cpuctx->cgrp = NULL; 1301 } 1302 1303 if (has_branch_stack(event)) 1304 ctx->nr_branch_stack--; 1305 1306 ctx->nr_events--; 1307 if (event->attr.inherit_stat) 1308 ctx->nr_stat--; 1309 1310 list_del_rcu(&event->event_entry); 1311 1312 if (event->group_leader == event) 1313 list_del_init(&event->group_entry); 1314 1315 update_group_times(event); 1316 1317 /* 1318 * If event was in error state, then keep it 1319 * that way, otherwise bogus counts will be 1320 * returned on read(). The only way to get out 1321 * of error state is by explicit re-enabling 1322 * of the event 1323 */ 1324 if (event->state > PERF_EVENT_STATE_OFF) 1325 event->state = PERF_EVENT_STATE_OFF; 1326 1327 ctx->generation++; 1328 } 1329 1330 static void perf_group_detach(struct perf_event *event) 1331 { 1332 struct perf_event *sibling, *tmp; 1333 struct list_head *list = NULL; 1334 1335 /* 1336 * We can have double detach due to exit/hot-unplug + close. 1337 */ 1338 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1339 return; 1340 1341 event->attach_state &= ~PERF_ATTACH_GROUP; 1342 1343 /* 1344 * If this is a sibling, remove it from its group. 1345 */ 1346 if (event->group_leader != event) { 1347 list_del_init(&event->group_entry); 1348 event->group_leader->nr_siblings--; 1349 goto out; 1350 } 1351 1352 if (!list_empty(&event->group_entry)) 1353 list = &event->group_entry; 1354 1355 /* 1356 * If this was a group event with sibling events then 1357 * upgrade the siblings to singleton events by adding them 1358 * to whatever list we are on. 1359 */ 1360 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1361 if (list) 1362 list_move_tail(&sibling->group_entry, list); 1363 sibling->group_leader = sibling; 1364 1365 /* Inherit group flags from the previous leader */ 1366 sibling->group_flags = event->group_flags; 1367 } 1368 1369 out: 1370 perf_event__header_size(event->group_leader); 1371 1372 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1373 perf_event__header_size(tmp); 1374 } 1375 1376 static inline int 1377 event_filter_match(struct perf_event *event) 1378 { 1379 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1380 && perf_cgroup_match(event); 1381 } 1382 1383 static void 1384 event_sched_out(struct perf_event *event, 1385 struct perf_cpu_context *cpuctx, 1386 struct perf_event_context *ctx) 1387 { 1388 u64 tstamp = perf_event_time(event); 1389 u64 delta; 1390 /* 1391 * An event which could not be activated because of 1392 * filter mismatch still needs to have its timings 1393 * maintained, otherwise bogus information is return 1394 * via read() for time_enabled, time_running: 1395 */ 1396 if (event->state == PERF_EVENT_STATE_INACTIVE 1397 && !event_filter_match(event)) { 1398 delta = tstamp - event->tstamp_stopped; 1399 event->tstamp_running += delta; 1400 event->tstamp_stopped = tstamp; 1401 } 1402 1403 if (event->state != PERF_EVENT_STATE_ACTIVE) 1404 return; 1405 1406 perf_pmu_disable(event->pmu); 1407 1408 event->state = PERF_EVENT_STATE_INACTIVE; 1409 if (event->pending_disable) { 1410 event->pending_disable = 0; 1411 event->state = PERF_EVENT_STATE_OFF; 1412 } 1413 event->tstamp_stopped = tstamp; 1414 event->pmu->del(event, 0); 1415 event->oncpu = -1; 1416 1417 if (!is_software_event(event)) 1418 cpuctx->active_oncpu--; 1419 ctx->nr_active--; 1420 if (event->attr.freq && event->attr.sample_freq) 1421 ctx->nr_freq--; 1422 if (event->attr.exclusive || !cpuctx->active_oncpu) 1423 cpuctx->exclusive = 0; 1424 1425 perf_pmu_enable(event->pmu); 1426 } 1427 1428 static void 1429 group_sched_out(struct perf_event *group_event, 1430 struct perf_cpu_context *cpuctx, 1431 struct perf_event_context *ctx) 1432 { 1433 struct perf_event *event; 1434 int state = group_event->state; 1435 1436 event_sched_out(group_event, cpuctx, ctx); 1437 1438 /* 1439 * Schedule out siblings (if any): 1440 */ 1441 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1442 event_sched_out(event, cpuctx, ctx); 1443 1444 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1445 cpuctx->exclusive = 0; 1446 } 1447 1448 struct remove_event { 1449 struct perf_event *event; 1450 bool detach_group; 1451 }; 1452 1453 /* 1454 * Cross CPU call to remove a performance event 1455 * 1456 * We disable the event on the hardware level first. After that we 1457 * remove it from the context list. 1458 */ 1459 static int __perf_remove_from_context(void *info) 1460 { 1461 struct remove_event *re = info; 1462 struct perf_event *event = re->event; 1463 struct perf_event_context *ctx = event->ctx; 1464 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1465 1466 raw_spin_lock(&ctx->lock); 1467 event_sched_out(event, cpuctx, ctx); 1468 if (re->detach_group) 1469 perf_group_detach(event); 1470 list_del_event(event, ctx); 1471 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1472 ctx->is_active = 0; 1473 cpuctx->task_ctx = NULL; 1474 } 1475 raw_spin_unlock(&ctx->lock); 1476 1477 return 0; 1478 } 1479 1480 1481 /* 1482 * Remove the event from a task's (or a CPU's) list of events. 1483 * 1484 * CPU events are removed with a smp call. For task events we only 1485 * call when the task is on a CPU. 1486 * 1487 * If event->ctx is a cloned context, callers must make sure that 1488 * every task struct that event->ctx->task could possibly point to 1489 * remains valid. This is OK when called from perf_release since 1490 * that only calls us on the top-level context, which can't be a clone. 1491 * When called from perf_event_exit_task, it's OK because the 1492 * context has been detached from its task. 1493 */ 1494 static void perf_remove_from_context(struct perf_event *event, bool detach_group) 1495 { 1496 struct perf_event_context *ctx = event->ctx; 1497 struct task_struct *task = ctx->task; 1498 struct remove_event re = { 1499 .event = event, 1500 .detach_group = detach_group, 1501 }; 1502 1503 lockdep_assert_held(&ctx->mutex); 1504 1505 if (!task) { 1506 /* 1507 * Per cpu events are removed via an smp call and 1508 * the removal is always successful. 1509 */ 1510 cpu_function_call(event->cpu, __perf_remove_from_context, &re); 1511 return; 1512 } 1513 1514 retry: 1515 if (!task_function_call(task, __perf_remove_from_context, &re)) 1516 return; 1517 1518 raw_spin_lock_irq(&ctx->lock); 1519 /* 1520 * If we failed to find a running task, but find the context active now 1521 * that we've acquired the ctx->lock, retry. 1522 */ 1523 if (ctx->is_active) { 1524 raw_spin_unlock_irq(&ctx->lock); 1525 goto retry; 1526 } 1527 1528 /* 1529 * Since the task isn't running, its safe to remove the event, us 1530 * holding the ctx->lock ensures the task won't get scheduled in. 1531 */ 1532 if (detach_group) 1533 perf_group_detach(event); 1534 list_del_event(event, ctx); 1535 raw_spin_unlock_irq(&ctx->lock); 1536 } 1537 1538 /* 1539 * Cross CPU call to disable a performance event 1540 */ 1541 int __perf_event_disable(void *info) 1542 { 1543 struct perf_event *event = info; 1544 struct perf_event_context *ctx = event->ctx; 1545 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1546 1547 /* 1548 * If this is a per-task event, need to check whether this 1549 * event's task is the current task on this cpu. 1550 * 1551 * Can trigger due to concurrent perf_event_context_sched_out() 1552 * flipping contexts around. 1553 */ 1554 if (ctx->task && cpuctx->task_ctx != ctx) 1555 return -EINVAL; 1556 1557 raw_spin_lock(&ctx->lock); 1558 1559 /* 1560 * If the event is on, turn it off. 1561 * If it is in error state, leave it in error state. 1562 */ 1563 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1564 update_context_time(ctx); 1565 update_cgrp_time_from_event(event); 1566 update_group_times(event); 1567 if (event == event->group_leader) 1568 group_sched_out(event, cpuctx, ctx); 1569 else 1570 event_sched_out(event, cpuctx, ctx); 1571 event->state = PERF_EVENT_STATE_OFF; 1572 } 1573 1574 raw_spin_unlock(&ctx->lock); 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * Disable a event. 1581 * 1582 * If event->ctx is a cloned context, callers must make sure that 1583 * every task struct that event->ctx->task could possibly point to 1584 * remains valid. This condition is satisifed when called through 1585 * perf_event_for_each_child or perf_event_for_each because they 1586 * hold the top-level event's child_mutex, so any descendant that 1587 * goes to exit will block in sync_child_event. 1588 * When called from perf_pending_event it's OK because event->ctx 1589 * is the current context on this CPU and preemption is disabled, 1590 * hence we can't get into perf_event_task_sched_out for this context. 1591 */ 1592 void perf_event_disable(struct perf_event *event) 1593 { 1594 struct perf_event_context *ctx = event->ctx; 1595 struct task_struct *task = ctx->task; 1596 1597 if (!task) { 1598 /* 1599 * Disable the event on the cpu that it's on 1600 */ 1601 cpu_function_call(event->cpu, __perf_event_disable, event); 1602 return; 1603 } 1604 1605 retry: 1606 if (!task_function_call(task, __perf_event_disable, event)) 1607 return; 1608 1609 raw_spin_lock_irq(&ctx->lock); 1610 /* 1611 * If the event is still active, we need to retry the cross-call. 1612 */ 1613 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1614 raw_spin_unlock_irq(&ctx->lock); 1615 /* 1616 * Reload the task pointer, it might have been changed by 1617 * a concurrent perf_event_context_sched_out(). 1618 */ 1619 task = ctx->task; 1620 goto retry; 1621 } 1622 1623 /* 1624 * Since we have the lock this context can't be scheduled 1625 * in, so we can change the state safely. 1626 */ 1627 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1628 update_group_times(event); 1629 event->state = PERF_EVENT_STATE_OFF; 1630 } 1631 raw_spin_unlock_irq(&ctx->lock); 1632 } 1633 EXPORT_SYMBOL_GPL(perf_event_disable); 1634 1635 static void perf_set_shadow_time(struct perf_event *event, 1636 struct perf_event_context *ctx, 1637 u64 tstamp) 1638 { 1639 /* 1640 * use the correct time source for the time snapshot 1641 * 1642 * We could get by without this by leveraging the 1643 * fact that to get to this function, the caller 1644 * has most likely already called update_context_time() 1645 * and update_cgrp_time_xx() and thus both timestamp 1646 * are identical (or very close). Given that tstamp is, 1647 * already adjusted for cgroup, we could say that: 1648 * tstamp - ctx->timestamp 1649 * is equivalent to 1650 * tstamp - cgrp->timestamp. 1651 * 1652 * Then, in perf_output_read(), the calculation would 1653 * work with no changes because: 1654 * - event is guaranteed scheduled in 1655 * - no scheduled out in between 1656 * - thus the timestamp would be the same 1657 * 1658 * But this is a bit hairy. 1659 * 1660 * So instead, we have an explicit cgroup call to remain 1661 * within the time time source all along. We believe it 1662 * is cleaner and simpler to understand. 1663 */ 1664 if (is_cgroup_event(event)) 1665 perf_cgroup_set_shadow_time(event, tstamp); 1666 else 1667 event->shadow_ctx_time = tstamp - ctx->timestamp; 1668 } 1669 1670 #define MAX_INTERRUPTS (~0ULL) 1671 1672 static void perf_log_throttle(struct perf_event *event, int enable); 1673 1674 static int 1675 event_sched_in(struct perf_event *event, 1676 struct perf_cpu_context *cpuctx, 1677 struct perf_event_context *ctx) 1678 { 1679 u64 tstamp = perf_event_time(event); 1680 int ret = 0; 1681 1682 lockdep_assert_held(&ctx->lock); 1683 1684 if (event->state <= PERF_EVENT_STATE_OFF) 1685 return 0; 1686 1687 event->state = PERF_EVENT_STATE_ACTIVE; 1688 event->oncpu = smp_processor_id(); 1689 1690 /* 1691 * Unthrottle events, since we scheduled we might have missed several 1692 * ticks already, also for a heavily scheduling task there is little 1693 * guarantee it'll get a tick in a timely manner. 1694 */ 1695 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1696 perf_log_throttle(event, 1); 1697 event->hw.interrupts = 0; 1698 } 1699 1700 /* 1701 * The new state must be visible before we turn it on in the hardware: 1702 */ 1703 smp_wmb(); 1704 1705 perf_pmu_disable(event->pmu); 1706 1707 if (event->pmu->add(event, PERF_EF_START)) { 1708 event->state = PERF_EVENT_STATE_INACTIVE; 1709 event->oncpu = -1; 1710 ret = -EAGAIN; 1711 goto out; 1712 } 1713 1714 event->tstamp_running += tstamp - event->tstamp_stopped; 1715 1716 perf_set_shadow_time(event, ctx, tstamp); 1717 1718 if (!is_software_event(event)) 1719 cpuctx->active_oncpu++; 1720 ctx->nr_active++; 1721 if (event->attr.freq && event->attr.sample_freq) 1722 ctx->nr_freq++; 1723 1724 if (event->attr.exclusive) 1725 cpuctx->exclusive = 1; 1726 1727 out: 1728 perf_pmu_enable(event->pmu); 1729 1730 return ret; 1731 } 1732 1733 static int 1734 group_sched_in(struct perf_event *group_event, 1735 struct perf_cpu_context *cpuctx, 1736 struct perf_event_context *ctx) 1737 { 1738 struct perf_event *event, *partial_group = NULL; 1739 struct pmu *pmu = ctx->pmu; 1740 u64 now = ctx->time; 1741 bool simulate = false; 1742 1743 if (group_event->state == PERF_EVENT_STATE_OFF) 1744 return 0; 1745 1746 pmu->start_txn(pmu); 1747 1748 if (event_sched_in(group_event, cpuctx, ctx)) { 1749 pmu->cancel_txn(pmu); 1750 perf_cpu_hrtimer_restart(cpuctx); 1751 return -EAGAIN; 1752 } 1753 1754 /* 1755 * Schedule in siblings as one group (if any): 1756 */ 1757 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1758 if (event_sched_in(event, cpuctx, ctx)) { 1759 partial_group = event; 1760 goto group_error; 1761 } 1762 } 1763 1764 if (!pmu->commit_txn(pmu)) 1765 return 0; 1766 1767 group_error: 1768 /* 1769 * Groups can be scheduled in as one unit only, so undo any 1770 * partial group before returning: 1771 * The events up to the failed event are scheduled out normally, 1772 * tstamp_stopped will be updated. 1773 * 1774 * The failed events and the remaining siblings need to have 1775 * their timings updated as if they had gone thru event_sched_in() 1776 * and event_sched_out(). This is required to get consistent timings 1777 * across the group. This also takes care of the case where the group 1778 * could never be scheduled by ensuring tstamp_stopped is set to mark 1779 * the time the event was actually stopped, such that time delta 1780 * calculation in update_event_times() is correct. 1781 */ 1782 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1783 if (event == partial_group) 1784 simulate = true; 1785 1786 if (simulate) { 1787 event->tstamp_running += now - event->tstamp_stopped; 1788 event->tstamp_stopped = now; 1789 } else { 1790 event_sched_out(event, cpuctx, ctx); 1791 } 1792 } 1793 event_sched_out(group_event, cpuctx, ctx); 1794 1795 pmu->cancel_txn(pmu); 1796 1797 perf_cpu_hrtimer_restart(cpuctx); 1798 1799 return -EAGAIN; 1800 } 1801 1802 /* 1803 * Work out whether we can put this event group on the CPU now. 1804 */ 1805 static int group_can_go_on(struct perf_event *event, 1806 struct perf_cpu_context *cpuctx, 1807 int can_add_hw) 1808 { 1809 /* 1810 * Groups consisting entirely of software events can always go on. 1811 */ 1812 if (event->group_flags & PERF_GROUP_SOFTWARE) 1813 return 1; 1814 /* 1815 * If an exclusive group is already on, no other hardware 1816 * events can go on. 1817 */ 1818 if (cpuctx->exclusive) 1819 return 0; 1820 /* 1821 * If this group is exclusive and there are already 1822 * events on the CPU, it can't go on. 1823 */ 1824 if (event->attr.exclusive && cpuctx->active_oncpu) 1825 return 0; 1826 /* 1827 * Otherwise, try to add it if all previous groups were able 1828 * to go on. 1829 */ 1830 return can_add_hw; 1831 } 1832 1833 static void add_event_to_ctx(struct perf_event *event, 1834 struct perf_event_context *ctx) 1835 { 1836 u64 tstamp = perf_event_time(event); 1837 1838 list_add_event(event, ctx); 1839 perf_group_attach(event); 1840 event->tstamp_enabled = tstamp; 1841 event->tstamp_running = tstamp; 1842 event->tstamp_stopped = tstamp; 1843 } 1844 1845 static void task_ctx_sched_out(struct perf_event_context *ctx); 1846 static void 1847 ctx_sched_in(struct perf_event_context *ctx, 1848 struct perf_cpu_context *cpuctx, 1849 enum event_type_t event_type, 1850 struct task_struct *task); 1851 1852 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1853 struct perf_event_context *ctx, 1854 struct task_struct *task) 1855 { 1856 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1857 if (ctx) 1858 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1859 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1860 if (ctx) 1861 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1862 } 1863 1864 /* 1865 * Cross CPU call to install and enable a performance event 1866 * 1867 * Must be called with ctx->mutex held 1868 */ 1869 static int __perf_install_in_context(void *info) 1870 { 1871 struct perf_event *event = info; 1872 struct perf_event_context *ctx = event->ctx; 1873 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1874 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1875 struct task_struct *task = current; 1876 1877 perf_ctx_lock(cpuctx, task_ctx); 1878 perf_pmu_disable(cpuctx->ctx.pmu); 1879 1880 /* 1881 * If there was an active task_ctx schedule it out. 1882 */ 1883 if (task_ctx) 1884 task_ctx_sched_out(task_ctx); 1885 1886 /* 1887 * If the context we're installing events in is not the 1888 * active task_ctx, flip them. 1889 */ 1890 if (ctx->task && task_ctx != ctx) { 1891 if (task_ctx) 1892 raw_spin_unlock(&task_ctx->lock); 1893 raw_spin_lock(&ctx->lock); 1894 task_ctx = ctx; 1895 } 1896 1897 if (task_ctx) { 1898 cpuctx->task_ctx = task_ctx; 1899 task = task_ctx->task; 1900 } 1901 1902 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1903 1904 update_context_time(ctx); 1905 /* 1906 * update cgrp time only if current cgrp 1907 * matches event->cgrp. Must be done before 1908 * calling add_event_to_ctx() 1909 */ 1910 update_cgrp_time_from_event(event); 1911 1912 add_event_to_ctx(event, ctx); 1913 1914 /* 1915 * Schedule everything back in 1916 */ 1917 perf_event_sched_in(cpuctx, task_ctx, task); 1918 1919 perf_pmu_enable(cpuctx->ctx.pmu); 1920 perf_ctx_unlock(cpuctx, task_ctx); 1921 1922 return 0; 1923 } 1924 1925 /* 1926 * Attach a performance event to a context 1927 * 1928 * First we add the event to the list with the hardware enable bit 1929 * in event->hw_config cleared. 1930 * 1931 * If the event is attached to a task which is on a CPU we use a smp 1932 * call to enable it in the task context. The task might have been 1933 * scheduled away, but we check this in the smp call again. 1934 */ 1935 static void 1936 perf_install_in_context(struct perf_event_context *ctx, 1937 struct perf_event *event, 1938 int cpu) 1939 { 1940 struct task_struct *task = ctx->task; 1941 1942 lockdep_assert_held(&ctx->mutex); 1943 1944 event->ctx = ctx; 1945 if (event->cpu != -1) 1946 event->cpu = cpu; 1947 1948 if (!task) { 1949 /* 1950 * Per cpu events are installed via an smp call and 1951 * the install is always successful. 1952 */ 1953 cpu_function_call(cpu, __perf_install_in_context, event); 1954 return; 1955 } 1956 1957 retry: 1958 if (!task_function_call(task, __perf_install_in_context, event)) 1959 return; 1960 1961 raw_spin_lock_irq(&ctx->lock); 1962 /* 1963 * If we failed to find a running task, but find the context active now 1964 * that we've acquired the ctx->lock, retry. 1965 */ 1966 if (ctx->is_active) { 1967 raw_spin_unlock_irq(&ctx->lock); 1968 goto retry; 1969 } 1970 1971 /* 1972 * Since the task isn't running, its safe to add the event, us holding 1973 * the ctx->lock ensures the task won't get scheduled in. 1974 */ 1975 add_event_to_ctx(event, ctx); 1976 raw_spin_unlock_irq(&ctx->lock); 1977 } 1978 1979 /* 1980 * Put a event into inactive state and update time fields. 1981 * Enabling the leader of a group effectively enables all 1982 * the group members that aren't explicitly disabled, so we 1983 * have to update their ->tstamp_enabled also. 1984 * Note: this works for group members as well as group leaders 1985 * since the non-leader members' sibling_lists will be empty. 1986 */ 1987 static void __perf_event_mark_enabled(struct perf_event *event) 1988 { 1989 struct perf_event *sub; 1990 u64 tstamp = perf_event_time(event); 1991 1992 event->state = PERF_EVENT_STATE_INACTIVE; 1993 event->tstamp_enabled = tstamp - event->total_time_enabled; 1994 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1995 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1996 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1997 } 1998 } 1999 2000 /* 2001 * Cross CPU call to enable a performance event 2002 */ 2003 static int __perf_event_enable(void *info) 2004 { 2005 struct perf_event *event = info; 2006 struct perf_event_context *ctx = event->ctx; 2007 struct perf_event *leader = event->group_leader; 2008 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2009 int err; 2010 2011 /* 2012 * There's a time window between 'ctx->is_active' check 2013 * in perf_event_enable function and this place having: 2014 * - IRQs on 2015 * - ctx->lock unlocked 2016 * 2017 * where the task could be killed and 'ctx' deactivated 2018 * by perf_event_exit_task. 2019 */ 2020 if (!ctx->is_active) 2021 return -EINVAL; 2022 2023 raw_spin_lock(&ctx->lock); 2024 update_context_time(ctx); 2025 2026 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2027 goto unlock; 2028 2029 /* 2030 * set current task's cgroup time reference point 2031 */ 2032 perf_cgroup_set_timestamp(current, ctx); 2033 2034 __perf_event_mark_enabled(event); 2035 2036 if (!event_filter_match(event)) { 2037 if (is_cgroup_event(event)) 2038 perf_cgroup_defer_enabled(event); 2039 goto unlock; 2040 } 2041 2042 /* 2043 * If the event is in a group and isn't the group leader, 2044 * then don't put it on unless the group is on. 2045 */ 2046 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2047 goto unlock; 2048 2049 if (!group_can_go_on(event, cpuctx, 1)) { 2050 err = -EEXIST; 2051 } else { 2052 if (event == leader) 2053 err = group_sched_in(event, cpuctx, ctx); 2054 else 2055 err = event_sched_in(event, cpuctx, ctx); 2056 } 2057 2058 if (err) { 2059 /* 2060 * If this event can't go on and it's part of a 2061 * group, then the whole group has to come off. 2062 */ 2063 if (leader != event) { 2064 group_sched_out(leader, cpuctx, ctx); 2065 perf_cpu_hrtimer_restart(cpuctx); 2066 } 2067 if (leader->attr.pinned) { 2068 update_group_times(leader); 2069 leader->state = PERF_EVENT_STATE_ERROR; 2070 } 2071 } 2072 2073 unlock: 2074 raw_spin_unlock(&ctx->lock); 2075 2076 return 0; 2077 } 2078 2079 /* 2080 * Enable a event. 2081 * 2082 * If event->ctx is a cloned context, callers must make sure that 2083 * every task struct that event->ctx->task could possibly point to 2084 * remains valid. This condition is satisfied when called through 2085 * perf_event_for_each_child or perf_event_for_each as described 2086 * for perf_event_disable. 2087 */ 2088 void perf_event_enable(struct perf_event *event) 2089 { 2090 struct perf_event_context *ctx = event->ctx; 2091 struct task_struct *task = ctx->task; 2092 2093 if (!task) { 2094 /* 2095 * Enable the event on the cpu that it's on 2096 */ 2097 cpu_function_call(event->cpu, __perf_event_enable, event); 2098 return; 2099 } 2100 2101 raw_spin_lock_irq(&ctx->lock); 2102 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2103 goto out; 2104 2105 /* 2106 * If the event is in error state, clear that first. 2107 * That way, if we see the event in error state below, we 2108 * know that it has gone back into error state, as distinct 2109 * from the task having been scheduled away before the 2110 * cross-call arrived. 2111 */ 2112 if (event->state == PERF_EVENT_STATE_ERROR) 2113 event->state = PERF_EVENT_STATE_OFF; 2114 2115 retry: 2116 if (!ctx->is_active) { 2117 __perf_event_mark_enabled(event); 2118 goto out; 2119 } 2120 2121 raw_spin_unlock_irq(&ctx->lock); 2122 2123 if (!task_function_call(task, __perf_event_enable, event)) 2124 return; 2125 2126 raw_spin_lock_irq(&ctx->lock); 2127 2128 /* 2129 * If the context is active and the event is still off, 2130 * we need to retry the cross-call. 2131 */ 2132 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2133 /* 2134 * task could have been flipped by a concurrent 2135 * perf_event_context_sched_out() 2136 */ 2137 task = ctx->task; 2138 goto retry; 2139 } 2140 2141 out: 2142 raw_spin_unlock_irq(&ctx->lock); 2143 } 2144 EXPORT_SYMBOL_GPL(perf_event_enable); 2145 2146 int perf_event_refresh(struct perf_event *event, int refresh) 2147 { 2148 /* 2149 * not supported on inherited events 2150 */ 2151 if (event->attr.inherit || !is_sampling_event(event)) 2152 return -EINVAL; 2153 2154 atomic_add(refresh, &event->event_limit); 2155 perf_event_enable(event); 2156 2157 return 0; 2158 } 2159 EXPORT_SYMBOL_GPL(perf_event_refresh); 2160 2161 static void ctx_sched_out(struct perf_event_context *ctx, 2162 struct perf_cpu_context *cpuctx, 2163 enum event_type_t event_type) 2164 { 2165 struct perf_event *event; 2166 int is_active = ctx->is_active; 2167 2168 ctx->is_active &= ~event_type; 2169 if (likely(!ctx->nr_events)) 2170 return; 2171 2172 update_context_time(ctx); 2173 update_cgrp_time_from_cpuctx(cpuctx); 2174 if (!ctx->nr_active) 2175 return; 2176 2177 perf_pmu_disable(ctx->pmu); 2178 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2179 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2180 group_sched_out(event, cpuctx, ctx); 2181 } 2182 2183 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2184 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2185 group_sched_out(event, cpuctx, ctx); 2186 } 2187 perf_pmu_enable(ctx->pmu); 2188 } 2189 2190 /* 2191 * Test whether two contexts are equivalent, i.e. whether they have both been 2192 * cloned from the same version of the same context. 2193 * 2194 * Equivalence is measured using a generation number in the context that is 2195 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2196 * and list_del_event(). 2197 */ 2198 static int context_equiv(struct perf_event_context *ctx1, 2199 struct perf_event_context *ctx2) 2200 { 2201 /* Pinning disables the swap optimization */ 2202 if (ctx1->pin_count || ctx2->pin_count) 2203 return 0; 2204 2205 /* If ctx1 is the parent of ctx2 */ 2206 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2207 return 1; 2208 2209 /* If ctx2 is the parent of ctx1 */ 2210 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2211 return 1; 2212 2213 /* 2214 * If ctx1 and ctx2 have the same parent; we flatten the parent 2215 * hierarchy, see perf_event_init_context(). 2216 */ 2217 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2218 ctx1->parent_gen == ctx2->parent_gen) 2219 return 1; 2220 2221 /* Unmatched */ 2222 return 0; 2223 } 2224 2225 static void __perf_event_sync_stat(struct perf_event *event, 2226 struct perf_event *next_event) 2227 { 2228 u64 value; 2229 2230 if (!event->attr.inherit_stat) 2231 return; 2232 2233 /* 2234 * Update the event value, we cannot use perf_event_read() 2235 * because we're in the middle of a context switch and have IRQs 2236 * disabled, which upsets smp_call_function_single(), however 2237 * we know the event must be on the current CPU, therefore we 2238 * don't need to use it. 2239 */ 2240 switch (event->state) { 2241 case PERF_EVENT_STATE_ACTIVE: 2242 event->pmu->read(event); 2243 /* fall-through */ 2244 2245 case PERF_EVENT_STATE_INACTIVE: 2246 update_event_times(event); 2247 break; 2248 2249 default: 2250 break; 2251 } 2252 2253 /* 2254 * In order to keep per-task stats reliable we need to flip the event 2255 * values when we flip the contexts. 2256 */ 2257 value = local64_read(&next_event->count); 2258 value = local64_xchg(&event->count, value); 2259 local64_set(&next_event->count, value); 2260 2261 swap(event->total_time_enabled, next_event->total_time_enabled); 2262 swap(event->total_time_running, next_event->total_time_running); 2263 2264 /* 2265 * Since we swizzled the values, update the user visible data too. 2266 */ 2267 perf_event_update_userpage(event); 2268 perf_event_update_userpage(next_event); 2269 } 2270 2271 static void perf_event_sync_stat(struct perf_event_context *ctx, 2272 struct perf_event_context *next_ctx) 2273 { 2274 struct perf_event *event, *next_event; 2275 2276 if (!ctx->nr_stat) 2277 return; 2278 2279 update_context_time(ctx); 2280 2281 event = list_first_entry(&ctx->event_list, 2282 struct perf_event, event_entry); 2283 2284 next_event = list_first_entry(&next_ctx->event_list, 2285 struct perf_event, event_entry); 2286 2287 while (&event->event_entry != &ctx->event_list && 2288 &next_event->event_entry != &next_ctx->event_list) { 2289 2290 __perf_event_sync_stat(event, next_event); 2291 2292 event = list_next_entry(event, event_entry); 2293 next_event = list_next_entry(next_event, event_entry); 2294 } 2295 } 2296 2297 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2298 struct task_struct *next) 2299 { 2300 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2301 struct perf_event_context *next_ctx; 2302 struct perf_event_context *parent, *next_parent; 2303 struct perf_cpu_context *cpuctx; 2304 int do_switch = 1; 2305 2306 if (likely(!ctx)) 2307 return; 2308 2309 cpuctx = __get_cpu_context(ctx); 2310 if (!cpuctx->task_ctx) 2311 return; 2312 2313 rcu_read_lock(); 2314 next_ctx = next->perf_event_ctxp[ctxn]; 2315 if (!next_ctx) 2316 goto unlock; 2317 2318 parent = rcu_dereference(ctx->parent_ctx); 2319 next_parent = rcu_dereference(next_ctx->parent_ctx); 2320 2321 /* If neither context have a parent context; they cannot be clones. */ 2322 if (!parent && !next_parent) 2323 goto unlock; 2324 2325 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2326 /* 2327 * Looks like the two contexts are clones, so we might be 2328 * able to optimize the context switch. We lock both 2329 * contexts and check that they are clones under the 2330 * lock (including re-checking that neither has been 2331 * uncloned in the meantime). It doesn't matter which 2332 * order we take the locks because no other cpu could 2333 * be trying to lock both of these tasks. 2334 */ 2335 raw_spin_lock(&ctx->lock); 2336 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2337 if (context_equiv(ctx, next_ctx)) { 2338 /* 2339 * XXX do we need a memory barrier of sorts 2340 * wrt to rcu_dereference() of perf_event_ctxp 2341 */ 2342 task->perf_event_ctxp[ctxn] = next_ctx; 2343 next->perf_event_ctxp[ctxn] = ctx; 2344 ctx->task = next; 2345 next_ctx->task = task; 2346 do_switch = 0; 2347 2348 perf_event_sync_stat(ctx, next_ctx); 2349 } 2350 raw_spin_unlock(&next_ctx->lock); 2351 raw_spin_unlock(&ctx->lock); 2352 } 2353 unlock: 2354 rcu_read_unlock(); 2355 2356 if (do_switch) { 2357 raw_spin_lock(&ctx->lock); 2358 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2359 cpuctx->task_ctx = NULL; 2360 raw_spin_unlock(&ctx->lock); 2361 } 2362 } 2363 2364 #define for_each_task_context_nr(ctxn) \ 2365 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2366 2367 /* 2368 * Called from scheduler to remove the events of the current task, 2369 * with interrupts disabled. 2370 * 2371 * We stop each event and update the event value in event->count. 2372 * 2373 * This does not protect us against NMI, but disable() 2374 * sets the disabled bit in the control field of event _before_ 2375 * accessing the event control register. If a NMI hits, then it will 2376 * not restart the event. 2377 */ 2378 void __perf_event_task_sched_out(struct task_struct *task, 2379 struct task_struct *next) 2380 { 2381 int ctxn; 2382 2383 for_each_task_context_nr(ctxn) 2384 perf_event_context_sched_out(task, ctxn, next); 2385 2386 /* 2387 * if cgroup events exist on this CPU, then we need 2388 * to check if we have to switch out PMU state. 2389 * cgroup event are system-wide mode only 2390 */ 2391 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2392 perf_cgroup_sched_out(task, next); 2393 } 2394 2395 static void task_ctx_sched_out(struct perf_event_context *ctx) 2396 { 2397 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2398 2399 if (!cpuctx->task_ctx) 2400 return; 2401 2402 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2403 return; 2404 2405 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2406 cpuctx->task_ctx = NULL; 2407 } 2408 2409 /* 2410 * Called with IRQs disabled 2411 */ 2412 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2413 enum event_type_t event_type) 2414 { 2415 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2416 } 2417 2418 static void 2419 ctx_pinned_sched_in(struct perf_event_context *ctx, 2420 struct perf_cpu_context *cpuctx) 2421 { 2422 struct perf_event *event; 2423 2424 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2425 if (event->state <= PERF_EVENT_STATE_OFF) 2426 continue; 2427 if (!event_filter_match(event)) 2428 continue; 2429 2430 /* may need to reset tstamp_enabled */ 2431 if (is_cgroup_event(event)) 2432 perf_cgroup_mark_enabled(event, ctx); 2433 2434 if (group_can_go_on(event, cpuctx, 1)) 2435 group_sched_in(event, cpuctx, ctx); 2436 2437 /* 2438 * If this pinned group hasn't been scheduled, 2439 * put it in error state. 2440 */ 2441 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2442 update_group_times(event); 2443 event->state = PERF_EVENT_STATE_ERROR; 2444 } 2445 } 2446 } 2447 2448 static void 2449 ctx_flexible_sched_in(struct perf_event_context *ctx, 2450 struct perf_cpu_context *cpuctx) 2451 { 2452 struct perf_event *event; 2453 int can_add_hw = 1; 2454 2455 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2456 /* Ignore events in OFF or ERROR state */ 2457 if (event->state <= PERF_EVENT_STATE_OFF) 2458 continue; 2459 /* 2460 * Listen to the 'cpu' scheduling filter constraint 2461 * of events: 2462 */ 2463 if (!event_filter_match(event)) 2464 continue; 2465 2466 /* may need to reset tstamp_enabled */ 2467 if (is_cgroup_event(event)) 2468 perf_cgroup_mark_enabled(event, ctx); 2469 2470 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2471 if (group_sched_in(event, cpuctx, ctx)) 2472 can_add_hw = 0; 2473 } 2474 } 2475 } 2476 2477 static void 2478 ctx_sched_in(struct perf_event_context *ctx, 2479 struct perf_cpu_context *cpuctx, 2480 enum event_type_t event_type, 2481 struct task_struct *task) 2482 { 2483 u64 now; 2484 int is_active = ctx->is_active; 2485 2486 ctx->is_active |= event_type; 2487 if (likely(!ctx->nr_events)) 2488 return; 2489 2490 now = perf_clock(); 2491 ctx->timestamp = now; 2492 perf_cgroup_set_timestamp(task, ctx); 2493 /* 2494 * First go through the list and put on any pinned groups 2495 * in order to give them the best chance of going on. 2496 */ 2497 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2498 ctx_pinned_sched_in(ctx, cpuctx); 2499 2500 /* Then walk through the lower prio flexible groups */ 2501 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2502 ctx_flexible_sched_in(ctx, cpuctx); 2503 } 2504 2505 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2506 enum event_type_t event_type, 2507 struct task_struct *task) 2508 { 2509 struct perf_event_context *ctx = &cpuctx->ctx; 2510 2511 ctx_sched_in(ctx, cpuctx, event_type, task); 2512 } 2513 2514 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2515 struct task_struct *task) 2516 { 2517 struct perf_cpu_context *cpuctx; 2518 2519 cpuctx = __get_cpu_context(ctx); 2520 if (cpuctx->task_ctx == ctx) 2521 return; 2522 2523 perf_ctx_lock(cpuctx, ctx); 2524 perf_pmu_disable(ctx->pmu); 2525 /* 2526 * We want to keep the following priority order: 2527 * cpu pinned (that don't need to move), task pinned, 2528 * cpu flexible, task flexible. 2529 */ 2530 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2531 2532 if (ctx->nr_events) 2533 cpuctx->task_ctx = ctx; 2534 2535 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2536 2537 perf_pmu_enable(ctx->pmu); 2538 perf_ctx_unlock(cpuctx, ctx); 2539 2540 /* 2541 * Since these rotations are per-cpu, we need to ensure the 2542 * cpu-context we got scheduled on is actually rotating. 2543 */ 2544 perf_pmu_rotate_start(ctx->pmu); 2545 } 2546 2547 /* 2548 * When sampling the branck stack in system-wide, it may be necessary 2549 * to flush the stack on context switch. This happens when the branch 2550 * stack does not tag its entries with the pid of the current task. 2551 * Otherwise it becomes impossible to associate a branch entry with a 2552 * task. This ambiguity is more likely to appear when the branch stack 2553 * supports priv level filtering and the user sets it to monitor only 2554 * at the user level (which could be a useful measurement in system-wide 2555 * mode). In that case, the risk is high of having a branch stack with 2556 * branch from multiple tasks. Flushing may mean dropping the existing 2557 * entries or stashing them somewhere in the PMU specific code layer. 2558 * 2559 * This function provides the context switch callback to the lower code 2560 * layer. It is invoked ONLY when there is at least one system-wide context 2561 * with at least one active event using taken branch sampling. 2562 */ 2563 static void perf_branch_stack_sched_in(struct task_struct *prev, 2564 struct task_struct *task) 2565 { 2566 struct perf_cpu_context *cpuctx; 2567 struct pmu *pmu; 2568 unsigned long flags; 2569 2570 /* no need to flush branch stack if not changing task */ 2571 if (prev == task) 2572 return; 2573 2574 local_irq_save(flags); 2575 2576 rcu_read_lock(); 2577 2578 list_for_each_entry_rcu(pmu, &pmus, entry) { 2579 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2580 2581 /* 2582 * check if the context has at least one 2583 * event using PERF_SAMPLE_BRANCH_STACK 2584 */ 2585 if (cpuctx->ctx.nr_branch_stack > 0 2586 && pmu->flush_branch_stack) { 2587 2588 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2589 2590 perf_pmu_disable(pmu); 2591 2592 pmu->flush_branch_stack(); 2593 2594 perf_pmu_enable(pmu); 2595 2596 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2597 } 2598 } 2599 2600 rcu_read_unlock(); 2601 2602 local_irq_restore(flags); 2603 } 2604 2605 /* 2606 * Called from scheduler to add the events of the current task 2607 * with interrupts disabled. 2608 * 2609 * We restore the event value and then enable it. 2610 * 2611 * This does not protect us against NMI, but enable() 2612 * sets the enabled bit in the control field of event _before_ 2613 * accessing the event control register. If a NMI hits, then it will 2614 * keep the event running. 2615 */ 2616 void __perf_event_task_sched_in(struct task_struct *prev, 2617 struct task_struct *task) 2618 { 2619 struct perf_event_context *ctx; 2620 int ctxn; 2621 2622 for_each_task_context_nr(ctxn) { 2623 ctx = task->perf_event_ctxp[ctxn]; 2624 if (likely(!ctx)) 2625 continue; 2626 2627 perf_event_context_sched_in(ctx, task); 2628 } 2629 /* 2630 * if cgroup events exist on this CPU, then we need 2631 * to check if we have to switch in PMU state. 2632 * cgroup event are system-wide mode only 2633 */ 2634 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2635 perf_cgroup_sched_in(prev, task); 2636 2637 /* check for system-wide branch_stack events */ 2638 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2639 perf_branch_stack_sched_in(prev, task); 2640 } 2641 2642 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2643 { 2644 u64 frequency = event->attr.sample_freq; 2645 u64 sec = NSEC_PER_SEC; 2646 u64 divisor, dividend; 2647 2648 int count_fls, nsec_fls, frequency_fls, sec_fls; 2649 2650 count_fls = fls64(count); 2651 nsec_fls = fls64(nsec); 2652 frequency_fls = fls64(frequency); 2653 sec_fls = 30; 2654 2655 /* 2656 * We got @count in @nsec, with a target of sample_freq HZ 2657 * the target period becomes: 2658 * 2659 * @count * 10^9 2660 * period = ------------------- 2661 * @nsec * sample_freq 2662 * 2663 */ 2664 2665 /* 2666 * Reduce accuracy by one bit such that @a and @b converge 2667 * to a similar magnitude. 2668 */ 2669 #define REDUCE_FLS(a, b) \ 2670 do { \ 2671 if (a##_fls > b##_fls) { \ 2672 a >>= 1; \ 2673 a##_fls--; \ 2674 } else { \ 2675 b >>= 1; \ 2676 b##_fls--; \ 2677 } \ 2678 } while (0) 2679 2680 /* 2681 * Reduce accuracy until either term fits in a u64, then proceed with 2682 * the other, so that finally we can do a u64/u64 division. 2683 */ 2684 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2685 REDUCE_FLS(nsec, frequency); 2686 REDUCE_FLS(sec, count); 2687 } 2688 2689 if (count_fls + sec_fls > 64) { 2690 divisor = nsec * frequency; 2691 2692 while (count_fls + sec_fls > 64) { 2693 REDUCE_FLS(count, sec); 2694 divisor >>= 1; 2695 } 2696 2697 dividend = count * sec; 2698 } else { 2699 dividend = count * sec; 2700 2701 while (nsec_fls + frequency_fls > 64) { 2702 REDUCE_FLS(nsec, frequency); 2703 dividend >>= 1; 2704 } 2705 2706 divisor = nsec * frequency; 2707 } 2708 2709 if (!divisor) 2710 return dividend; 2711 2712 return div64_u64(dividend, divisor); 2713 } 2714 2715 static DEFINE_PER_CPU(int, perf_throttled_count); 2716 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2717 2718 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2719 { 2720 struct hw_perf_event *hwc = &event->hw; 2721 s64 period, sample_period; 2722 s64 delta; 2723 2724 period = perf_calculate_period(event, nsec, count); 2725 2726 delta = (s64)(period - hwc->sample_period); 2727 delta = (delta + 7) / 8; /* low pass filter */ 2728 2729 sample_period = hwc->sample_period + delta; 2730 2731 if (!sample_period) 2732 sample_period = 1; 2733 2734 hwc->sample_period = sample_period; 2735 2736 if (local64_read(&hwc->period_left) > 8*sample_period) { 2737 if (disable) 2738 event->pmu->stop(event, PERF_EF_UPDATE); 2739 2740 local64_set(&hwc->period_left, 0); 2741 2742 if (disable) 2743 event->pmu->start(event, PERF_EF_RELOAD); 2744 } 2745 } 2746 2747 /* 2748 * combine freq adjustment with unthrottling to avoid two passes over the 2749 * events. At the same time, make sure, having freq events does not change 2750 * the rate of unthrottling as that would introduce bias. 2751 */ 2752 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2753 int needs_unthr) 2754 { 2755 struct perf_event *event; 2756 struct hw_perf_event *hwc; 2757 u64 now, period = TICK_NSEC; 2758 s64 delta; 2759 2760 /* 2761 * only need to iterate over all events iff: 2762 * - context have events in frequency mode (needs freq adjust) 2763 * - there are events to unthrottle on this cpu 2764 */ 2765 if (!(ctx->nr_freq || needs_unthr)) 2766 return; 2767 2768 raw_spin_lock(&ctx->lock); 2769 perf_pmu_disable(ctx->pmu); 2770 2771 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2772 if (event->state != PERF_EVENT_STATE_ACTIVE) 2773 continue; 2774 2775 if (!event_filter_match(event)) 2776 continue; 2777 2778 perf_pmu_disable(event->pmu); 2779 2780 hwc = &event->hw; 2781 2782 if (hwc->interrupts == MAX_INTERRUPTS) { 2783 hwc->interrupts = 0; 2784 perf_log_throttle(event, 1); 2785 event->pmu->start(event, 0); 2786 } 2787 2788 if (!event->attr.freq || !event->attr.sample_freq) 2789 goto next; 2790 2791 /* 2792 * stop the event and update event->count 2793 */ 2794 event->pmu->stop(event, PERF_EF_UPDATE); 2795 2796 now = local64_read(&event->count); 2797 delta = now - hwc->freq_count_stamp; 2798 hwc->freq_count_stamp = now; 2799 2800 /* 2801 * restart the event 2802 * reload only if value has changed 2803 * we have stopped the event so tell that 2804 * to perf_adjust_period() to avoid stopping it 2805 * twice. 2806 */ 2807 if (delta > 0) 2808 perf_adjust_period(event, period, delta, false); 2809 2810 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2811 next: 2812 perf_pmu_enable(event->pmu); 2813 } 2814 2815 perf_pmu_enable(ctx->pmu); 2816 raw_spin_unlock(&ctx->lock); 2817 } 2818 2819 /* 2820 * Round-robin a context's events: 2821 */ 2822 static void rotate_ctx(struct perf_event_context *ctx) 2823 { 2824 /* 2825 * Rotate the first entry last of non-pinned groups. Rotation might be 2826 * disabled by the inheritance code. 2827 */ 2828 if (!ctx->rotate_disable) 2829 list_rotate_left(&ctx->flexible_groups); 2830 } 2831 2832 /* 2833 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2834 * because they're strictly cpu affine and rotate_start is called with IRQs 2835 * disabled, while rotate_context is called from IRQ context. 2836 */ 2837 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2838 { 2839 struct perf_event_context *ctx = NULL; 2840 int rotate = 0, remove = 1; 2841 2842 if (cpuctx->ctx.nr_events) { 2843 remove = 0; 2844 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2845 rotate = 1; 2846 } 2847 2848 ctx = cpuctx->task_ctx; 2849 if (ctx && ctx->nr_events) { 2850 remove = 0; 2851 if (ctx->nr_events != ctx->nr_active) 2852 rotate = 1; 2853 } 2854 2855 if (!rotate) 2856 goto done; 2857 2858 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2859 perf_pmu_disable(cpuctx->ctx.pmu); 2860 2861 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2862 if (ctx) 2863 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2864 2865 rotate_ctx(&cpuctx->ctx); 2866 if (ctx) 2867 rotate_ctx(ctx); 2868 2869 perf_event_sched_in(cpuctx, ctx, current); 2870 2871 perf_pmu_enable(cpuctx->ctx.pmu); 2872 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2873 done: 2874 if (remove) 2875 list_del_init(&cpuctx->rotation_list); 2876 2877 return rotate; 2878 } 2879 2880 #ifdef CONFIG_NO_HZ_FULL 2881 bool perf_event_can_stop_tick(void) 2882 { 2883 if (atomic_read(&nr_freq_events) || 2884 __this_cpu_read(perf_throttled_count)) 2885 return false; 2886 else 2887 return true; 2888 } 2889 #endif 2890 2891 void perf_event_task_tick(void) 2892 { 2893 struct list_head *head = &__get_cpu_var(rotation_list); 2894 struct perf_cpu_context *cpuctx, *tmp; 2895 struct perf_event_context *ctx; 2896 int throttled; 2897 2898 WARN_ON(!irqs_disabled()); 2899 2900 __this_cpu_inc(perf_throttled_seq); 2901 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2902 2903 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2904 ctx = &cpuctx->ctx; 2905 perf_adjust_freq_unthr_context(ctx, throttled); 2906 2907 ctx = cpuctx->task_ctx; 2908 if (ctx) 2909 perf_adjust_freq_unthr_context(ctx, throttled); 2910 } 2911 } 2912 2913 static int event_enable_on_exec(struct perf_event *event, 2914 struct perf_event_context *ctx) 2915 { 2916 if (!event->attr.enable_on_exec) 2917 return 0; 2918 2919 event->attr.enable_on_exec = 0; 2920 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2921 return 0; 2922 2923 __perf_event_mark_enabled(event); 2924 2925 return 1; 2926 } 2927 2928 /* 2929 * Enable all of a task's events that have been marked enable-on-exec. 2930 * This expects task == current. 2931 */ 2932 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2933 { 2934 struct perf_event *event; 2935 unsigned long flags; 2936 int enabled = 0; 2937 int ret; 2938 2939 local_irq_save(flags); 2940 if (!ctx || !ctx->nr_events) 2941 goto out; 2942 2943 /* 2944 * We must ctxsw out cgroup events to avoid conflict 2945 * when invoking perf_task_event_sched_in() later on 2946 * in this function. Otherwise we end up trying to 2947 * ctxswin cgroup events which are already scheduled 2948 * in. 2949 */ 2950 perf_cgroup_sched_out(current, NULL); 2951 2952 raw_spin_lock(&ctx->lock); 2953 task_ctx_sched_out(ctx); 2954 2955 list_for_each_entry(event, &ctx->event_list, event_entry) { 2956 ret = event_enable_on_exec(event, ctx); 2957 if (ret) 2958 enabled = 1; 2959 } 2960 2961 /* 2962 * Unclone this context if we enabled any event. 2963 */ 2964 if (enabled) 2965 unclone_ctx(ctx); 2966 2967 raw_spin_unlock(&ctx->lock); 2968 2969 /* 2970 * Also calls ctxswin for cgroup events, if any: 2971 */ 2972 perf_event_context_sched_in(ctx, ctx->task); 2973 out: 2974 local_irq_restore(flags); 2975 } 2976 2977 void perf_event_exec(void) 2978 { 2979 struct perf_event_context *ctx; 2980 int ctxn; 2981 2982 rcu_read_lock(); 2983 for_each_task_context_nr(ctxn) { 2984 ctx = current->perf_event_ctxp[ctxn]; 2985 if (!ctx) 2986 continue; 2987 2988 perf_event_enable_on_exec(ctx); 2989 } 2990 rcu_read_unlock(); 2991 } 2992 2993 /* 2994 * Cross CPU call to read the hardware event 2995 */ 2996 static void __perf_event_read(void *info) 2997 { 2998 struct perf_event *event = info; 2999 struct perf_event_context *ctx = event->ctx; 3000 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3001 3002 /* 3003 * If this is a task context, we need to check whether it is 3004 * the current task context of this cpu. If not it has been 3005 * scheduled out before the smp call arrived. In that case 3006 * event->count would have been updated to a recent sample 3007 * when the event was scheduled out. 3008 */ 3009 if (ctx->task && cpuctx->task_ctx != ctx) 3010 return; 3011 3012 raw_spin_lock(&ctx->lock); 3013 if (ctx->is_active) { 3014 update_context_time(ctx); 3015 update_cgrp_time_from_event(event); 3016 } 3017 update_event_times(event); 3018 if (event->state == PERF_EVENT_STATE_ACTIVE) 3019 event->pmu->read(event); 3020 raw_spin_unlock(&ctx->lock); 3021 } 3022 3023 static inline u64 perf_event_count(struct perf_event *event) 3024 { 3025 return local64_read(&event->count) + atomic64_read(&event->child_count); 3026 } 3027 3028 static u64 perf_event_read(struct perf_event *event) 3029 { 3030 /* 3031 * If event is enabled and currently active on a CPU, update the 3032 * value in the event structure: 3033 */ 3034 if (event->state == PERF_EVENT_STATE_ACTIVE) { 3035 smp_call_function_single(event->oncpu, 3036 __perf_event_read, event, 1); 3037 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 3038 struct perf_event_context *ctx = event->ctx; 3039 unsigned long flags; 3040 3041 raw_spin_lock_irqsave(&ctx->lock, flags); 3042 /* 3043 * may read while context is not active 3044 * (e.g., thread is blocked), in that case 3045 * we cannot update context time 3046 */ 3047 if (ctx->is_active) { 3048 update_context_time(ctx); 3049 update_cgrp_time_from_event(event); 3050 } 3051 update_event_times(event); 3052 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3053 } 3054 3055 return perf_event_count(event); 3056 } 3057 3058 /* 3059 * Initialize the perf_event context in a task_struct: 3060 */ 3061 static void __perf_event_init_context(struct perf_event_context *ctx) 3062 { 3063 raw_spin_lock_init(&ctx->lock); 3064 mutex_init(&ctx->mutex); 3065 INIT_LIST_HEAD(&ctx->pinned_groups); 3066 INIT_LIST_HEAD(&ctx->flexible_groups); 3067 INIT_LIST_HEAD(&ctx->event_list); 3068 atomic_set(&ctx->refcount, 1); 3069 } 3070 3071 static struct perf_event_context * 3072 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3073 { 3074 struct perf_event_context *ctx; 3075 3076 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3077 if (!ctx) 3078 return NULL; 3079 3080 __perf_event_init_context(ctx); 3081 if (task) { 3082 ctx->task = task; 3083 get_task_struct(task); 3084 } 3085 ctx->pmu = pmu; 3086 3087 return ctx; 3088 } 3089 3090 static struct task_struct * 3091 find_lively_task_by_vpid(pid_t vpid) 3092 { 3093 struct task_struct *task; 3094 int err; 3095 3096 rcu_read_lock(); 3097 if (!vpid) 3098 task = current; 3099 else 3100 task = find_task_by_vpid(vpid); 3101 if (task) 3102 get_task_struct(task); 3103 rcu_read_unlock(); 3104 3105 if (!task) 3106 return ERR_PTR(-ESRCH); 3107 3108 /* Reuse ptrace permission checks for now. */ 3109 err = -EACCES; 3110 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3111 goto errout; 3112 3113 return task; 3114 errout: 3115 put_task_struct(task); 3116 return ERR_PTR(err); 3117 3118 } 3119 3120 /* 3121 * Returns a matching context with refcount and pincount. 3122 */ 3123 static struct perf_event_context * 3124 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3125 { 3126 struct perf_event_context *ctx; 3127 struct perf_cpu_context *cpuctx; 3128 unsigned long flags; 3129 int ctxn, err; 3130 3131 if (!task) { 3132 /* Must be root to operate on a CPU event: */ 3133 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3134 return ERR_PTR(-EACCES); 3135 3136 /* 3137 * We could be clever and allow to attach a event to an 3138 * offline CPU and activate it when the CPU comes up, but 3139 * that's for later. 3140 */ 3141 if (!cpu_online(cpu)) 3142 return ERR_PTR(-ENODEV); 3143 3144 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3145 ctx = &cpuctx->ctx; 3146 get_ctx(ctx); 3147 ++ctx->pin_count; 3148 3149 return ctx; 3150 } 3151 3152 err = -EINVAL; 3153 ctxn = pmu->task_ctx_nr; 3154 if (ctxn < 0) 3155 goto errout; 3156 3157 retry: 3158 ctx = perf_lock_task_context(task, ctxn, &flags); 3159 if (ctx) { 3160 unclone_ctx(ctx); 3161 ++ctx->pin_count; 3162 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3163 } else { 3164 ctx = alloc_perf_context(pmu, task); 3165 err = -ENOMEM; 3166 if (!ctx) 3167 goto errout; 3168 3169 err = 0; 3170 mutex_lock(&task->perf_event_mutex); 3171 /* 3172 * If it has already passed perf_event_exit_task(). 3173 * we must see PF_EXITING, it takes this mutex too. 3174 */ 3175 if (task->flags & PF_EXITING) 3176 err = -ESRCH; 3177 else if (task->perf_event_ctxp[ctxn]) 3178 err = -EAGAIN; 3179 else { 3180 get_ctx(ctx); 3181 ++ctx->pin_count; 3182 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3183 } 3184 mutex_unlock(&task->perf_event_mutex); 3185 3186 if (unlikely(err)) { 3187 put_ctx(ctx); 3188 3189 if (err == -EAGAIN) 3190 goto retry; 3191 goto errout; 3192 } 3193 } 3194 3195 return ctx; 3196 3197 errout: 3198 return ERR_PTR(err); 3199 } 3200 3201 static void perf_event_free_filter(struct perf_event *event); 3202 3203 static void free_event_rcu(struct rcu_head *head) 3204 { 3205 struct perf_event *event; 3206 3207 event = container_of(head, struct perf_event, rcu_head); 3208 if (event->ns) 3209 put_pid_ns(event->ns); 3210 perf_event_free_filter(event); 3211 kfree(event); 3212 } 3213 3214 static void ring_buffer_put(struct ring_buffer *rb); 3215 static void ring_buffer_attach(struct perf_event *event, 3216 struct ring_buffer *rb); 3217 3218 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3219 { 3220 if (event->parent) 3221 return; 3222 3223 if (has_branch_stack(event)) { 3224 if (!(event->attach_state & PERF_ATTACH_TASK)) 3225 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3226 } 3227 if (is_cgroup_event(event)) 3228 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3229 } 3230 3231 static void unaccount_event(struct perf_event *event) 3232 { 3233 if (event->parent) 3234 return; 3235 3236 if (event->attach_state & PERF_ATTACH_TASK) 3237 static_key_slow_dec_deferred(&perf_sched_events); 3238 if (event->attr.mmap || event->attr.mmap_data) 3239 atomic_dec(&nr_mmap_events); 3240 if (event->attr.comm) 3241 atomic_dec(&nr_comm_events); 3242 if (event->attr.task) 3243 atomic_dec(&nr_task_events); 3244 if (event->attr.freq) 3245 atomic_dec(&nr_freq_events); 3246 if (is_cgroup_event(event)) 3247 static_key_slow_dec_deferred(&perf_sched_events); 3248 if (has_branch_stack(event)) 3249 static_key_slow_dec_deferred(&perf_sched_events); 3250 3251 unaccount_event_cpu(event, event->cpu); 3252 } 3253 3254 static void __free_event(struct perf_event *event) 3255 { 3256 if (!event->parent) { 3257 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3258 put_callchain_buffers(); 3259 } 3260 3261 if (event->destroy) 3262 event->destroy(event); 3263 3264 if (event->ctx) 3265 put_ctx(event->ctx); 3266 3267 if (event->pmu) 3268 module_put(event->pmu->module); 3269 3270 call_rcu(&event->rcu_head, free_event_rcu); 3271 } 3272 3273 static void _free_event(struct perf_event *event) 3274 { 3275 irq_work_sync(&event->pending); 3276 3277 unaccount_event(event); 3278 3279 if (event->rb) { 3280 /* 3281 * Can happen when we close an event with re-directed output. 3282 * 3283 * Since we have a 0 refcount, perf_mmap_close() will skip 3284 * over us; possibly making our ring_buffer_put() the last. 3285 */ 3286 mutex_lock(&event->mmap_mutex); 3287 ring_buffer_attach(event, NULL); 3288 mutex_unlock(&event->mmap_mutex); 3289 } 3290 3291 if (is_cgroup_event(event)) 3292 perf_detach_cgroup(event); 3293 3294 __free_event(event); 3295 } 3296 3297 /* 3298 * Used to free events which have a known refcount of 1, such as in error paths 3299 * where the event isn't exposed yet and inherited events. 3300 */ 3301 static void free_event(struct perf_event *event) 3302 { 3303 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 3304 "unexpected event refcount: %ld; ptr=%p\n", 3305 atomic_long_read(&event->refcount), event)) { 3306 /* leak to avoid use-after-free */ 3307 return; 3308 } 3309 3310 _free_event(event); 3311 } 3312 3313 /* 3314 * Called when the last reference to the file is gone. 3315 */ 3316 static void put_event(struct perf_event *event) 3317 { 3318 struct perf_event_context *ctx = event->ctx; 3319 struct task_struct *owner; 3320 3321 if (!atomic_long_dec_and_test(&event->refcount)) 3322 return; 3323 3324 rcu_read_lock(); 3325 owner = ACCESS_ONCE(event->owner); 3326 /* 3327 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3328 * !owner it means the list deletion is complete and we can indeed 3329 * free this event, otherwise we need to serialize on 3330 * owner->perf_event_mutex. 3331 */ 3332 smp_read_barrier_depends(); 3333 if (owner) { 3334 /* 3335 * Since delayed_put_task_struct() also drops the last 3336 * task reference we can safely take a new reference 3337 * while holding the rcu_read_lock(). 3338 */ 3339 get_task_struct(owner); 3340 } 3341 rcu_read_unlock(); 3342 3343 if (owner) { 3344 mutex_lock(&owner->perf_event_mutex); 3345 /* 3346 * We have to re-check the event->owner field, if it is cleared 3347 * we raced with perf_event_exit_task(), acquiring the mutex 3348 * ensured they're done, and we can proceed with freeing the 3349 * event. 3350 */ 3351 if (event->owner) 3352 list_del_init(&event->owner_entry); 3353 mutex_unlock(&owner->perf_event_mutex); 3354 put_task_struct(owner); 3355 } 3356 3357 WARN_ON_ONCE(ctx->parent_ctx); 3358 /* 3359 * There are two ways this annotation is useful: 3360 * 3361 * 1) there is a lock recursion from perf_event_exit_task 3362 * see the comment there. 3363 * 3364 * 2) there is a lock-inversion with mmap_sem through 3365 * perf_event_read_group(), which takes faults while 3366 * holding ctx->mutex, however this is called after 3367 * the last filedesc died, so there is no possibility 3368 * to trigger the AB-BA case. 3369 */ 3370 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3371 perf_remove_from_context(event, true); 3372 mutex_unlock(&ctx->mutex); 3373 3374 _free_event(event); 3375 } 3376 3377 int perf_event_release_kernel(struct perf_event *event) 3378 { 3379 put_event(event); 3380 return 0; 3381 } 3382 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3383 3384 static int perf_release(struct inode *inode, struct file *file) 3385 { 3386 put_event(file->private_data); 3387 return 0; 3388 } 3389 3390 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3391 { 3392 struct perf_event *child; 3393 u64 total = 0; 3394 3395 *enabled = 0; 3396 *running = 0; 3397 3398 mutex_lock(&event->child_mutex); 3399 total += perf_event_read(event); 3400 *enabled += event->total_time_enabled + 3401 atomic64_read(&event->child_total_time_enabled); 3402 *running += event->total_time_running + 3403 atomic64_read(&event->child_total_time_running); 3404 3405 list_for_each_entry(child, &event->child_list, child_list) { 3406 total += perf_event_read(child); 3407 *enabled += child->total_time_enabled; 3408 *running += child->total_time_running; 3409 } 3410 mutex_unlock(&event->child_mutex); 3411 3412 return total; 3413 } 3414 EXPORT_SYMBOL_GPL(perf_event_read_value); 3415 3416 static int perf_event_read_group(struct perf_event *event, 3417 u64 read_format, char __user *buf) 3418 { 3419 struct perf_event *leader = event->group_leader, *sub; 3420 int n = 0, size = 0, ret = -EFAULT; 3421 struct perf_event_context *ctx = leader->ctx; 3422 u64 values[5]; 3423 u64 count, enabled, running; 3424 3425 mutex_lock(&ctx->mutex); 3426 count = perf_event_read_value(leader, &enabled, &running); 3427 3428 values[n++] = 1 + leader->nr_siblings; 3429 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3430 values[n++] = enabled; 3431 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3432 values[n++] = running; 3433 values[n++] = count; 3434 if (read_format & PERF_FORMAT_ID) 3435 values[n++] = primary_event_id(leader); 3436 3437 size = n * sizeof(u64); 3438 3439 if (copy_to_user(buf, values, size)) 3440 goto unlock; 3441 3442 ret = size; 3443 3444 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3445 n = 0; 3446 3447 values[n++] = perf_event_read_value(sub, &enabled, &running); 3448 if (read_format & PERF_FORMAT_ID) 3449 values[n++] = primary_event_id(sub); 3450 3451 size = n * sizeof(u64); 3452 3453 if (copy_to_user(buf + ret, values, size)) { 3454 ret = -EFAULT; 3455 goto unlock; 3456 } 3457 3458 ret += size; 3459 } 3460 unlock: 3461 mutex_unlock(&ctx->mutex); 3462 3463 return ret; 3464 } 3465 3466 static int perf_event_read_one(struct perf_event *event, 3467 u64 read_format, char __user *buf) 3468 { 3469 u64 enabled, running; 3470 u64 values[4]; 3471 int n = 0; 3472 3473 values[n++] = perf_event_read_value(event, &enabled, &running); 3474 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3475 values[n++] = enabled; 3476 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3477 values[n++] = running; 3478 if (read_format & PERF_FORMAT_ID) 3479 values[n++] = primary_event_id(event); 3480 3481 if (copy_to_user(buf, values, n * sizeof(u64))) 3482 return -EFAULT; 3483 3484 return n * sizeof(u64); 3485 } 3486 3487 /* 3488 * Read the performance event - simple non blocking version for now 3489 */ 3490 static ssize_t 3491 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3492 { 3493 u64 read_format = event->attr.read_format; 3494 int ret; 3495 3496 /* 3497 * Return end-of-file for a read on a event that is in 3498 * error state (i.e. because it was pinned but it couldn't be 3499 * scheduled on to the CPU at some point). 3500 */ 3501 if (event->state == PERF_EVENT_STATE_ERROR) 3502 return 0; 3503 3504 if (count < event->read_size) 3505 return -ENOSPC; 3506 3507 WARN_ON_ONCE(event->ctx->parent_ctx); 3508 if (read_format & PERF_FORMAT_GROUP) 3509 ret = perf_event_read_group(event, read_format, buf); 3510 else 3511 ret = perf_event_read_one(event, read_format, buf); 3512 3513 return ret; 3514 } 3515 3516 static ssize_t 3517 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3518 { 3519 struct perf_event *event = file->private_data; 3520 3521 return perf_read_hw(event, buf, count); 3522 } 3523 3524 static unsigned int perf_poll(struct file *file, poll_table *wait) 3525 { 3526 struct perf_event *event = file->private_data; 3527 struct ring_buffer *rb; 3528 unsigned int events = POLL_HUP; 3529 3530 /* 3531 * Pin the event->rb by taking event->mmap_mutex; otherwise 3532 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3533 */ 3534 mutex_lock(&event->mmap_mutex); 3535 rb = event->rb; 3536 if (rb) 3537 events = atomic_xchg(&rb->poll, 0); 3538 mutex_unlock(&event->mmap_mutex); 3539 3540 poll_wait(file, &event->waitq, wait); 3541 3542 return events; 3543 } 3544 3545 static void perf_event_reset(struct perf_event *event) 3546 { 3547 (void)perf_event_read(event); 3548 local64_set(&event->count, 0); 3549 perf_event_update_userpage(event); 3550 } 3551 3552 /* 3553 * Holding the top-level event's child_mutex means that any 3554 * descendant process that has inherited this event will block 3555 * in sync_child_event if it goes to exit, thus satisfying the 3556 * task existence requirements of perf_event_enable/disable. 3557 */ 3558 static void perf_event_for_each_child(struct perf_event *event, 3559 void (*func)(struct perf_event *)) 3560 { 3561 struct perf_event *child; 3562 3563 WARN_ON_ONCE(event->ctx->parent_ctx); 3564 mutex_lock(&event->child_mutex); 3565 func(event); 3566 list_for_each_entry(child, &event->child_list, child_list) 3567 func(child); 3568 mutex_unlock(&event->child_mutex); 3569 } 3570 3571 static void perf_event_for_each(struct perf_event *event, 3572 void (*func)(struct perf_event *)) 3573 { 3574 struct perf_event_context *ctx = event->ctx; 3575 struct perf_event *sibling; 3576 3577 WARN_ON_ONCE(ctx->parent_ctx); 3578 mutex_lock(&ctx->mutex); 3579 event = event->group_leader; 3580 3581 perf_event_for_each_child(event, func); 3582 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3583 perf_event_for_each_child(sibling, func); 3584 mutex_unlock(&ctx->mutex); 3585 } 3586 3587 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3588 { 3589 struct perf_event_context *ctx = event->ctx; 3590 int ret = 0, active; 3591 u64 value; 3592 3593 if (!is_sampling_event(event)) 3594 return -EINVAL; 3595 3596 if (copy_from_user(&value, arg, sizeof(value))) 3597 return -EFAULT; 3598 3599 if (!value) 3600 return -EINVAL; 3601 3602 raw_spin_lock_irq(&ctx->lock); 3603 if (event->attr.freq) { 3604 if (value > sysctl_perf_event_sample_rate) { 3605 ret = -EINVAL; 3606 goto unlock; 3607 } 3608 3609 event->attr.sample_freq = value; 3610 } else { 3611 event->attr.sample_period = value; 3612 event->hw.sample_period = value; 3613 } 3614 3615 active = (event->state == PERF_EVENT_STATE_ACTIVE); 3616 if (active) { 3617 perf_pmu_disable(ctx->pmu); 3618 event->pmu->stop(event, PERF_EF_UPDATE); 3619 } 3620 3621 local64_set(&event->hw.period_left, 0); 3622 3623 if (active) { 3624 event->pmu->start(event, PERF_EF_RELOAD); 3625 perf_pmu_enable(ctx->pmu); 3626 } 3627 3628 unlock: 3629 raw_spin_unlock_irq(&ctx->lock); 3630 3631 return ret; 3632 } 3633 3634 static const struct file_operations perf_fops; 3635 3636 static inline int perf_fget_light(int fd, struct fd *p) 3637 { 3638 struct fd f = fdget(fd); 3639 if (!f.file) 3640 return -EBADF; 3641 3642 if (f.file->f_op != &perf_fops) { 3643 fdput(f); 3644 return -EBADF; 3645 } 3646 *p = f; 3647 return 0; 3648 } 3649 3650 static int perf_event_set_output(struct perf_event *event, 3651 struct perf_event *output_event); 3652 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3653 3654 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3655 { 3656 struct perf_event *event = file->private_data; 3657 void (*func)(struct perf_event *); 3658 u32 flags = arg; 3659 3660 switch (cmd) { 3661 case PERF_EVENT_IOC_ENABLE: 3662 func = perf_event_enable; 3663 break; 3664 case PERF_EVENT_IOC_DISABLE: 3665 func = perf_event_disable; 3666 break; 3667 case PERF_EVENT_IOC_RESET: 3668 func = perf_event_reset; 3669 break; 3670 3671 case PERF_EVENT_IOC_REFRESH: 3672 return perf_event_refresh(event, arg); 3673 3674 case PERF_EVENT_IOC_PERIOD: 3675 return perf_event_period(event, (u64 __user *)arg); 3676 3677 case PERF_EVENT_IOC_ID: 3678 { 3679 u64 id = primary_event_id(event); 3680 3681 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3682 return -EFAULT; 3683 return 0; 3684 } 3685 3686 case PERF_EVENT_IOC_SET_OUTPUT: 3687 { 3688 int ret; 3689 if (arg != -1) { 3690 struct perf_event *output_event; 3691 struct fd output; 3692 ret = perf_fget_light(arg, &output); 3693 if (ret) 3694 return ret; 3695 output_event = output.file->private_data; 3696 ret = perf_event_set_output(event, output_event); 3697 fdput(output); 3698 } else { 3699 ret = perf_event_set_output(event, NULL); 3700 } 3701 return ret; 3702 } 3703 3704 case PERF_EVENT_IOC_SET_FILTER: 3705 return perf_event_set_filter(event, (void __user *)arg); 3706 3707 default: 3708 return -ENOTTY; 3709 } 3710 3711 if (flags & PERF_IOC_FLAG_GROUP) 3712 perf_event_for_each(event, func); 3713 else 3714 perf_event_for_each_child(event, func); 3715 3716 return 0; 3717 } 3718 3719 int perf_event_task_enable(void) 3720 { 3721 struct perf_event *event; 3722 3723 mutex_lock(¤t->perf_event_mutex); 3724 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3725 perf_event_for_each_child(event, perf_event_enable); 3726 mutex_unlock(¤t->perf_event_mutex); 3727 3728 return 0; 3729 } 3730 3731 int perf_event_task_disable(void) 3732 { 3733 struct perf_event *event; 3734 3735 mutex_lock(¤t->perf_event_mutex); 3736 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3737 perf_event_for_each_child(event, perf_event_disable); 3738 mutex_unlock(¤t->perf_event_mutex); 3739 3740 return 0; 3741 } 3742 3743 static int perf_event_index(struct perf_event *event) 3744 { 3745 if (event->hw.state & PERF_HES_STOPPED) 3746 return 0; 3747 3748 if (event->state != PERF_EVENT_STATE_ACTIVE) 3749 return 0; 3750 3751 return event->pmu->event_idx(event); 3752 } 3753 3754 static void calc_timer_values(struct perf_event *event, 3755 u64 *now, 3756 u64 *enabled, 3757 u64 *running) 3758 { 3759 u64 ctx_time; 3760 3761 *now = perf_clock(); 3762 ctx_time = event->shadow_ctx_time + *now; 3763 *enabled = ctx_time - event->tstamp_enabled; 3764 *running = ctx_time - event->tstamp_running; 3765 } 3766 3767 static void perf_event_init_userpage(struct perf_event *event) 3768 { 3769 struct perf_event_mmap_page *userpg; 3770 struct ring_buffer *rb; 3771 3772 rcu_read_lock(); 3773 rb = rcu_dereference(event->rb); 3774 if (!rb) 3775 goto unlock; 3776 3777 userpg = rb->user_page; 3778 3779 /* Allow new userspace to detect that bit 0 is deprecated */ 3780 userpg->cap_bit0_is_deprecated = 1; 3781 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3782 3783 unlock: 3784 rcu_read_unlock(); 3785 } 3786 3787 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3788 { 3789 } 3790 3791 /* 3792 * Callers need to ensure there can be no nesting of this function, otherwise 3793 * the seqlock logic goes bad. We can not serialize this because the arch 3794 * code calls this from NMI context. 3795 */ 3796 void perf_event_update_userpage(struct perf_event *event) 3797 { 3798 struct perf_event_mmap_page *userpg; 3799 struct ring_buffer *rb; 3800 u64 enabled, running, now; 3801 3802 rcu_read_lock(); 3803 rb = rcu_dereference(event->rb); 3804 if (!rb) 3805 goto unlock; 3806 3807 /* 3808 * compute total_time_enabled, total_time_running 3809 * based on snapshot values taken when the event 3810 * was last scheduled in. 3811 * 3812 * we cannot simply called update_context_time() 3813 * because of locking issue as we can be called in 3814 * NMI context 3815 */ 3816 calc_timer_values(event, &now, &enabled, &running); 3817 3818 userpg = rb->user_page; 3819 /* 3820 * Disable preemption so as to not let the corresponding user-space 3821 * spin too long if we get preempted. 3822 */ 3823 preempt_disable(); 3824 ++userpg->lock; 3825 barrier(); 3826 userpg->index = perf_event_index(event); 3827 userpg->offset = perf_event_count(event); 3828 if (userpg->index) 3829 userpg->offset -= local64_read(&event->hw.prev_count); 3830 3831 userpg->time_enabled = enabled + 3832 atomic64_read(&event->child_total_time_enabled); 3833 3834 userpg->time_running = running + 3835 atomic64_read(&event->child_total_time_running); 3836 3837 arch_perf_update_userpage(userpg, now); 3838 3839 barrier(); 3840 ++userpg->lock; 3841 preempt_enable(); 3842 unlock: 3843 rcu_read_unlock(); 3844 } 3845 3846 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3847 { 3848 struct perf_event *event = vma->vm_file->private_data; 3849 struct ring_buffer *rb; 3850 int ret = VM_FAULT_SIGBUS; 3851 3852 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3853 if (vmf->pgoff == 0) 3854 ret = 0; 3855 return ret; 3856 } 3857 3858 rcu_read_lock(); 3859 rb = rcu_dereference(event->rb); 3860 if (!rb) 3861 goto unlock; 3862 3863 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3864 goto unlock; 3865 3866 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3867 if (!vmf->page) 3868 goto unlock; 3869 3870 get_page(vmf->page); 3871 vmf->page->mapping = vma->vm_file->f_mapping; 3872 vmf->page->index = vmf->pgoff; 3873 3874 ret = 0; 3875 unlock: 3876 rcu_read_unlock(); 3877 3878 return ret; 3879 } 3880 3881 static void ring_buffer_attach(struct perf_event *event, 3882 struct ring_buffer *rb) 3883 { 3884 struct ring_buffer *old_rb = NULL; 3885 unsigned long flags; 3886 3887 if (event->rb) { 3888 /* 3889 * Should be impossible, we set this when removing 3890 * event->rb_entry and wait/clear when adding event->rb_entry. 3891 */ 3892 WARN_ON_ONCE(event->rcu_pending); 3893 3894 old_rb = event->rb; 3895 event->rcu_batches = get_state_synchronize_rcu(); 3896 event->rcu_pending = 1; 3897 3898 spin_lock_irqsave(&old_rb->event_lock, flags); 3899 list_del_rcu(&event->rb_entry); 3900 spin_unlock_irqrestore(&old_rb->event_lock, flags); 3901 } 3902 3903 if (event->rcu_pending && rb) { 3904 cond_synchronize_rcu(event->rcu_batches); 3905 event->rcu_pending = 0; 3906 } 3907 3908 if (rb) { 3909 spin_lock_irqsave(&rb->event_lock, flags); 3910 list_add_rcu(&event->rb_entry, &rb->event_list); 3911 spin_unlock_irqrestore(&rb->event_lock, flags); 3912 } 3913 3914 rcu_assign_pointer(event->rb, rb); 3915 3916 if (old_rb) { 3917 ring_buffer_put(old_rb); 3918 /* 3919 * Since we detached before setting the new rb, so that we 3920 * could attach the new rb, we could have missed a wakeup. 3921 * Provide it now. 3922 */ 3923 wake_up_all(&event->waitq); 3924 } 3925 } 3926 3927 static void ring_buffer_wakeup(struct perf_event *event) 3928 { 3929 struct ring_buffer *rb; 3930 3931 rcu_read_lock(); 3932 rb = rcu_dereference(event->rb); 3933 if (rb) { 3934 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3935 wake_up_all(&event->waitq); 3936 } 3937 rcu_read_unlock(); 3938 } 3939 3940 static void rb_free_rcu(struct rcu_head *rcu_head) 3941 { 3942 struct ring_buffer *rb; 3943 3944 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3945 rb_free(rb); 3946 } 3947 3948 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3949 { 3950 struct ring_buffer *rb; 3951 3952 rcu_read_lock(); 3953 rb = rcu_dereference(event->rb); 3954 if (rb) { 3955 if (!atomic_inc_not_zero(&rb->refcount)) 3956 rb = NULL; 3957 } 3958 rcu_read_unlock(); 3959 3960 return rb; 3961 } 3962 3963 static void ring_buffer_put(struct ring_buffer *rb) 3964 { 3965 if (!atomic_dec_and_test(&rb->refcount)) 3966 return; 3967 3968 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3969 3970 call_rcu(&rb->rcu_head, rb_free_rcu); 3971 } 3972 3973 static void perf_mmap_open(struct vm_area_struct *vma) 3974 { 3975 struct perf_event *event = vma->vm_file->private_data; 3976 3977 atomic_inc(&event->mmap_count); 3978 atomic_inc(&event->rb->mmap_count); 3979 } 3980 3981 /* 3982 * A buffer can be mmap()ed multiple times; either directly through the same 3983 * event, or through other events by use of perf_event_set_output(). 3984 * 3985 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3986 * the buffer here, where we still have a VM context. This means we need 3987 * to detach all events redirecting to us. 3988 */ 3989 static void perf_mmap_close(struct vm_area_struct *vma) 3990 { 3991 struct perf_event *event = vma->vm_file->private_data; 3992 3993 struct ring_buffer *rb = ring_buffer_get(event); 3994 struct user_struct *mmap_user = rb->mmap_user; 3995 int mmap_locked = rb->mmap_locked; 3996 unsigned long size = perf_data_size(rb); 3997 3998 atomic_dec(&rb->mmap_count); 3999 4000 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 4001 goto out_put; 4002 4003 ring_buffer_attach(event, NULL); 4004 mutex_unlock(&event->mmap_mutex); 4005 4006 /* If there's still other mmap()s of this buffer, we're done. */ 4007 if (atomic_read(&rb->mmap_count)) 4008 goto out_put; 4009 4010 /* 4011 * No other mmap()s, detach from all other events that might redirect 4012 * into the now unreachable buffer. Somewhat complicated by the 4013 * fact that rb::event_lock otherwise nests inside mmap_mutex. 4014 */ 4015 again: 4016 rcu_read_lock(); 4017 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 4018 if (!atomic_long_inc_not_zero(&event->refcount)) { 4019 /* 4020 * This event is en-route to free_event() which will 4021 * detach it and remove it from the list. 4022 */ 4023 continue; 4024 } 4025 rcu_read_unlock(); 4026 4027 mutex_lock(&event->mmap_mutex); 4028 /* 4029 * Check we didn't race with perf_event_set_output() which can 4030 * swizzle the rb from under us while we were waiting to 4031 * acquire mmap_mutex. 4032 * 4033 * If we find a different rb; ignore this event, a next 4034 * iteration will no longer find it on the list. We have to 4035 * still restart the iteration to make sure we're not now 4036 * iterating the wrong list. 4037 */ 4038 if (event->rb == rb) 4039 ring_buffer_attach(event, NULL); 4040 4041 mutex_unlock(&event->mmap_mutex); 4042 put_event(event); 4043 4044 /* 4045 * Restart the iteration; either we're on the wrong list or 4046 * destroyed its integrity by doing a deletion. 4047 */ 4048 goto again; 4049 } 4050 rcu_read_unlock(); 4051 4052 /* 4053 * It could be there's still a few 0-ref events on the list; they'll 4054 * get cleaned up by free_event() -- they'll also still have their 4055 * ref on the rb and will free it whenever they are done with it. 4056 * 4057 * Aside from that, this buffer is 'fully' detached and unmapped, 4058 * undo the VM accounting. 4059 */ 4060 4061 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 4062 vma->vm_mm->pinned_vm -= mmap_locked; 4063 free_uid(mmap_user); 4064 4065 out_put: 4066 ring_buffer_put(rb); /* could be last */ 4067 } 4068 4069 static const struct vm_operations_struct perf_mmap_vmops = { 4070 .open = perf_mmap_open, 4071 .close = perf_mmap_close, 4072 .fault = perf_mmap_fault, 4073 .page_mkwrite = perf_mmap_fault, 4074 }; 4075 4076 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 4077 { 4078 struct perf_event *event = file->private_data; 4079 unsigned long user_locked, user_lock_limit; 4080 struct user_struct *user = current_user(); 4081 unsigned long locked, lock_limit; 4082 struct ring_buffer *rb; 4083 unsigned long vma_size; 4084 unsigned long nr_pages; 4085 long user_extra, extra; 4086 int ret = 0, flags = 0; 4087 4088 /* 4089 * Don't allow mmap() of inherited per-task counters. This would 4090 * create a performance issue due to all children writing to the 4091 * same rb. 4092 */ 4093 if (event->cpu == -1 && event->attr.inherit) 4094 return -EINVAL; 4095 4096 if (!(vma->vm_flags & VM_SHARED)) 4097 return -EINVAL; 4098 4099 vma_size = vma->vm_end - vma->vm_start; 4100 nr_pages = (vma_size / PAGE_SIZE) - 1; 4101 4102 /* 4103 * If we have rb pages ensure they're a power-of-two number, so we 4104 * can do bitmasks instead of modulo. 4105 */ 4106 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4107 return -EINVAL; 4108 4109 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4110 return -EINVAL; 4111 4112 if (vma->vm_pgoff != 0) 4113 return -EINVAL; 4114 4115 WARN_ON_ONCE(event->ctx->parent_ctx); 4116 again: 4117 mutex_lock(&event->mmap_mutex); 4118 if (event->rb) { 4119 if (event->rb->nr_pages != nr_pages) { 4120 ret = -EINVAL; 4121 goto unlock; 4122 } 4123 4124 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4125 /* 4126 * Raced against perf_mmap_close() through 4127 * perf_event_set_output(). Try again, hope for better 4128 * luck. 4129 */ 4130 mutex_unlock(&event->mmap_mutex); 4131 goto again; 4132 } 4133 4134 goto unlock; 4135 } 4136 4137 user_extra = nr_pages + 1; 4138 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4139 4140 /* 4141 * Increase the limit linearly with more CPUs: 4142 */ 4143 user_lock_limit *= num_online_cpus(); 4144 4145 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4146 4147 extra = 0; 4148 if (user_locked > user_lock_limit) 4149 extra = user_locked - user_lock_limit; 4150 4151 lock_limit = rlimit(RLIMIT_MEMLOCK); 4152 lock_limit >>= PAGE_SHIFT; 4153 locked = vma->vm_mm->pinned_vm + extra; 4154 4155 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4156 !capable(CAP_IPC_LOCK)) { 4157 ret = -EPERM; 4158 goto unlock; 4159 } 4160 4161 WARN_ON(event->rb); 4162 4163 if (vma->vm_flags & VM_WRITE) 4164 flags |= RING_BUFFER_WRITABLE; 4165 4166 rb = rb_alloc(nr_pages, 4167 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4168 event->cpu, flags); 4169 4170 if (!rb) { 4171 ret = -ENOMEM; 4172 goto unlock; 4173 } 4174 4175 atomic_set(&rb->mmap_count, 1); 4176 rb->mmap_locked = extra; 4177 rb->mmap_user = get_current_user(); 4178 4179 atomic_long_add(user_extra, &user->locked_vm); 4180 vma->vm_mm->pinned_vm += extra; 4181 4182 ring_buffer_attach(event, rb); 4183 4184 perf_event_init_userpage(event); 4185 perf_event_update_userpage(event); 4186 4187 unlock: 4188 if (!ret) 4189 atomic_inc(&event->mmap_count); 4190 mutex_unlock(&event->mmap_mutex); 4191 4192 /* 4193 * Since pinned accounting is per vm we cannot allow fork() to copy our 4194 * vma. 4195 */ 4196 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4197 vma->vm_ops = &perf_mmap_vmops; 4198 4199 return ret; 4200 } 4201 4202 static int perf_fasync(int fd, struct file *filp, int on) 4203 { 4204 struct inode *inode = file_inode(filp); 4205 struct perf_event *event = filp->private_data; 4206 int retval; 4207 4208 mutex_lock(&inode->i_mutex); 4209 retval = fasync_helper(fd, filp, on, &event->fasync); 4210 mutex_unlock(&inode->i_mutex); 4211 4212 if (retval < 0) 4213 return retval; 4214 4215 return 0; 4216 } 4217 4218 static const struct file_operations perf_fops = { 4219 .llseek = no_llseek, 4220 .release = perf_release, 4221 .read = perf_read, 4222 .poll = perf_poll, 4223 .unlocked_ioctl = perf_ioctl, 4224 .compat_ioctl = perf_ioctl, 4225 .mmap = perf_mmap, 4226 .fasync = perf_fasync, 4227 }; 4228 4229 /* 4230 * Perf event wakeup 4231 * 4232 * If there's data, ensure we set the poll() state and publish everything 4233 * to user-space before waking everybody up. 4234 */ 4235 4236 void perf_event_wakeup(struct perf_event *event) 4237 { 4238 ring_buffer_wakeup(event); 4239 4240 if (event->pending_kill) { 4241 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4242 event->pending_kill = 0; 4243 } 4244 } 4245 4246 static void perf_pending_event(struct irq_work *entry) 4247 { 4248 struct perf_event *event = container_of(entry, 4249 struct perf_event, pending); 4250 4251 if (event->pending_disable) { 4252 event->pending_disable = 0; 4253 __perf_event_disable(event); 4254 } 4255 4256 if (event->pending_wakeup) { 4257 event->pending_wakeup = 0; 4258 perf_event_wakeup(event); 4259 } 4260 } 4261 4262 /* 4263 * We assume there is only KVM supporting the callbacks. 4264 * Later on, we might change it to a list if there is 4265 * another virtualization implementation supporting the callbacks. 4266 */ 4267 struct perf_guest_info_callbacks *perf_guest_cbs; 4268 4269 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4270 { 4271 perf_guest_cbs = cbs; 4272 return 0; 4273 } 4274 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4275 4276 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4277 { 4278 perf_guest_cbs = NULL; 4279 return 0; 4280 } 4281 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4282 4283 static void 4284 perf_output_sample_regs(struct perf_output_handle *handle, 4285 struct pt_regs *regs, u64 mask) 4286 { 4287 int bit; 4288 4289 for_each_set_bit(bit, (const unsigned long *) &mask, 4290 sizeof(mask) * BITS_PER_BYTE) { 4291 u64 val; 4292 4293 val = perf_reg_value(regs, bit); 4294 perf_output_put(handle, val); 4295 } 4296 } 4297 4298 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4299 struct pt_regs *regs) 4300 { 4301 if (!user_mode(regs)) { 4302 if (current->mm) 4303 regs = task_pt_regs(current); 4304 else 4305 regs = NULL; 4306 } 4307 4308 if (regs) { 4309 regs_user->regs = regs; 4310 regs_user->abi = perf_reg_abi(current); 4311 } 4312 } 4313 4314 /* 4315 * Get remaining task size from user stack pointer. 4316 * 4317 * It'd be better to take stack vma map and limit this more 4318 * precisly, but there's no way to get it safely under interrupt, 4319 * so using TASK_SIZE as limit. 4320 */ 4321 static u64 perf_ustack_task_size(struct pt_regs *regs) 4322 { 4323 unsigned long addr = perf_user_stack_pointer(regs); 4324 4325 if (!addr || addr >= TASK_SIZE) 4326 return 0; 4327 4328 return TASK_SIZE - addr; 4329 } 4330 4331 static u16 4332 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4333 struct pt_regs *regs) 4334 { 4335 u64 task_size; 4336 4337 /* No regs, no stack pointer, no dump. */ 4338 if (!regs) 4339 return 0; 4340 4341 /* 4342 * Check if we fit in with the requested stack size into the: 4343 * - TASK_SIZE 4344 * If we don't, we limit the size to the TASK_SIZE. 4345 * 4346 * - remaining sample size 4347 * If we don't, we customize the stack size to 4348 * fit in to the remaining sample size. 4349 */ 4350 4351 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4352 stack_size = min(stack_size, (u16) task_size); 4353 4354 /* Current header size plus static size and dynamic size. */ 4355 header_size += 2 * sizeof(u64); 4356 4357 /* Do we fit in with the current stack dump size? */ 4358 if ((u16) (header_size + stack_size) < header_size) { 4359 /* 4360 * If we overflow the maximum size for the sample, 4361 * we customize the stack dump size to fit in. 4362 */ 4363 stack_size = USHRT_MAX - header_size - sizeof(u64); 4364 stack_size = round_up(stack_size, sizeof(u64)); 4365 } 4366 4367 return stack_size; 4368 } 4369 4370 static void 4371 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4372 struct pt_regs *regs) 4373 { 4374 /* Case of a kernel thread, nothing to dump */ 4375 if (!regs) { 4376 u64 size = 0; 4377 perf_output_put(handle, size); 4378 } else { 4379 unsigned long sp; 4380 unsigned int rem; 4381 u64 dyn_size; 4382 4383 /* 4384 * We dump: 4385 * static size 4386 * - the size requested by user or the best one we can fit 4387 * in to the sample max size 4388 * data 4389 * - user stack dump data 4390 * dynamic size 4391 * - the actual dumped size 4392 */ 4393 4394 /* Static size. */ 4395 perf_output_put(handle, dump_size); 4396 4397 /* Data. */ 4398 sp = perf_user_stack_pointer(regs); 4399 rem = __output_copy_user(handle, (void *) sp, dump_size); 4400 dyn_size = dump_size - rem; 4401 4402 perf_output_skip(handle, rem); 4403 4404 /* Dynamic size. */ 4405 perf_output_put(handle, dyn_size); 4406 } 4407 } 4408 4409 static void __perf_event_header__init_id(struct perf_event_header *header, 4410 struct perf_sample_data *data, 4411 struct perf_event *event) 4412 { 4413 u64 sample_type = event->attr.sample_type; 4414 4415 data->type = sample_type; 4416 header->size += event->id_header_size; 4417 4418 if (sample_type & PERF_SAMPLE_TID) { 4419 /* namespace issues */ 4420 data->tid_entry.pid = perf_event_pid(event, current); 4421 data->tid_entry.tid = perf_event_tid(event, current); 4422 } 4423 4424 if (sample_type & PERF_SAMPLE_TIME) 4425 data->time = perf_clock(); 4426 4427 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4428 data->id = primary_event_id(event); 4429 4430 if (sample_type & PERF_SAMPLE_STREAM_ID) 4431 data->stream_id = event->id; 4432 4433 if (sample_type & PERF_SAMPLE_CPU) { 4434 data->cpu_entry.cpu = raw_smp_processor_id(); 4435 data->cpu_entry.reserved = 0; 4436 } 4437 } 4438 4439 void perf_event_header__init_id(struct perf_event_header *header, 4440 struct perf_sample_data *data, 4441 struct perf_event *event) 4442 { 4443 if (event->attr.sample_id_all) 4444 __perf_event_header__init_id(header, data, event); 4445 } 4446 4447 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4448 struct perf_sample_data *data) 4449 { 4450 u64 sample_type = data->type; 4451 4452 if (sample_type & PERF_SAMPLE_TID) 4453 perf_output_put(handle, data->tid_entry); 4454 4455 if (sample_type & PERF_SAMPLE_TIME) 4456 perf_output_put(handle, data->time); 4457 4458 if (sample_type & PERF_SAMPLE_ID) 4459 perf_output_put(handle, data->id); 4460 4461 if (sample_type & PERF_SAMPLE_STREAM_ID) 4462 perf_output_put(handle, data->stream_id); 4463 4464 if (sample_type & PERF_SAMPLE_CPU) 4465 perf_output_put(handle, data->cpu_entry); 4466 4467 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4468 perf_output_put(handle, data->id); 4469 } 4470 4471 void perf_event__output_id_sample(struct perf_event *event, 4472 struct perf_output_handle *handle, 4473 struct perf_sample_data *sample) 4474 { 4475 if (event->attr.sample_id_all) 4476 __perf_event__output_id_sample(handle, sample); 4477 } 4478 4479 static void perf_output_read_one(struct perf_output_handle *handle, 4480 struct perf_event *event, 4481 u64 enabled, u64 running) 4482 { 4483 u64 read_format = event->attr.read_format; 4484 u64 values[4]; 4485 int n = 0; 4486 4487 values[n++] = perf_event_count(event); 4488 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4489 values[n++] = enabled + 4490 atomic64_read(&event->child_total_time_enabled); 4491 } 4492 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4493 values[n++] = running + 4494 atomic64_read(&event->child_total_time_running); 4495 } 4496 if (read_format & PERF_FORMAT_ID) 4497 values[n++] = primary_event_id(event); 4498 4499 __output_copy(handle, values, n * sizeof(u64)); 4500 } 4501 4502 /* 4503 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4504 */ 4505 static void perf_output_read_group(struct perf_output_handle *handle, 4506 struct perf_event *event, 4507 u64 enabled, u64 running) 4508 { 4509 struct perf_event *leader = event->group_leader, *sub; 4510 u64 read_format = event->attr.read_format; 4511 u64 values[5]; 4512 int n = 0; 4513 4514 values[n++] = 1 + leader->nr_siblings; 4515 4516 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4517 values[n++] = enabled; 4518 4519 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4520 values[n++] = running; 4521 4522 if (leader != event) 4523 leader->pmu->read(leader); 4524 4525 values[n++] = perf_event_count(leader); 4526 if (read_format & PERF_FORMAT_ID) 4527 values[n++] = primary_event_id(leader); 4528 4529 __output_copy(handle, values, n * sizeof(u64)); 4530 4531 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4532 n = 0; 4533 4534 if ((sub != event) && 4535 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4536 sub->pmu->read(sub); 4537 4538 values[n++] = perf_event_count(sub); 4539 if (read_format & PERF_FORMAT_ID) 4540 values[n++] = primary_event_id(sub); 4541 4542 __output_copy(handle, values, n * sizeof(u64)); 4543 } 4544 } 4545 4546 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4547 PERF_FORMAT_TOTAL_TIME_RUNNING) 4548 4549 static void perf_output_read(struct perf_output_handle *handle, 4550 struct perf_event *event) 4551 { 4552 u64 enabled = 0, running = 0, now; 4553 u64 read_format = event->attr.read_format; 4554 4555 /* 4556 * compute total_time_enabled, total_time_running 4557 * based on snapshot values taken when the event 4558 * was last scheduled in. 4559 * 4560 * we cannot simply called update_context_time() 4561 * because of locking issue as we are called in 4562 * NMI context 4563 */ 4564 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4565 calc_timer_values(event, &now, &enabled, &running); 4566 4567 if (event->attr.read_format & PERF_FORMAT_GROUP) 4568 perf_output_read_group(handle, event, enabled, running); 4569 else 4570 perf_output_read_one(handle, event, enabled, running); 4571 } 4572 4573 void perf_output_sample(struct perf_output_handle *handle, 4574 struct perf_event_header *header, 4575 struct perf_sample_data *data, 4576 struct perf_event *event) 4577 { 4578 u64 sample_type = data->type; 4579 4580 perf_output_put(handle, *header); 4581 4582 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4583 perf_output_put(handle, data->id); 4584 4585 if (sample_type & PERF_SAMPLE_IP) 4586 perf_output_put(handle, data->ip); 4587 4588 if (sample_type & PERF_SAMPLE_TID) 4589 perf_output_put(handle, data->tid_entry); 4590 4591 if (sample_type & PERF_SAMPLE_TIME) 4592 perf_output_put(handle, data->time); 4593 4594 if (sample_type & PERF_SAMPLE_ADDR) 4595 perf_output_put(handle, data->addr); 4596 4597 if (sample_type & PERF_SAMPLE_ID) 4598 perf_output_put(handle, data->id); 4599 4600 if (sample_type & PERF_SAMPLE_STREAM_ID) 4601 perf_output_put(handle, data->stream_id); 4602 4603 if (sample_type & PERF_SAMPLE_CPU) 4604 perf_output_put(handle, data->cpu_entry); 4605 4606 if (sample_type & PERF_SAMPLE_PERIOD) 4607 perf_output_put(handle, data->period); 4608 4609 if (sample_type & PERF_SAMPLE_READ) 4610 perf_output_read(handle, event); 4611 4612 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4613 if (data->callchain) { 4614 int size = 1; 4615 4616 if (data->callchain) 4617 size += data->callchain->nr; 4618 4619 size *= sizeof(u64); 4620 4621 __output_copy(handle, data->callchain, size); 4622 } else { 4623 u64 nr = 0; 4624 perf_output_put(handle, nr); 4625 } 4626 } 4627 4628 if (sample_type & PERF_SAMPLE_RAW) { 4629 if (data->raw) { 4630 perf_output_put(handle, data->raw->size); 4631 __output_copy(handle, data->raw->data, 4632 data->raw->size); 4633 } else { 4634 struct { 4635 u32 size; 4636 u32 data; 4637 } raw = { 4638 .size = sizeof(u32), 4639 .data = 0, 4640 }; 4641 perf_output_put(handle, raw); 4642 } 4643 } 4644 4645 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4646 if (data->br_stack) { 4647 size_t size; 4648 4649 size = data->br_stack->nr 4650 * sizeof(struct perf_branch_entry); 4651 4652 perf_output_put(handle, data->br_stack->nr); 4653 perf_output_copy(handle, data->br_stack->entries, size); 4654 } else { 4655 /* 4656 * we always store at least the value of nr 4657 */ 4658 u64 nr = 0; 4659 perf_output_put(handle, nr); 4660 } 4661 } 4662 4663 if (sample_type & PERF_SAMPLE_REGS_USER) { 4664 u64 abi = data->regs_user.abi; 4665 4666 /* 4667 * If there are no regs to dump, notice it through 4668 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4669 */ 4670 perf_output_put(handle, abi); 4671 4672 if (abi) { 4673 u64 mask = event->attr.sample_regs_user; 4674 perf_output_sample_regs(handle, 4675 data->regs_user.regs, 4676 mask); 4677 } 4678 } 4679 4680 if (sample_type & PERF_SAMPLE_STACK_USER) { 4681 perf_output_sample_ustack(handle, 4682 data->stack_user_size, 4683 data->regs_user.regs); 4684 } 4685 4686 if (sample_type & PERF_SAMPLE_WEIGHT) 4687 perf_output_put(handle, data->weight); 4688 4689 if (sample_type & PERF_SAMPLE_DATA_SRC) 4690 perf_output_put(handle, data->data_src.val); 4691 4692 if (sample_type & PERF_SAMPLE_TRANSACTION) 4693 perf_output_put(handle, data->txn); 4694 4695 if (!event->attr.watermark) { 4696 int wakeup_events = event->attr.wakeup_events; 4697 4698 if (wakeup_events) { 4699 struct ring_buffer *rb = handle->rb; 4700 int events = local_inc_return(&rb->events); 4701 4702 if (events >= wakeup_events) { 4703 local_sub(wakeup_events, &rb->events); 4704 local_inc(&rb->wakeup); 4705 } 4706 } 4707 } 4708 } 4709 4710 void perf_prepare_sample(struct perf_event_header *header, 4711 struct perf_sample_data *data, 4712 struct perf_event *event, 4713 struct pt_regs *regs) 4714 { 4715 u64 sample_type = event->attr.sample_type; 4716 4717 header->type = PERF_RECORD_SAMPLE; 4718 header->size = sizeof(*header) + event->header_size; 4719 4720 header->misc = 0; 4721 header->misc |= perf_misc_flags(regs); 4722 4723 __perf_event_header__init_id(header, data, event); 4724 4725 if (sample_type & PERF_SAMPLE_IP) 4726 data->ip = perf_instruction_pointer(regs); 4727 4728 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4729 int size = 1; 4730 4731 data->callchain = perf_callchain(event, regs); 4732 4733 if (data->callchain) 4734 size += data->callchain->nr; 4735 4736 header->size += size * sizeof(u64); 4737 } 4738 4739 if (sample_type & PERF_SAMPLE_RAW) { 4740 int size = sizeof(u32); 4741 4742 if (data->raw) 4743 size += data->raw->size; 4744 else 4745 size += sizeof(u32); 4746 4747 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4748 header->size += size; 4749 } 4750 4751 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4752 int size = sizeof(u64); /* nr */ 4753 if (data->br_stack) { 4754 size += data->br_stack->nr 4755 * sizeof(struct perf_branch_entry); 4756 } 4757 header->size += size; 4758 } 4759 4760 if (sample_type & PERF_SAMPLE_REGS_USER) { 4761 /* regs dump ABI info */ 4762 int size = sizeof(u64); 4763 4764 perf_sample_regs_user(&data->regs_user, regs); 4765 4766 if (data->regs_user.regs) { 4767 u64 mask = event->attr.sample_regs_user; 4768 size += hweight64(mask) * sizeof(u64); 4769 } 4770 4771 header->size += size; 4772 } 4773 4774 if (sample_type & PERF_SAMPLE_STACK_USER) { 4775 /* 4776 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4777 * processed as the last one or have additional check added 4778 * in case new sample type is added, because we could eat 4779 * up the rest of the sample size. 4780 */ 4781 struct perf_regs_user *uregs = &data->regs_user; 4782 u16 stack_size = event->attr.sample_stack_user; 4783 u16 size = sizeof(u64); 4784 4785 if (!uregs->abi) 4786 perf_sample_regs_user(uregs, regs); 4787 4788 stack_size = perf_sample_ustack_size(stack_size, header->size, 4789 uregs->regs); 4790 4791 /* 4792 * If there is something to dump, add space for the dump 4793 * itself and for the field that tells the dynamic size, 4794 * which is how many have been actually dumped. 4795 */ 4796 if (stack_size) 4797 size += sizeof(u64) + stack_size; 4798 4799 data->stack_user_size = stack_size; 4800 header->size += size; 4801 } 4802 } 4803 4804 static void perf_event_output(struct perf_event *event, 4805 struct perf_sample_data *data, 4806 struct pt_regs *regs) 4807 { 4808 struct perf_output_handle handle; 4809 struct perf_event_header header; 4810 4811 /* protect the callchain buffers */ 4812 rcu_read_lock(); 4813 4814 perf_prepare_sample(&header, data, event, regs); 4815 4816 if (perf_output_begin(&handle, event, header.size)) 4817 goto exit; 4818 4819 perf_output_sample(&handle, &header, data, event); 4820 4821 perf_output_end(&handle); 4822 4823 exit: 4824 rcu_read_unlock(); 4825 } 4826 4827 /* 4828 * read event_id 4829 */ 4830 4831 struct perf_read_event { 4832 struct perf_event_header header; 4833 4834 u32 pid; 4835 u32 tid; 4836 }; 4837 4838 static void 4839 perf_event_read_event(struct perf_event *event, 4840 struct task_struct *task) 4841 { 4842 struct perf_output_handle handle; 4843 struct perf_sample_data sample; 4844 struct perf_read_event read_event = { 4845 .header = { 4846 .type = PERF_RECORD_READ, 4847 .misc = 0, 4848 .size = sizeof(read_event) + event->read_size, 4849 }, 4850 .pid = perf_event_pid(event, task), 4851 .tid = perf_event_tid(event, task), 4852 }; 4853 int ret; 4854 4855 perf_event_header__init_id(&read_event.header, &sample, event); 4856 ret = perf_output_begin(&handle, event, read_event.header.size); 4857 if (ret) 4858 return; 4859 4860 perf_output_put(&handle, read_event); 4861 perf_output_read(&handle, event); 4862 perf_event__output_id_sample(event, &handle, &sample); 4863 4864 perf_output_end(&handle); 4865 } 4866 4867 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4868 4869 static void 4870 perf_event_aux_ctx(struct perf_event_context *ctx, 4871 perf_event_aux_output_cb output, 4872 void *data) 4873 { 4874 struct perf_event *event; 4875 4876 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4877 if (event->state < PERF_EVENT_STATE_INACTIVE) 4878 continue; 4879 if (!event_filter_match(event)) 4880 continue; 4881 output(event, data); 4882 } 4883 } 4884 4885 static void 4886 perf_event_aux(perf_event_aux_output_cb output, void *data, 4887 struct perf_event_context *task_ctx) 4888 { 4889 struct perf_cpu_context *cpuctx; 4890 struct perf_event_context *ctx; 4891 struct pmu *pmu; 4892 int ctxn; 4893 4894 rcu_read_lock(); 4895 list_for_each_entry_rcu(pmu, &pmus, entry) { 4896 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4897 if (cpuctx->unique_pmu != pmu) 4898 goto next; 4899 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4900 if (task_ctx) 4901 goto next; 4902 ctxn = pmu->task_ctx_nr; 4903 if (ctxn < 0) 4904 goto next; 4905 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4906 if (ctx) 4907 perf_event_aux_ctx(ctx, output, data); 4908 next: 4909 put_cpu_ptr(pmu->pmu_cpu_context); 4910 } 4911 4912 if (task_ctx) { 4913 preempt_disable(); 4914 perf_event_aux_ctx(task_ctx, output, data); 4915 preempt_enable(); 4916 } 4917 rcu_read_unlock(); 4918 } 4919 4920 /* 4921 * task tracking -- fork/exit 4922 * 4923 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4924 */ 4925 4926 struct perf_task_event { 4927 struct task_struct *task; 4928 struct perf_event_context *task_ctx; 4929 4930 struct { 4931 struct perf_event_header header; 4932 4933 u32 pid; 4934 u32 ppid; 4935 u32 tid; 4936 u32 ptid; 4937 u64 time; 4938 } event_id; 4939 }; 4940 4941 static int perf_event_task_match(struct perf_event *event) 4942 { 4943 return event->attr.comm || event->attr.mmap || 4944 event->attr.mmap2 || event->attr.mmap_data || 4945 event->attr.task; 4946 } 4947 4948 static void perf_event_task_output(struct perf_event *event, 4949 void *data) 4950 { 4951 struct perf_task_event *task_event = data; 4952 struct perf_output_handle handle; 4953 struct perf_sample_data sample; 4954 struct task_struct *task = task_event->task; 4955 int ret, size = task_event->event_id.header.size; 4956 4957 if (!perf_event_task_match(event)) 4958 return; 4959 4960 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4961 4962 ret = perf_output_begin(&handle, event, 4963 task_event->event_id.header.size); 4964 if (ret) 4965 goto out; 4966 4967 task_event->event_id.pid = perf_event_pid(event, task); 4968 task_event->event_id.ppid = perf_event_pid(event, current); 4969 4970 task_event->event_id.tid = perf_event_tid(event, task); 4971 task_event->event_id.ptid = perf_event_tid(event, current); 4972 4973 perf_output_put(&handle, task_event->event_id); 4974 4975 perf_event__output_id_sample(event, &handle, &sample); 4976 4977 perf_output_end(&handle); 4978 out: 4979 task_event->event_id.header.size = size; 4980 } 4981 4982 static void perf_event_task(struct task_struct *task, 4983 struct perf_event_context *task_ctx, 4984 int new) 4985 { 4986 struct perf_task_event task_event; 4987 4988 if (!atomic_read(&nr_comm_events) && 4989 !atomic_read(&nr_mmap_events) && 4990 !atomic_read(&nr_task_events)) 4991 return; 4992 4993 task_event = (struct perf_task_event){ 4994 .task = task, 4995 .task_ctx = task_ctx, 4996 .event_id = { 4997 .header = { 4998 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4999 .misc = 0, 5000 .size = sizeof(task_event.event_id), 5001 }, 5002 /* .pid */ 5003 /* .ppid */ 5004 /* .tid */ 5005 /* .ptid */ 5006 .time = perf_clock(), 5007 }, 5008 }; 5009 5010 perf_event_aux(perf_event_task_output, 5011 &task_event, 5012 task_ctx); 5013 } 5014 5015 void perf_event_fork(struct task_struct *task) 5016 { 5017 perf_event_task(task, NULL, 1); 5018 } 5019 5020 /* 5021 * comm tracking 5022 */ 5023 5024 struct perf_comm_event { 5025 struct task_struct *task; 5026 char *comm; 5027 int comm_size; 5028 5029 struct { 5030 struct perf_event_header header; 5031 5032 u32 pid; 5033 u32 tid; 5034 } event_id; 5035 }; 5036 5037 static int perf_event_comm_match(struct perf_event *event) 5038 { 5039 return event->attr.comm; 5040 } 5041 5042 static void perf_event_comm_output(struct perf_event *event, 5043 void *data) 5044 { 5045 struct perf_comm_event *comm_event = data; 5046 struct perf_output_handle handle; 5047 struct perf_sample_data sample; 5048 int size = comm_event->event_id.header.size; 5049 int ret; 5050 5051 if (!perf_event_comm_match(event)) 5052 return; 5053 5054 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 5055 ret = perf_output_begin(&handle, event, 5056 comm_event->event_id.header.size); 5057 5058 if (ret) 5059 goto out; 5060 5061 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 5062 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 5063 5064 perf_output_put(&handle, comm_event->event_id); 5065 __output_copy(&handle, comm_event->comm, 5066 comm_event->comm_size); 5067 5068 perf_event__output_id_sample(event, &handle, &sample); 5069 5070 perf_output_end(&handle); 5071 out: 5072 comm_event->event_id.header.size = size; 5073 } 5074 5075 static void perf_event_comm_event(struct perf_comm_event *comm_event) 5076 { 5077 char comm[TASK_COMM_LEN]; 5078 unsigned int size; 5079 5080 memset(comm, 0, sizeof(comm)); 5081 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 5082 size = ALIGN(strlen(comm)+1, sizeof(u64)); 5083 5084 comm_event->comm = comm; 5085 comm_event->comm_size = size; 5086 5087 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5088 5089 perf_event_aux(perf_event_comm_output, 5090 comm_event, 5091 NULL); 5092 } 5093 5094 void perf_event_comm(struct task_struct *task, bool exec) 5095 { 5096 struct perf_comm_event comm_event; 5097 5098 if (!atomic_read(&nr_comm_events)) 5099 return; 5100 5101 comm_event = (struct perf_comm_event){ 5102 .task = task, 5103 /* .comm */ 5104 /* .comm_size */ 5105 .event_id = { 5106 .header = { 5107 .type = PERF_RECORD_COMM, 5108 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 5109 /* .size */ 5110 }, 5111 /* .pid */ 5112 /* .tid */ 5113 }, 5114 }; 5115 5116 perf_event_comm_event(&comm_event); 5117 } 5118 5119 /* 5120 * mmap tracking 5121 */ 5122 5123 struct perf_mmap_event { 5124 struct vm_area_struct *vma; 5125 5126 const char *file_name; 5127 int file_size; 5128 int maj, min; 5129 u64 ino; 5130 u64 ino_generation; 5131 5132 struct { 5133 struct perf_event_header header; 5134 5135 u32 pid; 5136 u32 tid; 5137 u64 start; 5138 u64 len; 5139 u64 pgoff; 5140 } event_id; 5141 }; 5142 5143 static int perf_event_mmap_match(struct perf_event *event, 5144 void *data) 5145 { 5146 struct perf_mmap_event *mmap_event = data; 5147 struct vm_area_struct *vma = mmap_event->vma; 5148 int executable = vma->vm_flags & VM_EXEC; 5149 5150 return (!executable && event->attr.mmap_data) || 5151 (executable && (event->attr.mmap || event->attr.mmap2)); 5152 } 5153 5154 static void perf_event_mmap_output(struct perf_event *event, 5155 void *data) 5156 { 5157 struct perf_mmap_event *mmap_event = data; 5158 struct perf_output_handle handle; 5159 struct perf_sample_data sample; 5160 int size = mmap_event->event_id.header.size; 5161 int ret; 5162 5163 if (!perf_event_mmap_match(event, data)) 5164 return; 5165 5166 if (event->attr.mmap2) { 5167 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5168 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5169 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5170 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5171 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5172 } 5173 5174 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5175 ret = perf_output_begin(&handle, event, 5176 mmap_event->event_id.header.size); 5177 if (ret) 5178 goto out; 5179 5180 mmap_event->event_id.pid = perf_event_pid(event, current); 5181 mmap_event->event_id.tid = perf_event_tid(event, current); 5182 5183 perf_output_put(&handle, mmap_event->event_id); 5184 5185 if (event->attr.mmap2) { 5186 perf_output_put(&handle, mmap_event->maj); 5187 perf_output_put(&handle, mmap_event->min); 5188 perf_output_put(&handle, mmap_event->ino); 5189 perf_output_put(&handle, mmap_event->ino_generation); 5190 } 5191 5192 __output_copy(&handle, mmap_event->file_name, 5193 mmap_event->file_size); 5194 5195 perf_event__output_id_sample(event, &handle, &sample); 5196 5197 perf_output_end(&handle); 5198 out: 5199 mmap_event->event_id.header.size = size; 5200 } 5201 5202 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5203 { 5204 struct vm_area_struct *vma = mmap_event->vma; 5205 struct file *file = vma->vm_file; 5206 int maj = 0, min = 0; 5207 u64 ino = 0, gen = 0; 5208 unsigned int size; 5209 char tmp[16]; 5210 char *buf = NULL; 5211 char *name; 5212 5213 if (file) { 5214 struct inode *inode; 5215 dev_t dev; 5216 5217 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5218 if (!buf) { 5219 name = "//enomem"; 5220 goto cpy_name; 5221 } 5222 /* 5223 * d_path() works from the end of the rb backwards, so we 5224 * need to add enough zero bytes after the string to handle 5225 * the 64bit alignment we do later. 5226 */ 5227 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5228 if (IS_ERR(name)) { 5229 name = "//toolong"; 5230 goto cpy_name; 5231 } 5232 inode = file_inode(vma->vm_file); 5233 dev = inode->i_sb->s_dev; 5234 ino = inode->i_ino; 5235 gen = inode->i_generation; 5236 maj = MAJOR(dev); 5237 min = MINOR(dev); 5238 goto got_name; 5239 } else { 5240 name = (char *)arch_vma_name(vma); 5241 if (name) 5242 goto cpy_name; 5243 5244 if (vma->vm_start <= vma->vm_mm->start_brk && 5245 vma->vm_end >= vma->vm_mm->brk) { 5246 name = "[heap]"; 5247 goto cpy_name; 5248 } 5249 if (vma->vm_start <= vma->vm_mm->start_stack && 5250 vma->vm_end >= vma->vm_mm->start_stack) { 5251 name = "[stack]"; 5252 goto cpy_name; 5253 } 5254 5255 name = "//anon"; 5256 goto cpy_name; 5257 } 5258 5259 cpy_name: 5260 strlcpy(tmp, name, sizeof(tmp)); 5261 name = tmp; 5262 got_name: 5263 /* 5264 * Since our buffer works in 8 byte units we need to align our string 5265 * size to a multiple of 8. However, we must guarantee the tail end is 5266 * zero'd out to avoid leaking random bits to userspace. 5267 */ 5268 size = strlen(name)+1; 5269 while (!IS_ALIGNED(size, sizeof(u64))) 5270 name[size++] = '\0'; 5271 5272 mmap_event->file_name = name; 5273 mmap_event->file_size = size; 5274 mmap_event->maj = maj; 5275 mmap_event->min = min; 5276 mmap_event->ino = ino; 5277 mmap_event->ino_generation = gen; 5278 5279 if (!(vma->vm_flags & VM_EXEC)) 5280 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5281 5282 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5283 5284 perf_event_aux(perf_event_mmap_output, 5285 mmap_event, 5286 NULL); 5287 5288 kfree(buf); 5289 } 5290 5291 void perf_event_mmap(struct vm_area_struct *vma) 5292 { 5293 struct perf_mmap_event mmap_event; 5294 5295 if (!atomic_read(&nr_mmap_events)) 5296 return; 5297 5298 mmap_event = (struct perf_mmap_event){ 5299 .vma = vma, 5300 /* .file_name */ 5301 /* .file_size */ 5302 .event_id = { 5303 .header = { 5304 .type = PERF_RECORD_MMAP, 5305 .misc = PERF_RECORD_MISC_USER, 5306 /* .size */ 5307 }, 5308 /* .pid */ 5309 /* .tid */ 5310 .start = vma->vm_start, 5311 .len = vma->vm_end - vma->vm_start, 5312 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5313 }, 5314 /* .maj (attr_mmap2 only) */ 5315 /* .min (attr_mmap2 only) */ 5316 /* .ino (attr_mmap2 only) */ 5317 /* .ino_generation (attr_mmap2 only) */ 5318 }; 5319 5320 perf_event_mmap_event(&mmap_event); 5321 } 5322 5323 /* 5324 * IRQ throttle logging 5325 */ 5326 5327 static void perf_log_throttle(struct perf_event *event, int enable) 5328 { 5329 struct perf_output_handle handle; 5330 struct perf_sample_data sample; 5331 int ret; 5332 5333 struct { 5334 struct perf_event_header header; 5335 u64 time; 5336 u64 id; 5337 u64 stream_id; 5338 } throttle_event = { 5339 .header = { 5340 .type = PERF_RECORD_THROTTLE, 5341 .misc = 0, 5342 .size = sizeof(throttle_event), 5343 }, 5344 .time = perf_clock(), 5345 .id = primary_event_id(event), 5346 .stream_id = event->id, 5347 }; 5348 5349 if (enable) 5350 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5351 5352 perf_event_header__init_id(&throttle_event.header, &sample, event); 5353 5354 ret = perf_output_begin(&handle, event, 5355 throttle_event.header.size); 5356 if (ret) 5357 return; 5358 5359 perf_output_put(&handle, throttle_event); 5360 perf_event__output_id_sample(event, &handle, &sample); 5361 perf_output_end(&handle); 5362 } 5363 5364 /* 5365 * Generic event overflow handling, sampling. 5366 */ 5367 5368 static int __perf_event_overflow(struct perf_event *event, 5369 int throttle, struct perf_sample_data *data, 5370 struct pt_regs *regs) 5371 { 5372 int events = atomic_read(&event->event_limit); 5373 struct hw_perf_event *hwc = &event->hw; 5374 u64 seq; 5375 int ret = 0; 5376 5377 /* 5378 * Non-sampling counters might still use the PMI to fold short 5379 * hardware counters, ignore those. 5380 */ 5381 if (unlikely(!is_sampling_event(event))) 5382 return 0; 5383 5384 seq = __this_cpu_read(perf_throttled_seq); 5385 if (seq != hwc->interrupts_seq) { 5386 hwc->interrupts_seq = seq; 5387 hwc->interrupts = 1; 5388 } else { 5389 hwc->interrupts++; 5390 if (unlikely(throttle 5391 && hwc->interrupts >= max_samples_per_tick)) { 5392 __this_cpu_inc(perf_throttled_count); 5393 hwc->interrupts = MAX_INTERRUPTS; 5394 perf_log_throttle(event, 0); 5395 tick_nohz_full_kick(); 5396 ret = 1; 5397 } 5398 } 5399 5400 if (event->attr.freq) { 5401 u64 now = perf_clock(); 5402 s64 delta = now - hwc->freq_time_stamp; 5403 5404 hwc->freq_time_stamp = now; 5405 5406 if (delta > 0 && delta < 2*TICK_NSEC) 5407 perf_adjust_period(event, delta, hwc->last_period, true); 5408 } 5409 5410 /* 5411 * XXX event_limit might not quite work as expected on inherited 5412 * events 5413 */ 5414 5415 event->pending_kill = POLL_IN; 5416 if (events && atomic_dec_and_test(&event->event_limit)) { 5417 ret = 1; 5418 event->pending_kill = POLL_HUP; 5419 event->pending_disable = 1; 5420 irq_work_queue(&event->pending); 5421 } 5422 5423 if (event->overflow_handler) 5424 event->overflow_handler(event, data, regs); 5425 else 5426 perf_event_output(event, data, regs); 5427 5428 if (event->fasync && event->pending_kill) { 5429 event->pending_wakeup = 1; 5430 irq_work_queue(&event->pending); 5431 } 5432 5433 return ret; 5434 } 5435 5436 int perf_event_overflow(struct perf_event *event, 5437 struct perf_sample_data *data, 5438 struct pt_regs *regs) 5439 { 5440 return __perf_event_overflow(event, 1, data, regs); 5441 } 5442 5443 /* 5444 * Generic software event infrastructure 5445 */ 5446 5447 struct swevent_htable { 5448 struct swevent_hlist *swevent_hlist; 5449 struct mutex hlist_mutex; 5450 int hlist_refcount; 5451 5452 /* Recursion avoidance in each contexts */ 5453 int recursion[PERF_NR_CONTEXTS]; 5454 5455 /* Keeps track of cpu being initialized/exited */ 5456 bool online; 5457 }; 5458 5459 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5460 5461 /* 5462 * We directly increment event->count and keep a second value in 5463 * event->hw.period_left to count intervals. This period event 5464 * is kept in the range [-sample_period, 0] so that we can use the 5465 * sign as trigger. 5466 */ 5467 5468 u64 perf_swevent_set_period(struct perf_event *event) 5469 { 5470 struct hw_perf_event *hwc = &event->hw; 5471 u64 period = hwc->last_period; 5472 u64 nr, offset; 5473 s64 old, val; 5474 5475 hwc->last_period = hwc->sample_period; 5476 5477 again: 5478 old = val = local64_read(&hwc->period_left); 5479 if (val < 0) 5480 return 0; 5481 5482 nr = div64_u64(period + val, period); 5483 offset = nr * period; 5484 val -= offset; 5485 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5486 goto again; 5487 5488 return nr; 5489 } 5490 5491 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5492 struct perf_sample_data *data, 5493 struct pt_regs *regs) 5494 { 5495 struct hw_perf_event *hwc = &event->hw; 5496 int throttle = 0; 5497 5498 if (!overflow) 5499 overflow = perf_swevent_set_period(event); 5500 5501 if (hwc->interrupts == MAX_INTERRUPTS) 5502 return; 5503 5504 for (; overflow; overflow--) { 5505 if (__perf_event_overflow(event, throttle, 5506 data, regs)) { 5507 /* 5508 * We inhibit the overflow from happening when 5509 * hwc->interrupts == MAX_INTERRUPTS. 5510 */ 5511 break; 5512 } 5513 throttle = 1; 5514 } 5515 } 5516 5517 static void perf_swevent_event(struct perf_event *event, u64 nr, 5518 struct perf_sample_data *data, 5519 struct pt_regs *regs) 5520 { 5521 struct hw_perf_event *hwc = &event->hw; 5522 5523 local64_add(nr, &event->count); 5524 5525 if (!regs) 5526 return; 5527 5528 if (!is_sampling_event(event)) 5529 return; 5530 5531 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5532 data->period = nr; 5533 return perf_swevent_overflow(event, 1, data, regs); 5534 } else 5535 data->period = event->hw.last_period; 5536 5537 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5538 return perf_swevent_overflow(event, 1, data, regs); 5539 5540 if (local64_add_negative(nr, &hwc->period_left)) 5541 return; 5542 5543 perf_swevent_overflow(event, 0, data, regs); 5544 } 5545 5546 static int perf_exclude_event(struct perf_event *event, 5547 struct pt_regs *regs) 5548 { 5549 if (event->hw.state & PERF_HES_STOPPED) 5550 return 1; 5551 5552 if (regs) { 5553 if (event->attr.exclude_user && user_mode(regs)) 5554 return 1; 5555 5556 if (event->attr.exclude_kernel && !user_mode(regs)) 5557 return 1; 5558 } 5559 5560 return 0; 5561 } 5562 5563 static int perf_swevent_match(struct perf_event *event, 5564 enum perf_type_id type, 5565 u32 event_id, 5566 struct perf_sample_data *data, 5567 struct pt_regs *regs) 5568 { 5569 if (event->attr.type != type) 5570 return 0; 5571 5572 if (event->attr.config != event_id) 5573 return 0; 5574 5575 if (perf_exclude_event(event, regs)) 5576 return 0; 5577 5578 return 1; 5579 } 5580 5581 static inline u64 swevent_hash(u64 type, u32 event_id) 5582 { 5583 u64 val = event_id | (type << 32); 5584 5585 return hash_64(val, SWEVENT_HLIST_BITS); 5586 } 5587 5588 static inline struct hlist_head * 5589 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5590 { 5591 u64 hash = swevent_hash(type, event_id); 5592 5593 return &hlist->heads[hash]; 5594 } 5595 5596 /* For the read side: events when they trigger */ 5597 static inline struct hlist_head * 5598 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5599 { 5600 struct swevent_hlist *hlist; 5601 5602 hlist = rcu_dereference(swhash->swevent_hlist); 5603 if (!hlist) 5604 return NULL; 5605 5606 return __find_swevent_head(hlist, type, event_id); 5607 } 5608 5609 /* For the event head insertion and removal in the hlist */ 5610 static inline struct hlist_head * 5611 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5612 { 5613 struct swevent_hlist *hlist; 5614 u32 event_id = event->attr.config; 5615 u64 type = event->attr.type; 5616 5617 /* 5618 * Event scheduling is always serialized against hlist allocation 5619 * and release. Which makes the protected version suitable here. 5620 * The context lock guarantees that. 5621 */ 5622 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5623 lockdep_is_held(&event->ctx->lock)); 5624 if (!hlist) 5625 return NULL; 5626 5627 return __find_swevent_head(hlist, type, event_id); 5628 } 5629 5630 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5631 u64 nr, 5632 struct perf_sample_data *data, 5633 struct pt_regs *regs) 5634 { 5635 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5636 struct perf_event *event; 5637 struct hlist_head *head; 5638 5639 rcu_read_lock(); 5640 head = find_swevent_head_rcu(swhash, type, event_id); 5641 if (!head) 5642 goto end; 5643 5644 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5645 if (perf_swevent_match(event, type, event_id, data, regs)) 5646 perf_swevent_event(event, nr, data, regs); 5647 } 5648 end: 5649 rcu_read_unlock(); 5650 } 5651 5652 int perf_swevent_get_recursion_context(void) 5653 { 5654 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5655 5656 return get_recursion_context(swhash->recursion); 5657 } 5658 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5659 5660 inline void perf_swevent_put_recursion_context(int rctx) 5661 { 5662 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5663 5664 put_recursion_context(swhash->recursion, rctx); 5665 } 5666 5667 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5668 { 5669 struct perf_sample_data data; 5670 int rctx; 5671 5672 preempt_disable_notrace(); 5673 rctx = perf_swevent_get_recursion_context(); 5674 if (rctx < 0) 5675 return; 5676 5677 perf_sample_data_init(&data, addr, 0); 5678 5679 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5680 5681 perf_swevent_put_recursion_context(rctx); 5682 preempt_enable_notrace(); 5683 } 5684 5685 static void perf_swevent_read(struct perf_event *event) 5686 { 5687 } 5688 5689 static int perf_swevent_add(struct perf_event *event, int flags) 5690 { 5691 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5692 struct hw_perf_event *hwc = &event->hw; 5693 struct hlist_head *head; 5694 5695 if (is_sampling_event(event)) { 5696 hwc->last_period = hwc->sample_period; 5697 perf_swevent_set_period(event); 5698 } 5699 5700 hwc->state = !(flags & PERF_EF_START); 5701 5702 head = find_swevent_head(swhash, event); 5703 if (!head) { 5704 /* 5705 * We can race with cpu hotplug code. Do not 5706 * WARN if the cpu just got unplugged. 5707 */ 5708 WARN_ON_ONCE(swhash->online); 5709 return -EINVAL; 5710 } 5711 5712 hlist_add_head_rcu(&event->hlist_entry, head); 5713 5714 return 0; 5715 } 5716 5717 static void perf_swevent_del(struct perf_event *event, int flags) 5718 { 5719 hlist_del_rcu(&event->hlist_entry); 5720 } 5721 5722 static void perf_swevent_start(struct perf_event *event, int flags) 5723 { 5724 event->hw.state = 0; 5725 } 5726 5727 static void perf_swevent_stop(struct perf_event *event, int flags) 5728 { 5729 event->hw.state = PERF_HES_STOPPED; 5730 } 5731 5732 /* Deref the hlist from the update side */ 5733 static inline struct swevent_hlist * 5734 swevent_hlist_deref(struct swevent_htable *swhash) 5735 { 5736 return rcu_dereference_protected(swhash->swevent_hlist, 5737 lockdep_is_held(&swhash->hlist_mutex)); 5738 } 5739 5740 static void swevent_hlist_release(struct swevent_htable *swhash) 5741 { 5742 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5743 5744 if (!hlist) 5745 return; 5746 5747 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5748 kfree_rcu(hlist, rcu_head); 5749 } 5750 5751 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5752 { 5753 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5754 5755 mutex_lock(&swhash->hlist_mutex); 5756 5757 if (!--swhash->hlist_refcount) 5758 swevent_hlist_release(swhash); 5759 5760 mutex_unlock(&swhash->hlist_mutex); 5761 } 5762 5763 static void swevent_hlist_put(struct perf_event *event) 5764 { 5765 int cpu; 5766 5767 for_each_possible_cpu(cpu) 5768 swevent_hlist_put_cpu(event, cpu); 5769 } 5770 5771 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5772 { 5773 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5774 int err = 0; 5775 5776 mutex_lock(&swhash->hlist_mutex); 5777 5778 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5779 struct swevent_hlist *hlist; 5780 5781 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5782 if (!hlist) { 5783 err = -ENOMEM; 5784 goto exit; 5785 } 5786 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5787 } 5788 swhash->hlist_refcount++; 5789 exit: 5790 mutex_unlock(&swhash->hlist_mutex); 5791 5792 return err; 5793 } 5794 5795 static int swevent_hlist_get(struct perf_event *event) 5796 { 5797 int err; 5798 int cpu, failed_cpu; 5799 5800 get_online_cpus(); 5801 for_each_possible_cpu(cpu) { 5802 err = swevent_hlist_get_cpu(event, cpu); 5803 if (err) { 5804 failed_cpu = cpu; 5805 goto fail; 5806 } 5807 } 5808 put_online_cpus(); 5809 5810 return 0; 5811 fail: 5812 for_each_possible_cpu(cpu) { 5813 if (cpu == failed_cpu) 5814 break; 5815 swevent_hlist_put_cpu(event, cpu); 5816 } 5817 5818 put_online_cpus(); 5819 return err; 5820 } 5821 5822 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5823 5824 static void sw_perf_event_destroy(struct perf_event *event) 5825 { 5826 u64 event_id = event->attr.config; 5827 5828 WARN_ON(event->parent); 5829 5830 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5831 swevent_hlist_put(event); 5832 } 5833 5834 static int perf_swevent_init(struct perf_event *event) 5835 { 5836 u64 event_id = event->attr.config; 5837 5838 if (event->attr.type != PERF_TYPE_SOFTWARE) 5839 return -ENOENT; 5840 5841 /* 5842 * no branch sampling for software events 5843 */ 5844 if (has_branch_stack(event)) 5845 return -EOPNOTSUPP; 5846 5847 switch (event_id) { 5848 case PERF_COUNT_SW_CPU_CLOCK: 5849 case PERF_COUNT_SW_TASK_CLOCK: 5850 return -ENOENT; 5851 5852 default: 5853 break; 5854 } 5855 5856 if (event_id >= PERF_COUNT_SW_MAX) 5857 return -ENOENT; 5858 5859 if (!event->parent) { 5860 int err; 5861 5862 err = swevent_hlist_get(event); 5863 if (err) 5864 return err; 5865 5866 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5867 event->destroy = sw_perf_event_destroy; 5868 } 5869 5870 return 0; 5871 } 5872 5873 static int perf_swevent_event_idx(struct perf_event *event) 5874 { 5875 return 0; 5876 } 5877 5878 static struct pmu perf_swevent = { 5879 .task_ctx_nr = perf_sw_context, 5880 5881 .event_init = perf_swevent_init, 5882 .add = perf_swevent_add, 5883 .del = perf_swevent_del, 5884 .start = perf_swevent_start, 5885 .stop = perf_swevent_stop, 5886 .read = perf_swevent_read, 5887 5888 .event_idx = perf_swevent_event_idx, 5889 }; 5890 5891 #ifdef CONFIG_EVENT_TRACING 5892 5893 static int perf_tp_filter_match(struct perf_event *event, 5894 struct perf_sample_data *data) 5895 { 5896 void *record = data->raw->data; 5897 5898 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5899 return 1; 5900 return 0; 5901 } 5902 5903 static int perf_tp_event_match(struct perf_event *event, 5904 struct perf_sample_data *data, 5905 struct pt_regs *regs) 5906 { 5907 if (event->hw.state & PERF_HES_STOPPED) 5908 return 0; 5909 /* 5910 * All tracepoints are from kernel-space. 5911 */ 5912 if (event->attr.exclude_kernel) 5913 return 0; 5914 5915 if (!perf_tp_filter_match(event, data)) 5916 return 0; 5917 5918 return 1; 5919 } 5920 5921 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5922 struct pt_regs *regs, struct hlist_head *head, int rctx, 5923 struct task_struct *task) 5924 { 5925 struct perf_sample_data data; 5926 struct perf_event *event; 5927 5928 struct perf_raw_record raw = { 5929 .size = entry_size, 5930 .data = record, 5931 }; 5932 5933 perf_sample_data_init(&data, addr, 0); 5934 data.raw = &raw; 5935 5936 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5937 if (perf_tp_event_match(event, &data, regs)) 5938 perf_swevent_event(event, count, &data, regs); 5939 } 5940 5941 /* 5942 * If we got specified a target task, also iterate its context and 5943 * deliver this event there too. 5944 */ 5945 if (task && task != current) { 5946 struct perf_event_context *ctx; 5947 struct trace_entry *entry = record; 5948 5949 rcu_read_lock(); 5950 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5951 if (!ctx) 5952 goto unlock; 5953 5954 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5955 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5956 continue; 5957 if (event->attr.config != entry->type) 5958 continue; 5959 if (perf_tp_event_match(event, &data, regs)) 5960 perf_swevent_event(event, count, &data, regs); 5961 } 5962 unlock: 5963 rcu_read_unlock(); 5964 } 5965 5966 perf_swevent_put_recursion_context(rctx); 5967 } 5968 EXPORT_SYMBOL_GPL(perf_tp_event); 5969 5970 static void tp_perf_event_destroy(struct perf_event *event) 5971 { 5972 perf_trace_destroy(event); 5973 } 5974 5975 static int perf_tp_event_init(struct perf_event *event) 5976 { 5977 int err; 5978 5979 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5980 return -ENOENT; 5981 5982 /* 5983 * no branch sampling for tracepoint events 5984 */ 5985 if (has_branch_stack(event)) 5986 return -EOPNOTSUPP; 5987 5988 err = perf_trace_init(event); 5989 if (err) 5990 return err; 5991 5992 event->destroy = tp_perf_event_destroy; 5993 5994 return 0; 5995 } 5996 5997 static struct pmu perf_tracepoint = { 5998 .task_ctx_nr = perf_sw_context, 5999 6000 .event_init = perf_tp_event_init, 6001 .add = perf_trace_add, 6002 .del = perf_trace_del, 6003 .start = perf_swevent_start, 6004 .stop = perf_swevent_stop, 6005 .read = perf_swevent_read, 6006 6007 .event_idx = perf_swevent_event_idx, 6008 }; 6009 6010 static inline void perf_tp_register(void) 6011 { 6012 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 6013 } 6014 6015 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6016 { 6017 char *filter_str; 6018 int ret; 6019 6020 if (event->attr.type != PERF_TYPE_TRACEPOINT) 6021 return -EINVAL; 6022 6023 filter_str = strndup_user(arg, PAGE_SIZE); 6024 if (IS_ERR(filter_str)) 6025 return PTR_ERR(filter_str); 6026 6027 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 6028 6029 kfree(filter_str); 6030 return ret; 6031 } 6032 6033 static void perf_event_free_filter(struct perf_event *event) 6034 { 6035 ftrace_profile_free_filter(event); 6036 } 6037 6038 #else 6039 6040 static inline void perf_tp_register(void) 6041 { 6042 } 6043 6044 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 6045 { 6046 return -ENOENT; 6047 } 6048 6049 static void perf_event_free_filter(struct perf_event *event) 6050 { 6051 } 6052 6053 #endif /* CONFIG_EVENT_TRACING */ 6054 6055 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6056 void perf_bp_event(struct perf_event *bp, void *data) 6057 { 6058 struct perf_sample_data sample; 6059 struct pt_regs *regs = data; 6060 6061 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 6062 6063 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 6064 perf_swevent_event(bp, 1, &sample, regs); 6065 } 6066 #endif 6067 6068 /* 6069 * hrtimer based swevent callback 6070 */ 6071 6072 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6073 { 6074 enum hrtimer_restart ret = HRTIMER_RESTART; 6075 struct perf_sample_data data; 6076 struct pt_regs *regs; 6077 struct perf_event *event; 6078 u64 period; 6079 6080 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6081 6082 if (event->state != PERF_EVENT_STATE_ACTIVE) 6083 return HRTIMER_NORESTART; 6084 6085 event->pmu->read(event); 6086 6087 perf_sample_data_init(&data, 0, event->hw.last_period); 6088 regs = get_irq_regs(); 6089 6090 if (regs && !perf_exclude_event(event, regs)) { 6091 if (!(event->attr.exclude_idle && is_idle_task(current))) 6092 if (__perf_event_overflow(event, 1, &data, regs)) 6093 ret = HRTIMER_NORESTART; 6094 } 6095 6096 period = max_t(u64, 10000, event->hw.sample_period); 6097 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6098 6099 return ret; 6100 } 6101 6102 static void perf_swevent_start_hrtimer(struct perf_event *event) 6103 { 6104 struct hw_perf_event *hwc = &event->hw; 6105 s64 period; 6106 6107 if (!is_sampling_event(event)) 6108 return; 6109 6110 period = local64_read(&hwc->period_left); 6111 if (period) { 6112 if (period < 0) 6113 period = 10000; 6114 6115 local64_set(&hwc->period_left, 0); 6116 } else { 6117 period = max_t(u64, 10000, hwc->sample_period); 6118 } 6119 __hrtimer_start_range_ns(&hwc->hrtimer, 6120 ns_to_ktime(period), 0, 6121 HRTIMER_MODE_REL_PINNED, 0); 6122 } 6123 6124 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6125 { 6126 struct hw_perf_event *hwc = &event->hw; 6127 6128 if (is_sampling_event(event)) { 6129 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6130 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6131 6132 hrtimer_cancel(&hwc->hrtimer); 6133 } 6134 } 6135 6136 static void perf_swevent_init_hrtimer(struct perf_event *event) 6137 { 6138 struct hw_perf_event *hwc = &event->hw; 6139 6140 if (!is_sampling_event(event)) 6141 return; 6142 6143 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6144 hwc->hrtimer.function = perf_swevent_hrtimer; 6145 6146 /* 6147 * Since hrtimers have a fixed rate, we can do a static freq->period 6148 * mapping and avoid the whole period adjust feedback stuff. 6149 */ 6150 if (event->attr.freq) { 6151 long freq = event->attr.sample_freq; 6152 6153 event->attr.sample_period = NSEC_PER_SEC / freq; 6154 hwc->sample_period = event->attr.sample_period; 6155 local64_set(&hwc->period_left, hwc->sample_period); 6156 hwc->last_period = hwc->sample_period; 6157 event->attr.freq = 0; 6158 } 6159 } 6160 6161 /* 6162 * Software event: cpu wall time clock 6163 */ 6164 6165 static void cpu_clock_event_update(struct perf_event *event) 6166 { 6167 s64 prev; 6168 u64 now; 6169 6170 now = local_clock(); 6171 prev = local64_xchg(&event->hw.prev_count, now); 6172 local64_add(now - prev, &event->count); 6173 } 6174 6175 static void cpu_clock_event_start(struct perf_event *event, int flags) 6176 { 6177 local64_set(&event->hw.prev_count, local_clock()); 6178 perf_swevent_start_hrtimer(event); 6179 } 6180 6181 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6182 { 6183 perf_swevent_cancel_hrtimer(event); 6184 cpu_clock_event_update(event); 6185 } 6186 6187 static int cpu_clock_event_add(struct perf_event *event, int flags) 6188 { 6189 if (flags & PERF_EF_START) 6190 cpu_clock_event_start(event, flags); 6191 6192 return 0; 6193 } 6194 6195 static void cpu_clock_event_del(struct perf_event *event, int flags) 6196 { 6197 cpu_clock_event_stop(event, flags); 6198 } 6199 6200 static void cpu_clock_event_read(struct perf_event *event) 6201 { 6202 cpu_clock_event_update(event); 6203 } 6204 6205 static int cpu_clock_event_init(struct perf_event *event) 6206 { 6207 if (event->attr.type != PERF_TYPE_SOFTWARE) 6208 return -ENOENT; 6209 6210 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6211 return -ENOENT; 6212 6213 /* 6214 * no branch sampling for software events 6215 */ 6216 if (has_branch_stack(event)) 6217 return -EOPNOTSUPP; 6218 6219 perf_swevent_init_hrtimer(event); 6220 6221 return 0; 6222 } 6223 6224 static struct pmu perf_cpu_clock = { 6225 .task_ctx_nr = perf_sw_context, 6226 6227 .event_init = cpu_clock_event_init, 6228 .add = cpu_clock_event_add, 6229 .del = cpu_clock_event_del, 6230 .start = cpu_clock_event_start, 6231 .stop = cpu_clock_event_stop, 6232 .read = cpu_clock_event_read, 6233 6234 .event_idx = perf_swevent_event_idx, 6235 }; 6236 6237 /* 6238 * Software event: task time clock 6239 */ 6240 6241 static void task_clock_event_update(struct perf_event *event, u64 now) 6242 { 6243 u64 prev; 6244 s64 delta; 6245 6246 prev = local64_xchg(&event->hw.prev_count, now); 6247 delta = now - prev; 6248 local64_add(delta, &event->count); 6249 } 6250 6251 static void task_clock_event_start(struct perf_event *event, int flags) 6252 { 6253 local64_set(&event->hw.prev_count, event->ctx->time); 6254 perf_swevent_start_hrtimer(event); 6255 } 6256 6257 static void task_clock_event_stop(struct perf_event *event, int flags) 6258 { 6259 perf_swevent_cancel_hrtimer(event); 6260 task_clock_event_update(event, event->ctx->time); 6261 } 6262 6263 static int task_clock_event_add(struct perf_event *event, int flags) 6264 { 6265 if (flags & PERF_EF_START) 6266 task_clock_event_start(event, flags); 6267 6268 return 0; 6269 } 6270 6271 static void task_clock_event_del(struct perf_event *event, int flags) 6272 { 6273 task_clock_event_stop(event, PERF_EF_UPDATE); 6274 } 6275 6276 static void task_clock_event_read(struct perf_event *event) 6277 { 6278 u64 now = perf_clock(); 6279 u64 delta = now - event->ctx->timestamp; 6280 u64 time = event->ctx->time + delta; 6281 6282 task_clock_event_update(event, time); 6283 } 6284 6285 static int task_clock_event_init(struct perf_event *event) 6286 { 6287 if (event->attr.type != PERF_TYPE_SOFTWARE) 6288 return -ENOENT; 6289 6290 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6291 return -ENOENT; 6292 6293 /* 6294 * no branch sampling for software events 6295 */ 6296 if (has_branch_stack(event)) 6297 return -EOPNOTSUPP; 6298 6299 perf_swevent_init_hrtimer(event); 6300 6301 return 0; 6302 } 6303 6304 static struct pmu perf_task_clock = { 6305 .task_ctx_nr = perf_sw_context, 6306 6307 .event_init = task_clock_event_init, 6308 .add = task_clock_event_add, 6309 .del = task_clock_event_del, 6310 .start = task_clock_event_start, 6311 .stop = task_clock_event_stop, 6312 .read = task_clock_event_read, 6313 6314 .event_idx = perf_swevent_event_idx, 6315 }; 6316 6317 static void perf_pmu_nop_void(struct pmu *pmu) 6318 { 6319 } 6320 6321 static int perf_pmu_nop_int(struct pmu *pmu) 6322 { 6323 return 0; 6324 } 6325 6326 static void perf_pmu_start_txn(struct pmu *pmu) 6327 { 6328 perf_pmu_disable(pmu); 6329 } 6330 6331 static int perf_pmu_commit_txn(struct pmu *pmu) 6332 { 6333 perf_pmu_enable(pmu); 6334 return 0; 6335 } 6336 6337 static void perf_pmu_cancel_txn(struct pmu *pmu) 6338 { 6339 perf_pmu_enable(pmu); 6340 } 6341 6342 static int perf_event_idx_default(struct perf_event *event) 6343 { 6344 return event->hw.idx + 1; 6345 } 6346 6347 /* 6348 * Ensures all contexts with the same task_ctx_nr have the same 6349 * pmu_cpu_context too. 6350 */ 6351 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 6352 { 6353 struct pmu *pmu; 6354 6355 if (ctxn < 0) 6356 return NULL; 6357 6358 list_for_each_entry(pmu, &pmus, entry) { 6359 if (pmu->task_ctx_nr == ctxn) 6360 return pmu->pmu_cpu_context; 6361 } 6362 6363 return NULL; 6364 } 6365 6366 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6367 { 6368 int cpu; 6369 6370 for_each_possible_cpu(cpu) { 6371 struct perf_cpu_context *cpuctx; 6372 6373 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6374 6375 if (cpuctx->unique_pmu == old_pmu) 6376 cpuctx->unique_pmu = pmu; 6377 } 6378 } 6379 6380 static void free_pmu_context(struct pmu *pmu) 6381 { 6382 struct pmu *i; 6383 6384 mutex_lock(&pmus_lock); 6385 /* 6386 * Like a real lame refcount. 6387 */ 6388 list_for_each_entry(i, &pmus, entry) { 6389 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6390 update_pmu_context(i, pmu); 6391 goto out; 6392 } 6393 } 6394 6395 free_percpu(pmu->pmu_cpu_context); 6396 out: 6397 mutex_unlock(&pmus_lock); 6398 } 6399 static struct idr pmu_idr; 6400 6401 static ssize_t 6402 type_show(struct device *dev, struct device_attribute *attr, char *page) 6403 { 6404 struct pmu *pmu = dev_get_drvdata(dev); 6405 6406 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6407 } 6408 static DEVICE_ATTR_RO(type); 6409 6410 static ssize_t 6411 perf_event_mux_interval_ms_show(struct device *dev, 6412 struct device_attribute *attr, 6413 char *page) 6414 { 6415 struct pmu *pmu = dev_get_drvdata(dev); 6416 6417 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6418 } 6419 6420 static ssize_t 6421 perf_event_mux_interval_ms_store(struct device *dev, 6422 struct device_attribute *attr, 6423 const char *buf, size_t count) 6424 { 6425 struct pmu *pmu = dev_get_drvdata(dev); 6426 int timer, cpu, ret; 6427 6428 ret = kstrtoint(buf, 0, &timer); 6429 if (ret) 6430 return ret; 6431 6432 if (timer < 1) 6433 return -EINVAL; 6434 6435 /* same value, noting to do */ 6436 if (timer == pmu->hrtimer_interval_ms) 6437 return count; 6438 6439 pmu->hrtimer_interval_ms = timer; 6440 6441 /* update all cpuctx for this PMU */ 6442 for_each_possible_cpu(cpu) { 6443 struct perf_cpu_context *cpuctx; 6444 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6445 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6446 6447 if (hrtimer_active(&cpuctx->hrtimer)) 6448 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6449 } 6450 6451 return count; 6452 } 6453 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6454 6455 static struct attribute *pmu_dev_attrs[] = { 6456 &dev_attr_type.attr, 6457 &dev_attr_perf_event_mux_interval_ms.attr, 6458 NULL, 6459 }; 6460 ATTRIBUTE_GROUPS(pmu_dev); 6461 6462 static int pmu_bus_running; 6463 static struct bus_type pmu_bus = { 6464 .name = "event_source", 6465 .dev_groups = pmu_dev_groups, 6466 }; 6467 6468 static void pmu_dev_release(struct device *dev) 6469 { 6470 kfree(dev); 6471 } 6472 6473 static int pmu_dev_alloc(struct pmu *pmu) 6474 { 6475 int ret = -ENOMEM; 6476 6477 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6478 if (!pmu->dev) 6479 goto out; 6480 6481 pmu->dev->groups = pmu->attr_groups; 6482 device_initialize(pmu->dev); 6483 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6484 if (ret) 6485 goto free_dev; 6486 6487 dev_set_drvdata(pmu->dev, pmu); 6488 pmu->dev->bus = &pmu_bus; 6489 pmu->dev->release = pmu_dev_release; 6490 ret = device_add(pmu->dev); 6491 if (ret) 6492 goto free_dev; 6493 6494 out: 6495 return ret; 6496 6497 free_dev: 6498 put_device(pmu->dev); 6499 goto out; 6500 } 6501 6502 static struct lock_class_key cpuctx_mutex; 6503 static struct lock_class_key cpuctx_lock; 6504 6505 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6506 { 6507 int cpu, ret; 6508 6509 mutex_lock(&pmus_lock); 6510 ret = -ENOMEM; 6511 pmu->pmu_disable_count = alloc_percpu(int); 6512 if (!pmu->pmu_disable_count) 6513 goto unlock; 6514 6515 pmu->type = -1; 6516 if (!name) 6517 goto skip_type; 6518 pmu->name = name; 6519 6520 if (type < 0) { 6521 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6522 if (type < 0) { 6523 ret = type; 6524 goto free_pdc; 6525 } 6526 } 6527 pmu->type = type; 6528 6529 if (pmu_bus_running) { 6530 ret = pmu_dev_alloc(pmu); 6531 if (ret) 6532 goto free_idr; 6533 } 6534 6535 skip_type: 6536 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6537 if (pmu->pmu_cpu_context) 6538 goto got_cpu_context; 6539 6540 ret = -ENOMEM; 6541 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6542 if (!pmu->pmu_cpu_context) 6543 goto free_dev; 6544 6545 for_each_possible_cpu(cpu) { 6546 struct perf_cpu_context *cpuctx; 6547 6548 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6549 __perf_event_init_context(&cpuctx->ctx); 6550 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6551 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6552 cpuctx->ctx.type = cpu_context; 6553 cpuctx->ctx.pmu = pmu; 6554 6555 __perf_cpu_hrtimer_init(cpuctx, cpu); 6556 6557 INIT_LIST_HEAD(&cpuctx->rotation_list); 6558 cpuctx->unique_pmu = pmu; 6559 } 6560 6561 got_cpu_context: 6562 if (!pmu->start_txn) { 6563 if (pmu->pmu_enable) { 6564 /* 6565 * If we have pmu_enable/pmu_disable calls, install 6566 * transaction stubs that use that to try and batch 6567 * hardware accesses. 6568 */ 6569 pmu->start_txn = perf_pmu_start_txn; 6570 pmu->commit_txn = perf_pmu_commit_txn; 6571 pmu->cancel_txn = perf_pmu_cancel_txn; 6572 } else { 6573 pmu->start_txn = perf_pmu_nop_void; 6574 pmu->commit_txn = perf_pmu_nop_int; 6575 pmu->cancel_txn = perf_pmu_nop_void; 6576 } 6577 } 6578 6579 if (!pmu->pmu_enable) { 6580 pmu->pmu_enable = perf_pmu_nop_void; 6581 pmu->pmu_disable = perf_pmu_nop_void; 6582 } 6583 6584 if (!pmu->event_idx) 6585 pmu->event_idx = perf_event_idx_default; 6586 6587 list_add_rcu(&pmu->entry, &pmus); 6588 ret = 0; 6589 unlock: 6590 mutex_unlock(&pmus_lock); 6591 6592 return ret; 6593 6594 free_dev: 6595 device_del(pmu->dev); 6596 put_device(pmu->dev); 6597 6598 free_idr: 6599 if (pmu->type >= PERF_TYPE_MAX) 6600 idr_remove(&pmu_idr, pmu->type); 6601 6602 free_pdc: 6603 free_percpu(pmu->pmu_disable_count); 6604 goto unlock; 6605 } 6606 EXPORT_SYMBOL_GPL(perf_pmu_register); 6607 6608 void perf_pmu_unregister(struct pmu *pmu) 6609 { 6610 mutex_lock(&pmus_lock); 6611 list_del_rcu(&pmu->entry); 6612 mutex_unlock(&pmus_lock); 6613 6614 /* 6615 * We dereference the pmu list under both SRCU and regular RCU, so 6616 * synchronize against both of those. 6617 */ 6618 synchronize_srcu(&pmus_srcu); 6619 synchronize_rcu(); 6620 6621 free_percpu(pmu->pmu_disable_count); 6622 if (pmu->type >= PERF_TYPE_MAX) 6623 idr_remove(&pmu_idr, pmu->type); 6624 device_del(pmu->dev); 6625 put_device(pmu->dev); 6626 free_pmu_context(pmu); 6627 } 6628 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 6629 6630 struct pmu *perf_init_event(struct perf_event *event) 6631 { 6632 struct pmu *pmu = NULL; 6633 int idx; 6634 int ret; 6635 6636 idx = srcu_read_lock(&pmus_srcu); 6637 6638 rcu_read_lock(); 6639 pmu = idr_find(&pmu_idr, event->attr.type); 6640 rcu_read_unlock(); 6641 if (pmu) { 6642 if (!try_module_get(pmu->module)) { 6643 pmu = ERR_PTR(-ENODEV); 6644 goto unlock; 6645 } 6646 event->pmu = pmu; 6647 ret = pmu->event_init(event); 6648 if (ret) 6649 pmu = ERR_PTR(ret); 6650 goto unlock; 6651 } 6652 6653 list_for_each_entry_rcu(pmu, &pmus, entry) { 6654 if (!try_module_get(pmu->module)) { 6655 pmu = ERR_PTR(-ENODEV); 6656 goto unlock; 6657 } 6658 event->pmu = pmu; 6659 ret = pmu->event_init(event); 6660 if (!ret) 6661 goto unlock; 6662 6663 if (ret != -ENOENT) { 6664 pmu = ERR_PTR(ret); 6665 goto unlock; 6666 } 6667 } 6668 pmu = ERR_PTR(-ENOENT); 6669 unlock: 6670 srcu_read_unlock(&pmus_srcu, idx); 6671 6672 return pmu; 6673 } 6674 6675 static void account_event_cpu(struct perf_event *event, int cpu) 6676 { 6677 if (event->parent) 6678 return; 6679 6680 if (has_branch_stack(event)) { 6681 if (!(event->attach_state & PERF_ATTACH_TASK)) 6682 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6683 } 6684 if (is_cgroup_event(event)) 6685 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6686 } 6687 6688 static void account_event(struct perf_event *event) 6689 { 6690 if (event->parent) 6691 return; 6692 6693 if (event->attach_state & PERF_ATTACH_TASK) 6694 static_key_slow_inc(&perf_sched_events.key); 6695 if (event->attr.mmap || event->attr.mmap_data) 6696 atomic_inc(&nr_mmap_events); 6697 if (event->attr.comm) 6698 atomic_inc(&nr_comm_events); 6699 if (event->attr.task) 6700 atomic_inc(&nr_task_events); 6701 if (event->attr.freq) { 6702 if (atomic_inc_return(&nr_freq_events) == 1) 6703 tick_nohz_full_kick_all(); 6704 } 6705 if (has_branch_stack(event)) 6706 static_key_slow_inc(&perf_sched_events.key); 6707 if (is_cgroup_event(event)) 6708 static_key_slow_inc(&perf_sched_events.key); 6709 6710 account_event_cpu(event, event->cpu); 6711 } 6712 6713 /* 6714 * Allocate and initialize a event structure 6715 */ 6716 static struct perf_event * 6717 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6718 struct task_struct *task, 6719 struct perf_event *group_leader, 6720 struct perf_event *parent_event, 6721 perf_overflow_handler_t overflow_handler, 6722 void *context) 6723 { 6724 struct pmu *pmu; 6725 struct perf_event *event; 6726 struct hw_perf_event *hwc; 6727 long err = -EINVAL; 6728 6729 if ((unsigned)cpu >= nr_cpu_ids) { 6730 if (!task || cpu != -1) 6731 return ERR_PTR(-EINVAL); 6732 } 6733 6734 event = kzalloc(sizeof(*event), GFP_KERNEL); 6735 if (!event) 6736 return ERR_PTR(-ENOMEM); 6737 6738 /* 6739 * Single events are their own group leaders, with an 6740 * empty sibling list: 6741 */ 6742 if (!group_leader) 6743 group_leader = event; 6744 6745 mutex_init(&event->child_mutex); 6746 INIT_LIST_HEAD(&event->child_list); 6747 6748 INIT_LIST_HEAD(&event->group_entry); 6749 INIT_LIST_HEAD(&event->event_entry); 6750 INIT_LIST_HEAD(&event->sibling_list); 6751 INIT_LIST_HEAD(&event->rb_entry); 6752 INIT_LIST_HEAD(&event->active_entry); 6753 INIT_HLIST_NODE(&event->hlist_entry); 6754 6755 6756 init_waitqueue_head(&event->waitq); 6757 init_irq_work(&event->pending, perf_pending_event); 6758 6759 mutex_init(&event->mmap_mutex); 6760 6761 atomic_long_set(&event->refcount, 1); 6762 event->cpu = cpu; 6763 event->attr = *attr; 6764 event->group_leader = group_leader; 6765 event->pmu = NULL; 6766 event->oncpu = -1; 6767 6768 event->parent = parent_event; 6769 6770 event->ns = get_pid_ns(task_active_pid_ns(current)); 6771 event->id = atomic64_inc_return(&perf_event_id); 6772 6773 event->state = PERF_EVENT_STATE_INACTIVE; 6774 6775 if (task) { 6776 event->attach_state = PERF_ATTACH_TASK; 6777 6778 if (attr->type == PERF_TYPE_TRACEPOINT) 6779 event->hw.tp_target = task; 6780 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6781 /* 6782 * hw_breakpoint is a bit difficult here.. 6783 */ 6784 else if (attr->type == PERF_TYPE_BREAKPOINT) 6785 event->hw.bp_target = task; 6786 #endif 6787 } 6788 6789 if (!overflow_handler && parent_event) { 6790 overflow_handler = parent_event->overflow_handler; 6791 context = parent_event->overflow_handler_context; 6792 } 6793 6794 event->overflow_handler = overflow_handler; 6795 event->overflow_handler_context = context; 6796 6797 perf_event__state_init(event); 6798 6799 pmu = NULL; 6800 6801 hwc = &event->hw; 6802 hwc->sample_period = attr->sample_period; 6803 if (attr->freq && attr->sample_freq) 6804 hwc->sample_period = 1; 6805 hwc->last_period = hwc->sample_period; 6806 6807 local64_set(&hwc->period_left, hwc->sample_period); 6808 6809 /* 6810 * we currently do not support PERF_FORMAT_GROUP on inherited events 6811 */ 6812 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6813 goto err_ns; 6814 6815 pmu = perf_init_event(event); 6816 if (!pmu) 6817 goto err_ns; 6818 else if (IS_ERR(pmu)) { 6819 err = PTR_ERR(pmu); 6820 goto err_ns; 6821 } 6822 6823 if (!event->parent) { 6824 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6825 err = get_callchain_buffers(); 6826 if (err) 6827 goto err_pmu; 6828 } 6829 } 6830 6831 return event; 6832 6833 err_pmu: 6834 if (event->destroy) 6835 event->destroy(event); 6836 module_put(pmu->module); 6837 err_ns: 6838 if (event->ns) 6839 put_pid_ns(event->ns); 6840 kfree(event); 6841 6842 return ERR_PTR(err); 6843 } 6844 6845 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6846 struct perf_event_attr *attr) 6847 { 6848 u32 size; 6849 int ret; 6850 6851 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6852 return -EFAULT; 6853 6854 /* 6855 * zero the full structure, so that a short copy will be nice. 6856 */ 6857 memset(attr, 0, sizeof(*attr)); 6858 6859 ret = get_user(size, &uattr->size); 6860 if (ret) 6861 return ret; 6862 6863 if (size > PAGE_SIZE) /* silly large */ 6864 goto err_size; 6865 6866 if (!size) /* abi compat */ 6867 size = PERF_ATTR_SIZE_VER0; 6868 6869 if (size < PERF_ATTR_SIZE_VER0) 6870 goto err_size; 6871 6872 /* 6873 * If we're handed a bigger struct than we know of, 6874 * ensure all the unknown bits are 0 - i.e. new 6875 * user-space does not rely on any kernel feature 6876 * extensions we dont know about yet. 6877 */ 6878 if (size > sizeof(*attr)) { 6879 unsigned char __user *addr; 6880 unsigned char __user *end; 6881 unsigned char val; 6882 6883 addr = (void __user *)uattr + sizeof(*attr); 6884 end = (void __user *)uattr + size; 6885 6886 for (; addr < end; addr++) { 6887 ret = get_user(val, addr); 6888 if (ret) 6889 return ret; 6890 if (val) 6891 goto err_size; 6892 } 6893 size = sizeof(*attr); 6894 } 6895 6896 ret = copy_from_user(attr, uattr, size); 6897 if (ret) 6898 return -EFAULT; 6899 6900 /* disabled for now */ 6901 if (attr->mmap2) 6902 return -EINVAL; 6903 6904 if (attr->__reserved_1) 6905 return -EINVAL; 6906 6907 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6908 return -EINVAL; 6909 6910 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6911 return -EINVAL; 6912 6913 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6914 u64 mask = attr->branch_sample_type; 6915 6916 /* only using defined bits */ 6917 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6918 return -EINVAL; 6919 6920 /* at least one branch bit must be set */ 6921 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6922 return -EINVAL; 6923 6924 /* propagate priv level, when not set for branch */ 6925 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6926 6927 /* exclude_kernel checked on syscall entry */ 6928 if (!attr->exclude_kernel) 6929 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6930 6931 if (!attr->exclude_user) 6932 mask |= PERF_SAMPLE_BRANCH_USER; 6933 6934 if (!attr->exclude_hv) 6935 mask |= PERF_SAMPLE_BRANCH_HV; 6936 /* 6937 * adjust user setting (for HW filter setup) 6938 */ 6939 attr->branch_sample_type = mask; 6940 } 6941 /* privileged levels capture (kernel, hv): check permissions */ 6942 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6943 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6944 return -EACCES; 6945 } 6946 6947 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6948 ret = perf_reg_validate(attr->sample_regs_user); 6949 if (ret) 6950 return ret; 6951 } 6952 6953 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6954 if (!arch_perf_have_user_stack_dump()) 6955 return -ENOSYS; 6956 6957 /* 6958 * We have __u32 type for the size, but so far 6959 * we can only use __u16 as maximum due to the 6960 * __u16 sample size limit. 6961 */ 6962 if (attr->sample_stack_user >= USHRT_MAX) 6963 ret = -EINVAL; 6964 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6965 ret = -EINVAL; 6966 } 6967 6968 out: 6969 return ret; 6970 6971 err_size: 6972 put_user(sizeof(*attr), &uattr->size); 6973 ret = -E2BIG; 6974 goto out; 6975 } 6976 6977 static int 6978 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6979 { 6980 struct ring_buffer *rb = NULL; 6981 int ret = -EINVAL; 6982 6983 if (!output_event) 6984 goto set; 6985 6986 /* don't allow circular references */ 6987 if (event == output_event) 6988 goto out; 6989 6990 /* 6991 * Don't allow cross-cpu buffers 6992 */ 6993 if (output_event->cpu != event->cpu) 6994 goto out; 6995 6996 /* 6997 * If its not a per-cpu rb, it must be the same task. 6998 */ 6999 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 7000 goto out; 7001 7002 set: 7003 mutex_lock(&event->mmap_mutex); 7004 /* Can't redirect output if we've got an active mmap() */ 7005 if (atomic_read(&event->mmap_count)) 7006 goto unlock; 7007 7008 if (output_event) { 7009 /* get the rb we want to redirect to */ 7010 rb = ring_buffer_get(output_event); 7011 if (!rb) 7012 goto unlock; 7013 } 7014 7015 ring_buffer_attach(event, rb); 7016 7017 ret = 0; 7018 unlock: 7019 mutex_unlock(&event->mmap_mutex); 7020 7021 out: 7022 return ret; 7023 } 7024 7025 /** 7026 * sys_perf_event_open - open a performance event, associate it to a task/cpu 7027 * 7028 * @attr_uptr: event_id type attributes for monitoring/sampling 7029 * @pid: target pid 7030 * @cpu: target cpu 7031 * @group_fd: group leader event fd 7032 */ 7033 SYSCALL_DEFINE5(perf_event_open, 7034 struct perf_event_attr __user *, attr_uptr, 7035 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 7036 { 7037 struct perf_event *group_leader = NULL, *output_event = NULL; 7038 struct perf_event *event, *sibling; 7039 struct perf_event_attr attr; 7040 struct perf_event_context *ctx; 7041 struct file *event_file = NULL; 7042 struct fd group = {NULL, 0}; 7043 struct task_struct *task = NULL; 7044 struct pmu *pmu; 7045 int event_fd; 7046 int move_group = 0; 7047 int err; 7048 int f_flags = O_RDWR; 7049 7050 /* for future expandability... */ 7051 if (flags & ~PERF_FLAG_ALL) 7052 return -EINVAL; 7053 7054 err = perf_copy_attr(attr_uptr, &attr); 7055 if (err) 7056 return err; 7057 7058 if (!attr.exclude_kernel) { 7059 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 7060 return -EACCES; 7061 } 7062 7063 if (attr.freq) { 7064 if (attr.sample_freq > sysctl_perf_event_sample_rate) 7065 return -EINVAL; 7066 } else { 7067 if (attr.sample_period & (1ULL << 63)) 7068 return -EINVAL; 7069 } 7070 7071 /* 7072 * In cgroup mode, the pid argument is used to pass the fd 7073 * opened to the cgroup directory in cgroupfs. The cpu argument 7074 * designates the cpu on which to monitor threads from that 7075 * cgroup. 7076 */ 7077 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7078 return -EINVAL; 7079 7080 if (flags & PERF_FLAG_FD_CLOEXEC) 7081 f_flags |= O_CLOEXEC; 7082 7083 event_fd = get_unused_fd_flags(f_flags); 7084 if (event_fd < 0) 7085 return event_fd; 7086 7087 if (group_fd != -1) { 7088 err = perf_fget_light(group_fd, &group); 7089 if (err) 7090 goto err_fd; 7091 group_leader = group.file->private_data; 7092 if (flags & PERF_FLAG_FD_OUTPUT) 7093 output_event = group_leader; 7094 if (flags & PERF_FLAG_FD_NO_GROUP) 7095 group_leader = NULL; 7096 } 7097 7098 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7099 task = find_lively_task_by_vpid(pid); 7100 if (IS_ERR(task)) { 7101 err = PTR_ERR(task); 7102 goto err_group_fd; 7103 } 7104 } 7105 7106 if (task && group_leader && 7107 group_leader->attr.inherit != attr.inherit) { 7108 err = -EINVAL; 7109 goto err_task; 7110 } 7111 7112 get_online_cpus(); 7113 7114 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7115 NULL, NULL); 7116 if (IS_ERR(event)) { 7117 err = PTR_ERR(event); 7118 goto err_cpus; 7119 } 7120 7121 if (flags & PERF_FLAG_PID_CGROUP) { 7122 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7123 if (err) { 7124 __free_event(event); 7125 goto err_cpus; 7126 } 7127 } 7128 7129 if (is_sampling_event(event)) { 7130 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 7131 err = -ENOTSUPP; 7132 goto err_alloc; 7133 } 7134 } 7135 7136 account_event(event); 7137 7138 /* 7139 * Special case software events and allow them to be part of 7140 * any hardware group. 7141 */ 7142 pmu = event->pmu; 7143 7144 if (group_leader && 7145 (is_software_event(event) != is_software_event(group_leader))) { 7146 if (is_software_event(event)) { 7147 /* 7148 * If event and group_leader are not both a software 7149 * event, and event is, then group leader is not. 7150 * 7151 * Allow the addition of software events to !software 7152 * groups, this is safe because software events never 7153 * fail to schedule. 7154 */ 7155 pmu = group_leader->pmu; 7156 } else if (is_software_event(group_leader) && 7157 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7158 /* 7159 * In case the group is a pure software group, and we 7160 * try to add a hardware event, move the whole group to 7161 * the hardware context. 7162 */ 7163 move_group = 1; 7164 } 7165 } 7166 7167 /* 7168 * Get the target context (task or percpu): 7169 */ 7170 ctx = find_get_context(pmu, task, event->cpu); 7171 if (IS_ERR(ctx)) { 7172 err = PTR_ERR(ctx); 7173 goto err_alloc; 7174 } 7175 7176 if (task) { 7177 put_task_struct(task); 7178 task = NULL; 7179 } 7180 7181 /* 7182 * Look up the group leader (we will attach this event to it): 7183 */ 7184 if (group_leader) { 7185 err = -EINVAL; 7186 7187 /* 7188 * Do not allow a recursive hierarchy (this new sibling 7189 * becoming part of another group-sibling): 7190 */ 7191 if (group_leader->group_leader != group_leader) 7192 goto err_context; 7193 /* 7194 * Do not allow to attach to a group in a different 7195 * task or CPU context: 7196 */ 7197 if (move_group) { 7198 if (group_leader->ctx->type != ctx->type) 7199 goto err_context; 7200 } else { 7201 if (group_leader->ctx != ctx) 7202 goto err_context; 7203 } 7204 7205 /* 7206 * Only a group leader can be exclusive or pinned 7207 */ 7208 if (attr.exclusive || attr.pinned) 7209 goto err_context; 7210 } 7211 7212 if (output_event) { 7213 err = perf_event_set_output(event, output_event); 7214 if (err) 7215 goto err_context; 7216 } 7217 7218 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 7219 f_flags); 7220 if (IS_ERR(event_file)) { 7221 err = PTR_ERR(event_file); 7222 goto err_context; 7223 } 7224 7225 if (move_group) { 7226 struct perf_event_context *gctx = group_leader->ctx; 7227 7228 mutex_lock(&gctx->mutex); 7229 perf_remove_from_context(group_leader, false); 7230 7231 /* 7232 * Removing from the context ends up with disabled 7233 * event. What we want here is event in the initial 7234 * startup state, ready to be add into new context. 7235 */ 7236 perf_event__state_init(group_leader); 7237 list_for_each_entry(sibling, &group_leader->sibling_list, 7238 group_entry) { 7239 perf_remove_from_context(sibling, false); 7240 perf_event__state_init(sibling); 7241 put_ctx(gctx); 7242 } 7243 mutex_unlock(&gctx->mutex); 7244 put_ctx(gctx); 7245 } 7246 7247 WARN_ON_ONCE(ctx->parent_ctx); 7248 mutex_lock(&ctx->mutex); 7249 7250 if (move_group) { 7251 synchronize_rcu(); 7252 perf_install_in_context(ctx, group_leader, event->cpu); 7253 get_ctx(ctx); 7254 list_for_each_entry(sibling, &group_leader->sibling_list, 7255 group_entry) { 7256 perf_install_in_context(ctx, sibling, event->cpu); 7257 get_ctx(ctx); 7258 } 7259 } 7260 7261 perf_install_in_context(ctx, event, event->cpu); 7262 perf_unpin_context(ctx); 7263 mutex_unlock(&ctx->mutex); 7264 7265 put_online_cpus(); 7266 7267 event->owner = current; 7268 7269 mutex_lock(¤t->perf_event_mutex); 7270 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7271 mutex_unlock(¤t->perf_event_mutex); 7272 7273 /* 7274 * Precalculate sample_data sizes 7275 */ 7276 perf_event__header_size(event); 7277 perf_event__id_header_size(event); 7278 7279 /* 7280 * Drop the reference on the group_event after placing the 7281 * new event on the sibling_list. This ensures destruction 7282 * of the group leader will find the pointer to itself in 7283 * perf_group_detach(). 7284 */ 7285 fdput(group); 7286 fd_install(event_fd, event_file); 7287 return event_fd; 7288 7289 err_context: 7290 perf_unpin_context(ctx); 7291 put_ctx(ctx); 7292 err_alloc: 7293 free_event(event); 7294 err_cpus: 7295 put_online_cpus(); 7296 err_task: 7297 if (task) 7298 put_task_struct(task); 7299 err_group_fd: 7300 fdput(group); 7301 err_fd: 7302 put_unused_fd(event_fd); 7303 return err; 7304 } 7305 7306 /** 7307 * perf_event_create_kernel_counter 7308 * 7309 * @attr: attributes of the counter to create 7310 * @cpu: cpu in which the counter is bound 7311 * @task: task to profile (NULL for percpu) 7312 */ 7313 struct perf_event * 7314 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7315 struct task_struct *task, 7316 perf_overflow_handler_t overflow_handler, 7317 void *context) 7318 { 7319 struct perf_event_context *ctx; 7320 struct perf_event *event; 7321 int err; 7322 7323 /* 7324 * Get the target context (task or percpu): 7325 */ 7326 7327 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7328 overflow_handler, context); 7329 if (IS_ERR(event)) { 7330 err = PTR_ERR(event); 7331 goto err; 7332 } 7333 7334 account_event(event); 7335 7336 ctx = find_get_context(event->pmu, task, cpu); 7337 if (IS_ERR(ctx)) { 7338 err = PTR_ERR(ctx); 7339 goto err_free; 7340 } 7341 7342 WARN_ON_ONCE(ctx->parent_ctx); 7343 mutex_lock(&ctx->mutex); 7344 perf_install_in_context(ctx, event, cpu); 7345 perf_unpin_context(ctx); 7346 mutex_unlock(&ctx->mutex); 7347 7348 return event; 7349 7350 err_free: 7351 free_event(event); 7352 err: 7353 return ERR_PTR(err); 7354 } 7355 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7356 7357 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7358 { 7359 struct perf_event_context *src_ctx; 7360 struct perf_event_context *dst_ctx; 7361 struct perf_event *event, *tmp; 7362 LIST_HEAD(events); 7363 7364 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7365 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7366 7367 mutex_lock(&src_ctx->mutex); 7368 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7369 event_entry) { 7370 perf_remove_from_context(event, false); 7371 unaccount_event_cpu(event, src_cpu); 7372 put_ctx(src_ctx); 7373 list_add(&event->migrate_entry, &events); 7374 } 7375 mutex_unlock(&src_ctx->mutex); 7376 7377 synchronize_rcu(); 7378 7379 mutex_lock(&dst_ctx->mutex); 7380 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7381 list_del(&event->migrate_entry); 7382 if (event->state >= PERF_EVENT_STATE_OFF) 7383 event->state = PERF_EVENT_STATE_INACTIVE; 7384 account_event_cpu(event, dst_cpu); 7385 perf_install_in_context(dst_ctx, event, dst_cpu); 7386 get_ctx(dst_ctx); 7387 } 7388 mutex_unlock(&dst_ctx->mutex); 7389 } 7390 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7391 7392 static void sync_child_event(struct perf_event *child_event, 7393 struct task_struct *child) 7394 { 7395 struct perf_event *parent_event = child_event->parent; 7396 u64 child_val; 7397 7398 if (child_event->attr.inherit_stat) 7399 perf_event_read_event(child_event, child); 7400 7401 child_val = perf_event_count(child_event); 7402 7403 /* 7404 * Add back the child's count to the parent's count: 7405 */ 7406 atomic64_add(child_val, &parent_event->child_count); 7407 atomic64_add(child_event->total_time_enabled, 7408 &parent_event->child_total_time_enabled); 7409 atomic64_add(child_event->total_time_running, 7410 &parent_event->child_total_time_running); 7411 7412 /* 7413 * Remove this event from the parent's list 7414 */ 7415 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7416 mutex_lock(&parent_event->child_mutex); 7417 list_del_init(&child_event->child_list); 7418 mutex_unlock(&parent_event->child_mutex); 7419 7420 /* 7421 * Release the parent event, if this was the last 7422 * reference to it. 7423 */ 7424 put_event(parent_event); 7425 } 7426 7427 static void 7428 __perf_event_exit_task(struct perf_event *child_event, 7429 struct perf_event_context *child_ctx, 7430 struct task_struct *child) 7431 { 7432 perf_remove_from_context(child_event, true); 7433 7434 /* 7435 * It can happen that the parent exits first, and has events 7436 * that are still around due to the child reference. These 7437 * events need to be zapped. 7438 */ 7439 if (child_event->parent) { 7440 sync_child_event(child_event, child); 7441 free_event(child_event); 7442 } 7443 } 7444 7445 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7446 { 7447 struct perf_event *child_event, *next; 7448 struct perf_event_context *child_ctx; 7449 unsigned long flags; 7450 7451 if (likely(!child->perf_event_ctxp[ctxn])) { 7452 perf_event_task(child, NULL, 0); 7453 return; 7454 } 7455 7456 local_irq_save(flags); 7457 /* 7458 * We can't reschedule here because interrupts are disabled, 7459 * and either child is current or it is a task that can't be 7460 * scheduled, so we are now safe from rescheduling changing 7461 * our context. 7462 */ 7463 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7464 7465 /* 7466 * Take the context lock here so that if find_get_context is 7467 * reading child->perf_event_ctxp, we wait until it has 7468 * incremented the context's refcount before we do put_ctx below. 7469 */ 7470 raw_spin_lock(&child_ctx->lock); 7471 task_ctx_sched_out(child_ctx); 7472 child->perf_event_ctxp[ctxn] = NULL; 7473 /* 7474 * If this context is a clone; unclone it so it can't get 7475 * swapped to another process while we're removing all 7476 * the events from it. 7477 */ 7478 unclone_ctx(child_ctx); 7479 update_context_time(child_ctx); 7480 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7481 7482 /* 7483 * Report the task dead after unscheduling the events so that we 7484 * won't get any samples after PERF_RECORD_EXIT. We can however still 7485 * get a few PERF_RECORD_READ events. 7486 */ 7487 perf_event_task(child, child_ctx, 0); 7488 7489 /* 7490 * We can recurse on the same lock type through: 7491 * 7492 * __perf_event_exit_task() 7493 * sync_child_event() 7494 * put_event() 7495 * mutex_lock(&ctx->mutex) 7496 * 7497 * But since its the parent context it won't be the same instance. 7498 */ 7499 mutex_lock(&child_ctx->mutex); 7500 7501 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 7502 __perf_event_exit_task(child_event, child_ctx, child); 7503 7504 mutex_unlock(&child_ctx->mutex); 7505 7506 put_ctx(child_ctx); 7507 } 7508 7509 /* 7510 * When a child task exits, feed back event values to parent events. 7511 */ 7512 void perf_event_exit_task(struct task_struct *child) 7513 { 7514 struct perf_event *event, *tmp; 7515 int ctxn; 7516 7517 mutex_lock(&child->perf_event_mutex); 7518 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7519 owner_entry) { 7520 list_del_init(&event->owner_entry); 7521 7522 /* 7523 * Ensure the list deletion is visible before we clear 7524 * the owner, closes a race against perf_release() where 7525 * we need to serialize on the owner->perf_event_mutex. 7526 */ 7527 smp_wmb(); 7528 event->owner = NULL; 7529 } 7530 mutex_unlock(&child->perf_event_mutex); 7531 7532 for_each_task_context_nr(ctxn) 7533 perf_event_exit_task_context(child, ctxn); 7534 } 7535 7536 static void perf_free_event(struct perf_event *event, 7537 struct perf_event_context *ctx) 7538 { 7539 struct perf_event *parent = event->parent; 7540 7541 if (WARN_ON_ONCE(!parent)) 7542 return; 7543 7544 mutex_lock(&parent->child_mutex); 7545 list_del_init(&event->child_list); 7546 mutex_unlock(&parent->child_mutex); 7547 7548 put_event(parent); 7549 7550 perf_group_detach(event); 7551 list_del_event(event, ctx); 7552 free_event(event); 7553 } 7554 7555 /* 7556 * free an unexposed, unused context as created by inheritance by 7557 * perf_event_init_task below, used by fork() in case of fail. 7558 */ 7559 void perf_event_free_task(struct task_struct *task) 7560 { 7561 struct perf_event_context *ctx; 7562 struct perf_event *event, *tmp; 7563 int ctxn; 7564 7565 for_each_task_context_nr(ctxn) { 7566 ctx = task->perf_event_ctxp[ctxn]; 7567 if (!ctx) 7568 continue; 7569 7570 mutex_lock(&ctx->mutex); 7571 again: 7572 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7573 group_entry) 7574 perf_free_event(event, ctx); 7575 7576 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7577 group_entry) 7578 perf_free_event(event, ctx); 7579 7580 if (!list_empty(&ctx->pinned_groups) || 7581 !list_empty(&ctx->flexible_groups)) 7582 goto again; 7583 7584 mutex_unlock(&ctx->mutex); 7585 7586 put_ctx(ctx); 7587 } 7588 } 7589 7590 void perf_event_delayed_put(struct task_struct *task) 7591 { 7592 int ctxn; 7593 7594 for_each_task_context_nr(ctxn) 7595 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7596 } 7597 7598 /* 7599 * inherit a event from parent task to child task: 7600 */ 7601 static struct perf_event * 7602 inherit_event(struct perf_event *parent_event, 7603 struct task_struct *parent, 7604 struct perf_event_context *parent_ctx, 7605 struct task_struct *child, 7606 struct perf_event *group_leader, 7607 struct perf_event_context *child_ctx) 7608 { 7609 struct perf_event *child_event; 7610 unsigned long flags; 7611 7612 /* 7613 * Instead of creating recursive hierarchies of events, 7614 * we link inherited events back to the original parent, 7615 * which has a filp for sure, which we use as the reference 7616 * count: 7617 */ 7618 if (parent_event->parent) 7619 parent_event = parent_event->parent; 7620 7621 child_event = perf_event_alloc(&parent_event->attr, 7622 parent_event->cpu, 7623 child, 7624 group_leader, parent_event, 7625 NULL, NULL); 7626 if (IS_ERR(child_event)) 7627 return child_event; 7628 7629 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7630 free_event(child_event); 7631 return NULL; 7632 } 7633 7634 get_ctx(child_ctx); 7635 7636 /* 7637 * Make the child state follow the state of the parent event, 7638 * not its attr.disabled bit. We hold the parent's mutex, 7639 * so we won't race with perf_event_{en, dis}able_family. 7640 */ 7641 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7642 child_event->state = PERF_EVENT_STATE_INACTIVE; 7643 else 7644 child_event->state = PERF_EVENT_STATE_OFF; 7645 7646 if (parent_event->attr.freq) { 7647 u64 sample_period = parent_event->hw.sample_period; 7648 struct hw_perf_event *hwc = &child_event->hw; 7649 7650 hwc->sample_period = sample_period; 7651 hwc->last_period = sample_period; 7652 7653 local64_set(&hwc->period_left, sample_period); 7654 } 7655 7656 child_event->ctx = child_ctx; 7657 child_event->overflow_handler = parent_event->overflow_handler; 7658 child_event->overflow_handler_context 7659 = parent_event->overflow_handler_context; 7660 7661 /* 7662 * Precalculate sample_data sizes 7663 */ 7664 perf_event__header_size(child_event); 7665 perf_event__id_header_size(child_event); 7666 7667 /* 7668 * Link it up in the child's context: 7669 */ 7670 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7671 add_event_to_ctx(child_event, child_ctx); 7672 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7673 7674 /* 7675 * Link this into the parent event's child list 7676 */ 7677 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7678 mutex_lock(&parent_event->child_mutex); 7679 list_add_tail(&child_event->child_list, &parent_event->child_list); 7680 mutex_unlock(&parent_event->child_mutex); 7681 7682 return child_event; 7683 } 7684 7685 static int inherit_group(struct perf_event *parent_event, 7686 struct task_struct *parent, 7687 struct perf_event_context *parent_ctx, 7688 struct task_struct *child, 7689 struct perf_event_context *child_ctx) 7690 { 7691 struct perf_event *leader; 7692 struct perf_event *sub; 7693 struct perf_event *child_ctr; 7694 7695 leader = inherit_event(parent_event, parent, parent_ctx, 7696 child, NULL, child_ctx); 7697 if (IS_ERR(leader)) 7698 return PTR_ERR(leader); 7699 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7700 child_ctr = inherit_event(sub, parent, parent_ctx, 7701 child, leader, child_ctx); 7702 if (IS_ERR(child_ctr)) 7703 return PTR_ERR(child_ctr); 7704 } 7705 return 0; 7706 } 7707 7708 static int 7709 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7710 struct perf_event_context *parent_ctx, 7711 struct task_struct *child, int ctxn, 7712 int *inherited_all) 7713 { 7714 int ret; 7715 struct perf_event_context *child_ctx; 7716 7717 if (!event->attr.inherit) { 7718 *inherited_all = 0; 7719 return 0; 7720 } 7721 7722 child_ctx = child->perf_event_ctxp[ctxn]; 7723 if (!child_ctx) { 7724 /* 7725 * This is executed from the parent task context, so 7726 * inherit events that have been marked for cloning. 7727 * First allocate and initialize a context for the 7728 * child. 7729 */ 7730 7731 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7732 if (!child_ctx) 7733 return -ENOMEM; 7734 7735 child->perf_event_ctxp[ctxn] = child_ctx; 7736 } 7737 7738 ret = inherit_group(event, parent, parent_ctx, 7739 child, child_ctx); 7740 7741 if (ret) 7742 *inherited_all = 0; 7743 7744 return ret; 7745 } 7746 7747 /* 7748 * Initialize the perf_event context in task_struct 7749 */ 7750 int perf_event_init_context(struct task_struct *child, int ctxn) 7751 { 7752 struct perf_event_context *child_ctx, *parent_ctx; 7753 struct perf_event_context *cloned_ctx; 7754 struct perf_event *event; 7755 struct task_struct *parent = current; 7756 int inherited_all = 1; 7757 unsigned long flags; 7758 int ret = 0; 7759 7760 if (likely(!parent->perf_event_ctxp[ctxn])) 7761 return 0; 7762 7763 /* 7764 * If the parent's context is a clone, pin it so it won't get 7765 * swapped under us. 7766 */ 7767 parent_ctx = perf_pin_task_context(parent, ctxn); 7768 if (!parent_ctx) 7769 return 0; 7770 7771 /* 7772 * No need to check if parent_ctx != NULL here; since we saw 7773 * it non-NULL earlier, the only reason for it to become NULL 7774 * is if we exit, and since we're currently in the middle of 7775 * a fork we can't be exiting at the same time. 7776 */ 7777 7778 /* 7779 * Lock the parent list. No need to lock the child - not PID 7780 * hashed yet and not running, so nobody can access it. 7781 */ 7782 mutex_lock(&parent_ctx->mutex); 7783 7784 /* 7785 * We dont have to disable NMIs - we are only looking at 7786 * the list, not manipulating it: 7787 */ 7788 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7789 ret = inherit_task_group(event, parent, parent_ctx, 7790 child, ctxn, &inherited_all); 7791 if (ret) 7792 break; 7793 } 7794 7795 /* 7796 * We can't hold ctx->lock when iterating the ->flexible_group list due 7797 * to allocations, but we need to prevent rotation because 7798 * rotate_ctx() will change the list from interrupt context. 7799 */ 7800 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7801 parent_ctx->rotate_disable = 1; 7802 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7803 7804 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7805 ret = inherit_task_group(event, parent, parent_ctx, 7806 child, ctxn, &inherited_all); 7807 if (ret) 7808 break; 7809 } 7810 7811 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7812 parent_ctx->rotate_disable = 0; 7813 7814 child_ctx = child->perf_event_ctxp[ctxn]; 7815 7816 if (child_ctx && inherited_all) { 7817 /* 7818 * Mark the child context as a clone of the parent 7819 * context, or of whatever the parent is a clone of. 7820 * 7821 * Note that if the parent is a clone, the holding of 7822 * parent_ctx->lock avoids it from being uncloned. 7823 */ 7824 cloned_ctx = parent_ctx->parent_ctx; 7825 if (cloned_ctx) { 7826 child_ctx->parent_ctx = cloned_ctx; 7827 child_ctx->parent_gen = parent_ctx->parent_gen; 7828 } else { 7829 child_ctx->parent_ctx = parent_ctx; 7830 child_ctx->parent_gen = parent_ctx->generation; 7831 } 7832 get_ctx(child_ctx->parent_ctx); 7833 } 7834 7835 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7836 mutex_unlock(&parent_ctx->mutex); 7837 7838 perf_unpin_context(parent_ctx); 7839 put_ctx(parent_ctx); 7840 7841 return ret; 7842 } 7843 7844 /* 7845 * Initialize the perf_event context in task_struct 7846 */ 7847 int perf_event_init_task(struct task_struct *child) 7848 { 7849 int ctxn, ret; 7850 7851 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7852 mutex_init(&child->perf_event_mutex); 7853 INIT_LIST_HEAD(&child->perf_event_list); 7854 7855 for_each_task_context_nr(ctxn) { 7856 ret = perf_event_init_context(child, ctxn); 7857 if (ret) 7858 return ret; 7859 } 7860 7861 return 0; 7862 } 7863 7864 static void __init perf_event_init_all_cpus(void) 7865 { 7866 struct swevent_htable *swhash; 7867 int cpu; 7868 7869 for_each_possible_cpu(cpu) { 7870 swhash = &per_cpu(swevent_htable, cpu); 7871 mutex_init(&swhash->hlist_mutex); 7872 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7873 } 7874 } 7875 7876 static void perf_event_init_cpu(int cpu) 7877 { 7878 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7879 7880 mutex_lock(&swhash->hlist_mutex); 7881 swhash->online = true; 7882 if (swhash->hlist_refcount > 0) { 7883 struct swevent_hlist *hlist; 7884 7885 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7886 WARN_ON(!hlist); 7887 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7888 } 7889 mutex_unlock(&swhash->hlist_mutex); 7890 } 7891 7892 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7893 static void perf_pmu_rotate_stop(struct pmu *pmu) 7894 { 7895 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7896 7897 WARN_ON(!irqs_disabled()); 7898 7899 list_del_init(&cpuctx->rotation_list); 7900 } 7901 7902 static void __perf_event_exit_context(void *__info) 7903 { 7904 struct remove_event re = { .detach_group = false }; 7905 struct perf_event_context *ctx = __info; 7906 7907 perf_pmu_rotate_stop(ctx->pmu); 7908 7909 rcu_read_lock(); 7910 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry) 7911 __perf_remove_from_context(&re); 7912 rcu_read_unlock(); 7913 } 7914 7915 static void perf_event_exit_cpu_context(int cpu) 7916 { 7917 struct perf_event_context *ctx; 7918 struct pmu *pmu; 7919 int idx; 7920 7921 idx = srcu_read_lock(&pmus_srcu); 7922 list_for_each_entry_rcu(pmu, &pmus, entry) { 7923 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7924 7925 mutex_lock(&ctx->mutex); 7926 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7927 mutex_unlock(&ctx->mutex); 7928 } 7929 srcu_read_unlock(&pmus_srcu, idx); 7930 } 7931 7932 static void perf_event_exit_cpu(int cpu) 7933 { 7934 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7935 7936 perf_event_exit_cpu_context(cpu); 7937 7938 mutex_lock(&swhash->hlist_mutex); 7939 swhash->online = false; 7940 swevent_hlist_release(swhash); 7941 mutex_unlock(&swhash->hlist_mutex); 7942 } 7943 #else 7944 static inline void perf_event_exit_cpu(int cpu) { } 7945 #endif 7946 7947 static int 7948 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7949 { 7950 int cpu; 7951 7952 for_each_online_cpu(cpu) 7953 perf_event_exit_cpu(cpu); 7954 7955 return NOTIFY_OK; 7956 } 7957 7958 /* 7959 * Run the perf reboot notifier at the very last possible moment so that 7960 * the generic watchdog code runs as long as possible. 7961 */ 7962 static struct notifier_block perf_reboot_notifier = { 7963 .notifier_call = perf_reboot, 7964 .priority = INT_MIN, 7965 }; 7966 7967 static int 7968 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7969 { 7970 unsigned int cpu = (long)hcpu; 7971 7972 switch (action & ~CPU_TASKS_FROZEN) { 7973 7974 case CPU_UP_PREPARE: 7975 case CPU_DOWN_FAILED: 7976 perf_event_init_cpu(cpu); 7977 break; 7978 7979 case CPU_UP_CANCELED: 7980 case CPU_DOWN_PREPARE: 7981 perf_event_exit_cpu(cpu); 7982 break; 7983 default: 7984 break; 7985 } 7986 7987 return NOTIFY_OK; 7988 } 7989 7990 void __init perf_event_init(void) 7991 { 7992 int ret; 7993 7994 idr_init(&pmu_idr); 7995 7996 perf_event_init_all_cpus(); 7997 init_srcu_struct(&pmus_srcu); 7998 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7999 perf_pmu_register(&perf_cpu_clock, NULL, -1); 8000 perf_pmu_register(&perf_task_clock, NULL, -1); 8001 perf_tp_register(); 8002 perf_cpu_notifier(perf_cpu_notify); 8003 register_reboot_notifier(&perf_reboot_notifier); 8004 8005 ret = init_hw_breakpoint(); 8006 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 8007 8008 /* do not patch jump label more than once per second */ 8009 jump_label_rate_limit(&perf_sched_events, HZ); 8010 8011 /* 8012 * Build time assertion that we keep the data_head at the intended 8013 * location. IOW, validation we got the __reserved[] size right. 8014 */ 8015 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 8016 != 1024); 8017 } 8018 8019 static int __init perf_event_sysfs_init(void) 8020 { 8021 struct pmu *pmu; 8022 int ret; 8023 8024 mutex_lock(&pmus_lock); 8025 8026 ret = bus_register(&pmu_bus); 8027 if (ret) 8028 goto unlock; 8029 8030 list_for_each_entry(pmu, &pmus, entry) { 8031 if (!pmu->name || pmu->type < 0) 8032 continue; 8033 8034 ret = pmu_dev_alloc(pmu); 8035 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 8036 } 8037 pmu_bus_running = 1; 8038 ret = 0; 8039 8040 unlock: 8041 mutex_unlock(&pmus_lock); 8042 8043 return ret; 8044 } 8045 device_initcall(perf_event_sysfs_init); 8046 8047 #ifdef CONFIG_CGROUP_PERF 8048 static struct cgroup_subsys_state * 8049 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 8050 { 8051 struct perf_cgroup *jc; 8052 8053 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 8054 if (!jc) 8055 return ERR_PTR(-ENOMEM); 8056 8057 jc->info = alloc_percpu(struct perf_cgroup_info); 8058 if (!jc->info) { 8059 kfree(jc); 8060 return ERR_PTR(-ENOMEM); 8061 } 8062 8063 return &jc->css; 8064 } 8065 8066 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 8067 { 8068 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 8069 8070 free_percpu(jc->info); 8071 kfree(jc); 8072 } 8073 8074 static int __perf_cgroup_move(void *info) 8075 { 8076 struct task_struct *task = info; 8077 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 8078 return 0; 8079 } 8080 8081 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 8082 struct cgroup_taskset *tset) 8083 { 8084 struct task_struct *task; 8085 8086 cgroup_taskset_for_each(task, tset) 8087 task_function_call(task, __perf_cgroup_move, task); 8088 } 8089 8090 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8091 struct cgroup_subsys_state *old_css, 8092 struct task_struct *task) 8093 { 8094 /* 8095 * cgroup_exit() is called in the copy_process() failure path. 8096 * Ignore this case since the task hasn't ran yet, this avoids 8097 * trying to poke a half freed task state from generic code. 8098 */ 8099 if (!(task->flags & PF_EXITING)) 8100 return; 8101 8102 task_function_call(task, __perf_cgroup_move, task); 8103 } 8104 8105 struct cgroup_subsys perf_event_cgrp_subsys = { 8106 .css_alloc = perf_cgroup_css_alloc, 8107 .css_free = perf_cgroup_css_free, 8108 .exit = perf_cgroup_exit, 8109 .attach = perf_cgroup_attach, 8110 }; 8111 #endif /* CONFIG_CGROUP_PERF */ 8112