1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct event_function_struct efs = { 268 .event = event, 269 .func = func, 270 .data = data, 271 }; 272 273 if (!event->parent) { 274 /* 275 * If this is a !child event, we must hold ctx::mutex to 276 * stabilize the event->ctx relation. See 277 * perf_event_ctx_lock(). 278 */ 279 lockdep_assert_held(&ctx->mutex); 280 } 281 282 if (!task) { 283 cpu_function_call(event->cpu, event_function, &efs); 284 return; 285 } 286 287 if (task == TASK_TOMBSTONE) 288 return; 289 290 again: 291 if (!task_function_call(task, event_function, &efs)) 292 return; 293 294 raw_spin_lock_irq(&ctx->lock); 295 /* 296 * Reload the task pointer, it might have been changed by 297 * a concurrent perf_event_context_sched_out(). 298 */ 299 task = ctx->task; 300 if (task == TASK_TOMBSTONE) { 301 raw_spin_unlock_irq(&ctx->lock); 302 return; 303 } 304 if (ctx->is_active) { 305 raw_spin_unlock_irq(&ctx->lock); 306 goto again; 307 } 308 func(event, NULL, ctx, data); 309 raw_spin_unlock_irq(&ctx->lock); 310 } 311 312 /* 313 * Similar to event_function_call() + event_function(), but hard assumes IRQs 314 * are already disabled and we're on the right CPU. 315 */ 316 static void event_function_local(struct perf_event *event, event_f func, void *data) 317 { 318 struct perf_event_context *ctx = event->ctx; 319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 320 struct task_struct *task = READ_ONCE(ctx->task); 321 struct perf_event_context *task_ctx = NULL; 322 323 lockdep_assert_irqs_disabled(); 324 325 if (task) { 326 if (task == TASK_TOMBSTONE) 327 return; 328 329 task_ctx = ctx; 330 } 331 332 perf_ctx_lock(cpuctx, task_ctx); 333 334 task = ctx->task; 335 if (task == TASK_TOMBSTONE) 336 goto unlock; 337 338 if (task) { 339 /* 340 * We must be either inactive or active and the right task, 341 * otherwise we're screwed, since we cannot IPI to somewhere 342 * else. 343 */ 344 if (ctx->is_active) { 345 if (WARN_ON_ONCE(task != current)) 346 goto unlock; 347 348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 349 goto unlock; 350 } 351 } else { 352 WARN_ON_ONCE(&cpuctx->ctx != ctx); 353 } 354 355 func(event, cpuctx, ctx, data); 356 unlock: 357 perf_ctx_unlock(cpuctx, task_ctx); 358 } 359 360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 361 PERF_FLAG_FD_OUTPUT |\ 362 PERF_FLAG_PID_CGROUP |\ 363 PERF_FLAG_FD_CLOEXEC) 364 365 /* 366 * branch priv levels that need permission checks 367 */ 368 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 369 (PERF_SAMPLE_BRANCH_KERNEL |\ 370 PERF_SAMPLE_BRANCH_HV) 371 372 enum event_type_t { 373 EVENT_FLEXIBLE = 0x1, 374 EVENT_PINNED = 0x2, 375 EVENT_TIME = 0x4, 376 /* see ctx_resched() for details */ 377 EVENT_CPU = 0x8, 378 EVENT_CGROUP = 0x10, 379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 380 }; 381 382 /* 383 * perf_sched_events : >0 events exist 384 */ 385 386 static void perf_sched_delayed(struct work_struct *work); 387 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 389 static DEFINE_MUTEX(perf_sched_mutex); 390 static atomic_t perf_sched_count; 391 392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 393 394 static atomic_t nr_mmap_events __read_mostly; 395 static atomic_t nr_comm_events __read_mostly; 396 static atomic_t nr_namespaces_events __read_mostly; 397 static atomic_t nr_task_events __read_mostly; 398 static atomic_t nr_freq_events __read_mostly; 399 static atomic_t nr_switch_events __read_mostly; 400 static atomic_t nr_ksymbol_events __read_mostly; 401 static atomic_t nr_bpf_events __read_mostly; 402 static atomic_t nr_cgroup_events __read_mostly; 403 static atomic_t nr_text_poke_events __read_mostly; 404 static atomic_t nr_build_id_events __read_mostly; 405 406 static LIST_HEAD(pmus); 407 static DEFINE_MUTEX(pmus_lock); 408 static struct srcu_struct pmus_srcu; 409 static cpumask_var_t perf_online_mask; 410 static struct kmem_cache *perf_event_cache; 411 412 /* 413 * perf event paranoia level: 414 * -1 - not paranoid at all 415 * 0 - disallow raw tracepoint access for unpriv 416 * 1 - disallow cpu events for unpriv 417 * 2 - disallow kernel profiling for unpriv 418 */ 419 int sysctl_perf_event_paranoid __read_mostly = 2; 420 421 /* Minimum for 512 kiB + 1 user control page */ 422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 423 424 /* 425 * max perf event sample rate 426 */ 427 #define DEFAULT_MAX_SAMPLE_RATE 100000 428 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 429 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 430 431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 432 433 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 434 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 435 436 static int perf_sample_allowed_ns __read_mostly = 437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 438 439 static void update_perf_cpu_limits(void) 440 { 441 u64 tmp = perf_sample_period_ns; 442 443 tmp *= sysctl_perf_cpu_time_max_percent; 444 tmp = div_u64(tmp, 100); 445 if (!tmp) 446 tmp = 1; 447 448 WRITE_ONCE(perf_sample_allowed_ns, tmp); 449 } 450 451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 452 453 int perf_proc_update_handler(struct ctl_table *table, int write, 454 void *buffer, size_t *lenp, loff_t *ppos) 455 { 456 int ret; 457 int perf_cpu = sysctl_perf_cpu_time_max_percent; 458 /* 459 * If throttling is disabled don't allow the write: 460 */ 461 if (write && (perf_cpu == 100 || perf_cpu == 0)) 462 return -EINVAL; 463 464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 if (ret || !write) 466 return ret; 467 468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 470 update_perf_cpu_limits(); 471 472 return 0; 473 } 474 475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 476 477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 478 void *buffer, size_t *lenp, loff_t *ppos) 479 { 480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 481 482 if (ret || !write) 483 return ret; 484 485 if (sysctl_perf_cpu_time_max_percent == 100 || 486 sysctl_perf_cpu_time_max_percent == 0) { 487 printk(KERN_WARNING 488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 489 WRITE_ONCE(perf_sample_allowed_ns, 0); 490 } else { 491 update_perf_cpu_limits(); 492 } 493 494 return 0; 495 } 496 497 /* 498 * perf samples are done in some very critical code paths (NMIs). 499 * If they take too much CPU time, the system can lock up and not 500 * get any real work done. This will drop the sample rate when 501 * we detect that events are taking too long. 502 */ 503 #define NR_ACCUMULATED_SAMPLES 128 504 static DEFINE_PER_CPU(u64, running_sample_length); 505 506 static u64 __report_avg; 507 static u64 __report_allowed; 508 509 static void perf_duration_warn(struct irq_work *w) 510 { 511 printk_ratelimited(KERN_INFO 512 "perf: interrupt took too long (%lld > %lld), lowering " 513 "kernel.perf_event_max_sample_rate to %d\n", 514 __report_avg, __report_allowed, 515 sysctl_perf_event_sample_rate); 516 } 517 518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 519 520 void perf_sample_event_took(u64 sample_len_ns) 521 { 522 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 523 u64 running_len; 524 u64 avg_len; 525 u32 max; 526 527 if (max_len == 0) 528 return; 529 530 /* Decay the counter by 1 average sample. */ 531 running_len = __this_cpu_read(running_sample_length); 532 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 533 running_len += sample_len_ns; 534 __this_cpu_write(running_sample_length, running_len); 535 536 /* 537 * Note: this will be biased artifically low until we have 538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 539 * from having to maintain a count. 540 */ 541 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 542 if (avg_len <= max_len) 543 return; 544 545 __report_avg = avg_len; 546 __report_allowed = max_len; 547 548 /* 549 * Compute a throttle threshold 25% below the current duration. 550 */ 551 avg_len += avg_len / 4; 552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 553 if (avg_len < max) 554 max /= (u32)avg_len; 555 else 556 max = 1; 557 558 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 559 WRITE_ONCE(max_samples_per_tick, max); 560 561 sysctl_perf_event_sample_rate = max * HZ; 562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 563 564 if (!irq_work_queue(&perf_duration_work)) { 565 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 566 "kernel.perf_event_max_sample_rate to %d\n", 567 __report_avg, __report_allowed, 568 sysctl_perf_event_sample_rate); 569 } 570 } 571 572 static atomic64_t perf_event_id; 573 574 static void update_context_time(struct perf_event_context *ctx); 575 static u64 perf_event_time(struct perf_event *event); 576 577 void __weak perf_event_print_debug(void) { } 578 579 static inline u64 perf_clock(void) 580 { 581 return local_clock(); 582 } 583 584 static inline u64 perf_event_clock(struct perf_event *event) 585 { 586 return event->clock(); 587 } 588 589 /* 590 * State based event timekeeping... 591 * 592 * The basic idea is to use event->state to determine which (if any) time 593 * fields to increment with the current delta. This means we only need to 594 * update timestamps when we change state or when they are explicitly requested 595 * (read). 596 * 597 * Event groups make things a little more complicated, but not terribly so. The 598 * rules for a group are that if the group leader is OFF the entire group is 599 * OFF, irrespecive of what the group member states are. This results in 600 * __perf_effective_state(). 601 * 602 * A futher ramification is that when a group leader flips between OFF and 603 * !OFF, we need to update all group member times. 604 * 605 * 606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 607 * need to make sure the relevant context time is updated before we try and 608 * update our timestamps. 609 */ 610 611 static __always_inline enum perf_event_state 612 __perf_effective_state(struct perf_event *event) 613 { 614 struct perf_event *leader = event->group_leader; 615 616 if (leader->state <= PERF_EVENT_STATE_OFF) 617 return leader->state; 618 619 return event->state; 620 } 621 622 static __always_inline void 623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 624 { 625 enum perf_event_state state = __perf_effective_state(event); 626 u64 delta = now - event->tstamp; 627 628 *enabled = event->total_time_enabled; 629 if (state >= PERF_EVENT_STATE_INACTIVE) 630 *enabled += delta; 631 632 *running = event->total_time_running; 633 if (state >= PERF_EVENT_STATE_ACTIVE) 634 *running += delta; 635 } 636 637 static void perf_event_update_time(struct perf_event *event) 638 { 639 u64 now = perf_event_time(event); 640 641 __perf_update_times(event, now, &event->total_time_enabled, 642 &event->total_time_running); 643 event->tstamp = now; 644 } 645 646 static void perf_event_update_sibling_time(struct perf_event *leader) 647 { 648 struct perf_event *sibling; 649 650 for_each_sibling_event(sibling, leader) 651 perf_event_update_time(sibling); 652 } 653 654 static void 655 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 656 { 657 if (event->state == state) 658 return; 659 660 perf_event_update_time(event); 661 /* 662 * If a group leader gets enabled/disabled all its siblings 663 * are affected too. 664 */ 665 if ((event->state < 0) ^ (state < 0)) 666 perf_event_update_sibling_time(event); 667 668 WRITE_ONCE(event->state, state); 669 } 670 671 /* 672 * UP store-release, load-acquire 673 */ 674 675 #define __store_release(ptr, val) \ 676 do { \ 677 barrier(); \ 678 WRITE_ONCE(*(ptr), (val)); \ 679 } while (0) 680 681 #define __load_acquire(ptr) \ 682 ({ \ 683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 684 barrier(); \ 685 ___p; \ 686 }) 687 688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 689 { 690 struct perf_event_pmu_context *pmu_ctx; 691 692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 693 if (cgroup && !pmu_ctx->nr_cgroups) 694 continue; 695 perf_pmu_disable(pmu_ctx->pmu); 696 } 697 } 698 699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 700 { 701 struct perf_event_pmu_context *pmu_ctx; 702 703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 704 if (cgroup && !pmu_ctx->nr_cgroups) 705 continue; 706 perf_pmu_enable(pmu_ctx->pmu); 707 } 708 } 709 710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 712 713 #ifdef CONFIG_CGROUP_PERF 714 715 static inline bool 716 perf_cgroup_match(struct perf_event *event) 717 { 718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 719 720 /* @event doesn't care about cgroup */ 721 if (!event->cgrp) 722 return true; 723 724 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 725 if (!cpuctx->cgrp) 726 return false; 727 728 /* 729 * Cgroup scoping is recursive. An event enabled for a cgroup is 730 * also enabled for all its descendant cgroups. If @cpuctx's 731 * cgroup is a descendant of @event's (the test covers identity 732 * case), it's a match. 733 */ 734 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 735 event->cgrp->css.cgroup); 736 } 737 738 static inline void perf_detach_cgroup(struct perf_event *event) 739 { 740 css_put(&event->cgrp->css); 741 event->cgrp = NULL; 742 } 743 744 static inline int is_cgroup_event(struct perf_event *event) 745 { 746 return event->cgrp != NULL; 747 } 748 749 static inline u64 perf_cgroup_event_time(struct perf_event *event) 750 { 751 struct perf_cgroup_info *t; 752 753 t = per_cpu_ptr(event->cgrp->info, event->cpu); 754 return t->time; 755 } 756 757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 758 { 759 struct perf_cgroup_info *t; 760 761 t = per_cpu_ptr(event->cgrp->info, event->cpu); 762 if (!__load_acquire(&t->active)) 763 return t->time; 764 now += READ_ONCE(t->timeoffset); 765 return now; 766 } 767 768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 769 { 770 if (adv) 771 info->time += now - info->timestamp; 772 info->timestamp = now; 773 /* 774 * see update_context_time() 775 */ 776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 777 } 778 779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 780 { 781 struct perf_cgroup *cgrp = cpuctx->cgrp; 782 struct cgroup_subsys_state *css; 783 struct perf_cgroup_info *info; 784 785 if (cgrp) { 786 u64 now = perf_clock(); 787 788 for (css = &cgrp->css; css; css = css->parent) { 789 cgrp = container_of(css, struct perf_cgroup, css); 790 info = this_cpu_ptr(cgrp->info); 791 792 __update_cgrp_time(info, now, true); 793 if (final) 794 __store_release(&info->active, 0); 795 } 796 } 797 } 798 799 static inline void update_cgrp_time_from_event(struct perf_event *event) 800 { 801 struct perf_cgroup_info *info; 802 803 /* 804 * ensure we access cgroup data only when needed and 805 * when we know the cgroup is pinned (css_get) 806 */ 807 if (!is_cgroup_event(event)) 808 return; 809 810 info = this_cpu_ptr(event->cgrp->info); 811 /* 812 * Do not update time when cgroup is not active 813 */ 814 if (info->active) 815 __update_cgrp_time(info, perf_clock(), true); 816 } 817 818 static inline void 819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 820 { 821 struct perf_event_context *ctx = &cpuctx->ctx; 822 struct perf_cgroup *cgrp = cpuctx->cgrp; 823 struct perf_cgroup_info *info; 824 struct cgroup_subsys_state *css; 825 826 /* 827 * ctx->lock held by caller 828 * ensure we do not access cgroup data 829 * unless we have the cgroup pinned (css_get) 830 */ 831 if (!cgrp) 832 return; 833 834 WARN_ON_ONCE(!ctx->nr_cgroups); 835 836 for (css = &cgrp->css; css; css = css->parent) { 837 cgrp = container_of(css, struct perf_cgroup, css); 838 info = this_cpu_ptr(cgrp->info); 839 __update_cgrp_time(info, ctx->timestamp, false); 840 __store_release(&info->active, 1); 841 } 842 } 843 844 /* 845 * reschedule events based on the cgroup constraint of task. 846 */ 847 static void perf_cgroup_switch(struct task_struct *task) 848 { 849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 850 struct perf_cgroup *cgrp; 851 852 /* 853 * cpuctx->cgrp is set when the first cgroup event enabled, 854 * and is cleared when the last cgroup event disabled. 855 */ 856 if (READ_ONCE(cpuctx->cgrp) == NULL) 857 return; 858 859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 860 861 cgrp = perf_cgroup_from_task(task, NULL); 862 if (READ_ONCE(cpuctx->cgrp) == cgrp) 863 return; 864 865 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 866 perf_ctx_disable(&cpuctx->ctx, true); 867 868 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 869 /* 870 * must not be done before ctxswout due 871 * to update_cgrp_time_from_cpuctx() in 872 * ctx_sched_out() 873 */ 874 cpuctx->cgrp = cgrp; 875 /* 876 * set cgrp before ctxsw in to allow 877 * perf_cgroup_set_timestamp() in ctx_sched_in() 878 * to not have to pass task around 879 */ 880 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 881 882 perf_ctx_enable(&cpuctx->ctx, true); 883 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 884 } 885 886 static int perf_cgroup_ensure_storage(struct perf_event *event, 887 struct cgroup_subsys_state *css) 888 { 889 struct perf_cpu_context *cpuctx; 890 struct perf_event **storage; 891 int cpu, heap_size, ret = 0; 892 893 /* 894 * Allow storage to have sufficent space for an iterator for each 895 * possibly nested cgroup plus an iterator for events with no cgroup. 896 */ 897 for (heap_size = 1; css; css = css->parent) 898 heap_size++; 899 900 for_each_possible_cpu(cpu) { 901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 902 if (heap_size <= cpuctx->heap_size) 903 continue; 904 905 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 906 GFP_KERNEL, cpu_to_node(cpu)); 907 if (!storage) { 908 ret = -ENOMEM; 909 break; 910 } 911 912 raw_spin_lock_irq(&cpuctx->ctx.lock); 913 if (cpuctx->heap_size < heap_size) { 914 swap(cpuctx->heap, storage); 915 if (storage == cpuctx->heap_default) 916 storage = NULL; 917 cpuctx->heap_size = heap_size; 918 } 919 raw_spin_unlock_irq(&cpuctx->ctx.lock); 920 921 kfree(storage); 922 } 923 924 return ret; 925 } 926 927 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 928 struct perf_event_attr *attr, 929 struct perf_event *group_leader) 930 { 931 struct perf_cgroup *cgrp; 932 struct cgroup_subsys_state *css; 933 struct fd f = fdget(fd); 934 int ret = 0; 935 936 if (!f.file) 937 return -EBADF; 938 939 css = css_tryget_online_from_dir(f.file->f_path.dentry, 940 &perf_event_cgrp_subsys); 941 if (IS_ERR(css)) { 942 ret = PTR_ERR(css); 943 goto out; 944 } 945 946 ret = perf_cgroup_ensure_storage(event, css); 947 if (ret) 948 goto out; 949 950 cgrp = container_of(css, struct perf_cgroup, css); 951 event->cgrp = cgrp; 952 953 /* 954 * all events in a group must monitor 955 * the same cgroup because a task belongs 956 * to only one perf cgroup at a time 957 */ 958 if (group_leader && group_leader->cgrp != cgrp) { 959 perf_detach_cgroup(event); 960 ret = -EINVAL; 961 } 962 out: 963 fdput(f); 964 return ret; 965 } 966 967 static inline void 968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 969 { 970 struct perf_cpu_context *cpuctx; 971 972 if (!is_cgroup_event(event)) 973 return; 974 975 event->pmu_ctx->nr_cgroups++; 976 977 /* 978 * Because cgroup events are always per-cpu events, 979 * @ctx == &cpuctx->ctx. 980 */ 981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 982 983 if (ctx->nr_cgroups++) 984 return; 985 986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 987 } 988 989 static inline void 990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 991 { 992 struct perf_cpu_context *cpuctx; 993 994 if (!is_cgroup_event(event)) 995 return; 996 997 event->pmu_ctx->nr_cgroups--; 998 999 /* 1000 * Because cgroup events are always per-cpu events, 1001 * @ctx == &cpuctx->ctx. 1002 */ 1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1004 1005 if (--ctx->nr_cgroups) 1006 return; 1007 1008 cpuctx->cgrp = NULL; 1009 } 1010 1011 #else /* !CONFIG_CGROUP_PERF */ 1012 1013 static inline bool 1014 perf_cgroup_match(struct perf_event *event) 1015 { 1016 return true; 1017 } 1018 1019 static inline void perf_detach_cgroup(struct perf_event *event) 1020 {} 1021 1022 static inline int is_cgroup_event(struct perf_event *event) 1023 { 1024 return 0; 1025 } 1026 1027 static inline void update_cgrp_time_from_event(struct perf_event *event) 1028 { 1029 } 1030 1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1032 bool final) 1033 { 1034 } 1035 1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1037 struct perf_event_attr *attr, 1038 struct perf_event *group_leader) 1039 { 1040 return -EINVAL; 1041 } 1042 1043 static inline void 1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1045 { 1046 } 1047 1048 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1049 { 1050 return 0; 1051 } 1052 1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1054 { 1055 return 0; 1056 } 1057 1058 static inline void 1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1060 { 1061 } 1062 1063 static inline void 1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1065 { 1066 } 1067 1068 static void perf_cgroup_switch(struct task_struct *task) 1069 { 1070 } 1071 #endif 1072 1073 /* 1074 * set default to be dependent on timer tick just 1075 * like original code 1076 */ 1077 #define PERF_CPU_HRTIMER (1000 / HZ) 1078 /* 1079 * function must be called with interrupts disabled 1080 */ 1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1082 { 1083 struct perf_cpu_pmu_context *cpc; 1084 bool rotations; 1085 1086 lockdep_assert_irqs_disabled(); 1087 1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1089 rotations = perf_rotate_context(cpc); 1090 1091 raw_spin_lock(&cpc->hrtimer_lock); 1092 if (rotations) 1093 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1094 else 1095 cpc->hrtimer_active = 0; 1096 raw_spin_unlock(&cpc->hrtimer_lock); 1097 1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1099 } 1100 1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1102 { 1103 struct hrtimer *timer = &cpc->hrtimer; 1104 struct pmu *pmu = cpc->epc.pmu; 1105 u64 interval; 1106 1107 /* 1108 * check default is sane, if not set then force to 1109 * default interval (1/tick) 1110 */ 1111 interval = pmu->hrtimer_interval_ms; 1112 if (interval < 1) 1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1114 1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1116 1117 raw_spin_lock_init(&cpc->hrtimer_lock); 1118 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1119 timer->function = perf_mux_hrtimer_handler; 1120 } 1121 1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1123 { 1124 struct hrtimer *timer = &cpc->hrtimer; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1128 if (!cpc->hrtimer_active) { 1129 cpc->hrtimer_active = 1; 1130 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1131 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1132 } 1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1134 1135 return 0; 1136 } 1137 1138 static int perf_mux_hrtimer_restart_ipi(void *arg) 1139 { 1140 return perf_mux_hrtimer_restart(arg); 1141 } 1142 1143 void perf_pmu_disable(struct pmu *pmu) 1144 { 1145 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1146 if (!(*count)++) 1147 pmu->pmu_disable(pmu); 1148 } 1149 1150 void perf_pmu_enable(struct pmu *pmu) 1151 { 1152 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1153 if (!--(*count)) 1154 pmu->pmu_enable(pmu); 1155 } 1156 1157 static void perf_assert_pmu_disabled(struct pmu *pmu) 1158 { 1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1160 } 1161 1162 static void get_ctx(struct perf_event_context *ctx) 1163 { 1164 refcount_inc(&ctx->refcount); 1165 } 1166 1167 static void *alloc_task_ctx_data(struct pmu *pmu) 1168 { 1169 if (pmu->task_ctx_cache) 1170 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1171 1172 return NULL; 1173 } 1174 1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1176 { 1177 if (pmu->task_ctx_cache && task_ctx_data) 1178 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1179 } 1180 1181 static void free_ctx(struct rcu_head *head) 1182 { 1183 struct perf_event_context *ctx; 1184 1185 ctx = container_of(head, struct perf_event_context, rcu_head); 1186 kfree(ctx); 1187 } 1188 1189 static void put_ctx(struct perf_event_context *ctx) 1190 { 1191 if (refcount_dec_and_test(&ctx->refcount)) { 1192 if (ctx->parent_ctx) 1193 put_ctx(ctx->parent_ctx); 1194 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1195 put_task_struct(ctx->task); 1196 call_rcu(&ctx->rcu_head, free_ctx); 1197 } 1198 } 1199 1200 /* 1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1202 * perf_pmu_migrate_context() we need some magic. 1203 * 1204 * Those places that change perf_event::ctx will hold both 1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1206 * 1207 * Lock ordering is by mutex address. There are two other sites where 1208 * perf_event_context::mutex nests and those are: 1209 * 1210 * - perf_event_exit_task_context() [ child , 0 ] 1211 * perf_event_exit_event() 1212 * put_event() [ parent, 1 ] 1213 * 1214 * - perf_event_init_context() [ parent, 0 ] 1215 * inherit_task_group() 1216 * inherit_group() 1217 * inherit_event() 1218 * perf_event_alloc() 1219 * perf_init_event() 1220 * perf_try_init_event() [ child , 1 ] 1221 * 1222 * While it appears there is an obvious deadlock here -- the parent and child 1223 * nesting levels are inverted between the two. This is in fact safe because 1224 * life-time rules separate them. That is an exiting task cannot fork, and a 1225 * spawning task cannot (yet) exit. 1226 * 1227 * But remember that these are parent<->child context relations, and 1228 * migration does not affect children, therefore these two orderings should not 1229 * interact. 1230 * 1231 * The change in perf_event::ctx does not affect children (as claimed above) 1232 * because the sys_perf_event_open() case will install a new event and break 1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1234 * concerned with cpuctx and that doesn't have children. 1235 * 1236 * The places that change perf_event::ctx will issue: 1237 * 1238 * perf_remove_from_context(); 1239 * synchronize_rcu(); 1240 * perf_install_in_context(); 1241 * 1242 * to affect the change. The remove_from_context() + synchronize_rcu() should 1243 * quiesce the event, after which we can install it in the new location. This 1244 * means that only external vectors (perf_fops, prctl) can perturb the event 1245 * while in transit. Therefore all such accessors should also acquire 1246 * perf_event_context::mutex to serialize against this. 1247 * 1248 * However; because event->ctx can change while we're waiting to acquire 1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1250 * function. 1251 * 1252 * Lock order: 1253 * exec_update_lock 1254 * task_struct::perf_event_mutex 1255 * perf_event_context::mutex 1256 * perf_event::child_mutex; 1257 * perf_event_context::lock 1258 * perf_event::mmap_mutex 1259 * mmap_lock 1260 * perf_addr_filters_head::lock 1261 * 1262 * cpu_hotplug_lock 1263 * pmus_lock 1264 * cpuctx->mutex / perf_event_context::mutex 1265 */ 1266 static struct perf_event_context * 1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1268 { 1269 struct perf_event_context *ctx; 1270 1271 again: 1272 rcu_read_lock(); 1273 ctx = READ_ONCE(event->ctx); 1274 if (!refcount_inc_not_zero(&ctx->refcount)) { 1275 rcu_read_unlock(); 1276 goto again; 1277 } 1278 rcu_read_unlock(); 1279 1280 mutex_lock_nested(&ctx->mutex, nesting); 1281 if (event->ctx != ctx) { 1282 mutex_unlock(&ctx->mutex); 1283 put_ctx(ctx); 1284 goto again; 1285 } 1286 1287 return ctx; 1288 } 1289 1290 static inline struct perf_event_context * 1291 perf_event_ctx_lock(struct perf_event *event) 1292 { 1293 return perf_event_ctx_lock_nested(event, 0); 1294 } 1295 1296 static void perf_event_ctx_unlock(struct perf_event *event, 1297 struct perf_event_context *ctx) 1298 { 1299 mutex_unlock(&ctx->mutex); 1300 put_ctx(ctx); 1301 } 1302 1303 /* 1304 * This must be done under the ctx->lock, such as to serialize against 1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1306 * calling scheduler related locks and ctx->lock nests inside those. 1307 */ 1308 static __must_check struct perf_event_context * 1309 unclone_ctx(struct perf_event_context *ctx) 1310 { 1311 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1312 1313 lockdep_assert_held(&ctx->lock); 1314 1315 if (parent_ctx) 1316 ctx->parent_ctx = NULL; 1317 ctx->generation++; 1318 1319 return parent_ctx; 1320 } 1321 1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1323 enum pid_type type) 1324 { 1325 u32 nr; 1326 /* 1327 * only top level events have the pid namespace they were created in 1328 */ 1329 if (event->parent) 1330 event = event->parent; 1331 1332 nr = __task_pid_nr_ns(p, type, event->ns); 1333 /* avoid -1 if it is idle thread or runs in another ns */ 1334 if (!nr && !pid_alive(p)) 1335 nr = -1; 1336 return nr; 1337 } 1338 1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1340 { 1341 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1342 } 1343 1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_PID); 1347 } 1348 1349 /* 1350 * If we inherit events we want to return the parent event id 1351 * to userspace. 1352 */ 1353 static u64 primary_event_id(struct perf_event *event) 1354 { 1355 u64 id = event->id; 1356 1357 if (event->parent) 1358 id = event->parent->id; 1359 1360 return id; 1361 } 1362 1363 /* 1364 * Get the perf_event_context for a task and lock it. 1365 * 1366 * This has to cope with the fact that until it is locked, 1367 * the context could get moved to another task. 1368 */ 1369 static struct perf_event_context * 1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1371 { 1372 struct perf_event_context *ctx; 1373 1374 retry: 1375 /* 1376 * One of the few rules of preemptible RCU is that one cannot do 1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1378 * part of the read side critical section was irqs-enabled -- see 1379 * rcu_read_unlock_special(). 1380 * 1381 * Since ctx->lock nests under rq->lock we must ensure the entire read 1382 * side critical section has interrupts disabled. 1383 */ 1384 local_irq_save(*flags); 1385 rcu_read_lock(); 1386 ctx = rcu_dereference(task->perf_event_ctxp); 1387 if (ctx) { 1388 /* 1389 * If this context is a clone of another, it might 1390 * get swapped for another underneath us by 1391 * perf_event_task_sched_out, though the 1392 * rcu_read_lock() protects us from any context 1393 * getting freed. Lock the context and check if it 1394 * got swapped before we could get the lock, and retry 1395 * if so. If we locked the right context, then it 1396 * can't get swapped on us any more. 1397 */ 1398 raw_spin_lock(&ctx->lock); 1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1400 raw_spin_unlock(&ctx->lock); 1401 rcu_read_unlock(); 1402 local_irq_restore(*flags); 1403 goto retry; 1404 } 1405 1406 if (ctx->task == TASK_TOMBSTONE || 1407 !refcount_inc_not_zero(&ctx->refcount)) { 1408 raw_spin_unlock(&ctx->lock); 1409 ctx = NULL; 1410 } else { 1411 WARN_ON_ONCE(ctx->task != task); 1412 } 1413 } 1414 rcu_read_unlock(); 1415 if (!ctx) 1416 local_irq_restore(*flags); 1417 return ctx; 1418 } 1419 1420 /* 1421 * Get the context for a task and increment its pin_count so it 1422 * can't get swapped to another task. This also increments its 1423 * reference count so that the context can't get freed. 1424 */ 1425 static struct perf_event_context * 1426 perf_pin_task_context(struct task_struct *task) 1427 { 1428 struct perf_event_context *ctx; 1429 unsigned long flags; 1430 1431 ctx = perf_lock_task_context(task, &flags); 1432 if (ctx) { 1433 ++ctx->pin_count; 1434 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1435 } 1436 return ctx; 1437 } 1438 1439 static void perf_unpin_context(struct perf_event_context *ctx) 1440 { 1441 unsigned long flags; 1442 1443 raw_spin_lock_irqsave(&ctx->lock, flags); 1444 --ctx->pin_count; 1445 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1446 } 1447 1448 /* 1449 * Update the record of the current time in a context. 1450 */ 1451 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1452 { 1453 u64 now = perf_clock(); 1454 1455 lockdep_assert_held(&ctx->lock); 1456 1457 if (adv) 1458 ctx->time += now - ctx->timestamp; 1459 ctx->timestamp = now; 1460 1461 /* 1462 * The above: time' = time + (now - timestamp), can be re-arranged 1463 * into: time` = now + (time - timestamp), which gives a single value 1464 * offset to compute future time without locks on. 1465 * 1466 * See perf_event_time_now(), which can be used from NMI context where 1467 * it's (obviously) not possible to acquire ctx->lock in order to read 1468 * both the above values in a consistent manner. 1469 */ 1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1471 } 1472 1473 static void update_context_time(struct perf_event_context *ctx) 1474 { 1475 __update_context_time(ctx, true); 1476 } 1477 1478 static u64 perf_event_time(struct perf_event *event) 1479 { 1480 struct perf_event_context *ctx = event->ctx; 1481 1482 if (unlikely(!ctx)) 1483 return 0; 1484 1485 if (is_cgroup_event(event)) 1486 return perf_cgroup_event_time(event); 1487 1488 return ctx->time; 1489 } 1490 1491 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1492 { 1493 struct perf_event_context *ctx = event->ctx; 1494 1495 if (unlikely(!ctx)) 1496 return 0; 1497 1498 if (is_cgroup_event(event)) 1499 return perf_cgroup_event_time_now(event, now); 1500 1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1502 return ctx->time; 1503 1504 now += READ_ONCE(ctx->timeoffset); 1505 return now; 1506 } 1507 1508 static enum event_type_t get_event_type(struct perf_event *event) 1509 { 1510 struct perf_event_context *ctx = event->ctx; 1511 enum event_type_t event_type; 1512 1513 lockdep_assert_held(&ctx->lock); 1514 1515 /* 1516 * It's 'group type', really, because if our group leader is 1517 * pinned, so are we. 1518 */ 1519 if (event->group_leader != event) 1520 event = event->group_leader; 1521 1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1523 if (!ctx->task) 1524 event_type |= EVENT_CPU; 1525 1526 return event_type; 1527 } 1528 1529 /* 1530 * Helper function to initialize event group nodes. 1531 */ 1532 static void init_event_group(struct perf_event *event) 1533 { 1534 RB_CLEAR_NODE(&event->group_node); 1535 event->group_index = 0; 1536 } 1537 1538 /* 1539 * Extract pinned or flexible groups from the context 1540 * based on event attrs bits. 1541 */ 1542 static struct perf_event_groups * 1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1544 { 1545 if (event->attr.pinned) 1546 return &ctx->pinned_groups; 1547 else 1548 return &ctx->flexible_groups; 1549 } 1550 1551 /* 1552 * Helper function to initializes perf_event_group trees. 1553 */ 1554 static void perf_event_groups_init(struct perf_event_groups *groups) 1555 { 1556 groups->tree = RB_ROOT; 1557 groups->index = 0; 1558 } 1559 1560 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1561 { 1562 struct cgroup *cgroup = NULL; 1563 1564 #ifdef CONFIG_CGROUP_PERF 1565 if (event->cgrp) 1566 cgroup = event->cgrp->css.cgroup; 1567 #endif 1568 1569 return cgroup; 1570 } 1571 1572 /* 1573 * Compare function for event groups; 1574 * 1575 * Implements complex key that first sorts by CPU and then by virtual index 1576 * which provides ordering when rotating groups for the same CPU. 1577 */ 1578 static __always_inline int 1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1580 const struct cgroup *left_cgroup, const u64 left_group_index, 1581 const struct perf_event *right) 1582 { 1583 if (left_cpu < right->cpu) 1584 return -1; 1585 if (left_cpu > right->cpu) 1586 return 1; 1587 1588 if (left_pmu) { 1589 if (left_pmu < right->pmu_ctx->pmu) 1590 return -1; 1591 if (left_pmu > right->pmu_ctx->pmu) 1592 return 1; 1593 } 1594 1595 #ifdef CONFIG_CGROUP_PERF 1596 { 1597 const struct cgroup *right_cgroup = event_cgroup(right); 1598 1599 if (left_cgroup != right_cgroup) { 1600 if (!left_cgroup) { 1601 /* 1602 * Left has no cgroup but right does, no 1603 * cgroups come first. 1604 */ 1605 return -1; 1606 } 1607 if (!right_cgroup) { 1608 /* 1609 * Right has no cgroup but left does, no 1610 * cgroups come first. 1611 */ 1612 return 1; 1613 } 1614 /* Two dissimilar cgroups, order by id. */ 1615 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1616 return -1; 1617 1618 return 1; 1619 } 1620 } 1621 #endif 1622 1623 if (left_group_index < right->group_index) 1624 return -1; 1625 if (left_group_index > right->group_index) 1626 return 1; 1627 1628 return 0; 1629 } 1630 1631 #define __node_2_pe(node) \ 1632 rb_entry((node), struct perf_event, group_node) 1633 1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1635 { 1636 struct perf_event *e = __node_2_pe(a); 1637 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1638 e->group_index, __node_2_pe(b)) < 0; 1639 } 1640 1641 struct __group_key { 1642 int cpu; 1643 struct pmu *pmu; 1644 struct cgroup *cgroup; 1645 }; 1646 1647 static inline int __group_cmp(const void *key, const struct rb_node *node) 1648 { 1649 const struct __group_key *a = key; 1650 const struct perf_event *b = __node_2_pe(node); 1651 1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1653 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1654 } 1655 1656 static inline int 1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1658 { 1659 const struct __group_key *a = key; 1660 const struct perf_event *b = __node_2_pe(node); 1661 1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1663 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1664 b->group_index, b); 1665 } 1666 1667 /* 1668 * Insert @event into @groups' tree; using 1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1671 */ 1672 static void 1673 perf_event_groups_insert(struct perf_event_groups *groups, 1674 struct perf_event *event) 1675 { 1676 event->group_index = ++groups->index; 1677 1678 rb_add(&event->group_node, &groups->tree, __group_less); 1679 } 1680 1681 /* 1682 * Helper function to insert event into the pinned or flexible groups. 1683 */ 1684 static void 1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1686 { 1687 struct perf_event_groups *groups; 1688 1689 groups = get_event_groups(event, ctx); 1690 perf_event_groups_insert(groups, event); 1691 } 1692 1693 /* 1694 * Delete a group from a tree. 1695 */ 1696 static void 1697 perf_event_groups_delete(struct perf_event_groups *groups, 1698 struct perf_event *event) 1699 { 1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1701 RB_EMPTY_ROOT(&groups->tree)); 1702 1703 rb_erase(&event->group_node, &groups->tree); 1704 init_event_group(event); 1705 } 1706 1707 /* 1708 * Helper function to delete event from its groups. 1709 */ 1710 static void 1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1712 { 1713 struct perf_event_groups *groups; 1714 1715 groups = get_event_groups(event, ctx); 1716 perf_event_groups_delete(groups, event); 1717 } 1718 1719 /* 1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1721 */ 1722 static struct perf_event * 1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1724 struct pmu *pmu, struct cgroup *cgrp) 1725 { 1726 struct __group_key key = { 1727 .cpu = cpu, 1728 .pmu = pmu, 1729 .cgroup = cgrp, 1730 }; 1731 struct rb_node *node; 1732 1733 node = rb_find_first(&key, &groups->tree, __group_cmp); 1734 if (node) 1735 return __node_2_pe(node); 1736 1737 return NULL; 1738 } 1739 1740 static struct perf_event * 1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1742 { 1743 struct __group_key key = { 1744 .cpu = event->cpu, 1745 .pmu = pmu, 1746 .cgroup = event_cgroup(event), 1747 }; 1748 struct rb_node *next; 1749 1750 next = rb_next_match(&key, &event->group_node, __group_cmp); 1751 if (next) 1752 return __node_2_pe(next); 1753 1754 return NULL; 1755 } 1756 1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1759 event; event = perf_event_groups_next(event, pmu)) 1760 1761 /* 1762 * Iterate through the whole groups tree. 1763 */ 1764 #define perf_event_groups_for_each(event, groups) \ 1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1766 typeof(*event), group_node); event; \ 1767 event = rb_entry_safe(rb_next(&event->group_node), \ 1768 typeof(*event), group_node)) 1769 1770 /* 1771 * Add an event from the lists for its context. 1772 * Must be called with ctx->mutex and ctx->lock held. 1773 */ 1774 static void 1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1776 { 1777 lockdep_assert_held(&ctx->lock); 1778 1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1780 event->attach_state |= PERF_ATTACH_CONTEXT; 1781 1782 event->tstamp = perf_event_time(event); 1783 1784 /* 1785 * If we're a stand alone event or group leader, we go to the context 1786 * list, group events are kept attached to the group so that 1787 * perf_group_detach can, at all times, locate all siblings. 1788 */ 1789 if (event->group_leader == event) { 1790 event->group_caps = event->event_caps; 1791 add_event_to_groups(event, ctx); 1792 } 1793 1794 list_add_rcu(&event->event_entry, &ctx->event_list); 1795 ctx->nr_events++; 1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1797 ctx->nr_user++; 1798 if (event->attr.inherit_stat) 1799 ctx->nr_stat++; 1800 1801 if (event->state > PERF_EVENT_STATE_OFF) 1802 perf_cgroup_event_enable(event, ctx); 1803 1804 ctx->generation++; 1805 event->pmu_ctx->nr_events++; 1806 } 1807 1808 /* 1809 * Initialize event state based on the perf_event_attr::disabled. 1810 */ 1811 static inline void perf_event__state_init(struct perf_event *event) 1812 { 1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1814 PERF_EVENT_STATE_INACTIVE; 1815 } 1816 1817 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1818 { 1819 int entry = sizeof(u64); /* value */ 1820 int size = 0; 1821 int nr = 1; 1822 1823 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1824 size += sizeof(u64); 1825 1826 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1827 size += sizeof(u64); 1828 1829 if (event->attr.read_format & PERF_FORMAT_ID) 1830 entry += sizeof(u64); 1831 1832 if (event->attr.read_format & PERF_FORMAT_LOST) 1833 entry += sizeof(u64); 1834 1835 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1836 nr += nr_siblings; 1837 size += sizeof(u64); 1838 } 1839 1840 size += entry * nr; 1841 event->read_size = size; 1842 } 1843 1844 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1845 { 1846 struct perf_sample_data *data; 1847 u16 size = 0; 1848 1849 if (sample_type & PERF_SAMPLE_IP) 1850 size += sizeof(data->ip); 1851 1852 if (sample_type & PERF_SAMPLE_ADDR) 1853 size += sizeof(data->addr); 1854 1855 if (sample_type & PERF_SAMPLE_PERIOD) 1856 size += sizeof(data->period); 1857 1858 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1859 size += sizeof(data->weight.full); 1860 1861 if (sample_type & PERF_SAMPLE_READ) 1862 size += event->read_size; 1863 1864 if (sample_type & PERF_SAMPLE_DATA_SRC) 1865 size += sizeof(data->data_src.val); 1866 1867 if (sample_type & PERF_SAMPLE_TRANSACTION) 1868 size += sizeof(data->txn); 1869 1870 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1871 size += sizeof(data->phys_addr); 1872 1873 if (sample_type & PERF_SAMPLE_CGROUP) 1874 size += sizeof(data->cgroup); 1875 1876 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1877 size += sizeof(data->data_page_size); 1878 1879 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1880 size += sizeof(data->code_page_size); 1881 1882 event->header_size = size; 1883 } 1884 1885 /* 1886 * Called at perf_event creation and when events are attached/detached from a 1887 * group. 1888 */ 1889 static void perf_event__header_size(struct perf_event *event) 1890 { 1891 __perf_event_read_size(event, 1892 event->group_leader->nr_siblings); 1893 __perf_event_header_size(event, event->attr.sample_type); 1894 } 1895 1896 static void perf_event__id_header_size(struct perf_event *event) 1897 { 1898 struct perf_sample_data *data; 1899 u64 sample_type = event->attr.sample_type; 1900 u16 size = 0; 1901 1902 if (sample_type & PERF_SAMPLE_TID) 1903 size += sizeof(data->tid_entry); 1904 1905 if (sample_type & PERF_SAMPLE_TIME) 1906 size += sizeof(data->time); 1907 1908 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1909 size += sizeof(data->id); 1910 1911 if (sample_type & PERF_SAMPLE_ID) 1912 size += sizeof(data->id); 1913 1914 if (sample_type & PERF_SAMPLE_STREAM_ID) 1915 size += sizeof(data->stream_id); 1916 1917 if (sample_type & PERF_SAMPLE_CPU) 1918 size += sizeof(data->cpu_entry); 1919 1920 event->id_header_size = size; 1921 } 1922 1923 static bool perf_event_validate_size(struct perf_event *event) 1924 { 1925 /* 1926 * The values computed here will be over-written when we actually 1927 * attach the event. 1928 */ 1929 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1930 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1931 perf_event__id_header_size(event); 1932 1933 /* 1934 * Sum the lot; should not exceed the 64k limit we have on records. 1935 * Conservative limit to allow for callchains and other variable fields. 1936 */ 1937 if (event->read_size + event->header_size + 1938 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1939 return false; 1940 1941 return true; 1942 } 1943 1944 static void perf_group_attach(struct perf_event *event) 1945 { 1946 struct perf_event *group_leader = event->group_leader, *pos; 1947 1948 lockdep_assert_held(&event->ctx->lock); 1949 1950 /* 1951 * We can have double attach due to group movement (move_group) in 1952 * perf_event_open(). 1953 */ 1954 if (event->attach_state & PERF_ATTACH_GROUP) 1955 return; 1956 1957 event->attach_state |= PERF_ATTACH_GROUP; 1958 1959 if (group_leader == event) 1960 return; 1961 1962 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1963 1964 group_leader->group_caps &= event->event_caps; 1965 1966 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1967 group_leader->nr_siblings++; 1968 group_leader->group_generation++; 1969 1970 perf_event__header_size(group_leader); 1971 1972 for_each_sibling_event(pos, group_leader) 1973 perf_event__header_size(pos); 1974 } 1975 1976 /* 1977 * Remove an event from the lists for its context. 1978 * Must be called with ctx->mutex and ctx->lock held. 1979 */ 1980 static void 1981 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1982 { 1983 WARN_ON_ONCE(event->ctx != ctx); 1984 lockdep_assert_held(&ctx->lock); 1985 1986 /* 1987 * We can have double detach due to exit/hot-unplug + close. 1988 */ 1989 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1990 return; 1991 1992 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1993 1994 ctx->nr_events--; 1995 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1996 ctx->nr_user--; 1997 if (event->attr.inherit_stat) 1998 ctx->nr_stat--; 1999 2000 list_del_rcu(&event->event_entry); 2001 2002 if (event->group_leader == event) 2003 del_event_from_groups(event, ctx); 2004 2005 /* 2006 * If event was in error state, then keep it 2007 * that way, otherwise bogus counts will be 2008 * returned on read(). The only way to get out 2009 * of error state is by explicit re-enabling 2010 * of the event 2011 */ 2012 if (event->state > PERF_EVENT_STATE_OFF) { 2013 perf_cgroup_event_disable(event, ctx); 2014 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2015 } 2016 2017 ctx->generation++; 2018 event->pmu_ctx->nr_events--; 2019 } 2020 2021 static int 2022 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2023 { 2024 if (!has_aux(aux_event)) 2025 return 0; 2026 2027 if (!event->pmu->aux_output_match) 2028 return 0; 2029 2030 return event->pmu->aux_output_match(aux_event); 2031 } 2032 2033 static void put_event(struct perf_event *event); 2034 static void event_sched_out(struct perf_event *event, 2035 struct perf_event_context *ctx); 2036 2037 static void perf_put_aux_event(struct perf_event *event) 2038 { 2039 struct perf_event_context *ctx = event->ctx; 2040 struct perf_event *iter; 2041 2042 /* 2043 * If event uses aux_event tear down the link 2044 */ 2045 if (event->aux_event) { 2046 iter = event->aux_event; 2047 event->aux_event = NULL; 2048 put_event(iter); 2049 return; 2050 } 2051 2052 /* 2053 * If the event is an aux_event, tear down all links to 2054 * it from other events. 2055 */ 2056 for_each_sibling_event(iter, event->group_leader) { 2057 if (iter->aux_event != event) 2058 continue; 2059 2060 iter->aux_event = NULL; 2061 put_event(event); 2062 2063 /* 2064 * If it's ACTIVE, schedule it out and put it into ERROR 2065 * state so that we don't try to schedule it again. Note 2066 * that perf_event_enable() will clear the ERROR status. 2067 */ 2068 event_sched_out(iter, ctx); 2069 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2070 } 2071 } 2072 2073 static bool perf_need_aux_event(struct perf_event *event) 2074 { 2075 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2076 } 2077 2078 static int perf_get_aux_event(struct perf_event *event, 2079 struct perf_event *group_leader) 2080 { 2081 /* 2082 * Our group leader must be an aux event if we want to be 2083 * an aux_output. This way, the aux event will precede its 2084 * aux_output events in the group, and therefore will always 2085 * schedule first. 2086 */ 2087 if (!group_leader) 2088 return 0; 2089 2090 /* 2091 * aux_output and aux_sample_size are mutually exclusive. 2092 */ 2093 if (event->attr.aux_output && event->attr.aux_sample_size) 2094 return 0; 2095 2096 if (event->attr.aux_output && 2097 !perf_aux_output_match(event, group_leader)) 2098 return 0; 2099 2100 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2101 return 0; 2102 2103 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2104 return 0; 2105 2106 /* 2107 * Link aux_outputs to their aux event; this is undone in 2108 * perf_group_detach() by perf_put_aux_event(). When the 2109 * group in torn down, the aux_output events loose their 2110 * link to the aux_event and can't schedule any more. 2111 */ 2112 event->aux_event = group_leader; 2113 2114 return 1; 2115 } 2116 2117 static inline struct list_head *get_event_list(struct perf_event *event) 2118 { 2119 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2120 &event->pmu_ctx->flexible_active; 2121 } 2122 2123 /* 2124 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2125 * cannot exist on their own, schedule them out and move them into the ERROR 2126 * state. Also see _perf_event_enable(), it will not be able to recover 2127 * this ERROR state. 2128 */ 2129 static inline void perf_remove_sibling_event(struct perf_event *event) 2130 { 2131 event_sched_out(event, event->ctx); 2132 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2133 } 2134 2135 static void perf_group_detach(struct perf_event *event) 2136 { 2137 struct perf_event *leader = event->group_leader; 2138 struct perf_event *sibling, *tmp; 2139 struct perf_event_context *ctx = event->ctx; 2140 2141 lockdep_assert_held(&ctx->lock); 2142 2143 /* 2144 * We can have double detach due to exit/hot-unplug + close. 2145 */ 2146 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2147 return; 2148 2149 event->attach_state &= ~PERF_ATTACH_GROUP; 2150 2151 perf_put_aux_event(event); 2152 2153 /* 2154 * If this is a sibling, remove it from its group. 2155 */ 2156 if (leader != event) { 2157 list_del_init(&event->sibling_list); 2158 event->group_leader->nr_siblings--; 2159 event->group_leader->group_generation++; 2160 goto out; 2161 } 2162 2163 /* 2164 * If this was a group event with sibling events then 2165 * upgrade the siblings to singleton events by adding them 2166 * to whatever list we are on. 2167 */ 2168 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2169 2170 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2171 perf_remove_sibling_event(sibling); 2172 2173 sibling->group_leader = sibling; 2174 list_del_init(&sibling->sibling_list); 2175 2176 /* Inherit group flags from the previous leader */ 2177 sibling->group_caps = event->group_caps; 2178 2179 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2180 add_event_to_groups(sibling, event->ctx); 2181 2182 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2183 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2184 } 2185 2186 WARN_ON_ONCE(sibling->ctx != event->ctx); 2187 } 2188 2189 out: 2190 for_each_sibling_event(tmp, leader) 2191 perf_event__header_size(tmp); 2192 2193 perf_event__header_size(leader); 2194 } 2195 2196 static void sync_child_event(struct perf_event *child_event); 2197 2198 static void perf_child_detach(struct perf_event *event) 2199 { 2200 struct perf_event *parent_event = event->parent; 2201 2202 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2203 return; 2204 2205 event->attach_state &= ~PERF_ATTACH_CHILD; 2206 2207 if (WARN_ON_ONCE(!parent_event)) 2208 return; 2209 2210 lockdep_assert_held(&parent_event->child_mutex); 2211 2212 sync_child_event(event); 2213 list_del_init(&event->child_list); 2214 } 2215 2216 static bool is_orphaned_event(struct perf_event *event) 2217 { 2218 return event->state == PERF_EVENT_STATE_DEAD; 2219 } 2220 2221 static inline int 2222 event_filter_match(struct perf_event *event) 2223 { 2224 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2225 perf_cgroup_match(event); 2226 } 2227 2228 static void 2229 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2230 { 2231 struct perf_event_pmu_context *epc = event->pmu_ctx; 2232 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2233 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2234 2235 // XXX cpc serialization, probably per-cpu IRQ disabled 2236 2237 WARN_ON_ONCE(event->ctx != ctx); 2238 lockdep_assert_held(&ctx->lock); 2239 2240 if (event->state != PERF_EVENT_STATE_ACTIVE) 2241 return; 2242 2243 /* 2244 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2245 * we can schedule events _OUT_ individually through things like 2246 * __perf_remove_from_context(). 2247 */ 2248 list_del_init(&event->active_list); 2249 2250 perf_pmu_disable(event->pmu); 2251 2252 event->pmu->del(event, 0); 2253 event->oncpu = -1; 2254 2255 if (event->pending_disable) { 2256 event->pending_disable = 0; 2257 perf_cgroup_event_disable(event, ctx); 2258 state = PERF_EVENT_STATE_OFF; 2259 } 2260 2261 if (event->pending_sigtrap) { 2262 bool dec = true; 2263 2264 event->pending_sigtrap = 0; 2265 if (state != PERF_EVENT_STATE_OFF && 2266 !event->pending_work) { 2267 event->pending_work = 1; 2268 dec = false; 2269 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount)); 2270 task_work_add(current, &event->pending_task, TWA_RESUME); 2271 } 2272 if (dec) 2273 local_dec(&event->ctx->nr_pending); 2274 } 2275 2276 perf_event_set_state(event, state); 2277 2278 if (!is_software_event(event)) 2279 cpc->active_oncpu--; 2280 if (event->attr.freq && event->attr.sample_freq) 2281 ctx->nr_freq--; 2282 if (event->attr.exclusive || !cpc->active_oncpu) 2283 cpc->exclusive = 0; 2284 2285 perf_pmu_enable(event->pmu); 2286 } 2287 2288 static void 2289 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2290 { 2291 struct perf_event *event; 2292 2293 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2294 return; 2295 2296 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2297 2298 event_sched_out(group_event, ctx); 2299 2300 /* 2301 * Schedule out siblings (if any): 2302 */ 2303 for_each_sibling_event(event, group_event) 2304 event_sched_out(event, ctx); 2305 } 2306 2307 #define DETACH_GROUP 0x01UL 2308 #define DETACH_CHILD 0x02UL 2309 #define DETACH_DEAD 0x04UL 2310 2311 /* 2312 * Cross CPU call to remove a performance event 2313 * 2314 * We disable the event on the hardware level first. After that we 2315 * remove it from the context list. 2316 */ 2317 static void 2318 __perf_remove_from_context(struct perf_event *event, 2319 struct perf_cpu_context *cpuctx, 2320 struct perf_event_context *ctx, 2321 void *info) 2322 { 2323 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2324 unsigned long flags = (unsigned long)info; 2325 2326 if (ctx->is_active & EVENT_TIME) { 2327 update_context_time(ctx); 2328 update_cgrp_time_from_cpuctx(cpuctx, false); 2329 } 2330 2331 /* 2332 * Ensure event_sched_out() switches to OFF, at the very least 2333 * this avoids raising perf_pending_task() at this time. 2334 */ 2335 if (flags & DETACH_DEAD) 2336 event->pending_disable = 1; 2337 event_sched_out(event, ctx); 2338 if (flags & DETACH_GROUP) 2339 perf_group_detach(event); 2340 if (flags & DETACH_CHILD) 2341 perf_child_detach(event); 2342 list_del_event(event, ctx); 2343 if (flags & DETACH_DEAD) 2344 event->state = PERF_EVENT_STATE_DEAD; 2345 2346 if (!pmu_ctx->nr_events) { 2347 pmu_ctx->rotate_necessary = 0; 2348 2349 if (ctx->task && ctx->is_active) { 2350 struct perf_cpu_pmu_context *cpc; 2351 2352 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2353 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2354 cpc->task_epc = NULL; 2355 } 2356 } 2357 2358 if (!ctx->nr_events && ctx->is_active) { 2359 if (ctx == &cpuctx->ctx) 2360 update_cgrp_time_from_cpuctx(cpuctx, true); 2361 2362 ctx->is_active = 0; 2363 if (ctx->task) { 2364 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2365 cpuctx->task_ctx = NULL; 2366 } 2367 } 2368 } 2369 2370 /* 2371 * Remove the event from a task's (or a CPU's) list of events. 2372 * 2373 * If event->ctx is a cloned context, callers must make sure that 2374 * every task struct that event->ctx->task could possibly point to 2375 * remains valid. This is OK when called from perf_release since 2376 * that only calls us on the top-level context, which can't be a clone. 2377 * When called from perf_event_exit_task, it's OK because the 2378 * context has been detached from its task. 2379 */ 2380 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2381 { 2382 struct perf_event_context *ctx = event->ctx; 2383 2384 lockdep_assert_held(&ctx->mutex); 2385 2386 /* 2387 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2388 * to work in the face of TASK_TOMBSTONE, unlike every other 2389 * event_function_call() user. 2390 */ 2391 raw_spin_lock_irq(&ctx->lock); 2392 if (!ctx->is_active) { 2393 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2394 ctx, (void *)flags); 2395 raw_spin_unlock_irq(&ctx->lock); 2396 return; 2397 } 2398 raw_spin_unlock_irq(&ctx->lock); 2399 2400 event_function_call(event, __perf_remove_from_context, (void *)flags); 2401 } 2402 2403 /* 2404 * Cross CPU call to disable a performance event 2405 */ 2406 static void __perf_event_disable(struct perf_event *event, 2407 struct perf_cpu_context *cpuctx, 2408 struct perf_event_context *ctx, 2409 void *info) 2410 { 2411 if (event->state < PERF_EVENT_STATE_INACTIVE) 2412 return; 2413 2414 if (ctx->is_active & EVENT_TIME) { 2415 update_context_time(ctx); 2416 update_cgrp_time_from_event(event); 2417 } 2418 2419 perf_pmu_disable(event->pmu_ctx->pmu); 2420 2421 if (event == event->group_leader) 2422 group_sched_out(event, ctx); 2423 else 2424 event_sched_out(event, ctx); 2425 2426 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2427 perf_cgroup_event_disable(event, ctx); 2428 2429 perf_pmu_enable(event->pmu_ctx->pmu); 2430 } 2431 2432 /* 2433 * Disable an event. 2434 * 2435 * If event->ctx is a cloned context, callers must make sure that 2436 * every task struct that event->ctx->task could possibly point to 2437 * remains valid. This condition is satisfied when called through 2438 * perf_event_for_each_child or perf_event_for_each because they 2439 * hold the top-level event's child_mutex, so any descendant that 2440 * goes to exit will block in perf_event_exit_event(). 2441 * 2442 * When called from perf_pending_irq it's OK because event->ctx 2443 * is the current context on this CPU and preemption is disabled, 2444 * hence we can't get into perf_event_task_sched_out for this context. 2445 */ 2446 static void _perf_event_disable(struct perf_event *event) 2447 { 2448 struct perf_event_context *ctx = event->ctx; 2449 2450 raw_spin_lock_irq(&ctx->lock); 2451 if (event->state <= PERF_EVENT_STATE_OFF) { 2452 raw_spin_unlock_irq(&ctx->lock); 2453 return; 2454 } 2455 raw_spin_unlock_irq(&ctx->lock); 2456 2457 event_function_call(event, __perf_event_disable, NULL); 2458 } 2459 2460 void perf_event_disable_local(struct perf_event *event) 2461 { 2462 event_function_local(event, __perf_event_disable, NULL); 2463 } 2464 2465 /* 2466 * Strictly speaking kernel users cannot create groups and therefore this 2467 * interface does not need the perf_event_ctx_lock() magic. 2468 */ 2469 void perf_event_disable(struct perf_event *event) 2470 { 2471 struct perf_event_context *ctx; 2472 2473 ctx = perf_event_ctx_lock(event); 2474 _perf_event_disable(event); 2475 perf_event_ctx_unlock(event, ctx); 2476 } 2477 EXPORT_SYMBOL_GPL(perf_event_disable); 2478 2479 void perf_event_disable_inatomic(struct perf_event *event) 2480 { 2481 event->pending_disable = 1; 2482 irq_work_queue(&event->pending_irq); 2483 } 2484 2485 #define MAX_INTERRUPTS (~0ULL) 2486 2487 static void perf_log_throttle(struct perf_event *event, int enable); 2488 static void perf_log_itrace_start(struct perf_event *event); 2489 2490 static int 2491 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2492 { 2493 struct perf_event_pmu_context *epc = event->pmu_ctx; 2494 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2495 int ret = 0; 2496 2497 WARN_ON_ONCE(event->ctx != ctx); 2498 2499 lockdep_assert_held(&ctx->lock); 2500 2501 if (event->state <= PERF_EVENT_STATE_OFF) 2502 return 0; 2503 2504 WRITE_ONCE(event->oncpu, smp_processor_id()); 2505 /* 2506 * Order event::oncpu write to happen before the ACTIVE state is 2507 * visible. This allows perf_event_{stop,read}() to observe the correct 2508 * ->oncpu if it sees ACTIVE. 2509 */ 2510 smp_wmb(); 2511 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2512 2513 /* 2514 * Unthrottle events, since we scheduled we might have missed several 2515 * ticks already, also for a heavily scheduling task there is little 2516 * guarantee it'll get a tick in a timely manner. 2517 */ 2518 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2519 perf_log_throttle(event, 1); 2520 event->hw.interrupts = 0; 2521 } 2522 2523 perf_pmu_disable(event->pmu); 2524 2525 perf_log_itrace_start(event); 2526 2527 if (event->pmu->add(event, PERF_EF_START)) { 2528 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2529 event->oncpu = -1; 2530 ret = -EAGAIN; 2531 goto out; 2532 } 2533 2534 if (!is_software_event(event)) 2535 cpc->active_oncpu++; 2536 if (event->attr.freq && event->attr.sample_freq) 2537 ctx->nr_freq++; 2538 2539 if (event->attr.exclusive) 2540 cpc->exclusive = 1; 2541 2542 out: 2543 perf_pmu_enable(event->pmu); 2544 2545 return ret; 2546 } 2547 2548 static int 2549 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2550 { 2551 struct perf_event *event, *partial_group = NULL; 2552 struct pmu *pmu = group_event->pmu_ctx->pmu; 2553 2554 if (group_event->state == PERF_EVENT_STATE_OFF) 2555 return 0; 2556 2557 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2558 2559 if (event_sched_in(group_event, ctx)) 2560 goto error; 2561 2562 /* 2563 * Schedule in siblings as one group (if any): 2564 */ 2565 for_each_sibling_event(event, group_event) { 2566 if (event_sched_in(event, ctx)) { 2567 partial_group = event; 2568 goto group_error; 2569 } 2570 } 2571 2572 if (!pmu->commit_txn(pmu)) 2573 return 0; 2574 2575 group_error: 2576 /* 2577 * Groups can be scheduled in as one unit only, so undo any 2578 * partial group before returning: 2579 * The events up to the failed event are scheduled out normally. 2580 */ 2581 for_each_sibling_event(event, group_event) { 2582 if (event == partial_group) 2583 break; 2584 2585 event_sched_out(event, ctx); 2586 } 2587 event_sched_out(group_event, ctx); 2588 2589 error: 2590 pmu->cancel_txn(pmu); 2591 return -EAGAIN; 2592 } 2593 2594 /* 2595 * Work out whether we can put this event group on the CPU now. 2596 */ 2597 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2598 { 2599 struct perf_event_pmu_context *epc = event->pmu_ctx; 2600 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2601 2602 /* 2603 * Groups consisting entirely of software events can always go on. 2604 */ 2605 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2606 return 1; 2607 /* 2608 * If an exclusive group is already on, no other hardware 2609 * events can go on. 2610 */ 2611 if (cpc->exclusive) 2612 return 0; 2613 /* 2614 * If this group is exclusive and there are already 2615 * events on the CPU, it can't go on. 2616 */ 2617 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2618 return 0; 2619 /* 2620 * Otherwise, try to add it if all previous groups were able 2621 * to go on. 2622 */ 2623 return can_add_hw; 2624 } 2625 2626 static void add_event_to_ctx(struct perf_event *event, 2627 struct perf_event_context *ctx) 2628 { 2629 list_add_event(event, ctx); 2630 perf_group_attach(event); 2631 } 2632 2633 static void task_ctx_sched_out(struct perf_event_context *ctx, 2634 enum event_type_t event_type) 2635 { 2636 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2637 2638 if (!cpuctx->task_ctx) 2639 return; 2640 2641 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2642 return; 2643 2644 ctx_sched_out(ctx, event_type); 2645 } 2646 2647 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2648 struct perf_event_context *ctx) 2649 { 2650 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2651 if (ctx) 2652 ctx_sched_in(ctx, EVENT_PINNED); 2653 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2654 if (ctx) 2655 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2656 } 2657 2658 /* 2659 * We want to maintain the following priority of scheduling: 2660 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2661 * - task pinned (EVENT_PINNED) 2662 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2663 * - task flexible (EVENT_FLEXIBLE). 2664 * 2665 * In order to avoid unscheduling and scheduling back in everything every 2666 * time an event is added, only do it for the groups of equal priority and 2667 * below. 2668 * 2669 * This can be called after a batch operation on task events, in which case 2670 * event_type is a bit mask of the types of events involved. For CPU events, 2671 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2672 */ 2673 /* 2674 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2675 * event to the context or enabling existing event in the context. We can 2676 * probably optimize it by rescheduling only affected pmu_ctx. 2677 */ 2678 static void ctx_resched(struct perf_cpu_context *cpuctx, 2679 struct perf_event_context *task_ctx, 2680 enum event_type_t event_type) 2681 { 2682 bool cpu_event = !!(event_type & EVENT_CPU); 2683 2684 /* 2685 * If pinned groups are involved, flexible groups also need to be 2686 * scheduled out. 2687 */ 2688 if (event_type & EVENT_PINNED) 2689 event_type |= EVENT_FLEXIBLE; 2690 2691 event_type &= EVENT_ALL; 2692 2693 perf_ctx_disable(&cpuctx->ctx, false); 2694 if (task_ctx) { 2695 perf_ctx_disable(task_ctx, false); 2696 task_ctx_sched_out(task_ctx, event_type); 2697 } 2698 2699 /* 2700 * Decide which cpu ctx groups to schedule out based on the types 2701 * of events that caused rescheduling: 2702 * - EVENT_CPU: schedule out corresponding groups; 2703 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2704 * - otherwise, do nothing more. 2705 */ 2706 if (cpu_event) 2707 ctx_sched_out(&cpuctx->ctx, event_type); 2708 else if (event_type & EVENT_PINNED) 2709 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2710 2711 perf_event_sched_in(cpuctx, task_ctx); 2712 2713 perf_ctx_enable(&cpuctx->ctx, false); 2714 if (task_ctx) 2715 perf_ctx_enable(task_ctx, false); 2716 } 2717 2718 void perf_pmu_resched(struct pmu *pmu) 2719 { 2720 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2721 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2722 2723 perf_ctx_lock(cpuctx, task_ctx); 2724 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2725 perf_ctx_unlock(cpuctx, task_ctx); 2726 } 2727 2728 /* 2729 * Cross CPU call to install and enable a performance event 2730 * 2731 * Very similar to remote_function() + event_function() but cannot assume that 2732 * things like ctx->is_active and cpuctx->task_ctx are set. 2733 */ 2734 static int __perf_install_in_context(void *info) 2735 { 2736 struct perf_event *event = info; 2737 struct perf_event_context *ctx = event->ctx; 2738 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2739 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2740 bool reprogram = true; 2741 int ret = 0; 2742 2743 raw_spin_lock(&cpuctx->ctx.lock); 2744 if (ctx->task) { 2745 raw_spin_lock(&ctx->lock); 2746 task_ctx = ctx; 2747 2748 reprogram = (ctx->task == current); 2749 2750 /* 2751 * If the task is running, it must be running on this CPU, 2752 * otherwise we cannot reprogram things. 2753 * 2754 * If its not running, we don't care, ctx->lock will 2755 * serialize against it becoming runnable. 2756 */ 2757 if (task_curr(ctx->task) && !reprogram) { 2758 ret = -ESRCH; 2759 goto unlock; 2760 } 2761 2762 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2763 } else if (task_ctx) { 2764 raw_spin_lock(&task_ctx->lock); 2765 } 2766 2767 #ifdef CONFIG_CGROUP_PERF 2768 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2769 /* 2770 * If the current cgroup doesn't match the event's 2771 * cgroup, we should not try to schedule it. 2772 */ 2773 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2774 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2775 event->cgrp->css.cgroup); 2776 } 2777 #endif 2778 2779 if (reprogram) { 2780 ctx_sched_out(ctx, EVENT_TIME); 2781 add_event_to_ctx(event, ctx); 2782 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2783 } else { 2784 add_event_to_ctx(event, ctx); 2785 } 2786 2787 unlock: 2788 perf_ctx_unlock(cpuctx, task_ctx); 2789 2790 return ret; 2791 } 2792 2793 static bool exclusive_event_installable(struct perf_event *event, 2794 struct perf_event_context *ctx); 2795 2796 /* 2797 * Attach a performance event to a context. 2798 * 2799 * Very similar to event_function_call, see comment there. 2800 */ 2801 static void 2802 perf_install_in_context(struct perf_event_context *ctx, 2803 struct perf_event *event, 2804 int cpu) 2805 { 2806 struct task_struct *task = READ_ONCE(ctx->task); 2807 2808 lockdep_assert_held(&ctx->mutex); 2809 2810 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2811 2812 if (event->cpu != -1) 2813 WARN_ON_ONCE(event->cpu != cpu); 2814 2815 /* 2816 * Ensures that if we can observe event->ctx, both the event and ctx 2817 * will be 'complete'. See perf_iterate_sb_cpu(). 2818 */ 2819 smp_store_release(&event->ctx, ctx); 2820 2821 /* 2822 * perf_event_attr::disabled events will not run and can be initialized 2823 * without IPI. Except when this is the first event for the context, in 2824 * that case we need the magic of the IPI to set ctx->is_active. 2825 * 2826 * The IOC_ENABLE that is sure to follow the creation of a disabled 2827 * event will issue the IPI and reprogram the hardware. 2828 */ 2829 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2830 ctx->nr_events && !is_cgroup_event(event)) { 2831 raw_spin_lock_irq(&ctx->lock); 2832 if (ctx->task == TASK_TOMBSTONE) { 2833 raw_spin_unlock_irq(&ctx->lock); 2834 return; 2835 } 2836 add_event_to_ctx(event, ctx); 2837 raw_spin_unlock_irq(&ctx->lock); 2838 return; 2839 } 2840 2841 if (!task) { 2842 cpu_function_call(cpu, __perf_install_in_context, event); 2843 return; 2844 } 2845 2846 /* 2847 * Should not happen, we validate the ctx is still alive before calling. 2848 */ 2849 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2850 return; 2851 2852 /* 2853 * Installing events is tricky because we cannot rely on ctx->is_active 2854 * to be set in case this is the nr_events 0 -> 1 transition. 2855 * 2856 * Instead we use task_curr(), which tells us if the task is running. 2857 * However, since we use task_curr() outside of rq::lock, we can race 2858 * against the actual state. This means the result can be wrong. 2859 * 2860 * If we get a false positive, we retry, this is harmless. 2861 * 2862 * If we get a false negative, things are complicated. If we are after 2863 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2864 * value must be correct. If we're before, it doesn't matter since 2865 * perf_event_context_sched_in() will program the counter. 2866 * 2867 * However, this hinges on the remote context switch having observed 2868 * our task->perf_event_ctxp[] store, such that it will in fact take 2869 * ctx::lock in perf_event_context_sched_in(). 2870 * 2871 * We do this by task_function_call(), if the IPI fails to hit the task 2872 * we know any future context switch of task must see the 2873 * perf_event_ctpx[] store. 2874 */ 2875 2876 /* 2877 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2878 * task_cpu() load, such that if the IPI then does not find the task 2879 * running, a future context switch of that task must observe the 2880 * store. 2881 */ 2882 smp_mb(); 2883 again: 2884 if (!task_function_call(task, __perf_install_in_context, event)) 2885 return; 2886 2887 raw_spin_lock_irq(&ctx->lock); 2888 task = ctx->task; 2889 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2890 /* 2891 * Cannot happen because we already checked above (which also 2892 * cannot happen), and we hold ctx->mutex, which serializes us 2893 * against perf_event_exit_task_context(). 2894 */ 2895 raw_spin_unlock_irq(&ctx->lock); 2896 return; 2897 } 2898 /* 2899 * If the task is not running, ctx->lock will avoid it becoming so, 2900 * thus we can safely install the event. 2901 */ 2902 if (task_curr(task)) { 2903 raw_spin_unlock_irq(&ctx->lock); 2904 goto again; 2905 } 2906 add_event_to_ctx(event, ctx); 2907 raw_spin_unlock_irq(&ctx->lock); 2908 } 2909 2910 /* 2911 * Cross CPU call to enable a performance event 2912 */ 2913 static void __perf_event_enable(struct perf_event *event, 2914 struct perf_cpu_context *cpuctx, 2915 struct perf_event_context *ctx, 2916 void *info) 2917 { 2918 struct perf_event *leader = event->group_leader; 2919 struct perf_event_context *task_ctx; 2920 2921 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2922 event->state <= PERF_EVENT_STATE_ERROR) 2923 return; 2924 2925 if (ctx->is_active) 2926 ctx_sched_out(ctx, EVENT_TIME); 2927 2928 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2929 perf_cgroup_event_enable(event, ctx); 2930 2931 if (!ctx->is_active) 2932 return; 2933 2934 if (!event_filter_match(event)) { 2935 ctx_sched_in(ctx, EVENT_TIME); 2936 return; 2937 } 2938 2939 /* 2940 * If the event is in a group and isn't the group leader, 2941 * then don't put it on unless the group is on. 2942 */ 2943 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2944 ctx_sched_in(ctx, EVENT_TIME); 2945 return; 2946 } 2947 2948 task_ctx = cpuctx->task_ctx; 2949 if (ctx->task) 2950 WARN_ON_ONCE(task_ctx != ctx); 2951 2952 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2953 } 2954 2955 /* 2956 * Enable an event. 2957 * 2958 * If event->ctx is a cloned context, callers must make sure that 2959 * every task struct that event->ctx->task could possibly point to 2960 * remains valid. This condition is satisfied when called through 2961 * perf_event_for_each_child or perf_event_for_each as described 2962 * for perf_event_disable. 2963 */ 2964 static void _perf_event_enable(struct perf_event *event) 2965 { 2966 struct perf_event_context *ctx = event->ctx; 2967 2968 raw_spin_lock_irq(&ctx->lock); 2969 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2970 event->state < PERF_EVENT_STATE_ERROR) { 2971 out: 2972 raw_spin_unlock_irq(&ctx->lock); 2973 return; 2974 } 2975 2976 /* 2977 * If the event is in error state, clear that first. 2978 * 2979 * That way, if we see the event in error state below, we know that it 2980 * has gone back into error state, as distinct from the task having 2981 * been scheduled away before the cross-call arrived. 2982 */ 2983 if (event->state == PERF_EVENT_STATE_ERROR) { 2984 /* 2985 * Detached SIBLING events cannot leave ERROR state. 2986 */ 2987 if (event->event_caps & PERF_EV_CAP_SIBLING && 2988 event->group_leader == event) 2989 goto out; 2990 2991 event->state = PERF_EVENT_STATE_OFF; 2992 } 2993 raw_spin_unlock_irq(&ctx->lock); 2994 2995 event_function_call(event, __perf_event_enable, NULL); 2996 } 2997 2998 /* 2999 * See perf_event_disable(); 3000 */ 3001 void perf_event_enable(struct perf_event *event) 3002 { 3003 struct perf_event_context *ctx; 3004 3005 ctx = perf_event_ctx_lock(event); 3006 _perf_event_enable(event); 3007 perf_event_ctx_unlock(event, ctx); 3008 } 3009 EXPORT_SYMBOL_GPL(perf_event_enable); 3010 3011 struct stop_event_data { 3012 struct perf_event *event; 3013 unsigned int restart; 3014 }; 3015 3016 static int __perf_event_stop(void *info) 3017 { 3018 struct stop_event_data *sd = info; 3019 struct perf_event *event = sd->event; 3020 3021 /* if it's already INACTIVE, do nothing */ 3022 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3023 return 0; 3024 3025 /* matches smp_wmb() in event_sched_in() */ 3026 smp_rmb(); 3027 3028 /* 3029 * There is a window with interrupts enabled before we get here, 3030 * so we need to check again lest we try to stop another CPU's event. 3031 */ 3032 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3033 return -EAGAIN; 3034 3035 event->pmu->stop(event, PERF_EF_UPDATE); 3036 3037 /* 3038 * May race with the actual stop (through perf_pmu_output_stop()), 3039 * but it is only used for events with AUX ring buffer, and such 3040 * events will refuse to restart because of rb::aux_mmap_count==0, 3041 * see comments in perf_aux_output_begin(). 3042 * 3043 * Since this is happening on an event-local CPU, no trace is lost 3044 * while restarting. 3045 */ 3046 if (sd->restart) 3047 event->pmu->start(event, 0); 3048 3049 return 0; 3050 } 3051 3052 static int perf_event_stop(struct perf_event *event, int restart) 3053 { 3054 struct stop_event_data sd = { 3055 .event = event, 3056 .restart = restart, 3057 }; 3058 int ret = 0; 3059 3060 do { 3061 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3062 return 0; 3063 3064 /* matches smp_wmb() in event_sched_in() */ 3065 smp_rmb(); 3066 3067 /* 3068 * We only want to restart ACTIVE events, so if the event goes 3069 * inactive here (event->oncpu==-1), there's nothing more to do; 3070 * fall through with ret==-ENXIO. 3071 */ 3072 ret = cpu_function_call(READ_ONCE(event->oncpu), 3073 __perf_event_stop, &sd); 3074 } while (ret == -EAGAIN); 3075 3076 return ret; 3077 } 3078 3079 /* 3080 * In order to contain the amount of racy and tricky in the address filter 3081 * configuration management, it is a two part process: 3082 * 3083 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3084 * we update the addresses of corresponding vmas in 3085 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3086 * (p2) when an event is scheduled in (pmu::add), it calls 3087 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3088 * if the generation has changed since the previous call. 3089 * 3090 * If (p1) happens while the event is active, we restart it to force (p2). 3091 * 3092 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3093 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3094 * ioctl; 3095 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3096 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3097 * for reading; 3098 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3099 * of exec. 3100 */ 3101 void perf_event_addr_filters_sync(struct perf_event *event) 3102 { 3103 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3104 3105 if (!has_addr_filter(event)) 3106 return; 3107 3108 raw_spin_lock(&ifh->lock); 3109 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3110 event->pmu->addr_filters_sync(event); 3111 event->hw.addr_filters_gen = event->addr_filters_gen; 3112 } 3113 raw_spin_unlock(&ifh->lock); 3114 } 3115 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3116 3117 static int _perf_event_refresh(struct perf_event *event, int refresh) 3118 { 3119 /* 3120 * not supported on inherited events 3121 */ 3122 if (event->attr.inherit || !is_sampling_event(event)) 3123 return -EINVAL; 3124 3125 atomic_add(refresh, &event->event_limit); 3126 _perf_event_enable(event); 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * See perf_event_disable() 3133 */ 3134 int perf_event_refresh(struct perf_event *event, int refresh) 3135 { 3136 struct perf_event_context *ctx; 3137 int ret; 3138 3139 ctx = perf_event_ctx_lock(event); 3140 ret = _perf_event_refresh(event, refresh); 3141 perf_event_ctx_unlock(event, ctx); 3142 3143 return ret; 3144 } 3145 EXPORT_SYMBOL_GPL(perf_event_refresh); 3146 3147 static int perf_event_modify_breakpoint(struct perf_event *bp, 3148 struct perf_event_attr *attr) 3149 { 3150 int err; 3151 3152 _perf_event_disable(bp); 3153 3154 err = modify_user_hw_breakpoint_check(bp, attr, true); 3155 3156 if (!bp->attr.disabled) 3157 _perf_event_enable(bp); 3158 3159 return err; 3160 } 3161 3162 /* 3163 * Copy event-type-independent attributes that may be modified. 3164 */ 3165 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3166 const struct perf_event_attr *from) 3167 { 3168 to->sig_data = from->sig_data; 3169 } 3170 3171 static int perf_event_modify_attr(struct perf_event *event, 3172 struct perf_event_attr *attr) 3173 { 3174 int (*func)(struct perf_event *, struct perf_event_attr *); 3175 struct perf_event *child; 3176 int err; 3177 3178 if (event->attr.type != attr->type) 3179 return -EINVAL; 3180 3181 switch (event->attr.type) { 3182 case PERF_TYPE_BREAKPOINT: 3183 func = perf_event_modify_breakpoint; 3184 break; 3185 default: 3186 /* Place holder for future additions. */ 3187 return -EOPNOTSUPP; 3188 } 3189 3190 WARN_ON_ONCE(event->ctx->parent_ctx); 3191 3192 mutex_lock(&event->child_mutex); 3193 /* 3194 * Event-type-independent attributes must be copied before event-type 3195 * modification, which will validate that final attributes match the 3196 * source attributes after all relevant attributes have been copied. 3197 */ 3198 perf_event_modify_copy_attr(&event->attr, attr); 3199 err = func(event, attr); 3200 if (err) 3201 goto out; 3202 list_for_each_entry(child, &event->child_list, child_list) { 3203 perf_event_modify_copy_attr(&child->attr, attr); 3204 err = func(child, attr); 3205 if (err) 3206 goto out; 3207 } 3208 out: 3209 mutex_unlock(&event->child_mutex); 3210 return err; 3211 } 3212 3213 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3214 enum event_type_t event_type) 3215 { 3216 struct perf_event_context *ctx = pmu_ctx->ctx; 3217 struct perf_event *event, *tmp; 3218 struct pmu *pmu = pmu_ctx->pmu; 3219 3220 if (ctx->task && !ctx->is_active) { 3221 struct perf_cpu_pmu_context *cpc; 3222 3223 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3224 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3225 cpc->task_epc = NULL; 3226 } 3227 3228 if (!event_type) 3229 return; 3230 3231 perf_pmu_disable(pmu); 3232 if (event_type & EVENT_PINNED) { 3233 list_for_each_entry_safe(event, tmp, 3234 &pmu_ctx->pinned_active, 3235 active_list) 3236 group_sched_out(event, ctx); 3237 } 3238 3239 if (event_type & EVENT_FLEXIBLE) { 3240 list_for_each_entry_safe(event, tmp, 3241 &pmu_ctx->flexible_active, 3242 active_list) 3243 group_sched_out(event, ctx); 3244 /* 3245 * Since we cleared EVENT_FLEXIBLE, also clear 3246 * rotate_necessary, is will be reset by 3247 * ctx_flexible_sched_in() when needed. 3248 */ 3249 pmu_ctx->rotate_necessary = 0; 3250 } 3251 perf_pmu_enable(pmu); 3252 } 3253 3254 static void 3255 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3256 { 3257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3258 struct perf_event_pmu_context *pmu_ctx; 3259 int is_active = ctx->is_active; 3260 bool cgroup = event_type & EVENT_CGROUP; 3261 3262 event_type &= ~EVENT_CGROUP; 3263 3264 lockdep_assert_held(&ctx->lock); 3265 3266 if (likely(!ctx->nr_events)) { 3267 /* 3268 * See __perf_remove_from_context(). 3269 */ 3270 WARN_ON_ONCE(ctx->is_active); 3271 if (ctx->task) 3272 WARN_ON_ONCE(cpuctx->task_ctx); 3273 return; 3274 } 3275 3276 /* 3277 * Always update time if it was set; not only when it changes. 3278 * Otherwise we can 'forget' to update time for any but the last 3279 * context we sched out. For example: 3280 * 3281 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3282 * ctx_sched_out(.event_type = EVENT_PINNED) 3283 * 3284 * would only update time for the pinned events. 3285 */ 3286 if (is_active & EVENT_TIME) { 3287 /* update (and stop) ctx time */ 3288 update_context_time(ctx); 3289 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3290 /* 3291 * CPU-release for the below ->is_active store, 3292 * see __load_acquire() in perf_event_time_now() 3293 */ 3294 barrier(); 3295 } 3296 3297 ctx->is_active &= ~event_type; 3298 if (!(ctx->is_active & EVENT_ALL)) 3299 ctx->is_active = 0; 3300 3301 if (ctx->task) { 3302 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3303 if (!ctx->is_active) 3304 cpuctx->task_ctx = NULL; 3305 } 3306 3307 is_active ^= ctx->is_active; /* changed bits */ 3308 3309 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3310 if (cgroup && !pmu_ctx->nr_cgroups) 3311 continue; 3312 __pmu_ctx_sched_out(pmu_ctx, is_active); 3313 } 3314 } 3315 3316 /* 3317 * Test whether two contexts are equivalent, i.e. whether they have both been 3318 * cloned from the same version of the same context. 3319 * 3320 * Equivalence is measured using a generation number in the context that is 3321 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3322 * and list_del_event(). 3323 */ 3324 static int context_equiv(struct perf_event_context *ctx1, 3325 struct perf_event_context *ctx2) 3326 { 3327 lockdep_assert_held(&ctx1->lock); 3328 lockdep_assert_held(&ctx2->lock); 3329 3330 /* Pinning disables the swap optimization */ 3331 if (ctx1->pin_count || ctx2->pin_count) 3332 return 0; 3333 3334 /* If ctx1 is the parent of ctx2 */ 3335 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3336 return 1; 3337 3338 /* If ctx2 is the parent of ctx1 */ 3339 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3340 return 1; 3341 3342 /* 3343 * If ctx1 and ctx2 have the same parent; we flatten the parent 3344 * hierarchy, see perf_event_init_context(). 3345 */ 3346 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3347 ctx1->parent_gen == ctx2->parent_gen) 3348 return 1; 3349 3350 /* Unmatched */ 3351 return 0; 3352 } 3353 3354 static void __perf_event_sync_stat(struct perf_event *event, 3355 struct perf_event *next_event) 3356 { 3357 u64 value; 3358 3359 if (!event->attr.inherit_stat) 3360 return; 3361 3362 /* 3363 * Update the event value, we cannot use perf_event_read() 3364 * because we're in the middle of a context switch and have IRQs 3365 * disabled, which upsets smp_call_function_single(), however 3366 * we know the event must be on the current CPU, therefore we 3367 * don't need to use it. 3368 */ 3369 if (event->state == PERF_EVENT_STATE_ACTIVE) 3370 event->pmu->read(event); 3371 3372 perf_event_update_time(event); 3373 3374 /* 3375 * In order to keep per-task stats reliable we need to flip the event 3376 * values when we flip the contexts. 3377 */ 3378 value = local64_read(&next_event->count); 3379 value = local64_xchg(&event->count, value); 3380 local64_set(&next_event->count, value); 3381 3382 swap(event->total_time_enabled, next_event->total_time_enabled); 3383 swap(event->total_time_running, next_event->total_time_running); 3384 3385 /* 3386 * Since we swizzled the values, update the user visible data too. 3387 */ 3388 perf_event_update_userpage(event); 3389 perf_event_update_userpage(next_event); 3390 } 3391 3392 static void perf_event_sync_stat(struct perf_event_context *ctx, 3393 struct perf_event_context *next_ctx) 3394 { 3395 struct perf_event *event, *next_event; 3396 3397 if (!ctx->nr_stat) 3398 return; 3399 3400 update_context_time(ctx); 3401 3402 event = list_first_entry(&ctx->event_list, 3403 struct perf_event, event_entry); 3404 3405 next_event = list_first_entry(&next_ctx->event_list, 3406 struct perf_event, event_entry); 3407 3408 while (&event->event_entry != &ctx->event_list && 3409 &next_event->event_entry != &next_ctx->event_list) { 3410 3411 __perf_event_sync_stat(event, next_event); 3412 3413 event = list_next_entry(event, event_entry); 3414 next_event = list_next_entry(next_event, event_entry); 3415 } 3416 } 3417 3418 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3419 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3420 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3421 !list_entry_is_head(pos1, head1, member) && \ 3422 !list_entry_is_head(pos2, head2, member); \ 3423 pos1 = list_next_entry(pos1, member), \ 3424 pos2 = list_next_entry(pos2, member)) 3425 3426 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3427 struct perf_event_context *next_ctx) 3428 { 3429 struct perf_event_pmu_context *prev_epc, *next_epc; 3430 3431 if (!prev_ctx->nr_task_data) 3432 return; 3433 3434 double_list_for_each_entry(prev_epc, next_epc, 3435 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3436 pmu_ctx_entry) { 3437 3438 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3439 continue; 3440 3441 /* 3442 * PMU specific parts of task perf context can require 3443 * additional synchronization. As an example of such 3444 * synchronization see implementation details of Intel 3445 * LBR call stack data profiling; 3446 */ 3447 if (prev_epc->pmu->swap_task_ctx) 3448 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3449 else 3450 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3451 } 3452 } 3453 3454 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3455 { 3456 struct perf_event_pmu_context *pmu_ctx; 3457 struct perf_cpu_pmu_context *cpc; 3458 3459 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3460 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3461 3462 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3463 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3464 } 3465 } 3466 3467 static void 3468 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3469 { 3470 struct perf_event_context *ctx = task->perf_event_ctxp; 3471 struct perf_event_context *next_ctx; 3472 struct perf_event_context *parent, *next_parent; 3473 int do_switch = 1; 3474 3475 if (likely(!ctx)) 3476 return; 3477 3478 rcu_read_lock(); 3479 next_ctx = rcu_dereference(next->perf_event_ctxp); 3480 if (!next_ctx) 3481 goto unlock; 3482 3483 parent = rcu_dereference(ctx->parent_ctx); 3484 next_parent = rcu_dereference(next_ctx->parent_ctx); 3485 3486 /* If neither context have a parent context; they cannot be clones. */ 3487 if (!parent && !next_parent) 3488 goto unlock; 3489 3490 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3491 /* 3492 * Looks like the two contexts are clones, so we might be 3493 * able to optimize the context switch. We lock both 3494 * contexts and check that they are clones under the 3495 * lock (including re-checking that neither has been 3496 * uncloned in the meantime). It doesn't matter which 3497 * order we take the locks because no other cpu could 3498 * be trying to lock both of these tasks. 3499 */ 3500 raw_spin_lock(&ctx->lock); 3501 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3502 if (context_equiv(ctx, next_ctx)) { 3503 3504 perf_ctx_disable(ctx, false); 3505 3506 /* PMIs are disabled; ctx->nr_pending is stable. */ 3507 if (local_read(&ctx->nr_pending) || 3508 local_read(&next_ctx->nr_pending)) { 3509 /* 3510 * Must not swap out ctx when there's pending 3511 * events that rely on the ctx->task relation. 3512 */ 3513 raw_spin_unlock(&next_ctx->lock); 3514 rcu_read_unlock(); 3515 goto inside_switch; 3516 } 3517 3518 WRITE_ONCE(ctx->task, next); 3519 WRITE_ONCE(next_ctx->task, task); 3520 3521 perf_ctx_sched_task_cb(ctx, false); 3522 perf_event_swap_task_ctx_data(ctx, next_ctx); 3523 3524 perf_ctx_enable(ctx, false); 3525 3526 /* 3527 * RCU_INIT_POINTER here is safe because we've not 3528 * modified the ctx and the above modification of 3529 * ctx->task and ctx->task_ctx_data are immaterial 3530 * since those values are always verified under 3531 * ctx->lock which we're now holding. 3532 */ 3533 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3534 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3535 3536 do_switch = 0; 3537 3538 perf_event_sync_stat(ctx, next_ctx); 3539 } 3540 raw_spin_unlock(&next_ctx->lock); 3541 raw_spin_unlock(&ctx->lock); 3542 } 3543 unlock: 3544 rcu_read_unlock(); 3545 3546 if (do_switch) { 3547 raw_spin_lock(&ctx->lock); 3548 perf_ctx_disable(ctx, false); 3549 3550 inside_switch: 3551 perf_ctx_sched_task_cb(ctx, false); 3552 task_ctx_sched_out(ctx, EVENT_ALL); 3553 3554 perf_ctx_enable(ctx, false); 3555 raw_spin_unlock(&ctx->lock); 3556 } 3557 } 3558 3559 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3560 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3561 3562 void perf_sched_cb_dec(struct pmu *pmu) 3563 { 3564 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3565 3566 this_cpu_dec(perf_sched_cb_usages); 3567 barrier(); 3568 3569 if (!--cpc->sched_cb_usage) 3570 list_del(&cpc->sched_cb_entry); 3571 } 3572 3573 3574 void perf_sched_cb_inc(struct pmu *pmu) 3575 { 3576 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3577 3578 if (!cpc->sched_cb_usage++) 3579 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3580 3581 barrier(); 3582 this_cpu_inc(perf_sched_cb_usages); 3583 } 3584 3585 /* 3586 * This function provides the context switch callback to the lower code 3587 * layer. It is invoked ONLY when the context switch callback is enabled. 3588 * 3589 * This callback is relevant even to per-cpu events; for example multi event 3590 * PEBS requires this to provide PID/TID information. This requires we flush 3591 * all queued PEBS records before we context switch to a new task. 3592 */ 3593 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3594 { 3595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3596 struct pmu *pmu; 3597 3598 pmu = cpc->epc.pmu; 3599 3600 /* software PMUs will not have sched_task */ 3601 if (WARN_ON_ONCE(!pmu->sched_task)) 3602 return; 3603 3604 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3605 perf_pmu_disable(pmu); 3606 3607 pmu->sched_task(cpc->task_epc, sched_in); 3608 3609 perf_pmu_enable(pmu); 3610 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3611 } 3612 3613 static void perf_pmu_sched_task(struct task_struct *prev, 3614 struct task_struct *next, 3615 bool sched_in) 3616 { 3617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3618 struct perf_cpu_pmu_context *cpc; 3619 3620 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3621 if (prev == next || cpuctx->task_ctx) 3622 return; 3623 3624 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3625 __perf_pmu_sched_task(cpc, sched_in); 3626 } 3627 3628 static void perf_event_switch(struct task_struct *task, 3629 struct task_struct *next_prev, bool sched_in); 3630 3631 /* 3632 * Called from scheduler to remove the events of the current task, 3633 * with interrupts disabled. 3634 * 3635 * We stop each event and update the event value in event->count. 3636 * 3637 * This does not protect us against NMI, but disable() 3638 * sets the disabled bit in the control field of event _before_ 3639 * accessing the event control register. If a NMI hits, then it will 3640 * not restart the event. 3641 */ 3642 void __perf_event_task_sched_out(struct task_struct *task, 3643 struct task_struct *next) 3644 { 3645 if (__this_cpu_read(perf_sched_cb_usages)) 3646 perf_pmu_sched_task(task, next, false); 3647 3648 if (atomic_read(&nr_switch_events)) 3649 perf_event_switch(task, next, false); 3650 3651 perf_event_context_sched_out(task, next); 3652 3653 /* 3654 * if cgroup events exist on this CPU, then we need 3655 * to check if we have to switch out PMU state. 3656 * cgroup event are system-wide mode only 3657 */ 3658 perf_cgroup_switch(next); 3659 } 3660 3661 static bool perf_less_group_idx(const void *l, const void *r) 3662 { 3663 const struct perf_event *le = *(const struct perf_event **)l; 3664 const struct perf_event *re = *(const struct perf_event **)r; 3665 3666 return le->group_index < re->group_index; 3667 } 3668 3669 static void swap_ptr(void *l, void *r) 3670 { 3671 void **lp = l, **rp = r; 3672 3673 swap(*lp, *rp); 3674 } 3675 3676 static const struct min_heap_callbacks perf_min_heap = { 3677 .elem_size = sizeof(struct perf_event *), 3678 .less = perf_less_group_idx, 3679 .swp = swap_ptr, 3680 }; 3681 3682 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3683 { 3684 struct perf_event **itrs = heap->data; 3685 3686 if (event) { 3687 itrs[heap->nr] = event; 3688 heap->nr++; 3689 } 3690 } 3691 3692 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3693 { 3694 struct perf_cpu_pmu_context *cpc; 3695 3696 if (!pmu_ctx->ctx->task) 3697 return; 3698 3699 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3700 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3701 cpc->task_epc = pmu_ctx; 3702 } 3703 3704 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3705 struct perf_event_groups *groups, int cpu, 3706 struct pmu *pmu, 3707 int (*func)(struct perf_event *, void *), 3708 void *data) 3709 { 3710 #ifdef CONFIG_CGROUP_PERF 3711 struct cgroup_subsys_state *css = NULL; 3712 #endif 3713 struct perf_cpu_context *cpuctx = NULL; 3714 /* Space for per CPU and/or any CPU event iterators. */ 3715 struct perf_event *itrs[2]; 3716 struct min_heap event_heap; 3717 struct perf_event **evt; 3718 int ret; 3719 3720 if (pmu->filter && pmu->filter(pmu, cpu)) 3721 return 0; 3722 3723 if (!ctx->task) { 3724 cpuctx = this_cpu_ptr(&perf_cpu_context); 3725 event_heap = (struct min_heap){ 3726 .data = cpuctx->heap, 3727 .nr = 0, 3728 .size = cpuctx->heap_size, 3729 }; 3730 3731 lockdep_assert_held(&cpuctx->ctx.lock); 3732 3733 #ifdef CONFIG_CGROUP_PERF 3734 if (cpuctx->cgrp) 3735 css = &cpuctx->cgrp->css; 3736 #endif 3737 } else { 3738 event_heap = (struct min_heap){ 3739 .data = itrs, 3740 .nr = 0, 3741 .size = ARRAY_SIZE(itrs), 3742 }; 3743 /* Events not within a CPU context may be on any CPU. */ 3744 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3745 } 3746 evt = event_heap.data; 3747 3748 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3749 3750 #ifdef CONFIG_CGROUP_PERF 3751 for (; css; css = css->parent) 3752 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3753 #endif 3754 3755 if (event_heap.nr) { 3756 __link_epc((*evt)->pmu_ctx); 3757 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3758 } 3759 3760 min_heapify_all(&event_heap, &perf_min_heap); 3761 3762 while (event_heap.nr) { 3763 ret = func(*evt, data); 3764 if (ret) 3765 return ret; 3766 3767 *evt = perf_event_groups_next(*evt, pmu); 3768 if (*evt) 3769 min_heapify(&event_heap, 0, &perf_min_heap); 3770 else 3771 min_heap_pop(&event_heap, &perf_min_heap); 3772 } 3773 3774 return 0; 3775 } 3776 3777 /* 3778 * Because the userpage is strictly per-event (there is no concept of context, 3779 * so there cannot be a context indirection), every userpage must be updated 3780 * when context time starts :-( 3781 * 3782 * IOW, we must not miss EVENT_TIME edges. 3783 */ 3784 static inline bool event_update_userpage(struct perf_event *event) 3785 { 3786 if (likely(!atomic_read(&event->mmap_count))) 3787 return false; 3788 3789 perf_event_update_time(event); 3790 perf_event_update_userpage(event); 3791 3792 return true; 3793 } 3794 3795 static inline void group_update_userpage(struct perf_event *group_event) 3796 { 3797 struct perf_event *event; 3798 3799 if (!event_update_userpage(group_event)) 3800 return; 3801 3802 for_each_sibling_event(event, group_event) 3803 event_update_userpage(event); 3804 } 3805 3806 static int merge_sched_in(struct perf_event *event, void *data) 3807 { 3808 struct perf_event_context *ctx = event->ctx; 3809 int *can_add_hw = data; 3810 3811 if (event->state <= PERF_EVENT_STATE_OFF) 3812 return 0; 3813 3814 if (!event_filter_match(event)) 3815 return 0; 3816 3817 if (group_can_go_on(event, *can_add_hw)) { 3818 if (!group_sched_in(event, ctx)) 3819 list_add_tail(&event->active_list, get_event_list(event)); 3820 } 3821 3822 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3823 *can_add_hw = 0; 3824 if (event->attr.pinned) { 3825 perf_cgroup_event_disable(event, ctx); 3826 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3827 } else { 3828 struct perf_cpu_pmu_context *cpc; 3829 3830 event->pmu_ctx->rotate_necessary = 1; 3831 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3832 perf_mux_hrtimer_restart(cpc); 3833 group_update_userpage(event); 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3841 struct perf_event_groups *groups, 3842 struct pmu *pmu) 3843 { 3844 int can_add_hw = 1; 3845 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3846 merge_sched_in, &can_add_hw); 3847 } 3848 3849 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3850 struct perf_event_groups *groups, 3851 bool cgroup) 3852 { 3853 struct perf_event_pmu_context *pmu_ctx; 3854 3855 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3856 if (cgroup && !pmu_ctx->nr_cgroups) 3857 continue; 3858 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3859 } 3860 } 3861 3862 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3863 struct pmu *pmu) 3864 { 3865 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3866 } 3867 3868 static void 3869 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3870 { 3871 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3872 int is_active = ctx->is_active; 3873 bool cgroup = event_type & EVENT_CGROUP; 3874 3875 event_type &= ~EVENT_CGROUP; 3876 3877 lockdep_assert_held(&ctx->lock); 3878 3879 if (likely(!ctx->nr_events)) 3880 return; 3881 3882 if (!(is_active & EVENT_TIME)) { 3883 /* start ctx time */ 3884 __update_context_time(ctx, false); 3885 perf_cgroup_set_timestamp(cpuctx); 3886 /* 3887 * CPU-release for the below ->is_active store, 3888 * see __load_acquire() in perf_event_time_now() 3889 */ 3890 barrier(); 3891 } 3892 3893 ctx->is_active |= (event_type | EVENT_TIME); 3894 if (ctx->task) { 3895 if (!is_active) 3896 cpuctx->task_ctx = ctx; 3897 else 3898 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3899 } 3900 3901 is_active ^= ctx->is_active; /* changed bits */ 3902 3903 /* 3904 * First go through the list and put on any pinned groups 3905 * in order to give them the best chance of going on. 3906 */ 3907 if (is_active & EVENT_PINNED) 3908 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3909 3910 /* Then walk through the lower prio flexible groups */ 3911 if (is_active & EVENT_FLEXIBLE) 3912 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3913 } 3914 3915 static void perf_event_context_sched_in(struct task_struct *task) 3916 { 3917 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3918 struct perf_event_context *ctx; 3919 3920 rcu_read_lock(); 3921 ctx = rcu_dereference(task->perf_event_ctxp); 3922 if (!ctx) 3923 goto rcu_unlock; 3924 3925 if (cpuctx->task_ctx == ctx) { 3926 perf_ctx_lock(cpuctx, ctx); 3927 perf_ctx_disable(ctx, false); 3928 3929 perf_ctx_sched_task_cb(ctx, true); 3930 3931 perf_ctx_enable(ctx, false); 3932 perf_ctx_unlock(cpuctx, ctx); 3933 goto rcu_unlock; 3934 } 3935 3936 perf_ctx_lock(cpuctx, ctx); 3937 /* 3938 * We must check ctx->nr_events while holding ctx->lock, such 3939 * that we serialize against perf_install_in_context(). 3940 */ 3941 if (!ctx->nr_events) 3942 goto unlock; 3943 3944 perf_ctx_disable(ctx, false); 3945 /* 3946 * We want to keep the following priority order: 3947 * cpu pinned (that don't need to move), task pinned, 3948 * cpu flexible, task flexible. 3949 * 3950 * However, if task's ctx is not carrying any pinned 3951 * events, no need to flip the cpuctx's events around. 3952 */ 3953 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3954 perf_ctx_disable(&cpuctx->ctx, false); 3955 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3956 } 3957 3958 perf_event_sched_in(cpuctx, ctx); 3959 3960 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3961 3962 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3963 perf_ctx_enable(&cpuctx->ctx, false); 3964 3965 perf_ctx_enable(ctx, false); 3966 3967 unlock: 3968 perf_ctx_unlock(cpuctx, ctx); 3969 rcu_unlock: 3970 rcu_read_unlock(); 3971 } 3972 3973 /* 3974 * Called from scheduler to add the events of the current task 3975 * with interrupts disabled. 3976 * 3977 * We restore the event value and then enable it. 3978 * 3979 * This does not protect us against NMI, but enable() 3980 * sets the enabled bit in the control field of event _before_ 3981 * accessing the event control register. If a NMI hits, then it will 3982 * keep the event running. 3983 */ 3984 void __perf_event_task_sched_in(struct task_struct *prev, 3985 struct task_struct *task) 3986 { 3987 perf_event_context_sched_in(task); 3988 3989 if (atomic_read(&nr_switch_events)) 3990 perf_event_switch(task, prev, true); 3991 3992 if (__this_cpu_read(perf_sched_cb_usages)) 3993 perf_pmu_sched_task(prev, task, true); 3994 } 3995 3996 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3997 { 3998 u64 frequency = event->attr.sample_freq; 3999 u64 sec = NSEC_PER_SEC; 4000 u64 divisor, dividend; 4001 4002 int count_fls, nsec_fls, frequency_fls, sec_fls; 4003 4004 count_fls = fls64(count); 4005 nsec_fls = fls64(nsec); 4006 frequency_fls = fls64(frequency); 4007 sec_fls = 30; 4008 4009 /* 4010 * We got @count in @nsec, with a target of sample_freq HZ 4011 * the target period becomes: 4012 * 4013 * @count * 10^9 4014 * period = ------------------- 4015 * @nsec * sample_freq 4016 * 4017 */ 4018 4019 /* 4020 * Reduce accuracy by one bit such that @a and @b converge 4021 * to a similar magnitude. 4022 */ 4023 #define REDUCE_FLS(a, b) \ 4024 do { \ 4025 if (a##_fls > b##_fls) { \ 4026 a >>= 1; \ 4027 a##_fls--; \ 4028 } else { \ 4029 b >>= 1; \ 4030 b##_fls--; \ 4031 } \ 4032 } while (0) 4033 4034 /* 4035 * Reduce accuracy until either term fits in a u64, then proceed with 4036 * the other, so that finally we can do a u64/u64 division. 4037 */ 4038 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4039 REDUCE_FLS(nsec, frequency); 4040 REDUCE_FLS(sec, count); 4041 } 4042 4043 if (count_fls + sec_fls > 64) { 4044 divisor = nsec * frequency; 4045 4046 while (count_fls + sec_fls > 64) { 4047 REDUCE_FLS(count, sec); 4048 divisor >>= 1; 4049 } 4050 4051 dividend = count * sec; 4052 } else { 4053 dividend = count * sec; 4054 4055 while (nsec_fls + frequency_fls > 64) { 4056 REDUCE_FLS(nsec, frequency); 4057 dividend >>= 1; 4058 } 4059 4060 divisor = nsec * frequency; 4061 } 4062 4063 if (!divisor) 4064 return dividend; 4065 4066 return div64_u64(dividend, divisor); 4067 } 4068 4069 static DEFINE_PER_CPU(int, perf_throttled_count); 4070 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4071 4072 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4073 { 4074 struct hw_perf_event *hwc = &event->hw; 4075 s64 period, sample_period; 4076 s64 delta; 4077 4078 period = perf_calculate_period(event, nsec, count); 4079 4080 delta = (s64)(period - hwc->sample_period); 4081 delta = (delta + 7) / 8; /* low pass filter */ 4082 4083 sample_period = hwc->sample_period + delta; 4084 4085 if (!sample_period) 4086 sample_period = 1; 4087 4088 hwc->sample_period = sample_period; 4089 4090 if (local64_read(&hwc->period_left) > 8*sample_period) { 4091 if (disable) 4092 event->pmu->stop(event, PERF_EF_UPDATE); 4093 4094 local64_set(&hwc->period_left, 0); 4095 4096 if (disable) 4097 event->pmu->start(event, PERF_EF_RELOAD); 4098 } 4099 } 4100 4101 /* 4102 * combine freq adjustment with unthrottling to avoid two passes over the 4103 * events. At the same time, make sure, having freq events does not change 4104 * the rate of unthrottling as that would introduce bias. 4105 */ 4106 static void 4107 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4108 { 4109 struct perf_event *event; 4110 struct hw_perf_event *hwc; 4111 u64 now, period = TICK_NSEC; 4112 s64 delta; 4113 4114 /* 4115 * only need to iterate over all events iff: 4116 * - context have events in frequency mode (needs freq adjust) 4117 * - there are events to unthrottle on this cpu 4118 */ 4119 if (!(ctx->nr_freq || unthrottle)) 4120 return; 4121 4122 raw_spin_lock(&ctx->lock); 4123 4124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4125 if (event->state != PERF_EVENT_STATE_ACTIVE) 4126 continue; 4127 4128 // XXX use visit thingy to avoid the -1,cpu match 4129 if (!event_filter_match(event)) 4130 continue; 4131 4132 perf_pmu_disable(event->pmu); 4133 4134 hwc = &event->hw; 4135 4136 if (hwc->interrupts == MAX_INTERRUPTS) { 4137 hwc->interrupts = 0; 4138 perf_log_throttle(event, 1); 4139 event->pmu->start(event, 0); 4140 } 4141 4142 if (!event->attr.freq || !event->attr.sample_freq) 4143 goto next; 4144 4145 /* 4146 * stop the event and update event->count 4147 */ 4148 event->pmu->stop(event, PERF_EF_UPDATE); 4149 4150 now = local64_read(&event->count); 4151 delta = now - hwc->freq_count_stamp; 4152 hwc->freq_count_stamp = now; 4153 4154 /* 4155 * restart the event 4156 * reload only if value has changed 4157 * we have stopped the event so tell that 4158 * to perf_adjust_period() to avoid stopping it 4159 * twice. 4160 */ 4161 if (delta > 0) 4162 perf_adjust_period(event, period, delta, false); 4163 4164 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4165 next: 4166 perf_pmu_enable(event->pmu); 4167 } 4168 4169 raw_spin_unlock(&ctx->lock); 4170 } 4171 4172 /* 4173 * Move @event to the tail of the @ctx's elegible events. 4174 */ 4175 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4176 { 4177 /* 4178 * Rotate the first entry last of non-pinned groups. Rotation might be 4179 * disabled by the inheritance code. 4180 */ 4181 if (ctx->rotate_disable) 4182 return; 4183 4184 perf_event_groups_delete(&ctx->flexible_groups, event); 4185 perf_event_groups_insert(&ctx->flexible_groups, event); 4186 } 4187 4188 /* pick an event from the flexible_groups to rotate */ 4189 static inline struct perf_event * 4190 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4191 { 4192 struct perf_event *event; 4193 struct rb_node *node; 4194 struct rb_root *tree; 4195 struct __group_key key = { 4196 .pmu = pmu_ctx->pmu, 4197 }; 4198 4199 /* pick the first active flexible event */ 4200 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4201 struct perf_event, active_list); 4202 if (event) 4203 goto out; 4204 4205 /* if no active flexible event, pick the first event */ 4206 tree = &pmu_ctx->ctx->flexible_groups.tree; 4207 4208 if (!pmu_ctx->ctx->task) { 4209 key.cpu = smp_processor_id(); 4210 4211 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4212 if (node) 4213 event = __node_2_pe(node); 4214 goto out; 4215 } 4216 4217 key.cpu = -1; 4218 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4219 if (node) { 4220 event = __node_2_pe(node); 4221 goto out; 4222 } 4223 4224 key.cpu = smp_processor_id(); 4225 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4226 if (node) 4227 event = __node_2_pe(node); 4228 4229 out: 4230 /* 4231 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4232 * finds there are unschedulable events, it will set it again. 4233 */ 4234 pmu_ctx->rotate_necessary = 0; 4235 4236 return event; 4237 } 4238 4239 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4240 { 4241 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4242 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4243 struct perf_event *cpu_event = NULL, *task_event = NULL; 4244 int cpu_rotate, task_rotate; 4245 struct pmu *pmu; 4246 4247 /* 4248 * Since we run this from IRQ context, nobody can install new 4249 * events, thus the event count values are stable. 4250 */ 4251 4252 cpu_epc = &cpc->epc; 4253 pmu = cpu_epc->pmu; 4254 task_epc = cpc->task_epc; 4255 4256 cpu_rotate = cpu_epc->rotate_necessary; 4257 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4258 4259 if (!(cpu_rotate || task_rotate)) 4260 return false; 4261 4262 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4263 perf_pmu_disable(pmu); 4264 4265 if (task_rotate) 4266 task_event = ctx_event_to_rotate(task_epc); 4267 if (cpu_rotate) 4268 cpu_event = ctx_event_to_rotate(cpu_epc); 4269 4270 /* 4271 * As per the order given at ctx_resched() first 'pop' task flexible 4272 * and then, if needed CPU flexible. 4273 */ 4274 if (task_event || (task_epc && cpu_event)) { 4275 update_context_time(task_epc->ctx); 4276 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4277 } 4278 4279 if (cpu_event) { 4280 update_context_time(&cpuctx->ctx); 4281 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4282 rotate_ctx(&cpuctx->ctx, cpu_event); 4283 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4284 } 4285 4286 if (task_event) 4287 rotate_ctx(task_epc->ctx, task_event); 4288 4289 if (task_event || (task_epc && cpu_event)) 4290 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4291 4292 perf_pmu_enable(pmu); 4293 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4294 4295 return true; 4296 } 4297 4298 void perf_event_task_tick(void) 4299 { 4300 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4301 struct perf_event_context *ctx; 4302 int throttled; 4303 4304 lockdep_assert_irqs_disabled(); 4305 4306 __this_cpu_inc(perf_throttled_seq); 4307 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4308 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4309 4310 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4311 4312 rcu_read_lock(); 4313 ctx = rcu_dereference(current->perf_event_ctxp); 4314 if (ctx) 4315 perf_adjust_freq_unthr_context(ctx, !!throttled); 4316 rcu_read_unlock(); 4317 } 4318 4319 static int event_enable_on_exec(struct perf_event *event, 4320 struct perf_event_context *ctx) 4321 { 4322 if (!event->attr.enable_on_exec) 4323 return 0; 4324 4325 event->attr.enable_on_exec = 0; 4326 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4327 return 0; 4328 4329 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4330 4331 return 1; 4332 } 4333 4334 /* 4335 * Enable all of a task's events that have been marked enable-on-exec. 4336 * This expects task == current. 4337 */ 4338 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4339 { 4340 struct perf_event_context *clone_ctx = NULL; 4341 enum event_type_t event_type = 0; 4342 struct perf_cpu_context *cpuctx; 4343 struct perf_event *event; 4344 unsigned long flags; 4345 int enabled = 0; 4346 4347 local_irq_save(flags); 4348 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4349 goto out; 4350 4351 if (!ctx->nr_events) 4352 goto out; 4353 4354 cpuctx = this_cpu_ptr(&perf_cpu_context); 4355 perf_ctx_lock(cpuctx, ctx); 4356 ctx_sched_out(ctx, EVENT_TIME); 4357 4358 list_for_each_entry(event, &ctx->event_list, event_entry) { 4359 enabled |= event_enable_on_exec(event, ctx); 4360 event_type |= get_event_type(event); 4361 } 4362 4363 /* 4364 * Unclone and reschedule this context if we enabled any event. 4365 */ 4366 if (enabled) { 4367 clone_ctx = unclone_ctx(ctx); 4368 ctx_resched(cpuctx, ctx, event_type); 4369 } else { 4370 ctx_sched_in(ctx, EVENT_TIME); 4371 } 4372 perf_ctx_unlock(cpuctx, ctx); 4373 4374 out: 4375 local_irq_restore(flags); 4376 4377 if (clone_ctx) 4378 put_ctx(clone_ctx); 4379 } 4380 4381 static void perf_remove_from_owner(struct perf_event *event); 4382 static void perf_event_exit_event(struct perf_event *event, 4383 struct perf_event_context *ctx); 4384 4385 /* 4386 * Removes all events from the current task that have been marked 4387 * remove-on-exec, and feeds their values back to parent events. 4388 */ 4389 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4390 { 4391 struct perf_event_context *clone_ctx = NULL; 4392 struct perf_event *event, *next; 4393 unsigned long flags; 4394 bool modified = false; 4395 4396 mutex_lock(&ctx->mutex); 4397 4398 if (WARN_ON_ONCE(ctx->task != current)) 4399 goto unlock; 4400 4401 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4402 if (!event->attr.remove_on_exec) 4403 continue; 4404 4405 if (!is_kernel_event(event)) 4406 perf_remove_from_owner(event); 4407 4408 modified = true; 4409 4410 perf_event_exit_event(event, ctx); 4411 } 4412 4413 raw_spin_lock_irqsave(&ctx->lock, flags); 4414 if (modified) 4415 clone_ctx = unclone_ctx(ctx); 4416 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4417 4418 unlock: 4419 mutex_unlock(&ctx->mutex); 4420 4421 if (clone_ctx) 4422 put_ctx(clone_ctx); 4423 } 4424 4425 struct perf_read_data { 4426 struct perf_event *event; 4427 bool group; 4428 int ret; 4429 }; 4430 4431 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4432 { 4433 u16 local_pkg, event_pkg; 4434 4435 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4436 int local_cpu = smp_processor_id(); 4437 4438 event_pkg = topology_physical_package_id(event_cpu); 4439 local_pkg = topology_physical_package_id(local_cpu); 4440 4441 if (event_pkg == local_pkg) 4442 return local_cpu; 4443 } 4444 4445 return event_cpu; 4446 } 4447 4448 /* 4449 * Cross CPU call to read the hardware event 4450 */ 4451 static void __perf_event_read(void *info) 4452 { 4453 struct perf_read_data *data = info; 4454 struct perf_event *sub, *event = data->event; 4455 struct perf_event_context *ctx = event->ctx; 4456 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4457 struct pmu *pmu = event->pmu; 4458 4459 /* 4460 * If this is a task context, we need to check whether it is 4461 * the current task context of this cpu. If not it has been 4462 * scheduled out before the smp call arrived. In that case 4463 * event->count would have been updated to a recent sample 4464 * when the event was scheduled out. 4465 */ 4466 if (ctx->task && cpuctx->task_ctx != ctx) 4467 return; 4468 4469 raw_spin_lock(&ctx->lock); 4470 if (ctx->is_active & EVENT_TIME) { 4471 update_context_time(ctx); 4472 update_cgrp_time_from_event(event); 4473 } 4474 4475 perf_event_update_time(event); 4476 if (data->group) 4477 perf_event_update_sibling_time(event); 4478 4479 if (event->state != PERF_EVENT_STATE_ACTIVE) 4480 goto unlock; 4481 4482 if (!data->group) { 4483 pmu->read(event); 4484 data->ret = 0; 4485 goto unlock; 4486 } 4487 4488 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4489 4490 pmu->read(event); 4491 4492 for_each_sibling_event(sub, event) { 4493 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4494 /* 4495 * Use sibling's PMU rather than @event's since 4496 * sibling could be on different (eg: software) PMU. 4497 */ 4498 sub->pmu->read(sub); 4499 } 4500 } 4501 4502 data->ret = pmu->commit_txn(pmu); 4503 4504 unlock: 4505 raw_spin_unlock(&ctx->lock); 4506 } 4507 4508 static inline u64 perf_event_count(struct perf_event *event) 4509 { 4510 return local64_read(&event->count) + atomic64_read(&event->child_count); 4511 } 4512 4513 static void calc_timer_values(struct perf_event *event, 4514 u64 *now, 4515 u64 *enabled, 4516 u64 *running) 4517 { 4518 u64 ctx_time; 4519 4520 *now = perf_clock(); 4521 ctx_time = perf_event_time_now(event, *now); 4522 __perf_update_times(event, ctx_time, enabled, running); 4523 } 4524 4525 /* 4526 * NMI-safe method to read a local event, that is an event that 4527 * is: 4528 * - either for the current task, or for this CPU 4529 * - does not have inherit set, for inherited task events 4530 * will not be local and we cannot read them atomically 4531 * - must not have a pmu::count method 4532 */ 4533 int perf_event_read_local(struct perf_event *event, u64 *value, 4534 u64 *enabled, u64 *running) 4535 { 4536 unsigned long flags; 4537 int ret = 0; 4538 4539 /* 4540 * Disabling interrupts avoids all counter scheduling (context 4541 * switches, timer based rotation and IPIs). 4542 */ 4543 local_irq_save(flags); 4544 4545 /* 4546 * It must not be an event with inherit set, we cannot read 4547 * all child counters from atomic context. 4548 */ 4549 if (event->attr.inherit) { 4550 ret = -EOPNOTSUPP; 4551 goto out; 4552 } 4553 4554 /* If this is a per-task event, it must be for current */ 4555 if ((event->attach_state & PERF_ATTACH_TASK) && 4556 event->hw.target != current) { 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 /* If this is a per-CPU event, it must be for this CPU */ 4562 if (!(event->attach_state & PERF_ATTACH_TASK) && 4563 event->cpu != smp_processor_id()) { 4564 ret = -EINVAL; 4565 goto out; 4566 } 4567 4568 /* If this is a pinned event it must be running on this CPU */ 4569 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4570 ret = -EBUSY; 4571 goto out; 4572 } 4573 4574 /* 4575 * If the event is currently on this CPU, its either a per-task event, 4576 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4577 * oncpu == -1). 4578 */ 4579 if (event->oncpu == smp_processor_id()) 4580 event->pmu->read(event); 4581 4582 *value = local64_read(&event->count); 4583 if (enabled || running) { 4584 u64 __enabled, __running, __now; 4585 4586 calc_timer_values(event, &__now, &__enabled, &__running); 4587 if (enabled) 4588 *enabled = __enabled; 4589 if (running) 4590 *running = __running; 4591 } 4592 out: 4593 local_irq_restore(flags); 4594 4595 return ret; 4596 } 4597 4598 static int perf_event_read(struct perf_event *event, bool group) 4599 { 4600 enum perf_event_state state = READ_ONCE(event->state); 4601 int event_cpu, ret = 0; 4602 4603 /* 4604 * If event is enabled and currently active on a CPU, update the 4605 * value in the event structure: 4606 */ 4607 again: 4608 if (state == PERF_EVENT_STATE_ACTIVE) { 4609 struct perf_read_data data; 4610 4611 /* 4612 * Orders the ->state and ->oncpu loads such that if we see 4613 * ACTIVE we must also see the right ->oncpu. 4614 * 4615 * Matches the smp_wmb() from event_sched_in(). 4616 */ 4617 smp_rmb(); 4618 4619 event_cpu = READ_ONCE(event->oncpu); 4620 if ((unsigned)event_cpu >= nr_cpu_ids) 4621 return 0; 4622 4623 data = (struct perf_read_data){ 4624 .event = event, 4625 .group = group, 4626 .ret = 0, 4627 }; 4628 4629 preempt_disable(); 4630 event_cpu = __perf_event_read_cpu(event, event_cpu); 4631 4632 /* 4633 * Purposely ignore the smp_call_function_single() return 4634 * value. 4635 * 4636 * If event_cpu isn't a valid CPU it means the event got 4637 * scheduled out and that will have updated the event count. 4638 * 4639 * Therefore, either way, we'll have an up-to-date event count 4640 * after this. 4641 */ 4642 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4643 preempt_enable(); 4644 ret = data.ret; 4645 4646 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4647 struct perf_event_context *ctx = event->ctx; 4648 unsigned long flags; 4649 4650 raw_spin_lock_irqsave(&ctx->lock, flags); 4651 state = event->state; 4652 if (state != PERF_EVENT_STATE_INACTIVE) { 4653 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4654 goto again; 4655 } 4656 4657 /* 4658 * May read while context is not active (e.g., thread is 4659 * blocked), in that case we cannot update context time 4660 */ 4661 if (ctx->is_active & EVENT_TIME) { 4662 update_context_time(ctx); 4663 update_cgrp_time_from_event(event); 4664 } 4665 4666 perf_event_update_time(event); 4667 if (group) 4668 perf_event_update_sibling_time(event); 4669 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4670 } 4671 4672 return ret; 4673 } 4674 4675 /* 4676 * Initialize the perf_event context in a task_struct: 4677 */ 4678 static void __perf_event_init_context(struct perf_event_context *ctx) 4679 { 4680 raw_spin_lock_init(&ctx->lock); 4681 mutex_init(&ctx->mutex); 4682 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4683 perf_event_groups_init(&ctx->pinned_groups); 4684 perf_event_groups_init(&ctx->flexible_groups); 4685 INIT_LIST_HEAD(&ctx->event_list); 4686 refcount_set(&ctx->refcount, 1); 4687 } 4688 4689 static void 4690 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4691 { 4692 epc->pmu = pmu; 4693 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4694 INIT_LIST_HEAD(&epc->pinned_active); 4695 INIT_LIST_HEAD(&epc->flexible_active); 4696 atomic_set(&epc->refcount, 1); 4697 } 4698 4699 static struct perf_event_context * 4700 alloc_perf_context(struct task_struct *task) 4701 { 4702 struct perf_event_context *ctx; 4703 4704 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4705 if (!ctx) 4706 return NULL; 4707 4708 __perf_event_init_context(ctx); 4709 if (task) 4710 ctx->task = get_task_struct(task); 4711 4712 return ctx; 4713 } 4714 4715 static struct task_struct * 4716 find_lively_task_by_vpid(pid_t vpid) 4717 { 4718 struct task_struct *task; 4719 4720 rcu_read_lock(); 4721 if (!vpid) 4722 task = current; 4723 else 4724 task = find_task_by_vpid(vpid); 4725 if (task) 4726 get_task_struct(task); 4727 rcu_read_unlock(); 4728 4729 if (!task) 4730 return ERR_PTR(-ESRCH); 4731 4732 return task; 4733 } 4734 4735 /* 4736 * Returns a matching context with refcount and pincount. 4737 */ 4738 static struct perf_event_context * 4739 find_get_context(struct task_struct *task, struct perf_event *event) 4740 { 4741 struct perf_event_context *ctx, *clone_ctx = NULL; 4742 struct perf_cpu_context *cpuctx; 4743 unsigned long flags; 4744 int err; 4745 4746 if (!task) { 4747 /* Must be root to operate on a CPU event: */ 4748 err = perf_allow_cpu(&event->attr); 4749 if (err) 4750 return ERR_PTR(err); 4751 4752 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4753 ctx = &cpuctx->ctx; 4754 get_ctx(ctx); 4755 raw_spin_lock_irqsave(&ctx->lock, flags); 4756 ++ctx->pin_count; 4757 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4758 4759 return ctx; 4760 } 4761 4762 err = -EINVAL; 4763 retry: 4764 ctx = perf_lock_task_context(task, &flags); 4765 if (ctx) { 4766 clone_ctx = unclone_ctx(ctx); 4767 ++ctx->pin_count; 4768 4769 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4770 4771 if (clone_ctx) 4772 put_ctx(clone_ctx); 4773 } else { 4774 ctx = alloc_perf_context(task); 4775 err = -ENOMEM; 4776 if (!ctx) 4777 goto errout; 4778 4779 err = 0; 4780 mutex_lock(&task->perf_event_mutex); 4781 /* 4782 * If it has already passed perf_event_exit_task(). 4783 * we must see PF_EXITING, it takes this mutex too. 4784 */ 4785 if (task->flags & PF_EXITING) 4786 err = -ESRCH; 4787 else if (task->perf_event_ctxp) 4788 err = -EAGAIN; 4789 else { 4790 get_ctx(ctx); 4791 ++ctx->pin_count; 4792 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4793 } 4794 mutex_unlock(&task->perf_event_mutex); 4795 4796 if (unlikely(err)) { 4797 put_ctx(ctx); 4798 4799 if (err == -EAGAIN) 4800 goto retry; 4801 goto errout; 4802 } 4803 } 4804 4805 return ctx; 4806 4807 errout: 4808 return ERR_PTR(err); 4809 } 4810 4811 static struct perf_event_pmu_context * 4812 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4813 struct perf_event *event) 4814 { 4815 struct perf_event_pmu_context *new = NULL, *epc; 4816 void *task_ctx_data = NULL; 4817 4818 if (!ctx->task) { 4819 struct perf_cpu_pmu_context *cpc; 4820 4821 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4822 epc = &cpc->epc; 4823 raw_spin_lock_irq(&ctx->lock); 4824 if (!epc->ctx) { 4825 atomic_set(&epc->refcount, 1); 4826 epc->embedded = 1; 4827 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4828 epc->ctx = ctx; 4829 } else { 4830 WARN_ON_ONCE(epc->ctx != ctx); 4831 atomic_inc(&epc->refcount); 4832 } 4833 raw_spin_unlock_irq(&ctx->lock); 4834 return epc; 4835 } 4836 4837 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4838 if (!new) 4839 return ERR_PTR(-ENOMEM); 4840 4841 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4842 task_ctx_data = alloc_task_ctx_data(pmu); 4843 if (!task_ctx_data) { 4844 kfree(new); 4845 return ERR_PTR(-ENOMEM); 4846 } 4847 } 4848 4849 __perf_init_event_pmu_context(new, pmu); 4850 4851 /* 4852 * XXX 4853 * 4854 * lockdep_assert_held(&ctx->mutex); 4855 * 4856 * can't because perf_event_init_task() doesn't actually hold the 4857 * child_ctx->mutex. 4858 */ 4859 4860 raw_spin_lock_irq(&ctx->lock); 4861 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4862 if (epc->pmu == pmu) { 4863 WARN_ON_ONCE(epc->ctx != ctx); 4864 atomic_inc(&epc->refcount); 4865 goto found_epc; 4866 } 4867 } 4868 4869 epc = new; 4870 new = NULL; 4871 4872 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4873 epc->ctx = ctx; 4874 4875 found_epc: 4876 if (task_ctx_data && !epc->task_ctx_data) { 4877 epc->task_ctx_data = task_ctx_data; 4878 task_ctx_data = NULL; 4879 ctx->nr_task_data++; 4880 } 4881 raw_spin_unlock_irq(&ctx->lock); 4882 4883 free_task_ctx_data(pmu, task_ctx_data); 4884 kfree(new); 4885 4886 return epc; 4887 } 4888 4889 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4890 { 4891 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4892 } 4893 4894 static void free_epc_rcu(struct rcu_head *head) 4895 { 4896 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4897 4898 kfree(epc->task_ctx_data); 4899 kfree(epc); 4900 } 4901 4902 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4903 { 4904 struct perf_event_context *ctx = epc->ctx; 4905 unsigned long flags; 4906 4907 /* 4908 * XXX 4909 * 4910 * lockdep_assert_held(&ctx->mutex); 4911 * 4912 * can't because of the call-site in _free_event()/put_event() 4913 * which isn't always called under ctx->mutex. 4914 */ 4915 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4916 return; 4917 4918 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4919 4920 list_del_init(&epc->pmu_ctx_entry); 4921 epc->ctx = NULL; 4922 4923 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4924 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4925 4926 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4927 4928 if (epc->embedded) 4929 return; 4930 4931 call_rcu(&epc->rcu_head, free_epc_rcu); 4932 } 4933 4934 static void perf_event_free_filter(struct perf_event *event); 4935 4936 static void free_event_rcu(struct rcu_head *head) 4937 { 4938 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4939 4940 if (event->ns) 4941 put_pid_ns(event->ns); 4942 perf_event_free_filter(event); 4943 kmem_cache_free(perf_event_cache, event); 4944 } 4945 4946 static void ring_buffer_attach(struct perf_event *event, 4947 struct perf_buffer *rb); 4948 4949 static void detach_sb_event(struct perf_event *event) 4950 { 4951 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4952 4953 raw_spin_lock(&pel->lock); 4954 list_del_rcu(&event->sb_list); 4955 raw_spin_unlock(&pel->lock); 4956 } 4957 4958 static bool is_sb_event(struct perf_event *event) 4959 { 4960 struct perf_event_attr *attr = &event->attr; 4961 4962 if (event->parent) 4963 return false; 4964 4965 if (event->attach_state & PERF_ATTACH_TASK) 4966 return false; 4967 4968 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4969 attr->comm || attr->comm_exec || 4970 attr->task || attr->ksymbol || 4971 attr->context_switch || attr->text_poke || 4972 attr->bpf_event) 4973 return true; 4974 return false; 4975 } 4976 4977 static void unaccount_pmu_sb_event(struct perf_event *event) 4978 { 4979 if (is_sb_event(event)) 4980 detach_sb_event(event); 4981 } 4982 4983 #ifdef CONFIG_NO_HZ_FULL 4984 static DEFINE_SPINLOCK(nr_freq_lock); 4985 #endif 4986 4987 static void unaccount_freq_event_nohz(void) 4988 { 4989 #ifdef CONFIG_NO_HZ_FULL 4990 spin_lock(&nr_freq_lock); 4991 if (atomic_dec_and_test(&nr_freq_events)) 4992 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4993 spin_unlock(&nr_freq_lock); 4994 #endif 4995 } 4996 4997 static void unaccount_freq_event(void) 4998 { 4999 if (tick_nohz_full_enabled()) 5000 unaccount_freq_event_nohz(); 5001 else 5002 atomic_dec(&nr_freq_events); 5003 } 5004 5005 static void unaccount_event(struct perf_event *event) 5006 { 5007 bool dec = false; 5008 5009 if (event->parent) 5010 return; 5011 5012 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5013 dec = true; 5014 if (event->attr.mmap || event->attr.mmap_data) 5015 atomic_dec(&nr_mmap_events); 5016 if (event->attr.build_id) 5017 atomic_dec(&nr_build_id_events); 5018 if (event->attr.comm) 5019 atomic_dec(&nr_comm_events); 5020 if (event->attr.namespaces) 5021 atomic_dec(&nr_namespaces_events); 5022 if (event->attr.cgroup) 5023 atomic_dec(&nr_cgroup_events); 5024 if (event->attr.task) 5025 atomic_dec(&nr_task_events); 5026 if (event->attr.freq) 5027 unaccount_freq_event(); 5028 if (event->attr.context_switch) { 5029 dec = true; 5030 atomic_dec(&nr_switch_events); 5031 } 5032 if (is_cgroup_event(event)) 5033 dec = true; 5034 if (has_branch_stack(event)) 5035 dec = true; 5036 if (event->attr.ksymbol) 5037 atomic_dec(&nr_ksymbol_events); 5038 if (event->attr.bpf_event) 5039 atomic_dec(&nr_bpf_events); 5040 if (event->attr.text_poke) 5041 atomic_dec(&nr_text_poke_events); 5042 5043 if (dec) { 5044 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5045 schedule_delayed_work(&perf_sched_work, HZ); 5046 } 5047 5048 unaccount_pmu_sb_event(event); 5049 } 5050 5051 static void perf_sched_delayed(struct work_struct *work) 5052 { 5053 mutex_lock(&perf_sched_mutex); 5054 if (atomic_dec_and_test(&perf_sched_count)) 5055 static_branch_disable(&perf_sched_events); 5056 mutex_unlock(&perf_sched_mutex); 5057 } 5058 5059 /* 5060 * The following implement mutual exclusion of events on "exclusive" pmus 5061 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5062 * at a time, so we disallow creating events that might conflict, namely: 5063 * 5064 * 1) cpu-wide events in the presence of per-task events, 5065 * 2) per-task events in the presence of cpu-wide events, 5066 * 3) two matching events on the same perf_event_context. 5067 * 5068 * The former two cases are handled in the allocation path (perf_event_alloc(), 5069 * _free_event()), the latter -- before the first perf_install_in_context(). 5070 */ 5071 static int exclusive_event_init(struct perf_event *event) 5072 { 5073 struct pmu *pmu = event->pmu; 5074 5075 if (!is_exclusive_pmu(pmu)) 5076 return 0; 5077 5078 /* 5079 * Prevent co-existence of per-task and cpu-wide events on the 5080 * same exclusive pmu. 5081 * 5082 * Negative pmu::exclusive_cnt means there are cpu-wide 5083 * events on this "exclusive" pmu, positive means there are 5084 * per-task events. 5085 * 5086 * Since this is called in perf_event_alloc() path, event::ctx 5087 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5088 * to mean "per-task event", because unlike other attach states it 5089 * never gets cleared. 5090 */ 5091 if (event->attach_state & PERF_ATTACH_TASK) { 5092 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5093 return -EBUSY; 5094 } else { 5095 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5096 return -EBUSY; 5097 } 5098 5099 return 0; 5100 } 5101 5102 static void exclusive_event_destroy(struct perf_event *event) 5103 { 5104 struct pmu *pmu = event->pmu; 5105 5106 if (!is_exclusive_pmu(pmu)) 5107 return; 5108 5109 /* see comment in exclusive_event_init() */ 5110 if (event->attach_state & PERF_ATTACH_TASK) 5111 atomic_dec(&pmu->exclusive_cnt); 5112 else 5113 atomic_inc(&pmu->exclusive_cnt); 5114 } 5115 5116 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5117 { 5118 if ((e1->pmu == e2->pmu) && 5119 (e1->cpu == e2->cpu || 5120 e1->cpu == -1 || 5121 e2->cpu == -1)) 5122 return true; 5123 return false; 5124 } 5125 5126 static bool exclusive_event_installable(struct perf_event *event, 5127 struct perf_event_context *ctx) 5128 { 5129 struct perf_event *iter_event; 5130 struct pmu *pmu = event->pmu; 5131 5132 lockdep_assert_held(&ctx->mutex); 5133 5134 if (!is_exclusive_pmu(pmu)) 5135 return true; 5136 5137 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5138 if (exclusive_event_match(iter_event, event)) 5139 return false; 5140 } 5141 5142 return true; 5143 } 5144 5145 static void perf_addr_filters_splice(struct perf_event *event, 5146 struct list_head *head); 5147 5148 static void _free_event(struct perf_event *event) 5149 { 5150 irq_work_sync(&event->pending_irq); 5151 5152 unaccount_event(event); 5153 5154 security_perf_event_free(event); 5155 5156 if (event->rb) { 5157 /* 5158 * Can happen when we close an event with re-directed output. 5159 * 5160 * Since we have a 0 refcount, perf_mmap_close() will skip 5161 * over us; possibly making our ring_buffer_put() the last. 5162 */ 5163 mutex_lock(&event->mmap_mutex); 5164 ring_buffer_attach(event, NULL); 5165 mutex_unlock(&event->mmap_mutex); 5166 } 5167 5168 if (is_cgroup_event(event)) 5169 perf_detach_cgroup(event); 5170 5171 if (!event->parent) { 5172 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5173 put_callchain_buffers(); 5174 } 5175 5176 perf_event_free_bpf_prog(event); 5177 perf_addr_filters_splice(event, NULL); 5178 kfree(event->addr_filter_ranges); 5179 5180 if (event->destroy) 5181 event->destroy(event); 5182 5183 /* 5184 * Must be after ->destroy(), due to uprobe_perf_close() using 5185 * hw.target. 5186 */ 5187 if (event->hw.target) 5188 put_task_struct(event->hw.target); 5189 5190 if (event->pmu_ctx) 5191 put_pmu_ctx(event->pmu_ctx); 5192 5193 /* 5194 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5195 * all task references must be cleaned up. 5196 */ 5197 if (event->ctx) 5198 put_ctx(event->ctx); 5199 5200 exclusive_event_destroy(event); 5201 module_put(event->pmu->module); 5202 5203 call_rcu(&event->rcu_head, free_event_rcu); 5204 } 5205 5206 /* 5207 * Used to free events which have a known refcount of 1, such as in error paths 5208 * where the event isn't exposed yet and inherited events. 5209 */ 5210 static void free_event(struct perf_event *event) 5211 { 5212 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5213 "unexpected event refcount: %ld; ptr=%p\n", 5214 atomic_long_read(&event->refcount), event)) { 5215 /* leak to avoid use-after-free */ 5216 return; 5217 } 5218 5219 _free_event(event); 5220 } 5221 5222 /* 5223 * Remove user event from the owner task. 5224 */ 5225 static void perf_remove_from_owner(struct perf_event *event) 5226 { 5227 struct task_struct *owner; 5228 5229 rcu_read_lock(); 5230 /* 5231 * Matches the smp_store_release() in perf_event_exit_task(). If we 5232 * observe !owner it means the list deletion is complete and we can 5233 * indeed free this event, otherwise we need to serialize on 5234 * owner->perf_event_mutex. 5235 */ 5236 owner = READ_ONCE(event->owner); 5237 if (owner) { 5238 /* 5239 * Since delayed_put_task_struct() also drops the last 5240 * task reference we can safely take a new reference 5241 * while holding the rcu_read_lock(). 5242 */ 5243 get_task_struct(owner); 5244 } 5245 rcu_read_unlock(); 5246 5247 if (owner) { 5248 /* 5249 * If we're here through perf_event_exit_task() we're already 5250 * holding ctx->mutex which would be an inversion wrt. the 5251 * normal lock order. 5252 * 5253 * However we can safely take this lock because its the child 5254 * ctx->mutex. 5255 */ 5256 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5257 5258 /* 5259 * We have to re-check the event->owner field, if it is cleared 5260 * we raced with perf_event_exit_task(), acquiring the mutex 5261 * ensured they're done, and we can proceed with freeing the 5262 * event. 5263 */ 5264 if (event->owner) { 5265 list_del_init(&event->owner_entry); 5266 smp_store_release(&event->owner, NULL); 5267 } 5268 mutex_unlock(&owner->perf_event_mutex); 5269 put_task_struct(owner); 5270 } 5271 } 5272 5273 static void put_event(struct perf_event *event) 5274 { 5275 if (!atomic_long_dec_and_test(&event->refcount)) 5276 return; 5277 5278 _free_event(event); 5279 } 5280 5281 /* 5282 * Kill an event dead; while event:refcount will preserve the event 5283 * object, it will not preserve its functionality. Once the last 'user' 5284 * gives up the object, we'll destroy the thing. 5285 */ 5286 int perf_event_release_kernel(struct perf_event *event) 5287 { 5288 struct perf_event_context *ctx = event->ctx; 5289 struct perf_event *child, *tmp; 5290 LIST_HEAD(free_list); 5291 5292 /* 5293 * If we got here through err_alloc: free_event(event); we will not 5294 * have attached to a context yet. 5295 */ 5296 if (!ctx) { 5297 WARN_ON_ONCE(event->attach_state & 5298 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5299 goto no_ctx; 5300 } 5301 5302 if (!is_kernel_event(event)) 5303 perf_remove_from_owner(event); 5304 5305 ctx = perf_event_ctx_lock(event); 5306 WARN_ON_ONCE(ctx->parent_ctx); 5307 5308 /* 5309 * Mark this event as STATE_DEAD, there is no external reference to it 5310 * anymore. 5311 * 5312 * Anybody acquiring event->child_mutex after the below loop _must_ 5313 * also see this, most importantly inherit_event() which will avoid 5314 * placing more children on the list. 5315 * 5316 * Thus this guarantees that we will in fact observe and kill _ALL_ 5317 * child events. 5318 */ 5319 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5320 5321 perf_event_ctx_unlock(event, ctx); 5322 5323 again: 5324 mutex_lock(&event->child_mutex); 5325 list_for_each_entry(child, &event->child_list, child_list) { 5326 5327 /* 5328 * Cannot change, child events are not migrated, see the 5329 * comment with perf_event_ctx_lock_nested(). 5330 */ 5331 ctx = READ_ONCE(child->ctx); 5332 /* 5333 * Since child_mutex nests inside ctx::mutex, we must jump 5334 * through hoops. We start by grabbing a reference on the ctx. 5335 * 5336 * Since the event cannot get freed while we hold the 5337 * child_mutex, the context must also exist and have a !0 5338 * reference count. 5339 */ 5340 get_ctx(ctx); 5341 5342 /* 5343 * Now that we have a ctx ref, we can drop child_mutex, and 5344 * acquire ctx::mutex without fear of it going away. Then we 5345 * can re-acquire child_mutex. 5346 */ 5347 mutex_unlock(&event->child_mutex); 5348 mutex_lock(&ctx->mutex); 5349 mutex_lock(&event->child_mutex); 5350 5351 /* 5352 * Now that we hold ctx::mutex and child_mutex, revalidate our 5353 * state, if child is still the first entry, it didn't get freed 5354 * and we can continue doing so. 5355 */ 5356 tmp = list_first_entry_or_null(&event->child_list, 5357 struct perf_event, child_list); 5358 if (tmp == child) { 5359 perf_remove_from_context(child, DETACH_GROUP); 5360 list_move(&child->child_list, &free_list); 5361 /* 5362 * This matches the refcount bump in inherit_event(); 5363 * this can't be the last reference. 5364 */ 5365 put_event(event); 5366 } 5367 5368 mutex_unlock(&event->child_mutex); 5369 mutex_unlock(&ctx->mutex); 5370 put_ctx(ctx); 5371 goto again; 5372 } 5373 mutex_unlock(&event->child_mutex); 5374 5375 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5376 void *var = &child->ctx->refcount; 5377 5378 list_del(&child->child_list); 5379 free_event(child); 5380 5381 /* 5382 * Wake any perf_event_free_task() waiting for this event to be 5383 * freed. 5384 */ 5385 smp_mb(); /* pairs with wait_var_event() */ 5386 wake_up_var(var); 5387 } 5388 5389 no_ctx: 5390 put_event(event); /* Must be the 'last' reference */ 5391 return 0; 5392 } 5393 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5394 5395 /* 5396 * Called when the last reference to the file is gone. 5397 */ 5398 static int perf_release(struct inode *inode, struct file *file) 5399 { 5400 perf_event_release_kernel(file->private_data); 5401 return 0; 5402 } 5403 5404 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5405 { 5406 struct perf_event *child; 5407 u64 total = 0; 5408 5409 *enabled = 0; 5410 *running = 0; 5411 5412 mutex_lock(&event->child_mutex); 5413 5414 (void)perf_event_read(event, false); 5415 total += perf_event_count(event); 5416 5417 *enabled += event->total_time_enabled + 5418 atomic64_read(&event->child_total_time_enabled); 5419 *running += event->total_time_running + 5420 atomic64_read(&event->child_total_time_running); 5421 5422 list_for_each_entry(child, &event->child_list, child_list) { 5423 (void)perf_event_read(child, false); 5424 total += perf_event_count(child); 5425 *enabled += child->total_time_enabled; 5426 *running += child->total_time_running; 5427 } 5428 mutex_unlock(&event->child_mutex); 5429 5430 return total; 5431 } 5432 5433 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5434 { 5435 struct perf_event_context *ctx; 5436 u64 count; 5437 5438 ctx = perf_event_ctx_lock(event); 5439 count = __perf_event_read_value(event, enabled, running); 5440 perf_event_ctx_unlock(event, ctx); 5441 5442 return count; 5443 } 5444 EXPORT_SYMBOL_GPL(perf_event_read_value); 5445 5446 static int __perf_read_group_add(struct perf_event *leader, 5447 u64 read_format, u64 *values) 5448 { 5449 struct perf_event_context *ctx = leader->ctx; 5450 struct perf_event *sub, *parent; 5451 unsigned long flags; 5452 int n = 1; /* skip @nr */ 5453 int ret; 5454 5455 ret = perf_event_read(leader, true); 5456 if (ret) 5457 return ret; 5458 5459 raw_spin_lock_irqsave(&ctx->lock, flags); 5460 /* 5461 * Verify the grouping between the parent and child (inherited) 5462 * events is still in tact. 5463 * 5464 * Specifically: 5465 * - leader->ctx->lock pins leader->sibling_list 5466 * - parent->child_mutex pins parent->child_list 5467 * - parent->ctx->mutex pins parent->sibling_list 5468 * 5469 * Because parent->ctx != leader->ctx (and child_list nests inside 5470 * ctx->mutex), group destruction is not atomic between children, also 5471 * see perf_event_release_kernel(). Additionally, parent can grow the 5472 * group. 5473 * 5474 * Therefore it is possible to have parent and child groups in a 5475 * different configuration and summing over such a beast makes no sense 5476 * what so ever. 5477 * 5478 * Reject this. 5479 */ 5480 parent = leader->parent; 5481 if (parent && 5482 (parent->group_generation != leader->group_generation || 5483 parent->nr_siblings != leader->nr_siblings)) { 5484 ret = -ECHILD; 5485 goto unlock; 5486 } 5487 5488 /* 5489 * Since we co-schedule groups, {enabled,running} times of siblings 5490 * will be identical to those of the leader, so we only publish one 5491 * set. 5492 */ 5493 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5494 values[n++] += leader->total_time_enabled + 5495 atomic64_read(&leader->child_total_time_enabled); 5496 } 5497 5498 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5499 values[n++] += leader->total_time_running + 5500 atomic64_read(&leader->child_total_time_running); 5501 } 5502 5503 /* 5504 * Write {count,id} tuples for every sibling. 5505 */ 5506 values[n++] += perf_event_count(leader); 5507 if (read_format & PERF_FORMAT_ID) 5508 values[n++] = primary_event_id(leader); 5509 if (read_format & PERF_FORMAT_LOST) 5510 values[n++] = atomic64_read(&leader->lost_samples); 5511 5512 for_each_sibling_event(sub, leader) { 5513 values[n++] += perf_event_count(sub); 5514 if (read_format & PERF_FORMAT_ID) 5515 values[n++] = primary_event_id(sub); 5516 if (read_format & PERF_FORMAT_LOST) 5517 values[n++] = atomic64_read(&sub->lost_samples); 5518 } 5519 5520 unlock: 5521 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5522 return ret; 5523 } 5524 5525 static int perf_read_group(struct perf_event *event, 5526 u64 read_format, char __user *buf) 5527 { 5528 struct perf_event *leader = event->group_leader, *child; 5529 struct perf_event_context *ctx = leader->ctx; 5530 int ret; 5531 u64 *values; 5532 5533 lockdep_assert_held(&ctx->mutex); 5534 5535 values = kzalloc(event->read_size, GFP_KERNEL); 5536 if (!values) 5537 return -ENOMEM; 5538 5539 values[0] = 1 + leader->nr_siblings; 5540 5541 mutex_lock(&leader->child_mutex); 5542 5543 ret = __perf_read_group_add(leader, read_format, values); 5544 if (ret) 5545 goto unlock; 5546 5547 list_for_each_entry(child, &leader->child_list, child_list) { 5548 ret = __perf_read_group_add(child, read_format, values); 5549 if (ret) 5550 goto unlock; 5551 } 5552 5553 mutex_unlock(&leader->child_mutex); 5554 5555 ret = event->read_size; 5556 if (copy_to_user(buf, values, event->read_size)) 5557 ret = -EFAULT; 5558 goto out; 5559 5560 unlock: 5561 mutex_unlock(&leader->child_mutex); 5562 out: 5563 kfree(values); 5564 return ret; 5565 } 5566 5567 static int perf_read_one(struct perf_event *event, 5568 u64 read_format, char __user *buf) 5569 { 5570 u64 enabled, running; 5571 u64 values[5]; 5572 int n = 0; 5573 5574 values[n++] = __perf_event_read_value(event, &enabled, &running); 5575 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5576 values[n++] = enabled; 5577 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5578 values[n++] = running; 5579 if (read_format & PERF_FORMAT_ID) 5580 values[n++] = primary_event_id(event); 5581 if (read_format & PERF_FORMAT_LOST) 5582 values[n++] = atomic64_read(&event->lost_samples); 5583 5584 if (copy_to_user(buf, values, n * sizeof(u64))) 5585 return -EFAULT; 5586 5587 return n * sizeof(u64); 5588 } 5589 5590 static bool is_event_hup(struct perf_event *event) 5591 { 5592 bool no_children; 5593 5594 if (event->state > PERF_EVENT_STATE_EXIT) 5595 return false; 5596 5597 mutex_lock(&event->child_mutex); 5598 no_children = list_empty(&event->child_list); 5599 mutex_unlock(&event->child_mutex); 5600 return no_children; 5601 } 5602 5603 /* 5604 * Read the performance event - simple non blocking version for now 5605 */ 5606 static ssize_t 5607 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5608 { 5609 u64 read_format = event->attr.read_format; 5610 int ret; 5611 5612 /* 5613 * Return end-of-file for a read on an event that is in 5614 * error state (i.e. because it was pinned but it couldn't be 5615 * scheduled on to the CPU at some point). 5616 */ 5617 if (event->state == PERF_EVENT_STATE_ERROR) 5618 return 0; 5619 5620 if (count < event->read_size) 5621 return -ENOSPC; 5622 5623 WARN_ON_ONCE(event->ctx->parent_ctx); 5624 if (read_format & PERF_FORMAT_GROUP) 5625 ret = perf_read_group(event, read_format, buf); 5626 else 5627 ret = perf_read_one(event, read_format, buf); 5628 5629 return ret; 5630 } 5631 5632 static ssize_t 5633 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5634 { 5635 struct perf_event *event = file->private_data; 5636 struct perf_event_context *ctx; 5637 int ret; 5638 5639 ret = security_perf_event_read(event); 5640 if (ret) 5641 return ret; 5642 5643 ctx = perf_event_ctx_lock(event); 5644 ret = __perf_read(event, buf, count); 5645 perf_event_ctx_unlock(event, ctx); 5646 5647 return ret; 5648 } 5649 5650 static __poll_t perf_poll(struct file *file, poll_table *wait) 5651 { 5652 struct perf_event *event = file->private_data; 5653 struct perf_buffer *rb; 5654 __poll_t events = EPOLLHUP; 5655 5656 poll_wait(file, &event->waitq, wait); 5657 5658 if (is_event_hup(event)) 5659 return events; 5660 5661 /* 5662 * Pin the event->rb by taking event->mmap_mutex; otherwise 5663 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5664 */ 5665 mutex_lock(&event->mmap_mutex); 5666 rb = event->rb; 5667 if (rb) 5668 events = atomic_xchg(&rb->poll, 0); 5669 mutex_unlock(&event->mmap_mutex); 5670 return events; 5671 } 5672 5673 static void _perf_event_reset(struct perf_event *event) 5674 { 5675 (void)perf_event_read(event, false); 5676 local64_set(&event->count, 0); 5677 perf_event_update_userpage(event); 5678 } 5679 5680 /* Assume it's not an event with inherit set. */ 5681 u64 perf_event_pause(struct perf_event *event, bool reset) 5682 { 5683 struct perf_event_context *ctx; 5684 u64 count; 5685 5686 ctx = perf_event_ctx_lock(event); 5687 WARN_ON_ONCE(event->attr.inherit); 5688 _perf_event_disable(event); 5689 count = local64_read(&event->count); 5690 if (reset) 5691 local64_set(&event->count, 0); 5692 perf_event_ctx_unlock(event, ctx); 5693 5694 return count; 5695 } 5696 EXPORT_SYMBOL_GPL(perf_event_pause); 5697 5698 /* 5699 * Holding the top-level event's child_mutex means that any 5700 * descendant process that has inherited this event will block 5701 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5702 * task existence requirements of perf_event_enable/disable. 5703 */ 5704 static void perf_event_for_each_child(struct perf_event *event, 5705 void (*func)(struct perf_event *)) 5706 { 5707 struct perf_event *child; 5708 5709 WARN_ON_ONCE(event->ctx->parent_ctx); 5710 5711 mutex_lock(&event->child_mutex); 5712 func(event); 5713 list_for_each_entry(child, &event->child_list, child_list) 5714 func(child); 5715 mutex_unlock(&event->child_mutex); 5716 } 5717 5718 static void perf_event_for_each(struct perf_event *event, 5719 void (*func)(struct perf_event *)) 5720 { 5721 struct perf_event_context *ctx = event->ctx; 5722 struct perf_event *sibling; 5723 5724 lockdep_assert_held(&ctx->mutex); 5725 5726 event = event->group_leader; 5727 5728 perf_event_for_each_child(event, func); 5729 for_each_sibling_event(sibling, event) 5730 perf_event_for_each_child(sibling, func); 5731 } 5732 5733 static void __perf_event_period(struct perf_event *event, 5734 struct perf_cpu_context *cpuctx, 5735 struct perf_event_context *ctx, 5736 void *info) 5737 { 5738 u64 value = *((u64 *)info); 5739 bool active; 5740 5741 if (event->attr.freq) { 5742 event->attr.sample_freq = value; 5743 } else { 5744 event->attr.sample_period = value; 5745 event->hw.sample_period = value; 5746 } 5747 5748 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5749 if (active) { 5750 perf_pmu_disable(event->pmu); 5751 /* 5752 * We could be throttled; unthrottle now to avoid the tick 5753 * trying to unthrottle while we already re-started the event. 5754 */ 5755 if (event->hw.interrupts == MAX_INTERRUPTS) { 5756 event->hw.interrupts = 0; 5757 perf_log_throttle(event, 1); 5758 } 5759 event->pmu->stop(event, PERF_EF_UPDATE); 5760 } 5761 5762 local64_set(&event->hw.period_left, 0); 5763 5764 if (active) { 5765 event->pmu->start(event, PERF_EF_RELOAD); 5766 perf_pmu_enable(event->pmu); 5767 } 5768 } 5769 5770 static int perf_event_check_period(struct perf_event *event, u64 value) 5771 { 5772 return event->pmu->check_period(event, value); 5773 } 5774 5775 static int _perf_event_period(struct perf_event *event, u64 value) 5776 { 5777 if (!is_sampling_event(event)) 5778 return -EINVAL; 5779 5780 if (!value) 5781 return -EINVAL; 5782 5783 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5784 return -EINVAL; 5785 5786 if (perf_event_check_period(event, value)) 5787 return -EINVAL; 5788 5789 if (!event->attr.freq && (value & (1ULL << 63))) 5790 return -EINVAL; 5791 5792 event_function_call(event, __perf_event_period, &value); 5793 5794 return 0; 5795 } 5796 5797 int perf_event_period(struct perf_event *event, u64 value) 5798 { 5799 struct perf_event_context *ctx; 5800 int ret; 5801 5802 ctx = perf_event_ctx_lock(event); 5803 ret = _perf_event_period(event, value); 5804 perf_event_ctx_unlock(event, ctx); 5805 5806 return ret; 5807 } 5808 EXPORT_SYMBOL_GPL(perf_event_period); 5809 5810 static const struct file_operations perf_fops; 5811 5812 static inline int perf_fget_light(int fd, struct fd *p) 5813 { 5814 struct fd f = fdget(fd); 5815 if (!f.file) 5816 return -EBADF; 5817 5818 if (f.file->f_op != &perf_fops) { 5819 fdput(f); 5820 return -EBADF; 5821 } 5822 *p = f; 5823 return 0; 5824 } 5825 5826 static int perf_event_set_output(struct perf_event *event, 5827 struct perf_event *output_event); 5828 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5829 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5830 struct perf_event_attr *attr); 5831 5832 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5833 { 5834 void (*func)(struct perf_event *); 5835 u32 flags = arg; 5836 5837 switch (cmd) { 5838 case PERF_EVENT_IOC_ENABLE: 5839 func = _perf_event_enable; 5840 break; 5841 case PERF_EVENT_IOC_DISABLE: 5842 func = _perf_event_disable; 5843 break; 5844 case PERF_EVENT_IOC_RESET: 5845 func = _perf_event_reset; 5846 break; 5847 5848 case PERF_EVENT_IOC_REFRESH: 5849 return _perf_event_refresh(event, arg); 5850 5851 case PERF_EVENT_IOC_PERIOD: 5852 { 5853 u64 value; 5854 5855 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5856 return -EFAULT; 5857 5858 return _perf_event_period(event, value); 5859 } 5860 case PERF_EVENT_IOC_ID: 5861 { 5862 u64 id = primary_event_id(event); 5863 5864 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5865 return -EFAULT; 5866 return 0; 5867 } 5868 5869 case PERF_EVENT_IOC_SET_OUTPUT: 5870 { 5871 int ret; 5872 if (arg != -1) { 5873 struct perf_event *output_event; 5874 struct fd output; 5875 ret = perf_fget_light(arg, &output); 5876 if (ret) 5877 return ret; 5878 output_event = output.file->private_data; 5879 ret = perf_event_set_output(event, output_event); 5880 fdput(output); 5881 } else { 5882 ret = perf_event_set_output(event, NULL); 5883 } 5884 return ret; 5885 } 5886 5887 case PERF_EVENT_IOC_SET_FILTER: 5888 return perf_event_set_filter(event, (void __user *)arg); 5889 5890 case PERF_EVENT_IOC_SET_BPF: 5891 { 5892 struct bpf_prog *prog; 5893 int err; 5894 5895 prog = bpf_prog_get(arg); 5896 if (IS_ERR(prog)) 5897 return PTR_ERR(prog); 5898 5899 err = perf_event_set_bpf_prog(event, prog, 0); 5900 if (err) { 5901 bpf_prog_put(prog); 5902 return err; 5903 } 5904 5905 return 0; 5906 } 5907 5908 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5909 struct perf_buffer *rb; 5910 5911 rcu_read_lock(); 5912 rb = rcu_dereference(event->rb); 5913 if (!rb || !rb->nr_pages) { 5914 rcu_read_unlock(); 5915 return -EINVAL; 5916 } 5917 rb_toggle_paused(rb, !!arg); 5918 rcu_read_unlock(); 5919 return 0; 5920 } 5921 5922 case PERF_EVENT_IOC_QUERY_BPF: 5923 return perf_event_query_prog_array(event, (void __user *)arg); 5924 5925 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5926 struct perf_event_attr new_attr; 5927 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5928 &new_attr); 5929 5930 if (err) 5931 return err; 5932 5933 return perf_event_modify_attr(event, &new_attr); 5934 } 5935 default: 5936 return -ENOTTY; 5937 } 5938 5939 if (flags & PERF_IOC_FLAG_GROUP) 5940 perf_event_for_each(event, func); 5941 else 5942 perf_event_for_each_child(event, func); 5943 5944 return 0; 5945 } 5946 5947 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5948 { 5949 struct perf_event *event = file->private_data; 5950 struct perf_event_context *ctx; 5951 long ret; 5952 5953 /* Treat ioctl like writes as it is likely a mutating operation. */ 5954 ret = security_perf_event_write(event); 5955 if (ret) 5956 return ret; 5957 5958 ctx = perf_event_ctx_lock(event); 5959 ret = _perf_ioctl(event, cmd, arg); 5960 perf_event_ctx_unlock(event, ctx); 5961 5962 return ret; 5963 } 5964 5965 #ifdef CONFIG_COMPAT 5966 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5967 unsigned long arg) 5968 { 5969 switch (_IOC_NR(cmd)) { 5970 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5971 case _IOC_NR(PERF_EVENT_IOC_ID): 5972 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5973 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5974 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5975 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5976 cmd &= ~IOCSIZE_MASK; 5977 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5978 } 5979 break; 5980 } 5981 return perf_ioctl(file, cmd, arg); 5982 } 5983 #else 5984 # define perf_compat_ioctl NULL 5985 #endif 5986 5987 int perf_event_task_enable(void) 5988 { 5989 struct perf_event_context *ctx; 5990 struct perf_event *event; 5991 5992 mutex_lock(¤t->perf_event_mutex); 5993 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5994 ctx = perf_event_ctx_lock(event); 5995 perf_event_for_each_child(event, _perf_event_enable); 5996 perf_event_ctx_unlock(event, ctx); 5997 } 5998 mutex_unlock(¤t->perf_event_mutex); 5999 6000 return 0; 6001 } 6002 6003 int perf_event_task_disable(void) 6004 { 6005 struct perf_event_context *ctx; 6006 struct perf_event *event; 6007 6008 mutex_lock(¤t->perf_event_mutex); 6009 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6010 ctx = perf_event_ctx_lock(event); 6011 perf_event_for_each_child(event, _perf_event_disable); 6012 perf_event_ctx_unlock(event, ctx); 6013 } 6014 mutex_unlock(¤t->perf_event_mutex); 6015 6016 return 0; 6017 } 6018 6019 static int perf_event_index(struct perf_event *event) 6020 { 6021 if (event->hw.state & PERF_HES_STOPPED) 6022 return 0; 6023 6024 if (event->state != PERF_EVENT_STATE_ACTIVE) 6025 return 0; 6026 6027 return event->pmu->event_idx(event); 6028 } 6029 6030 static void perf_event_init_userpage(struct perf_event *event) 6031 { 6032 struct perf_event_mmap_page *userpg; 6033 struct perf_buffer *rb; 6034 6035 rcu_read_lock(); 6036 rb = rcu_dereference(event->rb); 6037 if (!rb) 6038 goto unlock; 6039 6040 userpg = rb->user_page; 6041 6042 /* Allow new userspace to detect that bit 0 is deprecated */ 6043 userpg->cap_bit0_is_deprecated = 1; 6044 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6045 userpg->data_offset = PAGE_SIZE; 6046 userpg->data_size = perf_data_size(rb); 6047 6048 unlock: 6049 rcu_read_unlock(); 6050 } 6051 6052 void __weak arch_perf_update_userpage( 6053 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6054 { 6055 } 6056 6057 /* 6058 * Callers need to ensure there can be no nesting of this function, otherwise 6059 * the seqlock logic goes bad. We can not serialize this because the arch 6060 * code calls this from NMI context. 6061 */ 6062 void perf_event_update_userpage(struct perf_event *event) 6063 { 6064 struct perf_event_mmap_page *userpg; 6065 struct perf_buffer *rb; 6066 u64 enabled, running, now; 6067 6068 rcu_read_lock(); 6069 rb = rcu_dereference(event->rb); 6070 if (!rb) 6071 goto unlock; 6072 6073 /* 6074 * compute total_time_enabled, total_time_running 6075 * based on snapshot values taken when the event 6076 * was last scheduled in. 6077 * 6078 * we cannot simply called update_context_time() 6079 * because of locking issue as we can be called in 6080 * NMI context 6081 */ 6082 calc_timer_values(event, &now, &enabled, &running); 6083 6084 userpg = rb->user_page; 6085 /* 6086 * Disable preemption to guarantee consistent time stamps are stored to 6087 * the user page. 6088 */ 6089 preempt_disable(); 6090 ++userpg->lock; 6091 barrier(); 6092 userpg->index = perf_event_index(event); 6093 userpg->offset = perf_event_count(event); 6094 if (userpg->index) 6095 userpg->offset -= local64_read(&event->hw.prev_count); 6096 6097 userpg->time_enabled = enabled + 6098 atomic64_read(&event->child_total_time_enabled); 6099 6100 userpg->time_running = running + 6101 atomic64_read(&event->child_total_time_running); 6102 6103 arch_perf_update_userpage(event, userpg, now); 6104 6105 barrier(); 6106 ++userpg->lock; 6107 preempt_enable(); 6108 unlock: 6109 rcu_read_unlock(); 6110 } 6111 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6112 6113 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6114 { 6115 struct perf_event *event = vmf->vma->vm_file->private_data; 6116 struct perf_buffer *rb; 6117 vm_fault_t ret = VM_FAULT_SIGBUS; 6118 6119 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6120 if (vmf->pgoff == 0) 6121 ret = 0; 6122 return ret; 6123 } 6124 6125 rcu_read_lock(); 6126 rb = rcu_dereference(event->rb); 6127 if (!rb) 6128 goto unlock; 6129 6130 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6131 goto unlock; 6132 6133 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6134 if (!vmf->page) 6135 goto unlock; 6136 6137 get_page(vmf->page); 6138 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6139 vmf->page->index = vmf->pgoff; 6140 6141 ret = 0; 6142 unlock: 6143 rcu_read_unlock(); 6144 6145 return ret; 6146 } 6147 6148 static void ring_buffer_attach(struct perf_event *event, 6149 struct perf_buffer *rb) 6150 { 6151 struct perf_buffer *old_rb = NULL; 6152 unsigned long flags; 6153 6154 WARN_ON_ONCE(event->parent); 6155 6156 if (event->rb) { 6157 /* 6158 * Should be impossible, we set this when removing 6159 * event->rb_entry and wait/clear when adding event->rb_entry. 6160 */ 6161 WARN_ON_ONCE(event->rcu_pending); 6162 6163 old_rb = event->rb; 6164 spin_lock_irqsave(&old_rb->event_lock, flags); 6165 list_del_rcu(&event->rb_entry); 6166 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6167 6168 event->rcu_batches = get_state_synchronize_rcu(); 6169 event->rcu_pending = 1; 6170 } 6171 6172 if (rb) { 6173 if (event->rcu_pending) { 6174 cond_synchronize_rcu(event->rcu_batches); 6175 event->rcu_pending = 0; 6176 } 6177 6178 spin_lock_irqsave(&rb->event_lock, flags); 6179 list_add_rcu(&event->rb_entry, &rb->event_list); 6180 spin_unlock_irqrestore(&rb->event_lock, flags); 6181 } 6182 6183 /* 6184 * Avoid racing with perf_mmap_close(AUX): stop the event 6185 * before swizzling the event::rb pointer; if it's getting 6186 * unmapped, its aux_mmap_count will be 0 and it won't 6187 * restart. See the comment in __perf_pmu_output_stop(). 6188 * 6189 * Data will inevitably be lost when set_output is done in 6190 * mid-air, but then again, whoever does it like this is 6191 * not in for the data anyway. 6192 */ 6193 if (has_aux(event)) 6194 perf_event_stop(event, 0); 6195 6196 rcu_assign_pointer(event->rb, rb); 6197 6198 if (old_rb) { 6199 ring_buffer_put(old_rb); 6200 /* 6201 * Since we detached before setting the new rb, so that we 6202 * could attach the new rb, we could have missed a wakeup. 6203 * Provide it now. 6204 */ 6205 wake_up_all(&event->waitq); 6206 } 6207 } 6208 6209 static void ring_buffer_wakeup(struct perf_event *event) 6210 { 6211 struct perf_buffer *rb; 6212 6213 if (event->parent) 6214 event = event->parent; 6215 6216 rcu_read_lock(); 6217 rb = rcu_dereference(event->rb); 6218 if (rb) { 6219 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6220 wake_up_all(&event->waitq); 6221 } 6222 rcu_read_unlock(); 6223 } 6224 6225 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6226 { 6227 struct perf_buffer *rb; 6228 6229 if (event->parent) 6230 event = event->parent; 6231 6232 rcu_read_lock(); 6233 rb = rcu_dereference(event->rb); 6234 if (rb) { 6235 if (!refcount_inc_not_zero(&rb->refcount)) 6236 rb = NULL; 6237 } 6238 rcu_read_unlock(); 6239 6240 return rb; 6241 } 6242 6243 void ring_buffer_put(struct perf_buffer *rb) 6244 { 6245 if (!refcount_dec_and_test(&rb->refcount)) 6246 return; 6247 6248 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6249 6250 call_rcu(&rb->rcu_head, rb_free_rcu); 6251 } 6252 6253 static void perf_mmap_open(struct vm_area_struct *vma) 6254 { 6255 struct perf_event *event = vma->vm_file->private_data; 6256 6257 atomic_inc(&event->mmap_count); 6258 atomic_inc(&event->rb->mmap_count); 6259 6260 if (vma->vm_pgoff) 6261 atomic_inc(&event->rb->aux_mmap_count); 6262 6263 if (event->pmu->event_mapped) 6264 event->pmu->event_mapped(event, vma->vm_mm); 6265 } 6266 6267 static void perf_pmu_output_stop(struct perf_event *event); 6268 6269 /* 6270 * A buffer can be mmap()ed multiple times; either directly through the same 6271 * event, or through other events by use of perf_event_set_output(). 6272 * 6273 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6274 * the buffer here, where we still have a VM context. This means we need 6275 * to detach all events redirecting to us. 6276 */ 6277 static void perf_mmap_close(struct vm_area_struct *vma) 6278 { 6279 struct perf_event *event = vma->vm_file->private_data; 6280 struct perf_buffer *rb = ring_buffer_get(event); 6281 struct user_struct *mmap_user = rb->mmap_user; 6282 int mmap_locked = rb->mmap_locked; 6283 unsigned long size = perf_data_size(rb); 6284 bool detach_rest = false; 6285 6286 if (event->pmu->event_unmapped) 6287 event->pmu->event_unmapped(event, vma->vm_mm); 6288 6289 /* 6290 * rb->aux_mmap_count will always drop before rb->mmap_count and 6291 * event->mmap_count, so it is ok to use event->mmap_mutex to 6292 * serialize with perf_mmap here. 6293 */ 6294 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6295 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 6296 /* 6297 * Stop all AUX events that are writing to this buffer, 6298 * so that we can free its AUX pages and corresponding PMU 6299 * data. Note that after rb::aux_mmap_count dropped to zero, 6300 * they won't start any more (see perf_aux_output_begin()). 6301 */ 6302 perf_pmu_output_stop(event); 6303 6304 /* now it's safe to free the pages */ 6305 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6306 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6307 6308 /* this has to be the last one */ 6309 rb_free_aux(rb); 6310 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6311 6312 mutex_unlock(&event->mmap_mutex); 6313 } 6314 6315 if (atomic_dec_and_test(&rb->mmap_count)) 6316 detach_rest = true; 6317 6318 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6319 goto out_put; 6320 6321 ring_buffer_attach(event, NULL); 6322 mutex_unlock(&event->mmap_mutex); 6323 6324 /* If there's still other mmap()s of this buffer, we're done. */ 6325 if (!detach_rest) 6326 goto out_put; 6327 6328 /* 6329 * No other mmap()s, detach from all other events that might redirect 6330 * into the now unreachable buffer. Somewhat complicated by the 6331 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6332 */ 6333 again: 6334 rcu_read_lock(); 6335 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6336 if (!atomic_long_inc_not_zero(&event->refcount)) { 6337 /* 6338 * This event is en-route to free_event() which will 6339 * detach it and remove it from the list. 6340 */ 6341 continue; 6342 } 6343 rcu_read_unlock(); 6344 6345 mutex_lock(&event->mmap_mutex); 6346 /* 6347 * Check we didn't race with perf_event_set_output() which can 6348 * swizzle the rb from under us while we were waiting to 6349 * acquire mmap_mutex. 6350 * 6351 * If we find a different rb; ignore this event, a next 6352 * iteration will no longer find it on the list. We have to 6353 * still restart the iteration to make sure we're not now 6354 * iterating the wrong list. 6355 */ 6356 if (event->rb == rb) 6357 ring_buffer_attach(event, NULL); 6358 6359 mutex_unlock(&event->mmap_mutex); 6360 put_event(event); 6361 6362 /* 6363 * Restart the iteration; either we're on the wrong list or 6364 * destroyed its integrity by doing a deletion. 6365 */ 6366 goto again; 6367 } 6368 rcu_read_unlock(); 6369 6370 /* 6371 * It could be there's still a few 0-ref events on the list; they'll 6372 * get cleaned up by free_event() -- they'll also still have their 6373 * ref on the rb and will free it whenever they are done with it. 6374 * 6375 * Aside from that, this buffer is 'fully' detached and unmapped, 6376 * undo the VM accounting. 6377 */ 6378 6379 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6380 &mmap_user->locked_vm); 6381 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6382 free_uid(mmap_user); 6383 6384 out_put: 6385 ring_buffer_put(rb); /* could be last */ 6386 } 6387 6388 static const struct vm_operations_struct perf_mmap_vmops = { 6389 .open = perf_mmap_open, 6390 .close = perf_mmap_close, /* non mergeable */ 6391 .fault = perf_mmap_fault, 6392 .page_mkwrite = perf_mmap_fault, 6393 }; 6394 6395 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6396 { 6397 struct perf_event *event = file->private_data; 6398 unsigned long user_locked, user_lock_limit; 6399 struct user_struct *user = current_user(); 6400 struct perf_buffer *rb = NULL; 6401 unsigned long locked, lock_limit; 6402 unsigned long vma_size; 6403 unsigned long nr_pages; 6404 long user_extra = 0, extra = 0; 6405 int ret = 0, flags = 0; 6406 6407 /* 6408 * Don't allow mmap() of inherited per-task counters. This would 6409 * create a performance issue due to all children writing to the 6410 * same rb. 6411 */ 6412 if (event->cpu == -1 && event->attr.inherit) 6413 return -EINVAL; 6414 6415 if (!(vma->vm_flags & VM_SHARED)) 6416 return -EINVAL; 6417 6418 ret = security_perf_event_read(event); 6419 if (ret) 6420 return ret; 6421 6422 vma_size = vma->vm_end - vma->vm_start; 6423 6424 if (vma->vm_pgoff == 0) { 6425 nr_pages = (vma_size / PAGE_SIZE) - 1; 6426 } else { 6427 /* 6428 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6429 * mapped, all subsequent mappings should have the same size 6430 * and offset. Must be above the normal perf buffer. 6431 */ 6432 u64 aux_offset, aux_size; 6433 6434 if (!event->rb) 6435 return -EINVAL; 6436 6437 nr_pages = vma_size / PAGE_SIZE; 6438 6439 mutex_lock(&event->mmap_mutex); 6440 ret = -EINVAL; 6441 6442 rb = event->rb; 6443 if (!rb) 6444 goto aux_unlock; 6445 6446 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6447 aux_size = READ_ONCE(rb->user_page->aux_size); 6448 6449 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6450 goto aux_unlock; 6451 6452 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6453 goto aux_unlock; 6454 6455 /* already mapped with a different offset */ 6456 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6457 goto aux_unlock; 6458 6459 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6460 goto aux_unlock; 6461 6462 /* already mapped with a different size */ 6463 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6464 goto aux_unlock; 6465 6466 if (!is_power_of_2(nr_pages)) 6467 goto aux_unlock; 6468 6469 if (!atomic_inc_not_zero(&rb->mmap_count)) 6470 goto aux_unlock; 6471 6472 if (rb_has_aux(rb)) { 6473 atomic_inc(&rb->aux_mmap_count); 6474 ret = 0; 6475 goto unlock; 6476 } 6477 6478 atomic_set(&rb->aux_mmap_count, 1); 6479 user_extra = nr_pages; 6480 6481 goto accounting; 6482 } 6483 6484 /* 6485 * If we have rb pages ensure they're a power-of-two number, so we 6486 * can do bitmasks instead of modulo. 6487 */ 6488 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6489 return -EINVAL; 6490 6491 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6492 return -EINVAL; 6493 6494 WARN_ON_ONCE(event->ctx->parent_ctx); 6495 again: 6496 mutex_lock(&event->mmap_mutex); 6497 if (event->rb) { 6498 if (data_page_nr(event->rb) != nr_pages) { 6499 ret = -EINVAL; 6500 goto unlock; 6501 } 6502 6503 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6504 /* 6505 * Raced against perf_mmap_close(); remove the 6506 * event and try again. 6507 */ 6508 ring_buffer_attach(event, NULL); 6509 mutex_unlock(&event->mmap_mutex); 6510 goto again; 6511 } 6512 6513 goto unlock; 6514 } 6515 6516 user_extra = nr_pages + 1; 6517 6518 accounting: 6519 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6520 6521 /* 6522 * Increase the limit linearly with more CPUs: 6523 */ 6524 user_lock_limit *= num_online_cpus(); 6525 6526 user_locked = atomic_long_read(&user->locked_vm); 6527 6528 /* 6529 * sysctl_perf_event_mlock may have changed, so that 6530 * user->locked_vm > user_lock_limit 6531 */ 6532 if (user_locked > user_lock_limit) 6533 user_locked = user_lock_limit; 6534 user_locked += user_extra; 6535 6536 if (user_locked > user_lock_limit) { 6537 /* 6538 * charge locked_vm until it hits user_lock_limit; 6539 * charge the rest from pinned_vm 6540 */ 6541 extra = user_locked - user_lock_limit; 6542 user_extra -= extra; 6543 } 6544 6545 lock_limit = rlimit(RLIMIT_MEMLOCK); 6546 lock_limit >>= PAGE_SHIFT; 6547 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6548 6549 if ((locked > lock_limit) && perf_is_paranoid() && 6550 !capable(CAP_IPC_LOCK)) { 6551 ret = -EPERM; 6552 goto unlock; 6553 } 6554 6555 WARN_ON(!rb && event->rb); 6556 6557 if (vma->vm_flags & VM_WRITE) 6558 flags |= RING_BUFFER_WRITABLE; 6559 6560 if (!rb) { 6561 rb = rb_alloc(nr_pages, 6562 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6563 event->cpu, flags); 6564 6565 if (!rb) { 6566 ret = -ENOMEM; 6567 goto unlock; 6568 } 6569 6570 atomic_set(&rb->mmap_count, 1); 6571 rb->mmap_user = get_current_user(); 6572 rb->mmap_locked = extra; 6573 6574 ring_buffer_attach(event, rb); 6575 6576 perf_event_update_time(event); 6577 perf_event_init_userpage(event); 6578 perf_event_update_userpage(event); 6579 } else { 6580 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6581 event->attr.aux_watermark, flags); 6582 if (!ret) 6583 rb->aux_mmap_locked = extra; 6584 } 6585 6586 unlock: 6587 if (!ret) { 6588 atomic_long_add(user_extra, &user->locked_vm); 6589 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6590 6591 atomic_inc(&event->mmap_count); 6592 } else if (rb) { 6593 atomic_dec(&rb->mmap_count); 6594 } 6595 aux_unlock: 6596 mutex_unlock(&event->mmap_mutex); 6597 6598 /* 6599 * Since pinned accounting is per vm we cannot allow fork() to copy our 6600 * vma. 6601 */ 6602 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6603 vma->vm_ops = &perf_mmap_vmops; 6604 6605 if (event->pmu->event_mapped) 6606 event->pmu->event_mapped(event, vma->vm_mm); 6607 6608 return ret; 6609 } 6610 6611 static int perf_fasync(int fd, struct file *filp, int on) 6612 { 6613 struct inode *inode = file_inode(filp); 6614 struct perf_event *event = filp->private_data; 6615 int retval; 6616 6617 inode_lock(inode); 6618 retval = fasync_helper(fd, filp, on, &event->fasync); 6619 inode_unlock(inode); 6620 6621 if (retval < 0) 6622 return retval; 6623 6624 return 0; 6625 } 6626 6627 static const struct file_operations perf_fops = { 6628 .llseek = no_llseek, 6629 .release = perf_release, 6630 .read = perf_read, 6631 .poll = perf_poll, 6632 .unlocked_ioctl = perf_ioctl, 6633 .compat_ioctl = perf_compat_ioctl, 6634 .mmap = perf_mmap, 6635 .fasync = perf_fasync, 6636 }; 6637 6638 /* 6639 * Perf event wakeup 6640 * 6641 * If there's data, ensure we set the poll() state and publish everything 6642 * to user-space before waking everybody up. 6643 */ 6644 6645 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6646 { 6647 /* only the parent has fasync state */ 6648 if (event->parent) 6649 event = event->parent; 6650 return &event->fasync; 6651 } 6652 6653 void perf_event_wakeup(struct perf_event *event) 6654 { 6655 ring_buffer_wakeup(event); 6656 6657 if (event->pending_kill) { 6658 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6659 event->pending_kill = 0; 6660 } 6661 } 6662 6663 static void perf_sigtrap(struct perf_event *event) 6664 { 6665 /* 6666 * We'd expect this to only occur if the irq_work is delayed and either 6667 * ctx->task or current has changed in the meantime. This can be the 6668 * case on architectures that do not implement arch_irq_work_raise(). 6669 */ 6670 if (WARN_ON_ONCE(event->ctx->task != current)) 6671 return; 6672 6673 /* 6674 * Both perf_pending_task() and perf_pending_irq() can race with the 6675 * task exiting. 6676 */ 6677 if (current->flags & PF_EXITING) 6678 return; 6679 6680 send_sig_perf((void __user *)event->pending_addr, 6681 event->orig_type, event->attr.sig_data); 6682 } 6683 6684 /* 6685 * Deliver the pending work in-event-context or follow the context. 6686 */ 6687 static void __perf_pending_irq(struct perf_event *event) 6688 { 6689 int cpu = READ_ONCE(event->oncpu); 6690 6691 /* 6692 * If the event isn't running; we done. event_sched_out() will have 6693 * taken care of things. 6694 */ 6695 if (cpu < 0) 6696 return; 6697 6698 /* 6699 * Yay, we hit home and are in the context of the event. 6700 */ 6701 if (cpu == smp_processor_id()) { 6702 if (event->pending_sigtrap) { 6703 event->pending_sigtrap = 0; 6704 perf_sigtrap(event); 6705 local_dec(&event->ctx->nr_pending); 6706 } 6707 if (event->pending_disable) { 6708 event->pending_disable = 0; 6709 perf_event_disable_local(event); 6710 } 6711 return; 6712 } 6713 6714 /* 6715 * CPU-A CPU-B 6716 * 6717 * perf_event_disable_inatomic() 6718 * @pending_disable = CPU-A; 6719 * irq_work_queue(); 6720 * 6721 * sched-out 6722 * @pending_disable = -1; 6723 * 6724 * sched-in 6725 * perf_event_disable_inatomic() 6726 * @pending_disable = CPU-B; 6727 * irq_work_queue(); // FAILS 6728 * 6729 * irq_work_run() 6730 * perf_pending_irq() 6731 * 6732 * But the event runs on CPU-B and wants disabling there. 6733 */ 6734 irq_work_queue_on(&event->pending_irq, cpu); 6735 } 6736 6737 static void perf_pending_irq(struct irq_work *entry) 6738 { 6739 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6740 int rctx; 6741 6742 /* 6743 * If we 'fail' here, that's OK, it means recursion is already disabled 6744 * and we won't recurse 'further'. 6745 */ 6746 rctx = perf_swevent_get_recursion_context(); 6747 6748 /* 6749 * The wakeup isn't bound to the context of the event -- it can happen 6750 * irrespective of where the event is. 6751 */ 6752 if (event->pending_wakeup) { 6753 event->pending_wakeup = 0; 6754 perf_event_wakeup(event); 6755 } 6756 6757 __perf_pending_irq(event); 6758 6759 if (rctx >= 0) 6760 perf_swevent_put_recursion_context(rctx); 6761 } 6762 6763 static void perf_pending_task(struct callback_head *head) 6764 { 6765 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6766 int rctx; 6767 6768 /* 6769 * If we 'fail' here, that's OK, it means recursion is already disabled 6770 * and we won't recurse 'further'. 6771 */ 6772 preempt_disable_notrace(); 6773 rctx = perf_swevent_get_recursion_context(); 6774 6775 if (event->pending_work) { 6776 event->pending_work = 0; 6777 perf_sigtrap(event); 6778 local_dec(&event->ctx->nr_pending); 6779 } 6780 6781 if (rctx >= 0) 6782 perf_swevent_put_recursion_context(rctx); 6783 preempt_enable_notrace(); 6784 6785 put_event(event); 6786 } 6787 6788 #ifdef CONFIG_GUEST_PERF_EVENTS 6789 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6790 6791 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6792 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6793 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6794 6795 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6796 { 6797 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6798 return; 6799 6800 rcu_assign_pointer(perf_guest_cbs, cbs); 6801 static_call_update(__perf_guest_state, cbs->state); 6802 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6803 6804 /* Implementing ->handle_intel_pt_intr is optional. */ 6805 if (cbs->handle_intel_pt_intr) 6806 static_call_update(__perf_guest_handle_intel_pt_intr, 6807 cbs->handle_intel_pt_intr); 6808 } 6809 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6810 6811 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6812 { 6813 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6814 return; 6815 6816 rcu_assign_pointer(perf_guest_cbs, NULL); 6817 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6818 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6819 static_call_update(__perf_guest_handle_intel_pt_intr, 6820 (void *)&__static_call_return0); 6821 synchronize_rcu(); 6822 } 6823 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6824 #endif 6825 6826 static void 6827 perf_output_sample_regs(struct perf_output_handle *handle, 6828 struct pt_regs *regs, u64 mask) 6829 { 6830 int bit; 6831 DECLARE_BITMAP(_mask, 64); 6832 6833 bitmap_from_u64(_mask, mask); 6834 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6835 u64 val; 6836 6837 val = perf_reg_value(regs, bit); 6838 perf_output_put(handle, val); 6839 } 6840 } 6841 6842 static void perf_sample_regs_user(struct perf_regs *regs_user, 6843 struct pt_regs *regs) 6844 { 6845 if (user_mode(regs)) { 6846 regs_user->abi = perf_reg_abi(current); 6847 regs_user->regs = regs; 6848 } else if (!(current->flags & PF_KTHREAD)) { 6849 perf_get_regs_user(regs_user, regs); 6850 } else { 6851 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6852 regs_user->regs = NULL; 6853 } 6854 } 6855 6856 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6857 struct pt_regs *regs) 6858 { 6859 regs_intr->regs = regs; 6860 regs_intr->abi = perf_reg_abi(current); 6861 } 6862 6863 6864 /* 6865 * Get remaining task size from user stack pointer. 6866 * 6867 * It'd be better to take stack vma map and limit this more 6868 * precisely, but there's no way to get it safely under interrupt, 6869 * so using TASK_SIZE as limit. 6870 */ 6871 static u64 perf_ustack_task_size(struct pt_regs *regs) 6872 { 6873 unsigned long addr = perf_user_stack_pointer(regs); 6874 6875 if (!addr || addr >= TASK_SIZE) 6876 return 0; 6877 6878 return TASK_SIZE - addr; 6879 } 6880 6881 static u16 6882 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6883 struct pt_regs *regs) 6884 { 6885 u64 task_size; 6886 6887 /* No regs, no stack pointer, no dump. */ 6888 if (!regs) 6889 return 0; 6890 6891 /* 6892 * Check if we fit in with the requested stack size into the: 6893 * - TASK_SIZE 6894 * If we don't, we limit the size to the TASK_SIZE. 6895 * 6896 * - remaining sample size 6897 * If we don't, we customize the stack size to 6898 * fit in to the remaining sample size. 6899 */ 6900 6901 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6902 stack_size = min(stack_size, (u16) task_size); 6903 6904 /* Current header size plus static size and dynamic size. */ 6905 header_size += 2 * sizeof(u64); 6906 6907 /* Do we fit in with the current stack dump size? */ 6908 if ((u16) (header_size + stack_size) < header_size) { 6909 /* 6910 * If we overflow the maximum size for the sample, 6911 * we customize the stack dump size to fit in. 6912 */ 6913 stack_size = USHRT_MAX - header_size - sizeof(u64); 6914 stack_size = round_up(stack_size, sizeof(u64)); 6915 } 6916 6917 return stack_size; 6918 } 6919 6920 static void 6921 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 6922 struct pt_regs *regs) 6923 { 6924 /* Case of a kernel thread, nothing to dump */ 6925 if (!regs) { 6926 u64 size = 0; 6927 perf_output_put(handle, size); 6928 } else { 6929 unsigned long sp; 6930 unsigned int rem; 6931 u64 dyn_size; 6932 6933 /* 6934 * We dump: 6935 * static size 6936 * - the size requested by user or the best one we can fit 6937 * in to the sample max size 6938 * data 6939 * - user stack dump data 6940 * dynamic size 6941 * - the actual dumped size 6942 */ 6943 6944 /* Static size. */ 6945 perf_output_put(handle, dump_size); 6946 6947 /* Data. */ 6948 sp = perf_user_stack_pointer(regs); 6949 rem = __output_copy_user(handle, (void *) sp, dump_size); 6950 dyn_size = dump_size - rem; 6951 6952 perf_output_skip(handle, rem); 6953 6954 /* Dynamic size. */ 6955 perf_output_put(handle, dyn_size); 6956 } 6957 } 6958 6959 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 6960 struct perf_sample_data *data, 6961 size_t size) 6962 { 6963 struct perf_event *sampler = event->aux_event; 6964 struct perf_buffer *rb; 6965 6966 data->aux_size = 0; 6967 6968 if (!sampler) 6969 goto out; 6970 6971 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 6972 goto out; 6973 6974 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 6975 goto out; 6976 6977 rb = ring_buffer_get(sampler); 6978 if (!rb) 6979 goto out; 6980 6981 /* 6982 * If this is an NMI hit inside sampling code, don't take 6983 * the sample. See also perf_aux_sample_output(). 6984 */ 6985 if (READ_ONCE(rb->aux_in_sampling)) { 6986 data->aux_size = 0; 6987 } else { 6988 size = min_t(size_t, size, perf_aux_size(rb)); 6989 data->aux_size = ALIGN(size, sizeof(u64)); 6990 } 6991 ring_buffer_put(rb); 6992 6993 out: 6994 return data->aux_size; 6995 } 6996 6997 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 6998 struct perf_event *event, 6999 struct perf_output_handle *handle, 7000 unsigned long size) 7001 { 7002 unsigned long flags; 7003 long ret; 7004 7005 /* 7006 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7007 * paths. If we start calling them in NMI context, they may race with 7008 * the IRQ ones, that is, for example, re-starting an event that's just 7009 * been stopped, which is why we're using a separate callback that 7010 * doesn't change the event state. 7011 * 7012 * IRQs need to be disabled to prevent IPIs from racing with us. 7013 */ 7014 local_irq_save(flags); 7015 /* 7016 * Guard against NMI hits inside the critical section; 7017 * see also perf_prepare_sample_aux(). 7018 */ 7019 WRITE_ONCE(rb->aux_in_sampling, 1); 7020 barrier(); 7021 7022 ret = event->pmu->snapshot_aux(event, handle, size); 7023 7024 barrier(); 7025 WRITE_ONCE(rb->aux_in_sampling, 0); 7026 local_irq_restore(flags); 7027 7028 return ret; 7029 } 7030 7031 static void perf_aux_sample_output(struct perf_event *event, 7032 struct perf_output_handle *handle, 7033 struct perf_sample_data *data) 7034 { 7035 struct perf_event *sampler = event->aux_event; 7036 struct perf_buffer *rb; 7037 unsigned long pad; 7038 long size; 7039 7040 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7041 return; 7042 7043 rb = ring_buffer_get(sampler); 7044 if (!rb) 7045 return; 7046 7047 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7048 7049 /* 7050 * An error here means that perf_output_copy() failed (returned a 7051 * non-zero surplus that it didn't copy), which in its current 7052 * enlightened implementation is not possible. If that changes, we'd 7053 * like to know. 7054 */ 7055 if (WARN_ON_ONCE(size < 0)) 7056 goto out_put; 7057 7058 /* 7059 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7060 * perf_prepare_sample_aux(), so should not be more than that. 7061 */ 7062 pad = data->aux_size - size; 7063 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7064 pad = 8; 7065 7066 if (pad) { 7067 u64 zero = 0; 7068 perf_output_copy(handle, &zero, pad); 7069 } 7070 7071 out_put: 7072 ring_buffer_put(rb); 7073 } 7074 7075 /* 7076 * A set of common sample data types saved even for non-sample records 7077 * when event->attr.sample_id_all is set. 7078 */ 7079 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7080 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7081 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7082 7083 static void __perf_event_header__init_id(struct perf_sample_data *data, 7084 struct perf_event *event, 7085 u64 sample_type) 7086 { 7087 data->type = event->attr.sample_type; 7088 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7089 7090 if (sample_type & PERF_SAMPLE_TID) { 7091 /* namespace issues */ 7092 data->tid_entry.pid = perf_event_pid(event, current); 7093 data->tid_entry.tid = perf_event_tid(event, current); 7094 } 7095 7096 if (sample_type & PERF_SAMPLE_TIME) 7097 data->time = perf_event_clock(event); 7098 7099 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7100 data->id = primary_event_id(event); 7101 7102 if (sample_type & PERF_SAMPLE_STREAM_ID) 7103 data->stream_id = event->id; 7104 7105 if (sample_type & PERF_SAMPLE_CPU) { 7106 data->cpu_entry.cpu = raw_smp_processor_id(); 7107 data->cpu_entry.reserved = 0; 7108 } 7109 } 7110 7111 void perf_event_header__init_id(struct perf_event_header *header, 7112 struct perf_sample_data *data, 7113 struct perf_event *event) 7114 { 7115 if (event->attr.sample_id_all) { 7116 header->size += event->id_header_size; 7117 __perf_event_header__init_id(data, event, event->attr.sample_type); 7118 } 7119 } 7120 7121 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7122 struct perf_sample_data *data) 7123 { 7124 u64 sample_type = data->type; 7125 7126 if (sample_type & PERF_SAMPLE_TID) 7127 perf_output_put(handle, data->tid_entry); 7128 7129 if (sample_type & PERF_SAMPLE_TIME) 7130 perf_output_put(handle, data->time); 7131 7132 if (sample_type & PERF_SAMPLE_ID) 7133 perf_output_put(handle, data->id); 7134 7135 if (sample_type & PERF_SAMPLE_STREAM_ID) 7136 perf_output_put(handle, data->stream_id); 7137 7138 if (sample_type & PERF_SAMPLE_CPU) 7139 perf_output_put(handle, data->cpu_entry); 7140 7141 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7142 perf_output_put(handle, data->id); 7143 } 7144 7145 void perf_event__output_id_sample(struct perf_event *event, 7146 struct perf_output_handle *handle, 7147 struct perf_sample_data *sample) 7148 { 7149 if (event->attr.sample_id_all) 7150 __perf_event__output_id_sample(handle, sample); 7151 } 7152 7153 static void perf_output_read_one(struct perf_output_handle *handle, 7154 struct perf_event *event, 7155 u64 enabled, u64 running) 7156 { 7157 u64 read_format = event->attr.read_format; 7158 u64 values[5]; 7159 int n = 0; 7160 7161 values[n++] = perf_event_count(event); 7162 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7163 values[n++] = enabled + 7164 atomic64_read(&event->child_total_time_enabled); 7165 } 7166 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7167 values[n++] = running + 7168 atomic64_read(&event->child_total_time_running); 7169 } 7170 if (read_format & PERF_FORMAT_ID) 7171 values[n++] = primary_event_id(event); 7172 if (read_format & PERF_FORMAT_LOST) 7173 values[n++] = atomic64_read(&event->lost_samples); 7174 7175 __output_copy(handle, values, n * sizeof(u64)); 7176 } 7177 7178 static void perf_output_read_group(struct perf_output_handle *handle, 7179 struct perf_event *event, 7180 u64 enabled, u64 running) 7181 { 7182 struct perf_event *leader = event->group_leader, *sub; 7183 u64 read_format = event->attr.read_format; 7184 unsigned long flags; 7185 u64 values[6]; 7186 int n = 0; 7187 7188 /* 7189 * Disabling interrupts avoids all counter scheduling 7190 * (context switches, timer based rotation and IPIs). 7191 */ 7192 local_irq_save(flags); 7193 7194 values[n++] = 1 + leader->nr_siblings; 7195 7196 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7197 values[n++] = enabled; 7198 7199 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7200 values[n++] = running; 7201 7202 if ((leader != event) && 7203 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7204 leader->pmu->read(leader); 7205 7206 values[n++] = perf_event_count(leader); 7207 if (read_format & PERF_FORMAT_ID) 7208 values[n++] = primary_event_id(leader); 7209 if (read_format & PERF_FORMAT_LOST) 7210 values[n++] = atomic64_read(&leader->lost_samples); 7211 7212 __output_copy(handle, values, n * sizeof(u64)); 7213 7214 for_each_sibling_event(sub, leader) { 7215 n = 0; 7216 7217 if ((sub != event) && 7218 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7219 sub->pmu->read(sub); 7220 7221 values[n++] = perf_event_count(sub); 7222 if (read_format & PERF_FORMAT_ID) 7223 values[n++] = primary_event_id(sub); 7224 if (read_format & PERF_FORMAT_LOST) 7225 values[n++] = atomic64_read(&sub->lost_samples); 7226 7227 __output_copy(handle, values, n * sizeof(u64)); 7228 } 7229 7230 local_irq_restore(flags); 7231 } 7232 7233 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7234 PERF_FORMAT_TOTAL_TIME_RUNNING) 7235 7236 /* 7237 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7238 * 7239 * The problem is that its both hard and excessively expensive to iterate the 7240 * child list, not to mention that its impossible to IPI the children running 7241 * on another CPU, from interrupt/NMI context. 7242 */ 7243 static void perf_output_read(struct perf_output_handle *handle, 7244 struct perf_event *event) 7245 { 7246 u64 enabled = 0, running = 0, now; 7247 u64 read_format = event->attr.read_format; 7248 7249 /* 7250 * compute total_time_enabled, total_time_running 7251 * based on snapshot values taken when the event 7252 * was last scheduled in. 7253 * 7254 * we cannot simply called update_context_time() 7255 * because of locking issue as we are called in 7256 * NMI context 7257 */ 7258 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7259 calc_timer_values(event, &now, &enabled, &running); 7260 7261 if (event->attr.read_format & PERF_FORMAT_GROUP) 7262 perf_output_read_group(handle, event, enabled, running); 7263 else 7264 perf_output_read_one(handle, event, enabled, running); 7265 } 7266 7267 void perf_output_sample(struct perf_output_handle *handle, 7268 struct perf_event_header *header, 7269 struct perf_sample_data *data, 7270 struct perf_event *event) 7271 { 7272 u64 sample_type = data->type; 7273 7274 perf_output_put(handle, *header); 7275 7276 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7277 perf_output_put(handle, data->id); 7278 7279 if (sample_type & PERF_SAMPLE_IP) 7280 perf_output_put(handle, data->ip); 7281 7282 if (sample_type & PERF_SAMPLE_TID) 7283 perf_output_put(handle, data->tid_entry); 7284 7285 if (sample_type & PERF_SAMPLE_TIME) 7286 perf_output_put(handle, data->time); 7287 7288 if (sample_type & PERF_SAMPLE_ADDR) 7289 perf_output_put(handle, data->addr); 7290 7291 if (sample_type & PERF_SAMPLE_ID) 7292 perf_output_put(handle, data->id); 7293 7294 if (sample_type & PERF_SAMPLE_STREAM_ID) 7295 perf_output_put(handle, data->stream_id); 7296 7297 if (sample_type & PERF_SAMPLE_CPU) 7298 perf_output_put(handle, data->cpu_entry); 7299 7300 if (sample_type & PERF_SAMPLE_PERIOD) 7301 perf_output_put(handle, data->period); 7302 7303 if (sample_type & PERF_SAMPLE_READ) 7304 perf_output_read(handle, event); 7305 7306 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7307 int size = 1; 7308 7309 size += data->callchain->nr; 7310 size *= sizeof(u64); 7311 __output_copy(handle, data->callchain, size); 7312 } 7313 7314 if (sample_type & PERF_SAMPLE_RAW) { 7315 struct perf_raw_record *raw = data->raw; 7316 7317 if (raw) { 7318 struct perf_raw_frag *frag = &raw->frag; 7319 7320 perf_output_put(handle, raw->size); 7321 do { 7322 if (frag->copy) { 7323 __output_custom(handle, frag->copy, 7324 frag->data, frag->size); 7325 } else { 7326 __output_copy(handle, frag->data, 7327 frag->size); 7328 } 7329 if (perf_raw_frag_last(frag)) 7330 break; 7331 frag = frag->next; 7332 } while (1); 7333 if (frag->pad) 7334 __output_skip(handle, NULL, frag->pad); 7335 } else { 7336 struct { 7337 u32 size; 7338 u32 data; 7339 } raw = { 7340 .size = sizeof(u32), 7341 .data = 0, 7342 }; 7343 perf_output_put(handle, raw); 7344 } 7345 } 7346 7347 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7348 if (data->br_stack) { 7349 size_t size; 7350 7351 size = data->br_stack->nr 7352 * sizeof(struct perf_branch_entry); 7353 7354 perf_output_put(handle, data->br_stack->nr); 7355 if (branch_sample_hw_index(event)) 7356 perf_output_put(handle, data->br_stack->hw_idx); 7357 perf_output_copy(handle, data->br_stack->entries, size); 7358 } else { 7359 /* 7360 * we always store at least the value of nr 7361 */ 7362 u64 nr = 0; 7363 perf_output_put(handle, nr); 7364 } 7365 } 7366 7367 if (sample_type & PERF_SAMPLE_REGS_USER) { 7368 u64 abi = data->regs_user.abi; 7369 7370 /* 7371 * If there are no regs to dump, notice it through 7372 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7373 */ 7374 perf_output_put(handle, abi); 7375 7376 if (abi) { 7377 u64 mask = event->attr.sample_regs_user; 7378 perf_output_sample_regs(handle, 7379 data->regs_user.regs, 7380 mask); 7381 } 7382 } 7383 7384 if (sample_type & PERF_SAMPLE_STACK_USER) { 7385 perf_output_sample_ustack(handle, 7386 data->stack_user_size, 7387 data->regs_user.regs); 7388 } 7389 7390 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7391 perf_output_put(handle, data->weight.full); 7392 7393 if (sample_type & PERF_SAMPLE_DATA_SRC) 7394 perf_output_put(handle, data->data_src.val); 7395 7396 if (sample_type & PERF_SAMPLE_TRANSACTION) 7397 perf_output_put(handle, data->txn); 7398 7399 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7400 u64 abi = data->regs_intr.abi; 7401 /* 7402 * If there are no regs to dump, notice it through 7403 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7404 */ 7405 perf_output_put(handle, abi); 7406 7407 if (abi) { 7408 u64 mask = event->attr.sample_regs_intr; 7409 7410 perf_output_sample_regs(handle, 7411 data->regs_intr.regs, 7412 mask); 7413 } 7414 } 7415 7416 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7417 perf_output_put(handle, data->phys_addr); 7418 7419 if (sample_type & PERF_SAMPLE_CGROUP) 7420 perf_output_put(handle, data->cgroup); 7421 7422 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7423 perf_output_put(handle, data->data_page_size); 7424 7425 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7426 perf_output_put(handle, data->code_page_size); 7427 7428 if (sample_type & PERF_SAMPLE_AUX) { 7429 perf_output_put(handle, data->aux_size); 7430 7431 if (data->aux_size) 7432 perf_aux_sample_output(event, handle, data); 7433 } 7434 7435 if (!event->attr.watermark) { 7436 int wakeup_events = event->attr.wakeup_events; 7437 7438 if (wakeup_events) { 7439 struct perf_buffer *rb = handle->rb; 7440 int events = local_inc_return(&rb->events); 7441 7442 if (events >= wakeup_events) { 7443 local_sub(wakeup_events, &rb->events); 7444 local_inc(&rb->wakeup); 7445 } 7446 } 7447 } 7448 } 7449 7450 static u64 perf_virt_to_phys(u64 virt) 7451 { 7452 u64 phys_addr = 0; 7453 7454 if (!virt) 7455 return 0; 7456 7457 if (virt >= TASK_SIZE) { 7458 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7459 if (virt_addr_valid((void *)(uintptr_t)virt) && 7460 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7461 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7462 } else { 7463 /* 7464 * Walking the pages tables for user address. 7465 * Interrupts are disabled, so it prevents any tear down 7466 * of the page tables. 7467 * Try IRQ-safe get_user_page_fast_only first. 7468 * If failed, leave phys_addr as 0. 7469 */ 7470 if (current->mm != NULL) { 7471 struct page *p; 7472 7473 pagefault_disable(); 7474 if (get_user_page_fast_only(virt, 0, &p)) { 7475 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7476 put_page(p); 7477 } 7478 pagefault_enable(); 7479 } 7480 } 7481 7482 return phys_addr; 7483 } 7484 7485 /* 7486 * Return the pagetable size of a given virtual address. 7487 */ 7488 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7489 { 7490 u64 size = 0; 7491 7492 #ifdef CONFIG_HAVE_FAST_GUP 7493 pgd_t *pgdp, pgd; 7494 p4d_t *p4dp, p4d; 7495 pud_t *pudp, pud; 7496 pmd_t *pmdp, pmd; 7497 pte_t *ptep, pte; 7498 7499 pgdp = pgd_offset(mm, addr); 7500 pgd = READ_ONCE(*pgdp); 7501 if (pgd_none(pgd)) 7502 return 0; 7503 7504 if (pgd_leaf(pgd)) 7505 return pgd_leaf_size(pgd); 7506 7507 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7508 p4d = READ_ONCE(*p4dp); 7509 if (!p4d_present(p4d)) 7510 return 0; 7511 7512 if (p4d_leaf(p4d)) 7513 return p4d_leaf_size(p4d); 7514 7515 pudp = pud_offset_lockless(p4dp, p4d, addr); 7516 pud = READ_ONCE(*pudp); 7517 if (!pud_present(pud)) 7518 return 0; 7519 7520 if (pud_leaf(pud)) 7521 return pud_leaf_size(pud); 7522 7523 pmdp = pmd_offset_lockless(pudp, pud, addr); 7524 again: 7525 pmd = pmdp_get_lockless(pmdp); 7526 if (!pmd_present(pmd)) 7527 return 0; 7528 7529 if (pmd_leaf(pmd)) 7530 return pmd_leaf_size(pmd); 7531 7532 ptep = pte_offset_map(&pmd, addr); 7533 if (!ptep) 7534 goto again; 7535 7536 pte = ptep_get_lockless(ptep); 7537 if (pte_present(pte)) 7538 size = pte_leaf_size(pte); 7539 pte_unmap(ptep); 7540 #endif /* CONFIG_HAVE_FAST_GUP */ 7541 7542 return size; 7543 } 7544 7545 static u64 perf_get_page_size(unsigned long addr) 7546 { 7547 struct mm_struct *mm; 7548 unsigned long flags; 7549 u64 size; 7550 7551 if (!addr) 7552 return 0; 7553 7554 /* 7555 * Software page-table walkers must disable IRQs, 7556 * which prevents any tear down of the page tables. 7557 */ 7558 local_irq_save(flags); 7559 7560 mm = current->mm; 7561 if (!mm) { 7562 /* 7563 * For kernel threads and the like, use init_mm so that 7564 * we can find kernel memory. 7565 */ 7566 mm = &init_mm; 7567 } 7568 7569 size = perf_get_pgtable_size(mm, addr); 7570 7571 local_irq_restore(flags); 7572 7573 return size; 7574 } 7575 7576 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7577 7578 struct perf_callchain_entry * 7579 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7580 { 7581 bool kernel = !event->attr.exclude_callchain_kernel; 7582 bool user = !event->attr.exclude_callchain_user; 7583 /* Disallow cross-task user callchains. */ 7584 bool crosstask = event->ctx->task && event->ctx->task != current; 7585 const u32 max_stack = event->attr.sample_max_stack; 7586 struct perf_callchain_entry *callchain; 7587 7588 if (!kernel && !user) 7589 return &__empty_callchain; 7590 7591 callchain = get_perf_callchain(regs, 0, kernel, user, 7592 max_stack, crosstask, true); 7593 return callchain ?: &__empty_callchain; 7594 } 7595 7596 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7597 { 7598 return d * !!(flags & s); 7599 } 7600 7601 void perf_prepare_sample(struct perf_sample_data *data, 7602 struct perf_event *event, 7603 struct pt_regs *regs) 7604 { 7605 u64 sample_type = event->attr.sample_type; 7606 u64 filtered_sample_type; 7607 7608 /* 7609 * Add the sample flags that are dependent to others. And clear the 7610 * sample flags that have already been done by the PMU driver. 7611 */ 7612 filtered_sample_type = sample_type; 7613 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7614 PERF_SAMPLE_IP); 7615 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7616 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7617 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7618 PERF_SAMPLE_REGS_USER); 7619 filtered_sample_type &= ~data->sample_flags; 7620 7621 if (filtered_sample_type == 0) { 7622 /* Make sure it has the correct data->type for output */ 7623 data->type = event->attr.sample_type; 7624 return; 7625 } 7626 7627 __perf_event_header__init_id(data, event, filtered_sample_type); 7628 7629 if (filtered_sample_type & PERF_SAMPLE_IP) { 7630 data->ip = perf_instruction_pointer(regs); 7631 data->sample_flags |= PERF_SAMPLE_IP; 7632 } 7633 7634 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7635 perf_sample_save_callchain(data, event, regs); 7636 7637 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7638 data->raw = NULL; 7639 data->dyn_size += sizeof(u64); 7640 data->sample_flags |= PERF_SAMPLE_RAW; 7641 } 7642 7643 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7644 data->br_stack = NULL; 7645 data->dyn_size += sizeof(u64); 7646 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7647 } 7648 7649 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7650 perf_sample_regs_user(&data->regs_user, regs); 7651 7652 /* 7653 * It cannot use the filtered_sample_type here as REGS_USER can be set 7654 * by STACK_USER (using __cond_set() above) and we don't want to update 7655 * the dyn_size if it's not requested by users. 7656 */ 7657 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7658 /* regs dump ABI info */ 7659 int size = sizeof(u64); 7660 7661 if (data->regs_user.regs) { 7662 u64 mask = event->attr.sample_regs_user; 7663 size += hweight64(mask) * sizeof(u64); 7664 } 7665 7666 data->dyn_size += size; 7667 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7668 } 7669 7670 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7671 /* 7672 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7673 * processed as the last one or have additional check added 7674 * in case new sample type is added, because we could eat 7675 * up the rest of the sample size. 7676 */ 7677 u16 stack_size = event->attr.sample_stack_user; 7678 u16 header_size = perf_sample_data_size(data, event); 7679 u16 size = sizeof(u64); 7680 7681 stack_size = perf_sample_ustack_size(stack_size, header_size, 7682 data->regs_user.regs); 7683 7684 /* 7685 * If there is something to dump, add space for the dump 7686 * itself and for the field that tells the dynamic size, 7687 * which is how many have been actually dumped. 7688 */ 7689 if (stack_size) 7690 size += sizeof(u64) + stack_size; 7691 7692 data->stack_user_size = stack_size; 7693 data->dyn_size += size; 7694 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7695 } 7696 7697 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7698 data->weight.full = 0; 7699 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7700 } 7701 7702 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7703 data->data_src.val = PERF_MEM_NA; 7704 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7705 } 7706 7707 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7708 data->txn = 0; 7709 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7710 } 7711 7712 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7713 data->addr = 0; 7714 data->sample_flags |= PERF_SAMPLE_ADDR; 7715 } 7716 7717 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7718 /* regs dump ABI info */ 7719 int size = sizeof(u64); 7720 7721 perf_sample_regs_intr(&data->regs_intr, regs); 7722 7723 if (data->regs_intr.regs) { 7724 u64 mask = event->attr.sample_regs_intr; 7725 7726 size += hweight64(mask) * sizeof(u64); 7727 } 7728 7729 data->dyn_size += size; 7730 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7731 } 7732 7733 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7734 data->phys_addr = perf_virt_to_phys(data->addr); 7735 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7736 } 7737 7738 #ifdef CONFIG_CGROUP_PERF 7739 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7740 struct cgroup *cgrp; 7741 7742 /* protected by RCU */ 7743 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7744 data->cgroup = cgroup_id(cgrp); 7745 data->sample_flags |= PERF_SAMPLE_CGROUP; 7746 } 7747 #endif 7748 7749 /* 7750 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7751 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7752 * but the value will not dump to the userspace. 7753 */ 7754 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7755 data->data_page_size = perf_get_page_size(data->addr); 7756 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7757 } 7758 7759 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7760 data->code_page_size = perf_get_page_size(data->ip); 7761 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7762 } 7763 7764 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7765 u64 size; 7766 u16 header_size = perf_sample_data_size(data, event); 7767 7768 header_size += sizeof(u64); /* size */ 7769 7770 /* 7771 * Given the 16bit nature of header::size, an AUX sample can 7772 * easily overflow it, what with all the preceding sample bits. 7773 * Make sure this doesn't happen by using up to U16_MAX bytes 7774 * per sample in total (rounded down to 8 byte boundary). 7775 */ 7776 size = min_t(size_t, U16_MAX - header_size, 7777 event->attr.aux_sample_size); 7778 size = rounddown(size, 8); 7779 size = perf_prepare_sample_aux(event, data, size); 7780 7781 WARN_ON_ONCE(size + header_size > U16_MAX); 7782 data->dyn_size += size + sizeof(u64); /* size above */ 7783 data->sample_flags |= PERF_SAMPLE_AUX; 7784 } 7785 } 7786 7787 void perf_prepare_header(struct perf_event_header *header, 7788 struct perf_sample_data *data, 7789 struct perf_event *event, 7790 struct pt_regs *regs) 7791 { 7792 header->type = PERF_RECORD_SAMPLE; 7793 header->size = perf_sample_data_size(data, event); 7794 header->misc = perf_misc_flags(regs); 7795 7796 /* 7797 * If you're adding more sample types here, you likely need to do 7798 * something about the overflowing header::size, like repurpose the 7799 * lowest 3 bits of size, which should be always zero at the moment. 7800 * This raises a more important question, do we really need 512k sized 7801 * samples and why, so good argumentation is in order for whatever you 7802 * do here next. 7803 */ 7804 WARN_ON_ONCE(header->size & 7); 7805 } 7806 7807 static __always_inline int 7808 __perf_event_output(struct perf_event *event, 7809 struct perf_sample_data *data, 7810 struct pt_regs *regs, 7811 int (*output_begin)(struct perf_output_handle *, 7812 struct perf_sample_data *, 7813 struct perf_event *, 7814 unsigned int)) 7815 { 7816 struct perf_output_handle handle; 7817 struct perf_event_header header; 7818 int err; 7819 7820 /* protect the callchain buffers */ 7821 rcu_read_lock(); 7822 7823 perf_prepare_sample(data, event, regs); 7824 perf_prepare_header(&header, data, event, regs); 7825 7826 err = output_begin(&handle, data, event, header.size); 7827 if (err) 7828 goto exit; 7829 7830 perf_output_sample(&handle, &header, data, event); 7831 7832 perf_output_end(&handle); 7833 7834 exit: 7835 rcu_read_unlock(); 7836 return err; 7837 } 7838 7839 void 7840 perf_event_output_forward(struct perf_event *event, 7841 struct perf_sample_data *data, 7842 struct pt_regs *regs) 7843 { 7844 __perf_event_output(event, data, regs, perf_output_begin_forward); 7845 } 7846 7847 void 7848 perf_event_output_backward(struct perf_event *event, 7849 struct perf_sample_data *data, 7850 struct pt_regs *regs) 7851 { 7852 __perf_event_output(event, data, regs, perf_output_begin_backward); 7853 } 7854 7855 int 7856 perf_event_output(struct perf_event *event, 7857 struct perf_sample_data *data, 7858 struct pt_regs *regs) 7859 { 7860 return __perf_event_output(event, data, regs, perf_output_begin); 7861 } 7862 7863 /* 7864 * read event_id 7865 */ 7866 7867 struct perf_read_event { 7868 struct perf_event_header header; 7869 7870 u32 pid; 7871 u32 tid; 7872 }; 7873 7874 static void 7875 perf_event_read_event(struct perf_event *event, 7876 struct task_struct *task) 7877 { 7878 struct perf_output_handle handle; 7879 struct perf_sample_data sample; 7880 struct perf_read_event read_event = { 7881 .header = { 7882 .type = PERF_RECORD_READ, 7883 .misc = 0, 7884 .size = sizeof(read_event) + event->read_size, 7885 }, 7886 .pid = perf_event_pid(event, task), 7887 .tid = perf_event_tid(event, task), 7888 }; 7889 int ret; 7890 7891 perf_event_header__init_id(&read_event.header, &sample, event); 7892 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7893 if (ret) 7894 return; 7895 7896 perf_output_put(&handle, read_event); 7897 perf_output_read(&handle, event); 7898 perf_event__output_id_sample(event, &handle, &sample); 7899 7900 perf_output_end(&handle); 7901 } 7902 7903 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7904 7905 static void 7906 perf_iterate_ctx(struct perf_event_context *ctx, 7907 perf_iterate_f output, 7908 void *data, bool all) 7909 { 7910 struct perf_event *event; 7911 7912 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7913 if (!all) { 7914 if (event->state < PERF_EVENT_STATE_INACTIVE) 7915 continue; 7916 if (!event_filter_match(event)) 7917 continue; 7918 } 7919 7920 output(event, data); 7921 } 7922 } 7923 7924 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 7925 { 7926 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 7927 struct perf_event *event; 7928 7929 list_for_each_entry_rcu(event, &pel->list, sb_list) { 7930 /* 7931 * Skip events that are not fully formed yet; ensure that 7932 * if we observe event->ctx, both event and ctx will be 7933 * complete enough. See perf_install_in_context(). 7934 */ 7935 if (!smp_load_acquire(&event->ctx)) 7936 continue; 7937 7938 if (event->state < PERF_EVENT_STATE_INACTIVE) 7939 continue; 7940 if (!event_filter_match(event)) 7941 continue; 7942 output(event, data); 7943 } 7944 } 7945 7946 /* 7947 * Iterate all events that need to receive side-band events. 7948 * 7949 * For new callers; ensure that account_pmu_sb_event() includes 7950 * your event, otherwise it might not get delivered. 7951 */ 7952 static void 7953 perf_iterate_sb(perf_iterate_f output, void *data, 7954 struct perf_event_context *task_ctx) 7955 { 7956 struct perf_event_context *ctx; 7957 7958 rcu_read_lock(); 7959 preempt_disable(); 7960 7961 /* 7962 * If we have task_ctx != NULL we only notify the task context itself. 7963 * The task_ctx is set only for EXIT events before releasing task 7964 * context. 7965 */ 7966 if (task_ctx) { 7967 perf_iterate_ctx(task_ctx, output, data, false); 7968 goto done; 7969 } 7970 7971 perf_iterate_sb_cpu(output, data); 7972 7973 ctx = rcu_dereference(current->perf_event_ctxp); 7974 if (ctx) 7975 perf_iterate_ctx(ctx, output, data, false); 7976 done: 7977 preempt_enable(); 7978 rcu_read_unlock(); 7979 } 7980 7981 /* 7982 * Clear all file-based filters at exec, they'll have to be 7983 * re-instated when/if these objects are mmapped again. 7984 */ 7985 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 7986 { 7987 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7988 struct perf_addr_filter *filter; 7989 unsigned int restart = 0, count = 0; 7990 unsigned long flags; 7991 7992 if (!has_addr_filter(event)) 7993 return; 7994 7995 raw_spin_lock_irqsave(&ifh->lock, flags); 7996 list_for_each_entry(filter, &ifh->list, entry) { 7997 if (filter->path.dentry) { 7998 event->addr_filter_ranges[count].start = 0; 7999 event->addr_filter_ranges[count].size = 0; 8000 restart++; 8001 } 8002 8003 count++; 8004 } 8005 8006 if (restart) 8007 event->addr_filters_gen++; 8008 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8009 8010 if (restart) 8011 perf_event_stop(event, 1); 8012 } 8013 8014 void perf_event_exec(void) 8015 { 8016 struct perf_event_context *ctx; 8017 8018 ctx = perf_pin_task_context(current); 8019 if (!ctx) 8020 return; 8021 8022 perf_event_enable_on_exec(ctx); 8023 perf_event_remove_on_exec(ctx); 8024 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8025 8026 perf_unpin_context(ctx); 8027 put_ctx(ctx); 8028 } 8029 8030 struct remote_output { 8031 struct perf_buffer *rb; 8032 int err; 8033 }; 8034 8035 static void __perf_event_output_stop(struct perf_event *event, void *data) 8036 { 8037 struct perf_event *parent = event->parent; 8038 struct remote_output *ro = data; 8039 struct perf_buffer *rb = ro->rb; 8040 struct stop_event_data sd = { 8041 .event = event, 8042 }; 8043 8044 if (!has_aux(event)) 8045 return; 8046 8047 if (!parent) 8048 parent = event; 8049 8050 /* 8051 * In case of inheritance, it will be the parent that links to the 8052 * ring-buffer, but it will be the child that's actually using it. 8053 * 8054 * We are using event::rb to determine if the event should be stopped, 8055 * however this may race with ring_buffer_attach() (through set_output), 8056 * which will make us skip the event that actually needs to be stopped. 8057 * So ring_buffer_attach() has to stop an aux event before re-assigning 8058 * its rb pointer. 8059 */ 8060 if (rcu_dereference(parent->rb) == rb) 8061 ro->err = __perf_event_stop(&sd); 8062 } 8063 8064 static int __perf_pmu_output_stop(void *info) 8065 { 8066 struct perf_event *event = info; 8067 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8068 struct remote_output ro = { 8069 .rb = event->rb, 8070 }; 8071 8072 rcu_read_lock(); 8073 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8074 if (cpuctx->task_ctx) 8075 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8076 &ro, false); 8077 rcu_read_unlock(); 8078 8079 return ro.err; 8080 } 8081 8082 static void perf_pmu_output_stop(struct perf_event *event) 8083 { 8084 struct perf_event *iter; 8085 int err, cpu; 8086 8087 restart: 8088 rcu_read_lock(); 8089 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8090 /* 8091 * For per-CPU events, we need to make sure that neither they 8092 * nor their children are running; for cpu==-1 events it's 8093 * sufficient to stop the event itself if it's active, since 8094 * it can't have children. 8095 */ 8096 cpu = iter->cpu; 8097 if (cpu == -1) 8098 cpu = READ_ONCE(iter->oncpu); 8099 8100 if (cpu == -1) 8101 continue; 8102 8103 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8104 if (err == -EAGAIN) { 8105 rcu_read_unlock(); 8106 goto restart; 8107 } 8108 } 8109 rcu_read_unlock(); 8110 } 8111 8112 /* 8113 * task tracking -- fork/exit 8114 * 8115 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8116 */ 8117 8118 struct perf_task_event { 8119 struct task_struct *task; 8120 struct perf_event_context *task_ctx; 8121 8122 struct { 8123 struct perf_event_header header; 8124 8125 u32 pid; 8126 u32 ppid; 8127 u32 tid; 8128 u32 ptid; 8129 u64 time; 8130 } event_id; 8131 }; 8132 8133 static int perf_event_task_match(struct perf_event *event) 8134 { 8135 return event->attr.comm || event->attr.mmap || 8136 event->attr.mmap2 || event->attr.mmap_data || 8137 event->attr.task; 8138 } 8139 8140 static void perf_event_task_output(struct perf_event *event, 8141 void *data) 8142 { 8143 struct perf_task_event *task_event = data; 8144 struct perf_output_handle handle; 8145 struct perf_sample_data sample; 8146 struct task_struct *task = task_event->task; 8147 int ret, size = task_event->event_id.header.size; 8148 8149 if (!perf_event_task_match(event)) 8150 return; 8151 8152 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8153 8154 ret = perf_output_begin(&handle, &sample, event, 8155 task_event->event_id.header.size); 8156 if (ret) 8157 goto out; 8158 8159 task_event->event_id.pid = perf_event_pid(event, task); 8160 task_event->event_id.tid = perf_event_tid(event, task); 8161 8162 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8163 task_event->event_id.ppid = perf_event_pid(event, 8164 task->real_parent); 8165 task_event->event_id.ptid = perf_event_pid(event, 8166 task->real_parent); 8167 } else { /* PERF_RECORD_FORK */ 8168 task_event->event_id.ppid = perf_event_pid(event, current); 8169 task_event->event_id.ptid = perf_event_tid(event, current); 8170 } 8171 8172 task_event->event_id.time = perf_event_clock(event); 8173 8174 perf_output_put(&handle, task_event->event_id); 8175 8176 perf_event__output_id_sample(event, &handle, &sample); 8177 8178 perf_output_end(&handle); 8179 out: 8180 task_event->event_id.header.size = size; 8181 } 8182 8183 static void perf_event_task(struct task_struct *task, 8184 struct perf_event_context *task_ctx, 8185 int new) 8186 { 8187 struct perf_task_event task_event; 8188 8189 if (!atomic_read(&nr_comm_events) && 8190 !atomic_read(&nr_mmap_events) && 8191 !atomic_read(&nr_task_events)) 8192 return; 8193 8194 task_event = (struct perf_task_event){ 8195 .task = task, 8196 .task_ctx = task_ctx, 8197 .event_id = { 8198 .header = { 8199 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8200 .misc = 0, 8201 .size = sizeof(task_event.event_id), 8202 }, 8203 /* .pid */ 8204 /* .ppid */ 8205 /* .tid */ 8206 /* .ptid */ 8207 /* .time */ 8208 }, 8209 }; 8210 8211 perf_iterate_sb(perf_event_task_output, 8212 &task_event, 8213 task_ctx); 8214 } 8215 8216 void perf_event_fork(struct task_struct *task) 8217 { 8218 perf_event_task(task, NULL, 1); 8219 perf_event_namespaces(task); 8220 } 8221 8222 /* 8223 * comm tracking 8224 */ 8225 8226 struct perf_comm_event { 8227 struct task_struct *task; 8228 char *comm; 8229 int comm_size; 8230 8231 struct { 8232 struct perf_event_header header; 8233 8234 u32 pid; 8235 u32 tid; 8236 } event_id; 8237 }; 8238 8239 static int perf_event_comm_match(struct perf_event *event) 8240 { 8241 return event->attr.comm; 8242 } 8243 8244 static void perf_event_comm_output(struct perf_event *event, 8245 void *data) 8246 { 8247 struct perf_comm_event *comm_event = data; 8248 struct perf_output_handle handle; 8249 struct perf_sample_data sample; 8250 int size = comm_event->event_id.header.size; 8251 int ret; 8252 8253 if (!perf_event_comm_match(event)) 8254 return; 8255 8256 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8257 ret = perf_output_begin(&handle, &sample, event, 8258 comm_event->event_id.header.size); 8259 8260 if (ret) 8261 goto out; 8262 8263 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8264 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8265 8266 perf_output_put(&handle, comm_event->event_id); 8267 __output_copy(&handle, comm_event->comm, 8268 comm_event->comm_size); 8269 8270 perf_event__output_id_sample(event, &handle, &sample); 8271 8272 perf_output_end(&handle); 8273 out: 8274 comm_event->event_id.header.size = size; 8275 } 8276 8277 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8278 { 8279 char comm[TASK_COMM_LEN]; 8280 unsigned int size; 8281 8282 memset(comm, 0, sizeof(comm)); 8283 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8284 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8285 8286 comm_event->comm = comm; 8287 comm_event->comm_size = size; 8288 8289 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8290 8291 perf_iterate_sb(perf_event_comm_output, 8292 comm_event, 8293 NULL); 8294 } 8295 8296 void perf_event_comm(struct task_struct *task, bool exec) 8297 { 8298 struct perf_comm_event comm_event; 8299 8300 if (!atomic_read(&nr_comm_events)) 8301 return; 8302 8303 comm_event = (struct perf_comm_event){ 8304 .task = task, 8305 /* .comm */ 8306 /* .comm_size */ 8307 .event_id = { 8308 .header = { 8309 .type = PERF_RECORD_COMM, 8310 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8311 /* .size */ 8312 }, 8313 /* .pid */ 8314 /* .tid */ 8315 }, 8316 }; 8317 8318 perf_event_comm_event(&comm_event); 8319 } 8320 8321 /* 8322 * namespaces tracking 8323 */ 8324 8325 struct perf_namespaces_event { 8326 struct task_struct *task; 8327 8328 struct { 8329 struct perf_event_header header; 8330 8331 u32 pid; 8332 u32 tid; 8333 u64 nr_namespaces; 8334 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8335 } event_id; 8336 }; 8337 8338 static int perf_event_namespaces_match(struct perf_event *event) 8339 { 8340 return event->attr.namespaces; 8341 } 8342 8343 static void perf_event_namespaces_output(struct perf_event *event, 8344 void *data) 8345 { 8346 struct perf_namespaces_event *namespaces_event = data; 8347 struct perf_output_handle handle; 8348 struct perf_sample_data sample; 8349 u16 header_size = namespaces_event->event_id.header.size; 8350 int ret; 8351 8352 if (!perf_event_namespaces_match(event)) 8353 return; 8354 8355 perf_event_header__init_id(&namespaces_event->event_id.header, 8356 &sample, event); 8357 ret = perf_output_begin(&handle, &sample, event, 8358 namespaces_event->event_id.header.size); 8359 if (ret) 8360 goto out; 8361 8362 namespaces_event->event_id.pid = perf_event_pid(event, 8363 namespaces_event->task); 8364 namespaces_event->event_id.tid = perf_event_tid(event, 8365 namespaces_event->task); 8366 8367 perf_output_put(&handle, namespaces_event->event_id); 8368 8369 perf_event__output_id_sample(event, &handle, &sample); 8370 8371 perf_output_end(&handle); 8372 out: 8373 namespaces_event->event_id.header.size = header_size; 8374 } 8375 8376 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8377 struct task_struct *task, 8378 const struct proc_ns_operations *ns_ops) 8379 { 8380 struct path ns_path; 8381 struct inode *ns_inode; 8382 int error; 8383 8384 error = ns_get_path(&ns_path, task, ns_ops); 8385 if (!error) { 8386 ns_inode = ns_path.dentry->d_inode; 8387 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8388 ns_link_info->ino = ns_inode->i_ino; 8389 path_put(&ns_path); 8390 } 8391 } 8392 8393 void perf_event_namespaces(struct task_struct *task) 8394 { 8395 struct perf_namespaces_event namespaces_event; 8396 struct perf_ns_link_info *ns_link_info; 8397 8398 if (!atomic_read(&nr_namespaces_events)) 8399 return; 8400 8401 namespaces_event = (struct perf_namespaces_event){ 8402 .task = task, 8403 .event_id = { 8404 .header = { 8405 .type = PERF_RECORD_NAMESPACES, 8406 .misc = 0, 8407 .size = sizeof(namespaces_event.event_id), 8408 }, 8409 /* .pid */ 8410 /* .tid */ 8411 .nr_namespaces = NR_NAMESPACES, 8412 /* .link_info[NR_NAMESPACES] */ 8413 }, 8414 }; 8415 8416 ns_link_info = namespaces_event.event_id.link_info; 8417 8418 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8419 task, &mntns_operations); 8420 8421 #ifdef CONFIG_USER_NS 8422 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8423 task, &userns_operations); 8424 #endif 8425 #ifdef CONFIG_NET_NS 8426 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8427 task, &netns_operations); 8428 #endif 8429 #ifdef CONFIG_UTS_NS 8430 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8431 task, &utsns_operations); 8432 #endif 8433 #ifdef CONFIG_IPC_NS 8434 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8435 task, &ipcns_operations); 8436 #endif 8437 #ifdef CONFIG_PID_NS 8438 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8439 task, &pidns_operations); 8440 #endif 8441 #ifdef CONFIG_CGROUPS 8442 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8443 task, &cgroupns_operations); 8444 #endif 8445 8446 perf_iterate_sb(perf_event_namespaces_output, 8447 &namespaces_event, 8448 NULL); 8449 } 8450 8451 /* 8452 * cgroup tracking 8453 */ 8454 #ifdef CONFIG_CGROUP_PERF 8455 8456 struct perf_cgroup_event { 8457 char *path; 8458 int path_size; 8459 struct { 8460 struct perf_event_header header; 8461 u64 id; 8462 char path[]; 8463 } event_id; 8464 }; 8465 8466 static int perf_event_cgroup_match(struct perf_event *event) 8467 { 8468 return event->attr.cgroup; 8469 } 8470 8471 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8472 { 8473 struct perf_cgroup_event *cgroup_event = data; 8474 struct perf_output_handle handle; 8475 struct perf_sample_data sample; 8476 u16 header_size = cgroup_event->event_id.header.size; 8477 int ret; 8478 8479 if (!perf_event_cgroup_match(event)) 8480 return; 8481 8482 perf_event_header__init_id(&cgroup_event->event_id.header, 8483 &sample, event); 8484 ret = perf_output_begin(&handle, &sample, event, 8485 cgroup_event->event_id.header.size); 8486 if (ret) 8487 goto out; 8488 8489 perf_output_put(&handle, cgroup_event->event_id); 8490 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8491 8492 perf_event__output_id_sample(event, &handle, &sample); 8493 8494 perf_output_end(&handle); 8495 out: 8496 cgroup_event->event_id.header.size = header_size; 8497 } 8498 8499 static void perf_event_cgroup(struct cgroup *cgrp) 8500 { 8501 struct perf_cgroup_event cgroup_event; 8502 char path_enomem[16] = "//enomem"; 8503 char *pathname; 8504 size_t size; 8505 8506 if (!atomic_read(&nr_cgroup_events)) 8507 return; 8508 8509 cgroup_event = (struct perf_cgroup_event){ 8510 .event_id = { 8511 .header = { 8512 .type = PERF_RECORD_CGROUP, 8513 .misc = 0, 8514 .size = sizeof(cgroup_event.event_id), 8515 }, 8516 .id = cgroup_id(cgrp), 8517 }, 8518 }; 8519 8520 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8521 if (pathname == NULL) { 8522 cgroup_event.path = path_enomem; 8523 } else { 8524 /* just to be sure to have enough space for alignment */ 8525 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8526 cgroup_event.path = pathname; 8527 } 8528 8529 /* 8530 * Since our buffer works in 8 byte units we need to align our string 8531 * size to a multiple of 8. However, we must guarantee the tail end is 8532 * zero'd out to avoid leaking random bits to userspace. 8533 */ 8534 size = strlen(cgroup_event.path) + 1; 8535 while (!IS_ALIGNED(size, sizeof(u64))) 8536 cgroup_event.path[size++] = '\0'; 8537 8538 cgroup_event.event_id.header.size += size; 8539 cgroup_event.path_size = size; 8540 8541 perf_iterate_sb(perf_event_cgroup_output, 8542 &cgroup_event, 8543 NULL); 8544 8545 kfree(pathname); 8546 } 8547 8548 #endif 8549 8550 /* 8551 * mmap tracking 8552 */ 8553 8554 struct perf_mmap_event { 8555 struct vm_area_struct *vma; 8556 8557 const char *file_name; 8558 int file_size; 8559 int maj, min; 8560 u64 ino; 8561 u64 ino_generation; 8562 u32 prot, flags; 8563 u8 build_id[BUILD_ID_SIZE_MAX]; 8564 u32 build_id_size; 8565 8566 struct { 8567 struct perf_event_header header; 8568 8569 u32 pid; 8570 u32 tid; 8571 u64 start; 8572 u64 len; 8573 u64 pgoff; 8574 } event_id; 8575 }; 8576 8577 static int perf_event_mmap_match(struct perf_event *event, 8578 void *data) 8579 { 8580 struct perf_mmap_event *mmap_event = data; 8581 struct vm_area_struct *vma = mmap_event->vma; 8582 int executable = vma->vm_flags & VM_EXEC; 8583 8584 return (!executable && event->attr.mmap_data) || 8585 (executable && (event->attr.mmap || event->attr.mmap2)); 8586 } 8587 8588 static void perf_event_mmap_output(struct perf_event *event, 8589 void *data) 8590 { 8591 struct perf_mmap_event *mmap_event = data; 8592 struct perf_output_handle handle; 8593 struct perf_sample_data sample; 8594 int size = mmap_event->event_id.header.size; 8595 u32 type = mmap_event->event_id.header.type; 8596 bool use_build_id; 8597 int ret; 8598 8599 if (!perf_event_mmap_match(event, data)) 8600 return; 8601 8602 if (event->attr.mmap2) { 8603 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8604 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8605 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8606 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8607 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8608 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8609 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8610 } 8611 8612 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8613 ret = perf_output_begin(&handle, &sample, event, 8614 mmap_event->event_id.header.size); 8615 if (ret) 8616 goto out; 8617 8618 mmap_event->event_id.pid = perf_event_pid(event, current); 8619 mmap_event->event_id.tid = perf_event_tid(event, current); 8620 8621 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8622 8623 if (event->attr.mmap2 && use_build_id) 8624 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8625 8626 perf_output_put(&handle, mmap_event->event_id); 8627 8628 if (event->attr.mmap2) { 8629 if (use_build_id) { 8630 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8631 8632 __output_copy(&handle, size, 4); 8633 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8634 } else { 8635 perf_output_put(&handle, mmap_event->maj); 8636 perf_output_put(&handle, mmap_event->min); 8637 perf_output_put(&handle, mmap_event->ino); 8638 perf_output_put(&handle, mmap_event->ino_generation); 8639 } 8640 perf_output_put(&handle, mmap_event->prot); 8641 perf_output_put(&handle, mmap_event->flags); 8642 } 8643 8644 __output_copy(&handle, mmap_event->file_name, 8645 mmap_event->file_size); 8646 8647 perf_event__output_id_sample(event, &handle, &sample); 8648 8649 perf_output_end(&handle); 8650 out: 8651 mmap_event->event_id.header.size = size; 8652 mmap_event->event_id.header.type = type; 8653 } 8654 8655 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8656 { 8657 struct vm_area_struct *vma = mmap_event->vma; 8658 struct file *file = vma->vm_file; 8659 int maj = 0, min = 0; 8660 u64 ino = 0, gen = 0; 8661 u32 prot = 0, flags = 0; 8662 unsigned int size; 8663 char tmp[16]; 8664 char *buf = NULL; 8665 char *name = NULL; 8666 8667 if (vma->vm_flags & VM_READ) 8668 prot |= PROT_READ; 8669 if (vma->vm_flags & VM_WRITE) 8670 prot |= PROT_WRITE; 8671 if (vma->vm_flags & VM_EXEC) 8672 prot |= PROT_EXEC; 8673 8674 if (vma->vm_flags & VM_MAYSHARE) 8675 flags = MAP_SHARED; 8676 else 8677 flags = MAP_PRIVATE; 8678 8679 if (vma->vm_flags & VM_LOCKED) 8680 flags |= MAP_LOCKED; 8681 if (is_vm_hugetlb_page(vma)) 8682 flags |= MAP_HUGETLB; 8683 8684 if (file) { 8685 struct inode *inode; 8686 dev_t dev; 8687 8688 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8689 if (!buf) { 8690 name = "//enomem"; 8691 goto cpy_name; 8692 } 8693 /* 8694 * d_path() works from the end of the rb backwards, so we 8695 * need to add enough zero bytes after the string to handle 8696 * the 64bit alignment we do later. 8697 */ 8698 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8699 if (IS_ERR(name)) { 8700 name = "//toolong"; 8701 goto cpy_name; 8702 } 8703 inode = file_inode(vma->vm_file); 8704 dev = inode->i_sb->s_dev; 8705 ino = inode->i_ino; 8706 gen = inode->i_generation; 8707 maj = MAJOR(dev); 8708 min = MINOR(dev); 8709 8710 goto got_name; 8711 } else { 8712 if (vma->vm_ops && vma->vm_ops->name) 8713 name = (char *) vma->vm_ops->name(vma); 8714 if (!name) 8715 name = (char *)arch_vma_name(vma); 8716 if (!name) { 8717 if (vma_is_initial_heap(vma)) 8718 name = "[heap]"; 8719 else if (vma_is_initial_stack(vma)) 8720 name = "[stack]"; 8721 else 8722 name = "//anon"; 8723 } 8724 } 8725 8726 cpy_name: 8727 strscpy(tmp, name, sizeof(tmp)); 8728 name = tmp; 8729 got_name: 8730 /* 8731 * Since our buffer works in 8 byte units we need to align our string 8732 * size to a multiple of 8. However, we must guarantee the tail end is 8733 * zero'd out to avoid leaking random bits to userspace. 8734 */ 8735 size = strlen(name)+1; 8736 while (!IS_ALIGNED(size, sizeof(u64))) 8737 name[size++] = '\0'; 8738 8739 mmap_event->file_name = name; 8740 mmap_event->file_size = size; 8741 mmap_event->maj = maj; 8742 mmap_event->min = min; 8743 mmap_event->ino = ino; 8744 mmap_event->ino_generation = gen; 8745 mmap_event->prot = prot; 8746 mmap_event->flags = flags; 8747 8748 if (!(vma->vm_flags & VM_EXEC)) 8749 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8750 8751 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8752 8753 if (atomic_read(&nr_build_id_events)) 8754 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8755 8756 perf_iterate_sb(perf_event_mmap_output, 8757 mmap_event, 8758 NULL); 8759 8760 kfree(buf); 8761 } 8762 8763 /* 8764 * Check whether inode and address range match filter criteria. 8765 */ 8766 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8767 struct file *file, unsigned long offset, 8768 unsigned long size) 8769 { 8770 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8771 if (!filter->path.dentry) 8772 return false; 8773 8774 if (d_inode(filter->path.dentry) != file_inode(file)) 8775 return false; 8776 8777 if (filter->offset > offset + size) 8778 return false; 8779 8780 if (filter->offset + filter->size < offset) 8781 return false; 8782 8783 return true; 8784 } 8785 8786 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8787 struct vm_area_struct *vma, 8788 struct perf_addr_filter_range *fr) 8789 { 8790 unsigned long vma_size = vma->vm_end - vma->vm_start; 8791 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8792 struct file *file = vma->vm_file; 8793 8794 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8795 return false; 8796 8797 if (filter->offset < off) { 8798 fr->start = vma->vm_start; 8799 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8800 } else { 8801 fr->start = vma->vm_start + filter->offset - off; 8802 fr->size = min(vma->vm_end - fr->start, filter->size); 8803 } 8804 8805 return true; 8806 } 8807 8808 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8809 { 8810 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8811 struct vm_area_struct *vma = data; 8812 struct perf_addr_filter *filter; 8813 unsigned int restart = 0, count = 0; 8814 unsigned long flags; 8815 8816 if (!has_addr_filter(event)) 8817 return; 8818 8819 if (!vma->vm_file) 8820 return; 8821 8822 raw_spin_lock_irqsave(&ifh->lock, flags); 8823 list_for_each_entry(filter, &ifh->list, entry) { 8824 if (perf_addr_filter_vma_adjust(filter, vma, 8825 &event->addr_filter_ranges[count])) 8826 restart++; 8827 8828 count++; 8829 } 8830 8831 if (restart) 8832 event->addr_filters_gen++; 8833 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8834 8835 if (restart) 8836 perf_event_stop(event, 1); 8837 } 8838 8839 /* 8840 * Adjust all task's events' filters to the new vma 8841 */ 8842 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8843 { 8844 struct perf_event_context *ctx; 8845 8846 /* 8847 * Data tracing isn't supported yet and as such there is no need 8848 * to keep track of anything that isn't related to executable code: 8849 */ 8850 if (!(vma->vm_flags & VM_EXEC)) 8851 return; 8852 8853 rcu_read_lock(); 8854 ctx = rcu_dereference(current->perf_event_ctxp); 8855 if (ctx) 8856 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8857 rcu_read_unlock(); 8858 } 8859 8860 void perf_event_mmap(struct vm_area_struct *vma) 8861 { 8862 struct perf_mmap_event mmap_event; 8863 8864 if (!atomic_read(&nr_mmap_events)) 8865 return; 8866 8867 mmap_event = (struct perf_mmap_event){ 8868 .vma = vma, 8869 /* .file_name */ 8870 /* .file_size */ 8871 .event_id = { 8872 .header = { 8873 .type = PERF_RECORD_MMAP, 8874 .misc = PERF_RECORD_MISC_USER, 8875 /* .size */ 8876 }, 8877 /* .pid */ 8878 /* .tid */ 8879 .start = vma->vm_start, 8880 .len = vma->vm_end - vma->vm_start, 8881 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8882 }, 8883 /* .maj (attr_mmap2 only) */ 8884 /* .min (attr_mmap2 only) */ 8885 /* .ino (attr_mmap2 only) */ 8886 /* .ino_generation (attr_mmap2 only) */ 8887 /* .prot (attr_mmap2 only) */ 8888 /* .flags (attr_mmap2 only) */ 8889 }; 8890 8891 perf_addr_filters_adjust(vma); 8892 perf_event_mmap_event(&mmap_event); 8893 } 8894 8895 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8896 unsigned long size, u64 flags) 8897 { 8898 struct perf_output_handle handle; 8899 struct perf_sample_data sample; 8900 struct perf_aux_event { 8901 struct perf_event_header header; 8902 u64 offset; 8903 u64 size; 8904 u64 flags; 8905 } rec = { 8906 .header = { 8907 .type = PERF_RECORD_AUX, 8908 .misc = 0, 8909 .size = sizeof(rec), 8910 }, 8911 .offset = head, 8912 .size = size, 8913 .flags = flags, 8914 }; 8915 int ret; 8916 8917 perf_event_header__init_id(&rec.header, &sample, event); 8918 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 8919 8920 if (ret) 8921 return; 8922 8923 perf_output_put(&handle, rec); 8924 perf_event__output_id_sample(event, &handle, &sample); 8925 8926 perf_output_end(&handle); 8927 } 8928 8929 /* 8930 * Lost/dropped samples logging 8931 */ 8932 void perf_log_lost_samples(struct perf_event *event, u64 lost) 8933 { 8934 struct perf_output_handle handle; 8935 struct perf_sample_data sample; 8936 int ret; 8937 8938 struct { 8939 struct perf_event_header header; 8940 u64 lost; 8941 } lost_samples_event = { 8942 .header = { 8943 .type = PERF_RECORD_LOST_SAMPLES, 8944 .misc = 0, 8945 .size = sizeof(lost_samples_event), 8946 }, 8947 .lost = lost, 8948 }; 8949 8950 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 8951 8952 ret = perf_output_begin(&handle, &sample, event, 8953 lost_samples_event.header.size); 8954 if (ret) 8955 return; 8956 8957 perf_output_put(&handle, lost_samples_event); 8958 perf_event__output_id_sample(event, &handle, &sample); 8959 perf_output_end(&handle); 8960 } 8961 8962 /* 8963 * context_switch tracking 8964 */ 8965 8966 struct perf_switch_event { 8967 struct task_struct *task; 8968 struct task_struct *next_prev; 8969 8970 struct { 8971 struct perf_event_header header; 8972 u32 next_prev_pid; 8973 u32 next_prev_tid; 8974 } event_id; 8975 }; 8976 8977 static int perf_event_switch_match(struct perf_event *event) 8978 { 8979 return event->attr.context_switch; 8980 } 8981 8982 static void perf_event_switch_output(struct perf_event *event, void *data) 8983 { 8984 struct perf_switch_event *se = data; 8985 struct perf_output_handle handle; 8986 struct perf_sample_data sample; 8987 int ret; 8988 8989 if (!perf_event_switch_match(event)) 8990 return; 8991 8992 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 8993 if (event->ctx->task) { 8994 se->event_id.header.type = PERF_RECORD_SWITCH; 8995 se->event_id.header.size = sizeof(se->event_id.header); 8996 } else { 8997 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 8998 se->event_id.header.size = sizeof(se->event_id); 8999 se->event_id.next_prev_pid = 9000 perf_event_pid(event, se->next_prev); 9001 se->event_id.next_prev_tid = 9002 perf_event_tid(event, se->next_prev); 9003 } 9004 9005 perf_event_header__init_id(&se->event_id.header, &sample, event); 9006 9007 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9008 if (ret) 9009 return; 9010 9011 if (event->ctx->task) 9012 perf_output_put(&handle, se->event_id.header); 9013 else 9014 perf_output_put(&handle, se->event_id); 9015 9016 perf_event__output_id_sample(event, &handle, &sample); 9017 9018 perf_output_end(&handle); 9019 } 9020 9021 static void perf_event_switch(struct task_struct *task, 9022 struct task_struct *next_prev, bool sched_in) 9023 { 9024 struct perf_switch_event switch_event; 9025 9026 /* N.B. caller checks nr_switch_events != 0 */ 9027 9028 switch_event = (struct perf_switch_event){ 9029 .task = task, 9030 .next_prev = next_prev, 9031 .event_id = { 9032 .header = { 9033 /* .type */ 9034 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9035 /* .size */ 9036 }, 9037 /* .next_prev_pid */ 9038 /* .next_prev_tid */ 9039 }, 9040 }; 9041 9042 if (!sched_in && task->on_rq) { 9043 switch_event.event_id.header.misc |= 9044 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9045 } 9046 9047 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9048 } 9049 9050 /* 9051 * IRQ throttle logging 9052 */ 9053 9054 static void perf_log_throttle(struct perf_event *event, int enable) 9055 { 9056 struct perf_output_handle handle; 9057 struct perf_sample_data sample; 9058 int ret; 9059 9060 struct { 9061 struct perf_event_header header; 9062 u64 time; 9063 u64 id; 9064 u64 stream_id; 9065 } throttle_event = { 9066 .header = { 9067 .type = PERF_RECORD_THROTTLE, 9068 .misc = 0, 9069 .size = sizeof(throttle_event), 9070 }, 9071 .time = perf_event_clock(event), 9072 .id = primary_event_id(event), 9073 .stream_id = event->id, 9074 }; 9075 9076 if (enable) 9077 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9078 9079 perf_event_header__init_id(&throttle_event.header, &sample, event); 9080 9081 ret = perf_output_begin(&handle, &sample, event, 9082 throttle_event.header.size); 9083 if (ret) 9084 return; 9085 9086 perf_output_put(&handle, throttle_event); 9087 perf_event__output_id_sample(event, &handle, &sample); 9088 perf_output_end(&handle); 9089 } 9090 9091 /* 9092 * ksymbol register/unregister tracking 9093 */ 9094 9095 struct perf_ksymbol_event { 9096 const char *name; 9097 int name_len; 9098 struct { 9099 struct perf_event_header header; 9100 u64 addr; 9101 u32 len; 9102 u16 ksym_type; 9103 u16 flags; 9104 } event_id; 9105 }; 9106 9107 static int perf_event_ksymbol_match(struct perf_event *event) 9108 { 9109 return event->attr.ksymbol; 9110 } 9111 9112 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9113 { 9114 struct perf_ksymbol_event *ksymbol_event = data; 9115 struct perf_output_handle handle; 9116 struct perf_sample_data sample; 9117 int ret; 9118 9119 if (!perf_event_ksymbol_match(event)) 9120 return; 9121 9122 perf_event_header__init_id(&ksymbol_event->event_id.header, 9123 &sample, event); 9124 ret = perf_output_begin(&handle, &sample, event, 9125 ksymbol_event->event_id.header.size); 9126 if (ret) 9127 return; 9128 9129 perf_output_put(&handle, ksymbol_event->event_id); 9130 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9131 perf_event__output_id_sample(event, &handle, &sample); 9132 9133 perf_output_end(&handle); 9134 } 9135 9136 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9137 const char *sym) 9138 { 9139 struct perf_ksymbol_event ksymbol_event; 9140 char name[KSYM_NAME_LEN]; 9141 u16 flags = 0; 9142 int name_len; 9143 9144 if (!atomic_read(&nr_ksymbol_events)) 9145 return; 9146 9147 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9148 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9149 goto err; 9150 9151 strscpy(name, sym, KSYM_NAME_LEN); 9152 name_len = strlen(name) + 1; 9153 while (!IS_ALIGNED(name_len, sizeof(u64))) 9154 name[name_len++] = '\0'; 9155 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9156 9157 if (unregister) 9158 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9159 9160 ksymbol_event = (struct perf_ksymbol_event){ 9161 .name = name, 9162 .name_len = name_len, 9163 .event_id = { 9164 .header = { 9165 .type = PERF_RECORD_KSYMBOL, 9166 .size = sizeof(ksymbol_event.event_id) + 9167 name_len, 9168 }, 9169 .addr = addr, 9170 .len = len, 9171 .ksym_type = ksym_type, 9172 .flags = flags, 9173 }, 9174 }; 9175 9176 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9177 return; 9178 err: 9179 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9180 } 9181 9182 /* 9183 * bpf program load/unload tracking 9184 */ 9185 9186 struct perf_bpf_event { 9187 struct bpf_prog *prog; 9188 struct { 9189 struct perf_event_header header; 9190 u16 type; 9191 u16 flags; 9192 u32 id; 9193 u8 tag[BPF_TAG_SIZE]; 9194 } event_id; 9195 }; 9196 9197 static int perf_event_bpf_match(struct perf_event *event) 9198 { 9199 return event->attr.bpf_event; 9200 } 9201 9202 static void perf_event_bpf_output(struct perf_event *event, void *data) 9203 { 9204 struct perf_bpf_event *bpf_event = data; 9205 struct perf_output_handle handle; 9206 struct perf_sample_data sample; 9207 int ret; 9208 9209 if (!perf_event_bpf_match(event)) 9210 return; 9211 9212 perf_event_header__init_id(&bpf_event->event_id.header, 9213 &sample, event); 9214 ret = perf_output_begin(&handle, &sample, event, 9215 bpf_event->event_id.header.size); 9216 if (ret) 9217 return; 9218 9219 perf_output_put(&handle, bpf_event->event_id); 9220 perf_event__output_id_sample(event, &handle, &sample); 9221 9222 perf_output_end(&handle); 9223 } 9224 9225 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9226 enum perf_bpf_event_type type) 9227 { 9228 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9229 int i; 9230 9231 if (prog->aux->func_cnt == 0) { 9232 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9233 (u64)(unsigned long)prog->bpf_func, 9234 prog->jited_len, unregister, 9235 prog->aux->ksym.name); 9236 } else { 9237 for (i = 0; i < prog->aux->func_cnt; i++) { 9238 struct bpf_prog *subprog = prog->aux->func[i]; 9239 9240 perf_event_ksymbol( 9241 PERF_RECORD_KSYMBOL_TYPE_BPF, 9242 (u64)(unsigned long)subprog->bpf_func, 9243 subprog->jited_len, unregister, 9244 subprog->aux->ksym.name); 9245 } 9246 } 9247 } 9248 9249 void perf_event_bpf_event(struct bpf_prog *prog, 9250 enum perf_bpf_event_type type, 9251 u16 flags) 9252 { 9253 struct perf_bpf_event bpf_event; 9254 9255 if (type <= PERF_BPF_EVENT_UNKNOWN || 9256 type >= PERF_BPF_EVENT_MAX) 9257 return; 9258 9259 switch (type) { 9260 case PERF_BPF_EVENT_PROG_LOAD: 9261 case PERF_BPF_EVENT_PROG_UNLOAD: 9262 if (atomic_read(&nr_ksymbol_events)) 9263 perf_event_bpf_emit_ksymbols(prog, type); 9264 break; 9265 default: 9266 break; 9267 } 9268 9269 if (!atomic_read(&nr_bpf_events)) 9270 return; 9271 9272 bpf_event = (struct perf_bpf_event){ 9273 .prog = prog, 9274 .event_id = { 9275 .header = { 9276 .type = PERF_RECORD_BPF_EVENT, 9277 .size = sizeof(bpf_event.event_id), 9278 }, 9279 .type = type, 9280 .flags = flags, 9281 .id = prog->aux->id, 9282 }, 9283 }; 9284 9285 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9286 9287 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9288 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9289 } 9290 9291 struct perf_text_poke_event { 9292 const void *old_bytes; 9293 const void *new_bytes; 9294 size_t pad; 9295 u16 old_len; 9296 u16 new_len; 9297 9298 struct { 9299 struct perf_event_header header; 9300 9301 u64 addr; 9302 } event_id; 9303 }; 9304 9305 static int perf_event_text_poke_match(struct perf_event *event) 9306 { 9307 return event->attr.text_poke; 9308 } 9309 9310 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9311 { 9312 struct perf_text_poke_event *text_poke_event = data; 9313 struct perf_output_handle handle; 9314 struct perf_sample_data sample; 9315 u64 padding = 0; 9316 int ret; 9317 9318 if (!perf_event_text_poke_match(event)) 9319 return; 9320 9321 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9322 9323 ret = perf_output_begin(&handle, &sample, event, 9324 text_poke_event->event_id.header.size); 9325 if (ret) 9326 return; 9327 9328 perf_output_put(&handle, text_poke_event->event_id); 9329 perf_output_put(&handle, text_poke_event->old_len); 9330 perf_output_put(&handle, text_poke_event->new_len); 9331 9332 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9333 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9334 9335 if (text_poke_event->pad) 9336 __output_copy(&handle, &padding, text_poke_event->pad); 9337 9338 perf_event__output_id_sample(event, &handle, &sample); 9339 9340 perf_output_end(&handle); 9341 } 9342 9343 void perf_event_text_poke(const void *addr, const void *old_bytes, 9344 size_t old_len, const void *new_bytes, size_t new_len) 9345 { 9346 struct perf_text_poke_event text_poke_event; 9347 size_t tot, pad; 9348 9349 if (!atomic_read(&nr_text_poke_events)) 9350 return; 9351 9352 tot = sizeof(text_poke_event.old_len) + old_len; 9353 tot += sizeof(text_poke_event.new_len) + new_len; 9354 pad = ALIGN(tot, sizeof(u64)) - tot; 9355 9356 text_poke_event = (struct perf_text_poke_event){ 9357 .old_bytes = old_bytes, 9358 .new_bytes = new_bytes, 9359 .pad = pad, 9360 .old_len = old_len, 9361 .new_len = new_len, 9362 .event_id = { 9363 .header = { 9364 .type = PERF_RECORD_TEXT_POKE, 9365 .misc = PERF_RECORD_MISC_KERNEL, 9366 .size = sizeof(text_poke_event.event_id) + tot + pad, 9367 }, 9368 .addr = (unsigned long)addr, 9369 }, 9370 }; 9371 9372 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9373 } 9374 9375 void perf_event_itrace_started(struct perf_event *event) 9376 { 9377 event->attach_state |= PERF_ATTACH_ITRACE; 9378 } 9379 9380 static void perf_log_itrace_start(struct perf_event *event) 9381 { 9382 struct perf_output_handle handle; 9383 struct perf_sample_data sample; 9384 struct perf_aux_event { 9385 struct perf_event_header header; 9386 u32 pid; 9387 u32 tid; 9388 } rec; 9389 int ret; 9390 9391 if (event->parent) 9392 event = event->parent; 9393 9394 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9395 event->attach_state & PERF_ATTACH_ITRACE) 9396 return; 9397 9398 rec.header.type = PERF_RECORD_ITRACE_START; 9399 rec.header.misc = 0; 9400 rec.header.size = sizeof(rec); 9401 rec.pid = perf_event_pid(event, current); 9402 rec.tid = perf_event_tid(event, current); 9403 9404 perf_event_header__init_id(&rec.header, &sample, event); 9405 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9406 9407 if (ret) 9408 return; 9409 9410 perf_output_put(&handle, rec); 9411 perf_event__output_id_sample(event, &handle, &sample); 9412 9413 perf_output_end(&handle); 9414 } 9415 9416 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9417 { 9418 struct perf_output_handle handle; 9419 struct perf_sample_data sample; 9420 struct perf_aux_event { 9421 struct perf_event_header header; 9422 u64 hw_id; 9423 } rec; 9424 int ret; 9425 9426 if (event->parent) 9427 event = event->parent; 9428 9429 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9430 rec.header.misc = 0; 9431 rec.header.size = sizeof(rec); 9432 rec.hw_id = hw_id; 9433 9434 perf_event_header__init_id(&rec.header, &sample, event); 9435 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9436 9437 if (ret) 9438 return; 9439 9440 perf_output_put(&handle, rec); 9441 perf_event__output_id_sample(event, &handle, &sample); 9442 9443 perf_output_end(&handle); 9444 } 9445 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9446 9447 static int 9448 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9449 { 9450 struct hw_perf_event *hwc = &event->hw; 9451 int ret = 0; 9452 u64 seq; 9453 9454 seq = __this_cpu_read(perf_throttled_seq); 9455 if (seq != hwc->interrupts_seq) { 9456 hwc->interrupts_seq = seq; 9457 hwc->interrupts = 1; 9458 } else { 9459 hwc->interrupts++; 9460 if (unlikely(throttle && 9461 hwc->interrupts > max_samples_per_tick)) { 9462 __this_cpu_inc(perf_throttled_count); 9463 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9464 hwc->interrupts = MAX_INTERRUPTS; 9465 perf_log_throttle(event, 0); 9466 ret = 1; 9467 } 9468 } 9469 9470 if (event->attr.freq) { 9471 u64 now = perf_clock(); 9472 s64 delta = now - hwc->freq_time_stamp; 9473 9474 hwc->freq_time_stamp = now; 9475 9476 if (delta > 0 && delta < 2*TICK_NSEC) 9477 perf_adjust_period(event, delta, hwc->last_period, true); 9478 } 9479 9480 return ret; 9481 } 9482 9483 int perf_event_account_interrupt(struct perf_event *event) 9484 { 9485 return __perf_event_account_interrupt(event, 1); 9486 } 9487 9488 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9489 { 9490 /* 9491 * Due to interrupt latency (AKA "skid"), we may enter the 9492 * kernel before taking an overflow, even if the PMU is only 9493 * counting user events. 9494 */ 9495 if (event->attr.exclude_kernel && !user_mode(regs)) 9496 return false; 9497 9498 return true; 9499 } 9500 9501 /* 9502 * Generic event overflow handling, sampling. 9503 */ 9504 9505 static int __perf_event_overflow(struct perf_event *event, 9506 int throttle, struct perf_sample_data *data, 9507 struct pt_regs *regs) 9508 { 9509 int events = atomic_read(&event->event_limit); 9510 int ret = 0; 9511 9512 /* 9513 * Non-sampling counters might still use the PMI to fold short 9514 * hardware counters, ignore those. 9515 */ 9516 if (unlikely(!is_sampling_event(event))) 9517 return 0; 9518 9519 ret = __perf_event_account_interrupt(event, throttle); 9520 9521 /* 9522 * XXX event_limit might not quite work as expected on inherited 9523 * events 9524 */ 9525 9526 event->pending_kill = POLL_IN; 9527 if (events && atomic_dec_and_test(&event->event_limit)) { 9528 ret = 1; 9529 event->pending_kill = POLL_HUP; 9530 perf_event_disable_inatomic(event); 9531 } 9532 9533 if (event->attr.sigtrap) { 9534 /* 9535 * The desired behaviour of sigtrap vs invalid samples is a bit 9536 * tricky; on the one hand, one should not loose the SIGTRAP if 9537 * it is the first event, on the other hand, we should also not 9538 * trigger the WARN or override the data address. 9539 */ 9540 bool valid_sample = sample_is_allowed(event, regs); 9541 unsigned int pending_id = 1; 9542 9543 if (regs) 9544 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9545 if (!event->pending_sigtrap) { 9546 event->pending_sigtrap = pending_id; 9547 local_inc(&event->ctx->nr_pending); 9548 } else if (event->attr.exclude_kernel && valid_sample) { 9549 /* 9550 * Should not be able to return to user space without 9551 * consuming pending_sigtrap; with exceptions: 9552 * 9553 * 1. Where !exclude_kernel, events can overflow again 9554 * in the kernel without returning to user space. 9555 * 9556 * 2. Events that can overflow again before the IRQ- 9557 * work without user space progress (e.g. hrtimer). 9558 * To approximate progress (with false negatives), 9559 * check 32-bit hash of the current IP. 9560 */ 9561 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9562 } 9563 9564 event->pending_addr = 0; 9565 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9566 event->pending_addr = data->addr; 9567 irq_work_queue(&event->pending_irq); 9568 } 9569 9570 READ_ONCE(event->overflow_handler)(event, data, regs); 9571 9572 if (*perf_event_fasync(event) && event->pending_kill) { 9573 event->pending_wakeup = 1; 9574 irq_work_queue(&event->pending_irq); 9575 } 9576 9577 return ret; 9578 } 9579 9580 int perf_event_overflow(struct perf_event *event, 9581 struct perf_sample_data *data, 9582 struct pt_regs *regs) 9583 { 9584 return __perf_event_overflow(event, 1, data, regs); 9585 } 9586 9587 /* 9588 * Generic software event infrastructure 9589 */ 9590 9591 struct swevent_htable { 9592 struct swevent_hlist *swevent_hlist; 9593 struct mutex hlist_mutex; 9594 int hlist_refcount; 9595 9596 /* Recursion avoidance in each contexts */ 9597 int recursion[PERF_NR_CONTEXTS]; 9598 }; 9599 9600 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9601 9602 /* 9603 * We directly increment event->count and keep a second value in 9604 * event->hw.period_left to count intervals. This period event 9605 * is kept in the range [-sample_period, 0] so that we can use the 9606 * sign as trigger. 9607 */ 9608 9609 u64 perf_swevent_set_period(struct perf_event *event) 9610 { 9611 struct hw_perf_event *hwc = &event->hw; 9612 u64 period = hwc->last_period; 9613 u64 nr, offset; 9614 s64 old, val; 9615 9616 hwc->last_period = hwc->sample_period; 9617 9618 old = local64_read(&hwc->period_left); 9619 do { 9620 val = old; 9621 if (val < 0) 9622 return 0; 9623 9624 nr = div64_u64(period + val, period); 9625 offset = nr * period; 9626 val -= offset; 9627 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9628 9629 return nr; 9630 } 9631 9632 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9633 struct perf_sample_data *data, 9634 struct pt_regs *regs) 9635 { 9636 struct hw_perf_event *hwc = &event->hw; 9637 int throttle = 0; 9638 9639 if (!overflow) 9640 overflow = perf_swevent_set_period(event); 9641 9642 if (hwc->interrupts == MAX_INTERRUPTS) 9643 return; 9644 9645 for (; overflow; overflow--) { 9646 if (__perf_event_overflow(event, throttle, 9647 data, regs)) { 9648 /* 9649 * We inhibit the overflow from happening when 9650 * hwc->interrupts == MAX_INTERRUPTS. 9651 */ 9652 break; 9653 } 9654 throttle = 1; 9655 } 9656 } 9657 9658 static void perf_swevent_event(struct perf_event *event, u64 nr, 9659 struct perf_sample_data *data, 9660 struct pt_regs *regs) 9661 { 9662 struct hw_perf_event *hwc = &event->hw; 9663 9664 local64_add(nr, &event->count); 9665 9666 if (!regs) 9667 return; 9668 9669 if (!is_sampling_event(event)) 9670 return; 9671 9672 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9673 data->period = nr; 9674 return perf_swevent_overflow(event, 1, data, regs); 9675 } else 9676 data->period = event->hw.last_period; 9677 9678 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9679 return perf_swevent_overflow(event, 1, data, regs); 9680 9681 if (local64_add_negative(nr, &hwc->period_left)) 9682 return; 9683 9684 perf_swevent_overflow(event, 0, data, regs); 9685 } 9686 9687 static int perf_exclude_event(struct perf_event *event, 9688 struct pt_regs *regs) 9689 { 9690 if (event->hw.state & PERF_HES_STOPPED) 9691 return 1; 9692 9693 if (regs) { 9694 if (event->attr.exclude_user && user_mode(regs)) 9695 return 1; 9696 9697 if (event->attr.exclude_kernel && !user_mode(regs)) 9698 return 1; 9699 } 9700 9701 return 0; 9702 } 9703 9704 static int perf_swevent_match(struct perf_event *event, 9705 enum perf_type_id type, 9706 u32 event_id, 9707 struct perf_sample_data *data, 9708 struct pt_regs *regs) 9709 { 9710 if (event->attr.type != type) 9711 return 0; 9712 9713 if (event->attr.config != event_id) 9714 return 0; 9715 9716 if (perf_exclude_event(event, regs)) 9717 return 0; 9718 9719 return 1; 9720 } 9721 9722 static inline u64 swevent_hash(u64 type, u32 event_id) 9723 { 9724 u64 val = event_id | (type << 32); 9725 9726 return hash_64(val, SWEVENT_HLIST_BITS); 9727 } 9728 9729 static inline struct hlist_head * 9730 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9731 { 9732 u64 hash = swevent_hash(type, event_id); 9733 9734 return &hlist->heads[hash]; 9735 } 9736 9737 /* For the read side: events when they trigger */ 9738 static inline struct hlist_head * 9739 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9740 { 9741 struct swevent_hlist *hlist; 9742 9743 hlist = rcu_dereference(swhash->swevent_hlist); 9744 if (!hlist) 9745 return NULL; 9746 9747 return __find_swevent_head(hlist, type, event_id); 9748 } 9749 9750 /* For the event head insertion and removal in the hlist */ 9751 static inline struct hlist_head * 9752 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9753 { 9754 struct swevent_hlist *hlist; 9755 u32 event_id = event->attr.config; 9756 u64 type = event->attr.type; 9757 9758 /* 9759 * Event scheduling is always serialized against hlist allocation 9760 * and release. Which makes the protected version suitable here. 9761 * The context lock guarantees that. 9762 */ 9763 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9764 lockdep_is_held(&event->ctx->lock)); 9765 if (!hlist) 9766 return NULL; 9767 9768 return __find_swevent_head(hlist, type, event_id); 9769 } 9770 9771 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9772 u64 nr, 9773 struct perf_sample_data *data, 9774 struct pt_regs *regs) 9775 { 9776 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9777 struct perf_event *event; 9778 struct hlist_head *head; 9779 9780 rcu_read_lock(); 9781 head = find_swevent_head_rcu(swhash, type, event_id); 9782 if (!head) 9783 goto end; 9784 9785 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9786 if (perf_swevent_match(event, type, event_id, data, regs)) 9787 perf_swevent_event(event, nr, data, regs); 9788 } 9789 end: 9790 rcu_read_unlock(); 9791 } 9792 9793 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9794 9795 int perf_swevent_get_recursion_context(void) 9796 { 9797 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9798 9799 return get_recursion_context(swhash->recursion); 9800 } 9801 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9802 9803 void perf_swevent_put_recursion_context(int rctx) 9804 { 9805 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9806 9807 put_recursion_context(swhash->recursion, rctx); 9808 } 9809 9810 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9811 { 9812 struct perf_sample_data data; 9813 9814 if (WARN_ON_ONCE(!regs)) 9815 return; 9816 9817 perf_sample_data_init(&data, addr, 0); 9818 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9819 } 9820 9821 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9822 { 9823 int rctx; 9824 9825 preempt_disable_notrace(); 9826 rctx = perf_swevent_get_recursion_context(); 9827 if (unlikely(rctx < 0)) 9828 goto fail; 9829 9830 ___perf_sw_event(event_id, nr, regs, addr); 9831 9832 perf_swevent_put_recursion_context(rctx); 9833 fail: 9834 preempt_enable_notrace(); 9835 } 9836 9837 static void perf_swevent_read(struct perf_event *event) 9838 { 9839 } 9840 9841 static int perf_swevent_add(struct perf_event *event, int flags) 9842 { 9843 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9844 struct hw_perf_event *hwc = &event->hw; 9845 struct hlist_head *head; 9846 9847 if (is_sampling_event(event)) { 9848 hwc->last_period = hwc->sample_period; 9849 perf_swevent_set_period(event); 9850 } 9851 9852 hwc->state = !(flags & PERF_EF_START); 9853 9854 head = find_swevent_head(swhash, event); 9855 if (WARN_ON_ONCE(!head)) 9856 return -EINVAL; 9857 9858 hlist_add_head_rcu(&event->hlist_entry, head); 9859 perf_event_update_userpage(event); 9860 9861 return 0; 9862 } 9863 9864 static void perf_swevent_del(struct perf_event *event, int flags) 9865 { 9866 hlist_del_rcu(&event->hlist_entry); 9867 } 9868 9869 static void perf_swevent_start(struct perf_event *event, int flags) 9870 { 9871 event->hw.state = 0; 9872 } 9873 9874 static void perf_swevent_stop(struct perf_event *event, int flags) 9875 { 9876 event->hw.state = PERF_HES_STOPPED; 9877 } 9878 9879 /* Deref the hlist from the update side */ 9880 static inline struct swevent_hlist * 9881 swevent_hlist_deref(struct swevent_htable *swhash) 9882 { 9883 return rcu_dereference_protected(swhash->swevent_hlist, 9884 lockdep_is_held(&swhash->hlist_mutex)); 9885 } 9886 9887 static void swevent_hlist_release(struct swevent_htable *swhash) 9888 { 9889 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9890 9891 if (!hlist) 9892 return; 9893 9894 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9895 kfree_rcu(hlist, rcu_head); 9896 } 9897 9898 static void swevent_hlist_put_cpu(int cpu) 9899 { 9900 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9901 9902 mutex_lock(&swhash->hlist_mutex); 9903 9904 if (!--swhash->hlist_refcount) 9905 swevent_hlist_release(swhash); 9906 9907 mutex_unlock(&swhash->hlist_mutex); 9908 } 9909 9910 static void swevent_hlist_put(void) 9911 { 9912 int cpu; 9913 9914 for_each_possible_cpu(cpu) 9915 swevent_hlist_put_cpu(cpu); 9916 } 9917 9918 static int swevent_hlist_get_cpu(int cpu) 9919 { 9920 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9921 int err = 0; 9922 9923 mutex_lock(&swhash->hlist_mutex); 9924 if (!swevent_hlist_deref(swhash) && 9925 cpumask_test_cpu(cpu, perf_online_mask)) { 9926 struct swevent_hlist *hlist; 9927 9928 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 9929 if (!hlist) { 9930 err = -ENOMEM; 9931 goto exit; 9932 } 9933 rcu_assign_pointer(swhash->swevent_hlist, hlist); 9934 } 9935 swhash->hlist_refcount++; 9936 exit: 9937 mutex_unlock(&swhash->hlist_mutex); 9938 9939 return err; 9940 } 9941 9942 static int swevent_hlist_get(void) 9943 { 9944 int err, cpu, failed_cpu; 9945 9946 mutex_lock(&pmus_lock); 9947 for_each_possible_cpu(cpu) { 9948 err = swevent_hlist_get_cpu(cpu); 9949 if (err) { 9950 failed_cpu = cpu; 9951 goto fail; 9952 } 9953 } 9954 mutex_unlock(&pmus_lock); 9955 return 0; 9956 fail: 9957 for_each_possible_cpu(cpu) { 9958 if (cpu == failed_cpu) 9959 break; 9960 swevent_hlist_put_cpu(cpu); 9961 } 9962 mutex_unlock(&pmus_lock); 9963 return err; 9964 } 9965 9966 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 9967 9968 static void sw_perf_event_destroy(struct perf_event *event) 9969 { 9970 u64 event_id = event->attr.config; 9971 9972 WARN_ON(event->parent); 9973 9974 static_key_slow_dec(&perf_swevent_enabled[event_id]); 9975 swevent_hlist_put(); 9976 } 9977 9978 static struct pmu perf_cpu_clock; /* fwd declaration */ 9979 static struct pmu perf_task_clock; 9980 9981 static int perf_swevent_init(struct perf_event *event) 9982 { 9983 u64 event_id = event->attr.config; 9984 9985 if (event->attr.type != PERF_TYPE_SOFTWARE) 9986 return -ENOENT; 9987 9988 /* 9989 * no branch sampling for software events 9990 */ 9991 if (has_branch_stack(event)) 9992 return -EOPNOTSUPP; 9993 9994 switch (event_id) { 9995 case PERF_COUNT_SW_CPU_CLOCK: 9996 event->attr.type = perf_cpu_clock.type; 9997 return -ENOENT; 9998 case PERF_COUNT_SW_TASK_CLOCK: 9999 event->attr.type = perf_task_clock.type; 10000 return -ENOENT; 10001 10002 default: 10003 break; 10004 } 10005 10006 if (event_id >= PERF_COUNT_SW_MAX) 10007 return -ENOENT; 10008 10009 if (!event->parent) { 10010 int err; 10011 10012 err = swevent_hlist_get(); 10013 if (err) 10014 return err; 10015 10016 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10017 event->destroy = sw_perf_event_destroy; 10018 } 10019 10020 return 0; 10021 } 10022 10023 static struct pmu perf_swevent = { 10024 .task_ctx_nr = perf_sw_context, 10025 10026 .capabilities = PERF_PMU_CAP_NO_NMI, 10027 10028 .event_init = perf_swevent_init, 10029 .add = perf_swevent_add, 10030 .del = perf_swevent_del, 10031 .start = perf_swevent_start, 10032 .stop = perf_swevent_stop, 10033 .read = perf_swevent_read, 10034 }; 10035 10036 #ifdef CONFIG_EVENT_TRACING 10037 10038 static void tp_perf_event_destroy(struct perf_event *event) 10039 { 10040 perf_trace_destroy(event); 10041 } 10042 10043 static int perf_tp_event_init(struct perf_event *event) 10044 { 10045 int err; 10046 10047 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10048 return -ENOENT; 10049 10050 /* 10051 * no branch sampling for tracepoint events 10052 */ 10053 if (has_branch_stack(event)) 10054 return -EOPNOTSUPP; 10055 10056 err = perf_trace_init(event); 10057 if (err) 10058 return err; 10059 10060 event->destroy = tp_perf_event_destroy; 10061 10062 return 0; 10063 } 10064 10065 static struct pmu perf_tracepoint = { 10066 .task_ctx_nr = perf_sw_context, 10067 10068 .event_init = perf_tp_event_init, 10069 .add = perf_trace_add, 10070 .del = perf_trace_del, 10071 .start = perf_swevent_start, 10072 .stop = perf_swevent_stop, 10073 .read = perf_swevent_read, 10074 }; 10075 10076 static int perf_tp_filter_match(struct perf_event *event, 10077 struct perf_sample_data *data) 10078 { 10079 void *record = data->raw->frag.data; 10080 10081 /* only top level events have filters set */ 10082 if (event->parent) 10083 event = event->parent; 10084 10085 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10086 return 1; 10087 return 0; 10088 } 10089 10090 static int perf_tp_event_match(struct perf_event *event, 10091 struct perf_sample_data *data, 10092 struct pt_regs *regs) 10093 { 10094 if (event->hw.state & PERF_HES_STOPPED) 10095 return 0; 10096 /* 10097 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10098 */ 10099 if (event->attr.exclude_kernel && !user_mode(regs)) 10100 return 0; 10101 10102 if (!perf_tp_filter_match(event, data)) 10103 return 0; 10104 10105 return 1; 10106 } 10107 10108 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10109 struct trace_event_call *call, u64 count, 10110 struct pt_regs *regs, struct hlist_head *head, 10111 struct task_struct *task) 10112 { 10113 if (bpf_prog_array_valid(call)) { 10114 *(struct pt_regs **)raw_data = regs; 10115 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10116 perf_swevent_put_recursion_context(rctx); 10117 return; 10118 } 10119 } 10120 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10121 rctx, task); 10122 } 10123 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10124 10125 static void __perf_tp_event_target_task(u64 count, void *record, 10126 struct pt_regs *regs, 10127 struct perf_sample_data *data, 10128 struct perf_event *event) 10129 { 10130 struct trace_entry *entry = record; 10131 10132 if (event->attr.config != entry->type) 10133 return; 10134 /* Cannot deliver synchronous signal to other task. */ 10135 if (event->attr.sigtrap) 10136 return; 10137 if (perf_tp_event_match(event, data, regs)) 10138 perf_swevent_event(event, count, data, regs); 10139 } 10140 10141 static void perf_tp_event_target_task(u64 count, void *record, 10142 struct pt_regs *regs, 10143 struct perf_sample_data *data, 10144 struct perf_event_context *ctx) 10145 { 10146 unsigned int cpu = smp_processor_id(); 10147 struct pmu *pmu = &perf_tracepoint; 10148 struct perf_event *event, *sibling; 10149 10150 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10151 __perf_tp_event_target_task(count, record, regs, data, event); 10152 for_each_sibling_event(sibling, event) 10153 __perf_tp_event_target_task(count, record, regs, data, sibling); 10154 } 10155 10156 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10157 __perf_tp_event_target_task(count, record, regs, data, event); 10158 for_each_sibling_event(sibling, event) 10159 __perf_tp_event_target_task(count, record, regs, data, sibling); 10160 } 10161 } 10162 10163 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10164 struct pt_regs *regs, struct hlist_head *head, int rctx, 10165 struct task_struct *task) 10166 { 10167 struct perf_sample_data data; 10168 struct perf_event *event; 10169 10170 struct perf_raw_record raw = { 10171 .frag = { 10172 .size = entry_size, 10173 .data = record, 10174 }, 10175 }; 10176 10177 perf_sample_data_init(&data, 0, 0); 10178 perf_sample_save_raw_data(&data, &raw); 10179 10180 perf_trace_buf_update(record, event_type); 10181 10182 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10183 if (perf_tp_event_match(event, &data, regs)) { 10184 perf_swevent_event(event, count, &data, regs); 10185 10186 /* 10187 * Here use the same on-stack perf_sample_data, 10188 * some members in data are event-specific and 10189 * need to be re-computed for different sweveents. 10190 * Re-initialize data->sample_flags safely to avoid 10191 * the problem that next event skips preparing data 10192 * because data->sample_flags is set. 10193 */ 10194 perf_sample_data_init(&data, 0, 0); 10195 perf_sample_save_raw_data(&data, &raw); 10196 } 10197 } 10198 10199 /* 10200 * If we got specified a target task, also iterate its context and 10201 * deliver this event there too. 10202 */ 10203 if (task && task != current) { 10204 struct perf_event_context *ctx; 10205 10206 rcu_read_lock(); 10207 ctx = rcu_dereference(task->perf_event_ctxp); 10208 if (!ctx) 10209 goto unlock; 10210 10211 raw_spin_lock(&ctx->lock); 10212 perf_tp_event_target_task(count, record, regs, &data, ctx); 10213 raw_spin_unlock(&ctx->lock); 10214 unlock: 10215 rcu_read_unlock(); 10216 } 10217 10218 perf_swevent_put_recursion_context(rctx); 10219 } 10220 EXPORT_SYMBOL_GPL(perf_tp_event); 10221 10222 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10223 /* 10224 * Flags in config, used by dynamic PMU kprobe and uprobe 10225 * The flags should match following PMU_FORMAT_ATTR(). 10226 * 10227 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10228 * if not set, create kprobe/uprobe 10229 * 10230 * The following values specify a reference counter (or semaphore in the 10231 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10232 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10233 * 10234 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10235 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10236 */ 10237 enum perf_probe_config { 10238 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10239 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10240 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10241 }; 10242 10243 PMU_FORMAT_ATTR(retprobe, "config:0"); 10244 #endif 10245 10246 #ifdef CONFIG_KPROBE_EVENTS 10247 static struct attribute *kprobe_attrs[] = { 10248 &format_attr_retprobe.attr, 10249 NULL, 10250 }; 10251 10252 static struct attribute_group kprobe_format_group = { 10253 .name = "format", 10254 .attrs = kprobe_attrs, 10255 }; 10256 10257 static const struct attribute_group *kprobe_attr_groups[] = { 10258 &kprobe_format_group, 10259 NULL, 10260 }; 10261 10262 static int perf_kprobe_event_init(struct perf_event *event); 10263 static struct pmu perf_kprobe = { 10264 .task_ctx_nr = perf_sw_context, 10265 .event_init = perf_kprobe_event_init, 10266 .add = perf_trace_add, 10267 .del = perf_trace_del, 10268 .start = perf_swevent_start, 10269 .stop = perf_swevent_stop, 10270 .read = perf_swevent_read, 10271 .attr_groups = kprobe_attr_groups, 10272 }; 10273 10274 static int perf_kprobe_event_init(struct perf_event *event) 10275 { 10276 int err; 10277 bool is_retprobe; 10278 10279 if (event->attr.type != perf_kprobe.type) 10280 return -ENOENT; 10281 10282 if (!perfmon_capable()) 10283 return -EACCES; 10284 10285 /* 10286 * no branch sampling for probe events 10287 */ 10288 if (has_branch_stack(event)) 10289 return -EOPNOTSUPP; 10290 10291 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10292 err = perf_kprobe_init(event, is_retprobe); 10293 if (err) 10294 return err; 10295 10296 event->destroy = perf_kprobe_destroy; 10297 10298 return 0; 10299 } 10300 #endif /* CONFIG_KPROBE_EVENTS */ 10301 10302 #ifdef CONFIG_UPROBE_EVENTS 10303 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10304 10305 static struct attribute *uprobe_attrs[] = { 10306 &format_attr_retprobe.attr, 10307 &format_attr_ref_ctr_offset.attr, 10308 NULL, 10309 }; 10310 10311 static struct attribute_group uprobe_format_group = { 10312 .name = "format", 10313 .attrs = uprobe_attrs, 10314 }; 10315 10316 static const struct attribute_group *uprobe_attr_groups[] = { 10317 &uprobe_format_group, 10318 NULL, 10319 }; 10320 10321 static int perf_uprobe_event_init(struct perf_event *event); 10322 static struct pmu perf_uprobe = { 10323 .task_ctx_nr = perf_sw_context, 10324 .event_init = perf_uprobe_event_init, 10325 .add = perf_trace_add, 10326 .del = perf_trace_del, 10327 .start = perf_swevent_start, 10328 .stop = perf_swevent_stop, 10329 .read = perf_swevent_read, 10330 .attr_groups = uprobe_attr_groups, 10331 }; 10332 10333 static int perf_uprobe_event_init(struct perf_event *event) 10334 { 10335 int err; 10336 unsigned long ref_ctr_offset; 10337 bool is_retprobe; 10338 10339 if (event->attr.type != perf_uprobe.type) 10340 return -ENOENT; 10341 10342 if (!perfmon_capable()) 10343 return -EACCES; 10344 10345 /* 10346 * no branch sampling for probe events 10347 */ 10348 if (has_branch_stack(event)) 10349 return -EOPNOTSUPP; 10350 10351 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10352 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10353 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10354 if (err) 10355 return err; 10356 10357 event->destroy = perf_uprobe_destroy; 10358 10359 return 0; 10360 } 10361 #endif /* CONFIG_UPROBE_EVENTS */ 10362 10363 static inline void perf_tp_register(void) 10364 { 10365 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10366 #ifdef CONFIG_KPROBE_EVENTS 10367 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10368 #endif 10369 #ifdef CONFIG_UPROBE_EVENTS 10370 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10371 #endif 10372 } 10373 10374 static void perf_event_free_filter(struct perf_event *event) 10375 { 10376 ftrace_profile_free_filter(event); 10377 } 10378 10379 #ifdef CONFIG_BPF_SYSCALL 10380 static void bpf_overflow_handler(struct perf_event *event, 10381 struct perf_sample_data *data, 10382 struct pt_regs *regs) 10383 { 10384 struct bpf_perf_event_data_kern ctx = { 10385 .data = data, 10386 .event = event, 10387 }; 10388 struct bpf_prog *prog; 10389 int ret = 0; 10390 10391 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10392 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10393 goto out; 10394 rcu_read_lock(); 10395 prog = READ_ONCE(event->prog); 10396 if (prog) { 10397 perf_prepare_sample(data, event, regs); 10398 ret = bpf_prog_run(prog, &ctx); 10399 } 10400 rcu_read_unlock(); 10401 out: 10402 __this_cpu_dec(bpf_prog_active); 10403 if (!ret) 10404 return; 10405 10406 event->orig_overflow_handler(event, data, regs); 10407 } 10408 10409 static int perf_event_set_bpf_handler(struct perf_event *event, 10410 struct bpf_prog *prog, 10411 u64 bpf_cookie) 10412 { 10413 if (event->overflow_handler_context) 10414 /* hw breakpoint or kernel counter */ 10415 return -EINVAL; 10416 10417 if (event->prog) 10418 return -EEXIST; 10419 10420 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10421 return -EINVAL; 10422 10423 if (event->attr.precise_ip && 10424 prog->call_get_stack && 10425 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10426 event->attr.exclude_callchain_kernel || 10427 event->attr.exclude_callchain_user)) { 10428 /* 10429 * On perf_event with precise_ip, calling bpf_get_stack() 10430 * may trigger unwinder warnings and occasional crashes. 10431 * bpf_get_[stack|stackid] works around this issue by using 10432 * callchain attached to perf_sample_data. If the 10433 * perf_event does not full (kernel and user) callchain 10434 * attached to perf_sample_data, do not allow attaching BPF 10435 * program that calls bpf_get_[stack|stackid]. 10436 */ 10437 return -EPROTO; 10438 } 10439 10440 event->prog = prog; 10441 event->bpf_cookie = bpf_cookie; 10442 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10443 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10444 return 0; 10445 } 10446 10447 static void perf_event_free_bpf_handler(struct perf_event *event) 10448 { 10449 struct bpf_prog *prog = event->prog; 10450 10451 if (!prog) 10452 return; 10453 10454 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10455 event->prog = NULL; 10456 bpf_prog_put(prog); 10457 } 10458 #else 10459 static int perf_event_set_bpf_handler(struct perf_event *event, 10460 struct bpf_prog *prog, 10461 u64 bpf_cookie) 10462 { 10463 return -EOPNOTSUPP; 10464 } 10465 static void perf_event_free_bpf_handler(struct perf_event *event) 10466 { 10467 } 10468 #endif 10469 10470 /* 10471 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10472 * with perf_event_open() 10473 */ 10474 static inline bool perf_event_is_tracing(struct perf_event *event) 10475 { 10476 if (event->pmu == &perf_tracepoint) 10477 return true; 10478 #ifdef CONFIG_KPROBE_EVENTS 10479 if (event->pmu == &perf_kprobe) 10480 return true; 10481 #endif 10482 #ifdef CONFIG_UPROBE_EVENTS 10483 if (event->pmu == &perf_uprobe) 10484 return true; 10485 #endif 10486 return false; 10487 } 10488 10489 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10490 u64 bpf_cookie) 10491 { 10492 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10493 10494 if (!perf_event_is_tracing(event)) 10495 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10496 10497 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10498 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10499 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10500 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10501 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10502 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10503 return -EINVAL; 10504 10505 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10506 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10507 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10508 return -EINVAL; 10509 10510 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10511 /* only uprobe programs are allowed to be sleepable */ 10512 return -EINVAL; 10513 10514 /* Kprobe override only works for kprobes, not uprobes. */ 10515 if (prog->kprobe_override && !is_kprobe) 10516 return -EINVAL; 10517 10518 if (is_tracepoint || is_syscall_tp) { 10519 int off = trace_event_get_offsets(event->tp_event); 10520 10521 if (prog->aux->max_ctx_offset > off) 10522 return -EACCES; 10523 } 10524 10525 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10526 } 10527 10528 void perf_event_free_bpf_prog(struct perf_event *event) 10529 { 10530 if (!perf_event_is_tracing(event)) { 10531 perf_event_free_bpf_handler(event); 10532 return; 10533 } 10534 perf_event_detach_bpf_prog(event); 10535 } 10536 10537 #else 10538 10539 static inline void perf_tp_register(void) 10540 { 10541 } 10542 10543 static void perf_event_free_filter(struct perf_event *event) 10544 { 10545 } 10546 10547 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10548 u64 bpf_cookie) 10549 { 10550 return -ENOENT; 10551 } 10552 10553 void perf_event_free_bpf_prog(struct perf_event *event) 10554 { 10555 } 10556 #endif /* CONFIG_EVENT_TRACING */ 10557 10558 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10559 void perf_bp_event(struct perf_event *bp, void *data) 10560 { 10561 struct perf_sample_data sample; 10562 struct pt_regs *regs = data; 10563 10564 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10565 10566 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10567 perf_swevent_event(bp, 1, &sample, regs); 10568 } 10569 #endif 10570 10571 /* 10572 * Allocate a new address filter 10573 */ 10574 static struct perf_addr_filter * 10575 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10576 { 10577 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10578 struct perf_addr_filter *filter; 10579 10580 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10581 if (!filter) 10582 return NULL; 10583 10584 INIT_LIST_HEAD(&filter->entry); 10585 list_add_tail(&filter->entry, filters); 10586 10587 return filter; 10588 } 10589 10590 static void free_filters_list(struct list_head *filters) 10591 { 10592 struct perf_addr_filter *filter, *iter; 10593 10594 list_for_each_entry_safe(filter, iter, filters, entry) { 10595 path_put(&filter->path); 10596 list_del(&filter->entry); 10597 kfree(filter); 10598 } 10599 } 10600 10601 /* 10602 * Free existing address filters and optionally install new ones 10603 */ 10604 static void perf_addr_filters_splice(struct perf_event *event, 10605 struct list_head *head) 10606 { 10607 unsigned long flags; 10608 LIST_HEAD(list); 10609 10610 if (!has_addr_filter(event)) 10611 return; 10612 10613 /* don't bother with children, they don't have their own filters */ 10614 if (event->parent) 10615 return; 10616 10617 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10618 10619 list_splice_init(&event->addr_filters.list, &list); 10620 if (head) 10621 list_splice(head, &event->addr_filters.list); 10622 10623 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10624 10625 free_filters_list(&list); 10626 } 10627 10628 /* 10629 * Scan through mm's vmas and see if one of them matches the 10630 * @filter; if so, adjust filter's address range. 10631 * Called with mm::mmap_lock down for reading. 10632 */ 10633 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10634 struct mm_struct *mm, 10635 struct perf_addr_filter_range *fr) 10636 { 10637 struct vm_area_struct *vma; 10638 VMA_ITERATOR(vmi, mm, 0); 10639 10640 for_each_vma(vmi, vma) { 10641 if (!vma->vm_file) 10642 continue; 10643 10644 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10645 return; 10646 } 10647 } 10648 10649 /* 10650 * Update event's address range filters based on the 10651 * task's existing mappings, if any. 10652 */ 10653 static void perf_event_addr_filters_apply(struct perf_event *event) 10654 { 10655 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10656 struct task_struct *task = READ_ONCE(event->ctx->task); 10657 struct perf_addr_filter *filter; 10658 struct mm_struct *mm = NULL; 10659 unsigned int count = 0; 10660 unsigned long flags; 10661 10662 /* 10663 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10664 * will stop on the parent's child_mutex that our caller is also holding 10665 */ 10666 if (task == TASK_TOMBSTONE) 10667 return; 10668 10669 if (ifh->nr_file_filters) { 10670 mm = get_task_mm(task); 10671 if (!mm) 10672 goto restart; 10673 10674 mmap_read_lock(mm); 10675 } 10676 10677 raw_spin_lock_irqsave(&ifh->lock, flags); 10678 list_for_each_entry(filter, &ifh->list, entry) { 10679 if (filter->path.dentry) { 10680 /* 10681 * Adjust base offset if the filter is associated to a 10682 * binary that needs to be mapped: 10683 */ 10684 event->addr_filter_ranges[count].start = 0; 10685 event->addr_filter_ranges[count].size = 0; 10686 10687 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10688 } else { 10689 event->addr_filter_ranges[count].start = filter->offset; 10690 event->addr_filter_ranges[count].size = filter->size; 10691 } 10692 10693 count++; 10694 } 10695 10696 event->addr_filters_gen++; 10697 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10698 10699 if (ifh->nr_file_filters) { 10700 mmap_read_unlock(mm); 10701 10702 mmput(mm); 10703 } 10704 10705 restart: 10706 perf_event_stop(event, 1); 10707 } 10708 10709 /* 10710 * Address range filtering: limiting the data to certain 10711 * instruction address ranges. Filters are ioctl()ed to us from 10712 * userspace as ascii strings. 10713 * 10714 * Filter string format: 10715 * 10716 * ACTION RANGE_SPEC 10717 * where ACTION is one of the 10718 * * "filter": limit the trace to this region 10719 * * "start": start tracing from this address 10720 * * "stop": stop tracing at this address/region; 10721 * RANGE_SPEC is 10722 * * for kernel addresses: <start address>[/<size>] 10723 * * for object files: <start address>[/<size>]@</path/to/object/file> 10724 * 10725 * if <size> is not specified or is zero, the range is treated as a single 10726 * address; not valid for ACTION=="filter". 10727 */ 10728 enum { 10729 IF_ACT_NONE = -1, 10730 IF_ACT_FILTER, 10731 IF_ACT_START, 10732 IF_ACT_STOP, 10733 IF_SRC_FILE, 10734 IF_SRC_KERNEL, 10735 IF_SRC_FILEADDR, 10736 IF_SRC_KERNELADDR, 10737 }; 10738 10739 enum { 10740 IF_STATE_ACTION = 0, 10741 IF_STATE_SOURCE, 10742 IF_STATE_END, 10743 }; 10744 10745 static const match_table_t if_tokens = { 10746 { IF_ACT_FILTER, "filter" }, 10747 { IF_ACT_START, "start" }, 10748 { IF_ACT_STOP, "stop" }, 10749 { IF_SRC_FILE, "%u/%u@%s" }, 10750 { IF_SRC_KERNEL, "%u/%u" }, 10751 { IF_SRC_FILEADDR, "%u@%s" }, 10752 { IF_SRC_KERNELADDR, "%u" }, 10753 { IF_ACT_NONE, NULL }, 10754 }; 10755 10756 /* 10757 * Address filter string parser 10758 */ 10759 static int 10760 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10761 struct list_head *filters) 10762 { 10763 struct perf_addr_filter *filter = NULL; 10764 char *start, *orig, *filename = NULL; 10765 substring_t args[MAX_OPT_ARGS]; 10766 int state = IF_STATE_ACTION, token; 10767 unsigned int kernel = 0; 10768 int ret = -EINVAL; 10769 10770 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10771 if (!fstr) 10772 return -ENOMEM; 10773 10774 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10775 static const enum perf_addr_filter_action_t actions[] = { 10776 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10777 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10778 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10779 }; 10780 ret = -EINVAL; 10781 10782 if (!*start) 10783 continue; 10784 10785 /* filter definition begins */ 10786 if (state == IF_STATE_ACTION) { 10787 filter = perf_addr_filter_new(event, filters); 10788 if (!filter) 10789 goto fail; 10790 } 10791 10792 token = match_token(start, if_tokens, args); 10793 switch (token) { 10794 case IF_ACT_FILTER: 10795 case IF_ACT_START: 10796 case IF_ACT_STOP: 10797 if (state != IF_STATE_ACTION) 10798 goto fail; 10799 10800 filter->action = actions[token]; 10801 state = IF_STATE_SOURCE; 10802 break; 10803 10804 case IF_SRC_KERNELADDR: 10805 case IF_SRC_KERNEL: 10806 kernel = 1; 10807 fallthrough; 10808 10809 case IF_SRC_FILEADDR: 10810 case IF_SRC_FILE: 10811 if (state != IF_STATE_SOURCE) 10812 goto fail; 10813 10814 *args[0].to = 0; 10815 ret = kstrtoul(args[0].from, 0, &filter->offset); 10816 if (ret) 10817 goto fail; 10818 10819 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10820 *args[1].to = 0; 10821 ret = kstrtoul(args[1].from, 0, &filter->size); 10822 if (ret) 10823 goto fail; 10824 } 10825 10826 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10827 int fpos = token == IF_SRC_FILE ? 2 : 1; 10828 10829 kfree(filename); 10830 filename = match_strdup(&args[fpos]); 10831 if (!filename) { 10832 ret = -ENOMEM; 10833 goto fail; 10834 } 10835 } 10836 10837 state = IF_STATE_END; 10838 break; 10839 10840 default: 10841 goto fail; 10842 } 10843 10844 /* 10845 * Filter definition is fully parsed, validate and install it. 10846 * Make sure that it doesn't contradict itself or the event's 10847 * attribute. 10848 */ 10849 if (state == IF_STATE_END) { 10850 ret = -EINVAL; 10851 10852 /* 10853 * ACTION "filter" must have a non-zero length region 10854 * specified. 10855 */ 10856 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10857 !filter->size) 10858 goto fail; 10859 10860 if (!kernel) { 10861 if (!filename) 10862 goto fail; 10863 10864 /* 10865 * For now, we only support file-based filters 10866 * in per-task events; doing so for CPU-wide 10867 * events requires additional context switching 10868 * trickery, since same object code will be 10869 * mapped at different virtual addresses in 10870 * different processes. 10871 */ 10872 ret = -EOPNOTSUPP; 10873 if (!event->ctx->task) 10874 goto fail; 10875 10876 /* look up the path and grab its inode */ 10877 ret = kern_path(filename, LOOKUP_FOLLOW, 10878 &filter->path); 10879 if (ret) 10880 goto fail; 10881 10882 ret = -EINVAL; 10883 if (!filter->path.dentry || 10884 !S_ISREG(d_inode(filter->path.dentry) 10885 ->i_mode)) 10886 goto fail; 10887 10888 event->addr_filters.nr_file_filters++; 10889 } 10890 10891 /* ready to consume more filters */ 10892 kfree(filename); 10893 filename = NULL; 10894 state = IF_STATE_ACTION; 10895 filter = NULL; 10896 kernel = 0; 10897 } 10898 } 10899 10900 if (state != IF_STATE_ACTION) 10901 goto fail; 10902 10903 kfree(filename); 10904 kfree(orig); 10905 10906 return 0; 10907 10908 fail: 10909 kfree(filename); 10910 free_filters_list(filters); 10911 kfree(orig); 10912 10913 return ret; 10914 } 10915 10916 static int 10917 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 10918 { 10919 LIST_HEAD(filters); 10920 int ret; 10921 10922 /* 10923 * Since this is called in perf_ioctl() path, we're already holding 10924 * ctx::mutex. 10925 */ 10926 lockdep_assert_held(&event->ctx->mutex); 10927 10928 if (WARN_ON_ONCE(event->parent)) 10929 return -EINVAL; 10930 10931 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 10932 if (ret) 10933 goto fail_clear_files; 10934 10935 ret = event->pmu->addr_filters_validate(&filters); 10936 if (ret) 10937 goto fail_free_filters; 10938 10939 /* remove existing filters, if any */ 10940 perf_addr_filters_splice(event, &filters); 10941 10942 /* install new filters */ 10943 perf_event_for_each_child(event, perf_event_addr_filters_apply); 10944 10945 return ret; 10946 10947 fail_free_filters: 10948 free_filters_list(&filters); 10949 10950 fail_clear_files: 10951 event->addr_filters.nr_file_filters = 0; 10952 10953 return ret; 10954 } 10955 10956 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 10957 { 10958 int ret = -EINVAL; 10959 char *filter_str; 10960 10961 filter_str = strndup_user(arg, PAGE_SIZE); 10962 if (IS_ERR(filter_str)) 10963 return PTR_ERR(filter_str); 10964 10965 #ifdef CONFIG_EVENT_TRACING 10966 if (perf_event_is_tracing(event)) { 10967 struct perf_event_context *ctx = event->ctx; 10968 10969 /* 10970 * Beware, here be dragons!! 10971 * 10972 * the tracepoint muck will deadlock against ctx->mutex, but 10973 * the tracepoint stuff does not actually need it. So 10974 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 10975 * already have a reference on ctx. 10976 * 10977 * This can result in event getting moved to a different ctx, 10978 * but that does not affect the tracepoint state. 10979 */ 10980 mutex_unlock(&ctx->mutex); 10981 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 10982 mutex_lock(&ctx->mutex); 10983 } else 10984 #endif 10985 if (has_addr_filter(event)) 10986 ret = perf_event_set_addr_filter(event, filter_str); 10987 10988 kfree(filter_str); 10989 return ret; 10990 } 10991 10992 /* 10993 * hrtimer based swevent callback 10994 */ 10995 10996 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 10997 { 10998 enum hrtimer_restart ret = HRTIMER_RESTART; 10999 struct perf_sample_data data; 11000 struct pt_regs *regs; 11001 struct perf_event *event; 11002 u64 period; 11003 11004 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11005 11006 if (event->state != PERF_EVENT_STATE_ACTIVE) 11007 return HRTIMER_NORESTART; 11008 11009 event->pmu->read(event); 11010 11011 perf_sample_data_init(&data, 0, event->hw.last_period); 11012 regs = get_irq_regs(); 11013 11014 if (regs && !perf_exclude_event(event, regs)) { 11015 if (!(event->attr.exclude_idle && is_idle_task(current))) 11016 if (__perf_event_overflow(event, 1, &data, regs)) 11017 ret = HRTIMER_NORESTART; 11018 } 11019 11020 period = max_t(u64, 10000, event->hw.sample_period); 11021 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11022 11023 return ret; 11024 } 11025 11026 static void perf_swevent_start_hrtimer(struct perf_event *event) 11027 { 11028 struct hw_perf_event *hwc = &event->hw; 11029 s64 period; 11030 11031 if (!is_sampling_event(event)) 11032 return; 11033 11034 period = local64_read(&hwc->period_left); 11035 if (period) { 11036 if (period < 0) 11037 period = 10000; 11038 11039 local64_set(&hwc->period_left, 0); 11040 } else { 11041 period = max_t(u64, 10000, hwc->sample_period); 11042 } 11043 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11044 HRTIMER_MODE_REL_PINNED_HARD); 11045 } 11046 11047 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11048 { 11049 struct hw_perf_event *hwc = &event->hw; 11050 11051 if (is_sampling_event(event)) { 11052 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11053 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11054 11055 hrtimer_cancel(&hwc->hrtimer); 11056 } 11057 } 11058 11059 static void perf_swevent_init_hrtimer(struct perf_event *event) 11060 { 11061 struct hw_perf_event *hwc = &event->hw; 11062 11063 if (!is_sampling_event(event)) 11064 return; 11065 11066 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11067 hwc->hrtimer.function = perf_swevent_hrtimer; 11068 11069 /* 11070 * Since hrtimers have a fixed rate, we can do a static freq->period 11071 * mapping and avoid the whole period adjust feedback stuff. 11072 */ 11073 if (event->attr.freq) { 11074 long freq = event->attr.sample_freq; 11075 11076 event->attr.sample_period = NSEC_PER_SEC / freq; 11077 hwc->sample_period = event->attr.sample_period; 11078 local64_set(&hwc->period_left, hwc->sample_period); 11079 hwc->last_period = hwc->sample_period; 11080 event->attr.freq = 0; 11081 } 11082 } 11083 11084 /* 11085 * Software event: cpu wall time clock 11086 */ 11087 11088 static void cpu_clock_event_update(struct perf_event *event) 11089 { 11090 s64 prev; 11091 u64 now; 11092 11093 now = local_clock(); 11094 prev = local64_xchg(&event->hw.prev_count, now); 11095 local64_add(now - prev, &event->count); 11096 } 11097 11098 static void cpu_clock_event_start(struct perf_event *event, int flags) 11099 { 11100 local64_set(&event->hw.prev_count, local_clock()); 11101 perf_swevent_start_hrtimer(event); 11102 } 11103 11104 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11105 { 11106 perf_swevent_cancel_hrtimer(event); 11107 cpu_clock_event_update(event); 11108 } 11109 11110 static int cpu_clock_event_add(struct perf_event *event, int flags) 11111 { 11112 if (flags & PERF_EF_START) 11113 cpu_clock_event_start(event, flags); 11114 perf_event_update_userpage(event); 11115 11116 return 0; 11117 } 11118 11119 static void cpu_clock_event_del(struct perf_event *event, int flags) 11120 { 11121 cpu_clock_event_stop(event, flags); 11122 } 11123 11124 static void cpu_clock_event_read(struct perf_event *event) 11125 { 11126 cpu_clock_event_update(event); 11127 } 11128 11129 static int cpu_clock_event_init(struct perf_event *event) 11130 { 11131 if (event->attr.type != perf_cpu_clock.type) 11132 return -ENOENT; 11133 11134 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11135 return -ENOENT; 11136 11137 /* 11138 * no branch sampling for software events 11139 */ 11140 if (has_branch_stack(event)) 11141 return -EOPNOTSUPP; 11142 11143 perf_swevent_init_hrtimer(event); 11144 11145 return 0; 11146 } 11147 11148 static struct pmu perf_cpu_clock = { 11149 .task_ctx_nr = perf_sw_context, 11150 11151 .capabilities = PERF_PMU_CAP_NO_NMI, 11152 .dev = PMU_NULL_DEV, 11153 11154 .event_init = cpu_clock_event_init, 11155 .add = cpu_clock_event_add, 11156 .del = cpu_clock_event_del, 11157 .start = cpu_clock_event_start, 11158 .stop = cpu_clock_event_stop, 11159 .read = cpu_clock_event_read, 11160 }; 11161 11162 /* 11163 * Software event: task time clock 11164 */ 11165 11166 static void task_clock_event_update(struct perf_event *event, u64 now) 11167 { 11168 u64 prev; 11169 s64 delta; 11170 11171 prev = local64_xchg(&event->hw.prev_count, now); 11172 delta = now - prev; 11173 local64_add(delta, &event->count); 11174 } 11175 11176 static void task_clock_event_start(struct perf_event *event, int flags) 11177 { 11178 local64_set(&event->hw.prev_count, event->ctx->time); 11179 perf_swevent_start_hrtimer(event); 11180 } 11181 11182 static void task_clock_event_stop(struct perf_event *event, int flags) 11183 { 11184 perf_swevent_cancel_hrtimer(event); 11185 task_clock_event_update(event, event->ctx->time); 11186 } 11187 11188 static int task_clock_event_add(struct perf_event *event, int flags) 11189 { 11190 if (flags & PERF_EF_START) 11191 task_clock_event_start(event, flags); 11192 perf_event_update_userpage(event); 11193 11194 return 0; 11195 } 11196 11197 static void task_clock_event_del(struct perf_event *event, int flags) 11198 { 11199 task_clock_event_stop(event, PERF_EF_UPDATE); 11200 } 11201 11202 static void task_clock_event_read(struct perf_event *event) 11203 { 11204 u64 now = perf_clock(); 11205 u64 delta = now - event->ctx->timestamp; 11206 u64 time = event->ctx->time + delta; 11207 11208 task_clock_event_update(event, time); 11209 } 11210 11211 static int task_clock_event_init(struct perf_event *event) 11212 { 11213 if (event->attr.type != perf_task_clock.type) 11214 return -ENOENT; 11215 11216 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11217 return -ENOENT; 11218 11219 /* 11220 * no branch sampling for software events 11221 */ 11222 if (has_branch_stack(event)) 11223 return -EOPNOTSUPP; 11224 11225 perf_swevent_init_hrtimer(event); 11226 11227 return 0; 11228 } 11229 11230 static struct pmu perf_task_clock = { 11231 .task_ctx_nr = perf_sw_context, 11232 11233 .capabilities = PERF_PMU_CAP_NO_NMI, 11234 .dev = PMU_NULL_DEV, 11235 11236 .event_init = task_clock_event_init, 11237 .add = task_clock_event_add, 11238 .del = task_clock_event_del, 11239 .start = task_clock_event_start, 11240 .stop = task_clock_event_stop, 11241 .read = task_clock_event_read, 11242 }; 11243 11244 static void perf_pmu_nop_void(struct pmu *pmu) 11245 { 11246 } 11247 11248 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11249 { 11250 } 11251 11252 static int perf_pmu_nop_int(struct pmu *pmu) 11253 { 11254 return 0; 11255 } 11256 11257 static int perf_event_nop_int(struct perf_event *event, u64 value) 11258 { 11259 return 0; 11260 } 11261 11262 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11263 11264 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11265 { 11266 __this_cpu_write(nop_txn_flags, flags); 11267 11268 if (flags & ~PERF_PMU_TXN_ADD) 11269 return; 11270 11271 perf_pmu_disable(pmu); 11272 } 11273 11274 static int perf_pmu_commit_txn(struct pmu *pmu) 11275 { 11276 unsigned int flags = __this_cpu_read(nop_txn_flags); 11277 11278 __this_cpu_write(nop_txn_flags, 0); 11279 11280 if (flags & ~PERF_PMU_TXN_ADD) 11281 return 0; 11282 11283 perf_pmu_enable(pmu); 11284 return 0; 11285 } 11286 11287 static void perf_pmu_cancel_txn(struct pmu *pmu) 11288 { 11289 unsigned int flags = __this_cpu_read(nop_txn_flags); 11290 11291 __this_cpu_write(nop_txn_flags, 0); 11292 11293 if (flags & ~PERF_PMU_TXN_ADD) 11294 return; 11295 11296 perf_pmu_enable(pmu); 11297 } 11298 11299 static int perf_event_idx_default(struct perf_event *event) 11300 { 11301 return 0; 11302 } 11303 11304 static void free_pmu_context(struct pmu *pmu) 11305 { 11306 free_percpu(pmu->cpu_pmu_context); 11307 } 11308 11309 /* 11310 * Let userspace know that this PMU supports address range filtering: 11311 */ 11312 static ssize_t nr_addr_filters_show(struct device *dev, 11313 struct device_attribute *attr, 11314 char *page) 11315 { 11316 struct pmu *pmu = dev_get_drvdata(dev); 11317 11318 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11319 } 11320 DEVICE_ATTR_RO(nr_addr_filters); 11321 11322 static struct idr pmu_idr; 11323 11324 static ssize_t 11325 type_show(struct device *dev, struct device_attribute *attr, char *page) 11326 { 11327 struct pmu *pmu = dev_get_drvdata(dev); 11328 11329 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11330 } 11331 static DEVICE_ATTR_RO(type); 11332 11333 static ssize_t 11334 perf_event_mux_interval_ms_show(struct device *dev, 11335 struct device_attribute *attr, 11336 char *page) 11337 { 11338 struct pmu *pmu = dev_get_drvdata(dev); 11339 11340 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11341 } 11342 11343 static DEFINE_MUTEX(mux_interval_mutex); 11344 11345 static ssize_t 11346 perf_event_mux_interval_ms_store(struct device *dev, 11347 struct device_attribute *attr, 11348 const char *buf, size_t count) 11349 { 11350 struct pmu *pmu = dev_get_drvdata(dev); 11351 int timer, cpu, ret; 11352 11353 ret = kstrtoint(buf, 0, &timer); 11354 if (ret) 11355 return ret; 11356 11357 if (timer < 1) 11358 return -EINVAL; 11359 11360 /* same value, noting to do */ 11361 if (timer == pmu->hrtimer_interval_ms) 11362 return count; 11363 11364 mutex_lock(&mux_interval_mutex); 11365 pmu->hrtimer_interval_ms = timer; 11366 11367 /* update all cpuctx for this PMU */ 11368 cpus_read_lock(); 11369 for_each_online_cpu(cpu) { 11370 struct perf_cpu_pmu_context *cpc; 11371 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11372 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11373 11374 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11375 } 11376 cpus_read_unlock(); 11377 mutex_unlock(&mux_interval_mutex); 11378 11379 return count; 11380 } 11381 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11382 11383 static struct attribute *pmu_dev_attrs[] = { 11384 &dev_attr_type.attr, 11385 &dev_attr_perf_event_mux_interval_ms.attr, 11386 NULL, 11387 }; 11388 ATTRIBUTE_GROUPS(pmu_dev); 11389 11390 static int pmu_bus_running; 11391 static struct bus_type pmu_bus = { 11392 .name = "event_source", 11393 .dev_groups = pmu_dev_groups, 11394 }; 11395 11396 static void pmu_dev_release(struct device *dev) 11397 { 11398 kfree(dev); 11399 } 11400 11401 static int pmu_dev_alloc(struct pmu *pmu) 11402 { 11403 int ret = -ENOMEM; 11404 11405 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11406 if (!pmu->dev) 11407 goto out; 11408 11409 pmu->dev->groups = pmu->attr_groups; 11410 device_initialize(pmu->dev); 11411 11412 dev_set_drvdata(pmu->dev, pmu); 11413 pmu->dev->bus = &pmu_bus; 11414 pmu->dev->parent = pmu->parent; 11415 pmu->dev->release = pmu_dev_release; 11416 11417 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11418 if (ret) 11419 goto free_dev; 11420 11421 ret = device_add(pmu->dev); 11422 if (ret) 11423 goto free_dev; 11424 11425 /* For PMUs with address filters, throw in an extra attribute: */ 11426 if (pmu->nr_addr_filters) 11427 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 11428 11429 if (ret) 11430 goto del_dev; 11431 11432 if (pmu->attr_update) 11433 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11434 11435 if (ret) 11436 goto del_dev; 11437 11438 out: 11439 return ret; 11440 11441 del_dev: 11442 device_del(pmu->dev); 11443 11444 free_dev: 11445 put_device(pmu->dev); 11446 goto out; 11447 } 11448 11449 static struct lock_class_key cpuctx_mutex; 11450 static struct lock_class_key cpuctx_lock; 11451 11452 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11453 { 11454 int cpu, ret, max = PERF_TYPE_MAX; 11455 11456 mutex_lock(&pmus_lock); 11457 ret = -ENOMEM; 11458 pmu->pmu_disable_count = alloc_percpu(int); 11459 if (!pmu->pmu_disable_count) 11460 goto unlock; 11461 11462 pmu->type = -1; 11463 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11464 ret = -EINVAL; 11465 goto free_pdc; 11466 } 11467 11468 pmu->name = name; 11469 11470 if (type >= 0) 11471 max = type; 11472 11473 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11474 if (ret < 0) 11475 goto free_pdc; 11476 11477 WARN_ON(type >= 0 && ret != type); 11478 11479 type = ret; 11480 pmu->type = type; 11481 11482 if (pmu_bus_running && !pmu->dev) { 11483 ret = pmu_dev_alloc(pmu); 11484 if (ret) 11485 goto free_idr; 11486 } 11487 11488 ret = -ENOMEM; 11489 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11490 if (!pmu->cpu_pmu_context) 11491 goto free_dev; 11492 11493 for_each_possible_cpu(cpu) { 11494 struct perf_cpu_pmu_context *cpc; 11495 11496 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11497 __perf_init_event_pmu_context(&cpc->epc, pmu); 11498 __perf_mux_hrtimer_init(cpc, cpu); 11499 } 11500 11501 if (!pmu->start_txn) { 11502 if (pmu->pmu_enable) { 11503 /* 11504 * If we have pmu_enable/pmu_disable calls, install 11505 * transaction stubs that use that to try and batch 11506 * hardware accesses. 11507 */ 11508 pmu->start_txn = perf_pmu_start_txn; 11509 pmu->commit_txn = perf_pmu_commit_txn; 11510 pmu->cancel_txn = perf_pmu_cancel_txn; 11511 } else { 11512 pmu->start_txn = perf_pmu_nop_txn; 11513 pmu->commit_txn = perf_pmu_nop_int; 11514 pmu->cancel_txn = perf_pmu_nop_void; 11515 } 11516 } 11517 11518 if (!pmu->pmu_enable) { 11519 pmu->pmu_enable = perf_pmu_nop_void; 11520 pmu->pmu_disable = perf_pmu_nop_void; 11521 } 11522 11523 if (!pmu->check_period) 11524 pmu->check_period = perf_event_nop_int; 11525 11526 if (!pmu->event_idx) 11527 pmu->event_idx = perf_event_idx_default; 11528 11529 list_add_rcu(&pmu->entry, &pmus); 11530 atomic_set(&pmu->exclusive_cnt, 0); 11531 ret = 0; 11532 unlock: 11533 mutex_unlock(&pmus_lock); 11534 11535 return ret; 11536 11537 free_dev: 11538 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11539 device_del(pmu->dev); 11540 put_device(pmu->dev); 11541 } 11542 11543 free_idr: 11544 idr_remove(&pmu_idr, pmu->type); 11545 11546 free_pdc: 11547 free_percpu(pmu->pmu_disable_count); 11548 goto unlock; 11549 } 11550 EXPORT_SYMBOL_GPL(perf_pmu_register); 11551 11552 void perf_pmu_unregister(struct pmu *pmu) 11553 { 11554 mutex_lock(&pmus_lock); 11555 list_del_rcu(&pmu->entry); 11556 11557 /* 11558 * We dereference the pmu list under both SRCU and regular RCU, so 11559 * synchronize against both of those. 11560 */ 11561 synchronize_srcu(&pmus_srcu); 11562 synchronize_rcu(); 11563 11564 free_percpu(pmu->pmu_disable_count); 11565 idr_remove(&pmu_idr, pmu->type); 11566 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11567 if (pmu->nr_addr_filters) 11568 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11569 device_del(pmu->dev); 11570 put_device(pmu->dev); 11571 } 11572 free_pmu_context(pmu); 11573 mutex_unlock(&pmus_lock); 11574 } 11575 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11576 11577 static inline bool has_extended_regs(struct perf_event *event) 11578 { 11579 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11580 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11581 } 11582 11583 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11584 { 11585 struct perf_event_context *ctx = NULL; 11586 int ret; 11587 11588 if (!try_module_get(pmu->module)) 11589 return -ENODEV; 11590 11591 /* 11592 * A number of pmu->event_init() methods iterate the sibling_list to, 11593 * for example, validate if the group fits on the PMU. Therefore, 11594 * if this is a sibling event, acquire the ctx->mutex to protect 11595 * the sibling_list. 11596 */ 11597 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11598 /* 11599 * This ctx->mutex can nest when we're called through 11600 * inheritance. See the perf_event_ctx_lock_nested() comment. 11601 */ 11602 ctx = perf_event_ctx_lock_nested(event->group_leader, 11603 SINGLE_DEPTH_NESTING); 11604 BUG_ON(!ctx); 11605 } 11606 11607 event->pmu = pmu; 11608 ret = pmu->event_init(event); 11609 11610 if (ctx) 11611 perf_event_ctx_unlock(event->group_leader, ctx); 11612 11613 if (!ret) { 11614 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11615 has_extended_regs(event)) 11616 ret = -EOPNOTSUPP; 11617 11618 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11619 event_has_any_exclude_flag(event)) 11620 ret = -EINVAL; 11621 11622 if (ret && event->destroy) 11623 event->destroy(event); 11624 } 11625 11626 if (ret) 11627 module_put(pmu->module); 11628 11629 return ret; 11630 } 11631 11632 static struct pmu *perf_init_event(struct perf_event *event) 11633 { 11634 bool extended_type = false; 11635 int idx, type, ret; 11636 struct pmu *pmu; 11637 11638 idx = srcu_read_lock(&pmus_srcu); 11639 11640 /* 11641 * Save original type before calling pmu->event_init() since certain 11642 * pmus overwrites event->attr.type to forward event to another pmu. 11643 */ 11644 event->orig_type = event->attr.type; 11645 11646 /* Try parent's PMU first: */ 11647 if (event->parent && event->parent->pmu) { 11648 pmu = event->parent->pmu; 11649 ret = perf_try_init_event(pmu, event); 11650 if (!ret) 11651 goto unlock; 11652 } 11653 11654 /* 11655 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11656 * are often aliases for PERF_TYPE_RAW. 11657 */ 11658 type = event->attr.type; 11659 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11660 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11661 if (!type) { 11662 type = PERF_TYPE_RAW; 11663 } else { 11664 extended_type = true; 11665 event->attr.config &= PERF_HW_EVENT_MASK; 11666 } 11667 } 11668 11669 again: 11670 rcu_read_lock(); 11671 pmu = idr_find(&pmu_idr, type); 11672 rcu_read_unlock(); 11673 if (pmu) { 11674 if (event->attr.type != type && type != PERF_TYPE_RAW && 11675 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11676 goto fail; 11677 11678 ret = perf_try_init_event(pmu, event); 11679 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11680 type = event->attr.type; 11681 goto again; 11682 } 11683 11684 if (ret) 11685 pmu = ERR_PTR(ret); 11686 11687 goto unlock; 11688 } 11689 11690 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11691 ret = perf_try_init_event(pmu, event); 11692 if (!ret) 11693 goto unlock; 11694 11695 if (ret != -ENOENT) { 11696 pmu = ERR_PTR(ret); 11697 goto unlock; 11698 } 11699 } 11700 fail: 11701 pmu = ERR_PTR(-ENOENT); 11702 unlock: 11703 srcu_read_unlock(&pmus_srcu, idx); 11704 11705 return pmu; 11706 } 11707 11708 static void attach_sb_event(struct perf_event *event) 11709 { 11710 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11711 11712 raw_spin_lock(&pel->lock); 11713 list_add_rcu(&event->sb_list, &pel->list); 11714 raw_spin_unlock(&pel->lock); 11715 } 11716 11717 /* 11718 * We keep a list of all !task (and therefore per-cpu) events 11719 * that need to receive side-band records. 11720 * 11721 * This avoids having to scan all the various PMU per-cpu contexts 11722 * looking for them. 11723 */ 11724 static void account_pmu_sb_event(struct perf_event *event) 11725 { 11726 if (is_sb_event(event)) 11727 attach_sb_event(event); 11728 } 11729 11730 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11731 static void account_freq_event_nohz(void) 11732 { 11733 #ifdef CONFIG_NO_HZ_FULL 11734 /* Lock so we don't race with concurrent unaccount */ 11735 spin_lock(&nr_freq_lock); 11736 if (atomic_inc_return(&nr_freq_events) == 1) 11737 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11738 spin_unlock(&nr_freq_lock); 11739 #endif 11740 } 11741 11742 static void account_freq_event(void) 11743 { 11744 if (tick_nohz_full_enabled()) 11745 account_freq_event_nohz(); 11746 else 11747 atomic_inc(&nr_freq_events); 11748 } 11749 11750 11751 static void account_event(struct perf_event *event) 11752 { 11753 bool inc = false; 11754 11755 if (event->parent) 11756 return; 11757 11758 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11759 inc = true; 11760 if (event->attr.mmap || event->attr.mmap_data) 11761 atomic_inc(&nr_mmap_events); 11762 if (event->attr.build_id) 11763 atomic_inc(&nr_build_id_events); 11764 if (event->attr.comm) 11765 atomic_inc(&nr_comm_events); 11766 if (event->attr.namespaces) 11767 atomic_inc(&nr_namespaces_events); 11768 if (event->attr.cgroup) 11769 atomic_inc(&nr_cgroup_events); 11770 if (event->attr.task) 11771 atomic_inc(&nr_task_events); 11772 if (event->attr.freq) 11773 account_freq_event(); 11774 if (event->attr.context_switch) { 11775 atomic_inc(&nr_switch_events); 11776 inc = true; 11777 } 11778 if (has_branch_stack(event)) 11779 inc = true; 11780 if (is_cgroup_event(event)) 11781 inc = true; 11782 if (event->attr.ksymbol) 11783 atomic_inc(&nr_ksymbol_events); 11784 if (event->attr.bpf_event) 11785 atomic_inc(&nr_bpf_events); 11786 if (event->attr.text_poke) 11787 atomic_inc(&nr_text_poke_events); 11788 11789 if (inc) { 11790 /* 11791 * We need the mutex here because static_branch_enable() 11792 * must complete *before* the perf_sched_count increment 11793 * becomes visible. 11794 */ 11795 if (atomic_inc_not_zero(&perf_sched_count)) 11796 goto enabled; 11797 11798 mutex_lock(&perf_sched_mutex); 11799 if (!atomic_read(&perf_sched_count)) { 11800 static_branch_enable(&perf_sched_events); 11801 /* 11802 * Guarantee that all CPUs observe they key change and 11803 * call the perf scheduling hooks before proceeding to 11804 * install events that need them. 11805 */ 11806 synchronize_rcu(); 11807 } 11808 /* 11809 * Now that we have waited for the sync_sched(), allow further 11810 * increments to by-pass the mutex. 11811 */ 11812 atomic_inc(&perf_sched_count); 11813 mutex_unlock(&perf_sched_mutex); 11814 } 11815 enabled: 11816 11817 account_pmu_sb_event(event); 11818 } 11819 11820 /* 11821 * Allocate and initialize an event structure 11822 */ 11823 static struct perf_event * 11824 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11825 struct task_struct *task, 11826 struct perf_event *group_leader, 11827 struct perf_event *parent_event, 11828 perf_overflow_handler_t overflow_handler, 11829 void *context, int cgroup_fd) 11830 { 11831 struct pmu *pmu; 11832 struct perf_event *event; 11833 struct hw_perf_event *hwc; 11834 long err = -EINVAL; 11835 int node; 11836 11837 if ((unsigned)cpu >= nr_cpu_ids) { 11838 if (!task || cpu != -1) 11839 return ERR_PTR(-EINVAL); 11840 } 11841 if (attr->sigtrap && !task) { 11842 /* Requires a task: avoid signalling random tasks. */ 11843 return ERR_PTR(-EINVAL); 11844 } 11845 11846 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11847 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11848 node); 11849 if (!event) 11850 return ERR_PTR(-ENOMEM); 11851 11852 /* 11853 * Single events are their own group leaders, with an 11854 * empty sibling list: 11855 */ 11856 if (!group_leader) 11857 group_leader = event; 11858 11859 mutex_init(&event->child_mutex); 11860 INIT_LIST_HEAD(&event->child_list); 11861 11862 INIT_LIST_HEAD(&event->event_entry); 11863 INIT_LIST_HEAD(&event->sibling_list); 11864 INIT_LIST_HEAD(&event->active_list); 11865 init_event_group(event); 11866 INIT_LIST_HEAD(&event->rb_entry); 11867 INIT_LIST_HEAD(&event->active_entry); 11868 INIT_LIST_HEAD(&event->addr_filters.list); 11869 INIT_HLIST_NODE(&event->hlist_entry); 11870 11871 11872 init_waitqueue_head(&event->waitq); 11873 init_irq_work(&event->pending_irq, perf_pending_irq); 11874 init_task_work(&event->pending_task, perf_pending_task); 11875 11876 mutex_init(&event->mmap_mutex); 11877 raw_spin_lock_init(&event->addr_filters.lock); 11878 11879 atomic_long_set(&event->refcount, 1); 11880 event->cpu = cpu; 11881 event->attr = *attr; 11882 event->group_leader = group_leader; 11883 event->pmu = NULL; 11884 event->oncpu = -1; 11885 11886 event->parent = parent_event; 11887 11888 event->ns = get_pid_ns(task_active_pid_ns(current)); 11889 event->id = atomic64_inc_return(&perf_event_id); 11890 11891 event->state = PERF_EVENT_STATE_INACTIVE; 11892 11893 if (parent_event) 11894 event->event_caps = parent_event->event_caps; 11895 11896 if (task) { 11897 event->attach_state = PERF_ATTACH_TASK; 11898 /* 11899 * XXX pmu::event_init needs to know what task to account to 11900 * and we cannot use the ctx information because we need the 11901 * pmu before we get a ctx. 11902 */ 11903 event->hw.target = get_task_struct(task); 11904 } 11905 11906 event->clock = &local_clock; 11907 if (parent_event) 11908 event->clock = parent_event->clock; 11909 11910 if (!overflow_handler && parent_event) { 11911 overflow_handler = parent_event->overflow_handler; 11912 context = parent_event->overflow_handler_context; 11913 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 11914 if (overflow_handler == bpf_overflow_handler) { 11915 struct bpf_prog *prog = parent_event->prog; 11916 11917 bpf_prog_inc(prog); 11918 event->prog = prog; 11919 event->orig_overflow_handler = 11920 parent_event->orig_overflow_handler; 11921 } 11922 #endif 11923 } 11924 11925 if (overflow_handler) { 11926 event->overflow_handler = overflow_handler; 11927 event->overflow_handler_context = context; 11928 } else if (is_write_backward(event)){ 11929 event->overflow_handler = perf_event_output_backward; 11930 event->overflow_handler_context = NULL; 11931 } else { 11932 event->overflow_handler = perf_event_output_forward; 11933 event->overflow_handler_context = NULL; 11934 } 11935 11936 perf_event__state_init(event); 11937 11938 pmu = NULL; 11939 11940 hwc = &event->hw; 11941 hwc->sample_period = attr->sample_period; 11942 if (attr->freq && attr->sample_freq) 11943 hwc->sample_period = 1; 11944 hwc->last_period = hwc->sample_period; 11945 11946 local64_set(&hwc->period_left, hwc->sample_period); 11947 11948 /* 11949 * We currently do not support PERF_SAMPLE_READ on inherited events. 11950 * See perf_output_read(). 11951 */ 11952 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 11953 goto err_ns; 11954 11955 if (!has_branch_stack(event)) 11956 event->attr.branch_sample_type = 0; 11957 11958 pmu = perf_init_event(event); 11959 if (IS_ERR(pmu)) { 11960 err = PTR_ERR(pmu); 11961 goto err_ns; 11962 } 11963 11964 /* 11965 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 11966 * events (they don't make sense as the cgroup will be different 11967 * on other CPUs in the uncore mask). 11968 */ 11969 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 11970 err = -EINVAL; 11971 goto err_pmu; 11972 } 11973 11974 if (event->attr.aux_output && 11975 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 11976 err = -EOPNOTSUPP; 11977 goto err_pmu; 11978 } 11979 11980 if (cgroup_fd != -1) { 11981 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 11982 if (err) 11983 goto err_pmu; 11984 } 11985 11986 err = exclusive_event_init(event); 11987 if (err) 11988 goto err_pmu; 11989 11990 if (has_addr_filter(event)) { 11991 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 11992 sizeof(struct perf_addr_filter_range), 11993 GFP_KERNEL); 11994 if (!event->addr_filter_ranges) { 11995 err = -ENOMEM; 11996 goto err_per_task; 11997 } 11998 11999 /* 12000 * Clone the parent's vma offsets: they are valid until exec() 12001 * even if the mm is not shared with the parent. 12002 */ 12003 if (event->parent) { 12004 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12005 12006 raw_spin_lock_irq(&ifh->lock); 12007 memcpy(event->addr_filter_ranges, 12008 event->parent->addr_filter_ranges, 12009 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12010 raw_spin_unlock_irq(&ifh->lock); 12011 } 12012 12013 /* force hw sync on the address filters */ 12014 event->addr_filters_gen = 1; 12015 } 12016 12017 if (!event->parent) { 12018 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12019 err = get_callchain_buffers(attr->sample_max_stack); 12020 if (err) 12021 goto err_addr_filters; 12022 } 12023 } 12024 12025 err = security_perf_event_alloc(event); 12026 if (err) 12027 goto err_callchain_buffer; 12028 12029 /* symmetric to unaccount_event() in _free_event() */ 12030 account_event(event); 12031 12032 return event; 12033 12034 err_callchain_buffer: 12035 if (!event->parent) { 12036 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12037 put_callchain_buffers(); 12038 } 12039 err_addr_filters: 12040 kfree(event->addr_filter_ranges); 12041 12042 err_per_task: 12043 exclusive_event_destroy(event); 12044 12045 err_pmu: 12046 if (is_cgroup_event(event)) 12047 perf_detach_cgroup(event); 12048 if (event->destroy) 12049 event->destroy(event); 12050 module_put(pmu->module); 12051 err_ns: 12052 if (event->hw.target) 12053 put_task_struct(event->hw.target); 12054 call_rcu(&event->rcu_head, free_event_rcu); 12055 12056 return ERR_PTR(err); 12057 } 12058 12059 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12060 struct perf_event_attr *attr) 12061 { 12062 u32 size; 12063 int ret; 12064 12065 /* Zero the full structure, so that a short copy will be nice. */ 12066 memset(attr, 0, sizeof(*attr)); 12067 12068 ret = get_user(size, &uattr->size); 12069 if (ret) 12070 return ret; 12071 12072 /* ABI compatibility quirk: */ 12073 if (!size) 12074 size = PERF_ATTR_SIZE_VER0; 12075 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12076 goto err_size; 12077 12078 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12079 if (ret) { 12080 if (ret == -E2BIG) 12081 goto err_size; 12082 return ret; 12083 } 12084 12085 attr->size = size; 12086 12087 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12088 return -EINVAL; 12089 12090 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12091 return -EINVAL; 12092 12093 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12094 return -EINVAL; 12095 12096 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12097 u64 mask = attr->branch_sample_type; 12098 12099 /* only using defined bits */ 12100 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12101 return -EINVAL; 12102 12103 /* at least one branch bit must be set */ 12104 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12105 return -EINVAL; 12106 12107 /* propagate priv level, when not set for branch */ 12108 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12109 12110 /* exclude_kernel checked on syscall entry */ 12111 if (!attr->exclude_kernel) 12112 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12113 12114 if (!attr->exclude_user) 12115 mask |= PERF_SAMPLE_BRANCH_USER; 12116 12117 if (!attr->exclude_hv) 12118 mask |= PERF_SAMPLE_BRANCH_HV; 12119 /* 12120 * adjust user setting (for HW filter setup) 12121 */ 12122 attr->branch_sample_type = mask; 12123 } 12124 /* privileged levels capture (kernel, hv): check permissions */ 12125 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12126 ret = perf_allow_kernel(attr); 12127 if (ret) 12128 return ret; 12129 } 12130 } 12131 12132 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12133 ret = perf_reg_validate(attr->sample_regs_user); 12134 if (ret) 12135 return ret; 12136 } 12137 12138 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12139 if (!arch_perf_have_user_stack_dump()) 12140 return -ENOSYS; 12141 12142 /* 12143 * We have __u32 type for the size, but so far 12144 * we can only use __u16 as maximum due to the 12145 * __u16 sample size limit. 12146 */ 12147 if (attr->sample_stack_user >= USHRT_MAX) 12148 return -EINVAL; 12149 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12150 return -EINVAL; 12151 } 12152 12153 if (!attr->sample_max_stack) 12154 attr->sample_max_stack = sysctl_perf_event_max_stack; 12155 12156 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12157 ret = perf_reg_validate(attr->sample_regs_intr); 12158 12159 #ifndef CONFIG_CGROUP_PERF 12160 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12161 return -EINVAL; 12162 #endif 12163 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12164 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12165 return -EINVAL; 12166 12167 if (!attr->inherit && attr->inherit_thread) 12168 return -EINVAL; 12169 12170 if (attr->remove_on_exec && attr->enable_on_exec) 12171 return -EINVAL; 12172 12173 if (attr->sigtrap && !attr->remove_on_exec) 12174 return -EINVAL; 12175 12176 out: 12177 return ret; 12178 12179 err_size: 12180 put_user(sizeof(*attr), &uattr->size); 12181 ret = -E2BIG; 12182 goto out; 12183 } 12184 12185 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12186 { 12187 if (b < a) 12188 swap(a, b); 12189 12190 mutex_lock(a); 12191 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12192 } 12193 12194 static int 12195 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12196 { 12197 struct perf_buffer *rb = NULL; 12198 int ret = -EINVAL; 12199 12200 if (!output_event) { 12201 mutex_lock(&event->mmap_mutex); 12202 goto set; 12203 } 12204 12205 /* don't allow circular references */ 12206 if (event == output_event) 12207 goto out; 12208 12209 /* 12210 * Don't allow cross-cpu buffers 12211 */ 12212 if (output_event->cpu != event->cpu) 12213 goto out; 12214 12215 /* 12216 * If its not a per-cpu rb, it must be the same task. 12217 */ 12218 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12219 goto out; 12220 12221 /* 12222 * Mixing clocks in the same buffer is trouble you don't need. 12223 */ 12224 if (output_event->clock != event->clock) 12225 goto out; 12226 12227 /* 12228 * Either writing ring buffer from beginning or from end. 12229 * Mixing is not allowed. 12230 */ 12231 if (is_write_backward(output_event) != is_write_backward(event)) 12232 goto out; 12233 12234 /* 12235 * If both events generate aux data, they must be on the same PMU 12236 */ 12237 if (has_aux(event) && has_aux(output_event) && 12238 event->pmu != output_event->pmu) 12239 goto out; 12240 12241 /* 12242 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12243 * output_event is already on rb->event_list, and the list iteration 12244 * restarts after every removal, it is guaranteed this new event is 12245 * observed *OR* if output_event is already removed, it's guaranteed we 12246 * observe !rb->mmap_count. 12247 */ 12248 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12249 set: 12250 /* Can't redirect output if we've got an active mmap() */ 12251 if (atomic_read(&event->mmap_count)) 12252 goto unlock; 12253 12254 if (output_event) { 12255 /* get the rb we want to redirect to */ 12256 rb = ring_buffer_get(output_event); 12257 if (!rb) 12258 goto unlock; 12259 12260 /* did we race against perf_mmap_close() */ 12261 if (!atomic_read(&rb->mmap_count)) { 12262 ring_buffer_put(rb); 12263 goto unlock; 12264 } 12265 } 12266 12267 ring_buffer_attach(event, rb); 12268 12269 ret = 0; 12270 unlock: 12271 mutex_unlock(&event->mmap_mutex); 12272 if (output_event) 12273 mutex_unlock(&output_event->mmap_mutex); 12274 12275 out: 12276 return ret; 12277 } 12278 12279 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12280 { 12281 bool nmi_safe = false; 12282 12283 switch (clk_id) { 12284 case CLOCK_MONOTONIC: 12285 event->clock = &ktime_get_mono_fast_ns; 12286 nmi_safe = true; 12287 break; 12288 12289 case CLOCK_MONOTONIC_RAW: 12290 event->clock = &ktime_get_raw_fast_ns; 12291 nmi_safe = true; 12292 break; 12293 12294 case CLOCK_REALTIME: 12295 event->clock = &ktime_get_real_ns; 12296 break; 12297 12298 case CLOCK_BOOTTIME: 12299 event->clock = &ktime_get_boottime_ns; 12300 break; 12301 12302 case CLOCK_TAI: 12303 event->clock = &ktime_get_clocktai_ns; 12304 break; 12305 12306 default: 12307 return -EINVAL; 12308 } 12309 12310 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12311 return -EINVAL; 12312 12313 return 0; 12314 } 12315 12316 static bool 12317 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12318 { 12319 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12320 bool is_capable = perfmon_capable(); 12321 12322 if (attr->sigtrap) { 12323 /* 12324 * perf_event_attr::sigtrap sends signals to the other task. 12325 * Require the current task to also have CAP_KILL. 12326 */ 12327 rcu_read_lock(); 12328 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12329 rcu_read_unlock(); 12330 12331 /* 12332 * If the required capabilities aren't available, checks for 12333 * ptrace permissions: upgrade to ATTACH, since sending signals 12334 * can effectively change the target task. 12335 */ 12336 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12337 } 12338 12339 /* 12340 * Preserve ptrace permission check for backwards compatibility. The 12341 * ptrace check also includes checks that the current task and other 12342 * task have matching uids, and is therefore not done here explicitly. 12343 */ 12344 return is_capable || ptrace_may_access(task, ptrace_mode); 12345 } 12346 12347 /** 12348 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12349 * 12350 * @attr_uptr: event_id type attributes for monitoring/sampling 12351 * @pid: target pid 12352 * @cpu: target cpu 12353 * @group_fd: group leader event fd 12354 * @flags: perf event open flags 12355 */ 12356 SYSCALL_DEFINE5(perf_event_open, 12357 struct perf_event_attr __user *, attr_uptr, 12358 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12359 { 12360 struct perf_event *group_leader = NULL, *output_event = NULL; 12361 struct perf_event_pmu_context *pmu_ctx; 12362 struct perf_event *event, *sibling; 12363 struct perf_event_attr attr; 12364 struct perf_event_context *ctx; 12365 struct file *event_file = NULL; 12366 struct fd group = {NULL, 0}; 12367 struct task_struct *task = NULL; 12368 struct pmu *pmu; 12369 int event_fd; 12370 int move_group = 0; 12371 int err; 12372 int f_flags = O_RDWR; 12373 int cgroup_fd = -1; 12374 12375 /* for future expandability... */ 12376 if (flags & ~PERF_FLAG_ALL) 12377 return -EINVAL; 12378 12379 err = perf_copy_attr(attr_uptr, &attr); 12380 if (err) 12381 return err; 12382 12383 /* Do we allow access to perf_event_open(2) ? */ 12384 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12385 if (err) 12386 return err; 12387 12388 if (!attr.exclude_kernel) { 12389 err = perf_allow_kernel(&attr); 12390 if (err) 12391 return err; 12392 } 12393 12394 if (attr.namespaces) { 12395 if (!perfmon_capable()) 12396 return -EACCES; 12397 } 12398 12399 if (attr.freq) { 12400 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12401 return -EINVAL; 12402 } else { 12403 if (attr.sample_period & (1ULL << 63)) 12404 return -EINVAL; 12405 } 12406 12407 /* Only privileged users can get physical addresses */ 12408 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12409 err = perf_allow_kernel(&attr); 12410 if (err) 12411 return err; 12412 } 12413 12414 /* REGS_INTR can leak data, lockdown must prevent this */ 12415 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12416 err = security_locked_down(LOCKDOWN_PERF); 12417 if (err) 12418 return err; 12419 } 12420 12421 /* 12422 * In cgroup mode, the pid argument is used to pass the fd 12423 * opened to the cgroup directory in cgroupfs. The cpu argument 12424 * designates the cpu on which to monitor threads from that 12425 * cgroup. 12426 */ 12427 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12428 return -EINVAL; 12429 12430 if (flags & PERF_FLAG_FD_CLOEXEC) 12431 f_flags |= O_CLOEXEC; 12432 12433 event_fd = get_unused_fd_flags(f_flags); 12434 if (event_fd < 0) 12435 return event_fd; 12436 12437 if (group_fd != -1) { 12438 err = perf_fget_light(group_fd, &group); 12439 if (err) 12440 goto err_fd; 12441 group_leader = group.file->private_data; 12442 if (flags & PERF_FLAG_FD_OUTPUT) 12443 output_event = group_leader; 12444 if (flags & PERF_FLAG_FD_NO_GROUP) 12445 group_leader = NULL; 12446 } 12447 12448 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12449 task = find_lively_task_by_vpid(pid); 12450 if (IS_ERR(task)) { 12451 err = PTR_ERR(task); 12452 goto err_group_fd; 12453 } 12454 } 12455 12456 if (task && group_leader && 12457 group_leader->attr.inherit != attr.inherit) { 12458 err = -EINVAL; 12459 goto err_task; 12460 } 12461 12462 if (flags & PERF_FLAG_PID_CGROUP) 12463 cgroup_fd = pid; 12464 12465 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12466 NULL, NULL, cgroup_fd); 12467 if (IS_ERR(event)) { 12468 err = PTR_ERR(event); 12469 goto err_task; 12470 } 12471 12472 if (is_sampling_event(event)) { 12473 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12474 err = -EOPNOTSUPP; 12475 goto err_alloc; 12476 } 12477 } 12478 12479 /* 12480 * Special case software events and allow them to be part of 12481 * any hardware group. 12482 */ 12483 pmu = event->pmu; 12484 12485 if (attr.use_clockid) { 12486 err = perf_event_set_clock(event, attr.clockid); 12487 if (err) 12488 goto err_alloc; 12489 } 12490 12491 if (pmu->task_ctx_nr == perf_sw_context) 12492 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12493 12494 if (task) { 12495 err = down_read_interruptible(&task->signal->exec_update_lock); 12496 if (err) 12497 goto err_alloc; 12498 12499 /* 12500 * We must hold exec_update_lock across this and any potential 12501 * perf_install_in_context() call for this new event to 12502 * serialize against exec() altering our credentials (and the 12503 * perf_event_exit_task() that could imply). 12504 */ 12505 err = -EACCES; 12506 if (!perf_check_permission(&attr, task)) 12507 goto err_cred; 12508 } 12509 12510 /* 12511 * Get the target context (task or percpu): 12512 */ 12513 ctx = find_get_context(task, event); 12514 if (IS_ERR(ctx)) { 12515 err = PTR_ERR(ctx); 12516 goto err_cred; 12517 } 12518 12519 mutex_lock(&ctx->mutex); 12520 12521 if (ctx->task == TASK_TOMBSTONE) { 12522 err = -ESRCH; 12523 goto err_locked; 12524 } 12525 12526 if (!task) { 12527 /* 12528 * Check if the @cpu we're creating an event for is online. 12529 * 12530 * We use the perf_cpu_context::ctx::mutex to serialize against 12531 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12532 */ 12533 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12534 12535 if (!cpuctx->online) { 12536 err = -ENODEV; 12537 goto err_locked; 12538 } 12539 } 12540 12541 if (group_leader) { 12542 err = -EINVAL; 12543 12544 /* 12545 * Do not allow a recursive hierarchy (this new sibling 12546 * becoming part of another group-sibling): 12547 */ 12548 if (group_leader->group_leader != group_leader) 12549 goto err_locked; 12550 12551 /* All events in a group should have the same clock */ 12552 if (group_leader->clock != event->clock) 12553 goto err_locked; 12554 12555 /* 12556 * Make sure we're both events for the same CPU; 12557 * grouping events for different CPUs is broken; since 12558 * you can never concurrently schedule them anyhow. 12559 */ 12560 if (group_leader->cpu != event->cpu) 12561 goto err_locked; 12562 12563 /* 12564 * Make sure we're both on the same context; either task or cpu. 12565 */ 12566 if (group_leader->ctx != ctx) 12567 goto err_locked; 12568 12569 /* 12570 * Only a group leader can be exclusive or pinned 12571 */ 12572 if (attr.exclusive || attr.pinned) 12573 goto err_locked; 12574 12575 if (is_software_event(event) && 12576 !in_software_context(group_leader)) { 12577 /* 12578 * If the event is a sw event, but the group_leader 12579 * is on hw context. 12580 * 12581 * Allow the addition of software events to hw 12582 * groups, this is safe because software events 12583 * never fail to schedule. 12584 * 12585 * Note the comment that goes with struct 12586 * perf_event_pmu_context. 12587 */ 12588 pmu = group_leader->pmu_ctx->pmu; 12589 } else if (!is_software_event(event)) { 12590 if (is_software_event(group_leader) && 12591 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12592 /* 12593 * In case the group is a pure software group, and we 12594 * try to add a hardware event, move the whole group to 12595 * the hardware context. 12596 */ 12597 move_group = 1; 12598 } 12599 12600 /* Don't allow group of multiple hw events from different pmus */ 12601 if (!in_software_context(group_leader) && 12602 group_leader->pmu_ctx->pmu != pmu) 12603 goto err_locked; 12604 } 12605 } 12606 12607 /* 12608 * Now that we're certain of the pmu; find the pmu_ctx. 12609 */ 12610 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12611 if (IS_ERR(pmu_ctx)) { 12612 err = PTR_ERR(pmu_ctx); 12613 goto err_locked; 12614 } 12615 event->pmu_ctx = pmu_ctx; 12616 12617 if (output_event) { 12618 err = perf_event_set_output(event, output_event); 12619 if (err) 12620 goto err_context; 12621 } 12622 12623 if (!perf_event_validate_size(event)) { 12624 err = -E2BIG; 12625 goto err_context; 12626 } 12627 12628 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12629 err = -EINVAL; 12630 goto err_context; 12631 } 12632 12633 /* 12634 * Must be under the same ctx::mutex as perf_install_in_context(), 12635 * because we need to serialize with concurrent event creation. 12636 */ 12637 if (!exclusive_event_installable(event, ctx)) { 12638 err = -EBUSY; 12639 goto err_context; 12640 } 12641 12642 WARN_ON_ONCE(ctx->parent_ctx); 12643 12644 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12645 if (IS_ERR(event_file)) { 12646 err = PTR_ERR(event_file); 12647 event_file = NULL; 12648 goto err_context; 12649 } 12650 12651 /* 12652 * This is the point on no return; we cannot fail hereafter. This is 12653 * where we start modifying current state. 12654 */ 12655 12656 if (move_group) { 12657 perf_remove_from_context(group_leader, 0); 12658 put_pmu_ctx(group_leader->pmu_ctx); 12659 12660 for_each_sibling_event(sibling, group_leader) { 12661 perf_remove_from_context(sibling, 0); 12662 put_pmu_ctx(sibling->pmu_ctx); 12663 } 12664 12665 /* 12666 * Install the group siblings before the group leader. 12667 * 12668 * Because a group leader will try and install the entire group 12669 * (through the sibling list, which is still in-tact), we can 12670 * end up with siblings installed in the wrong context. 12671 * 12672 * By installing siblings first we NO-OP because they're not 12673 * reachable through the group lists. 12674 */ 12675 for_each_sibling_event(sibling, group_leader) { 12676 sibling->pmu_ctx = pmu_ctx; 12677 get_pmu_ctx(pmu_ctx); 12678 perf_event__state_init(sibling); 12679 perf_install_in_context(ctx, sibling, sibling->cpu); 12680 } 12681 12682 /* 12683 * Removing from the context ends up with disabled 12684 * event. What we want here is event in the initial 12685 * startup state, ready to be add into new context. 12686 */ 12687 group_leader->pmu_ctx = pmu_ctx; 12688 get_pmu_ctx(pmu_ctx); 12689 perf_event__state_init(group_leader); 12690 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12691 } 12692 12693 /* 12694 * Precalculate sample_data sizes; do while holding ctx::mutex such 12695 * that we're serialized against further additions and before 12696 * perf_install_in_context() which is the point the event is active and 12697 * can use these values. 12698 */ 12699 perf_event__header_size(event); 12700 perf_event__id_header_size(event); 12701 12702 event->owner = current; 12703 12704 perf_install_in_context(ctx, event, event->cpu); 12705 perf_unpin_context(ctx); 12706 12707 mutex_unlock(&ctx->mutex); 12708 12709 if (task) { 12710 up_read(&task->signal->exec_update_lock); 12711 put_task_struct(task); 12712 } 12713 12714 mutex_lock(¤t->perf_event_mutex); 12715 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12716 mutex_unlock(¤t->perf_event_mutex); 12717 12718 /* 12719 * Drop the reference on the group_event after placing the 12720 * new event on the sibling_list. This ensures destruction 12721 * of the group leader will find the pointer to itself in 12722 * perf_group_detach(). 12723 */ 12724 fdput(group); 12725 fd_install(event_fd, event_file); 12726 return event_fd; 12727 12728 err_context: 12729 put_pmu_ctx(event->pmu_ctx); 12730 event->pmu_ctx = NULL; /* _free_event() */ 12731 err_locked: 12732 mutex_unlock(&ctx->mutex); 12733 perf_unpin_context(ctx); 12734 put_ctx(ctx); 12735 err_cred: 12736 if (task) 12737 up_read(&task->signal->exec_update_lock); 12738 err_alloc: 12739 free_event(event); 12740 err_task: 12741 if (task) 12742 put_task_struct(task); 12743 err_group_fd: 12744 fdput(group); 12745 err_fd: 12746 put_unused_fd(event_fd); 12747 return err; 12748 } 12749 12750 /** 12751 * perf_event_create_kernel_counter 12752 * 12753 * @attr: attributes of the counter to create 12754 * @cpu: cpu in which the counter is bound 12755 * @task: task to profile (NULL for percpu) 12756 * @overflow_handler: callback to trigger when we hit the event 12757 * @context: context data could be used in overflow_handler callback 12758 */ 12759 struct perf_event * 12760 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12761 struct task_struct *task, 12762 perf_overflow_handler_t overflow_handler, 12763 void *context) 12764 { 12765 struct perf_event_pmu_context *pmu_ctx; 12766 struct perf_event_context *ctx; 12767 struct perf_event *event; 12768 struct pmu *pmu; 12769 int err; 12770 12771 /* 12772 * Grouping is not supported for kernel events, neither is 'AUX', 12773 * make sure the caller's intentions are adjusted. 12774 */ 12775 if (attr->aux_output) 12776 return ERR_PTR(-EINVAL); 12777 12778 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12779 overflow_handler, context, -1); 12780 if (IS_ERR(event)) { 12781 err = PTR_ERR(event); 12782 goto err; 12783 } 12784 12785 /* Mark owner so we could distinguish it from user events. */ 12786 event->owner = TASK_TOMBSTONE; 12787 pmu = event->pmu; 12788 12789 if (pmu->task_ctx_nr == perf_sw_context) 12790 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12791 12792 /* 12793 * Get the target context (task or percpu): 12794 */ 12795 ctx = find_get_context(task, event); 12796 if (IS_ERR(ctx)) { 12797 err = PTR_ERR(ctx); 12798 goto err_alloc; 12799 } 12800 12801 WARN_ON_ONCE(ctx->parent_ctx); 12802 mutex_lock(&ctx->mutex); 12803 if (ctx->task == TASK_TOMBSTONE) { 12804 err = -ESRCH; 12805 goto err_unlock; 12806 } 12807 12808 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12809 if (IS_ERR(pmu_ctx)) { 12810 err = PTR_ERR(pmu_ctx); 12811 goto err_unlock; 12812 } 12813 event->pmu_ctx = pmu_ctx; 12814 12815 if (!task) { 12816 /* 12817 * Check if the @cpu we're creating an event for is online. 12818 * 12819 * We use the perf_cpu_context::ctx::mutex to serialize against 12820 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12821 */ 12822 struct perf_cpu_context *cpuctx = 12823 container_of(ctx, struct perf_cpu_context, ctx); 12824 if (!cpuctx->online) { 12825 err = -ENODEV; 12826 goto err_pmu_ctx; 12827 } 12828 } 12829 12830 if (!exclusive_event_installable(event, ctx)) { 12831 err = -EBUSY; 12832 goto err_pmu_ctx; 12833 } 12834 12835 perf_install_in_context(ctx, event, event->cpu); 12836 perf_unpin_context(ctx); 12837 mutex_unlock(&ctx->mutex); 12838 12839 return event; 12840 12841 err_pmu_ctx: 12842 put_pmu_ctx(pmu_ctx); 12843 event->pmu_ctx = NULL; /* _free_event() */ 12844 err_unlock: 12845 mutex_unlock(&ctx->mutex); 12846 perf_unpin_context(ctx); 12847 put_ctx(ctx); 12848 err_alloc: 12849 free_event(event); 12850 err: 12851 return ERR_PTR(err); 12852 } 12853 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12854 12855 static void __perf_pmu_remove(struct perf_event_context *ctx, 12856 int cpu, struct pmu *pmu, 12857 struct perf_event_groups *groups, 12858 struct list_head *events) 12859 { 12860 struct perf_event *event, *sibling; 12861 12862 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12863 perf_remove_from_context(event, 0); 12864 put_pmu_ctx(event->pmu_ctx); 12865 list_add(&event->migrate_entry, events); 12866 12867 for_each_sibling_event(sibling, event) { 12868 perf_remove_from_context(sibling, 0); 12869 put_pmu_ctx(sibling->pmu_ctx); 12870 list_add(&sibling->migrate_entry, events); 12871 } 12872 } 12873 } 12874 12875 static void __perf_pmu_install_event(struct pmu *pmu, 12876 struct perf_event_context *ctx, 12877 int cpu, struct perf_event *event) 12878 { 12879 struct perf_event_pmu_context *epc; 12880 12881 event->cpu = cpu; 12882 epc = find_get_pmu_context(pmu, ctx, event); 12883 event->pmu_ctx = epc; 12884 12885 if (event->state >= PERF_EVENT_STATE_OFF) 12886 event->state = PERF_EVENT_STATE_INACTIVE; 12887 perf_install_in_context(ctx, event, cpu); 12888 } 12889 12890 static void __perf_pmu_install(struct perf_event_context *ctx, 12891 int cpu, struct pmu *pmu, struct list_head *events) 12892 { 12893 struct perf_event *event, *tmp; 12894 12895 /* 12896 * Re-instate events in 2 passes. 12897 * 12898 * Skip over group leaders and only install siblings on this first 12899 * pass, siblings will not get enabled without a leader, however a 12900 * leader will enable its siblings, even if those are still on the old 12901 * context. 12902 */ 12903 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12904 if (event->group_leader == event) 12905 continue; 12906 12907 list_del(&event->migrate_entry); 12908 __perf_pmu_install_event(pmu, ctx, cpu, event); 12909 } 12910 12911 /* 12912 * Once all the siblings are setup properly, install the group leaders 12913 * to make it go. 12914 */ 12915 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 12916 list_del(&event->migrate_entry); 12917 __perf_pmu_install_event(pmu, ctx, cpu, event); 12918 } 12919 } 12920 12921 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 12922 { 12923 struct perf_event_context *src_ctx, *dst_ctx; 12924 LIST_HEAD(events); 12925 12926 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 12927 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 12928 12929 /* 12930 * See perf_event_ctx_lock() for comments on the details 12931 * of swizzling perf_event::ctx. 12932 */ 12933 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 12934 12935 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 12936 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 12937 12938 if (!list_empty(&events)) { 12939 /* 12940 * Wait for the events to quiesce before re-instating them. 12941 */ 12942 synchronize_rcu(); 12943 12944 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 12945 } 12946 12947 mutex_unlock(&dst_ctx->mutex); 12948 mutex_unlock(&src_ctx->mutex); 12949 } 12950 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 12951 12952 static void sync_child_event(struct perf_event *child_event) 12953 { 12954 struct perf_event *parent_event = child_event->parent; 12955 u64 child_val; 12956 12957 if (child_event->attr.inherit_stat) { 12958 struct task_struct *task = child_event->ctx->task; 12959 12960 if (task && task != TASK_TOMBSTONE) 12961 perf_event_read_event(child_event, task); 12962 } 12963 12964 child_val = perf_event_count(child_event); 12965 12966 /* 12967 * Add back the child's count to the parent's count: 12968 */ 12969 atomic64_add(child_val, &parent_event->child_count); 12970 atomic64_add(child_event->total_time_enabled, 12971 &parent_event->child_total_time_enabled); 12972 atomic64_add(child_event->total_time_running, 12973 &parent_event->child_total_time_running); 12974 } 12975 12976 static void 12977 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 12978 { 12979 struct perf_event *parent_event = event->parent; 12980 unsigned long detach_flags = 0; 12981 12982 if (parent_event) { 12983 /* 12984 * Do not destroy the 'original' grouping; because of the 12985 * context switch optimization the original events could've 12986 * ended up in a random child task. 12987 * 12988 * If we were to destroy the original group, all group related 12989 * operations would cease to function properly after this 12990 * random child dies. 12991 * 12992 * Do destroy all inherited groups, we don't care about those 12993 * and being thorough is better. 12994 */ 12995 detach_flags = DETACH_GROUP | DETACH_CHILD; 12996 mutex_lock(&parent_event->child_mutex); 12997 } 12998 12999 perf_remove_from_context(event, detach_flags); 13000 13001 raw_spin_lock_irq(&ctx->lock); 13002 if (event->state > PERF_EVENT_STATE_EXIT) 13003 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13004 raw_spin_unlock_irq(&ctx->lock); 13005 13006 /* 13007 * Child events can be freed. 13008 */ 13009 if (parent_event) { 13010 mutex_unlock(&parent_event->child_mutex); 13011 /* 13012 * Kick perf_poll() for is_event_hup(); 13013 */ 13014 perf_event_wakeup(parent_event); 13015 free_event(event); 13016 put_event(parent_event); 13017 return; 13018 } 13019 13020 /* 13021 * Parent events are governed by their filedesc, retain them. 13022 */ 13023 perf_event_wakeup(event); 13024 } 13025 13026 static void perf_event_exit_task_context(struct task_struct *child) 13027 { 13028 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13029 struct perf_event *child_event, *next; 13030 13031 WARN_ON_ONCE(child != current); 13032 13033 child_ctx = perf_pin_task_context(child); 13034 if (!child_ctx) 13035 return; 13036 13037 /* 13038 * In order to reduce the amount of tricky in ctx tear-down, we hold 13039 * ctx::mutex over the entire thing. This serializes against almost 13040 * everything that wants to access the ctx. 13041 * 13042 * The exception is sys_perf_event_open() / 13043 * perf_event_create_kernel_count() which does find_get_context() 13044 * without ctx::mutex (it cannot because of the move_group double mutex 13045 * lock thing). See the comments in perf_install_in_context(). 13046 */ 13047 mutex_lock(&child_ctx->mutex); 13048 13049 /* 13050 * In a single ctx::lock section, de-schedule the events and detach the 13051 * context from the task such that we cannot ever get it scheduled back 13052 * in. 13053 */ 13054 raw_spin_lock_irq(&child_ctx->lock); 13055 task_ctx_sched_out(child_ctx, EVENT_ALL); 13056 13057 /* 13058 * Now that the context is inactive, destroy the task <-> ctx relation 13059 * and mark the context dead. 13060 */ 13061 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13062 put_ctx(child_ctx); /* cannot be last */ 13063 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13064 put_task_struct(current); /* cannot be last */ 13065 13066 clone_ctx = unclone_ctx(child_ctx); 13067 raw_spin_unlock_irq(&child_ctx->lock); 13068 13069 if (clone_ctx) 13070 put_ctx(clone_ctx); 13071 13072 /* 13073 * Report the task dead after unscheduling the events so that we 13074 * won't get any samples after PERF_RECORD_EXIT. We can however still 13075 * get a few PERF_RECORD_READ events. 13076 */ 13077 perf_event_task(child, child_ctx, 0); 13078 13079 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13080 perf_event_exit_event(child_event, child_ctx); 13081 13082 mutex_unlock(&child_ctx->mutex); 13083 13084 put_ctx(child_ctx); 13085 } 13086 13087 /* 13088 * When a child task exits, feed back event values to parent events. 13089 * 13090 * Can be called with exec_update_lock held when called from 13091 * setup_new_exec(). 13092 */ 13093 void perf_event_exit_task(struct task_struct *child) 13094 { 13095 struct perf_event *event, *tmp; 13096 13097 mutex_lock(&child->perf_event_mutex); 13098 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13099 owner_entry) { 13100 list_del_init(&event->owner_entry); 13101 13102 /* 13103 * Ensure the list deletion is visible before we clear 13104 * the owner, closes a race against perf_release() where 13105 * we need to serialize on the owner->perf_event_mutex. 13106 */ 13107 smp_store_release(&event->owner, NULL); 13108 } 13109 mutex_unlock(&child->perf_event_mutex); 13110 13111 perf_event_exit_task_context(child); 13112 13113 /* 13114 * The perf_event_exit_task_context calls perf_event_task 13115 * with child's task_ctx, which generates EXIT events for 13116 * child contexts and sets child->perf_event_ctxp[] to NULL. 13117 * At this point we need to send EXIT events to cpu contexts. 13118 */ 13119 perf_event_task(child, NULL, 0); 13120 } 13121 13122 static void perf_free_event(struct perf_event *event, 13123 struct perf_event_context *ctx) 13124 { 13125 struct perf_event *parent = event->parent; 13126 13127 if (WARN_ON_ONCE(!parent)) 13128 return; 13129 13130 mutex_lock(&parent->child_mutex); 13131 list_del_init(&event->child_list); 13132 mutex_unlock(&parent->child_mutex); 13133 13134 put_event(parent); 13135 13136 raw_spin_lock_irq(&ctx->lock); 13137 perf_group_detach(event); 13138 list_del_event(event, ctx); 13139 raw_spin_unlock_irq(&ctx->lock); 13140 free_event(event); 13141 } 13142 13143 /* 13144 * Free a context as created by inheritance by perf_event_init_task() below, 13145 * used by fork() in case of fail. 13146 * 13147 * Even though the task has never lived, the context and events have been 13148 * exposed through the child_list, so we must take care tearing it all down. 13149 */ 13150 void perf_event_free_task(struct task_struct *task) 13151 { 13152 struct perf_event_context *ctx; 13153 struct perf_event *event, *tmp; 13154 13155 ctx = rcu_access_pointer(task->perf_event_ctxp); 13156 if (!ctx) 13157 return; 13158 13159 mutex_lock(&ctx->mutex); 13160 raw_spin_lock_irq(&ctx->lock); 13161 /* 13162 * Destroy the task <-> ctx relation and mark the context dead. 13163 * 13164 * This is important because even though the task hasn't been 13165 * exposed yet the context has been (through child_list). 13166 */ 13167 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13168 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13169 put_task_struct(task); /* cannot be last */ 13170 raw_spin_unlock_irq(&ctx->lock); 13171 13172 13173 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13174 perf_free_event(event, ctx); 13175 13176 mutex_unlock(&ctx->mutex); 13177 13178 /* 13179 * perf_event_release_kernel() could've stolen some of our 13180 * child events and still have them on its free_list. In that 13181 * case we must wait for these events to have been freed (in 13182 * particular all their references to this task must've been 13183 * dropped). 13184 * 13185 * Without this copy_process() will unconditionally free this 13186 * task (irrespective of its reference count) and 13187 * _free_event()'s put_task_struct(event->hw.target) will be a 13188 * use-after-free. 13189 * 13190 * Wait for all events to drop their context reference. 13191 */ 13192 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13193 put_ctx(ctx); /* must be last */ 13194 } 13195 13196 void perf_event_delayed_put(struct task_struct *task) 13197 { 13198 WARN_ON_ONCE(task->perf_event_ctxp); 13199 } 13200 13201 struct file *perf_event_get(unsigned int fd) 13202 { 13203 struct file *file = fget(fd); 13204 if (!file) 13205 return ERR_PTR(-EBADF); 13206 13207 if (file->f_op != &perf_fops) { 13208 fput(file); 13209 return ERR_PTR(-EBADF); 13210 } 13211 13212 return file; 13213 } 13214 13215 const struct perf_event *perf_get_event(struct file *file) 13216 { 13217 if (file->f_op != &perf_fops) 13218 return ERR_PTR(-EINVAL); 13219 13220 return file->private_data; 13221 } 13222 13223 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13224 { 13225 if (!event) 13226 return ERR_PTR(-EINVAL); 13227 13228 return &event->attr; 13229 } 13230 13231 /* 13232 * Inherit an event from parent task to child task. 13233 * 13234 * Returns: 13235 * - valid pointer on success 13236 * - NULL for orphaned events 13237 * - IS_ERR() on error 13238 */ 13239 static struct perf_event * 13240 inherit_event(struct perf_event *parent_event, 13241 struct task_struct *parent, 13242 struct perf_event_context *parent_ctx, 13243 struct task_struct *child, 13244 struct perf_event *group_leader, 13245 struct perf_event_context *child_ctx) 13246 { 13247 enum perf_event_state parent_state = parent_event->state; 13248 struct perf_event_pmu_context *pmu_ctx; 13249 struct perf_event *child_event; 13250 unsigned long flags; 13251 13252 /* 13253 * Instead of creating recursive hierarchies of events, 13254 * we link inherited events back to the original parent, 13255 * which has a filp for sure, which we use as the reference 13256 * count: 13257 */ 13258 if (parent_event->parent) 13259 parent_event = parent_event->parent; 13260 13261 child_event = perf_event_alloc(&parent_event->attr, 13262 parent_event->cpu, 13263 child, 13264 group_leader, parent_event, 13265 NULL, NULL, -1); 13266 if (IS_ERR(child_event)) 13267 return child_event; 13268 13269 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13270 if (IS_ERR(pmu_ctx)) { 13271 free_event(child_event); 13272 return ERR_CAST(pmu_ctx); 13273 } 13274 child_event->pmu_ctx = pmu_ctx; 13275 13276 /* 13277 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13278 * must be under the same lock in order to serialize against 13279 * perf_event_release_kernel(), such that either we must observe 13280 * is_orphaned_event() or they will observe us on the child_list. 13281 */ 13282 mutex_lock(&parent_event->child_mutex); 13283 if (is_orphaned_event(parent_event) || 13284 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13285 mutex_unlock(&parent_event->child_mutex); 13286 /* task_ctx_data is freed with child_ctx */ 13287 free_event(child_event); 13288 return NULL; 13289 } 13290 13291 get_ctx(child_ctx); 13292 13293 /* 13294 * Make the child state follow the state of the parent event, 13295 * not its attr.disabled bit. We hold the parent's mutex, 13296 * so we won't race with perf_event_{en, dis}able_family. 13297 */ 13298 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13299 child_event->state = PERF_EVENT_STATE_INACTIVE; 13300 else 13301 child_event->state = PERF_EVENT_STATE_OFF; 13302 13303 if (parent_event->attr.freq) { 13304 u64 sample_period = parent_event->hw.sample_period; 13305 struct hw_perf_event *hwc = &child_event->hw; 13306 13307 hwc->sample_period = sample_period; 13308 hwc->last_period = sample_period; 13309 13310 local64_set(&hwc->period_left, sample_period); 13311 } 13312 13313 child_event->ctx = child_ctx; 13314 child_event->overflow_handler = parent_event->overflow_handler; 13315 child_event->overflow_handler_context 13316 = parent_event->overflow_handler_context; 13317 13318 /* 13319 * Precalculate sample_data sizes 13320 */ 13321 perf_event__header_size(child_event); 13322 perf_event__id_header_size(child_event); 13323 13324 /* 13325 * Link it up in the child's context: 13326 */ 13327 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13328 add_event_to_ctx(child_event, child_ctx); 13329 child_event->attach_state |= PERF_ATTACH_CHILD; 13330 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13331 13332 /* 13333 * Link this into the parent event's child list 13334 */ 13335 list_add_tail(&child_event->child_list, &parent_event->child_list); 13336 mutex_unlock(&parent_event->child_mutex); 13337 13338 return child_event; 13339 } 13340 13341 /* 13342 * Inherits an event group. 13343 * 13344 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13345 * This matches with perf_event_release_kernel() removing all child events. 13346 * 13347 * Returns: 13348 * - 0 on success 13349 * - <0 on error 13350 */ 13351 static int inherit_group(struct perf_event *parent_event, 13352 struct task_struct *parent, 13353 struct perf_event_context *parent_ctx, 13354 struct task_struct *child, 13355 struct perf_event_context *child_ctx) 13356 { 13357 struct perf_event *leader; 13358 struct perf_event *sub; 13359 struct perf_event *child_ctr; 13360 13361 leader = inherit_event(parent_event, parent, parent_ctx, 13362 child, NULL, child_ctx); 13363 if (IS_ERR(leader)) 13364 return PTR_ERR(leader); 13365 /* 13366 * @leader can be NULL here because of is_orphaned_event(). In this 13367 * case inherit_event() will create individual events, similar to what 13368 * perf_group_detach() would do anyway. 13369 */ 13370 for_each_sibling_event(sub, parent_event) { 13371 child_ctr = inherit_event(sub, parent, parent_ctx, 13372 child, leader, child_ctx); 13373 if (IS_ERR(child_ctr)) 13374 return PTR_ERR(child_ctr); 13375 13376 if (sub->aux_event == parent_event && child_ctr && 13377 !perf_get_aux_event(child_ctr, leader)) 13378 return -EINVAL; 13379 } 13380 if (leader) 13381 leader->group_generation = parent_event->group_generation; 13382 return 0; 13383 } 13384 13385 /* 13386 * Creates the child task context and tries to inherit the event-group. 13387 * 13388 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13389 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13390 * consistent with perf_event_release_kernel() removing all child events. 13391 * 13392 * Returns: 13393 * - 0 on success 13394 * - <0 on error 13395 */ 13396 static int 13397 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13398 struct perf_event_context *parent_ctx, 13399 struct task_struct *child, 13400 u64 clone_flags, int *inherited_all) 13401 { 13402 struct perf_event_context *child_ctx; 13403 int ret; 13404 13405 if (!event->attr.inherit || 13406 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13407 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13408 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13409 *inherited_all = 0; 13410 return 0; 13411 } 13412 13413 child_ctx = child->perf_event_ctxp; 13414 if (!child_ctx) { 13415 /* 13416 * This is executed from the parent task context, so 13417 * inherit events that have been marked for cloning. 13418 * First allocate and initialize a context for the 13419 * child. 13420 */ 13421 child_ctx = alloc_perf_context(child); 13422 if (!child_ctx) 13423 return -ENOMEM; 13424 13425 child->perf_event_ctxp = child_ctx; 13426 } 13427 13428 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13429 if (ret) 13430 *inherited_all = 0; 13431 13432 return ret; 13433 } 13434 13435 /* 13436 * Initialize the perf_event context in task_struct 13437 */ 13438 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13439 { 13440 struct perf_event_context *child_ctx, *parent_ctx; 13441 struct perf_event_context *cloned_ctx; 13442 struct perf_event *event; 13443 struct task_struct *parent = current; 13444 int inherited_all = 1; 13445 unsigned long flags; 13446 int ret = 0; 13447 13448 if (likely(!parent->perf_event_ctxp)) 13449 return 0; 13450 13451 /* 13452 * If the parent's context is a clone, pin it so it won't get 13453 * swapped under us. 13454 */ 13455 parent_ctx = perf_pin_task_context(parent); 13456 if (!parent_ctx) 13457 return 0; 13458 13459 /* 13460 * No need to check if parent_ctx != NULL here; since we saw 13461 * it non-NULL earlier, the only reason for it to become NULL 13462 * is if we exit, and since we're currently in the middle of 13463 * a fork we can't be exiting at the same time. 13464 */ 13465 13466 /* 13467 * Lock the parent list. No need to lock the child - not PID 13468 * hashed yet and not running, so nobody can access it. 13469 */ 13470 mutex_lock(&parent_ctx->mutex); 13471 13472 /* 13473 * We dont have to disable NMIs - we are only looking at 13474 * the list, not manipulating it: 13475 */ 13476 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13477 ret = inherit_task_group(event, parent, parent_ctx, 13478 child, clone_flags, &inherited_all); 13479 if (ret) 13480 goto out_unlock; 13481 } 13482 13483 /* 13484 * We can't hold ctx->lock when iterating the ->flexible_group list due 13485 * to allocations, but we need to prevent rotation because 13486 * rotate_ctx() will change the list from interrupt context. 13487 */ 13488 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13489 parent_ctx->rotate_disable = 1; 13490 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13491 13492 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13493 ret = inherit_task_group(event, parent, parent_ctx, 13494 child, clone_flags, &inherited_all); 13495 if (ret) 13496 goto out_unlock; 13497 } 13498 13499 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13500 parent_ctx->rotate_disable = 0; 13501 13502 child_ctx = child->perf_event_ctxp; 13503 13504 if (child_ctx && inherited_all) { 13505 /* 13506 * Mark the child context as a clone of the parent 13507 * context, or of whatever the parent is a clone of. 13508 * 13509 * Note that if the parent is a clone, the holding of 13510 * parent_ctx->lock avoids it from being uncloned. 13511 */ 13512 cloned_ctx = parent_ctx->parent_ctx; 13513 if (cloned_ctx) { 13514 child_ctx->parent_ctx = cloned_ctx; 13515 child_ctx->parent_gen = parent_ctx->parent_gen; 13516 } else { 13517 child_ctx->parent_ctx = parent_ctx; 13518 child_ctx->parent_gen = parent_ctx->generation; 13519 } 13520 get_ctx(child_ctx->parent_ctx); 13521 } 13522 13523 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13524 out_unlock: 13525 mutex_unlock(&parent_ctx->mutex); 13526 13527 perf_unpin_context(parent_ctx); 13528 put_ctx(parent_ctx); 13529 13530 return ret; 13531 } 13532 13533 /* 13534 * Initialize the perf_event context in task_struct 13535 */ 13536 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13537 { 13538 int ret; 13539 13540 child->perf_event_ctxp = NULL; 13541 mutex_init(&child->perf_event_mutex); 13542 INIT_LIST_HEAD(&child->perf_event_list); 13543 13544 ret = perf_event_init_context(child, clone_flags); 13545 if (ret) { 13546 perf_event_free_task(child); 13547 return ret; 13548 } 13549 13550 return 0; 13551 } 13552 13553 static void __init perf_event_init_all_cpus(void) 13554 { 13555 struct swevent_htable *swhash; 13556 struct perf_cpu_context *cpuctx; 13557 int cpu; 13558 13559 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13560 13561 for_each_possible_cpu(cpu) { 13562 swhash = &per_cpu(swevent_htable, cpu); 13563 mutex_init(&swhash->hlist_mutex); 13564 13565 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13566 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13567 13568 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13569 13570 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13571 __perf_event_init_context(&cpuctx->ctx); 13572 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13573 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13574 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13575 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13576 cpuctx->heap = cpuctx->heap_default; 13577 } 13578 } 13579 13580 static void perf_swevent_init_cpu(unsigned int cpu) 13581 { 13582 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13583 13584 mutex_lock(&swhash->hlist_mutex); 13585 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13586 struct swevent_hlist *hlist; 13587 13588 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13589 WARN_ON(!hlist); 13590 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13591 } 13592 mutex_unlock(&swhash->hlist_mutex); 13593 } 13594 13595 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13596 static void __perf_event_exit_context(void *__info) 13597 { 13598 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13599 struct perf_event_context *ctx = __info; 13600 struct perf_event *event; 13601 13602 raw_spin_lock(&ctx->lock); 13603 ctx_sched_out(ctx, EVENT_TIME); 13604 list_for_each_entry(event, &ctx->event_list, event_entry) 13605 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13606 raw_spin_unlock(&ctx->lock); 13607 } 13608 13609 static void perf_event_exit_cpu_context(int cpu) 13610 { 13611 struct perf_cpu_context *cpuctx; 13612 struct perf_event_context *ctx; 13613 13614 // XXX simplify cpuctx->online 13615 mutex_lock(&pmus_lock); 13616 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13617 ctx = &cpuctx->ctx; 13618 13619 mutex_lock(&ctx->mutex); 13620 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13621 cpuctx->online = 0; 13622 mutex_unlock(&ctx->mutex); 13623 cpumask_clear_cpu(cpu, perf_online_mask); 13624 mutex_unlock(&pmus_lock); 13625 } 13626 #else 13627 13628 static void perf_event_exit_cpu_context(int cpu) { } 13629 13630 #endif 13631 13632 int perf_event_init_cpu(unsigned int cpu) 13633 { 13634 struct perf_cpu_context *cpuctx; 13635 struct perf_event_context *ctx; 13636 13637 perf_swevent_init_cpu(cpu); 13638 13639 mutex_lock(&pmus_lock); 13640 cpumask_set_cpu(cpu, perf_online_mask); 13641 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13642 ctx = &cpuctx->ctx; 13643 13644 mutex_lock(&ctx->mutex); 13645 cpuctx->online = 1; 13646 mutex_unlock(&ctx->mutex); 13647 mutex_unlock(&pmus_lock); 13648 13649 return 0; 13650 } 13651 13652 int perf_event_exit_cpu(unsigned int cpu) 13653 { 13654 perf_event_exit_cpu_context(cpu); 13655 return 0; 13656 } 13657 13658 static int 13659 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13660 { 13661 int cpu; 13662 13663 for_each_online_cpu(cpu) 13664 perf_event_exit_cpu(cpu); 13665 13666 return NOTIFY_OK; 13667 } 13668 13669 /* 13670 * Run the perf reboot notifier at the very last possible moment so that 13671 * the generic watchdog code runs as long as possible. 13672 */ 13673 static struct notifier_block perf_reboot_notifier = { 13674 .notifier_call = perf_reboot, 13675 .priority = INT_MIN, 13676 }; 13677 13678 void __init perf_event_init(void) 13679 { 13680 int ret; 13681 13682 idr_init(&pmu_idr); 13683 13684 perf_event_init_all_cpus(); 13685 init_srcu_struct(&pmus_srcu); 13686 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13687 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13688 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13689 perf_tp_register(); 13690 perf_event_init_cpu(smp_processor_id()); 13691 register_reboot_notifier(&perf_reboot_notifier); 13692 13693 ret = init_hw_breakpoint(); 13694 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13695 13696 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13697 13698 /* 13699 * Build time assertion that we keep the data_head at the intended 13700 * location. IOW, validation we got the __reserved[] size right. 13701 */ 13702 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13703 != 1024); 13704 } 13705 13706 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13707 char *page) 13708 { 13709 struct perf_pmu_events_attr *pmu_attr = 13710 container_of(attr, struct perf_pmu_events_attr, attr); 13711 13712 if (pmu_attr->event_str) 13713 return sprintf(page, "%s\n", pmu_attr->event_str); 13714 13715 return 0; 13716 } 13717 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13718 13719 static int __init perf_event_sysfs_init(void) 13720 { 13721 struct pmu *pmu; 13722 int ret; 13723 13724 mutex_lock(&pmus_lock); 13725 13726 ret = bus_register(&pmu_bus); 13727 if (ret) 13728 goto unlock; 13729 13730 list_for_each_entry(pmu, &pmus, entry) { 13731 if (pmu->dev) 13732 continue; 13733 13734 ret = pmu_dev_alloc(pmu); 13735 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13736 } 13737 pmu_bus_running = 1; 13738 ret = 0; 13739 13740 unlock: 13741 mutex_unlock(&pmus_lock); 13742 13743 return ret; 13744 } 13745 device_initcall(perf_event_sysfs_init); 13746 13747 #ifdef CONFIG_CGROUP_PERF 13748 static struct cgroup_subsys_state * 13749 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13750 { 13751 struct perf_cgroup *jc; 13752 13753 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13754 if (!jc) 13755 return ERR_PTR(-ENOMEM); 13756 13757 jc->info = alloc_percpu(struct perf_cgroup_info); 13758 if (!jc->info) { 13759 kfree(jc); 13760 return ERR_PTR(-ENOMEM); 13761 } 13762 13763 return &jc->css; 13764 } 13765 13766 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13767 { 13768 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13769 13770 free_percpu(jc->info); 13771 kfree(jc); 13772 } 13773 13774 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13775 { 13776 perf_event_cgroup(css->cgroup); 13777 return 0; 13778 } 13779 13780 static int __perf_cgroup_move(void *info) 13781 { 13782 struct task_struct *task = info; 13783 13784 preempt_disable(); 13785 perf_cgroup_switch(task); 13786 preempt_enable(); 13787 13788 return 0; 13789 } 13790 13791 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13792 { 13793 struct task_struct *task; 13794 struct cgroup_subsys_state *css; 13795 13796 cgroup_taskset_for_each(task, css, tset) 13797 task_function_call(task, __perf_cgroup_move, task); 13798 } 13799 13800 struct cgroup_subsys perf_event_cgrp_subsys = { 13801 .css_alloc = perf_cgroup_css_alloc, 13802 .css_free = perf_cgroup_css_free, 13803 .css_online = perf_cgroup_css_online, 13804 .attach = perf_cgroup_attach, 13805 /* 13806 * Implicitly enable on dfl hierarchy so that perf events can 13807 * always be filtered by cgroup2 path as long as perf_event 13808 * controller is not mounted on a legacy hierarchy. 13809 */ 13810 .implicit_on_dfl = true, 13811 .threaded = true, 13812 }; 13813 #endif /* CONFIG_CGROUP_PERF */ 13814 13815 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13816