xref: /openbmc/linux/kernel/events/core.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    perf_event::mmap_mutex
1259  *	    mmap_lock
1260  *	      perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *	  cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269 	struct perf_event_context *ctx;
1270 
1271 again:
1272 	rcu_read_lock();
1273 	ctx = READ_ONCE(event->ctx);
1274 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1275 		rcu_read_unlock();
1276 		goto again;
1277 	}
1278 	rcu_read_unlock();
1279 
1280 	mutex_lock_nested(&ctx->mutex, nesting);
1281 	if (event->ctx != ctx) {
1282 		mutex_unlock(&ctx->mutex);
1283 		put_ctx(ctx);
1284 		goto again;
1285 	}
1286 
1287 	return ctx;
1288 }
1289 
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293 	return perf_event_ctx_lock_nested(event, 0);
1294 }
1295 
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297 				  struct perf_event_context *ctx)
1298 {
1299 	mutex_unlock(&ctx->mutex);
1300 	put_ctx(ctx);
1301 }
1302 
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312 
1313 	lockdep_assert_held(&ctx->lock);
1314 
1315 	if (parent_ctx)
1316 		ctx->parent_ctx = NULL;
1317 	ctx->generation++;
1318 
1319 	return parent_ctx;
1320 }
1321 
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 				enum pid_type type)
1324 {
1325 	u32 nr;
1326 	/*
1327 	 * only top level events have the pid namespace they were created in
1328 	 */
1329 	if (event->parent)
1330 		event = event->parent;
1331 
1332 	nr = __task_pid_nr_ns(p, type, event->ns);
1333 	/* avoid -1 if it is idle thread or runs in another ns */
1334 	if (!nr && !pid_alive(p))
1335 		nr = -1;
1336 	return nr;
1337 }
1338 
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343 
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348 
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355 	u64 id = event->id;
1356 
1357 	if (event->parent)
1358 		id = event->parent->id;
1359 
1360 	return id;
1361 }
1362 
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372 	struct perf_event_context *ctx;
1373 
1374 retry:
1375 	/*
1376 	 * One of the few rules of preemptible RCU is that one cannot do
1377 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 	 * part of the read side critical section was irqs-enabled -- see
1379 	 * rcu_read_unlock_special().
1380 	 *
1381 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 	 * side critical section has interrupts disabled.
1383 	 */
1384 	local_irq_save(*flags);
1385 	rcu_read_lock();
1386 	ctx = rcu_dereference(task->perf_event_ctxp);
1387 	if (ctx) {
1388 		/*
1389 		 * If this context is a clone of another, it might
1390 		 * get swapped for another underneath us by
1391 		 * perf_event_task_sched_out, though the
1392 		 * rcu_read_lock() protects us from any context
1393 		 * getting freed.  Lock the context and check if it
1394 		 * got swapped before we could get the lock, and retry
1395 		 * if so.  If we locked the right context, then it
1396 		 * can't get swapped on us any more.
1397 		 */
1398 		raw_spin_lock(&ctx->lock);
1399 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 			raw_spin_unlock(&ctx->lock);
1401 			rcu_read_unlock();
1402 			local_irq_restore(*flags);
1403 			goto retry;
1404 		}
1405 
1406 		if (ctx->task == TASK_TOMBSTONE ||
1407 		    !refcount_inc_not_zero(&ctx->refcount)) {
1408 			raw_spin_unlock(&ctx->lock);
1409 			ctx = NULL;
1410 		} else {
1411 			WARN_ON_ONCE(ctx->task != task);
1412 		}
1413 	}
1414 	rcu_read_unlock();
1415 	if (!ctx)
1416 		local_irq_restore(*flags);
1417 	return ctx;
1418 }
1419 
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428 	struct perf_event_context *ctx;
1429 	unsigned long flags;
1430 
1431 	ctx = perf_lock_task_context(task, &flags);
1432 	if (ctx) {
1433 		++ctx->pin_count;
1434 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 	}
1436 	return ctx;
1437 }
1438 
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441 	unsigned long flags;
1442 
1443 	raw_spin_lock_irqsave(&ctx->lock, flags);
1444 	--ctx->pin_count;
1445 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447 
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453 	u64 now = perf_clock();
1454 
1455 	lockdep_assert_held(&ctx->lock);
1456 
1457 	if (adv)
1458 		ctx->time += now - ctx->timestamp;
1459 	ctx->timestamp = now;
1460 
1461 	/*
1462 	 * The above: time' = time + (now - timestamp), can be re-arranged
1463 	 * into: time` = now + (time - timestamp), which gives a single value
1464 	 * offset to compute future time without locks on.
1465 	 *
1466 	 * See perf_event_time_now(), which can be used from NMI context where
1467 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 	 * both the above values in a consistent manner.
1469 	 */
1470 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472 
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475 	__update_context_time(ctx, true);
1476 }
1477 
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 
1482 	if (unlikely(!ctx))
1483 		return 0;
1484 
1485 	if (is_cgroup_event(event))
1486 		return perf_cgroup_event_time(event);
1487 
1488 	return ctx->time;
1489 }
1490 
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493 	struct perf_event_context *ctx = event->ctx;
1494 
1495 	if (unlikely(!ctx))
1496 		return 0;
1497 
1498 	if (is_cgroup_event(event))
1499 		return perf_cgroup_event_time_now(event, now);
1500 
1501 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 		return ctx->time;
1503 
1504 	now += READ_ONCE(ctx->timeoffset);
1505 	return now;
1506 }
1507 
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510 	struct perf_event_context *ctx = event->ctx;
1511 	enum event_type_t event_type;
1512 
1513 	lockdep_assert_held(&ctx->lock);
1514 
1515 	/*
1516 	 * It's 'group type', really, because if our group leader is
1517 	 * pinned, so are we.
1518 	 */
1519 	if (event->group_leader != event)
1520 		event = event->group_leader;
1521 
1522 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 	if (!ctx->task)
1524 		event_type |= EVENT_CPU;
1525 
1526 	return event_type;
1527 }
1528 
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534 	RB_CLEAR_NODE(&event->group_node);
1535 	event->group_index = 0;
1536 }
1537 
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545 	if (event->attr.pinned)
1546 		return &ctx->pinned_groups;
1547 	else
1548 		return &ctx->flexible_groups;
1549 }
1550 
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556 	groups->tree = RB_ROOT;
1557 	groups->index = 0;
1558 }
1559 
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562 	struct cgroup *cgroup = NULL;
1563 
1564 #ifdef CONFIG_CGROUP_PERF
1565 	if (event->cgrp)
1566 		cgroup = event->cgrp->css.cgroup;
1567 #endif
1568 
1569 	return cgroup;
1570 }
1571 
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1581 		      const struct perf_event *right)
1582 {
1583 	if (left_cpu < right->cpu)
1584 		return -1;
1585 	if (left_cpu > right->cpu)
1586 		return 1;
1587 
1588 	if (left_pmu) {
1589 		if (left_pmu < right->pmu_ctx->pmu)
1590 			return -1;
1591 		if (left_pmu > right->pmu_ctx->pmu)
1592 			return 1;
1593 	}
1594 
1595 #ifdef CONFIG_CGROUP_PERF
1596 	{
1597 		const struct cgroup *right_cgroup = event_cgroup(right);
1598 
1599 		if (left_cgroup != right_cgroup) {
1600 			if (!left_cgroup) {
1601 				/*
1602 				 * Left has no cgroup but right does, no
1603 				 * cgroups come first.
1604 				 */
1605 				return -1;
1606 			}
1607 			if (!right_cgroup) {
1608 				/*
1609 				 * Right has no cgroup but left does, no
1610 				 * cgroups come first.
1611 				 */
1612 				return 1;
1613 			}
1614 			/* Two dissimilar cgroups, order by id. */
1615 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616 				return -1;
1617 
1618 			return 1;
1619 		}
1620 	}
1621 #endif
1622 
1623 	if (left_group_index < right->group_index)
1624 		return -1;
1625 	if (left_group_index > right->group_index)
1626 		return 1;
1627 
1628 	return 0;
1629 }
1630 
1631 #define __node_2_pe(node) \
1632 	rb_entry((node), struct perf_event, group_node)
1633 
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636 	struct perf_event *e = __node_2_pe(a);
1637 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638 				     e->group_index, __node_2_pe(b)) < 0;
1639 }
1640 
1641 struct __group_key {
1642 	int cpu;
1643 	struct pmu *pmu;
1644 	struct cgroup *cgroup;
1645 };
1646 
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649 	const struct __group_key *a = key;
1650 	const struct perf_event *b = __node_2_pe(node);
1651 
1652 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655 
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659 	const struct __group_key *a = key;
1660 	const struct perf_event *b = __node_2_pe(node);
1661 
1662 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664 				     b->group_index, b);
1665 }
1666 
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674 			 struct perf_event *event)
1675 {
1676 	event->group_index = ++groups->index;
1677 
1678 	rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680 
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687 	struct perf_event_groups *groups;
1688 
1689 	groups = get_event_groups(event, ctx);
1690 	perf_event_groups_insert(groups, event);
1691 }
1692 
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698 			 struct perf_event *event)
1699 {
1700 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 		     RB_EMPTY_ROOT(&groups->tree));
1702 
1703 	rb_erase(&event->group_node, &groups->tree);
1704 	init_event_group(event);
1705 }
1706 
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713 	struct perf_event_groups *groups;
1714 
1715 	groups = get_event_groups(event, ctx);
1716 	perf_event_groups_delete(groups, event);
1717 }
1718 
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 			struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726 	struct __group_key key = {
1727 		.cpu = cpu,
1728 		.pmu = pmu,
1729 		.cgroup = cgrp,
1730 	};
1731 	struct rb_node *node;
1732 
1733 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1734 	if (node)
1735 		return __node_2_pe(node);
1736 
1737 	return NULL;
1738 }
1739 
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743 	struct __group_key key = {
1744 		.cpu = event->cpu,
1745 		.pmu = pmu,
1746 		.cgroup = event_cgroup(event),
1747 	};
1748 	struct rb_node *next;
1749 
1750 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1751 	if (next)
1752 		return __node_2_pe(next);
1753 
1754 	return NULL;
1755 }
1756 
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1758 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1759 	     event; event = perf_event_groups_next(event, pmu))
1760 
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)			\
1765 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1766 				typeof(*event), group_node); event;	\
1767 		event = rb_entry_safe(rb_next(&event->group_node),	\
1768 				typeof(*event), group_node))
1769 
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777 	lockdep_assert_held(&ctx->lock);
1778 
1779 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 	event->attach_state |= PERF_ATTACH_CONTEXT;
1781 
1782 	event->tstamp = perf_event_time(event);
1783 
1784 	/*
1785 	 * If we're a stand alone event or group leader, we go to the context
1786 	 * list, group events are kept attached to the group so that
1787 	 * perf_group_detach can, at all times, locate all siblings.
1788 	 */
1789 	if (event->group_leader == event) {
1790 		event->group_caps = event->event_caps;
1791 		add_event_to_groups(event, ctx);
1792 	}
1793 
1794 	list_add_rcu(&event->event_entry, &ctx->event_list);
1795 	ctx->nr_events++;
1796 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 		ctx->nr_user++;
1798 	if (event->attr.inherit_stat)
1799 		ctx->nr_stat++;
1800 
1801 	if (event->state > PERF_EVENT_STATE_OFF)
1802 		perf_cgroup_event_enable(event, ctx);
1803 
1804 	ctx->generation++;
1805 	event->pmu_ctx->nr_events++;
1806 }
1807 
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 					      PERF_EVENT_STATE_INACTIVE;
1815 }
1816 
1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1818 {
1819 	int entry = sizeof(u64); /* value */
1820 	int size = 0;
1821 	int nr = 1;
1822 
1823 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 		size += sizeof(u64);
1825 
1826 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 		size += sizeof(u64);
1828 
1829 	if (event->attr.read_format & PERF_FORMAT_ID)
1830 		entry += sizeof(u64);
1831 
1832 	if (event->attr.read_format & PERF_FORMAT_LOST)
1833 		entry += sizeof(u64);
1834 
1835 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1836 		nr += nr_siblings;
1837 		size += sizeof(u64);
1838 	}
1839 
1840 	size += entry * nr;
1841 	event->read_size = size;
1842 }
1843 
1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1845 {
1846 	struct perf_sample_data *data;
1847 	u16 size = 0;
1848 
1849 	if (sample_type & PERF_SAMPLE_IP)
1850 		size += sizeof(data->ip);
1851 
1852 	if (sample_type & PERF_SAMPLE_ADDR)
1853 		size += sizeof(data->addr);
1854 
1855 	if (sample_type & PERF_SAMPLE_PERIOD)
1856 		size += sizeof(data->period);
1857 
1858 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1859 		size += sizeof(data->weight.full);
1860 
1861 	if (sample_type & PERF_SAMPLE_READ)
1862 		size += event->read_size;
1863 
1864 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1865 		size += sizeof(data->data_src.val);
1866 
1867 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1868 		size += sizeof(data->txn);
1869 
1870 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1871 		size += sizeof(data->phys_addr);
1872 
1873 	if (sample_type & PERF_SAMPLE_CGROUP)
1874 		size += sizeof(data->cgroup);
1875 
1876 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1877 		size += sizeof(data->data_page_size);
1878 
1879 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1880 		size += sizeof(data->code_page_size);
1881 
1882 	event->header_size = size;
1883 }
1884 
1885 /*
1886  * Called at perf_event creation and when events are attached/detached from a
1887  * group.
1888  */
1889 static void perf_event__header_size(struct perf_event *event)
1890 {
1891 	__perf_event_read_size(event,
1892 			       event->group_leader->nr_siblings);
1893 	__perf_event_header_size(event, event->attr.sample_type);
1894 }
1895 
1896 static void perf_event__id_header_size(struct perf_event *event)
1897 {
1898 	struct perf_sample_data *data;
1899 	u64 sample_type = event->attr.sample_type;
1900 	u16 size = 0;
1901 
1902 	if (sample_type & PERF_SAMPLE_TID)
1903 		size += sizeof(data->tid_entry);
1904 
1905 	if (sample_type & PERF_SAMPLE_TIME)
1906 		size += sizeof(data->time);
1907 
1908 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1909 		size += sizeof(data->id);
1910 
1911 	if (sample_type & PERF_SAMPLE_ID)
1912 		size += sizeof(data->id);
1913 
1914 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1915 		size += sizeof(data->stream_id);
1916 
1917 	if (sample_type & PERF_SAMPLE_CPU)
1918 		size += sizeof(data->cpu_entry);
1919 
1920 	event->id_header_size = size;
1921 }
1922 
1923 static bool perf_event_validate_size(struct perf_event *event)
1924 {
1925 	/*
1926 	 * The values computed here will be over-written when we actually
1927 	 * attach the event.
1928 	 */
1929 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1930 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1931 	perf_event__id_header_size(event);
1932 
1933 	/*
1934 	 * Sum the lot; should not exceed the 64k limit we have on records.
1935 	 * Conservative limit to allow for callchains and other variable fields.
1936 	 */
1937 	if (event->read_size + event->header_size +
1938 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1939 		return false;
1940 
1941 	return true;
1942 }
1943 
1944 static void perf_group_attach(struct perf_event *event)
1945 {
1946 	struct perf_event *group_leader = event->group_leader, *pos;
1947 
1948 	lockdep_assert_held(&event->ctx->lock);
1949 
1950 	/*
1951 	 * We can have double attach due to group movement (move_group) in
1952 	 * perf_event_open().
1953 	 */
1954 	if (event->attach_state & PERF_ATTACH_GROUP)
1955 		return;
1956 
1957 	event->attach_state |= PERF_ATTACH_GROUP;
1958 
1959 	if (group_leader == event)
1960 		return;
1961 
1962 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963 
1964 	group_leader->group_caps &= event->event_caps;
1965 
1966 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1967 	group_leader->nr_siblings++;
1968 	group_leader->group_generation++;
1969 
1970 	perf_event__header_size(group_leader);
1971 
1972 	for_each_sibling_event(pos, group_leader)
1973 		perf_event__header_size(pos);
1974 }
1975 
1976 /*
1977  * Remove an event from the lists for its context.
1978  * Must be called with ctx->mutex and ctx->lock held.
1979  */
1980 static void
1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1982 {
1983 	WARN_ON_ONCE(event->ctx != ctx);
1984 	lockdep_assert_held(&ctx->lock);
1985 
1986 	/*
1987 	 * We can have double detach due to exit/hot-unplug + close.
1988 	 */
1989 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1990 		return;
1991 
1992 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1993 
1994 	ctx->nr_events--;
1995 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1996 		ctx->nr_user--;
1997 	if (event->attr.inherit_stat)
1998 		ctx->nr_stat--;
1999 
2000 	list_del_rcu(&event->event_entry);
2001 
2002 	if (event->group_leader == event)
2003 		del_event_from_groups(event, ctx);
2004 
2005 	/*
2006 	 * If event was in error state, then keep it
2007 	 * that way, otherwise bogus counts will be
2008 	 * returned on read(). The only way to get out
2009 	 * of error state is by explicit re-enabling
2010 	 * of the event
2011 	 */
2012 	if (event->state > PERF_EVENT_STATE_OFF) {
2013 		perf_cgroup_event_disable(event, ctx);
2014 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2015 	}
2016 
2017 	ctx->generation++;
2018 	event->pmu_ctx->nr_events--;
2019 }
2020 
2021 static int
2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2023 {
2024 	if (!has_aux(aux_event))
2025 		return 0;
2026 
2027 	if (!event->pmu->aux_output_match)
2028 		return 0;
2029 
2030 	return event->pmu->aux_output_match(aux_event);
2031 }
2032 
2033 static void put_event(struct perf_event *event);
2034 static void event_sched_out(struct perf_event *event,
2035 			    struct perf_event_context *ctx);
2036 
2037 static void perf_put_aux_event(struct perf_event *event)
2038 {
2039 	struct perf_event_context *ctx = event->ctx;
2040 	struct perf_event *iter;
2041 
2042 	/*
2043 	 * If event uses aux_event tear down the link
2044 	 */
2045 	if (event->aux_event) {
2046 		iter = event->aux_event;
2047 		event->aux_event = NULL;
2048 		put_event(iter);
2049 		return;
2050 	}
2051 
2052 	/*
2053 	 * If the event is an aux_event, tear down all links to
2054 	 * it from other events.
2055 	 */
2056 	for_each_sibling_event(iter, event->group_leader) {
2057 		if (iter->aux_event != event)
2058 			continue;
2059 
2060 		iter->aux_event = NULL;
2061 		put_event(event);
2062 
2063 		/*
2064 		 * If it's ACTIVE, schedule it out and put it into ERROR
2065 		 * state so that we don't try to schedule it again. Note
2066 		 * that perf_event_enable() will clear the ERROR status.
2067 		 */
2068 		event_sched_out(iter, ctx);
2069 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2070 	}
2071 }
2072 
2073 static bool perf_need_aux_event(struct perf_event *event)
2074 {
2075 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076 }
2077 
2078 static int perf_get_aux_event(struct perf_event *event,
2079 			      struct perf_event *group_leader)
2080 {
2081 	/*
2082 	 * Our group leader must be an aux event if we want to be
2083 	 * an aux_output. This way, the aux event will precede its
2084 	 * aux_output events in the group, and therefore will always
2085 	 * schedule first.
2086 	 */
2087 	if (!group_leader)
2088 		return 0;
2089 
2090 	/*
2091 	 * aux_output and aux_sample_size are mutually exclusive.
2092 	 */
2093 	if (event->attr.aux_output && event->attr.aux_sample_size)
2094 		return 0;
2095 
2096 	if (event->attr.aux_output &&
2097 	    !perf_aux_output_match(event, group_leader))
2098 		return 0;
2099 
2100 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101 		return 0;
2102 
2103 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2104 		return 0;
2105 
2106 	/*
2107 	 * Link aux_outputs to their aux event; this is undone in
2108 	 * perf_group_detach() by perf_put_aux_event(). When the
2109 	 * group in torn down, the aux_output events loose their
2110 	 * link to the aux_event and can't schedule any more.
2111 	 */
2112 	event->aux_event = group_leader;
2113 
2114 	return 1;
2115 }
2116 
2117 static inline struct list_head *get_event_list(struct perf_event *event)
2118 {
2119 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2120 				    &event->pmu_ctx->flexible_active;
2121 }
2122 
2123 /*
2124  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2125  * cannot exist on their own, schedule them out and move them into the ERROR
2126  * state. Also see _perf_event_enable(), it will not be able to recover
2127  * this ERROR state.
2128  */
2129 static inline void perf_remove_sibling_event(struct perf_event *event)
2130 {
2131 	event_sched_out(event, event->ctx);
2132 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2133 }
2134 
2135 static void perf_group_detach(struct perf_event *event)
2136 {
2137 	struct perf_event *leader = event->group_leader;
2138 	struct perf_event *sibling, *tmp;
2139 	struct perf_event_context *ctx = event->ctx;
2140 
2141 	lockdep_assert_held(&ctx->lock);
2142 
2143 	/*
2144 	 * We can have double detach due to exit/hot-unplug + close.
2145 	 */
2146 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2147 		return;
2148 
2149 	event->attach_state &= ~PERF_ATTACH_GROUP;
2150 
2151 	perf_put_aux_event(event);
2152 
2153 	/*
2154 	 * If this is a sibling, remove it from its group.
2155 	 */
2156 	if (leader != event) {
2157 		list_del_init(&event->sibling_list);
2158 		event->group_leader->nr_siblings--;
2159 		event->group_leader->group_generation++;
2160 		goto out;
2161 	}
2162 
2163 	/*
2164 	 * If this was a group event with sibling events then
2165 	 * upgrade the siblings to singleton events by adding them
2166 	 * to whatever list we are on.
2167 	 */
2168 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2169 
2170 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2171 			perf_remove_sibling_event(sibling);
2172 
2173 		sibling->group_leader = sibling;
2174 		list_del_init(&sibling->sibling_list);
2175 
2176 		/* Inherit group flags from the previous leader */
2177 		sibling->group_caps = event->group_caps;
2178 
2179 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2180 			add_event_to_groups(sibling, event->ctx);
2181 
2182 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2183 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2184 		}
2185 
2186 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2187 	}
2188 
2189 out:
2190 	for_each_sibling_event(tmp, leader)
2191 		perf_event__header_size(tmp);
2192 
2193 	perf_event__header_size(leader);
2194 }
2195 
2196 static void sync_child_event(struct perf_event *child_event);
2197 
2198 static void perf_child_detach(struct perf_event *event)
2199 {
2200 	struct perf_event *parent_event = event->parent;
2201 
2202 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2203 		return;
2204 
2205 	event->attach_state &= ~PERF_ATTACH_CHILD;
2206 
2207 	if (WARN_ON_ONCE(!parent_event))
2208 		return;
2209 
2210 	lockdep_assert_held(&parent_event->child_mutex);
2211 
2212 	sync_child_event(event);
2213 	list_del_init(&event->child_list);
2214 }
2215 
2216 static bool is_orphaned_event(struct perf_event *event)
2217 {
2218 	return event->state == PERF_EVENT_STATE_DEAD;
2219 }
2220 
2221 static inline int
2222 event_filter_match(struct perf_event *event)
2223 {
2224 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2225 	       perf_cgroup_match(event);
2226 }
2227 
2228 static void
2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2230 {
2231 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2232 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2233 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2234 
2235 	// XXX cpc serialization, probably per-cpu IRQ disabled
2236 
2237 	WARN_ON_ONCE(event->ctx != ctx);
2238 	lockdep_assert_held(&ctx->lock);
2239 
2240 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2241 		return;
2242 
2243 	/*
2244 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2245 	 * we can schedule events _OUT_ individually through things like
2246 	 * __perf_remove_from_context().
2247 	 */
2248 	list_del_init(&event->active_list);
2249 
2250 	perf_pmu_disable(event->pmu);
2251 
2252 	event->pmu->del(event, 0);
2253 	event->oncpu = -1;
2254 
2255 	if (event->pending_disable) {
2256 		event->pending_disable = 0;
2257 		perf_cgroup_event_disable(event, ctx);
2258 		state = PERF_EVENT_STATE_OFF;
2259 	}
2260 
2261 	if (event->pending_sigtrap) {
2262 		bool dec = true;
2263 
2264 		event->pending_sigtrap = 0;
2265 		if (state != PERF_EVENT_STATE_OFF &&
2266 		    !event->pending_work) {
2267 			event->pending_work = 1;
2268 			dec = false;
2269 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2270 			task_work_add(current, &event->pending_task, TWA_RESUME);
2271 		}
2272 		if (dec)
2273 			local_dec(&event->ctx->nr_pending);
2274 	}
2275 
2276 	perf_event_set_state(event, state);
2277 
2278 	if (!is_software_event(event))
2279 		cpc->active_oncpu--;
2280 	if (event->attr.freq && event->attr.sample_freq)
2281 		ctx->nr_freq--;
2282 	if (event->attr.exclusive || !cpc->active_oncpu)
2283 		cpc->exclusive = 0;
2284 
2285 	perf_pmu_enable(event->pmu);
2286 }
2287 
2288 static void
2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2290 {
2291 	struct perf_event *event;
2292 
2293 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2294 		return;
2295 
2296 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2297 
2298 	event_sched_out(group_event, ctx);
2299 
2300 	/*
2301 	 * Schedule out siblings (if any):
2302 	 */
2303 	for_each_sibling_event(event, group_event)
2304 		event_sched_out(event, ctx);
2305 }
2306 
2307 #define DETACH_GROUP	0x01UL
2308 #define DETACH_CHILD	0x02UL
2309 #define DETACH_DEAD	0x04UL
2310 
2311 /*
2312  * Cross CPU call to remove a performance event
2313  *
2314  * We disable the event on the hardware level first. After that we
2315  * remove it from the context list.
2316  */
2317 static void
2318 __perf_remove_from_context(struct perf_event *event,
2319 			   struct perf_cpu_context *cpuctx,
2320 			   struct perf_event_context *ctx,
2321 			   void *info)
2322 {
2323 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2324 	unsigned long flags = (unsigned long)info;
2325 
2326 	if (ctx->is_active & EVENT_TIME) {
2327 		update_context_time(ctx);
2328 		update_cgrp_time_from_cpuctx(cpuctx, false);
2329 	}
2330 
2331 	/*
2332 	 * Ensure event_sched_out() switches to OFF, at the very least
2333 	 * this avoids raising perf_pending_task() at this time.
2334 	 */
2335 	if (flags & DETACH_DEAD)
2336 		event->pending_disable = 1;
2337 	event_sched_out(event, ctx);
2338 	if (flags & DETACH_GROUP)
2339 		perf_group_detach(event);
2340 	if (flags & DETACH_CHILD)
2341 		perf_child_detach(event);
2342 	list_del_event(event, ctx);
2343 	if (flags & DETACH_DEAD)
2344 		event->state = PERF_EVENT_STATE_DEAD;
2345 
2346 	if (!pmu_ctx->nr_events) {
2347 		pmu_ctx->rotate_necessary = 0;
2348 
2349 		if (ctx->task && ctx->is_active) {
2350 			struct perf_cpu_pmu_context *cpc;
2351 
2352 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2353 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2354 			cpc->task_epc = NULL;
2355 		}
2356 	}
2357 
2358 	if (!ctx->nr_events && ctx->is_active) {
2359 		if (ctx == &cpuctx->ctx)
2360 			update_cgrp_time_from_cpuctx(cpuctx, true);
2361 
2362 		ctx->is_active = 0;
2363 		if (ctx->task) {
2364 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2365 			cpuctx->task_ctx = NULL;
2366 		}
2367 	}
2368 }
2369 
2370 /*
2371  * Remove the event from a task's (or a CPU's) list of events.
2372  *
2373  * If event->ctx is a cloned context, callers must make sure that
2374  * every task struct that event->ctx->task could possibly point to
2375  * remains valid.  This is OK when called from perf_release since
2376  * that only calls us on the top-level context, which can't be a clone.
2377  * When called from perf_event_exit_task, it's OK because the
2378  * context has been detached from its task.
2379  */
2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2381 {
2382 	struct perf_event_context *ctx = event->ctx;
2383 
2384 	lockdep_assert_held(&ctx->mutex);
2385 
2386 	/*
2387 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2388 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2389 	 * event_function_call() user.
2390 	 */
2391 	raw_spin_lock_irq(&ctx->lock);
2392 	if (!ctx->is_active) {
2393 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2394 					   ctx, (void *)flags);
2395 		raw_spin_unlock_irq(&ctx->lock);
2396 		return;
2397 	}
2398 	raw_spin_unlock_irq(&ctx->lock);
2399 
2400 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2401 }
2402 
2403 /*
2404  * Cross CPU call to disable a performance event
2405  */
2406 static void __perf_event_disable(struct perf_event *event,
2407 				 struct perf_cpu_context *cpuctx,
2408 				 struct perf_event_context *ctx,
2409 				 void *info)
2410 {
2411 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2412 		return;
2413 
2414 	if (ctx->is_active & EVENT_TIME) {
2415 		update_context_time(ctx);
2416 		update_cgrp_time_from_event(event);
2417 	}
2418 
2419 	perf_pmu_disable(event->pmu_ctx->pmu);
2420 
2421 	if (event == event->group_leader)
2422 		group_sched_out(event, ctx);
2423 	else
2424 		event_sched_out(event, ctx);
2425 
2426 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2427 	perf_cgroup_event_disable(event, ctx);
2428 
2429 	perf_pmu_enable(event->pmu_ctx->pmu);
2430 }
2431 
2432 /*
2433  * Disable an event.
2434  *
2435  * If event->ctx is a cloned context, callers must make sure that
2436  * every task struct that event->ctx->task could possibly point to
2437  * remains valid.  This condition is satisfied when called through
2438  * perf_event_for_each_child or perf_event_for_each because they
2439  * hold the top-level event's child_mutex, so any descendant that
2440  * goes to exit will block in perf_event_exit_event().
2441  *
2442  * When called from perf_pending_irq it's OK because event->ctx
2443  * is the current context on this CPU and preemption is disabled,
2444  * hence we can't get into perf_event_task_sched_out for this context.
2445  */
2446 static void _perf_event_disable(struct perf_event *event)
2447 {
2448 	struct perf_event_context *ctx = event->ctx;
2449 
2450 	raw_spin_lock_irq(&ctx->lock);
2451 	if (event->state <= PERF_EVENT_STATE_OFF) {
2452 		raw_spin_unlock_irq(&ctx->lock);
2453 		return;
2454 	}
2455 	raw_spin_unlock_irq(&ctx->lock);
2456 
2457 	event_function_call(event, __perf_event_disable, NULL);
2458 }
2459 
2460 void perf_event_disable_local(struct perf_event *event)
2461 {
2462 	event_function_local(event, __perf_event_disable, NULL);
2463 }
2464 
2465 /*
2466  * Strictly speaking kernel users cannot create groups and therefore this
2467  * interface does not need the perf_event_ctx_lock() magic.
2468  */
2469 void perf_event_disable(struct perf_event *event)
2470 {
2471 	struct perf_event_context *ctx;
2472 
2473 	ctx = perf_event_ctx_lock(event);
2474 	_perf_event_disable(event);
2475 	perf_event_ctx_unlock(event, ctx);
2476 }
2477 EXPORT_SYMBOL_GPL(perf_event_disable);
2478 
2479 void perf_event_disable_inatomic(struct perf_event *event)
2480 {
2481 	event->pending_disable = 1;
2482 	irq_work_queue(&event->pending_irq);
2483 }
2484 
2485 #define MAX_INTERRUPTS (~0ULL)
2486 
2487 static void perf_log_throttle(struct perf_event *event, int enable);
2488 static void perf_log_itrace_start(struct perf_event *event);
2489 
2490 static int
2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2492 {
2493 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2494 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2495 	int ret = 0;
2496 
2497 	WARN_ON_ONCE(event->ctx != ctx);
2498 
2499 	lockdep_assert_held(&ctx->lock);
2500 
2501 	if (event->state <= PERF_EVENT_STATE_OFF)
2502 		return 0;
2503 
2504 	WRITE_ONCE(event->oncpu, smp_processor_id());
2505 	/*
2506 	 * Order event::oncpu write to happen before the ACTIVE state is
2507 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2508 	 * ->oncpu if it sees ACTIVE.
2509 	 */
2510 	smp_wmb();
2511 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2512 
2513 	/*
2514 	 * Unthrottle events, since we scheduled we might have missed several
2515 	 * ticks already, also for a heavily scheduling task there is little
2516 	 * guarantee it'll get a tick in a timely manner.
2517 	 */
2518 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2519 		perf_log_throttle(event, 1);
2520 		event->hw.interrupts = 0;
2521 	}
2522 
2523 	perf_pmu_disable(event->pmu);
2524 
2525 	perf_log_itrace_start(event);
2526 
2527 	if (event->pmu->add(event, PERF_EF_START)) {
2528 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2529 		event->oncpu = -1;
2530 		ret = -EAGAIN;
2531 		goto out;
2532 	}
2533 
2534 	if (!is_software_event(event))
2535 		cpc->active_oncpu++;
2536 	if (event->attr.freq && event->attr.sample_freq)
2537 		ctx->nr_freq++;
2538 
2539 	if (event->attr.exclusive)
2540 		cpc->exclusive = 1;
2541 
2542 out:
2543 	perf_pmu_enable(event->pmu);
2544 
2545 	return ret;
2546 }
2547 
2548 static int
2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2550 {
2551 	struct perf_event *event, *partial_group = NULL;
2552 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2553 
2554 	if (group_event->state == PERF_EVENT_STATE_OFF)
2555 		return 0;
2556 
2557 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2558 
2559 	if (event_sched_in(group_event, ctx))
2560 		goto error;
2561 
2562 	/*
2563 	 * Schedule in siblings as one group (if any):
2564 	 */
2565 	for_each_sibling_event(event, group_event) {
2566 		if (event_sched_in(event, ctx)) {
2567 			partial_group = event;
2568 			goto group_error;
2569 		}
2570 	}
2571 
2572 	if (!pmu->commit_txn(pmu))
2573 		return 0;
2574 
2575 group_error:
2576 	/*
2577 	 * Groups can be scheduled in as one unit only, so undo any
2578 	 * partial group before returning:
2579 	 * The events up to the failed event are scheduled out normally.
2580 	 */
2581 	for_each_sibling_event(event, group_event) {
2582 		if (event == partial_group)
2583 			break;
2584 
2585 		event_sched_out(event, ctx);
2586 	}
2587 	event_sched_out(group_event, ctx);
2588 
2589 error:
2590 	pmu->cancel_txn(pmu);
2591 	return -EAGAIN;
2592 }
2593 
2594 /*
2595  * Work out whether we can put this event group on the CPU now.
2596  */
2597 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2598 {
2599 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2600 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2601 
2602 	/*
2603 	 * Groups consisting entirely of software events can always go on.
2604 	 */
2605 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2606 		return 1;
2607 	/*
2608 	 * If an exclusive group is already on, no other hardware
2609 	 * events can go on.
2610 	 */
2611 	if (cpc->exclusive)
2612 		return 0;
2613 	/*
2614 	 * If this group is exclusive and there are already
2615 	 * events on the CPU, it can't go on.
2616 	 */
2617 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2618 		return 0;
2619 	/*
2620 	 * Otherwise, try to add it if all previous groups were able
2621 	 * to go on.
2622 	 */
2623 	return can_add_hw;
2624 }
2625 
2626 static void add_event_to_ctx(struct perf_event *event,
2627 			       struct perf_event_context *ctx)
2628 {
2629 	list_add_event(event, ctx);
2630 	perf_group_attach(event);
2631 }
2632 
2633 static void task_ctx_sched_out(struct perf_event_context *ctx,
2634 				enum event_type_t event_type)
2635 {
2636 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2637 
2638 	if (!cpuctx->task_ctx)
2639 		return;
2640 
2641 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2642 		return;
2643 
2644 	ctx_sched_out(ctx, event_type);
2645 }
2646 
2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2648 				struct perf_event_context *ctx)
2649 {
2650 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2651 	if (ctx)
2652 		 ctx_sched_in(ctx, EVENT_PINNED);
2653 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2654 	if (ctx)
2655 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2656 }
2657 
2658 /*
2659  * We want to maintain the following priority of scheduling:
2660  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2661  *  - task pinned (EVENT_PINNED)
2662  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2663  *  - task flexible (EVENT_FLEXIBLE).
2664  *
2665  * In order to avoid unscheduling and scheduling back in everything every
2666  * time an event is added, only do it for the groups of equal priority and
2667  * below.
2668  *
2669  * This can be called after a batch operation on task events, in which case
2670  * event_type is a bit mask of the types of events involved. For CPU events,
2671  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2672  */
2673 /*
2674  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2675  * event to the context or enabling existing event in the context. We can
2676  * probably optimize it by rescheduling only affected pmu_ctx.
2677  */
2678 static void ctx_resched(struct perf_cpu_context *cpuctx,
2679 			struct perf_event_context *task_ctx,
2680 			enum event_type_t event_type)
2681 {
2682 	bool cpu_event = !!(event_type & EVENT_CPU);
2683 
2684 	/*
2685 	 * If pinned groups are involved, flexible groups also need to be
2686 	 * scheduled out.
2687 	 */
2688 	if (event_type & EVENT_PINNED)
2689 		event_type |= EVENT_FLEXIBLE;
2690 
2691 	event_type &= EVENT_ALL;
2692 
2693 	perf_ctx_disable(&cpuctx->ctx, false);
2694 	if (task_ctx) {
2695 		perf_ctx_disable(task_ctx, false);
2696 		task_ctx_sched_out(task_ctx, event_type);
2697 	}
2698 
2699 	/*
2700 	 * Decide which cpu ctx groups to schedule out based on the types
2701 	 * of events that caused rescheduling:
2702 	 *  - EVENT_CPU: schedule out corresponding groups;
2703 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704 	 *  - otherwise, do nothing more.
2705 	 */
2706 	if (cpu_event)
2707 		ctx_sched_out(&cpuctx->ctx, event_type);
2708 	else if (event_type & EVENT_PINNED)
2709 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2710 
2711 	perf_event_sched_in(cpuctx, task_ctx);
2712 
2713 	perf_ctx_enable(&cpuctx->ctx, false);
2714 	if (task_ctx)
2715 		perf_ctx_enable(task_ctx, false);
2716 }
2717 
2718 void perf_pmu_resched(struct pmu *pmu)
2719 {
2720 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2721 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2722 
2723 	perf_ctx_lock(cpuctx, task_ctx);
2724 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2725 	perf_ctx_unlock(cpuctx, task_ctx);
2726 }
2727 
2728 /*
2729  * Cross CPU call to install and enable a performance event
2730  *
2731  * Very similar to remote_function() + event_function() but cannot assume that
2732  * things like ctx->is_active and cpuctx->task_ctx are set.
2733  */
2734 static int  __perf_install_in_context(void *info)
2735 {
2736 	struct perf_event *event = info;
2737 	struct perf_event_context *ctx = event->ctx;
2738 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2739 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2740 	bool reprogram = true;
2741 	int ret = 0;
2742 
2743 	raw_spin_lock(&cpuctx->ctx.lock);
2744 	if (ctx->task) {
2745 		raw_spin_lock(&ctx->lock);
2746 		task_ctx = ctx;
2747 
2748 		reprogram = (ctx->task == current);
2749 
2750 		/*
2751 		 * If the task is running, it must be running on this CPU,
2752 		 * otherwise we cannot reprogram things.
2753 		 *
2754 		 * If its not running, we don't care, ctx->lock will
2755 		 * serialize against it becoming runnable.
2756 		 */
2757 		if (task_curr(ctx->task) && !reprogram) {
2758 			ret = -ESRCH;
2759 			goto unlock;
2760 		}
2761 
2762 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2763 	} else if (task_ctx) {
2764 		raw_spin_lock(&task_ctx->lock);
2765 	}
2766 
2767 #ifdef CONFIG_CGROUP_PERF
2768 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2769 		/*
2770 		 * If the current cgroup doesn't match the event's
2771 		 * cgroup, we should not try to schedule it.
2772 		 */
2773 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2774 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2775 					event->cgrp->css.cgroup);
2776 	}
2777 #endif
2778 
2779 	if (reprogram) {
2780 		ctx_sched_out(ctx, EVENT_TIME);
2781 		add_event_to_ctx(event, ctx);
2782 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2783 	} else {
2784 		add_event_to_ctx(event, ctx);
2785 	}
2786 
2787 unlock:
2788 	perf_ctx_unlock(cpuctx, task_ctx);
2789 
2790 	return ret;
2791 }
2792 
2793 static bool exclusive_event_installable(struct perf_event *event,
2794 					struct perf_event_context *ctx);
2795 
2796 /*
2797  * Attach a performance event to a context.
2798  *
2799  * Very similar to event_function_call, see comment there.
2800  */
2801 static void
2802 perf_install_in_context(struct perf_event_context *ctx,
2803 			struct perf_event *event,
2804 			int cpu)
2805 {
2806 	struct task_struct *task = READ_ONCE(ctx->task);
2807 
2808 	lockdep_assert_held(&ctx->mutex);
2809 
2810 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2811 
2812 	if (event->cpu != -1)
2813 		WARN_ON_ONCE(event->cpu != cpu);
2814 
2815 	/*
2816 	 * Ensures that if we can observe event->ctx, both the event and ctx
2817 	 * will be 'complete'. See perf_iterate_sb_cpu().
2818 	 */
2819 	smp_store_release(&event->ctx, ctx);
2820 
2821 	/*
2822 	 * perf_event_attr::disabled events will not run and can be initialized
2823 	 * without IPI. Except when this is the first event for the context, in
2824 	 * that case we need the magic of the IPI to set ctx->is_active.
2825 	 *
2826 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2827 	 * event will issue the IPI and reprogram the hardware.
2828 	 */
2829 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2830 	    ctx->nr_events && !is_cgroup_event(event)) {
2831 		raw_spin_lock_irq(&ctx->lock);
2832 		if (ctx->task == TASK_TOMBSTONE) {
2833 			raw_spin_unlock_irq(&ctx->lock);
2834 			return;
2835 		}
2836 		add_event_to_ctx(event, ctx);
2837 		raw_spin_unlock_irq(&ctx->lock);
2838 		return;
2839 	}
2840 
2841 	if (!task) {
2842 		cpu_function_call(cpu, __perf_install_in_context, event);
2843 		return;
2844 	}
2845 
2846 	/*
2847 	 * Should not happen, we validate the ctx is still alive before calling.
2848 	 */
2849 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2850 		return;
2851 
2852 	/*
2853 	 * Installing events is tricky because we cannot rely on ctx->is_active
2854 	 * to be set in case this is the nr_events 0 -> 1 transition.
2855 	 *
2856 	 * Instead we use task_curr(), which tells us if the task is running.
2857 	 * However, since we use task_curr() outside of rq::lock, we can race
2858 	 * against the actual state. This means the result can be wrong.
2859 	 *
2860 	 * If we get a false positive, we retry, this is harmless.
2861 	 *
2862 	 * If we get a false negative, things are complicated. If we are after
2863 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2864 	 * value must be correct. If we're before, it doesn't matter since
2865 	 * perf_event_context_sched_in() will program the counter.
2866 	 *
2867 	 * However, this hinges on the remote context switch having observed
2868 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2869 	 * ctx::lock in perf_event_context_sched_in().
2870 	 *
2871 	 * We do this by task_function_call(), if the IPI fails to hit the task
2872 	 * we know any future context switch of task must see the
2873 	 * perf_event_ctpx[] store.
2874 	 */
2875 
2876 	/*
2877 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2878 	 * task_cpu() load, such that if the IPI then does not find the task
2879 	 * running, a future context switch of that task must observe the
2880 	 * store.
2881 	 */
2882 	smp_mb();
2883 again:
2884 	if (!task_function_call(task, __perf_install_in_context, event))
2885 		return;
2886 
2887 	raw_spin_lock_irq(&ctx->lock);
2888 	task = ctx->task;
2889 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2890 		/*
2891 		 * Cannot happen because we already checked above (which also
2892 		 * cannot happen), and we hold ctx->mutex, which serializes us
2893 		 * against perf_event_exit_task_context().
2894 		 */
2895 		raw_spin_unlock_irq(&ctx->lock);
2896 		return;
2897 	}
2898 	/*
2899 	 * If the task is not running, ctx->lock will avoid it becoming so,
2900 	 * thus we can safely install the event.
2901 	 */
2902 	if (task_curr(task)) {
2903 		raw_spin_unlock_irq(&ctx->lock);
2904 		goto again;
2905 	}
2906 	add_event_to_ctx(event, ctx);
2907 	raw_spin_unlock_irq(&ctx->lock);
2908 }
2909 
2910 /*
2911  * Cross CPU call to enable a performance event
2912  */
2913 static void __perf_event_enable(struct perf_event *event,
2914 				struct perf_cpu_context *cpuctx,
2915 				struct perf_event_context *ctx,
2916 				void *info)
2917 {
2918 	struct perf_event *leader = event->group_leader;
2919 	struct perf_event_context *task_ctx;
2920 
2921 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2922 	    event->state <= PERF_EVENT_STATE_ERROR)
2923 		return;
2924 
2925 	if (ctx->is_active)
2926 		ctx_sched_out(ctx, EVENT_TIME);
2927 
2928 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2929 	perf_cgroup_event_enable(event, ctx);
2930 
2931 	if (!ctx->is_active)
2932 		return;
2933 
2934 	if (!event_filter_match(event)) {
2935 		ctx_sched_in(ctx, EVENT_TIME);
2936 		return;
2937 	}
2938 
2939 	/*
2940 	 * If the event is in a group and isn't the group leader,
2941 	 * then don't put it on unless the group is on.
2942 	 */
2943 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2944 		ctx_sched_in(ctx, EVENT_TIME);
2945 		return;
2946 	}
2947 
2948 	task_ctx = cpuctx->task_ctx;
2949 	if (ctx->task)
2950 		WARN_ON_ONCE(task_ctx != ctx);
2951 
2952 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2953 }
2954 
2955 /*
2956  * Enable an event.
2957  *
2958  * If event->ctx is a cloned context, callers must make sure that
2959  * every task struct that event->ctx->task could possibly point to
2960  * remains valid.  This condition is satisfied when called through
2961  * perf_event_for_each_child or perf_event_for_each as described
2962  * for perf_event_disable.
2963  */
2964 static void _perf_event_enable(struct perf_event *event)
2965 {
2966 	struct perf_event_context *ctx = event->ctx;
2967 
2968 	raw_spin_lock_irq(&ctx->lock);
2969 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2970 	    event->state <  PERF_EVENT_STATE_ERROR) {
2971 out:
2972 		raw_spin_unlock_irq(&ctx->lock);
2973 		return;
2974 	}
2975 
2976 	/*
2977 	 * If the event is in error state, clear that first.
2978 	 *
2979 	 * That way, if we see the event in error state below, we know that it
2980 	 * has gone back into error state, as distinct from the task having
2981 	 * been scheduled away before the cross-call arrived.
2982 	 */
2983 	if (event->state == PERF_EVENT_STATE_ERROR) {
2984 		/*
2985 		 * Detached SIBLING events cannot leave ERROR state.
2986 		 */
2987 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
2988 		    event->group_leader == event)
2989 			goto out;
2990 
2991 		event->state = PERF_EVENT_STATE_OFF;
2992 	}
2993 	raw_spin_unlock_irq(&ctx->lock);
2994 
2995 	event_function_call(event, __perf_event_enable, NULL);
2996 }
2997 
2998 /*
2999  * See perf_event_disable();
3000  */
3001 void perf_event_enable(struct perf_event *event)
3002 {
3003 	struct perf_event_context *ctx;
3004 
3005 	ctx = perf_event_ctx_lock(event);
3006 	_perf_event_enable(event);
3007 	perf_event_ctx_unlock(event, ctx);
3008 }
3009 EXPORT_SYMBOL_GPL(perf_event_enable);
3010 
3011 struct stop_event_data {
3012 	struct perf_event	*event;
3013 	unsigned int		restart;
3014 };
3015 
3016 static int __perf_event_stop(void *info)
3017 {
3018 	struct stop_event_data *sd = info;
3019 	struct perf_event *event = sd->event;
3020 
3021 	/* if it's already INACTIVE, do nothing */
3022 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3023 		return 0;
3024 
3025 	/* matches smp_wmb() in event_sched_in() */
3026 	smp_rmb();
3027 
3028 	/*
3029 	 * There is a window with interrupts enabled before we get here,
3030 	 * so we need to check again lest we try to stop another CPU's event.
3031 	 */
3032 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3033 		return -EAGAIN;
3034 
3035 	event->pmu->stop(event, PERF_EF_UPDATE);
3036 
3037 	/*
3038 	 * May race with the actual stop (through perf_pmu_output_stop()),
3039 	 * but it is only used for events with AUX ring buffer, and such
3040 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3041 	 * see comments in perf_aux_output_begin().
3042 	 *
3043 	 * Since this is happening on an event-local CPU, no trace is lost
3044 	 * while restarting.
3045 	 */
3046 	if (sd->restart)
3047 		event->pmu->start(event, 0);
3048 
3049 	return 0;
3050 }
3051 
3052 static int perf_event_stop(struct perf_event *event, int restart)
3053 {
3054 	struct stop_event_data sd = {
3055 		.event		= event,
3056 		.restart	= restart,
3057 	};
3058 	int ret = 0;
3059 
3060 	do {
3061 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3062 			return 0;
3063 
3064 		/* matches smp_wmb() in event_sched_in() */
3065 		smp_rmb();
3066 
3067 		/*
3068 		 * We only want to restart ACTIVE events, so if the event goes
3069 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3070 		 * fall through with ret==-ENXIO.
3071 		 */
3072 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3073 					__perf_event_stop, &sd);
3074 	} while (ret == -EAGAIN);
3075 
3076 	return ret;
3077 }
3078 
3079 /*
3080  * In order to contain the amount of racy and tricky in the address filter
3081  * configuration management, it is a two part process:
3082  *
3083  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3084  *      we update the addresses of corresponding vmas in
3085  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3086  * (p2) when an event is scheduled in (pmu::add), it calls
3087  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3088  *      if the generation has changed since the previous call.
3089  *
3090  * If (p1) happens while the event is active, we restart it to force (p2).
3091  *
3092  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3093  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3094  *     ioctl;
3095  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3096  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3097  *     for reading;
3098  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3099  *     of exec.
3100  */
3101 void perf_event_addr_filters_sync(struct perf_event *event)
3102 {
3103 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3104 
3105 	if (!has_addr_filter(event))
3106 		return;
3107 
3108 	raw_spin_lock(&ifh->lock);
3109 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3110 		event->pmu->addr_filters_sync(event);
3111 		event->hw.addr_filters_gen = event->addr_filters_gen;
3112 	}
3113 	raw_spin_unlock(&ifh->lock);
3114 }
3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3116 
3117 static int _perf_event_refresh(struct perf_event *event, int refresh)
3118 {
3119 	/*
3120 	 * not supported on inherited events
3121 	 */
3122 	if (event->attr.inherit || !is_sampling_event(event))
3123 		return -EINVAL;
3124 
3125 	atomic_add(refresh, &event->event_limit);
3126 	_perf_event_enable(event);
3127 
3128 	return 0;
3129 }
3130 
3131 /*
3132  * See perf_event_disable()
3133  */
3134 int perf_event_refresh(struct perf_event *event, int refresh)
3135 {
3136 	struct perf_event_context *ctx;
3137 	int ret;
3138 
3139 	ctx = perf_event_ctx_lock(event);
3140 	ret = _perf_event_refresh(event, refresh);
3141 	perf_event_ctx_unlock(event, ctx);
3142 
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(perf_event_refresh);
3146 
3147 static int perf_event_modify_breakpoint(struct perf_event *bp,
3148 					 struct perf_event_attr *attr)
3149 {
3150 	int err;
3151 
3152 	_perf_event_disable(bp);
3153 
3154 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3155 
3156 	if (!bp->attr.disabled)
3157 		_perf_event_enable(bp);
3158 
3159 	return err;
3160 }
3161 
3162 /*
3163  * Copy event-type-independent attributes that may be modified.
3164  */
3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3166 					const struct perf_event_attr *from)
3167 {
3168 	to->sig_data = from->sig_data;
3169 }
3170 
3171 static int perf_event_modify_attr(struct perf_event *event,
3172 				  struct perf_event_attr *attr)
3173 {
3174 	int (*func)(struct perf_event *, struct perf_event_attr *);
3175 	struct perf_event *child;
3176 	int err;
3177 
3178 	if (event->attr.type != attr->type)
3179 		return -EINVAL;
3180 
3181 	switch (event->attr.type) {
3182 	case PERF_TYPE_BREAKPOINT:
3183 		func = perf_event_modify_breakpoint;
3184 		break;
3185 	default:
3186 		/* Place holder for future additions. */
3187 		return -EOPNOTSUPP;
3188 	}
3189 
3190 	WARN_ON_ONCE(event->ctx->parent_ctx);
3191 
3192 	mutex_lock(&event->child_mutex);
3193 	/*
3194 	 * Event-type-independent attributes must be copied before event-type
3195 	 * modification, which will validate that final attributes match the
3196 	 * source attributes after all relevant attributes have been copied.
3197 	 */
3198 	perf_event_modify_copy_attr(&event->attr, attr);
3199 	err = func(event, attr);
3200 	if (err)
3201 		goto out;
3202 	list_for_each_entry(child, &event->child_list, child_list) {
3203 		perf_event_modify_copy_attr(&child->attr, attr);
3204 		err = func(child, attr);
3205 		if (err)
3206 			goto out;
3207 	}
3208 out:
3209 	mutex_unlock(&event->child_mutex);
3210 	return err;
3211 }
3212 
3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3214 				enum event_type_t event_type)
3215 {
3216 	struct perf_event_context *ctx = pmu_ctx->ctx;
3217 	struct perf_event *event, *tmp;
3218 	struct pmu *pmu = pmu_ctx->pmu;
3219 
3220 	if (ctx->task && !ctx->is_active) {
3221 		struct perf_cpu_pmu_context *cpc;
3222 
3223 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3224 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3225 		cpc->task_epc = NULL;
3226 	}
3227 
3228 	if (!event_type)
3229 		return;
3230 
3231 	perf_pmu_disable(pmu);
3232 	if (event_type & EVENT_PINNED) {
3233 		list_for_each_entry_safe(event, tmp,
3234 					 &pmu_ctx->pinned_active,
3235 					 active_list)
3236 			group_sched_out(event, ctx);
3237 	}
3238 
3239 	if (event_type & EVENT_FLEXIBLE) {
3240 		list_for_each_entry_safe(event, tmp,
3241 					 &pmu_ctx->flexible_active,
3242 					 active_list)
3243 			group_sched_out(event, ctx);
3244 		/*
3245 		 * Since we cleared EVENT_FLEXIBLE, also clear
3246 		 * rotate_necessary, is will be reset by
3247 		 * ctx_flexible_sched_in() when needed.
3248 		 */
3249 		pmu_ctx->rotate_necessary = 0;
3250 	}
3251 	perf_pmu_enable(pmu);
3252 }
3253 
3254 static void
3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3256 {
3257 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3258 	struct perf_event_pmu_context *pmu_ctx;
3259 	int is_active = ctx->is_active;
3260 	bool cgroup = event_type & EVENT_CGROUP;
3261 
3262 	event_type &= ~EVENT_CGROUP;
3263 
3264 	lockdep_assert_held(&ctx->lock);
3265 
3266 	if (likely(!ctx->nr_events)) {
3267 		/*
3268 		 * See __perf_remove_from_context().
3269 		 */
3270 		WARN_ON_ONCE(ctx->is_active);
3271 		if (ctx->task)
3272 			WARN_ON_ONCE(cpuctx->task_ctx);
3273 		return;
3274 	}
3275 
3276 	/*
3277 	 * Always update time if it was set; not only when it changes.
3278 	 * Otherwise we can 'forget' to update time for any but the last
3279 	 * context we sched out. For example:
3280 	 *
3281 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3282 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3283 	 *
3284 	 * would only update time for the pinned events.
3285 	 */
3286 	if (is_active & EVENT_TIME) {
3287 		/* update (and stop) ctx time */
3288 		update_context_time(ctx);
3289 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3290 		/*
3291 		 * CPU-release for the below ->is_active store,
3292 		 * see __load_acquire() in perf_event_time_now()
3293 		 */
3294 		barrier();
3295 	}
3296 
3297 	ctx->is_active &= ~event_type;
3298 	if (!(ctx->is_active & EVENT_ALL))
3299 		ctx->is_active = 0;
3300 
3301 	if (ctx->task) {
3302 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3303 		if (!ctx->is_active)
3304 			cpuctx->task_ctx = NULL;
3305 	}
3306 
3307 	is_active ^= ctx->is_active; /* changed bits */
3308 
3309 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3310 		if (cgroup && !pmu_ctx->nr_cgroups)
3311 			continue;
3312 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3313 	}
3314 }
3315 
3316 /*
3317  * Test whether two contexts are equivalent, i.e. whether they have both been
3318  * cloned from the same version of the same context.
3319  *
3320  * Equivalence is measured using a generation number in the context that is
3321  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3322  * and list_del_event().
3323  */
3324 static int context_equiv(struct perf_event_context *ctx1,
3325 			 struct perf_event_context *ctx2)
3326 {
3327 	lockdep_assert_held(&ctx1->lock);
3328 	lockdep_assert_held(&ctx2->lock);
3329 
3330 	/* Pinning disables the swap optimization */
3331 	if (ctx1->pin_count || ctx2->pin_count)
3332 		return 0;
3333 
3334 	/* If ctx1 is the parent of ctx2 */
3335 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3336 		return 1;
3337 
3338 	/* If ctx2 is the parent of ctx1 */
3339 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3340 		return 1;
3341 
3342 	/*
3343 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3344 	 * hierarchy, see perf_event_init_context().
3345 	 */
3346 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3347 			ctx1->parent_gen == ctx2->parent_gen)
3348 		return 1;
3349 
3350 	/* Unmatched */
3351 	return 0;
3352 }
3353 
3354 static void __perf_event_sync_stat(struct perf_event *event,
3355 				     struct perf_event *next_event)
3356 {
3357 	u64 value;
3358 
3359 	if (!event->attr.inherit_stat)
3360 		return;
3361 
3362 	/*
3363 	 * Update the event value, we cannot use perf_event_read()
3364 	 * because we're in the middle of a context switch and have IRQs
3365 	 * disabled, which upsets smp_call_function_single(), however
3366 	 * we know the event must be on the current CPU, therefore we
3367 	 * don't need to use it.
3368 	 */
3369 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3370 		event->pmu->read(event);
3371 
3372 	perf_event_update_time(event);
3373 
3374 	/*
3375 	 * In order to keep per-task stats reliable we need to flip the event
3376 	 * values when we flip the contexts.
3377 	 */
3378 	value = local64_read(&next_event->count);
3379 	value = local64_xchg(&event->count, value);
3380 	local64_set(&next_event->count, value);
3381 
3382 	swap(event->total_time_enabled, next_event->total_time_enabled);
3383 	swap(event->total_time_running, next_event->total_time_running);
3384 
3385 	/*
3386 	 * Since we swizzled the values, update the user visible data too.
3387 	 */
3388 	perf_event_update_userpage(event);
3389 	perf_event_update_userpage(next_event);
3390 }
3391 
3392 static void perf_event_sync_stat(struct perf_event_context *ctx,
3393 				   struct perf_event_context *next_ctx)
3394 {
3395 	struct perf_event *event, *next_event;
3396 
3397 	if (!ctx->nr_stat)
3398 		return;
3399 
3400 	update_context_time(ctx);
3401 
3402 	event = list_first_entry(&ctx->event_list,
3403 				   struct perf_event, event_entry);
3404 
3405 	next_event = list_first_entry(&next_ctx->event_list,
3406 					struct perf_event, event_entry);
3407 
3408 	while (&event->event_entry != &ctx->event_list &&
3409 	       &next_event->event_entry != &next_ctx->event_list) {
3410 
3411 		__perf_event_sync_stat(event, next_event);
3412 
3413 		event = list_next_entry(event, event_entry);
3414 		next_event = list_next_entry(next_event, event_entry);
3415 	}
3416 }
3417 
3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3419 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3420 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3421 	     !list_entry_is_head(pos1, head1, member) &&		\
3422 	     !list_entry_is_head(pos2, head2, member);			\
3423 	     pos1 = list_next_entry(pos1, member),			\
3424 	     pos2 = list_next_entry(pos2, member))
3425 
3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3427 					  struct perf_event_context *next_ctx)
3428 {
3429 	struct perf_event_pmu_context *prev_epc, *next_epc;
3430 
3431 	if (!prev_ctx->nr_task_data)
3432 		return;
3433 
3434 	double_list_for_each_entry(prev_epc, next_epc,
3435 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3436 				   pmu_ctx_entry) {
3437 
3438 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3439 			continue;
3440 
3441 		/*
3442 		 * PMU specific parts of task perf context can require
3443 		 * additional synchronization. As an example of such
3444 		 * synchronization see implementation details of Intel
3445 		 * LBR call stack data profiling;
3446 		 */
3447 		if (prev_epc->pmu->swap_task_ctx)
3448 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3449 		else
3450 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3451 	}
3452 }
3453 
3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3455 {
3456 	struct perf_event_pmu_context *pmu_ctx;
3457 	struct perf_cpu_pmu_context *cpc;
3458 
3459 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3460 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3461 
3462 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3463 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3464 	}
3465 }
3466 
3467 static void
3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3469 {
3470 	struct perf_event_context *ctx = task->perf_event_ctxp;
3471 	struct perf_event_context *next_ctx;
3472 	struct perf_event_context *parent, *next_parent;
3473 	int do_switch = 1;
3474 
3475 	if (likely(!ctx))
3476 		return;
3477 
3478 	rcu_read_lock();
3479 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3480 	if (!next_ctx)
3481 		goto unlock;
3482 
3483 	parent = rcu_dereference(ctx->parent_ctx);
3484 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3485 
3486 	/* If neither context have a parent context; they cannot be clones. */
3487 	if (!parent && !next_parent)
3488 		goto unlock;
3489 
3490 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3491 		/*
3492 		 * Looks like the two contexts are clones, so we might be
3493 		 * able to optimize the context switch.  We lock both
3494 		 * contexts and check that they are clones under the
3495 		 * lock (including re-checking that neither has been
3496 		 * uncloned in the meantime).  It doesn't matter which
3497 		 * order we take the locks because no other cpu could
3498 		 * be trying to lock both of these tasks.
3499 		 */
3500 		raw_spin_lock(&ctx->lock);
3501 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3502 		if (context_equiv(ctx, next_ctx)) {
3503 
3504 			perf_ctx_disable(ctx, false);
3505 
3506 			/* PMIs are disabled; ctx->nr_pending is stable. */
3507 			if (local_read(&ctx->nr_pending) ||
3508 			    local_read(&next_ctx->nr_pending)) {
3509 				/*
3510 				 * Must not swap out ctx when there's pending
3511 				 * events that rely on the ctx->task relation.
3512 				 */
3513 				raw_spin_unlock(&next_ctx->lock);
3514 				rcu_read_unlock();
3515 				goto inside_switch;
3516 			}
3517 
3518 			WRITE_ONCE(ctx->task, next);
3519 			WRITE_ONCE(next_ctx->task, task);
3520 
3521 			perf_ctx_sched_task_cb(ctx, false);
3522 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3523 
3524 			perf_ctx_enable(ctx, false);
3525 
3526 			/*
3527 			 * RCU_INIT_POINTER here is safe because we've not
3528 			 * modified the ctx and the above modification of
3529 			 * ctx->task and ctx->task_ctx_data are immaterial
3530 			 * since those values are always verified under
3531 			 * ctx->lock which we're now holding.
3532 			 */
3533 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3534 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3535 
3536 			do_switch = 0;
3537 
3538 			perf_event_sync_stat(ctx, next_ctx);
3539 		}
3540 		raw_spin_unlock(&next_ctx->lock);
3541 		raw_spin_unlock(&ctx->lock);
3542 	}
3543 unlock:
3544 	rcu_read_unlock();
3545 
3546 	if (do_switch) {
3547 		raw_spin_lock(&ctx->lock);
3548 		perf_ctx_disable(ctx, false);
3549 
3550 inside_switch:
3551 		perf_ctx_sched_task_cb(ctx, false);
3552 		task_ctx_sched_out(ctx, EVENT_ALL);
3553 
3554 		perf_ctx_enable(ctx, false);
3555 		raw_spin_unlock(&ctx->lock);
3556 	}
3557 }
3558 
3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3561 
3562 void perf_sched_cb_dec(struct pmu *pmu)
3563 {
3564 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3565 
3566 	this_cpu_dec(perf_sched_cb_usages);
3567 	barrier();
3568 
3569 	if (!--cpc->sched_cb_usage)
3570 		list_del(&cpc->sched_cb_entry);
3571 }
3572 
3573 
3574 void perf_sched_cb_inc(struct pmu *pmu)
3575 {
3576 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3577 
3578 	if (!cpc->sched_cb_usage++)
3579 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3580 
3581 	barrier();
3582 	this_cpu_inc(perf_sched_cb_usages);
3583 }
3584 
3585 /*
3586  * This function provides the context switch callback to the lower code
3587  * layer. It is invoked ONLY when the context switch callback is enabled.
3588  *
3589  * This callback is relevant even to per-cpu events; for example multi event
3590  * PEBS requires this to provide PID/TID information. This requires we flush
3591  * all queued PEBS records before we context switch to a new task.
3592  */
3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3594 {
3595 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3596 	struct pmu *pmu;
3597 
3598 	pmu = cpc->epc.pmu;
3599 
3600 	/* software PMUs will not have sched_task */
3601 	if (WARN_ON_ONCE(!pmu->sched_task))
3602 		return;
3603 
3604 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3605 	perf_pmu_disable(pmu);
3606 
3607 	pmu->sched_task(cpc->task_epc, sched_in);
3608 
3609 	perf_pmu_enable(pmu);
3610 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3611 }
3612 
3613 static void perf_pmu_sched_task(struct task_struct *prev,
3614 				struct task_struct *next,
3615 				bool sched_in)
3616 {
3617 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 	struct perf_cpu_pmu_context *cpc;
3619 
3620 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3621 	if (prev == next || cpuctx->task_ctx)
3622 		return;
3623 
3624 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3625 		__perf_pmu_sched_task(cpc, sched_in);
3626 }
3627 
3628 static void perf_event_switch(struct task_struct *task,
3629 			      struct task_struct *next_prev, bool sched_in);
3630 
3631 /*
3632  * Called from scheduler to remove the events of the current task,
3633  * with interrupts disabled.
3634  *
3635  * We stop each event and update the event value in event->count.
3636  *
3637  * This does not protect us against NMI, but disable()
3638  * sets the disabled bit in the control field of event _before_
3639  * accessing the event control register. If a NMI hits, then it will
3640  * not restart the event.
3641  */
3642 void __perf_event_task_sched_out(struct task_struct *task,
3643 				 struct task_struct *next)
3644 {
3645 	if (__this_cpu_read(perf_sched_cb_usages))
3646 		perf_pmu_sched_task(task, next, false);
3647 
3648 	if (atomic_read(&nr_switch_events))
3649 		perf_event_switch(task, next, false);
3650 
3651 	perf_event_context_sched_out(task, next);
3652 
3653 	/*
3654 	 * if cgroup events exist on this CPU, then we need
3655 	 * to check if we have to switch out PMU state.
3656 	 * cgroup event are system-wide mode only
3657 	 */
3658 	perf_cgroup_switch(next);
3659 }
3660 
3661 static bool perf_less_group_idx(const void *l, const void *r)
3662 {
3663 	const struct perf_event *le = *(const struct perf_event **)l;
3664 	const struct perf_event *re = *(const struct perf_event **)r;
3665 
3666 	return le->group_index < re->group_index;
3667 }
3668 
3669 static void swap_ptr(void *l, void *r)
3670 {
3671 	void **lp = l, **rp = r;
3672 
3673 	swap(*lp, *rp);
3674 }
3675 
3676 static const struct min_heap_callbacks perf_min_heap = {
3677 	.elem_size = sizeof(struct perf_event *),
3678 	.less = perf_less_group_idx,
3679 	.swp = swap_ptr,
3680 };
3681 
3682 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3683 {
3684 	struct perf_event **itrs = heap->data;
3685 
3686 	if (event) {
3687 		itrs[heap->nr] = event;
3688 		heap->nr++;
3689 	}
3690 }
3691 
3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3693 {
3694 	struct perf_cpu_pmu_context *cpc;
3695 
3696 	if (!pmu_ctx->ctx->task)
3697 		return;
3698 
3699 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3700 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3701 	cpc->task_epc = pmu_ctx;
3702 }
3703 
3704 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3705 				struct perf_event_groups *groups, int cpu,
3706 				struct pmu *pmu,
3707 				int (*func)(struct perf_event *, void *),
3708 				void *data)
3709 {
3710 #ifdef CONFIG_CGROUP_PERF
3711 	struct cgroup_subsys_state *css = NULL;
3712 #endif
3713 	struct perf_cpu_context *cpuctx = NULL;
3714 	/* Space for per CPU and/or any CPU event iterators. */
3715 	struct perf_event *itrs[2];
3716 	struct min_heap event_heap;
3717 	struct perf_event **evt;
3718 	int ret;
3719 
3720 	if (pmu->filter && pmu->filter(pmu, cpu))
3721 		return 0;
3722 
3723 	if (!ctx->task) {
3724 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3725 		event_heap = (struct min_heap){
3726 			.data = cpuctx->heap,
3727 			.nr = 0,
3728 			.size = cpuctx->heap_size,
3729 		};
3730 
3731 		lockdep_assert_held(&cpuctx->ctx.lock);
3732 
3733 #ifdef CONFIG_CGROUP_PERF
3734 		if (cpuctx->cgrp)
3735 			css = &cpuctx->cgrp->css;
3736 #endif
3737 	} else {
3738 		event_heap = (struct min_heap){
3739 			.data = itrs,
3740 			.nr = 0,
3741 			.size = ARRAY_SIZE(itrs),
3742 		};
3743 		/* Events not within a CPU context may be on any CPU. */
3744 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3745 	}
3746 	evt = event_heap.data;
3747 
3748 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3749 
3750 #ifdef CONFIG_CGROUP_PERF
3751 	for (; css; css = css->parent)
3752 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3753 #endif
3754 
3755 	if (event_heap.nr) {
3756 		__link_epc((*evt)->pmu_ctx);
3757 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3758 	}
3759 
3760 	min_heapify_all(&event_heap, &perf_min_heap);
3761 
3762 	while (event_heap.nr) {
3763 		ret = func(*evt, data);
3764 		if (ret)
3765 			return ret;
3766 
3767 		*evt = perf_event_groups_next(*evt, pmu);
3768 		if (*evt)
3769 			min_heapify(&event_heap, 0, &perf_min_heap);
3770 		else
3771 			min_heap_pop(&event_heap, &perf_min_heap);
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 /*
3778  * Because the userpage is strictly per-event (there is no concept of context,
3779  * so there cannot be a context indirection), every userpage must be updated
3780  * when context time starts :-(
3781  *
3782  * IOW, we must not miss EVENT_TIME edges.
3783  */
3784 static inline bool event_update_userpage(struct perf_event *event)
3785 {
3786 	if (likely(!atomic_read(&event->mmap_count)))
3787 		return false;
3788 
3789 	perf_event_update_time(event);
3790 	perf_event_update_userpage(event);
3791 
3792 	return true;
3793 }
3794 
3795 static inline void group_update_userpage(struct perf_event *group_event)
3796 {
3797 	struct perf_event *event;
3798 
3799 	if (!event_update_userpage(group_event))
3800 		return;
3801 
3802 	for_each_sibling_event(event, group_event)
3803 		event_update_userpage(event);
3804 }
3805 
3806 static int merge_sched_in(struct perf_event *event, void *data)
3807 {
3808 	struct perf_event_context *ctx = event->ctx;
3809 	int *can_add_hw = data;
3810 
3811 	if (event->state <= PERF_EVENT_STATE_OFF)
3812 		return 0;
3813 
3814 	if (!event_filter_match(event))
3815 		return 0;
3816 
3817 	if (group_can_go_on(event, *can_add_hw)) {
3818 		if (!group_sched_in(event, ctx))
3819 			list_add_tail(&event->active_list, get_event_list(event));
3820 	}
3821 
3822 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823 		*can_add_hw = 0;
3824 		if (event->attr.pinned) {
3825 			perf_cgroup_event_disable(event, ctx);
3826 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827 		} else {
3828 			struct perf_cpu_pmu_context *cpc;
3829 
3830 			event->pmu_ctx->rotate_necessary = 1;
3831 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3832 			perf_mux_hrtimer_restart(cpc);
3833 			group_update_userpage(event);
3834 		}
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3841 				struct perf_event_groups *groups,
3842 				struct pmu *pmu)
3843 {
3844 	int can_add_hw = 1;
3845 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3846 			   merge_sched_in, &can_add_hw);
3847 }
3848 
3849 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3850 				struct perf_event_groups *groups,
3851 				bool cgroup)
3852 {
3853 	struct perf_event_pmu_context *pmu_ctx;
3854 
3855 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3856 		if (cgroup && !pmu_ctx->nr_cgroups)
3857 			continue;
3858 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3859 	}
3860 }
3861 
3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3863 			       struct pmu *pmu)
3864 {
3865 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3866 }
3867 
3868 static void
3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3870 {
3871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3872 	int is_active = ctx->is_active;
3873 	bool cgroup = event_type & EVENT_CGROUP;
3874 
3875 	event_type &= ~EVENT_CGROUP;
3876 
3877 	lockdep_assert_held(&ctx->lock);
3878 
3879 	if (likely(!ctx->nr_events))
3880 		return;
3881 
3882 	if (!(is_active & EVENT_TIME)) {
3883 		/* start ctx time */
3884 		__update_context_time(ctx, false);
3885 		perf_cgroup_set_timestamp(cpuctx);
3886 		/*
3887 		 * CPU-release for the below ->is_active store,
3888 		 * see __load_acquire() in perf_event_time_now()
3889 		 */
3890 		barrier();
3891 	}
3892 
3893 	ctx->is_active |= (event_type | EVENT_TIME);
3894 	if (ctx->task) {
3895 		if (!is_active)
3896 			cpuctx->task_ctx = ctx;
3897 		else
3898 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3899 	}
3900 
3901 	is_active ^= ctx->is_active; /* changed bits */
3902 
3903 	/*
3904 	 * First go through the list and put on any pinned groups
3905 	 * in order to give them the best chance of going on.
3906 	 */
3907 	if (is_active & EVENT_PINNED)
3908 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3909 
3910 	/* Then walk through the lower prio flexible groups */
3911 	if (is_active & EVENT_FLEXIBLE)
3912 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3913 }
3914 
3915 static void perf_event_context_sched_in(struct task_struct *task)
3916 {
3917 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3918 	struct perf_event_context *ctx;
3919 
3920 	rcu_read_lock();
3921 	ctx = rcu_dereference(task->perf_event_ctxp);
3922 	if (!ctx)
3923 		goto rcu_unlock;
3924 
3925 	if (cpuctx->task_ctx == ctx) {
3926 		perf_ctx_lock(cpuctx, ctx);
3927 		perf_ctx_disable(ctx, false);
3928 
3929 		perf_ctx_sched_task_cb(ctx, true);
3930 
3931 		perf_ctx_enable(ctx, false);
3932 		perf_ctx_unlock(cpuctx, ctx);
3933 		goto rcu_unlock;
3934 	}
3935 
3936 	perf_ctx_lock(cpuctx, ctx);
3937 	/*
3938 	 * We must check ctx->nr_events while holding ctx->lock, such
3939 	 * that we serialize against perf_install_in_context().
3940 	 */
3941 	if (!ctx->nr_events)
3942 		goto unlock;
3943 
3944 	perf_ctx_disable(ctx, false);
3945 	/*
3946 	 * We want to keep the following priority order:
3947 	 * cpu pinned (that don't need to move), task pinned,
3948 	 * cpu flexible, task flexible.
3949 	 *
3950 	 * However, if task's ctx is not carrying any pinned
3951 	 * events, no need to flip the cpuctx's events around.
3952 	 */
3953 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3954 		perf_ctx_disable(&cpuctx->ctx, false);
3955 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3956 	}
3957 
3958 	perf_event_sched_in(cpuctx, ctx);
3959 
3960 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3961 
3962 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3963 		perf_ctx_enable(&cpuctx->ctx, false);
3964 
3965 	perf_ctx_enable(ctx, false);
3966 
3967 unlock:
3968 	perf_ctx_unlock(cpuctx, ctx);
3969 rcu_unlock:
3970 	rcu_read_unlock();
3971 }
3972 
3973 /*
3974  * Called from scheduler to add the events of the current task
3975  * with interrupts disabled.
3976  *
3977  * We restore the event value and then enable it.
3978  *
3979  * This does not protect us against NMI, but enable()
3980  * sets the enabled bit in the control field of event _before_
3981  * accessing the event control register. If a NMI hits, then it will
3982  * keep the event running.
3983  */
3984 void __perf_event_task_sched_in(struct task_struct *prev,
3985 				struct task_struct *task)
3986 {
3987 	perf_event_context_sched_in(task);
3988 
3989 	if (atomic_read(&nr_switch_events))
3990 		perf_event_switch(task, prev, true);
3991 
3992 	if (__this_cpu_read(perf_sched_cb_usages))
3993 		perf_pmu_sched_task(prev, task, true);
3994 }
3995 
3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3997 {
3998 	u64 frequency = event->attr.sample_freq;
3999 	u64 sec = NSEC_PER_SEC;
4000 	u64 divisor, dividend;
4001 
4002 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4003 
4004 	count_fls = fls64(count);
4005 	nsec_fls = fls64(nsec);
4006 	frequency_fls = fls64(frequency);
4007 	sec_fls = 30;
4008 
4009 	/*
4010 	 * We got @count in @nsec, with a target of sample_freq HZ
4011 	 * the target period becomes:
4012 	 *
4013 	 *             @count * 10^9
4014 	 * period = -------------------
4015 	 *          @nsec * sample_freq
4016 	 *
4017 	 */
4018 
4019 	/*
4020 	 * Reduce accuracy by one bit such that @a and @b converge
4021 	 * to a similar magnitude.
4022 	 */
4023 #define REDUCE_FLS(a, b)		\
4024 do {					\
4025 	if (a##_fls > b##_fls) {	\
4026 		a >>= 1;		\
4027 		a##_fls--;		\
4028 	} else {			\
4029 		b >>= 1;		\
4030 		b##_fls--;		\
4031 	}				\
4032 } while (0)
4033 
4034 	/*
4035 	 * Reduce accuracy until either term fits in a u64, then proceed with
4036 	 * the other, so that finally we can do a u64/u64 division.
4037 	 */
4038 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4039 		REDUCE_FLS(nsec, frequency);
4040 		REDUCE_FLS(sec, count);
4041 	}
4042 
4043 	if (count_fls + sec_fls > 64) {
4044 		divisor = nsec * frequency;
4045 
4046 		while (count_fls + sec_fls > 64) {
4047 			REDUCE_FLS(count, sec);
4048 			divisor >>= 1;
4049 		}
4050 
4051 		dividend = count * sec;
4052 	} else {
4053 		dividend = count * sec;
4054 
4055 		while (nsec_fls + frequency_fls > 64) {
4056 			REDUCE_FLS(nsec, frequency);
4057 			dividend >>= 1;
4058 		}
4059 
4060 		divisor = nsec * frequency;
4061 	}
4062 
4063 	if (!divisor)
4064 		return dividend;
4065 
4066 	return div64_u64(dividend, divisor);
4067 }
4068 
4069 static DEFINE_PER_CPU(int, perf_throttled_count);
4070 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4071 
4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4073 {
4074 	struct hw_perf_event *hwc = &event->hw;
4075 	s64 period, sample_period;
4076 	s64 delta;
4077 
4078 	period = perf_calculate_period(event, nsec, count);
4079 
4080 	delta = (s64)(period - hwc->sample_period);
4081 	delta = (delta + 7) / 8; /* low pass filter */
4082 
4083 	sample_period = hwc->sample_period + delta;
4084 
4085 	if (!sample_period)
4086 		sample_period = 1;
4087 
4088 	hwc->sample_period = sample_period;
4089 
4090 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4091 		if (disable)
4092 			event->pmu->stop(event, PERF_EF_UPDATE);
4093 
4094 		local64_set(&hwc->period_left, 0);
4095 
4096 		if (disable)
4097 			event->pmu->start(event, PERF_EF_RELOAD);
4098 	}
4099 }
4100 
4101 /*
4102  * combine freq adjustment with unthrottling to avoid two passes over the
4103  * events. At the same time, make sure, having freq events does not change
4104  * the rate of unthrottling as that would introduce bias.
4105  */
4106 static void
4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4108 {
4109 	struct perf_event *event;
4110 	struct hw_perf_event *hwc;
4111 	u64 now, period = TICK_NSEC;
4112 	s64 delta;
4113 
4114 	/*
4115 	 * only need to iterate over all events iff:
4116 	 * - context have events in frequency mode (needs freq adjust)
4117 	 * - there are events to unthrottle on this cpu
4118 	 */
4119 	if (!(ctx->nr_freq || unthrottle))
4120 		return;
4121 
4122 	raw_spin_lock(&ctx->lock);
4123 
4124 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4126 			continue;
4127 
4128 		// XXX use visit thingy to avoid the -1,cpu match
4129 		if (!event_filter_match(event))
4130 			continue;
4131 
4132 		perf_pmu_disable(event->pmu);
4133 
4134 		hwc = &event->hw;
4135 
4136 		if (hwc->interrupts == MAX_INTERRUPTS) {
4137 			hwc->interrupts = 0;
4138 			perf_log_throttle(event, 1);
4139 			event->pmu->start(event, 0);
4140 		}
4141 
4142 		if (!event->attr.freq || !event->attr.sample_freq)
4143 			goto next;
4144 
4145 		/*
4146 		 * stop the event and update event->count
4147 		 */
4148 		event->pmu->stop(event, PERF_EF_UPDATE);
4149 
4150 		now = local64_read(&event->count);
4151 		delta = now - hwc->freq_count_stamp;
4152 		hwc->freq_count_stamp = now;
4153 
4154 		/*
4155 		 * restart the event
4156 		 * reload only if value has changed
4157 		 * we have stopped the event so tell that
4158 		 * to perf_adjust_period() to avoid stopping it
4159 		 * twice.
4160 		 */
4161 		if (delta > 0)
4162 			perf_adjust_period(event, period, delta, false);
4163 
4164 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4165 	next:
4166 		perf_pmu_enable(event->pmu);
4167 	}
4168 
4169 	raw_spin_unlock(&ctx->lock);
4170 }
4171 
4172 /*
4173  * Move @event to the tail of the @ctx's elegible events.
4174  */
4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4176 {
4177 	/*
4178 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4179 	 * disabled by the inheritance code.
4180 	 */
4181 	if (ctx->rotate_disable)
4182 		return;
4183 
4184 	perf_event_groups_delete(&ctx->flexible_groups, event);
4185 	perf_event_groups_insert(&ctx->flexible_groups, event);
4186 }
4187 
4188 /* pick an event from the flexible_groups to rotate */
4189 static inline struct perf_event *
4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4191 {
4192 	struct perf_event *event;
4193 	struct rb_node *node;
4194 	struct rb_root *tree;
4195 	struct __group_key key = {
4196 		.pmu = pmu_ctx->pmu,
4197 	};
4198 
4199 	/* pick the first active flexible event */
4200 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4201 					 struct perf_event, active_list);
4202 	if (event)
4203 		goto out;
4204 
4205 	/* if no active flexible event, pick the first event */
4206 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4207 
4208 	if (!pmu_ctx->ctx->task) {
4209 		key.cpu = smp_processor_id();
4210 
4211 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4212 		if (node)
4213 			event = __node_2_pe(node);
4214 		goto out;
4215 	}
4216 
4217 	key.cpu = -1;
4218 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4219 	if (node) {
4220 		event = __node_2_pe(node);
4221 		goto out;
4222 	}
4223 
4224 	key.cpu = smp_processor_id();
4225 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4226 	if (node)
4227 		event = __node_2_pe(node);
4228 
4229 out:
4230 	/*
4231 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4232 	 * finds there are unschedulable events, it will set it again.
4233 	 */
4234 	pmu_ctx->rotate_necessary = 0;
4235 
4236 	return event;
4237 }
4238 
4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4240 {
4241 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4242 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4243 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4244 	int cpu_rotate, task_rotate;
4245 	struct pmu *pmu;
4246 
4247 	/*
4248 	 * Since we run this from IRQ context, nobody can install new
4249 	 * events, thus the event count values are stable.
4250 	 */
4251 
4252 	cpu_epc = &cpc->epc;
4253 	pmu = cpu_epc->pmu;
4254 	task_epc = cpc->task_epc;
4255 
4256 	cpu_rotate = cpu_epc->rotate_necessary;
4257 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4258 
4259 	if (!(cpu_rotate || task_rotate))
4260 		return false;
4261 
4262 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4263 	perf_pmu_disable(pmu);
4264 
4265 	if (task_rotate)
4266 		task_event = ctx_event_to_rotate(task_epc);
4267 	if (cpu_rotate)
4268 		cpu_event = ctx_event_to_rotate(cpu_epc);
4269 
4270 	/*
4271 	 * As per the order given at ctx_resched() first 'pop' task flexible
4272 	 * and then, if needed CPU flexible.
4273 	 */
4274 	if (task_event || (task_epc && cpu_event)) {
4275 		update_context_time(task_epc->ctx);
4276 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4277 	}
4278 
4279 	if (cpu_event) {
4280 		update_context_time(&cpuctx->ctx);
4281 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4282 		rotate_ctx(&cpuctx->ctx, cpu_event);
4283 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4284 	}
4285 
4286 	if (task_event)
4287 		rotate_ctx(task_epc->ctx, task_event);
4288 
4289 	if (task_event || (task_epc && cpu_event))
4290 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4291 
4292 	perf_pmu_enable(pmu);
4293 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4294 
4295 	return true;
4296 }
4297 
4298 void perf_event_task_tick(void)
4299 {
4300 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4301 	struct perf_event_context *ctx;
4302 	int throttled;
4303 
4304 	lockdep_assert_irqs_disabled();
4305 
4306 	__this_cpu_inc(perf_throttled_seq);
4307 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4308 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4309 
4310 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4311 
4312 	rcu_read_lock();
4313 	ctx = rcu_dereference(current->perf_event_ctxp);
4314 	if (ctx)
4315 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4316 	rcu_read_unlock();
4317 }
4318 
4319 static int event_enable_on_exec(struct perf_event *event,
4320 				struct perf_event_context *ctx)
4321 {
4322 	if (!event->attr.enable_on_exec)
4323 		return 0;
4324 
4325 	event->attr.enable_on_exec = 0;
4326 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4327 		return 0;
4328 
4329 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4330 
4331 	return 1;
4332 }
4333 
4334 /*
4335  * Enable all of a task's events that have been marked enable-on-exec.
4336  * This expects task == current.
4337  */
4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4339 {
4340 	struct perf_event_context *clone_ctx = NULL;
4341 	enum event_type_t event_type = 0;
4342 	struct perf_cpu_context *cpuctx;
4343 	struct perf_event *event;
4344 	unsigned long flags;
4345 	int enabled = 0;
4346 
4347 	local_irq_save(flags);
4348 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4349 		goto out;
4350 
4351 	if (!ctx->nr_events)
4352 		goto out;
4353 
4354 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4355 	perf_ctx_lock(cpuctx, ctx);
4356 	ctx_sched_out(ctx, EVENT_TIME);
4357 
4358 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4359 		enabled |= event_enable_on_exec(event, ctx);
4360 		event_type |= get_event_type(event);
4361 	}
4362 
4363 	/*
4364 	 * Unclone and reschedule this context if we enabled any event.
4365 	 */
4366 	if (enabled) {
4367 		clone_ctx = unclone_ctx(ctx);
4368 		ctx_resched(cpuctx, ctx, event_type);
4369 	} else {
4370 		ctx_sched_in(ctx, EVENT_TIME);
4371 	}
4372 	perf_ctx_unlock(cpuctx, ctx);
4373 
4374 out:
4375 	local_irq_restore(flags);
4376 
4377 	if (clone_ctx)
4378 		put_ctx(clone_ctx);
4379 }
4380 
4381 static void perf_remove_from_owner(struct perf_event *event);
4382 static void perf_event_exit_event(struct perf_event *event,
4383 				  struct perf_event_context *ctx);
4384 
4385 /*
4386  * Removes all events from the current task that have been marked
4387  * remove-on-exec, and feeds their values back to parent events.
4388  */
4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4390 {
4391 	struct perf_event_context *clone_ctx = NULL;
4392 	struct perf_event *event, *next;
4393 	unsigned long flags;
4394 	bool modified = false;
4395 
4396 	mutex_lock(&ctx->mutex);
4397 
4398 	if (WARN_ON_ONCE(ctx->task != current))
4399 		goto unlock;
4400 
4401 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4402 		if (!event->attr.remove_on_exec)
4403 			continue;
4404 
4405 		if (!is_kernel_event(event))
4406 			perf_remove_from_owner(event);
4407 
4408 		modified = true;
4409 
4410 		perf_event_exit_event(event, ctx);
4411 	}
4412 
4413 	raw_spin_lock_irqsave(&ctx->lock, flags);
4414 	if (modified)
4415 		clone_ctx = unclone_ctx(ctx);
4416 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417 
4418 unlock:
4419 	mutex_unlock(&ctx->mutex);
4420 
4421 	if (clone_ctx)
4422 		put_ctx(clone_ctx);
4423 }
4424 
4425 struct perf_read_data {
4426 	struct perf_event *event;
4427 	bool group;
4428 	int ret;
4429 };
4430 
4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4432 {
4433 	u16 local_pkg, event_pkg;
4434 
4435 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4436 		int local_cpu = smp_processor_id();
4437 
4438 		event_pkg = topology_physical_package_id(event_cpu);
4439 		local_pkg = topology_physical_package_id(local_cpu);
4440 
4441 		if (event_pkg == local_pkg)
4442 			return local_cpu;
4443 	}
4444 
4445 	return event_cpu;
4446 }
4447 
4448 /*
4449  * Cross CPU call to read the hardware event
4450  */
4451 static void __perf_event_read(void *info)
4452 {
4453 	struct perf_read_data *data = info;
4454 	struct perf_event *sub, *event = data->event;
4455 	struct perf_event_context *ctx = event->ctx;
4456 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4457 	struct pmu *pmu = event->pmu;
4458 
4459 	/*
4460 	 * If this is a task context, we need to check whether it is
4461 	 * the current task context of this cpu.  If not it has been
4462 	 * scheduled out before the smp call arrived.  In that case
4463 	 * event->count would have been updated to a recent sample
4464 	 * when the event was scheduled out.
4465 	 */
4466 	if (ctx->task && cpuctx->task_ctx != ctx)
4467 		return;
4468 
4469 	raw_spin_lock(&ctx->lock);
4470 	if (ctx->is_active & EVENT_TIME) {
4471 		update_context_time(ctx);
4472 		update_cgrp_time_from_event(event);
4473 	}
4474 
4475 	perf_event_update_time(event);
4476 	if (data->group)
4477 		perf_event_update_sibling_time(event);
4478 
4479 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4480 		goto unlock;
4481 
4482 	if (!data->group) {
4483 		pmu->read(event);
4484 		data->ret = 0;
4485 		goto unlock;
4486 	}
4487 
4488 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4489 
4490 	pmu->read(event);
4491 
4492 	for_each_sibling_event(sub, event) {
4493 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4494 			/*
4495 			 * Use sibling's PMU rather than @event's since
4496 			 * sibling could be on different (eg: software) PMU.
4497 			 */
4498 			sub->pmu->read(sub);
4499 		}
4500 	}
4501 
4502 	data->ret = pmu->commit_txn(pmu);
4503 
4504 unlock:
4505 	raw_spin_unlock(&ctx->lock);
4506 }
4507 
4508 static inline u64 perf_event_count(struct perf_event *event)
4509 {
4510 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4511 }
4512 
4513 static void calc_timer_values(struct perf_event *event,
4514 				u64 *now,
4515 				u64 *enabled,
4516 				u64 *running)
4517 {
4518 	u64 ctx_time;
4519 
4520 	*now = perf_clock();
4521 	ctx_time = perf_event_time_now(event, *now);
4522 	__perf_update_times(event, ctx_time, enabled, running);
4523 }
4524 
4525 /*
4526  * NMI-safe method to read a local event, that is an event that
4527  * is:
4528  *   - either for the current task, or for this CPU
4529  *   - does not have inherit set, for inherited task events
4530  *     will not be local and we cannot read them atomically
4531  *   - must not have a pmu::count method
4532  */
4533 int perf_event_read_local(struct perf_event *event, u64 *value,
4534 			  u64 *enabled, u64 *running)
4535 {
4536 	unsigned long flags;
4537 	int ret = 0;
4538 
4539 	/*
4540 	 * Disabling interrupts avoids all counter scheduling (context
4541 	 * switches, timer based rotation and IPIs).
4542 	 */
4543 	local_irq_save(flags);
4544 
4545 	/*
4546 	 * It must not be an event with inherit set, we cannot read
4547 	 * all child counters from atomic context.
4548 	 */
4549 	if (event->attr.inherit) {
4550 		ret = -EOPNOTSUPP;
4551 		goto out;
4552 	}
4553 
4554 	/* If this is a per-task event, it must be for current */
4555 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4556 	    event->hw.target != current) {
4557 		ret = -EINVAL;
4558 		goto out;
4559 	}
4560 
4561 	/* If this is a per-CPU event, it must be for this CPU */
4562 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4563 	    event->cpu != smp_processor_id()) {
4564 		ret = -EINVAL;
4565 		goto out;
4566 	}
4567 
4568 	/* If this is a pinned event it must be running on this CPU */
4569 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4570 		ret = -EBUSY;
4571 		goto out;
4572 	}
4573 
4574 	/*
4575 	 * If the event is currently on this CPU, its either a per-task event,
4576 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4577 	 * oncpu == -1).
4578 	 */
4579 	if (event->oncpu == smp_processor_id())
4580 		event->pmu->read(event);
4581 
4582 	*value = local64_read(&event->count);
4583 	if (enabled || running) {
4584 		u64 __enabled, __running, __now;
4585 
4586 		calc_timer_values(event, &__now, &__enabled, &__running);
4587 		if (enabled)
4588 			*enabled = __enabled;
4589 		if (running)
4590 			*running = __running;
4591 	}
4592 out:
4593 	local_irq_restore(flags);
4594 
4595 	return ret;
4596 }
4597 
4598 static int perf_event_read(struct perf_event *event, bool group)
4599 {
4600 	enum perf_event_state state = READ_ONCE(event->state);
4601 	int event_cpu, ret = 0;
4602 
4603 	/*
4604 	 * If event is enabled and currently active on a CPU, update the
4605 	 * value in the event structure:
4606 	 */
4607 again:
4608 	if (state == PERF_EVENT_STATE_ACTIVE) {
4609 		struct perf_read_data data;
4610 
4611 		/*
4612 		 * Orders the ->state and ->oncpu loads such that if we see
4613 		 * ACTIVE we must also see the right ->oncpu.
4614 		 *
4615 		 * Matches the smp_wmb() from event_sched_in().
4616 		 */
4617 		smp_rmb();
4618 
4619 		event_cpu = READ_ONCE(event->oncpu);
4620 		if ((unsigned)event_cpu >= nr_cpu_ids)
4621 			return 0;
4622 
4623 		data = (struct perf_read_data){
4624 			.event = event,
4625 			.group = group,
4626 			.ret = 0,
4627 		};
4628 
4629 		preempt_disable();
4630 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4631 
4632 		/*
4633 		 * Purposely ignore the smp_call_function_single() return
4634 		 * value.
4635 		 *
4636 		 * If event_cpu isn't a valid CPU it means the event got
4637 		 * scheduled out and that will have updated the event count.
4638 		 *
4639 		 * Therefore, either way, we'll have an up-to-date event count
4640 		 * after this.
4641 		 */
4642 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4643 		preempt_enable();
4644 		ret = data.ret;
4645 
4646 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4647 		struct perf_event_context *ctx = event->ctx;
4648 		unsigned long flags;
4649 
4650 		raw_spin_lock_irqsave(&ctx->lock, flags);
4651 		state = event->state;
4652 		if (state != PERF_EVENT_STATE_INACTIVE) {
4653 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4654 			goto again;
4655 		}
4656 
4657 		/*
4658 		 * May read while context is not active (e.g., thread is
4659 		 * blocked), in that case we cannot update context time
4660 		 */
4661 		if (ctx->is_active & EVENT_TIME) {
4662 			update_context_time(ctx);
4663 			update_cgrp_time_from_event(event);
4664 		}
4665 
4666 		perf_event_update_time(event);
4667 		if (group)
4668 			perf_event_update_sibling_time(event);
4669 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4670 	}
4671 
4672 	return ret;
4673 }
4674 
4675 /*
4676  * Initialize the perf_event context in a task_struct:
4677  */
4678 static void __perf_event_init_context(struct perf_event_context *ctx)
4679 {
4680 	raw_spin_lock_init(&ctx->lock);
4681 	mutex_init(&ctx->mutex);
4682 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4683 	perf_event_groups_init(&ctx->pinned_groups);
4684 	perf_event_groups_init(&ctx->flexible_groups);
4685 	INIT_LIST_HEAD(&ctx->event_list);
4686 	refcount_set(&ctx->refcount, 1);
4687 }
4688 
4689 static void
4690 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4691 {
4692 	epc->pmu = pmu;
4693 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4694 	INIT_LIST_HEAD(&epc->pinned_active);
4695 	INIT_LIST_HEAD(&epc->flexible_active);
4696 	atomic_set(&epc->refcount, 1);
4697 }
4698 
4699 static struct perf_event_context *
4700 alloc_perf_context(struct task_struct *task)
4701 {
4702 	struct perf_event_context *ctx;
4703 
4704 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4705 	if (!ctx)
4706 		return NULL;
4707 
4708 	__perf_event_init_context(ctx);
4709 	if (task)
4710 		ctx->task = get_task_struct(task);
4711 
4712 	return ctx;
4713 }
4714 
4715 static struct task_struct *
4716 find_lively_task_by_vpid(pid_t vpid)
4717 {
4718 	struct task_struct *task;
4719 
4720 	rcu_read_lock();
4721 	if (!vpid)
4722 		task = current;
4723 	else
4724 		task = find_task_by_vpid(vpid);
4725 	if (task)
4726 		get_task_struct(task);
4727 	rcu_read_unlock();
4728 
4729 	if (!task)
4730 		return ERR_PTR(-ESRCH);
4731 
4732 	return task;
4733 }
4734 
4735 /*
4736  * Returns a matching context with refcount and pincount.
4737  */
4738 static struct perf_event_context *
4739 find_get_context(struct task_struct *task, struct perf_event *event)
4740 {
4741 	struct perf_event_context *ctx, *clone_ctx = NULL;
4742 	struct perf_cpu_context *cpuctx;
4743 	unsigned long flags;
4744 	int err;
4745 
4746 	if (!task) {
4747 		/* Must be root to operate on a CPU event: */
4748 		err = perf_allow_cpu(&event->attr);
4749 		if (err)
4750 			return ERR_PTR(err);
4751 
4752 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4753 		ctx = &cpuctx->ctx;
4754 		get_ctx(ctx);
4755 		raw_spin_lock_irqsave(&ctx->lock, flags);
4756 		++ctx->pin_count;
4757 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4758 
4759 		return ctx;
4760 	}
4761 
4762 	err = -EINVAL;
4763 retry:
4764 	ctx = perf_lock_task_context(task, &flags);
4765 	if (ctx) {
4766 		clone_ctx = unclone_ctx(ctx);
4767 		++ctx->pin_count;
4768 
4769 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4770 
4771 		if (clone_ctx)
4772 			put_ctx(clone_ctx);
4773 	} else {
4774 		ctx = alloc_perf_context(task);
4775 		err = -ENOMEM;
4776 		if (!ctx)
4777 			goto errout;
4778 
4779 		err = 0;
4780 		mutex_lock(&task->perf_event_mutex);
4781 		/*
4782 		 * If it has already passed perf_event_exit_task().
4783 		 * we must see PF_EXITING, it takes this mutex too.
4784 		 */
4785 		if (task->flags & PF_EXITING)
4786 			err = -ESRCH;
4787 		else if (task->perf_event_ctxp)
4788 			err = -EAGAIN;
4789 		else {
4790 			get_ctx(ctx);
4791 			++ctx->pin_count;
4792 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4793 		}
4794 		mutex_unlock(&task->perf_event_mutex);
4795 
4796 		if (unlikely(err)) {
4797 			put_ctx(ctx);
4798 
4799 			if (err == -EAGAIN)
4800 				goto retry;
4801 			goto errout;
4802 		}
4803 	}
4804 
4805 	return ctx;
4806 
4807 errout:
4808 	return ERR_PTR(err);
4809 }
4810 
4811 static struct perf_event_pmu_context *
4812 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4813 		     struct perf_event *event)
4814 {
4815 	struct perf_event_pmu_context *new = NULL, *epc;
4816 	void *task_ctx_data = NULL;
4817 
4818 	if (!ctx->task) {
4819 		struct perf_cpu_pmu_context *cpc;
4820 
4821 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4822 		epc = &cpc->epc;
4823 		raw_spin_lock_irq(&ctx->lock);
4824 		if (!epc->ctx) {
4825 			atomic_set(&epc->refcount, 1);
4826 			epc->embedded = 1;
4827 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4828 			epc->ctx = ctx;
4829 		} else {
4830 			WARN_ON_ONCE(epc->ctx != ctx);
4831 			atomic_inc(&epc->refcount);
4832 		}
4833 		raw_spin_unlock_irq(&ctx->lock);
4834 		return epc;
4835 	}
4836 
4837 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4838 	if (!new)
4839 		return ERR_PTR(-ENOMEM);
4840 
4841 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4842 		task_ctx_data = alloc_task_ctx_data(pmu);
4843 		if (!task_ctx_data) {
4844 			kfree(new);
4845 			return ERR_PTR(-ENOMEM);
4846 		}
4847 	}
4848 
4849 	__perf_init_event_pmu_context(new, pmu);
4850 
4851 	/*
4852 	 * XXX
4853 	 *
4854 	 * lockdep_assert_held(&ctx->mutex);
4855 	 *
4856 	 * can't because perf_event_init_task() doesn't actually hold the
4857 	 * child_ctx->mutex.
4858 	 */
4859 
4860 	raw_spin_lock_irq(&ctx->lock);
4861 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4862 		if (epc->pmu == pmu) {
4863 			WARN_ON_ONCE(epc->ctx != ctx);
4864 			atomic_inc(&epc->refcount);
4865 			goto found_epc;
4866 		}
4867 	}
4868 
4869 	epc = new;
4870 	new = NULL;
4871 
4872 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4873 	epc->ctx = ctx;
4874 
4875 found_epc:
4876 	if (task_ctx_data && !epc->task_ctx_data) {
4877 		epc->task_ctx_data = task_ctx_data;
4878 		task_ctx_data = NULL;
4879 		ctx->nr_task_data++;
4880 	}
4881 	raw_spin_unlock_irq(&ctx->lock);
4882 
4883 	free_task_ctx_data(pmu, task_ctx_data);
4884 	kfree(new);
4885 
4886 	return epc;
4887 }
4888 
4889 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4890 {
4891 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4892 }
4893 
4894 static void free_epc_rcu(struct rcu_head *head)
4895 {
4896 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4897 
4898 	kfree(epc->task_ctx_data);
4899 	kfree(epc);
4900 }
4901 
4902 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4903 {
4904 	struct perf_event_context *ctx = epc->ctx;
4905 	unsigned long flags;
4906 
4907 	/*
4908 	 * XXX
4909 	 *
4910 	 * lockdep_assert_held(&ctx->mutex);
4911 	 *
4912 	 * can't because of the call-site in _free_event()/put_event()
4913 	 * which isn't always called under ctx->mutex.
4914 	 */
4915 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4916 		return;
4917 
4918 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4919 
4920 	list_del_init(&epc->pmu_ctx_entry);
4921 	epc->ctx = NULL;
4922 
4923 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4924 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4925 
4926 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4927 
4928 	if (epc->embedded)
4929 		return;
4930 
4931 	call_rcu(&epc->rcu_head, free_epc_rcu);
4932 }
4933 
4934 static void perf_event_free_filter(struct perf_event *event);
4935 
4936 static void free_event_rcu(struct rcu_head *head)
4937 {
4938 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4939 
4940 	if (event->ns)
4941 		put_pid_ns(event->ns);
4942 	perf_event_free_filter(event);
4943 	kmem_cache_free(perf_event_cache, event);
4944 }
4945 
4946 static void ring_buffer_attach(struct perf_event *event,
4947 			       struct perf_buffer *rb);
4948 
4949 static void detach_sb_event(struct perf_event *event)
4950 {
4951 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4952 
4953 	raw_spin_lock(&pel->lock);
4954 	list_del_rcu(&event->sb_list);
4955 	raw_spin_unlock(&pel->lock);
4956 }
4957 
4958 static bool is_sb_event(struct perf_event *event)
4959 {
4960 	struct perf_event_attr *attr = &event->attr;
4961 
4962 	if (event->parent)
4963 		return false;
4964 
4965 	if (event->attach_state & PERF_ATTACH_TASK)
4966 		return false;
4967 
4968 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4969 	    attr->comm || attr->comm_exec ||
4970 	    attr->task || attr->ksymbol ||
4971 	    attr->context_switch || attr->text_poke ||
4972 	    attr->bpf_event)
4973 		return true;
4974 	return false;
4975 }
4976 
4977 static void unaccount_pmu_sb_event(struct perf_event *event)
4978 {
4979 	if (is_sb_event(event))
4980 		detach_sb_event(event);
4981 }
4982 
4983 #ifdef CONFIG_NO_HZ_FULL
4984 static DEFINE_SPINLOCK(nr_freq_lock);
4985 #endif
4986 
4987 static void unaccount_freq_event_nohz(void)
4988 {
4989 #ifdef CONFIG_NO_HZ_FULL
4990 	spin_lock(&nr_freq_lock);
4991 	if (atomic_dec_and_test(&nr_freq_events))
4992 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4993 	spin_unlock(&nr_freq_lock);
4994 #endif
4995 }
4996 
4997 static void unaccount_freq_event(void)
4998 {
4999 	if (tick_nohz_full_enabled())
5000 		unaccount_freq_event_nohz();
5001 	else
5002 		atomic_dec(&nr_freq_events);
5003 }
5004 
5005 static void unaccount_event(struct perf_event *event)
5006 {
5007 	bool dec = false;
5008 
5009 	if (event->parent)
5010 		return;
5011 
5012 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5013 		dec = true;
5014 	if (event->attr.mmap || event->attr.mmap_data)
5015 		atomic_dec(&nr_mmap_events);
5016 	if (event->attr.build_id)
5017 		atomic_dec(&nr_build_id_events);
5018 	if (event->attr.comm)
5019 		atomic_dec(&nr_comm_events);
5020 	if (event->attr.namespaces)
5021 		atomic_dec(&nr_namespaces_events);
5022 	if (event->attr.cgroup)
5023 		atomic_dec(&nr_cgroup_events);
5024 	if (event->attr.task)
5025 		atomic_dec(&nr_task_events);
5026 	if (event->attr.freq)
5027 		unaccount_freq_event();
5028 	if (event->attr.context_switch) {
5029 		dec = true;
5030 		atomic_dec(&nr_switch_events);
5031 	}
5032 	if (is_cgroup_event(event))
5033 		dec = true;
5034 	if (has_branch_stack(event))
5035 		dec = true;
5036 	if (event->attr.ksymbol)
5037 		atomic_dec(&nr_ksymbol_events);
5038 	if (event->attr.bpf_event)
5039 		atomic_dec(&nr_bpf_events);
5040 	if (event->attr.text_poke)
5041 		atomic_dec(&nr_text_poke_events);
5042 
5043 	if (dec) {
5044 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5045 			schedule_delayed_work(&perf_sched_work, HZ);
5046 	}
5047 
5048 	unaccount_pmu_sb_event(event);
5049 }
5050 
5051 static void perf_sched_delayed(struct work_struct *work)
5052 {
5053 	mutex_lock(&perf_sched_mutex);
5054 	if (atomic_dec_and_test(&perf_sched_count))
5055 		static_branch_disable(&perf_sched_events);
5056 	mutex_unlock(&perf_sched_mutex);
5057 }
5058 
5059 /*
5060  * The following implement mutual exclusion of events on "exclusive" pmus
5061  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5062  * at a time, so we disallow creating events that might conflict, namely:
5063  *
5064  *  1) cpu-wide events in the presence of per-task events,
5065  *  2) per-task events in the presence of cpu-wide events,
5066  *  3) two matching events on the same perf_event_context.
5067  *
5068  * The former two cases are handled in the allocation path (perf_event_alloc(),
5069  * _free_event()), the latter -- before the first perf_install_in_context().
5070  */
5071 static int exclusive_event_init(struct perf_event *event)
5072 {
5073 	struct pmu *pmu = event->pmu;
5074 
5075 	if (!is_exclusive_pmu(pmu))
5076 		return 0;
5077 
5078 	/*
5079 	 * Prevent co-existence of per-task and cpu-wide events on the
5080 	 * same exclusive pmu.
5081 	 *
5082 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5083 	 * events on this "exclusive" pmu, positive means there are
5084 	 * per-task events.
5085 	 *
5086 	 * Since this is called in perf_event_alloc() path, event::ctx
5087 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5088 	 * to mean "per-task event", because unlike other attach states it
5089 	 * never gets cleared.
5090 	 */
5091 	if (event->attach_state & PERF_ATTACH_TASK) {
5092 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5093 			return -EBUSY;
5094 	} else {
5095 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5096 			return -EBUSY;
5097 	}
5098 
5099 	return 0;
5100 }
5101 
5102 static void exclusive_event_destroy(struct perf_event *event)
5103 {
5104 	struct pmu *pmu = event->pmu;
5105 
5106 	if (!is_exclusive_pmu(pmu))
5107 		return;
5108 
5109 	/* see comment in exclusive_event_init() */
5110 	if (event->attach_state & PERF_ATTACH_TASK)
5111 		atomic_dec(&pmu->exclusive_cnt);
5112 	else
5113 		atomic_inc(&pmu->exclusive_cnt);
5114 }
5115 
5116 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5117 {
5118 	if ((e1->pmu == e2->pmu) &&
5119 	    (e1->cpu == e2->cpu ||
5120 	     e1->cpu == -1 ||
5121 	     e2->cpu == -1))
5122 		return true;
5123 	return false;
5124 }
5125 
5126 static bool exclusive_event_installable(struct perf_event *event,
5127 					struct perf_event_context *ctx)
5128 {
5129 	struct perf_event *iter_event;
5130 	struct pmu *pmu = event->pmu;
5131 
5132 	lockdep_assert_held(&ctx->mutex);
5133 
5134 	if (!is_exclusive_pmu(pmu))
5135 		return true;
5136 
5137 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5138 		if (exclusive_event_match(iter_event, event))
5139 			return false;
5140 	}
5141 
5142 	return true;
5143 }
5144 
5145 static void perf_addr_filters_splice(struct perf_event *event,
5146 				       struct list_head *head);
5147 
5148 static void _free_event(struct perf_event *event)
5149 {
5150 	irq_work_sync(&event->pending_irq);
5151 
5152 	unaccount_event(event);
5153 
5154 	security_perf_event_free(event);
5155 
5156 	if (event->rb) {
5157 		/*
5158 		 * Can happen when we close an event with re-directed output.
5159 		 *
5160 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5161 		 * over us; possibly making our ring_buffer_put() the last.
5162 		 */
5163 		mutex_lock(&event->mmap_mutex);
5164 		ring_buffer_attach(event, NULL);
5165 		mutex_unlock(&event->mmap_mutex);
5166 	}
5167 
5168 	if (is_cgroup_event(event))
5169 		perf_detach_cgroup(event);
5170 
5171 	if (!event->parent) {
5172 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5173 			put_callchain_buffers();
5174 	}
5175 
5176 	perf_event_free_bpf_prog(event);
5177 	perf_addr_filters_splice(event, NULL);
5178 	kfree(event->addr_filter_ranges);
5179 
5180 	if (event->destroy)
5181 		event->destroy(event);
5182 
5183 	/*
5184 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5185 	 * hw.target.
5186 	 */
5187 	if (event->hw.target)
5188 		put_task_struct(event->hw.target);
5189 
5190 	if (event->pmu_ctx)
5191 		put_pmu_ctx(event->pmu_ctx);
5192 
5193 	/*
5194 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5195 	 * all task references must be cleaned up.
5196 	 */
5197 	if (event->ctx)
5198 		put_ctx(event->ctx);
5199 
5200 	exclusive_event_destroy(event);
5201 	module_put(event->pmu->module);
5202 
5203 	call_rcu(&event->rcu_head, free_event_rcu);
5204 }
5205 
5206 /*
5207  * Used to free events which have a known refcount of 1, such as in error paths
5208  * where the event isn't exposed yet and inherited events.
5209  */
5210 static void free_event(struct perf_event *event)
5211 {
5212 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5213 				"unexpected event refcount: %ld; ptr=%p\n",
5214 				atomic_long_read(&event->refcount), event)) {
5215 		/* leak to avoid use-after-free */
5216 		return;
5217 	}
5218 
5219 	_free_event(event);
5220 }
5221 
5222 /*
5223  * Remove user event from the owner task.
5224  */
5225 static void perf_remove_from_owner(struct perf_event *event)
5226 {
5227 	struct task_struct *owner;
5228 
5229 	rcu_read_lock();
5230 	/*
5231 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5232 	 * observe !owner it means the list deletion is complete and we can
5233 	 * indeed free this event, otherwise we need to serialize on
5234 	 * owner->perf_event_mutex.
5235 	 */
5236 	owner = READ_ONCE(event->owner);
5237 	if (owner) {
5238 		/*
5239 		 * Since delayed_put_task_struct() also drops the last
5240 		 * task reference we can safely take a new reference
5241 		 * while holding the rcu_read_lock().
5242 		 */
5243 		get_task_struct(owner);
5244 	}
5245 	rcu_read_unlock();
5246 
5247 	if (owner) {
5248 		/*
5249 		 * If we're here through perf_event_exit_task() we're already
5250 		 * holding ctx->mutex which would be an inversion wrt. the
5251 		 * normal lock order.
5252 		 *
5253 		 * However we can safely take this lock because its the child
5254 		 * ctx->mutex.
5255 		 */
5256 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5257 
5258 		/*
5259 		 * We have to re-check the event->owner field, if it is cleared
5260 		 * we raced with perf_event_exit_task(), acquiring the mutex
5261 		 * ensured they're done, and we can proceed with freeing the
5262 		 * event.
5263 		 */
5264 		if (event->owner) {
5265 			list_del_init(&event->owner_entry);
5266 			smp_store_release(&event->owner, NULL);
5267 		}
5268 		mutex_unlock(&owner->perf_event_mutex);
5269 		put_task_struct(owner);
5270 	}
5271 }
5272 
5273 static void put_event(struct perf_event *event)
5274 {
5275 	if (!atomic_long_dec_and_test(&event->refcount))
5276 		return;
5277 
5278 	_free_event(event);
5279 }
5280 
5281 /*
5282  * Kill an event dead; while event:refcount will preserve the event
5283  * object, it will not preserve its functionality. Once the last 'user'
5284  * gives up the object, we'll destroy the thing.
5285  */
5286 int perf_event_release_kernel(struct perf_event *event)
5287 {
5288 	struct perf_event_context *ctx = event->ctx;
5289 	struct perf_event *child, *tmp;
5290 	LIST_HEAD(free_list);
5291 
5292 	/*
5293 	 * If we got here through err_alloc: free_event(event); we will not
5294 	 * have attached to a context yet.
5295 	 */
5296 	if (!ctx) {
5297 		WARN_ON_ONCE(event->attach_state &
5298 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5299 		goto no_ctx;
5300 	}
5301 
5302 	if (!is_kernel_event(event))
5303 		perf_remove_from_owner(event);
5304 
5305 	ctx = perf_event_ctx_lock(event);
5306 	WARN_ON_ONCE(ctx->parent_ctx);
5307 
5308 	/*
5309 	 * Mark this event as STATE_DEAD, there is no external reference to it
5310 	 * anymore.
5311 	 *
5312 	 * Anybody acquiring event->child_mutex after the below loop _must_
5313 	 * also see this, most importantly inherit_event() which will avoid
5314 	 * placing more children on the list.
5315 	 *
5316 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5317 	 * child events.
5318 	 */
5319 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5320 
5321 	perf_event_ctx_unlock(event, ctx);
5322 
5323 again:
5324 	mutex_lock(&event->child_mutex);
5325 	list_for_each_entry(child, &event->child_list, child_list) {
5326 
5327 		/*
5328 		 * Cannot change, child events are not migrated, see the
5329 		 * comment with perf_event_ctx_lock_nested().
5330 		 */
5331 		ctx = READ_ONCE(child->ctx);
5332 		/*
5333 		 * Since child_mutex nests inside ctx::mutex, we must jump
5334 		 * through hoops. We start by grabbing a reference on the ctx.
5335 		 *
5336 		 * Since the event cannot get freed while we hold the
5337 		 * child_mutex, the context must also exist and have a !0
5338 		 * reference count.
5339 		 */
5340 		get_ctx(ctx);
5341 
5342 		/*
5343 		 * Now that we have a ctx ref, we can drop child_mutex, and
5344 		 * acquire ctx::mutex without fear of it going away. Then we
5345 		 * can re-acquire child_mutex.
5346 		 */
5347 		mutex_unlock(&event->child_mutex);
5348 		mutex_lock(&ctx->mutex);
5349 		mutex_lock(&event->child_mutex);
5350 
5351 		/*
5352 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5353 		 * state, if child is still the first entry, it didn't get freed
5354 		 * and we can continue doing so.
5355 		 */
5356 		tmp = list_first_entry_or_null(&event->child_list,
5357 					       struct perf_event, child_list);
5358 		if (tmp == child) {
5359 			perf_remove_from_context(child, DETACH_GROUP);
5360 			list_move(&child->child_list, &free_list);
5361 			/*
5362 			 * This matches the refcount bump in inherit_event();
5363 			 * this can't be the last reference.
5364 			 */
5365 			put_event(event);
5366 		}
5367 
5368 		mutex_unlock(&event->child_mutex);
5369 		mutex_unlock(&ctx->mutex);
5370 		put_ctx(ctx);
5371 		goto again;
5372 	}
5373 	mutex_unlock(&event->child_mutex);
5374 
5375 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5376 		void *var = &child->ctx->refcount;
5377 
5378 		list_del(&child->child_list);
5379 		free_event(child);
5380 
5381 		/*
5382 		 * Wake any perf_event_free_task() waiting for this event to be
5383 		 * freed.
5384 		 */
5385 		smp_mb(); /* pairs with wait_var_event() */
5386 		wake_up_var(var);
5387 	}
5388 
5389 no_ctx:
5390 	put_event(event); /* Must be the 'last' reference */
5391 	return 0;
5392 }
5393 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5394 
5395 /*
5396  * Called when the last reference to the file is gone.
5397  */
5398 static int perf_release(struct inode *inode, struct file *file)
5399 {
5400 	perf_event_release_kernel(file->private_data);
5401 	return 0;
5402 }
5403 
5404 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5405 {
5406 	struct perf_event *child;
5407 	u64 total = 0;
5408 
5409 	*enabled = 0;
5410 	*running = 0;
5411 
5412 	mutex_lock(&event->child_mutex);
5413 
5414 	(void)perf_event_read(event, false);
5415 	total += perf_event_count(event);
5416 
5417 	*enabled += event->total_time_enabled +
5418 			atomic64_read(&event->child_total_time_enabled);
5419 	*running += event->total_time_running +
5420 			atomic64_read(&event->child_total_time_running);
5421 
5422 	list_for_each_entry(child, &event->child_list, child_list) {
5423 		(void)perf_event_read(child, false);
5424 		total += perf_event_count(child);
5425 		*enabled += child->total_time_enabled;
5426 		*running += child->total_time_running;
5427 	}
5428 	mutex_unlock(&event->child_mutex);
5429 
5430 	return total;
5431 }
5432 
5433 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5434 {
5435 	struct perf_event_context *ctx;
5436 	u64 count;
5437 
5438 	ctx = perf_event_ctx_lock(event);
5439 	count = __perf_event_read_value(event, enabled, running);
5440 	perf_event_ctx_unlock(event, ctx);
5441 
5442 	return count;
5443 }
5444 EXPORT_SYMBOL_GPL(perf_event_read_value);
5445 
5446 static int __perf_read_group_add(struct perf_event *leader,
5447 					u64 read_format, u64 *values)
5448 {
5449 	struct perf_event_context *ctx = leader->ctx;
5450 	struct perf_event *sub, *parent;
5451 	unsigned long flags;
5452 	int n = 1; /* skip @nr */
5453 	int ret;
5454 
5455 	ret = perf_event_read(leader, true);
5456 	if (ret)
5457 		return ret;
5458 
5459 	raw_spin_lock_irqsave(&ctx->lock, flags);
5460 	/*
5461 	 * Verify the grouping between the parent and child (inherited)
5462 	 * events is still in tact.
5463 	 *
5464 	 * Specifically:
5465 	 *  - leader->ctx->lock pins leader->sibling_list
5466 	 *  - parent->child_mutex pins parent->child_list
5467 	 *  - parent->ctx->mutex pins parent->sibling_list
5468 	 *
5469 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5470 	 * ctx->mutex), group destruction is not atomic between children, also
5471 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5472 	 * group.
5473 	 *
5474 	 * Therefore it is possible to have parent and child groups in a
5475 	 * different configuration and summing over such a beast makes no sense
5476 	 * what so ever.
5477 	 *
5478 	 * Reject this.
5479 	 */
5480 	parent = leader->parent;
5481 	if (parent &&
5482 	    (parent->group_generation != leader->group_generation ||
5483 	     parent->nr_siblings != leader->nr_siblings)) {
5484 		ret = -ECHILD;
5485 		goto unlock;
5486 	}
5487 
5488 	/*
5489 	 * Since we co-schedule groups, {enabled,running} times of siblings
5490 	 * will be identical to those of the leader, so we only publish one
5491 	 * set.
5492 	 */
5493 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5494 		values[n++] += leader->total_time_enabled +
5495 			atomic64_read(&leader->child_total_time_enabled);
5496 	}
5497 
5498 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5499 		values[n++] += leader->total_time_running +
5500 			atomic64_read(&leader->child_total_time_running);
5501 	}
5502 
5503 	/*
5504 	 * Write {count,id} tuples for every sibling.
5505 	 */
5506 	values[n++] += perf_event_count(leader);
5507 	if (read_format & PERF_FORMAT_ID)
5508 		values[n++] = primary_event_id(leader);
5509 	if (read_format & PERF_FORMAT_LOST)
5510 		values[n++] = atomic64_read(&leader->lost_samples);
5511 
5512 	for_each_sibling_event(sub, leader) {
5513 		values[n++] += perf_event_count(sub);
5514 		if (read_format & PERF_FORMAT_ID)
5515 			values[n++] = primary_event_id(sub);
5516 		if (read_format & PERF_FORMAT_LOST)
5517 			values[n++] = atomic64_read(&sub->lost_samples);
5518 	}
5519 
5520 unlock:
5521 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5522 	return ret;
5523 }
5524 
5525 static int perf_read_group(struct perf_event *event,
5526 				   u64 read_format, char __user *buf)
5527 {
5528 	struct perf_event *leader = event->group_leader, *child;
5529 	struct perf_event_context *ctx = leader->ctx;
5530 	int ret;
5531 	u64 *values;
5532 
5533 	lockdep_assert_held(&ctx->mutex);
5534 
5535 	values = kzalloc(event->read_size, GFP_KERNEL);
5536 	if (!values)
5537 		return -ENOMEM;
5538 
5539 	values[0] = 1 + leader->nr_siblings;
5540 
5541 	mutex_lock(&leader->child_mutex);
5542 
5543 	ret = __perf_read_group_add(leader, read_format, values);
5544 	if (ret)
5545 		goto unlock;
5546 
5547 	list_for_each_entry(child, &leader->child_list, child_list) {
5548 		ret = __perf_read_group_add(child, read_format, values);
5549 		if (ret)
5550 			goto unlock;
5551 	}
5552 
5553 	mutex_unlock(&leader->child_mutex);
5554 
5555 	ret = event->read_size;
5556 	if (copy_to_user(buf, values, event->read_size))
5557 		ret = -EFAULT;
5558 	goto out;
5559 
5560 unlock:
5561 	mutex_unlock(&leader->child_mutex);
5562 out:
5563 	kfree(values);
5564 	return ret;
5565 }
5566 
5567 static int perf_read_one(struct perf_event *event,
5568 				 u64 read_format, char __user *buf)
5569 {
5570 	u64 enabled, running;
5571 	u64 values[5];
5572 	int n = 0;
5573 
5574 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5575 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5576 		values[n++] = enabled;
5577 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5578 		values[n++] = running;
5579 	if (read_format & PERF_FORMAT_ID)
5580 		values[n++] = primary_event_id(event);
5581 	if (read_format & PERF_FORMAT_LOST)
5582 		values[n++] = atomic64_read(&event->lost_samples);
5583 
5584 	if (copy_to_user(buf, values, n * sizeof(u64)))
5585 		return -EFAULT;
5586 
5587 	return n * sizeof(u64);
5588 }
5589 
5590 static bool is_event_hup(struct perf_event *event)
5591 {
5592 	bool no_children;
5593 
5594 	if (event->state > PERF_EVENT_STATE_EXIT)
5595 		return false;
5596 
5597 	mutex_lock(&event->child_mutex);
5598 	no_children = list_empty(&event->child_list);
5599 	mutex_unlock(&event->child_mutex);
5600 	return no_children;
5601 }
5602 
5603 /*
5604  * Read the performance event - simple non blocking version for now
5605  */
5606 static ssize_t
5607 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5608 {
5609 	u64 read_format = event->attr.read_format;
5610 	int ret;
5611 
5612 	/*
5613 	 * Return end-of-file for a read on an event that is in
5614 	 * error state (i.e. because it was pinned but it couldn't be
5615 	 * scheduled on to the CPU at some point).
5616 	 */
5617 	if (event->state == PERF_EVENT_STATE_ERROR)
5618 		return 0;
5619 
5620 	if (count < event->read_size)
5621 		return -ENOSPC;
5622 
5623 	WARN_ON_ONCE(event->ctx->parent_ctx);
5624 	if (read_format & PERF_FORMAT_GROUP)
5625 		ret = perf_read_group(event, read_format, buf);
5626 	else
5627 		ret = perf_read_one(event, read_format, buf);
5628 
5629 	return ret;
5630 }
5631 
5632 static ssize_t
5633 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5634 {
5635 	struct perf_event *event = file->private_data;
5636 	struct perf_event_context *ctx;
5637 	int ret;
5638 
5639 	ret = security_perf_event_read(event);
5640 	if (ret)
5641 		return ret;
5642 
5643 	ctx = perf_event_ctx_lock(event);
5644 	ret = __perf_read(event, buf, count);
5645 	perf_event_ctx_unlock(event, ctx);
5646 
5647 	return ret;
5648 }
5649 
5650 static __poll_t perf_poll(struct file *file, poll_table *wait)
5651 {
5652 	struct perf_event *event = file->private_data;
5653 	struct perf_buffer *rb;
5654 	__poll_t events = EPOLLHUP;
5655 
5656 	poll_wait(file, &event->waitq, wait);
5657 
5658 	if (is_event_hup(event))
5659 		return events;
5660 
5661 	/*
5662 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5663 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5664 	 */
5665 	mutex_lock(&event->mmap_mutex);
5666 	rb = event->rb;
5667 	if (rb)
5668 		events = atomic_xchg(&rb->poll, 0);
5669 	mutex_unlock(&event->mmap_mutex);
5670 	return events;
5671 }
5672 
5673 static void _perf_event_reset(struct perf_event *event)
5674 {
5675 	(void)perf_event_read(event, false);
5676 	local64_set(&event->count, 0);
5677 	perf_event_update_userpage(event);
5678 }
5679 
5680 /* Assume it's not an event with inherit set. */
5681 u64 perf_event_pause(struct perf_event *event, bool reset)
5682 {
5683 	struct perf_event_context *ctx;
5684 	u64 count;
5685 
5686 	ctx = perf_event_ctx_lock(event);
5687 	WARN_ON_ONCE(event->attr.inherit);
5688 	_perf_event_disable(event);
5689 	count = local64_read(&event->count);
5690 	if (reset)
5691 		local64_set(&event->count, 0);
5692 	perf_event_ctx_unlock(event, ctx);
5693 
5694 	return count;
5695 }
5696 EXPORT_SYMBOL_GPL(perf_event_pause);
5697 
5698 /*
5699  * Holding the top-level event's child_mutex means that any
5700  * descendant process that has inherited this event will block
5701  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5702  * task existence requirements of perf_event_enable/disable.
5703  */
5704 static void perf_event_for_each_child(struct perf_event *event,
5705 					void (*func)(struct perf_event *))
5706 {
5707 	struct perf_event *child;
5708 
5709 	WARN_ON_ONCE(event->ctx->parent_ctx);
5710 
5711 	mutex_lock(&event->child_mutex);
5712 	func(event);
5713 	list_for_each_entry(child, &event->child_list, child_list)
5714 		func(child);
5715 	mutex_unlock(&event->child_mutex);
5716 }
5717 
5718 static void perf_event_for_each(struct perf_event *event,
5719 				  void (*func)(struct perf_event *))
5720 {
5721 	struct perf_event_context *ctx = event->ctx;
5722 	struct perf_event *sibling;
5723 
5724 	lockdep_assert_held(&ctx->mutex);
5725 
5726 	event = event->group_leader;
5727 
5728 	perf_event_for_each_child(event, func);
5729 	for_each_sibling_event(sibling, event)
5730 		perf_event_for_each_child(sibling, func);
5731 }
5732 
5733 static void __perf_event_period(struct perf_event *event,
5734 				struct perf_cpu_context *cpuctx,
5735 				struct perf_event_context *ctx,
5736 				void *info)
5737 {
5738 	u64 value = *((u64 *)info);
5739 	bool active;
5740 
5741 	if (event->attr.freq) {
5742 		event->attr.sample_freq = value;
5743 	} else {
5744 		event->attr.sample_period = value;
5745 		event->hw.sample_period = value;
5746 	}
5747 
5748 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5749 	if (active) {
5750 		perf_pmu_disable(event->pmu);
5751 		/*
5752 		 * We could be throttled; unthrottle now to avoid the tick
5753 		 * trying to unthrottle while we already re-started the event.
5754 		 */
5755 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5756 			event->hw.interrupts = 0;
5757 			perf_log_throttle(event, 1);
5758 		}
5759 		event->pmu->stop(event, PERF_EF_UPDATE);
5760 	}
5761 
5762 	local64_set(&event->hw.period_left, 0);
5763 
5764 	if (active) {
5765 		event->pmu->start(event, PERF_EF_RELOAD);
5766 		perf_pmu_enable(event->pmu);
5767 	}
5768 }
5769 
5770 static int perf_event_check_period(struct perf_event *event, u64 value)
5771 {
5772 	return event->pmu->check_period(event, value);
5773 }
5774 
5775 static int _perf_event_period(struct perf_event *event, u64 value)
5776 {
5777 	if (!is_sampling_event(event))
5778 		return -EINVAL;
5779 
5780 	if (!value)
5781 		return -EINVAL;
5782 
5783 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5784 		return -EINVAL;
5785 
5786 	if (perf_event_check_period(event, value))
5787 		return -EINVAL;
5788 
5789 	if (!event->attr.freq && (value & (1ULL << 63)))
5790 		return -EINVAL;
5791 
5792 	event_function_call(event, __perf_event_period, &value);
5793 
5794 	return 0;
5795 }
5796 
5797 int perf_event_period(struct perf_event *event, u64 value)
5798 {
5799 	struct perf_event_context *ctx;
5800 	int ret;
5801 
5802 	ctx = perf_event_ctx_lock(event);
5803 	ret = _perf_event_period(event, value);
5804 	perf_event_ctx_unlock(event, ctx);
5805 
5806 	return ret;
5807 }
5808 EXPORT_SYMBOL_GPL(perf_event_period);
5809 
5810 static const struct file_operations perf_fops;
5811 
5812 static inline int perf_fget_light(int fd, struct fd *p)
5813 {
5814 	struct fd f = fdget(fd);
5815 	if (!f.file)
5816 		return -EBADF;
5817 
5818 	if (f.file->f_op != &perf_fops) {
5819 		fdput(f);
5820 		return -EBADF;
5821 	}
5822 	*p = f;
5823 	return 0;
5824 }
5825 
5826 static int perf_event_set_output(struct perf_event *event,
5827 				 struct perf_event *output_event);
5828 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5829 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5830 			  struct perf_event_attr *attr);
5831 
5832 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5833 {
5834 	void (*func)(struct perf_event *);
5835 	u32 flags = arg;
5836 
5837 	switch (cmd) {
5838 	case PERF_EVENT_IOC_ENABLE:
5839 		func = _perf_event_enable;
5840 		break;
5841 	case PERF_EVENT_IOC_DISABLE:
5842 		func = _perf_event_disable;
5843 		break;
5844 	case PERF_EVENT_IOC_RESET:
5845 		func = _perf_event_reset;
5846 		break;
5847 
5848 	case PERF_EVENT_IOC_REFRESH:
5849 		return _perf_event_refresh(event, arg);
5850 
5851 	case PERF_EVENT_IOC_PERIOD:
5852 	{
5853 		u64 value;
5854 
5855 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5856 			return -EFAULT;
5857 
5858 		return _perf_event_period(event, value);
5859 	}
5860 	case PERF_EVENT_IOC_ID:
5861 	{
5862 		u64 id = primary_event_id(event);
5863 
5864 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5865 			return -EFAULT;
5866 		return 0;
5867 	}
5868 
5869 	case PERF_EVENT_IOC_SET_OUTPUT:
5870 	{
5871 		int ret;
5872 		if (arg != -1) {
5873 			struct perf_event *output_event;
5874 			struct fd output;
5875 			ret = perf_fget_light(arg, &output);
5876 			if (ret)
5877 				return ret;
5878 			output_event = output.file->private_data;
5879 			ret = perf_event_set_output(event, output_event);
5880 			fdput(output);
5881 		} else {
5882 			ret = perf_event_set_output(event, NULL);
5883 		}
5884 		return ret;
5885 	}
5886 
5887 	case PERF_EVENT_IOC_SET_FILTER:
5888 		return perf_event_set_filter(event, (void __user *)arg);
5889 
5890 	case PERF_EVENT_IOC_SET_BPF:
5891 	{
5892 		struct bpf_prog *prog;
5893 		int err;
5894 
5895 		prog = bpf_prog_get(arg);
5896 		if (IS_ERR(prog))
5897 			return PTR_ERR(prog);
5898 
5899 		err = perf_event_set_bpf_prog(event, prog, 0);
5900 		if (err) {
5901 			bpf_prog_put(prog);
5902 			return err;
5903 		}
5904 
5905 		return 0;
5906 	}
5907 
5908 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5909 		struct perf_buffer *rb;
5910 
5911 		rcu_read_lock();
5912 		rb = rcu_dereference(event->rb);
5913 		if (!rb || !rb->nr_pages) {
5914 			rcu_read_unlock();
5915 			return -EINVAL;
5916 		}
5917 		rb_toggle_paused(rb, !!arg);
5918 		rcu_read_unlock();
5919 		return 0;
5920 	}
5921 
5922 	case PERF_EVENT_IOC_QUERY_BPF:
5923 		return perf_event_query_prog_array(event, (void __user *)arg);
5924 
5925 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5926 		struct perf_event_attr new_attr;
5927 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5928 					 &new_attr);
5929 
5930 		if (err)
5931 			return err;
5932 
5933 		return perf_event_modify_attr(event,  &new_attr);
5934 	}
5935 	default:
5936 		return -ENOTTY;
5937 	}
5938 
5939 	if (flags & PERF_IOC_FLAG_GROUP)
5940 		perf_event_for_each(event, func);
5941 	else
5942 		perf_event_for_each_child(event, func);
5943 
5944 	return 0;
5945 }
5946 
5947 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5948 {
5949 	struct perf_event *event = file->private_data;
5950 	struct perf_event_context *ctx;
5951 	long ret;
5952 
5953 	/* Treat ioctl like writes as it is likely a mutating operation. */
5954 	ret = security_perf_event_write(event);
5955 	if (ret)
5956 		return ret;
5957 
5958 	ctx = perf_event_ctx_lock(event);
5959 	ret = _perf_ioctl(event, cmd, arg);
5960 	perf_event_ctx_unlock(event, ctx);
5961 
5962 	return ret;
5963 }
5964 
5965 #ifdef CONFIG_COMPAT
5966 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5967 				unsigned long arg)
5968 {
5969 	switch (_IOC_NR(cmd)) {
5970 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5971 	case _IOC_NR(PERF_EVENT_IOC_ID):
5972 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5973 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5974 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5975 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5976 			cmd &= ~IOCSIZE_MASK;
5977 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5978 		}
5979 		break;
5980 	}
5981 	return perf_ioctl(file, cmd, arg);
5982 }
5983 #else
5984 # define perf_compat_ioctl NULL
5985 #endif
5986 
5987 int perf_event_task_enable(void)
5988 {
5989 	struct perf_event_context *ctx;
5990 	struct perf_event *event;
5991 
5992 	mutex_lock(&current->perf_event_mutex);
5993 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5994 		ctx = perf_event_ctx_lock(event);
5995 		perf_event_for_each_child(event, _perf_event_enable);
5996 		perf_event_ctx_unlock(event, ctx);
5997 	}
5998 	mutex_unlock(&current->perf_event_mutex);
5999 
6000 	return 0;
6001 }
6002 
6003 int perf_event_task_disable(void)
6004 {
6005 	struct perf_event_context *ctx;
6006 	struct perf_event *event;
6007 
6008 	mutex_lock(&current->perf_event_mutex);
6009 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6010 		ctx = perf_event_ctx_lock(event);
6011 		perf_event_for_each_child(event, _perf_event_disable);
6012 		perf_event_ctx_unlock(event, ctx);
6013 	}
6014 	mutex_unlock(&current->perf_event_mutex);
6015 
6016 	return 0;
6017 }
6018 
6019 static int perf_event_index(struct perf_event *event)
6020 {
6021 	if (event->hw.state & PERF_HES_STOPPED)
6022 		return 0;
6023 
6024 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6025 		return 0;
6026 
6027 	return event->pmu->event_idx(event);
6028 }
6029 
6030 static void perf_event_init_userpage(struct perf_event *event)
6031 {
6032 	struct perf_event_mmap_page *userpg;
6033 	struct perf_buffer *rb;
6034 
6035 	rcu_read_lock();
6036 	rb = rcu_dereference(event->rb);
6037 	if (!rb)
6038 		goto unlock;
6039 
6040 	userpg = rb->user_page;
6041 
6042 	/* Allow new userspace to detect that bit 0 is deprecated */
6043 	userpg->cap_bit0_is_deprecated = 1;
6044 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6045 	userpg->data_offset = PAGE_SIZE;
6046 	userpg->data_size = perf_data_size(rb);
6047 
6048 unlock:
6049 	rcu_read_unlock();
6050 }
6051 
6052 void __weak arch_perf_update_userpage(
6053 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6054 {
6055 }
6056 
6057 /*
6058  * Callers need to ensure there can be no nesting of this function, otherwise
6059  * the seqlock logic goes bad. We can not serialize this because the arch
6060  * code calls this from NMI context.
6061  */
6062 void perf_event_update_userpage(struct perf_event *event)
6063 {
6064 	struct perf_event_mmap_page *userpg;
6065 	struct perf_buffer *rb;
6066 	u64 enabled, running, now;
6067 
6068 	rcu_read_lock();
6069 	rb = rcu_dereference(event->rb);
6070 	if (!rb)
6071 		goto unlock;
6072 
6073 	/*
6074 	 * compute total_time_enabled, total_time_running
6075 	 * based on snapshot values taken when the event
6076 	 * was last scheduled in.
6077 	 *
6078 	 * we cannot simply called update_context_time()
6079 	 * because of locking issue as we can be called in
6080 	 * NMI context
6081 	 */
6082 	calc_timer_values(event, &now, &enabled, &running);
6083 
6084 	userpg = rb->user_page;
6085 	/*
6086 	 * Disable preemption to guarantee consistent time stamps are stored to
6087 	 * the user page.
6088 	 */
6089 	preempt_disable();
6090 	++userpg->lock;
6091 	barrier();
6092 	userpg->index = perf_event_index(event);
6093 	userpg->offset = perf_event_count(event);
6094 	if (userpg->index)
6095 		userpg->offset -= local64_read(&event->hw.prev_count);
6096 
6097 	userpg->time_enabled = enabled +
6098 			atomic64_read(&event->child_total_time_enabled);
6099 
6100 	userpg->time_running = running +
6101 			atomic64_read(&event->child_total_time_running);
6102 
6103 	arch_perf_update_userpage(event, userpg, now);
6104 
6105 	barrier();
6106 	++userpg->lock;
6107 	preempt_enable();
6108 unlock:
6109 	rcu_read_unlock();
6110 }
6111 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6112 
6113 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6114 {
6115 	struct perf_event *event = vmf->vma->vm_file->private_data;
6116 	struct perf_buffer *rb;
6117 	vm_fault_t ret = VM_FAULT_SIGBUS;
6118 
6119 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6120 		if (vmf->pgoff == 0)
6121 			ret = 0;
6122 		return ret;
6123 	}
6124 
6125 	rcu_read_lock();
6126 	rb = rcu_dereference(event->rb);
6127 	if (!rb)
6128 		goto unlock;
6129 
6130 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6131 		goto unlock;
6132 
6133 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6134 	if (!vmf->page)
6135 		goto unlock;
6136 
6137 	get_page(vmf->page);
6138 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6139 	vmf->page->index   = vmf->pgoff;
6140 
6141 	ret = 0;
6142 unlock:
6143 	rcu_read_unlock();
6144 
6145 	return ret;
6146 }
6147 
6148 static void ring_buffer_attach(struct perf_event *event,
6149 			       struct perf_buffer *rb)
6150 {
6151 	struct perf_buffer *old_rb = NULL;
6152 	unsigned long flags;
6153 
6154 	WARN_ON_ONCE(event->parent);
6155 
6156 	if (event->rb) {
6157 		/*
6158 		 * Should be impossible, we set this when removing
6159 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6160 		 */
6161 		WARN_ON_ONCE(event->rcu_pending);
6162 
6163 		old_rb = event->rb;
6164 		spin_lock_irqsave(&old_rb->event_lock, flags);
6165 		list_del_rcu(&event->rb_entry);
6166 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6167 
6168 		event->rcu_batches = get_state_synchronize_rcu();
6169 		event->rcu_pending = 1;
6170 	}
6171 
6172 	if (rb) {
6173 		if (event->rcu_pending) {
6174 			cond_synchronize_rcu(event->rcu_batches);
6175 			event->rcu_pending = 0;
6176 		}
6177 
6178 		spin_lock_irqsave(&rb->event_lock, flags);
6179 		list_add_rcu(&event->rb_entry, &rb->event_list);
6180 		spin_unlock_irqrestore(&rb->event_lock, flags);
6181 	}
6182 
6183 	/*
6184 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6185 	 * before swizzling the event::rb pointer; if it's getting
6186 	 * unmapped, its aux_mmap_count will be 0 and it won't
6187 	 * restart. See the comment in __perf_pmu_output_stop().
6188 	 *
6189 	 * Data will inevitably be lost when set_output is done in
6190 	 * mid-air, but then again, whoever does it like this is
6191 	 * not in for the data anyway.
6192 	 */
6193 	if (has_aux(event))
6194 		perf_event_stop(event, 0);
6195 
6196 	rcu_assign_pointer(event->rb, rb);
6197 
6198 	if (old_rb) {
6199 		ring_buffer_put(old_rb);
6200 		/*
6201 		 * Since we detached before setting the new rb, so that we
6202 		 * could attach the new rb, we could have missed a wakeup.
6203 		 * Provide it now.
6204 		 */
6205 		wake_up_all(&event->waitq);
6206 	}
6207 }
6208 
6209 static void ring_buffer_wakeup(struct perf_event *event)
6210 {
6211 	struct perf_buffer *rb;
6212 
6213 	if (event->parent)
6214 		event = event->parent;
6215 
6216 	rcu_read_lock();
6217 	rb = rcu_dereference(event->rb);
6218 	if (rb) {
6219 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6220 			wake_up_all(&event->waitq);
6221 	}
6222 	rcu_read_unlock();
6223 }
6224 
6225 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6226 {
6227 	struct perf_buffer *rb;
6228 
6229 	if (event->parent)
6230 		event = event->parent;
6231 
6232 	rcu_read_lock();
6233 	rb = rcu_dereference(event->rb);
6234 	if (rb) {
6235 		if (!refcount_inc_not_zero(&rb->refcount))
6236 			rb = NULL;
6237 	}
6238 	rcu_read_unlock();
6239 
6240 	return rb;
6241 }
6242 
6243 void ring_buffer_put(struct perf_buffer *rb)
6244 {
6245 	if (!refcount_dec_and_test(&rb->refcount))
6246 		return;
6247 
6248 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6249 
6250 	call_rcu(&rb->rcu_head, rb_free_rcu);
6251 }
6252 
6253 static void perf_mmap_open(struct vm_area_struct *vma)
6254 {
6255 	struct perf_event *event = vma->vm_file->private_data;
6256 
6257 	atomic_inc(&event->mmap_count);
6258 	atomic_inc(&event->rb->mmap_count);
6259 
6260 	if (vma->vm_pgoff)
6261 		atomic_inc(&event->rb->aux_mmap_count);
6262 
6263 	if (event->pmu->event_mapped)
6264 		event->pmu->event_mapped(event, vma->vm_mm);
6265 }
6266 
6267 static void perf_pmu_output_stop(struct perf_event *event);
6268 
6269 /*
6270  * A buffer can be mmap()ed multiple times; either directly through the same
6271  * event, or through other events by use of perf_event_set_output().
6272  *
6273  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6274  * the buffer here, where we still have a VM context. This means we need
6275  * to detach all events redirecting to us.
6276  */
6277 static void perf_mmap_close(struct vm_area_struct *vma)
6278 {
6279 	struct perf_event *event = vma->vm_file->private_data;
6280 	struct perf_buffer *rb = ring_buffer_get(event);
6281 	struct user_struct *mmap_user = rb->mmap_user;
6282 	int mmap_locked = rb->mmap_locked;
6283 	unsigned long size = perf_data_size(rb);
6284 	bool detach_rest = false;
6285 
6286 	if (event->pmu->event_unmapped)
6287 		event->pmu->event_unmapped(event, vma->vm_mm);
6288 
6289 	/*
6290 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
6291 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
6292 	 * serialize with perf_mmap here.
6293 	 */
6294 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6295 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6296 		/*
6297 		 * Stop all AUX events that are writing to this buffer,
6298 		 * so that we can free its AUX pages and corresponding PMU
6299 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6300 		 * they won't start any more (see perf_aux_output_begin()).
6301 		 */
6302 		perf_pmu_output_stop(event);
6303 
6304 		/* now it's safe to free the pages */
6305 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6306 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6307 
6308 		/* this has to be the last one */
6309 		rb_free_aux(rb);
6310 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6311 
6312 		mutex_unlock(&event->mmap_mutex);
6313 	}
6314 
6315 	if (atomic_dec_and_test(&rb->mmap_count))
6316 		detach_rest = true;
6317 
6318 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6319 		goto out_put;
6320 
6321 	ring_buffer_attach(event, NULL);
6322 	mutex_unlock(&event->mmap_mutex);
6323 
6324 	/* If there's still other mmap()s of this buffer, we're done. */
6325 	if (!detach_rest)
6326 		goto out_put;
6327 
6328 	/*
6329 	 * No other mmap()s, detach from all other events that might redirect
6330 	 * into the now unreachable buffer. Somewhat complicated by the
6331 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6332 	 */
6333 again:
6334 	rcu_read_lock();
6335 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6336 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6337 			/*
6338 			 * This event is en-route to free_event() which will
6339 			 * detach it and remove it from the list.
6340 			 */
6341 			continue;
6342 		}
6343 		rcu_read_unlock();
6344 
6345 		mutex_lock(&event->mmap_mutex);
6346 		/*
6347 		 * Check we didn't race with perf_event_set_output() which can
6348 		 * swizzle the rb from under us while we were waiting to
6349 		 * acquire mmap_mutex.
6350 		 *
6351 		 * If we find a different rb; ignore this event, a next
6352 		 * iteration will no longer find it on the list. We have to
6353 		 * still restart the iteration to make sure we're not now
6354 		 * iterating the wrong list.
6355 		 */
6356 		if (event->rb == rb)
6357 			ring_buffer_attach(event, NULL);
6358 
6359 		mutex_unlock(&event->mmap_mutex);
6360 		put_event(event);
6361 
6362 		/*
6363 		 * Restart the iteration; either we're on the wrong list or
6364 		 * destroyed its integrity by doing a deletion.
6365 		 */
6366 		goto again;
6367 	}
6368 	rcu_read_unlock();
6369 
6370 	/*
6371 	 * It could be there's still a few 0-ref events on the list; they'll
6372 	 * get cleaned up by free_event() -- they'll also still have their
6373 	 * ref on the rb and will free it whenever they are done with it.
6374 	 *
6375 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6376 	 * undo the VM accounting.
6377 	 */
6378 
6379 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6380 			&mmap_user->locked_vm);
6381 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6382 	free_uid(mmap_user);
6383 
6384 out_put:
6385 	ring_buffer_put(rb); /* could be last */
6386 }
6387 
6388 static const struct vm_operations_struct perf_mmap_vmops = {
6389 	.open		= perf_mmap_open,
6390 	.close		= perf_mmap_close, /* non mergeable */
6391 	.fault		= perf_mmap_fault,
6392 	.page_mkwrite	= perf_mmap_fault,
6393 };
6394 
6395 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6396 {
6397 	struct perf_event *event = file->private_data;
6398 	unsigned long user_locked, user_lock_limit;
6399 	struct user_struct *user = current_user();
6400 	struct perf_buffer *rb = NULL;
6401 	unsigned long locked, lock_limit;
6402 	unsigned long vma_size;
6403 	unsigned long nr_pages;
6404 	long user_extra = 0, extra = 0;
6405 	int ret = 0, flags = 0;
6406 
6407 	/*
6408 	 * Don't allow mmap() of inherited per-task counters. This would
6409 	 * create a performance issue due to all children writing to the
6410 	 * same rb.
6411 	 */
6412 	if (event->cpu == -1 && event->attr.inherit)
6413 		return -EINVAL;
6414 
6415 	if (!(vma->vm_flags & VM_SHARED))
6416 		return -EINVAL;
6417 
6418 	ret = security_perf_event_read(event);
6419 	if (ret)
6420 		return ret;
6421 
6422 	vma_size = vma->vm_end - vma->vm_start;
6423 
6424 	if (vma->vm_pgoff == 0) {
6425 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6426 	} else {
6427 		/*
6428 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6429 		 * mapped, all subsequent mappings should have the same size
6430 		 * and offset. Must be above the normal perf buffer.
6431 		 */
6432 		u64 aux_offset, aux_size;
6433 
6434 		if (!event->rb)
6435 			return -EINVAL;
6436 
6437 		nr_pages = vma_size / PAGE_SIZE;
6438 
6439 		mutex_lock(&event->mmap_mutex);
6440 		ret = -EINVAL;
6441 
6442 		rb = event->rb;
6443 		if (!rb)
6444 			goto aux_unlock;
6445 
6446 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6447 		aux_size = READ_ONCE(rb->user_page->aux_size);
6448 
6449 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6450 			goto aux_unlock;
6451 
6452 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6453 			goto aux_unlock;
6454 
6455 		/* already mapped with a different offset */
6456 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6457 			goto aux_unlock;
6458 
6459 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6460 			goto aux_unlock;
6461 
6462 		/* already mapped with a different size */
6463 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6464 			goto aux_unlock;
6465 
6466 		if (!is_power_of_2(nr_pages))
6467 			goto aux_unlock;
6468 
6469 		if (!atomic_inc_not_zero(&rb->mmap_count))
6470 			goto aux_unlock;
6471 
6472 		if (rb_has_aux(rb)) {
6473 			atomic_inc(&rb->aux_mmap_count);
6474 			ret = 0;
6475 			goto unlock;
6476 		}
6477 
6478 		atomic_set(&rb->aux_mmap_count, 1);
6479 		user_extra = nr_pages;
6480 
6481 		goto accounting;
6482 	}
6483 
6484 	/*
6485 	 * If we have rb pages ensure they're a power-of-two number, so we
6486 	 * can do bitmasks instead of modulo.
6487 	 */
6488 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6489 		return -EINVAL;
6490 
6491 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6492 		return -EINVAL;
6493 
6494 	WARN_ON_ONCE(event->ctx->parent_ctx);
6495 again:
6496 	mutex_lock(&event->mmap_mutex);
6497 	if (event->rb) {
6498 		if (data_page_nr(event->rb) != nr_pages) {
6499 			ret = -EINVAL;
6500 			goto unlock;
6501 		}
6502 
6503 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6504 			/*
6505 			 * Raced against perf_mmap_close(); remove the
6506 			 * event and try again.
6507 			 */
6508 			ring_buffer_attach(event, NULL);
6509 			mutex_unlock(&event->mmap_mutex);
6510 			goto again;
6511 		}
6512 
6513 		goto unlock;
6514 	}
6515 
6516 	user_extra = nr_pages + 1;
6517 
6518 accounting:
6519 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6520 
6521 	/*
6522 	 * Increase the limit linearly with more CPUs:
6523 	 */
6524 	user_lock_limit *= num_online_cpus();
6525 
6526 	user_locked = atomic_long_read(&user->locked_vm);
6527 
6528 	/*
6529 	 * sysctl_perf_event_mlock may have changed, so that
6530 	 *     user->locked_vm > user_lock_limit
6531 	 */
6532 	if (user_locked > user_lock_limit)
6533 		user_locked = user_lock_limit;
6534 	user_locked += user_extra;
6535 
6536 	if (user_locked > user_lock_limit) {
6537 		/*
6538 		 * charge locked_vm until it hits user_lock_limit;
6539 		 * charge the rest from pinned_vm
6540 		 */
6541 		extra = user_locked - user_lock_limit;
6542 		user_extra -= extra;
6543 	}
6544 
6545 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6546 	lock_limit >>= PAGE_SHIFT;
6547 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6548 
6549 	if ((locked > lock_limit) && perf_is_paranoid() &&
6550 		!capable(CAP_IPC_LOCK)) {
6551 		ret = -EPERM;
6552 		goto unlock;
6553 	}
6554 
6555 	WARN_ON(!rb && event->rb);
6556 
6557 	if (vma->vm_flags & VM_WRITE)
6558 		flags |= RING_BUFFER_WRITABLE;
6559 
6560 	if (!rb) {
6561 		rb = rb_alloc(nr_pages,
6562 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6563 			      event->cpu, flags);
6564 
6565 		if (!rb) {
6566 			ret = -ENOMEM;
6567 			goto unlock;
6568 		}
6569 
6570 		atomic_set(&rb->mmap_count, 1);
6571 		rb->mmap_user = get_current_user();
6572 		rb->mmap_locked = extra;
6573 
6574 		ring_buffer_attach(event, rb);
6575 
6576 		perf_event_update_time(event);
6577 		perf_event_init_userpage(event);
6578 		perf_event_update_userpage(event);
6579 	} else {
6580 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6581 				   event->attr.aux_watermark, flags);
6582 		if (!ret)
6583 			rb->aux_mmap_locked = extra;
6584 	}
6585 
6586 unlock:
6587 	if (!ret) {
6588 		atomic_long_add(user_extra, &user->locked_vm);
6589 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6590 
6591 		atomic_inc(&event->mmap_count);
6592 	} else if (rb) {
6593 		atomic_dec(&rb->mmap_count);
6594 	}
6595 aux_unlock:
6596 	mutex_unlock(&event->mmap_mutex);
6597 
6598 	/*
6599 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6600 	 * vma.
6601 	 */
6602 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6603 	vma->vm_ops = &perf_mmap_vmops;
6604 
6605 	if (event->pmu->event_mapped)
6606 		event->pmu->event_mapped(event, vma->vm_mm);
6607 
6608 	return ret;
6609 }
6610 
6611 static int perf_fasync(int fd, struct file *filp, int on)
6612 {
6613 	struct inode *inode = file_inode(filp);
6614 	struct perf_event *event = filp->private_data;
6615 	int retval;
6616 
6617 	inode_lock(inode);
6618 	retval = fasync_helper(fd, filp, on, &event->fasync);
6619 	inode_unlock(inode);
6620 
6621 	if (retval < 0)
6622 		return retval;
6623 
6624 	return 0;
6625 }
6626 
6627 static const struct file_operations perf_fops = {
6628 	.llseek			= no_llseek,
6629 	.release		= perf_release,
6630 	.read			= perf_read,
6631 	.poll			= perf_poll,
6632 	.unlocked_ioctl		= perf_ioctl,
6633 	.compat_ioctl		= perf_compat_ioctl,
6634 	.mmap			= perf_mmap,
6635 	.fasync			= perf_fasync,
6636 };
6637 
6638 /*
6639  * Perf event wakeup
6640  *
6641  * If there's data, ensure we set the poll() state and publish everything
6642  * to user-space before waking everybody up.
6643  */
6644 
6645 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6646 {
6647 	/* only the parent has fasync state */
6648 	if (event->parent)
6649 		event = event->parent;
6650 	return &event->fasync;
6651 }
6652 
6653 void perf_event_wakeup(struct perf_event *event)
6654 {
6655 	ring_buffer_wakeup(event);
6656 
6657 	if (event->pending_kill) {
6658 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6659 		event->pending_kill = 0;
6660 	}
6661 }
6662 
6663 static void perf_sigtrap(struct perf_event *event)
6664 {
6665 	/*
6666 	 * We'd expect this to only occur if the irq_work is delayed and either
6667 	 * ctx->task or current has changed in the meantime. This can be the
6668 	 * case on architectures that do not implement arch_irq_work_raise().
6669 	 */
6670 	if (WARN_ON_ONCE(event->ctx->task != current))
6671 		return;
6672 
6673 	/*
6674 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6675 	 * task exiting.
6676 	 */
6677 	if (current->flags & PF_EXITING)
6678 		return;
6679 
6680 	send_sig_perf((void __user *)event->pending_addr,
6681 		      event->orig_type, event->attr.sig_data);
6682 }
6683 
6684 /*
6685  * Deliver the pending work in-event-context or follow the context.
6686  */
6687 static void __perf_pending_irq(struct perf_event *event)
6688 {
6689 	int cpu = READ_ONCE(event->oncpu);
6690 
6691 	/*
6692 	 * If the event isn't running; we done. event_sched_out() will have
6693 	 * taken care of things.
6694 	 */
6695 	if (cpu < 0)
6696 		return;
6697 
6698 	/*
6699 	 * Yay, we hit home and are in the context of the event.
6700 	 */
6701 	if (cpu == smp_processor_id()) {
6702 		if (event->pending_sigtrap) {
6703 			event->pending_sigtrap = 0;
6704 			perf_sigtrap(event);
6705 			local_dec(&event->ctx->nr_pending);
6706 		}
6707 		if (event->pending_disable) {
6708 			event->pending_disable = 0;
6709 			perf_event_disable_local(event);
6710 		}
6711 		return;
6712 	}
6713 
6714 	/*
6715 	 *  CPU-A			CPU-B
6716 	 *
6717 	 *  perf_event_disable_inatomic()
6718 	 *    @pending_disable = CPU-A;
6719 	 *    irq_work_queue();
6720 	 *
6721 	 *  sched-out
6722 	 *    @pending_disable = -1;
6723 	 *
6724 	 *				sched-in
6725 	 *				perf_event_disable_inatomic()
6726 	 *				  @pending_disable = CPU-B;
6727 	 *				  irq_work_queue(); // FAILS
6728 	 *
6729 	 *  irq_work_run()
6730 	 *    perf_pending_irq()
6731 	 *
6732 	 * But the event runs on CPU-B and wants disabling there.
6733 	 */
6734 	irq_work_queue_on(&event->pending_irq, cpu);
6735 }
6736 
6737 static void perf_pending_irq(struct irq_work *entry)
6738 {
6739 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6740 	int rctx;
6741 
6742 	/*
6743 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6744 	 * and we won't recurse 'further'.
6745 	 */
6746 	rctx = perf_swevent_get_recursion_context();
6747 
6748 	/*
6749 	 * The wakeup isn't bound to the context of the event -- it can happen
6750 	 * irrespective of where the event is.
6751 	 */
6752 	if (event->pending_wakeup) {
6753 		event->pending_wakeup = 0;
6754 		perf_event_wakeup(event);
6755 	}
6756 
6757 	__perf_pending_irq(event);
6758 
6759 	if (rctx >= 0)
6760 		perf_swevent_put_recursion_context(rctx);
6761 }
6762 
6763 static void perf_pending_task(struct callback_head *head)
6764 {
6765 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6766 	int rctx;
6767 
6768 	/*
6769 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6770 	 * and we won't recurse 'further'.
6771 	 */
6772 	preempt_disable_notrace();
6773 	rctx = perf_swevent_get_recursion_context();
6774 
6775 	if (event->pending_work) {
6776 		event->pending_work = 0;
6777 		perf_sigtrap(event);
6778 		local_dec(&event->ctx->nr_pending);
6779 	}
6780 
6781 	if (rctx >= 0)
6782 		perf_swevent_put_recursion_context(rctx);
6783 	preempt_enable_notrace();
6784 
6785 	put_event(event);
6786 }
6787 
6788 #ifdef CONFIG_GUEST_PERF_EVENTS
6789 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6790 
6791 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6792 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6793 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6794 
6795 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6796 {
6797 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6798 		return;
6799 
6800 	rcu_assign_pointer(perf_guest_cbs, cbs);
6801 	static_call_update(__perf_guest_state, cbs->state);
6802 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6803 
6804 	/* Implementing ->handle_intel_pt_intr is optional. */
6805 	if (cbs->handle_intel_pt_intr)
6806 		static_call_update(__perf_guest_handle_intel_pt_intr,
6807 				   cbs->handle_intel_pt_intr);
6808 }
6809 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6810 
6811 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6812 {
6813 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6814 		return;
6815 
6816 	rcu_assign_pointer(perf_guest_cbs, NULL);
6817 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6818 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6819 	static_call_update(__perf_guest_handle_intel_pt_intr,
6820 			   (void *)&__static_call_return0);
6821 	synchronize_rcu();
6822 }
6823 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6824 #endif
6825 
6826 static void
6827 perf_output_sample_regs(struct perf_output_handle *handle,
6828 			struct pt_regs *regs, u64 mask)
6829 {
6830 	int bit;
6831 	DECLARE_BITMAP(_mask, 64);
6832 
6833 	bitmap_from_u64(_mask, mask);
6834 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6835 		u64 val;
6836 
6837 		val = perf_reg_value(regs, bit);
6838 		perf_output_put(handle, val);
6839 	}
6840 }
6841 
6842 static void perf_sample_regs_user(struct perf_regs *regs_user,
6843 				  struct pt_regs *regs)
6844 {
6845 	if (user_mode(regs)) {
6846 		regs_user->abi = perf_reg_abi(current);
6847 		regs_user->regs = regs;
6848 	} else if (!(current->flags & PF_KTHREAD)) {
6849 		perf_get_regs_user(regs_user, regs);
6850 	} else {
6851 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6852 		regs_user->regs = NULL;
6853 	}
6854 }
6855 
6856 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6857 				  struct pt_regs *regs)
6858 {
6859 	regs_intr->regs = regs;
6860 	regs_intr->abi  = perf_reg_abi(current);
6861 }
6862 
6863 
6864 /*
6865  * Get remaining task size from user stack pointer.
6866  *
6867  * It'd be better to take stack vma map and limit this more
6868  * precisely, but there's no way to get it safely under interrupt,
6869  * so using TASK_SIZE as limit.
6870  */
6871 static u64 perf_ustack_task_size(struct pt_regs *regs)
6872 {
6873 	unsigned long addr = perf_user_stack_pointer(regs);
6874 
6875 	if (!addr || addr >= TASK_SIZE)
6876 		return 0;
6877 
6878 	return TASK_SIZE - addr;
6879 }
6880 
6881 static u16
6882 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6883 			struct pt_regs *regs)
6884 {
6885 	u64 task_size;
6886 
6887 	/* No regs, no stack pointer, no dump. */
6888 	if (!regs)
6889 		return 0;
6890 
6891 	/*
6892 	 * Check if we fit in with the requested stack size into the:
6893 	 * - TASK_SIZE
6894 	 *   If we don't, we limit the size to the TASK_SIZE.
6895 	 *
6896 	 * - remaining sample size
6897 	 *   If we don't, we customize the stack size to
6898 	 *   fit in to the remaining sample size.
6899 	 */
6900 
6901 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6902 	stack_size = min(stack_size, (u16) task_size);
6903 
6904 	/* Current header size plus static size and dynamic size. */
6905 	header_size += 2 * sizeof(u64);
6906 
6907 	/* Do we fit in with the current stack dump size? */
6908 	if ((u16) (header_size + stack_size) < header_size) {
6909 		/*
6910 		 * If we overflow the maximum size for the sample,
6911 		 * we customize the stack dump size to fit in.
6912 		 */
6913 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6914 		stack_size = round_up(stack_size, sizeof(u64));
6915 	}
6916 
6917 	return stack_size;
6918 }
6919 
6920 static void
6921 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6922 			  struct pt_regs *regs)
6923 {
6924 	/* Case of a kernel thread, nothing to dump */
6925 	if (!regs) {
6926 		u64 size = 0;
6927 		perf_output_put(handle, size);
6928 	} else {
6929 		unsigned long sp;
6930 		unsigned int rem;
6931 		u64 dyn_size;
6932 
6933 		/*
6934 		 * We dump:
6935 		 * static size
6936 		 *   - the size requested by user or the best one we can fit
6937 		 *     in to the sample max size
6938 		 * data
6939 		 *   - user stack dump data
6940 		 * dynamic size
6941 		 *   - the actual dumped size
6942 		 */
6943 
6944 		/* Static size. */
6945 		perf_output_put(handle, dump_size);
6946 
6947 		/* Data. */
6948 		sp = perf_user_stack_pointer(regs);
6949 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6950 		dyn_size = dump_size - rem;
6951 
6952 		perf_output_skip(handle, rem);
6953 
6954 		/* Dynamic size. */
6955 		perf_output_put(handle, dyn_size);
6956 	}
6957 }
6958 
6959 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6960 					  struct perf_sample_data *data,
6961 					  size_t size)
6962 {
6963 	struct perf_event *sampler = event->aux_event;
6964 	struct perf_buffer *rb;
6965 
6966 	data->aux_size = 0;
6967 
6968 	if (!sampler)
6969 		goto out;
6970 
6971 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6972 		goto out;
6973 
6974 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6975 		goto out;
6976 
6977 	rb = ring_buffer_get(sampler);
6978 	if (!rb)
6979 		goto out;
6980 
6981 	/*
6982 	 * If this is an NMI hit inside sampling code, don't take
6983 	 * the sample. See also perf_aux_sample_output().
6984 	 */
6985 	if (READ_ONCE(rb->aux_in_sampling)) {
6986 		data->aux_size = 0;
6987 	} else {
6988 		size = min_t(size_t, size, perf_aux_size(rb));
6989 		data->aux_size = ALIGN(size, sizeof(u64));
6990 	}
6991 	ring_buffer_put(rb);
6992 
6993 out:
6994 	return data->aux_size;
6995 }
6996 
6997 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6998                                  struct perf_event *event,
6999                                  struct perf_output_handle *handle,
7000                                  unsigned long size)
7001 {
7002 	unsigned long flags;
7003 	long ret;
7004 
7005 	/*
7006 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7007 	 * paths. If we start calling them in NMI context, they may race with
7008 	 * the IRQ ones, that is, for example, re-starting an event that's just
7009 	 * been stopped, which is why we're using a separate callback that
7010 	 * doesn't change the event state.
7011 	 *
7012 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7013 	 */
7014 	local_irq_save(flags);
7015 	/*
7016 	 * Guard against NMI hits inside the critical section;
7017 	 * see also perf_prepare_sample_aux().
7018 	 */
7019 	WRITE_ONCE(rb->aux_in_sampling, 1);
7020 	barrier();
7021 
7022 	ret = event->pmu->snapshot_aux(event, handle, size);
7023 
7024 	barrier();
7025 	WRITE_ONCE(rb->aux_in_sampling, 0);
7026 	local_irq_restore(flags);
7027 
7028 	return ret;
7029 }
7030 
7031 static void perf_aux_sample_output(struct perf_event *event,
7032 				   struct perf_output_handle *handle,
7033 				   struct perf_sample_data *data)
7034 {
7035 	struct perf_event *sampler = event->aux_event;
7036 	struct perf_buffer *rb;
7037 	unsigned long pad;
7038 	long size;
7039 
7040 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7041 		return;
7042 
7043 	rb = ring_buffer_get(sampler);
7044 	if (!rb)
7045 		return;
7046 
7047 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7048 
7049 	/*
7050 	 * An error here means that perf_output_copy() failed (returned a
7051 	 * non-zero surplus that it didn't copy), which in its current
7052 	 * enlightened implementation is not possible. If that changes, we'd
7053 	 * like to know.
7054 	 */
7055 	if (WARN_ON_ONCE(size < 0))
7056 		goto out_put;
7057 
7058 	/*
7059 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7060 	 * perf_prepare_sample_aux(), so should not be more than that.
7061 	 */
7062 	pad = data->aux_size - size;
7063 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7064 		pad = 8;
7065 
7066 	if (pad) {
7067 		u64 zero = 0;
7068 		perf_output_copy(handle, &zero, pad);
7069 	}
7070 
7071 out_put:
7072 	ring_buffer_put(rb);
7073 }
7074 
7075 /*
7076  * A set of common sample data types saved even for non-sample records
7077  * when event->attr.sample_id_all is set.
7078  */
7079 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7080 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7081 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7082 
7083 static void __perf_event_header__init_id(struct perf_sample_data *data,
7084 					 struct perf_event *event,
7085 					 u64 sample_type)
7086 {
7087 	data->type = event->attr.sample_type;
7088 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7089 
7090 	if (sample_type & PERF_SAMPLE_TID) {
7091 		/* namespace issues */
7092 		data->tid_entry.pid = perf_event_pid(event, current);
7093 		data->tid_entry.tid = perf_event_tid(event, current);
7094 	}
7095 
7096 	if (sample_type & PERF_SAMPLE_TIME)
7097 		data->time = perf_event_clock(event);
7098 
7099 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7100 		data->id = primary_event_id(event);
7101 
7102 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7103 		data->stream_id = event->id;
7104 
7105 	if (sample_type & PERF_SAMPLE_CPU) {
7106 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7107 		data->cpu_entry.reserved = 0;
7108 	}
7109 }
7110 
7111 void perf_event_header__init_id(struct perf_event_header *header,
7112 				struct perf_sample_data *data,
7113 				struct perf_event *event)
7114 {
7115 	if (event->attr.sample_id_all) {
7116 		header->size += event->id_header_size;
7117 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7118 	}
7119 }
7120 
7121 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7122 					   struct perf_sample_data *data)
7123 {
7124 	u64 sample_type = data->type;
7125 
7126 	if (sample_type & PERF_SAMPLE_TID)
7127 		perf_output_put(handle, data->tid_entry);
7128 
7129 	if (sample_type & PERF_SAMPLE_TIME)
7130 		perf_output_put(handle, data->time);
7131 
7132 	if (sample_type & PERF_SAMPLE_ID)
7133 		perf_output_put(handle, data->id);
7134 
7135 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7136 		perf_output_put(handle, data->stream_id);
7137 
7138 	if (sample_type & PERF_SAMPLE_CPU)
7139 		perf_output_put(handle, data->cpu_entry);
7140 
7141 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7142 		perf_output_put(handle, data->id);
7143 }
7144 
7145 void perf_event__output_id_sample(struct perf_event *event,
7146 				  struct perf_output_handle *handle,
7147 				  struct perf_sample_data *sample)
7148 {
7149 	if (event->attr.sample_id_all)
7150 		__perf_event__output_id_sample(handle, sample);
7151 }
7152 
7153 static void perf_output_read_one(struct perf_output_handle *handle,
7154 				 struct perf_event *event,
7155 				 u64 enabled, u64 running)
7156 {
7157 	u64 read_format = event->attr.read_format;
7158 	u64 values[5];
7159 	int n = 0;
7160 
7161 	values[n++] = perf_event_count(event);
7162 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7163 		values[n++] = enabled +
7164 			atomic64_read(&event->child_total_time_enabled);
7165 	}
7166 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7167 		values[n++] = running +
7168 			atomic64_read(&event->child_total_time_running);
7169 	}
7170 	if (read_format & PERF_FORMAT_ID)
7171 		values[n++] = primary_event_id(event);
7172 	if (read_format & PERF_FORMAT_LOST)
7173 		values[n++] = atomic64_read(&event->lost_samples);
7174 
7175 	__output_copy(handle, values, n * sizeof(u64));
7176 }
7177 
7178 static void perf_output_read_group(struct perf_output_handle *handle,
7179 			    struct perf_event *event,
7180 			    u64 enabled, u64 running)
7181 {
7182 	struct perf_event *leader = event->group_leader, *sub;
7183 	u64 read_format = event->attr.read_format;
7184 	unsigned long flags;
7185 	u64 values[6];
7186 	int n = 0;
7187 
7188 	/*
7189 	 * Disabling interrupts avoids all counter scheduling
7190 	 * (context switches, timer based rotation and IPIs).
7191 	 */
7192 	local_irq_save(flags);
7193 
7194 	values[n++] = 1 + leader->nr_siblings;
7195 
7196 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7197 		values[n++] = enabled;
7198 
7199 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7200 		values[n++] = running;
7201 
7202 	if ((leader != event) &&
7203 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7204 		leader->pmu->read(leader);
7205 
7206 	values[n++] = perf_event_count(leader);
7207 	if (read_format & PERF_FORMAT_ID)
7208 		values[n++] = primary_event_id(leader);
7209 	if (read_format & PERF_FORMAT_LOST)
7210 		values[n++] = atomic64_read(&leader->lost_samples);
7211 
7212 	__output_copy(handle, values, n * sizeof(u64));
7213 
7214 	for_each_sibling_event(sub, leader) {
7215 		n = 0;
7216 
7217 		if ((sub != event) &&
7218 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7219 			sub->pmu->read(sub);
7220 
7221 		values[n++] = perf_event_count(sub);
7222 		if (read_format & PERF_FORMAT_ID)
7223 			values[n++] = primary_event_id(sub);
7224 		if (read_format & PERF_FORMAT_LOST)
7225 			values[n++] = atomic64_read(&sub->lost_samples);
7226 
7227 		__output_copy(handle, values, n * sizeof(u64));
7228 	}
7229 
7230 	local_irq_restore(flags);
7231 }
7232 
7233 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7234 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7235 
7236 /*
7237  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7238  *
7239  * The problem is that its both hard and excessively expensive to iterate the
7240  * child list, not to mention that its impossible to IPI the children running
7241  * on another CPU, from interrupt/NMI context.
7242  */
7243 static void perf_output_read(struct perf_output_handle *handle,
7244 			     struct perf_event *event)
7245 {
7246 	u64 enabled = 0, running = 0, now;
7247 	u64 read_format = event->attr.read_format;
7248 
7249 	/*
7250 	 * compute total_time_enabled, total_time_running
7251 	 * based on snapshot values taken when the event
7252 	 * was last scheduled in.
7253 	 *
7254 	 * we cannot simply called update_context_time()
7255 	 * because of locking issue as we are called in
7256 	 * NMI context
7257 	 */
7258 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7259 		calc_timer_values(event, &now, &enabled, &running);
7260 
7261 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7262 		perf_output_read_group(handle, event, enabled, running);
7263 	else
7264 		perf_output_read_one(handle, event, enabled, running);
7265 }
7266 
7267 void perf_output_sample(struct perf_output_handle *handle,
7268 			struct perf_event_header *header,
7269 			struct perf_sample_data *data,
7270 			struct perf_event *event)
7271 {
7272 	u64 sample_type = data->type;
7273 
7274 	perf_output_put(handle, *header);
7275 
7276 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7277 		perf_output_put(handle, data->id);
7278 
7279 	if (sample_type & PERF_SAMPLE_IP)
7280 		perf_output_put(handle, data->ip);
7281 
7282 	if (sample_type & PERF_SAMPLE_TID)
7283 		perf_output_put(handle, data->tid_entry);
7284 
7285 	if (sample_type & PERF_SAMPLE_TIME)
7286 		perf_output_put(handle, data->time);
7287 
7288 	if (sample_type & PERF_SAMPLE_ADDR)
7289 		perf_output_put(handle, data->addr);
7290 
7291 	if (sample_type & PERF_SAMPLE_ID)
7292 		perf_output_put(handle, data->id);
7293 
7294 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7295 		perf_output_put(handle, data->stream_id);
7296 
7297 	if (sample_type & PERF_SAMPLE_CPU)
7298 		perf_output_put(handle, data->cpu_entry);
7299 
7300 	if (sample_type & PERF_SAMPLE_PERIOD)
7301 		perf_output_put(handle, data->period);
7302 
7303 	if (sample_type & PERF_SAMPLE_READ)
7304 		perf_output_read(handle, event);
7305 
7306 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7307 		int size = 1;
7308 
7309 		size += data->callchain->nr;
7310 		size *= sizeof(u64);
7311 		__output_copy(handle, data->callchain, size);
7312 	}
7313 
7314 	if (sample_type & PERF_SAMPLE_RAW) {
7315 		struct perf_raw_record *raw = data->raw;
7316 
7317 		if (raw) {
7318 			struct perf_raw_frag *frag = &raw->frag;
7319 
7320 			perf_output_put(handle, raw->size);
7321 			do {
7322 				if (frag->copy) {
7323 					__output_custom(handle, frag->copy,
7324 							frag->data, frag->size);
7325 				} else {
7326 					__output_copy(handle, frag->data,
7327 						      frag->size);
7328 				}
7329 				if (perf_raw_frag_last(frag))
7330 					break;
7331 				frag = frag->next;
7332 			} while (1);
7333 			if (frag->pad)
7334 				__output_skip(handle, NULL, frag->pad);
7335 		} else {
7336 			struct {
7337 				u32	size;
7338 				u32	data;
7339 			} raw = {
7340 				.size = sizeof(u32),
7341 				.data = 0,
7342 			};
7343 			perf_output_put(handle, raw);
7344 		}
7345 	}
7346 
7347 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7348 		if (data->br_stack) {
7349 			size_t size;
7350 
7351 			size = data->br_stack->nr
7352 			     * sizeof(struct perf_branch_entry);
7353 
7354 			perf_output_put(handle, data->br_stack->nr);
7355 			if (branch_sample_hw_index(event))
7356 				perf_output_put(handle, data->br_stack->hw_idx);
7357 			perf_output_copy(handle, data->br_stack->entries, size);
7358 		} else {
7359 			/*
7360 			 * we always store at least the value of nr
7361 			 */
7362 			u64 nr = 0;
7363 			perf_output_put(handle, nr);
7364 		}
7365 	}
7366 
7367 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7368 		u64 abi = data->regs_user.abi;
7369 
7370 		/*
7371 		 * If there are no regs to dump, notice it through
7372 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7373 		 */
7374 		perf_output_put(handle, abi);
7375 
7376 		if (abi) {
7377 			u64 mask = event->attr.sample_regs_user;
7378 			perf_output_sample_regs(handle,
7379 						data->regs_user.regs,
7380 						mask);
7381 		}
7382 	}
7383 
7384 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7385 		perf_output_sample_ustack(handle,
7386 					  data->stack_user_size,
7387 					  data->regs_user.regs);
7388 	}
7389 
7390 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7391 		perf_output_put(handle, data->weight.full);
7392 
7393 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7394 		perf_output_put(handle, data->data_src.val);
7395 
7396 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7397 		perf_output_put(handle, data->txn);
7398 
7399 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7400 		u64 abi = data->regs_intr.abi;
7401 		/*
7402 		 * If there are no regs to dump, notice it through
7403 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7404 		 */
7405 		perf_output_put(handle, abi);
7406 
7407 		if (abi) {
7408 			u64 mask = event->attr.sample_regs_intr;
7409 
7410 			perf_output_sample_regs(handle,
7411 						data->regs_intr.regs,
7412 						mask);
7413 		}
7414 	}
7415 
7416 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7417 		perf_output_put(handle, data->phys_addr);
7418 
7419 	if (sample_type & PERF_SAMPLE_CGROUP)
7420 		perf_output_put(handle, data->cgroup);
7421 
7422 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7423 		perf_output_put(handle, data->data_page_size);
7424 
7425 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7426 		perf_output_put(handle, data->code_page_size);
7427 
7428 	if (sample_type & PERF_SAMPLE_AUX) {
7429 		perf_output_put(handle, data->aux_size);
7430 
7431 		if (data->aux_size)
7432 			perf_aux_sample_output(event, handle, data);
7433 	}
7434 
7435 	if (!event->attr.watermark) {
7436 		int wakeup_events = event->attr.wakeup_events;
7437 
7438 		if (wakeup_events) {
7439 			struct perf_buffer *rb = handle->rb;
7440 			int events = local_inc_return(&rb->events);
7441 
7442 			if (events >= wakeup_events) {
7443 				local_sub(wakeup_events, &rb->events);
7444 				local_inc(&rb->wakeup);
7445 			}
7446 		}
7447 	}
7448 }
7449 
7450 static u64 perf_virt_to_phys(u64 virt)
7451 {
7452 	u64 phys_addr = 0;
7453 
7454 	if (!virt)
7455 		return 0;
7456 
7457 	if (virt >= TASK_SIZE) {
7458 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7459 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7460 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7461 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7462 	} else {
7463 		/*
7464 		 * Walking the pages tables for user address.
7465 		 * Interrupts are disabled, so it prevents any tear down
7466 		 * of the page tables.
7467 		 * Try IRQ-safe get_user_page_fast_only first.
7468 		 * If failed, leave phys_addr as 0.
7469 		 */
7470 		if (current->mm != NULL) {
7471 			struct page *p;
7472 
7473 			pagefault_disable();
7474 			if (get_user_page_fast_only(virt, 0, &p)) {
7475 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7476 				put_page(p);
7477 			}
7478 			pagefault_enable();
7479 		}
7480 	}
7481 
7482 	return phys_addr;
7483 }
7484 
7485 /*
7486  * Return the pagetable size of a given virtual address.
7487  */
7488 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7489 {
7490 	u64 size = 0;
7491 
7492 #ifdef CONFIG_HAVE_FAST_GUP
7493 	pgd_t *pgdp, pgd;
7494 	p4d_t *p4dp, p4d;
7495 	pud_t *pudp, pud;
7496 	pmd_t *pmdp, pmd;
7497 	pte_t *ptep, pte;
7498 
7499 	pgdp = pgd_offset(mm, addr);
7500 	pgd = READ_ONCE(*pgdp);
7501 	if (pgd_none(pgd))
7502 		return 0;
7503 
7504 	if (pgd_leaf(pgd))
7505 		return pgd_leaf_size(pgd);
7506 
7507 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7508 	p4d = READ_ONCE(*p4dp);
7509 	if (!p4d_present(p4d))
7510 		return 0;
7511 
7512 	if (p4d_leaf(p4d))
7513 		return p4d_leaf_size(p4d);
7514 
7515 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7516 	pud = READ_ONCE(*pudp);
7517 	if (!pud_present(pud))
7518 		return 0;
7519 
7520 	if (pud_leaf(pud))
7521 		return pud_leaf_size(pud);
7522 
7523 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7524 again:
7525 	pmd = pmdp_get_lockless(pmdp);
7526 	if (!pmd_present(pmd))
7527 		return 0;
7528 
7529 	if (pmd_leaf(pmd))
7530 		return pmd_leaf_size(pmd);
7531 
7532 	ptep = pte_offset_map(&pmd, addr);
7533 	if (!ptep)
7534 		goto again;
7535 
7536 	pte = ptep_get_lockless(ptep);
7537 	if (pte_present(pte))
7538 		size = pte_leaf_size(pte);
7539 	pte_unmap(ptep);
7540 #endif /* CONFIG_HAVE_FAST_GUP */
7541 
7542 	return size;
7543 }
7544 
7545 static u64 perf_get_page_size(unsigned long addr)
7546 {
7547 	struct mm_struct *mm;
7548 	unsigned long flags;
7549 	u64 size;
7550 
7551 	if (!addr)
7552 		return 0;
7553 
7554 	/*
7555 	 * Software page-table walkers must disable IRQs,
7556 	 * which prevents any tear down of the page tables.
7557 	 */
7558 	local_irq_save(flags);
7559 
7560 	mm = current->mm;
7561 	if (!mm) {
7562 		/*
7563 		 * For kernel threads and the like, use init_mm so that
7564 		 * we can find kernel memory.
7565 		 */
7566 		mm = &init_mm;
7567 	}
7568 
7569 	size = perf_get_pgtable_size(mm, addr);
7570 
7571 	local_irq_restore(flags);
7572 
7573 	return size;
7574 }
7575 
7576 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7577 
7578 struct perf_callchain_entry *
7579 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7580 {
7581 	bool kernel = !event->attr.exclude_callchain_kernel;
7582 	bool user   = !event->attr.exclude_callchain_user;
7583 	/* Disallow cross-task user callchains. */
7584 	bool crosstask = event->ctx->task && event->ctx->task != current;
7585 	const u32 max_stack = event->attr.sample_max_stack;
7586 	struct perf_callchain_entry *callchain;
7587 
7588 	if (!kernel && !user)
7589 		return &__empty_callchain;
7590 
7591 	callchain = get_perf_callchain(regs, 0, kernel, user,
7592 				       max_stack, crosstask, true);
7593 	return callchain ?: &__empty_callchain;
7594 }
7595 
7596 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7597 {
7598 	return d * !!(flags & s);
7599 }
7600 
7601 void perf_prepare_sample(struct perf_sample_data *data,
7602 			 struct perf_event *event,
7603 			 struct pt_regs *regs)
7604 {
7605 	u64 sample_type = event->attr.sample_type;
7606 	u64 filtered_sample_type;
7607 
7608 	/*
7609 	 * Add the sample flags that are dependent to others.  And clear the
7610 	 * sample flags that have already been done by the PMU driver.
7611 	 */
7612 	filtered_sample_type = sample_type;
7613 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7614 					   PERF_SAMPLE_IP);
7615 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7616 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7617 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7618 					   PERF_SAMPLE_REGS_USER);
7619 	filtered_sample_type &= ~data->sample_flags;
7620 
7621 	if (filtered_sample_type == 0) {
7622 		/* Make sure it has the correct data->type for output */
7623 		data->type = event->attr.sample_type;
7624 		return;
7625 	}
7626 
7627 	__perf_event_header__init_id(data, event, filtered_sample_type);
7628 
7629 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7630 		data->ip = perf_instruction_pointer(regs);
7631 		data->sample_flags |= PERF_SAMPLE_IP;
7632 	}
7633 
7634 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7635 		perf_sample_save_callchain(data, event, regs);
7636 
7637 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7638 		data->raw = NULL;
7639 		data->dyn_size += sizeof(u64);
7640 		data->sample_flags |= PERF_SAMPLE_RAW;
7641 	}
7642 
7643 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7644 		data->br_stack = NULL;
7645 		data->dyn_size += sizeof(u64);
7646 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7647 	}
7648 
7649 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7650 		perf_sample_regs_user(&data->regs_user, regs);
7651 
7652 	/*
7653 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7654 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7655 	 * the dyn_size if it's not requested by users.
7656 	 */
7657 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7658 		/* regs dump ABI info */
7659 		int size = sizeof(u64);
7660 
7661 		if (data->regs_user.regs) {
7662 			u64 mask = event->attr.sample_regs_user;
7663 			size += hweight64(mask) * sizeof(u64);
7664 		}
7665 
7666 		data->dyn_size += size;
7667 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7668 	}
7669 
7670 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7671 		/*
7672 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7673 		 * processed as the last one or have additional check added
7674 		 * in case new sample type is added, because we could eat
7675 		 * up the rest of the sample size.
7676 		 */
7677 		u16 stack_size = event->attr.sample_stack_user;
7678 		u16 header_size = perf_sample_data_size(data, event);
7679 		u16 size = sizeof(u64);
7680 
7681 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7682 						     data->regs_user.regs);
7683 
7684 		/*
7685 		 * If there is something to dump, add space for the dump
7686 		 * itself and for the field that tells the dynamic size,
7687 		 * which is how many have been actually dumped.
7688 		 */
7689 		if (stack_size)
7690 			size += sizeof(u64) + stack_size;
7691 
7692 		data->stack_user_size = stack_size;
7693 		data->dyn_size += size;
7694 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7695 	}
7696 
7697 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7698 		data->weight.full = 0;
7699 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7700 	}
7701 
7702 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7703 		data->data_src.val = PERF_MEM_NA;
7704 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7705 	}
7706 
7707 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7708 		data->txn = 0;
7709 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7710 	}
7711 
7712 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7713 		data->addr = 0;
7714 		data->sample_flags |= PERF_SAMPLE_ADDR;
7715 	}
7716 
7717 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7718 		/* regs dump ABI info */
7719 		int size = sizeof(u64);
7720 
7721 		perf_sample_regs_intr(&data->regs_intr, regs);
7722 
7723 		if (data->regs_intr.regs) {
7724 			u64 mask = event->attr.sample_regs_intr;
7725 
7726 			size += hweight64(mask) * sizeof(u64);
7727 		}
7728 
7729 		data->dyn_size += size;
7730 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7731 	}
7732 
7733 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7734 		data->phys_addr = perf_virt_to_phys(data->addr);
7735 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7736 	}
7737 
7738 #ifdef CONFIG_CGROUP_PERF
7739 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7740 		struct cgroup *cgrp;
7741 
7742 		/* protected by RCU */
7743 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7744 		data->cgroup = cgroup_id(cgrp);
7745 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7746 	}
7747 #endif
7748 
7749 	/*
7750 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7751 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7752 	 * but the value will not dump to the userspace.
7753 	 */
7754 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7755 		data->data_page_size = perf_get_page_size(data->addr);
7756 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7757 	}
7758 
7759 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7760 		data->code_page_size = perf_get_page_size(data->ip);
7761 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7762 	}
7763 
7764 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7765 		u64 size;
7766 		u16 header_size = perf_sample_data_size(data, event);
7767 
7768 		header_size += sizeof(u64); /* size */
7769 
7770 		/*
7771 		 * Given the 16bit nature of header::size, an AUX sample can
7772 		 * easily overflow it, what with all the preceding sample bits.
7773 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7774 		 * per sample in total (rounded down to 8 byte boundary).
7775 		 */
7776 		size = min_t(size_t, U16_MAX - header_size,
7777 			     event->attr.aux_sample_size);
7778 		size = rounddown(size, 8);
7779 		size = perf_prepare_sample_aux(event, data, size);
7780 
7781 		WARN_ON_ONCE(size + header_size > U16_MAX);
7782 		data->dyn_size += size + sizeof(u64); /* size above */
7783 		data->sample_flags |= PERF_SAMPLE_AUX;
7784 	}
7785 }
7786 
7787 void perf_prepare_header(struct perf_event_header *header,
7788 			 struct perf_sample_data *data,
7789 			 struct perf_event *event,
7790 			 struct pt_regs *regs)
7791 {
7792 	header->type = PERF_RECORD_SAMPLE;
7793 	header->size = perf_sample_data_size(data, event);
7794 	header->misc = perf_misc_flags(regs);
7795 
7796 	/*
7797 	 * If you're adding more sample types here, you likely need to do
7798 	 * something about the overflowing header::size, like repurpose the
7799 	 * lowest 3 bits of size, which should be always zero at the moment.
7800 	 * This raises a more important question, do we really need 512k sized
7801 	 * samples and why, so good argumentation is in order for whatever you
7802 	 * do here next.
7803 	 */
7804 	WARN_ON_ONCE(header->size & 7);
7805 }
7806 
7807 static __always_inline int
7808 __perf_event_output(struct perf_event *event,
7809 		    struct perf_sample_data *data,
7810 		    struct pt_regs *regs,
7811 		    int (*output_begin)(struct perf_output_handle *,
7812 					struct perf_sample_data *,
7813 					struct perf_event *,
7814 					unsigned int))
7815 {
7816 	struct perf_output_handle handle;
7817 	struct perf_event_header header;
7818 	int err;
7819 
7820 	/* protect the callchain buffers */
7821 	rcu_read_lock();
7822 
7823 	perf_prepare_sample(data, event, regs);
7824 	perf_prepare_header(&header, data, event, regs);
7825 
7826 	err = output_begin(&handle, data, event, header.size);
7827 	if (err)
7828 		goto exit;
7829 
7830 	perf_output_sample(&handle, &header, data, event);
7831 
7832 	perf_output_end(&handle);
7833 
7834 exit:
7835 	rcu_read_unlock();
7836 	return err;
7837 }
7838 
7839 void
7840 perf_event_output_forward(struct perf_event *event,
7841 			 struct perf_sample_data *data,
7842 			 struct pt_regs *regs)
7843 {
7844 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7845 }
7846 
7847 void
7848 perf_event_output_backward(struct perf_event *event,
7849 			   struct perf_sample_data *data,
7850 			   struct pt_regs *regs)
7851 {
7852 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7853 }
7854 
7855 int
7856 perf_event_output(struct perf_event *event,
7857 		  struct perf_sample_data *data,
7858 		  struct pt_regs *regs)
7859 {
7860 	return __perf_event_output(event, data, regs, perf_output_begin);
7861 }
7862 
7863 /*
7864  * read event_id
7865  */
7866 
7867 struct perf_read_event {
7868 	struct perf_event_header	header;
7869 
7870 	u32				pid;
7871 	u32				tid;
7872 };
7873 
7874 static void
7875 perf_event_read_event(struct perf_event *event,
7876 			struct task_struct *task)
7877 {
7878 	struct perf_output_handle handle;
7879 	struct perf_sample_data sample;
7880 	struct perf_read_event read_event = {
7881 		.header = {
7882 			.type = PERF_RECORD_READ,
7883 			.misc = 0,
7884 			.size = sizeof(read_event) + event->read_size,
7885 		},
7886 		.pid = perf_event_pid(event, task),
7887 		.tid = perf_event_tid(event, task),
7888 	};
7889 	int ret;
7890 
7891 	perf_event_header__init_id(&read_event.header, &sample, event);
7892 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7893 	if (ret)
7894 		return;
7895 
7896 	perf_output_put(&handle, read_event);
7897 	perf_output_read(&handle, event);
7898 	perf_event__output_id_sample(event, &handle, &sample);
7899 
7900 	perf_output_end(&handle);
7901 }
7902 
7903 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7904 
7905 static void
7906 perf_iterate_ctx(struct perf_event_context *ctx,
7907 		   perf_iterate_f output,
7908 		   void *data, bool all)
7909 {
7910 	struct perf_event *event;
7911 
7912 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7913 		if (!all) {
7914 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7915 				continue;
7916 			if (!event_filter_match(event))
7917 				continue;
7918 		}
7919 
7920 		output(event, data);
7921 	}
7922 }
7923 
7924 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7925 {
7926 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7927 	struct perf_event *event;
7928 
7929 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
7930 		/*
7931 		 * Skip events that are not fully formed yet; ensure that
7932 		 * if we observe event->ctx, both event and ctx will be
7933 		 * complete enough. See perf_install_in_context().
7934 		 */
7935 		if (!smp_load_acquire(&event->ctx))
7936 			continue;
7937 
7938 		if (event->state < PERF_EVENT_STATE_INACTIVE)
7939 			continue;
7940 		if (!event_filter_match(event))
7941 			continue;
7942 		output(event, data);
7943 	}
7944 }
7945 
7946 /*
7947  * Iterate all events that need to receive side-band events.
7948  *
7949  * For new callers; ensure that account_pmu_sb_event() includes
7950  * your event, otherwise it might not get delivered.
7951  */
7952 static void
7953 perf_iterate_sb(perf_iterate_f output, void *data,
7954 	       struct perf_event_context *task_ctx)
7955 {
7956 	struct perf_event_context *ctx;
7957 
7958 	rcu_read_lock();
7959 	preempt_disable();
7960 
7961 	/*
7962 	 * If we have task_ctx != NULL we only notify the task context itself.
7963 	 * The task_ctx is set only for EXIT events before releasing task
7964 	 * context.
7965 	 */
7966 	if (task_ctx) {
7967 		perf_iterate_ctx(task_ctx, output, data, false);
7968 		goto done;
7969 	}
7970 
7971 	perf_iterate_sb_cpu(output, data);
7972 
7973 	ctx = rcu_dereference(current->perf_event_ctxp);
7974 	if (ctx)
7975 		perf_iterate_ctx(ctx, output, data, false);
7976 done:
7977 	preempt_enable();
7978 	rcu_read_unlock();
7979 }
7980 
7981 /*
7982  * Clear all file-based filters at exec, they'll have to be
7983  * re-instated when/if these objects are mmapped again.
7984  */
7985 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7986 {
7987 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7988 	struct perf_addr_filter *filter;
7989 	unsigned int restart = 0, count = 0;
7990 	unsigned long flags;
7991 
7992 	if (!has_addr_filter(event))
7993 		return;
7994 
7995 	raw_spin_lock_irqsave(&ifh->lock, flags);
7996 	list_for_each_entry(filter, &ifh->list, entry) {
7997 		if (filter->path.dentry) {
7998 			event->addr_filter_ranges[count].start = 0;
7999 			event->addr_filter_ranges[count].size = 0;
8000 			restart++;
8001 		}
8002 
8003 		count++;
8004 	}
8005 
8006 	if (restart)
8007 		event->addr_filters_gen++;
8008 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8009 
8010 	if (restart)
8011 		perf_event_stop(event, 1);
8012 }
8013 
8014 void perf_event_exec(void)
8015 {
8016 	struct perf_event_context *ctx;
8017 
8018 	ctx = perf_pin_task_context(current);
8019 	if (!ctx)
8020 		return;
8021 
8022 	perf_event_enable_on_exec(ctx);
8023 	perf_event_remove_on_exec(ctx);
8024 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8025 
8026 	perf_unpin_context(ctx);
8027 	put_ctx(ctx);
8028 }
8029 
8030 struct remote_output {
8031 	struct perf_buffer	*rb;
8032 	int			err;
8033 };
8034 
8035 static void __perf_event_output_stop(struct perf_event *event, void *data)
8036 {
8037 	struct perf_event *parent = event->parent;
8038 	struct remote_output *ro = data;
8039 	struct perf_buffer *rb = ro->rb;
8040 	struct stop_event_data sd = {
8041 		.event	= event,
8042 	};
8043 
8044 	if (!has_aux(event))
8045 		return;
8046 
8047 	if (!parent)
8048 		parent = event;
8049 
8050 	/*
8051 	 * In case of inheritance, it will be the parent that links to the
8052 	 * ring-buffer, but it will be the child that's actually using it.
8053 	 *
8054 	 * We are using event::rb to determine if the event should be stopped,
8055 	 * however this may race with ring_buffer_attach() (through set_output),
8056 	 * which will make us skip the event that actually needs to be stopped.
8057 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8058 	 * its rb pointer.
8059 	 */
8060 	if (rcu_dereference(parent->rb) == rb)
8061 		ro->err = __perf_event_stop(&sd);
8062 }
8063 
8064 static int __perf_pmu_output_stop(void *info)
8065 {
8066 	struct perf_event *event = info;
8067 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8068 	struct remote_output ro = {
8069 		.rb	= event->rb,
8070 	};
8071 
8072 	rcu_read_lock();
8073 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8074 	if (cpuctx->task_ctx)
8075 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8076 				   &ro, false);
8077 	rcu_read_unlock();
8078 
8079 	return ro.err;
8080 }
8081 
8082 static void perf_pmu_output_stop(struct perf_event *event)
8083 {
8084 	struct perf_event *iter;
8085 	int err, cpu;
8086 
8087 restart:
8088 	rcu_read_lock();
8089 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8090 		/*
8091 		 * For per-CPU events, we need to make sure that neither they
8092 		 * nor their children are running; for cpu==-1 events it's
8093 		 * sufficient to stop the event itself if it's active, since
8094 		 * it can't have children.
8095 		 */
8096 		cpu = iter->cpu;
8097 		if (cpu == -1)
8098 			cpu = READ_ONCE(iter->oncpu);
8099 
8100 		if (cpu == -1)
8101 			continue;
8102 
8103 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8104 		if (err == -EAGAIN) {
8105 			rcu_read_unlock();
8106 			goto restart;
8107 		}
8108 	}
8109 	rcu_read_unlock();
8110 }
8111 
8112 /*
8113  * task tracking -- fork/exit
8114  *
8115  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8116  */
8117 
8118 struct perf_task_event {
8119 	struct task_struct		*task;
8120 	struct perf_event_context	*task_ctx;
8121 
8122 	struct {
8123 		struct perf_event_header	header;
8124 
8125 		u32				pid;
8126 		u32				ppid;
8127 		u32				tid;
8128 		u32				ptid;
8129 		u64				time;
8130 	} event_id;
8131 };
8132 
8133 static int perf_event_task_match(struct perf_event *event)
8134 {
8135 	return event->attr.comm  || event->attr.mmap ||
8136 	       event->attr.mmap2 || event->attr.mmap_data ||
8137 	       event->attr.task;
8138 }
8139 
8140 static void perf_event_task_output(struct perf_event *event,
8141 				   void *data)
8142 {
8143 	struct perf_task_event *task_event = data;
8144 	struct perf_output_handle handle;
8145 	struct perf_sample_data	sample;
8146 	struct task_struct *task = task_event->task;
8147 	int ret, size = task_event->event_id.header.size;
8148 
8149 	if (!perf_event_task_match(event))
8150 		return;
8151 
8152 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8153 
8154 	ret = perf_output_begin(&handle, &sample, event,
8155 				task_event->event_id.header.size);
8156 	if (ret)
8157 		goto out;
8158 
8159 	task_event->event_id.pid = perf_event_pid(event, task);
8160 	task_event->event_id.tid = perf_event_tid(event, task);
8161 
8162 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8163 		task_event->event_id.ppid = perf_event_pid(event,
8164 							task->real_parent);
8165 		task_event->event_id.ptid = perf_event_pid(event,
8166 							task->real_parent);
8167 	} else {  /* PERF_RECORD_FORK */
8168 		task_event->event_id.ppid = perf_event_pid(event, current);
8169 		task_event->event_id.ptid = perf_event_tid(event, current);
8170 	}
8171 
8172 	task_event->event_id.time = perf_event_clock(event);
8173 
8174 	perf_output_put(&handle, task_event->event_id);
8175 
8176 	perf_event__output_id_sample(event, &handle, &sample);
8177 
8178 	perf_output_end(&handle);
8179 out:
8180 	task_event->event_id.header.size = size;
8181 }
8182 
8183 static void perf_event_task(struct task_struct *task,
8184 			      struct perf_event_context *task_ctx,
8185 			      int new)
8186 {
8187 	struct perf_task_event task_event;
8188 
8189 	if (!atomic_read(&nr_comm_events) &&
8190 	    !atomic_read(&nr_mmap_events) &&
8191 	    !atomic_read(&nr_task_events))
8192 		return;
8193 
8194 	task_event = (struct perf_task_event){
8195 		.task	  = task,
8196 		.task_ctx = task_ctx,
8197 		.event_id    = {
8198 			.header = {
8199 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8200 				.misc = 0,
8201 				.size = sizeof(task_event.event_id),
8202 			},
8203 			/* .pid  */
8204 			/* .ppid */
8205 			/* .tid  */
8206 			/* .ptid */
8207 			/* .time */
8208 		},
8209 	};
8210 
8211 	perf_iterate_sb(perf_event_task_output,
8212 		       &task_event,
8213 		       task_ctx);
8214 }
8215 
8216 void perf_event_fork(struct task_struct *task)
8217 {
8218 	perf_event_task(task, NULL, 1);
8219 	perf_event_namespaces(task);
8220 }
8221 
8222 /*
8223  * comm tracking
8224  */
8225 
8226 struct perf_comm_event {
8227 	struct task_struct	*task;
8228 	char			*comm;
8229 	int			comm_size;
8230 
8231 	struct {
8232 		struct perf_event_header	header;
8233 
8234 		u32				pid;
8235 		u32				tid;
8236 	} event_id;
8237 };
8238 
8239 static int perf_event_comm_match(struct perf_event *event)
8240 {
8241 	return event->attr.comm;
8242 }
8243 
8244 static void perf_event_comm_output(struct perf_event *event,
8245 				   void *data)
8246 {
8247 	struct perf_comm_event *comm_event = data;
8248 	struct perf_output_handle handle;
8249 	struct perf_sample_data sample;
8250 	int size = comm_event->event_id.header.size;
8251 	int ret;
8252 
8253 	if (!perf_event_comm_match(event))
8254 		return;
8255 
8256 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8257 	ret = perf_output_begin(&handle, &sample, event,
8258 				comm_event->event_id.header.size);
8259 
8260 	if (ret)
8261 		goto out;
8262 
8263 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8264 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8265 
8266 	perf_output_put(&handle, comm_event->event_id);
8267 	__output_copy(&handle, comm_event->comm,
8268 				   comm_event->comm_size);
8269 
8270 	perf_event__output_id_sample(event, &handle, &sample);
8271 
8272 	perf_output_end(&handle);
8273 out:
8274 	comm_event->event_id.header.size = size;
8275 }
8276 
8277 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8278 {
8279 	char comm[TASK_COMM_LEN];
8280 	unsigned int size;
8281 
8282 	memset(comm, 0, sizeof(comm));
8283 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8284 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8285 
8286 	comm_event->comm = comm;
8287 	comm_event->comm_size = size;
8288 
8289 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8290 
8291 	perf_iterate_sb(perf_event_comm_output,
8292 		       comm_event,
8293 		       NULL);
8294 }
8295 
8296 void perf_event_comm(struct task_struct *task, bool exec)
8297 {
8298 	struct perf_comm_event comm_event;
8299 
8300 	if (!atomic_read(&nr_comm_events))
8301 		return;
8302 
8303 	comm_event = (struct perf_comm_event){
8304 		.task	= task,
8305 		/* .comm      */
8306 		/* .comm_size */
8307 		.event_id  = {
8308 			.header = {
8309 				.type = PERF_RECORD_COMM,
8310 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8311 				/* .size */
8312 			},
8313 			/* .pid */
8314 			/* .tid */
8315 		},
8316 	};
8317 
8318 	perf_event_comm_event(&comm_event);
8319 }
8320 
8321 /*
8322  * namespaces tracking
8323  */
8324 
8325 struct perf_namespaces_event {
8326 	struct task_struct		*task;
8327 
8328 	struct {
8329 		struct perf_event_header	header;
8330 
8331 		u32				pid;
8332 		u32				tid;
8333 		u64				nr_namespaces;
8334 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8335 	} event_id;
8336 };
8337 
8338 static int perf_event_namespaces_match(struct perf_event *event)
8339 {
8340 	return event->attr.namespaces;
8341 }
8342 
8343 static void perf_event_namespaces_output(struct perf_event *event,
8344 					 void *data)
8345 {
8346 	struct perf_namespaces_event *namespaces_event = data;
8347 	struct perf_output_handle handle;
8348 	struct perf_sample_data sample;
8349 	u16 header_size = namespaces_event->event_id.header.size;
8350 	int ret;
8351 
8352 	if (!perf_event_namespaces_match(event))
8353 		return;
8354 
8355 	perf_event_header__init_id(&namespaces_event->event_id.header,
8356 				   &sample, event);
8357 	ret = perf_output_begin(&handle, &sample, event,
8358 				namespaces_event->event_id.header.size);
8359 	if (ret)
8360 		goto out;
8361 
8362 	namespaces_event->event_id.pid = perf_event_pid(event,
8363 							namespaces_event->task);
8364 	namespaces_event->event_id.tid = perf_event_tid(event,
8365 							namespaces_event->task);
8366 
8367 	perf_output_put(&handle, namespaces_event->event_id);
8368 
8369 	perf_event__output_id_sample(event, &handle, &sample);
8370 
8371 	perf_output_end(&handle);
8372 out:
8373 	namespaces_event->event_id.header.size = header_size;
8374 }
8375 
8376 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8377 				   struct task_struct *task,
8378 				   const struct proc_ns_operations *ns_ops)
8379 {
8380 	struct path ns_path;
8381 	struct inode *ns_inode;
8382 	int error;
8383 
8384 	error = ns_get_path(&ns_path, task, ns_ops);
8385 	if (!error) {
8386 		ns_inode = ns_path.dentry->d_inode;
8387 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8388 		ns_link_info->ino = ns_inode->i_ino;
8389 		path_put(&ns_path);
8390 	}
8391 }
8392 
8393 void perf_event_namespaces(struct task_struct *task)
8394 {
8395 	struct perf_namespaces_event namespaces_event;
8396 	struct perf_ns_link_info *ns_link_info;
8397 
8398 	if (!atomic_read(&nr_namespaces_events))
8399 		return;
8400 
8401 	namespaces_event = (struct perf_namespaces_event){
8402 		.task	= task,
8403 		.event_id  = {
8404 			.header = {
8405 				.type = PERF_RECORD_NAMESPACES,
8406 				.misc = 0,
8407 				.size = sizeof(namespaces_event.event_id),
8408 			},
8409 			/* .pid */
8410 			/* .tid */
8411 			.nr_namespaces = NR_NAMESPACES,
8412 			/* .link_info[NR_NAMESPACES] */
8413 		},
8414 	};
8415 
8416 	ns_link_info = namespaces_event.event_id.link_info;
8417 
8418 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8419 			       task, &mntns_operations);
8420 
8421 #ifdef CONFIG_USER_NS
8422 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8423 			       task, &userns_operations);
8424 #endif
8425 #ifdef CONFIG_NET_NS
8426 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8427 			       task, &netns_operations);
8428 #endif
8429 #ifdef CONFIG_UTS_NS
8430 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8431 			       task, &utsns_operations);
8432 #endif
8433 #ifdef CONFIG_IPC_NS
8434 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8435 			       task, &ipcns_operations);
8436 #endif
8437 #ifdef CONFIG_PID_NS
8438 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8439 			       task, &pidns_operations);
8440 #endif
8441 #ifdef CONFIG_CGROUPS
8442 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8443 			       task, &cgroupns_operations);
8444 #endif
8445 
8446 	perf_iterate_sb(perf_event_namespaces_output,
8447 			&namespaces_event,
8448 			NULL);
8449 }
8450 
8451 /*
8452  * cgroup tracking
8453  */
8454 #ifdef CONFIG_CGROUP_PERF
8455 
8456 struct perf_cgroup_event {
8457 	char				*path;
8458 	int				path_size;
8459 	struct {
8460 		struct perf_event_header	header;
8461 		u64				id;
8462 		char				path[];
8463 	} event_id;
8464 };
8465 
8466 static int perf_event_cgroup_match(struct perf_event *event)
8467 {
8468 	return event->attr.cgroup;
8469 }
8470 
8471 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8472 {
8473 	struct perf_cgroup_event *cgroup_event = data;
8474 	struct perf_output_handle handle;
8475 	struct perf_sample_data sample;
8476 	u16 header_size = cgroup_event->event_id.header.size;
8477 	int ret;
8478 
8479 	if (!perf_event_cgroup_match(event))
8480 		return;
8481 
8482 	perf_event_header__init_id(&cgroup_event->event_id.header,
8483 				   &sample, event);
8484 	ret = perf_output_begin(&handle, &sample, event,
8485 				cgroup_event->event_id.header.size);
8486 	if (ret)
8487 		goto out;
8488 
8489 	perf_output_put(&handle, cgroup_event->event_id);
8490 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8491 
8492 	perf_event__output_id_sample(event, &handle, &sample);
8493 
8494 	perf_output_end(&handle);
8495 out:
8496 	cgroup_event->event_id.header.size = header_size;
8497 }
8498 
8499 static void perf_event_cgroup(struct cgroup *cgrp)
8500 {
8501 	struct perf_cgroup_event cgroup_event;
8502 	char path_enomem[16] = "//enomem";
8503 	char *pathname;
8504 	size_t size;
8505 
8506 	if (!atomic_read(&nr_cgroup_events))
8507 		return;
8508 
8509 	cgroup_event = (struct perf_cgroup_event){
8510 		.event_id  = {
8511 			.header = {
8512 				.type = PERF_RECORD_CGROUP,
8513 				.misc = 0,
8514 				.size = sizeof(cgroup_event.event_id),
8515 			},
8516 			.id = cgroup_id(cgrp),
8517 		},
8518 	};
8519 
8520 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8521 	if (pathname == NULL) {
8522 		cgroup_event.path = path_enomem;
8523 	} else {
8524 		/* just to be sure to have enough space for alignment */
8525 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8526 		cgroup_event.path = pathname;
8527 	}
8528 
8529 	/*
8530 	 * Since our buffer works in 8 byte units we need to align our string
8531 	 * size to a multiple of 8. However, we must guarantee the tail end is
8532 	 * zero'd out to avoid leaking random bits to userspace.
8533 	 */
8534 	size = strlen(cgroup_event.path) + 1;
8535 	while (!IS_ALIGNED(size, sizeof(u64)))
8536 		cgroup_event.path[size++] = '\0';
8537 
8538 	cgroup_event.event_id.header.size += size;
8539 	cgroup_event.path_size = size;
8540 
8541 	perf_iterate_sb(perf_event_cgroup_output,
8542 			&cgroup_event,
8543 			NULL);
8544 
8545 	kfree(pathname);
8546 }
8547 
8548 #endif
8549 
8550 /*
8551  * mmap tracking
8552  */
8553 
8554 struct perf_mmap_event {
8555 	struct vm_area_struct	*vma;
8556 
8557 	const char		*file_name;
8558 	int			file_size;
8559 	int			maj, min;
8560 	u64			ino;
8561 	u64			ino_generation;
8562 	u32			prot, flags;
8563 	u8			build_id[BUILD_ID_SIZE_MAX];
8564 	u32			build_id_size;
8565 
8566 	struct {
8567 		struct perf_event_header	header;
8568 
8569 		u32				pid;
8570 		u32				tid;
8571 		u64				start;
8572 		u64				len;
8573 		u64				pgoff;
8574 	} event_id;
8575 };
8576 
8577 static int perf_event_mmap_match(struct perf_event *event,
8578 				 void *data)
8579 {
8580 	struct perf_mmap_event *mmap_event = data;
8581 	struct vm_area_struct *vma = mmap_event->vma;
8582 	int executable = vma->vm_flags & VM_EXEC;
8583 
8584 	return (!executable && event->attr.mmap_data) ||
8585 	       (executable && (event->attr.mmap || event->attr.mmap2));
8586 }
8587 
8588 static void perf_event_mmap_output(struct perf_event *event,
8589 				   void *data)
8590 {
8591 	struct perf_mmap_event *mmap_event = data;
8592 	struct perf_output_handle handle;
8593 	struct perf_sample_data sample;
8594 	int size = mmap_event->event_id.header.size;
8595 	u32 type = mmap_event->event_id.header.type;
8596 	bool use_build_id;
8597 	int ret;
8598 
8599 	if (!perf_event_mmap_match(event, data))
8600 		return;
8601 
8602 	if (event->attr.mmap2) {
8603 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8604 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8605 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8606 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8607 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8608 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8609 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8610 	}
8611 
8612 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8613 	ret = perf_output_begin(&handle, &sample, event,
8614 				mmap_event->event_id.header.size);
8615 	if (ret)
8616 		goto out;
8617 
8618 	mmap_event->event_id.pid = perf_event_pid(event, current);
8619 	mmap_event->event_id.tid = perf_event_tid(event, current);
8620 
8621 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8622 
8623 	if (event->attr.mmap2 && use_build_id)
8624 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8625 
8626 	perf_output_put(&handle, mmap_event->event_id);
8627 
8628 	if (event->attr.mmap2) {
8629 		if (use_build_id) {
8630 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8631 
8632 			__output_copy(&handle, size, 4);
8633 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8634 		} else {
8635 			perf_output_put(&handle, mmap_event->maj);
8636 			perf_output_put(&handle, mmap_event->min);
8637 			perf_output_put(&handle, mmap_event->ino);
8638 			perf_output_put(&handle, mmap_event->ino_generation);
8639 		}
8640 		perf_output_put(&handle, mmap_event->prot);
8641 		perf_output_put(&handle, mmap_event->flags);
8642 	}
8643 
8644 	__output_copy(&handle, mmap_event->file_name,
8645 				   mmap_event->file_size);
8646 
8647 	perf_event__output_id_sample(event, &handle, &sample);
8648 
8649 	perf_output_end(&handle);
8650 out:
8651 	mmap_event->event_id.header.size = size;
8652 	mmap_event->event_id.header.type = type;
8653 }
8654 
8655 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8656 {
8657 	struct vm_area_struct *vma = mmap_event->vma;
8658 	struct file *file = vma->vm_file;
8659 	int maj = 0, min = 0;
8660 	u64 ino = 0, gen = 0;
8661 	u32 prot = 0, flags = 0;
8662 	unsigned int size;
8663 	char tmp[16];
8664 	char *buf = NULL;
8665 	char *name = NULL;
8666 
8667 	if (vma->vm_flags & VM_READ)
8668 		prot |= PROT_READ;
8669 	if (vma->vm_flags & VM_WRITE)
8670 		prot |= PROT_WRITE;
8671 	if (vma->vm_flags & VM_EXEC)
8672 		prot |= PROT_EXEC;
8673 
8674 	if (vma->vm_flags & VM_MAYSHARE)
8675 		flags = MAP_SHARED;
8676 	else
8677 		flags = MAP_PRIVATE;
8678 
8679 	if (vma->vm_flags & VM_LOCKED)
8680 		flags |= MAP_LOCKED;
8681 	if (is_vm_hugetlb_page(vma))
8682 		flags |= MAP_HUGETLB;
8683 
8684 	if (file) {
8685 		struct inode *inode;
8686 		dev_t dev;
8687 
8688 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8689 		if (!buf) {
8690 			name = "//enomem";
8691 			goto cpy_name;
8692 		}
8693 		/*
8694 		 * d_path() works from the end of the rb backwards, so we
8695 		 * need to add enough zero bytes after the string to handle
8696 		 * the 64bit alignment we do later.
8697 		 */
8698 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8699 		if (IS_ERR(name)) {
8700 			name = "//toolong";
8701 			goto cpy_name;
8702 		}
8703 		inode = file_inode(vma->vm_file);
8704 		dev = inode->i_sb->s_dev;
8705 		ino = inode->i_ino;
8706 		gen = inode->i_generation;
8707 		maj = MAJOR(dev);
8708 		min = MINOR(dev);
8709 
8710 		goto got_name;
8711 	} else {
8712 		if (vma->vm_ops && vma->vm_ops->name)
8713 			name = (char *) vma->vm_ops->name(vma);
8714 		if (!name)
8715 			name = (char *)arch_vma_name(vma);
8716 		if (!name) {
8717 			if (vma_is_initial_heap(vma))
8718 				name = "[heap]";
8719 			else if (vma_is_initial_stack(vma))
8720 				name = "[stack]";
8721 			else
8722 				name = "//anon";
8723 		}
8724 	}
8725 
8726 cpy_name:
8727 	strscpy(tmp, name, sizeof(tmp));
8728 	name = tmp;
8729 got_name:
8730 	/*
8731 	 * Since our buffer works in 8 byte units we need to align our string
8732 	 * size to a multiple of 8. However, we must guarantee the tail end is
8733 	 * zero'd out to avoid leaking random bits to userspace.
8734 	 */
8735 	size = strlen(name)+1;
8736 	while (!IS_ALIGNED(size, sizeof(u64)))
8737 		name[size++] = '\0';
8738 
8739 	mmap_event->file_name = name;
8740 	mmap_event->file_size = size;
8741 	mmap_event->maj = maj;
8742 	mmap_event->min = min;
8743 	mmap_event->ino = ino;
8744 	mmap_event->ino_generation = gen;
8745 	mmap_event->prot = prot;
8746 	mmap_event->flags = flags;
8747 
8748 	if (!(vma->vm_flags & VM_EXEC))
8749 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8750 
8751 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8752 
8753 	if (atomic_read(&nr_build_id_events))
8754 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8755 
8756 	perf_iterate_sb(perf_event_mmap_output,
8757 		       mmap_event,
8758 		       NULL);
8759 
8760 	kfree(buf);
8761 }
8762 
8763 /*
8764  * Check whether inode and address range match filter criteria.
8765  */
8766 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8767 				     struct file *file, unsigned long offset,
8768 				     unsigned long size)
8769 {
8770 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8771 	if (!filter->path.dentry)
8772 		return false;
8773 
8774 	if (d_inode(filter->path.dentry) != file_inode(file))
8775 		return false;
8776 
8777 	if (filter->offset > offset + size)
8778 		return false;
8779 
8780 	if (filter->offset + filter->size < offset)
8781 		return false;
8782 
8783 	return true;
8784 }
8785 
8786 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8787 					struct vm_area_struct *vma,
8788 					struct perf_addr_filter_range *fr)
8789 {
8790 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8791 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8792 	struct file *file = vma->vm_file;
8793 
8794 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8795 		return false;
8796 
8797 	if (filter->offset < off) {
8798 		fr->start = vma->vm_start;
8799 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8800 	} else {
8801 		fr->start = vma->vm_start + filter->offset - off;
8802 		fr->size = min(vma->vm_end - fr->start, filter->size);
8803 	}
8804 
8805 	return true;
8806 }
8807 
8808 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8809 {
8810 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8811 	struct vm_area_struct *vma = data;
8812 	struct perf_addr_filter *filter;
8813 	unsigned int restart = 0, count = 0;
8814 	unsigned long flags;
8815 
8816 	if (!has_addr_filter(event))
8817 		return;
8818 
8819 	if (!vma->vm_file)
8820 		return;
8821 
8822 	raw_spin_lock_irqsave(&ifh->lock, flags);
8823 	list_for_each_entry(filter, &ifh->list, entry) {
8824 		if (perf_addr_filter_vma_adjust(filter, vma,
8825 						&event->addr_filter_ranges[count]))
8826 			restart++;
8827 
8828 		count++;
8829 	}
8830 
8831 	if (restart)
8832 		event->addr_filters_gen++;
8833 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8834 
8835 	if (restart)
8836 		perf_event_stop(event, 1);
8837 }
8838 
8839 /*
8840  * Adjust all task's events' filters to the new vma
8841  */
8842 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8843 {
8844 	struct perf_event_context *ctx;
8845 
8846 	/*
8847 	 * Data tracing isn't supported yet and as such there is no need
8848 	 * to keep track of anything that isn't related to executable code:
8849 	 */
8850 	if (!(vma->vm_flags & VM_EXEC))
8851 		return;
8852 
8853 	rcu_read_lock();
8854 	ctx = rcu_dereference(current->perf_event_ctxp);
8855 	if (ctx)
8856 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8857 	rcu_read_unlock();
8858 }
8859 
8860 void perf_event_mmap(struct vm_area_struct *vma)
8861 {
8862 	struct perf_mmap_event mmap_event;
8863 
8864 	if (!atomic_read(&nr_mmap_events))
8865 		return;
8866 
8867 	mmap_event = (struct perf_mmap_event){
8868 		.vma	= vma,
8869 		/* .file_name */
8870 		/* .file_size */
8871 		.event_id  = {
8872 			.header = {
8873 				.type = PERF_RECORD_MMAP,
8874 				.misc = PERF_RECORD_MISC_USER,
8875 				/* .size */
8876 			},
8877 			/* .pid */
8878 			/* .tid */
8879 			.start  = vma->vm_start,
8880 			.len    = vma->vm_end - vma->vm_start,
8881 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8882 		},
8883 		/* .maj (attr_mmap2 only) */
8884 		/* .min (attr_mmap2 only) */
8885 		/* .ino (attr_mmap2 only) */
8886 		/* .ino_generation (attr_mmap2 only) */
8887 		/* .prot (attr_mmap2 only) */
8888 		/* .flags (attr_mmap2 only) */
8889 	};
8890 
8891 	perf_addr_filters_adjust(vma);
8892 	perf_event_mmap_event(&mmap_event);
8893 }
8894 
8895 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8896 			  unsigned long size, u64 flags)
8897 {
8898 	struct perf_output_handle handle;
8899 	struct perf_sample_data sample;
8900 	struct perf_aux_event {
8901 		struct perf_event_header	header;
8902 		u64				offset;
8903 		u64				size;
8904 		u64				flags;
8905 	} rec = {
8906 		.header = {
8907 			.type = PERF_RECORD_AUX,
8908 			.misc = 0,
8909 			.size = sizeof(rec),
8910 		},
8911 		.offset		= head,
8912 		.size		= size,
8913 		.flags		= flags,
8914 	};
8915 	int ret;
8916 
8917 	perf_event_header__init_id(&rec.header, &sample, event);
8918 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8919 
8920 	if (ret)
8921 		return;
8922 
8923 	perf_output_put(&handle, rec);
8924 	perf_event__output_id_sample(event, &handle, &sample);
8925 
8926 	perf_output_end(&handle);
8927 }
8928 
8929 /*
8930  * Lost/dropped samples logging
8931  */
8932 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8933 {
8934 	struct perf_output_handle handle;
8935 	struct perf_sample_data sample;
8936 	int ret;
8937 
8938 	struct {
8939 		struct perf_event_header	header;
8940 		u64				lost;
8941 	} lost_samples_event = {
8942 		.header = {
8943 			.type = PERF_RECORD_LOST_SAMPLES,
8944 			.misc = 0,
8945 			.size = sizeof(lost_samples_event),
8946 		},
8947 		.lost		= lost,
8948 	};
8949 
8950 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8951 
8952 	ret = perf_output_begin(&handle, &sample, event,
8953 				lost_samples_event.header.size);
8954 	if (ret)
8955 		return;
8956 
8957 	perf_output_put(&handle, lost_samples_event);
8958 	perf_event__output_id_sample(event, &handle, &sample);
8959 	perf_output_end(&handle);
8960 }
8961 
8962 /*
8963  * context_switch tracking
8964  */
8965 
8966 struct perf_switch_event {
8967 	struct task_struct	*task;
8968 	struct task_struct	*next_prev;
8969 
8970 	struct {
8971 		struct perf_event_header	header;
8972 		u32				next_prev_pid;
8973 		u32				next_prev_tid;
8974 	} event_id;
8975 };
8976 
8977 static int perf_event_switch_match(struct perf_event *event)
8978 {
8979 	return event->attr.context_switch;
8980 }
8981 
8982 static void perf_event_switch_output(struct perf_event *event, void *data)
8983 {
8984 	struct perf_switch_event *se = data;
8985 	struct perf_output_handle handle;
8986 	struct perf_sample_data sample;
8987 	int ret;
8988 
8989 	if (!perf_event_switch_match(event))
8990 		return;
8991 
8992 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
8993 	if (event->ctx->task) {
8994 		se->event_id.header.type = PERF_RECORD_SWITCH;
8995 		se->event_id.header.size = sizeof(se->event_id.header);
8996 	} else {
8997 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8998 		se->event_id.header.size = sizeof(se->event_id);
8999 		se->event_id.next_prev_pid =
9000 					perf_event_pid(event, se->next_prev);
9001 		se->event_id.next_prev_tid =
9002 					perf_event_tid(event, se->next_prev);
9003 	}
9004 
9005 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9006 
9007 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9008 	if (ret)
9009 		return;
9010 
9011 	if (event->ctx->task)
9012 		perf_output_put(&handle, se->event_id.header);
9013 	else
9014 		perf_output_put(&handle, se->event_id);
9015 
9016 	perf_event__output_id_sample(event, &handle, &sample);
9017 
9018 	perf_output_end(&handle);
9019 }
9020 
9021 static void perf_event_switch(struct task_struct *task,
9022 			      struct task_struct *next_prev, bool sched_in)
9023 {
9024 	struct perf_switch_event switch_event;
9025 
9026 	/* N.B. caller checks nr_switch_events != 0 */
9027 
9028 	switch_event = (struct perf_switch_event){
9029 		.task		= task,
9030 		.next_prev	= next_prev,
9031 		.event_id	= {
9032 			.header = {
9033 				/* .type */
9034 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9035 				/* .size */
9036 			},
9037 			/* .next_prev_pid */
9038 			/* .next_prev_tid */
9039 		},
9040 	};
9041 
9042 	if (!sched_in && task->on_rq) {
9043 		switch_event.event_id.header.misc |=
9044 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9045 	}
9046 
9047 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9048 }
9049 
9050 /*
9051  * IRQ throttle logging
9052  */
9053 
9054 static void perf_log_throttle(struct perf_event *event, int enable)
9055 {
9056 	struct perf_output_handle handle;
9057 	struct perf_sample_data sample;
9058 	int ret;
9059 
9060 	struct {
9061 		struct perf_event_header	header;
9062 		u64				time;
9063 		u64				id;
9064 		u64				stream_id;
9065 	} throttle_event = {
9066 		.header = {
9067 			.type = PERF_RECORD_THROTTLE,
9068 			.misc = 0,
9069 			.size = sizeof(throttle_event),
9070 		},
9071 		.time		= perf_event_clock(event),
9072 		.id		= primary_event_id(event),
9073 		.stream_id	= event->id,
9074 	};
9075 
9076 	if (enable)
9077 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9078 
9079 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9080 
9081 	ret = perf_output_begin(&handle, &sample, event,
9082 				throttle_event.header.size);
9083 	if (ret)
9084 		return;
9085 
9086 	perf_output_put(&handle, throttle_event);
9087 	perf_event__output_id_sample(event, &handle, &sample);
9088 	perf_output_end(&handle);
9089 }
9090 
9091 /*
9092  * ksymbol register/unregister tracking
9093  */
9094 
9095 struct perf_ksymbol_event {
9096 	const char	*name;
9097 	int		name_len;
9098 	struct {
9099 		struct perf_event_header        header;
9100 		u64				addr;
9101 		u32				len;
9102 		u16				ksym_type;
9103 		u16				flags;
9104 	} event_id;
9105 };
9106 
9107 static int perf_event_ksymbol_match(struct perf_event *event)
9108 {
9109 	return event->attr.ksymbol;
9110 }
9111 
9112 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9113 {
9114 	struct perf_ksymbol_event *ksymbol_event = data;
9115 	struct perf_output_handle handle;
9116 	struct perf_sample_data sample;
9117 	int ret;
9118 
9119 	if (!perf_event_ksymbol_match(event))
9120 		return;
9121 
9122 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9123 				   &sample, event);
9124 	ret = perf_output_begin(&handle, &sample, event,
9125 				ksymbol_event->event_id.header.size);
9126 	if (ret)
9127 		return;
9128 
9129 	perf_output_put(&handle, ksymbol_event->event_id);
9130 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9131 	perf_event__output_id_sample(event, &handle, &sample);
9132 
9133 	perf_output_end(&handle);
9134 }
9135 
9136 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9137 			const char *sym)
9138 {
9139 	struct perf_ksymbol_event ksymbol_event;
9140 	char name[KSYM_NAME_LEN];
9141 	u16 flags = 0;
9142 	int name_len;
9143 
9144 	if (!atomic_read(&nr_ksymbol_events))
9145 		return;
9146 
9147 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9148 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9149 		goto err;
9150 
9151 	strscpy(name, sym, KSYM_NAME_LEN);
9152 	name_len = strlen(name) + 1;
9153 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9154 		name[name_len++] = '\0';
9155 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9156 
9157 	if (unregister)
9158 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9159 
9160 	ksymbol_event = (struct perf_ksymbol_event){
9161 		.name = name,
9162 		.name_len = name_len,
9163 		.event_id = {
9164 			.header = {
9165 				.type = PERF_RECORD_KSYMBOL,
9166 				.size = sizeof(ksymbol_event.event_id) +
9167 					name_len,
9168 			},
9169 			.addr = addr,
9170 			.len = len,
9171 			.ksym_type = ksym_type,
9172 			.flags = flags,
9173 		},
9174 	};
9175 
9176 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9177 	return;
9178 err:
9179 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9180 }
9181 
9182 /*
9183  * bpf program load/unload tracking
9184  */
9185 
9186 struct perf_bpf_event {
9187 	struct bpf_prog	*prog;
9188 	struct {
9189 		struct perf_event_header        header;
9190 		u16				type;
9191 		u16				flags;
9192 		u32				id;
9193 		u8				tag[BPF_TAG_SIZE];
9194 	} event_id;
9195 };
9196 
9197 static int perf_event_bpf_match(struct perf_event *event)
9198 {
9199 	return event->attr.bpf_event;
9200 }
9201 
9202 static void perf_event_bpf_output(struct perf_event *event, void *data)
9203 {
9204 	struct perf_bpf_event *bpf_event = data;
9205 	struct perf_output_handle handle;
9206 	struct perf_sample_data sample;
9207 	int ret;
9208 
9209 	if (!perf_event_bpf_match(event))
9210 		return;
9211 
9212 	perf_event_header__init_id(&bpf_event->event_id.header,
9213 				   &sample, event);
9214 	ret = perf_output_begin(&handle, &sample, event,
9215 				bpf_event->event_id.header.size);
9216 	if (ret)
9217 		return;
9218 
9219 	perf_output_put(&handle, bpf_event->event_id);
9220 	perf_event__output_id_sample(event, &handle, &sample);
9221 
9222 	perf_output_end(&handle);
9223 }
9224 
9225 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9226 					 enum perf_bpf_event_type type)
9227 {
9228 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9229 	int i;
9230 
9231 	if (prog->aux->func_cnt == 0) {
9232 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9233 				   (u64)(unsigned long)prog->bpf_func,
9234 				   prog->jited_len, unregister,
9235 				   prog->aux->ksym.name);
9236 	} else {
9237 		for (i = 0; i < prog->aux->func_cnt; i++) {
9238 			struct bpf_prog *subprog = prog->aux->func[i];
9239 
9240 			perf_event_ksymbol(
9241 				PERF_RECORD_KSYMBOL_TYPE_BPF,
9242 				(u64)(unsigned long)subprog->bpf_func,
9243 				subprog->jited_len, unregister,
9244 				subprog->aux->ksym.name);
9245 		}
9246 	}
9247 }
9248 
9249 void perf_event_bpf_event(struct bpf_prog *prog,
9250 			  enum perf_bpf_event_type type,
9251 			  u16 flags)
9252 {
9253 	struct perf_bpf_event bpf_event;
9254 
9255 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9256 	    type >= PERF_BPF_EVENT_MAX)
9257 		return;
9258 
9259 	switch (type) {
9260 	case PERF_BPF_EVENT_PROG_LOAD:
9261 	case PERF_BPF_EVENT_PROG_UNLOAD:
9262 		if (atomic_read(&nr_ksymbol_events))
9263 			perf_event_bpf_emit_ksymbols(prog, type);
9264 		break;
9265 	default:
9266 		break;
9267 	}
9268 
9269 	if (!atomic_read(&nr_bpf_events))
9270 		return;
9271 
9272 	bpf_event = (struct perf_bpf_event){
9273 		.prog = prog,
9274 		.event_id = {
9275 			.header = {
9276 				.type = PERF_RECORD_BPF_EVENT,
9277 				.size = sizeof(bpf_event.event_id),
9278 			},
9279 			.type = type,
9280 			.flags = flags,
9281 			.id = prog->aux->id,
9282 		},
9283 	};
9284 
9285 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9286 
9287 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9288 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9289 }
9290 
9291 struct perf_text_poke_event {
9292 	const void		*old_bytes;
9293 	const void		*new_bytes;
9294 	size_t			pad;
9295 	u16			old_len;
9296 	u16			new_len;
9297 
9298 	struct {
9299 		struct perf_event_header	header;
9300 
9301 		u64				addr;
9302 	} event_id;
9303 };
9304 
9305 static int perf_event_text_poke_match(struct perf_event *event)
9306 {
9307 	return event->attr.text_poke;
9308 }
9309 
9310 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9311 {
9312 	struct perf_text_poke_event *text_poke_event = data;
9313 	struct perf_output_handle handle;
9314 	struct perf_sample_data sample;
9315 	u64 padding = 0;
9316 	int ret;
9317 
9318 	if (!perf_event_text_poke_match(event))
9319 		return;
9320 
9321 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9322 
9323 	ret = perf_output_begin(&handle, &sample, event,
9324 				text_poke_event->event_id.header.size);
9325 	if (ret)
9326 		return;
9327 
9328 	perf_output_put(&handle, text_poke_event->event_id);
9329 	perf_output_put(&handle, text_poke_event->old_len);
9330 	perf_output_put(&handle, text_poke_event->new_len);
9331 
9332 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9333 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9334 
9335 	if (text_poke_event->pad)
9336 		__output_copy(&handle, &padding, text_poke_event->pad);
9337 
9338 	perf_event__output_id_sample(event, &handle, &sample);
9339 
9340 	perf_output_end(&handle);
9341 }
9342 
9343 void perf_event_text_poke(const void *addr, const void *old_bytes,
9344 			  size_t old_len, const void *new_bytes, size_t new_len)
9345 {
9346 	struct perf_text_poke_event text_poke_event;
9347 	size_t tot, pad;
9348 
9349 	if (!atomic_read(&nr_text_poke_events))
9350 		return;
9351 
9352 	tot  = sizeof(text_poke_event.old_len) + old_len;
9353 	tot += sizeof(text_poke_event.new_len) + new_len;
9354 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9355 
9356 	text_poke_event = (struct perf_text_poke_event){
9357 		.old_bytes    = old_bytes,
9358 		.new_bytes    = new_bytes,
9359 		.pad          = pad,
9360 		.old_len      = old_len,
9361 		.new_len      = new_len,
9362 		.event_id  = {
9363 			.header = {
9364 				.type = PERF_RECORD_TEXT_POKE,
9365 				.misc = PERF_RECORD_MISC_KERNEL,
9366 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9367 			},
9368 			.addr = (unsigned long)addr,
9369 		},
9370 	};
9371 
9372 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9373 }
9374 
9375 void perf_event_itrace_started(struct perf_event *event)
9376 {
9377 	event->attach_state |= PERF_ATTACH_ITRACE;
9378 }
9379 
9380 static void perf_log_itrace_start(struct perf_event *event)
9381 {
9382 	struct perf_output_handle handle;
9383 	struct perf_sample_data sample;
9384 	struct perf_aux_event {
9385 		struct perf_event_header        header;
9386 		u32				pid;
9387 		u32				tid;
9388 	} rec;
9389 	int ret;
9390 
9391 	if (event->parent)
9392 		event = event->parent;
9393 
9394 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9395 	    event->attach_state & PERF_ATTACH_ITRACE)
9396 		return;
9397 
9398 	rec.header.type	= PERF_RECORD_ITRACE_START;
9399 	rec.header.misc	= 0;
9400 	rec.header.size	= sizeof(rec);
9401 	rec.pid	= perf_event_pid(event, current);
9402 	rec.tid	= perf_event_tid(event, current);
9403 
9404 	perf_event_header__init_id(&rec.header, &sample, event);
9405 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9406 
9407 	if (ret)
9408 		return;
9409 
9410 	perf_output_put(&handle, rec);
9411 	perf_event__output_id_sample(event, &handle, &sample);
9412 
9413 	perf_output_end(&handle);
9414 }
9415 
9416 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9417 {
9418 	struct perf_output_handle handle;
9419 	struct perf_sample_data sample;
9420 	struct perf_aux_event {
9421 		struct perf_event_header        header;
9422 		u64				hw_id;
9423 	} rec;
9424 	int ret;
9425 
9426 	if (event->parent)
9427 		event = event->parent;
9428 
9429 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9430 	rec.header.misc	= 0;
9431 	rec.header.size	= sizeof(rec);
9432 	rec.hw_id	= hw_id;
9433 
9434 	perf_event_header__init_id(&rec.header, &sample, event);
9435 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9436 
9437 	if (ret)
9438 		return;
9439 
9440 	perf_output_put(&handle, rec);
9441 	perf_event__output_id_sample(event, &handle, &sample);
9442 
9443 	perf_output_end(&handle);
9444 }
9445 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9446 
9447 static int
9448 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9449 {
9450 	struct hw_perf_event *hwc = &event->hw;
9451 	int ret = 0;
9452 	u64 seq;
9453 
9454 	seq = __this_cpu_read(perf_throttled_seq);
9455 	if (seq != hwc->interrupts_seq) {
9456 		hwc->interrupts_seq = seq;
9457 		hwc->interrupts = 1;
9458 	} else {
9459 		hwc->interrupts++;
9460 		if (unlikely(throttle &&
9461 			     hwc->interrupts > max_samples_per_tick)) {
9462 			__this_cpu_inc(perf_throttled_count);
9463 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9464 			hwc->interrupts = MAX_INTERRUPTS;
9465 			perf_log_throttle(event, 0);
9466 			ret = 1;
9467 		}
9468 	}
9469 
9470 	if (event->attr.freq) {
9471 		u64 now = perf_clock();
9472 		s64 delta = now - hwc->freq_time_stamp;
9473 
9474 		hwc->freq_time_stamp = now;
9475 
9476 		if (delta > 0 && delta < 2*TICK_NSEC)
9477 			perf_adjust_period(event, delta, hwc->last_period, true);
9478 	}
9479 
9480 	return ret;
9481 }
9482 
9483 int perf_event_account_interrupt(struct perf_event *event)
9484 {
9485 	return __perf_event_account_interrupt(event, 1);
9486 }
9487 
9488 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9489 {
9490 	/*
9491 	 * Due to interrupt latency (AKA "skid"), we may enter the
9492 	 * kernel before taking an overflow, even if the PMU is only
9493 	 * counting user events.
9494 	 */
9495 	if (event->attr.exclude_kernel && !user_mode(regs))
9496 		return false;
9497 
9498 	return true;
9499 }
9500 
9501 /*
9502  * Generic event overflow handling, sampling.
9503  */
9504 
9505 static int __perf_event_overflow(struct perf_event *event,
9506 				 int throttle, struct perf_sample_data *data,
9507 				 struct pt_regs *regs)
9508 {
9509 	int events = atomic_read(&event->event_limit);
9510 	int ret = 0;
9511 
9512 	/*
9513 	 * Non-sampling counters might still use the PMI to fold short
9514 	 * hardware counters, ignore those.
9515 	 */
9516 	if (unlikely(!is_sampling_event(event)))
9517 		return 0;
9518 
9519 	ret = __perf_event_account_interrupt(event, throttle);
9520 
9521 	/*
9522 	 * XXX event_limit might not quite work as expected on inherited
9523 	 * events
9524 	 */
9525 
9526 	event->pending_kill = POLL_IN;
9527 	if (events && atomic_dec_and_test(&event->event_limit)) {
9528 		ret = 1;
9529 		event->pending_kill = POLL_HUP;
9530 		perf_event_disable_inatomic(event);
9531 	}
9532 
9533 	if (event->attr.sigtrap) {
9534 		/*
9535 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9536 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9537 		 * it is the first event, on the other hand, we should also not
9538 		 * trigger the WARN or override the data address.
9539 		 */
9540 		bool valid_sample = sample_is_allowed(event, regs);
9541 		unsigned int pending_id = 1;
9542 
9543 		if (regs)
9544 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9545 		if (!event->pending_sigtrap) {
9546 			event->pending_sigtrap = pending_id;
9547 			local_inc(&event->ctx->nr_pending);
9548 		} else if (event->attr.exclude_kernel && valid_sample) {
9549 			/*
9550 			 * Should not be able to return to user space without
9551 			 * consuming pending_sigtrap; with exceptions:
9552 			 *
9553 			 *  1. Where !exclude_kernel, events can overflow again
9554 			 *     in the kernel without returning to user space.
9555 			 *
9556 			 *  2. Events that can overflow again before the IRQ-
9557 			 *     work without user space progress (e.g. hrtimer).
9558 			 *     To approximate progress (with false negatives),
9559 			 *     check 32-bit hash of the current IP.
9560 			 */
9561 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9562 		}
9563 
9564 		event->pending_addr = 0;
9565 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9566 			event->pending_addr = data->addr;
9567 		irq_work_queue(&event->pending_irq);
9568 	}
9569 
9570 	READ_ONCE(event->overflow_handler)(event, data, regs);
9571 
9572 	if (*perf_event_fasync(event) && event->pending_kill) {
9573 		event->pending_wakeup = 1;
9574 		irq_work_queue(&event->pending_irq);
9575 	}
9576 
9577 	return ret;
9578 }
9579 
9580 int perf_event_overflow(struct perf_event *event,
9581 			struct perf_sample_data *data,
9582 			struct pt_regs *regs)
9583 {
9584 	return __perf_event_overflow(event, 1, data, regs);
9585 }
9586 
9587 /*
9588  * Generic software event infrastructure
9589  */
9590 
9591 struct swevent_htable {
9592 	struct swevent_hlist		*swevent_hlist;
9593 	struct mutex			hlist_mutex;
9594 	int				hlist_refcount;
9595 
9596 	/* Recursion avoidance in each contexts */
9597 	int				recursion[PERF_NR_CONTEXTS];
9598 };
9599 
9600 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9601 
9602 /*
9603  * We directly increment event->count and keep a second value in
9604  * event->hw.period_left to count intervals. This period event
9605  * is kept in the range [-sample_period, 0] so that we can use the
9606  * sign as trigger.
9607  */
9608 
9609 u64 perf_swevent_set_period(struct perf_event *event)
9610 {
9611 	struct hw_perf_event *hwc = &event->hw;
9612 	u64 period = hwc->last_period;
9613 	u64 nr, offset;
9614 	s64 old, val;
9615 
9616 	hwc->last_period = hwc->sample_period;
9617 
9618 	old = local64_read(&hwc->period_left);
9619 	do {
9620 		val = old;
9621 		if (val < 0)
9622 			return 0;
9623 
9624 		nr = div64_u64(period + val, period);
9625 		offset = nr * period;
9626 		val -= offset;
9627 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9628 
9629 	return nr;
9630 }
9631 
9632 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9633 				    struct perf_sample_data *data,
9634 				    struct pt_regs *regs)
9635 {
9636 	struct hw_perf_event *hwc = &event->hw;
9637 	int throttle = 0;
9638 
9639 	if (!overflow)
9640 		overflow = perf_swevent_set_period(event);
9641 
9642 	if (hwc->interrupts == MAX_INTERRUPTS)
9643 		return;
9644 
9645 	for (; overflow; overflow--) {
9646 		if (__perf_event_overflow(event, throttle,
9647 					    data, regs)) {
9648 			/*
9649 			 * We inhibit the overflow from happening when
9650 			 * hwc->interrupts == MAX_INTERRUPTS.
9651 			 */
9652 			break;
9653 		}
9654 		throttle = 1;
9655 	}
9656 }
9657 
9658 static void perf_swevent_event(struct perf_event *event, u64 nr,
9659 			       struct perf_sample_data *data,
9660 			       struct pt_regs *regs)
9661 {
9662 	struct hw_perf_event *hwc = &event->hw;
9663 
9664 	local64_add(nr, &event->count);
9665 
9666 	if (!regs)
9667 		return;
9668 
9669 	if (!is_sampling_event(event))
9670 		return;
9671 
9672 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9673 		data->period = nr;
9674 		return perf_swevent_overflow(event, 1, data, regs);
9675 	} else
9676 		data->period = event->hw.last_period;
9677 
9678 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9679 		return perf_swevent_overflow(event, 1, data, regs);
9680 
9681 	if (local64_add_negative(nr, &hwc->period_left))
9682 		return;
9683 
9684 	perf_swevent_overflow(event, 0, data, regs);
9685 }
9686 
9687 static int perf_exclude_event(struct perf_event *event,
9688 			      struct pt_regs *regs)
9689 {
9690 	if (event->hw.state & PERF_HES_STOPPED)
9691 		return 1;
9692 
9693 	if (regs) {
9694 		if (event->attr.exclude_user && user_mode(regs))
9695 			return 1;
9696 
9697 		if (event->attr.exclude_kernel && !user_mode(regs))
9698 			return 1;
9699 	}
9700 
9701 	return 0;
9702 }
9703 
9704 static int perf_swevent_match(struct perf_event *event,
9705 				enum perf_type_id type,
9706 				u32 event_id,
9707 				struct perf_sample_data *data,
9708 				struct pt_regs *regs)
9709 {
9710 	if (event->attr.type != type)
9711 		return 0;
9712 
9713 	if (event->attr.config != event_id)
9714 		return 0;
9715 
9716 	if (perf_exclude_event(event, regs))
9717 		return 0;
9718 
9719 	return 1;
9720 }
9721 
9722 static inline u64 swevent_hash(u64 type, u32 event_id)
9723 {
9724 	u64 val = event_id | (type << 32);
9725 
9726 	return hash_64(val, SWEVENT_HLIST_BITS);
9727 }
9728 
9729 static inline struct hlist_head *
9730 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9731 {
9732 	u64 hash = swevent_hash(type, event_id);
9733 
9734 	return &hlist->heads[hash];
9735 }
9736 
9737 /* For the read side: events when they trigger */
9738 static inline struct hlist_head *
9739 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9740 {
9741 	struct swevent_hlist *hlist;
9742 
9743 	hlist = rcu_dereference(swhash->swevent_hlist);
9744 	if (!hlist)
9745 		return NULL;
9746 
9747 	return __find_swevent_head(hlist, type, event_id);
9748 }
9749 
9750 /* For the event head insertion and removal in the hlist */
9751 static inline struct hlist_head *
9752 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9753 {
9754 	struct swevent_hlist *hlist;
9755 	u32 event_id = event->attr.config;
9756 	u64 type = event->attr.type;
9757 
9758 	/*
9759 	 * Event scheduling is always serialized against hlist allocation
9760 	 * and release. Which makes the protected version suitable here.
9761 	 * The context lock guarantees that.
9762 	 */
9763 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9764 					  lockdep_is_held(&event->ctx->lock));
9765 	if (!hlist)
9766 		return NULL;
9767 
9768 	return __find_swevent_head(hlist, type, event_id);
9769 }
9770 
9771 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9772 				    u64 nr,
9773 				    struct perf_sample_data *data,
9774 				    struct pt_regs *regs)
9775 {
9776 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9777 	struct perf_event *event;
9778 	struct hlist_head *head;
9779 
9780 	rcu_read_lock();
9781 	head = find_swevent_head_rcu(swhash, type, event_id);
9782 	if (!head)
9783 		goto end;
9784 
9785 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9786 		if (perf_swevent_match(event, type, event_id, data, regs))
9787 			perf_swevent_event(event, nr, data, regs);
9788 	}
9789 end:
9790 	rcu_read_unlock();
9791 }
9792 
9793 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9794 
9795 int perf_swevent_get_recursion_context(void)
9796 {
9797 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9798 
9799 	return get_recursion_context(swhash->recursion);
9800 }
9801 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9802 
9803 void perf_swevent_put_recursion_context(int rctx)
9804 {
9805 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9806 
9807 	put_recursion_context(swhash->recursion, rctx);
9808 }
9809 
9810 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9811 {
9812 	struct perf_sample_data data;
9813 
9814 	if (WARN_ON_ONCE(!regs))
9815 		return;
9816 
9817 	perf_sample_data_init(&data, addr, 0);
9818 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9819 }
9820 
9821 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9822 {
9823 	int rctx;
9824 
9825 	preempt_disable_notrace();
9826 	rctx = perf_swevent_get_recursion_context();
9827 	if (unlikely(rctx < 0))
9828 		goto fail;
9829 
9830 	___perf_sw_event(event_id, nr, regs, addr);
9831 
9832 	perf_swevent_put_recursion_context(rctx);
9833 fail:
9834 	preempt_enable_notrace();
9835 }
9836 
9837 static void perf_swevent_read(struct perf_event *event)
9838 {
9839 }
9840 
9841 static int perf_swevent_add(struct perf_event *event, int flags)
9842 {
9843 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9844 	struct hw_perf_event *hwc = &event->hw;
9845 	struct hlist_head *head;
9846 
9847 	if (is_sampling_event(event)) {
9848 		hwc->last_period = hwc->sample_period;
9849 		perf_swevent_set_period(event);
9850 	}
9851 
9852 	hwc->state = !(flags & PERF_EF_START);
9853 
9854 	head = find_swevent_head(swhash, event);
9855 	if (WARN_ON_ONCE(!head))
9856 		return -EINVAL;
9857 
9858 	hlist_add_head_rcu(&event->hlist_entry, head);
9859 	perf_event_update_userpage(event);
9860 
9861 	return 0;
9862 }
9863 
9864 static void perf_swevent_del(struct perf_event *event, int flags)
9865 {
9866 	hlist_del_rcu(&event->hlist_entry);
9867 }
9868 
9869 static void perf_swevent_start(struct perf_event *event, int flags)
9870 {
9871 	event->hw.state = 0;
9872 }
9873 
9874 static void perf_swevent_stop(struct perf_event *event, int flags)
9875 {
9876 	event->hw.state = PERF_HES_STOPPED;
9877 }
9878 
9879 /* Deref the hlist from the update side */
9880 static inline struct swevent_hlist *
9881 swevent_hlist_deref(struct swevent_htable *swhash)
9882 {
9883 	return rcu_dereference_protected(swhash->swevent_hlist,
9884 					 lockdep_is_held(&swhash->hlist_mutex));
9885 }
9886 
9887 static void swevent_hlist_release(struct swevent_htable *swhash)
9888 {
9889 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9890 
9891 	if (!hlist)
9892 		return;
9893 
9894 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9895 	kfree_rcu(hlist, rcu_head);
9896 }
9897 
9898 static void swevent_hlist_put_cpu(int cpu)
9899 {
9900 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9901 
9902 	mutex_lock(&swhash->hlist_mutex);
9903 
9904 	if (!--swhash->hlist_refcount)
9905 		swevent_hlist_release(swhash);
9906 
9907 	mutex_unlock(&swhash->hlist_mutex);
9908 }
9909 
9910 static void swevent_hlist_put(void)
9911 {
9912 	int cpu;
9913 
9914 	for_each_possible_cpu(cpu)
9915 		swevent_hlist_put_cpu(cpu);
9916 }
9917 
9918 static int swevent_hlist_get_cpu(int cpu)
9919 {
9920 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9921 	int err = 0;
9922 
9923 	mutex_lock(&swhash->hlist_mutex);
9924 	if (!swevent_hlist_deref(swhash) &&
9925 	    cpumask_test_cpu(cpu, perf_online_mask)) {
9926 		struct swevent_hlist *hlist;
9927 
9928 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9929 		if (!hlist) {
9930 			err = -ENOMEM;
9931 			goto exit;
9932 		}
9933 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9934 	}
9935 	swhash->hlist_refcount++;
9936 exit:
9937 	mutex_unlock(&swhash->hlist_mutex);
9938 
9939 	return err;
9940 }
9941 
9942 static int swevent_hlist_get(void)
9943 {
9944 	int err, cpu, failed_cpu;
9945 
9946 	mutex_lock(&pmus_lock);
9947 	for_each_possible_cpu(cpu) {
9948 		err = swevent_hlist_get_cpu(cpu);
9949 		if (err) {
9950 			failed_cpu = cpu;
9951 			goto fail;
9952 		}
9953 	}
9954 	mutex_unlock(&pmus_lock);
9955 	return 0;
9956 fail:
9957 	for_each_possible_cpu(cpu) {
9958 		if (cpu == failed_cpu)
9959 			break;
9960 		swevent_hlist_put_cpu(cpu);
9961 	}
9962 	mutex_unlock(&pmus_lock);
9963 	return err;
9964 }
9965 
9966 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9967 
9968 static void sw_perf_event_destroy(struct perf_event *event)
9969 {
9970 	u64 event_id = event->attr.config;
9971 
9972 	WARN_ON(event->parent);
9973 
9974 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
9975 	swevent_hlist_put();
9976 }
9977 
9978 static struct pmu perf_cpu_clock; /* fwd declaration */
9979 static struct pmu perf_task_clock;
9980 
9981 static int perf_swevent_init(struct perf_event *event)
9982 {
9983 	u64 event_id = event->attr.config;
9984 
9985 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9986 		return -ENOENT;
9987 
9988 	/*
9989 	 * no branch sampling for software events
9990 	 */
9991 	if (has_branch_stack(event))
9992 		return -EOPNOTSUPP;
9993 
9994 	switch (event_id) {
9995 	case PERF_COUNT_SW_CPU_CLOCK:
9996 		event->attr.type = perf_cpu_clock.type;
9997 		return -ENOENT;
9998 	case PERF_COUNT_SW_TASK_CLOCK:
9999 		event->attr.type = perf_task_clock.type;
10000 		return -ENOENT;
10001 
10002 	default:
10003 		break;
10004 	}
10005 
10006 	if (event_id >= PERF_COUNT_SW_MAX)
10007 		return -ENOENT;
10008 
10009 	if (!event->parent) {
10010 		int err;
10011 
10012 		err = swevent_hlist_get();
10013 		if (err)
10014 			return err;
10015 
10016 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10017 		event->destroy = sw_perf_event_destroy;
10018 	}
10019 
10020 	return 0;
10021 }
10022 
10023 static struct pmu perf_swevent = {
10024 	.task_ctx_nr	= perf_sw_context,
10025 
10026 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10027 
10028 	.event_init	= perf_swevent_init,
10029 	.add		= perf_swevent_add,
10030 	.del		= perf_swevent_del,
10031 	.start		= perf_swevent_start,
10032 	.stop		= perf_swevent_stop,
10033 	.read		= perf_swevent_read,
10034 };
10035 
10036 #ifdef CONFIG_EVENT_TRACING
10037 
10038 static void tp_perf_event_destroy(struct perf_event *event)
10039 {
10040 	perf_trace_destroy(event);
10041 }
10042 
10043 static int perf_tp_event_init(struct perf_event *event)
10044 {
10045 	int err;
10046 
10047 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10048 		return -ENOENT;
10049 
10050 	/*
10051 	 * no branch sampling for tracepoint events
10052 	 */
10053 	if (has_branch_stack(event))
10054 		return -EOPNOTSUPP;
10055 
10056 	err = perf_trace_init(event);
10057 	if (err)
10058 		return err;
10059 
10060 	event->destroy = tp_perf_event_destroy;
10061 
10062 	return 0;
10063 }
10064 
10065 static struct pmu perf_tracepoint = {
10066 	.task_ctx_nr	= perf_sw_context,
10067 
10068 	.event_init	= perf_tp_event_init,
10069 	.add		= perf_trace_add,
10070 	.del		= perf_trace_del,
10071 	.start		= perf_swevent_start,
10072 	.stop		= perf_swevent_stop,
10073 	.read		= perf_swevent_read,
10074 };
10075 
10076 static int perf_tp_filter_match(struct perf_event *event,
10077 				struct perf_sample_data *data)
10078 {
10079 	void *record = data->raw->frag.data;
10080 
10081 	/* only top level events have filters set */
10082 	if (event->parent)
10083 		event = event->parent;
10084 
10085 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10086 		return 1;
10087 	return 0;
10088 }
10089 
10090 static int perf_tp_event_match(struct perf_event *event,
10091 				struct perf_sample_data *data,
10092 				struct pt_regs *regs)
10093 {
10094 	if (event->hw.state & PERF_HES_STOPPED)
10095 		return 0;
10096 	/*
10097 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10098 	 */
10099 	if (event->attr.exclude_kernel && !user_mode(regs))
10100 		return 0;
10101 
10102 	if (!perf_tp_filter_match(event, data))
10103 		return 0;
10104 
10105 	return 1;
10106 }
10107 
10108 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10109 			       struct trace_event_call *call, u64 count,
10110 			       struct pt_regs *regs, struct hlist_head *head,
10111 			       struct task_struct *task)
10112 {
10113 	if (bpf_prog_array_valid(call)) {
10114 		*(struct pt_regs **)raw_data = regs;
10115 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10116 			perf_swevent_put_recursion_context(rctx);
10117 			return;
10118 		}
10119 	}
10120 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10121 		      rctx, task);
10122 }
10123 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10124 
10125 static void __perf_tp_event_target_task(u64 count, void *record,
10126 					struct pt_regs *regs,
10127 					struct perf_sample_data *data,
10128 					struct perf_event *event)
10129 {
10130 	struct trace_entry *entry = record;
10131 
10132 	if (event->attr.config != entry->type)
10133 		return;
10134 	/* Cannot deliver synchronous signal to other task. */
10135 	if (event->attr.sigtrap)
10136 		return;
10137 	if (perf_tp_event_match(event, data, regs))
10138 		perf_swevent_event(event, count, data, regs);
10139 }
10140 
10141 static void perf_tp_event_target_task(u64 count, void *record,
10142 				      struct pt_regs *regs,
10143 				      struct perf_sample_data *data,
10144 				      struct perf_event_context *ctx)
10145 {
10146 	unsigned int cpu = smp_processor_id();
10147 	struct pmu *pmu = &perf_tracepoint;
10148 	struct perf_event *event, *sibling;
10149 
10150 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10151 		__perf_tp_event_target_task(count, record, regs, data, event);
10152 		for_each_sibling_event(sibling, event)
10153 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10154 	}
10155 
10156 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10157 		__perf_tp_event_target_task(count, record, regs, data, event);
10158 		for_each_sibling_event(sibling, event)
10159 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10160 	}
10161 }
10162 
10163 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10164 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10165 		   struct task_struct *task)
10166 {
10167 	struct perf_sample_data data;
10168 	struct perf_event *event;
10169 
10170 	struct perf_raw_record raw = {
10171 		.frag = {
10172 			.size = entry_size,
10173 			.data = record,
10174 		},
10175 	};
10176 
10177 	perf_sample_data_init(&data, 0, 0);
10178 	perf_sample_save_raw_data(&data, &raw);
10179 
10180 	perf_trace_buf_update(record, event_type);
10181 
10182 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10183 		if (perf_tp_event_match(event, &data, regs)) {
10184 			perf_swevent_event(event, count, &data, regs);
10185 
10186 			/*
10187 			 * Here use the same on-stack perf_sample_data,
10188 			 * some members in data are event-specific and
10189 			 * need to be re-computed for different sweveents.
10190 			 * Re-initialize data->sample_flags safely to avoid
10191 			 * the problem that next event skips preparing data
10192 			 * because data->sample_flags is set.
10193 			 */
10194 			perf_sample_data_init(&data, 0, 0);
10195 			perf_sample_save_raw_data(&data, &raw);
10196 		}
10197 	}
10198 
10199 	/*
10200 	 * If we got specified a target task, also iterate its context and
10201 	 * deliver this event there too.
10202 	 */
10203 	if (task && task != current) {
10204 		struct perf_event_context *ctx;
10205 
10206 		rcu_read_lock();
10207 		ctx = rcu_dereference(task->perf_event_ctxp);
10208 		if (!ctx)
10209 			goto unlock;
10210 
10211 		raw_spin_lock(&ctx->lock);
10212 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10213 		raw_spin_unlock(&ctx->lock);
10214 unlock:
10215 		rcu_read_unlock();
10216 	}
10217 
10218 	perf_swevent_put_recursion_context(rctx);
10219 }
10220 EXPORT_SYMBOL_GPL(perf_tp_event);
10221 
10222 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10223 /*
10224  * Flags in config, used by dynamic PMU kprobe and uprobe
10225  * The flags should match following PMU_FORMAT_ATTR().
10226  *
10227  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10228  *                               if not set, create kprobe/uprobe
10229  *
10230  * The following values specify a reference counter (or semaphore in the
10231  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10232  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10233  *
10234  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10235  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10236  */
10237 enum perf_probe_config {
10238 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10239 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10240 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10241 };
10242 
10243 PMU_FORMAT_ATTR(retprobe, "config:0");
10244 #endif
10245 
10246 #ifdef CONFIG_KPROBE_EVENTS
10247 static struct attribute *kprobe_attrs[] = {
10248 	&format_attr_retprobe.attr,
10249 	NULL,
10250 };
10251 
10252 static struct attribute_group kprobe_format_group = {
10253 	.name = "format",
10254 	.attrs = kprobe_attrs,
10255 };
10256 
10257 static const struct attribute_group *kprobe_attr_groups[] = {
10258 	&kprobe_format_group,
10259 	NULL,
10260 };
10261 
10262 static int perf_kprobe_event_init(struct perf_event *event);
10263 static struct pmu perf_kprobe = {
10264 	.task_ctx_nr	= perf_sw_context,
10265 	.event_init	= perf_kprobe_event_init,
10266 	.add		= perf_trace_add,
10267 	.del		= perf_trace_del,
10268 	.start		= perf_swevent_start,
10269 	.stop		= perf_swevent_stop,
10270 	.read		= perf_swevent_read,
10271 	.attr_groups	= kprobe_attr_groups,
10272 };
10273 
10274 static int perf_kprobe_event_init(struct perf_event *event)
10275 {
10276 	int err;
10277 	bool is_retprobe;
10278 
10279 	if (event->attr.type != perf_kprobe.type)
10280 		return -ENOENT;
10281 
10282 	if (!perfmon_capable())
10283 		return -EACCES;
10284 
10285 	/*
10286 	 * no branch sampling for probe events
10287 	 */
10288 	if (has_branch_stack(event))
10289 		return -EOPNOTSUPP;
10290 
10291 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10292 	err = perf_kprobe_init(event, is_retprobe);
10293 	if (err)
10294 		return err;
10295 
10296 	event->destroy = perf_kprobe_destroy;
10297 
10298 	return 0;
10299 }
10300 #endif /* CONFIG_KPROBE_EVENTS */
10301 
10302 #ifdef CONFIG_UPROBE_EVENTS
10303 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10304 
10305 static struct attribute *uprobe_attrs[] = {
10306 	&format_attr_retprobe.attr,
10307 	&format_attr_ref_ctr_offset.attr,
10308 	NULL,
10309 };
10310 
10311 static struct attribute_group uprobe_format_group = {
10312 	.name = "format",
10313 	.attrs = uprobe_attrs,
10314 };
10315 
10316 static const struct attribute_group *uprobe_attr_groups[] = {
10317 	&uprobe_format_group,
10318 	NULL,
10319 };
10320 
10321 static int perf_uprobe_event_init(struct perf_event *event);
10322 static struct pmu perf_uprobe = {
10323 	.task_ctx_nr	= perf_sw_context,
10324 	.event_init	= perf_uprobe_event_init,
10325 	.add		= perf_trace_add,
10326 	.del		= perf_trace_del,
10327 	.start		= perf_swevent_start,
10328 	.stop		= perf_swevent_stop,
10329 	.read		= perf_swevent_read,
10330 	.attr_groups	= uprobe_attr_groups,
10331 };
10332 
10333 static int perf_uprobe_event_init(struct perf_event *event)
10334 {
10335 	int err;
10336 	unsigned long ref_ctr_offset;
10337 	bool is_retprobe;
10338 
10339 	if (event->attr.type != perf_uprobe.type)
10340 		return -ENOENT;
10341 
10342 	if (!perfmon_capable())
10343 		return -EACCES;
10344 
10345 	/*
10346 	 * no branch sampling for probe events
10347 	 */
10348 	if (has_branch_stack(event))
10349 		return -EOPNOTSUPP;
10350 
10351 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10352 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10353 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10354 	if (err)
10355 		return err;
10356 
10357 	event->destroy = perf_uprobe_destroy;
10358 
10359 	return 0;
10360 }
10361 #endif /* CONFIG_UPROBE_EVENTS */
10362 
10363 static inline void perf_tp_register(void)
10364 {
10365 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10366 #ifdef CONFIG_KPROBE_EVENTS
10367 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10368 #endif
10369 #ifdef CONFIG_UPROBE_EVENTS
10370 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10371 #endif
10372 }
10373 
10374 static void perf_event_free_filter(struct perf_event *event)
10375 {
10376 	ftrace_profile_free_filter(event);
10377 }
10378 
10379 #ifdef CONFIG_BPF_SYSCALL
10380 static void bpf_overflow_handler(struct perf_event *event,
10381 				 struct perf_sample_data *data,
10382 				 struct pt_regs *regs)
10383 {
10384 	struct bpf_perf_event_data_kern ctx = {
10385 		.data = data,
10386 		.event = event,
10387 	};
10388 	struct bpf_prog *prog;
10389 	int ret = 0;
10390 
10391 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10392 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10393 		goto out;
10394 	rcu_read_lock();
10395 	prog = READ_ONCE(event->prog);
10396 	if (prog) {
10397 		perf_prepare_sample(data, event, regs);
10398 		ret = bpf_prog_run(prog, &ctx);
10399 	}
10400 	rcu_read_unlock();
10401 out:
10402 	__this_cpu_dec(bpf_prog_active);
10403 	if (!ret)
10404 		return;
10405 
10406 	event->orig_overflow_handler(event, data, regs);
10407 }
10408 
10409 static int perf_event_set_bpf_handler(struct perf_event *event,
10410 				      struct bpf_prog *prog,
10411 				      u64 bpf_cookie)
10412 {
10413 	if (event->overflow_handler_context)
10414 		/* hw breakpoint or kernel counter */
10415 		return -EINVAL;
10416 
10417 	if (event->prog)
10418 		return -EEXIST;
10419 
10420 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10421 		return -EINVAL;
10422 
10423 	if (event->attr.precise_ip &&
10424 	    prog->call_get_stack &&
10425 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10426 	     event->attr.exclude_callchain_kernel ||
10427 	     event->attr.exclude_callchain_user)) {
10428 		/*
10429 		 * On perf_event with precise_ip, calling bpf_get_stack()
10430 		 * may trigger unwinder warnings and occasional crashes.
10431 		 * bpf_get_[stack|stackid] works around this issue by using
10432 		 * callchain attached to perf_sample_data. If the
10433 		 * perf_event does not full (kernel and user) callchain
10434 		 * attached to perf_sample_data, do not allow attaching BPF
10435 		 * program that calls bpf_get_[stack|stackid].
10436 		 */
10437 		return -EPROTO;
10438 	}
10439 
10440 	event->prog = prog;
10441 	event->bpf_cookie = bpf_cookie;
10442 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10443 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10444 	return 0;
10445 }
10446 
10447 static void perf_event_free_bpf_handler(struct perf_event *event)
10448 {
10449 	struct bpf_prog *prog = event->prog;
10450 
10451 	if (!prog)
10452 		return;
10453 
10454 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10455 	event->prog = NULL;
10456 	bpf_prog_put(prog);
10457 }
10458 #else
10459 static int perf_event_set_bpf_handler(struct perf_event *event,
10460 				      struct bpf_prog *prog,
10461 				      u64 bpf_cookie)
10462 {
10463 	return -EOPNOTSUPP;
10464 }
10465 static void perf_event_free_bpf_handler(struct perf_event *event)
10466 {
10467 }
10468 #endif
10469 
10470 /*
10471  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10472  * with perf_event_open()
10473  */
10474 static inline bool perf_event_is_tracing(struct perf_event *event)
10475 {
10476 	if (event->pmu == &perf_tracepoint)
10477 		return true;
10478 #ifdef CONFIG_KPROBE_EVENTS
10479 	if (event->pmu == &perf_kprobe)
10480 		return true;
10481 #endif
10482 #ifdef CONFIG_UPROBE_EVENTS
10483 	if (event->pmu == &perf_uprobe)
10484 		return true;
10485 #endif
10486 	return false;
10487 }
10488 
10489 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10490 			    u64 bpf_cookie)
10491 {
10492 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10493 
10494 	if (!perf_event_is_tracing(event))
10495 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10496 
10497 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10498 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10499 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10500 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10501 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10502 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10503 		return -EINVAL;
10504 
10505 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10506 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10507 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10508 		return -EINVAL;
10509 
10510 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10511 		/* only uprobe programs are allowed to be sleepable */
10512 		return -EINVAL;
10513 
10514 	/* Kprobe override only works for kprobes, not uprobes. */
10515 	if (prog->kprobe_override && !is_kprobe)
10516 		return -EINVAL;
10517 
10518 	if (is_tracepoint || is_syscall_tp) {
10519 		int off = trace_event_get_offsets(event->tp_event);
10520 
10521 		if (prog->aux->max_ctx_offset > off)
10522 			return -EACCES;
10523 	}
10524 
10525 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10526 }
10527 
10528 void perf_event_free_bpf_prog(struct perf_event *event)
10529 {
10530 	if (!perf_event_is_tracing(event)) {
10531 		perf_event_free_bpf_handler(event);
10532 		return;
10533 	}
10534 	perf_event_detach_bpf_prog(event);
10535 }
10536 
10537 #else
10538 
10539 static inline void perf_tp_register(void)
10540 {
10541 }
10542 
10543 static void perf_event_free_filter(struct perf_event *event)
10544 {
10545 }
10546 
10547 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10548 			    u64 bpf_cookie)
10549 {
10550 	return -ENOENT;
10551 }
10552 
10553 void perf_event_free_bpf_prog(struct perf_event *event)
10554 {
10555 }
10556 #endif /* CONFIG_EVENT_TRACING */
10557 
10558 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10559 void perf_bp_event(struct perf_event *bp, void *data)
10560 {
10561 	struct perf_sample_data sample;
10562 	struct pt_regs *regs = data;
10563 
10564 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10565 
10566 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10567 		perf_swevent_event(bp, 1, &sample, regs);
10568 }
10569 #endif
10570 
10571 /*
10572  * Allocate a new address filter
10573  */
10574 static struct perf_addr_filter *
10575 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10576 {
10577 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10578 	struct perf_addr_filter *filter;
10579 
10580 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10581 	if (!filter)
10582 		return NULL;
10583 
10584 	INIT_LIST_HEAD(&filter->entry);
10585 	list_add_tail(&filter->entry, filters);
10586 
10587 	return filter;
10588 }
10589 
10590 static void free_filters_list(struct list_head *filters)
10591 {
10592 	struct perf_addr_filter *filter, *iter;
10593 
10594 	list_for_each_entry_safe(filter, iter, filters, entry) {
10595 		path_put(&filter->path);
10596 		list_del(&filter->entry);
10597 		kfree(filter);
10598 	}
10599 }
10600 
10601 /*
10602  * Free existing address filters and optionally install new ones
10603  */
10604 static void perf_addr_filters_splice(struct perf_event *event,
10605 				     struct list_head *head)
10606 {
10607 	unsigned long flags;
10608 	LIST_HEAD(list);
10609 
10610 	if (!has_addr_filter(event))
10611 		return;
10612 
10613 	/* don't bother with children, they don't have their own filters */
10614 	if (event->parent)
10615 		return;
10616 
10617 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10618 
10619 	list_splice_init(&event->addr_filters.list, &list);
10620 	if (head)
10621 		list_splice(head, &event->addr_filters.list);
10622 
10623 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10624 
10625 	free_filters_list(&list);
10626 }
10627 
10628 /*
10629  * Scan through mm's vmas and see if one of them matches the
10630  * @filter; if so, adjust filter's address range.
10631  * Called with mm::mmap_lock down for reading.
10632  */
10633 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10634 				   struct mm_struct *mm,
10635 				   struct perf_addr_filter_range *fr)
10636 {
10637 	struct vm_area_struct *vma;
10638 	VMA_ITERATOR(vmi, mm, 0);
10639 
10640 	for_each_vma(vmi, vma) {
10641 		if (!vma->vm_file)
10642 			continue;
10643 
10644 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10645 			return;
10646 	}
10647 }
10648 
10649 /*
10650  * Update event's address range filters based on the
10651  * task's existing mappings, if any.
10652  */
10653 static void perf_event_addr_filters_apply(struct perf_event *event)
10654 {
10655 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10656 	struct task_struct *task = READ_ONCE(event->ctx->task);
10657 	struct perf_addr_filter *filter;
10658 	struct mm_struct *mm = NULL;
10659 	unsigned int count = 0;
10660 	unsigned long flags;
10661 
10662 	/*
10663 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10664 	 * will stop on the parent's child_mutex that our caller is also holding
10665 	 */
10666 	if (task == TASK_TOMBSTONE)
10667 		return;
10668 
10669 	if (ifh->nr_file_filters) {
10670 		mm = get_task_mm(task);
10671 		if (!mm)
10672 			goto restart;
10673 
10674 		mmap_read_lock(mm);
10675 	}
10676 
10677 	raw_spin_lock_irqsave(&ifh->lock, flags);
10678 	list_for_each_entry(filter, &ifh->list, entry) {
10679 		if (filter->path.dentry) {
10680 			/*
10681 			 * Adjust base offset if the filter is associated to a
10682 			 * binary that needs to be mapped:
10683 			 */
10684 			event->addr_filter_ranges[count].start = 0;
10685 			event->addr_filter_ranges[count].size = 0;
10686 
10687 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10688 		} else {
10689 			event->addr_filter_ranges[count].start = filter->offset;
10690 			event->addr_filter_ranges[count].size  = filter->size;
10691 		}
10692 
10693 		count++;
10694 	}
10695 
10696 	event->addr_filters_gen++;
10697 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10698 
10699 	if (ifh->nr_file_filters) {
10700 		mmap_read_unlock(mm);
10701 
10702 		mmput(mm);
10703 	}
10704 
10705 restart:
10706 	perf_event_stop(event, 1);
10707 }
10708 
10709 /*
10710  * Address range filtering: limiting the data to certain
10711  * instruction address ranges. Filters are ioctl()ed to us from
10712  * userspace as ascii strings.
10713  *
10714  * Filter string format:
10715  *
10716  * ACTION RANGE_SPEC
10717  * where ACTION is one of the
10718  *  * "filter": limit the trace to this region
10719  *  * "start": start tracing from this address
10720  *  * "stop": stop tracing at this address/region;
10721  * RANGE_SPEC is
10722  *  * for kernel addresses: <start address>[/<size>]
10723  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10724  *
10725  * if <size> is not specified or is zero, the range is treated as a single
10726  * address; not valid for ACTION=="filter".
10727  */
10728 enum {
10729 	IF_ACT_NONE = -1,
10730 	IF_ACT_FILTER,
10731 	IF_ACT_START,
10732 	IF_ACT_STOP,
10733 	IF_SRC_FILE,
10734 	IF_SRC_KERNEL,
10735 	IF_SRC_FILEADDR,
10736 	IF_SRC_KERNELADDR,
10737 };
10738 
10739 enum {
10740 	IF_STATE_ACTION = 0,
10741 	IF_STATE_SOURCE,
10742 	IF_STATE_END,
10743 };
10744 
10745 static const match_table_t if_tokens = {
10746 	{ IF_ACT_FILTER,	"filter" },
10747 	{ IF_ACT_START,		"start" },
10748 	{ IF_ACT_STOP,		"stop" },
10749 	{ IF_SRC_FILE,		"%u/%u@%s" },
10750 	{ IF_SRC_KERNEL,	"%u/%u" },
10751 	{ IF_SRC_FILEADDR,	"%u@%s" },
10752 	{ IF_SRC_KERNELADDR,	"%u" },
10753 	{ IF_ACT_NONE,		NULL },
10754 };
10755 
10756 /*
10757  * Address filter string parser
10758  */
10759 static int
10760 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10761 			     struct list_head *filters)
10762 {
10763 	struct perf_addr_filter *filter = NULL;
10764 	char *start, *orig, *filename = NULL;
10765 	substring_t args[MAX_OPT_ARGS];
10766 	int state = IF_STATE_ACTION, token;
10767 	unsigned int kernel = 0;
10768 	int ret = -EINVAL;
10769 
10770 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10771 	if (!fstr)
10772 		return -ENOMEM;
10773 
10774 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10775 		static const enum perf_addr_filter_action_t actions[] = {
10776 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10777 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10778 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10779 		};
10780 		ret = -EINVAL;
10781 
10782 		if (!*start)
10783 			continue;
10784 
10785 		/* filter definition begins */
10786 		if (state == IF_STATE_ACTION) {
10787 			filter = perf_addr_filter_new(event, filters);
10788 			if (!filter)
10789 				goto fail;
10790 		}
10791 
10792 		token = match_token(start, if_tokens, args);
10793 		switch (token) {
10794 		case IF_ACT_FILTER:
10795 		case IF_ACT_START:
10796 		case IF_ACT_STOP:
10797 			if (state != IF_STATE_ACTION)
10798 				goto fail;
10799 
10800 			filter->action = actions[token];
10801 			state = IF_STATE_SOURCE;
10802 			break;
10803 
10804 		case IF_SRC_KERNELADDR:
10805 		case IF_SRC_KERNEL:
10806 			kernel = 1;
10807 			fallthrough;
10808 
10809 		case IF_SRC_FILEADDR:
10810 		case IF_SRC_FILE:
10811 			if (state != IF_STATE_SOURCE)
10812 				goto fail;
10813 
10814 			*args[0].to = 0;
10815 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10816 			if (ret)
10817 				goto fail;
10818 
10819 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10820 				*args[1].to = 0;
10821 				ret = kstrtoul(args[1].from, 0, &filter->size);
10822 				if (ret)
10823 					goto fail;
10824 			}
10825 
10826 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10827 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10828 
10829 				kfree(filename);
10830 				filename = match_strdup(&args[fpos]);
10831 				if (!filename) {
10832 					ret = -ENOMEM;
10833 					goto fail;
10834 				}
10835 			}
10836 
10837 			state = IF_STATE_END;
10838 			break;
10839 
10840 		default:
10841 			goto fail;
10842 		}
10843 
10844 		/*
10845 		 * Filter definition is fully parsed, validate and install it.
10846 		 * Make sure that it doesn't contradict itself or the event's
10847 		 * attribute.
10848 		 */
10849 		if (state == IF_STATE_END) {
10850 			ret = -EINVAL;
10851 
10852 			/*
10853 			 * ACTION "filter" must have a non-zero length region
10854 			 * specified.
10855 			 */
10856 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10857 			    !filter->size)
10858 				goto fail;
10859 
10860 			if (!kernel) {
10861 				if (!filename)
10862 					goto fail;
10863 
10864 				/*
10865 				 * For now, we only support file-based filters
10866 				 * in per-task events; doing so for CPU-wide
10867 				 * events requires additional context switching
10868 				 * trickery, since same object code will be
10869 				 * mapped at different virtual addresses in
10870 				 * different processes.
10871 				 */
10872 				ret = -EOPNOTSUPP;
10873 				if (!event->ctx->task)
10874 					goto fail;
10875 
10876 				/* look up the path and grab its inode */
10877 				ret = kern_path(filename, LOOKUP_FOLLOW,
10878 						&filter->path);
10879 				if (ret)
10880 					goto fail;
10881 
10882 				ret = -EINVAL;
10883 				if (!filter->path.dentry ||
10884 				    !S_ISREG(d_inode(filter->path.dentry)
10885 					     ->i_mode))
10886 					goto fail;
10887 
10888 				event->addr_filters.nr_file_filters++;
10889 			}
10890 
10891 			/* ready to consume more filters */
10892 			kfree(filename);
10893 			filename = NULL;
10894 			state = IF_STATE_ACTION;
10895 			filter = NULL;
10896 			kernel = 0;
10897 		}
10898 	}
10899 
10900 	if (state != IF_STATE_ACTION)
10901 		goto fail;
10902 
10903 	kfree(filename);
10904 	kfree(orig);
10905 
10906 	return 0;
10907 
10908 fail:
10909 	kfree(filename);
10910 	free_filters_list(filters);
10911 	kfree(orig);
10912 
10913 	return ret;
10914 }
10915 
10916 static int
10917 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10918 {
10919 	LIST_HEAD(filters);
10920 	int ret;
10921 
10922 	/*
10923 	 * Since this is called in perf_ioctl() path, we're already holding
10924 	 * ctx::mutex.
10925 	 */
10926 	lockdep_assert_held(&event->ctx->mutex);
10927 
10928 	if (WARN_ON_ONCE(event->parent))
10929 		return -EINVAL;
10930 
10931 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10932 	if (ret)
10933 		goto fail_clear_files;
10934 
10935 	ret = event->pmu->addr_filters_validate(&filters);
10936 	if (ret)
10937 		goto fail_free_filters;
10938 
10939 	/* remove existing filters, if any */
10940 	perf_addr_filters_splice(event, &filters);
10941 
10942 	/* install new filters */
10943 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
10944 
10945 	return ret;
10946 
10947 fail_free_filters:
10948 	free_filters_list(&filters);
10949 
10950 fail_clear_files:
10951 	event->addr_filters.nr_file_filters = 0;
10952 
10953 	return ret;
10954 }
10955 
10956 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10957 {
10958 	int ret = -EINVAL;
10959 	char *filter_str;
10960 
10961 	filter_str = strndup_user(arg, PAGE_SIZE);
10962 	if (IS_ERR(filter_str))
10963 		return PTR_ERR(filter_str);
10964 
10965 #ifdef CONFIG_EVENT_TRACING
10966 	if (perf_event_is_tracing(event)) {
10967 		struct perf_event_context *ctx = event->ctx;
10968 
10969 		/*
10970 		 * Beware, here be dragons!!
10971 		 *
10972 		 * the tracepoint muck will deadlock against ctx->mutex, but
10973 		 * the tracepoint stuff does not actually need it. So
10974 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10975 		 * already have a reference on ctx.
10976 		 *
10977 		 * This can result in event getting moved to a different ctx,
10978 		 * but that does not affect the tracepoint state.
10979 		 */
10980 		mutex_unlock(&ctx->mutex);
10981 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10982 		mutex_lock(&ctx->mutex);
10983 	} else
10984 #endif
10985 	if (has_addr_filter(event))
10986 		ret = perf_event_set_addr_filter(event, filter_str);
10987 
10988 	kfree(filter_str);
10989 	return ret;
10990 }
10991 
10992 /*
10993  * hrtimer based swevent callback
10994  */
10995 
10996 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10997 {
10998 	enum hrtimer_restart ret = HRTIMER_RESTART;
10999 	struct perf_sample_data data;
11000 	struct pt_regs *regs;
11001 	struct perf_event *event;
11002 	u64 period;
11003 
11004 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11005 
11006 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11007 		return HRTIMER_NORESTART;
11008 
11009 	event->pmu->read(event);
11010 
11011 	perf_sample_data_init(&data, 0, event->hw.last_period);
11012 	regs = get_irq_regs();
11013 
11014 	if (regs && !perf_exclude_event(event, regs)) {
11015 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11016 			if (__perf_event_overflow(event, 1, &data, regs))
11017 				ret = HRTIMER_NORESTART;
11018 	}
11019 
11020 	period = max_t(u64, 10000, event->hw.sample_period);
11021 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11022 
11023 	return ret;
11024 }
11025 
11026 static void perf_swevent_start_hrtimer(struct perf_event *event)
11027 {
11028 	struct hw_perf_event *hwc = &event->hw;
11029 	s64 period;
11030 
11031 	if (!is_sampling_event(event))
11032 		return;
11033 
11034 	period = local64_read(&hwc->period_left);
11035 	if (period) {
11036 		if (period < 0)
11037 			period = 10000;
11038 
11039 		local64_set(&hwc->period_left, 0);
11040 	} else {
11041 		period = max_t(u64, 10000, hwc->sample_period);
11042 	}
11043 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11044 		      HRTIMER_MODE_REL_PINNED_HARD);
11045 }
11046 
11047 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11048 {
11049 	struct hw_perf_event *hwc = &event->hw;
11050 
11051 	if (is_sampling_event(event)) {
11052 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11053 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11054 
11055 		hrtimer_cancel(&hwc->hrtimer);
11056 	}
11057 }
11058 
11059 static void perf_swevent_init_hrtimer(struct perf_event *event)
11060 {
11061 	struct hw_perf_event *hwc = &event->hw;
11062 
11063 	if (!is_sampling_event(event))
11064 		return;
11065 
11066 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11067 	hwc->hrtimer.function = perf_swevent_hrtimer;
11068 
11069 	/*
11070 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11071 	 * mapping and avoid the whole period adjust feedback stuff.
11072 	 */
11073 	if (event->attr.freq) {
11074 		long freq = event->attr.sample_freq;
11075 
11076 		event->attr.sample_period = NSEC_PER_SEC / freq;
11077 		hwc->sample_period = event->attr.sample_period;
11078 		local64_set(&hwc->period_left, hwc->sample_period);
11079 		hwc->last_period = hwc->sample_period;
11080 		event->attr.freq = 0;
11081 	}
11082 }
11083 
11084 /*
11085  * Software event: cpu wall time clock
11086  */
11087 
11088 static void cpu_clock_event_update(struct perf_event *event)
11089 {
11090 	s64 prev;
11091 	u64 now;
11092 
11093 	now = local_clock();
11094 	prev = local64_xchg(&event->hw.prev_count, now);
11095 	local64_add(now - prev, &event->count);
11096 }
11097 
11098 static void cpu_clock_event_start(struct perf_event *event, int flags)
11099 {
11100 	local64_set(&event->hw.prev_count, local_clock());
11101 	perf_swevent_start_hrtimer(event);
11102 }
11103 
11104 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11105 {
11106 	perf_swevent_cancel_hrtimer(event);
11107 	cpu_clock_event_update(event);
11108 }
11109 
11110 static int cpu_clock_event_add(struct perf_event *event, int flags)
11111 {
11112 	if (flags & PERF_EF_START)
11113 		cpu_clock_event_start(event, flags);
11114 	perf_event_update_userpage(event);
11115 
11116 	return 0;
11117 }
11118 
11119 static void cpu_clock_event_del(struct perf_event *event, int flags)
11120 {
11121 	cpu_clock_event_stop(event, flags);
11122 }
11123 
11124 static void cpu_clock_event_read(struct perf_event *event)
11125 {
11126 	cpu_clock_event_update(event);
11127 }
11128 
11129 static int cpu_clock_event_init(struct perf_event *event)
11130 {
11131 	if (event->attr.type != perf_cpu_clock.type)
11132 		return -ENOENT;
11133 
11134 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11135 		return -ENOENT;
11136 
11137 	/*
11138 	 * no branch sampling for software events
11139 	 */
11140 	if (has_branch_stack(event))
11141 		return -EOPNOTSUPP;
11142 
11143 	perf_swevent_init_hrtimer(event);
11144 
11145 	return 0;
11146 }
11147 
11148 static struct pmu perf_cpu_clock = {
11149 	.task_ctx_nr	= perf_sw_context,
11150 
11151 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11152 	.dev		= PMU_NULL_DEV,
11153 
11154 	.event_init	= cpu_clock_event_init,
11155 	.add		= cpu_clock_event_add,
11156 	.del		= cpu_clock_event_del,
11157 	.start		= cpu_clock_event_start,
11158 	.stop		= cpu_clock_event_stop,
11159 	.read		= cpu_clock_event_read,
11160 };
11161 
11162 /*
11163  * Software event: task time clock
11164  */
11165 
11166 static void task_clock_event_update(struct perf_event *event, u64 now)
11167 {
11168 	u64 prev;
11169 	s64 delta;
11170 
11171 	prev = local64_xchg(&event->hw.prev_count, now);
11172 	delta = now - prev;
11173 	local64_add(delta, &event->count);
11174 }
11175 
11176 static void task_clock_event_start(struct perf_event *event, int flags)
11177 {
11178 	local64_set(&event->hw.prev_count, event->ctx->time);
11179 	perf_swevent_start_hrtimer(event);
11180 }
11181 
11182 static void task_clock_event_stop(struct perf_event *event, int flags)
11183 {
11184 	perf_swevent_cancel_hrtimer(event);
11185 	task_clock_event_update(event, event->ctx->time);
11186 }
11187 
11188 static int task_clock_event_add(struct perf_event *event, int flags)
11189 {
11190 	if (flags & PERF_EF_START)
11191 		task_clock_event_start(event, flags);
11192 	perf_event_update_userpage(event);
11193 
11194 	return 0;
11195 }
11196 
11197 static void task_clock_event_del(struct perf_event *event, int flags)
11198 {
11199 	task_clock_event_stop(event, PERF_EF_UPDATE);
11200 }
11201 
11202 static void task_clock_event_read(struct perf_event *event)
11203 {
11204 	u64 now = perf_clock();
11205 	u64 delta = now - event->ctx->timestamp;
11206 	u64 time = event->ctx->time + delta;
11207 
11208 	task_clock_event_update(event, time);
11209 }
11210 
11211 static int task_clock_event_init(struct perf_event *event)
11212 {
11213 	if (event->attr.type != perf_task_clock.type)
11214 		return -ENOENT;
11215 
11216 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11217 		return -ENOENT;
11218 
11219 	/*
11220 	 * no branch sampling for software events
11221 	 */
11222 	if (has_branch_stack(event))
11223 		return -EOPNOTSUPP;
11224 
11225 	perf_swevent_init_hrtimer(event);
11226 
11227 	return 0;
11228 }
11229 
11230 static struct pmu perf_task_clock = {
11231 	.task_ctx_nr	= perf_sw_context,
11232 
11233 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11234 	.dev		= PMU_NULL_DEV,
11235 
11236 	.event_init	= task_clock_event_init,
11237 	.add		= task_clock_event_add,
11238 	.del		= task_clock_event_del,
11239 	.start		= task_clock_event_start,
11240 	.stop		= task_clock_event_stop,
11241 	.read		= task_clock_event_read,
11242 };
11243 
11244 static void perf_pmu_nop_void(struct pmu *pmu)
11245 {
11246 }
11247 
11248 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11249 {
11250 }
11251 
11252 static int perf_pmu_nop_int(struct pmu *pmu)
11253 {
11254 	return 0;
11255 }
11256 
11257 static int perf_event_nop_int(struct perf_event *event, u64 value)
11258 {
11259 	return 0;
11260 }
11261 
11262 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11263 
11264 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11265 {
11266 	__this_cpu_write(nop_txn_flags, flags);
11267 
11268 	if (flags & ~PERF_PMU_TXN_ADD)
11269 		return;
11270 
11271 	perf_pmu_disable(pmu);
11272 }
11273 
11274 static int perf_pmu_commit_txn(struct pmu *pmu)
11275 {
11276 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11277 
11278 	__this_cpu_write(nop_txn_flags, 0);
11279 
11280 	if (flags & ~PERF_PMU_TXN_ADD)
11281 		return 0;
11282 
11283 	perf_pmu_enable(pmu);
11284 	return 0;
11285 }
11286 
11287 static void perf_pmu_cancel_txn(struct pmu *pmu)
11288 {
11289 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11290 
11291 	__this_cpu_write(nop_txn_flags, 0);
11292 
11293 	if (flags & ~PERF_PMU_TXN_ADD)
11294 		return;
11295 
11296 	perf_pmu_enable(pmu);
11297 }
11298 
11299 static int perf_event_idx_default(struct perf_event *event)
11300 {
11301 	return 0;
11302 }
11303 
11304 static void free_pmu_context(struct pmu *pmu)
11305 {
11306 	free_percpu(pmu->cpu_pmu_context);
11307 }
11308 
11309 /*
11310  * Let userspace know that this PMU supports address range filtering:
11311  */
11312 static ssize_t nr_addr_filters_show(struct device *dev,
11313 				    struct device_attribute *attr,
11314 				    char *page)
11315 {
11316 	struct pmu *pmu = dev_get_drvdata(dev);
11317 
11318 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11319 }
11320 DEVICE_ATTR_RO(nr_addr_filters);
11321 
11322 static struct idr pmu_idr;
11323 
11324 static ssize_t
11325 type_show(struct device *dev, struct device_attribute *attr, char *page)
11326 {
11327 	struct pmu *pmu = dev_get_drvdata(dev);
11328 
11329 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11330 }
11331 static DEVICE_ATTR_RO(type);
11332 
11333 static ssize_t
11334 perf_event_mux_interval_ms_show(struct device *dev,
11335 				struct device_attribute *attr,
11336 				char *page)
11337 {
11338 	struct pmu *pmu = dev_get_drvdata(dev);
11339 
11340 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11341 }
11342 
11343 static DEFINE_MUTEX(mux_interval_mutex);
11344 
11345 static ssize_t
11346 perf_event_mux_interval_ms_store(struct device *dev,
11347 				 struct device_attribute *attr,
11348 				 const char *buf, size_t count)
11349 {
11350 	struct pmu *pmu = dev_get_drvdata(dev);
11351 	int timer, cpu, ret;
11352 
11353 	ret = kstrtoint(buf, 0, &timer);
11354 	if (ret)
11355 		return ret;
11356 
11357 	if (timer < 1)
11358 		return -EINVAL;
11359 
11360 	/* same value, noting to do */
11361 	if (timer == pmu->hrtimer_interval_ms)
11362 		return count;
11363 
11364 	mutex_lock(&mux_interval_mutex);
11365 	pmu->hrtimer_interval_ms = timer;
11366 
11367 	/* update all cpuctx for this PMU */
11368 	cpus_read_lock();
11369 	for_each_online_cpu(cpu) {
11370 		struct perf_cpu_pmu_context *cpc;
11371 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11372 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11373 
11374 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11375 	}
11376 	cpus_read_unlock();
11377 	mutex_unlock(&mux_interval_mutex);
11378 
11379 	return count;
11380 }
11381 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11382 
11383 static struct attribute *pmu_dev_attrs[] = {
11384 	&dev_attr_type.attr,
11385 	&dev_attr_perf_event_mux_interval_ms.attr,
11386 	NULL,
11387 };
11388 ATTRIBUTE_GROUPS(pmu_dev);
11389 
11390 static int pmu_bus_running;
11391 static struct bus_type pmu_bus = {
11392 	.name		= "event_source",
11393 	.dev_groups	= pmu_dev_groups,
11394 };
11395 
11396 static void pmu_dev_release(struct device *dev)
11397 {
11398 	kfree(dev);
11399 }
11400 
11401 static int pmu_dev_alloc(struct pmu *pmu)
11402 {
11403 	int ret = -ENOMEM;
11404 
11405 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11406 	if (!pmu->dev)
11407 		goto out;
11408 
11409 	pmu->dev->groups = pmu->attr_groups;
11410 	device_initialize(pmu->dev);
11411 
11412 	dev_set_drvdata(pmu->dev, pmu);
11413 	pmu->dev->bus = &pmu_bus;
11414 	pmu->dev->parent = pmu->parent;
11415 	pmu->dev->release = pmu_dev_release;
11416 
11417 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11418 	if (ret)
11419 		goto free_dev;
11420 
11421 	ret = device_add(pmu->dev);
11422 	if (ret)
11423 		goto free_dev;
11424 
11425 	/* For PMUs with address filters, throw in an extra attribute: */
11426 	if (pmu->nr_addr_filters)
11427 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11428 
11429 	if (ret)
11430 		goto del_dev;
11431 
11432 	if (pmu->attr_update)
11433 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11434 
11435 	if (ret)
11436 		goto del_dev;
11437 
11438 out:
11439 	return ret;
11440 
11441 del_dev:
11442 	device_del(pmu->dev);
11443 
11444 free_dev:
11445 	put_device(pmu->dev);
11446 	goto out;
11447 }
11448 
11449 static struct lock_class_key cpuctx_mutex;
11450 static struct lock_class_key cpuctx_lock;
11451 
11452 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11453 {
11454 	int cpu, ret, max = PERF_TYPE_MAX;
11455 
11456 	mutex_lock(&pmus_lock);
11457 	ret = -ENOMEM;
11458 	pmu->pmu_disable_count = alloc_percpu(int);
11459 	if (!pmu->pmu_disable_count)
11460 		goto unlock;
11461 
11462 	pmu->type = -1;
11463 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11464 		ret = -EINVAL;
11465 		goto free_pdc;
11466 	}
11467 
11468 	pmu->name = name;
11469 
11470 	if (type >= 0)
11471 		max = type;
11472 
11473 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11474 	if (ret < 0)
11475 		goto free_pdc;
11476 
11477 	WARN_ON(type >= 0 && ret != type);
11478 
11479 	type = ret;
11480 	pmu->type = type;
11481 
11482 	if (pmu_bus_running && !pmu->dev) {
11483 		ret = pmu_dev_alloc(pmu);
11484 		if (ret)
11485 			goto free_idr;
11486 	}
11487 
11488 	ret = -ENOMEM;
11489 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11490 	if (!pmu->cpu_pmu_context)
11491 		goto free_dev;
11492 
11493 	for_each_possible_cpu(cpu) {
11494 		struct perf_cpu_pmu_context *cpc;
11495 
11496 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11497 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11498 		__perf_mux_hrtimer_init(cpc, cpu);
11499 	}
11500 
11501 	if (!pmu->start_txn) {
11502 		if (pmu->pmu_enable) {
11503 			/*
11504 			 * If we have pmu_enable/pmu_disable calls, install
11505 			 * transaction stubs that use that to try and batch
11506 			 * hardware accesses.
11507 			 */
11508 			pmu->start_txn  = perf_pmu_start_txn;
11509 			pmu->commit_txn = perf_pmu_commit_txn;
11510 			pmu->cancel_txn = perf_pmu_cancel_txn;
11511 		} else {
11512 			pmu->start_txn  = perf_pmu_nop_txn;
11513 			pmu->commit_txn = perf_pmu_nop_int;
11514 			pmu->cancel_txn = perf_pmu_nop_void;
11515 		}
11516 	}
11517 
11518 	if (!pmu->pmu_enable) {
11519 		pmu->pmu_enable  = perf_pmu_nop_void;
11520 		pmu->pmu_disable = perf_pmu_nop_void;
11521 	}
11522 
11523 	if (!pmu->check_period)
11524 		pmu->check_period = perf_event_nop_int;
11525 
11526 	if (!pmu->event_idx)
11527 		pmu->event_idx = perf_event_idx_default;
11528 
11529 	list_add_rcu(&pmu->entry, &pmus);
11530 	atomic_set(&pmu->exclusive_cnt, 0);
11531 	ret = 0;
11532 unlock:
11533 	mutex_unlock(&pmus_lock);
11534 
11535 	return ret;
11536 
11537 free_dev:
11538 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11539 		device_del(pmu->dev);
11540 		put_device(pmu->dev);
11541 	}
11542 
11543 free_idr:
11544 	idr_remove(&pmu_idr, pmu->type);
11545 
11546 free_pdc:
11547 	free_percpu(pmu->pmu_disable_count);
11548 	goto unlock;
11549 }
11550 EXPORT_SYMBOL_GPL(perf_pmu_register);
11551 
11552 void perf_pmu_unregister(struct pmu *pmu)
11553 {
11554 	mutex_lock(&pmus_lock);
11555 	list_del_rcu(&pmu->entry);
11556 
11557 	/*
11558 	 * We dereference the pmu list under both SRCU and regular RCU, so
11559 	 * synchronize against both of those.
11560 	 */
11561 	synchronize_srcu(&pmus_srcu);
11562 	synchronize_rcu();
11563 
11564 	free_percpu(pmu->pmu_disable_count);
11565 	idr_remove(&pmu_idr, pmu->type);
11566 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11567 		if (pmu->nr_addr_filters)
11568 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11569 		device_del(pmu->dev);
11570 		put_device(pmu->dev);
11571 	}
11572 	free_pmu_context(pmu);
11573 	mutex_unlock(&pmus_lock);
11574 }
11575 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11576 
11577 static inline bool has_extended_regs(struct perf_event *event)
11578 {
11579 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11580 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11581 }
11582 
11583 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11584 {
11585 	struct perf_event_context *ctx = NULL;
11586 	int ret;
11587 
11588 	if (!try_module_get(pmu->module))
11589 		return -ENODEV;
11590 
11591 	/*
11592 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11593 	 * for example, validate if the group fits on the PMU. Therefore,
11594 	 * if this is a sibling event, acquire the ctx->mutex to protect
11595 	 * the sibling_list.
11596 	 */
11597 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11598 		/*
11599 		 * This ctx->mutex can nest when we're called through
11600 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11601 		 */
11602 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11603 						 SINGLE_DEPTH_NESTING);
11604 		BUG_ON(!ctx);
11605 	}
11606 
11607 	event->pmu = pmu;
11608 	ret = pmu->event_init(event);
11609 
11610 	if (ctx)
11611 		perf_event_ctx_unlock(event->group_leader, ctx);
11612 
11613 	if (!ret) {
11614 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11615 		    has_extended_regs(event))
11616 			ret = -EOPNOTSUPP;
11617 
11618 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11619 		    event_has_any_exclude_flag(event))
11620 			ret = -EINVAL;
11621 
11622 		if (ret && event->destroy)
11623 			event->destroy(event);
11624 	}
11625 
11626 	if (ret)
11627 		module_put(pmu->module);
11628 
11629 	return ret;
11630 }
11631 
11632 static struct pmu *perf_init_event(struct perf_event *event)
11633 {
11634 	bool extended_type = false;
11635 	int idx, type, ret;
11636 	struct pmu *pmu;
11637 
11638 	idx = srcu_read_lock(&pmus_srcu);
11639 
11640 	/*
11641 	 * Save original type before calling pmu->event_init() since certain
11642 	 * pmus overwrites event->attr.type to forward event to another pmu.
11643 	 */
11644 	event->orig_type = event->attr.type;
11645 
11646 	/* Try parent's PMU first: */
11647 	if (event->parent && event->parent->pmu) {
11648 		pmu = event->parent->pmu;
11649 		ret = perf_try_init_event(pmu, event);
11650 		if (!ret)
11651 			goto unlock;
11652 	}
11653 
11654 	/*
11655 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11656 	 * are often aliases for PERF_TYPE_RAW.
11657 	 */
11658 	type = event->attr.type;
11659 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11660 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11661 		if (!type) {
11662 			type = PERF_TYPE_RAW;
11663 		} else {
11664 			extended_type = true;
11665 			event->attr.config &= PERF_HW_EVENT_MASK;
11666 		}
11667 	}
11668 
11669 again:
11670 	rcu_read_lock();
11671 	pmu = idr_find(&pmu_idr, type);
11672 	rcu_read_unlock();
11673 	if (pmu) {
11674 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11675 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11676 			goto fail;
11677 
11678 		ret = perf_try_init_event(pmu, event);
11679 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11680 			type = event->attr.type;
11681 			goto again;
11682 		}
11683 
11684 		if (ret)
11685 			pmu = ERR_PTR(ret);
11686 
11687 		goto unlock;
11688 	}
11689 
11690 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11691 		ret = perf_try_init_event(pmu, event);
11692 		if (!ret)
11693 			goto unlock;
11694 
11695 		if (ret != -ENOENT) {
11696 			pmu = ERR_PTR(ret);
11697 			goto unlock;
11698 		}
11699 	}
11700 fail:
11701 	pmu = ERR_PTR(-ENOENT);
11702 unlock:
11703 	srcu_read_unlock(&pmus_srcu, idx);
11704 
11705 	return pmu;
11706 }
11707 
11708 static void attach_sb_event(struct perf_event *event)
11709 {
11710 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11711 
11712 	raw_spin_lock(&pel->lock);
11713 	list_add_rcu(&event->sb_list, &pel->list);
11714 	raw_spin_unlock(&pel->lock);
11715 }
11716 
11717 /*
11718  * We keep a list of all !task (and therefore per-cpu) events
11719  * that need to receive side-band records.
11720  *
11721  * This avoids having to scan all the various PMU per-cpu contexts
11722  * looking for them.
11723  */
11724 static void account_pmu_sb_event(struct perf_event *event)
11725 {
11726 	if (is_sb_event(event))
11727 		attach_sb_event(event);
11728 }
11729 
11730 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11731 static void account_freq_event_nohz(void)
11732 {
11733 #ifdef CONFIG_NO_HZ_FULL
11734 	/* Lock so we don't race with concurrent unaccount */
11735 	spin_lock(&nr_freq_lock);
11736 	if (atomic_inc_return(&nr_freq_events) == 1)
11737 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11738 	spin_unlock(&nr_freq_lock);
11739 #endif
11740 }
11741 
11742 static void account_freq_event(void)
11743 {
11744 	if (tick_nohz_full_enabled())
11745 		account_freq_event_nohz();
11746 	else
11747 		atomic_inc(&nr_freq_events);
11748 }
11749 
11750 
11751 static void account_event(struct perf_event *event)
11752 {
11753 	bool inc = false;
11754 
11755 	if (event->parent)
11756 		return;
11757 
11758 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11759 		inc = true;
11760 	if (event->attr.mmap || event->attr.mmap_data)
11761 		atomic_inc(&nr_mmap_events);
11762 	if (event->attr.build_id)
11763 		atomic_inc(&nr_build_id_events);
11764 	if (event->attr.comm)
11765 		atomic_inc(&nr_comm_events);
11766 	if (event->attr.namespaces)
11767 		atomic_inc(&nr_namespaces_events);
11768 	if (event->attr.cgroup)
11769 		atomic_inc(&nr_cgroup_events);
11770 	if (event->attr.task)
11771 		atomic_inc(&nr_task_events);
11772 	if (event->attr.freq)
11773 		account_freq_event();
11774 	if (event->attr.context_switch) {
11775 		atomic_inc(&nr_switch_events);
11776 		inc = true;
11777 	}
11778 	if (has_branch_stack(event))
11779 		inc = true;
11780 	if (is_cgroup_event(event))
11781 		inc = true;
11782 	if (event->attr.ksymbol)
11783 		atomic_inc(&nr_ksymbol_events);
11784 	if (event->attr.bpf_event)
11785 		atomic_inc(&nr_bpf_events);
11786 	if (event->attr.text_poke)
11787 		atomic_inc(&nr_text_poke_events);
11788 
11789 	if (inc) {
11790 		/*
11791 		 * We need the mutex here because static_branch_enable()
11792 		 * must complete *before* the perf_sched_count increment
11793 		 * becomes visible.
11794 		 */
11795 		if (atomic_inc_not_zero(&perf_sched_count))
11796 			goto enabled;
11797 
11798 		mutex_lock(&perf_sched_mutex);
11799 		if (!atomic_read(&perf_sched_count)) {
11800 			static_branch_enable(&perf_sched_events);
11801 			/*
11802 			 * Guarantee that all CPUs observe they key change and
11803 			 * call the perf scheduling hooks before proceeding to
11804 			 * install events that need them.
11805 			 */
11806 			synchronize_rcu();
11807 		}
11808 		/*
11809 		 * Now that we have waited for the sync_sched(), allow further
11810 		 * increments to by-pass the mutex.
11811 		 */
11812 		atomic_inc(&perf_sched_count);
11813 		mutex_unlock(&perf_sched_mutex);
11814 	}
11815 enabled:
11816 
11817 	account_pmu_sb_event(event);
11818 }
11819 
11820 /*
11821  * Allocate and initialize an event structure
11822  */
11823 static struct perf_event *
11824 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11825 		 struct task_struct *task,
11826 		 struct perf_event *group_leader,
11827 		 struct perf_event *parent_event,
11828 		 perf_overflow_handler_t overflow_handler,
11829 		 void *context, int cgroup_fd)
11830 {
11831 	struct pmu *pmu;
11832 	struct perf_event *event;
11833 	struct hw_perf_event *hwc;
11834 	long err = -EINVAL;
11835 	int node;
11836 
11837 	if ((unsigned)cpu >= nr_cpu_ids) {
11838 		if (!task || cpu != -1)
11839 			return ERR_PTR(-EINVAL);
11840 	}
11841 	if (attr->sigtrap && !task) {
11842 		/* Requires a task: avoid signalling random tasks. */
11843 		return ERR_PTR(-EINVAL);
11844 	}
11845 
11846 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11847 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11848 				      node);
11849 	if (!event)
11850 		return ERR_PTR(-ENOMEM);
11851 
11852 	/*
11853 	 * Single events are their own group leaders, with an
11854 	 * empty sibling list:
11855 	 */
11856 	if (!group_leader)
11857 		group_leader = event;
11858 
11859 	mutex_init(&event->child_mutex);
11860 	INIT_LIST_HEAD(&event->child_list);
11861 
11862 	INIT_LIST_HEAD(&event->event_entry);
11863 	INIT_LIST_HEAD(&event->sibling_list);
11864 	INIT_LIST_HEAD(&event->active_list);
11865 	init_event_group(event);
11866 	INIT_LIST_HEAD(&event->rb_entry);
11867 	INIT_LIST_HEAD(&event->active_entry);
11868 	INIT_LIST_HEAD(&event->addr_filters.list);
11869 	INIT_HLIST_NODE(&event->hlist_entry);
11870 
11871 
11872 	init_waitqueue_head(&event->waitq);
11873 	init_irq_work(&event->pending_irq, perf_pending_irq);
11874 	init_task_work(&event->pending_task, perf_pending_task);
11875 
11876 	mutex_init(&event->mmap_mutex);
11877 	raw_spin_lock_init(&event->addr_filters.lock);
11878 
11879 	atomic_long_set(&event->refcount, 1);
11880 	event->cpu		= cpu;
11881 	event->attr		= *attr;
11882 	event->group_leader	= group_leader;
11883 	event->pmu		= NULL;
11884 	event->oncpu		= -1;
11885 
11886 	event->parent		= parent_event;
11887 
11888 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11889 	event->id		= atomic64_inc_return(&perf_event_id);
11890 
11891 	event->state		= PERF_EVENT_STATE_INACTIVE;
11892 
11893 	if (parent_event)
11894 		event->event_caps = parent_event->event_caps;
11895 
11896 	if (task) {
11897 		event->attach_state = PERF_ATTACH_TASK;
11898 		/*
11899 		 * XXX pmu::event_init needs to know what task to account to
11900 		 * and we cannot use the ctx information because we need the
11901 		 * pmu before we get a ctx.
11902 		 */
11903 		event->hw.target = get_task_struct(task);
11904 	}
11905 
11906 	event->clock = &local_clock;
11907 	if (parent_event)
11908 		event->clock = parent_event->clock;
11909 
11910 	if (!overflow_handler && parent_event) {
11911 		overflow_handler = parent_event->overflow_handler;
11912 		context = parent_event->overflow_handler_context;
11913 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11914 		if (overflow_handler == bpf_overflow_handler) {
11915 			struct bpf_prog *prog = parent_event->prog;
11916 
11917 			bpf_prog_inc(prog);
11918 			event->prog = prog;
11919 			event->orig_overflow_handler =
11920 				parent_event->orig_overflow_handler;
11921 		}
11922 #endif
11923 	}
11924 
11925 	if (overflow_handler) {
11926 		event->overflow_handler	= overflow_handler;
11927 		event->overflow_handler_context = context;
11928 	} else if (is_write_backward(event)){
11929 		event->overflow_handler = perf_event_output_backward;
11930 		event->overflow_handler_context = NULL;
11931 	} else {
11932 		event->overflow_handler = perf_event_output_forward;
11933 		event->overflow_handler_context = NULL;
11934 	}
11935 
11936 	perf_event__state_init(event);
11937 
11938 	pmu = NULL;
11939 
11940 	hwc = &event->hw;
11941 	hwc->sample_period = attr->sample_period;
11942 	if (attr->freq && attr->sample_freq)
11943 		hwc->sample_period = 1;
11944 	hwc->last_period = hwc->sample_period;
11945 
11946 	local64_set(&hwc->period_left, hwc->sample_period);
11947 
11948 	/*
11949 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
11950 	 * See perf_output_read().
11951 	 */
11952 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11953 		goto err_ns;
11954 
11955 	if (!has_branch_stack(event))
11956 		event->attr.branch_sample_type = 0;
11957 
11958 	pmu = perf_init_event(event);
11959 	if (IS_ERR(pmu)) {
11960 		err = PTR_ERR(pmu);
11961 		goto err_ns;
11962 	}
11963 
11964 	/*
11965 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11966 	 * events (they don't make sense as the cgroup will be different
11967 	 * on other CPUs in the uncore mask).
11968 	 */
11969 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11970 		err = -EINVAL;
11971 		goto err_pmu;
11972 	}
11973 
11974 	if (event->attr.aux_output &&
11975 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11976 		err = -EOPNOTSUPP;
11977 		goto err_pmu;
11978 	}
11979 
11980 	if (cgroup_fd != -1) {
11981 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11982 		if (err)
11983 			goto err_pmu;
11984 	}
11985 
11986 	err = exclusive_event_init(event);
11987 	if (err)
11988 		goto err_pmu;
11989 
11990 	if (has_addr_filter(event)) {
11991 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11992 						    sizeof(struct perf_addr_filter_range),
11993 						    GFP_KERNEL);
11994 		if (!event->addr_filter_ranges) {
11995 			err = -ENOMEM;
11996 			goto err_per_task;
11997 		}
11998 
11999 		/*
12000 		 * Clone the parent's vma offsets: they are valid until exec()
12001 		 * even if the mm is not shared with the parent.
12002 		 */
12003 		if (event->parent) {
12004 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12005 
12006 			raw_spin_lock_irq(&ifh->lock);
12007 			memcpy(event->addr_filter_ranges,
12008 			       event->parent->addr_filter_ranges,
12009 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12010 			raw_spin_unlock_irq(&ifh->lock);
12011 		}
12012 
12013 		/* force hw sync on the address filters */
12014 		event->addr_filters_gen = 1;
12015 	}
12016 
12017 	if (!event->parent) {
12018 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12019 			err = get_callchain_buffers(attr->sample_max_stack);
12020 			if (err)
12021 				goto err_addr_filters;
12022 		}
12023 	}
12024 
12025 	err = security_perf_event_alloc(event);
12026 	if (err)
12027 		goto err_callchain_buffer;
12028 
12029 	/* symmetric to unaccount_event() in _free_event() */
12030 	account_event(event);
12031 
12032 	return event;
12033 
12034 err_callchain_buffer:
12035 	if (!event->parent) {
12036 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12037 			put_callchain_buffers();
12038 	}
12039 err_addr_filters:
12040 	kfree(event->addr_filter_ranges);
12041 
12042 err_per_task:
12043 	exclusive_event_destroy(event);
12044 
12045 err_pmu:
12046 	if (is_cgroup_event(event))
12047 		perf_detach_cgroup(event);
12048 	if (event->destroy)
12049 		event->destroy(event);
12050 	module_put(pmu->module);
12051 err_ns:
12052 	if (event->hw.target)
12053 		put_task_struct(event->hw.target);
12054 	call_rcu(&event->rcu_head, free_event_rcu);
12055 
12056 	return ERR_PTR(err);
12057 }
12058 
12059 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12060 			  struct perf_event_attr *attr)
12061 {
12062 	u32 size;
12063 	int ret;
12064 
12065 	/* Zero the full structure, so that a short copy will be nice. */
12066 	memset(attr, 0, sizeof(*attr));
12067 
12068 	ret = get_user(size, &uattr->size);
12069 	if (ret)
12070 		return ret;
12071 
12072 	/* ABI compatibility quirk: */
12073 	if (!size)
12074 		size = PERF_ATTR_SIZE_VER0;
12075 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12076 		goto err_size;
12077 
12078 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12079 	if (ret) {
12080 		if (ret == -E2BIG)
12081 			goto err_size;
12082 		return ret;
12083 	}
12084 
12085 	attr->size = size;
12086 
12087 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12088 		return -EINVAL;
12089 
12090 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12091 		return -EINVAL;
12092 
12093 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12094 		return -EINVAL;
12095 
12096 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12097 		u64 mask = attr->branch_sample_type;
12098 
12099 		/* only using defined bits */
12100 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12101 			return -EINVAL;
12102 
12103 		/* at least one branch bit must be set */
12104 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12105 			return -EINVAL;
12106 
12107 		/* propagate priv level, when not set for branch */
12108 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12109 
12110 			/* exclude_kernel checked on syscall entry */
12111 			if (!attr->exclude_kernel)
12112 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12113 
12114 			if (!attr->exclude_user)
12115 				mask |= PERF_SAMPLE_BRANCH_USER;
12116 
12117 			if (!attr->exclude_hv)
12118 				mask |= PERF_SAMPLE_BRANCH_HV;
12119 			/*
12120 			 * adjust user setting (for HW filter setup)
12121 			 */
12122 			attr->branch_sample_type = mask;
12123 		}
12124 		/* privileged levels capture (kernel, hv): check permissions */
12125 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12126 			ret = perf_allow_kernel(attr);
12127 			if (ret)
12128 				return ret;
12129 		}
12130 	}
12131 
12132 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12133 		ret = perf_reg_validate(attr->sample_regs_user);
12134 		if (ret)
12135 			return ret;
12136 	}
12137 
12138 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12139 		if (!arch_perf_have_user_stack_dump())
12140 			return -ENOSYS;
12141 
12142 		/*
12143 		 * We have __u32 type for the size, but so far
12144 		 * we can only use __u16 as maximum due to the
12145 		 * __u16 sample size limit.
12146 		 */
12147 		if (attr->sample_stack_user >= USHRT_MAX)
12148 			return -EINVAL;
12149 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12150 			return -EINVAL;
12151 	}
12152 
12153 	if (!attr->sample_max_stack)
12154 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12155 
12156 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12157 		ret = perf_reg_validate(attr->sample_regs_intr);
12158 
12159 #ifndef CONFIG_CGROUP_PERF
12160 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12161 		return -EINVAL;
12162 #endif
12163 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12164 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12165 		return -EINVAL;
12166 
12167 	if (!attr->inherit && attr->inherit_thread)
12168 		return -EINVAL;
12169 
12170 	if (attr->remove_on_exec && attr->enable_on_exec)
12171 		return -EINVAL;
12172 
12173 	if (attr->sigtrap && !attr->remove_on_exec)
12174 		return -EINVAL;
12175 
12176 out:
12177 	return ret;
12178 
12179 err_size:
12180 	put_user(sizeof(*attr), &uattr->size);
12181 	ret = -E2BIG;
12182 	goto out;
12183 }
12184 
12185 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12186 {
12187 	if (b < a)
12188 		swap(a, b);
12189 
12190 	mutex_lock(a);
12191 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12192 }
12193 
12194 static int
12195 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12196 {
12197 	struct perf_buffer *rb = NULL;
12198 	int ret = -EINVAL;
12199 
12200 	if (!output_event) {
12201 		mutex_lock(&event->mmap_mutex);
12202 		goto set;
12203 	}
12204 
12205 	/* don't allow circular references */
12206 	if (event == output_event)
12207 		goto out;
12208 
12209 	/*
12210 	 * Don't allow cross-cpu buffers
12211 	 */
12212 	if (output_event->cpu != event->cpu)
12213 		goto out;
12214 
12215 	/*
12216 	 * If its not a per-cpu rb, it must be the same task.
12217 	 */
12218 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12219 		goto out;
12220 
12221 	/*
12222 	 * Mixing clocks in the same buffer is trouble you don't need.
12223 	 */
12224 	if (output_event->clock != event->clock)
12225 		goto out;
12226 
12227 	/*
12228 	 * Either writing ring buffer from beginning or from end.
12229 	 * Mixing is not allowed.
12230 	 */
12231 	if (is_write_backward(output_event) != is_write_backward(event))
12232 		goto out;
12233 
12234 	/*
12235 	 * If both events generate aux data, they must be on the same PMU
12236 	 */
12237 	if (has_aux(event) && has_aux(output_event) &&
12238 	    event->pmu != output_event->pmu)
12239 		goto out;
12240 
12241 	/*
12242 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12243 	 * output_event is already on rb->event_list, and the list iteration
12244 	 * restarts after every removal, it is guaranteed this new event is
12245 	 * observed *OR* if output_event is already removed, it's guaranteed we
12246 	 * observe !rb->mmap_count.
12247 	 */
12248 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12249 set:
12250 	/* Can't redirect output if we've got an active mmap() */
12251 	if (atomic_read(&event->mmap_count))
12252 		goto unlock;
12253 
12254 	if (output_event) {
12255 		/* get the rb we want to redirect to */
12256 		rb = ring_buffer_get(output_event);
12257 		if (!rb)
12258 			goto unlock;
12259 
12260 		/* did we race against perf_mmap_close() */
12261 		if (!atomic_read(&rb->mmap_count)) {
12262 			ring_buffer_put(rb);
12263 			goto unlock;
12264 		}
12265 	}
12266 
12267 	ring_buffer_attach(event, rb);
12268 
12269 	ret = 0;
12270 unlock:
12271 	mutex_unlock(&event->mmap_mutex);
12272 	if (output_event)
12273 		mutex_unlock(&output_event->mmap_mutex);
12274 
12275 out:
12276 	return ret;
12277 }
12278 
12279 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12280 {
12281 	bool nmi_safe = false;
12282 
12283 	switch (clk_id) {
12284 	case CLOCK_MONOTONIC:
12285 		event->clock = &ktime_get_mono_fast_ns;
12286 		nmi_safe = true;
12287 		break;
12288 
12289 	case CLOCK_MONOTONIC_RAW:
12290 		event->clock = &ktime_get_raw_fast_ns;
12291 		nmi_safe = true;
12292 		break;
12293 
12294 	case CLOCK_REALTIME:
12295 		event->clock = &ktime_get_real_ns;
12296 		break;
12297 
12298 	case CLOCK_BOOTTIME:
12299 		event->clock = &ktime_get_boottime_ns;
12300 		break;
12301 
12302 	case CLOCK_TAI:
12303 		event->clock = &ktime_get_clocktai_ns;
12304 		break;
12305 
12306 	default:
12307 		return -EINVAL;
12308 	}
12309 
12310 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12311 		return -EINVAL;
12312 
12313 	return 0;
12314 }
12315 
12316 static bool
12317 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12318 {
12319 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12320 	bool is_capable = perfmon_capable();
12321 
12322 	if (attr->sigtrap) {
12323 		/*
12324 		 * perf_event_attr::sigtrap sends signals to the other task.
12325 		 * Require the current task to also have CAP_KILL.
12326 		 */
12327 		rcu_read_lock();
12328 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12329 		rcu_read_unlock();
12330 
12331 		/*
12332 		 * If the required capabilities aren't available, checks for
12333 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12334 		 * can effectively change the target task.
12335 		 */
12336 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12337 	}
12338 
12339 	/*
12340 	 * Preserve ptrace permission check for backwards compatibility. The
12341 	 * ptrace check also includes checks that the current task and other
12342 	 * task have matching uids, and is therefore not done here explicitly.
12343 	 */
12344 	return is_capable || ptrace_may_access(task, ptrace_mode);
12345 }
12346 
12347 /**
12348  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12349  *
12350  * @attr_uptr:	event_id type attributes for monitoring/sampling
12351  * @pid:		target pid
12352  * @cpu:		target cpu
12353  * @group_fd:		group leader event fd
12354  * @flags:		perf event open flags
12355  */
12356 SYSCALL_DEFINE5(perf_event_open,
12357 		struct perf_event_attr __user *, attr_uptr,
12358 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12359 {
12360 	struct perf_event *group_leader = NULL, *output_event = NULL;
12361 	struct perf_event_pmu_context *pmu_ctx;
12362 	struct perf_event *event, *sibling;
12363 	struct perf_event_attr attr;
12364 	struct perf_event_context *ctx;
12365 	struct file *event_file = NULL;
12366 	struct fd group = {NULL, 0};
12367 	struct task_struct *task = NULL;
12368 	struct pmu *pmu;
12369 	int event_fd;
12370 	int move_group = 0;
12371 	int err;
12372 	int f_flags = O_RDWR;
12373 	int cgroup_fd = -1;
12374 
12375 	/* for future expandability... */
12376 	if (flags & ~PERF_FLAG_ALL)
12377 		return -EINVAL;
12378 
12379 	err = perf_copy_attr(attr_uptr, &attr);
12380 	if (err)
12381 		return err;
12382 
12383 	/* Do we allow access to perf_event_open(2) ? */
12384 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12385 	if (err)
12386 		return err;
12387 
12388 	if (!attr.exclude_kernel) {
12389 		err = perf_allow_kernel(&attr);
12390 		if (err)
12391 			return err;
12392 	}
12393 
12394 	if (attr.namespaces) {
12395 		if (!perfmon_capable())
12396 			return -EACCES;
12397 	}
12398 
12399 	if (attr.freq) {
12400 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12401 			return -EINVAL;
12402 	} else {
12403 		if (attr.sample_period & (1ULL << 63))
12404 			return -EINVAL;
12405 	}
12406 
12407 	/* Only privileged users can get physical addresses */
12408 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12409 		err = perf_allow_kernel(&attr);
12410 		if (err)
12411 			return err;
12412 	}
12413 
12414 	/* REGS_INTR can leak data, lockdown must prevent this */
12415 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12416 		err = security_locked_down(LOCKDOWN_PERF);
12417 		if (err)
12418 			return err;
12419 	}
12420 
12421 	/*
12422 	 * In cgroup mode, the pid argument is used to pass the fd
12423 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12424 	 * designates the cpu on which to monitor threads from that
12425 	 * cgroup.
12426 	 */
12427 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12428 		return -EINVAL;
12429 
12430 	if (flags & PERF_FLAG_FD_CLOEXEC)
12431 		f_flags |= O_CLOEXEC;
12432 
12433 	event_fd = get_unused_fd_flags(f_flags);
12434 	if (event_fd < 0)
12435 		return event_fd;
12436 
12437 	if (group_fd != -1) {
12438 		err = perf_fget_light(group_fd, &group);
12439 		if (err)
12440 			goto err_fd;
12441 		group_leader = group.file->private_data;
12442 		if (flags & PERF_FLAG_FD_OUTPUT)
12443 			output_event = group_leader;
12444 		if (flags & PERF_FLAG_FD_NO_GROUP)
12445 			group_leader = NULL;
12446 	}
12447 
12448 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12449 		task = find_lively_task_by_vpid(pid);
12450 		if (IS_ERR(task)) {
12451 			err = PTR_ERR(task);
12452 			goto err_group_fd;
12453 		}
12454 	}
12455 
12456 	if (task && group_leader &&
12457 	    group_leader->attr.inherit != attr.inherit) {
12458 		err = -EINVAL;
12459 		goto err_task;
12460 	}
12461 
12462 	if (flags & PERF_FLAG_PID_CGROUP)
12463 		cgroup_fd = pid;
12464 
12465 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12466 				 NULL, NULL, cgroup_fd);
12467 	if (IS_ERR(event)) {
12468 		err = PTR_ERR(event);
12469 		goto err_task;
12470 	}
12471 
12472 	if (is_sampling_event(event)) {
12473 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12474 			err = -EOPNOTSUPP;
12475 			goto err_alloc;
12476 		}
12477 	}
12478 
12479 	/*
12480 	 * Special case software events and allow them to be part of
12481 	 * any hardware group.
12482 	 */
12483 	pmu = event->pmu;
12484 
12485 	if (attr.use_clockid) {
12486 		err = perf_event_set_clock(event, attr.clockid);
12487 		if (err)
12488 			goto err_alloc;
12489 	}
12490 
12491 	if (pmu->task_ctx_nr == perf_sw_context)
12492 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12493 
12494 	if (task) {
12495 		err = down_read_interruptible(&task->signal->exec_update_lock);
12496 		if (err)
12497 			goto err_alloc;
12498 
12499 		/*
12500 		 * We must hold exec_update_lock across this and any potential
12501 		 * perf_install_in_context() call for this new event to
12502 		 * serialize against exec() altering our credentials (and the
12503 		 * perf_event_exit_task() that could imply).
12504 		 */
12505 		err = -EACCES;
12506 		if (!perf_check_permission(&attr, task))
12507 			goto err_cred;
12508 	}
12509 
12510 	/*
12511 	 * Get the target context (task or percpu):
12512 	 */
12513 	ctx = find_get_context(task, event);
12514 	if (IS_ERR(ctx)) {
12515 		err = PTR_ERR(ctx);
12516 		goto err_cred;
12517 	}
12518 
12519 	mutex_lock(&ctx->mutex);
12520 
12521 	if (ctx->task == TASK_TOMBSTONE) {
12522 		err = -ESRCH;
12523 		goto err_locked;
12524 	}
12525 
12526 	if (!task) {
12527 		/*
12528 		 * Check if the @cpu we're creating an event for is online.
12529 		 *
12530 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12531 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12532 		 */
12533 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12534 
12535 		if (!cpuctx->online) {
12536 			err = -ENODEV;
12537 			goto err_locked;
12538 		}
12539 	}
12540 
12541 	if (group_leader) {
12542 		err = -EINVAL;
12543 
12544 		/*
12545 		 * Do not allow a recursive hierarchy (this new sibling
12546 		 * becoming part of another group-sibling):
12547 		 */
12548 		if (group_leader->group_leader != group_leader)
12549 			goto err_locked;
12550 
12551 		/* All events in a group should have the same clock */
12552 		if (group_leader->clock != event->clock)
12553 			goto err_locked;
12554 
12555 		/*
12556 		 * Make sure we're both events for the same CPU;
12557 		 * grouping events for different CPUs is broken; since
12558 		 * you can never concurrently schedule them anyhow.
12559 		 */
12560 		if (group_leader->cpu != event->cpu)
12561 			goto err_locked;
12562 
12563 		/*
12564 		 * Make sure we're both on the same context; either task or cpu.
12565 		 */
12566 		if (group_leader->ctx != ctx)
12567 			goto err_locked;
12568 
12569 		/*
12570 		 * Only a group leader can be exclusive or pinned
12571 		 */
12572 		if (attr.exclusive || attr.pinned)
12573 			goto err_locked;
12574 
12575 		if (is_software_event(event) &&
12576 		    !in_software_context(group_leader)) {
12577 			/*
12578 			 * If the event is a sw event, but the group_leader
12579 			 * is on hw context.
12580 			 *
12581 			 * Allow the addition of software events to hw
12582 			 * groups, this is safe because software events
12583 			 * never fail to schedule.
12584 			 *
12585 			 * Note the comment that goes with struct
12586 			 * perf_event_pmu_context.
12587 			 */
12588 			pmu = group_leader->pmu_ctx->pmu;
12589 		} else if (!is_software_event(event)) {
12590 			if (is_software_event(group_leader) &&
12591 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12592 				/*
12593 				 * In case the group is a pure software group, and we
12594 				 * try to add a hardware event, move the whole group to
12595 				 * the hardware context.
12596 				 */
12597 				move_group = 1;
12598 			}
12599 
12600 			/* Don't allow group of multiple hw events from different pmus */
12601 			if (!in_software_context(group_leader) &&
12602 			    group_leader->pmu_ctx->pmu != pmu)
12603 				goto err_locked;
12604 		}
12605 	}
12606 
12607 	/*
12608 	 * Now that we're certain of the pmu; find the pmu_ctx.
12609 	 */
12610 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12611 	if (IS_ERR(pmu_ctx)) {
12612 		err = PTR_ERR(pmu_ctx);
12613 		goto err_locked;
12614 	}
12615 	event->pmu_ctx = pmu_ctx;
12616 
12617 	if (output_event) {
12618 		err = perf_event_set_output(event, output_event);
12619 		if (err)
12620 			goto err_context;
12621 	}
12622 
12623 	if (!perf_event_validate_size(event)) {
12624 		err = -E2BIG;
12625 		goto err_context;
12626 	}
12627 
12628 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12629 		err = -EINVAL;
12630 		goto err_context;
12631 	}
12632 
12633 	/*
12634 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12635 	 * because we need to serialize with concurrent event creation.
12636 	 */
12637 	if (!exclusive_event_installable(event, ctx)) {
12638 		err = -EBUSY;
12639 		goto err_context;
12640 	}
12641 
12642 	WARN_ON_ONCE(ctx->parent_ctx);
12643 
12644 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12645 	if (IS_ERR(event_file)) {
12646 		err = PTR_ERR(event_file);
12647 		event_file = NULL;
12648 		goto err_context;
12649 	}
12650 
12651 	/*
12652 	 * This is the point on no return; we cannot fail hereafter. This is
12653 	 * where we start modifying current state.
12654 	 */
12655 
12656 	if (move_group) {
12657 		perf_remove_from_context(group_leader, 0);
12658 		put_pmu_ctx(group_leader->pmu_ctx);
12659 
12660 		for_each_sibling_event(sibling, group_leader) {
12661 			perf_remove_from_context(sibling, 0);
12662 			put_pmu_ctx(sibling->pmu_ctx);
12663 		}
12664 
12665 		/*
12666 		 * Install the group siblings before the group leader.
12667 		 *
12668 		 * Because a group leader will try and install the entire group
12669 		 * (through the sibling list, which is still in-tact), we can
12670 		 * end up with siblings installed in the wrong context.
12671 		 *
12672 		 * By installing siblings first we NO-OP because they're not
12673 		 * reachable through the group lists.
12674 		 */
12675 		for_each_sibling_event(sibling, group_leader) {
12676 			sibling->pmu_ctx = pmu_ctx;
12677 			get_pmu_ctx(pmu_ctx);
12678 			perf_event__state_init(sibling);
12679 			perf_install_in_context(ctx, sibling, sibling->cpu);
12680 		}
12681 
12682 		/*
12683 		 * Removing from the context ends up with disabled
12684 		 * event. What we want here is event in the initial
12685 		 * startup state, ready to be add into new context.
12686 		 */
12687 		group_leader->pmu_ctx = pmu_ctx;
12688 		get_pmu_ctx(pmu_ctx);
12689 		perf_event__state_init(group_leader);
12690 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12691 	}
12692 
12693 	/*
12694 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12695 	 * that we're serialized against further additions and before
12696 	 * perf_install_in_context() which is the point the event is active and
12697 	 * can use these values.
12698 	 */
12699 	perf_event__header_size(event);
12700 	perf_event__id_header_size(event);
12701 
12702 	event->owner = current;
12703 
12704 	perf_install_in_context(ctx, event, event->cpu);
12705 	perf_unpin_context(ctx);
12706 
12707 	mutex_unlock(&ctx->mutex);
12708 
12709 	if (task) {
12710 		up_read(&task->signal->exec_update_lock);
12711 		put_task_struct(task);
12712 	}
12713 
12714 	mutex_lock(&current->perf_event_mutex);
12715 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12716 	mutex_unlock(&current->perf_event_mutex);
12717 
12718 	/*
12719 	 * Drop the reference on the group_event after placing the
12720 	 * new event on the sibling_list. This ensures destruction
12721 	 * of the group leader will find the pointer to itself in
12722 	 * perf_group_detach().
12723 	 */
12724 	fdput(group);
12725 	fd_install(event_fd, event_file);
12726 	return event_fd;
12727 
12728 err_context:
12729 	put_pmu_ctx(event->pmu_ctx);
12730 	event->pmu_ctx = NULL; /* _free_event() */
12731 err_locked:
12732 	mutex_unlock(&ctx->mutex);
12733 	perf_unpin_context(ctx);
12734 	put_ctx(ctx);
12735 err_cred:
12736 	if (task)
12737 		up_read(&task->signal->exec_update_lock);
12738 err_alloc:
12739 	free_event(event);
12740 err_task:
12741 	if (task)
12742 		put_task_struct(task);
12743 err_group_fd:
12744 	fdput(group);
12745 err_fd:
12746 	put_unused_fd(event_fd);
12747 	return err;
12748 }
12749 
12750 /**
12751  * perf_event_create_kernel_counter
12752  *
12753  * @attr: attributes of the counter to create
12754  * @cpu: cpu in which the counter is bound
12755  * @task: task to profile (NULL for percpu)
12756  * @overflow_handler: callback to trigger when we hit the event
12757  * @context: context data could be used in overflow_handler callback
12758  */
12759 struct perf_event *
12760 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12761 				 struct task_struct *task,
12762 				 perf_overflow_handler_t overflow_handler,
12763 				 void *context)
12764 {
12765 	struct perf_event_pmu_context *pmu_ctx;
12766 	struct perf_event_context *ctx;
12767 	struct perf_event *event;
12768 	struct pmu *pmu;
12769 	int err;
12770 
12771 	/*
12772 	 * Grouping is not supported for kernel events, neither is 'AUX',
12773 	 * make sure the caller's intentions are adjusted.
12774 	 */
12775 	if (attr->aux_output)
12776 		return ERR_PTR(-EINVAL);
12777 
12778 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12779 				 overflow_handler, context, -1);
12780 	if (IS_ERR(event)) {
12781 		err = PTR_ERR(event);
12782 		goto err;
12783 	}
12784 
12785 	/* Mark owner so we could distinguish it from user events. */
12786 	event->owner = TASK_TOMBSTONE;
12787 	pmu = event->pmu;
12788 
12789 	if (pmu->task_ctx_nr == perf_sw_context)
12790 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12791 
12792 	/*
12793 	 * Get the target context (task or percpu):
12794 	 */
12795 	ctx = find_get_context(task, event);
12796 	if (IS_ERR(ctx)) {
12797 		err = PTR_ERR(ctx);
12798 		goto err_alloc;
12799 	}
12800 
12801 	WARN_ON_ONCE(ctx->parent_ctx);
12802 	mutex_lock(&ctx->mutex);
12803 	if (ctx->task == TASK_TOMBSTONE) {
12804 		err = -ESRCH;
12805 		goto err_unlock;
12806 	}
12807 
12808 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12809 	if (IS_ERR(pmu_ctx)) {
12810 		err = PTR_ERR(pmu_ctx);
12811 		goto err_unlock;
12812 	}
12813 	event->pmu_ctx = pmu_ctx;
12814 
12815 	if (!task) {
12816 		/*
12817 		 * Check if the @cpu we're creating an event for is online.
12818 		 *
12819 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12820 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12821 		 */
12822 		struct perf_cpu_context *cpuctx =
12823 			container_of(ctx, struct perf_cpu_context, ctx);
12824 		if (!cpuctx->online) {
12825 			err = -ENODEV;
12826 			goto err_pmu_ctx;
12827 		}
12828 	}
12829 
12830 	if (!exclusive_event_installable(event, ctx)) {
12831 		err = -EBUSY;
12832 		goto err_pmu_ctx;
12833 	}
12834 
12835 	perf_install_in_context(ctx, event, event->cpu);
12836 	perf_unpin_context(ctx);
12837 	mutex_unlock(&ctx->mutex);
12838 
12839 	return event;
12840 
12841 err_pmu_ctx:
12842 	put_pmu_ctx(pmu_ctx);
12843 	event->pmu_ctx = NULL; /* _free_event() */
12844 err_unlock:
12845 	mutex_unlock(&ctx->mutex);
12846 	perf_unpin_context(ctx);
12847 	put_ctx(ctx);
12848 err_alloc:
12849 	free_event(event);
12850 err:
12851 	return ERR_PTR(err);
12852 }
12853 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12854 
12855 static void __perf_pmu_remove(struct perf_event_context *ctx,
12856 			      int cpu, struct pmu *pmu,
12857 			      struct perf_event_groups *groups,
12858 			      struct list_head *events)
12859 {
12860 	struct perf_event *event, *sibling;
12861 
12862 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12863 		perf_remove_from_context(event, 0);
12864 		put_pmu_ctx(event->pmu_ctx);
12865 		list_add(&event->migrate_entry, events);
12866 
12867 		for_each_sibling_event(sibling, event) {
12868 			perf_remove_from_context(sibling, 0);
12869 			put_pmu_ctx(sibling->pmu_ctx);
12870 			list_add(&sibling->migrate_entry, events);
12871 		}
12872 	}
12873 }
12874 
12875 static void __perf_pmu_install_event(struct pmu *pmu,
12876 				     struct perf_event_context *ctx,
12877 				     int cpu, struct perf_event *event)
12878 {
12879 	struct perf_event_pmu_context *epc;
12880 
12881 	event->cpu = cpu;
12882 	epc = find_get_pmu_context(pmu, ctx, event);
12883 	event->pmu_ctx = epc;
12884 
12885 	if (event->state >= PERF_EVENT_STATE_OFF)
12886 		event->state = PERF_EVENT_STATE_INACTIVE;
12887 	perf_install_in_context(ctx, event, cpu);
12888 }
12889 
12890 static void __perf_pmu_install(struct perf_event_context *ctx,
12891 			       int cpu, struct pmu *pmu, struct list_head *events)
12892 {
12893 	struct perf_event *event, *tmp;
12894 
12895 	/*
12896 	 * Re-instate events in 2 passes.
12897 	 *
12898 	 * Skip over group leaders and only install siblings on this first
12899 	 * pass, siblings will not get enabled without a leader, however a
12900 	 * leader will enable its siblings, even if those are still on the old
12901 	 * context.
12902 	 */
12903 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12904 		if (event->group_leader == event)
12905 			continue;
12906 
12907 		list_del(&event->migrate_entry);
12908 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12909 	}
12910 
12911 	/*
12912 	 * Once all the siblings are setup properly, install the group leaders
12913 	 * to make it go.
12914 	 */
12915 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12916 		list_del(&event->migrate_entry);
12917 		__perf_pmu_install_event(pmu, ctx, cpu, event);
12918 	}
12919 }
12920 
12921 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12922 {
12923 	struct perf_event_context *src_ctx, *dst_ctx;
12924 	LIST_HEAD(events);
12925 
12926 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12927 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12928 
12929 	/*
12930 	 * See perf_event_ctx_lock() for comments on the details
12931 	 * of swizzling perf_event::ctx.
12932 	 */
12933 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12934 
12935 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12936 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12937 
12938 	if (!list_empty(&events)) {
12939 		/*
12940 		 * Wait for the events to quiesce before re-instating them.
12941 		 */
12942 		synchronize_rcu();
12943 
12944 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12945 	}
12946 
12947 	mutex_unlock(&dst_ctx->mutex);
12948 	mutex_unlock(&src_ctx->mutex);
12949 }
12950 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12951 
12952 static void sync_child_event(struct perf_event *child_event)
12953 {
12954 	struct perf_event *parent_event = child_event->parent;
12955 	u64 child_val;
12956 
12957 	if (child_event->attr.inherit_stat) {
12958 		struct task_struct *task = child_event->ctx->task;
12959 
12960 		if (task && task != TASK_TOMBSTONE)
12961 			perf_event_read_event(child_event, task);
12962 	}
12963 
12964 	child_val = perf_event_count(child_event);
12965 
12966 	/*
12967 	 * Add back the child's count to the parent's count:
12968 	 */
12969 	atomic64_add(child_val, &parent_event->child_count);
12970 	atomic64_add(child_event->total_time_enabled,
12971 		     &parent_event->child_total_time_enabled);
12972 	atomic64_add(child_event->total_time_running,
12973 		     &parent_event->child_total_time_running);
12974 }
12975 
12976 static void
12977 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12978 {
12979 	struct perf_event *parent_event = event->parent;
12980 	unsigned long detach_flags = 0;
12981 
12982 	if (parent_event) {
12983 		/*
12984 		 * Do not destroy the 'original' grouping; because of the
12985 		 * context switch optimization the original events could've
12986 		 * ended up in a random child task.
12987 		 *
12988 		 * If we were to destroy the original group, all group related
12989 		 * operations would cease to function properly after this
12990 		 * random child dies.
12991 		 *
12992 		 * Do destroy all inherited groups, we don't care about those
12993 		 * and being thorough is better.
12994 		 */
12995 		detach_flags = DETACH_GROUP | DETACH_CHILD;
12996 		mutex_lock(&parent_event->child_mutex);
12997 	}
12998 
12999 	perf_remove_from_context(event, detach_flags);
13000 
13001 	raw_spin_lock_irq(&ctx->lock);
13002 	if (event->state > PERF_EVENT_STATE_EXIT)
13003 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13004 	raw_spin_unlock_irq(&ctx->lock);
13005 
13006 	/*
13007 	 * Child events can be freed.
13008 	 */
13009 	if (parent_event) {
13010 		mutex_unlock(&parent_event->child_mutex);
13011 		/*
13012 		 * Kick perf_poll() for is_event_hup();
13013 		 */
13014 		perf_event_wakeup(parent_event);
13015 		free_event(event);
13016 		put_event(parent_event);
13017 		return;
13018 	}
13019 
13020 	/*
13021 	 * Parent events are governed by their filedesc, retain them.
13022 	 */
13023 	perf_event_wakeup(event);
13024 }
13025 
13026 static void perf_event_exit_task_context(struct task_struct *child)
13027 {
13028 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13029 	struct perf_event *child_event, *next;
13030 
13031 	WARN_ON_ONCE(child != current);
13032 
13033 	child_ctx = perf_pin_task_context(child);
13034 	if (!child_ctx)
13035 		return;
13036 
13037 	/*
13038 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13039 	 * ctx::mutex over the entire thing. This serializes against almost
13040 	 * everything that wants to access the ctx.
13041 	 *
13042 	 * The exception is sys_perf_event_open() /
13043 	 * perf_event_create_kernel_count() which does find_get_context()
13044 	 * without ctx::mutex (it cannot because of the move_group double mutex
13045 	 * lock thing). See the comments in perf_install_in_context().
13046 	 */
13047 	mutex_lock(&child_ctx->mutex);
13048 
13049 	/*
13050 	 * In a single ctx::lock section, de-schedule the events and detach the
13051 	 * context from the task such that we cannot ever get it scheduled back
13052 	 * in.
13053 	 */
13054 	raw_spin_lock_irq(&child_ctx->lock);
13055 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13056 
13057 	/*
13058 	 * Now that the context is inactive, destroy the task <-> ctx relation
13059 	 * and mark the context dead.
13060 	 */
13061 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13062 	put_ctx(child_ctx); /* cannot be last */
13063 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13064 	put_task_struct(current); /* cannot be last */
13065 
13066 	clone_ctx = unclone_ctx(child_ctx);
13067 	raw_spin_unlock_irq(&child_ctx->lock);
13068 
13069 	if (clone_ctx)
13070 		put_ctx(clone_ctx);
13071 
13072 	/*
13073 	 * Report the task dead after unscheduling the events so that we
13074 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13075 	 * get a few PERF_RECORD_READ events.
13076 	 */
13077 	perf_event_task(child, child_ctx, 0);
13078 
13079 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13080 		perf_event_exit_event(child_event, child_ctx);
13081 
13082 	mutex_unlock(&child_ctx->mutex);
13083 
13084 	put_ctx(child_ctx);
13085 }
13086 
13087 /*
13088  * When a child task exits, feed back event values to parent events.
13089  *
13090  * Can be called with exec_update_lock held when called from
13091  * setup_new_exec().
13092  */
13093 void perf_event_exit_task(struct task_struct *child)
13094 {
13095 	struct perf_event *event, *tmp;
13096 
13097 	mutex_lock(&child->perf_event_mutex);
13098 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13099 				 owner_entry) {
13100 		list_del_init(&event->owner_entry);
13101 
13102 		/*
13103 		 * Ensure the list deletion is visible before we clear
13104 		 * the owner, closes a race against perf_release() where
13105 		 * we need to serialize on the owner->perf_event_mutex.
13106 		 */
13107 		smp_store_release(&event->owner, NULL);
13108 	}
13109 	mutex_unlock(&child->perf_event_mutex);
13110 
13111 	perf_event_exit_task_context(child);
13112 
13113 	/*
13114 	 * The perf_event_exit_task_context calls perf_event_task
13115 	 * with child's task_ctx, which generates EXIT events for
13116 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13117 	 * At this point we need to send EXIT events to cpu contexts.
13118 	 */
13119 	perf_event_task(child, NULL, 0);
13120 }
13121 
13122 static void perf_free_event(struct perf_event *event,
13123 			    struct perf_event_context *ctx)
13124 {
13125 	struct perf_event *parent = event->parent;
13126 
13127 	if (WARN_ON_ONCE(!parent))
13128 		return;
13129 
13130 	mutex_lock(&parent->child_mutex);
13131 	list_del_init(&event->child_list);
13132 	mutex_unlock(&parent->child_mutex);
13133 
13134 	put_event(parent);
13135 
13136 	raw_spin_lock_irq(&ctx->lock);
13137 	perf_group_detach(event);
13138 	list_del_event(event, ctx);
13139 	raw_spin_unlock_irq(&ctx->lock);
13140 	free_event(event);
13141 }
13142 
13143 /*
13144  * Free a context as created by inheritance by perf_event_init_task() below,
13145  * used by fork() in case of fail.
13146  *
13147  * Even though the task has never lived, the context and events have been
13148  * exposed through the child_list, so we must take care tearing it all down.
13149  */
13150 void perf_event_free_task(struct task_struct *task)
13151 {
13152 	struct perf_event_context *ctx;
13153 	struct perf_event *event, *tmp;
13154 
13155 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13156 	if (!ctx)
13157 		return;
13158 
13159 	mutex_lock(&ctx->mutex);
13160 	raw_spin_lock_irq(&ctx->lock);
13161 	/*
13162 	 * Destroy the task <-> ctx relation and mark the context dead.
13163 	 *
13164 	 * This is important because even though the task hasn't been
13165 	 * exposed yet the context has been (through child_list).
13166 	 */
13167 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13168 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13169 	put_task_struct(task); /* cannot be last */
13170 	raw_spin_unlock_irq(&ctx->lock);
13171 
13172 
13173 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13174 		perf_free_event(event, ctx);
13175 
13176 	mutex_unlock(&ctx->mutex);
13177 
13178 	/*
13179 	 * perf_event_release_kernel() could've stolen some of our
13180 	 * child events and still have them on its free_list. In that
13181 	 * case we must wait for these events to have been freed (in
13182 	 * particular all their references to this task must've been
13183 	 * dropped).
13184 	 *
13185 	 * Without this copy_process() will unconditionally free this
13186 	 * task (irrespective of its reference count) and
13187 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13188 	 * use-after-free.
13189 	 *
13190 	 * Wait for all events to drop their context reference.
13191 	 */
13192 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13193 	put_ctx(ctx); /* must be last */
13194 }
13195 
13196 void perf_event_delayed_put(struct task_struct *task)
13197 {
13198 	WARN_ON_ONCE(task->perf_event_ctxp);
13199 }
13200 
13201 struct file *perf_event_get(unsigned int fd)
13202 {
13203 	struct file *file = fget(fd);
13204 	if (!file)
13205 		return ERR_PTR(-EBADF);
13206 
13207 	if (file->f_op != &perf_fops) {
13208 		fput(file);
13209 		return ERR_PTR(-EBADF);
13210 	}
13211 
13212 	return file;
13213 }
13214 
13215 const struct perf_event *perf_get_event(struct file *file)
13216 {
13217 	if (file->f_op != &perf_fops)
13218 		return ERR_PTR(-EINVAL);
13219 
13220 	return file->private_data;
13221 }
13222 
13223 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13224 {
13225 	if (!event)
13226 		return ERR_PTR(-EINVAL);
13227 
13228 	return &event->attr;
13229 }
13230 
13231 /*
13232  * Inherit an event from parent task to child task.
13233  *
13234  * Returns:
13235  *  - valid pointer on success
13236  *  - NULL for orphaned events
13237  *  - IS_ERR() on error
13238  */
13239 static struct perf_event *
13240 inherit_event(struct perf_event *parent_event,
13241 	      struct task_struct *parent,
13242 	      struct perf_event_context *parent_ctx,
13243 	      struct task_struct *child,
13244 	      struct perf_event *group_leader,
13245 	      struct perf_event_context *child_ctx)
13246 {
13247 	enum perf_event_state parent_state = parent_event->state;
13248 	struct perf_event_pmu_context *pmu_ctx;
13249 	struct perf_event *child_event;
13250 	unsigned long flags;
13251 
13252 	/*
13253 	 * Instead of creating recursive hierarchies of events,
13254 	 * we link inherited events back to the original parent,
13255 	 * which has a filp for sure, which we use as the reference
13256 	 * count:
13257 	 */
13258 	if (parent_event->parent)
13259 		parent_event = parent_event->parent;
13260 
13261 	child_event = perf_event_alloc(&parent_event->attr,
13262 					   parent_event->cpu,
13263 					   child,
13264 					   group_leader, parent_event,
13265 					   NULL, NULL, -1);
13266 	if (IS_ERR(child_event))
13267 		return child_event;
13268 
13269 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13270 	if (IS_ERR(pmu_ctx)) {
13271 		free_event(child_event);
13272 		return ERR_CAST(pmu_ctx);
13273 	}
13274 	child_event->pmu_ctx = pmu_ctx;
13275 
13276 	/*
13277 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13278 	 * must be under the same lock in order to serialize against
13279 	 * perf_event_release_kernel(), such that either we must observe
13280 	 * is_orphaned_event() or they will observe us on the child_list.
13281 	 */
13282 	mutex_lock(&parent_event->child_mutex);
13283 	if (is_orphaned_event(parent_event) ||
13284 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13285 		mutex_unlock(&parent_event->child_mutex);
13286 		/* task_ctx_data is freed with child_ctx */
13287 		free_event(child_event);
13288 		return NULL;
13289 	}
13290 
13291 	get_ctx(child_ctx);
13292 
13293 	/*
13294 	 * Make the child state follow the state of the parent event,
13295 	 * not its attr.disabled bit.  We hold the parent's mutex,
13296 	 * so we won't race with perf_event_{en, dis}able_family.
13297 	 */
13298 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13299 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13300 	else
13301 		child_event->state = PERF_EVENT_STATE_OFF;
13302 
13303 	if (parent_event->attr.freq) {
13304 		u64 sample_period = parent_event->hw.sample_period;
13305 		struct hw_perf_event *hwc = &child_event->hw;
13306 
13307 		hwc->sample_period = sample_period;
13308 		hwc->last_period   = sample_period;
13309 
13310 		local64_set(&hwc->period_left, sample_period);
13311 	}
13312 
13313 	child_event->ctx = child_ctx;
13314 	child_event->overflow_handler = parent_event->overflow_handler;
13315 	child_event->overflow_handler_context
13316 		= parent_event->overflow_handler_context;
13317 
13318 	/*
13319 	 * Precalculate sample_data sizes
13320 	 */
13321 	perf_event__header_size(child_event);
13322 	perf_event__id_header_size(child_event);
13323 
13324 	/*
13325 	 * Link it up in the child's context:
13326 	 */
13327 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13328 	add_event_to_ctx(child_event, child_ctx);
13329 	child_event->attach_state |= PERF_ATTACH_CHILD;
13330 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13331 
13332 	/*
13333 	 * Link this into the parent event's child list
13334 	 */
13335 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13336 	mutex_unlock(&parent_event->child_mutex);
13337 
13338 	return child_event;
13339 }
13340 
13341 /*
13342  * Inherits an event group.
13343  *
13344  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13345  * This matches with perf_event_release_kernel() removing all child events.
13346  *
13347  * Returns:
13348  *  - 0 on success
13349  *  - <0 on error
13350  */
13351 static int inherit_group(struct perf_event *parent_event,
13352 	      struct task_struct *parent,
13353 	      struct perf_event_context *parent_ctx,
13354 	      struct task_struct *child,
13355 	      struct perf_event_context *child_ctx)
13356 {
13357 	struct perf_event *leader;
13358 	struct perf_event *sub;
13359 	struct perf_event *child_ctr;
13360 
13361 	leader = inherit_event(parent_event, parent, parent_ctx,
13362 				 child, NULL, child_ctx);
13363 	if (IS_ERR(leader))
13364 		return PTR_ERR(leader);
13365 	/*
13366 	 * @leader can be NULL here because of is_orphaned_event(). In this
13367 	 * case inherit_event() will create individual events, similar to what
13368 	 * perf_group_detach() would do anyway.
13369 	 */
13370 	for_each_sibling_event(sub, parent_event) {
13371 		child_ctr = inherit_event(sub, parent, parent_ctx,
13372 					    child, leader, child_ctx);
13373 		if (IS_ERR(child_ctr))
13374 			return PTR_ERR(child_ctr);
13375 
13376 		if (sub->aux_event == parent_event && child_ctr &&
13377 		    !perf_get_aux_event(child_ctr, leader))
13378 			return -EINVAL;
13379 	}
13380 	if (leader)
13381 		leader->group_generation = parent_event->group_generation;
13382 	return 0;
13383 }
13384 
13385 /*
13386  * Creates the child task context and tries to inherit the event-group.
13387  *
13388  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13389  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13390  * consistent with perf_event_release_kernel() removing all child events.
13391  *
13392  * Returns:
13393  *  - 0 on success
13394  *  - <0 on error
13395  */
13396 static int
13397 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13398 		   struct perf_event_context *parent_ctx,
13399 		   struct task_struct *child,
13400 		   u64 clone_flags, int *inherited_all)
13401 {
13402 	struct perf_event_context *child_ctx;
13403 	int ret;
13404 
13405 	if (!event->attr.inherit ||
13406 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13407 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13408 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13409 		*inherited_all = 0;
13410 		return 0;
13411 	}
13412 
13413 	child_ctx = child->perf_event_ctxp;
13414 	if (!child_ctx) {
13415 		/*
13416 		 * This is executed from the parent task context, so
13417 		 * inherit events that have been marked for cloning.
13418 		 * First allocate and initialize a context for the
13419 		 * child.
13420 		 */
13421 		child_ctx = alloc_perf_context(child);
13422 		if (!child_ctx)
13423 			return -ENOMEM;
13424 
13425 		child->perf_event_ctxp = child_ctx;
13426 	}
13427 
13428 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13429 	if (ret)
13430 		*inherited_all = 0;
13431 
13432 	return ret;
13433 }
13434 
13435 /*
13436  * Initialize the perf_event context in task_struct
13437  */
13438 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13439 {
13440 	struct perf_event_context *child_ctx, *parent_ctx;
13441 	struct perf_event_context *cloned_ctx;
13442 	struct perf_event *event;
13443 	struct task_struct *parent = current;
13444 	int inherited_all = 1;
13445 	unsigned long flags;
13446 	int ret = 0;
13447 
13448 	if (likely(!parent->perf_event_ctxp))
13449 		return 0;
13450 
13451 	/*
13452 	 * If the parent's context is a clone, pin it so it won't get
13453 	 * swapped under us.
13454 	 */
13455 	parent_ctx = perf_pin_task_context(parent);
13456 	if (!parent_ctx)
13457 		return 0;
13458 
13459 	/*
13460 	 * No need to check if parent_ctx != NULL here; since we saw
13461 	 * it non-NULL earlier, the only reason for it to become NULL
13462 	 * is if we exit, and since we're currently in the middle of
13463 	 * a fork we can't be exiting at the same time.
13464 	 */
13465 
13466 	/*
13467 	 * Lock the parent list. No need to lock the child - not PID
13468 	 * hashed yet and not running, so nobody can access it.
13469 	 */
13470 	mutex_lock(&parent_ctx->mutex);
13471 
13472 	/*
13473 	 * We dont have to disable NMIs - we are only looking at
13474 	 * the list, not manipulating it:
13475 	 */
13476 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13477 		ret = inherit_task_group(event, parent, parent_ctx,
13478 					 child, clone_flags, &inherited_all);
13479 		if (ret)
13480 			goto out_unlock;
13481 	}
13482 
13483 	/*
13484 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13485 	 * to allocations, but we need to prevent rotation because
13486 	 * rotate_ctx() will change the list from interrupt context.
13487 	 */
13488 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13489 	parent_ctx->rotate_disable = 1;
13490 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13491 
13492 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13493 		ret = inherit_task_group(event, parent, parent_ctx,
13494 					 child, clone_flags, &inherited_all);
13495 		if (ret)
13496 			goto out_unlock;
13497 	}
13498 
13499 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13500 	parent_ctx->rotate_disable = 0;
13501 
13502 	child_ctx = child->perf_event_ctxp;
13503 
13504 	if (child_ctx && inherited_all) {
13505 		/*
13506 		 * Mark the child context as a clone of the parent
13507 		 * context, or of whatever the parent is a clone of.
13508 		 *
13509 		 * Note that if the parent is a clone, the holding of
13510 		 * parent_ctx->lock avoids it from being uncloned.
13511 		 */
13512 		cloned_ctx = parent_ctx->parent_ctx;
13513 		if (cloned_ctx) {
13514 			child_ctx->parent_ctx = cloned_ctx;
13515 			child_ctx->parent_gen = parent_ctx->parent_gen;
13516 		} else {
13517 			child_ctx->parent_ctx = parent_ctx;
13518 			child_ctx->parent_gen = parent_ctx->generation;
13519 		}
13520 		get_ctx(child_ctx->parent_ctx);
13521 	}
13522 
13523 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13524 out_unlock:
13525 	mutex_unlock(&parent_ctx->mutex);
13526 
13527 	perf_unpin_context(parent_ctx);
13528 	put_ctx(parent_ctx);
13529 
13530 	return ret;
13531 }
13532 
13533 /*
13534  * Initialize the perf_event context in task_struct
13535  */
13536 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13537 {
13538 	int ret;
13539 
13540 	child->perf_event_ctxp = NULL;
13541 	mutex_init(&child->perf_event_mutex);
13542 	INIT_LIST_HEAD(&child->perf_event_list);
13543 
13544 	ret = perf_event_init_context(child, clone_flags);
13545 	if (ret) {
13546 		perf_event_free_task(child);
13547 		return ret;
13548 	}
13549 
13550 	return 0;
13551 }
13552 
13553 static void __init perf_event_init_all_cpus(void)
13554 {
13555 	struct swevent_htable *swhash;
13556 	struct perf_cpu_context *cpuctx;
13557 	int cpu;
13558 
13559 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13560 
13561 	for_each_possible_cpu(cpu) {
13562 		swhash = &per_cpu(swevent_htable, cpu);
13563 		mutex_init(&swhash->hlist_mutex);
13564 
13565 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13566 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13567 
13568 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13569 
13570 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13571 		__perf_event_init_context(&cpuctx->ctx);
13572 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13573 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13574 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13575 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13576 		cpuctx->heap = cpuctx->heap_default;
13577 	}
13578 }
13579 
13580 static void perf_swevent_init_cpu(unsigned int cpu)
13581 {
13582 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13583 
13584 	mutex_lock(&swhash->hlist_mutex);
13585 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13586 		struct swevent_hlist *hlist;
13587 
13588 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13589 		WARN_ON(!hlist);
13590 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13591 	}
13592 	mutex_unlock(&swhash->hlist_mutex);
13593 }
13594 
13595 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13596 static void __perf_event_exit_context(void *__info)
13597 {
13598 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13599 	struct perf_event_context *ctx = __info;
13600 	struct perf_event *event;
13601 
13602 	raw_spin_lock(&ctx->lock);
13603 	ctx_sched_out(ctx, EVENT_TIME);
13604 	list_for_each_entry(event, &ctx->event_list, event_entry)
13605 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13606 	raw_spin_unlock(&ctx->lock);
13607 }
13608 
13609 static void perf_event_exit_cpu_context(int cpu)
13610 {
13611 	struct perf_cpu_context *cpuctx;
13612 	struct perf_event_context *ctx;
13613 
13614 	// XXX simplify cpuctx->online
13615 	mutex_lock(&pmus_lock);
13616 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13617 	ctx = &cpuctx->ctx;
13618 
13619 	mutex_lock(&ctx->mutex);
13620 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13621 	cpuctx->online = 0;
13622 	mutex_unlock(&ctx->mutex);
13623 	cpumask_clear_cpu(cpu, perf_online_mask);
13624 	mutex_unlock(&pmus_lock);
13625 }
13626 #else
13627 
13628 static void perf_event_exit_cpu_context(int cpu) { }
13629 
13630 #endif
13631 
13632 int perf_event_init_cpu(unsigned int cpu)
13633 {
13634 	struct perf_cpu_context *cpuctx;
13635 	struct perf_event_context *ctx;
13636 
13637 	perf_swevent_init_cpu(cpu);
13638 
13639 	mutex_lock(&pmus_lock);
13640 	cpumask_set_cpu(cpu, perf_online_mask);
13641 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13642 	ctx = &cpuctx->ctx;
13643 
13644 	mutex_lock(&ctx->mutex);
13645 	cpuctx->online = 1;
13646 	mutex_unlock(&ctx->mutex);
13647 	mutex_unlock(&pmus_lock);
13648 
13649 	return 0;
13650 }
13651 
13652 int perf_event_exit_cpu(unsigned int cpu)
13653 {
13654 	perf_event_exit_cpu_context(cpu);
13655 	return 0;
13656 }
13657 
13658 static int
13659 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13660 {
13661 	int cpu;
13662 
13663 	for_each_online_cpu(cpu)
13664 		perf_event_exit_cpu(cpu);
13665 
13666 	return NOTIFY_OK;
13667 }
13668 
13669 /*
13670  * Run the perf reboot notifier at the very last possible moment so that
13671  * the generic watchdog code runs as long as possible.
13672  */
13673 static struct notifier_block perf_reboot_notifier = {
13674 	.notifier_call = perf_reboot,
13675 	.priority = INT_MIN,
13676 };
13677 
13678 void __init perf_event_init(void)
13679 {
13680 	int ret;
13681 
13682 	idr_init(&pmu_idr);
13683 
13684 	perf_event_init_all_cpus();
13685 	init_srcu_struct(&pmus_srcu);
13686 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13687 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13688 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13689 	perf_tp_register();
13690 	perf_event_init_cpu(smp_processor_id());
13691 	register_reboot_notifier(&perf_reboot_notifier);
13692 
13693 	ret = init_hw_breakpoint();
13694 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13695 
13696 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13697 
13698 	/*
13699 	 * Build time assertion that we keep the data_head at the intended
13700 	 * location.  IOW, validation we got the __reserved[] size right.
13701 	 */
13702 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13703 		     != 1024);
13704 }
13705 
13706 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13707 			      char *page)
13708 {
13709 	struct perf_pmu_events_attr *pmu_attr =
13710 		container_of(attr, struct perf_pmu_events_attr, attr);
13711 
13712 	if (pmu_attr->event_str)
13713 		return sprintf(page, "%s\n", pmu_attr->event_str);
13714 
13715 	return 0;
13716 }
13717 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13718 
13719 static int __init perf_event_sysfs_init(void)
13720 {
13721 	struct pmu *pmu;
13722 	int ret;
13723 
13724 	mutex_lock(&pmus_lock);
13725 
13726 	ret = bus_register(&pmu_bus);
13727 	if (ret)
13728 		goto unlock;
13729 
13730 	list_for_each_entry(pmu, &pmus, entry) {
13731 		if (pmu->dev)
13732 			continue;
13733 
13734 		ret = pmu_dev_alloc(pmu);
13735 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13736 	}
13737 	pmu_bus_running = 1;
13738 	ret = 0;
13739 
13740 unlock:
13741 	mutex_unlock(&pmus_lock);
13742 
13743 	return ret;
13744 }
13745 device_initcall(perf_event_sysfs_init);
13746 
13747 #ifdef CONFIG_CGROUP_PERF
13748 static struct cgroup_subsys_state *
13749 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13750 {
13751 	struct perf_cgroup *jc;
13752 
13753 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13754 	if (!jc)
13755 		return ERR_PTR(-ENOMEM);
13756 
13757 	jc->info = alloc_percpu(struct perf_cgroup_info);
13758 	if (!jc->info) {
13759 		kfree(jc);
13760 		return ERR_PTR(-ENOMEM);
13761 	}
13762 
13763 	return &jc->css;
13764 }
13765 
13766 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13767 {
13768 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13769 
13770 	free_percpu(jc->info);
13771 	kfree(jc);
13772 }
13773 
13774 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13775 {
13776 	perf_event_cgroup(css->cgroup);
13777 	return 0;
13778 }
13779 
13780 static int __perf_cgroup_move(void *info)
13781 {
13782 	struct task_struct *task = info;
13783 
13784 	preempt_disable();
13785 	perf_cgroup_switch(task);
13786 	preempt_enable();
13787 
13788 	return 0;
13789 }
13790 
13791 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13792 {
13793 	struct task_struct *task;
13794 	struct cgroup_subsys_state *css;
13795 
13796 	cgroup_taskset_for_each(task, css, tset)
13797 		task_function_call(task, __perf_cgroup_move, task);
13798 }
13799 
13800 struct cgroup_subsys perf_event_cgrp_subsys = {
13801 	.css_alloc	= perf_cgroup_css_alloc,
13802 	.css_free	= perf_cgroup_css_free,
13803 	.css_online	= perf_cgroup_css_online,
13804 	.attach		= perf_cgroup_attach,
13805 	/*
13806 	 * Implicitly enable on dfl hierarchy so that perf events can
13807 	 * always be filtered by cgroup2 path as long as perf_event
13808 	 * controller is not mounted on a legacy hierarchy.
13809 	 */
13810 	.implicit_on_dfl = true,
13811 	.threaded	= true,
13812 };
13813 #endif /* CONFIG_CGROUP_PERF */
13814 
13815 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13816