xref: /openbmc/linux/kernel/events/core.c (revision 1830dad34c070161fda2ff1db77b39ffa78aa380)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	for_each_sibling_event(sibling, leader)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp = cpuctx->cgrp;
728 	struct cgroup_subsys_state *css;
729 
730 	if (cgrp) {
731 		for (css = &cgrp->css; css; css = css->parent) {
732 			cgrp = container_of(css, struct perf_cgroup, css);
733 			__update_cgrp_time(cgrp);
734 		}
735 	}
736 }
737 
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 	struct perf_cgroup *cgrp;
741 
742 	/*
743 	 * ensure we access cgroup data only when needed and
744 	 * when we know the cgroup is pinned (css_get)
745 	 */
746 	if (!is_cgroup_event(event))
747 		return;
748 
749 	cgrp = perf_cgroup_from_task(current, event->ctx);
750 	/*
751 	 * Do not update time when cgroup is not active
752 	 */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 		__update_cgrp_time(event->cgrp);
755 }
756 
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 			  struct perf_event_context *ctx)
760 {
761 	struct perf_cgroup *cgrp;
762 	struct perf_cgroup_info *info;
763 	struct cgroup_subsys_state *css;
764 
765 	/*
766 	 * ctx->lock held by caller
767 	 * ensure we do not access cgroup data
768 	 * unless we have the cgroup pinned (css_get)
769 	 */
770 	if (!task || !ctx->nr_cgroups)
771 		return;
772 
773 	cgrp = perf_cgroup_from_task(task, ctx);
774 
775 	for (css = &cgrp->css; css; css = css->parent) {
776 		cgrp = container_of(css, struct perf_cgroup, css);
777 		info = this_cpu_ptr(cgrp->info);
778 		info->timestamp = ctx->timestamp;
779 	}
780 }
781 
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783 
784 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
786 
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct list_head *list;
797 	unsigned long flags;
798 
799 	/*
800 	 * Disable interrupts and preemption to avoid this CPU's
801 	 * cgrp_cpuctx_entry to change under us.
802 	 */
803 	local_irq_save(flags);
804 
805 	list = this_cpu_ptr(&cgrp_cpuctx_list);
806 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808 
809 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 		perf_pmu_disable(cpuctx->ctx.pmu);
811 
812 		if (mode & PERF_CGROUP_SWOUT) {
813 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 			/*
815 			 * must not be done before ctxswout due
816 			 * to event_filter_match() in event_sched_out()
817 			 */
818 			cpuctx->cgrp = NULL;
819 		}
820 
821 		if (mode & PERF_CGROUP_SWIN) {
822 			WARN_ON_ONCE(cpuctx->cgrp);
823 			/*
824 			 * set cgrp before ctxsw in to allow
825 			 * event_filter_match() to not have to pass
826 			 * task around
827 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 			 * because cgorup events are only per-cpu
829 			 */
830 			cpuctx->cgrp = perf_cgroup_from_task(task,
831 							     &cpuctx->ctx);
832 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 		}
834 		perf_pmu_enable(cpuctx->ctx.pmu);
835 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 	}
837 
838 	local_irq_restore(flags);
839 }
840 
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 					 struct task_struct *next)
843 {
844 	struct perf_cgroup *cgrp1;
845 	struct perf_cgroup *cgrp2 = NULL;
846 
847 	rcu_read_lock();
848 	/*
849 	 * we come here when we know perf_cgroup_events > 0
850 	 * we do not need to pass the ctx here because we know
851 	 * we are holding the rcu lock
852 	 */
853 	cgrp1 = perf_cgroup_from_task(task, NULL);
854 	cgrp2 = perf_cgroup_from_task(next, NULL);
855 
856 	/*
857 	 * only schedule out current cgroup events if we know
858 	 * that we are switching to a different cgroup. Otherwise,
859 	 * do no touch the cgroup events.
860 	 */
861 	if (cgrp1 != cgrp2)
862 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 
864 	rcu_read_unlock();
865 }
866 
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 					struct task_struct *task)
869 {
870 	struct perf_cgroup *cgrp1;
871 	struct perf_cgroup *cgrp2 = NULL;
872 
873 	rcu_read_lock();
874 	/*
875 	 * we come here when we know perf_cgroup_events > 0
876 	 * we do not need to pass the ctx here because we know
877 	 * we are holding the rcu lock
878 	 */
879 	cgrp1 = perf_cgroup_from_task(task, NULL);
880 	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 
882 	/*
883 	 * only need to schedule in cgroup events if we are changing
884 	 * cgroup during ctxsw. Cgroup events were not scheduled
885 	 * out of ctxsw out if that was not the case.
886 	 */
887 	if (cgrp1 != cgrp2)
888 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 
890 	rcu_read_unlock();
891 }
892 
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 				      struct perf_event_attr *attr,
895 				      struct perf_event *group_leader)
896 {
897 	struct perf_cgroup *cgrp;
898 	struct cgroup_subsys_state *css;
899 	struct fd f = fdget(fd);
900 	int ret = 0;
901 
902 	if (!f.file)
903 		return -EBADF;
904 
905 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 					 &perf_event_cgrp_subsys);
907 	if (IS_ERR(css)) {
908 		ret = PTR_ERR(css);
909 		goto out;
910 	}
911 
912 	cgrp = container_of(css, struct perf_cgroup, css);
913 	event->cgrp = cgrp;
914 
915 	/*
916 	 * all events in a group must monitor
917 	 * the same cgroup because a task belongs
918 	 * to only one perf cgroup at a time
919 	 */
920 	if (group_leader && group_leader->cgrp != cgrp) {
921 		perf_detach_cgroup(event);
922 		ret = -EINVAL;
923 	}
924 out:
925 	fdput(f);
926 	return ret;
927 }
928 
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 	struct perf_cgroup_info *t;
933 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 	event->shadow_ctx_time = now - t->timestamp;
935 }
936 
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 			 struct perf_event_context *ctx, bool add)
944 {
945 	struct perf_cpu_context *cpuctx;
946 	struct list_head *cpuctx_entry;
947 
948 	if (!is_cgroup_event(event))
949 		return;
950 
951 	/*
952 	 * Because cgroup events are always per-cpu events,
953 	 * this will always be called from the right CPU.
954 	 */
955 	cpuctx = __get_cpu_context(ctx);
956 
957 	/*
958 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 	 * matching the event's cgroup, we must do this for every new event,
960 	 * because if the first would mismatch, the second would not try again
961 	 * and we would leave cpuctx->cgrp unset.
962 	 */
963 	if (add && !cpuctx->cgrp) {
964 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965 
966 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 			cpuctx->cgrp = cgrp;
968 	}
969 
970 	if (add && ctx->nr_cgroups++)
971 		return;
972 	else if (!add && --ctx->nr_cgroups)
973 		return;
974 
975 	/* no cgroup running */
976 	if (!add)
977 		cpuctx->cgrp = NULL;
978 
979 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 	if (add)
981 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 	else
983 		list_del(cpuctx_entry);
984 }
985 
986 #else /* !CONFIG_CGROUP_PERF */
987 
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991 	return true;
992 }
993 
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996 
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999 	return 0;
1000 }
1001 
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005 
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009 
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 					 struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 					struct task_struct *task)
1017 {
1018 }
1019 
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 				      struct perf_event_attr *attr,
1022 				      struct perf_event *group_leader)
1023 {
1024 	return -EINVAL;
1025 }
1026 
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 			  struct perf_event_context *ctx)
1030 {
1031 }
1032 
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037 
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042 
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 			 struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053 
1054 #endif
1055 
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 	bool rotations;
1068 
1069 	lockdep_assert_irqs_disabled();
1070 
1071 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 	rotations = perf_rotate_context(cpuctx);
1073 
1074 	raw_spin_lock(&cpuctx->hrtimer_lock);
1075 	if (rotations)
1076 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 	else
1078 		cpuctx->hrtimer_active = 0;
1079 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080 
1081 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083 
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086 	struct hrtimer *timer = &cpuctx->hrtimer;
1087 	struct pmu *pmu = cpuctx->ctx.pmu;
1088 	u64 interval;
1089 
1090 	/* no multiplexing needed for SW PMU */
1091 	if (pmu->task_ctx_nr == perf_sw_context)
1092 		return;
1093 
1094 	/*
1095 	 * check default is sane, if not set then force to
1096 	 * default interval (1/tick)
1097 	 */
1098 	interval = pmu->hrtimer_interval_ms;
1099 	if (interval < 1)
1100 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101 
1102 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103 
1104 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 	timer->function = perf_mux_hrtimer_handler;
1107 }
1108 
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111 	struct hrtimer *timer = &cpuctx->hrtimer;
1112 	struct pmu *pmu = cpuctx->ctx.pmu;
1113 	unsigned long flags;
1114 
1115 	/* not for SW PMU */
1116 	if (pmu->task_ctx_nr == perf_sw_context)
1117 		return 0;
1118 
1119 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 	if (!cpuctx->hrtimer_active) {
1121 		cpuctx->hrtimer_active = 1;
1122 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 	}
1125 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 	if (!(*count)++)
1134 		pmu->pmu_disable(pmu);
1135 }
1136 
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 	if (!--(*count))
1141 		pmu->pmu_enable(pmu);
1142 }
1143 
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155 
1156 	lockdep_assert_irqs_disabled();
1157 
1158 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1159 
1160 	list_add(&ctx->active_ctx_list, head);
1161 }
1162 
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	WARN_ON(list_empty(&ctx->active_ctx_list));
1168 
1169 	list_del_init(&ctx->active_ctx_list);
1170 }
1171 
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176 
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179 	struct perf_event_context *ctx;
1180 
1181 	ctx = container_of(head, struct perf_event_context, rcu_head);
1182 	kfree(ctx->task_ctx_data);
1183 	kfree(ctx);
1184 }
1185 
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188 	if (atomic_dec_and_test(&ctx->refcount)) {
1189 		if (ctx->parent_ctx)
1190 			put_ctx(ctx->parent_ctx);
1191 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 			put_task_struct(ctx->task);
1193 		call_rcu(&ctx->rcu_head, free_ctx);
1194 	}
1195 }
1196 
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()	[ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()			[ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()		[ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event()	[ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *	task_struct::perf_event_mutex
1252  *	  perf_event_context::mutex
1253  *	    perf_event::child_mutex;
1254  *	      perf_event_context::lock
1255  *	    perf_event::mmap_mutex
1256  *	    mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *	  cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265 	struct perf_event_context *ctx;
1266 
1267 again:
1268 	rcu_read_lock();
1269 	ctx = READ_ONCE(event->ctx);
1270 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 		rcu_read_unlock();
1272 		goto again;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	mutex_lock_nested(&ctx->mutex, nesting);
1277 	if (event->ctx != ctx) {
1278 		mutex_unlock(&ctx->mutex);
1279 		put_ctx(ctx);
1280 		goto again;
1281 	}
1282 
1283 	return ctx;
1284 }
1285 
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289 	return perf_event_ctx_lock_nested(event, 0);
1290 }
1291 
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 				  struct perf_event_context *ctx)
1294 {
1295 	mutex_unlock(&ctx->mutex);
1296 	put_ctx(ctx);
1297 }
1298 
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308 
1309 	lockdep_assert_held(&ctx->lock);
1310 
1311 	if (parent_ctx)
1312 		ctx->parent_ctx = NULL;
1313 	ctx->generation++;
1314 
1315 	return parent_ctx;
1316 }
1317 
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 				enum pid_type type)
1320 {
1321 	u32 nr;
1322 	/*
1323 	 * only top level events have the pid namespace they were created in
1324 	 */
1325 	if (event->parent)
1326 		event = event->parent;
1327 
1328 	nr = __task_pid_nr_ns(p, type, event->ns);
1329 	/* avoid -1 if it is idle thread or runs in another ns */
1330 	if (!nr && !pid_alive(p))
1331 		nr = -1;
1332 	return nr;
1333 }
1334 
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339 
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344 
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351 	u64 id = event->id;
1352 
1353 	if (event->parent)
1354 		id = event->parent->id;
1355 
1356 	return id;
1357 }
1358 
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 retry:
1371 	/*
1372 	 * One of the few rules of preemptible RCU is that one cannot do
1373 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 	 * part of the read side critical section was irqs-enabled -- see
1375 	 * rcu_read_unlock_special().
1376 	 *
1377 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 	 * side critical section has interrupts disabled.
1379 	 */
1380 	local_irq_save(*flags);
1381 	rcu_read_lock();
1382 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 	if (ctx) {
1384 		/*
1385 		 * If this context is a clone of another, it might
1386 		 * get swapped for another underneath us by
1387 		 * perf_event_task_sched_out, though the
1388 		 * rcu_read_lock() protects us from any context
1389 		 * getting freed.  Lock the context and check if it
1390 		 * got swapped before we could get the lock, and retry
1391 		 * if so.  If we locked the right context, then it
1392 		 * can't get swapped on us any more.
1393 		 */
1394 		raw_spin_lock(&ctx->lock);
1395 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 			raw_spin_unlock(&ctx->lock);
1397 			rcu_read_unlock();
1398 			local_irq_restore(*flags);
1399 			goto retry;
1400 		}
1401 
1402 		if (ctx->task == TASK_TOMBSTONE ||
1403 		    !atomic_inc_not_zero(&ctx->refcount)) {
1404 			raw_spin_unlock(&ctx->lock);
1405 			ctx = NULL;
1406 		} else {
1407 			WARN_ON_ONCE(ctx->task != task);
1408 		}
1409 	}
1410 	rcu_read_unlock();
1411 	if (!ctx)
1412 		local_irq_restore(*flags);
1413 	return ctx;
1414 }
1415 
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424 	struct perf_event_context *ctx;
1425 	unsigned long flags;
1426 
1427 	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 	if (ctx) {
1429 		++ctx->pin_count;
1430 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 	}
1432 	return ctx;
1433 }
1434 
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437 	unsigned long flags;
1438 
1439 	raw_spin_lock_irqsave(&ctx->lock, flags);
1440 	--ctx->pin_count;
1441 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443 
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449 	u64 now = perf_clock();
1450 
1451 	ctx->time += now - ctx->timestamp;
1452 	ctx->timestamp = now;
1453 }
1454 
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457 	struct perf_event_context *ctx = event->ctx;
1458 
1459 	if (is_cgroup_event(event))
1460 		return perf_cgroup_event_time(event);
1461 
1462 	return ctx ? ctx->time : 0;
1463 }
1464 
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467 	struct perf_event_context *ctx = event->ctx;
1468 	enum event_type_t event_type;
1469 
1470 	lockdep_assert_held(&ctx->lock);
1471 
1472 	/*
1473 	 * It's 'group type', really, because if our group leader is
1474 	 * pinned, so are we.
1475 	 */
1476 	if (event->group_leader != event)
1477 		event = event->group_leader;
1478 
1479 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 	if (!ctx->task)
1481 		event_type |= EVENT_CPU;
1482 
1483 	return event_type;
1484 }
1485 
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491 	RB_CLEAR_NODE(&event->group_node);
1492 	event->group_index = 0;
1493 }
1494 
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502 	if (event->attr.pinned)
1503 		return &ctx->pinned_groups;
1504 	else
1505 		return &ctx->flexible_groups;
1506 }
1507 
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513 	groups->tree = RB_ROOT;
1514 	groups->index = 0;
1515 }
1516 
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526 	if (left->cpu < right->cpu)
1527 		return true;
1528 	if (left->cpu > right->cpu)
1529 		return false;
1530 
1531 	if (left->group_index < right->group_index)
1532 		return true;
1533 	if (left->group_index > right->group_index)
1534 		return false;
1535 
1536 	return false;
1537 }
1538 
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 			 struct perf_event *event)
1547 {
1548 	struct perf_event *node_event;
1549 	struct rb_node *parent;
1550 	struct rb_node **node;
1551 
1552 	event->group_index = ++groups->index;
1553 
1554 	node = &groups->tree.rb_node;
1555 	parent = *node;
1556 
1557 	while (*node) {
1558 		parent = *node;
1559 		node_event = container_of(*node, struct perf_event, group_node);
1560 
1561 		if (perf_event_groups_less(event, node_event))
1562 			node = &parent->rb_left;
1563 		else
1564 			node = &parent->rb_right;
1565 	}
1566 
1567 	rb_link_node(&event->group_node, parent, node);
1568 	rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570 
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577 	struct perf_event_groups *groups;
1578 
1579 	groups = get_event_groups(event, ctx);
1580 	perf_event_groups_insert(groups, event);
1581 }
1582 
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 			 struct perf_event *event)
1589 {
1590 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 		     RB_EMPTY_ROOT(&groups->tree));
1592 
1593 	rb_erase(&event->group_node, &groups->tree);
1594 	init_event_group(event);
1595 }
1596 
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603 	struct perf_event_groups *groups;
1604 
1605 	groups = get_event_groups(event, ctx);
1606 	perf_event_groups_delete(groups, event);
1607 }
1608 
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615 	struct perf_event *node_event = NULL, *match = NULL;
1616 	struct rb_node *node = groups->tree.rb_node;
1617 
1618 	while (node) {
1619 		node_event = container_of(node, struct perf_event, group_node);
1620 
1621 		if (cpu < node_event->cpu) {
1622 			node = node->rb_left;
1623 		} else if (cpu > node_event->cpu) {
1624 			node = node->rb_right;
1625 		} else {
1626 			match = node_event;
1627 			node = node->rb_left;
1628 		}
1629 	}
1630 
1631 	return match;
1632 }
1633 
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640 	struct perf_event *next;
1641 
1642 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 	if (next && next->cpu == event->cpu)
1644 		return next;
1645 
1646 	return NULL;
1647 }
1648 
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)			\
1653 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1654 				typeof(*event), group_node); event;	\
1655 		event = rb_entry_safe(rb_next(&event->group_node),	\
1656 				typeof(*event), group_node))
1657 
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 	event->attach_state |= PERF_ATTACH_CONTEXT;
1669 
1670 	event->tstamp = perf_event_time(event);
1671 
1672 	/*
1673 	 * If we're a stand alone event or group leader, we go to the context
1674 	 * list, group events are kept attached to the group so that
1675 	 * perf_group_detach can, at all times, locate all siblings.
1676 	 */
1677 	if (event->group_leader == event) {
1678 		event->group_caps = event->event_caps;
1679 		add_event_to_groups(event, ctx);
1680 	}
1681 
1682 	list_update_cgroup_event(event, ctx, true);
1683 
1684 	list_add_rcu(&event->event_entry, &ctx->event_list);
1685 	ctx->nr_events++;
1686 	if (event->attr.inherit_stat)
1687 		ctx->nr_stat++;
1688 
1689 	ctx->generation++;
1690 }
1691 
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 					      PERF_EVENT_STATE_INACTIVE;
1699 }
1700 
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703 	int entry = sizeof(u64); /* value */
1704 	int size = 0;
1705 	int nr = 1;
1706 
1707 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 		size += sizeof(u64);
1709 
1710 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 		size += sizeof(u64);
1712 
1713 	if (event->attr.read_format & PERF_FORMAT_ID)
1714 		entry += sizeof(u64);
1715 
1716 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 		nr += nr_siblings;
1718 		size += sizeof(u64);
1719 	}
1720 
1721 	size += entry * nr;
1722 	event->read_size = size;
1723 }
1724 
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727 	struct perf_sample_data *data;
1728 	u16 size = 0;
1729 
1730 	if (sample_type & PERF_SAMPLE_IP)
1731 		size += sizeof(data->ip);
1732 
1733 	if (sample_type & PERF_SAMPLE_ADDR)
1734 		size += sizeof(data->addr);
1735 
1736 	if (sample_type & PERF_SAMPLE_PERIOD)
1737 		size += sizeof(data->period);
1738 
1739 	if (sample_type & PERF_SAMPLE_WEIGHT)
1740 		size += sizeof(data->weight);
1741 
1742 	if (sample_type & PERF_SAMPLE_READ)
1743 		size += event->read_size;
1744 
1745 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 		size += sizeof(data->data_src.val);
1747 
1748 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 		size += sizeof(data->txn);
1750 
1751 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 		size += sizeof(data->phys_addr);
1753 
1754 	event->header_size = size;
1755 }
1756 
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763 	__perf_event_read_size(event,
1764 			       event->group_leader->nr_siblings);
1765 	__perf_event_header_size(event, event->attr.sample_type);
1766 }
1767 
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770 	struct perf_sample_data *data;
1771 	u64 sample_type = event->attr.sample_type;
1772 	u16 size = 0;
1773 
1774 	if (sample_type & PERF_SAMPLE_TID)
1775 		size += sizeof(data->tid_entry);
1776 
1777 	if (sample_type & PERF_SAMPLE_TIME)
1778 		size += sizeof(data->time);
1779 
1780 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 		size += sizeof(data->id);
1782 
1783 	if (sample_type & PERF_SAMPLE_ID)
1784 		size += sizeof(data->id);
1785 
1786 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 		size += sizeof(data->stream_id);
1788 
1789 	if (sample_type & PERF_SAMPLE_CPU)
1790 		size += sizeof(data->cpu_entry);
1791 
1792 	event->id_header_size = size;
1793 }
1794 
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797 	/*
1798 	 * The values computed here will be over-written when we actually
1799 	 * attach the event.
1800 	 */
1801 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 	perf_event__id_header_size(event);
1804 
1805 	/*
1806 	 * Sum the lot; should not exceed the 64k limit we have on records.
1807 	 * Conservative limit to allow for callchains and other variable fields.
1808 	 */
1809 	if (event->read_size + event->header_size +
1810 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 		return false;
1812 
1813 	return true;
1814 }
1815 
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818 	struct perf_event *group_leader = event->group_leader, *pos;
1819 
1820 	lockdep_assert_held(&event->ctx->lock);
1821 
1822 	/*
1823 	 * We can have double attach due to group movement in perf_event_open.
1824 	 */
1825 	if (event->attach_state & PERF_ATTACH_GROUP)
1826 		return;
1827 
1828 	event->attach_state |= PERF_ATTACH_GROUP;
1829 
1830 	if (group_leader == event)
1831 		return;
1832 
1833 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834 
1835 	group_leader->group_caps &= event->event_caps;
1836 
1837 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 	group_leader->nr_siblings++;
1839 
1840 	perf_event__header_size(group_leader);
1841 
1842 	for_each_sibling_event(pos, group_leader)
1843 		perf_event__header_size(pos);
1844 }
1845 
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853 	WARN_ON_ONCE(event->ctx != ctx);
1854 	lockdep_assert_held(&ctx->lock);
1855 
1856 	/*
1857 	 * We can have double detach due to exit/hot-unplug + close.
1858 	 */
1859 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 		return;
1861 
1862 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863 
1864 	list_update_cgroup_event(event, ctx, false);
1865 
1866 	ctx->nr_events--;
1867 	if (event->attr.inherit_stat)
1868 		ctx->nr_stat--;
1869 
1870 	list_del_rcu(&event->event_entry);
1871 
1872 	if (event->group_leader == event)
1873 		del_event_from_groups(event, ctx);
1874 
1875 	/*
1876 	 * If event was in error state, then keep it
1877 	 * that way, otherwise bogus counts will be
1878 	 * returned on read(). The only way to get out
1879 	 * of error state is by explicit re-enabling
1880 	 * of the event
1881 	 */
1882 	if (event->state > PERF_EVENT_STATE_OFF)
1883 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 
1885 	ctx->generation++;
1886 }
1887 
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890 	struct perf_event *sibling, *tmp;
1891 	struct perf_event_context *ctx = event->ctx;
1892 
1893 	lockdep_assert_held(&ctx->lock);
1894 
1895 	/*
1896 	 * We can have double detach due to exit/hot-unplug + close.
1897 	 */
1898 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 		return;
1900 
1901 	event->attach_state &= ~PERF_ATTACH_GROUP;
1902 
1903 	/*
1904 	 * If this is a sibling, remove it from its group.
1905 	 */
1906 	if (event->group_leader != event) {
1907 		list_del_init(&event->sibling_list);
1908 		event->group_leader->nr_siblings--;
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * If this was a group event with sibling events then
1914 	 * upgrade the siblings to singleton events by adding them
1915 	 * to whatever list we are on.
1916 	 */
1917 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918 
1919 		sibling->group_leader = sibling;
1920 		list_del_init(&sibling->sibling_list);
1921 
1922 		/* Inherit group flags from the previous leader */
1923 		sibling->group_caps = event->group_caps;
1924 
1925 		if (!RB_EMPTY_NODE(&event->group_node)) {
1926 			add_event_to_groups(sibling, event->ctx);
1927 
1928 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 				struct list_head *list = sibling->attr.pinned ?
1930 					&ctx->pinned_active : &ctx->flexible_active;
1931 
1932 				list_add_tail(&sibling->active_list, list);
1933 			}
1934 		}
1935 
1936 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937 	}
1938 
1939 out:
1940 	perf_event__header_size(event->group_leader);
1941 
1942 	for_each_sibling_event(tmp, event->group_leader)
1943 		perf_event__header_size(tmp);
1944 }
1945 
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948 	return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950 
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953 	struct pmu *pmu = event->pmu;
1954 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956 
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965 	struct perf_event *sibling;
1966 
1967 	if (!__pmu_filter_match(event))
1968 		return 0;
1969 
1970 	for_each_sibling_event(sibling, event) {
1971 		if (!__pmu_filter_match(sibling))
1972 			return 0;
1973 	}
1974 
1975 	return 1;
1976 }
1977 
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984 
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 		  struct perf_cpu_context *cpuctx,
1988 		  struct perf_event_context *ctx)
1989 {
1990 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991 
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 		return;
1997 
1998 	/*
1999 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 	 * we can schedule events _OUT_ individually through things like
2001 	 * __perf_remove_from_context().
2002 	 */
2003 	list_del_init(&event->active_list);
2004 
2005 	perf_pmu_disable(event->pmu);
2006 
2007 	event->pmu->del(event, 0);
2008 	event->oncpu = -1;
2009 
2010 	if (event->pending_disable) {
2011 		event->pending_disable = 0;
2012 		state = PERF_EVENT_STATE_OFF;
2013 	}
2014 	perf_event_set_state(event, state);
2015 
2016 	if (!is_software_event(event))
2017 		cpuctx->active_oncpu--;
2018 	if (!--ctx->nr_active)
2019 		perf_event_ctx_deactivate(ctx);
2020 	if (event->attr.freq && event->attr.sample_freq)
2021 		ctx->nr_freq--;
2022 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 		cpuctx->exclusive = 0;
2024 
2025 	perf_pmu_enable(event->pmu);
2026 }
2027 
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 		struct perf_cpu_context *cpuctx,
2031 		struct perf_event_context *ctx)
2032 {
2033 	struct perf_event *event;
2034 
2035 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 		return;
2037 
2038 	perf_pmu_disable(ctx->pmu);
2039 
2040 	event_sched_out(group_event, cpuctx, ctx);
2041 
2042 	/*
2043 	 * Schedule out siblings (if any):
2044 	 */
2045 	for_each_sibling_event(event, group_event)
2046 		event_sched_out(event, cpuctx, ctx);
2047 
2048 	perf_pmu_enable(ctx->pmu);
2049 
2050 	if (group_event->attr.exclusive)
2051 		cpuctx->exclusive = 0;
2052 }
2053 
2054 #define DETACH_GROUP	0x01UL
2055 
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 			   struct perf_cpu_context *cpuctx,
2065 			   struct perf_event_context *ctx,
2066 			   void *info)
2067 {
2068 	unsigned long flags = (unsigned long)info;
2069 
2070 	if (ctx->is_active & EVENT_TIME) {
2071 		update_context_time(ctx);
2072 		update_cgrp_time_from_cpuctx(cpuctx);
2073 	}
2074 
2075 	event_sched_out(event, cpuctx, ctx);
2076 	if (flags & DETACH_GROUP)
2077 		perf_group_detach(event);
2078 	list_del_event(event, ctx);
2079 
2080 	if (!ctx->nr_events && ctx->is_active) {
2081 		ctx->is_active = 0;
2082 		if (ctx->task) {
2083 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 			cpuctx->task_ctx = NULL;
2085 		}
2086 	}
2087 }
2088 
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101 	struct perf_event_context *ctx = event->ctx;
2102 
2103 	lockdep_assert_held(&ctx->mutex);
2104 
2105 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 
2107 	/*
2108 	 * The above event_function_call() can NO-OP when it hits
2109 	 * TASK_TOMBSTONE. In that case we must already have been detached
2110 	 * from the context (by perf_event_exit_event()) but the grouping
2111 	 * might still be in-tact.
2112 	 */
2113 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 	if ((flags & DETACH_GROUP) &&
2115 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2116 		/*
2117 		 * Since in that case we cannot possibly be scheduled, simply
2118 		 * detach now.
2119 		 */
2120 		raw_spin_lock_irq(&ctx->lock);
2121 		perf_group_detach(event);
2122 		raw_spin_unlock_irq(&ctx->lock);
2123 	}
2124 }
2125 
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130 				 struct perf_cpu_context *cpuctx,
2131 				 struct perf_event_context *ctx,
2132 				 void *info)
2133 {
2134 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 		return;
2136 
2137 	if (ctx->is_active & EVENT_TIME) {
2138 		update_context_time(ctx);
2139 		update_cgrp_time_from_event(event);
2140 	}
2141 
2142 	if (event == event->group_leader)
2143 		group_sched_out(event, cpuctx, ctx);
2144 	else
2145 		event_sched_out(event, cpuctx, ctx);
2146 
2147 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149 
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166 	struct perf_event_context *ctx = event->ctx;
2167 
2168 	raw_spin_lock_irq(&ctx->lock);
2169 	if (event->state <= PERF_EVENT_STATE_OFF) {
2170 		raw_spin_unlock_irq(&ctx->lock);
2171 		return;
2172 	}
2173 	raw_spin_unlock_irq(&ctx->lock);
2174 
2175 	event_function_call(event, __perf_event_disable, NULL);
2176 }
2177 
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180 	event_function_local(event, __perf_event_disable, NULL);
2181 }
2182 
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189 	struct perf_event_context *ctx;
2190 
2191 	ctx = perf_event_ctx_lock(event);
2192 	_perf_event_disable(event);
2193 	perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196 
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199 	event->pending_disable = 1;
2200 	irq_work_queue(&event->pending);
2201 }
2202 
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 				 struct perf_event_context *ctx)
2205 {
2206 	/*
2207 	 * use the correct time source for the time snapshot
2208 	 *
2209 	 * We could get by without this by leveraging the
2210 	 * fact that to get to this function, the caller
2211 	 * has most likely already called update_context_time()
2212 	 * and update_cgrp_time_xx() and thus both timestamp
2213 	 * are identical (or very close). Given that tstamp is,
2214 	 * already adjusted for cgroup, we could say that:
2215 	 *    tstamp - ctx->timestamp
2216 	 * is equivalent to
2217 	 *    tstamp - cgrp->timestamp.
2218 	 *
2219 	 * Then, in perf_output_read(), the calculation would
2220 	 * work with no changes because:
2221 	 * - event is guaranteed scheduled in
2222 	 * - no scheduled out in between
2223 	 * - thus the timestamp would be the same
2224 	 *
2225 	 * But this is a bit hairy.
2226 	 *
2227 	 * So instead, we have an explicit cgroup call to remain
2228 	 * within the time time source all along. We believe it
2229 	 * is cleaner and simpler to understand.
2230 	 */
2231 	if (is_cgroup_event(event))
2232 		perf_cgroup_set_shadow_time(event, event->tstamp);
2233 	else
2234 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236 
2237 #define MAX_INTERRUPTS (~0ULL)
2238 
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241 
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 		 struct perf_cpu_context *cpuctx,
2245 		 struct perf_event_context *ctx)
2246 {
2247 	int ret = 0;
2248 
2249 	lockdep_assert_held(&ctx->lock);
2250 
2251 	if (event->state <= PERF_EVENT_STATE_OFF)
2252 		return 0;
2253 
2254 	WRITE_ONCE(event->oncpu, smp_processor_id());
2255 	/*
2256 	 * Order event::oncpu write to happen before the ACTIVE state is
2257 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 	 * ->oncpu if it sees ACTIVE.
2259 	 */
2260 	smp_wmb();
2261 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262 
2263 	/*
2264 	 * Unthrottle events, since we scheduled we might have missed several
2265 	 * ticks already, also for a heavily scheduling task there is little
2266 	 * guarantee it'll get a tick in a timely manner.
2267 	 */
2268 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 		perf_log_throttle(event, 1);
2270 		event->hw.interrupts = 0;
2271 	}
2272 
2273 	perf_pmu_disable(event->pmu);
2274 
2275 	perf_set_shadow_time(event, ctx);
2276 
2277 	perf_log_itrace_start(event);
2278 
2279 	if (event->pmu->add(event, PERF_EF_START)) {
2280 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 		event->oncpu = -1;
2282 		ret = -EAGAIN;
2283 		goto out;
2284 	}
2285 
2286 	if (!is_software_event(event))
2287 		cpuctx->active_oncpu++;
2288 	if (!ctx->nr_active++)
2289 		perf_event_ctx_activate(ctx);
2290 	if (event->attr.freq && event->attr.sample_freq)
2291 		ctx->nr_freq++;
2292 
2293 	if (event->attr.exclusive)
2294 		cpuctx->exclusive = 1;
2295 
2296 out:
2297 	perf_pmu_enable(event->pmu);
2298 
2299 	return ret;
2300 }
2301 
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 	       struct perf_cpu_context *cpuctx,
2305 	       struct perf_event_context *ctx)
2306 {
2307 	struct perf_event *event, *partial_group = NULL;
2308 	struct pmu *pmu = ctx->pmu;
2309 
2310 	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 		return 0;
2312 
2313 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314 
2315 	if (event_sched_in(group_event, cpuctx, ctx)) {
2316 		pmu->cancel_txn(pmu);
2317 		perf_mux_hrtimer_restart(cpuctx);
2318 		return -EAGAIN;
2319 	}
2320 
2321 	/*
2322 	 * Schedule in siblings as one group (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event) {
2325 		if (event_sched_in(event, cpuctx, ctx)) {
2326 			partial_group = event;
2327 			goto group_error;
2328 		}
2329 	}
2330 
2331 	if (!pmu->commit_txn(pmu))
2332 		return 0;
2333 
2334 group_error:
2335 	/*
2336 	 * Groups can be scheduled in as one unit only, so undo any
2337 	 * partial group before returning:
2338 	 * The events up to the failed event are scheduled out normally.
2339 	 */
2340 	for_each_sibling_event(event, group_event) {
2341 		if (event == partial_group)
2342 			break;
2343 
2344 		event_sched_out(event, cpuctx, ctx);
2345 	}
2346 	event_sched_out(group_event, cpuctx, ctx);
2347 
2348 	pmu->cancel_txn(pmu);
2349 
2350 	perf_mux_hrtimer_restart(cpuctx);
2351 
2352 	return -EAGAIN;
2353 }
2354 
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359 			   struct perf_cpu_context *cpuctx,
2360 			   int can_add_hw)
2361 {
2362 	/*
2363 	 * Groups consisting entirely of software events can always go on.
2364 	 */
2365 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 		return 1;
2367 	/*
2368 	 * If an exclusive group is already on, no other hardware
2369 	 * events can go on.
2370 	 */
2371 	if (cpuctx->exclusive)
2372 		return 0;
2373 	/*
2374 	 * If this group is exclusive and there are already
2375 	 * events on the CPU, it can't go on.
2376 	 */
2377 	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 		return 0;
2379 	/*
2380 	 * Otherwise, try to add it if all previous groups were able
2381 	 * to go on.
2382 	 */
2383 	return can_add_hw;
2384 }
2385 
2386 static void add_event_to_ctx(struct perf_event *event,
2387 			       struct perf_event_context *ctx)
2388 {
2389 	list_add_event(event, ctx);
2390 	perf_group_attach(event);
2391 }
2392 
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 			  struct perf_cpu_context *cpuctx,
2395 			  enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 	     struct perf_cpu_context *cpuctx,
2399 	     enum event_type_t event_type,
2400 	     struct task_struct *task);
2401 
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 			       struct perf_event_context *ctx,
2404 			       enum event_type_t event_type)
2405 {
2406 	if (!cpuctx->task_ctx)
2407 		return;
2408 
2409 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 		return;
2411 
2412 	ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414 
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 				struct perf_event_context *ctx,
2417 				struct task_struct *task)
2418 {
2419 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 	if (ctx)
2421 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426 
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 			struct perf_event_context *task_ctx,
2444 			enum event_type_t event_type)
2445 {
2446 	enum event_type_t ctx_event_type;
2447 	bool cpu_event = !!(event_type & EVENT_CPU);
2448 
2449 	/*
2450 	 * If pinned groups are involved, flexible groups also need to be
2451 	 * scheduled out.
2452 	 */
2453 	if (event_type & EVENT_PINNED)
2454 		event_type |= EVENT_FLEXIBLE;
2455 
2456 	ctx_event_type = event_type & EVENT_ALL;
2457 
2458 	perf_pmu_disable(cpuctx->ctx.pmu);
2459 	if (task_ctx)
2460 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461 
2462 	/*
2463 	 * Decide which cpu ctx groups to schedule out based on the types
2464 	 * of events that caused rescheduling:
2465 	 *  - EVENT_CPU: schedule out corresponding groups;
2466 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 	 *  - otherwise, do nothing more.
2468 	 */
2469 	if (cpu_event)
2470 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 	else if (ctx_event_type & EVENT_PINNED)
2472 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473 
2474 	perf_event_sched_in(cpuctx, task_ctx, current);
2475 	perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477 
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486 	struct perf_event *event = info;
2487 	struct perf_event_context *ctx = event->ctx;
2488 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 	bool reprogram = true;
2491 	int ret = 0;
2492 
2493 	raw_spin_lock(&cpuctx->ctx.lock);
2494 	if (ctx->task) {
2495 		raw_spin_lock(&ctx->lock);
2496 		task_ctx = ctx;
2497 
2498 		reprogram = (ctx->task == current);
2499 
2500 		/*
2501 		 * If the task is running, it must be running on this CPU,
2502 		 * otherwise we cannot reprogram things.
2503 		 *
2504 		 * If its not running, we don't care, ctx->lock will
2505 		 * serialize against it becoming runnable.
2506 		 */
2507 		if (task_curr(ctx->task) && !reprogram) {
2508 			ret = -ESRCH;
2509 			goto unlock;
2510 		}
2511 
2512 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 	} else if (task_ctx) {
2514 		raw_spin_lock(&task_ctx->lock);
2515 	}
2516 
2517 #ifdef CONFIG_CGROUP_PERF
2518 	if (is_cgroup_event(event)) {
2519 		/*
2520 		 * If the current cgroup doesn't match the event's
2521 		 * cgroup, we should not try to schedule it.
2522 		 */
2523 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 					event->cgrp->css.cgroup);
2526 	}
2527 #endif
2528 
2529 	if (reprogram) {
2530 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 		add_event_to_ctx(event, ctx);
2532 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 	} else {
2534 		add_event_to_ctx(event, ctx);
2535 	}
2536 
2537 unlock:
2538 	perf_ctx_unlock(cpuctx, task_ctx);
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 			struct perf_event *event,
2551 			int cpu)
2552 {
2553 	struct task_struct *task = READ_ONCE(ctx->task);
2554 
2555 	lockdep_assert_held(&ctx->mutex);
2556 
2557 	if (event->cpu != -1)
2558 		event->cpu = cpu;
2559 
2560 	/*
2561 	 * Ensures that if we can observe event->ctx, both the event and ctx
2562 	 * will be 'complete'. See perf_iterate_sb_cpu().
2563 	 */
2564 	smp_store_release(&event->ctx, ctx);
2565 
2566 	if (!task) {
2567 		cpu_function_call(cpu, __perf_install_in_context, event);
2568 		return;
2569 	}
2570 
2571 	/*
2572 	 * Should not happen, we validate the ctx is still alive before calling.
2573 	 */
2574 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 		return;
2576 
2577 	/*
2578 	 * Installing events is tricky because we cannot rely on ctx->is_active
2579 	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 	 *
2581 	 * Instead we use task_curr(), which tells us if the task is running.
2582 	 * However, since we use task_curr() outside of rq::lock, we can race
2583 	 * against the actual state. This means the result can be wrong.
2584 	 *
2585 	 * If we get a false positive, we retry, this is harmless.
2586 	 *
2587 	 * If we get a false negative, things are complicated. If we are after
2588 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 	 * value must be correct. If we're before, it doesn't matter since
2590 	 * perf_event_context_sched_in() will program the counter.
2591 	 *
2592 	 * However, this hinges on the remote context switch having observed
2593 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 	 * ctx::lock in perf_event_context_sched_in().
2595 	 *
2596 	 * We do this by task_function_call(), if the IPI fails to hit the task
2597 	 * we know any future context switch of task must see the
2598 	 * perf_event_ctpx[] store.
2599 	 */
2600 
2601 	/*
2602 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 	 * task_cpu() load, such that if the IPI then does not find the task
2604 	 * running, a future context switch of that task must observe the
2605 	 * store.
2606 	 */
2607 	smp_mb();
2608 again:
2609 	if (!task_function_call(task, __perf_install_in_context, event))
2610 		return;
2611 
2612 	raw_spin_lock_irq(&ctx->lock);
2613 	task = ctx->task;
2614 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 		/*
2616 		 * Cannot happen because we already checked above (which also
2617 		 * cannot happen), and we hold ctx->mutex, which serializes us
2618 		 * against perf_event_exit_task_context().
2619 		 */
2620 		raw_spin_unlock_irq(&ctx->lock);
2621 		return;
2622 	}
2623 	/*
2624 	 * If the task is not running, ctx->lock will avoid it becoming so,
2625 	 * thus we can safely install the event.
2626 	 */
2627 	if (task_curr(task)) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		goto again;
2630 	}
2631 	add_event_to_ctx(event, ctx);
2632 	raw_spin_unlock_irq(&ctx->lock);
2633 }
2634 
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639 				struct perf_cpu_context *cpuctx,
2640 				struct perf_event_context *ctx,
2641 				void *info)
2642 {
2643 	struct perf_event *leader = event->group_leader;
2644 	struct perf_event_context *task_ctx;
2645 
2646 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 	    event->state <= PERF_EVENT_STATE_ERROR)
2648 		return;
2649 
2650 	if (ctx->is_active)
2651 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652 
2653 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654 
2655 	if (!ctx->is_active)
2656 		return;
2657 
2658 	if (!event_filter_match(event)) {
2659 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * If the event is in a group and isn't the group leader,
2665 	 * then don't put it on unless the group is on.
2666 	 */
2667 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 		return;
2670 	}
2671 
2672 	task_ctx = cpuctx->task_ctx;
2673 	if (ctx->task)
2674 		WARN_ON_ONCE(task_ctx != ctx);
2675 
2676 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678 
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690 	struct perf_event_context *ctx = event->ctx;
2691 
2692 	raw_spin_lock_irq(&ctx->lock);
2693 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 	    event->state <  PERF_EVENT_STATE_ERROR) {
2695 		raw_spin_unlock_irq(&ctx->lock);
2696 		return;
2697 	}
2698 
2699 	/*
2700 	 * If the event is in error state, clear that first.
2701 	 *
2702 	 * That way, if we see the event in error state below, we know that it
2703 	 * has gone back into error state, as distinct from the task having
2704 	 * been scheduled away before the cross-call arrived.
2705 	 */
2706 	if (event->state == PERF_EVENT_STATE_ERROR)
2707 		event->state = PERF_EVENT_STATE_OFF;
2708 	raw_spin_unlock_irq(&ctx->lock);
2709 
2710 	event_function_call(event, __perf_event_enable, NULL);
2711 }
2712 
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718 	struct perf_event_context *ctx;
2719 
2720 	ctx = perf_event_ctx_lock(event);
2721 	_perf_event_enable(event);
2722 	perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725 
2726 struct stop_event_data {
2727 	struct perf_event	*event;
2728 	unsigned int		restart;
2729 };
2730 
2731 static int __perf_event_stop(void *info)
2732 {
2733 	struct stop_event_data *sd = info;
2734 	struct perf_event *event = sd->event;
2735 
2736 	/* if it's already INACTIVE, do nothing */
2737 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 		return 0;
2739 
2740 	/* matches smp_wmb() in event_sched_in() */
2741 	smp_rmb();
2742 
2743 	/*
2744 	 * There is a window with interrupts enabled before we get here,
2745 	 * so we need to check again lest we try to stop another CPU's event.
2746 	 */
2747 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 		return -EAGAIN;
2749 
2750 	event->pmu->stop(event, PERF_EF_UPDATE);
2751 
2752 	/*
2753 	 * May race with the actual stop (through perf_pmu_output_stop()),
2754 	 * but it is only used for events with AUX ring buffer, and such
2755 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 	 * see comments in perf_aux_output_begin().
2757 	 *
2758 	 * Since this is happening on an event-local CPU, no trace is lost
2759 	 * while restarting.
2760 	 */
2761 	if (sd->restart)
2762 		event->pmu->start(event, 0);
2763 
2764 	return 0;
2765 }
2766 
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769 	struct stop_event_data sd = {
2770 		.event		= event,
2771 		.restart	= restart,
2772 	};
2773 	int ret = 0;
2774 
2775 	do {
2776 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 			return 0;
2778 
2779 		/* matches smp_wmb() in event_sched_in() */
2780 		smp_rmb();
2781 
2782 		/*
2783 		 * We only want to restart ACTIVE events, so if the event goes
2784 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 		 * fall through with ret==-ENXIO.
2786 		 */
2787 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 					__perf_event_stop, &sd);
2789 	} while (ret == -EAGAIN);
2790 
2791 	return ret;
2792 }
2793 
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819 
2820 	if (!has_addr_filter(event))
2821 		return;
2822 
2823 	raw_spin_lock(&ifh->lock);
2824 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 		event->pmu->addr_filters_sync(event);
2826 		event->hw.addr_filters_gen = event->addr_filters_gen;
2827 	}
2828 	raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831 
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834 	/*
2835 	 * not supported on inherited events
2836 	 */
2837 	if (event->attr.inherit || !is_sampling_event(event))
2838 		return -EINVAL;
2839 
2840 	atomic_add(refresh, &event->event_limit);
2841 	_perf_event_enable(event);
2842 
2843 	return 0;
2844 }
2845 
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851 	struct perf_event_context *ctx;
2852 	int ret;
2853 
2854 	ctx = perf_event_ctx_lock(event);
2855 	ret = _perf_event_refresh(event, refresh);
2856 	perf_event_ctx_unlock(event, ctx);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861 
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 					 struct perf_event_attr *attr)
2864 {
2865 	int err;
2866 
2867 	_perf_event_disable(bp);
2868 
2869 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 
2871 	if (!bp->attr.disabled)
2872 		_perf_event_enable(bp);
2873 
2874 	return err;
2875 }
2876 
2877 static int perf_event_modify_attr(struct perf_event *event,
2878 				  struct perf_event_attr *attr)
2879 {
2880 	if (event->attr.type != attr->type)
2881 		return -EINVAL;
2882 
2883 	switch (event->attr.type) {
2884 	case PERF_TYPE_BREAKPOINT:
2885 		return perf_event_modify_breakpoint(event, attr);
2886 	default:
2887 		/* Place holder for future additions. */
2888 		return -EOPNOTSUPP;
2889 	}
2890 }
2891 
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893 			  struct perf_cpu_context *cpuctx,
2894 			  enum event_type_t event_type)
2895 {
2896 	struct perf_event *event, *tmp;
2897 	int is_active = ctx->is_active;
2898 
2899 	lockdep_assert_held(&ctx->lock);
2900 
2901 	if (likely(!ctx->nr_events)) {
2902 		/*
2903 		 * See __perf_remove_from_context().
2904 		 */
2905 		WARN_ON_ONCE(ctx->is_active);
2906 		if (ctx->task)
2907 			WARN_ON_ONCE(cpuctx->task_ctx);
2908 		return;
2909 	}
2910 
2911 	ctx->is_active &= ~event_type;
2912 	if (!(ctx->is_active & EVENT_ALL))
2913 		ctx->is_active = 0;
2914 
2915 	if (ctx->task) {
2916 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917 		if (!ctx->is_active)
2918 			cpuctx->task_ctx = NULL;
2919 	}
2920 
2921 	/*
2922 	 * Always update time if it was set; not only when it changes.
2923 	 * Otherwise we can 'forget' to update time for any but the last
2924 	 * context we sched out. For example:
2925 	 *
2926 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2928 	 *
2929 	 * would only update time for the pinned events.
2930 	 */
2931 	if (is_active & EVENT_TIME) {
2932 		/* update (and stop) ctx time */
2933 		update_context_time(ctx);
2934 		update_cgrp_time_from_cpuctx(cpuctx);
2935 	}
2936 
2937 	is_active ^= ctx->is_active; /* changed bits */
2938 
2939 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940 		return;
2941 
2942 	perf_pmu_disable(ctx->pmu);
2943 	if (is_active & EVENT_PINNED) {
2944 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945 			group_sched_out(event, cpuctx, ctx);
2946 	}
2947 
2948 	if (is_active & EVENT_FLEXIBLE) {
2949 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950 			group_sched_out(event, cpuctx, ctx);
2951 	}
2952 	perf_pmu_enable(ctx->pmu);
2953 }
2954 
2955 /*
2956  * Test whether two contexts are equivalent, i.e. whether they have both been
2957  * cloned from the same version of the same context.
2958  *
2959  * Equivalence is measured using a generation number in the context that is
2960  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961  * and list_del_event().
2962  */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964 			 struct perf_event_context *ctx2)
2965 {
2966 	lockdep_assert_held(&ctx1->lock);
2967 	lockdep_assert_held(&ctx2->lock);
2968 
2969 	/* Pinning disables the swap optimization */
2970 	if (ctx1->pin_count || ctx2->pin_count)
2971 		return 0;
2972 
2973 	/* If ctx1 is the parent of ctx2 */
2974 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975 		return 1;
2976 
2977 	/* If ctx2 is the parent of ctx1 */
2978 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979 		return 1;
2980 
2981 	/*
2982 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2983 	 * hierarchy, see perf_event_init_context().
2984 	 */
2985 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986 			ctx1->parent_gen == ctx2->parent_gen)
2987 		return 1;
2988 
2989 	/* Unmatched */
2990 	return 0;
2991 }
2992 
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994 				     struct perf_event *next_event)
2995 {
2996 	u64 value;
2997 
2998 	if (!event->attr.inherit_stat)
2999 		return;
3000 
3001 	/*
3002 	 * Update the event value, we cannot use perf_event_read()
3003 	 * because we're in the middle of a context switch and have IRQs
3004 	 * disabled, which upsets smp_call_function_single(), however
3005 	 * we know the event must be on the current CPU, therefore we
3006 	 * don't need to use it.
3007 	 */
3008 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3009 		event->pmu->read(event);
3010 
3011 	perf_event_update_time(event);
3012 
3013 	/*
3014 	 * In order to keep per-task stats reliable we need to flip the event
3015 	 * values when we flip the contexts.
3016 	 */
3017 	value = local64_read(&next_event->count);
3018 	value = local64_xchg(&event->count, value);
3019 	local64_set(&next_event->count, value);
3020 
3021 	swap(event->total_time_enabled, next_event->total_time_enabled);
3022 	swap(event->total_time_running, next_event->total_time_running);
3023 
3024 	/*
3025 	 * Since we swizzled the values, update the user visible data too.
3026 	 */
3027 	perf_event_update_userpage(event);
3028 	perf_event_update_userpage(next_event);
3029 }
3030 
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032 				   struct perf_event_context *next_ctx)
3033 {
3034 	struct perf_event *event, *next_event;
3035 
3036 	if (!ctx->nr_stat)
3037 		return;
3038 
3039 	update_context_time(ctx);
3040 
3041 	event = list_first_entry(&ctx->event_list,
3042 				   struct perf_event, event_entry);
3043 
3044 	next_event = list_first_entry(&next_ctx->event_list,
3045 					struct perf_event, event_entry);
3046 
3047 	while (&event->event_entry != &ctx->event_list &&
3048 	       &next_event->event_entry != &next_ctx->event_list) {
3049 
3050 		__perf_event_sync_stat(event, next_event);
3051 
3052 		event = list_next_entry(event, event_entry);
3053 		next_event = list_next_entry(next_event, event_entry);
3054 	}
3055 }
3056 
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058 					 struct task_struct *next)
3059 {
3060 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061 	struct perf_event_context *next_ctx;
3062 	struct perf_event_context *parent, *next_parent;
3063 	struct perf_cpu_context *cpuctx;
3064 	int do_switch = 1;
3065 
3066 	if (likely(!ctx))
3067 		return;
3068 
3069 	cpuctx = __get_cpu_context(ctx);
3070 	if (!cpuctx->task_ctx)
3071 		return;
3072 
3073 	rcu_read_lock();
3074 	next_ctx = next->perf_event_ctxp[ctxn];
3075 	if (!next_ctx)
3076 		goto unlock;
3077 
3078 	parent = rcu_dereference(ctx->parent_ctx);
3079 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3080 
3081 	/* If neither context have a parent context; they cannot be clones. */
3082 	if (!parent && !next_parent)
3083 		goto unlock;
3084 
3085 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086 		/*
3087 		 * Looks like the two contexts are clones, so we might be
3088 		 * able to optimize the context switch.  We lock both
3089 		 * contexts and check that they are clones under the
3090 		 * lock (including re-checking that neither has been
3091 		 * uncloned in the meantime).  It doesn't matter which
3092 		 * order we take the locks because no other cpu could
3093 		 * be trying to lock both of these tasks.
3094 		 */
3095 		raw_spin_lock(&ctx->lock);
3096 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097 		if (context_equiv(ctx, next_ctx)) {
3098 			WRITE_ONCE(ctx->task, next);
3099 			WRITE_ONCE(next_ctx->task, task);
3100 
3101 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102 
3103 			/*
3104 			 * RCU_INIT_POINTER here is safe because we've not
3105 			 * modified the ctx and the above modification of
3106 			 * ctx->task and ctx->task_ctx_data are immaterial
3107 			 * since those values are always verified under
3108 			 * ctx->lock which we're now holding.
3109 			 */
3110 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112 
3113 			do_switch = 0;
3114 
3115 			perf_event_sync_stat(ctx, next_ctx);
3116 		}
3117 		raw_spin_unlock(&next_ctx->lock);
3118 		raw_spin_unlock(&ctx->lock);
3119 	}
3120 unlock:
3121 	rcu_read_unlock();
3122 
3123 	if (do_switch) {
3124 		raw_spin_lock(&ctx->lock);
3125 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126 		raw_spin_unlock(&ctx->lock);
3127 	}
3128 }
3129 
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131 
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135 
3136 	this_cpu_dec(perf_sched_cb_usages);
3137 
3138 	if (!--cpuctx->sched_cb_usage)
3139 		list_del(&cpuctx->sched_cb_entry);
3140 }
3141 
3142 
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146 
3147 	if (!cpuctx->sched_cb_usage++)
3148 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149 
3150 	this_cpu_inc(perf_sched_cb_usages);
3151 }
3152 
3153 /*
3154  * This function provides the context switch callback to the lower code
3155  * layer. It is invoked ONLY when the context switch callback is enabled.
3156  *
3157  * This callback is relevant even to per-cpu events; for example multi event
3158  * PEBS requires this to provide PID/TID information. This requires we flush
3159  * all queued PEBS records before we context switch to a new task.
3160  */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162 				struct task_struct *next,
3163 				bool sched_in)
3164 {
3165 	struct perf_cpu_context *cpuctx;
3166 	struct pmu *pmu;
3167 
3168 	if (prev == next)
3169 		return;
3170 
3171 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173 
3174 		if (WARN_ON_ONCE(!pmu->sched_task))
3175 			continue;
3176 
3177 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178 		perf_pmu_disable(pmu);
3179 
3180 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3181 
3182 		perf_pmu_enable(pmu);
3183 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184 	}
3185 }
3186 
3187 static void perf_event_switch(struct task_struct *task,
3188 			      struct task_struct *next_prev, bool sched_in);
3189 
3190 #define for_each_task_context_nr(ctxn)					\
3191 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192 
3193 /*
3194  * Called from scheduler to remove the events of the current task,
3195  * with interrupts disabled.
3196  *
3197  * We stop each event and update the event value in event->count.
3198  *
3199  * This does not protect us against NMI, but disable()
3200  * sets the disabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * not restart the event.
3203  */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205 				 struct task_struct *next)
3206 {
3207 	int ctxn;
3208 
3209 	if (__this_cpu_read(perf_sched_cb_usages))
3210 		perf_pmu_sched_task(task, next, false);
3211 
3212 	if (atomic_read(&nr_switch_events))
3213 		perf_event_switch(task, next, false);
3214 
3215 	for_each_task_context_nr(ctxn)
3216 		perf_event_context_sched_out(task, ctxn, next);
3217 
3218 	/*
3219 	 * if cgroup events exist on this CPU, then we need
3220 	 * to check if we have to switch out PMU state.
3221 	 * cgroup event are system-wide mode only
3222 	 */
3223 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224 		perf_cgroup_sched_out(task, next);
3225 }
3226 
3227 /*
3228  * Called with IRQs disabled
3229  */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231 			      enum event_type_t event_type)
3232 {
3233 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235 
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237 			      int (*func)(struct perf_event *, void *), void *data)
3238 {
3239 	struct perf_event **evt, *evt1, *evt2;
3240 	int ret;
3241 
3242 	evt1 = perf_event_groups_first(groups, -1);
3243 	evt2 = perf_event_groups_first(groups, cpu);
3244 
3245 	while (evt1 || evt2) {
3246 		if (evt1 && evt2) {
3247 			if (evt1->group_index < evt2->group_index)
3248 				evt = &evt1;
3249 			else
3250 				evt = &evt2;
3251 		} else if (evt1) {
3252 			evt = &evt1;
3253 		} else {
3254 			evt = &evt2;
3255 		}
3256 
3257 		ret = func(*evt, data);
3258 		if (ret)
3259 			return ret;
3260 
3261 		*evt = perf_event_groups_next(*evt);
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 struct sched_in_data {
3268 	struct perf_event_context *ctx;
3269 	struct perf_cpu_context *cpuctx;
3270 	int can_add_hw;
3271 };
3272 
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275 	struct sched_in_data *sid = data;
3276 
3277 	if (event->state <= PERF_EVENT_STATE_OFF)
3278 		return 0;
3279 
3280 	if (!event_filter_match(event))
3281 		return 0;
3282 
3283 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286 	}
3287 
3288 	/*
3289 	 * If this pinned group hasn't been scheduled,
3290 	 * put it in error state.
3291 	 */
3292 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3293 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294 
3295 	return 0;
3296 }
3297 
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300 	struct sched_in_data *sid = data;
3301 
3302 	if (event->state <= PERF_EVENT_STATE_OFF)
3303 		return 0;
3304 
3305 	if (!event_filter_match(event))
3306 		return 0;
3307 
3308 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311 		else
3312 			sid->can_add_hw = 0;
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320 		    struct perf_cpu_context *cpuctx)
3321 {
3322 	struct sched_in_data sid = {
3323 		.ctx = ctx,
3324 		.cpuctx = cpuctx,
3325 		.can_add_hw = 1,
3326 	};
3327 
3328 	visit_groups_merge(&ctx->pinned_groups,
3329 			   smp_processor_id(),
3330 			   pinned_sched_in, &sid);
3331 }
3332 
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335 		      struct perf_cpu_context *cpuctx)
3336 {
3337 	struct sched_in_data sid = {
3338 		.ctx = ctx,
3339 		.cpuctx = cpuctx,
3340 		.can_add_hw = 1,
3341 	};
3342 
3343 	visit_groups_merge(&ctx->flexible_groups,
3344 			   smp_processor_id(),
3345 			   flexible_sched_in, &sid);
3346 }
3347 
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350 	     struct perf_cpu_context *cpuctx,
3351 	     enum event_type_t event_type,
3352 	     struct task_struct *task)
3353 {
3354 	int is_active = ctx->is_active;
3355 	u64 now;
3356 
3357 	lockdep_assert_held(&ctx->lock);
3358 
3359 	if (likely(!ctx->nr_events))
3360 		return;
3361 
3362 	ctx->is_active |= (event_type | EVENT_TIME);
3363 	if (ctx->task) {
3364 		if (!is_active)
3365 			cpuctx->task_ctx = ctx;
3366 		else
3367 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368 	}
3369 
3370 	is_active ^= ctx->is_active; /* changed bits */
3371 
3372 	if (is_active & EVENT_TIME) {
3373 		/* start ctx time */
3374 		now = perf_clock();
3375 		ctx->timestamp = now;
3376 		perf_cgroup_set_timestamp(task, ctx);
3377 	}
3378 
3379 	/*
3380 	 * First go through the list and put on any pinned groups
3381 	 * in order to give them the best chance of going on.
3382 	 */
3383 	if (is_active & EVENT_PINNED)
3384 		ctx_pinned_sched_in(ctx, cpuctx);
3385 
3386 	/* Then walk through the lower prio flexible groups */
3387 	if (is_active & EVENT_FLEXIBLE)
3388 		ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390 
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392 			     enum event_type_t event_type,
3393 			     struct task_struct *task)
3394 {
3395 	struct perf_event_context *ctx = &cpuctx->ctx;
3396 
3397 	ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399 
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401 					struct task_struct *task)
3402 {
3403 	struct perf_cpu_context *cpuctx;
3404 
3405 	cpuctx = __get_cpu_context(ctx);
3406 	if (cpuctx->task_ctx == ctx)
3407 		return;
3408 
3409 	perf_ctx_lock(cpuctx, ctx);
3410 	/*
3411 	 * We must check ctx->nr_events while holding ctx->lock, such
3412 	 * that we serialize against perf_install_in_context().
3413 	 */
3414 	if (!ctx->nr_events)
3415 		goto unlock;
3416 
3417 	perf_pmu_disable(ctx->pmu);
3418 	/*
3419 	 * We want to keep the following priority order:
3420 	 * cpu pinned (that don't need to move), task pinned,
3421 	 * cpu flexible, task flexible.
3422 	 *
3423 	 * However, if task's ctx is not carrying any pinned
3424 	 * events, no need to flip the cpuctx's events around.
3425 	 */
3426 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428 	perf_event_sched_in(cpuctx, ctx, task);
3429 	perf_pmu_enable(ctx->pmu);
3430 
3431 unlock:
3432 	perf_ctx_unlock(cpuctx, ctx);
3433 }
3434 
3435 /*
3436  * Called from scheduler to add the events of the current task
3437  * with interrupts disabled.
3438  *
3439  * We restore the event value and then enable it.
3440  *
3441  * This does not protect us against NMI, but enable()
3442  * sets the enabled bit in the control field of event _before_
3443  * accessing the event control register. If a NMI hits, then it will
3444  * keep the event running.
3445  */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447 				struct task_struct *task)
3448 {
3449 	struct perf_event_context *ctx;
3450 	int ctxn;
3451 
3452 	/*
3453 	 * If cgroup events exist on this CPU, then we need to check if we have
3454 	 * to switch in PMU state; cgroup event are system-wide mode only.
3455 	 *
3456 	 * Since cgroup events are CPU events, we must schedule these in before
3457 	 * we schedule in the task events.
3458 	 */
3459 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460 		perf_cgroup_sched_in(prev, task);
3461 
3462 	for_each_task_context_nr(ctxn) {
3463 		ctx = task->perf_event_ctxp[ctxn];
3464 		if (likely(!ctx))
3465 			continue;
3466 
3467 		perf_event_context_sched_in(ctx, task);
3468 	}
3469 
3470 	if (atomic_read(&nr_switch_events))
3471 		perf_event_switch(task, prev, true);
3472 
3473 	if (__this_cpu_read(perf_sched_cb_usages))
3474 		perf_pmu_sched_task(prev, task, true);
3475 }
3476 
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479 	u64 frequency = event->attr.sample_freq;
3480 	u64 sec = NSEC_PER_SEC;
3481 	u64 divisor, dividend;
3482 
3483 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3484 
3485 	count_fls = fls64(count);
3486 	nsec_fls = fls64(nsec);
3487 	frequency_fls = fls64(frequency);
3488 	sec_fls = 30;
3489 
3490 	/*
3491 	 * We got @count in @nsec, with a target of sample_freq HZ
3492 	 * the target period becomes:
3493 	 *
3494 	 *             @count * 10^9
3495 	 * period = -------------------
3496 	 *          @nsec * sample_freq
3497 	 *
3498 	 */
3499 
3500 	/*
3501 	 * Reduce accuracy by one bit such that @a and @b converge
3502 	 * to a similar magnitude.
3503 	 */
3504 #define REDUCE_FLS(a, b)		\
3505 do {					\
3506 	if (a##_fls > b##_fls) {	\
3507 		a >>= 1;		\
3508 		a##_fls--;		\
3509 	} else {			\
3510 		b >>= 1;		\
3511 		b##_fls--;		\
3512 	}				\
3513 } while (0)
3514 
3515 	/*
3516 	 * Reduce accuracy until either term fits in a u64, then proceed with
3517 	 * the other, so that finally we can do a u64/u64 division.
3518 	 */
3519 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520 		REDUCE_FLS(nsec, frequency);
3521 		REDUCE_FLS(sec, count);
3522 	}
3523 
3524 	if (count_fls + sec_fls > 64) {
3525 		divisor = nsec * frequency;
3526 
3527 		while (count_fls + sec_fls > 64) {
3528 			REDUCE_FLS(count, sec);
3529 			divisor >>= 1;
3530 		}
3531 
3532 		dividend = count * sec;
3533 	} else {
3534 		dividend = count * sec;
3535 
3536 		while (nsec_fls + frequency_fls > 64) {
3537 			REDUCE_FLS(nsec, frequency);
3538 			dividend >>= 1;
3539 		}
3540 
3541 		divisor = nsec * frequency;
3542 	}
3543 
3544 	if (!divisor)
3545 		return dividend;
3546 
3547 	return div64_u64(dividend, divisor);
3548 }
3549 
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552 
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555 	struct hw_perf_event *hwc = &event->hw;
3556 	s64 period, sample_period;
3557 	s64 delta;
3558 
3559 	period = perf_calculate_period(event, nsec, count);
3560 
3561 	delta = (s64)(period - hwc->sample_period);
3562 	delta = (delta + 7) / 8; /* low pass filter */
3563 
3564 	sample_period = hwc->sample_period + delta;
3565 
3566 	if (!sample_period)
3567 		sample_period = 1;
3568 
3569 	hwc->sample_period = sample_period;
3570 
3571 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3572 		if (disable)
3573 			event->pmu->stop(event, PERF_EF_UPDATE);
3574 
3575 		local64_set(&hwc->period_left, 0);
3576 
3577 		if (disable)
3578 			event->pmu->start(event, PERF_EF_RELOAD);
3579 	}
3580 }
3581 
3582 /*
3583  * combine freq adjustment with unthrottling to avoid two passes over the
3584  * events. At the same time, make sure, having freq events does not change
3585  * the rate of unthrottling as that would introduce bias.
3586  */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588 					   int needs_unthr)
3589 {
3590 	struct perf_event *event;
3591 	struct hw_perf_event *hwc;
3592 	u64 now, period = TICK_NSEC;
3593 	s64 delta;
3594 
3595 	/*
3596 	 * only need to iterate over all events iff:
3597 	 * - context have events in frequency mode (needs freq adjust)
3598 	 * - there are events to unthrottle on this cpu
3599 	 */
3600 	if (!(ctx->nr_freq || needs_unthr))
3601 		return;
3602 
3603 	raw_spin_lock(&ctx->lock);
3604 	perf_pmu_disable(ctx->pmu);
3605 
3606 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3608 			continue;
3609 
3610 		if (!event_filter_match(event))
3611 			continue;
3612 
3613 		perf_pmu_disable(event->pmu);
3614 
3615 		hwc = &event->hw;
3616 
3617 		if (hwc->interrupts == MAX_INTERRUPTS) {
3618 			hwc->interrupts = 0;
3619 			perf_log_throttle(event, 1);
3620 			event->pmu->start(event, 0);
3621 		}
3622 
3623 		if (!event->attr.freq || !event->attr.sample_freq)
3624 			goto next;
3625 
3626 		/*
3627 		 * stop the event and update event->count
3628 		 */
3629 		event->pmu->stop(event, PERF_EF_UPDATE);
3630 
3631 		now = local64_read(&event->count);
3632 		delta = now - hwc->freq_count_stamp;
3633 		hwc->freq_count_stamp = now;
3634 
3635 		/*
3636 		 * restart the event
3637 		 * reload only if value has changed
3638 		 * we have stopped the event so tell that
3639 		 * to perf_adjust_period() to avoid stopping it
3640 		 * twice.
3641 		 */
3642 		if (delta > 0)
3643 			perf_adjust_period(event, period, delta, false);
3644 
3645 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646 	next:
3647 		perf_pmu_enable(event->pmu);
3648 	}
3649 
3650 	perf_pmu_enable(ctx->pmu);
3651 	raw_spin_unlock(&ctx->lock);
3652 }
3653 
3654 /*
3655  * Move @event to the tail of the @ctx's elegible events.
3656  */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659 	/*
3660 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3661 	 * disabled by the inheritance code.
3662 	 */
3663 	if (ctx->rotate_disable)
3664 		return;
3665 
3666 	perf_event_groups_delete(&ctx->flexible_groups, event);
3667 	perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669 
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673 	return list_first_entry_or_null(&ctx->flexible_active,
3674 					struct perf_event, active_list);
3675 }
3676 
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3680 	bool cpu_rotate = false, task_rotate = false;
3681 	struct perf_event_context *ctx = NULL;
3682 
3683 	/*
3684 	 * Since we run this from IRQ context, nobody can install new
3685 	 * events, thus the event count values are stable.
3686 	 */
3687 
3688 	if (cpuctx->ctx.nr_events) {
3689 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690 			cpu_rotate = true;
3691 	}
3692 
3693 	ctx = cpuctx->task_ctx;
3694 	if (ctx && ctx->nr_events) {
3695 		if (ctx->nr_events != ctx->nr_active)
3696 			task_rotate = true;
3697 	}
3698 
3699 	if (!(cpu_rotate || task_rotate))
3700 		return false;
3701 
3702 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703 	perf_pmu_disable(cpuctx->ctx.pmu);
3704 
3705 	if (task_rotate)
3706 		task_event = ctx_first_active(ctx);
3707 	if (cpu_rotate)
3708 		cpu_event = ctx_first_active(&cpuctx->ctx);
3709 
3710 	/*
3711 	 * As per the order given at ctx_resched() first 'pop' task flexible
3712 	 * and then, if needed CPU flexible.
3713 	 */
3714 	if (task_event || (ctx && cpu_event))
3715 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716 	if (cpu_event)
3717 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718 
3719 	if (task_event)
3720 		rotate_ctx(ctx, task_event);
3721 	if (cpu_event)
3722 		rotate_ctx(&cpuctx->ctx, cpu_event);
3723 
3724 	perf_event_sched_in(cpuctx, ctx, current);
3725 
3726 	perf_pmu_enable(cpuctx->ctx.pmu);
3727 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728 
3729 	return true;
3730 }
3731 
3732 void perf_event_task_tick(void)
3733 {
3734 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735 	struct perf_event_context *ctx, *tmp;
3736 	int throttled;
3737 
3738 	lockdep_assert_irqs_disabled();
3739 
3740 	__this_cpu_inc(perf_throttled_seq);
3741 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743 
3744 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745 		perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747 
3748 static int event_enable_on_exec(struct perf_event *event,
3749 				struct perf_event_context *ctx)
3750 {
3751 	if (!event->attr.enable_on_exec)
3752 		return 0;
3753 
3754 	event->attr.enable_on_exec = 0;
3755 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756 		return 0;
3757 
3758 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759 
3760 	return 1;
3761 }
3762 
3763 /*
3764  * Enable all of a task's events that have been marked enable-on-exec.
3765  * This expects task == current.
3766  */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769 	struct perf_event_context *ctx, *clone_ctx = NULL;
3770 	enum event_type_t event_type = 0;
3771 	struct perf_cpu_context *cpuctx;
3772 	struct perf_event *event;
3773 	unsigned long flags;
3774 	int enabled = 0;
3775 
3776 	local_irq_save(flags);
3777 	ctx = current->perf_event_ctxp[ctxn];
3778 	if (!ctx || !ctx->nr_events)
3779 		goto out;
3780 
3781 	cpuctx = __get_cpu_context(ctx);
3782 	perf_ctx_lock(cpuctx, ctx);
3783 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3785 		enabled |= event_enable_on_exec(event, ctx);
3786 		event_type |= get_event_type(event);
3787 	}
3788 
3789 	/*
3790 	 * Unclone and reschedule this context if we enabled any event.
3791 	 */
3792 	if (enabled) {
3793 		clone_ctx = unclone_ctx(ctx);
3794 		ctx_resched(cpuctx, ctx, event_type);
3795 	} else {
3796 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797 	}
3798 	perf_ctx_unlock(cpuctx, ctx);
3799 
3800 out:
3801 	local_irq_restore(flags);
3802 
3803 	if (clone_ctx)
3804 		put_ctx(clone_ctx);
3805 }
3806 
3807 struct perf_read_data {
3808 	struct perf_event *event;
3809 	bool group;
3810 	int ret;
3811 };
3812 
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815 	u16 local_pkg, event_pkg;
3816 
3817 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818 		int local_cpu = smp_processor_id();
3819 
3820 		event_pkg = topology_physical_package_id(event_cpu);
3821 		local_pkg = topology_physical_package_id(local_cpu);
3822 
3823 		if (event_pkg == local_pkg)
3824 			return local_cpu;
3825 	}
3826 
3827 	return event_cpu;
3828 }
3829 
3830 /*
3831  * Cross CPU call to read the hardware event
3832  */
3833 static void __perf_event_read(void *info)
3834 {
3835 	struct perf_read_data *data = info;
3836 	struct perf_event *sub, *event = data->event;
3837 	struct perf_event_context *ctx = event->ctx;
3838 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839 	struct pmu *pmu = event->pmu;
3840 
3841 	/*
3842 	 * If this is a task context, we need to check whether it is
3843 	 * the current task context of this cpu.  If not it has been
3844 	 * scheduled out before the smp call arrived.  In that case
3845 	 * event->count would have been updated to a recent sample
3846 	 * when the event was scheduled out.
3847 	 */
3848 	if (ctx->task && cpuctx->task_ctx != ctx)
3849 		return;
3850 
3851 	raw_spin_lock(&ctx->lock);
3852 	if (ctx->is_active & EVENT_TIME) {
3853 		update_context_time(ctx);
3854 		update_cgrp_time_from_event(event);
3855 	}
3856 
3857 	perf_event_update_time(event);
3858 	if (data->group)
3859 		perf_event_update_sibling_time(event);
3860 
3861 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3862 		goto unlock;
3863 
3864 	if (!data->group) {
3865 		pmu->read(event);
3866 		data->ret = 0;
3867 		goto unlock;
3868 	}
3869 
3870 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871 
3872 	pmu->read(event);
3873 
3874 	for_each_sibling_event(sub, event) {
3875 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876 			/*
3877 			 * Use sibling's PMU rather than @event's since
3878 			 * sibling could be on different (eg: software) PMU.
3879 			 */
3880 			sub->pmu->read(sub);
3881 		}
3882 	}
3883 
3884 	data->ret = pmu->commit_txn(pmu);
3885 
3886 unlock:
3887 	raw_spin_unlock(&ctx->lock);
3888 }
3889 
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894 
3895 /*
3896  * NMI-safe method to read a local event, that is an event that
3897  * is:
3898  *   - either for the current task, or for this CPU
3899  *   - does not have inherit set, for inherited task events
3900  *     will not be local and we cannot read them atomically
3901  *   - must not have a pmu::count method
3902  */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904 			  u64 *enabled, u64 *running)
3905 {
3906 	unsigned long flags;
3907 	int ret = 0;
3908 
3909 	/*
3910 	 * Disabling interrupts avoids all counter scheduling (context
3911 	 * switches, timer based rotation and IPIs).
3912 	 */
3913 	local_irq_save(flags);
3914 
3915 	/*
3916 	 * It must not be an event with inherit set, we cannot read
3917 	 * all child counters from atomic context.
3918 	 */
3919 	if (event->attr.inherit) {
3920 		ret = -EOPNOTSUPP;
3921 		goto out;
3922 	}
3923 
3924 	/* If this is a per-task event, it must be for current */
3925 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3926 	    event->hw.target != current) {
3927 		ret = -EINVAL;
3928 		goto out;
3929 	}
3930 
3931 	/* If this is a per-CPU event, it must be for this CPU */
3932 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933 	    event->cpu != smp_processor_id()) {
3934 		ret = -EINVAL;
3935 		goto out;
3936 	}
3937 
3938 	/*
3939 	 * If the event is currently on this CPU, its either a per-task event,
3940 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3941 	 * oncpu == -1).
3942 	 */
3943 	if (event->oncpu == smp_processor_id())
3944 		event->pmu->read(event);
3945 
3946 	*value = local64_read(&event->count);
3947 	if (enabled || running) {
3948 		u64 now = event->shadow_ctx_time + perf_clock();
3949 		u64 __enabled, __running;
3950 
3951 		__perf_update_times(event, now, &__enabled, &__running);
3952 		if (enabled)
3953 			*enabled = __enabled;
3954 		if (running)
3955 			*running = __running;
3956 	}
3957 out:
3958 	local_irq_restore(flags);
3959 
3960 	return ret;
3961 }
3962 
3963 static int perf_event_read(struct perf_event *event, bool group)
3964 {
3965 	enum perf_event_state state = READ_ONCE(event->state);
3966 	int event_cpu, ret = 0;
3967 
3968 	/*
3969 	 * If event is enabled and currently active on a CPU, update the
3970 	 * value in the event structure:
3971 	 */
3972 again:
3973 	if (state == PERF_EVENT_STATE_ACTIVE) {
3974 		struct perf_read_data data;
3975 
3976 		/*
3977 		 * Orders the ->state and ->oncpu loads such that if we see
3978 		 * ACTIVE we must also see the right ->oncpu.
3979 		 *
3980 		 * Matches the smp_wmb() from event_sched_in().
3981 		 */
3982 		smp_rmb();
3983 
3984 		event_cpu = READ_ONCE(event->oncpu);
3985 		if ((unsigned)event_cpu >= nr_cpu_ids)
3986 			return 0;
3987 
3988 		data = (struct perf_read_data){
3989 			.event = event,
3990 			.group = group,
3991 			.ret = 0,
3992 		};
3993 
3994 		preempt_disable();
3995 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3996 
3997 		/*
3998 		 * Purposely ignore the smp_call_function_single() return
3999 		 * value.
4000 		 *
4001 		 * If event_cpu isn't a valid CPU it means the event got
4002 		 * scheduled out and that will have updated the event count.
4003 		 *
4004 		 * Therefore, either way, we'll have an up-to-date event count
4005 		 * after this.
4006 		 */
4007 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4008 		preempt_enable();
4009 		ret = data.ret;
4010 
4011 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4012 		struct perf_event_context *ctx = event->ctx;
4013 		unsigned long flags;
4014 
4015 		raw_spin_lock_irqsave(&ctx->lock, flags);
4016 		state = event->state;
4017 		if (state != PERF_EVENT_STATE_INACTIVE) {
4018 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4019 			goto again;
4020 		}
4021 
4022 		/*
4023 		 * May read while context is not active (e.g., thread is
4024 		 * blocked), in that case we cannot update context time
4025 		 */
4026 		if (ctx->is_active & EVENT_TIME) {
4027 			update_context_time(ctx);
4028 			update_cgrp_time_from_event(event);
4029 		}
4030 
4031 		perf_event_update_time(event);
4032 		if (group)
4033 			perf_event_update_sibling_time(event);
4034 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4035 	}
4036 
4037 	return ret;
4038 }
4039 
4040 /*
4041  * Initialize the perf_event context in a task_struct:
4042  */
4043 static void __perf_event_init_context(struct perf_event_context *ctx)
4044 {
4045 	raw_spin_lock_init(&ctx->lock);
4046 	mutex_init(&ctx->mutex);
4047 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4048 	perf_event_groups_init(&ctx->pinned_groups);
4049 	perf_event_groups_init(&ctx->flexible_groups);
4050 	INIT_LIST_HEAD(&ctx->event_list);
4051 	INIT_LIST_HEAD(&ctx->pinned_active);
4052 	INIT_LIST_HEAD(&ctx->flexible_active);
4053 	atomic_set(&ctx->refcount, 1);
4054 }
4055 
4056 static struct perf_event_context *
4057 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4058 {
4059 	struct perf_event_context *ctx;
4060 
4061 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4062 	if (!ctx)
4063 		return NULL;
4064 
4065 	__perf_event_init_context(ctx);
4066 	if (task) {
4067 		ctx->task = task;
4068 		get_task_struct(task);
4069 	}
4070 	ctx->pmu = pmu;
4071 
4072 	return ctx;
4073 }
4074 
4075 static struct task_struct *
4076 find_lively_task_by_vpid(pid_t vpid)
4077 {
4078 	struct task_struct *task;
4079 
4080 	rcu_read_lock();
4081 	if (!vpid)
4082 		task = current;
4083 	else
4084 		task = find_task_by_vpid(vpid);
4085 	if (task)
4086 		get_task_struct(task);
4087 	rcu_read_unlock();
4088 
4089 	if (!task)
4090 		return ERR_PTR(-ESRCH);
4091 
4092 	return task;
4093 }
4094 
4095 /*
4096  * Returns a matching context with refcount and pincount.
4097  */
4098 static struct perf_event_context *
4099 find_get_context(struct pmu *pmu, struct task_struct *task,
4100 		struct perf_event *event)
4101 {
4102 	struct perf_event_context *ctx, *clone_ctx = NULL;
4103 	struct perf_cpu_context *cpuctx;
4104 	void *task_ctx_data = NULL;
4105 	unsigned long flags;
4106 	int ctxn, err;
4107 	int cpu = event->cpu;
4108 
4109 	if (!task) {
4110 		/* Must be root to operate on a CPU event: */
4111 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4112 			return ERR_PTR(-EACCES);
4113 
4114 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4115 		ctx = &cpuctx->ctx;
4116 		get_ctx(ctx);
4117 		++ctx->pin_count;
4118 
4119 		return ctx;
4120 	}
4121 
4122 	err = -EINVAL;
4123 	ctxn = pmu->task_ctx_nr;
4124 	if (ctxn < 0)
4125 		goto errout;
4126 
4127 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4128 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4129 		if (!task_ctx_data) {
4130 			err = -ENOMEM;
4131 			goto errout;
4132 		}
4133 	}
4134 
4135 retry:
4136 	ctx = perf_lock_task_context(task, ctxn, &flags);
4137 	if (ctx) {
4138 		clone_ctx = unclone_ctx(ctx);
4139 		++ctx->pin_count;
4140 
4141 		if (task_ctx_data && !ctx->task_ctx_data) {
4142 			ctx->task_ctx_data = task_ctx_data;
4143 			task_ctx_data = NULL;
4144 		}
4145 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4146 
4147 		if (clone_ctx)
4148 			put_ctx(clone_ctx);
4149 	} else {
4150 		ctx = alloc_perf_context(pmu, task);
4151 		err = -ENOMEM;
4152 		if (!ctx)
4153 			goto errout;
4154 
4155 		if (task_ctx_data) {
4156 			ctx->task_ctx_data = task_ctx_data;
4157 			task_ctx_data = NULL;
4158 		}
4159 
4160 		err = 0;
4161 		mutex_lock(&task->perf_event_mutex);
4162 		/*
4163 		 * If it has already passed perf_event_exit_task().
4164 		 * we must see PF_EXITING, it takes this mutex too.
4165 		 */
4166 		if (task->flags & PF_EXITING)
4167 			err = -ESRCH;
4168 		else if (task->perf_event_ctxp[ctxn])
4169 			err = -EAGAIN;
4170 		else {
4171 			get_ctx(ctx);
4172 			++ctx->pin_count;
4173 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4174 		}
4175 		mutex_unlock(&task->perf_event_mutex);
4176 
4177 		if (unlikely(err)) {
4178 			put_ctx(ctx);
4179 
4180 			if (err == -EAGAIN)
4181 				goto retry;
4182 			goto errout;
4183 		}
4184 	}
4185 
4186 	kfree(task_ctx_data);
4187 	return ctx;
4188 
4189 errout:
4190 	kfree(task_ctx_data);
4191 	return ERR_PTR(err);
4192 }
4193 
4194 static void perf_event_free_filter(struct perf_event *event);
4195 static void perf_event_free_bpf_prog(struct perf_event *event);
4196 
4197 static void free_event_rcu(struct rcu_head *head)
4198 {
4199 	struct perf_event *event;
4200 
4201 	event = container_of(head, struct perf_event, rcu_head);
4202 	if (event->ns)
4203 		put_pid_ns(event->ns);
4204 	perf_event_free_filter(event);
4205 	kfree(event);
4206 }
4207 
4208 static void ring_buffer_attach(struct perf_event *event,
4209 			       struct ring_buffer *rb);
4210 
4211 static void detach_sb_event(struct perf_event *event)
4212 {
4213 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4214 
4215 	raw_spin_lock(&pel->lock);
4216 	list_del_rcu(&event->sb_list);
4217 	raw_spin_unlock(&pel->lock);
4218 }
4219 
4220 static bool is_sb_event(struct perf_event *event)
4221 {
4222 	struct perf_event_attr *attr = &event->attr;
4223 
4224 	if (event->parent)
4225 		return false;
4226 
4227 	if (event->attach_state & PERF_ATTACH_TASK)
4228 		return false;
4229 
4230 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4231 	    attr->comm || attr->comm_exec ||
4232 	    attr->task ||
4233 	    attr->context_switch)
4234 		return true;
4235 	return false;
4236 }
4237 
4238 static void unaccount_pmu_sb_event(struct perf_event *event)
4239 {
4240 	if (is_sb_event(event))
4241 		detach_sb_event(event);
4242 }
4243 
4244 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4245 {
4246 	if (event->parent)
4247 		return;
4248 
4249 	if (is_cgroup_event(event))
4250 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4251 }
4252 
4253 #ifdef CONFIG_NO_HZ_FULL
4254 static DEFINE_SPINLOCK(nr_freq_lock);
4255 #endif
4256 
4257 static void unaccount_freq_event_nohz(void)
4258 {
4259 #ifdef CONFIG_NO_HZ_FULL
4260 	spin_lock(&nr_freq_lock);
4261 	if (atomic_dec_and_test(&nr_freq_events))
4262 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4263 	spin_unlock(&nr_freq_lock);
4264 #endif
4265 }
4266 
4267 static void unaccount_freq_event(void)
4268 {
4269 	if (tick_nohz_full_enabled())
4270 		unaccount_freq_event_nohz();
4271 	else
4272 		atomic_dec(&nr_freq_events);
4273 }
4274 
4275 static void unaccount_event(struct perf_event *event)
4276 {
4277 	bool dec = false;
4278 
4279 	if (event->parent)
4280 		return;
4281 
4282 	if (event->attach_state & PERF_ATTACH_TASK)
4283 		dec = true;
4284 	if (event->attr.mmap || event->attr.mmap_data)
4285 		atomic_dec(&nr_mmap_events);
4286 	if (event->attr.comm)
4287 		atomic_dec(&nr_comm_events);
4288 	if (event->attr.namespaces)
4289 		atomic_dec(&nr_namespaces_events);
4290 	if (event->attr.task)
4291 		atomic_dec(&nr_task_events);
4292 	if (event->attr.freq)
4293 		unaccount_freq_event();
4294 	if (event->attr.context_switch) {
4295 		dec = true;
4296 		atomic_dec(&nr_switch_events);
4297 	}
4298 	if (is_cgroup_event(event))
4299 		dec = true;
4300 	if (has_branch_stack(event))
4301 		dec = true;
4302 
4303 	if (dec) {
4304 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4305 			schedule_delayed_work(&perf_sched_work, HZ);
4306 	}
4307 
4308 	unaccount_event_cpu(event, event->cpu);
4309 
4310 	unaccount_pmu_sb_event(event);
4311 }
4312 
4313 static void perf_sched_delayed(struct work_struct *work)
4314 {
4315 	mutex_lock(&perf_sched_mutex);
4316 	if (atomic_dec_and_test(&perf_sched_count))
4317 		static_branch_disable(&perf_sched_events);
4318 	mutex_unlock(&perf_sched_mutex);
4319 }
4320 
4321 /*
4322  * The following implement mutual exclusion of events on "exclusive" pmus
4323  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4324  * at a time, so we disallow creating events that might conflict, namely:
4325  *
4326  *  1) cpu-wide events in the presence of per-task events,
4327  *  2) per-task events in the presence of cpu-wide events,
4328  *  3) two matching events on the same context.
4329  *
4330  * The former two cases are handled in the allocation path (perf_event_alloc(),
4331  * _free_event()), the latter -- before the first perf_install_in_context().
4332  */
4333 static int exclusive_event_init(struct perf_event *event)
4334 {
4335 	struct pmu *pmu = event->pmu;
4336 
4337 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4338 		return 0;
4339 
4340 	/*
4341 	 * Prevent co-existence of per-task and cpu-wide events on the
4342 	 * same exclusive pmu.
4343 	 *
4344 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4345 	 * events on this "exclusive" pmu, positive means there are
4346 	 * per-task events.
4347 	 *
4348 	 * Since this is called in perf_event_alloc() path, event::ctx
4349 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4350 	 * to mean "per-task event", because unlike other attach states it
4351 	 * never gets cleared.
4352 	 */
4353 	if (event->attach_state & PERF_ATTACH_TASK) {
4354 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4355 			return -EBUSY;
4356 	} else {
4357 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4358 			return -EBUSY;
4359 	}
4360 
4361 	return 0;
4362 }
4363 
4364 static void exclusive_event_destroy(struct perf_event *event)
4365 {
4366 	struct pmu *pmu = event->pmu;
4367 
4368 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4369 		return;
4370 
4371 	/* see comment in exclusive_event_init() */
4372 	if (event->attach_state & PERF_ATTACH_TASK)
4373 		atomic_dec(&pmu->exclusive_cnt);
4374 	else
4375 		atomic_inc(&pmu->exclusive_cnt);
4376 }
4377 
4378 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4379 {
4380 	if ((e1->pmu == e2->pmu) &&
4381 	    (e1->cpu == e2->cpu ||
4382 	     e1->cpu == -1 ||
4383 	     e2->cpu == -1))
4384 		return true;
4385 	return false;
4386 }
4387 
4388 /* Called under the same ctx::mutex as perf_install_in_context() */
4389 static bool exclusive_event_installable(struct perf_event *event,
4390 					struct perf_event_context *ctx)
4391 {
4392 	struct perf_event *iter_event;
4393 	struct pmu *pmu = event->pmu;
4394 
4395 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4396 		return true;
4397 
4398 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4399 		if (exclusive_event_match(iter_event, event))
4400 			return false;
4401 	}
4402 
4403 	return true;
4404 }
4405 
4406 static void perf_addr_filters_splice(struct perf_event *event,
4407 				       struct list_head *head);
4408 
4409 static void _free_event(struct perf_event *event)
4410 {
4411 	irq_work_sync(&event->pending);
4412 
4413 	unaccount_event(event);
4414 
4415 	if (event->rb) {
4416 		/*
4417 		 * Can happen when we close an event with re-directed output.
4418 		 *
4419 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4420 		 * over us; possibly making our ring_buffer_put() the last.
4421 		 */
4422 		mutex_lock(&event->mmap_mutex);
4423 		ring_buffer_attach(event, NULL);
4424 		mutex_unlock(&event->mmap_mutex);
4425 	}
4426 
4427 	if (is_cgroup_event(event))
4428 		perf_detach_cgroup(event);
4429 
4430 	if (!event->parent) {
4431 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4432 			put_callchain_buffers();
4433 	}
4434 
4435 	perf_event_free_bpf_prog(event);
4436 	perf_addr_filters_splice(event, NULL);
4437 	kfree(event->addr_filters_offs);
4438 
4439 	if (event->destroy)
4440 		event->destroy(event);
4441 
4442 	if (event->ctx)
4443 		put_ctx(event->ctx);
4444 
4445 	if (event->hw.target)
4446 		put_task_struct(event->hw.target);
4447 
4448 	exclusive_event_destroy(event);
4449 	module_put(event->pmu->module);
4450 
4451 	call_rcu(&event->rcu_head, free_event_rcu);
4452 }
4453 
4454 /*
4455  * Used to free events which have a known refcount of 1, such as in error paths
4456  * where the event isn't exposed yet and inherited events.
4457  */
4458 static void free_event(struct perf_event *event)
4459 {
4460 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4461 				"unexpected event refcount: %ld; ptr=%p\n",
4462 				atomic_long_read(&event->refcount), event)) {
4463 		/* leak to avoid use-after-free */
4464 		return;
4465 	}
4466 
4467 	_free_event(event);
4468 }
4469 
4470 /*
4471  * Remove user event from the owner task.
4472  */
4473 static void perf_remove_from_owner(struct perf_event *event)
4474 {
4475 	struct task_struct *owner;
4476 
4477 	rcu_read_lock();
4478 	/*
4479 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4480 	 * observe !owner it means the list deletion is complete and we can
4481 	 * indeed free this event, otherwise we need to serialize on
4482 	 * owner->perf_event_mutex.
4483 	 */
4484 	owner = READ_ONCE(event->owner);
4485 	if (owner) {
4486 		/*
4487 		 * Since delayed_put_task_struct() also drops the last
4488 		 * task reference we can safely take a new reference
4489 		 * while holding the rcu_read_lock().
4490 		 */
4491 		get_task_struct(owner);
4492 	}
4493 	rcu_read_unlock();
4494 
4495 	if (owner) {
4496 		/*
4497 		 * If we're here through perf_event_exit_task() we're already
4498 		 * holding ctx->mutex which would be an inversion wrt. the
4499 		 * normal lock order.
4500 		 *
4501 		 * However we can safely take this lock because its the child
4502 		 * ctx->mutex.
4503 		 */
4504 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4505 
4506 		/*
4507 		 * We have to re-check the event->owner field, if it is cleared
4508 		 * we raced with perf_event_exit_task(), acquiring the mutex
4509 		 * ensured they're done, and we can proceed with freeing the
4510 		 * event.
4511 		 */
4512 		if (event->owner) {
4513 			list_del_init(&event->owner_entry);
4514 			smp_store_release(&event->owner, NULL);
4515 		}
4516 		mutex_unlock(&owner->perf_event_mutex);
4517 		put_task_struct(owner);
4518 	}
4519 }
4520 
4521 static void put_event(struct perf_event *event)
4522 {
4523 	if (!atomic_long_dec_and_test(&event->refcount))
4524 		return;
4525 
4526 	_free_event(event);
4527 }
4528 
4529 /*
4530  * Kill an event dead; while event:refcount will preserve the event
4531  * object, it will not preserve its functionality. Once the last 'user'
4532  * gives up the object, we'll destroy the thing.
4533  */
4534 int perf_event_release_kernel(struct perf_event *event)
4535 {
4536 	struct perf_event_context *ctx = event->ctx;
4537 	struct perf_event *child, *tmp;
4538 	LIST_HEAD(free_list);
4539 
4540 	/*
4541 	 * If we got here through err_file: fput(event_file); we will not have
4542 	 * attached to a context yet.
4543 	 */
4544 	if (!ctx) {
4545 		WARN_ON_ONCE(event->attach_state &
4546 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4547 		goto no_ctx;
4548 	}
4549 
4550 	if (!is_kernel_event(event))
4551 		perf_remove_from_owner(event);
4552 
4553 	ctx = perf_event_ctx_lock(event);
4554 	WARN_ON_ONCE(ctx->parent_ctx);
4555 	perf_remove_from_context(event, DETACH_GROUP);
4556 
4557 	raw_spin_lock_irq(&ctx->lock);
4558 	/*
4559 	 * Mark this event as STATE_DEAD, there is no external reference to it
4560 	 * anymore.
4561 	 *
4562 	 * Anybody acquiring event->child_mutex after the below loop _must_
4563 	 * also see this, most importantly inherit_event() which will avoid
4564 	 * placing more children on the list.
4565 	 *
4566 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4567 	 * child events.
4568 	 */
4569 	event->state = PERF_EVENT_STATE_DEAD;
4570 	raw_spin_unlock_irq(&ctx->lock);
4571 
4572 	perf_event_ctx_unlock(event, ctx);
4573 
4574 again:
4575 	mutex_lock(&event->child_mutex);
4576 	list_for_each_entry(child, &event->child_list, child_list) {
4577 
4578 		/*
4579 		 * Cannot change, child events are not migrated, see the
4580 		 * comment with perf_event_ctx_lock_nested().
4581 		 */
4582 		ctx = READ_ONCE(child->ctx);
4583 		/*
4584 		 * Since child_mutex nests inside ctx::mutex, we must jump
4585 		 * through hoops. We start by grabbing a reference on the ctx.
4586 		 *
4587 		 * Since the event cannot get freed while we hold the
4588 		 * child_mutex, the context must also exist and have a !0
4589 		 * reference count.
4590 		 */
4591 		get_ctx(ctx);
4592 
4593 		/*
4594 		 * Now that we have a ctx ref, we can drop child_mutex, and
4595 		 * acquire ctx::mutex without fear of it going away. Then we
4596 		 * can re-acquire child_mutex.
4597 		 */
4598 		mutex_unlock(&event->child_mutex);
4599 		mutex_lock(&ctx->mutex);
4600 		mutex_lock(&event->child_mutex);
4601 
4602 		/*
4603 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4604 		 * state, if child is still the first entry, it didn't get freed
4605 		 * and we can continue doing so.
4606 		 */
4607 		tmp = list_first_entry_or_null(&event->child_list,
4608 					       struct perf_event, child_list);
4609 		if (tmp == child) {
4610 			perf_remove_from_context(child, DETACH_GROUP);
4611 			list_move(&child->child_list, &free_list);
4612 			/*
4613 			 * This matches the refcount bump in inherit_event();
4614 			 * this can't be the last reference.
4615 			 */
4616 			put_event(event);
4617 		}
4618 
4619 		mutex_unlock(&event->child_mutex);
4620 		mutex_unlock(&ctx->mutex);
4621 		put_ctx(ctx);
4622 		goto again;
4623 	}
4624 	mutex_unlock(&event->child_mutex);
4625 
4626 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4627 		list_del(&child->child_list);
4628 		free_event(child);
4629 	}
4630 
4631 no_ctx:
4632 	put_event(event); /* Must be the 'last' reference */
4633 	return 0;
4634 }
4635 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4636 
4637 /*
4638  * Called when the last reference to the file is gone.
4639  */
4640 static int perf_release(struct inode *inode, struct file *file)
4641 {
4642 	perf_event_release_kernel(file->private_data);
4643 	return 0;
4644 }
4645 
4646 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4647 {
4648 	struct perf_event *child;
4649 	u64 total = 0;
4650 
4651 	*enabled = 0;
4652 	*running = 0;
4653 
4654 	mutex_lock(&event->child_mutex);
4655 
4656 	(void)perf_event_read(event, false);
4657 	total += perf_event_count(event);
4658 
4659 	*enabled += event->total_time_enabled +
4660 			atomic64_read(&event->child_total_time_enabled);
4661 	*running += event->total_time_running +
4662 			atomic64_read(&event->child_total_time_running);
4663 
4664 	list_for_each_entry(child, &event->child_list, child_list) {
4665 		(void)perf_event_read(child, false);
4666 		total += perf_event_count(child);
4667 		*enabled += child->total_time_enabled;
4668 		*running += child->total_time_running;
4669 	}
4670 	mutex_unlock(&event->child_mutex);
4671 
4672 	return total;
4673 }
4674 
4675 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4676 {
4677 	struct perf_event_context *ctx;
4678 	u64 count;
4679 
4680 	ctx = perf_event_ctx_lock(event);
4681 	count = __perf_event_read_value(event, enabled, running);
4682 	perf_event_ctx_unlock(event, ctx);
4683 
4684 	return count;
4685 }
4686 EXPORT_SYMBOL_GPL(perf_event_read_value);
4687 
4688 static int __perf_read_group_add(struct perf_event *leader,
4689 					u64 read_format, u64 *values)
4690 {
4691 	struct perf_event_context *ctx = leader->ctx;
4692 	struct perf_event *sub;
4693 	unsigned long flags;
4694 	int n = 1; /* skip @nr */
4695 	int ret;
4696 
4697 	ret = perf_event_read(leader, true);
4698 	if (ret)
4699 		return ret;
4700 
4701 	raw_spin_lock_irqsave(&ctx->lock, flags);
4702 
4703 	/*
4704 	 * Since we co-schedule groups, {enabled,running} times of siblings
4705 	 * will be identical to those of the leader, so we only publish one
4706 	 * set.
4707 	 */
4708 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4709 		values[n++] += leader->total_time_enabled +
4710 			atomic64_read(&leader->child_total_time_enabled);
4711 	}
4712 
4713 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4714 		values[n++] += leader->total_time_running +
4715 			atomic64_read(&leader->child_total_time_running);
4716 	}
4717 
4718 	/*
4719 	 * Write {count,id} tuples for every sibling.
4720 	 */
4721 	values[n++] += perf_event_count(leader);
4722 	if (read_format & PERF_FORMAT_ID)
4723 		values[n++] = primary_event_id(leader);
4724 
4725 	for_each_sibling_event(sub, leader) {
4726 		values[n++] += perf_event_count(sub);
4727 		if (read_format & PERF_FORMAT_ID)
4728 			values[n++] = primary_event_id(sub);
4729 	}
4730 
4731 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4732 	return 0;
4733 }
4734 
4735 static int perf_read_group(struct perf_event *event,
4736 				   u64 read_format, char __user *buf)
4737 {
4738 	struct perf_event *leader = event->group_leader, *child;
4739 	struct perf_event_context *ctx = leader->ctx;
4740 	int ret;
4741 	u64 *values;
4742 
4743 	lockdep_assert_held(&ctx->mutex);
4744 
4745 	values = kzalloc(event->read_size, GFP_KERNEL);
4746 	if (!values)
4747 		return -ENOMEM;
4748 
4749 	values[0] = 1 + leader->nr_siblings;
4750 
4751 	/*
4752 	 * By locking the child_mutex of the leader we effectively
4753 	 * lock the child list of all siblings.. XXX explain how.
4754 	 */
4755 	mutex_lock(&leader->child_mutex);
4756 
4757 	ret = __perf_read_group_add(leader, read_format, values);
4758 	if (ret)
4759 		goto unlock;
4760 
4761 	list_for_each_entry(child, &leader->child_list, child_list) {
4762 		ret = __perf_read_group_add(child, read_format, values);
4763 		if (ret)
4764 			goto unlock;
4765 	}
4766 
4767 	mutex_unlock(&leader->child_mutex);
4768 
4769 	ret = event->read_size;
4770 	if (copy_to_user(buf, values, event->read_size))
4771 		ret = -EFAULT;
4772 	goto out;
4773 
4774 unlock:
4775 	mutex_unlock(&leader->child_mutex);
4776 out:
4777 	kfree(values);
4778 	return ret;
4779 }
4780 
4781 static int perf_read_one(struct perf_event *event,
4782 				 u64 read_format, char __user *buf)
4783 {
4784 	u64 enabled, running;
4785 	u64 values[4];
4786 	int n = 0;
4787 
4788 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4789 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4790 		values[n++] = enabled;
4791 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4792 		values[n++] = running;
4793 	if (read_format & PERF_FORMAT_ID)
4794 		values[n++] = primary_event_id(event);
4795 
4796 	if (copy_to_user(buf, values, n * sizeof(u64)))
4797 		return -EFAULT;
4798 
4799 	return n * sizeof(u64);
4800 }
4801 
4802 static bool is_event_hup(struct perf_event *event)
4803 {
4804 	bool no_children;
4805 
4806 	if (event->state > PERF_EVENT_STATE_EXIT)
4807 		return false;
4808 
4809 	mutex_lock(&event->child_mutex);
4810 	no_children = list_empty(&event->child_list);
4811 	mutex_unlock(&event->child_mutex);
4812 	return no_children;
4813 }
4814 
4815 /*
4816  * Read the performance event - simple non blocking version for now
4817  */
4818 static ssize_t
4819 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4820 {
4821 	u64 read_format = event->attr.read_format;
4822 	int ret;
4823 
4824 	/*
4825 	 * Return end-of-file for a read on an event that is in
4826 	 * error state (i.e. because it was pinned but it couldn't be
4827 	 * scheduled on to the CPU at some point).
4828 	 */
4829 	if (event->state == PERF_EVENT_STATE_ERROR)
4830 		return 0;
4831 
4832 	if (count < event->read_size)
4833 		return -ENOSPC;
4834 
4835 	WARN_ON_ONCE(event->ctx->parent_ctx);
4836 	if (read_format & PERF_FORMAT_GROUP)
4837 		ret = perf_read_group(event, read_format, buf);
4838 	else
4839 		ret = perf_read_one(event, read_format, buf);
4840 
4841 	return ret;
4842 }
4843 
4844 static ssize_t
4845 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4846 {
4847 	struct perf_event *event = file->private_data;
4848 	struct perf_event_context *ctx;
4849 	int ret;
4850 
4851 	ctx = perf_event_ctx_lock(event);
4852 	ret = __perf_read(event, buf, count);
4853 	perf_event_ctx_unlock(event, ctx);
4854 
4855 	return ret;
4856 }
4857 
4858 static __poll_t perf_poll(struct file *file, poll_table *wait)
4859 {
4860 	struct perf_event *event = file->private_data;
4861 	struct ring_buffer *rb;
4862 	__poll_t events = EPOLLHUP;
4863 
4864 	poll_wait(file, &event->waitq, wait);
4865 
4866 	if (is_event_hup(event))
4867 		return events;
4868 
4869 	/*
4870 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4871 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4872 	 */
4873 	mutex_lock(&event->mmap_mutex);
4874 	rb = event->rb;
4875 	if (rb)
4876 		events = atomic_xchg(&rb->poll, 0);
4877 	mutex_unlock(&event->mmap_mutex);
4878 	return events;
4879 }
4880 
4881 static void _perf_event_reset(struct perf_event *event)
4882 {
4883 	(void)perf_event_read(event, false);
4884 	local64_set(&event->count, 0);
4885 	perf_event_update_userpage(event);
4886 }
4887 
4888 /*
4889  * Holding the top-level event's child_mutex means that any
4890  * descendant process that has inherited this event will block
4891  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4892  * task existence requirements of perf_event_enable/disable.
4893  */
4894 static void perf_event_for_each_child(struct perf_event *event,
4895 					void (*func)(struct perf_event *))
4896 {
4897 	struct perf_event *child;
4898 
4899 	WARN_ON_ONCE(event->ctx->parent_ctx);
4900 
4901 	mutex_lock(&event->child_mutex);
4902 	func(event);
4903 	list_for_each_entry(child, &event->child_list, child_list)
4904 		func(child);
4905 	mutex_unlock(&event->child_mutex);
4906 }
4907 
4908 static void perf_event_for_each(struct perf_event *event,
4909 				  void (*func)(struct perf_event *))
4910 {
4911 	struct perf_event_context *ctx = event->ctx;
4912 	struct perf_event *sibling;
4913 
4914 	lockdep_assert_held(&ctx->mutex);
4915 
4916 	event = event->group_leader;
4917 
4918 	perf_event_for_each_child(event, func);
4919 	for_each_sibling_event(sibling, event)
4920 		perf_event_for_each_child(sibling, func);
4921 }
4922 
4923 static void __perf_event_period(struct perf_event *event,
4924 				struct perf_cpu_context *cpuctx,
4925 				struct perf_event_context *ctx,
4926 				void *info)
4927 {
4928 	u64 value = *((u64 *)info);
4929 	bool active;
4930 
4931 	if (event->attr.freq) {
4932 		event->attr.sample_freq = value;
4933 	} else {
4934 		event->attr.sample_period = value;
4935 		event->hw.sample_period = value;
4936 	}
4937 
4938 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4939 	if (active) {
4940 		perf_pmu_disable(ctx->pmu);
4941 		/*
4942 		 * We could be throttled; unthrottle now to avoid the tick
4943 		 * trying to unthrottle while we already re-started the event.
4944 		 */
4945 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4946 			event->hw.interrupts = 0;
4947 			perf_log_throttle(event, 1);
4948 		}
4949 		event->pmu->stop(event, PERF_EF_UPDATE);
4950 	}
4951 
4952 	local64_set(&event->hw.period_left, 0);
4953 
4954 	if (active) {
4955 		event->pmu->start(event, PERF_EF_RELOAD);
4956 		perf_pmu_enable(ctx->pmu);
4957 	}
4958 }
4959 
4960 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4961 {
4962 	u64 value;
4963 
4964 	if (!is_sampling_event(event))
4965 		return -EINVAL;
4966 
4967 	if (copy_from_user(&value, arg, sizeof(value)))
4968 		return -EFAULT;
4969 
4970 	if (!value)
4971 		return -EINVAL;
4972 
4973 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4974 		return -EINVAL;
4975 
4976 	event_function_call(event, __perf_event_period, &value);
4977 
4978 	return 0;
4979 }
4980 
4981 static const struct file_operations perf_fops;
4982 
4983 static inline int perf_fget_light(int fd, struct fd *p)
4984 {
4985 	struct fd f = fdget(fd);
4986 	if (!f.file)
4987 		return -EBADF;
4988 
4989 	if (f.file->f_op != &perf_fops) {
4990 		fdput(f);
4991 		return -EBADF;
4992 	}
4993 	*p = f;
4994 	return 0;
4995 }
4996 
4997 static int perf_event_set_output(struct perf_event *event,
4998 				 struct perf_event *output_event);
4999 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5000 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5001 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5002 			  struct perf_event_attr *attr);
5003 
5004 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5005 {
5006 	void (*func)(struct perf_event *);
5007 	u32 flags = arg;
5008 
5009 	switch (cmd) {
5010 	case PERF_EVENT_IOC_ENABLE:
5011 		func = _perf_event_enable;
5012 		break;
5013 	case PERF_EVENT_IOC_DISABLE:
5014 		func = _perf_event_disable;
5015 		break;
5016 	case PERF_EVENT_IOC_RESET:
5017 		func = _perf_event_reset;
5018 		break;
5019 
5020 	case PERF_EVENT_IOC_REFRESH:
5021 		return _perf_event_refresh(event, arg);
5022 
5023 	case PERF_EVENT_IOC_PERIOD:
5024 		return perf_event_period(event, (u64 __user *)arg);
5025 
5026 	case PERF_EVENT_IOC_ID:
5027 	{
5028 		u64 id = primary_event_id(event);
5029 
5030 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5031 			return -EFAULT;
5032 		return 0;
5033 	}
5034 
5035 	case PERF_EVENT_IOC_SET_OUTPUT:
5036 	{
5037 		int ret;
5038 		if (arg != -1) {
5039 			struct perf_event *output_event;
5040 			struct fd output;
5041 			ret = perf_fget_light(arg, &output);
5042 			if (ret)
5043 				return ret;
5044 			output_event = output.file->private_data;
5045 			ret = perf_event_set_output(event, output_event);
5046 			fdput(output);
5047 		} else {
5048 			ret = perf_event_set_output(event, NULL);
5049 		}
5050 		return ret;
5051 	}
5052 
5053 	case PERF_EVENT_IOC_SET_FILTER:
5054 		return perf_event_set_filter(event, (void __user *)arg);
5055 
5056 	case PERF_EVENT_IOC_SET_BPF:
5057 		return perf_event_set_bpf_prog(event, arg);
5058 
5059 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5060 		struct ring_buffer *rb;
5061 
5062 		rcu_read_lock();
5063 		rb = rcu_dereference(event->rb);
5064 		if (!rb || !rb->nr_pages) {
5065 			rcu_read_unlock();
5066 			return -EINVAL;
5067 		}
5068 		rb_toggle_paused(rb, !!arg);
5069 		rcu_read_unlock();
5070 		return 0;
5071 	}
5072 
5073 	case PERF_EVENT_IOC_QUERY_BPF:
5074 		return perf_event_query_prog_array(event, (void __user *)arg);
5075 
5076 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5077 		struct perf_event_attr new_attr;
5078 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5079 					 &new_attr);
5080 
5081 		if (err)
5082 			return err;
5083 
5084 		return perf_event_modify_attr(event,  &new_attr);
5085 	}
5086 	default:
5087 		return -ENOTTY;
5088 	}
5089 
5090 	if (flags & PERF_IOC_FLAG_GROUP)
5091 		perf_event_for_each(event, func);
5092 	else
5093 		perf_event_for_each_child(event, func);
5094 
5095 	return 0;
5096 }
5097 
5098 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5099 {
5100 	struct perf_event *event = file->private_data;
5101 	struct perf_event_context *ctx;
5102 	long ret;
5103 
5104 	ctx = perf_event_ctx_lock(event);
5105 	ret = _perf_ioctl(event, cmd, arg);
5106 	perf_event_ctx_unlock(event, ctx);
5107 
5108 	return ret;
5109 }
5110 
5111 #ifdef CONFIG_COMPAT
5112 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5113 				unsigned long arg)
5114 {
5115 	switch (_IOC_NR(cmd)) {
5116 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5117 	case _IOC_NR(PERF_EVENT_IOC_ID):
5118 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5119 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5120 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5121 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5122 			cmd &= ~IOCSIZE_MASK;
5123 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5124 		}
5125 		break;
5126 	}
5127 	return perf_ioctl(file, cmd, arg);
5128 }
5129 #else
5130 # define perf_compat_ioctl NULL
5131 #endif
5132 
5133 int perf_event_task_enable(void)
5134 {
5135 	struct perf_event_context *ctx;
5136 	struct perf_event *event;
5137 
5138 	mutex_lock(&current->perf_event_mutex);
5139 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5140 		ctx = perf_event_ctx_lock(event);
5141 		perf_event_for_each_child(event, _perf_event_enable);
5142 		perf_event_ctx_unlock(event, ctx);
5143 	}
5144 	mutex_unlock(&current->perf_event_mutex);
5145 
5146 	return 0;
5147 }
5148 
5149 int perf_event_task_disable(void)
5150 {
5151 	struct perf_event_context *ctx;
5152 	struct perf_event *event;
5153 
5154 	mutex_lock(&current->perf_event_mutex);
5155 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5156 		ctx = perf_event_ctx_lock(event);
5157 		perf_event_for_each_child(event, _perf_event_disable);
5158 		perf_event_ctx_unlock(event, ctx);
5159 	}
5160 	mutex_unlock(&current->perf_event_mutex);
5161 
5162 	return 0;
5163 }
5164 
5165 static int perf_event_index(struct perf_event *event)
5166 {
5167 	if (event->hw.state & PERF_HES_STOPPED)
5168 		return 0;
5169 
5170 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5171 		return 0;
5172 
5173 	return event->pmu->event_idx(event);
5174 }
5175 
5176 static void calc_timer_values(struct perf_event *event,
5177 				u64 *now,
5178 				u64 *enabled,
5179 				u64 *running)
5180 {
5181 	u64 ctx_time;
5182 
5183 	*now = perf_clock();
5184 	ctx_time = event->shadow_ctx_time + *now;
5185 	__perf_update_times(event, ctx_time, enabled, running);
5186 }
5187 
5188 static void perf_event_init_userpage(struct perf_event *event)
5189 {
5190 	struct perf_event_mmap_page *userpg;
5191 	struct ring_buffer *rb;
5192 
5193 	rcu_read_lock();
5194 	rb = rcu_dereference(event->rb);
5195 	if (!rb)
5196 		goto unlock;
5197 
5198 	userpg = rb->user_page;
5199 
5200 	/* Allow new userspace to detect that bit 0 is deprecated */
5201 	userpg->cap_bit0_is_deprecated = 1;
5202 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5203 	userpg->data_offset = PAGE_SIZE;
5204 	userpg->data_size = perf_data_size(rb);
5205 
5206 unlock:
5207 	rcu_read_unlock();
5208 }
5209 
5210 void __weak arch_perf_update_userpage(
5211 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5212 {
5213 }
5214 
5215 /*
5216  * Callers need to ensure there can be no nesting of this function, otherwise
5217  * the seqlock logic goes bad. We can not serialize this because the arch
5218  * code calls this from NMI context.
5219  */
5220 void perf_event_update_userpage(struct perf_event *event)
5221 {
5222 	struct perf_event_mmap_page *userpg;
5223 	struct ring_buffer *rb;
5224 	u64 enabled, running, now;
5225 
5226 	rcu_read_lock();
5227 	rb = rcu_dereference(event->rb);
5228 	if (!rb)
5229 		goto unlock;
5230 
5231 	/*
5232 	 * compute total_time_enabled, total_time_running
5233 	 * based on snapshot values taken when the event
5234 	 * was last scheduled in.
5235 	 *
5236 	 * we cannot simply called update_context_time()
5237 	 * because of locking issue as we can be called in
5238 	 * NMI context
5239 	 */
5240 	calc_timer_values(event, &now, &enabled, &running);
5241 
5242 	userpg = rb->user_page;
5243 	/*
5244 	 * Disable preemption to guarantee consistent time stamps are stored to
5245 	 * the user page.
5246 	 */
5247 	preempt_disable();
5248 	++userpg->lock;
5249 	barrier();
5250 	userpg->index = perf_event_index(event);
5251 	userpg->offset = perf_event_count(event);
5252 	if (userpg->index)
5253 		userpg->offset -= local64_read(&event->hw.prev_count);
5254 
5255 	userpg->time_enabled = enabled +
5256 			atomic64_read(&event->child_total_time_enabled);
5257 
5258 	userpg->time_running = running +
5259 			atomic64_read(&event->child_total_time_running);
5260 
5261 	arch_perf_update_userpage(event, userpg, now);
5262 
5263 	barrier();
5264 	++userpg->lock;
5265 	preempt_enable();
5266 unlock:
5267 	rcu_read_unlock();
5268 }
5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5270 
5271 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5272 {
5273 	struct perf_event *event = vmf->vma->vm_file->private_data;
5274 	struct ring_buffer *rb;
5275 	vm_fault_t ret = VM_FAULT_SIGBUS;
5276 
5277 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5278 		if (vmf->pgoff == 0)
5279 			ret = 0;
5280 		return ret;
5281 	}
5282 
5283 	rcu_read_lock();
5284 	rb = rcu_dereference(event->rb);
5285 	if (!rb)
5286 		goto unlock;
5287 
5288 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5289 		goto unlock;
5290 
5291 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5292 	if (!vmf->page)
5293 		goto unlock;
5294 
5295 	get_page(vmf->page);
5296 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5297 	vmf->page->index   = vmf->pgoff;
5298 
5299 	ret = 0;
5300 unlock:
5301 	rcu_read_unlock();
5302 
5303 	return ret;
5304 }
5305 
5306 static void ring_buffer_attach(struct perf_event *event,
5307 			       struct ring_buffer *rb)
5308 {
5309 	struct ring_buffer *old_rb = NULL;
5310 	unsigned long flags;
5311 
5312 	if (event->rb) {
5313 		/*
5314 		 * Should be impossible, we set this when removing
5315 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5316 		 */
5317 		WARN_ON_ONCE(event->rcu_pending);
5318 
5319 		old_rb = event->rb;
5320 		spin_lock_irqsave(&old_rb->event_lock, flags);
5321 		list_del_rcu(&event->rb_entry);
5322 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5323 
5324 		event->rcu_batches = get_state_synchronize_rcu();
5325 		event->rcu_pending = 1;
5326 	}
5327 
5328 	if (rb) {
5329 		if (event->rcu_pending) {
5330 			cond_synchronize_rcu(event->rcu_batches);
5331 			event->rcu_pending = 0;
5332 		}
5333 
5334 		spin_lock_irqsave(&rb->event_lock, flags);
5335 		list_add_rcu(&event->rb_entry, &rb->event_list);
5336 		spin_unlock_irqrestore(&rb->event_lock, flags);
5337 	}
5338 
5339 	/*
5340 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5341 	 * before swizzling the event::rb pointer; if it's getting
5342 	 * unmapped, its aux_mmap_count will be 0 and it won't
5343 	 * restart. See the comment in __perf_pmu_output_stop().
5344 	 *
5345 	 * Data will inevitably be lost when set_output is done in
5346 	 * mid-air, but then again, whoever does it like this is
5347 	 * not in for the data anyway.
5348 	 */
5349 	if (has_aux(event))
5350 		perf_event_stop(event, 0);
5351 
5352 	rcu_assign_pointer(event->rb, rb);
5353 
5354 	if (old_rb) {
5355 		ring_buffer_put(old_rb);
5356 		/*
5357 		 * Since we detached before setting the new rb, so that we
5358 		 * could attach the new rb, we could have missed a wakeup.
5359 		 * Provide it now.
5360 		 */
5361 		wake_up_all(&event->waitq);
5362 	}
5363 }
5364 
5365 static void ring_buffer_wakeup(struct perf_event *event)
5366 {
5367 	struct ring_buffer *rb;
5368 
5369 	rcu_read_lock();
5370 	rb = rcu_dereference(event->rb);
5371 	if (rb) {
5372 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5373 			wake_up_all(&event->waitq);
5374 	}
5375 	rcu_read_unlock();
5376 }
5377 
5378 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5379 {
5380 	struct ring_buffer *rb;
5381 
5382 	rcu_read_lock();
5383 	rb = rcu_dereference(event->rb);
5384 	if (rb) {
5385 		if (!atomic_inc_not_zero(&rb->refcount))
5386 			rb = NULL;
5387 	}
5388 	rcu_read_unlock();
5389 
5390 	return rb;
5391 }
5392 
5393 void ring_buffer_put(struct ring_buffer *rb)
5394 {
5395 	if (!atomic_dec_and_test(&rb->refcount))
5396 		return;
5397 
5398 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5399 
5400 	call_rcu(&rb->rcu_head, rb_free_rcu);
5401 }
5402 
5403 static void perf_mmap_open(struct vm_area_struct *vma)
5404 {
5405 	struct perf_event *event = vma->vm_file->private_data;
5406 
5407 	atomic_inc(&event->mmap_count);
5408 	atomic_inc(&event->rb->mmap_count);
5409 
5410 	if (vma->vm_pgoff)
5411 		atomic_inc(&event->rb->aux_mmap_count);
5412 
5413 	if (event->pmu->event_mapped)
5414 		event->pmu->event_mapped(event, vma->vm_mm);
5415 }
5416 
5417 static void perf_pmu_output_stop(struct perf_event *event);
5418 
5419 /*
5420  * A buffer can be mmap()ed multiple times; either directly through the same
5421  * event, or through other events by use of perf_event_set_output().
5422  *
5423  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5424  * the buffer here, where we still have a VM context. This means we need
5425  * to detach all events redirecting to us.
5426  */
5427 static void perf_mmap_close(struct vm_area_struct *vma)
5428 {
5429 	struct perf_event *event = vma->vm_file->private_data;
5430 
5431 	struct ring_buffer *rb = ring_buffer_get(event);
5432 	struct user_struct *mmap_user = rb->mmap_user;
5433 	int mmap_locked = rb->mmap_locked;
5434 	unsigned long size = perf_data_size(rb);
5435 
5436 	if (event->pmu->event_unmapped)
5437 		event->pmu->event_unmapped(event, vma->vm_mm);
5438 
5439 	/*
5440 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5441 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5442 	 * serialize with perf_mmap here.
5443 	 */
5444 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5445 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5446 		/*
5447 		 * Stop all AUX events that are writing to this buffer,
5448 		 * so that we can free its AUX pages and corresponding PMU
5449 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5450 		 * they won't start any more (see perf_aux_output_begin()).
5451 		 */
5452 		perf_pmu_output_stop(event);
5453 
5454 		/* now it's safe to free the pages */
5455 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5456 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5457 
5458 		/* this has to be the last one */
5459 		rb_free_aux(rb);
5460 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5461 
5462 		mutex_unlock(&event->mmap_mutex);
5463 	}
5464 
5465 	atomic_dec(&rb->mmap_count);
5466 
5467 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5468 		goto out_put;
5469 
5470 	ring_buffer_attach(event, NULL);
5471 	mutex_unlock(&event->mmap_mutex);
5472 
5473 	/* If there's still other mmap()s of this buffer, we're done. */
5474 	if (atomic_read(&rb->mmap_count))
5475 		goto out_put;
5476 
5477 	/*
5478 	 * No other mmap()s, detach from all other events that might redirect
5479 	 * into the now unreachable buffer. Somewhat complicated by the
5480 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5481 	 */
5482 again:
5483 	rcu_read_lock();
5484 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5485 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5486 			/*
5487 			 * This event is en-route to free_event() which will
5488 			 * detach it and remove it from the list.
5489 			 */
5490 			continue;
5491 		}
5492 		rcu_read_unlock();
5493 
5494 		mutex_lock(&event->mmap_mutex);
5495 		/*
5496 		 * Check we didn't race with perf_event_set_output() which can
5497 		 * swizzle the rb from under us while we were waiting to
5498 		 * acquire mmap_mutex.
5499 		 *
5500 		 * If we find a different rb; ignore this event, a next
5501 		 * iteration will no longer find it on the list. We have to
5502 		 * still restart the iteration to make sure we're not now
5503 		 * iterating the wrong list.
5504 		 */
5505 		if (event->rb == rb)
5506 			ring_buffer_attach(event, NULL);
5507 
5508 		mutex_unlock(&event->mmap_mutex);
5509 		put_event(event);
5510 
5511 		/*
5512 		 * Restart the iteration; either we're on the wrong list or
5513 		 * destroyed its integrity by doing a deletion.
5514 		 */
5515 		goto again;
5516 	}
5517 	rcu_read_unlock();
5518 
5519 	/*
5520 	 * It could be there's still a few 0-ref events on the list; they'll
5521 	 * get cleaned up by free_event() -- they'll also still have their
5522 	 * ref on the rb and will free it whenever they are done with it.
5523 	 *
5524 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5525 	 * undo the VM accounting.
5526 	 */
5527 
5528 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5529 	vma->vm_mm->pinned_vm -= mmap_locked;
5530 	free_uid(mmap_user);
5531 
5532 out_put:
5533 	ring_buffer_put(rb); /* could be last */
5534 }
5535 
5536 static const struct vm_operations_struct perf_mmap_vmops = {
5537 	.open		= perf_mmap_open,
5538 	.close		= perf_mmap_close, /* non mergable */
5539 	.fault		= perf_mmap_fault,
5540 	.page_mkwrite	= perf_mmap_fault,
5541 };
5542 
5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5544 {
5545 	struct perf_event *event = file->private_data;
5546 	unsigned long user_locked, user_lock_limit;
5547 	struct user_struct *user = current_user();
5548 	unsigned long locked, lock_limit;
5549 	struct ring_buffer *rb = NULL;
5550 	unsigned long vma_size;
5551 	unsigned long nr_pages;
5552 	long user_extra = 0, extra = 0;
5553 	int ret = 0, flags = 0;
5554 
5555 	/*
5556 	 * Don't allow mmap() of inherited per-task counters. This would
5557 	 * create a performance issue due to all children writing to the
5558 	 * same rb.
5559 	 */
5560 	if (event->cpu == -1 && event->attr.inherit)
5561 		return -EINVAL;
5562 
5563 	if (!(vma->vm_flags & VM_SHARED))
5564 		return -EINVAL;
5565 
5566 	vma_size = vma->vm_end - vma->vm_start;
5567 
5568 	if (vma->vm_pgoff == 0) {
5569 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5570 	} else {
5571 		/*
5572 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5573 		 * mapped, all subsequent mappings should have the same size
5574 		 * and offset. Must be above the normal perf buffer.
5575 		 */
5576 		u64 aux_offset, aux_size;
5577 
5578 		if (!event->rb)
5579 			return -EINVAL;
5580 
5581 		nr_pages = vma_size / PAGE_SIZE;
5582 
5583 		mutex_lock(&event->mmap_mutex);
5584 		ret = -EINVAL;
5585 
5586 		rb = event->rb;
5587 		if (!rb)
5588 			goto aux_unlock;
5589 
5590 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5591 		aux_size = READ_ONCE(rb->user_page->aux_size);
5592 
5593 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5594 			goto aux_unlock;
5595 
5596 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5597 			goto aux_unlock;
5598 
5599 		/* already mapped with a different offset */
5600 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5601 			goto aux_unlock;
5602 
5603 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5604 			goto aux_unlock;
5605 
5606 		/* already mapped with a different size */
5607 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5608 			goto aux_unlock;
5609 
5610 		if (!is_power_of_2(nr_pages))
5611 			goto aux_unlock;
5612 
5613 		if (!atomic_inc_not_zero(&rb->mmap_count))
5614 			goto aux_unlock;
5615 
5616 		if (rb_has_aux(rb)) {
5617 			atomic_inc(&rb->aux_mmap_count);
5618 			ret = 0;
5619 			goto unlock;
5620 		}
5621 
5622 		atomic_set(&rb->aux_mmap_count, 1);
5623 		user_extra = nr_pages;
5624 
5625 		goto accounting;
5626 	}
5627 
5628 	/*
5629 	 * If we have rb pages ensure they're a power-of-two number, so we
5630 	 * can do bitmasks instead of modulo.
5631 	 */
5632 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5633 		return -EINVAL;
5634 
5635 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5636 		return -EINVAL;
5637 
5638 	WARN_ON_ONCE(event->ctx->parent_ctx);
5639 again:
5640 	mutex_lock(&event->mmap_mutex);
5641 	if (event->rb) {
5642 		if (event->rb->nr_pages != nr_pages) {
5643 			ret = -EINVAL;
5644 			goto unlock;
5645 		}
5646 
5647 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5648 			/*
5649 			 * Raced against perf_mmap_close() through
5650 			 * perf_event_set_output(). Try again, hope for better
5651 			 * luck.
5652 			 */
5653 			mutex_unlock(&event->mmap_mutex);
5654 			goto again;
5655 		}
5656 
5657 		goto unlock;
5658 	}
5659 
5660 	user_extra = nr_pages + 1;
5661 
5662 accounting:
5663 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5664 
5665 	/*
5666 	 * Increase the limit linearly with more CPUs:
5667 	 */
5668 	user_lock_limit *= num_online_cpus();
5669 
5670 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5671 
5672 	if (user_locked > user_lock_limit)
5673 		extra = user_locked - user_lock_limit;
5674 
5675 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5676 	lock_limit >>= PAGE_SHIFT;
5677 	locked = vma->vm_mm->pinned_vm + extra;
5678 
5679 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5680 		!capable(CAP_IPC_LOCK)) {
5681 		ret = -EPERM;
5682 		goto unlock;
5683 	}
5684 
5685 	WARN_ON(!rb && event->rb);
5686 
5687 	if (vma->vm_flags & VM_WRITE)
5688 		flags |= RING_BUFFER_WRITABLE;
5689 
5690 	if (!rb) {
5691 		rb = rb_alloc(nr_pages,
5692 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5693 			      event->cpu, flags);
5694 
5695 		if (!rb) {
5696 			ret = -ENOMEM;
5697 			goto unlock;
5698 		}
5699 
5700 		atomic_set(&rb->mmap_count, 1);
5701 		rb->mmap_user = get_current_user();
5702 		rb->mmap_locked = extra;
5703 
5704 		ring_buffer_attach(event, rb);
5705 
5706 		perf_event_init_userpage(event);
5707 		perf_event_update_userpage(event);
5708 	} else {
5709 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5710 				   event->attr.aux_watermark, flags);
5711 		if (!ret)
5712 			rb->aux_mmap_locked = extra;
5713 	}
5714 
5715 unlock:
5716 	if (!ret) {
5717 		atomic_long_add(user_extra, &user->locked_vm);
5718 		vma->vm_mm->pinned_vm += extra;
5719 
5720 		atomic_inc(&event->mmap_count);
5721 	} else if (rb) {
5722 		atomic_dec(&rb->mmap_count);
5723 	}
5724 aux_unlock:
5725 	mutex_unlock(&event->mmap_mutex);
5726 
5727 	/*
5728 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5729 	 * vma.
5730 	 */
5731 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5732 	vma->vm_ops = &perf_mmap_vmops;
5733 
5734 	if (event->pmu->event_mapped)
5735 		event->pmu->event_mapped(event, vma->vm_mm);
5736 
5737 	return ret;
5738 }
5739 
5740 static int perf_fasync(int fd, struct file *filp, int on)
5741 {
5742 	struct inode *inode = file_inode(filp);
5743 	struct perf_event *event = filp->private_data;
5744 	int retval;
5745 
5746 	inode_lock(inode);
5747 	retval = fasync_helper(fd, filp, on, &event->fasync);
5748 	inode_unlock(inode);
5749 
5750 	if (retval < 0)
5751 		return retval;
5752 
5753 	return 0;
5754 }
5755 
5756 static const struct file_operations perf_fops = {
5757 	.llseek			= no_llseek,
5758 	.release		= perf_release,
5759 	.read			= perf_read,
5760 	.poll			= perf_poll,
5761 	.unlocked_ioctl		= perf_ioctl,
5762 	.compat_ioctl		= perf_compat_ioctl,
5763 	.mmap			= perf_mmap,
5764 	.fasync			= perf_fasync,
5765 };
5766 
5767 /*
5768  * Perf event wakeup
5769  *
5770  * If there's data, ensure we set the poll() state and publish everything
5771  * to user-space before waking everybody up.
5772  */
5773 
5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5775 {
5776 	/* only the parent has fasync state */
5777 	if (event->parent)
5778 		event = event->parent;
5779 	return &event->fasync;
5780 }
5781 
5782 void perf_event_wakeup(struct perf_event *event)
5783 {
5784 	ring_buffer_wakeup(event);
5785 
5786 	if (event->pending_kill) {
5787 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5788 		event->pending_kill = 0;
5789 	}
5790 }
5791 
5792 static void perf_pending_event(struct irq_work *entry)
5793 {
5794 	struct perf_event *event = container_of(entry,
5795 			struct perf_event, pending);
5796 	int rctx;
5797 
5798 	rctx = perf_swevent_get_recursion_context();
5799 	/*
5800 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5801 	 * and we won't recurse 'further'.
5802 	 */
5803 
5804 	if (event->pending_disable) {
5805 		event->pending_disable = 0;
5806 		perf_event_disable_local(event);
5807 	}
5808 
5809 	if (event->pending_wakeup) {
5810 		event->pending_wakeup = 0;
5811 		perf_event_wakeup(event);
5812 	}
5813 
5814 	if (rctx >= 0)
5815 		perf_swevent_put_recursion_context(rctx);
5816 }
5817 
5818 /*
5819  * We assume there is only KVM supporting the callbacks.
5820  * Later on, we might change it to a list if there is
5821  * another virtualization implementation supporting the callbacks.
5822  */
5823 struct perf_guest_info_callbacks *perf_guest_cbs;
5824 
5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5826 {
5827 	perf_guest_cbs = cbs;
5828 	return 0;
5829 }
5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5831 
5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5833 {
5834 	perf_guest_cbs = NULL;
5835 	return 0;
5836 }
5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5838 
5839 static void
5840 perf_output_sample_regs(struct perf_output_handle *handle,
5841 			struct pt_regs *regs, u64 mask)
5842 {
5843 	int bit;
5844 	DECLARE_BITMAP(_mask, 64);
5845 
5846 	bitmap_from_u64(_mask, mask);
5847 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5848 		u64 val;
5849 
5850 		val = perf_reg_value(regs, bit);
5851 		perf_output_put(handle, val);
5852 	}
5853 }
5854 
5855 static void perf_sample_regs_user(struct perf_regs *regs_user,
5856 				  struct pt_regs *regs,
5857 				  struct pt_regs *regs_user_copy)
5858 {
5859 	if (user_mode(regs)) {
5860 		regs_user->abi = perf_reg_abi(current);
5861 		regs_user->regs = regs;
5862 	} else if (current->mm) {
5863 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5864 	} else {
5865 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5866 		regs_user->regs = NULL;
5867 	}
5868 }
5869 
5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5871 				  struct pt_regs *regs)
5872 {
5873 	regs_intr->regs = regs;
5874 	regs_intr->abi  = perf_reg_abi(current);
5875 }
5876 
5877 
5878 /*
5879  * Get remaining task size from user stack pointer.
5880  *
5881  * It'd be better to take stack vma map and limit this more
5882  * precisly, but there's no way to get it safely under interrupt,
5883  * so using TASK_SIZE as limit.
5884  */
5885 static u64 perf_ustack_task_size(struct pt_regs *regs)
5886 {
5887 	unsigned long addr = perf_user_stack_pointer(regs);
5888 
5889 	if (!addr || addr >= TASK_SIZE)
5890 		return 0;
5891 
5892 	return TASK_SIZE - addr;
5893 }
5894 
5895 static u16
5896 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5897 			struct pt_regs *regs)
5898 {
5899 	u64 task_size;
5900 
5901 	/* No regs, no stack pointer, no dump. */
5902 	if (!regs)
5903 		return 0;
5904 
5905 	/*
5906 	 * Check if we fit in with the requested stack size into the:
5907 	 * - TASK_SIZE
5908 	 *   If we don't, we limit the size to the TASK_SIZE.
5909 	 *
5910 	 * - remaining sample size
5911 	 *   If we don't, we customize the stack size to
5912 	 *   fit in to the remaining sample size.
5913 	 */
5914 
5915 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5916 	stack_size = min(stack_size, (u16) task_size);
5917 
5918 	/* Current header size plus static size and dynamic size. */
5919 	header_size += 2 * sizeof(u64);
5920 
5921 	/* Do we fit in with the current stack dump size? */
5922 	if ((u16) (header_size + stack_size) < header_size) {
5923 		/*
5924 		 * If we overflow the maximum size for the sample,
5925 		 * we customize the stack dump size to fit in.
5926 		 */
5927 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5928 		stack_size = round_up(stack_size, sizeof(u64));
5929 	}
5930 
5931 	return stack_size;
5932 }
5933 
5934 static void
5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5936 			  struct pt_regs *regs)
5937 {
5938 	/* Case of a kernel thread, nothing to dump */
5939 	if (!regs) {
5940 		u64 size = 0;
5941 		perf_output_put(handle, size);
5942 	} else {
5943 		unsigned long sp;
5944 		unsigned int rem;
5945 		u64 dyn_size;
5946 		mm_segment_t fs;
5947 
5948 		/*
5949 		 * We dump:
5950 		 * static size
5951 		 *   - the size requested by user or the best one we can fit
5952 		 *     in to the sample max size
5953 		 * data
5954 		 *   - user stack dump data
5955 		 * dynamic size
5956 		 *   - the actual dumped size
5957 		 */
5958 
5959 		/* Static size. */
5960 		perf_output_put(handle, dump_size);
5961 
5962 		/* Data. */
5963 		sp = perf_user_stack_pointer(regs);
5964 		fs = get_fs();
5965 		set_fs(USER_DS);
5966 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5967 		set_fs(fs);
5968 		dyn_size = dump_size - rem;
5969 
5970 		perf_output_skip(handle, rem);
5971 
5972 		/* Dynamic size. */
5973 		perf_output_put(handle, dyn_size);
5974 	}
5975 }
5976 
5977 static void __perf_event_header__init_id(struct perf_event_header *header,
5978 					 struct perf_sample_data *data,
5979 					 struct perf_event *event)
5980 {
5981 	u64 sample_type = event->attr.sample_type;
5982 
5983 	data->type = sample_type;
5984 	header->size += event->id_header_size;
5985 
5986 	if (sample_type & PERF_SAMPLE_TID) {
5987 		/* namespace issues */
5988 		data->tid_entry.pid = perf_event_pid(event, current);
5989 		data->tid_entry.tid = perf_event_tid(event, current);
5990 	}
5991 
5992 	if (sample_type & PERF_SAMPLE_TIME)
5993 		data->time = perf_event_clock(event);
5994 
5995 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5996 		data->id = primary_event_id(event);
5997 
5998 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5999 		data->stream_id = event->id;
6000 
6001 	if (sample_type & PERF_SAMPLE_CPU) {
6002 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6003 		data->cpu_entry.reserved = 0;
6004 	}
6005 }
6006 
6007 void perf_event_header__init_id(struct perf_event_header *header,
6008 				struct perf_sample_data *data,
6009 				struct perf_event *event)
6010 {
6011 	if (event->attr.sample_id_all)
6012 		__perf_event_header__init_id(header, data, event);
6013 }
6014 
6015 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6016 					   struct perf_sample_data *data)
6017 {
6018 	u64 sample_type = data->type;
6019 
6020 	if (sample_type & PERF_SAMPLE_TID)
6021 		perf_output_put(handle, data->tid_entry);
6022 
6023 	if (sample_type & PERF_SAMPLE_TIME)
6024 		perf_output_put(handle, data->time);
6025 
6026 	if (sample_type & PERF_SAMPLE_ID)
6027 		perf_output_put(handle, data->id);
6028 
6029 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6030 		perf_output_put(handle, data->stream_id);
6031 
6032 	if (sample_type & PERF_SAMPLE_CPU)
6033 		perf_output_put(handle, data->cpu_entry);
6034 
6035 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6036 		perf_output_put(handle, data->id);
6037 }
6038 
6039 void perf_event__output_id_sample(struct perf_event *event,
6040 				  struct perf_output_handle *handle,
6041 				  struct perf_sample_data *sample)
6042 {
6043 	if (event->attr.sample_id_all)
6044 		__perf_event__output_id_sample(handle, sample);
6045 }
6046 
6047 static void perf_output_read_one(struct perf_output_handle *handle,
6048 				 struct perf_event *event,
6049 				 u64 enabled, u64 running)
6050 {
6051 	u64 read_format = event->attr.read_format;
6052 	u64 values[4];
6053 	int n = 0;
6054 
6055 	values[n++] = perf_event_count(event);
6056 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6057 		values[n++] = enabled +
6058 			atomic64_read(&event->child_total_time_enabled);
6059 	}
6060 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6061 		values[n++] = running +
6062 			atomic64_read(&event->child_total_time_running);
6063 	}
6064 	if (read_format & PERF_FORMAT_ID)
6065 		values[n++] = primary_event_id(event);
6066 
6067 	__output_copy(handle, values, n * sizeof(u64));
6068 }
6069 
6070 static void perf_output_read_group(struct perf_output_handle *handle,
6071 			    struct perf_event *event,
6072 			    u64 enabled, u64 running)
6073 {
6074 	struct perf_event *leader = event->group_leader, *sub;
6075 	u64 read_format = event->attr.read_format;
6076 	u64 values[5];
6077 	int n = 0;
6078 
6079 	values[n++] = 1 + leader->nr_siblings;
6080 
6081 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6082 		values[n++] = enabled;
6083 
6084 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6085 		values[n++] = running;
6086 
6087 	if ((leader != event) &&
6088 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6089 		leader->pmu->read(leader);
6090 
6091 	values[n++] = perf_event_count(leader);
6092 	if (read_format & PERF_FORMAT_ID)
6093 		values[n++] = primary_event_id(leader);
6094 
6095 	__output_copy(handle, values, n * sizeof(u64));
6096 
6097 	for_each_sibling_event(sub, leader) {
6098 		n = 0;
6099 
6100 		if ((sub != event) &&
6101 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6102 			sub->pmu->read(sub);
6103 
6104 		values[n++] = perf_event_count(sub);
6105 		if (read_format & PERF_FORMAT_ID)
6106 			values[n++] = primary_event_id(sub);
6107 
6108 		__output_copy(handle, values, n * sizeof(u64));
6109 	}
6110 }
6111 
6112 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6113 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6114 
6115 /*
6116  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6117  *
6118  * The problem is that its both hard and excessively expensive to iterate the
6119  * child list, not to mention that its impossible to IPI the children running
6120  * on another CPU, from interrupt/NMI context.
6121  */
6122 static void perf_output_read(struct perf_output_handle *handle,
6123 			     struct perf_event *event)
6124 {
6125 	u64 enabled = 0, running = 0, now;
6126 	u64 read_format = event->attr.read_format;
6127 
6128 	/*
6129 	 * compute total_time_enabled, total_time_running
6130 	 * based on snapshot values taken when the event
6131 	 * was last scheduled in.
6132 	 *
6133 	 * we cannot simply called update_context_time()
6134 	 * because of locking issue as we are called in
6135 	 * NMI context
6136 	 */
6137 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6138 		calc_timer_values(event, &now, &enabled, &running);
6139 
6140 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6141 		perf_output_read_group(handle, event, enabled, running);
6142 	else
6143 		perf_output_read_one(handle, event, enabled, running);
6144 }
6145 
6146 void perf_output_sample(struct perf_output_handle *handle,
6147 			struct perf_event_header *header,
6148 			struct perf_sample_data *data,
6149 			struct perf_event *event)
6150 {
6151 	u64 sample_type = data->type;
6152 
6153 	perf_output_put(handle, *header);
6154 
6155 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6156 		perf_output_put(handle, data->id);
6157 
6158 	if (sample_type & PERF_SAMPLE_IP)
6159 		perf_output_put(handle, data->ip);
6160 
6161 	if (sample_type & PERF_SAMPLE_TID)
6162 		perf_output_put(handle, data->tid_entry);
6163 
6164 	if (sample_type & PERF_SAMPLE_TIME)
6165 		perf_output_put(handle, data->time);
6166 
6167 	if (sample_type & PERF_SAMPLE_ADDR)
6168 		perf_output_put(handle, data->addr);
6169 
6170 	if (sample_type & PERF_SAMPLE_ID)
6171 		perf_output_put(handle, data->id);
6172 
6173 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6174 		perf_output_put(handle, data->stream_id);
6175 
6176 	if (sample_type & PERF_SAMPLE_CPU)
6177 		perf_output_put(handle, data->cpu_entry);
6178 
6179 	if (sample_type & PERF_SAMPLE_PERIOD)
6180 		perf_output_put(handle, data->period);
6181 
6182 	if (sample_type & PERF_SAMPLE_READ)
6183 		perf_output_read(handle, event);
6184 
6185 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6186 		int size = 1;
6187 
6188 		size += data->callchain->nr;
6189 		size *= sizeof(u64);
6190 		__output_copy(handle, data->callchain, size);
6191 	}
6192 
6193 	if (sample_type & PERF_SAMPLE_RAW) {
6194 		struct perf_raw_record *raw = data->raw;
6195 
6196 		if (raw) {
6197 			struct perf_raw_frag *frag = &raw->frag;
6198 
6199 			perf_output_put(handle, raw->size);
6200 			do {
6201 				if (frag->copy) {
6202 					__output_custom(handle, frag->copy,
6203 							frag->data, frag->size);
6204 				} else {
6205 					__output_copy(handle, frag->data,
6206 						      frag->size);
6207 				}
6208 				if (perf_raw_frag_last(frag))
6209 					break;
6210 				frag = frag->next;
6211 			} while (1);
6212 			if (frag->pad)
6213 				__output_skip(handle, NULL, frag->pad);
6214 		} else {
6215 			struct {
6216 				u32	size;
6217 				u32	data;
6218 			} raw = {
6219 				.size = sizeof(u32),
6220 				.data = 0,
6221 			};
6222 			perf_output_put(handle, raw);
6223 		}
6224 	}
6225 
6226 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6227 		if (data->br_stack) {
6228 			size_t size;
6229 
6230 			size = data->br_stack->nr
6231 			     * sizeof(struct perf_branch_entry);
6232 
6233 			perf_output_put(handle, data->br_stack->nr);
6234 			perf_output_copy(handle, data->br_stack->entries, size);
6235 		} else {
6236 			/*
6237 			 * we always store at least the value of nr
6238 			 */
6239 			u64 nr = 0;
6240 			perf_output_put(handle, nr);
6241 		}
6242 	}
6243 
6244 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6245 		u64 abi = data->regs_user.abi;
6246 
6247 		/*
6248 		 * If there are no regs to dump, notice it through
6249 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6250 		 */
6251 		perf_output_put(handle, abi);
6252 
6253 		if (abi) {
6254 			u64 mask = event->attr.sample_regs_user;
6255 			perf_output_sample_regs(handle,
6256 						data->regs_user.regs,
6257 						mask);
6258 		}
6259 	}
6260 
6261 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6262 		perf_output_sample_ustack(handle,
6263 					  data->stack_user_size,
6264 					  data->regs_user.regs);
6265 	}
6266 
6267 	if (sample_type & PERF_SAMPLE_WEIGHT)
6268 		perf_output_put(handle, data->weight);
6269 
6270 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6271 		perf_output_put(handle, data->data_src.val);
6272 
6273 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6274 		perf_output_put(handle, data->txn);
6275 
6276 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6277 		u64 abi = data->regs_intr.abi;
6278 		/*
6279 		 * If there are no regs to dump, notice it through
6280 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6281 		 */
6282 		perf_output_put(handle, abi);
6283 
6284 		if (abi) {
6285 			u64 mask = event->attr.sample_regs_intr;
6286 
6287 			perf_output_sample_regs(handle,
6288 						data->regs_intr.regs,
6289 						mask);
6290 		}
6291 	}
6292 
6293 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6294 		perf_output_put(handle, data->phys_addr);
6295 
6296 	if (!event->attr.watermark) {
6297 		int wakeup_events = event->attr.wakeup_events;
6298 
6299 		if (wakeup_events) {
6300 			struct ring_buffer *rb = handle->rb;
6301 			int events = local_inc_return(&rb->events);
6302 
6303 			if (events >= wakeup_events) {
6304 				local_sub(wakeup_events, &rb->events);
6305 				local_inc(&rb->wakeup);
6306 			}
6307 		}
6308 	}
6309 }
6310 
6311 static u64 perf_virt_to_phys(u64 virt)
6312 {
6313 	u64 phys_addr = 0;
6314 	struct page *p = NULL;
6315 
6316 	if (!virt)
6317 		return 0;
6318 
6319 	if (virt >= TASK_SIZE) {
6320 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6321 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6322 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6323 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6324 	} else {
6325 		/*
6326 		 * Walking the pages tables for user address.
6327 		 * Interrupts are disabled, so it prevents any tear down
6328 		 * of the page tables.
6329 		 * Try IRQ-safe __get_user_pages_fast first.
6330 		 * If failed, leave phys_addr as 0.
6331 		 */
6332 		if ((current->mm != NULL) &&
6333 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6334 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6335 
6336 		if (p)
6337 			put_page(p);
6338 	}
6339 
6340 	return phys_addr;
6341 }
6342 
6343 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6344 
6345 struct perf_callchain_entry *
6346 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6347 {
6348 	bool kernel = !event->attr.exclude_callchain_kernel;
6349 	bool user   = !event->attr.exclude_callchain_user;
6350 	/* Disallow cross-task user callchains. */
6351 	bool crosstask = event->ctx->task && event->ctx->task != current;
6352 	const u32 max_stack = event->attr.sample_max_stack;
6353 	struct perf_callchain_entry *callchain;
6354 
6355 	if (!kernel && !user)
6356 		return &__empty_callchain;
6357 
6358 	callchain = get_perf_callchain(regs, 0, kernel, user,
6359 				       max_stack, crosstask, true);
6360 	return callchain ?: &__empty_callchain;
6361 }
6362 
6363 void perf_prepare_sample(struct perf_event_header *header,
6364 			 struct perf_sample_data *data,
6365 			 struct perf_event *event,
6366 			 struct pt_regs *regs)
6367 {
6368 	u64 sample_type = event->attr.sample_type;
6369 
6370 	header->type = PERF_RECORD_SAMPLE;
6371 	header->size = sizeof(*header) + event->header_size;
6372 
6373 	header->misc = 0;
6374 	header->misc |= perf_misc_flags(regs);
6375 
6376 	__perf_event_header__init_id(header, data, event);
6377 
6378 	if (sample_type & PERF_SAMPLE_IP)
6379 		data->ip = perf_instruction_pointer(regs);
6380 
6381 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6382 		int size = 1;
6383 
6384 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6385 			data->callchain = perf_callchain(event, regs);
6386 
6387 		size += data->callchain->nr;
6388 
6389 		header->size += size * sizeof(u64);
6390 	}
6391 
6392 	if (sample_type & PERF_SAMPLE_RAW) {
6393 		struct perf_raw_record *raw = data->raw;
6394 		int size;
6395 
6396 		if (raw) {
6397 			struct perf_raw_frag *frag = &raw->frag;
6398 			u32 sum = 0;
6399 
6400 			do {
6401 				sum += frag->size;
6402 				if (perf_raw_frag_last(frag))
6403 					break;
6404 				frag = frag->next;
6405 			} while (1);
6406 
6407 			size = round_up(sum + sizeof(u32), sizeof(u64));
6408 			raw->size = size - sizeof(u32);
6409 			frag->pad = raw->size - sum;
6410 		} else {
6411 			size = sizeof(u64);
6412 		}
6413 
6414 		header->size += size;
6415 	}
6416 
6417 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6418 		int size = sizeof(u64); /* nr */
6419 		if (data->br_stack) {
6420 			size += data->br_stack->nr
6421 			      * sizeof(struct perf_branch_entry);
6422 		}
6423 		header->size += size;
6424 	}
6425 
6426 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6427 		perf_sample_regs_user(&data->regs_user, regs,
6428 				      &data->regs_user_copy);
6429 
6430 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6431 		/* regs dump ABI info */
6432 		int size = sizeof(u64);
6433 
6434 		if (data->regs_user.regs) {
6435 			u64 mask = event->attr.sample_regs_user;
6436 			size += hweight64(mask) * sizeof(u64);
6437 		}
6438 
6439 		header->size += size;
6440 	}
6441 
6442 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6443 		/*
6444 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6445 		 * processed as the last one or have additional check added
6446 		 * in case new sample type is added, because we could eat
6447 		 * up the rest of the sample size.
6448 		 */
6449 		u16 stack_size = event->attr.sample_stack_user;
6450 		u16 size = sizeof(u64);
6451 
6452 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6453 						     data->regs_user.regs);
6454 
6455 		/*
6456 		 * If there is something to dump, add space for the dump
6457 		 * itself and for the field that tells the dynamic size,
6458 		 * which is how many have been actually dumped.
6459 		 */
6460 		if (stack_size)
6461 			size += sizeof(u64) + stack_size;
6462 
6463 		data->stack_user_size = stack_size;
6464 		header->size += size;
6465 	}
6466 
6467 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6468 		/* regs dump ABI info */
6469 		int size = sizeof(u64);
6470 
6471 		perf_sample_regs_intr(&data->regs_intr, regs);
6472 
6473 		if (data->regs_intr.regs) {
6474 			u64 mask = event->attr.sample_regs_intr;
6475 
6476 			size += hweight64(mask) * sizeof(u64);
6477 		}
6478 
6479 		header->size += size;
6480 	}
6481 
6482 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6483 		data->phys_addr = perf_virt_to_phys(data->addr);
6484 }
6485 
6486 static __always_inline void
6487 __perf_event_output(struct perf_event *event,
6488 		    struct perf_sample_data *data,
6489 		    struct pt_regs *regs,
6490 		    int (*output_begin)(struct perf_output_handle *,
6491 					struct perf_event *,
6492 					unsigned int))
6493 {
6494 	struct perf_output_handle handle;
6495 	struct perf_event_header header;
6496 
6497 	/* protect the callchain buffers */
6498 	rcu_read_lock();
6499 
6500 	perf_prepare_sample(&header, data, event, regs);
6501 
6502 	if (output_begin(&handle, event, header.size))
6503 		goto exit;
6504 
6505 	perf_output_sample(&handle, &header, data, event);
6506 
6507 	perf_output_end(&handle);
6508 
6509 exit:
6510 	rcu_read_unlock();
6511 }
6512 
6513 void
6514 perf_event_output_forward(struct perf_event *event,
6515 			 struct perf_sample_data *data,
6516 			 struct pt_regs *regs)
6517 {
6518 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6519 }
6520 
6521 void
6522 perf_event_output_backward(struct perf_event *event,
6523 			   struct perf_sample_data *data,
6524 			   struct pt_regs *regs)
6525 {
6526 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6527 }
6528 
6529 void
6530 perf_event_output(struct perf_event *event,
6531 		  struct perf_sample_data *data,
6532 		  struct pt_regs *regs)
6533 {
6534 	__perf_event_output(event, data, regs, perf_output_begin);
6535 }
6536 
6537 /*
6538  * read event_id
6539  */
6540 
6541 struct perf_read_event {
6542 	struct perf_event_header	header;
6543 
6544 	u32				pid;
6545 	u32				tid;
6546 };
6547 
6548 static void
6549 perf_event_read_event(struct perf_event *event,
6550 			struct task_struct *task)
6551 {
6552 	struct perf_output_handle handle;
6553 	struct perf_sample_data sample;
6554 	struct perf_read_event read_event = {
6555 		.header = {
6556 			.type = PERF_RECORD_READ,
6557 			.misc = 0,
6558 			.size = sizeof(read_event) + event->read_size,
6559 		},
6560 		.pid = perf_event_pid(event, task),
6561 		.tid = perf_event_tid(event, task),
6562 	};
6563 	int ret;
6564 
6565 	perf_event_header__init_id(&read_event.header, &sample, event);
6566 	ret = perf_output_begin(&handle, event, read_event.header.size);
6567 	if (ret)
6568 		return;
6569 
6570 	perf_output_put(&handle, read_event);
6571 	perf_output_read(&handle, event);
6572 	perf_event__output_id_sample(event, &handle, &sample);
6573 
6574 	perf_output_end(&handle);
6575 }
6576 
6577 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6578 
6579 static void
6580 perf_iterate_ctx(struct perf_event_context *ctx,
6581 		   perf_iterate_f output,
6582 		   void *data, bool all)
6583 {
6584 	struct perf_event *event;
6585 
6586 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6587 		if (!all) {
6588 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6589 				continue;
6590 			if (!event_filter_match(event))
6591 				continue;
6592 		}
6593 
6594 		output(event, data);
6595 	}
6596 }
6597 
6598 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6599 {
6600 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6601 	struct perf_event *event;
6602 
6603 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6604 		/*
6605 		 * Skip events that are not fully formed yet; ensure that
6606 		 * if we observe event->ctx, both event and ctx will be
6607 		 * complete enough. See perf_install_in_context().
6608 		 */
6609 		if (!smp_load_acquire(&event->ctx))
6610 			continue;
6611 
6612 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6613 			continue;
6614 		if (!event_filter_match(event))
6615 			continue;
6616 		output(event, data);
6617 	}
6618 }
6619 
6620 /*
6621  * Iterate all events that need to receive side-band events.
6622  *
6623  * For new callers; ensure that account_pmu_sb_event() includes
6624  * your event, otherwise it might not get delivered.
6625  */
6626 static void
6627 perf_iterate_sb(perf_iterate_f output, void *data,
6628 	       struct perf_event_context *task_ctx)
6629 {
6630 	struct perf_event_context *ctx;
6631 	int ctxn;
6632 
6633 	rcu_read_lock();
6634 	preempt_disable();
6635 
6636 	/*
6637 	 * If we have task_ctx != NULL we only notify the task context itself.
6638 	 * The task_ctx is set only for EXIT events before releasing task
6639 	 * context.
6640 	 */
6641 	if (task_ctx) {
6642 		perf_iterate_ctx(task_ctx, output, data, false);
6643 		goto done;
6644 	}
6645 
6646 	perf_iterate_sb_cpu(output, data);
6647 
6648 	for_each_task_context_nr(ctxn) {
6649 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6650 		if (ctx)
6651 			perf_iterate_ctx(ctx, output, data, false);
6652 	}
6653 done:
6654 	preempt_enable();
6655 	rcu_read_unlock();
6656 }
6657 
6658 /*
6659  * Clear all file-based filters at exec, they'll have to be
6660  * re-instated when/if these objects are mmapped again.
6661  */
6662 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6663 {
6664 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6665 	struct perf_addr_filter *filter;
6666 	unsigned int restart = 0, count = 0;
6667 	unsigned long flags;
6668 
6669 	if (!has_addr_filter(event))
6670 		return;
6671 
6672 	raw_spin_lock_irqsave(&ifh->lock, flags);
6673 	list_for_each_entry(filter, &ifh->list, entry) {
6674 		if (filter->path.dentry) {
6675 			event->addr_filters_offs[count] = 0;
6676 			restart++;
6677 		}
6678 
6679 		count++;
6680 	}
6681 
6682 	if (restart)
6683 		event->addr_filters_gen++;
6684 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6685 
6686 	if (restart)
6687 		perf_event_stop(event, 1);
6688 }
6689 
6690 void perf_event_exec(void)
6691 {
6692 	struct perf_event_context *ctx;
6693 	int ctxn;
6694 
6695 	rcu_read_lock();
6696 	for_each_task_context_nr(ctxn) {
6697 		ctx = current->perf_event_ctxp[ctxn];
6698 		if (!ctx)
6699 			continue;
6700 
6701 		perf_event_enable_on_exec(ctxn);
6702 
6703 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6704 				   true);
6705 	}
6706 	rcu_read_unlock();
6707 }
6708 
6709 struct remote_output {
6710 	struct ring_buffer	*rb;
6711 	int			err;
6712 };
6713 
6714 static void __perf_event_output_stop(struct perf_event *event, void *data)
6715 {
6716 	struct perf_event *parent = event->parent;
6717 	struct remote_output *ro = data;
6718 	struct ring_buffer *rb = ro->rb;
6719 	struct stop_event_data sd = {
6720 		.event	= event,
6721 	};
6722 
6723 	if (!has_aux(event))
6724 		return;
6725 
6726 	if (!parent)
6727 		parent = event;
6728 
6729 	/*
6730 	 * In case of inheritance, it will be the parent that links to the
6731 	 * ring-buffer, but it will be the child that's actually using it.
6732 	 *
6733 	 * We are using event::rb to determine if the event should be stopped,
6734 	 * however this may race with ring_buffer_attach() (through set_output),
6735 	 * which will make us skip the event that actually needs to be stopped.
6736 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6737 	 * its rb pointer.
6738 	 */
6739 	if (rcu_dereference(parent->rb) == rb)
6740 		ro->err = __perf_event_stop(&sd);
6741 }
6742 
6743 static int __perf_pmu_output_stop(void *info)
6744 {
6745 	struct perf_event *event = info;
6746 	struct pmu *pmu = event->pmu;
6747 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6748 	struct remote_output ro = {
6749 		.rb	= event->rb,
6750 	};
6751 
6752 	rcu_read_lock();
6753 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6754 	if (cpuctx->task_ctx)
6755 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6756 				   &ro, false);
6757 	rcu_read_unlock();
6758 
6759 	return ro.err;
6760 }
6761 
6762 static void perf_pmu_output_stop(struct perf_event *event)
6763 {
6764 	struct perf_event *iter;
6765 	int err, cpu;
6766 
6767 restart:
6768 	rcu_read_lock();
6769 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6770 		/*
6771 		 * For per-CPU events, we need to make sure that neither they
6772 		 * nor their children are running; for cpu==-1 events it's
6773 		 * sufficient to stop the event itself if it's active, since
6774 		 * it can't have children.
6775 		 */
6776 		cpu = iter->cpu;
6777 		if (cpu == -1)
6778 			cpu = READ_ONCE(iter->oncpu);
6779 
6780 		if (cpu == -1)
6781 			continue;
6782 
6783 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6784 		if (err == -EAGAIN) {
6785 			rcu_read_unlock();
6786 			goto restart;
6787 		}
6788 	}
6789 	rcu_read_unlock();
6790 }
6791 
6792 /*
6793  * task tracking -- fork/exit
6794  *
6795  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6796  */
6797 
6798 struct perf_task_event {
6799 	struct task_struct		*task;
6800 	struct perf_event_context	*task_ctx;
6801 
6802 	struct {
6803 		struct perf_event_header	header;
6804 
6805 		u32				pid;
6806 		u32				ppid;
6807 		u32				tid;
6808 		u32				ptid;
6809 		u64				time;
6810 	} event_id;
6811 };
6812 
6813 static int perf_event_task_match(struct perf_event *event)
6814 {
6815 	return event->attr.comm  || event->attr.mmap ||
6816 	       event->attr.mmap2 || event->attr.mmap_data ||
6817 	       event->attr.task;
6818 }
6819 
6820 static void perf_event_task_output(struct perf_event *event,
6821 				   void *data)
6822 {
6823 	struct perf_task_event *task_event = data;
6824 	struct perf_output_handle handle;
6825 	struct perf_sample_data	sample;
6826 	struct task_struct *task = task_event->task;
6827 	int ret, size = task_event->event_id.header.size;
6828 
6829 	if (!perf_event_task_match(event))
6830 		return;
6831 
6832 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6833 
6834 	ret = perf_output_begin(&handle, event,
6835 				task_event->event_id.header.size);
6836 	if (ret)
6837 		goto out;
6838 
6839 	task_event->event_id.pid = perf_event_pid(event, task);
6840 	task_event->event_id.ppid = perf_event_pid(event, current);
6841 
6842 	task_event->event_id.tid = perf_event_tid(event, task);
6843 	task_event->event_id.ptid = perf_event_tid(event, current);
6844 
6845 	task_event->event_id.time = perf_event_clock(event);
6846 
6847 	perf_output_put(&handle, task_event->event_id);
6848 
6849 	perf_event__output_id_sample(event, &handle, &sample);
6850 
6851 	perf_output_end(&handle);
6852 out:
6853 	task_event->event_id.header.size = size;
6854 }
6855 
6856 static void perf_event_task(struct task_struct *task,
6857 			      struct perf_event_context *task_ctx,
6858 			      int new)
6859 {
6860 	struct perf_task_event task_event;
6861 
6862 	if (!atomic_read(&nr_comm_events) &&
6863 	    !atomic_read(&nr_mmap_events) &&
6864 	    !atomic_read(&nr_task_events))
6865 		return;
6866 
6867 	task_event = (struct perf_task_event){
6868 		.task	  = task,
6869 		.task_ctx = task_ctx,
6870 		.event_id    = {
6871 			.header = {
6872 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6873 				.misc = 0,
6874 				.size = sizeof(task_event.event_id),
6875 			},
6876 			/* .pid  */
6877 			/* .ppid */
6878 			/* .tid  */
6879 			/* .ptid */
6880 			/* .time */
6881 		},
6882 	};
6883 
6884 	perf_iterate_sb(perf_event_task_output,
6885 		       &task_event,
6886 		       task_ctx);
6887 }
6888 
6889 void perf_event_fork(struct task_struct *task)
6890 {
6891 	perf_event_task(task, NULL, 1);
6892 	perf_event_namespaces(task);
6893 }
6894 
6895 /*
6896  * comm tracking
6897  */
6898 
6899 struct perf_comm_event {
6900 	struct task_struct	*task;
6901 	char			*comm;
6902 	int			comm_size;
6903 
6904 	struct {
6905 		struct perf_event_header	header;
6906 
6907 		u32				pid;
6908 		u32				tid;
6909 	} event_id;
6910 };
6911 
6912 static int perf_event_comm_match(struct perf_event *event)
6913 {
6914 	return event->attr.comm;
6915 }
6916 
6917 static void perf_event_comm_output(struct perf_event *event,
6918 				   void *data)
6919 {
6920 	struct perf_comm_event *comm_event = data;
6921 	struct perf_output_handle handle;
6922 	struct perf_sample_data sample;
6923 	int size = comm_event->event_id.header.size;
6924 	int ret;
6925 
6926 	if (!perf_event_comm_match(event))
6927 		return;
6928 
6929 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6930 	ret = perf_output_begin(&handle, event,
6931 				comm_event->event_id.header.size);
6932 
6933 	if (ret)
6934 		goto out;
6935 
6936 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6937 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6938 
6939 	perf_output_put(&handle, comm_event->event_id);
6940 	__output_copy(&handle, comm_event->comm,
6941 				   comm_event->comm_size);
6942 
6943 	perf_event__output_id_sample(event, &handle, &sample);
6944 
6945 	perf_output_end(&handle);
6946 out:
6947 	comm_event->event_id.header.size = size;
6948 }
6949 
6950 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6951 {
6952 	char comm[TASK_COMM_LEN];
6953 	unsigned int size;
6954 
6955 	memset(comm, 0, sizeof(comm));
6956 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6957 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6958 
6959 	comm_event->comm = comm;
6960 	comm_event->comm_size = size;
6961 
6962 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6963 
6964 	perf_iterate_sb(perf_event_comm_output,
6965 		       comm_event,
6966 		       NULL);
6967 }
6968 
6969 void perf_event_comm(struct task_struct *task, bool exec)
6970 {
6971 	struct perf_comm_event comm_event;
6972 
6973 	if (!atomic_read(&nr_comm_events))
6974 		return;
6975 
6976 	comm_event = (struct perf_comm_event){
6977 		.task	= task,
6978 		/* .comm      */
6979 		/* .comm_size */
6980 		.event_id  = {
6981 			.header = {
6982 				.type = PERF_RECORD_COMM,
6983 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6984 				/* .size */
6985 			},
6986 			/* .pid */
6987 			/* .tid */
6988 		},
6989 	};
6990 
6991 	perf_event_comm_event(&comm_event);
6992 }
6993 
6994 /*
6995  * namespaces tracking
6996  */
6997 
6998 struct perf_namespaces_event {
6999 	struct task_struct		*task;
7000 
7001 	struct {
7002 		struct perf_event_header	header;
7003 
7004 		u32				pid;
7005 		u32				tid;
7006 		u64				nr_namespaces;
7007 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7008 	} event_id;
7009 };
7010 
7011 static int perf_event_namespaces_match(struct perf_event *event)
7012 {
7013 	return event->attr.namespaces;
7014 }
7015 
7016 static void perf_event_namespaces_output(struct perf_event *event,
7017 					 void *data)
7018 {
7019 	struct perf_namespaces_event *namespaces_event = data;
7020 	struct perf_output_handle handle;
7021 	struct perf_sample_data sample;
7022 	u16 header_size = namespaces_event->event_id.header.size;
7023 	int ret;
7024 
7025 	if (!perf_event_namespaces_match(event))
7026 		return;
7027 
7028 	perf_event_header__init_id(&namespaces_event->event_id.header,
7029 				   &sample, event);
7030 	ret = perf_output_begin(&handle, event,
7031 				namespaces_event->event_id.header.size);
7032 	if (ret)
7033 		goto out;
7034 
7035 	namespaces_event->event_id.pid = perf_event_pid(event,
7036 							namespaces_event->task);
7037 	namespaces_event->event_id.tid = perf_event_tid(event,
7038 							namespaces_event->task);
7039 
7040 	perf_output_put(&handle, namespaces_event->event_id);
7041 
7042 	perf_event__output_id_sample(event, &handle, &sample);
7043 
7044 	perf_output_end(&handle);
7045 out:
7046 	namespaces_event->event_id.header.size = header_size;
7047 }
7048 
7049 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7050 				   struct task_struct *task,
7051 				   const struct proc_ns_operations *ns_ops)
7052 {
7053 	struct path ns_path;
7054 	struct inode *ns_inode;
7055 	void *error;
7056 
7057 	error = ns_get_path(&ns_path, task, ns_ops);
7058 	if (!error) {
7059 		ns_inode = ns_path.dentry->d_inode;
7060 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7061 		ns_link_info->ino = ns_inode->i_ino;
7062 		path_put(&ns_path);
7063 	}
7064 }
7065 
7066 void perf_event_namespaces(struct task_struct *task)
7067 {
7068 	struct perf_namespaces_event namespaces_event;
7069 	struct perf_ns_link_info *ns_link_info;
7070 
7071 	if (!atomic_read(&nr_namespaces_events))
7072 		return;
7073 
7074 	namespaces_event = (struct perf_namespaces_event){
7075 		.task	= task,
7076 		.event_id  = {
7077 			.header = {
7078 				.type = PERF_RECORD_NAMESPACES,
7079 				.misc = 0,
7080 				.size = sizeof(namespaces_event.event_id),
7081 			},
7082 			/* .pid */
7083 			/* .tid */
7084 			.nr_namespaces = NR_NAMESPACES,
7085 			/* .link_info[NR_NAMESPACES] */
7086 		},
7087 	};
7088 
7089 	ns_link_info = namespaces_event.event_id.link_info;
7090 
7091 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7092 			       task, &mntns_operations);
7093 
7094 #ifdef CONFIG_USER_NS
7095 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7096 			       task, &userns_operations);
7097 #endif
7098 #ifdef CONFIG_NET_NS
7099 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7100 			       task, &netns_operations);
7101 #endif
7102 #ifdef CONFIG_UTS_NS
7103 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7104 			       task, &utsns_operations);
7105 #endif
7106 #ifdef CONFIG_IPC_NS
7107 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7108 			       task, &ipcns_operations);
7109 #endif
7110 #ifdef CONFIG_PID_NS
7111 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7112 			       task, &pidns_operations);
7113 #endif
7114 #ifdef CONFIG_CGROUPS
7115 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7116 			       task, &cgroupns_operations);
7117 #endif
7118 
7119 	perf_iterate_sb(perf_event_namespaces_output,
7120 			&namespaces_event,
7121 			NULL);
7122 }
7123 
7124 /*
7125  * mmap tracking
7126  */
7127 
7128 struct perf_mmap_event {
7129 	struct vm_area_struct	*vma;
7130 
7131 	const char		*file_name;
7132 	int			file_size;
7133 	int			maj, min;
7134 	u64			ino;
7135 	u64			ino_generation;
7136 	u32			prot, flags;
7137 
7138 	struct {
7139 		struct perf_event_header	header;
7140 
7141 		u32				pid;
7142 		u32				tid;
7143 		u64				start;
7144 		u64				len;
7145 		u64				pgoff;
7146 	} event_id;
7147 };
7148 
7149 static int perf_event_mmap_match(struct perf_event *event,
7150 				 void *data)
7151 {
7152 	struct perf_mmap_event *mmap_event = data;
7153 	struct vm_area_struct *vma = mmap_event->vma;
7154 	int executable = vma->vm_flags & VM_EXEC;
7155 
7156 	return (!executable && event->attr.mmap_data) ||
7157 	       (executable && (event->attr.mmap || event->attr.mmap2));
7158 }
7159 
7160 static void perf_event_mmap_output(struct perf_event *event,
7161 				   void *data)
7162 {
7163 	struct perf_mmap_event *mmap_event = data;
7164 	struct perf_output_handle handle;
7165 	struct perf_sample_data sample;
7166 	int size = mmap_event->event_id.header.size;
7167 	int ret;
7168 
7169 	if (!perf_event_mmap_match(event, data))
7170 		return;
7171 
7172 	if (event->attr.mmap2) {
7173 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7174 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7175 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7176 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7177 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7178 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7179 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7180 	}
7181 
7182 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7183 	ret = perf_output_begin(&handle, event,
7184 				mmap_event->event_id.header.size);
7185 	if (ret)
7186 		goto out;
7187 
7188 	mmap_event->event_id.pid = perf_event_pid(event, current);
7189 	mmap_event->event_id.tid = perf_event_tid(event, current);
7190 
7191 	perf_output_put(&handle, mmap_event->event_id);
7192 
7193 	if (event->attr.mmap2) {
7194 		perf_output_put(&handle, mmap_event->maj);
7195 		perf_output_put(&handle, mmap_event->min);
7196 		perf_output_put(&handle, mmap_event->ino);
7197 		perf_output_put(&handle, mmap_event->ino_generation);
7198 		perf_output_put(&handle, mmap_event->prot);
7199 		perf_output_put(&handle, mmap_event->flags);
7200 	}
7201 
7202 	__output_copy(&handle, mmap_event->file_name,
7203 				   mmap_event->file_size);
7204 
7205 	perf_event__output_id_sample(event, &handle, &sample);
7206 
7207 	perf_output_end(&handle);
7208 out:
7209 	mmap_event->event_id.header.size = size;
7210 }
7211 
7212 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7213 {
7214 	struct vm_area_struct *vma = mmap_event->vma;
7215 	struct file *file = vma->vm_file;
7216 	int maj = 0, min = 0;
7217 	u64 ino = 0, gen = 0;
7218 	u32 prot = 0, flags = 0;
7219 	unsigned int size;
7220 	char tmp[16];
7221 	char *buf = NULL;
7222 	char *name;
7223 
7224 	if (vma->vm_flags & VM_READ)
7225 		prot |= PROT_READ;
7226 	if (vma->vm_flags & VM_WRITE)
7227 		prot |= PROT_WRITE;
7228 	if (vma->vm_flags & VM_EXEC)
7229 		prot |= PROT_EXEC;
7230 
7231 	if (vma->vm_flags & VM_MAYSHARE)
7232 		flags = MAP_SHARED;
7233 	else
7234 		flags = MAP_PRIVATE;
7235 
7236 	if (vma->vm_flags & VM_DENYWRITE)
7237 		flags |= MAP_DENYWRITE;
7238 	if (vma->vm_flags & VM_MAYEXEC)
7239 		flags |= MAP_EXECUTABLE;
7240 	if (vma->vm_flags & VM_LOCKED)
7241 		flags |= MAP_LOCKED;
7242 	if (vma->vm_flags & VM_HUGETLB)
7243 		flags |= MAP_HUGETLB;
7244 
7245 	if (file) {
7246 		struct inode *inode;
7247 		dev_t dev;
7248 
7249 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7250 		if (!buf) {
7251 			name = "//enomem";
7252 			goto cpy_name;
7253 		}
7254 		/*
7255 		 * d_path() works from the end of the rb backwards, so we
7256 		 * need to add enough zero bytes after the string to handle
7257 		 * the 64bit alignment we do later.
7258 		 */
7259 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7260 		if (IS_ERR(name)) {
7261 			name = "//toolong";
7262 			goto cpy_name;
7263 		}
7264 		inode = file_inode(vma->vm_file);
7265 		dev = inode->i_sb->s_dev;
7266 		ino = inode->i_ino;
7267 		gen = inode->i_generation;
7268 		maj = MAJOR(dev);
7269 		min = MINOR(dev);
7270 
7271 		goto got_name;
7272 	} else {
7273 		if (vma->vm_ops && vma->vm_ops->name) {
7274 			name = (char *) vma->vm_ops->name(vma);
7275 			if (name)
7276 				goto cpy_name;
7277 		}
7278 
7279 		name = (char *)arch_vma_name(vma);
7280 		if (name)
7281 			goto cpy_name;
7282 
7283 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7284 				vma->vm_end >= vma->vm_mm->brk) {
7285 			name = "[heap]";
7286 			goto cpy_name;
7287 		}
7288 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7289 				vma->vm_end >= vma->vm_mm->start_stack) {
7290 			name = "[stack]";
7291 			goto cpy_name;
7292 		}
7293 
7294 		name = "//anon";
7295 		goto cpy_name;
7296 	}
7297 
7298 cpy_name:
7299 	strlcpy(tmp, name, sizeof(tmp));
7300 	name = tmp;
7301 got_name:
7302 	/*
7303 	 * Since our buffer works in 8 byte units we need to align our string
7304 	 * size to a multiple of 8. However, we must guarantee the tail end is
7305 	 * zero'd out to avoid leaking random bits to userspace.
7306 	 */
7307 	size = strlen(name)+1;
7308 	while (!IS_ALIGNED(size, sizeof(u64)))
7309 		name[size++] = '\0';
7310 
7311 	mmap_event->file_name = name;
7312 	mmap_event->file_size = size;
7313 	mmap_event->maj = maj;
7314 	mmap_event->min = min;
7315 	mmap_event->ino = ino;
7316 	mmap_event->ino_generation = gen;
7317 	mmap_event->prot = prot;
7318 	mmap_event->flags = flags;
7319 
7320 	if (!(vma->vm_flags & VM_EXEC))
7321 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7322 
7323 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7324 
7325 	perf_iterate_sb(perf_event_mmap_output,
7326 		       mmap_event,
7327 		       NULL);
7328 
7329 	kfree(buf);
7330 }
7331 
7332 /*
7333  * Check whether inode and address range match filter criteria.
7334  */
7335 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7336 				     struct file *file, unsigned long offset,
7337 				     unsigned long size)
7338 {
7339 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7340 	if (!filter->path.dentry)
7341 		return false;
7342 
7343 	if (d_inode(filter->path.dentry) != file_inode(file))
7344 		return false;
7345 
7346 	if (filter->offset > offset + size)
7347 		return false;
7348 
7349 	if (filter->offset + filter->size < offset)
7350 		return false;
7351 
7352 	return true;
7353 }
7354 
7355 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7356 {
7357 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7358 	struct vm_area_struct *vma = data;
7359 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7360 	struct file *file = vma->vm_file;
7361 	struct perf_addr_filter *filter;
7362 	unsigned int restart = 0, count = 0;
7363 
7364 	if (!has_addr_filter(event))
7365 		return;
7366 
7367 	if (!file)
7368 		return;
7369 
7370 	raw_spin_lock_irqsave(&ifh->lock, flags);
7371 	list_for_each_entry(filter, &ifh->list, entry) {
7372 		if (perf_addr_filter_match(filter, file, off,
7373 					     vma->vm_end - vma->vm_start)) {
7374 			event->addr_filters_offs[count] = vma->vm_start;
7375 			restart++;
7376 		}
7377 
7378 		count++;
7379 	}
7380 
7381 	if (restart)
7382 		event->addr_filters_gen++;
7383 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7384 
7385 	if (restart)
7386 		perf_event_stop(event, 1);
7387 }
7388 
7389 /*
7390  * Adjust all task's events' filters to the new vma
7391  */
7392 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7393 {
7394 	struct perf_event_context *ctx;
7395 	int ctxn;
7396 
7397 	/*
7398 	 * Data tracing isn't supported yet and as such there is no need
7399 	 * to keep track of anything that isn't related to executable code:
7400 	 */
7401 	if (!(vma->vm_flags & VM_EXEC))
7402 		return;
7403 
7404 	rcu_read_lock();
7405 	for_each_task_context_nr(ctxn) {
7406 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7407 		if (!ctx)
7408 			continue;
7409 
7410 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7411 	}
7412 	rcu_read_unlock();
7413 }
7414 
7415 void perf_event_mmap(struct vm_area_struct *vma)
7416 {
7417 	struct perf_mmap_event mmap_event;
7418 
7419 	if (!atomic_read(&nr_mmap_events))
7420 		return;
7421 
7422 	mmap_event = (struct perf_mmap_event){
7423 		.vma	= vma,
7424 		/* .file_name */
7425 		/* .file_size */
7426 		.event_id  = {
7427 			.header = {
7428 				.type = PERF_RECORD_MMAP,
7429 				.misc = PERF_RECORD_MISC_USER,
7430 				/* .size */
7431 			},
7432 			/* .pid */
7433 			/* .tid */
7434 			.start  = vma->vm_start,
7435 			.len    = vma->vm_end - vma->vm_start,
7436 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7437 		},
7438 		/* .maj (attr_mmap2 only) */
7439 		/* .min (attr_mmap2 only) */
7440 		/* .ino (attr_mmap2 only) */
7441 		/* .ino_generation (attr_mmap2 only) */
7442 		/* .prot (attr_mmap2 only) */
7443 		/* .flags (attr_mmap2 only) */
7444 	};
7445 
7446 	perf_addr_filters_adjust(vma);
7447 	perf_event_mmap_event(&mmap_event);
7448 }
7449 
7450 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7451 			  unsigned long size, u64 flags)
7452 {
7453 	struct perf_output_handle handle;
7454 	struct perf_sample_data sample;
7455 	struct perf_aux_event {
7456 		struct perf_event_header	header;
7457 		u64				offset;
7458 		u64				size;
7459 		u64				flags;
7460 	} rec = {
7461 		.header = {
7462 			.type = PERF_RECORD_AUX,
7463 			.misc = 0,
7464 			.size = sizeof(rec),
7465 		},
7466 		.offset		= head,
7467 		.size		= size,
7468 		.flags		= flags,
7469 	};
7470 	int ret;
7471 
7472 	perf_event_header__init_id(&rec.header, &sample, event);
7473 	ret = perf_output_begin(&handle, event, rec.header.size);
7474 
7475 	if (ret)
7476 		return;
7477 
7478 	perf_output_put(&handle, rec);
7479 	perf_event__output_id_sample(event, &handle, &sample);
7480 
7481 	perf_output_end(&handle);
7482 }
7483 
7484 /*
7485  * Lost/dropped samples logging
7486  */
7487 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7488 {
7489 	struct perf_output_handle handle;
7490 	struct perf_sample_data sample;
7491 	int ret;
7492 
7493 	struct {
7494 		struct perf_event_header	header;
7495 		u64				lost;
7496 	} lost_samples_event = {
7497 		.header = {
7498 			.type = PERF_RECORD_LOST_SAMPLES,
7499 			.misc = 0,
7500 			.size = sizeof(lost_samples_event),
7501 		},
7502 		.lost		= lost,
7503 	};
7504 
7505 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7506 
7507 	ret = perf_output_begin(&handle, event,
7508 				lost_samples_event.header.size);
7509 	if (ret)
7510 		return;
7511 
7512 	perf_output_put(&handle, lost_samples_event);
7513 	perf_event__output_id_sample(event, &handle, &sample);
7514 	perf_output_end(&handle);
7515 }
7516 
7517 /*
7518  * context_switch tracking
7519  */
7520 
7521 struct perf_switch_event {
7522 	struct task_struct	*task;
7523 	struct task_struct	*next_prev;
7524 
7525 	struct {
7526 		struct perf_event_header	header;
7527 		u32				next_prev_pid;
7528 		u32				next_prev_tid;
7529 	} event_id;
7530 };
7531 
7532 static int perf_event_switch_match(struct perf_event *event)
7533 {
7534 	return event->attr.context_switch;
7535 }
7536 
7537 static void perf_event_switch_output(struct perf_event *event, void *data)
7538 {
7539 	struct perf_switch_event *se = data;
7540 	struct perf_output_handle handle;
7541 	struct perf_sample_data sample;
7542 	int ret;
7543 
7544 	if (!perf_event_switch_match(event))
7545 		return;
7546 
7547 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7548 	if (event->ctx->task) {
7549 		se->event_id.header.type = PERF_RECORD_SWITCH;
7550 		se->event_id.header.size = sizeof(se->event_id.header);
7551 	} else {
7552 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7553 		se->event_id.header.size = sizeof(se->event_id);
7554 		se->event_id.next_prev_pid =
7555 					perf_event_pid(event, se->next_prev);
7556 		se->event_id.next_prev_tid =
7557 					perf_event_tid(event, se->next_prev);
7558 	}
7559 
7560 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7561 
7562 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7563 	if (ret)
7564 		return;
7565 
7566 	if (event->ctx->task)
7567 		perf_output_put(&handle, se->event_id.header);
7568 	else
7569 		perf_output_put(&handle, se->event_id);
7570 
7571 	perf_event__output_id_sample(event, &handle, &sample);
7572 
7573 	perf_output_end(&handle);
7574 }
7575 
7576 static void perf_event_switch(struct task_struct *task,
7577 			      struct task_struct *next_prev, bool sched_in)
7578 {
7579 	struct perf_switch_event switch_event;
7580 
7581 	/* N.B. caller checks nr_switch_events != 0 */
7582 
7583 	switch_event = (struct perf_switch_event){
7584 		.task		= task,
7585 		.next_prev	= next_prev,
7586 		.event_id	= {
7587 			.header = {
7588 				/* .type */
7589 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7590 				/* .size */
7591 			},
7592 			/* .next_prev_pid */
7593 			/* .next_prev_tid */
7594 		},
7595 	};
7596 
7597 	if (!sched_in && task->state == TASK_RUNNING)
7598 		switch_event.event_id.header.misc |=
7599 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7600 
7601 	perf_iterate_sb(perf_event_switch_output,
7602 		       &switch_event,
7603 		       NULL);
7604 }
7605 
7606 /*
7607  * IRQ throttle logging
7608  */
7609 
7610 static void perf_log_throttle(struct perf_event *event, int enable)
7611 {
7612 	struct perf_output_handle handle;
7613 	struct perf_sample_data sample;
7614 	int ret;
7615 
7616 	struct {
7617 		struct perf_event_header	header;
7618 		u64				time;
7619 		u64				id;
7620 		u64				stream_id;
7621 	} throttle_event = {
7622 		.header = {
7623 			.type = PERF_RECORD_THROTTLE,
7624 			.misc = 0,
7625 			.size = sizeof(throttle_event),
7626 		},
7627 		.time		= perf_event_clock(event),
7628 		.id		= primary_event_id(event),
7629 		.stream_id	= event->id,
7630 	};
7631 
7632 	if (enable)
7633 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7634 
7635 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7636 
7637 	ret = perf_output_begin(&handle, event,
7638 				throttle_event.header.size);
7639 	if (ret)
7640 		return;
7641 
7642 	perf_output_put(&handle, throttle_event);
7643 	perf_event__output_id_sample(event, &handle, &sample);
7644 	perf_output_end(&handle);
7645 }
7646 
7647 void perf_event_itrace_started(struct perf_event *event)
7648 {
7649 	event->attach_state |= PERF_ATTACH_ITRACE;
7650 }
7651 
7652 static void perf_log_itrace_start(struct perf_event *event)
7653 {
7654 	struct perf_output_handle handle;
7655 	struct perf_sample_data sample;
7656 	struct perf_aux_event {
7657 		struct perf_event_header        header;
7658 		u32				pid;
7659 		u32				tid;
7660 	} rec;
7661 	int ret;
7662 
7663 	if (event->parent)
7664 		event = event->parent;
7665 
7666 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7667 	    event->attach_state & PERF_ATTACH_ITRACE)
7668 		return;
7669 
7670 	rec.header.type	= PERF_RECORD_ITRACE_START;
7671 	rec.header.misc	= 0;
7672 	rec.header.size	= sizeof(rec);
7673 	rec.pid	= perf_event_pid(event, current);
7674 	rec.tid	= perf_event_tid(event, current);
7675 
7676 	perf_event_header__init_id(&rec.header, &sample, event);
7677 	ret = perf_output_begin(&handle, event, rec.header.size);
7678 
7679 	if (ret)
7680 		return;
7681 
7682 	perf_output_put(&handle, rec);
7683 	perf_event__output_id_sample(event, &handle, &sample);
7684 
7685 	perf_output_end(&handle);
7686 }
7687 
7688 static int
7689 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7690 {
7691 	struct hw_perf_event *hwc = &event->hw;
7692 	int ret = 0;
7693 	u64 seq;
7694 
7695 	seq = __this_cpu_read(perf_throttled_seq);
7696 	if (seq != hwc->interrupts_seq) {
7697 		hwc->interrupts_seq = seq;
7698 		hwc->interrupts = 1;
7699 	} else {
7700 		hwc->interrupts++;
7701 		if (unlikely(throttle
7702 			     && hwc->interrupts >= max_samples_per_tick)) {
7703 			__this_cpu_inc(perf_throttled_count);
7704 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7705 			hwc->interrupts = MAX_INTERRUPTS;
7706 			perf_log_throttle(event, 0);
7707 			ret = 1;
7708 		}
7709 	}
7710 
7711 	if (event->attr.freq) {
7712 		u64 now = perf_clock();
7713 		s64 delta = now - hwc->freq_time_stamp;
7714 
7715 		hwc->freq_time_stamp = now;
7716 
7717 		if (delta > 0 && delta < 2*TICK_NSEC)
7718 			perf_adjust_period(event, delta, hwc->last_period, true);
7719 	}
7720 
7721 	return ret;
7722 }
7723 
7724 int perf_event_account_interrupt(struct perf_event *event)
7725 {
7726 	return __perf_event_account_interrupt(event, 1);
7727 }
7728 
7729 /*
7730  * Generic event overflow handling, sampling.
7731  */
7732 
7733 static int __perf_event_overflow(struct perf_event *event,
7734 				   int throttle, struct perf_sample_data *data,
7735 				   struct pt_regs *regs)
7736 {
7737 	int events = atomic_read(&event->event_limit);
7738 	int ret = 0;
7739 
7740 	/*
7741 	 * Non-sampling counters might still use the PMI to fold short
7742 	 * hardware counters, ignore those.
7743 	 */
7744 	if (unlikely(!is_sampling_event(event)))
7745 		return 0;
7746 
7747 	ret = __perf_event_account_interrupt(event, throttle);
7748 
7749 	/*
7750 	 * XXX event_limit might not quite work as expected on inherited
7751 	 * events
7752 	 */
7753 
7754 	event->pending_kill = POLL_IN;
7755 	if (events && atomic_dec_and_test(&event->event_limit)) {
7756 		ret = 1;
7757 		event->pending_kill = POLL_HUP;
7758 
7759 		perf_event_disable_inatomic(event);
7760 	}
7761 
7762 	READ_ONCE(event->overflow_handler)(event, data, regs);
7763 
7764 	if (*perf_event_fasync(event) && event->pending_kill) {
7765 		event->pending_wakeup = 1;
7766 		irq_work_queue(&event->pending);
7767 	}
7768 
7769 	return ret;
7770 }
7771 
7772 int perf_event_overflow(struct perf_event *event,
7773 			  struct perf_sample_data *data,
7774 			  struct pt_regs *regs)
7775 {
7776 	return __perf_event_overflow(event, 1, data, regs);
7777 }
7778 
7779 /*
7780  * Generic software event infrastructure
7781  */
7782 
7783 struct swevent_htable {
7784 	struct swevent_hlist		*swevent_hlist;
7785 	struct mutex			hlist_mutex;
7786 	int				hlist_refcount;
7787 
7788 	/* Recursion avoidance in each contexts */
7789 	int				recursion[PERF_NR_CONTEXTS];
7790 };
7791 
7792 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7793 
7794 /*
7795  * We directly increment event->count and keep a second value in
7796  * event->hw.period_left to count intervals. This period event
7797  * is kept in the range [-sample_period, 0] so that we can use the
7798  * sign as trigger.
7799  */
7800 
7801 u64 perf_swevent_set_period(struct perf_event *event)
7802 {
7803 	struct hw_perf_event *hwc = &event->hw;
7804 	u64 period = hwc->last_period;
7805 	u64 nr, offset;
7806 	s64 old, val;
7807 
7808 	hwc->last_period = hwc->sample_period;
7809 
7810 again:
7811 	old = val = local64_read(&hwc->period_left);
7812 	if (val < 0)
7813 		return 0;
7814 
7815 	nr = div64_u64(period + val, period);
7816 	offset = nr * period;
7817 	val -= offset;
7818 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7819 		goto again;
7820 
7821 	return nr;
7822 }
7823 
7824 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7825 				    struct perf_sample_data *data,
7826 				    struct pt_regs *regs)
7827 {
7828 	struct hw_perf_event *hwc = &event->hw;
7829 	int throttle = 0;
7830 
7831 	if (!overflow)
7832 		overflow = perf_swevent_set_period(event);
7833 
7834 	if (hwc->interrupts == MAX_INTERRUPTS)
7835 		return;
7836 
7837 	for (; overflow; overflow--) {
7838 		if (__perf_event_overflow(event, throttle,
7839 					    data, regs)) {
7840 			/*
7841 			 * We inhibit the overflow from happening when
7842 			 * hwc->interrupts == MAX_INTERRUPTS.
7843 			 */
7844 			break;
7845 		}
7846 		throttle = 1;
7847 	}
7848 }
7849 
7850 static void perf_swevent_event(struct perf_event *event, u64 nr,
7851 			       struct perf_sample_data *data,
7852 			       struct pt_regs *regs)
7853 {
7854 	struct hw_perf_event *hwc = &event->hw;
7855 
7856 	local64_add(nr, &event->count);
7857 
7858 	if (!regs)
7859 		return;
7860 
7861 	if (!is_sampling_event(event))
7862 		return;
7863 
7864 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7865 		data->period = nr;
7866 		return perf_swevent_overflow(event, 1, data, regs);
7867 	} else
7868 		data->period = event->hw.last_period;
7869 
7870 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7871 		return perf_swevent_overflow(event, 1, data, regs);
7872 
7873 	if (local64_add_negative(nr, &hwc->period_left))
7874 		return;
7875 
7876 	perf_swevent_overflow(event, 0, data, regs);
7877 }
7878 
7879 static int perf_exclude_event(struct perf_event *event,
7880 			      struct pt_regs *regs)
7881 {
7882 	if (event->hw.state & PERF_HES_STOPPED)
7883 		return 1;
7884 
7885 	if (regs) {
7886 		if (event->attr.exclude_user && user_mode(regs))
7887 			return 1;
7888 
7889 		if (event->attr.exclude_kernel && !user_mode(regs))
7890 			return 1;
7891 	}
7892 
7893 	return 0;
7894 }
7895 
7896 static int perf_swevent_match(struct perf_event *event,
7897 				enum perf_type_id type,
7898 				u32 event_id,
7899 				struct perf_sample_data *data,
7900 				struct pt_regs *regs)
7901 {
7902 	if (event->attr.type != type)
7903 		return 0;
7904 
7905 	if (event->attr.config != event_id)
7906 		return 0;
7907 
7908 	if (perf_exclude_event(event, regs))
7909 		return 0;
7910 
7911 	return 1;
7912 }
7913 
7914 static inline u64 swevent_hash(u64 type, u32 event_id)
7915 {
7916 	u64 val = event_id | (type << 32);
7917 
7918 	return hash_64(val, SWEVENT_HLIST_BITS);
7919 }
7920 
7921 static inline struct hlist_head *
7922 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7923 {
7924 	u64 hash = swevent_hash(type, event_id);
7925 
7926 	return &hlist->heads[hash];
7927 }
7928 
7929 /* For the read side: events when they trigger */
7930 static inline struct hlist_head *
7931 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7932 {
7933 	struct swevent_hlist *hlist;
7934 
7935 	hlist = rcu_dereference(swhash->swevent_hlist);
7936 	if (!hlist)
7937 		return NULL;
7938 
7939 	return __find_swevent_head(hlist, type, event_id);
7940 }
7941 
7942 /* For the event head insertion and removal in the hlist */
7943 static inline struct hlist_head *
7944 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7945 {
7946 	struct swevent_hlist *hlist;
7947 	u32 event_id = event->attr.config;
7948 	u64 type = event->attr.type;
7949 
7950 	/*
7951 	 * Event scheduling is always serialized against hlist allocation
7952 	 * and release. Which makes the protected version suitable here.
7953 	 * The context lock guarantees that.
7954 	 */
7955 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7956 					  lockdep_is_held(&event->ctx->lock));
7957 	if (!hlist)
7958 		return NULL;
7959 
7960 	return __find_swevent_head(hlist, type, event_id);
7961 }
7962 
7963 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7964 				    u64 nr,
7965 				    struct perf_sample_data *data,
7966 				    struct pt_regs *regs)
7967 {
7968 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7969 	struct perf_event *event;
7970 	struct hlist_head *head;
7971 
7972 	rcu_read_lock();
7973 	head = find_swevent_head_rcu(swhash, type, event_id);
7974 	if (!head)
7975 		goto end;
7976 
7977 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7978 		if (perf_swevent_match(event, type, event_id, data, regs))
7979 			perf_swevent_event(event, nr, data, regs);
7980 	}
7981 end:
7982 	rcu_read_unlock();
7983 }
7984 
7985 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7986 
7987 int perf_swevent_get_recursion_context(void)
7988 {
7989 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7990 
7991 	return get_recursion_context(swhash->recursion);
7992 }
7993 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7994 
7995 void perf_swevent_put_recursion_context(int rctx)
7996 {
7997 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7998 
7999 	put_recursion_context(swhash->recursion, rctx);
8000 }
8001 
8002 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8003 {
8004 	struct perf_sample_data data;
8005 
8006 	if (WARN_ON_ONCE(!regs))
8007 		return;
8008 
8009 	perf_sample_data_init(&data, addr, 0);
8010 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8011 }
8012 
8013 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8014 {
8015 	int rctx;
8016 
8017 	preempt_disable_notrace();
8018 	rctx = perf_swevent_get_recursion_context();
8019 	if (unlikely(rctx < 0))
8020 		goto fail;
8021 
8022 	___perf_sw_event(event_id, nr, regs, addr);
8023 
8024 	perf_swevent_put_recursion_context(rctx);
8025 fail:
8026 	preempt_enable_notrace();
8027 }
8028 
8029 static void perf_swevent_read(struct perf_event *event)
8030 {
8031 }
8032 
8033 static int perf_swevent_add(struct perf_event *event, int flags)
8034 {
8035 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8036 	struct hw_perf_event *hwc = &event->hw;
8037 	struct hlist_head *head;
8038 
8039 	if (is_sampling_event(event)) {
8040 		hwc->last_period = hwc->sample_period;
8041 		perf_swevent_set_period(event);
8042 	}
8043 
8044 	hwc->state = !(flags & PERF_EF_START);
8045 
8046 	head = find_swevent_head(swhash, event);
8047 	if (WARN_ON_ONCE(!head))
8048 		return -EINVAL;
8049 
8050 	hlist_add_head_rcu(&event->hlist_entry, head);
8051 	perf_event_update_userpage(event);
8052 
8053 	return 0;
8054 }
8055 
8056 static void perf_swevent_del(struct perf_event *event, int flags)
8057 {
8058 	hlist_del_rcu(&event->hlist_entry);
8059 }
8060 
8061 static void perf_swevent_start(struct perf_event *event, int flags)
8062 {
8063 	event->hw.state = 0;
8064 }
8065 
8066 static void perf_swevent_stop(struct perf_event *event, int flags)
8067 {
8068 	event->hw.state = PERF_HES_STOPPED;
8069 }
8070 
8071 /* Deref the hlist from the update side */
8072 static inline struct swevent_hlist *
8073 swevent_hlist_deref(struct swevent_htable *swhash)
8074 {
8075 	return rcu_dereference_protected(swhash->swevent_hlist,
8076 					 lockdep_is_held(&swhash->hlist_mutex));
8077 }
8078 
8079 static void swevent_hlist_release(struct swevent_htable *swhash)
8080 {
8081 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8082 
8083 	if (!hlist)
8084 		return;
8085 
8086 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8087 	kfree_rcu(hlist, rcu_head);
8088 }
8089 
8090 static void swevent_hlist_put_cpu(int cpu)
8091 {
8092 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8093 
8094 	mutex_lock(&swhash->hlist_mutex);
8095 
8096 	if (!--swhash->hlist_refcount)
8097 		swevent_hlist_release(swhash);
8098 
8099 	mutex_unlock(&swhash->hlist_mutex);
8100 }
8101 
8102 static void swevent_hlist_put(void)
8103 {
8104 	int cpu;
8105 
8106 	for_each_possible_cpu(cpu)
8107 		swevent_hlist_put_cpu(cpu);
8108 }
8109 
8110 static int swevent_hlist_get_cpu(int cpu)
8111 {
8112 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8113 	int err = 0;
8114 
8115 	mutex_lock(&swhash->hlist_mutex);
8116 	if (!swevent_hlist_deref(swhash) &&
8117 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8118 		struct swevent_hlist *hlist;
8119 
8120 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8121 		if (!hlist) {
8122 			err = -ENOMEM;
8123 			goto exit;
8124 		}
8125 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8126 	}
8127 	swhash->hlist_refcount++;
8128 exit:
8129 	mutex_unlock(&swhash->hlist_mutex);
8130 
8131 	return err;
8132 }
8133 
8134 static int swevent_hlist_get(void)
8135 {
8136 	int err, cpu, failed_cpu;
8137 
8138 	mutex_lock(&pmus_lock);
8139 	for_each_possible_cpu(cpu) {
8140 		err = swevent_hlist_get_cpu(cpu);
8141 		if (err) {
8142 			failed_cpu = cpu;
8143 			goto fail;
8144 		}
8145 	}
8146 	mutex_unlock(&pmus_lock);
8147 	return 0;
8148 fail:
8149 	for_each_possible_cpu(cpu) {
8150 		if (cpu == failed_cpu)
8151 			break;
8152 		swevent_hlist_put_cpu(cpu);
8153 	}
8154 	mutex_unlock(&pmus_lock);
8155 	return err;
8156 }
8157 
8158 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8159 
8160 static void sw_perf_event_destroy(struct perf_event *event)
8161 {
8162 	u64 event_id = event->attr.config;
8163 
8164 	WARN_ON(event->parent);
8165 
8166 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8167 	swevent_hlist_put();
8168 }
8169 
8170 static int perf_swevent_init(struct perf_event *event)
8171 {
8172 	u64 event_id = event->attr.config;
8173 
8174 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8175 		return -ENOENT;
8176 
8177 	/*
8178 	 * no branch sampling for software events
8179 	 */
8180 	if (has_branch_stack(event))
8181 		return -EOPNOTSUPP;
8182 
8183 	switch (event_id) {
8184 	case PERF_COUNT_SW_CPU_CLOCK:
8185 	case PERF_COUNT_SW_TASK_CLOCK:
8186 		return -ENOENT;
8187 
8188 	default:
8189 		break;
8190 	}
8191 
8192 	if (event_id >= PERF_COUNT_SW_MAX)
8193 		return -ENOENT;
8194 
8195 	if (!event->parent) {
8196 		int err;
8197 
8198 		err = swevent_hlist_get();
8199 		if (err)
8200 			return err;
8201 
8202 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8203 		event->destroy = sw_perf_event_destroy;
8204 	}
8205 
8206 	return 0;
8207 }
8208 
8209 static struct pmu perf_swevent = {
8210 	.task_ctx_nr	= perf_sw_context,
8211 
8212 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8213 
8214 	.event_init	= perf_swevent_init,
8215 	.add		= perf_swevent_add,
8216 	.del		= perf_swevent_del,
8217 	.start		= perf_swevent_start,
8218 	.stop		= perf_swevent_stop,
8219 	.read		= perf_swevent_read,
8220 };
8221 
8222 #ifdef CONFIG_EVENT_TRACING
8223 
8224 static int perf_tp_filter_match(struct perf_event *event,
8225 				struct perf_sample_data *data)
8226 {
8227 	void *record = data->raw->frag.data;
8228 
8229 	/* only top level events have filters set */
8230 	if (event->parent)
8231 		event = event->parent;
8232 
8233 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8234 		return 1;
8235 	return 0;
8236 }
8237 
8238 static int perf_tp_event_match(struct perf_event *event,
8239 				struct perf_sample_data *data,
8240 				struct pt_regs *regs)
8241 {
8242 	if (event->hw.state & PERF_HES_STOPPED)
8243 		return 0;
8244 	/*
8245 	 * All tracepoints are from kernel-space.
8246 	 */
8247 	if (event->attr.exclude_kernel)
8248 		return 0;
8249 
8250 	if (!perf_tp_filter_match(event, data))
8251 		return 0;
8252 
8253 	return 1;
8254 }
8255 
8256 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8257 			       struct trace_event_call *call, u64 count,
8258 			       struct pt_regs *regs, struct hlist_head *head,
8259 			       struct task_struct *task)
8260 {
8261 	if (bpf_prog_array_valid(call)) {
8262 		*(struct pt_regs **)raw_data = regs;
8263 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8264 			perf_swevent_put_recursion_context(rctx);
8265 			return;
8266 		}
8267 	}
8268 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8269 		      rctx, task);
8270 }
8271 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8272 
8273 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8274 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8275 		   struct task_struct *task)
8276 {
8277 	struct perf_sample_data data;
8278 	struct perf_event *event;
8279 
8280 	struct perf_raw_record raw = {
8281 		.frag = {
8282 			.size = entry_size,
8283 			.data = record,
8284 		},
8285 	};
8286 
8287 	perf_sample_data_init(&data, 0, 0);
8288 	data.raw = &raw;
8289 
8290 	perf_trace_buf_update(record, event_type);
8291 
8292 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8293 		if (perf_tp_event_match(event, &data, regs))
8294 			perf_swevent_event(event, count, &data, regs);
8295 	}
8296 
8297 	/*
8298 	 * If we got specified a target task, also iterate its context and
8299 	 * deliver this event there too.
8300 	 */
8301 	if (task && task != current) {
8302 		struct perf_event_context *ctx;
8303 		struct trace_entry *entry = record;
8304 
8305 		rcu_read_lock();
8306 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8307 		if (!ctx)
8308 			goto unlock;
8309 
8310 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8311 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8312 				continue;
8313 			if (event->attr.config != entry->type)
8314 				continue;
8315 			if (perf_tp_event_match(event, &data, regs))
8316 				perf_swevent_event(event, count, &data, regs);
8317 		}
8318 unlock:
8319 		rcu_read_unlock();
8320 	}
8321 
8322 	perf_swevent_put_recursion_context(rctx);
8323 }
8324 EXPORT_SYMBOL_GPL(perf_tp_event);
8325 
8326 static void tp_perf_event_destroy(struct perf_event *event)
8327 {
8328 	perf_trace_destroy(event);
8329 }
8330 
8331 static int perf_tp_event_init(struct perf_event *event)
8332 {
8333 	int err;
8334 
8335 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8336 		return -ENOENT;
8337 
8338 	/*
8339 	 * no branch sampling for tracepoint events
8340 	 */
8341 	if (has_branch_stack(event))
8342 		return -EOPNOTSUPP;
8343 
8344 	err = perf_trace_init(event);
8345 	if (err)
8346 		return err;
8347 
8348 	event->destroy = tp_perf_event_destroy;
8349 
8350 	return 0;
8351 }
8352 
8353 static struct pmu perf_tracepoint = {
8354 	.task_ctx_nr	= perf_sw_context,
8355 
8356 	.event_init	= perf_tp_event_init,
8357 	.add		= perf_trace_add,
8358 	.del		= perf_trace_del,
8359 	.start		= perf_swevent_start,
8360 	.stop		= perf_swevent_stop,
8361 	.read		= perf_swevent_read,
8362 };
8363 
8364 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8365 /*
8366  * Flags in config, used by dynamic PMU kprobe and uprobe
8367  * The flags should match following PMU_FORMAT_ATTR().
8368  *
8369  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8370  *                               if not set, create kprobe/uprobe
8371  */
8372 enum perf_probe_config {
8373 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8374 };
8375 
8376 PMU_FORMAT_ATTR(retprobe, "config:0");
8377 
8378 static struct attribute *probe_attrs[] = {
8379 	&format_attr_retprobe.attr,
8380 	NULL,
8381 };
8382 
8383 static struct attribute_group probe_format_group = {
8384 	.name = "format",
8385 	.attrs = probe_attrs,
8386 };
8387 
8388 static const struct attribute_group *probe_attr_groups[] = {
8389 	&probe_format_group,
8390 	NULL,
8391 };
8392 #endif
8393 
8394 #ifdef CONFIG_KPROBE_EVENTS
8395 static int perf_kprobe_event_init(struct perf_event *event);
8396 static struct pmu perf_kprobe = {
8397 	.task_ctx_nr	= perf_sw_context,
8398 	.event_init	= perf_kprobe_event_init,
8399 	.add		= perf_trace_add,
8400 	.del		= perf_trace_del,
8401 	.start		= perf_swevent_start,
8402 	.stop		= perf_swevent_stop,
8403 	.read		= perf_swevent_read,
8404 	.attr_groups	= probe_attr_groups,
8405 };
8406 
8407 static int perf_kprobe_event_init(struct perf_event *event)
8408 {
8409 	int err;
8410 	bool is_retprobe;
8411 
8412 	if (event->attr.type != perf_kprobe.type)
8413 		return -ENOENT;
8414 
8415 	if (!capable(CAP_SYS_ADMIN))
8416 		return -EACCES;
8417 
8418 	/*
8419 	 * no branch sampling for probe events
8420 	 */
8421 	if (has_branch_stack(event))
8422 		return -EOPNOTSUPP;
8423 
8424 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8425 	err = perf_kprobe_init(event, is_retprobe);
8426 	if (err)
8427 		return err;
8428 
8429 	event->destroy = perf_kprobe_destroy;
8430 
8431 	return 0;
8432 }
8433 #endif /* CONFIG_KPROBE_EVENTS */
8434 
8435 #ifdef CONFIG_UPROBE_EVENTS
8436 static int perf_uprobe_event_init(struct perf_event *event);
8437 static struct pmu perf_uprobe = {
8438 	.task_ctx_nr	= perf_sw_context,
8439 	.event_init	= perf_uprobe_event_init,
8440 	.add		= perf_trace_add,
8441 	.del		= perf_trace_del,
8442 	.start		= perf_swevent_start,
8443 	.stop		= perf_swevent_stop,
8444 	.read		= perf_swevent_read,
8445 	.attr_groups	= probe_attr_groups,
8446 };
8447 
8448 static int perf_uprobe_event_init(struct perf_event *event)
8449 {
8450 	int err;
8451 	bool is_retprobe;
8452 
8453 	if (event->attr.type != perf_uprobe.type)
8454 		return -ENOENT;
8455 
8456 	if (!capable(CAP_SYS_ADMIN))
8457 		return -EACCES;
8458 
8459 	/*
8460 	 * no branch sampling for probe events
8461 	 */
8462 	if (has_branch_stack(event))
8463 		return -EOPNOTSUPP;
8464 
8465 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8466 	err = perf_uprobe_init(event, is_retprobe);
8467 	if (err)
8468 		return err;
8469 
8470 	event->destroy = perf_uprobe_destroy;
8471 
8472 	return 0;
8473 }
8474 #endif /* CONFIG_UPROBE_EVENTS */
8475 
8476 static inline void perf_tp_register(void)
8477 {
8478 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8479 #ifdef CONFIG_KPROBE_EVENTS
8480 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8481 #endif
8482 #ifdef CONFIG_UPROBE_EVENTS
8483 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8484 #endif
8485 }
8486 
8487 static void perf_event_free_filter(struct perf_event *event)
8488 {
8489 	ftrace_profile_free_filter(event);
8490 }
8491 
8492 #ifdef CONFIG_BPF_SYSCALL
8493 static void bpf_overflow_handler(struct perf_event *event,
8494 				 struct perf_sample_data *data,
8495 				 struct pt_regs *regs)
8496 {
8497 	struct bpf_perf_event_data_kern ctx = {
8498 		.data = data,
8499 		.event = event,
8500 	};
8501 	int ret = 0;
8502 
8503 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8504 	preempt_disable();
8505 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8506 		goto out;
8507 	rcu_read_lock();
8508 	ret = BPF_PROG_RUN(event->prog, &ctx);
8509 	rcu_read_unlock();
8510 out:
8511 	__this_cpu_dec(bpf_prog_active);
8512 	preempt_enable();
8513 	if (!ret)
8514 		return;
8515 
8516 	event->orig_overflow_handler(event, data, regs);
8517 }
8518 
8519 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8520 {
8521 	struct bpf_prog *prog;
8522 
8523 	if (event->overflow_handler_context)
8524 		/* hw breakpoint or kernel counter */
8525 		return -EINVAL;
8526 
8527 	if (event->prog)
8528 		return -EEXIST;
8529 
8530 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8531 	if (IS_ERR(prog))
8532 		return PTR_ERR(prog);
8533 
8534 	event->prog = prog;
8535 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8536 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8537 	return 0;
8538 }
8539 
8540 static void perf_event_free_bpf_handler(struct perf_event *event)
8541 {
8542 	struct bpf_prog *prog = event->prog;
8543 
8544 	if (!prog)
8545 		return;
8546 
8547 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8548 	event->prog = NULL;
8549 	bpf_prog_put(prog);
8550 }
8551 #else
8552 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8553 {
8554 	return -EOPNOTSUPP;
8555 }
8556 static void perf_event_free_bpf_handler(struct perf_event *event)
8557 {
8558 }
8559 #endif
8560 
8561 /*
8562  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8563  * with perf_event_open()
8564  */
8565 static inline bool perf_event_is_tracing(struct perf_event *event)
8566 {
8567 	if (event->pmu == &perf_tracepoint)
8568 		return true;
8569 #ifdef CONFIG_KPROBE_EVENTS
8570 	if (event->pmu == &perf_kprobe)
8571 		return true;
8572 #endif
8573 #ifdef CONFIG_UPROBE_EVENTS
8574 	if (event->pmu == &perf_uprobe)
8575 		return true;
8576 #endif
8577 	return false;
8578 }
8579 
8580 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8581 {
8582 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8583 	struct bpf_prog *prog;
8584 	int ret;
8585 
8586 	if (!perf_event_is_tracing(event))
8587 		return perf_event_set_bpf_handler(event, prog_fd);
8588 
8589 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8590 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8591 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8592 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8593 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8594 		return -EINVAL;
8595 
8596 	prog = bpf_prog_get(prog_fd);
8597 	if (IS_ERR(prog))
8598 		return PTR_ERR(prog);
8599 
8600 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8601 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8602 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8603 		/* valid fd, but invalid bpf program type */
8604 		bpf_prog_put(prog);
8605 		return -EINVAL;
8606 	}
8607 
8608 	/* Kprobe override only works for kprobes, not uprobes. */
8609 	if (prog->kprobe_override &&
8610 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8611 		bpf_prog_put(prog);
8612 		return -EINVAL;
8613 	}
8614 
8615 	if (is_tracepoint || is_syscall_tp) {
8616 		int off = trace_event_get_offsets(event->tp_event);
8617 
8618 		if (prog->aux->max_ctx_offset > off) {
8619 			bpf_prog_put(prog);
8620 			return -EACCES;
8621 		}
8622 	}
8623 
8624 	ret = perf_event_attach_bpf_prog(event, prog);
8625 	if (ret)
8626 		bpf_prog_put(prog);
8627 	return ret;
8628 }
8629 
8630 static void perf_event_free_bpf_prog(struct perf_event *event)
8631 {
8632 	if (!perf_event_is_tracing(event)) {
8633 		perf_event_free_bpf_handler(event);
8634 		return;
8635 	}
8636 	perf_event_detach_bpf_prog(event);
8637 }
8638 
8639 #else
8640 
8641 static inline void perf_tp_register(void)
8642 {
8643 }
8644 
8645 static void perf_event_free_filter(struct perf_event *event)
8646 {
8647 }
8648 
8649 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8650 {
8651 	return -ENOENT;
8652 }
8653 
8654 static void perf_event_free_bpf_prog(struct perf_event *event)
8655 {
8656 }
8657 #endif /* CONFIG_EVENT_TRACING */
8658 
8659 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8660 void perf_bp_event(struct perf_event *bp, void *data)
8661 {
8662 	struct perf_sample_data sample;
8663 	struct pt_regs *regs = data;
8664 
8665 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8666 
8667 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8668 		perf_swevent_event(bp, 1, &sample, regs);
8669 }
8670 #endif
8671 
8672 /*
8673  * Allocate a new address filter
8674  */
8675 static struct perf_addr_filter *
8676 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8677 {
8678 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8679 	struct perf_addr_filter *filter;
8680 
8681 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8682 	if (!filter)
8683 		return NULL;
8684 
8685 	INIT_LIST_HEAD(&filter->entry);
8686 	list_add_tail(&filter->entry, filters);
8687 
8688 	return filter;
8689 }
8690 
8691 static void free_filters_list(struct list_head *filters)
8692 {
8693 	struct perf_addr_filter *filter, *iter;
8694 
8695 	list_for_each_entry_safe(filter, iter, filters, entry) {
8696 		path_put(&filter->path);
8697 		list_del(&filter->entry);
8698 		kfree(filter);
8699 	}
8700 }
8701 
8702 /*
8703  * Free existing address filters and optionally install new ones
8704  */
8705 static void perf_addr_filters_splice(struct perf_event *event,
8706 				     struct list_head *head)
8707 {
8708 	unsigned long flags;
8709 	LIST_HEAD(list);
8710 
8711 	if (!has_addr_filter(event))
8712 		return;
8713 
8714 	/* don't bother with children, they don't have their own filters */
8715 	if (event->parent)
8716 		return;
8717 
8718 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8719 
8720 	list_splice_init(&event->addr_filters.list, &list);
8721 	if (head)
8722 		list_splice(head, &event->addr_filters.list);
8723 
8724 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8725 
8726 	free_filters_list(&list);
8727 }
8728 
8729 /*
8730  * Scan through mm's vmas and see if one of them matches the
8731  * @filter; if so, adjust filter's address range.
8732  * Called with mm::mmap_sem down for reading.
8733  */
8734 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8735 					    struct mm_struct *mm)
8736 {
8737 	struct vm_area_struct *vma;
8738 
8739 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8740 		struct file *file = vma->vm_file;
8741 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8742 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8743 
8744 		if (!file)
8745 			continue;
8746 
8747 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8748 			continue;
8749 
8750 		return vma->vm_start;
8751 	}
8752 
8753 	return 0;
8754 }
8755 
8756 /*
8757  * Update event's address range filters based on the
8758  * task's existing mappings, if any.
8759  */
8760 static void perf_event_addr_filters_apply(struct perf_event *event)
8761 {
8762 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8763 	struct task_struct *task = READ_ONCE(event->ctx->task);
8764 	struct perf_addr_filter *filter;
8765 	struct mm_struct *mm = NULL;
8766 	unsigned int count = 0;
8767 	unsigned long flags;
8768 
8769 	/*
8770 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8771 	 * will stop on the parent's child_mutex that our caller is also holding
8772 	 */
8773 	if (task == TASK_TOMBSTONE)
8774 		return;
8775 
8776 	if (!ifh->nr_file_filters)
8777 		return;
8778 
8779 	mm = get_task_mm(event->ctx->task);
8780 	if (!mm)
8781 		goto restart;
8782 
8783 	down_read(&mm->mmap_sem);
8784 
8785 	raw_spin_lock_irqsave(&ifh->lock, flags);
8786 	list_for_each_entry(filter, &ifh->list, entry) {
8787 		event->addr_filters_offs[count] = 0;
8788 
8789 		/*
8790 		 * Adjust base offset if the filter is associated to a binary
8791 		 * that needs to be mapped:
8792 		 */
8793 		if (filter->path.dentry)
8794 			event->addr_filters_offs[count] =
8795 				perf_addr_filter_apply(filter, mm);
8796 
8797 		count++;
8798 	}
8799 
8800 	event->addr_filters_gen++;
8801 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8802 
8803 	up_read(&mm->mmap_sem);
8804 
8805 	mmput(mm);
8806 
8807 restart:
8808 	perf_event_stop(event, 1);
8809 }
8810 
8811 /*
8812  * Address range filtering: limiting the data to certain
8813  * instruction address ranges. Filters are ioctl()ed to us from
8814  * userspace as ascii strings.
8815  *
8816  * Filter string format:
8817  *
8818  * ACTION RANGE_SPEC
8819  * where ACTION is one of the
8820  *  * "filter": limit the trace to this region
8821  *  * "start": start tracing from this address
8822  *  * "stop": stop tracing at this address/region;
8823  * RANGE_SPEC is
8824  *  * for kernel addresses: <start address>[/<size>]
8825  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8826  *
8827  * if <size> is not specified or is zero, the range is treated as a single
8828  * address; not valid for ACTION=="filter".
8829  */
8830 enum {
8831 	IF_ACT_NONE = -1,
8832 	IF_ACT_FILTER,
8833 	IF_ACT_START,
8834 	IF_ACT_STOP,
8835 	IF_SRC_FILE,
8836 	IF_SRC_KERNEL,
8837 	IF_SRC_FILEADDR,
8838 	IF_SRC_KERNELADDR,
8839 };
8840 
8841 enum {
8842 	IF_STATE_ACTION = 0,
8843 	IF_STATE_SOURCE,
8844 	IF_STATE_END,
8845 };
8846 
8847 static const match_table_t if_tokens = {
8848 	{ IF_ACT_FILTER,	"filter" },
8849 	{ IF_ACT_START,		"start" },
8850 	{ IF_ACT_STOP,		"stop" },
8851 	{ IF_SRC_FILE,		"%u/%u@%s" },
8852 	{ IF_SRC_KERNEL,	"%u/%u" },
8853 	{ IF_SRC_FILEADDR,	"%u@%s" },
8854 	{ IF_SRC_KERNELADDR,	"%u" },
8855 	{ IF_ACT_NONE,		NULL },
8856 };
8857 
8858 /*
8859  * Address filter string parser
8860  */
8861 static int
8862 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8863 			     struct list_head *filters)
8864 {
8865 	struct perf_addr_filter *filter = NULL;
8866 	char *start, *orig, *filename = NULL;
8867 	substring_t args[MAX_OPT_ARGS];
8868 	int state = IF_STATE_ACTION, token;
8869 	unsigned int kernel = 0;
8870 	int ret = -EINVAL;
8871 
8872 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8873 	if (!fstr)
8874 		return -ENOMEM;
8875 
8876 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8877 		static const enum perf_addr_filter_action_t actions[] = {
8878 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
8879 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
8880 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
8881 		};
8882 		ret = -EINVAL;
8883 
8884 		if (!*start)
8885 			continue;
8886 
8887 		/* filter definition begins */
8888 		if (state == IF_STATE_ACTION) {
8889 			filter = perf_addr_filter_new(event, filters);
8890 			if (!filter)
8891 				goto fail;
8892 		}
8893 
8894 		token = match_token(start, if_tokens, args);
8895 		switch (token) {
8896 		case IF_ACT_FILTER:
8897 		case IF_ACT_START:
8898 		case IF_ACT_STOP:
8899 			if (state != IF_STATE_ACTION)
8900 				goto fail;
8901 
8902 			filter->action = actions[token];
8903 			state = IF_STATE_SOURCE;
8904 			break;
8905 
8906 		case IF_SRC_KERNELADDR:
8907 		case IF_SRC_KERNEL:
8908 			kernel = 1;
8909 
8910 		case IF_SRC_FILEADDR:
8911 		case IF_SRC_FILE:
8912 			if (state != IF_STATE_SOURCE)
8913 				goto fail;
8914 
8915 			*args[0].to = 0;
8916 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8917 			if (ret)
8918 				goto fail;
8919 
8920 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8921 				*args[1].to = 0;
8922 				ret = kstrtoul(args[1].from, 0, &filter->size);
8923 				if (ret)
8924 					goto fail;
8925 			}
8926 
8927 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8928 				int fpos = token == IF_SRC_FILE ? 2 : 1;
8929 
8930 				filename = match_strdup(&args[fpos]);
8931 				if (!filename) {
8932 					ret = -ENOMEM;
8933 					goto fail;
8934 				}
8935 			}
8936 
8937 			state = IF_STATE_END;
8938 			break;
8939 
8940 		default:
8941 			goto fail;
8942 		}
8943 
8944 		/*
8945 		 * Filter definition is fully parsed, validate and install it.
8946 		 * Make sure that it doesn't contradict itself or the event's
8947 		 * attribute.
8948 		 */
8949 		if (state == IF_STATE_END) {
8950 			ret = -EINVAL;
8951 			if (kernel && event->attr.exclude_kernel)
8952 				goto fail;
8953 
8954 			/*
8955 			 * ACTION "filter" must have a non-zero length region
8956 			 * specified.
8957 			 */
8958 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8959 			    !filter->size)
8960 				goto fail;
8961 
8962 			if (!kernel) {
8963 				if (!filename)
8964 					goto fail;
8965 
8966 				/*
8967 				 * For now, we only support file-based filters
8968 				 * in per-task events; doing so for CPU-wide
8969 				 * events requires additional context switching
8970 				 * trickery, since same object code will be
8971 				 * mapped at different virtual addresses in
8972 				 * different processes.
8973 				 */
8974 				ret = -EOPNOTSUPP;
8975 				if (!event->ctx->task)
8976 					goto fail_free_name;
8977 
8978 				/* look up the path and grab its inode */
8979 				ret = kern_path(filename, LOOKUP_FOLLOW,
8980 						&filter->path);
8981 				if (ret)
8982 					goto fail_free_name;
8983 
8984 				kfree(filename);
8985 				filename = NULL;
8986 
8987 				ret = -EINVAL;
8988 				if (!filter->path.dentry ||
8989 				    !S_ISREG(d_inode(filter->path.dentry)
8990 					     ->i_mode))
8991 					goto fail;
8992 
8993 				event->addr_filters.nr_file_filters++;
8994 			}
8995 
8996 			/* ready to consume more filters */
8997 			state = IF_STATE_ACTION;
8998 			filter = NULL;
8999 		}
9000 	}
9001 
9002 	if (state != IF_STATE_ACTION)
9003 		goto fail;
9004 
9005 	kfree(orig);
9006 
9007 	return 0;
9008 
9009 fail_free_name:
9010 	kfree(filename);
9011 fail:
9012 	free_filters_list(filters);
9013 	kfree(orig);
9014 
9015 	return ret;
9016 }
9017 
9018 static int
9019 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9020 {
9021 	LIST_HEAD(filters);
9022 	int ret;
9023 
9024 	/*
9025 	 * Since this is called in perf_ioctl() path, we're already holding
9026 	 * ctx::mutex.
9027 	 */
9028 	lockdep_assert_held(&event->ctx->mutex);
9029 
9030 	if (WARN_ON_ONCE(event->parent))
9031 		return -EINVAL;
9032 
9033 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9034 	if (ret)
9035 		goto fail_clear_files;
9036 
9037 	ret = event->pmu->addr_filters_validate(&filters);
9038 	if (ret)
9039 		goto fail_free_filters;
9040 
9041 	/* remove existing filters, if any */
9042 	perf_addr_filters_splice(event, &filters);
9043 
9044 	/* install new filters */
9045 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9046 
9047 	return ret;
9048 
9049 fail_free_filters:
9050 	free_filters_list(&filters);
9051 
9052 fail_clear_files:
9053 	event->addr_filters.nr_file_filters = 0;
9054 
9055 	return ret;
9056 }
9057 
9058 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9059 {
9060 	int ret = -EINVAL;
9061 	char *filter_str;
9062 
9063 	filter_str = strndup_user(arg, PAGE_SIZE);
9064 	if (IS_ERR(filter_str))
9065 		return PTR_ERR(filter_str);
9066 
9067 #ifdef CONFIG_EVENT_TRACING
9068 	if (perf_event_is_tracing(event)) {
9069 		struct perf_event_context *ctx = event->ctx;
9070 
9071 		/*
9072 		 * Beware, here be dragons!!
9073 		 *
9074 		 * the tracepoint muck will deadlock against ctx->mutex, but
9075 		 * the tracepoint stuff does not actually need it. So
9076 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9077 		 * already have a reference on ctx.
9078 		 *
9079 		 * This can result in event getting moved to a different ctx,
9080 		 * but that does not affect the tracepoint state.
9081 		 */
9082 		mutex_unlock(&ctx->mutex);
9083 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9084 		mutex_lock(&ctx->mutex);
9085 	} else
9086 #endif
9087 	if (has_addr_filter(event))
9088 		ret = perf_event_set_addr_filter(event, filter_str);
9089 
9090 	kfree(filter_str);
9091 	return ret;
9092 }
9093 
9094 /*
9095  * hrtimer based swevent callback
9096  */
9097 
9098 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9099 {
9100 	enum hrtimer_restart ret = HRTIMER_RESTART;
9101 	struct perf_sample_data data;
9102 	struct pt_regs *regs;
9103 	struct perf_event *event;
9104 	u64 period;
9105 
9106 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9107 
9108 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9109 		return HRTIMER_NORESTART;
9110 
9111 	event->pmu->read(event);
9112 
9113 	perf_sample_data_init(&data, 0, event->hw.last_period);
9114 	regs = get_irq_regs();
9115 
9116 	if (regs && !perf_exclude_event(event, regs)) {
9117 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9118 			if (__perf_event_overflow(event, 1, &data, regs))
9119 				ret = HRTIMER_NORESTART;
9120 	}
9121 
9122 	period = max_t(u64, 10000, event->hw.sample_period);
9123 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9124 
9125 	return ret;
9126 }
9127 
9128 static void perf_swevent_start_hrtimer(struct perf_event *event)
9129 {
9130 	struct hw_perf_event *hwc = &event->hw;
9131 	s64 period;
9132 
9133 	if (!is_sampling_event(event))
9134 		return;
9135 
9136 	period = local64_read(&hwc->period_left);
9137 	if (period) {
9138 		if (period < 0)
9139 			period = 10000;
9140 
9141 		local64_set(&hwc->period_left, 0);
9142 	} else {
9143 		period = max_t(u64, 10000, hwc->sample_period);
9144 	}
9145 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9146 		      HRTIMER_MODE_REL_PINNED);
9147 }
9148 
9149 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9150 {
9151 	struct hw_perf_event *hwc = &event->hw;
9152 
9153 	if (is_sampling_event(event)) {
9154 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9155 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9156 
9157 		hrtimer_cancel(&hwc->hrtimer);
9158 	}
9159 }
9160 
9161 static void perf_swevent_init_hrtimer(struct perf_event *event)
9162 {
9163 	struct hw_perf_event *hwc = &event->hw;
9164 
9165 	if (!is_sampling_event(event))
9166 		return;
9167 
9168 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9169 	hwc->hrtimer.function = perf_swevent_hrtimer;
9170 
9171 	/*
9172 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9173 	 * mapping and avoid the whole period adjust feedback stuff.
9174 	 */
9175 	if (event->attr.freq) {
9176 		long freq = event->attr.sample_freq;
9177 
9178 		event->attr.sample_period = NSEC_PER_SEC / freq;
9179 		hwc->sample_period = event->attr.sample_period;
9180 		local64_set(&hwc->period_left, hwc->sample_period);
9181 		hwc->last_period = hwc->sample_period;
9182 		event->attr.freq = 0;
9183 	}
9184 }
9185 
9186 /*
9187  * Software event: cpu wall time clock
9188  */
9189 
9190 static void cpu_clock_event_update(struct perf_event *event)
9191 {
9192 	s64 prev;
9193 	u64 now;
9194 
9195 	now = local_clock();
9196 	prev = local64_xchg(&event->hw.prev_count, now);
9197 	local64_add(now - prev, &event->count);
9198 }
9199 
9200 static void cpu_clock_event_start(struct perf_event *event, int flags)
9201 {
9202 	local64_set(&event->hw.prev_count, local_clock());
9203 	perf_swevent_start_hrtimer(event);
9204 }
9205 
9206 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9207 {
9208 	perf_swevent_cancel_hrtimer(event);
9209 	cpu_clock_event_update(event);
9210 }
9211 
9212 static int cpu_clock_event_add(struct perf_event *event, int flags)
9213 {
9214 	if (flags & PERF_EF_START)
9215 		cpu_clock_event_start(event, flags);
9216 	perf_event_update_userpage(event);
9217 
9218 	return 0;
9219 }
9220 
9221 static void cpu_clock_event_del(struct perf_event *event, int flags)
9222 {
9223 	cpu_clock_event_stop(event, flags);
9224 }
9225 
9226 static void cpu_clock_event_read(struct perf_event *event)
9227 {
9228 	cpu_clock_event_update(event);
9229 }
9230 
9231 static int cpu_clock_event_init(struct perf_event *event)
9232 {
9233 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9234 		return -ENOENT;
9235 
9236 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9237 		return -ENOENT;
9238 
9239 	/*
9240 	 * no branch sampling for software events
9241 	 */
9242 	if (has_branch_stack(event))
9243 		return -EOPNOTSUPP;
9244 
9245 	perf_swevent_init_hrtimer(event);
9246 
9247 	return 0;
9248 }
9249 
9250 static struct pmu perf_cpu_clock = {
9251 	.task_ctx_nr	= perf_sw_context,
9252 
9253 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9254 
9255 	.event_init	= cpu_clock_event_init,
9256 	.add		= cpu_clock_event_add,
9257 	.del		= cpu_clock_event_del,
9258 	.start		= cpu_clock_event_start,
9259 	.stop		= cpu_clock_event_stop,
9260 	.read		= cpu_clock_event_read,
9261 };
9262 
9263 /*
9264  * Software event: task time clock
9265  */
9266 
9267 static void task_clock_event_update(struct perf_event *event, u64 now)
9268 {
9269 	u64 prev;
9270 	s64 delta;
9271 
9272 	prev = local64_xchg(&event->hw.prev_count, now);
9273 	delta = now - prev;
9274 	local64_add(delta, &event->count);
9275 }
9276 
9277 static void task_clock_event_start(struct perf_event *event, int flags)
9278 {
9279 	local64_set(&event->hw.prev_count, event->ctx->time);
9280 	perf_swevent_start_hrtimer(event);
9281 }
9282 
9283 static void task_clock_event_stop(struct perf_event *event, int flags)
9284 {
9285 	perf_swevent_cancel_hrtimer(event);
9286 	task_clock_event_update(event, event->ctx->time);
9287 }
9288 
9289 static int task_clock_event_add(struct perf_event *event, int flags)
9290 {
9291 	if (flags & PERF_EF_START)
9292 		task_clock_event_start(event, flags);
9293 	perf_event_update_userpage(event);
9294 
9295 	return 0;
9296 }
9297 
9298 static void task_clock_event_del(struct perf_event *event, int flags)
9299 {
9300 	task_clock_event_stop(event, PERF_EF_UPDATE);
9301 }
9302 
9303 static void task_clock_event_read(struct perf_event *event)
9304 {
9305 	u64 now = perf_clock();
9306 	u64 delta = now - event->ctx->timestamp;
9307 	u64 time = event->ctx->time + delta;
9308 
9309 	task_clock_event_update(event, time);
9310 }
9311 
9312 static int task_clock_event_init(struct perf_event *event)
9313 {
9314 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9315 		return -ENOENT;
9316 
9317 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9318 		return -ENOENT;
9319 
9320 	/*
9321 	 * no branch sampling for software events
9322 	 */
9323 	if (has_branch_stack(event))
9324 		return -EOPNOTSUPP;
9325 
9326 	perf_swevent_init_hrtimer(event);
9327 
9328 	return 0;
9329 }
9330 
9331 static struct pmu perf_task_clock = {
9332 	.task_ctx_nr	= perf_sw_context,
9333 
9334 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9335 
9336 	.event_init	= task_clock_event_init,
9337 	.add		= task_clock_event_add,
9338 	.del		= task_clock_event_del,
9339 	.start		= task_clock_event_start,
9340 	.stop		= task_clock_event_stop,
9341 	.read		= task_clock_event_read,
9342 };
9343 
9344 static void perf_pmu_nop_void(struct pmu *pmu)
9345 {
9346 }
9347 
9348 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9349 {
9350 }
9351 
9352 static int perf_pmu_nop_int(struct pmu *pmu)
9353 {
9354 	return 0;
9355 }
9356 
9357 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9358 
9359 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9360 {
9361 	__this_cpu_write(nop_txn_flags, flags);
9362 
9363 	if (flags & ~PERF_PMU_TXN_ADD)
9364 		return;
9365 
9366 	perf_pmu_disable(pmu);
9367 }
9368 
9369 static int perf_pmu_commit_txn(struct pmu *pmu)
9370 {
9371 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9372 
9373 	__this_cpu_write(nop_txn_flags, 0);
9374 
9375 	if (flags & ~PERF_PMU_TXN_ADD)
9376 		return 0;
9377 
9378 	perf_pmu_enable(pmu);
9379 	return 0;
9380 }
9381 
9382 static void perf_pmu_cancel_txn(struct pmu *pmu)
9383 {
9384 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9385 
9386 	__this_cpu_write(nop_txn_flags, 0);
9387 
9388 	if (flags & ~PERF_PMU_TXN_ADD)
9389 		return;
9390 
9391 	perf_pmu_enable(pmu);
9392 }
9393 
9394 static int perf_event_idx_default(struct perf_event *event)
9395 {
9396 	return 0;
9397 }
9398 
9399 /*
9400  * Ensures all contexts with the same task_ctx_nr have the same
9401  * pmu_cpu_context too.
9402  */
9403 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9404 {
9405 	struct pmu *pmu;
9406 
9407 	if (ctxn < 0)
9408 		return NULL;
9409 
9410 	list_for_each_entry(pmu, &pmus, entry) {
9411 		if (pmu->task_ctx_nr == ctxn)
9412 			return pmu->pmu_cpu_context;
9413 	}
9414 
9415 	return NULL;
9416 }
9417 
9418 static void free_pmu_context(struct pmu *pmu)
9419 {
9420 	/*
9421 	 * Static contexts such as perf_sw_context have a global lifetime
9422 	 * and may be shared between different PMUs. Avoid freeing them
9423 	 * when a single PMU is going away.
9424 	 */
9425 	if (pmu->task_ctx_nr > perf_invalid_context)
9426 		return;
9427 
9428 	mutex_lock(&pmus_lock);
9429 	free_percpu(pmu->pmu_cpu_context);
9430 	mutex_unlock(&pmus_lock);
9431 }
9432 
9433 /*
9434  * Let userspace know that this PMU supports address range filtering:
9435  */
9436 static ssize_t nr_addr_filters_show(struct device *dev,
9437 				    struct device_attribute *attr,
9438 				    char *page)
9439 {
9440 	struct pmu *pmu = dev_get_drvdata(dev);
9441 
9442 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9443 }
9444 DEVICE_ATTR_RO(nr_addr_filters);
9445 
9446 static struct idr pmu_idr;
9447 
9448 static ssize_t
9449 type_show(struct device *dev, struct device_attribute *attr, char *page)
9450 {
9451 	struct pmu *pmu = dev_get_drvdata(dev);
9452 
9453 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9454 }
9455 static DEVICE_ATTR_RO(type);
9456 
9457 static ssize_t
9458 perf_event_mux_interval_ms_show(struct device *dev,
9459 				struct device_attribute *attr,
9460 				char *page)
9461 {
9462 	struct pmu *pmu = dev_get_drvdata(dev);
9463 
9464 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9465 }
9466 
9467 static DEFINE_MUTEX(mux_interval_mutex);
9468 
9469 static ssize_t
9470 perf_event_mux_interval_ms_store(struct device *dev,
9471 				 struct device_attribute *attr,
9472 				 const char *buf, size_t count)
9473 {
9474 	struct pmu *pmu = dev_get_drvdata(dev);
9475 	int timer, cpu, ret;
9476 
9477 	ret = kstrtoint(buf, 0, &timer);
9478 	if (ret)
9479 		return ret;
9480 
9481 	if (timer < 1)
9482 		return -EINVAL;
9483 
9484 	/* same value, noting to do */
9485 	if (timer == pmu->hrtimer_interval_ms)
9486 		return count;
9487 
9488 	mutex_lock(&mux_interval_mutex);
9489 	pmu->hrtimer_interval_ms = timer;
9490 
9491 	/* update all cpuctx for this PMU */
9492 	cpus_read_lock();
9493 	for_each_online_cpu(cpu) {
9494 		struct perf_cpu_context *cpuctx;
9495 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9496 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9497 
9498 		cpu_function_call(cpu,
9499 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9500 	}
9501 	cpus_read_unlock();
9502 	mutex_unlock(&mux_interval_mutex);
9503 
9504 	return count;
9505 }
9506 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9507 
9508 static struct attribute *pmu_dev_attrs[] = {
9509 	&dev_attr_type.attr,
9510 	&dev_attr_perf_event_mux_interval_ms.attr,
9511 	NULL,
9512 };
9513 ATTRIBUTE_GROUPS(pmu_dev);
9514 
9515 static int pmu_bus_running;
9516 static struct bus_type pmu_bus = {
9517 	.name		= "event_source",
9518 	.dev_groups	= pmu_dev_groups,
9519 };
9520 
9521 static void pmu_dev_release(struct device *dev)
9522 {
9523 	kfree(dev);
9524 }
9525 
9526 static int pmu_dev_alloc(struct pmu *pmu)
9527 {
9528 	int ret = -ENOMEM;
9529 
9530 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9531 	if (!pmu->dev)
9532 		goto out;
9533 
9534 	pmu->dev->groups = pmu->attr_groups;
9535 	device_initialize(pmu->dev);
9536 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9537 	if (ret)
9538 		goto free_dev;
9539 
9540 	dev_set_drvdata(pmu->dev, pmu);
9541 	pmu->dev->bus = &pmu_bus;
9542 	pmu->dev->release = pmu_dev_release;
9543 	ret = device_add(pmu->dev);
9544 	if (ret)
9545 		goto free_dev;
9546 
9547 	/* For PMUs with address filters, throw in an extra attribute: */
9548 	if (pmu->nr_addr_filters)
9549 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9550 
9551 	if (ret)
9552 		goto del_dev;
9553 
9554 out:
9555 	return ret;
9556 
9557 del_dev:
9558 	device_del(pmu->dev);
9559 
9560 free_dev:
9561 	put_device(pmu->dev);
9562 	goto out;
9563 }
9564 
9565 static struct lock_class_key cpuctx_mutex;
9566 static struct lock_class_key cpuctx_lock;
9567 
9568 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9569 {
9570 	int cpu, ret;
9571 
9572 	mutex_lock(&pmus_lock);
9573 	ret = -ENOMEM;
9574 	pmu->pmu_disable_count = alloc_percpu(int);
9575 	if (!pmu->pmu_disable_count)
9576 		goto unlock;
9577 
9578 	pmu->type = -1;
9579 	if (!name)
9580 		goto skip_type;
9581 	pmu->name = name;
9582 
9583 	if (type < 0) {
9584 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9585 		if (type < 0) {
9586 			ret = type;
9587 			goto free_pdc;
9588 		}
9589 	}
9590 	pmu->type = type;
9591 
9592 	if (pmu_bus_running) {
9593 		ret = pmu_dev_alloc(pmu);
9594 		if (ret)
9595 			goto free_idr;
9596 	}
9597 
9598 skip_type:
9599 	if (pmu->task_ctx_nr == perf_hw_context) {
9600 		static int hw_context_taken = 0;
9601 
9602 		/*
9603 		 * Other than systems with heterogeneous CPUs, it never makes
9604 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9605 		 * uncore must use perf_invalid_context.
9606 		 */
9607 		if (WARN_ON_ONCE(hw_context_taken &&
9608 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9609 			pmu->task_ctx_nr = perf_invalid_context;
9610 
9611 		hw_context_taken = 1;
9612 	}
9613 
9614 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9615 	if (pmu->pmu_cpu_context)
9616 		goto got_cpu_context;
9617 
9618 	ret = -ENOMEM;
9619 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9620 	if (!pmu->pmu_cpu_context)
9621 		goto free_dev;
9622 
9623 	for_each_possible_cpu(cpu) {
9624 		struct perf_cpu_context *cpuctx;
9625 
9626 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9627 		__perf_event_init_context(&cpuctx->ctx);
9628 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9629 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9630 		cpuctx->ctx.pmu = pmu;
9631 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9632 
9633 		__perf_mux_hrtimer_init(cpuctx, cpu);
9634 	}
9635 
9636 got_cpu_context:
9637 	if (!pmu->start_txn) {
9638 		if (pmu->pmu_enable) {
9639 			/*
9640 			 * If we have pmu_enable/pmu_disable calls, install
9641 			 * transaction stubs that use that to try and batch
9642 			 * hardware accesses.
9643 			 */
9644 			pmu->start_txn  = perf_pmu_start_txn;
9645 			pmu->commit_txn = perf_pmu_commit_txn;
9646 			pmu->cancel_txn = perf_pmu_cancel_txn;
9647 		} else {
9648 			pmu->start_txn  = perf_pmu_nop_txn;
9649 			pmu->commit_txn = perf_pmu_nop_int;
9650 			pmu->cancel_txn = perf_pmu_nop_void;
9651 		}
9652 	}
9653 
9654 	if (!pmu->pmu_enable) {
9655 		pmu->pmu_enable  = perf_pmu_nop_void;
9656 		pmu->pmu_disable = perf_pmu_nop_void;
9657 	}
9658 
9659 	if (!pmu->event_idx)
9660 		pmu->event_idx = perf_event_idx_default;
9661 
9662 	list_add_rcu(&pmu->entry, &pmus);
9663 	atomic_set(&pmu->exclusive_cnt, 0);
9664 	ret = 0;
9665 unlock:
9666 	mutex_unlock(&pmus_lock);
9667 
9668 	return ret;
9669 
9670 free_dev:
9671 	device_del(pmu->dev);
9672 	put_device(pmu->dev);
9673 
9674 free_idr:
9675 	if (pmu->type >= PERF_TYPE_MAX)
9676 		idr_remove(&pmu_idr, pmu->type);
9677 
9678 free_pdc:
9679 	free_percpu(pmu->pmu_disable_count);
9680 	goto unlock;
9681 }
9682 EXPORT_SYMBOL_GPL(perf_pmu_register);
9683 
9684 void perf_pmu_unregister(struct pmu *pmu)
9685 {
9686 	int remove_device;
9687 
9688 	mutex_lock(&pmus_lock);
9689 	remove_device = pmu_bus_running;
9690 	list_del_rcu(&pmu->entry);
9691 	mutex_unlock(&pmus_lock);
9692 
9693 	/*
9694 	 * We dereference the pmu list under both SRCU and regular RCU, so
9695 	 * synchronize against both of those.
9696 	 */
9697 	synchronize_srcu(&pmus_srcu);
9698 	synchronize_rcu();
9699 
9700 	free_percpu(pmu->pmu_disable_count);
9701 	if (pmu->type >= PERF_TYPE_MAX)
9702 		idr_remove(&pmu_idr, pmu->type);
9703 	if (remove_device) {
9704 		if (pmu->nr_addr_filters)
9705 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9706 		device_del(pmu->dev);
9707 		put_device(pmu->dev);
9708 	}
9709 	free_pmu_context(pmu);
9710 }
9711 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9712 
9713 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9714 {
9715 	struct perf_event_context *ctx = NULL;
9716 	int ret;
9717 
9718 	if (!try_module_get(pmu->module))
9719 		return -ENODEV;
9720 
9721 	/*
9722 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9723 	 * for example, validate if the group fits on the PMU. Therefore,
9724 	 * if this is a sibling event, acquire the ctx->mutex to protect
9725 	 * the sibling_list.
9726 	 */
9727 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9728 		/*
9729 		 * This ctx->mutex can nest when we're called through
9730 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9731 		 */
9732 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9733 						 SINGLE_DEPTH_NESTING);
9734 		BUG_ON(!ctx);
9735 	}
9736 
9737 	event->pmu = pmu;
9738 	ret = pmu->event_init(event);
9739 
9740 	if (ctx)
9741 		perf_event_ctx_unlock(event->group_leader, ctx);
9742 
9743 	if (ret)
9744 		module_put(pmu->module);
9745 
9746 	return ret;
9747 }
9748 
9749 static struct pmu *perf_init_event(struct perf_event *event)
9750 {
9751 	struct pmu *pmu;
9752 	int idx;
9753 	int ret;
9754 
9755 	idx = srcu_read_lock(&pmus_srcu);
9756 
9757 	/* Try parent's PMU first: */
9758 	if (event->parent && event->parent->pmu) {
9759 		pmu = event->parent->pmu;
9760 		ret = perf_try_init_event(pmu, event);
9761 		if (!ret)
9762 			goto unlock;
9763 	}
9764 
9765 	rcu_read_lock();
9766 	pmu = idr_find(&pmu_idr, event->attr.type);
9767 	rcu_read_unlock();
9768 	if (pmu) {
9769 		ret = perf_try_init_event(pmu, event);
9770 		if (ret)
9771 			pmu = ERR_PTR(ret);
9772 		goto unlock;
9773 	}
9774 
9775 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9776 		ret = perf_try_init_event(pmu, event);
9777 		if (!ret)
9778 			goto unlock;
9779 
9780 		if (ret != -ENOENT) {
9781 			pmu = ERR_PTR(ret);
9782 			goto unlock;
9783 		}
9784 	}
9785 	pmu = ERR_PTR(-ENOENT);
9786 unlock:
9787 	srcu_read_unlock(&pmus_srcu, idx);
9788 
9789 	return pmu;
9790 }
9791 
9792 static void attach_sb_event(struct perf_event *event)
9793 {
9794 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9795 
9796 	raw_spin_lock(&pel->lock);
9797 	list_add_rcu(&event->sb_list, &pel->list);
9798 	raw_spin_unlock(&pel->lock);
9799 }
9800 
9801 /*
9802  * We keep a list of all !task (and therefore per-cpu) events
9803  * that need to receive side-band records.
9804  *
9805  * This avoids having to scan all the various PMU per-cpu contexts
9806  * looking for them.
9807  */
9808 static void account_pmu_sb_event(struct perf_event *event)
9809 {
9810 	if (is_sb_event(event))
9811 		attach_sb_event(event);
9812 }
9813 
9814 static void account_event_cpu(struct perf_event *event, int cpu)
9815 {
9816 	if (event->parent)
9817 		return;
9818 
9819 	if (is_cgroup_event(event))
9820 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9821 }
9822 
9823 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9824 static void account_freq_event_nohz(void)
9825 {
9826 #ifdef CONFIG_NO_HZ_FULL
9827 	/* Lock so we don't race with concurrent unaccount */
9828 	spin_lock(&nr_freq_lock);
9829 	if (atomic_inc_return(&nr_freq_events) == 1)
9830 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9831 	spin_unlock(&nr_freq_lock);
9832 #endif
9833 }
9834 
9835 static void account_freq_event(void)
9836 {
9837 	if (tick_nohz_full_enabled())
9838 		account_freq_event_nohz();
9839 	else
9840 		atomic_inc(&nr_freq_events);
9841 }
9842 
9843 
9844 static void account_event(struct perf_event *event)
9845 {
9846 	bool inc = false;
9847 
9848 	if (event->parent)
9849 		return;
9850 
9851 	if (event->attach_state & PERF_ATTACH_TASK)
9852 		inc = true;
9853 	if (event->attr.mmap || event->attr.mmap_data)
9854 		atomic_inc(&nr_mmap_events);
9855 	if (event->attr.comm)
9856 		atomic_inc(&nr_comm_events);
9857 	if (event->attr.namespaces)
9858 		atomic_inc(&nr_namespaces_events);
9859 	if (event->attr.task)
9860 		atomic_inc(&nr_task_events);
9861 	if (event->attr.freq)
9862 		account_freq_event();
9863 	if (event->attr.context_switch) {
9864 		atomic_inc(&nr_switch_events);
9865 		inc = true;
9866 	}
9867 	if (has_branch_stack(event))
9868 		inc = true;
9869 	if (is_cgroup_event(event))
9870 		inc = true;
9871 
9872 	if (inc) {
9873 		/*
9874 		 * We need the mutex here because static_branch_enable()
9875 		 * must complete *before* the perf_sched_count increment
9876 		 * becomes visible.
9877 		 */
9878 		if (atomic_inc_not_zero(&perf_sched_count))
9879 			goto enabled;
9880 
9881 		mutex_lock(&perf_sched_mutex);
9882 		if (!atomic_read(&perf_sched_count)) {
9883 			static_branch_enable(&perf_sched_events);
9884 			/*
9885 			 * Guarantee that all CPUs observe they key change and
9886 			 * call the perf scheduling hooks before proceeding to
9887 			 * install events that need them.
9888 			 */
9889 			synchronize_sched();
9890 		}
9891 		/*
9892 		 * Now that we have waited for the sync_sched(), allow further
9893 		 * increments to by-pass the mutex.
9894 		 */
9895 		atomic_inc(&perf_sched_count);
9896 		mutex_unlock(&perf_sched_mutex);
9897 	}
9898 enabled:
9899 
9900 	account_event_cpu(event, event->cpu);
9901 
9902 	account_pmu_sb_event(event);
9903 }
9904 
9905 /*
9906  * Allocate and initialize an event structure
9907  */
9908 static struct perf_event *
9909 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9910 		 struct task_struct *task,
9911 		 struct perf_event *group_leader,
9912 		 struct perf_event *parent_event,
9913 		 perf_overflow_handler_t overflow_handler,
9914 		 void *context, int cgroup_fd)
9915 {
9916 	struct pmu *pmu;
9917 	struct perf_event *event;
9918 	struct hw_perf_event *hwc;
9919 	long err = -EINVAL;
9920 
9921 	if ((unsigned)cpu >= nr_cpu_ids) {
9922 		if (!task || cpu != -1)
9923 			return ERR_PTR(-EINVAL);
9924 	}
9925 
9926 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9927 	if (!event)
9928 		return ERR_PTR(-ENOMEM);
9929 
9930 	/*
9931 	 * Single events are their own group leaders, with an
9932 	 * empty sibling list:
9933 	 */
9934 	if (!group_leader)
9935 		group_leader = event;
9936 
9937 	mutex_init(&event->child_mutex);
9938 	INIT_LIST_HEAD(&event->child_list);
9939 
9940 	INIT_LIST_HEAD(&event->event_entry);
9941 	INIT_LIST_HEAD(&event->sibling_list);
9942 	INIT_LIST_HEAD(&event->active_list);
9943 	init_event_group(event);
9944 	INIT_LIST_HEAD(&event->rb_entry);
9945 	INIT_LIST_HEAD(&event->active_entry);
9946 	INIT_LIST_HEAD(&event->addr_filters.list);
9947 	INIT_HLIST_NODE(&event->hlist_entry);
9948 
9949 
9950 	init_waitqueue_head(&event->waitq);
9951 	init_irq_work(&event->pending, perf_pending_event);
9952 
9953 	mutex_init(&event->mmap_mutex);
9954 	raw_spin_lock_init(&event->addr_filters.lock);
9955 
9956 	atomic_long_set(&event->refcount, 1);
9957 	event->cpu		= cpu;
9958 	event->attr		= *attr;
9959 	event->group_leader	= group_leader;
9960 	event->pmu		= NULL;
9961 	event->oncpu		= -1;
9962 
9963 	event->parent		= parent_event;
9964 
9965 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9966 	event->id		= atomic64_inc_return(&perf_event_id);
9967 
9968 	event->state		= PERF_EVENT_STATE_INACTIVE;
9969 
9970 	if (task) {
9971 		event->attach_state = PERF_ATTACH_TASK;
9972 		/*
9973 		 * XXX pmu::event_init needs to know what task to account to
9974 		 * and we cannot use the ctx information because we need the
9975 		 * pmu before we get a ctx.
9976 		 */
9977 		get_task_struct(task);
9978 		event->hw.target = task;
9979 	}
9980 
9981 	event->clock = &local_clock;
9982 	if (parent_event)
9983 		event->clock = parent_event->clock;
9984 
9985 	if (!overflow_handler && parent_event) {
9986 		overflow_handler = parent_event->overflow_handler;
9987 		context = parent_event->overflow_handler_context;
9988 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9989 		if (overflow_handler == bpf_overflow_handler) {
9990 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9991 
9992 			if (IS_ERR(prog)) {
9993 				err = PTR_ERR(prog);
9994 				goto err_ns;
9995 			}
9996 			event->prog = prog;
9997 			event->orig_overflow_handler =
9998 				parent_event->orig_overflow_handler;
9999 		}
10000 #endif
10001 	}
10002 
10003 	if (overflow_handler) {
10004 		event->overflow_handler	= overflow_handler;
10005 		event->overflow_handler_context = context;
10006 	} else if (is_write_backward(event)){
10007 		event->overflow_handler = perf_event_output_backward;
10008 		event->overflow_handler_context = NULL;
10009 	} else {
10010 		event->overflow_handler = perf_event_output_forward;
10011 		event->overflow_handler_context = NULL;
10012 	}
10013 
10014 	perf_event__state_init(event);
10015 
10016 	pmu = NULL;
10017 
10018 	hwc = &event->hw;
10019 	hwc->sample_period = attr->sample_period;
10020 	if (attr->freq && attr->sample_freq)
10021 		hwc->sample_period = 1;
10022 	hwc->last_period = hwc->sample_period;
10023 
10024 	local64_set(&hwc->period_left, hwc->sample_period);
10025 
10026 	/*
10027 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10028 	 * See perf_output_read().
10029 	 */
10030 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10031 		goto err_ns;
10032 
10033 	if (!has_branch_stack(event))
10034 		event->attr.branch_sample_type = 0;
10035 
10036 	if (cgroup_fd != -1) {
10037 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10038 		if (err)
10039 			goto err_ns;
10040 	}
10041 
10042 	pmu = perf_init_event(event);
10043 	if (IS_ERR(pmu)) {
10044 		err = PTR_ERR(pmu);
10045 		goto err_ns;
10046 	}
10047 
10048 	err = exclusive_event_init(event);
10049 	if (err)
10050 		goto err_pmu;
10051 
10052 	if (has_addr_filter(event)) {
10053 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10054 						   sizeof(unsigned long),
10055 						   GFP_KERNEL);
10056 		if (!event->addr_filters_offs) {
10057 			err = -ENOMEM;
10058 			goto err_per_task;
10059 		}
10060 
10061 		/* force hw sync on the address filters */
10062 		event->addr_filters_gen = 1;
10063 	}
10064 
10065 	if (!event->parent) {
10066 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10067 			err = get_callchain_buffers(attr->sample_max_stack);
10068 			if (err)
10069 				goto err_addr_filters;
10070 		}
10071 	}
10072 
10073 	/* symmetric to unaccount_event() in _free_event() */
10074 	account_event(event);
10075 
10076 	return event;
10077 
10078 err_addr_filters:
10079 	kfree(event->addr_filters_offs);
10080 
10081 err_per_task:
10082 	exclusive_event_destroy(event);
10083 
10084 err_pmu:
10085 	if (event->destroy)
10086 		event->destroy(event);
10087 	module_put(pmu->module);
10088 err_ns:
10089 	if (is_cgroup_event(event))
10090 		perf_detach_cgroup(event);
10091 	if (event->ns)
10092 		put_pid_ns(event->ns);
10093 	if (event->hw.target)
10094 		put_task_struct(event->hw.target);
10095 	kfree(event);
10096 
10097 	return ERR_PTR(err);
10098 }
10099 
10100 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10101 			  struct perf_event_attr *attr)
10102 {
10103 	u32 size;
10104 	int ret;
10105 
10106 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10107 		return -EFAULT;
10108 
10109 	/*
10110 	 * zero the full structure, so that a short copy will be nice.
10111 	 */
10112 	memset(attr, 0, sizeof(*attr));
10113 
10114 	ret = get_user(size, &uattr->size);
10115 	if (ret)
10116 		return ret;
10117 
10118 	if (size > PAGE_SIZE)	/* silly large */
10119 		goto err_size;
10120 
10121 	if (!size)		/* abi compat */
10122 		size = PERF_ATTR_SIZE_VER0;
10123 
10124 	if (size < PERF_ATTR_SIZE_VER0)
10125 		goto err_size;
10126 
10127 	/*
10128 	 * If we're handed a bigger struct than we know of,
10129 	 * ensure all the unknown bits are 0 - i.e. new
10130 	 * user-space does not rely on any kernel feature
10131 	 * extensions we dont know about yet.
10132 	 */
10133 	if (size > sizeof(*attr)) {
10134 		unsigned char __user *addr;
10135 		unsigned char __user *end;
10136 		unsigned char val;
10137 
10138 		addr = (void __user *)uattr + sizeof(*attr);
10139 		end  = (void __user *)uattr + size;
10140 
10141 		for (; addr < end; addr++) {
10142 			ret = get_user(val, addr);
10143 			if (ret)
10144 				return ret;
10145 			if (val)
10146 				goto err_size;
10147 		}
10148 		size = sizeof(*attr);
10149 	}
10150 
10151 	ret = copy_from_user(attr, uattr, size);
10152 	if (ret)
10153 		return -EFAULT;
10154 
10155 	attr->size = size;
10156 
10157 	if (attr->__reserved_1)
10158 		return -EINVAL;
10159 
10160 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10161 		return -EINVAL;
10162 
10163 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10164 		return -EINVAL;
10165 
10166 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10167 		u64 mask = attr->branch_sample_type;
10168 
10169 		/* only using defined bits */
10170 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10171 			return -EINVAL;
10172 
10173 		/* at least one branch bit must be set */
10174 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10175 			return -EINVAL;
10176 
10177 		/* propagate priv level, when not set for branch */
10178 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10179 
10180 			/* exclude_kernel checked on syscall entry */
10181 			if (!attr->exclude_kernel)
10182 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10183 
10184 			if (!attr->exclude_user)
10185 				mask |= PERF_SAMPLE_BRANCH_USER;
10186 
10187 			if (!attr->exclude_hv)
10188 				mask |= PERF_SAMPLE_BRANCH_HV;
10189 			/*
10190 			 * adjust user setting (for HW filter setup)
10191 			 */
10192 			attr->branch_sample_type = mask;
10193 		}
10194 		/* privileged levels capture (kernel, hv): check permissions */
10195 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10196 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10197 			return -EACCES;
10198 	}
10199 
10200 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10201 		ret = perf_reg_validate(attr->sample_regs_user);
10202 		if (ret)
10203 			return ret;
10204 	}
10205 
10206 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10207 		if (!arch_perf_have_user_stack_dump())
10208 			return -ENOSYS;
10209 
10210 		/*
10211 		 * We have __u32 type for the size, but so far
10212 		 * we can only use __u16 as maximum due to the
10213 		 * __u16 sample size limit.
10214 		 */
10215 		if (attr->sample_stack_user >= USHRT_MAX)
10216 			return -EINVAL;
10217 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10218 			return -EINVAL;
10219 	}
10220 
10221 	if (!attr->sample_max_stack)
10222 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10223 
10224 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10225 		ret = perf_reg_validate(attr->sample_regs_intr);
10226 out:
10227 	return ret;
10228 
10229 err_size:
10230 	put_user(sizeof(*attr), &uattr->size);
10231 	ret = -E2BIG;
10232 	goto out;
10233 }
10234 
10235 static int
10236 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10237 {
10238 	struct ring_buffer *rb = NULL;
10239 	int ret = -EINVAL;
10240 
10241 	if (!output_event)
10242 		goto set;
10243 
10244 	/* don't allow circular references */
10245 	if (event == output_event)
10246 		goto out;
10247 
10248 	/*
10249 	 * Don't allow cross-cpu buffers
10250 	 */
10251 	if (output_event->cpu != event->cpu)
10252 		goto out;
10253 
10254 	/*
10255 	 * If its not a per-cpu rb, it must be the same task.
10256 	 */
10257 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10258 		goto out;
10259 
10260 	/*
10261 	 * Mixing clocks in the same buffer is trouble you don't need.
10262 	 */
10263 	if (output_event->clock != event->clock)
10264 		goto out;
10265 
10266 	/*
10267 	 * Either writing ring buffer from beginning or from end.
10268 	 * Mixing is not allowed.
10269 	 */
10270 	if (is_write_backward(output_event) != is_write_backward(event))
10271 		goto out;
10272 
10273 	/*
10274 	 * If both events generate aux data, they must be on the same PMU
10275 	 */
10276 	if (has_aux(event) && has_aux(output_event) &&
10277 	    event->pmu != output_event->pmu)
10278 		goto out;
10279 
10280 set:
10281 	mutex_lock(&event->mmap_mutex);
10282 	/* Can't redirect output if we've got an active mmap() */
10283 	if (atomic_read(&event->mmap_count))
10284 		goto unlock;
10285 
10286 	if (output_event) {
10287 		/* get the rb we want to redirect to */
10288 		rb = ring_buffer_get(output_event);
10289 		if (!rb)
10290 			goto unlock;
10291 	}
10292 
10293 	ring_buffer_attach(event, rb);
10294 
10295 	ret = 0;
10296 unlock:
10297 	mutex_unlock(&event->mmap_mutex);
10298 
10299 out:
10300 	return ret;
10301 }
10302 
10303 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10304 {
10305 	if (b < a)
10306 		swap(a, b);
10307 
10308 	mutex_lock(a);
10309 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10310 }
10311 
10312 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10313 {
10314 	bool nmi_safe = false;
10315 
10316 	switch (clk_id) {
10317 	case CLOCK_MONOTONIC:
10318 		event->clock = &ktime_get_mono_fast_ns;
10319 		nmi_safe = true;
10320 		break;
10321 
10322 	case CLOCK_MONOTONIC_RAW:
10323 		event->clock = &ktime_get_raw_fast_ns;
10324 		nmi_safe = true;
10325 		break;
10326 
10327 	case CLOCK_REALTIME:
10328 		event->clock = &ktime_get_real_ns;
10329 		break;
10330 
10331 	case CLOCK_BOOTTIME:
10332 		event->clock = &ktime_get_boot_ns;
10333 		break;
10334 
10335 	case CLOCK_TAI:
10336 		event->clock = &ktime_get_tai_ns;
10337 		break;
10338 
10339 	default:
10340 		return -EINVAL;
10341 	}
10342 
10343 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10344 		return -EINVAL;
10345 
10346 	return 0;
10347 }
10348 
10349 /*
10350  * Variation on perf_event_ctx_lock_nested(), except we take two context
10351  * mutexes.
10352  */
10353 static struct perf_event_context *
10354 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10355 			     struct perf_event_context *ctx)
10356 {
10357 	struct perf_event_context *gctx;
10358 
10359 again:
10360 	rcu_read_lock();
10361 	gctx = READ_ONCE(group_leader->ctx);
10362 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10363 		rcu_read_unlock();
10364 		goto again;
10365 	}
10366 	rcu_read_unlock();
10367 
10368 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10369 
10370 	if (group_leader->ctx != gctx) {
10371 		mutex_unlock(&ctx->mutex);
10372 		mutex_unlock(&gctx->mutex);
10373 		put_ctx(gctx);
10374 		goto again;
10375 	}
10376 
10377 	return gctx;
10378 }
10379 
10380 /**
10381  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10382  *
10383  * @attr_uptr:	event_id type attributes for monitoring/sampling
10384  * @pid:		target pid
10385  * @cpu:		target cpu
10386  * @group_fd:		group leader event fd
10387  */
10388 SYSCALL_DEFINE5(perf_event_open,
10389 		struct perf_event_attr __user *, attr_uptr,
10390 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10391 {
10392 	struct perf_event *group_leader = NULL, *output_event = NULL;
10393 	struct perf_event *event, *sibling;
10394 	struct perf_event_attr attr;
10395 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10396 	struct file *event_file = NULL;
10397 	struct fd group = {NULL, 0};
10398 	struct task_struct *task = NULL;
10399 	struct pmu *pmu;
10400 	int event_fd;
10401 	int move_group = 0;
10402 	int err;
10403 	int f_flags = O_RDWR;
10404 	int cgroup_fd = -1;
10405 
10406 	/* for future expandability... */
10407 	if (flags & ~PERF_FLAG_ALL)
10408 		return -EINVAL;
10409 
10410 	err = perf_copy_attr(attr_uptr, &attr);
10411 	if (err)
10412 		return err;
10413 
10414 	if (!attr.exclude_kernel) {
10415 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10416 			return -EACCES;
10417 	}
10418 
10419 	if (attr.namespaces) {
10420 		if (!capable(CAP_SYS_ADMIN))
10421 			return -EACCES;
10422 	}
10423 
10424 	if (attr.freq) {
10425 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10426 			return -EINVAL;
10427 	} else {
10428 		if (attr.sample_period & (1ULL << 63))
10429 			return -EINVAL;
10430 	}
10431 
10432 	/* Only privileged users can get physical addresses */
10433 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10434 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10435 		return -EACCES;
10436 
10437 	/*
10438 	 * In cgroup mode, the pid argument is used to pass the fd
10439 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10440 	 * designates the cpu on which to monitor threads from that
10441 	 * cgroup.
10442 	 */
10443 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10444 		return -EINVAL;
10445 
10446 	if (flags & PERF_FLAG_FD_CLOEXEC)
10447 		f_flags |= O_CLOEXEC;
10448 
10449 	event_fd = get_unused_fd_flags(f_flags);
10450 	if (event_fd < 0)
10451 		return event_fd;
10452 
10453 	if (group_fd != -1) {
10454 		err = perf_fget_light(group_fd, &group);
10455 		if (err)
10456 			goto err_fd;
10457 		group_leader = group.file->private_data;
10458 		if (flags & PERF_FLAG_FD_OUTPUT)
10459 			output_event = group_leader;
10460 		if (flags & PERF_FLAG_FD_NO_GROUP)
10461 			group_leader = NULL;
10462 	}
10463 
10464 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10465 		task = find_lively_task_by_vpid(pid);
10466 		if (IS_ERR(task)) {
10467 			err = PTR_ERR(task);
10468 			goto err_group_fd;
10469 		}
10470 	}
10471 
10472 	if (task && group_leader &&
10473 	    group_leader->attr.inherit != attr.inherit) {
10474 		err = -EINVAL;
10475 		goto err_task;
10476 	}
10477 
10478 	if (task) {
10479 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10480 		if (err)
10481 			goto err_task;
10482 
10483 		/*
10484 		 * Reuse ptrace permission checks for now.
10485 		 *
10486 		 * We must hold cred_guard_mutex across this and any potential
10487 		 * perf_install_in_context() call for this new event to
10488 		 * serialize against exec() altering our credentials (and the
10489 		 * perf_event_exit_task() that could imply).
10490 		 */
10491 		err = -EACCES;
10492 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10493 			goto err_cred;
10494 	}
10495 
10496 	if (flags & PERF_FLAG_PID_CGROUP)
10497 		cgroup_fd = pid;
10498 
10499 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10500 				 NULL, NULL, cgroup_fd);
10501 	if (IS_ERR(event)) {
10502 		err = PTR_ERR(event);
10503 		goto err_cred;
10504 	}
10505 
10506 	if (is_sampling_event(event)) {
10507 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10508 			err = -EOPNOTSUPP;
10509 			goto err_alloc;
10510 		}
10511 	}
10512 
10513 	/*
10514 	 * Special case software events and allow them to be part of
10515 	 * any hardware group.
10516 	 */
10517 	pmu = event->pmu;
10518 
10519 	if (attr.use_clockid) {
10520 		err = perf_event_set_clock(event, attr.clockid);
10521 		if (err)
10522 			goto err_alloc;
10523 	}
10524 
10525 	if (pmu->task_ctx_nr == perf_sw_context)
10526 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10527 
10528 	if (group_leader) {
10529 		if (is_software_event(event) &&
10530 		    !in_software_context(group_leader)) {
10531 			/*
10532 			 * If the event is a sw event, but the group_leader
10533 			 * is on hw context.
10534 			 *
10535 			 * Allow the addition of software events to hw
10536 			 * groups, this is safe because software events
10537 			 * never fail to schedule.
10538 			 */
10539 			pmu = group_leader->ctx->pmu;
10540 		} else if (!is_software_event(event) &&
10541 			   is_software_event(group_leader) &&
10542 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10543 			/*
10544 			 * In case the group is a pure software group, and we
10545 			 * try to add a hardware event, move the whole group to
10546 			 * the hardware context.
10547 			 */
10548 			move_group = 1;
10549 		}
10550 	}
10551 
10552 	/*
10553 	 * Get the target context (task or percpu):
10554 	 */
10555 	ctx = find_get_context(pmu, task, event);
10556 	if (IS_ERR(ctx)) {
10557 		err = PTR_ERR(ctx);
10558 		goto err_alloc;
10559 	}
10560 
10561 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10562 		err = -EBUSY;
10563 		goto err_context;
10564 	}
10565 
10566 	/*
10567 	 * Look up the group leader (we will attach this event to it):
10568 	 */
10569 	if (group_leader) {
10570 		err = -EINVAL;
10571 
10572 		/*
10573 		 * Do not allow a recursive hierarchy (this new sibling
10574 		 * becoming part of another group-sibling):
10575 		 */
10576 		if (group_leader->group_leader != group_leader)
10577 			goto err_context;
10578 
10579 		/* All events in a group should have the same clock */
10580 		if (group_leader->clock != event->clock)
10581 			goto err_context;
10582 
10583 		/*
10584 		 * Make sure we're both events for the same CPU;
10585 		 * grouping events for different CPUs is broken; since
10586 		 * you can never concurrently schedule them anyhow.
10587 		 */
10588 		if (group_leader->cpu != event->cpu)
10589 			goto err_context;
10590 
10591 		/*
10592 		 * Make sure we're both on the same task, or both
10593 		 * per-CPU events.
10594 		 */
10595 		if (group_leader->ctx->task != ctx->task)
10596 			goto err_context;
10597 
10598 		/*
10599 		 * Do not allow to attach to a group in a different task
10600 		 * or CPU context. If we're moving SW events, we'll fix
10601 		 * this up later, so allow that.
10602 		 */
10603 		if (!move_group && group_leader->ctx != ctx)
10604 			goto err_context;
10605 
10606 		/*
10607 		 * Only a group leader can be exclusive or pinned
10608 		 */
10609 		if (attr.exclusive || attr.pinned)
10610 			goto err_context;
10611 	}
10612 
10613 	if (output_event) {
10614 		err = perf_event_set_output(event, output_event);
10615 		if (err)
10616 			goto err_context;
10617 	}
10618 
10619 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10620 					f_flags);
10621 	if (IS_ERR(event_file)) {
10622 		err = PTR_ERR(event_file);
10623 		event_file = NULL;
10624 		goto err_context;
10625 	}
10626 
10627 	if (move_group) {
10628 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10629 
10630 		if (gctx->task == TASK_TOMBSTONE) {
10631 			err = -ESRCH;
10632 			goto err_locked;
10633 		}
10634 
10635 		/*
10636 		 * Check if we raced against another sys_perf_event_open() call
10637 		 * moving the software group underneath us.
10638 		 */
10639 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10640 			/*
10641 			 * If someone moved the group out from under us, check
10642 			 * if this new event wound up on the same ctx, if so
10643 			 * its the regular !move_group case, otherwise fail.
10644 			 */
10645 			if (gctx != ctx) {
10646 				err = -EINVAL;
10647 				goto err_locked;
10648 			} else {
10649 				perf_event_ctx_unlock(group_leader, gctx);
10650 				move_group = 0;
10651 			}
10652 		}
10653 	} else {
10654 		mutex_lock(&ctx->mutex);
10655 	}
10656 
10657 	if (ctx->task == TASK_TOMBSTONE) {
10658 		err = -ESRCH;
10659 		goto err_locked;
10660 	}
10661 
10662 	if (!perf_event_validate_size(event)) {
10663 		err = -E2BIG;
10664 		goto err_locked;
10665 	}
10666 
10667 	if (!task) {
10668 		/*
10669 		 * Check if the @cpu we're creating an event for is online.
10670 		 *
10671 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10672 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10673 		 */
10674 		struct perf_cpu_context *cpuctx =
10675 			container_of(ctx, struct perf_cpu_context, ctx);
10676 
10677 		if (!cpuctx->online) {
10678 			err = -ENODEV;
10679 			goto err_locked;
10680 		}
10681 	}
10682 
10683 
10684 	/*
10685 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10686 	 * because we need to serialize with concurrent event creation.
10687 	 */
10688 	if (!exclusive_event_installable(event, ctx)) {
10689 		/* exclusive and group stuff are assumed mutually exclusive */
10690 		WARN_ON_ONCE(move_group);
10691 
10692 		err = -EBUSY;
10693 		goto err_locked;
10694 	}
10695 
10696 	WARN_ON_ONCE(ctx->parent_ctx);
10697 
10698 	/*
10699 	 * This is the point on no return; we cannot fail hereafter. This is
10700 	 * where we start modifying current state.
10701 	 */
10702 
10703 	if (move_group) {
10704 		/*
10705 		 * See perf_event_ctx_lock() for comments on the details
10706 		 * of swizzling perf_event::ctx.
10707 		 */
10708 		perf_remove_from_context(group_leader, 0);
10709 		put_ctx(gctx);
10710 
10711 		for_each_sibling_event(sibling, group_leader) {
10712 			perf_remove_from_context(sibling, 0);
10713 			put_ctx(gctx);
10714 		}
10715 
10716 		/*
10717 		 * Wait for everybody to stop referencing the events through
10718 		 * the old lists, before installing it on new lists.
10719 		 */
10720 		synchronize_rcu();
10721 
10722 		/*
10723 		 * Install the group siblings before the group leader.
10724 		 *
10725 		 * Because a group leader will try and install the entire group
10726 		 * (through the sibling list, which is still in-tact), we can
10727 		 * end up with siblings installed in the wrong context.
10728 		 *
10729 		 * By installing siblings first we NO-OP because they're not
10730 		 * reachable through the group lists.
10731 		 */
10732 		for_each_sibling_event(sibling, group_leader) {
10733 			perf_event__state_init(sibling);
10734 			perf_install_in_context(ctx, sibling, sibling->cpu);
10735 			get_ctx(ctx);
10736 		}
10737 
10738 		/*
10739 		 * Removing from the context ends up with disabled
10740 		 * event. What we want here is event in the initial
10741 		 * startup state, ready to be add into new context.
10742 		 */
10743 		perf_event__state_init(group_leader);
10744 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10745 		get_ctx(ctx);
10746 	}
10747 
10748 	/*
10749 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10750 	 * that we're serialized against further additions and before
10751 	 * perf_install_in_context() which is the point the event is active and
10752 	 * can use these values.
10753 	 */
10754 	perf_event__header_size(event);
10755 	perf_event__id_header_size(event);
10756 
10757 	event->owner = current;
10758 
10759 	perf_install_in_context(ctx, event, event->cpu);
10760 	perf_unpin_context(ctx);
10761 
10762 	if (move_group)
10763 		perf_event_ctx_unlock(group_leader, gctx);
10764 	mutex_unlock(&ctx->mutex);
10765 
10766 	if (task) {
10767 		mutex_unlock(&task->signal->cred_guard_mutex);
10768 		put_task_struct(task);
10769 	}
10770 
10771 	mutex_lock(&current->perf_event_mutex);
10772 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10773 	mutex_unlock(&current->perf_event_mutex);
10774 
10775 	/*
10776 	 * Drop the reference on the group_event after placing the
10777 	 * new event on the sibling_list. This ensures destruction
10778 	 * of the group leader will find the pointer to itself in
10779 	 * perf_group_detach().
10780 	 */
10781 	fdput(group);
10782 	fd_install(event_fd, event_file);
10783 	return event_fd;
10784 
10785 err_locked:
10786 	if (move_group)
10787 		perf_event_ctx_unlock(group_leader, gctx);
10788 	mutex_unlock(&ctx->mutex);
10789 /* err_file: */
10790 	fput(event_file);
10791 err_context:
10792 	perf_unpin_context(ctx);
10793 	put_ctx(ctx);
10794 err_alloc:
10795 	/*
10796 	 * If event_file is set, the fput() above will have called ->release()
10797 	 * and that will take care of freeing the event.
10798 	 */
10799 	if (!event_file)
10800 		free_event(event);
10801 err_cred:
10802 	if (task)
10803 		mutex_unlock(&task->signal->cred_guard_mutex);
10804 err_task:
10805 	if (task)
10806 		put_task_struct(task);
10807 err_group_fd:
10808 	fdput(group);
10809 err_fd:
10810 	put_unused_fd(event_fd);
10811 	return err;
10812 }
10813 
10814 /**
10815  * perf_event_create_kernel_counter
10816  *
10817  * @attr: attributes of the counter to create
10818  * @cpu: cpu in which the counter is bound
10819  * @task: task to profile (NULL for percpu)
10820  */
10821 struct perf_event *
10822 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10823 				 struct task_struct *task,
10824 				 perf_overflow_handler_t overflow_handler,
10825 				 void *context)
10826 {
10827 	struct perf_event_context *ctx;
10828 	struct perf_event *event;
10829 	int err;
10830 
10831 	/*
10832 	 * Get the target context (task or percpu):
10833 	 */
10834 
10835 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10836 				 overflow_handler, context, -1);
10837 	if (IS_ERR(event)) {
10838 		err = PTR_ERR(event);
10839 		goto err;
10840 	}
10841 
10842 	/* Mark owner so we could distinguish it from user events. */
10843 	event->owner = TASK_TOMBSTONE;
10844 
10845 	ctx = find_get_context(event->pmu, task, event);
10846 	if (IS_ERR(ctx)) {
10847 		err = PTR_ERR(ctx);
10848 		goto err_free;
10849 	}
10850 
10851 	WARN_ON_ONCE(ctx->parent_ctx);
10852 	mutex_lock(&ctx->mutex);
10853 	if (ctx->task == TASK_TOMBSTONE) {
10854 		err = -ESRCH;
10855 		goto err_unlock;
10856 	}
10857 
10858 	if (!task) {
10859 		/*
10860 		 * Check if the @cpu we're creating an event for is online.
10861 		 *
10862 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10863 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10864 		 */
10865 		struct perf_cpu_context *cpuctx =
10866 			container_of(ctx, struct perf_cpu_context, ctx);
10867 		if (!cpuctx->online) {
10868 			err = -ENODEV;
10869 			goto err_unlock;
10870 		}
10871 	}
10872 
10873 	if (!exclusive_event_installable(event, ctx)) {
10874 		err = -EBUSY;
10875 		goto err_unlock;
10876 	}
10877 
10878 	perf_install_in_context(ctx, event, cpu);
10879 	perf_unpin_context(ctx);
10880 	mutex_unlock(&ctx->mutex);
10881 
10882 	return event;
10883 
10884 err_unlock:
10885 	mutex_unlock(&ctx->mutex);
10886 	perf_unpin_context(ctx);
10887 	put_ctx(ctx);
10888 err_free:
10889 	free_event(event);
10890 err:
10891 	return ERR_PTR(err);
10892 }
10893 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10894 
10895 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10896 {
10897 	struct perf_event_context *src_ctx;
10898 	struct perf_event_context *dst_ctx;
10899 	struct perf_event *event, *tmp;
10900 	LIST_HEAD(events);
10901 
10902 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10903 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10904 
10905 	/*
10906 	 * See perf_event_ctx_lock() for comments on the details
10907 	 * of swizzling perf_event::ctx.
10908 	 */
10909 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10910 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10911 				 event_entry) {
10912 		perf_remove_from_context(event, 0);
10913 		unaccount_event_cpu(event, src_cpu);
10914 		put_ctx(src_ctx);
10915 		list_add(&event->migrate_entry, &events);
10916 	}
10917 
10918 	/*
10919 	 * Wait for the events to quiesce before re-instating them.
10920 	 */
10921 	synchronize_rcu();
10922 
10923 	/*
10924 	 * Re-instate events in 2 passes.
10925 	 *
10926 	 * Skip over group leaders and only install siblings on this first
10927 	 * pass, siblings will not get enabled without a leader, however a
10928 	 * leader will enable its siblings, even if those are still on the old
10929 	 * context.
10930 	 */
10931 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10932 		if (event->group_leader == event)
10933 			continue;
10934 
10935 		list_del(&event->migrate_entry);
10936 		if (event->state >= PERF_EVENT_STATE_OFF)
10937 			event->state = PERF_EVENT_STATE_INACTIVE;
10938 		account_event_cpu(event, dst_cpu);
10939 		perf_install_in_context(dst_ctx, event, dst_cpu);
10940 		get_ctx(dst_ctx);
10941 	}
10942 
10943 	/*
10944 	 * Once all the siblings are setup properly, install the group leaders
10945 	 * to make it go.
10946 	 */
10947 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10948 		list_del(&event->migrate_entry);
10949 		if (event->state >= PERF_EVENT_STATE_OFF)
10950 			event->state = PERF_EVENT_STATE_INACTIVE;
10951 		account_event_cpu(event, dst_cpu);
10952 		perf_install_in_context(dst_ctx, event, dst_cpu);
10953 		get_ctx(dst_ctx);
10954 	}
10955 	mutex_unlock(&dst_ctx->mutex);
10956 	mutex_unlock(&src_ctx->mutex);
10957 }
10958 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10959 
10960 static void sync_child_event(struct perf_event *child_event,
10961 			       struct task_struct *child)
10962 {
10963 	struct perf_event *parent_event = child_event->parent;
10964 	u64 child_val;
10965 
10966 	if (child_event->attr.inherit_stat)
10967 		perf_event_read_event(child_event, child);
10968 
10969 	child_val = perf_event_count(child_event);
10970 
10971 	/*
10972 	 * Add back the child's count to the parent's count:
10973 	 */
10974 	atomic64_add(child_val, &parent_event->child_count);
10975 	atomic64_add(child_event->total_time_enabled,
10976 		     &parent_event->child_total_time_enabled);
10977 	atomic64_add(child_event->total_time_running,
10978 		     &parent_event->child_total_time_running);
10979 }
10980 
10981 static void
10982 perf_event_exit_event(struct perf_event *child_event,
10983 		      struct perf_event_context *child_ctx,
10984 		      struct task_struct *child)
10985 {
10986 	struct perf_event *parent_event = child_event->parent;
10987 
10988 	/*
10989 	 * Do not destroy the 'original' grouping; because of the context
10990 	 * switch optimization the original events could've ended up in a
10991 	 * random child task.
10992 	 *
10993 	 * If we were to destroy the original group, all group related
10994 	 * operations would cease to function properly after this random
10995 	 * child dies.
10996 	 *
10997 	 * Do destroy all inherited groups, we don't care about those
10998 	 * and being thorough is better.
10999 	 */
11000 	raw_spin_lock_irq(&child_ctx->lock);
11001 	WARN_ON_ONCE(child_ctx->is_active);
11002 
11003 	if (parent_event)
11004 		perf_group_detach(child_event);
11005 	list_del_event(child_event, child_ctx);
11006 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11007 	raw_spin_unlock_irq(&child_ctx->lock);
11008 
11009 	/*
11010 	 * Parent events are governed by their filedesc, retain them.
11011 	 */
11012 	if (!parent_event) {
11013 		perf_event_wakeup(child_event);
11014 		return;
11015 	}
11016 	/*
11017 	 * Child events can be cleaned up.
11018 	 */
11019 
11020 	sync_child_event(child_event, child);
11021 
11022 	/*
11023 	 * Remove this event from the parent's list
11024 	 */
11025 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11026 	mutex_lock(&parent_event->child_mutex);
11027 	list_del_init(&child_event->child_list);
11028 	mutex_unlock(&parent_event->child_mutex);
11029 
11030 	/*
11031 	 * Kick perf_poll() for is_event_hup().
11032 	 */
11033 	perf_event_wakeup(parent_event);
11034 	free_event(child_event);
11035 	put_event(parent_event);
11036 }
11037 
11038 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11039 {
11040 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11041 	struct perf_event *child_event, *next;
11042 
11043 	WARN_ON_ONCE(child != current);
11044 
11045 	child_ctx = perf_pin_task_context(child, ctxn);
11046 	if (!child_ctx)
11047 		return;
11048 
11049 	/*
11050 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11051 	 * ctx::mutex over the entire thing. This serializes against almost
11052 	 * everything that wants to access the ctx.
11053 	 *
11054 	 * The exception is sys_perf_event_open() /
11055 	 * perf_event_create_kernel_count() which does find_get_context()
11056 	 * without ctx::mutex (it cannot because of the move_group double mutex
11057 	 * lock thing). See the comments in perf_install_in_context().
11058 	 */
11059 	mutex_lock(&child_ctx->mutex);
11060 
11061 	/*
11062 	 * In a single ctx::lock section, de-schedule the events and detach the
11063 	 * context from the task such that we cannot ever get it scheduled back
11064 	 * in.
11065 	 */
11066 	raw_spin_lock_irq(&child_ctx->lock);
11067 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11068 
11069 	/*
11070 	 * Now that the context is inactive, destroy the task <-> ctx relation
11071 	 * and mark the context dead.
11072 	 */
11073 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11074 	put_ctx(child_ctx); /* cannot be last */
11075 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11076 	put_task_struct(current); /* cannot be last */
11077 
11078 	clone_ctx = unclone_ctx(child_ctx);
11079 	raw_spin_unlock_irq(&child_ctx->lock);
11080 
11081 	if (clone_ctx)
11082 		put_ctx(clone_ctx);
11083 
11084 	/*
11085 	 * Report the task dead after unscheduling the events so that we
11086 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11087 	 * get a few PERF_RECORD_READ events.
11088 	 */
11089 	perf_event_task(child, child_ctx, 0);
11090 
11091 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11092 		perf_event_exit_event(child_event, child_ctx, child);
11093 
11094 	mutex_unlock(&child_ctx->mutex);
11095 
11096 	put_ctx(child_ctx);
11097 }
11098 
11099 /*
11100  * When a child task exits, feed back event values to parent events.
11101  *
11102  * Can be called with cred_guard_mutex held when called from
11103  * install_exec_creds().
11104  */
11105 void perf_event_exit_task(struct task_struct *child)
11106 {
11107 	struct perf_event *event, *tmp;
11108 	int ctxn;
11109 
11110 	mutex_lock(&child->perf_event_mutex);
11111 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11112 				 owner_entry) {
11113 		list_del_init(&event->owner_entry);
11114 
11115 		/*
11116 		 * Ensure the list deletion is visible before we clear
11117 		 * the owner, closes a race against perf_release() where
11118 		 * we need to serialize on the owner->perf_event_mutex.
11119 		 */
11120 		smp_store_release(&event->owner, NULL);
11121 	}
11122 	mutex_unlock(&child->perf_event_mutex);
11123 
11124 	for_each_task_context_nr(ctxn)
11125 		perf_event_exit_task_context(child, ctxn);
11126 
11127 	/*
11128 	 * The perf_event_exit_task_context calls perf_event_task
11129 	 * with child's task_ctx, which generates EXIT events for
11130 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11131 	 * At this point we need to send EXIT events to cpu contexts.
11132 	 */
11133 	perf_event_task(child, NULL, 0);
11134 }
11135 
11136 static void perf_free_event(struct perf_event *event,
11137 			    struct perf_event_context *ctx)
11138 {
11139 	struct perf_event *parent = event->parent;
11140 
11141 	if (WARN_ON_ONCE(!parent))
11142 		return;
11143 
11144 	mutex_lock(&parent->child_mutex);
11145 	list_del_init(&event->child_list);
11146 	mutex_unlock(&parent->child_mutex);
11147 
11148 	put_event(parent);
11149 
11150 	raw_spin_lock_irq(&ctx->lock);
11151 	perf_group_detach(event);
11152 	list_del_event(event, ctx);
11153 	raw_spin_unlock_irq(&ctx->lock);
11154 	free_event(event);
11155 }
11156 
11157 /*
11158  * Free an unexposed, unused context as created by inheritance by
11159  * perf_event_init_task below, used by fork() in case of fail.
11160  *
11161  * Not all locks are strictly required, but take them anyway to be nice and
11162  * help out with the lockdep assertions.
11163  */
11164 void perf_event_free_task(struct task_struct *task)
11165 {
11166 	struct perf_event_context *ctx;
11167 	struct perf_event *event, *tmp;
11168 	int ctxn;
11169 
11170 	for_each_task_context_nr(ctxn) {
11171 		ctx = task->perf_event_ctxp[ctxn];
11172 		if (!ctx)
11173 			continue;
11174 
11175 		mutex_lock(&ctx->mutex);
11176 		raw_spin_lock_irq(&ctx->lock);
11177 		/*
11178 		 * Destroy the task <-> ctx relation and mark the context dead.
11179 		 *
11180 		 * This is important because even though the task hasn't been
11181 		 * exposed yet the context has been (through child_list).
11182 		 */
11183 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11184 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11185 		put_task_struct(task); /* cannot be last */
11186 		raw_spin_unlock_irq(&ctx->lock);
11187 
11188 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11189 			perf_free_event(event, ctx);
11190 
11191 		mutex_unlock(&ctx->mutex);
11192 		put_ctx(ctx);
11193 	}
11194 }
11195 
11196 void perf_event_delayed_put(struct task_struct *task)
11197 {
11198 	int ctxn;
11199 
11200 	for_each_task_context_nr(ctxn)
11201 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11202 }
11203 
11204 struct file *perf_event_get(unsigned int fd)
11205 {
11206 	struct file *file;
11207 
11208 	file = fget_raw(fd);
11209 	if (!file)
11210 		return ERR_PTR(-EBADF);
11211 
11212 	if (file->f_op != &perf_fops) {
11213 		fput(file);
11214 		return ERR_PTR(-EBADF);
11215 	}
11216 
11217 	return file;
11218 }
11219 
11220 const struct perf_event *perf_get_event(struct file *file)
11221 {
11222 	if (file->f_op != &perf_fops)
11223 		return ERR_PTR(-EINVAL);
11224 
11225 	return file->private_data;
11226 }
11227 
11228 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11229 {
11230 	if (!event)
11231 		return ERR_PTR(-EINVAL);
11232 
11233 	return &event->attr;
11234 }
11235 
11236 /*
11237  * Inherit an event from parent task to child task.
11238  *
11239  * Returns:
11240  *  - valid pointer on success
11241  *  - NULL for orphaned events
11242  *  - IS_ERR() on error
11243  */
11244 static struct perf_event *
11245 inherit_event(struct perf_event *parent_event,
11246 	      struct task_struct *parent,
11247 	      struct perf_event_context *parent_ctx,
11248 	      struct task_struct *child,
11249 	      struct perf_event *group_leader,
11250 	      struct perf_event_context *child_ctx)
11251 {
11252 	enum perf_event_state parent_state = parent_event->state;
11253 	struct perf_event *child_event;
11254 	unsigned long flags;
11255 
11256 	/*
11257 	 * Instead of creating recursive hierarchies of events,
11258 	 * we link inherited events back to the original parent,
11259 	 * which has a filp for sure, which we use as the reference
11260 	 * count:
11261 	 */
11262 	if (parent_event->parent)
11263 		parent_event = parent_event->parent;
11264 
11265 	child_event = perf_event_alloc(&parent_event->attr,
11266 					   parent_event->cpu,
11267 					   child,
11268 					   group_leader, parent_event,
11269 					   NULL, NULL, -1);
11270 	if (IS_ERR(child_event))
11271 		return child_event;
11272 
11273 
11274 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11275 	    !child_ctx->task_ctx_data) {
11276 		struct pmu *pmu = child_event->pmu;
11277 
11278 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11279 						   GFP_KERNEL);
11280 		if (!child_ctx->task_ctx_data) {
11281 			free_event(child_event);
11282 			return NULL;
11283 		}
11284 	}
11285 
11286 	/*
11287 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11288 	 * must be under the same lock in order to serialize against
11289 	 * perf_event_release_kernel(), such that either we must observe
11290 	 * is_orphaned_event() or they will observe us on the child_list.
11291 	 */
11292 	mutex_lock(&parent_event->child_mutex);
11293 	if (is_orphaned_event(parent_event) ||
11294 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11295 		mutex_unlock(&parent_event->child_mutex);
11296 		/* task_ctx_data is freed with child_ctx */
11297 		free_event(child_event);
11298 		return NULL;
11299 	}
11300 
11301 	get_ctx(child_ctx);
11302 
11303 	/*
11304 	 * Make the child state follow the state of the parent event,
11305 	 * not its attr.disabled bit.  We hold the parent's mutex,
11306 	 * so we won't race with perf_event_{en, dis}able_family.
11307 	 */
11308 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11309 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11310 	else
11311 		child_event->state = PERF_EVENT_STATE_OFF;
11312 
11313 	if (parent_event->attr.freq) {
11314 		u64 sample_period = parent_event->hw.sample_period;
11315 		struct hw_perf_event *hwc = &child_event->hw;
11316 
11317 		hwc->sample_period = sample_period;
11318 		hwc->last_period   = sample_period;
11319 
11320 		local64_set(&hwc->period_left, sample_period);
11321 	}
11322 
11323 	child_event->ctx = child_ctx;
11324 	child_event->overflow_handler = parent_event->overflow_handler;
11325 	child_event->overflow_handler_context
11326 		= parent_event->overflow_handler_context;
11327 
11328 	/*
11329 	 * Precalculate sample_data sizes
11330 	 */
11331 	perf_event__header_size(child_event);
11332 	perf_event__id_header_size(child_event);
11333 
11334 	/*
11335 	 * Link it up in the child's context:
11336 	 */
11337 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11338 	add_event_to_ctx(child_event, child_ctx);
11339 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11340 
11341 	/*
11342 	 * Link this into the parent event's child list
11343 	 */
11344 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11345 	mutex_unlock(&parent_event->child_mutex);
11346 
11347 	return child_event;
11348 }
11349 
11350 /*
11351  * Inherits an event group.
11352  *
11353  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11354  * This matches with perf_event_release_kernel() removing all child events.
11355  *
11356  * Returns:
11357  *  - 0 on success
11358  *  - <0 on error
11359  */
11360 static int inherit_group(struct perf_event *parent_event,
11361 	      struct task_struct *parent,
11362 	      struct perf_event_context *parent_ctx,
11363 	      struct task_struct *child,
11364 	      struct perf_event_context *child_ctx)
11365 {
11366 	struct perf_event *leader;
11367 	struct perf_event *sub;
11368 	struct perf_event *child_ctr;
11369 
11370 	leader = inherit_event(parent_event, parent, parent_ctx,
11371 				 child, NULL, child_ctx);
11372 	if (IS_ERR(leader))
11373 		return PTR_ERR(leader);
11374 	/*
11375 	 * @leader can be NULL here because of is_orphaned_event(). In this
11376 	 * case inherit_event() will create individual events, similar to what
11377 	 * perf_group_detach() would do anyway.
11378 	 */
11379 	for_each_sibling_event(sub, parent_event) {
11380 		child_ctr = inherit_event(sub, parent, parent_ctx,
11381 					    child, leader, child_ctx);
11382 		if (IS_ERR(child_ctr))
11383 			return PTR_ERR(child_ctr);
11384 	}
11385 	return 0;
11386 }
11387 
11388 /*
11389  * Creates the child task context and tries to inherit the event-group.
11390  *
11391  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11392  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11393  * consistent with perf_event_release_kernel() removing all child events.
11394  *
11395  * Returns:
11396  *  - 0 on success
11397  *  - <0 on error
11398  */
11399 static int
11400 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11401 		   struct perf_event_context *parent_ctx,
11402 		   struct task_struct *child, int ctxn,
11403 		   int *inherited_all)
11404 {
11405 	int ret;
11406 	struct perf_event_context *child_ctx;
11407 
11408 	if (!event->attr.inherit) {
11409 		*inherited_all = 0;
11410 		return 0;
11411 	}
11412 
11413 	child_ctx = child->perf_event_ctxp[ctxn];
11414 	if (!child_ctx) {
11415 		/*
11416 		 * This is executed from the parent task context, so
11417 		 * inherit events that have been marked for cloning.
11418 		 * First allocate and initialize a context for the
11419 		 * child.
11420 		 */
11421 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11422 		if (!child_ctx)
11423 			return -ENOMEM;
11424 
11425 		child->perf_event_ctxp[ctxn] = child_ctx;
11426 	}
11427 
11428 	ret = inherit_group(event, parent, parent_ctx,
11429 			    child, child_ctx);
11430 
11431 	if (ret)
11432 		*inherited_all = 0;
11433 
11434 	return ret;
11435 }
11436 
11437 /*
11438  * Initialize the perf_event context in task_struct
11439  */
11440 static int perf_event_init_context(struct task_struct *child, int ctxn)
11441 {
11442 	struct perf_event_context *child_ctx, *parent_ctx;
11443 	struct perf_event_context *cloned_ctx;
11444 	struct perf_event *event;
11445 	struct task_struct *parent = current;
11446 	int inherited_all = 1;
11447 	unsigned long flags;
11448 	int ret = 0;
11449 
11450 	if (likely(!parent->perf_event_ctxp[ctxn]))
11451 		return 0;
11452 
11453 	/*
11454 	 * If the parent's context is a clone, pin it so it won't get
11455 	 * swapped under us.
11456 	 */
11457 	parent_ctx = perf_pin_task_context(parent, ctxn);
11458 	if (!parent_ctx)
11459 		return 0;
11460 
11461 	/*
11462 	 * No need to check if parent_ctx != NULL here; since we saw
11463 	 * it non-NULL earlier, the only reason for it to become NULL
11464 	 * is if we exit, and since we're currently in the middle of
11465 	 * a fork we can't be exiting at the same time.
11466 	 */
11467 
11468 	/*
11469 	 * Lock the parent list. No need to lock the child - not PID
11470 	 * hashed yet and not running, so nobody can access it.
11471 	 */
11472 	mutex_lock(&parent_ctx->mutex);
11473 
11474 	/*
11475 	 * We dont have to disable NMIs - we are only looking at
11476 	 * the list, not manipulating it:
11477 	 */
11478 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11479 		ret = inherit_task_group(event, parent, parent_ctx,
11480 					 child, ctxn, &inherited_all);
11481 		if (ret)
11482 			goto out_unlock;
11483 	}
11484 
11485 	/*
11486 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11487 	 * to allocations, but we need to prevent rotation because
11488 	 * rotate_ctx() will change the list from interrupt context.
11489 	 */
11490 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11491 	parent_ctx->rotate_disable = 1;
11492 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11493 
11494 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11495 		ret = inherit_task_group(event, parent, parent_ctx,
11496 					 child, ctxn, &inherited_all);
11497 		if (ret)
11498 			goto out_unlock;
11499 	}
11500 
11501 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11502 	parent_ctx->rotate_disable = 0;
11503 
11504 	child_ctx = child->perf_event_ctxp[ctxn];
11505 
11506 	if (child_ctx && inherited_all) {
11507 		/*
11508 		 * Mark the child context as a clone of the parent
11509 		 * context, or of whatever the parent is a clone of.
11510 		 *
11511 		 * Note that if the parent is a clone, the holding of
11512 		 * parent_ctx->lock avoids it from being uncloned.
11513 		 */
11514 		cloned_ctx = parent_ctx->parent_ctx;
11515 		if (cloned_ctx) {
11516 			child_ctx->parent_ctx = cloned_ctx;
11517 			child_ctx->parent_gen = parent_ctx->parent_gen;
11518 		} else {
11519 			child_ctx->parent_ctx = parent_ctx;
11520 			child_ctx->parent_gen = parent_ctx->generation;
11521 		}
11522 		get_ctx(child_ctx->parent_ctx);
11523 	}
11524 
11525 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11526 out_unlock:
11527 	mutex_unlock(&parent_ctx->mutex);
11528 
11529 	perf_unpin_context(parent_ctx);
11530 	put_ctx(parent_ctx);
11531 
11532 	return ret;
11533 }
11534 
11535 /*
11536  * Initialize the perf_event context in task_struct
11537  */
11538 int perf_event_init_task(struct task_struct *child)
11539 {
11540 	int ctxn, ret;
11541 
11542 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11543 	mutex_init(&child->perf_event_mutex);
11544 	INIT_LIST_HEAD(&child->perf_event_list);
11545 
11546 	for_each_task_context_nr(ctxn) {
11547 		ret = perf_event_init_context(child, ctxn);
11548 		if (ret) {
11549 			perf_event_free_task(child);
11550 			return ret;
11551 		}
11552 	}
11553 
11554 	return 0;
11555 }
11556 
11557 static void __init perf_event_init_all_cpus(void)
11558 {
11559 	struct swevent_htable *swhash;
11560 	int cpu;
11561 
11562 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11563 
11564 	for_each_possible_cpu(cpu) {
11565 		swhash = &per_cpu(swevent_htable, cpu);
11566 		mutex_init(&swhash->hlist_mutex);
11567 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11568 
11569 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11570 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11571 
11572 #ifdef CONFIG_CGROUP_PERF
11573 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11574 #endif
11575 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11576 	}
11577 }
11578 
11579 void perf_swevent_init_cpu(unsigned int cpu)
11580 {
11581 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11582 
11583 	mutex_lock(&swhash->hlist_mutex);
11584 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11585 		struct swevent_hlist *hlist;
11586 
11587 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11588 		WARN_ON(!hlist);
11589 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11590 	}
11591 	mutex_unlock(&swhash->hlist_mutex);
11592 }
11593 
11594 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11595 static void __perf_event_exit_context(void *__info)
11596 {
11597 	struct perf_event_context *ctx = __info;
11598 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11599 	struct perf_event *event;
11600 
11601 	raw_spin_lock(&ctx->lock);
11602 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11603 	list_for_each_entry(event, &ctx->event_list, event_entry)
11604 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11605 	raw_spin_unlock(&ctx->lock);
11606 }
11607 
11608 static void perf_event_exit_cpu_context(int cpu)
11609 {
11610 	struct perf_cpu_context *cpuctx;
11611 	struct perf_event_context *ctx;
11612 	struct pmu *pmu;
11613 
11614 	mutex_lock(&pmus_lock);
11615 	list_for_each_entry(pmu, &pmus, entry) {
11616 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11617 		ctx = &cpuctx->ctx;
11618 
11619 		mutex_lock(&ctx->mutex);
11620 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11621 		cpuctx->online = 0;
11622 		mutex_unlock(&ctx->mutex);
11623 	}
11624 	cpumask_clear_cpu(cpu, perf_online_mask);
11625 	mutex_unlock(&pmus_lock);
11626 }
11627 #else
11628 
11629 static void perf_event_exit_cpu_context(int cpu) { }
11630 
11631 #endif
11632 
11633 int perf_event_init_cpu(unsigned int cpu)
11634 {
11635 	struct perf_cpu_context *cpuctx;
11636 	struct perf_event_context *ctx;
11637 	struct pmu *pmu;
11638 
11639 	perf_swevent_init_cpu(cpu);
11640 
11641 	mutex_lock(&pmus_lock);
11642 	cpumask_set_cpu(cpu, perf_online_mask);
11643 	list_for_each_entry(pmu, &pmus, entry) {
11644 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11645 		ctx = &cpuctx->ctx;
11646 
11647 		mutex_lock(&ctx->mutex);
11648 		cpuctx->online = 1;
11649 		mutex_unlock(&ctx->mutex);
11650 	}
11651 	mutex_unlock(&pmus_lock);
11652 
11653 	return 0;
11654 }
11655 
11656 int perf_event_exit_cpu(unsigned int cpu)
11657 {
11658 	perf_event_exit_cpu_context(cpu);
11659 	return 0;
11660 }
11661 
11662 static int
11663 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11664 {
11665 	int cpu;
11666 
11667 	for_each_online_cpu(cpu)
11668 		perf_event_exit_cpu(cpu);
11669 
11670 	return NOTIFY_OK;
11671 }
11672 
11673 /*
11674  * Run the perf reboot notifier at the very last possible moment so that
11675  * the generic watchdog code runs as long as possible.
11676  */
11677 static struct notifier_block perf_reboot_notifier = {
11678 	.notifier_call = perf_reboot,
11679 	.priority = INT_MIN,
11680 };
11681 
11682 void __init perf_event_init(void)
11683 {
11684 	int ret;
11685 
11686 	idr_init(&pmu_idr);
11687 
11688 	perf_event_init_all_cpus();
11689 	init_srcu_struct(&pmus_srcu);
11690 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11691 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11692 	perf_pmu_register(&perf_task_clock, NULL, -1);
11693 	perf_tp_register();
11694 	perf_event_init_cpu(smp_processor_id());
11695 	register_reboot_notifier(&perf_reboot_notifier);
11696 
11697 	ret = init_hw_breakpoint();
11698 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11699 
11700 	/*
11701 	 * Build time assertion that we keep the data_head at the intended
11702 	 * location.  IOW, validation we got the __reserved[] size right.
11703 	 */
11704 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11705 		     != 1024);
11706 }
11707 
11708 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11709 			      char *page)
11710 {
11711 	struct perf_pmu_events_attr *pmu_attr =
11712 		container_of(attr, struct perf_pmu_events_attr, attr);
11713 
11714 	if (pmu_attr->event_str)
11715 		return sprintf(page, "%s\n", pmu_attr->event_str);
11716 
11717 	return 0;
11718 }
11719 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11720 
11721 static int __init perf_event_sysfs_init(void)
11722 {
11723 	struct pmu *pmu;
11724 	int ret;
11725 
11726 	mutex_lock(&pmus_lock);
11727 
11728 	ret = bus_register(&pmu_bus);
11729 	if (ret)
11730 		goto unlock;
11731 
11732 	list_for_each_entry(pmu, &pmus, entry) {
11733 		if (!pmu->name || pmu->type < 0)
11734 			continue;
11735 
11736 		ret = pmu_dev_alloc(pmu);
11737 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11738 	}
11739 	pmu_bus_running = 1;
11740 	ret = 0;
11741 
11742 unlock:
11743 	mutex_unlock(&pmus_lock);
11744 
11745 	return ret;
11746 }
11747 device_initcall(perf_event_sysfs_init);
11748 
11749 #ifdef CONFIG_CGROUP_PERF
11750 static struct cgroup_subsys_state *
11751 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11752 {
11753 	struct perf_cgroup *jc;
11754 
11755 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11756 	if (!jc)
11757 		return ERR_PTR(-ENOMEM);
11758 
11759 	jc->info = alloc_percpu(struct perf_cgroup_info);
11760 	if (!jc->info) {
11761 		kfree(jc);
11762 		return ERR_PTR(-ENOMEM);
11763 	}
11764 
11765 	return &jc->css;
11766 }
11767 
11768 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11769 {
11770 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11771 
11772 	free_percpu(jc->info);
11773 	kfree(jc);
11774 }
11775 
11776 static int __perf_cgroup_move(void *info)
11777 {
11778 	struct task_struct *task = info;
11779 	rcu_read_lock();
11780 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11781 	rcu_read_unlock();
11782 	return 0;
11783 }
11784 
11785 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11786 {
11787 	struct task_struct *task;
11788 	struct cgroup_subsys_state *css;
11789 
11790 	cgroup_taskset_for_each(task, css, tset)
11791 		task_function_call(task, __perf_cgroup_move, task);
11792 }
11793 
11794 struct cgroup_subsys perf_event_cgrp_subsys = {
11795 	.css_alloc	= perf_cgroup_css_alloc,
11796 	.css_free	= perf_cgroup_css_free,
11797 	.attach		= perf_cgroup_attach,
11798 	/*
11799 	 * Implicitly enable on dfl hierarchy so that perf events can
11800 	 * always be filtered by cgroup2 path as long as perf_event
11801 	 * controller is not mounted on a legacy hierarchy.
11802 	 */
11803 	.implicit_on_dfl = true,
11804 	.threaded	= true,
11805 };
11806 #endif /* CONFIG_CGROUP_PERF */
11807