1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 for_each_sibling_event(sibling, leader) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp = cpuctx->cgrp; 728 struct cgroup_subsys_state *css; 729 730 if (cgrp) { 731 for (css = &cgrp->css; css; css = css->parent) { 732 cgrp = container_of(css, struct perf_cgroup, css); 733 __update_cgrp_time(cgrp); 734 } 735 } 736 } 737 738 static inline void update_cgrp_time_from_event(struct perf_event *event) 739 { 740 struct perf_cgroup *cgrp; 741 742 /* 743 * ensure we access cgroup data only when needed and 744 * when we know the cgroup is pinned (css_get) 745 */ 746 if (!is_cgroup_event(event)) 747 return; 748 749 cgrp = perf_cgroup_from_task(current, event->ctx); 750 /* 751 * Do not update time when cgroup is not active 752 */ 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 754 __update_cgrp_time(event->cgrp); 755 } 756 757 static inline void 758 perf_cgroup_set_timestamp(struct task_struct *task, 759 struct perf_event_context *ctx) 760 { 761 struct perf_cgroup *cgrp; 762 struct perf_cgroup_info *info; 763 struct cgroup_subsys_state *css; 764 765 /* 766 * ctx->lock held by caller 767 * ensure we do not access cgroup data 768 * unless we have the cgroup pinned (css_get) 769 */ 770 if (!task || !ctx->nr_cgroups) 771 return; 772 773 cgrp = perf_cgroup_from_task(task, ctx); 774 775 for (css = &cgrp->css; css; css = css->parent) { 776 cgrp = container_of(css, struct perf_cgroup, css); 777 info = this_cpu_ptr(cgrp->info); 778 info->timestamp = ctx->timestamp; 779 } 780 } 781 782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 783 784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 786 787 /* 788 * reschedule events based on the cgroup constraint of task. 789 * 790 * mode SWOUT : schedule out everything 791 * mode SWIN : schedule in based on cgroup for next 792 */ 793 static void perf_cgroup_switch(struct task_struct *task, int mode) 794 { 795 struct perf_cpu_context *cpuctx; 796 struct list_head *list; 797 unsigned long flags; 798 799 /* 800 * Disable interrupts and preemption to avoid this CPU's 801 * cgrp_cpuctx_entry to change under us. 802 */ 803 local_irq_save(flags); 804 805 list = this_cpu_ptr(&cgrp_cpuctx_list); 806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 808 809 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 810 perf_pmu_disable(cpuctx->ctx.pmu); 811 812 if (mode & PERF_CGROUP_SWOUT) { 813 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 814 /* 815 * must not be done before ctxswout due 816 * to event_filter_match() in event_sched_out() 817 */ 818 cpuctx->cgrp = NULL; 819 } 820 821 if (mode & PERF_CGROUP_SWIN) { 822 WARN_ON_ONCE(cpuctx->cgrp); 823 /* 824 * set cgrp before ctxsw in to allow 825 * event_filter_match() to not have to pass 826 * task around 827 * we pass the cpuctx->ctx to perf_cgroup_from_task() 828 * because cgorup events are only per-cpu 829 */ 830 cpuctx->cgrp = perf_cgroup_from_task(task, 831 &cpuctx->ctx); 832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 833 } 834 perf_pmu_enable(cpuctx->ctx.pmu); 835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 836 } 837 838 local_irq_restore(flags); 839 } 840 841 static inline void perf_cgroup_sched_out(struct task_struct *task, 842 struct task_struct *next) 843 { 844 struct perf_cgroup *cgrp1; 845 struct perf_cgroup *cgrp2 = NULL; 846 847 rcu_read_lock(); 848 /* 849 * we come here when we know perf_cgroup_events > 0 850 * we do not need to pass the ctx here because we know 851 * we are holding the rcu lock 852 */ 853 cgrp1 = perf_cgroup_from_task(task, NULL); 854 cgrp2 = perf_cgroup_from_task(next, NULL); 855 856 /* 857 * only schedule out current cgroup events if we know 858 * that we are switching to a different cgroup. Otherwise, 859 * do no touch the cgroup events. 860 */ 861 if (cgrp1 != cgrp2) 862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 863 864 rcu_read_unlock(); 865 } 866 867 static inline void perf_cgroup_sched_in(struct task_struct *prev, 868 struct task_struct *task) 869 { 870 struct perf_cgroup *cgrp1; 871 struct perf_cgroup *cgrp2 = NULL; 872 873 rcu_read_lock(); 874 /* 875 * we come here when we know perf_cgroup_events > 0 876 * we do not need to pass the ctx here because we know 877 * we are holding the rcu lock 878 */ 879 cgrp1 = perf_cgroup_from_task(task, NULL); 880 cgrp2 = perf_cgroup_from_task(prev, NULL); 881 882 /* 883 * only need to schedule in cgroup events if we are changing 884 * cgroup during ctxsw. Cgroup events were not scheduled 885 * out of ctxsw out if that was not the case. 886 */ 887 if (cgrp1 != cgrp2) 888 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 889 890 rcu_read_unlock(); 891 } 892 893 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 894 struct perf_event_attr *attr, 895 struct perf_event *group_leader) 896 { 897 struct perf_cgroup *cgrp; 898 struct cgroup_subsys_state *css; 899 struct fd f = fdget(fd); 900 int ret = 0; 901 902 if (!f.file) 903 return -EBADF; 904 905 css = css_tryget_online_from_dir(f.file->f_path.dentry, 906 &perf_event_cgrp_subsys); 907 if (IS_ERR(css)) { 908 ret = PTR_ERR(css); 909 goto out; 910 } 911 912 cgrp = container_of(css, struct perf_cgroup, css); 913 event->cgrp = cgrp; 914 915 /* 916 * all events in a group must monitor 917 * the same cgroup because a task belongs 918 * to only one perf cgroup at a time 919 */ 920 if (group_leader && group_leader->cgrp != cgrp) { 921 perf_detach_cgroup(event); 922 ret = -EINVAL; 923 } 924 out: 925 fdput(f); 926 return ret; 927 } 928 929 static inline void 930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 931 { 932 struct perf_cgroup_info *t; 933 t = per_cpu_ptr(event->cgrp->info, event->cpu); 934 event->shadow_ctx_time = now - t->timestamp; 935 } 936 937 /* 938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 939 * cleared when last cgroup event is removed. 940 */ 941 static inline void 942 list_update_cgroup_event(struct perf_event *event, 943 struct perf_event_context *ctx, bool add) 944 { 945 struct perf_cpu_context *cpuctx; 946 struct list_head *cpuctx_entry; 947 948 if (!is_cgroup_event(event)) 949 return; 950 951 /* 952 * Because cgroup events are always per-cpu events, 953 * this will always be called from the right CPU. 954 */ 955 cpuctx = __get_cpu_context(ctx); 956 957 /* 958 * Since setting cpuctx->cgrp is conditional on the current @cgrp 959 * matching the event's cgroup, we must do this for every new event, 960 * because if the first would mismatch, the second would not try again 961 * and we would leave cpuctx->cgrp unset. 962 */ 963 if (add && !cpuctx->cgrp) { 964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 965 966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 967 cpuctx->cgrp = cgrp; 968 } 969 970 if (add && ctx->nr_cgroups++) 971 return; 972 else if (!add && --ctx->nr_cgroups) 973 return; 974 975 /* no cgroup running */ 976 if (!add) 977 cpuctx->cgrp = NULL; 978 979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 980 if (add) 981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 982 else 983 list_del(cpuctx_entry); 984 } 985 986 #else /* !CONFIG_CGROUP_PERF */ 987 988 static inline bool 989 perf_cgroup_match(struct perf_event *event) 990 { 991 return true; 992 } 993 994 static inline void perf_detach_cgroup(struct perf_event *event) 995 {} 996 997 static inline int is_cgroup_event(struct perf_event *event) 998 { 999 return 0; 1000 } 1001 1002 static inline void update_cgrp_time_from_event(struct perf_event *event) 1003 { 1004 } 1005 1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1007 { 1008 } 1009 1010 static inline void perf_cgroup_sched_out(struct task_struct *task, 1011 struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1016 struct task_struct *task) 1017 { 1018 } 1019 1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1021 struct perf_event_attr *attr, 1022 struct perf_event *group_leader) 1023 { 1024 return -EINVAL; 1025 } 1026 1027 static inline void 1028 perf_cgroup_set_timestamp(struct task_struct *task, 1029 struct perf_event_context *ctx) 1030 { 1031 } 1032 1033 void 1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1035 { 1036 } 1037 1038 static inline void 1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1040 { 1041 } 1042 1043 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1044 { 1045 return 0; 1046 } 1047 1048 static inline void 1049 list_update_cgroup_event(struct perf_event *event, 1050 struct perf_event_context *ctx, bool add) 1051 { 1052 } 1053 1054 #endif 1055 1056 /* 1057 * set default to be dependent on timer tick just 1058 * like original code 1059 */ 1060 #define PERF_CPU_HRTIMER (1000 / HZ) 1061 /* 1062 * function must be called with interrupts disabled 1063 */ 1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1065 { 1066 struct perf_cpu_context *cpuctx; 1067 bool rotations; 1068 1069 lockdep_assert_irqs_disabled(); 1070 1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1072 rotations = perf_rotate_context(cpuctx); 1073 1074 raw_spin_lock(&cpuctx->hrtimer_lock); 1075 if (rotations) 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1077 else 1078 cpuctx->hrtimer_active = 0; 1079 raw_spin_unlock(&cpuctx->hrtimer_lock); 1080 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1082 } 1083 1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1085 { 1086 struct hrtimer *timer = &cpuctx->hrtimer; 1087 struct pmu *pmu = cpuctx->ctx.pmu; 1088 u64 interval; 1089 1090 /* no multiplexing needed for SW PMU */ 1091 if (pmu->task_ctx_nr == perf_sw_context) 1092 return; 1093 1094 /* 1095 * check default is sane, if not set then force to 1096 * default interval (1/tick) 1097 */ 1098 interval = pmu->hrtimer_interval_ms; 1099 if (interval < 1) 1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1101 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1103 1104 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1106 timer->function = perf_mux_hrtimer_handler; 1107 } 1108 1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1110 { 1111 struct hrtimer *timer = &cpuctx->hrtimer; 1112 struct pmu *pmu = cpuctx->ctx.pmu; 1113 unsigned long flags; 1114 1115 /* not for SW PMU */ 1116 if (pmu->task_ctx_nr == perf_sw_context) 1117 return 0; 1118 1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1120 if (!cpuctx->hrtimer_active) { 1121 cpuctx->hrtimer_active = 1; 1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1124 } 1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1126 1127 return 0; 1128 } 1129 1130 void perf_pmu_disable(struct pmu *pmu) 1131 { 1132 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1133 if (!(*count)++) 1134 pmu->pmu_disable(pmu); 1135 } 1136 1137 void perf_pmu_enable(struct pmu *pmu) 1138 { 1139 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1140 if (!--(*count)) 1141 pmu->pmu_enable(pmu); 1142 } 1143 1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1145 1146 /* 1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1148 * perf_event_task_tick() are fully serialized because they're strictly cpu 1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1150 * disabled, while perf_event_task_tick is called from IRQ context. 1151 */ 1152 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1153 { 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1155 1156 lockdep_assert_irqs_disabled(); 1157 1158 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1159 1160 list_add(&ctx->active_ctx_list, head); 1161 } 1162 1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1164 { 1165 lockdep_assert_irqs_disabled(); 1166 1167 WARN_ON(list_empty(&ctx->active_ctx_list)); 1168 1169 list_del_init(&ctx->active_ctx_list); 1170 } 1171 1172 static void get_ctx(struct perf_event_context *ctx) 1173 { 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1175 } 1176 1177 static void free_ctx(struct rcu_head *head) 1178 { 1179 struct perf_event_context *ctx; 1180 1181 ctx = container_of(head, struct perf_event_context, rcu_head); 1182 kfree(ctx->task_ctx_data); 1183 kfree(ctx); 1184 } 1185 1186 static void put_ctx(struct perf_event_context *ctx) 1187 { 1188 if (atomic_dec_and_test(&ctx->refcount)) { 1189 if (ctx->parent_ctx) 1190 put_ctx(ctx->parent_ctx); 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1192 put_task_struct(ctx->task); 1193 call_rcu(&ctx->rcu_head, free_ctx); 1194 } 1195 } 1196 1197 /* 1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1199 * perf_pmu_migrate_context() we need some magic. 1200 * 1201 * Those places that change perf_event::ctx will hold both 1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1203 * 1204 * Lock ordering is by mutex address. There are two other sites where 1205 * perf_event_context::mutex nests and those are: 1206 * 1207 * - perf_event_exit_task_context() [ child , 0 ] 1208 * perf_event_exit_event() 1209 * put_event() [ parent, 1 ] 1210 * 1211 * - perf_event_init_context() [ parent, 0 ] 1212 * inherit_task_group() 1213 * inherit_group() 1214 * inherit_event() 1215 * perf_event_alloc() 1216 * perf_init_event() 1217 * perf_try_init_event() [ child , 1 ] 1218 * 1219 * While it appears there is an obvious deadlock here -- the parent and child 1220 * nesting levels are inverted between the two. This is in fact safe because 1221 * life-time rules separate them. That is an exiting task cannot fork, and a 1222 * spawning task cannot (yet) exit. 1223 * 1224 * But remember that that these are parent<->child context relations, and 1225 * migration does not affect children, therefore these two orderings should not 1226 * interact. 1227 * 1228 * The change in perf_event::ctx does not affect children (as claimed above) 1229 * because the sys_perf_event_open() case will install a new event and break 1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1231 * concerned with cpuctx and that doesn't have children. 1232 * 1233 * The places that change perf_event::ctx will issue: 1234 * 1235 * perf_remove_from_context(); 1236 * synchronize_rcu(); 1237 * perf_install_in_context(); 1238 * 1239 * to affect the change. The remove_from_context() + synchronize_rcu() should 1240 * quiesce the event, after which we can install it in the new location. This 1241 * means that only external vectors (perf_fops, prctl) can perturb the event 1242 * while in transit. Therefore all such accessors should also acquire 1243 * perf_event_context::mutex to serialize against this. 1244 * 1245 * However; because event->ctx can change while we're waiting to acquire 1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1247 * function. 1248 * 1249 * Lock order: 1250 * cred_guard_mutex 1251 * task_struct::perf_event_mutex 1252 * perf_event_context::mutex 1253 * perf_event::child_mutex; 1254 * perf_event_context::lock 1255 * perf_event::mmap_mutex 1256 * mmap_sem 1257 * 1258 * cpu_hotplug_lock 1259 * pmus_lock 1260 * cpuctx->mutex / perf_event_context::mutex 1261 */ 1262 static struct perf_event_context * 1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1264 { 1265 struct perf_event_context *ctx; 1266 1267 again: 1268 rcu_read_lock(); 1269 ctx = READ_ONCE(event->ctx); 1270 if (!atomic_inc_not_zero(&ctx->refcount)) { 1271 rcu_read_unlock(); 1272 goto again; 1273 } 1274 rcu_read_unlock(); 1275 1276 mutex_lock_nested(&ctx->mutex, nesting); 1277 if (event->ctx != ctx) { 1278 mutex_unlock(&ctx->mutex); 1279 put_ctx(ctx); 1280 goto again; 1281 } 1282 1283 return ctx; 1284 } 1285 1286 static inline struct perf_event_context * 1287 perf_event_ctx_lock(struct perf_event *event) 1288 { 1289 return perf_event_ctx_lock_nested(event, 0); 1290 } 1291 1292 static void perf_event_ctx_unlock(struct perf_event *event, 1293 struct perf_event_context *ctx) 1294 { 1295 mutex_unlock(&ctx->mutex); 1296 put_ctx(ctx); 1297 } 1298 1299 /* 1300 * This must be done under the ctx->lock, such as to serialize against 1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1302 * calling scheduler related locks and ctx->lock nests inside those. 1303 */ 1304 static __must_check struct perf_event_context * 1305 unclone_ctx(struct perf_event_context *ctx) 1306 { 1307 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1308 1309 lockdep_assert_held(&ctx->lock); 1310 1311 if (parent_ctx) 1312 ctx->parent_ctx = NULL; 1313 ctx->generation++; 1314 1315 return parent_ctx; 1316 } 1317 1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1319 enum pid_type type) 1320 { 1321 u32 nr; 1322 /* 1323 * only top level events have the pid namespace they were created in 1324 */ 1325 if (event->parent) 1326 event = event->parent; 1327 1328 nr = __task_pid_nr_ns(p, type, event->ns); 1329 /* avoid -1 if it is idle thread or runs in another ns */ 1330 if (!nr && !pid_alive(p)) 1331 nr = -1; 1332 return nr; 1333 } 1334 1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1336 { 1337 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1338 } 1339 1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1341 { 1342 return perf_event_pid_type(event, p, PIDTYPE_PID); 1343 } 1344 1345 /* 1346 * If we inherit events we want to return the parent event id 1347 * to userspace. 1348 */ 1349 static u64 primary_event_id(struct perf_event *event) 1350 { 1351 u64 id = event->id; 1352 1353 if (event->parent) 1354 id = event->parent->id; 1355 1356 return id; 1357 } 1358 1359 /* 1360 * Get the perf_event_context for a task and lock it. 1361 * 1362 * This has to cope with with the fact that until it is locked, 1363 * the context could get moved to another task. 1364 */ 1365 static struct perf_event_context * 1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1367 { 1368 struct perf_event_context *ctx; 1369 1370 retry: 1371 /* 1372 * One of the few rules of preemptible RCU is that one cannot do 1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1374 * part of the read side critical section was irqs-enabled -- see 1375 * rcu_read_unlock_special(). 1376 * 1377 * Since ctx->lock nests under rq->lock we must ensure the entire read 1378 * side critical section has interrupts disabled. 1379 */ 1380 local_irq_save(*flags); 1381 rcu_read_lock(); 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1383 if (ctx) { 1384 /* 1385 * If this context is a clone of another, it might 1386 * get swapped for another underneath us by 1387 * perf_event_task_sched_out, though the 1388 * rcu_read_lock() protects us from any context 1389 * getting freed. Lock the context and check if it 1390 * got swapped before we could get the lock, and retry 1391 * if so. If we locked the right context, then it 1392 * can't get swapped on us any more. 1393 */ 1394 raw_spin_lock(&ctx->lock); 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1396 raw_spin_unlock(&ctx->lock); 1397 rcu_read_unlock(); 1398 local_irq_restore(*flags); 1399 goto retry; 1400 } 1401 1402 if (ctx->task == TASK_TOMBSTONE || 1403 !atomic_inc_not_zero(&ctx->refcount)) { 1404 raw_spin_unlock(&ctx->lock); 1405 ctx = NULL; 1406 } else { 1407 WARN_ON_ONCE(ctx->task != task); 1408 } 1409 } 1410 rcu_read_unlock(); 1411 if (!ctx) 1412 local_irq_restore(*flags); 1413 return ctx; 1414 } 1415 1416 /* 1417 * Get the context for a task and increment its pin_count so it 1418 * can't get swapped to another task. This also increments its 1419 * reference count so that the context can't get freed. 1420 */ 1421 static struct perf_event_context * 1422 perf_pin_task_context(struct task_struct *task, int ctxn) 1423 { 1424 struct perf_event_context *ctx; 1425 unsigned long flags; 1426 1427 ctx = perf_lock_task_context(task, ctxn, &flags); 1428 if (ctx) { 1429 ++ctx->pin_count; 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1431 } 1432 return ctx; 1433 } 1434 1435 static void perf_unpin_context(struct perf_event_context *ctx) 1436 { 1437 unsigned long flags; 1438 1439 raw_spin_lock_irqsave(&ctx->lock, flags); 1440 --ctx->pin_count; 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1442 } 1443 1444 /* 1445 * Update the record of the current time in a context. 1446 */ 1447 static void update_context_time(struct perf_event_context *ctx) 1448 { 1449 u64 now = perf_clock(); 1450 1451 ctx->time += now - ctx->timestamp; 1452 ctx->timestamp = now; 1453 } 1454 1455 static u64 perf_event_time(struct perf_event *event) 1456 { 1457 struct perf_event_context *ctx = event->ctx; 1458 1459 if (is_cgroup_event(event)) 1460 return perf_cgroup_event_time(event); 1461 1462 return ctx ? ctx->time : 0; 1463 } 1464 1465 static enum event_type_t get_event_type(struct perf_event *event) 1466 { 1467 struct perf_event_context *ctx = event->ctx; 1468 enum event_type_t event_type; 1469 1470 lockdep_assert_held(&ctx->lock); 1471 1472 /* 1473 * It's 'group type', really, because if our group leader is 1474 * pinned, so are we. 1475 */ 1476 if (event->group_leader != event) 1477 event = event->group_leader; 1478 1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1480 if (!ctx->task) 1481 event_type |= EVENT_CPU; 1482 1483 return event_type; 1484 } 1485 1486 /* 1487 * Helper function to initialize event group nodes. 1488 */ 1489 static void init_event_group(struct perf_event *event) 1490 { 1491 RB_CLEAR_NODE(&event->group_node); 1492 event->group_index = 0; 1493 } 1494 1495 /* 1496 * Extract pinned or flexible groups from the context 1497 * based on event attrs bits. 1498 */ 1499 static struct perf_event_groups * 1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1501 { 1502 if (event->attr.pinned) 1503 return &ctx->pinned_groups; 1504 else 1505 return &ctx->flexible_groups; 1506 } 1507 1508 /* 1509 * Helper function to initializes perf_event_group trees. 1510 */ 1511 static void perf_event_groups_init(struct perf_event_groups *groups) 1512 { 1513 groups->tree = RB_ROOT; 1514 groups->index = 0; 1515 } 1516 1517 /* 1518 * Compare function for event groups; 1519 * 1520 * Implements complex key that first sorts by CPU and then by virtual index 1521 * which provides ordering when rotating groups for the same CPU. 1522 */ 1523 static bool 1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1525 { 1526 if (left->cpu < right->cpu) 1527 return true; 1528 if (left->cpu > right->cpu) 1529 return false; 1530 1531 if (left->group_index < right->group_index) 1532 return true; 1533 if (left->group_index > right->group_index) 1534 return false; 1535 1536 return false; 1537 } 1538 1539 /* 1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1541 * key (see perf_event_groups_less). This places it last inside the CPU 1542 * subtree. 1543 */ 1544 static void 1545 perf_event_groups_insert(struct perf_event_groups *groups, 1546 struct perf_event *event) 1547 { 1548 struct perf_event *node_event; 1549 struct rb_node *parent; 1550 struct rb_node **node; 1551 1552 event->group_index = ++groups->index; 1553 1554 node = &groups->tree.rb_node; 1555 parent = *node; 1556 1557 while (*node) { 1558 parent = *node; 1559 node_event = container_of(*node, struct perf_event, group_node); 1560 1561 if (perf_event_groups_less(event, node_event)) 1562 node = &parent->rb_left; 1563 else 1564 node = &parent->rb_right; 1565 } 1566 1567 rb_link_node(&event->group_node, parent, node); 1568 rb_insert_color(&event->group_node, &groups->tree); 1569 } 1570 1571 /* 1572 * Helper function to insert event into the pinned or flexible groups. 1573 */ 1574 static void 1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1576 { 1577 struct perf_event_groups *groups; 1578 1579 groups = get_event_groups(event, ctx); 1580 perf_event_groups_insert(groups, event); 1581 } 1582 1583 /* 1584 * Delete a group from a tree. 1585 */ 1586 static void 1587 perf_event_groups_delete(struct perf_event_groups *groups, 1588 struct perf_event *event) 1589 { 1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1591 RB_EMPTY_ROOT(&groups->tree)); 1592 1593 rb_erase(&event->group_node, &groups->tree); 1594 init_event_group(event); 1595 } 1596 1597 /* 1598 * Helper function to delete event from its groups. 1599 */ 1600 static void 1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1602 { 1603 struct perf_event_groups *groups; 1604 1605 groups = get_event_groups(event, ctx); 1606 perf_event_groups_delete(groups, event); 1607 } 1608 1609 /* 1610 * Get the leftmost event in the @cpu subtree. 1611 */ 1612 static struct perf_event * 1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1614 { 1615 struct perf_event *node_event = NULL, *match = NULL; 1616 struct rb_node *node = groups->tree.rb_node; 1617 1618 while (node) { 1619 node_event = container_of(node, struct perf_event, group_node); 1620 1621 if (cpu < node_event->cpu) { 1622 node = node->rb_left; 1623 } else if (cpu > node_event->cpu) { 1624 node = node->rb_right; 1625 } else { 1626 match = node_event; 1627 node = node->rb_left; 1628 } 1629 } 1630 1631 return match; 1632 } 1633 1634 /* 1635 * Like rb_entry_next_safe() for the @cpu subtree. 1636 */ 1637 static struct perf_event * 1638 perf_event_groups_next(struct perf_event *event) 1639 { 1640 struct perf_event *next; 1641 1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1643 if (next && next->cpu == event->cpu) 1644 return next; 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * Iterate through the whole groups tree. 1651 */ 1652 #define perf_event_groups_for_each(event, groups) \ 1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1654 typeof(*event), group_node); event; \ 1655 event = rb_entry_safe(rb_next(&event->group_node), \ 1656 typeof(*event), group_node)) 1657 1658 /* 1659 * Add an event from the lists for its context. 1660 * Must be called with ctx->mutex and ctx->lock held. 1661 */ 1662 static void 1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1664 { 1665 lockdep_assert_held(&ctx->lock); 1666 1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1668 event->attach_state |= PERF_ATTACH_CONTEXT; 1669 1670 event->tstamp = perf_event_time(event); 1671 1672 /* 1673 * If we're a stand alone event or group leader, we go to the context 1674 * list, group events are kept attached to the group so that 1675 * perf_group_detach can, at all times, locate all siblings. 1676 */ 1677 if (event->group_leader == event) { 1678 event->group_caps = event->event_caps; 1679 add_event_to_groups(event, ctx); 1680 } 1681 1682 list_update_cgroup_event(event, ctx, true); 1683 1684 list_add_rcu(&event->event_entry, &ctx->event_list); 1685 ctx->nr_events++; 1686 if (event->attr.inherit_stat) 1687 ctx->nr_stat++; 1688 1689 ctx->generation++; 1690 } 1691 1692 /* 1693 * Initialize event state based on the perf_event_attr::disabled. 1694 */ 1695 static inline void perf_event__state_init(struct perf_event *event) 1696 { 1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1698 PERF_EVENT_STATE_INACTIVE; 1699 } 1700 1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1702 { 1703 int entry = sizeof(u64); /* value */ 1704 int size = 0; 1705 int nr = 1; 1706 1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1708 size += sizeof(u64); 1709 1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1711 size += sizeof(u64); 1712 1713 if (event->attr.read_format & PERF_FORMAT_ID) 1714 entry += sizeof(u64); 1715 1716 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1717 nr += nr_siblings; 1718 size += sizeof(u64); 1719 } 1720 1721 size += entry * nr; 1722 event->read_size = size; 1723 } 1724 1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1726 { 1727 struct perf_sample_data *data; 1728 u16 size = 0; 1729 1730 if (sample_type & PERF_SAMPLE_IP) 1731 size += sizeof(data->ip); 1732 1733 if (sample_type & PERF_SAMPLE_ADDR) 1734 size += sizeof(data->addr); 1735 1736 if (sample_type & PERF_SAMPLE_PERIOD) 1737 size += sizeof(data->period); 1738 1739 if (sample_type & PERF_SAMPLE_WEIGHT) 1740 size += sizeof(data->weight); 1741 1742 if (sample_type & PERF_SAMPLE_READ) 1743 size += event->read_size; 1744 1745 if (sample_type & PERF_SAMPLE_DATA_SRC) 1746 size += sizeof(data->data_src.val); 1747 1748 if (sample_type & PERF_SAMPLE_TRANSACTION) 1749 size += sizeof(data->txn); 1750 1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1752 size += sizeof(data->phys_addr); 1753 1754 event->header_size = size; 1755 } 1756 1757 /* 1758 * Called at perf_event creation and when events are attached/detached from a 1759 * group. 1760 */ 1761 static void perf_event__header_size(struct perf_event *event) 1762 { 1763 __perf_event_read_size(event, 1764 event->group_leader->nr_siblings); 1765 __perf_event_header_size(event, event->attr.sample_type); 1766 } 1767 1768 static void perf_event__id_header_size(struct perf_event *event) 1769 { 1770 struct perf_sample_data *data; 1771 u64 sample_type = event->attr.sample_type; 1772 u16 size = 0; 1773 1774 if (sample_type & PERF_SAMPLE_TID) 1775 size += sizeof(data->tid_entry); 1776 1777 if (sample_type & PERF_SAMPLE_TIME) 1778 size += sizeof(data->time); 1779 1780 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1781 size += sizeof(data->id); 1782 1783 if (sample_type & PERF_SAMPLE_ID) 1784 size += sizeof(data->id); 1785 1786 if (sample_type & PERF_SAMPLE_STREAM_ID) 1787 size += sizeof(data->stream_id); 1788 1789 if (sample_type & PERF_SAMPLE_CPU) 1790 size += sizeof(data->cpu_entry); 1791 1792 event->id_header_size = size; 1793 } 1794 1795 static bool perf_event_validate_size(struct perf_event *event) 1796 { 1797 /* 1798 * The values computed here will be over-written when we actually 1799 * attach the event. 1800 */ 1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1803 perf_event__id_header_size(event); 1804 1805 /* 1806 * Sum the lot; should not exceed the 64k limit we have on records. 1807 * Conservative limit to allow for callchains and other variable fields. 1808 */ 1809 if (event->read_size + event->header_size + 1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1811 return false; 1812 1813 return true; 1814 } 1815 1816 static void perf_group_attach(struct perf_event *event) 1817 { 1818 struct perf_event *group_leader = event->group_leader, *pos; 1819 1820 lockdep_assert_held(&event->ctx->lock); 1821 1822 /* 1823 * We can have double attach due to group movement in perf_event_open. 1824 */ 1825 if (event->attach_state & PERF_ATTACH_GROUP) 1826 return; 1827 1828 event->attach_state |= PERF_ATTACH_GROUP; 1829 1830 if (group_leader == event) 1831 return; 1832 1833 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1834 1835 group_leader->group_caps &= event->event_caps; 1836 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1838 group_leader->nr_siblings++; 1839 1840 perf_event__header_size(group_leader); 1841 1842 for_each_sibling_event(pos, group_leader) 1843 perf_event__header_size(pos); 1844 } 1845 1846 /* 1847 * Remove an event from the lists for its context. 1848 * Must be called with ctx->mutex and ctx->lock held. 1849 */ 1850 static void 1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1852 { 1853 WARN_ON_ONCE(event->ctx != ctx); 1854 lockdep_assert_held(&ctx->lock); 1855 1856 /* 1857 * We can have double detach due to exit/hot-unplug + close. 1858 */ 1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1860 return; 1861 1862 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1863 1864 list_update_cgroup_event(event, ctx, false); 1865 1866 ctx->nr_events--; 1867 if (event->attr.inherit_stat) 1868 ctx->nr_stat--; 1869 1870 list_del_rcu(&event->event_entry); 1871 1872 if (event->group_leader == event) 1873 del_event_from_groups(event, ctx); 1874 1875 /* 1876 * If event was in error state, then keep it 1877 * that way, otherwise bogus counts will be 1878 * returned on read(). The only way to get out 1879 * of error state is by explicit re-enabling 1880 * of the event 1881 */ 1882 if (event->state > PERF_EVENT_STATE_OFF) 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1884 1885 ctx->generation++; 1886 } 1887 1888 static void perf_group_detach(struct perf_event *event) 1889 { 1890 struct perf_event *sibling, *tmp; 1891 struct perf_event_context *ctx = event->ctx; 1892 1893 lockdep_assert_held(&ctx->lock); 1894 1895 /* 1896 * We can have double detach due to exit/hot-unplug + close. 1897 */ 1898 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1899 return; 1900 1901 event->attach_state &= ~PERF_ATTACH_GROUP; 1902 1903 /* 1904 * If this is a sibling, remove it from its group. 1905 */ 1906 if (event->group_leader != event) { 1907 list_del_init(&event->sibling_list); 1908 event->group_leader->nr_siblings--; 1909 goto out; 1910 } 1911 1912 /* 1913 * If this was a group event with sibling events then 1914 * upgrade the siblings to singleton events by adding them 1915 * to whatever list we are on. 1916 */ 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1918 1919 sibling->group_leader = sibling; 1920 list_del_init(&sibling->sibling_list); 1921 1922 /* Inherit group flags from the previous leader */ 1923 sibling->group_caps = event->group_caps; 1924 1925 if (!RB_EMPTY_NODE(&event->group_node)) { 1926 add_event_to_groups(sibling, event->ctx); 1927 1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1929 struct list_head *list = sibling->attr.pinned ? 1930 &ctx->pinned_active : &ctx->flexible_active; 1931 1932 list_add_tail(&sibling->active_list, list); 1933 } 1934 } 1935 1936 WARN_ON_ONCE(sibling->ctx != event->ctx); 1937 } 1938 1939 out: 1940 perf_event__header_size(event->group_leader); 1941 1942 for_each_sibling_event(tmp, event->group_leader) 1943 perf_event__header_size(tmp); 1944 } 1945 1946 static bool is_orphaned_event(struct perf_event *event) 1947 { 1948 return event->state == PERF_EVENT_STATE_DEAD; 1949 } 1950 1951 static inline int __pmu_filter_match(struct perf_event *event) 1952 { 1953 struct pmu *pmu = event->pmu; 1954 return pmu->filter_match ? pmu->filter_match(event) : 1; 1955 } 1956 1957 /* 1958 * Check whether we should attempt to schedule an event group based on 1959 * PMU-specific filtering. An event group can consist of HW and SW events, 1960 * potentially with a SW leader, so we must check all the filters, to 1961 * determine whether a group is schedulable: 1962 */ 1963 static inline int pmu_filter_match(struct perf_event *event) 1964 { 1965 struct perf_event *sibling; 1966 1967 if (!__pmu_filter_match(event)) 1968 return 0; 1969 1970 for_each_sibling_event(sibling, event) { 1971 if (!__pmu_filter_match(sibling)) 1972 return 0; 1973 } 1974 1975 return 1; 1976 } 1977 1978 static inline int 1979 event_filter_match(struct perf_event *event) 1980 { 1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1982 perf_cgroup_match(event) && pmu_filter_match(event); 1983 } 1984 1985 static void 1986 event_sched_out(struct perf_event *event, 1987 struct perf_cpu_context *cpuctx, 1988 struct perf_event_context *ctx) 1989 { 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1991 1992 WARN_ON_ONCE(event->ctx != ctx); 1993 lockdep_assert_held(&ctx->lock); 1994 1995 if (event->state != PERF_EVENT_STATE_ACTIVE) 1996 return; 1997 1998 /* 1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2000 * we can schedule events _OUT_ individually through things like 2001 * __perf_remove_from_context(). 2002 */ 2003 list_del_init(&event->active_list); 2004 2005 perf_pmu_disable(event->pmu); 2006 2007 event->pmu->del(event, 0); 2008 event->oncpu = -1; 2009 2010 if (event->pending_disable) { 2011 event->pending_disable = 0; 2012 state = PERF_EVENT_STATE_OFF; 2013 } 2014 perf_event_set_state(event, state); 2015 2016 if (!is_software_event(event)) 2017 cpuctx->active_oncpu--; 2018 if (!--ctx->nr_active) 2019 perf_event_ctx_deactivate(ctx); 2020 if (event->attr.freq && event->attr.sample_freq) 2021 ctx->nr_freq--; 2022 if (event->attr.exclusive || !cpuctx->active_oncpu) 2023 cpuctx->exclusive = 0; 2024 2025 perf_pmu_enable(event->pmu); 2026 } 2027 2028 static void 2029 group_sched_out(struct perf_event *group_event, 2030 struct perf_cpu_context *cpuctx, 2031 struct perf_event_context *ctx) 2032 { 2033 struct perf_event *event; 2034 2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2036 return; 2037 2038 perf_pmu_disable(ctx->pmu); 2039 2040 event_sched_out(group_event, cpuctx, ctx); 2041 2042 /* 2043 * Schedule out siblings (if any): 2044 */ 2045 for_each_sibling_event(event, group_event) 2046 event_sched_out(event, cpuctx, ctx); 2047 2048 perf_pmu_enable(ctx->pmu); 2049 2050 if (group_event->attr.exclusive) 2051 cpuctx->exclusive = 0; 2052 } 2053 2054 #define DETACH_GROUP 0x01UL 2055 2056 /* 2057 * Cross CPU call to remove a performance event 2058 * 2059 * We disable the event on the hardware level first. After that we 2060 * remove it from the context list. 2061 */ 2062 static void 2063 __perf_remove_from_context(struct perf_event *event, 2064 struct perf_cpu_context *cpuctx, 2065 struct perf_event_context *ctx, 2066 void *info) 2067 { 2068 unsigned long flags = (unsigned long)info; 2069 2070 if (ctx->is_active & EVENT_TIME) { 2071 update_context_time(ctx); 2072 update_cgrp_time_from_cpuctx(cpuctx); 2073 } 2074 2075 event_sched_out(event, cpuctx, ctx); 2076 if (flags & DETACH_GROUP) 2077 perf_group_detach(event); 2078 list_del_event(event, ctx); 2079 2080 if (!ctx->nr_events && ctx->is_active) { 2081 ctx->is_active = 0; 2082 if (ctx->task) { 2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2084 cpuctx->task_ctx = NULL; 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Remove the event from a task's (or a CPU's) list of events. 2091 * 2092 * If event->ctx is a cloned context, callers must make sure that 2093 * every task struct that event->ctx->task could possibly point to 2094 * remains valid. This is OK when called from perf_release since 2095 * that only calls us on the top-level context, which can't be a clone. 2096 * When called from perf_event_exit_task, it's OK because the 2097 * context has been detached from its task. 2098 */ 2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2100 { 2101 struct perf_event_context *ctx = event->ctx; 2102 2103 lockdep_assert_held(&ctx->mutex); 2104 2105 event_function_call(event, __perf_remove_from_context, (void *)flags); 2106 2107 /* 2108 * The above event_function_call() can NO-OP when it hits 2109 * TASK_TOMBSTONE. In that case we must already have been detached 2110 * from the context (by perf_event_exit_event()) but the grouping 2111 * might still be in-tact. 2112 */ 2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2114 if ((flags & DETACH_GROUP) && 2115 (event->attach_state & PERF_ATTACH_GROUP)) { 2116 /* 2117 * Since in that case we cannot possibly be scheduled, simply 2118 * detach now. 2119 */ 2120 raw_spin_lock_irq(&ctx->lock); 2121 perf_group_detach(event); 2122 raw_spin_unlock_irq(&ctx->lock); 2123 } 2124 } 2125 2126 /* 2127 * Cross CPU call to disable a performance event 2128 */ 2129 static void __perf_event_disable(struct perf_event *event, 2130 struct perf_cpu_context *cpuctx, 2131 struct perf_event_context *ctx, 2132 void *info) 2133 { 2134 if (event->state < PERF_EVENT_STATE_INACTIVE) 2135 return; 2136 2137 if (ctx->is_active & EVENT_TIME) { 2138 update_context_time(ctx); 2139 update_cgrp_time_from_event(event); 2140 } 2141 2142 if (event == event->group_leader) 2143 group_sched_out(event, cpuctx, ctx); 2144 else 2145 event_sched_out(event, cpuctx, ctx); 2146 2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2148 } 2149 2150 /* 2151 * Disable an event. 2152 * 2153 * If event->ctx is a cloned context, callers must make sure that 2154 * every task struct that event->ctx->task could possibly point to 2155 * remains valid. This condition is satisifed when called through 2156 * perf_event_for_each_child or perf_event_for_each because they 2157 * hold the top-level event's child_mutex, so any descendant that 2158 * goes to exit will block in perf_event_exit_event(). 2159 * 2160 * When called from perf_pending_event it's OK because event->ctx 2161 * is the current context on this CPU and preemption is disabled, 2162 * hence we can't get into perf_event_task_sched_out for this context. 2163 */ 2164 static void _perf_event_disable(struct perf_event *event) 2165 { 2166 struct perf_event_context *ctx = event->ctx; 2167 2168 raw_spin_lock_irq(&ctx->lock); 2169 if (event->state <= PERF_EVENT_STATE_OFF) { 2170 raw_spin_unlock_irq(&ctx->lock); 2171 return; 2172 } 2173 raw_spin_unlock_irq(&ctx->lock); 2174 2175 event_function_call(event, __perf_event_disable, NULL); 2176 } 2177 2178 void perf_event_disable_local(struct perf_event *event) 2179 { 2180 event_function_local(event, __perf_event_disable, NULL); 2181 } 2182 2183 /* 2184 * Strictly speaking kernel users cannot create groups and therefore this 2185 * interface does not need the perf_event_ctx_lock() magic. 2186 */ 2187 void perf_event_disable(struct perf_event *event) 2188 { 2189 struct perf_event_context *ctx; 2190 2191 ctx = perf_event_ctx_lock(event); 2192 _perf_event_disable(event); 2193 perf_event_ctx_unlock(event, ctx); 2194 } 2195 EXPORT_SYMBOL_GPL(perf_event_disable); 2196 2197 void perf_event_disable_inatomic(struct perf_event *event) 2198 { 2199 event->pending_disable = 1; 2200 irq_work_queue(&event->pending); 2201 } 2202 2203 static void perf_set_shadow_time(struct perf_event *event, 2204 struct perf_event_context *ctx) 2205 { 2206 /* 2207 * use the correct time source for the time snapshot 2208 * 2209 * We could get by without this by leveraging the 2210 * fact that to get to this function, the caller 2211 * has most likely already called update_context_time() 2212 * and update_cgrp_time_xx() and thus both timestamp 2213 * are identical (or very close). Given that tstamp is, 2214 * already adjusted for cgroup, we could say that: 2215 * tstamp - ctx->timestamp 2216 * is equivalent to 2217 * tstamp - cgrp->timestamp. 2218 * 2219 * Then, in perf_output_read(), the calculation would 2220 * work with no changes because: 2221 * - event is guaranteed scheduled in 2222 * - no scheduled out in between 2223 * - thus the timestamp would be the same 2224 * 2225 * But this is a bit hairy. 2226 * 2227 * So instead, we have an explicit cgroup call to remain 2228 * within the time time source all along. We believe it 2229 * is cleaner and simpler to understand. 2230 */ 2231 if (is_cgroup_event(event)) 2232 perf_cgroup_set_shadow_time(event, event->tstamp); 2233 else 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2235 } 2236 2237 #define MAX_INTERRUPTS (~0ULL) 2238 2239 static void perf_log_throttle(struct perf_event *event, int enable); 2240 static void perf_log_itrace_start(struct perf_event *event); 2241 2242 static int 2243 event_sched_in(struct perf_event *event, 2244 struct perf_cpu_context *cpuctx, 2245 struct perf_event_context *ctx) 2246 { 2247 int ret = 0; 2248 2249 lockdep_assert_held(&ctx->lock); 2250 2251 if (event->state <= PERF_EVENT_STATE_OFF) 2252 return 0; 2253 2254 WRITE_ONCE(event->oncpu, smp_processor_id()); 2255 /* 2256 * Order event::oncpu write to happen before the ACTIVE state is 2257 * visible. This allows perf_event_{stop,read}() to observe the correct 2258 * ->oncpu if it sees ACTIVE. 2259 */ 2260 smp_wmb(); 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2262 2263 /* 2264 * Unthrottle events, since we scheduled we might have missed several 2265 * ticks already, also for a heavily scheduling task there is little 2266 * guarantee it'll get a tick in a timely manner. 2267 */ 2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2269 perf_log_throttle(event, 1); 2270 event->hw.interrupts = 0; 2271 } 2272 2273 perf_pmu_disable(event->pmu); 2274 2275 perf_set_shadow_time(event, ctx); 2276 2277 perf_log_itrace_start(event); 2278 2279 if (event->pmu->add(event, PERF_EF_START)) { 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2281 event->oncpu = -1; 2282 ret = -EAGAIN; 2283 goto out; 2284 } 2285 2286 if (!is_software_event(event)) 2287 cpuctx->active_oncpu++; 2288 if (!ctx->nr_active++) 2289 perf_event_ctx_activate(ctx); 2290 if (event->attr.freq && event->attr.sample_freq) 2291 ctx->nr_freq++; 2292 2293 if (event->attr.exclusive) 2294 cpuctx->exclusive = 1; 2295 2296 out: 2297 perf_pmu_enable(event->pmu); 2298 2299 return ret; 2300 } 2301 2302 static int 2303 group_sched_in(struct perf_event *group_event, 2304 struct perf_cpu_context *cpuctx, 2305 struct perf_event_context *ctx) 2306 { 2307 struct perf_event *event, *partial_group = NULL; 2308 struct pmu *pmu = ctx->pmu; 2309 2310 if (group_event->state == PERF_EVENT_STATE_OFF) 2311 return 0; 2312 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2314 2315 if (event_sched_in(group_event, cpuctx, ctx)) { 2316 pmu->cancel_txn(pmu); 2317 perf_mux_hrtimer_restart(cpuctx); 2318 return -EAGAIN; 2319 } 2320 2321 /* 2322 * Schedule in siblings as one group (if any): 2323 */ 2324 for_each_sibling_event(event, group_event) { 2325 if (event_sched_in(event, cpuctx, ctx)) { 2326 partial_group = event; 2327 goto group_error; 2328 } 2329 } 2330 2331 if (!pmu->commit_txn(pmu)) 2332 return 0; 2333 2334 group_error: 2335 /* 2336 * Groups can be scheduled in as one unit only, so undo any 2337 * partial group before returning: 2338 * The events up to the failed event are scheduled out normally. 2339 */ 2340 for_each_sibling_event(event, group_event) { 2341 if (event == partial_group) 2342 break; 2343 2344 event_sched_out(event, cpuctx, ctx); 2345 } 2346 event_sched_out(group_event, cpuctx, ctx); 2347 2348 pmu->cancel_txn(pmu); 2349 2350 perf_mux_hrtimer_restart(cpuctx); 2351 2352 return -EAGAIN; 2353 } 2354 2355 /* 2356 * Work out whether we can put this event group on the CPU now. 2357 */ 2358 static int group_can_go_on(struct perf_event *event, 2359 struct perf_cpu_context *cpuctx, 2360 int can_add_hw) 2361 { 2362 /* 2363 * Groups consisting entirely of software events can always go on. 2364 */ 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2366 return 1; 2367 /* 2368 * If an exclusive group is already on, no other hardware 2369 * events can go on. 2370 */ 2371 if (cpuctx->exclusive) 2372 return 0; 2373 /* 2374 * If this group is exclusive and there are already 2375 * events on the CPU, it can't go on. 2376 */ 2377 if (event->attr.exclusive && cpuctx->active_oncpu) 2378 return 0; 2379 /* 2380 * Otherwise, try to add it if all previous groups were able 2381 * to go on. 2382 */ 2383 return can_add_hw; 2384 } 2385 2386 static void add_event_to_ctx(struct perf_event *event, 2387 struct perf_event_context *ctx) 2388 { 2389 list_add_event(event, ctx); 2390 perf_group_attach(event); 2391 } 2392 2393 static void ctx_sched_out(struct perf_event_context *ctx, 2394 struct perf_cpu_context *cpuctx, 2395 enum event_type_t event_type); 2396 static void 2397 ctx_sched_in(struct perf_event_context *ctx, 2398 struct perf_cpu_context *cpuctx, 2399 enum event_type_t event_type, 2400 struct task_struct *task); 2401 2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2403 struct perf_event_context *ctx, 2404 enum event_type_t event_type) 2405 { 2406 if (!cpuctx->task_ctx) 2407 return; 2408 2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2410 return; 2411 2412 ctx_sched_out(ctx, cpuctx, event_type); 2413 } 2414 2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2416 struct perf_event_context *ctx, 2417 struct task_struct *task) 2418 { 2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2420 if (ctx) 2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2425 } 2426 2427 /* 2428 * We want to maintain the following priority of scheduling: 2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2430 * - task pinned (EVENT_PINNED) 2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2432 * - task flexible (EVENT_FLEXIBLE). 2433 * 2434 * In order to avoid unscheduling and scheduling back in everything every 2435 * time an event is added, only do it for the groups of equal priority and 2436 * below. 2437 * 2438 * This can be called after a batch operation on task events, in which case 2439 * event_type is a bit mask of the types of events involved. For CPU events, 2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2441 */ 2442 static void ctx_resched(struct perf_cpu_context *cpuctx, 2443 struct perf_event_context *task_ctx, 2444 enum event_type_t event_type) 2445 { 2446 enum event_type_t ctx_event_type; 2447 bool cpu_event = !!(event_type & EVENT_CPU); 2448 2449 /* 2450 * If pinned groups are involved, flexible groups also need to be 2451 * scheduled out. 2452 */ 2453 if (event_type & EVENT_PINNED) 2454 event_type |= EVENT_FLEXIBLE; 2455 2456 ctx_event_type = event_type & EVENT_ALL; 2457 2458 perf_pmu_disable(cpuctx->ctx.pmu); 2459 if (task_ctx) 2460 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2461 2462 /* 2463 * Decide which cpu ctx groups to schedule out based on the types 2464 * of events that caused rescheduling: 2465 * - EVENT_CPU: schedule out corresponding groups; 2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2467 * - otherwise, do nothing more. 2468 */ 2469 if (cpu_event) 2470 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2471 else if (ctx_event_type & EVENT_PINNED) 2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2473 2474 perf_event_sched_in(cpuctx, task_ctx, current); 2475 perf_pmu_enable(cpuctx->ctx.pmu); 2476 } 2477 2478 /* 2479 * Cross CPU call to install and enable a performance event 2480 * 2481 * Very similar to remote_function() + event_function() but cannot assume that 2482 * things like ctx->is_active and cpuctx->task_ctx are set. 2483 */ 2484 static int __perf_install_in_context(void *info) 2485 { 2486 struct perf_event *event = info; 2487 struct perf_event_context *ctx = event->ctx; 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2490 bool reprogram = true; 2491 int ret = 0; 2492 2493 raw_spin_lock(&cpuctx->ctx.lock); 2494 if (ctx->task) { 2495 raw_spin_lock(&ctx->lock); 2496 task_ctx = ctx; 2497 2498 reprogram = (ctx->task == current); 2499 2500 /* 2501 * If the task is running, it must be running on this CPU, 2502 * otherwise we cannot reprogram things. 2503 * 2504 * If its not running, we don't care, ctx->lock will 2505 * serialize against it becoming runnable. 2506 */ 2507 if (task_curr(ctx->task) && !reprogram) { 2508 ret = -ESRCH; 2509 goto unlock; 2510 } 2511 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2513 } else if (task_ctx) { 2514 raw_spin_lock(&task_ctx->lock); 2515 } 2516 2517 #ifdef CONFIG_CGROUP_PERF 2518 if (is_cgroup_event(event)) { 2519 /* 2520 * If the current cgroup doesn't match the event's 2521 * cgroup, we should not try to schedule it. 2522 */ 2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2525 event->cgrp->css.cgroup); 2526 } 2527 #endif 2528 2529 if (reprogram) { 2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2531 add_event_to_ctx(event, ctx); 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2533 } else { 2534 add_event_to_ctx(event, ctx); 2535 } 2536 2537 unlock: 2538 perf_ctx_unlock(cpuctx, task_ctx); 2539 2540 return ret; 2541 } 2542 2543 /* 2544 * Attach a performance event to a context. 2545 * 2546 * Very similar to event_function_call, see comment there. 2547 */ 2548 static void 2549 perf_install_in_context(struct perf_event_context *ctx, 2550 struct perf_event *event, 2551 int cpu) 2552 { 2553 struct task_struct *task = READ_ONCE(ctx->task); 2554 2555 lockdep_assert_held(&ctx->mutex); 2556 2557 if (event->cpu != -1) 2558 event->cpu = cpu; 2559 2560 /* 2561 * Ensures that if we can observe event->ctx, both the event and ctx 2562 * will be 'complete'. See perf_iterate_sb_cpu(). 2563 */ 2564 smp_store_release(&event->ctx, ctx); 2565 2566 if (!task) { 2567 cpu_function_call(cpu, __perf_install_in_context, event); 2568 return; 2569 } 2570 2571 /* 2572 * Should not happen, we validate the ctx is still alive before calling. 2573 */ 2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2575 return; 2576 2577 /* 2578 * Installing events is tricky because we cannot rely on ctx->is_active 2579 * to be set in case this is the nr_events 0 -> 1 transition. 2580 * 2581 * Instead we use task_curr(), which tells us if the task is running. 2582 * However, since we use task_curr() outside of rq::lock, we can race 2583 * against the actual state. This means the result can be wrong. 2584 * 2585 * If we get a false positive, we retry, this is harmless. 2586 * 2587 * If we get a false negative, things are complicated. If we are after 2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2589 * value must be correct. If we're before, it doesn't matter since 2590 * perf_event_context_sched_in() will program the counter. 2591 * 2592 * However, this hinges on the remote context switch having observed 2593 * our task->perf_event_ctxp[] store, such that it will in fact take 2594 * ctx::lock in perf_event_context_sched_in(). 2595 * 2596 * We do this by task_function_call(), if the IPI fails to hit the task 2597 * we know any future context switch of task must see the 2598 * perf_event_ctpx[] store. 2599 */ 2600 2601 /* 2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2603 * task_cpu() load, such that if the IPI then does not find the task 2604 * running, a future context switch of that task must observe the 2605 * store. 2606 */ 2607 smp_mb(); 2608 again: 2609 if (!task_function_call(task, __perf_install_in_context, event)) 2610 return; 2611 2612 raw_spin_lock_irq(&ctx->lock); 2613 task = ctx->task; 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2615 /* 2616 * Cannot happen because we already checked above (which also 2617 * cannot happen), and we hold ctx->mutex, which serializes us 2618 * against perf_event_exit_task_context(). 2619 */ 2620 raw_spin_unlock_irq(&ctx->lock); 2621 return; 2622 } 2623 /* 2624 * If the task is not running, ctx->lock will avoid it becoming so, 2625 * thus we can safely install the event. 2626 */ 2627 if (task_curr(task)) { 2628 raw_spin_unlock_irq(&ctx->lock); 2629 goto again; 2630 } 2631 add_event_to_ctx(event, ctx); 2632 raw_spin_unlock_irq(&ctx->lock); 2633 } 2634 2635 /* 2636 * Cross CPU call to enable a performance event 2637 */ 2638 static void __perf_event_enable(struct perf_event *event, 2639 struct perf_cpu_context *cpuctx, 2640 struct perf_event_context *ctx, 2641 void *info) 2642 { 2643 struct perf_event *leader = event->group_leader; 2644 struct perf_event_context *task_ctx; 2645 2646 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2647 event->state <= PERF_EVENT_STATE_ERROR) 2648 return; 2649 2650 if (ctx->is_active) 2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2652 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2654 2655 if (!ctx->is_active) 2656 return; 2657 2658 if (!event_filter_match(event)) { 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2660 return; 2661 } 2662 2663 /* 2664 * If the event is in a group and isn't the group leader, 2665 * then don't put it on unless the group is on. 2666 */ 2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2669 return; 2670 } 2671 2672 task_ctx = cpuctx->task_ctx; 2673 if (ctx->task) 2674 WARN_ON_ONCE(task_ctx != ctx); 2675 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2677 } 2678 2679 /* 2680 * Enable an event. 2681 * 2682 * If event->ctx is a cloned context, callers must make sure that 2683 * every task struct that event->ctx->task could possibly point to 2684 * remains valid. This condition is satisfied when called through 2685 * perf_event_for_each_child or perf_event_for_each as described 2686 * for perf_event_disable. 2687 */ 2688 static void _perf_event_enable(struct perf_event *event) 2689 { 2690 struct perf_event_context *ctx = event->ctx; 2691 2692 raw_spin_lock_irq(&ctx->lock); 2693 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2694 event->state < PERF_EVENT_STATE_ERROR) { 2695 raw_spin_unlock_irq(&ctx->lock); 2696 return; 2697 } 2698 2699 /* 2700 * If the event is in error state, clear that first. 2701 * 2702 * That way, if we see the event in error state below, we know that it 2703 * has gone back into error state, as distinct from the task having 2704 * been scheduled away before the cross-call arrived. 2705 */ 2706 if (event->state == PERF_EVENT_STATE_ERROR) 2707 event->state = PERF_EVENT_STATE_OFF; 2708 raw_spin_unlock_irq(&ctx->lock); 2709 2710 event_function_call(event, __perf_event_enable, NULL); 2711 } 2712 2713 /* 2714 * See perf_event_disable(); 2715 */ 2716 void perf_event_enable(struct perf_event *event) 2717 { 2718 struct perf_event_context *ctx; 2719 2720 ctx = perf_event_ctx_lock(event); 2721 _perf_event_enable(event); 2722 perf_event_ctx_unlock(event, ctx); 2723 } 2724 EXPORT_SYMBOL_GPL(perf_event_enable); 2725 2726 struct stop_event_data { 2727 struct perf_event *event; 2728 unsigned int restart; 2729 }; 2730 2731 static int __perf_event_stop(void *info) 2732 { 2733 struct stop_event_data *sd = info; 2734 struct perf_event *event = sd->event; 2735 2736 /* if it's already INACTIVE, do nothing */ 2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2738 return 0; 2739 2740 /* matches smp_wmb() in event_sched_in() */ 2741 smp_rmb(); 2742 2743 /* 2744 * There is a window with interrupts enabled before we get here, 2745 * so we need to check again lest we try to stop another CPU's event. 2746 */ 2747 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2748 return -EAGAIN; 2749 2750 event->pmu->stop(event, PERF_EF_UPDATE); 2751 2752 /* 2753 * May race with the actual stop (through perf_pmu_output_stop()), 2754 * but it is only used for events with AUX ring buffer, and such 2755 * events will refuse to restart because of rb::aux_mmap_count==0, 2756 * see comments in perf_aux_output_begin(). 2757 * 2758 * Since this is happening on an event-local CPU, no trace is lost 2759 * while restarting. 2760 */ 2761 if (sd->restart) 2762 event->pmu->start(event, 0); 2763 2764 return 0; 2765 } 2766 2767 static int perf_event_stop(struct perf_event *event, int restart) 2768 { 2769 struct stop_event_data sd = { 2770 .event = event, 2771 .restart = restart, 2772 }; 2773 int ret = 0; 2774 2775 do { 2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2777 return 0; 2778 2779 /* matches smp_wmb() in event_sched_in() */ 2780 smp_rmb(); 2781 2782 /* 2783 * We only want to restart ACTIVE events, so if the event goes 2784 * inactive here (event->oncpu==-1), there's nothing more to do; 2785 * fall through with ret==-ENXIO. 2786 */ 2787 ret = cpu_function_call(READ_ONCE(event->oncpu), 2788 __perf_event_stop, &sd); 2789 } while (ret == -EAGAIN); 2790 2791 return ret; 2792 } 2793 2794 /* 2795 * In order to contain the amount of racy and tricky in the address filter 2796 * configuration management, it is a two part process: 2797 * 2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2799 * we update the addresses of corresponding vmas in 2800 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2801 * (p2) when an event is scheduled in (pmu::add), it calls 2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2803 * if the generation has changed since the previous call. 2804 * 2805 * If (p1) happens while the event is active, we restart it to force (p2). 2806 * 2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2809 * ioctl; 2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2812 * for reading; 2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2814 * of exec. 2815 */ 2816 void perf_event_addr_filters_sync(struct perf_event *event) 2817 { 2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2819 2820 if (!has_addr_filter(event)) 2821 return; 2822 2823 raw_spin_lock(&ifh->lock); 2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2825 event->pmu->addr_filters_sync(event); 2826 event->hw.addr_filters_gen = event->addr_filters_gen; 2827 } 2828 raw_spin_unlock(&ifh->lock); 2829 } 2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2831 2832 static int _perf_event_refresh(struct perf_event *event, int refresh) 2833 { 2834 /* 2835 * not supported on inherited events 2836 */ 2837 if (event->attr.inherit || !is_sampling_event(event)) 2838 return -EINVAL; 2839 2840 atomic_add(refresh, &event->event_limit); 2841 _perf_event_enable(event); 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * See perf_event_disable() 2848 */ 2849 int perf_event_refresh(struct perf_event *event, int refresh) 2850 { 2851 struct perf_event_context *ctx; 2852 int ret; 2853 2854 ctx = perf_event_ctx_lock(event); 2855 ret = _perf_event_refresh(event, refresh); 2856 perf_event_ctx_unlock(event, ctx); 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL_GPL(perf_event_refresh); 2861 2862 static int perf_event_modify_breakpoint(struct perf_event *bp, 2863 struct perf_event_attr *attr) 2864 { 2865 int err; 2866 2867 _perf_event_disable(bp); 2868 2869 err = modify_user_hw_breakpoint_check(bp, attr, true); 2870 2871 if (!bp->attr.disabled) 2872 _perf_event_enable(bp); 2873 2874 return err; 2875 } 2876 2877 static int perf_event_modify_attr(struct perf_event *event, 2878 struct perf_event_attr *attr) 2879 { 2880 if (event->attr.type != attr->type) 2881 return -EINVAL; 2882 2883 switch (event->attr.type) { 2884 case PERF_TYPE_BREAKPOINT: 2885 return perf_event_modify_breakpoint(event, attr); 2886 default: 2887 /* Place holder for future additions. */ 2888 return -EOPNOTSUPP; 2889 } 2890 } 2891 2892 static void ctx_sched_out(struct perf_event_context *ctx, 2893 struct perf_cpu_context *cpuctx, 2894 enum event_type_t event_type) 2895 { 2896 struct perf_event *event, *tmp; 2897 int is_active = ctx->is_active; 2898 2899 lockdep_assert_held(&ctx->lock); 2900 2901 if (likely(!ctx->nr_events)) { 2902 /* 2903 * See __perf_remove_from_context(). 2904 */ 2905 WARN_ON_ONCE(ctx->is_active); 2906 if (ctx->task) 2907 WARN_ON_ONCE(cpuctx->task_ctx); 2908 return; 2909 } 2910 2911 ctx->is_active &= ~event_type; 2912 if (!(ctx->is_active & EVENT_ALL)) 2913 ctx->is_active = 0; 2914 2915 if (ctx->task) { 2916 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2917 if (!ctx->is_active) 2918 cpuctx->task_ctx = NULL; 2919 } 2920 2921 /* 2922 * Always update time if it was set; not only when it changes. 2923 * Otherwise we can 'forget' to update time for any but the last 2924 * context we sched out. For example: 2925 * 2926 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2927 * ctx_sched_out(.event_type = EVENT_PINNED) 2928 * 2929 * would only update time for the pinned events. 2930 */ 2931 if (is_active & EVENT_TIME) { 2932 /* update (and stop) ctx time */ 2933 update_context_time(ctx); 2934 update_cgrp_time_from_cpuctx(cpuctx); 2935 } 2936 2937 is_active ^= ctx->is_active; /* changed bits */ 2938 2939 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2940 return; 2941 2942 perf_pmu_disable(ctx->pmu); 2943 if (is_active & EVENT_PINNED) { 2944 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2945 group_sched_out(event, cpuctx, ctx); 2946 } 2947 2948 if (is_active & EVENT_FLEXIBLE) { 2949 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2950 group_sched_out(event, cpuctx, ctx); 2951 } 2952 perf_pmu_enable(ctx->pmu); 2953 } 2954 2955 /* 2956 * Test whether two contexts are equivalent, i.e. whether they have both been 2957 * cloned from the same version of the same context. 2958 * 2959 * Equivalence is measured using a generation number in the context that is 2960 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2961 * and list_del_event(). 2962 */ 2963 static int context_equiv(struct perf_event_context *ctx1, 2964 struct perf_event_context *ctx2) 2965 { 2966 lockdep_assert_held(&ctx1->lock); 2967 lockdep_assert_held(&ctx2->lock); 2968 2969 /* Pinning disables the swap optimization */ 2970 if (ctx1->pin_count || ctx2->pin_count) 2971 return 0; 2972 2973 /* If ctx1 is the parent of ctx2 */ 2974 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2975 return 1; 2976 2977 /* If ctx2 is the parent of ctx1 */ 2978 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2979 return 1; 2980 2981 /* 2982 * If ctx1 and ctx2 have the same parent; we flatten the parent 2983 * hierarchy, see perf_event_init_context(). 2984 */ 2985 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2986 ctx1->parent_gen == ctx2->parent_gen) 2987 return 1; 2988 2989 /* Unmatched */ 2990 return 0; 2991 } 2992 2993 static void __perf_event_sync_stat(struct perf_event *event, 2994 struct perf_event *next_event) 2995 { 2996 u64 value; 2997 2998 if (!event->attr.inherit_stat) 2999 return; 3000 3001 /* 3002 * Update the event value, we cannot use perf_event_read() 3003 * because we're in the middle of a context switch and have IRQs 3004 * disabled, which upsets smp_call_function_single(), however 3005 * we know the event must be on the current CPU, therefore we 3006 * don't need to use it. 3007 */ 3008 if (event->state == PERF_EVENT_STATE_ACTIVE) 3009 event->pmu->read(event); 3010 3011 perf_event_update_time(event); 3012 3013 /* 3014 * In order to keep per-task stats reliable we need to flip the event 3015 * values when we flip the contexts. 3016 */ 3017 value = local64_read(&next_event->count); 3018 value = local64_xchg(&event->count, value); 3019 local64_set(&next_event->count, value); 3020 3021 swap(event->total_time_enabled, next_event->total_time_enabled); 3022 swap(event->total_time_running, next_event->total_time_running); 3023 3024 /* 3025 * Since we swizzled the values, update the user visible data too. 3026 */ 3027 perf_event_update_userpage(event); 3028 perf_event_update_userpage(next_event); 3029 } 3030 3031 static void perf_event_sync_stat(struct perf_event_context *ctx, 3032 struct perf_event_context *next_ctx) 3033 { 3034 struct perf_event *event, *next_event; 3035 3036 if (!ctx->nr_stat) 3037 return; 3038 3039 update_context_time(ctx); 3040 3041 event = list_first_entry(&ctx->event_list, 3042 struct perf_event, event_entry); 3043 3044 next_event = list_first_entry(&next_ctx->event_list, 3045 struct perf_event, event_entry); 3046 3047 while (&event->event_entry != &ctx->event_list && 3048 &next_event->event_entry != &next_ctx->event_list) { 3049 3050 __perf_event_sync_stat(event, next_event); 3051 3052 event = list_next_entry(event, event_entry); 3053 next_event = list_next_entry(next_event, event_entry); 3054 } 3055 } 3056 3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3058 struct task_struct *next) 3059 { 3060 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3061 struct perf_event_context *next_ctx; 3062 struct perf_event_context *parent, *next_parent; 3063 struct perf_cpu_context *cpuctx; 3064 int do_switch = 1; 3065 3066 if (likely(!ctx)) 3067 return; 3068 3069 cpuctx = __get_cpu_context(ctx); 3070 if (!cpuctx->task_ctx) 3071 return; 3072 3073 rcu_read_lock(); 3074 next_ctx = next->perf_event_ctxp[ctxn]; 3075 if (!next_ctx) 3076 goto unlock; 3077 3078 parent = rcu_dereference(ctx->parent_ctx); 3079 next_parent = rcu_dereference(next_ctx->parent_ctx); 3080 3081 /* If neither context have a parent context; they cannot be clones. */ 3082 if (!parent && !next_parent) 3083 goto unlock; 3084 3085 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3086 /* 3087 * Looks like the two contexts are clones, so we might be 3088 * able to optimize the context switch. We lock both 3089 * contexts and check that they are clones under the 3090 * lock (including re-checking that neither has been 3091 * uncloned in the meantime). It doesn't matter which 3092 * order we take the locks because no other cpu could 3093 * be trying to lock both of these tasks. 3094 */ 3095 raw_spin_lock(&ctx->lock); 3096 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3097 if (context_equiv(ctx, next_ctx)) { 3098 WRITE_ONCE(ctx->task, next); 3099 WRITE_ONCE(next_ctx->task, task); 3100 3101 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3102 3103 /* 3104 * RCU_INIT_POINTER here is safe because we've not 3105 * modified the ctx and the above modification of 3106 * ctx->task and ctx->task_ctx_data are immaterial 3107 * since those values are always verified under 3108 * ctx->lock which we're now holding. 3109 */ 3110 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3111 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3112 3113 do_switch = 0; 3114 3115 perf_event_sync_stat(ctx, next_ctx); 3116 } 3117 raw_spin_unlock(&next_ctx->lock); 3118 raw_spin_unlock(&ctx->lock); 3119 } 3120 unlock: 3121 rcu_read_unlock(); 3122 3123 if (do_switch) { 3124 raw_spin_lock(&ctx->lock); 3125 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3126 raw_spin_unlock(&ctx->lock); 3127 } 3128 } 3129 3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3131 3132 void perf_sched_cb_dec(struct pmu *pmu) 3133 { 3134 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3135 3136 this_cpu_dec(perf_sched_cb_usages); 3137 3138 if (!--cpuctx->sched_cb_usage) 3139 list_del(&cpuctx->sched_cb_entry); 3140 } 3141 3142 3143 void perf_sched_cb_inc(struct pmu *pmu) 3144 { 3145 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3146 3147 if (!cpuctx->sched_cb_usage++) 3148 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3149 3150 this_cpu_inc(perf_sched_cb_usages); 3151 } 3152 3153 /* 3154 * This function provides the context switch callback to the lower code 3155 * layer. It is invoked ONLY when the context switch callback is enabled. 3156 * 3157 * This callback is relevant even to per-cpu events; for example multi event 3158 * PEBS requires this to provide PID/TID information. This requires we flush 3159 * all queued PEBS records before we context switch to a new task. 3160 */ 3161 static void perf_pmu_sched_task(struct task_struct *prev, 3162 struct task_struct *next, 3163 bool sched_in) 3164 { 3165 struct perf_cpu_context *cpuctx; 3166 struct pmu *pmu; 3167 3168 if (prev == next) 3169 return; 3170 3171 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3172 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3173 3174 if (WARN_ON_ONCE(!pmu->sched_task)) 3175 continue; 3176 3177 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3178 perf_pmu_disable(pmu); 3179 3180 pmu->sched_task(cpuctx->task_ctx, sched_in); 3181 3182 perf_pmu_enable(pmu); 3183 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3184 } 3185 } 3186 3187 static void perf_event_switch(struct task_struct *task, 3188 struct task_struct *next_prev, bool sched_in); 3189 3190 #define for_each_task_context_nr(ctxn) \ 3191 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3192 3193 /* 3194 * Called from scheduler to remove the events of the current task, 3195 * with interrupts disabled. 3196 * 3197 * We stop each event and update the event value in event->count. 3198 * 3199 * This does not protect us against NMI, but disable() 3200 * sets the disabled bit in the control field of event _before_ 3201 * accessing the event control register. If a NMI hits, then it will 3202 * not restart the event. 3203 */ 3204 void __perf_event_task_sched_out(struct task_struct *task, 3205 struct task_struct *next) 3206 { 3207 int ctxn; 3208 3209 if (__this_cpu_read(perf_sched_cb_usages)) 3210 perf_pmu_sched_task(task, next, false); 3211 3212 if (atomic_read(&nr_switch_events)) 3213 perf_event_switch(task, next, false); 3214 3215 for_each_task_context_nr(ctxn) 3216 perf_event_context_sched_out(task, ctxn, next); 3217 3218 /* 3219 * if cgroup events exist on this CPU, then we need 3220 * to check if we have to switch out PMU state. 3221 * cgroup event are system-wide mode only 3222 */ 3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3224 perf_cgroup_sched_out(task, next); 3225 } 3226 3227 /* 3228 * Called with IRQs disabled 3229 */ 3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3231 enum event_type_t event_type) 3232 { 3233 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3234 } 3235 3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3237 int (*func)(struct perf_event *, void *), void *data) 3238 { 3239 struct perf_event **evt, *evt1, *evt2; 3240 int ret; 3241 3242 evt1 = perf_event_groups_first(groups, -1); 3243 evt2 = perf_event_groups_first(groups, cpu); 3244 3245 while (evt1 || evt2) { 3246 if (evt1 && evt2) { 3247 if (evt1->group_index < evt2->group_index) 3248 evt = &evt1; 3249 else 3250 evt = &evt2; 3251 } else if (evt1) { 3252 evt = &evt1; 3253 } else { 3254 evt = &evt2; 3255 } 3256 3257 ret = func(*evt, data); 3258 if (ret) 3259 return ret; 3260 3261 *evt = perf_event_groups_next(*evt); 3262 } 3263 3264 return 0; 3265 } 3266 3267 struct sched_in_data { 3268 struct perf_event_context *ctx; 3269 struct perf_cpu_context *cpuctx; 3270 int can_add_hw; 3271 }; 3272 3273 static int pinned_sched_in(struct perf_event *event, void *data) 3274 { 3275 struct sched_in_data *sid = data; 3276 3277 if (event->state <= PERF_EVENT_STATE_OFF) 3278 return 0; 3279 3280 if (!event_filter_match(event)) 3281 return 0; 3282 3283 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3284 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3285 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3286 } 3287 3288 /* 3289 * If this pinned group hasn't been scheduled, 3290 * put it in error state. 3291 */ 3292 if (event->state == PERF_EVENT_STATE_INACTIVE) 3293 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3294 3295 return 0; 3296 } 3297 3298 static int flexible_sched_in(struct perf_event *event, void *data) 3299 { 3300 struct sched_in_data *sid = data; 3301 3302 if (event->state <= PERF_EVENT_STATE_OFF) 3303 return 0; 3304 3305 if (!event_filter_match(event)) 3306 return 0; 3307 3308 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3309 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3310 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3311 else 3312 sid->can_add_hw = 0; 3313 } 3314 3315 return 0; 3316 } 3317 3318 static void 3319 ctx_pinned_sched_in(struct perf_event_context *ctx, 3320 struct perf_cpu_context *cpuctx) 3321 { 3322 struct sched_in_data sid = { 3323 .ctx = ctx, 3324 .cpuctx = cpuctx, 3325 .can_add_hw = 1, 3326 }; 3327 3328 visit_groups_merge(&ctx->pinned_groups, 3329 smp_processor_id(), 3330 pinned_sched_in, &sid); 3331 } 3332 3333 static void 3334 ctx_flexible_sched_in(struct perf_event_context *ctx, 3335 struct perf_cpu_context *cpuctx) 3336 { 3337 struct sched_in_data sid = { 3338 .ctx = ctx, 3339 .cpuctx = cpuctx, 3340 .can_add_hw = 1, 3341 }; 3342 3343 visit_groups_merge(&ctx->flexible_groups, 3344 smp_processor_id(), 3345 flexible_sched_in, &sid); 3346 } 3347 3348 static void 3349 ctx_sched_in(struct perf_event_context *ctx, 3350 struct perf_cpu_context *cpuctx, 3351 enum event_type_t event_type, 3352 struct task_struct *task) 3353 { 3354 int is_active = ctx->is_active; 3355 u64 now; 3356 3357 lockdep_assert_held(&ctx->lock); 3358 3359 if (likely(!ctx->nr_events)) 3360 return; 3361 3362 ctx->is_active |= (event_type | EVENT_TIME); 3363 if (ctx->task) { 3364 if (!is_active) 3365 cpuctx->task_ctx = ctx; 3366 else 3367 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3368 } 3369 3370 is_active ^= ctx->is_active; /* changed bits */ 3371 3372 if (is_active & EVENT_TIME) { 3373 /* start ctx time */ 3374 now = perf_clock(); 3375 ctx->timestamp = now; 3376 perf_cgroup_set_timestamp(task, ctx); 3377 } 3378 3379 /* 3380 * First go through the list and put on any pinned groups 3381 * in order to give them the best chance of going on. 3382 */ 3383 if (is_active & EVENT_PINNED) 3384 ctx_pinned_sched_in(ctx, cpuctx); 3385 3386 /* Then walk through the lower prio flexible groups */ 3387 if (is_active & EVENT_FLEXIBLE) 3388 ctx_flexible_sched_in(ctx, cpuctx); 3389 } 3390 3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3392 enum event_type_t event_type, 3393 struct task_struct *task) 3394 { 3395 struct perf_event_context *ctx = &cpuctx->ctx; 3396 3397 ctx_sched_in(ctx, cpuctx, event_type, task); 3398 } 3399 3400 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3401 struct task_struct *task) 3402 { 3403 struct perf_cpu_context *cpuctx; 3404 3405 cpuctx = __get_cpu_context(ctx); 3406 if (cpuctx->task_ctx == ctx) 3407 return; 3408 3409 perf_ctx_lock(cpuctx, ctx); 3410 /* 3411 * We must check ctx->nr_events while holding ctx->lock, such 3412 * that we serialize against perf_install_in_context(). 3413 */ 3414 if (!ctx->nr_events) 3415 goto unlock; 3416 3417 perf_pmu_disable(ctx->pmu); 3418 /* 3419 * We want to keep the following priority order: 3420 * cpu pinned (that don't need to move), task pinned, 3421 * cpu flexible, task flexible. 3422 * 3423 * However, if task's ctx is not carrying any pinned 3424 * events, no need to flip the cpuctx's events around. 3425 */ 3426 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3428 perf_event_sched_in(cpuctx, ctx, task); 3429 perf_pmu_enable(ctx->pmu); 3430 3431 unlock: 3432 perf_ctx_unlock(cpuctx, ctx); 3433 } 3434 3435 /* 3436 * Called from scheduler to add the events of the current task 3437 * with interrupts disabled. 3438 * 3439 * We restore the event value and then enable it. 3440 * 3441 * This does not protect us against NMI, but enable() 3442 * sets the enabled bit in the control field of event _before_ 3443 * accessing the event control register. If a NMI hits, then it will 3444 * keep the event running. 3445 */ 3446 void __perf_event_task_sched_in(struct task_struct *prev, 3447 struct task_struct *task) 3448 { 3449 struct perf_event_context *ctx; 3450 int ctxn; 3451 3452 /* 3453 * If cgroup events exist on this CPU, then we need to check if we have 3454 * to switch in PMU state; cgroup event are system-wide mode only. 3455 * 3456 * Since cgroup events are CPU events, we must schedule these in before 3457 * we schedule in the task events. 3458 */ 3459 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3460 perf_cgroup_sched_in(prev, task); 3461 3462 for_each_task_context_nr(ctxn) { 3463 ctx = task->perf_event_ctxp[ctxn]; 3464 if (likely(!ctx)) 3465 continue; 3466 3467 perf_event_context_sched_in(ctx, task); 3468 } 3469 3470 if (atomic_read(&nr_switch_events)) 3471 perf_event_switch(task, prev, true); 3472 3473 if (__this_cpu_read(perf_sched_cb_usages)) 3474 perf_pmu_sched_task(prev, task, true); 3475 } 3476 3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3478 { 3479 u64 frequency = event->attr.sample_freq; 3480 u64 sec = NSEC_PER_SEC; 3481 u64 divisor, dividend; 3482 3483 int count_fls, nsec_fls, frequency_fls, sec_fls; 3484 3485 count_fls = fls64(count); 3486 nsec_fls = fls64(nsec); 3487 frequency_fls = fls64(frequency); 3488 sec_fls = 30; 3489 3490 /* 3491 * We got @count in @nsec, with a target of sample_freq HZ 3492 * the target period becomes: 3493 * 3494 * @count * 10^9 3495 * period = ------------------- 3496 * @nsec * sample_freq 3497 * 3498 */ 3499 3500 /* 3501 * Reduce accuracy by one bit such that @a and @b converge 3502 * to a similar magnitude. 3503 */ 3504 #define REDUCE_FLS(a, b) \ 3505 do { \ 3506 if (a##_fls > b##_fls) { \ 3507 a >>= 1; \ 3508 a##_fls--; \ 3509 } else { \ 3510 b >>= 1; \ 3511 b##_fls--; \ 3512 } \ 3513 } while (0) 3514 3515 /* 3516 * Reduce accuracy until either term fits in a u64, then proceed with 3517 * the other, so that finally we can do a u64/u64 division. 3518 */ 3519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3520 REDUCE_FLS(nsec, frequency); 3521 REDUCE_FLS(sec, count); 3522 } 3523 3524 if (count_fls + sec_fls > 64) { 3525 divisor = nsec * frequency; 3526 3527 while (count_fls + sec_fls > 64) { 3528 REDUCE_FLS(count, sec); 3529 divisor >>= 1; 3530 } 3531 3532 dividend = count * sec; 3533 } else { 3534 dividend = count * sec; 3535 3536 while (nsec_fls + frequency_fls > 64) { 3537 REDUCE_FLS(nsec, frequency); 3538 dividend >>= 1; 3539 } 3540 3541 divisor = nsec * frequency; 3542 } 3543 3544 if (!divisor) 3545 return dividend; 3546 3547 return div64_u64(dividend, divisor); 3548 } 3549 3550 static DEFINE_PER_CPU(int, perf_throttled_count); 3551 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3552 3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3554 { 3555 struct hw_perf_event *hwc = &event->hw; 3556 s64 period, sample_period; 3557 s64 delta; 3558 3559 period = perf_calculate_period(event, nsec, count); 3560 3561 delta = (s64)(period - hwc->sample_period); 3562 delta = (delta + 7) / 8; /* low pass filter */ 3563 3564 sample_period = hwc->sample_period + delta; 3565 3566 if (!sample_period) 3567 sample_period = 1; 3568 3569 hwc->sample_period = sample_period; 3570 3571 if (local64_read(&hwc->period_left) > 8*sample_period) { 3572 if (disable) 3573 event->pmu->stop(event, PERF_EF_UPDATE); 3574 3575 local64_set(&hwc->period_left, 0); 3576 3577 if (disable) 3578 event->pmu->start(event, PERF_EF_RELOAD); 3579 } 3580 } 3581 3582 /* 3583 * combine freq adjustment with unthrottling to avoid two passes over the 3584 * events. At the same time, make sure, having freq events does not change 3585 * the rate of unthrottling as that would introduce bias. 3586 */ 3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3588 int needs_unthr) 3589 { 3590 struct perf_event *event; 3591 struct hw_perf_event *hwc; 3592 u64 now, period = TICK_NSEC; 3593 s64 delta; 3594 3595 /* 3596 * only need to iterate over all events iff: 3597 * - context have events in frequency mode (needs freq adjust) 3598 * - there are events to unthrottle on this cpu 3599 */ 3600 if (!(ctx->nr_freq || needs_unthr)) 3601 return; 3602 3603 raw_spin_lock(&ctx->lock); 3604 perf_pmu_disable(ctx->pmu); 3605 3606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3607 if (event->state != PERF_EVENT_STATE_ACTIVE) 3608 continue; 3609 3610 if (!event_filter_match(event)) 3611 continue; 3612 3613 perf_pmu_disable(event->pmu); 3614 3615 hwc = &event->hw; 3616 3617 if (hwc->interrupts == MAX_INTERRUPTS) { 3618 hwc->interrupts = 0; 3619 perf_log_throttle(event, 1); 3620 event->pmu->start(event, 0); 3621 } 3622 3623 if (!event->attr.freq || !event->attr.sample_freq) 3624 goto next; 3625 3626 /* 3627 * stop the event and update event->count 3628 */ 3629 event->pmu->stop(event, PERF_EF_UPDATE); 3630 3631 now = local64_read(&event->count); 3632 delta = now - hwc->freq_count_stamp; 3633 hwc->freq_count_stamp = now; 3634 3635 /* 3636 * restart the event 3637 * reload only if value has changed 3638 * we have stopped the event so tell that 3639 * to perf_adjust_period() to avoid stopping it 3640 * twice. 3641 */ 3642 if (delta > 0) 3643 perf_adjust_period(event, period, delta, false); 3644 3645 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3646 next: 3647 perf_pmu_enable(event->pmu); 3648 } 3649 3650 perf_pmu_enable(ctx->pmu); 3651 raw_spin_unlock(&ctx->lock); 3652 } 3653 3654 /* 3655 * Move @event to the tail of the @ctx's elegible events. 3656 */ 3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3658 { 3659 /* 3660 * Rotate the first entry last of non-pinned groups. Rotation might be 3661 * disabled by the inheritance code. 3662 */ 3663 if (ctx->rotate_disable) 3664 return; 3665 3666 perf_event_groups_delete(&ctx->flexible_groups, event); 3667 perf_event_groups_insert(&ctx->flexible_groups, event); 3668 } 3669 3670 static inline struct perf_event * 3671 ctx_first_active(struct perf_event_context *ctx) 3672 { 3673 return list_first_entry_or_null(&ctx->flexible_active, 3674 struct perf_event, active_list); 3675 } 3676 3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3678 { 3679 struct perf_event *cpu_event = NULL, *task_event = NULL; 3680 bool cpu_rotate = false, task_rotate = false; 3681 struct perf_event_context *ctx = NULL; 3682 3683 /* 3684 * Since we run this from IRQ context, nobody can install new 3685 * events, thus the event count values are stable. 3686 */ 3687 3688 if (cpuctx->ctx.nr_events) { 3689 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3690 cpu_rotate = true; 3691 } 3692 3693 ctx = cpuctx->task_ctx; 3694 if (ctx && ctx->nr_events) { 3695 if (ctx->nr_events != ctx->nr_active) 3696 task_rotate = true; 3697 } 3698 3699 if (!(cpu_rotate || task_rotate)) 3700 return false; 3701 3702 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3703 perf_pmu_disable(cpuctx->ctx.pmu); 3704 3705 if (task_rotate) 3706 task_event = ctx_first_active(ctx); 3707 if (cpu_rotate) 3708 cpu_event = ctx_first_active(&cpuctx->ctx); 3709 3710 /* 3711 * As per the order given at ctx_resched() first 'pop' task flexible 3712 * and then, if needed CPU flexible. 3713 */ 3714 if (task_event || (ctx && cpu_event)) 3715 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3716 if (cpu_event) 3717 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3718 3719 if (task_event) 3720 rotate_ctx(ctx, task_event); 3721 if (cpu_event) 3722 rotate_ctx(&cpuctx->ctx, cpu_event); 3723 3724 perf_event_sched_in(cpuctx, ctx, current); 3725 3726 perf_pmu_enable(cpuctx->ctx.pmu); 3727 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3728 3729 return true; 3730 } 3731 3732 void perf_event_task_tick(void) 3733 { 3734 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3735 struct perf_event_context *ctx, *tmp; 3736 int throttled; 3737 3738 lockdep_assert_irqs_disabled(); 3739 3740 __this_cpu_inc(perf_throttled_seq); 3741 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3742 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3743 3744 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3745 perf_adjust_freq_unthr_context(ctx, throttled); 3746 } 3747 3748 static int event_enable_on_exec(struct perf_event *event, 3749 struct perf_event_context *ctx) 3750 { 3751 if (!event->attr.enable_on_exec) 3752 return 0; 3753 3754 event->attr.enable_on_exec = 0; 3755 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3756 return 0; 3757 3758 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3759 3760 return 1; 3761 } 3762 3763 /* 3764 * Enable all of a task's events that have been marked enable-on-exec. 3765 * This expects task == current. 3766 */ 3767 static void perf_event_enable_on_exec(int ctxn) 3768 { 3769 struct perf_event_context *ctx, *clone_ctx = NULL; 3770 enum event_type_t event_type = 0; 3771 struct perf_cpu_context *cpuctx; 3772 struct perf_event *event; 3773 unsigned long flags; 3774 int enabled = 0; 3775 3776 local_irq_save(flags); 3777 ctx = current->perf_event_ctxp[ctxn]; 3778 if (!ctx || !ctx->nr_events) 3779 goto out; 3780 3781 cpuctx = __get_cpu_context(ctx); 3782 perf_ctx_lock(cpuctx, ctx); 3783 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3784 list_for_each_entry(event, &ctx->event_list, event_entry) { 3785 enabled |= event_enable_on_exec(event, ctx); 3786 event_type |= get_event_type(event); 3787 } 3788 3789 /* 3790 * Unclone and reschedule this context if we enabled any event. 3791 */ 3792 if (enabled) { 3793 clone_ctx = unclone_ctx(ctx); 3794 ctx_resched(cpuctx, ctx, event_type); 3795 } else { 3796 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3797 } 3798 perf_ctx_unlock(cpuctx, ctx); 3799 3800 out: 3801 local_irq_restore(flags); 3802 3803 if (clone_ctx) 3804 put_ctx(clone_ctx); 3805 } 3806 3807 struct perf_read_data { 3808 struct perf_event *event; 3809 bool group; 3810 int ret; 3811 }; 3812 3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3814 { 3815 u16 local_pkg, event_pkg; 3816 3817 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3818 int local_cpu = smp_processor_id(); 3819 3820 event_pkg = topology_physical_package_id(event_cpu); 3821 local_pkg = topology_physical_package_id(local_cpu); 3822 3823 if (event_pkg == local_pkg) 3824 return local_cpu; 3825 } 3826 3827 return event_cpu; 3828 } 3829 3830 /* 3831 * Cross CPU call to read the hardware event 3832 */ 3833 static void __perf_event_read(void *info) 3834 { 3835 struct perf_read_data *data = info; 3836 struct perf_event *sub, *event = data->event; 3837 struct perf_event_context *ctx = event->ctx; 3838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3839 struct pmu *pmu = event->pmu; 3840 3841 /* 3842 * If this is a task context, we need to check whether it is 3843 * the current task context of this cpu. If not it has been 3844 * scheduled out before the smp call arrived. In that case 3845 * event->count would have been updated to a recent sample 3846 * when the event was scheduled out. 3847 */ 3848 if (ctx->task && cpuctx->task_ctx != ctx) 3849 return; 3850 3851 raw_spin_lock(&ctx->lock); 3852 if (ctx->is_active & EVENT_TIME) { 3853 update_context_time(ctx); 3854 update_cgrp_time_from_event(event); 3855 } 3856 3857 perf_event_update_time(event); 3858 if (data->group) 3859 perf_event_update_sibling_time(event); 3860 3861 if (event->state != PERF_EVENT_STATE_ACTIVE) 3862 goto unlock; 3863 3864 if (!data->group) { 3865 pmu->read(event); 3866 data->ret = 0; 3867 goto unlock; 3868 } 3869 3870 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3871 3872 pmu->read(event); 3873 3874 for_each_sibling_event(sub, event) { 3875 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3876 /* 3877 * Use sibling's PMU rather than @event's since 3878 * sibling could be on different (eg: software) PMU. 3879 */ 3880 sub->pmu->read(sub); 3881 } 3882 } 3883 3884 data->ret = pmu->commit_txn(pmu); 3885 3886 unlock: 3887 raw_spin_unlock(&ctx->lock); 3888 } 3889 3890 static inline u64 perf_event_count(struct perf_event *event) 3891 { 3892 return local64_read(&event->count) + atomic64_read(&event->child_count); 3893 } 3894 3895 /* 3896 * NMI-safe method to read a local event, that is an event that 3897 * is: 3898 * - either for the current task, or for this CPU 3899 * - does not have inherit set, for inherited task events 3900 * will not be local and we cannot read them atomically 3901 * - must not have a pmu::count method 3902 */ 3903 int perf_event_read_local(struct perf_event *event, u64 *value, 3904 u64 *enabled, u64 *running) 3905 { 3906 unsigned long flags; 3907 int ret = 0; 3908 3909 /* 3910 * Disabling interrupts avoids all counter scheduling (context 3911 * switches, timer based rotation and IPIs). 3912 */ 3913 local_irq_save(flags); 3914 3915 /* 3916 * It must not be an event with inherit set, we cannot read 3917 * all child counters from atomic context. 3918 */ 3919 if (event->attr.inherit) { 3920 ret = -EOPNOTSUPP; 3921 goto out; 3922 } 3923 3924 /* If this is a per-task event, it must be for current */ 3925 if ((event->attach_state & PERF_ATTACH_TASK) && 3926 event->hw.target != current) { 3927 ret = -EINVAL; 3928 goto out; 3929 } 3930 3931 /* If this is a per-CPU event, it must be for this CPU */ 3932 if (!(event->attach_state & PERF_ATTACH_TASK) && 3933 event->cpu != smp_processor_id()) { 3934 ret = -EINVAL; 3935 goto out; 3936 } 3937 3938 /* 3939 * If the event is currently on this CPU, its either a per-task event, 3940 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3941 * oncpu == -1). 3942 */ 3943 if (event->oncpu == smp_processor_id()) 3944 event->pmu->read(event); 3945 3946 *value = local64_read(&event->count); 3947 if (enabled || running) { 3948 u64 now = event->shadow_ctx_time + perf_clock(); 3949 u64 __enabled, __running; 3950 3951 __perf_update_times(event, now, &__enabled, &__running); 3952 if (enabled) 3953 *enabled = __enabled; 3954 if (running) 3955 *running = __running; 3956 } 3957 out: 3958 local_irq_restore(flags); 3959 3960 return ret; 3961 } 3962 3963 static int perf_event_read(struct perf_event *event, bool group) 3964 { 3965 enum perf_event_state state = READ_ONCE(event->state); 3966 int event_cpu, ret = 0; 3967 3968 /* 3969 * If event is enabled and currently active on a CPU, update the 3970 * value in the event structure: 3971 */ 3972 again: 3973 if (state == PERF_EVENT_STATE_ACTIVE) { 3974 struct perf_read_data data; 3975 3976 /* 3977 * Orders the ->state and ->oncpu loads such that if we see 3978 * ACTIVE we must also see the right ->oncpu. 3979 * 3980 * Matches the smp_wmb() from event_sched_in(). 3981 */ 3982 smp_rmb(); 3983 3984 event_cpu = READ_ONCE(event->oncpu); 3985 if ((unsigned)event_cpu >= nr_cpu_ids) 3986 return 0; 3987 3988 data = (struct perf_read_data){ 3989 .event = event, 3990 .group = group, 3991 .ret = 0, 3992 }; 3993 3994 preempt_disable(); 3995 event_cpu = __perf_event_read_cpu(event, event_cpu); 3996 3997 /* 3998 * Purposely ignore the smp_call_function_single() return 3999 * value. 4000 * 4001 * If event_cpu isn't a valid CPU it means the event got 4002 * scheduled out and that will have updated the event count. 4003 * 4004 * Therefore, either way, we'll have an up-to-date event count 4005 * after this. 4006 */ 4007 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4008 preempt_enable(); 4009 ret = data.ret; 4010 4011 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4012 struct perf_event_context *ctx = event->ctx; 4013 unsigned long flags; 4014 4015 raw_spin_lock_irqsave(&ctx->lock, flags); 4016 state = event->state; 4017 if (state != PERF_EVENT_STATE_INACTIVE) { 4018 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4019 goto again; 4020 } 4021 4022 /* 4023 * May read while context is not active (e.g., thread is 4024 * blocked), in that case we cannot update context time 4025 */ 4026 if (ctx->is_active & EVENT_TIME) { 4027 update_context_time(ctx); 4028 update_cgrp_time_from_event(event); 4029 } 4030 4031 perf_event_update_time(event); 4032 if (group) 4033 perf_event_update_sibling_time(event); 4034 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4035 } 4036 4037 return ret; 4038 } 4039 4040 /* 4041 * Initialize the perf_event context in a task_struct: 4042 */ 4043 static void __perf_event_init_context(struct perf_event_context *ctx) 4044 { 4045 raw_spin_lock_init(&ctx->lock); 4046 mutex_init(&ctx->mutex); 4047 INIT_LIST_HEAD(&ctx->active_ctx_list); 4048 perf_event_groups_init(&ctx->pinned_groups); 4049 perf_event_groups_init(&ctx->flexible_groups); 4050 INIT_LIST_HEAD(&ctx->event_list); 4051 INIT_LIST_HEAD(&ctx->pinned_active); 4052 INIT_LIST_HEAD(&ctx->flexible_active); 4053 atomic_set(&ctx->refcount, 1); 4054 } 4055 4056 static struct perf_event_context * 4057 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4058 { 4059 struct perf_event_context *ctx; 4060 4061 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4062 if (!ctx) 4063 return NULL; 4064 4065 __perf_event_init_context(ctx); 4066 if (task) { 4067 ctx->task = task; 4068 get_task_struct(task); 4069 } 4070 ctx->pmu = pmu; 4071 4072 return ctx; 4073 } 4074 4075 static struct task_struct * 4076 find_lively_task_by_vpid(pid_t vpid) 4077 { 4078 struct task_struct *task; 4079 4080 rcu_read_lock(); 4081 if (!vpid) 4082 task = current; 4083 else 4084 task = find_task_by_vpid(vpid); 4085 if (task) 4086 get_task_struct(task); 4087 rcu_read_unlock(); 4088 4089 if (!task) 4090 return ERR_PTR(-ESRCH); 4091 4092 return task; 4093 } 4094 4095 /* 4096 * Returns a matching context with refcount and pincount. 4097 */ 4098 static struct perf_event_context * 4099 find_get_context(struct pmu *pmu, struct task_struct *task, 4100 struct perf_event *event) 4101 { 4102 struct perf_event_context *ctx, *clone_ctx = NULL; 4103 struct perf_cpu_context *cpuctx; 4104 void *task_ctx_data = NULL; 4105 unsigned long flags; 4106 int ctxn, err; 4107 int cpu = event->cpu; 4108 4109 if (!task) { 4110 /* Must be root to operate on a CPU event: */ 4111 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4112 return ERR_PTR(-EACCES); 4113 4114 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4115 ctx = &cpuctx->ctx; 4116 get_ctx(ctx); 4117 ++ctx->pin_count; 4118 4119 return ctx; 4120 } 4121 4122 err = -EINVAL; 4123 ctxn = pmu->task_ctx_nr; 4124 if (ctxn < 0) 4125 goto errout; 4126 4127 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4128 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4129 if (!task_ctx_data) { 4130 err = -ENOMEM; 4131 goto errout; 4132 } 4133 } 4134 4135 retry: 4136 ctx = perf_lock_task_context(task, ctxn, &flags); 4137 if (ctx) { 4138 clone_ctx = unclone_ctx(ctx); 4139 ++ctx->pin_count; 4140 4141 if (task_ctx_data && !ctx->task_ctx_data) { 4142 ctx->task_ctx_data = task_ctx_data; 4143 task_ctx_data = NULL; 4144 } 4145 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4146 4147 if (clone_ctx) 4148 put_ctx(clone_ctx); 4149 } else { 4150 ctx = alloc_perf_context(pmu, task); 4151 err = -ENOMEM; 4152 if (!ctx) 4153 goto errout; 4154 4155 if (task_ctx_data) { 4156 ctx->task_ctx_data = task_ctx_data; 4157 task_ctx_data = NULL; 4158 } 4159 4160 err = 0; 4161 mutex_lock(&task->perf_event_mutex); 4162 /* 4163 * If it has already passed perf_event_exit_task(). 4164 * we must see PF_EXITING, it takes this mutex too. 4165 */ 4166 if (task->flags & PF_EXITING) 4167 err = -ESRCH; 4168 else if (task->perf_event_ctxp[ctxn]) 4169 err = -EAGAIN; 4170 else { 4171 get_ctx(ctx); 4172 ++ctx->pin_count; 4173 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4174 } 4175 mutex_unlock(&task->perf_event_mutex); 4176 4177 if (unlikely(err)) { 4178 put_ctx(ctx); 4179 4180 if (err == -EAGAIN) 4181 goto retry; 4182 goto errout; 4183 } 4184 } 4185 4186 kfree(task_ctx_data); 4187 return ctx; 4188 4189 errout: 4190 kfree(task_ctx_data); 4191 return ERR_PTR(err); 4192 } 4193 4194 static void perf_event_free_filter(struct perf_event *event); 4195 static void perf_event_free_bpf_prog(struct perf_event *event); 4196 4197 static void free_event_rcu(struct rcu_head *head) 4198 { 4199 struct perf_event *event; 4200 4201 event = container_of(head, struct perf_event, rcu_head); 4202 if (event->ns) 4203 put_pid_ns(event->ns); 4204 perf_event_free_filter(event); 4205 kfree(event); 4206 } 4207 4208 static void ring_buffer_attach(struct perf_event *event, 4209 struct ring_buffer *rb); 4210 4211 static void detach_sb_event(struct perf_event *event) 4212 { 4213 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4214 4215 raw_spin_lock(&pel->lock); 4216 list_del_rcu(&event->sb_list); 4217 raw_spin_unlock(&pel->lock); 4218 } 4219 4220 static bool is_sb_event(struct perf_event *event) 4221 { 4222 struct perf_event_attr *attr = &event->attr; 4223 4224 if (event->parent) 4225 return false; 4226 4227 if (event->attach_state & PERF_ATTACH_TASK) 4228 return false; 4229 4230 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4231 attr->comm || attr->comm_exec || 4232 attr->task || 4233 attr->context_switch) 4234 return true; 4235 return false; 4236 } 4237 4238 static void unaccount_pmu_sb_event(struct perf_event *event) 4239 { 4240 if (is_sb_event(event)) 4241 detach_sb_event(event); 4242 } 4243 4244 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4245 { 4246 if (event->parent) 4247 return; 4248 4249 if (is_cgroup_event(event)) 4250 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4251 } 4252 4253 #ifdef CONFIG_NO_HZ_FULL 4254 static DEFINE_SPINLOCK(nr_freq_lock); 4255 #endif 4256 4257 static void unaccount_freq_event_nohz(void) 4258 { 4259 #ifdef CONFIG_NO_HZ_FULL 4260 spin_lock(&nr_freq_lock); 4261 if (atomic_dec_and_test(&nr_freq_events)) 4262 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4263 spin_unlock(&nr_freq_lock); 4264 #endif 4265 } 4266 4267 static void unaccount_freq_event(void) 4268 { 4269 if (tick_nohz_full_enabled()) 4270 unaccount_freq_event_nohz(); 4271 else 4272 atomic_dec(&nr_freq_events); 4273 } 4274 4275 static void unaccount_event(struct perf_event *event) 4276 { 4277 bool dec = false; 4278 4279 if (event->parent) 4280 return; 4281 4282 if (event->attach_state & PERF_ATTACH_TASK) 4283 dec = true; 4284 if (event->attr.mmap || event->attr.mmap_data) 4285 atomic_dec(&nr_mmap_events); 4286 if (event->attr.comm) 4287 atomic_dec(&nr_comm_events); 4288 if (event->attr.namespaces) 4289 atomic_dec(&nr_namespaces_events); 4290 if (event->attr.task) 4291 atomic_dec(&nr_task_events); 4292 if (event->attr.freq) 4293 unaccount_freq_event(); 4294 if (event->attr.context_switch) { 4295 dec = true; 4296 atomic_dec(&nr_switch_events); 4297 } 4298 if (is_cgroup_event(event)) 4299 dec = true; 4300 if (has_branch_stack(event)) 4301 dec = true; 4302 4303 if (dec) { 4304 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4305 schedule_delayed_work(&perf_sched_work, HZ); 4306 } 4307 4308 unaccount_event_cpu(event, event->cpu); 4309 4310 unaccount_pmu_sb_event(event); 4311 } 4312 4313 static void perf_sched_delayed(struct work_struct *work) 4314 { 4315 mutex_lock(&perf_sched_mutex); 4316 if (atomic_dec_and_test(&perf_sched_count)) 4317 static_branch_disable(&perf_sched_events); 4318 mutex_unlock(&perf_sched_mutex); 4319 } 4320 4321 /* 4322 * The following implement mutual exclusion of events on "exclusive" pmus 4323 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4324 * at a time, so we disallow creating events that might conflict, namely: 4325 * 4326 * 1) cpu-wide events in the presence of per-task events, 4327 * 2) per-task events in the presence of cpu-wide events, 4328 * 3) two matching events on the same context. 4329 * 4330 * The former two cases are handled in the allocation path (perf_event_alloc(), 4331 * _free_event()), the latter -- before the first perf_install_in_context(). 4332 */ 4333 static int exclusive_event_init(struct perf_event *event) 4334 { 4335 struct pmu *pmu = event->pmu; 4336 4337 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4338 return 0; 4339 4340 /* 4341 * Prevent co-existence of per-task and cpu-wide events on the 4342 * same exclusive pmu. 4343 * 4344 * Negative pmu::exclusive_cnt means there are cpu-wide 4345 * events on this "exclusive" pmu, positive means there are 4346 * per-task events. 4347 * 4348 * Since this is called in perf_event_alloc() path, event::ctx 4349 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4350 * to mean "per-task event", because unlike other attach states it 4351 * never gets cleared. 4352 */ 4353 if (event->attach_state & PERF_ATTACH_TASK) { 4354 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4355 return -EBUSY; 4356 } else { 4357 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4358 return -EBUSY; 4359 } 4360 4361 return 0; 4362 } 4363 4364 static void exclusive_event_destroy(struct perf_event *event) 4365 { 4366 struct pmu *pmu = event->pmu; 4367 4368 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4369 return; 4370 4371 /* see comment in exclusive_event_init() */ 4372 if (event->attach_state & PERF_ATTACH_TASK) 4373 atomic_dec(&pmu->exclusive_cnt); 4374 else 4375 atomic_inc(&pmu->exclusive_cnt); 4376 } 4377 4378 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4379 { 4380 if ((e1->pmu == e2->pmu) && 4381 (e1->cpu == e2->cpu || 4382 e1->cpu == -1 || 4383 e2->cpu == -1)) 4384 return true; 4385 return false; 4386 } 4387 4388 /* Called under the same ctx::mutex as perf_install_in_context() */ 4389 static bool exclusive_event_installable(struct perf_event *event, 4390 struct perf_event_context *ctx) 4391 { 4392 struct perf_event *iter_event; 4393 struct pmu *pmu = event->pmu; 4394 4395 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4396 return true; 4397 4398 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4399 if (exclusive_event_match(iter_event, event)) 4400 return false; 4401 } 4402 4403 return true; 4404 } 4405 4406 static void perf_addr_filters_splice(struct perf_event *event, 4407 struct list_head *head); 4408 4409 static void _free_event(struct perf_event *event) 4410 { 4411 irq_work_sync(&event->pending); 4412 4413 unaccount_event(event); 4414 4415 if (event->rb) { 4416 /* 4417 * Can happen when we close an event with re-directed output. 4418 * 4419 * Since we have a 0 refcount, perf_mmap_close() will skip 4420 * over us; possibly making our ring_buffer_put() the last. 4421 */ 4422 mutex_lock(&event->mmap_mutex); 4423 ring_buffer_attach(event, NULL); 4424 mutex_unlock(&event->mmap_mutex); 4425 } 4426 4427 if (is_cgroup_event(event)) 4428 perf_detach_cgroup(event); 4429 4430 if (!event->parent) { 4431 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4432 put_callchain_buffers(); 4433 } 4434 4435 perf_event_free_bpf_prog(event); 4436 perf_addr_filters_splice(event, NULL); 4437 kfree(event->addr_filters_offs); 4438 4439 if (event->destroy) 4440 event->destroy(event); 4441 4442 if (event->ctx) 4443 put_ctx(event->ctx); 4444 4445 if (event->hw.target) 4446 put_task_struct(event->hw.target); 4447 4448 exclusive_event_destroy(event); 4449 module_put(event->pmu->module); 4450 4451 call_rcu(&event->rcu_head, free_event_rcu); 4452 } 4453 4454 /* 4455 * Used to free events which have a known refcount of 1, such as in error paths 4456 * where the event isn't exposed yet and inherited events. 4457 */ 4458 static void free_event(struct perf_event *event) 4459 { 4460 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4461 "unexpected event refcount: %ld; ptr=%p\n", 4462 atomic_long_read(&event->refcount), event)) { 4463 /* leak to avoid use-after-free */ 4464 return; 4465 } 4466 4467 _free_event(event); 4468 } 4469 4470 /* 4471 * Remove user event from the owner task. 4472 */ 4473 static void perf_remove_from_owner(struct perf_event *event) 4474 { 4475 struct task_struct *owner; 4476 4477 rcu_read_lock(); 4478 /* 4479 * Matches the smp_store_release() in perf_event_exit_task(). If we 4480 * observe !owner it means the list deletion is complete and we can 4481 * indeed free this event, otherwise we need to serialize on 4482 * owner->perf_event_mutex. 4483 */ 4484 owner = READ_ONCE(event->owner); 4485 if (owner) { 4486 /* 4487 * Since delayed_put_task_struct() also drops the last 4488 * task reference we can safely take a new reference 4489 * while holding the rcu_read_lock(). 4490 */ 4491 get_task_struct(owner); 4492 } 4493 rcu_read_unlock(); 4494 4495 if (owner) { 4496 /* 4497 * If we're here through perf_event_exit_task() we're already 4498 * holding ctx->mutex which would be an inversion wrt. the 4499 * normal lock order. 4500 * 4501 * However we can safely take this lock because its the child 4502 * ctx->mutex. 4503 */ 4504 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4505 4506 /* 4507 * We have to re-check the event->owner field, if it is cleared 4508 * we raced with perf_event_exit_task(), acquiring the mutex 4509 * ensured they're done, and we can proceed with freeing the 4510 * event. 4511 */ 4512 if (event->owner) { 4513 list_del_init(&event->owner_entry); 4514 smp_store_release(&event->owner, NULL); 4515 } 4516 mutex_unlock(&owner->perf_event_mutex); 4517 put_task_struct(owner); 4518 } 4519 } 4520 4521 static void put_event(struct perf_event *event) 4522 { 4523 if (!atomic_long_dec_and_test(&event->refcount)) 4524 return; 4525 4526 _free_event(event); 4527 } 4528 4529 /* 4530 * Kill an event dead; while event:refcount will preserve the event 4531 * object, it will not preserve its functionality. Once the last 'user' 4532 * gives up the object, we'll destroy the thing. 4533 */ 4534 int perf_event_release_kernel(struct perf_event *event) 4535 { 4536 struct perf_event_context *ctx = event->ctx; 4537 struct perf_event *child, *tmp; 4538 LIST_HEAD(free_list); 4539 4540 /* 4541 * If we got here through err_file: fput(event_file); we will not have 4542 * attached to a context yet. 4543 */ 4544 if (!ctx) { 4545 WARN_ON_ONCE(event->attach_state & 4546 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4547 goto no_ctx; 4548 } 4549 4550 if (!is_kernel_event(event)) 4551 perf_remove_from_owner(event); 4552 4553 ctx = perf_event_ctx_lock(event); 4554 WARN_ON_ONCE(ctx->parent_ctx); 4555 perf_remove_from_context(event, DETACH_GROUP); 4556 4557 raw_spin_lock_irq(&ctx->lock); 4558 /* 4559 * Mark this event as STATE_DEAD, there is no external reference to it 4560 * anymore. 4561 * 4562 * Anybody acquiring event->child_mutex after the below loop _must_ 4563 * also see this, most importantly inherit_event() which will avoid 4564 * placing more children on the list. 4565 * 4566 * Thus this guarantees that we will in fact observe and kill _ALL_ 4567 * child events. 4568 */ 4569 event->state = PERF_EVENT_STATE_DEAD; 4570 raw_spin_unlock_irq(&ctx->lock); 4571 4572 perf_event_ctx_unlock(event, ctx); 4573 4574 again: 4575 mutex_lock(&event->child_mutex); 4576 list_for_each_entry(child, &event->child_list, child_list) { 4577 4578 /* 4579 * Cannot change, child events are not migrated, see the 4580 * comment with perf_event_ctx_lock_nested(). 4581 */ 4582 ctx = READ_ONCE(child->ctx); 4583 /* 4584 * Since child_mutex nests inside ctx::mutex, we must jump 4585 * through hoops. We start by grabbing a reference on the ctx. 4586 * 4587 * Since the event cannot get freed while we hold the 4588 * child_mutex, the context must also exist and have a !0 4589 * reference count. 4590 */ 4591 get_ctx(ctx); 4592 4593 /* 4594 * Now that we have a ctx ref, we can drop child_mutex, and 4595 * acquire ctx::mutex without fear of it going away. Then we 4596 * can re-acquire child_mutex. 4597 */ 4598 mutex_unlock(&event->child_mutex); 4599 mutex_lock(&ctx->mutex); 4600 mutex_lock(&event->child_mutex); 4601 4602 /* 4603 * Now that we hold ctx::mutex and child_mutex, revalidate our 4604 * state, if child is still the first entry, it didn't get freed 4605 * and we can continue doing so. 4606 */ 4607 tmp = list_first_entry_or_null(&event->child_list, 4608 struct perf_event, child_list); 4609 if (tmp == child) { 4610 perf_remove_from_context(child, DETACH_GROUP); 4611 list_move(&child->child_list, &free_list); 4612 /* 4613 * This matches the refcount bump in inherit_event(); 4614 * this can't be the last reference. 4615 */ 4616 put_event(event); 4617 } 4618 4619 mutex_unlock(&event->child_mutex); 4620 mutex_unlock(&ctx->mutex); 4621 put_ctx(ctx); 4622 goto again; 4623 } 4624 mutex_unlock(&event->child_mutex); 4625 4626 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4627 list_del(&child->child_list); 4628 free_event(child); 4629 } 4630 4631 no_ctx: 4632 put_event(event); /* Must be the 'last' reference */ 4633 return 0; 4634 } 4635 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4636 4637 /* 4638 * Called when the last reference to the file is gone. 4639 */ 4640 static int perf_release(struct inode *inode, struct file *file) 4641 { 4642 perf_event_release_kernel(file->private_data); 4643 return 0; 4644 } 4645 4646 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4647 { 4648 struct perf_event *child; 4649 u64 total = 0; 4650 4651 *enabled = 0; 4652 *running = 0; 4653 4654 mutex_lock(&event->child_mutex); 4655 4656 (void)perf_event_read(event, false); 4657 total += perf_event_count(event); 4658 4659 *enabled += event->total_time_enabled + 4660 atomic64_read(&event->child_total_time_enabled); 4661 *running += event->total_time_running + 4662 atomic64_read(&event->child_total_time_running); 4663 4664 list_for_each_entry(child, &event->child_list, child_list) { 4665 (void)perf_event_read(child, false); 4666 total += perf_event_count(child); 4667 *enabled += child->total_time_enabled; 4668 *running += child->total_time_running; 4669 } 4670 mutex_unlock(&event->child_mutex); 4671 4672 return total; 4673 } 4674 4675 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4676 { 4677 struct perf_event_context *ctx; 4678 u64 count; 4679 4680 ctx = perf_event_ctx_lock(event); 4681 count = __perf_event_read_value(event, enabled, running); 4682 perf_event_ctx_unlock(event, ctx); 4683 4684 return count; 4685 } 4686 EXPORT_SYMBOL_GPL(perf_event_read_value); 4687 4688 static int __perf_read_group_add(struct perf_event *leader, 4689 u64 read_format, u64 *values) 4690 { 4691 struct perf_event_context *ctx = leader->ctx; 4692 struct perf_event *sub; 4693 unsigned long flags; 4694 int n = 1; /* skip @nr */ 4695 int ret; 4696 4697 ret = perf_event_read(leader, true); 4698 if (ret) 4699 return ret; 4700 4701 raw_spin_lock_irqsave(&ctx->lock, flags); 4702 4703 /* 4704 * Since we co-schedule groups, {enabled,running} times of siblings 4705 * will be identical to those of the leader, so we only publish one 4706 * set. 4707 */ 4708 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4709 values[n++] += leader->total_time_enabled + 4710 atomic64_read(&leader->child_total_time_enabled); 4711 } 4712 4713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4714 values[n++] += leader->total_time_running + 4715 atomic64_read(&leader->child_total_time_running); 4716 } 4717 4718 /* 4719 * Write {count,id} tuples for every sibling. 4720 */ 4721 values[n++] += perf_event_count(leader); 4722 if (read_format & PERF_FORMAT_ID) 4723 values[n++] = primary_event_id(leader); 4724 4725 for_each_sibling_event(sub, leader) { 4726 values[n++] += perf_event_count(sub); 4727 if (read_format & PERF_FORMAT_ID) 4728 values[n++] = primary_event_id(sub); 4729 } 4730 4731 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4732 return 0; 4733 } 4734 4735 static int perf_read_group(struct perf_event *event, 4736 u64 read_format, char __user *buf) 4737 { 4738 struct perf_event *leader = event->group_leader, *child; 4739 struct perf_event_context *ctx = leader->ctx; 4740 int ret; 4741 u64 *values; 4742 4743 lockdep_assert_held(&ctx->mutex); 4744 4745 values = kzalloc(event->read_size, GFP_KERNEL); 4746 if (!values) 4747 return -ENOMEM; 4748 4749 values[0] = 1 + leader->nr_siblings; 4750 4751 /* 4752 * By locking the child_mutex of the leader we effectively 4753 * lock the child list of all siblings.. XXX explain how. 4754 */ 4755 mutex_lock(&leader->child_mutex); 4756 4757 ret = __perf_read_group_add(leader, read_format, values); 4758 if (ret) 4759 goto unlock; 4760 4761 list_for_each_entry(child, &leader->child_list, child_list) { 4762 ret = __perf_read_group_add(child, read_format, values); 4763 if (ret) 4764 goto unlock; 4765 } 4766 4767 mutex_unlock(&leader->child_mutex); 4768 4769 ret = event->read_size; 4770 if (copy_to_user(buf, values, event->read_size)) 4771 ret = -EFAULT; 4772 goto out; 4773 4774 unlock: 4775 mutex_unlock(&leader->child_mutex); 4776 out: 4777 kfree(values); 4778 return ret; 4779 } 4780 4781 static int perf_read_one(struct perf_event *event, 4782 u64 read_format, char __user *buf) 4783 { 4784 u64 enabled, running; 4785 u64 values[4]; 4786 int n = 0; 4787 4788 values[n++] = __perf_event_read_value(event, &enabled, &running); 4789 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4790 values[n++] = enabled; 4791 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4792 values[n++] = running; 4793 if (read_format & PERF_FORMAT_ID) 4794 values[n++] = primary_event_id(event); 4795 4796 if (copy_to_user(buf, values, n * sizeof(u64))) 4797 return -EFAULT; 4798 4799 return n * sizeof(u64); 4800 } 4801 4802 static bool is_event_hup(struct perf_event *event) 4803 { 4804 bool no_children; 4805 4806 if (event->state > PERF_EVENT_STATE_EXIT) 4807 return false; 4808 4809 mutex_lock(&event->child_mutex); 4810 no_children = list_empty(&event->child_list); 4811 mutex_unlock(&event->child_mutex); 4812 return no_children; 4813 } 4814 4815 /* 4816 * Read the performance event - simple non blocking version for now 4817 */ 4818 static ssize_t 4819 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4820 { 4821 u64 read_format = event->attr.read_format; 4822 int ret; 4823 4824 /* 4825 * Return end-of-file for a read on an event that is in 4826 * error state (i.e. because it was pinned but it couldn't be 4827 * scheduled on to the CPU at some point). 4828 */ 4829 if (event->state == PERF_EVENT_STATE_ERROR) 4830 return 0; 4831 4832 if (count < event->read_size) 4833 return -ENOSPC; 4834 4835 WARN_ON_ONCE(event->ctx->parent_ctx); 4836 if (read_format & PERF_FORMAT_GROUP) 4837 ret = perf_read_group(event, read_format, buf); 4838 else 4839 ret = perf_read_one(event, read_format, buf); 4840 4841 return ret; 4842 } 4843 4844 static ssize_t 4845 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4846 { 4847 struct perf_event *event = file->private_data; 4848 struct perf_event_context *ctx; 4849 int ret; 4850 4851 ctx = perf_event_ctx_lock(event); 4852 ret = __perf_read(event, buf, count); 4853 perf_event_ctx_unlock(event, ctx); 4854 4855 return ret; 4856 } 4857 4858 static __poll_t perf_poll(struct file *file, poll_table *wait) 4859 { 4860 struct perf_event *event = file->private_data; 4861 struct ring_buffer *rb; 4862 __poll_t events = EPOLLHUP; 4863 4864 poll_wait(file, &event->waitq, wait); 4865 4866 if (is_event_hup(event)) 4867 return events; 4868 4869 /* 4870 * Pin the event->rb by taking event->mmap_mutex; otherwise 4871 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4872 */ 4873 mutex_lock(&event->mmap_mutex); 4874 rb = event->rb; 4875 if (rb) 4876 events = atomic_xchg(&rb->poll, 0); 4877 mutex_unlock(&event->mmap_mutex); 4878 return events; 4879 } 4880 4881 static void _perf_event_reset(struct perf_event *event) 4882 { 4883 (void)perf_event_read(event, false); 4884 local64_set(&event->count, 0); 4885 perf_event_update_userpage(event); 4886 } 4887 4888 /* 4889 * Holding the top-level event's child_mutex means that any 4890 * descendant process that has inherited this event will block 4891 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4892 * task existence requirements of perf_event_enable/disable. 4893 */ 4894 static void perf_event_for_each_child(struct perf_event *event, 4895 void (*func)(struct perf_event *)) 4896 { 4897 struct perf_event *child; 4898 4899 WARN_ON_ONCE(event->ctx->parent_ctx); 4900 4901 mutex_lock(&event->child_mutex); 4902 func(event); 4903 list_for_each_entry(child, &event->child_list, child_list) 4904 func(child); 4905 mutex_unlock(&event->child_mutex); 4906 } 4907 4908 static void perf_event_for_each(struct perf_event *event, 4909 void (*func)(struct perf_event *)) 4910 { 4911 struct perf_event_context *ctx = event->ctx; 4912 struct perf_event *sibling; 4913 4914 lockdep_assert_held(&ctx->mutex); 4915 4916 event = event->group_leader; 4917 4918 perf_event_for_each_child(event, func); 4919 for_each_sibling_event(sibling, event) 4920 perf_event_for_each_child(sibling, func); 4921 } 4922 4923 static void __perf_event_period(struct perf_event *event, 4924 struct perf_cpu_context *cpuctx, 4925 struct perf_event_context *ctx, 4926 void *info) 4927 { 4928 u64 value = *((u64 *)info); 4929 bool active; 4930 4931 if (event->attr.freq) { 4932 event->attr.sample_freq = value; 4933 } else { 4934 event->attr.sample_period = value; 4935 event->hw.sample_period = value; 4936 } 4937 4938 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4939 if (active) { 4940 perf_pmu_disable(ctx->pmu); 4941 /* 4942 * We could be throttled; unthrottle now to avoid the tick 4943 * trying to unthrottle while we already re-started the event. 4944 */ 4945 if (event->hw.interrupts == MAX_INTERRUPTS) { 4946 event->hw.interrupts = 0; 4947 perf_log_throttle(event, 1); 4948 } 4949 event->pmu->stop(event, PERF_EF_UPDATE); 4950 } 4951 4952 local64_set(&event->hw.period_left, 0); 4953 4954 if (active) { 4955 event->pmu->start(event, PERF_EF_RELOAD); 4956 perf_pmu_enable(ctx->pmu); 4957 } 4958 } 4959 4960 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4961 { 4962 u64 value; 4963 4964 if (!is_sampling_event(event)) 4965 return -EINVAL; 4966 4967 if (copy_from_user(&value, arg, sizeof(value))) 4968 return -EFAULT; 4969 4970 if (!value) 4971 return -EINVAL; 4972 4973 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4974 return -EINVAL; 4975 4976 event_function_call(event, __perf_event_period, &value); 4977 4978 return 0; 4979 } 4980 4981 static const struct file_operations perf_fops; 4982 4983 static inline int perf_fget_light(int fd, struct fd *p) 4984 { 4985 struct fd f = fdget(fd); 4986 if (!f.file) 4987 return -EBADF; 4988 4989 if (f.file->f_op != &perf_fops) { 4990 fdput(f); 4991 return -EBADF; 4992 } 4993 *p = f; 4994 return 0; 4995 } 4996 4997 static int perf_event_set_output(struct perf_event *event, 4998 struct perf_event *output_event); 4999 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5000 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5001 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5002 struct perf_event_attr *attr); 5003 5004 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5005 { 5006 void (*func)(struct perf_event *); 5007 u32 flags = arg; 5008 5009 switch (cmd) { 5010 case PERF_EVENT_IOC_ENABLE: 5011 func = _perf_event_enable; 5012 break; 5013 case PERF_EVENT_IOC_DISABLE: 5014 func = _perf_event_disable; 5015 break; 5016 case PERF_EVENT_IOC_RESET: 5017 func = _perf_event_reset; 5018 break; 5019 5020 case PERF_EVENT_IOC_REFRESH: 5021 return _perf_event_refresh(event, arg); 5022 5023 case PERF_EVENT_IOC_PERIOD: 5024 return perf_event_period(event, (u64 __user *)arg); 5025 5026 case PERF_EVENT_IOC_ID: 5027 { 5028 u64 id = primary_event_id(event); 5029 5030 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5031 return -EFAULT; 5032 return 0; 5033 } 5034 5035 case PERF_EVENT_IOC_SET_OUTPUT: 5036 { 5037 int ret; 5038 if (arg != -1) { 5039 struct perf_event *output_event; 5040 struct fd output; 5041 ret = perf_fget_light(arg, &output); 5042 if (ret) 5043 return ret; 5044 output_event = output.file->private_data; 5045 ret = perf_event_set_output(event, output_event); 5046 fdput(output); 5047 } else { 5048 ret = perf_event_set_output(event, NULL); 5049 } 5050 return ret; 5051 } 5052 5053 case PERF_EVENT_IOC_SET_FILTER: 5054 return perf_event_set_filter(event, (void __user *)arg); 5055 5056 case PERF_EVENT_IOC_SET_BPF: 5057 return perf_event_set_bpf_prog(event, arg); 5058 5059 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5060 struct ring_buffer *rb; 5061 5062 rcu_read_lock(); 5063 rb = rcu_dereference(event->rb); 5064 if (!rb || !rb->nr_pages) { 5065 rcu_read_unlock(); 5066 return -EINVAL; 5067 } 5068 rb_toggle_paused(rb, !!arg); 5069 rcu_read_unlock(); 5070 return 0; 5071 } 5072 5073 case PERF_EVENT_IOC_QUERY_BPF: 5074 return perf_event_query_prog_array(event, (void __user *)arg); 5075 5076 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5077 struct perf_event_attr new_attr; 5078 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5079 &new_attr); 5080 5081 if (err) 5082 return err; 5083 5084 return perf_event_modify_attr(event, &new_attr); 5085 } 5086 default: 5087 return -ENOTTY; 5088 } 5089 5090 if (flags & PERF_IOC_FLAG_GROUP) 5091 perf_event_for_each(event, func); 5092 else 5093 perf_event_for_each_child(event, func); 5094 5095 return 0; 5096 } 5097 5098 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5099 { 5100 struct perf_event *event = file->private_data; 5101 struct perf_event_context *ctx; 5102 long ret; 5103 5104 ctx = perf_event_ctx_lock(event); 5105 ret = _perf_ioctl(event, cmd, arg); 5106 perf_event_ctx_unlock(event, ctx); 5107 5108 return ret; 5109 } 5110 5111 #ifdef CONFIG_COMPAT 5112 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5113 unsigned long arg) 5114 { 5115 switch (_IOC_NR(cmd)) { 5116 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5117 case _IOC_NR(PERF_EVENT_IOC_ID): 5118 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5119 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5120 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5121 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5122 cmd &= ~IOCSIZE_MASK; 5123 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5124 } 5125 break; 5126 } 5127 return perf_ioctl(file, cmd, arg); 5128 } 5129 #else 5130 # define perf_compat_ioctl NULL 5131 #endif 5132 5133 int perf_event_task_enable(void) 5134 { 5135 struct perf_event_context *ctx; 5136 struct perf_event *event; 5137 5138 mutex_lock(¤t->perf_event_mutex); 5139 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5140 ctx = perf_event_ctx_lock(event); 5141 perf_event_for_each_child(event, _perf_event_enable); 5142 perf_event_ctx_unlock(event, ctx); 5143 } 5144 mutex_unlock(¤t->perf_event_mutex); 5145 5146 return 0; 5147 } 5148 5149 int perf_event_task_disable(void) 5150 { 5151 struct perf_event_context *ctx; 5152 struct perf_event *event; 5153 5154 mutex_lock(¤t->perf_event_mutex); 5155 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5156 ctx = perf_event_ctx_lock(event); 5157 perf_event_for_each_child(event, _perf_event_disable); 5158 perf_event_ctx_unlock(event, ctx); 5159 } 5160 mutex_unlock(¤t->perf_event_mutex); 5161 5162 return 0; 5163 } 5164 5165 static int perf_event_index(struct perf_event *event) 5166 { 5167 if (event->hw.state & PERF_HES_STOPPED) 5168 return 0; 5169 5170 if (event->state != PERF_EVENT_STATE_ACTIVE) 5171 return 0; 5172 5173 return event->pmu->event_idx(event); 5174 } 5175 5176 static void calc_timer_values(struct perf_event *event, 5177 u64 *now, 5178 u64 *enabled, 5179 u64 *running) 5180 { 5181 u64 ctx_time; 5182 5183 *now = perf_clock(); 5184 ctx_time = event->shadow_ctx_time + *now; 5185 __perf_update_times(event, ctx_time, enabled, running); 5186 } 5187 5188 static void perf_event_init_userpage(struct perf_event *event) 5189 { 5190 struct perf_event_mmap_page *userpg; 5191 struct ring_buffer *rb; 5192 5193 rcu_read_lock(); 5194 rb = rcu_dereference(event->rb); 5195 if (!rb) 5196 goto unlock; 5197 5198 userpg = rb->user_page; 5199 5200 /* Allow new userspace to detect that bit 0 is deprecated */ 5201 userpg->cap_bit0_is_deprecated = 1; 5202 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5203 userpg->data_offset = PAGE_SIZE; 5204 userpg->data_size = perf_data_size(rb); 5205 5206 unlock: 5207 rcu_read_unlock(); 5208 } 5209 5210 void __weak arch_perf_update_userpage( 5211 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5212 { 5213 } 5214 5215 /* 5216 * Callers need to ensure there can be no nesting of this function, otherwise 5217 * the seqlock logic goes bad. We can not serialize this because the arch 5218 * code calls this from NMI context. 5219 */ 5220 void perf_event_update_userpage(struct perf_event *event) 5221 { 5222 struct perf_event_mmap_page *userpg; 5223 struct ring_buffer *rb; 5224 u64 enabled, running, now; 5225 5226 rcu_read_lock(); 5227 rb = rcu_dereference(event->rb); 5228 if (!rb) 5229 goto unlock; 5230 5231 /* 5232 * compute total_time_enabled, total_time_running 5233 * based on snapshot values taken when the event 5234 * was last scheduled in. 5235 * 5236 * we cannot simply called update_context_time() 5237 * because of locking issue as we can be called in 5238 * NMI context 5239 */ 5240 calc_timer_values(event, &now, &enabled, &running); 5241 5242 userpg = rb->user_page; 5243 /* 5244 * Disable preemption to guarantee consistent time stamps are stored to 5245 * the user page. 5246 */ 5247 preempt_disable(); 5248 ++userpg->lock; 5249 barrier(); 5250 userpg->index = perf_event_index(event); 5251 userpg->offset = perf_event_count(event); 5252 if (userpg->index) 5253 userpg->offset -= local64_read(&event->hw.prev_count); 5254 5255 userpg->time_enabled = enabled + 5256 atomic64_read(&event->child_total_time_enabled); 5257 5258 userpg->time_running = running + 5259 atomic64_read(&event->child_total_time_running); 5260 5261 arch_perf_update_userpage(event, userpg, now); 5262 5263 barrier(); 5264 ++userpg->lock; 5265 preempt_enable(); 5266 unlock: 5267 rcu_read_unlock(); 5268 } 5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5270 5271 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5272 { 5273 struct perf_event *event = vmf->vma->vm_file->private_data; 5274 struct ring_buffer *rb; 5275 vm_fault_t ret = VM_FAULT_SIGBUS; 5276 5277 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5278 if (vmf->pgoff == 0) 5279 ret = 0; 5280 return ret; 5281 } 5282 5283 rcu_read_lock(); 5284 rb = rcu_dereference(event->rb); 5285 if (!rb) 5286 goto unlock; 5287 5288 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5289 goto unlock; 5290 5291 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5292 if (!vmf->page) 5293 goto unlock; 5294 5295 get_page(vmf->page); 5296 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5297 vmf->page->index = vmf->pgoff; 5298 5299 ret = 0; 5300 unlock: 5301 rcu_read_unlock(); 5302 5303 return ret; 5304 } 5305 5306 static void ring_buffer_attach(struct perf_event *event, 5307 struct ring_buffer *rb) 5308 { 5309 struct ring_buffer *old_rb = NULL; 5310 unsigned long flags; 5311 5312 if (event->rb) { 5313 /* 5314 * Should be impossible, we set this when removing 5315 * event->rb_entry and wait/clear when adding event->rb_entry. 5316 */ 5317 WARN_ON_ONCE(event->rcu_pending); 5318 5319 old_rb = event->rb; 5320 spin_lock_irqsave(&old_rb->event_lock, flags); 5321 list_del_rcu(&event->rb_entry); 5322 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5323 5324 event->rcu_batches = get_state_synchronize_rcu(); 5325 event->rcu_pending = 1; 5326 } 5327 5328 if (rb) { 5329 if (event->rcu_pending) { 5330 cond_synchronize_rcu(event->rcu_batches); 5331 event->rcu_pending = 0; 5332 } 5333 5334 spin_lock_irqsave(&rb->event_lock, flags); 5335 list_add_rcu(&event->rb_entry, &rb->event_list); 5336 spin_unlock_irqrestore(&rb->event_lock, flags); 5337 } 5338 5339 /* 5340 * Avoid racing with perf_mmap_close(AUX): stop the event 5341 * before swizzling the event::rb pointer; if it's getting 5342 * unmapped, its aux_mmap_count will be 0 and it won't 5343 * restart. See the comment in __perf_pmu_output_stop(). 5344 * 5345 * Data will inevitably be lost when set_output is done in 5346 * mid-air, but then again, whoever does it like this is 5347 * not in for the data anyway. 5348 */ 5349 if (has_aux(event)) 5350 perf_event_stop(event, 0); 5351 5352 rcu_assign_pointer(event->rb, rb); 5353 5354 if (old_rb) { 5355 ring_buffer_put(old_rb); 5356 /* 5357 * Since we detached before setting the new rb, so that we 5358 * could attach the new rb, we could have missed a wakeup. 5359 * Provide it now. 5360 */ 5361 wake_up_all(&event->waitq); 5362 } 5363 } 5364 5365 static void ring_buffer_wakeup(struct perf_event *event) 5366 { 5367 struct ring_buffer *rb; 5368 5369 rcu_read_lock(); 5370 rb = rcu_dereference(event->rb); 5371 if (rb) { 5372 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5373 wake_up_all(&event->waitq); 5374 } 5375 rcu_read_unlock(); 5376 } 5377 5378 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5379 { 5380 struct ring_buffer *rb; 5381 5382 rcu_read_lock(); 5383 rb = rcu_dereference(event->rb); 5384 if (rb) { 5385 if (!atomic_inc_not_zero(&rb->refcount)) 5386 rb = NULL; 5387 } 5388 rcu_read_unlock(); 5389 5390 return rb; 5391 } 5392 5393 void ring_buffer_put(struct ring_buffer *rb) 5394 { 5395 if (!atomic_dec_and_test(&rb->refcount)) 5396 return; 5397 5398 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5399 5400 call_rcu(&rb->rcu_head, rb_free_rcu); 5401 } 5402 5403 static void perf_mmap_open(struct vm_area_struct *vma) 5404 { 5405 struct perf_event *event = vma->vm_file->private_data; 5406 5407 atomic_inc(&event->mmap_count); 5408 atomic_inc(&event->rb->mmap_count); 5409 5410 if (vma->vm_pgoff) 5411 atomic_inc(&event->rb->aux_mmap_count); 5412 5413 if (event->pmu->event_mapped) 5414 event->pmu->event_mapped(event, vma->vm_mm); 5415 } 5416 5417 static void perf_pmu_output_stop(struct perf_event *event); 5418 5419 /* 5420 * A buffer can be mmap()ed multiple times; either directly through the same 5421 * event, or through other events by use of perf_event_set_output(). 5422 * 5423 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5424 * the buffer here, where we still have a VM context. This means we need 5425 * to detach all events redirecting to us. 5426 */ 5427 static void perf_mmap_close(struct vm_area_struct *vma) 5428 { 5429 struct perf_event *event = vma->vm_file->private_data; 5430 5431 struct ring_buffer *rb = ring_buffer_get(event); 5432 struct user_struct *mmap_user = rb->mmap_user; 5433 int mmap_locked = rb->mmap_locked; 5434 unsigned long size = perf_data_size(rb); 5435 5436 if (event->pmu->event_unmapped) 5437 event->pmu->event_unmapped(event, vma->vm_mm); 5438 5439 /* 5440 * rb->aux_mmap_count will always drop before rb->mmap_count and 5441 * event->mmap_count, so it is ok to use event->mmap_mutex to 5442 * serialize with perf_mmap here. 5443 */ 5444 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5445 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5446 /* 5447 * Stop all AUX events that are writing to this buffer, 5448 * so that we can free its AUX pages and corresponding PMU 5449 * data. Note that after rb::aux_mmap_count dropped to zero, 5450 * they won't start any more (see perf_aux_output_begin()). 5451 */ 5452 perf_pmu_output_stop(event); 5453 5454 /* now it's safe to free the pages */ 5455 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5456 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5457 5458 /* this has to be the last one */ 5459 rb_free_aux(rb); 5460 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5461 5462 mutex_unlock(&event->mmap_mutex); 5463 } 5464 5465 atomic_dec(&rb->mmap_count); 5466 5467 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5468 goto out_put; 5469 5470 ring_buffer_attach(event, NULL); 5471 mutex_unlock(&event->mmap_mutex); 5472 5473 /* If there's still other mmap()s of this buffer, we're done. */ 5474 if (atomic_read(&rb->mmap_count)) 5475 goto out_put; 5476 5477 /* 5478 * No other mmap()s, detach from all other events that might redirect 5479 * into the now unreachable buffer. Somewhat complicated by the 5480 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5481 */ 5482 again: 5483 rcu_read_lock(); 5484 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5485 if (!atomic_long_inc_not_zero(&event->refcount)) { 5486 /* 5487 * This event is en-route to free_event() which will 5488 * detach it and remove it from the list. 5489 */ 5490 continue; 5491 } 5492 rcu_read_unlock(); 5493 5494 mutex_lock(&event->mmap_mutex); 5495 /* 5496 * Check we didn't race with perf_event_set_output() which can 5497 * swizzle the rb from under us while we were waiting to 5498 * acquire mmap_mutex. 5499 * 5500 * If we find a different rb; ignore this event, a next 5501 * iteration will no longer find it on the list. We have to 5502 * still restart the iteration to make sure we're not now 5503 * iterating the wrong list. 5504 */ 5505 if (event->rb == rb) 5506 ring_buffer_attach(event, NULL); 5507 5508 mutex_unlock(&event->mmap_mutex); 5509 put_event(event); 5510 5511 /* 5512 * Restart the iteration; either we're on the wrong list or 5513 * destroyed its integrity by doing a deletion. 5514 */ 5515 goto again; 5516 } 5517 rcu_read_unlock(); 5518 5519 /* 5520 * It could be there's still a few 0-ref events on the list; they'll 5521 * get cleaned up by free_event() -- they'll also still have their 5522 * ref on the rb and will free it whenever they are done with it. 5523 * 5524 * Aside from that, this buffer is 'fully' detached and unmapped, 5525 * undo the VM accounting. 5526 */ 5527 5528 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5529 vma->vm_mm->pinned_vm -= mmap_locked; 5530 free_uid(mmap_user); 5531 5532 out_put: 5533 ring_buffer_put(rb); /* could be last */ 5534 } 5535 5536 static const struct vm_operations_struct perf_mmap_vmops = { 5537 .open = perf_mmap_open, 5538 .close = perf_mmap_close, /* non mergable */ 5539 .fault = perf_mmap_fault, 5540 .page_mkwrite = perf_mmap_fault, 5541 }; 5542 5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5544 { 5545 struct perf_event *event = file->private_data; 5546 unsigned long user_locked, user_lock_limit; 5547 struct user_struct *user = current_user(); 5548 unsigned long locked, lock_limit; 5549 struct ring_buffer *rb = NULL; 5550 unsigned long vma_size; 5551 unsigned long nr_pages; 5552 long user_extra = 0, extra = 0; 5553 int ret = 0, flags = 0; 5554 5555 /* 5556 * Don't allow mmap() of inherited per-task counters. This would 5557 * create a performance issue due to all children writing to the 5558 * same rb. 5559 */ 5560 if (event->cpu == -1 && event->attr.inherit) 5561 return -EINVAL; 5562 5563 if (!(vma->vm_flags & VM_SHARED)) 5564 return -EINVAL; 5565 5566 vma_size = vma->vm_end - vma->vm_start; 5567 5568 if (vma->vm_pgoff == 0) { 5569 nr_pages = (vma_size / PAGE_SIZE) - 1; 5570 } else { 5571 /* 5572 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5573 * mapped, all subsequent mappings should have the same size 5574 * and offset. Must be above the normal perf buffer. 5575 */ 5576 u64 aux_offset, aux_size; 5577 5578 if (!event->rb) 5579 return -EINVAL; 5580 5581 nr_pages = vma_size / PAGE_SIZE; 5582 5583 mutex_lock(&event->mmap_mutex); 5584 ret = -EINVAL; 5585 5586 rb = event->rb; 5587 if (!rb) 5588 goto aux_unlock; 5589 5590 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5591 aux_size = READ_ONCE(rb->user_page->aux_size); 5592 5593 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5594 goto aux_unlock; 5595 5596 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5597 goto aux_unlock; 5598 5599 /* already mapped with a different offset */ 5600 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5601 goto aux_unlock; 5602 5603 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5604 goto aux_unlock; 5605 5606 /* already mapped with a different size */ 5607 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5608 goto aux_unlock; 5609 5610 if (!is_power_of_2(nr_pages)) 5611 goto aux_unlock; 5612 5613 if (!atomic_inc_not_zero(&rb->mmap_count)) 5614 goto aux_unlock; 5615 5616 if (rb_has_aux(rb)) { 5617 atomic_inc(&rb->aux_mmap_count); 5618 ret = 0; 5619 goto unlock; 5620 } 5621 5622 atomic_set(&rb->aux_mmap_count, 1); 5623 user_extra = nr_pages; 5624 5625 goto accounting; 5626 } 5627 5628 /* 5629 * If we have rb pages ensure they're a power-of-two number, so we 5630 * can do bitmasks instead of modulo. 5631 */ 5632 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5633 return -EINVAL; 5634 5635 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5636 return -EINVAL; 5637 5638 WARN_ON_ONCE(event->ctx->parent_ctx); 5639 again: 5640 mutex_lock(&event->mmap_mutex); 5641 if (event->rb) { 5642 if (event->rb->nr_pages != nr_pages) { 5643 ret = -EINVAL; 5644 goto unlock; 5645 } 5646 5647 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5648 /* 5649 * Raced against perf_mmap_close() through 5650 * perf_event_set_output(). Try again, hope for better 5651 * luck. 5652 */ 5653 mutex_unlock(&event->mmap_mutex); 5654 goto again; 5655 } 5656 5657 goto unlock; 5658 } 5659 5660 user_extra = nr_pages + 1; 5661 5662 accounting: 5663 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5664 5665 /* 5666 * Increase the limit linearly with more CPUs: 5667 */ 5668 user_lock_limit *= num_online_cpus(); 5669 5670 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5671 5672 if (user_locked > user_lock_limit) 5673 extra = user_locked - user_lock_limit; 5674 5675 lock_limit = rlimit(RLIMIT_MEMLOCK); 5676 lock_limit >>= PAGE_SHIFT; 5677 locked = vma->vm_mm->pinned_vm + extra; 5678 5679 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5680 !capable(CAP_IPC_LOCK)) { 5681 ret = -EPERM; 5682 goto unlock; 5683 } 5684 5685 WARN_ON(!rb && event->rb); 5686 5687 if (vma->vm_flags & VM_WRITE) 5688 flags |= RING_BUFFER_WRITABLE; 5689 5690 if (!rb) { 5691 rb = rb_alloc(nr_pages, 5692 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5693 event->cpu, flags); 5694 5695 if (!rb) { 5696 ret = -ENOMEM; 5697 goto unlock; 5698 } 5699 5700 atomic_set(&rb->mmap_count, 1); 5701 rb->mmap_user = get_current_user(); 5702 rb->mmap_locked = extra; 5703 5704 ring_buffer_attach(event, rb); 5705 5706 perf_event_init_userpage(event); 5707 perf_event_update_userpage(event); 5708 } else { 5709 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5710 event->attr.aux_watermark, flags); 5711 if (!ret) 5712 rb->aux_mmap_locked = extra; 5713 } 5714 5715 unlock: 5716 if (!ret) { 5717 atomic_long_add(user_extra, &user->locked_vm); 5718 vma->vm_mm->pinned_vm += extra; 5719 5720 atomic_inc(&event->mmap_count); 5721 } else if (rb) { 5722 atomic_dec(&rb->mmap_count); 5723 } 5724 aux_unlock: 5725 mutex_unlock(&event->mmap_mutex); 5726 5727 /* 5728 * Since pinned accounting is per vm we cannot allow fork() to copy our 5729 * vma. 5730 */ 5731 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5732 vma->vm_ops = &perf_mmap_vmops; 5733 5734 if (event->pmu->event_mapped) 5735 event->pmu->event_mapped(event, vma->vm_mm); 5736 5737 return ret; 5738 } 5739 5740 static int perf_fasync(int fd, struct file *filp, int on) 5741 { 5742 struct inode *inode = file_inode(filp); 5743 struct perf_event *event = filp->private_data; 5744 int retval; 5745 5746 inode_lock(inode); 5747 retval = fasync_helper(fd, filp, on, &event->fasync); 5748 inode_unlock(inode); 5749 5750 if (retval < 0) 5751 return retval; 5752 5753 return 0; 5754 } 5755 5756 static const struct file_operations perf_fops = { 5757 .llseek = no_llseek, 5758 .release = perf_release, 5759 .read = perf_read, 5760 .poll = perf_poll, 5761 .unlocked_ioctl = perf_ioctl, 5762 .compat_ioctl = perf_compat_ioctl, 5763 .mmap = perf_mmap, 5764 .fasync = perf_fasync, 5765 }; 5766 5767 /* 5768 * Perf event wakeup 5769 * 5770 * If there's data, ensure we set the poll() state and publish everything 5771 * to user-space before waking everybody up. 5772 */ 5773 5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5775 { 5776 /* only the parent has fasync state */ 5777 if (event->parent) 5778 event = event->parent; 5779 return &event->fasync; 5780 } 5781 5782 void perf_event_wakeup(struct perf_event *event) 5783 { 5784 ring_buffer_wakeup(event); 5785 5786 if (event->pending_kill) { 5787 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5788 event->pending_kill = 0; 5789 } 5790 } 5791 5792 static void perf_pending_event(struct irq_work *entry) 5793 { 5794 struct perf_event *event = container_of(entry, 5795 struct perf_event, pending); 5796 int rctx; 5797 5798 rctx = perf_swevent_get_recursion_context(); 5799 /* 5800 * If we 'fail' here, that's OK, it means recursion is already disabled 5801 * and we won't recurse 'further'. 5802 */ 5803 5804 if (event->pending_disable) { 5805 event->pending_disable = 0; 5806 perf_event_disable_local(event); 5807 } 5808 5809 if (event->pending_wakeup) { 5810 event->pending_wakeup = 0; 5811 perf_event_wakeup(event); 5812 } 5813 5814 if (rctx >= 0) 5815 perf_swevent_put_recursion_context(rctx); 5816 } 5817 5818 /* 5819 * We assume there is only KVM supporting the callbacks. 5820 * Later on, we might change it to a list if there is 5821 * another virtualization implementation supporting the callbacks. 5822 */ 5823 struct perf_guest_info_callbacks *perf_guest_cbs; 5824 5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5826 { 5827 perf_guest_cbs = cbs; 5828 return 0; 5829 } 5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5831 5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5833 { 5834 perf_guest_cbs = NULL; 5835 return 0; 5836 } 5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5838 5839 static void 5840 perf_output_sample_regs(struct perf_output_handle *handle, 5841 struct pt_regs *regs, u64 mask) 5842 { 5843 int bit; 5844 DECLARE_BITMAP(_mask, 64); 5845 5846 bitmap_from_u64(_mask, mask); 5847 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5848 u64 val; 5849 5850 val = perf_reg_value(regs, bit); 5851 perf_output_put(handle, val); 5852 } 5853 } 5854 5855 static void perf_sample_regs_user(struct perf_regs *regs_user, 5856 struct pt_regs *regs, 5857 struct pt_regs *regs_user_copy) 5858 { 5859 if (user_mode(regs)) { 5860 regs_user->abi = perf_reg_abi(current); 5861 regs_user->regs = regs; 5862 } else if (current->mm) { 5863 perf_get_regs_user(regs_user, regs, regs_user_copy); 5864 } else { 5865 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5866 regs_user->regs = NULL; 5867 } 5868 } 5869 5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5871 struct pt_regs *regs) 5872 { 5873 regs_intr->regs = regs; 5874 regs_intr->abi = perf_reg_abi(current); 5875 } 5876 5877 5878 /* 5879 * Get remaining task size from user stack pointer. 5880 * 5881 * It'd be better to take stack vma map and limit this more 5882 * precisly, but there's no way to get it safely under interrupt, 5883 * so using TASK_SIZE as limit. 5884 */ 5885 static u64 perf_ustack_task_size(struct pt_regs *regs) 5886 { 5887 unsigned long addr = perf_user_stack_pointer(regs); 5888 5889 if (!addr || addr >= TASK_SIZE) 5890 return 0; 5891 5892 return TASK_SIZE - addr; 5893 } 5894 5895 static u16 5896 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5897 struct pt_regs *regs) 5898 { 5899 u64 task_size; 5900 5901 /* No regs, no stack pointer, no dump. */ 5902 if (!regs) 5903 return 0; 5904 5905 /* 5906 * Check if we fit in with the requested stack size into the: 5907 * - TASK_SIZE 5908 * If we don't, we limit the size to the TASK_SIZE. 5909 * 5910 * - remaining sample size 5911 * If we don't, we customize the stack size to 5912 * fit in to the remaining sample size. 5913 */ 5914 5915 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5916 stack_size = min(stack_size, (u16) task_size); 5917 5918 /* Current header size plus static size and dynamic size. */ 5919 header_size += 2 * sizeof(u64); 5920 5921 /* Do we fit in with the current stack dump size? */ 5922 if ((u16) (header_size + stack_size) < header_size) { 5923 /* 5924 * If we overflow the maximum size for the sample, 5925 * we customize the stack dump size to fit in. 5926 */ 5927 stack_size = USHRT_MAX - header_size - sizeof(u64); 5928 stack_size = round_up(stack_size, sizeof(u64)); 5929 } 5930 5931 return stack_size; 5932 } 5933 5934 static void 5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5936 struct pt_regs *regs) 5937 { 5938 /* Case of a kernel thread, nothing to dump */ 5939 if (!regs) { 5940 u64 size = 0; 5941 perf_output_put(handle, size); 5942 } else { 5943 unsigned long sp; 5944 unsigned int rem; 5945 u64 dyn_size; 5946 mm_segment_t fs; 5947 5948 /* 5949 * We dump: 5950 * static size 5951 * - the size requested by user or the best one we can fit 5952 * in to the sample max size 5953 * data 5954 * - user stack dump data 5955 * dynamic size 5956 * - the actual dumped size 5957 */ 5958 5959 /* Static size. */ 5960 perf_output_put(handle, dump_size); 5961 5962 /* Data. */ 5963 sp = perf_user_stack_pointer(regs); 5964 fs = get_fs(); 5965 set_fs(USER_DS); 5966 rem = __output_copy_user(handle, (void *) sp, dump_size); 5967 set_fs(fs); 5968 dyn_size = dump_size - rem; 5969 5970 perf_output_skip(handle, rem); 5971 5972 /* Dynamic size. */ 5973 perf_output_put(handle, dyn_size); 5974 } 5975 } 5976 5977 static void __perf_event_header__init_id(struct perf_event_header *header, 5978 struct perf_sample_data *data, 5979 struct perf_event *event) 5980 { 5981 u64 sample_type = event->attr.sample_type; 5982 5983 data->type = sample_type; 5984 header->size += event->id_header_size; 5985 5986 if (sample_type & PERF_SAMPLE_TID) { 5987 /* namespace issues */ 5988 data->tid_entry.pid = perf_event_pid(event, current); 5989 data->tid_entry.tid = perf_event_tid(event, current); 5990 } 5991 5992 if (sample_type & PERF_SAMPLE_TIME) 5993 data->time = perf_event_clock(event); 5994 5995 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5996 data->id = primary_event_id(event); 5997 5998 if (sample_type & PERF_SAMPLE_STREAM_ID) 5999 data->stream_id = event->id; 6000 6001 if (sample_type & PERF_SAMPLE_CPU) { 6002 data->cpu_entry.cpu = raw_smp_processor_id(); 6003 data->cpu_entry.reserved = 0; 6004 } 6005 } 6006 6007 void perf_event_header__init_id(struct perf_event_header *header, 6008 struct perf_sample_data *data, 6009 struct perf_event *event) 6010 { 6011 if (event->attr.sample_id_all) 6012 __perf_event_header__init_id(header, data, event); 6013 } 6014 6015 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6016 struct perf_sample_data *data) 6017 { 6018 u64 sample_type = data->type; 6019 6020 if (sample_type & PERF_SAMPLE_TID) 6021 perf_output_put(handle, data->tid_entry); 6022 6023 if (sample_type & PERF_SAMPLE_TIME) 6024 perf_output_put(handle, data->time); 6025 6026 if (sample_type & PERF_SAMPLE_ID) 6027 perf_output_put(handle, data->id); 6028 6029 if (sample_type & PERF_SAMPLE_STREAM_ID) 6030 perf_output_put(handle, data->stream_id); 6031 6032 if (sample_type & PERF_SAMPLE_CPU) 6033 perf_output_put(handle, data->cpu_entry); 6034 6035 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6036 perf_output_put(handle, data->id); 6037 } 6038 6039 void perf_event__output_id_sample(struct perf_event *event, 6040 struct perf_output_handle *handle, 6041 struct perf_sample_data *sample) 6042 { 6043 if (event->attr.sample_id_all) 6044 __perf_event__output_id_sample(handle, sample); 6045 } 6046 6047 static void perf_output_read_one(struct perf_output_handle *handle, 6048 struct perf_event *event, 6049 u64 enabled, u64 running) 6050 { 6051 u64 read_format = event->attr.read_format; 6052 u64 values[4]; 6053 int n = 0; 6054 6055 values[n++] = perf_event_count(event); 6056 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6057 values[n++] = enabled + 6058 atomic64_read(&event->child_total_time_enabled); 6059 } 6060 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6061 values[n++] = running + 6062 atomic64_read(&event->child_total_time_running); 6063 } 6064 if (read_format & PERF_FORMAT_ID) 6065 values[n++] = primary_event_id(event); 6066 6067 __output_copy(handle, values, n * sizeof(u64)); 6068 } 6069 6070 static void perf_output_read_group(struct perf_output_handle *handle, 6071 struct perf_event *event, 6072 u64 enabled, u64 running) 6073 { 6074 struct perf_event *leader = event->group_leader, *sub; 6075 u64 read_format = event->attr.read_format; 6076 u64 values[5]; 6077 int n = 0; 6078 6079 values[n++] = 1 + leader->nr_siblings; 6080 6081 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6082 values[n++] = enabled; 6083 6084 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6085 values[n++] = running; 6086 6087 if ((leader != event) && 6088 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6089 leader->pmu->read(leader); 6090 6091 values[n++] = perf_event_count(leader); 6092 if (read_format & PERF_FORMAT_ID) 6093 values[n++] = primary_event_id(leader); 6094 6095 __output_copy(handle, values, n * sizeof(u64)); 6096 6097 for_each_sibling_event(sub, leader) { 6098 n = 0; 6099 6100 if ((sub != event) && 6101 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6102 sub->pmu->read(sub); 6103 6104 values[n++] = perf_event_count(sub); 6105 if (read_format & PERF_FORMAT_ID) 6106 values[n++] = primary_event_id(sub); 6107 6108 __output_copy(handle, values, n * sizeof(u64)); 6109 } 6110 } 6111 6112 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6113 PERF_FORMAT_TOTAL_TIME_RUNNING) 6114 6115 /* 6116 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6117 * 6118 * The problem is that its both hard and excessively expensive to iterate the 6119 * child list, not to mention that its impossible to IPI the children running 6120 * on another CPU, from interrupt/NMI context. 6121 */ 6122 static void perf_output_read(struct perf_output_handle *handle, 6123 struct perf_event *event) 6124 { 6125 u64 enabled = 0, running = 0, now; 6126 u64 read_format = event->attr.read_format; 6127 6128 /* 6129 * compute total_time_enabled, total_time_running 6130 * based on snapshot values taken when the event 6131 * was last scheduled in. 6132 * 6133 * we cannot simply called update_context_time() 6134 * because of locking issue as we are called in 6135 * NMI context 6136 */ 6137 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6138 calc_timer_values(event, &now, &enabled, &running); 6139 6140 if (event->attr.read_format & PERF_FORMAT_GROUP) 6141 perf_output_read_group(handle, event, enabled, running); 6142 else 6143 perf_output_read_one(handle, event, enabled, running); 6144 } 6145 6146 void perf_output_sample(struct perf_output_handle *handle, 6147 struct perf_event_header *header, 6148 struct perf_sample_data *data, 6149 struct perf_event *event) 6150 { 6151 u64 sample_type = data->type; 6152 6153 perf_output_put(handle, *header); 6154 6155 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6156 perf_output_put(handle, data->id); 6157 6158 if (sample_type & PERF_SAMPLE_IP) 6159 perf_output_put(handle, data->ip); 6160 6161 if (sample_type & PERF_SAMPLE_TID) 6162 perf_output_put(handle, data->tid_entry); 6163 6164 if (sample_type & PERF_SAMPLE_TIME) 6165 perf_output_put(handle, data->time); 6166 6167 if (sample_type & PERF_SAMPLE_ADDR) 6168 perf_output_put(handle, data->addr); 6169 6170 if (sample_type & PERF_SAMPLE_ID) 6171 perf_output_put(handle, data->id); 6172 6173 if (sample_type & PERF_SAMPLE_STREAM_ID) 6174 perf_output_put(handle, data->stream_id); 6175 6176 if (sample_type & PERF_SAMPLE_CPU) 6177 perf_output_put(handle, data->cpu_entry); 6178 6179 if (sample_type & PERF_SAMPLE_PERIOD) 6180 perf_output_put(handle, data->period); 6181 6182 if (sample_type & PERF_SAMPLE_READ) 6183 perf_output_read(handle, event); 6184 6185 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6186 int size = 1; 6187 6188 size += data->callchain->nr; 6189 size *= sizeof(u64); 6190 __output_copy(handle, data->callchain, size); 6191 } 6192 6193 if (sample_type & PERF_SAMPLE_RAW) { 6194 struct perf_raw_record *raw = data->raw; 6195 6196 if (raw) { 6197 struct perf_raw_frag *frag = &raw->frag; 6198 6199 perf_output_put(handle, raw->size); 6200 do { 6201 if (frag->copy) { 6202 __output_custom(handle, frag->copy, 6203 frag->data, frag->size); 6204 } else { 6205 __output_copy(handle, frag->data, 6206 frag->size); 6207 } 6208 if (perf_raw_frag_last(frag)) 6209 break; 6210 frag = frag->next; 6211 } while (1); 6212 if (frag->pad) 6213 __output_skip(handle, NULL, frag->pad); 6214 } else { 6215 struct { 6216 u32 size; 6217 u32 data; 6218 } raw = { 6219 .size = sizeof(u32), 6220 .data = 0, 6221 }; 6222 perf_output_put(handle, raw); 6223 } 6224 } 6225 6226 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6227 if (data->br_stack) { 6228 size_t size; 6229 6230 size = data->br_stack->nr 6231 * sizeof(struct perf_branch_entry); 6232 6233 perf_output_put(handle, data->br_stack->nr); 6234 perf_output_copy(handle, data->br_stack->entries, size); 6235 } else { 6236 /* 6237 * we always store at least the value of nr 6238 */ 6239 u64 nr = 0; 6240 perf_output_put(handle, nr); 6241 } 6242 } 6243 6244 if (sample_type & PERF_SAMPLE_REGS_USER) { 6245 u64 abi = data->regs_user.abi; 6246 6247 /* 6248 * If there are no regs to dump, notice it through 6249 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6250 */ 6251 perf_output_put(handle, abi); 6252 6253 if (abi) { 6254 u64 mask = event->attr.sample_regs_user; 6255 perf_output_sample_regs(handle, 6256 data->regs_user.regs, 6257 mask); 6258 } 6259 } 6260 6261 if (sample_type & PERF_SAMPLE_STACK_USER) { 6262 perf_output_sample_ustack(handle, 6263 data->stack_user_size, 6264 data->regs_user.regs); 6265 } 6266 6267 if (sample_type & PERF_SAMPLE_WEIGHT) 6268 perf_output_put(handle, data->weight); 6269 6270 if (sample_type & PERF_SAMPLE_DATA_SRC) 6271 perf_output_put(handle, data->data_src.val); 6272 6273 if (sample_type & PERF_SAMPLE_TRANSACTION) 6274 perf_output_put(handle, data->txn); 6275 6276 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6277 u64 abi = data->regs_intr.abi; 6278 /* 6279 * If there are no regs to dump, notice it through 6280 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6281 */ 6282 perf_output_put(handle, abi); 6283 6284 if (abi) { 6285 u64 mask = event->attr.sample_regs_intr; 6286 6287 perf_output_sample_regs(handle, 6288 data->regs_intr.regs, 6289 mask); 6290 } 6291 } 6292 6293 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6294 perf_output_put(handle, data->phys_addr); 6295 6296 if (!event->attr.watermark) { 6297 int wakeup_events = event->attr.wakeup_events; 6298 6299 if (wakeup_events) { 6300 struct ring_buffer *rb = handle->rb; 6301 int events = local_inc_return(&rb->events); 6302 6303 if (events >= wakeup_events) { 6304 local_sub(wakeup_events, &rb->events); 6305 local_inc(&rb->wakeup); 6306 } 6307 } 6308 } 6309 } 6310 6311 static u64 perf_virt_to_phys(u64 virt) 6312 { 6313 u64 phys_addr = 0; 6314 struct page *p = NULL; 6315 6316 if (!virt) 6317 return 0; 6318 6319 if (virt >= TASK_SIZE) { 6320 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6321 if (virt_addr_valid((void *)(uintptr_t)virt) && 6322 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6323 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6324 } else { 6325 /* 6326 * Walking the pages tables for user address. 6327 * Interrupts are disabled, so it prevents any tear down 6328 * of the page tables. 6329 * Try IRQ-safe __get_user_pages_fast first. 6330 * If failed, leave phys_addr as 0. 6331 */ 6332 if ((current->mm != NULL) && 6333 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6334 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6335 6336 if (p) 6337 put_page(p); 6338 } 6339 6340 return phys_addr; 6341 } 6342 6343 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6344 6345 struct perf_callchain_entry * 6346 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6347 { 6348 bool kernel = !event->attr.exclude_callchain_kernel; 6349 bool user = !event->attr.exclude_callchain_user; 6350 /* Disallow cross-task user callchains. */ 6351 bool crosstask = event->ctx->task && event->ctx->task != current; 6352 const u32 max_stack = event->attr.sample_max_stack; 6353 struct perf_callchain_entry *callchain; 6354 6355 if (!kernel && !user) 6356 return &__empty_callchain; 6357 6358 callchain = get_perf_callchain(regs, 0, kernel, user, 6359 max_stack, crosstask, true); 6360 return callchain ?: &__empty_callchain; 6361 } 6362 6363 void perf_prepare_sample(struct perf_event_header *header, 6364 struct perf_sample_data *data, 6365 struct perf_event *event, 6366 struct pt_regs *regs) 6367 { 6368 u64 sample_type = event->attr.sample_type; 6369 6370 header->type = PERF_RECORD_SAMPLE; 6371 header->size = sizeof(*header) + event->header_size; 6372 6373 header->misc = 0; 6374 header->misc |= perf_misc_flags(regs); 6375 6376 __perf_event_header__init_id(header, data, event); 6377 6378 if (sample_type & PERF_SAMPLE_IP) 6379 data->ip = perf_instruction_pointer(regs); 6380 6381 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6382 int size = 1; 6383 6384 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6385 data->callchain = perf_callchain(event, regs); 6386 6387 size += data->callchain->nr; 6388 6389 header->size += size * sizeof(u64); 6390 } 6391 6392 if (sample_type & PERF_SAMPLE_RAW) { 6393 struct perf_raw_record *raw = data->raw; 6394 int size; 6395 6396 if (raw) { 6397 struct perf_raw_frag *frag = &raw->frag; 6398 u32 sum = 0; 6399 6400 do { 6401 sum += frag->size; 6402 if (perf_raw_frag_last(frag)) 6403 break; 6404 frag = frag->next; 6405 } while (1); 6406 6407 size = round_up(sum + sizeof(u32), sizeof(u64)); 6408 raw->size = size - sizeof(u32); 6409 frag->pad = raw->size - sum; 6410 } else { 6411 size = sizeof(u64); 6412 } 6413 6414 header->size += size; 6415 } 6416 6417 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6418 int size = sizeof(u64); /* nr */ 6419 if (data->br_stack) { 6420 size += data->br_stack->nr 6421 * sizeof(struct perf_branch_entry); 6422 } 6423 header->size += size; 6424 } 6425 6426 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6427 perf_sample_regs_user(&data->regs_user, regs, 6428 &data->regs_user_copy); 6429 6430 if (sample_type & PERF_SAMPLE_REGS_USER) { 6431 /* regs dump ABI info */ 6432 int size = sizeof(u64); 6433 6434 if (data->regs_user.regs) { 6435 u64 mask = event->attr.sample_regs_user; 6436 size += hweight64(mask) * sizeof(u64); 6437 } 6438 6439 header->size += size; 6440 } 6441 6442 if (sample_type & PERF_SAMPLE_STACK_USER) { 6443 /* 6444 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6445 * processed as the last one or have additional check added 6446 * in case new sample type is added, because we could eat 6447 * up the rest of the sample size. 6448 */ 6449 u16 stack_size = event->attr.sample_stack_user; 6450 u16 size = sizeof(u64); 6451 6452 stack_size = perf_sample_ustack_size(stack_size, header->size, 6453 data->regs_user.regs); 6454 6455 /* 6456 * If there is something to dump, add space for the dump 6457 * itself and for the field that tells the dynamic size, 6458 * which is how many have been actually dumped. 6459 */ 6460 if (stack_size) 6461 size += sizeof(u64) + stack_size; 6462 6463 data->stack_user_size = stack_size; 6464 header->size += size; 6465 } 6466 6467 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6468 /* regs dump ABI info */ 6469 int size = sizeof(u64); 6470 6471 perf_sample_regs_intr(&data->regs_intr, regs); 6472 6473 if (data->regs_intr.regs) { 6474 u64 mask = event->attr.sample_regs_intr; 6475 6476 size += hweight64(mask) * sizeof(u64); 6477 } 6478 6479 header->size += size; 6480 } 6481 6482 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6483 data->phys_addr = perf_virt_to_phys(data->addr); 6484 } 6485 6486 static __always_inline void 6487 __perf_event_output(struct perf_event *event, 6488 struct perf_sample_data *data, 6489 struct pt_regs *regs, 6490 int (*output_begin)(struct perf_output_handle *, 6491 struct perf_event *, 6492 unsigned int)) 6493 { 6494 struct perf_output_handle handle; 6495 struct perf_event_header header; 6496 6497 /* protect the callchain buffers */ 6498 rcu_read_lock(); 6499 6500 perf_prepare_sample(&header, data, event, regs); 6501 6502 if (output_begin(&handle, event, header.size)) 6503 goto exit; 6504 6505 perf_output_sample(&handle, &header, data, event); 6506 6507 perf_output_end(&handle); 6508 6509 exit: 6510 rcu_read_unlock(); 6511 } 6512 6513 void 6514 perf_event_output_forward(struct perf_event *event, 6515 struct perf_sample_data *data, 6516 struct pt_regs *regs) 6517 { 6518 __perf_event_output(event, data, regs, perf_output_begin_forward); 6519 } 6520 6521 void 6522 perf_event_output_backward(struct perf_event *event, 6523 struct perf_sample_data *data, 6524 struct pt_regs *regs) 6525 { 6526 __perf_event_output(event, data, regs, perf_output_begin_backward); 6527 } 6528 6529 void 6530 perf_event_output(struct perf_event *event, 6531 struct perf_sample_data *data, 6532 struct pt_regs *regs) 6533 { 6534 __perf_event_output(event, data, regs, perf_output_begin); 6535 } 6536 6537 /* 6538 * read event_id 6539 */ 6540 6541 struct perf_read_event { 6542 struct perf_event_header header; 6543 6544 u32 pid; 6545 u32 tid; 6546 }; 6547 6548 static void 6549 perf_event_read_event(struct perf_event *event, 6550 struct task_struct *task) 6551 { 6552 struct perf_output_handle handle; 6553 struct perf_sample_data sample; 6554 struct perf_read_event read_event = { 6555 .header = { 6556 .type = PERF_RECORD_READ, 6557 .misc = 0, 6558 .size = sizeof(read_event) + event->read_size, 6559 }, 6560 .pid = perf_event_pid(event, task), 6561 .tid = perf_event_tid(event, task), 6562 }; 6563 int ret; 6564 6565 perf_event_header__init_id(&read_event.header, &sample, event); 6566 ret = perf_output_begin(&handle, event, read_event.header.size); 6567 if (ret) 6568 return; 6569 6570 perf_output_put(&handle, read_event); 6571 perf_output_read(&handle, event); 6572 perf_event__output_id_sample(event, &handle, &sample); 6573 6574 perf_output_end(&handle); 6575 } 6576 6577 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6578 6579 static void 6580 perf_iterate_ctx(struct perf_event_context *ctx, 6581 perf_iterate_f output, 6582 void *data, bool all) 6583 { 6584 struct perf_event *event; 6585 6586 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6587 if (!all) { 6588 if (event->state < PERF_EVENT_STATE_INACTIVE) 6589 continue; 6590 if (!event_filter_match(event)) 6591 continue; 6592 } 6593 6594 output(event, data); 6595 } 6596 } 6597 6598 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6599 { 6600 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6601 struct perf_event *event; 6602 6603 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6604 /* 6605 * Skip events that are not fully formed yet; ensure that 6606 * if we observe event->ctx, both event and ctx will be 6607 * complete enough. See perf_install_in_context(). 6608 */ 6609 if (!smp_load_acquire(&event->ctx)) 6610 continue; 6611 6612 if (event->state < PERF_EVENT_STATE_INACTIVE) 6613 continue; 6614 if (!event_filter_match(event)) 6615 continue; 6616 output(event, data); 6617 } 6618 } 6619 6620 /* 6621 * Iterate all events that need to receive side-band events. 6622 * 6623 * For new callers; ensure that account_pmu_sb_event() includes 6624 * your event, otherwise it might not get delivered. 6625 */ 6626 static void 6627 perf_iterate_sb(perf_iterate_f output, void *data, 6628 struct perf_event_context *task_ctx) 6629 { 6630 struct perf_event_context *ctx; 6631 int ctxn; 6632 6633 rcu_read_lock(); 6634 preempt_disable(); 6635 6636 /* 6637 * If we have task_ctx != NULL we only notify the task context itself. 6638 * The task_ctx is set only for EXIT events before releasing task 6639 * context. 6640 */ 6641 if (task_ctx) { 6642 perf_iterate_ctx(task_ctx, output, data, false); 6643 goto done; 6644 } 6645 6646 perf_iterate_sb_cpu(output, data); 6647 6648 for_each_task_context_nr(ctxn) { 6649 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6650 if (ctx) 6651 perf_iterate_ctx(ctx, output, data, false); 6652 } 6653 done: 6654 preempt_enable(); 6655 rcu_read_unlock(); 6656 } 6657 6658 /* 6659 * Clear all file-based filters at exec, they'll have to be 6660 * re-instated when/if these objects are mmapped again. 6661 */ 6662 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6663 { 6664 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6665 struct perf_addr_filter *filter; 6666 unsigned int restart = 0, count = 0; 6667 unsigned long flags; 6668 6669 if (!has_addr_filter(event)) 6670 return; 6671 6672 raw_spin_lock_irqsave(&ifh->lock, flags); 6673 list_for_each_entry(filter, &ifh->list, entry) { 6674 if (filter->path.dentry) { 6675 event->addr_filters_offs[count] = 0; 6676 restart++; 6677 } 6678 6679 count++; 6680 } 6681 6682 if (restart) 6683 event->addr_filters_gen++; 6684 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6685 6686 if (restart) 6687 perf_event_stop(event, 1); 6688 } 6689 6690 void perf_event_exec(void) 6691 { 6692 struct perf_event_context *ctx; 6693 int ctxn; 6694 6695 rcu_read_lock(); 6696 for_each_task_context_nr(ctxn) { 6697 ctx = current->perf_event_ctxp[ctxn]; 6698 if (!ctx) 6699 continue; 6700 6701 perf_event_enable_on_exec(ctxn); 6702 6703 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6704 true); 6705 } 6706 rcu_read_unlock(); 6707 } 6708 6709 struct remote_output { 6710 struct ring_buffer *rb; 6711 int err; 6712 }; 6713 6714 static void __perf_event_output_stop(struct perf_event *event, void *data) 6715 { 6716 struct perf_event *parent = event->parent; 6717 struct remote_output *ro = data; 6718 struct ring_buffer *rb = ro->rb; 6719 struct stop_event_data sd = { 6720 .event = event, 6721 }; 6722 6723 if (!has_aux(event)) 6724 return; 6725 6726 if (!parent) 6727 parent = event; 6728 6729 /* 6730 * In case of inheritance, it will be the parent that links to the 6731 * ring-buffer, but it will be the child that's actually using it. 6732 * 6733 * We are using event::rb to determine if the event should be stopped, 6734 * however this may race with ring_buffer_attach() (through set_output), 6735 * which will make us skip the event that actually needs to be stopped. 6736 * So ring_buffer_attach() has to stop an aux event before re-assigning 6737 * its rb pointer. 6738 */ 6739 if (rcu_dereference(parent->rb) == rb) 6740 ro->err = __perf_event_stop(&sd); 6741 } 6742 6743 static int __perf_pmu_output_stop(void *info) 6744 { 6745 struct perf_event *event = info; 6746 struct pmu *pmu = event->pmu; 6747 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6748 struct remote_output ro = { 6749 .rb = event->rb, 6750 }; 6751 6752 rcu_read_lock(); 6753 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6754 if (cpuctx->task_ctx) 6755 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6756 &ro, false); 6757 rcu_read_unlock(); 6758 6759 return ro.err; 6760 } 6761 6762 static void perf_pmu_output_stop(struct perf_event *event) 6763 { 6764 struct perf_event *iter; 6765 int err, cpu; 6766 6767 restart: 6768 rcu_read_lock(); 6769 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6770 /* 6771 * For per-CPU events, we need to make sure that neither they 6772 * nor their children are running; for cpu==-1 events it's 6773 * sufficient to stop the event itself if it's active, since 6774 * it can't have children. 6775 */ 6776 cpu = iter->cpu; 6777 if (cpu == -1) 6778 cpu = READ_ONCE(iter->oncpu); 6779 6780 if (cpu == -1) 6781 continue; 6782 6783 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6784 if (err == -EAGAIN) { 6785 rcu_read_unlock(); 6786 goto restart; 6787 } 6788 } 6789 rcu_read_unlock(); 6790 } 6791 6792 /* 6793 * task tracking -- fork/exit 6794 * 6795 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6796 */ 6797 6798 struct perf_task_event { 6799 struct task_struct *task; 6800 struct perf_event_context *task_ctx; 6801 6802 struct { 6803 struct perf_event_header header; 6804 6805 u32 pid; 6806 u32 ppid; 6807 u32 tid; 6808 u32 ptid; 6809 u64 time; 6810 } event_id; 6811 }; 6812 6813 static int perf_event_task_match(struct perf_event *event) 6814 { 6815 return event->attr.comm || event->attr.mmap || 6816 event->attr.mmap2 || event->attr.mmap_data || 6817 event->attr.task; 6818 } 6819 6820 static void perf_event_task_output(struct perf_event *event, 6821 void *data) 6822 { 6823 struct perf_task_event *task_event = data; 6824 struct perf_output_handle handle; 6825 struct perf_sample_data sample; 6826 struct task_struct *task = task_event->task; 6827 int ret, size = task_event->event_id.header.size; 6828 6829 if (!perf_event_task_match(event)) 6830 return; 6831 6832 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6833 6834 ret = perf_output_begin(&handle, event, 6835 task_event->event_id.header.size); 6836 if (ret) 6837 goto out; 6838 6839 task_event->event_id.pid = perf_event_pid(event, task); 6840 task_event->event_id.ppid = perf_event_pid(event, current); 6841 6842 task_event->event_id.tid = perf_event_tid(event, task); 6843 task_event->event_id.ptid = perf_event_tid(event, current); 6844 6845 task_event->event_id.time = perf_event_clock(event); 6846 6847 perf_output_put(&handle, task_event->event_id); 6848 6849 perf_event__output_id_sample(event, &handle, &sample); 6850 6851 perf_output_end(&handle); 6852 out: 6853 task_event->event_id.header.size = size; 6854 } 6855 6856 static void perf_event_task(struct task_struct *task, 6857 struct perf_event_context *task_ctx, 6858 int new) 6859 { 6860 struct perf_task_event task_event; 6861 6862 if (!atomic_read(&nr_comm_events) && 6863 !atomic_read(&nr_mmap_events) && 6864 !atomic_read(&nr_task_events)) 6865 return; 6866 6867 task_event = (struct perf_task_event){ 6868 .task = task, 6869 .task_ctx = task_ctx, 6870 .event_id = { 6871 .header = { 6872 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6873 .misc = 0, 6874 .size = sizeof(task_event.event_id), 6875 }, 6876 /* .pid */ 6877 /* .ppid */ 6878 /* .tid */ 6879 /* .ptid */ 6880 /* .time */ 6881 }, 6882 }; 6883 6884 perf_iterate_sb(perf_event_task_output, 6885 &task_event, 6886 task_ctx); 6887 } 6888 6889 void perf_event_fork(struct task_struct *task) 6890 { 6891 perf_event_task(task, NULL, 1); 6892 perf_event_namespaces(task); 6893 } 6894 6895 /* 6896 * comm tracking 6897 */ 6898 6899 struct perf_comm_event { 6900 struct task_struct *task; 6901 char *comm; 6902 int comm_size; 6903 6904 struct { 6905 struct perf_event_header header; 6906 6907 u32 pid; 6908 u32 tid; 6909 } event_id; 6910 }; 6911 6912 static int perf_event_comm_match(struct perf_event *event) 6913 { 6914 return event->attr.comm; 6915 } 6916 6917 static void perf_event_comm_output(struct perf_event *event, 6918 void *data) 6919 { 6920 struct perf_comm_event *comm_event = data; 6921 struct perf_output_handle handle; 6922 struct perf_sample_data sample; 6923 int size = comm_event->event_id.header.size; 6924 int ret; 6925 6926 if (!perf_event_comm_match(event)) 6927 return; 6928 6929 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6930 ret = perf_output_begin(&handle, event, 6931 comm_event->event_id.header.size); 6932 6933 if (ret) 6934 goto out; 6935 6936 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6937 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6938 6939 perf_output_put(&handle, comm_event->event_id); 6940 __output_copy(&handle, comm_event->comm, 6941 comm_event->comm_size); 6942 6943 perf_event__output_id_sample(event, &handle, &sample); 6944 6945 perf_output_end(&handle); 6946 out: 6947 comm_event->event_id.header.size = size; 6948 } 6949 6950 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6951 { 6952 char comm[TASK_COMM_LEN]; 6953 unsigned int size; 6954 6955 memset(comm, 0, sizeof(comm)); 6956 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6957 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6958 6959 comm_event->comm = comm; 6960 comm_event->comm_size = size; 6961 6962 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6963 6964 perf_iterate_sb(perf_event_comm_output, 6965 comm_event, 6966 NULL); 6967 } 6968 6969 void perf_event_comm(struct task_struct *task, bool exec) 6970 { 6971 struct perf_comm_event comm_event; 6972 6973 if (!atomic_read(&nr_comm_events)) 6974 return; 6975 6976 comm_event = (struct perf_comm_event){ 6977 .task = task, 6978 /* .comm */ 6979 /* .comm_size */ 6980 .event_id = { 6981 .header = { 6982 .type = PERF_RECORD_COMM, 6983 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6984 /* .size */ 6985 }, 6986 /* .pid */ 6987 /* .tid */ 6988 }, 6989 }; 6990 6991 perf_event_comm_event(&comm_event); 6992 } 6993 6994 /* 6995 * namespaces tracking 6996 */ 6997 6998 struct perf_namespaces_event { 6999 struct task_struct *task; 7000 7001 struct { 7002 struct perf_event_header header; 7003 7004 u32 pid; 7005 u32 tid; 7006 u64 nr_namespaces; 7007 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7008 } event_id; 7009 }; 7010 7011 static int perf_event_namespaces_match(struct perf_event *event) 7012 { 7013 return event->attr.namespaces; 7014 } 7015 7016 static void perf_event_namespaces_output(struct perf_event *event, 7017 void *data) 7018 { 7019 struct perf_namespaces_event *namespaces_event = data; 7020 struct perf_output_handle handle; 7021 struct perf_sample_data sample; 7022 u16 header_size = namespaces_event->event_id.header.size; 7023 int ret; 7024 7025 if (!perf_event_namespaces_match(event)) 7026 return; 7027 7028 perf_event_header__init_id(&namespaces_event->event_id.header, 7029 &sample, event); 7030 ret = perf_output_begin(&handle, event, 7031 namespaces_event->event_id.header.size); 7032 if (ret) 7033 goto out; 7034 7035 namespaces_event->event_id.pid = perf_event_pid(event, 7036 namespaces_event->task); 7037 namespaces_event->event_id.tid = perf_event_tid(event, 7038 namespaces_event->task); 7039 7040 perf_output_put(&handle, namespaces_event->event_id); 7041 7042 perf_event__output_id_sample(event, &handle, &sample); 7043 7044 perf_output_end(&handle); 7045 out: 7046 namespaces_event->event_id.header.size = header_size; 7047 } 7048 7049 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7050 struct task_struct *task, 7051 const struct proc_ns_operations *ns_ops) 7052 { 7053 struct path ns_path; 7054 struct inode *ns_inode; 7055 void *error; 7056 7057 error = ns_get_path(&ns_path, task, ns_ops); 7058 if (!error) { 7059 ns_inode = ns_path.dentry->d_inode; 7060 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7061 ns_link_info->ino = ns_inode->i_ino; 7062 path_put(&ns_path); 7063 } 7064 } 7065 7066 void perf_event_namespaces(struct task_struct *task) 7067 { 7068 struct perf_namespaces_event namespaces_event; 7069 struct perf_ns_link_info *ns_link_info; 7070 7071 if (!atomic_read(&nr_namespaces_events)) 7072 return; 7073 7074 namespaces_event = (struct perf_namespaces_event){ 7075 .task = task, 7076 .event_id = { 7077 .header = { 7078 .type = PERF_RECORD_NAMESPACES, 7079 .misc = 0, 7080 .size = sizeof(namespaces_event.event_id), 7081 }, 7082 /* .pid */ 7083 /* .tid */ 7084 .nr_namespaces = NR_NAMESPACES, 7085 /* .link_info[NR_NAMESPACES] */ 7086 }, 7087 }; 7088 7089 ns_link_info = namespaces_event.event_id.link_info; 7090 7091 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7092 task, &mntns_operations); 7093 7094 #ifdef CONFIG_USER_NS 7095 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7096 task, &userns_operations); 7097 #endif 7098 #ifdef CONFIG_NET_NS 7099 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7100 task, &netns_operations); 7101 #endif 7102 #ifdef CONFIG_UTS_NS 7103 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7104 task, &utsns_operations); 7105 #endif 7106 #ifdef CONFIG_IPC_NS 7107 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7108 task, &ipcns_operations); 7109 #endif 7110 #ifdef CONFIG_PID_NS 7111 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7112 task, &pidns_operations); 7113 #endif 7114 #ifdef CONFIG_CGROUPS 7115 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7116 task, &cgroupns_operations); 7117 #endif 7118 7119 perf_iterate_sb(perf_event_namespaces_output, 7120 &namespaces_event, 7121 NULL); 7122 } 7123 7124 /* 7125 * mmap tracking 7126 */ 7127 7128 struct perf_mmap_event { 7129 struct vm_area_struct *vma; 7130 7131 const char *file_name; 7132 int file_size; 7133 int maj, min; 7134 u64 ino; 7135 u64 ino_generation; 7136 u32 prot, flags; 7137 7138 struct { 7139 struct perf_event_header header; 7140 7141 u32 pid; 7142 u32 tid; 7143 u64 start; 7144 u64 len; 7145 u64 pgoff; 7146 } event_id; 7147 }; 7148 7149 static int perf_event_mmap_match(struct perf_event *event, 7150 void *data) 7151 { 7152 struct perf_mmap_event *mmap_event = data; 7153 struct vm_area_struct *vma = mmap_event->vma; 7154 int executable = vma->vm_flags & VM_EXEC; 7155 7156 return (!executable && event->attr.mmap_data) || 7157 (executable && (event->attr.mmap || event->attr.mmap2)); 7158 } 7159 7160 static void perf_event_mmap_output(struct perf_event *event, 7161 void *data) 7162 { 7163 struct perf_mmap_event *mmap_event = data; 7164 struct perf_output_handle handle; 7165 struct perf_sample_data sample; 7166 int size = mmap_event->event_id.header.size; 7167 int ret; 7168 7169 if (!perf_event_mmap_match(event, data)) 7170 return; 7171 7172 if (event->attr.mmap2) { 7173 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7174 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7175 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7176 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7177 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7178 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7179 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7180 } 7181 7182 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7183 ret = perf_output_begin(&handle, event, 7184 mmap_event->event_id.header.size); 7185 if (ret) 7186 goto out; 7187 7188 mmap_event->event_id.pid = perf_event_pid(event, current); 7189 mmap_event->event_id.tid = perf_event_tid(event, current); 7190 7191 perf_output_put(&handle, mmap_event->event_id); 7192 7193 if (event->attr.mmap2) { 7194 perf_output_put(&handle, mmap_event->maj); 7195 perf_output_put(&handle, mmap_event->min); 7196 perf_output_put(&handle, mmap_event->ino); 7197 perf_output_put(&handle, mmap_event->ino_generation); 7198 perf_output_put(&handle, mmap_event->prot); 7199 perf_output_put(&handle, mmap_event->flags); 7200 } 7201 7202 __output_copy(&handle, mmap_event->file_name, 7203 mmap_event->file_size); 7204 7205 perf_event__output_id_sample(event, &handle, &sample); 7206 7207 perf_output_end(&handle); 7208 out: 7209 mmap_event->event_id.header.size = size; 7210 } 7211 7212 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7213 { 7214 struct vm_area_struct *vma = mmap_event->vma; 7215 struct file *file = vma->vm_file; 7216 int maj = 0, min = 0; 7217 u64 ino = 0, gen = 0; 7218 u32 prot = 0, flags = 0; 7219 unsigned int size; 7220 char tmp[16]; 7221 char *buf = NULL; 7222 char *name; 7223 7224 if (vma->vm_flags & VM_READ) 7225 prot |= PROT_READ; 7226 if (vma->vm_flags & VM_WRITE) 7227 prot |= PROT_WRITE; 7228 if (vma->vm_flags & VM_EXEC) 7229 prot |= PROT_EXEC; 7230 7231 if (vma->vm_flags & VM_MAYSHARE) 7232 flags = MAP_SHARED; 7233 else 7234 flags = MAP_PRIVATE; 7235 7236 if (vma->vm_flags & VM_DENYWRITE) 7237 flags |= MAP_DENYWRITE; 7238 if (vma->vm_flags & VM_MAYEXEC) 7239 flags |= MAP_EXECUTABLE; 7240 if (vma->vm_flags & VM_LOCKED) 7241 flags |= MAP_LOCKED; 7242 if (vma->vm_flags & VM_HUGETLB) 7243 flags |= MAP_HUGETLB; 7244 7245 if (file) { 7246 struct inode *inode; 7247 dev_t dev; 7248 7249 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7250 if (!buf) { 7251 name = "//enomem"; 7252 goto cpy_name; 7253 } 7254 /* 7255 * d_path() works from the end of the rb backwards, so we 7256 * need to add enough zero bytes after the string to handle 7257 * the 64bit alignment we do later. 7258 */ 7259 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7260 if (IS_ERR(name)) { 7261 name = "//toolong"; 7262 goto cpy_name; 7263 } 7264 inode = file_inode(vma->vm_file); 7265 dev = inode->i_sb->s_dev; 7266 ino = inode->i_ino; 7267 gen = inode->i_generation; 7268 maj = MAJOR(dev); 7269 min = MINOR(dev); 7270 7271 goto got_name; 7272 } else { 7273 if (vma->vm_ops && vma->vm_ops->name) { 7274 name = (char *) vma->vm_ops->name(vma); 7275 if (name) 7276 goto cpy_name; 7277 } 7278 7279 name = (char *)arch_vma_name(vma); 7280 if (name) 7281 goto cpy_name; 7282 7283 if (vma->vm_start <= vma->vm_mm->start_brk && 7284 vma->vm_end >= vma->vm_mm->brk) { 7285 name = "[heap]"; 7286 goto cpy_name; 7287 } 7288 if (vma->vm_start <= vma->vm_mm->start_stack && 7289 vma->vm_end >= vma->vm_mm->start_stack) { 7290 name = "[stack]"; 7291 goto cpy_name; 7292 } 7293 7294 name = "//anon"; 7295 goto cpy_name; 7296 } 7297 7298 cpy_name: 7299 strlcpy(tmp, name, sizeof(tmp)); 7300 name = tmp; 7301 got_name: 7302 /* 7303 * Since our buffer works in 8 byte units we need to align our string 7304 * size to a multiple of 8. However, we must guarantee the tail end is 7305 * zero'd out to avoid leaking random bits to userspace. 7306 */ 7307 size = strlen(name)+1; 7308 while (!IS_ALIGNED(size, sizeof(u64))) 7309 name[size++] = '\0'; 7310 7311 mmap_event->file_name = name; 7312 mmap_event->file_size = size; 7313 mmap_event->maj = maj; 7314 mmap_event->min = min; 7315 mmap_event->ino = ino; 7316 mmap_event->ino_generation = gen; 7317 mmap_event->prot = prot; 7318 mmap_event->flags = flags; 7319 7320 if (!(vma->vm_flags & VM_EXEC)) 7321 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7322 7323 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7324 7325 perf_iterate_sb(perf_event_mmap_output, 7326 mmap_event, 7327 NULL); 7328 7329 kfree(buf); 7330 } 7331 7332 /* 7333 * Check whether inode and address range match filter criteria. 7334 */ 7335 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7336 struct file *file, unsigned long offset, 7337 unsigned long size) 7338 { 7339 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7340 if (!filter->path.dentry) 7341 return false; 7342 7343 if (d_inode(filter->path.dentry) != file_inode(file)) 7344 return false; 7345 7346 if (filter->offset > offset + size) 7347 return false; 7348 7349 if (filter->offset + filter->size < offset) 7350 return false; 7351 7352 return true; 7353 } 7354 7355 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7356 { 7357 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7358 struct vm_area_struct *vma = data; 7359 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 7360 struct file *file = vma->vm_file; 7361 struct perf_addr_filter *filter; 7362 unsigned int restart = 0, count = 0; 7363 7364 if (!has_addr_filter(event)) 7365 return; 7366 7367 if (!file) 7368 return; 7369 7370 raw_spin_lock_irqsave(&ifh->lock, flags); 7371 list_for_each_entry(filter, &ifh->list, entry) { 7372 if (perf_addr_filter_match(filter, file, off, 7373 vma->vm_end - vma->vm_start)) { 7374 event->addr_filters_offs[count] = vma->vm_start; 7375 restart++; 7376 } 7377 7378 count++; 7379 } 7380 7381 if (restart) 7382 event->addr_filters_gen++; 7383 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7384 7385 if (restart) 7386 perf_event_stop(event, 1); 7387 } 7388 7389 /* 7390 * Adjust all task's events' filters to the new vma 7391 */ 7392 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7393 { 7394 struct perf_event_context *ctx; 7395 int ctxn; 7396 7397 /* 7398 * Data tracing isn't supported yet and as such there is no need 7399 * to keep track of anything that isn't related to executable code: 7400 */ 7401 if (!(vma->vm_flags & VM_EXEC)) 7402 return; 7403 7404 rcu_read_lock(); 7405 for_each_task_context_nr(ctxn) { 7406 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7407 if (!ctx) 7408 continue; 7409 7410 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7411 } 7412 rcu_read_unlock(); 7413 } 7414 7415 void perf_event_mmap(struct vm_area_struct *vma) 7416 { 7417 struct perf_mmap_event mmap_event; 7418 7419 if (!atomic_read(&nr_mmap_events)) 7420 return; 7421 7422 mmap_event = (struct perf_mmap_event){ 7423 .vma = vma, 7424 /* .file_name */ 7425 /* .file_size */ 7426 .event_id = { 7427 .header = { 7428 .type = PERF_RECORD_MMAP, 7429 .misc = PERF_RECORD_MISC_USER, 7430 /* .size */ 7431 }, 7432 /* .pid */ 7433 /* .tid */ 7434 .start = vma->vm_start, 7435 .len = vma->vm_end - vma->vm_start, 7436 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7437 }, 7438 /* .maj (attr_mmap2 only) */ 7439 /* .min (attr_mmap2 only) */ 7440 /* .ino (attr_mmap2 only) */ 7441 /* .ino_generation (attr_mmap2 only) */ 7442 /* .prot (attr_mmap2 only) */ 7443 /* .flags (attr_mmap2 only) */ 7444 }; 7445 7446 perf_addr_filters_adjust(vma); 7447 perf_event_mmap_event(&mmap_event); 7448 } 7449 7450 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7451 unsigned long size, u64 flags) 7452 { 7453 struct perf_output_handle handle; 7454 struct perf_sample_data sample; 7455 struct perf_aux_event { 7456 struct perf_event_header header; 7457 u64 offset; 7458 u64 size; 7459 u64 flags; 7460 } rec = { 7461 .header = { 7462 .type = PERF_RECORD_AUX, 7463 .misc = 0, 7464 .size = sizeof(rec), 7465 }, 7466 .offset = head, 7467 .size = size, 7468 .flags = flags, 7469 }; 7470 int ret; 7471 7472 perf_event_header__init_id(&rec.header, &sample, event); 7473 ret = perf_output_begin(&handle, event, rec.header.size); 7474 7475 if (ret) 7476 return; 7477 7478 perf_output_put(&handle, rec); 7479 perf_event__output_id_sample(event, &handle, &sample); 7480 7481 perf_output_end(&handle); 7482 } 7483 7484 /* 7485 * Lost/dropped samples logging 7486 */ 7487 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7488 { 7489 struct perf_output_handle handle; 7490 struct perf_sample_data sample; 7491 int ret; 7492 7493 struct { 7494 struct perf_event_header header; 7495 u64 lost; 7496 } lost_samples_event = { 7497 .header = { 7498 .type = PERF_RECORD_LOST_SAMPLES, 7499 .misc = 0, 7500 .size = sizeof(lost_samples_event), 7501 }, 7502 .lost = lost, 7503 }; 7504 7505 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7506 7507 ret = perf_output_begin(&handle, event, 7508 lost_samples_event.header.size); 7509 if (ret) 7510 return; 7511 7512 perf_output_put(&handle, lost_samples_event); 7513 perf_event__output_id_sample(event, &handle, &sample); 7514 perf_output_end(&handle); 7515 } 7516 7517 /* 7518 * context_switch tracking 7519 */ 7520 7521 struct perf_switch_event { 7522 struct task_struct *task; 7523 struct task_struct *next_prev; 7524 7525 struct { 7526 struct perf_event_header header; 7527 u32 next_prev_pid; 7528 u32 next_prev_tid; 7529 } event_id; 7530 }; 7531 7532 static int perf_event_switch_match(struct perf_event *event) 7533 { 7534 return event->attr.context_switch; 7535 } 7536 7537 static void perf_event_switch_output(struct perf_event *event, void *data) 7538 { 7539 struct perf_switch_event *se = data; 7540 struct perf_output_handle handle; 7541 struct perf_sample_data sample; 7542 int ret; 7543 7544 if (!perf_event_switch_match(event)) 7545 return; 7546 7547 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7548 if (event->ctx->task) { 7549 se->event_id.header.type = PERF_RECORD_SWITCH; 7550 se->event_id.header.size = sizeof(se->event_id.header); 7551 } else { 7552 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7553 se->event_id.header.size = sizeof(se->event_id); 7554 se->event_id.next_prev_pid = 7555 perf_event_pid(event, se->next_prev); 7556 se->event_id.next_prev_tid = 7557 perf_event_tid(event, se->next_prev); 7558 } 7559 7560 perf_event_header__init_id(&se->event_id.header, &sample, event); 7561 7562 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7563 if (ret) 7564 return; 7565 7566 if (event->ctx->task) 7567 perf_output_put(&handle, se->event_id.header); 7568 else 7569 perf_output_put(&handle, se->event_id); 7570 7571 perf_event__output_id_sample(event, &handle, &sample); 7572 7573 perf_output_end(&handle); 7574 } 7575 7576 static void perf_event_switch(struct task_struct *task, 7577 struct task_struct *next_prev, bool sched_in) 7578 { 7579 struct perf_switch_event switch_event; 7580 7581 /* N.B. caller checks nr_switch_events != 0 */ 7582 7583 switch_event = (struct perf_switch_event){ 7584 .task = task, 7585 .next_prev = next_prev, 7586 .event_id = { 7587 .header = { 7588 /* .type */ 7589 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7590 /* .size */ 7591 }, 7592 /* .next_prev_pid */ 7593 /* .next_prev_tid */ 7594 }, 7595 }; 7596 7597 if (!sched_in && task->state == TASK_RUNNING) 7598 switch_event.event_id.header.misc |= 7599 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7600 7601 perf_iterate_sb(perf_event_switch_output, 7602 &switch_event, 7603 NULL); 7604 } 7605 7606 /* 7607 * IRQ throttle logging 7608 */ 7609 7610 static void perf_log_throttle(struct perf_event *event, int enable) 7611 { 7612 struct perf_output_handle handle; 7613 struct perf_sample_data sample; 7614 int ret; 7615 7616 struct { 7617 struct perf_event_header header; 7618 u64 time; 7619 u64 id; 7620 u64 stream_id; 7621 } throttle_event = { 7622 .header = { 7623 .type = PERF_RECORD_THROTTLE, 7624 .misc = 0, 7625 .size = sizeof(throttle_event), 7626 }, 7627 .time = perf_event_clock(event), 7628 .id = primary_event_id(event), 7629 .stream_id = event->id, 7630 }; 7631 7632 if (enable) 7633 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7634 7635 perf_event_header__init_id(&throttle_event.header, &sample, event); 7636 7637 ret = perf_output_begin(&handle, event, 7638 throttle_event.header.size); 7639 if (ret) 7640 return; 7641 7642 perf_output_put(&handle, throttle_event); 7643 perf_event__output_id_sample(event, &handle, &sample); 7644 perf_output_end(&handle); 7645 } 7646 7647 void perf_event_itrace_started(struct perf_event *event) 7648 { 7649 event->attach_state |= PERF_ATTACH_ITRACE; 7650 } 7651 7652 static void perf_log_itrace_start(struct perf_event *event) 7653 { 7654 struct perf_output_handle handle; 7655 struct perf_sample_data sample; 7656 struct perf_aux_event { 7657 struct perf_event_header header; 7658 u32 pid; 7659 u32 tid; 7660 } rec; 7661 int ret; 7662 7663 if (event->parent) 7664 event = event->parent; 7665 7666 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7667 event->attach_state & PERF_ATTACH_ITRACE) 7668 return; 7669 7670 rec.header.type = PERF_RECORD_ITRACE_START; 7671 rec.header.misc = 0; 7672 rec.header.size = sizeof(rec); 7673 rec.pid = perf_event_pid(event, current); 7674 rec.tid = perf_event_tid(event, current); 7675 7676 perf_event_header__init_id(&rec.header, &sample, event); 7677 ret = perf_output_begin(&handle, event, rec.header.size); 7678 7679 if (ret) 7680 return; 7681 7682 perf_output_put(&handle, rec); 7683 perf_event__output_id_sample(event, &handle, &sample); 7684 7685 perf_output_end(&handle); 7686 } 7687 7688 static int 7689 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7690 { 7691 struct hw_perf_event *hwc = &event->hw; 7692 int ret = 0; 7693 u64 seq; 7694 7695 seq = __this_cpu_read(perf_throttled_seq); 7696 if (seq != hwc->interrupts_seq) { 7697 hwc->interrupts_seq = seq; 7698 hwc->interrupts = 1; 7699 } else { 7700 hwc->interrupts++; 7701 if (unlikely(throttle 7702 && hwc->interrupts >= max_samples_per_tick)) { 7703 __this_cpu_inc(perf_throttled_count); 7704 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7705 hwc->interrupts = MAX_INTERRUPTS; 7706 perf_log_throttle(event, 0); 7707 ret = 1; 7708 } 7709 } 7710 7711 if (event->attr.freq) { 7712 u64 now = perf_clock(); 7713 s64 delta = now - hwc->freq_time_stamp; 7714 7715 hwc->freq_time_stamp = now; 7716 7717 if (delta > 0 && delta < 2*TICK_NSEC) 7718 perf_adjust_period(event, delta, hwc->last_period, true); 7719 } 7720 7721 return ret; 7722 } 7723 7724 int perf_event_account_interrupt(struct perf_event *event) 7725 { 7726 return __perf_event_account_interrupt(event, 1); 7727 } 7728 7729 /* 7730 * Generic event overflow handling, sampling. 7731 */ 7732 7733 static int __perf_event_overflow(struct perf_event *event, 7734 int throttle, struct perf_sample_data *data, 7735 struct pt_regs *regs) 7736 { 7737 int events = atomic_read(&event->event_limit); 7738 int ret = 0; 7739 7740 /* 7741 * Non-sampling counters might still use the PMI to fold short 7742 * hardware counters, ignore those. 7743 */ 7744 if (unlikely(!is_sampling_event(event))) 7745 return 0; 7746 7747 ret = __perf_event_account_interrupt(event, throttle); 7748 7749 /* 7750 * XXX event_limit might not quite work as expected on inherited 7751 * events 7752 */ 7753 7754 event->pending_kill = POLL_IN; 7755 if (events && atomic_dec_and_test(&event->event_limit)) { 7756 ret = 1; 7757 event->pending_kill = POLL_HUP; 7758 7759 perf_event_disable_inatomic(event); 7760 } 7761 7762 READ_ONCE(event->overflow_handler)(event, data, regs); 7763 7764 if (*perf_event_fasync(event) && event->pending_kill) { 7765 event->pending_wakeup = 1; 7766 irq_work_queue(&event->pending); 7767 } 7768 7769 return ret; 7770 } 7771 7772 int perf_event_overflow(struct perf_event *event, 7773 struct perf_sample_data *data, 7774 struct pt_regs *regs) 7775 { 7776 return __perf_event_overflow(event, 1, data, regs); 7777 } 7778 7779 /* 7780 * Generic software event infrastructure 7781 */ 7782 7783 struct swevent_htable { 7784 struct swevent_hlist *swevent_hlist; 7785 struct mutex hlist_mutex; 7786 int hlist_refcount; 7787 7788 /* Recursion avoidance in each contexts */ 7789 int recursion[PERF_NR_CONTEXTS]; 7790 }; 7791 7792 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7793 7794 /* 7795 * We directly increment event->count and keep a second value in 7796 * event->hw.period_left to count intervals. This period event 7797 * is kept in the range [-sample_period, 0] so that we can use the 7798 * sign as trigger. 7799 */ 7800 7801 u64 perf_swevent_set_period(struct perf_event *event) 7802 { 7803 struct hw_perf_event *hwc = &event->hw; 7804 u64 period = hwc->last_period; 7805 u64 nr, offset; 7806 s64 old, val; 7807 7808 hwc->last_period = hwc->sample_period; 7809 7810 again: 7811 old = val = local64_read(&hwc->period_left); 7812 if (val < 0) 7813 return 0; 7814 7815 nr = div64_u64(period + val, period); 7816 offset = nr * period; 7817 val -= offset; 7818 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7819 goto again; 7820 7821 return nr; 7822 } 7823 7824 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7825 struct perf_sample_data *data, 7826 struct pt_regs *regs) 7827 { 7828 struct hw_perf_event *hwc = &event->hw; 7829 int throttle = 0; 7830 7831 if (!overflow) 7832 overflow = perf_swevent_set_period(event); 7833 7834 if (hwc->interrupts == MAX_INTERRUPTS) 7835 return; 7836 7837 for (; overflow; overflow--) { 7838 if (__perf_event_overflow(event, throttle, 7839 data, regs)) { 7840 /* 7841 * We inhibit the overflow from happening when 7842 * hwc->interrupts == MAX_INTERRUPTS. 7843 */ 7844 break; 7845 } 7846 throttle = 1; 7847 } 7848 } 7849 7850 static void perf_swevent_event(struct perf_event *event, u64 nr, 7851 struct perf_sample_data *data, 7852 struct pt_regs *regs) 7853 { 7854 struct hw_perf_event *hwc = &event->hw; 7855 7856 local64_add(nr, &event->count); 7857 7858 if (!regs) 7859 return; 7860 7861 if (!is_sampling_event(event)) 7862 return; 7863 7864 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7865 data->period = nr; 7866 return perf_swevent_overflow(event, 1, data, regs); 7867 } else 7868 data->period = event->hw.last_period; 7869 7870 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7871 return perf_swevent_overflow(event, 1, data, regs); 7872 7873 if (local64_add_negative(nr, &hwc->period_left)) 7874 return; 7875 7876 perf_swevent_overflow(event, 0, data, regs); 7877 } 7878 7879 static int perf_exclude_event(struct perf_event *event, 7880 struct pt_regs *regs) 7881 { 7882 if (event->hw.state & PERF_HES_STOPPED) 7883 return 1; 7884 7885 if (regs) { 7886 if (event->attr.exclude_user && user_mode(regs)) 7887 return 1; 7888 7889 if (event->attr.exclude_kernel && !user_mode(regs)) 7890 return 1; 7891 } 7892 7893 return 0; 7894 } 7895 7896 static int perf_swevent_match(struct perf_event *event, 7897 enum perf_type_id type, 7898 u32 event_id, 7899 struct perf_sample_data *data, 7900 struct pt_regs *regs) 7901 { 7902 if (event->attr.type != type) 7903 return 0; 7904 7905 if (event->attr.config != event_id) 7906 return 0; 7907 7908 if (perf_exclude_event(event, regs)) 7909 return 0; 7910 7911 return 1; 7912 } 7913 7914 static inline u64 swevent_hash(u64 type, u32 event_id) 7915 { 7916 u64 val = event_id | (type << 32); 7917 7918 return hash_64(val, SWEVENT_HLIST_BITS); 7919 } 7920 7921 static inline struct hlist_head * 7922 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7923 { 7924 u64 hash = swevent_hash(type, event_id); 7925 7926 return &hlist->heads[hash]; 7927 } 7928 7929 /* For the read side: events when they trigger */ 7930 static inline struct hlist_head * 7931 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7932 { 7933 struct swevent_hlist *hlist; 7934 7935 hlist = rcu_dereference(swhash->swevent_hlist); 7936 if (!hlist) 7937 return NULL; 7938 7939 return __find_swevent_head(hlist, type, event_id); 7940 } 7941 7942 /* For the event head insertion and removal in the hlist */ 7943 static inline struct hlist_head * 7944 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7945 { 7946 struct swevent_hlist *hlist; 7947 u32 event_id = event->attr.config; 7948 u64 type = event->attr.type; 7949 7950 /* 7951 * Event scheduling is always serialized against hlist allocation 7952 * and release. Which makes the protected version suitable here. 7953 * The context lock guarantees that. 7954 */ 7955 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7956 lockdep_is_held(&event->ctx->lock)); 7957 if (!hlist) 7958 return NULL; 7959 7960 return __find_swevent_head(hlist, type, event_id); 7961 } 7962 7963 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7964 u64 nr, 7965 struct perf_sample_data *data, 7966 struct pt_regs *regs) 7967 { 7968 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7969 struct perf_event *event; 7970 struct hlist_head *head; 7971 7972 rcu_read_lock(); 7973 head = find_swevent_head_rcu(swhash, type, event_id); 7974 if (!head) 7975 goto end; 7976 7977 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7978 if (perf_swevent_match(event, type, event_id, data, regs)) 7979 perf_swevent_event(event, nr, data, regs); 7980 } 7981 end: 7982 rcu_read_unlock(); 7983 } 7984 7985 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7986 7987 int perf_swevent_get_recursion_context(void) 7988 { 7989 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7990 7991 return get_recursion_context(swhash->recursion); 7992 } 7993 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7994 7995 void perf_swevent_put_recursion_context(int rctx) 7996 { 7997 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7998 7999 put_recursion_context(swhash->recursion, rctx); 8000 } 8001 8002 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8003 { 8004 struct perf_sample_data data; 8005 8006 if (WARN_ON_ONCE(!regs)) 8007 return; 8008 8009 perf_sample_data_init(&data, addr, 0); 8010 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8011 } 8012 8013 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8014 { 8015 int rctx; 8016 8017 preempt_disable_notrace(); 8018 rctx = perf_swevent_get_recursion_context(); 8019 if (unlikely(rctx < 0)) 8020 goto fail; 8021 8022 ___perf_sw_event(event_id, nr, regs, addr); 8023 8024 perf_swevent_put_recursion_context(rctx); 8025 fail: 8026 preempt_enable_notrace(); 8027 } 8028 8029 static void perf_swevent_read(struct perf_event *event) 8030 { 8031 } 8032 8033 static int perf_swevent_add(struct perf_event *event, int flags) 8034 { 8035 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8036 struct hw_perf_event *hwc = &event->hw; 8037 struct hlist_head *head; 8038 8039 if (is_sampling_event(event)) { 8040 hwc->last_period = hwc->sample_period; 8041 perf_swevent_set_period(event); 8042 } 8043 8044 hwc->state = !(flags & PERF_EF_START); 8045 8046 head = find_swevent_head(swhash, event); 8047 if (WARN_ON_ONCE(!head)) 8048 return -EINVAL; 8049 8050 hlist_add_head_rcu(&event->hlist_entry, head); 8051 perf_event_update_userpage(event); 8052 8053 return 0; 8054 } 8055 8056 static void perf_swevent_del(struct perf_event *event, int flags) 8057 { 8058 hlist_del_rcu(&event->hlist_entry); 8059 } 8060 8061 static void perf_swevent_start(struct perf_event *event, int flags) 8062 { 8063 event->hw.state = 0; 8064 } 8065 8066 static void perf_swevent_stop(struct perf_event *event, int flags) 8067 { 8068 event->hw.state = PERF_HES_STOPPED; 8069 } 8070 8071 /* Deref the hlist from the update side */ 8072 static inline struct swevent_hlist * 8073 swevent_hlist_deref(struct swevent_htable *swhash) 8074 { 8075 return rcu_dereference_protected(swhash->swevent_hlist, 8076 lockdep_is_held(&swhash->hlist_mutex)); 8077 } 8078 8079 static void swevent_hlist_release(struct swevent_htable *swhash) 8080 { 8081 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8082 8083 if (!hlist) 8084 return; 8085 8086 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8087 kfree_rcu(hlist, rcu_head); 8088 } 8089 8090 static void swevent_hlist_put_cpu(int cpu) 8091 { 8092 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8093 8094 mutex_lock(&swhash->hlist_mutex); 8095 8096 if (!--swhash->hlist_refcount) 8097 swevent_hlist_release(swhash); 8098 8099 mutex_unlock(&swhash->hlist_mutex); 8100 } 8101 8102 static void swevent_hlist_put(void) 8103 { 8104 int cpu; 8105 8106 for_each_possible_cpu(cpu) 8107 swevent_hlist_put_cpu(cpu); 8108 } 8109 8110 static int swevent_hlist_get_cpu(int cpu) 8111 { 8112 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8113 int err = 0; 8114 8115 mutex_lock(&swhash->hlist_mutex); 8116 if (!swevent_hlist_deref(swhash) && 8117 cpumask_test_cpu(cpu, perf_online_mask)) { 8118 struct swevent_hlist *hlist; 8119 8120 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8121 if (!hlist) { 8122 err = -ENOMEM; 8123 goto exit; 8124 } 8125 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8126 } 8127 swhash->hlist_refcount++; 8128 exit: 8129 mutex_unlock(&swhash->hlist_mutex); 8130 8131 return err; 8132 } 8133 8134 static int swevent_hlist_get(void) 8135 { 8136 int err, cpu, failed_cpu; 8137 8138 mutex_lock(&pmus_lock); 8139 for_each_possible_cpu(cpu) { 8140 err = swevent_hlist_get_cpu(cpu); 8141 if (err) { 8142 failed_cpu = cpu; 8143 goto fail; 8144 } 8145 } 8146 mutex_unlock(&pmus_lock); 8147 return 0; 8148 fail: 8149 for_each_possible_cpu(cpu) { 8150 if (cpu == failed_cpu) 8151 break; 8152 swevent_hlist_put_cpu(cpu); 8153 } 8154 mutex_unlock(&pmus_lock); 8155 return err; 8156 } 8157 8158 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8159 8160 static void sw_perf_event_destroy(struct perf_event *event) 8161 { 8162 u64 event_id = event->attr.config; 8163 8164 WARN_ON(event->parent); 8165 8166 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8167 swevent_hlist_put(); 8168 } 8169 8170 static int perf_swevent_init(struct perf_event *event) 8171 { 8172 u64 event_id = event->attr.config; 8173 8174 if (event->attr.type != PERF_TYPE_SOFTWARE) 8175 return -ENOENT; 8176 8177 /* 8178 * no branch sampling for software events 8179 */ 8180 if (has_branch_stack(event)) 8181 return -EOPNOTSUPP; 8182 8183 switch (event_id) { 8184 case PERF_COUNT_SW_CPU_CLOCK: 8185 case PERF_COUNT_SW_TASK_CLOCK: 8186 return -ENOENT; 8187 8188 default: 8189 break; 8190 } 8191 8192 if (event_id >= PERF_COUNT_SW_MAX) 8193 return -ENOENT; 8194 8195 if (!event->parent) { 8196 int err; 8197 8198 err = swevent_hlist_get(); 8199 if (err) 8200 return err; 8201 8202 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8203 event->destroy = sw_perf_event_destroy; 8204 } 8205 8206 return 0; 8207 } 8208 8209 static struct pmu perf_swevent = { 8210 .task_ctx_nr = perf_sw_context, 8211 8212 .capabilities = PERF_PMU_CAP_NO_NMI, 8213 8214 .event_init = perf_swevent_init, 8215 .add = perf_swevent_add, 8216 .del = perf_swevent_del, 8217 .start = perf_swevent_start, 8218 .stop = perf_swevent_stop, 8219 .read = perf_swevent_read, 8220 }; 8221 8222 #ifdef CONFIG_EVENT_TRACING 8223 8224 static int perf_tp_filter_match(struct perf_event *event, 8225 struct perf_sample_data *data) 8226 { 8227 void *record = data->raw->frag.data; 8228 8229 /* only top level events have filters set */ 8230 if (event->parent) 8231 event = event->parent; 8232 8233 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8234 return 1; 8235 return 0; 8236 } 8237 8238 static int perf_tp_event_match(struct perf_event *event, 8239 struct perf_sample_data *data, 8240 struct pt_regs *regs) 8241 { 8242 if (event->hw.state & PERF_HES_STOPPED) 8243 return 0; 8244 /* 8245 * All tracepoints are from kernel-space. 8246 */ 8247 if (event->attr.exclude_kernel) 8248 return 0; 8249 8250 if (!perf_tp_filter_match(event, data)) 8251 return 0; 8252 8253 return 1; 8254 } 8255 8256 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8257 struct trace_event_call *call, u64 count, 8258 struct pt_regs *regs, struct hlist_head *head, 8259 struct task_struct *task) 8260 { 8261 if (bpf_prog_array_valid(call)) { 8262 *(struct pt_regs **)raw_data = regs; 8263 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8264 perf_swevent_put_recursion_context(rctx); 8265 return; 8266 } 8267 } 8268 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8269 rctx, task); 8270 } 8271 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8272 8273 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8274 struct pt_regs *regs, struct hlist_head *head, int rctx, 8275 struct task_struct *task) 8276 { 8277 struct perf_sample_data data; 8278 struct perf_event *event; 8279 8280 struct perf_raw_record raw = { 8281 .frag = { 8282 .size = entry_size, 8283 .data = record, 8284 }, 8285 }; 8286 8287 perf_sample_data_init(&data, 0, 0); 8288 data.raw = &raw; 8289 8290 perf_trace_buf_update(record, event_type); 8291 8292 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8293 if (perf_tp_event_match(event, &data, regs)) 8294 perf_swevent_event(event, count, &data, regs); 8295 } 8296 8297 /* 8298 * If we got specified a target task, also iterate its context and 8299 * deliver this event there too. 8300 */ 8301 if (task && task != current) { 8302 struct perf_event_context *ctx; 8303 struct trace_entry *entry = record; 8304 8305 rcu_read_lock(); 8306 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8307 if (!ctx) 8308 goto unlock; 8309 8310 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8311 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8312 continue; 8313 if (event->attr.config != entry->type) 8314 continue; 8315 if (perf_tp_event_match(event, &data, regs)) 8316 perf_swevent_event(event, count, &data, regs); 8317 } 8318 unlock: 8319 rcu_read_unlock(); 8320 } 8321 8322 perf_swevent_put_recursion_context(rctx); 8323 } 8324 EXPORT_SYMBOL_GPL(perf_tp_event); 8325 8326 static void tp_perf_event_destroy(struct perf_event *event) 8327 { 8328 perf_trace_destroy(event); 8329 } 8330 8331 static int perf_tp_event_init(struct perf_event *event) 8332 { 8333 int err; 8334 8335 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8336 return -ENOENT; 8337 8338 /* 8339 * no branch sampling for tracepoint events 8340 */ 8341 if (has_branch_stack(event)) 8342 return -EOPNOTSUPP; 8343 8344 err = perf_trace_init(event); 8345 if (err) 8346 return err; 8347 8348 event->destroy = tp_perf_event_destroy; 8349 8350 return 0; 8351 } 8352 8353 static struct pmu perf_tracepoint = { 8354 .task_ctx_nr = perf_sw_context, 8355 8356 .event_init = perf_tp_event_init, 8357 .add = perf_trace_add, 8358 .del = perf_trace_del, 8359 .start = perf_swevent_start, 8360 .stop = perf_swevent_stop, 8361 .read = perf_swevent_read, 8362 }; 8363 8364 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8365 /* 8366 * Flags in config, used by dynamic PMU kprobe and uprobe 8367 * The flags should match following PMU_FORMAT_ATTR(). 8368 * 8369 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8370 * if not set, create kprobe/uprobe 8371 */ 8372 enum perf_probe_config { 8373 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8374 }; 8375 8376 PMU_FORMAT_ATTR(retprobe, "config:0"); 8377 8378 static struct attribute *probe_attrs[] = { 8379 &format_attr_retprobe.attr, 8380 NULL, 8381 }; 8382 8383 static struct attribute_group probe_format_group = { 8384 .name = "format", 8385 .attrs = probe_attrs, 8386 }; 8387 8388 static const struct attribute_group *probe_attr_groups[] = { 8389 &probe_format_group, 8390 NULL, 8391 }; 8392 #endif 8393 8394 #ifdef CONFIG_KPROBE_EVENTS 8395 static int perf_kprobe_event_init(struct perf_event *event); 8396 static struct pmu perf_kprobe = { 8397 .task_ctx_nr = perf_sw_context, 8398 .event_init = perf_kprobe_event_init, 8399 .add = perf_trace_add, 8400 .del = perf_trace_del, 8401 .start = perf_swevent_start, 8402 .stop = perf_swevent_stop, 8403 .read = perf_swevent_read, 8404 .attr_groups = probe_attr_groups, 8405 }; 8406 8407 static int perf_kprobe_event_init(struct perf_event *event) 8408 { 8409 int err; 8410 bool is_retprobe; 8411 8412 if (event->attr.type != perf_kprobe.type) 8413 return -ENOENT; 8414 8415 if (!capable(CAP_SYS_ADMIN)) 8416 return -EACCES; 8417 8418 /* 8419 * no branch sampling for probe events 8420 */ 8421 if (has_branch_stack(event)) 8422 return -EOPNOTSUPP; 8423 8424 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8425 err = perf_kprobe_init(event, is_retprobe); 8426 if (err) 8427 return err; 8428 8429 event->destroy = perf_kprobe_destroy; 8430 8431 return 0; 8432 } 8433 #endif /* CONFIG_KPROBE_EVENTS */ 8434 8435 #ifdef CONFIG_UPROBE_EVENTS 8436 static int perf_uprobe_event_init(struct perf_event *event); 8437 static struct pmu perf_uprobe = { 8438 .task_ctx_nr = perf_sw_context, 8439 .event_init = perf_uprobe_event_init, 8440 .add = perf_trace_add, 8441 .del = perf_trace_del, 8442 .start = perf_swevent_start, 8443 .stop = perf_swevent_stop, 8444 .read = perf_swevent_read, 8445 .attr_groups = probe_attr_groups, 8446 }; 8447 8448 static int perf_uprobe_event_init(struct perf_event *event) 8449 { 8450 int err; 8451 bool is_retprobe; 8452 8453 if (event->attr.type != perf_uprobe.type) 8454 return -ENOENT; 8455 8456 if (!capable(CAP_SYS_ADMIN)) 8457 return -EACCES; 8458 8459 /* 8460 * no branch sampling for probe events 8461 */ 8462 if (has_branch_stack(event)) 8463 return -EOPNOTSUPP; 8464 8465 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8466 err = perf_uprobe_init(event, is_retprobe); 8467 if (err) 8468 return err; 8469 8470 event->destroy = perf_uprobe_destroy; 8471 8472 return 0; 8473 } 8474 #endif /* CONFIG_UPROBE_EVENTS */ 8475 8476 static inline void perf_tp_register(void) 8477 { 8478 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8479 #ifdef CONFIG_KPROBE_EVENTS 8480 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8481 #endif 8482 #ifdef CONFIG_UPROBE_EVENTS 8483 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8484 #endif 8485 } 8486 8487 static void perf_event_free_filter(struct perf_event *event) 8488 { 8489 ftrace_profile_free_filter(event); 8490 } 8491 8492 #ifdef CONFIG_BPF_SYSCALL 8493 static void bpf_overflow_handler(struct perf_event *event, 8494 struct perf_sample_data *data, 8495 struct pt_regs *regs) 8496 { 8497 struct bpf_perf_event_data_kern ctx = { 8498 .data = data, 8499 .event = event, 8500 }; 8501 int ret = 0; 8502 8503 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8504 preempt_disable(); 8505 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8506 goto out; 8507 rcu_read_lock(); 8508 ret = BPF_PROG_RUN(event->prog, &ctx); 8509 rcu_read_unlock(); 8510 out: 8511 __this_cpu_dec(bpf_prog_active); 8512 preempt_enable(); 8513 if (!ret) 8514 return; 8515 8516 event->orig_overflow_handler(event, data, regs); 8517 } 8518 8519 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8520 { 8521 struct bpf_prog *prog; 8522 8523 if (event->overflow_handler_context) 8524 /* hw breakpoint or kernel counter */ 8525 return -EINVAL; 8526 8527 if (event->prog) 8528 return -EEXIST; 8529 8530 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8531 if (IS_ERR(prog)) 8532 return PTR_ERR(prog); 8533 8534 event->prog = prog; 8535 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8536 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8537 return 0; 8538 } 8539 8540 static void perf_event_free_bpf_handler(struct perf_event *event) 8541 { 8542 struct bpf_prog *prog = event->prog; 8543 8544 if (!prog) 8545 return; 8546 8547 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8548 event->prog = NULL; 8549 bpf_prog_put(prog); 8550 } 8551 #else 8552 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8553 { 8554 return -EOPNOTSUPP; 8555 } 8556 static void perf_event_free_bpf_handler(struct perf_event *event) 8557 { 8558 } 8559 #endif 8560 8561 /* 8562 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8563 * with perf_event_open() 8564 */ 8565 static inline bool perf_event_is_tracing(struct perf_event *event) 8566 { 8567 if (event->pmu == &perf_tracepoint) 8568 return true; 8569 #ifdef CONFIG_KPROBE_EVENTS 8570 if (event->pmu == &perf_kprobe) 8571 return true; 8572 #endif 8573 #ifdef CONFIG_UPROBE_EVENTS 8574 if (event->pmu == &perf_uprobe) 8575 return true; 8576 #endif 8577 return false; 8578 } 8579 8580 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8581 { 8582 bool is_kprobe, is_tracepoint, is_syscall_tp; 8583 struct bpf_prog *prog; 8584 int ret; 8585 8586 if (!perf_event_is_tracing(event)) 8587 return perf_event_set_bpf_handler(event, prog_fd); 8588 8589 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8590 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8591 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8592 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8593 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8594 return -EINVAL; 8595 8596 prog = bpf_prog_get(prog_fd); 8597 if (IS_ERR(prog)) 8598 return PTR_ERR(prog); 8599 8600 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8601 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8602 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8603 /* valid fd, but invalid bpf program type */ 8604 bpf_prog_put(prog); 8605 return -EINVAL; 8606 } 8607 8608 /* Kprobe override only works for kprobes, not uprobes. */ 8609 if (prog->kprobe_override && 8610 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8611 bpf_prog_put(prog); 8612 return -EINVAL; 8613 } 8614 8615 if (is_tracepoint || is_syscall_tp) { 8616 int off = trace_event_get_offsets(event->tp_event); 8617 8618 if (prog->aux->max_ctx_offset > off) { 8619 bpf_prog_put(prog); 8620 return -EACCES; 8621 } 8622 } 8623 8624 ret = perf_event_attach_bpf_prog(event, prog); 8625 if (ret) 8626 bpf_prog_put(prog); 8627 return ret; 8628 } 8629 8630 static void perf_event_free_bpf_prog(struct perf_event *event) 8631 { 8632 if (!perf_event_is_tracing(event)) { 8633 perf_event_free_bpf_handler(event); 8634 return; 8635 } 8636 perf_event_detach_bpf_prog(event); 8637 } 8638 8639 #else 8640 8641 static inline void perf_tp_register(void) 8642 { 8643 } 8644 8645 static void perf_event_free_filter(struct perf_event *event) 8646 { 8647 } 8648 8649 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8650 { 8651 return -ENOENT; 8652 } 8653 8654 static void perf_event_free_bpf_prog(struct perf_event *event) 8655 { 8656 } 8657 #endif /* CONFIG_EVENT_TRACING */ 8658 8659 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8660 void perf_bp_event(struct perf_event *bp, void *data) 8661 { 8662 struct perf_sample_data sample; 8663 struct pt_regs *regs = data; 8664 8665 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8666 8667 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8668 perf_swevent_event(bp, 1, &sample, regs); 8669 } 8670 #endif 8671 8672 /* 8673 * Allocate a new address filter 8674 */ 8675 static struct perf_addr_filter * 8676 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8677 { 8678 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8679 struct perf_addr_filter *filter; 8680 8681 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8682 if (!filter) 8683 return NULL; 8684 8685 INIT_LIST_HEAD(&filter->entry); 8686 list_add_tail(&filter->entry, filters); 8687 8688 return filter; 8689 } 8690 8691 static void free_filters_list(struct list_head *filters) 8692 { 8693 struct perf_addr_filter *filter, *iter; 8694 8695 list_for_each_entry_safe(filter, iter, filters, entry) { 8696 path_put(&filter->path); 8697 list_del(&filter->entry); 8698 kfree(filter); 8699 } 8700 } 8701 8702 /* 8703 * Free existing address filters and optionally install new ones 8704 */ 8705 static void perf_addr_filters_splice(struct perf_event *event, 8706 struct list_head *head) 8707 { 8708 unsigned long flags; 8709 LIST_HEAD(list); 8710 8711 if (!has_addr_filter(event)) 8712 return; 8713 8714 /* don't bother with children, they don't have their own filters */ 8715 if (event->parent) 8716 return; 8717 8718 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8719 8720 list_splice_init(&event->addr_filters.list, &list); 8721 if (head) 8722 list_splice(head, &event->addr_filters.list); 8723 8724 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8725 8726 free_filters_list(&list); 8727 } 8728 8729 /* 8730 * Scan through mm's vmas and see if one of them matches the 8731 * @filter; if so, adjust filter's address range. 8732 * Called with mm::mmap_sem down for reading. 8733 */ 8734 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8735 struct mm_struct *mm) 8736 { 8737 struct vm_area_struct *vma; 8738 8739 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8740 struct file *file = vma->vm_file; 8741 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8742 unsigned long vma_size = vma->vm_end - vma->vm_start; 8743 8744 if (!file) 8745 continue; 8746 8747 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8748 continue; 8749 8750 return vma->vm_start; 8751 } 8752 8753 return 0; 8754 } 8755 8756 /* 8757 * Update event's address range filters based on the 8758 * task's existing mappings, if any. 8759 */ 8760 static void perf_event_addr_filters_apply(struct perf_event *event) 8761 { 8762 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8763 struct task_struct *task = READ_ONCE(event->ctx->task); 8764 struct perf_addr_filter *filter; 8765 struct mm_struct *mm = NULL; 8766 unsigned int count = 0; 8767 unsigned long flags; 8768 8769 /* 8770 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8771 * will stop on the parent's child_mutex that our caller is also holding 8772 */ 8773 if (task == TASK_TOMBSTONE) 8774 return; 8775 8776 if (!ifh->nr_file_filters) 8777 return; 8778 8779 mm = get_task_mm(event->ctx->task); 8780 if (!mm) 8781 goto restart; 8782 8783 down_read(&mm->mmap_sem); 8784 8785 raw_spin_lock_irqsave(&ifh->lock, flags); 8786 list_for_each_entry(filter, &ifh->list, entry) { 8787 event->addr_filters_offs[count] = 0; 8788 8789 /* 8790 * Adjust base offset if the filter is associated to a binary 8791 * that needs to be mapped: 8792 */ 8793 if (filter->path.dentry) 8794 event->addr_filters_offs[count] = 8795 perf_addr_filter_apply(filter, mm); 8796 8797 count++; 8798 } 8799 8800 event->addr_filters_gen++; 8801 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8802 8803 up_read(&mm->mmap_sem); 8804 8805 mmput(mm); 8806 8807 restart: 8808 perf_event_stop(event, 1); 8809 } 8810 8811 /* 8812 * Address range filtering: limiting the data to certain 8813 * instruction address ranges. Filters are ioctl()ed to us from 8814 * userspace as ascii strings. 8815 * 8816 * Filter string format: 8817 * 8818 * ACTION RANGE_SPEC 8819 * where ACTION is one of the 8820 * * "filter": limit the trace to this region 8821 * * "start": start tracing from this address 8822 * * "stop": stop tracing at this address/region; 8823 * RANGE_SPEC is 8824 * * for kernel addresses: <start address>[/<size>] 8825 * * for object files: <start address>[/<size>]@</path/to/object/file> 8826 * 8827 * if <size> is not specified or is zero, the range is treated as a single 8828 * address; not valid for ACTION=="filter". 8829 */ 8830 enum { 8831 IF_ACT_NONE = -1, 8832 IF_ACT_FILTER, 8833 IF_ACT_START, 8834 IF_ACT_STOP, 8835 IF_SRC_FILE, 8836 IF_SRC_KERNEL, 8837 IF_SRC_FILEADDR, 8838 IF_SRC_KERNELADDR, 8839 }; 8840 8841 enum { 8842 IF_STATE_ACTION = 0, 8843 IF_STATE_SOURCE, 8844 IF_STATE_END, 8845 }; 8846 8847 static const match_table_t if_tokens = { 8848 { IF_ACT_FILTER, "filter" }, 8849 { IF_ACT_START, "start" }, 8850 { IF_ACT_STOP, "stop" }, 8851 { IF_SRC_FILE, "%u/%u@%s" }, 8852 { IF_SRC_KERNEL, "%u/%u" }, 8853 { IF_SRC_FILEADDR, "%u@%s" }, 8854 { IF_SRC_KERNELADDR, "%u" }, 8855 { IF_ACT_NONE, NULL }, 8856 }; 8857 8858 /* 8859 * Address filter string parser 8860 */ 8861 static int 8862 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8863 struct list_head *filters) 8864 { 8865 struct perf_addr_filter *filter = NULL; 8866 char *start, *orig, *filename = NULL; 8867 substring_t args[MAX_OPT_ARGS]; 8868 int state = IF_STATE_ACTION, token; 8869 unsigned int kernel = 0; 8870 int ret = -EINVAL; 8871 8872 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8873 if (!fstr) 8874 return -ENOMEM; 8875 8876 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8877 static const enum perf_addr_filter_action_t actions[] = { 8878 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 8879 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 8880 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 8881 }; 8882 ret = -EINVAL; 8883 8884 if (!*start) 8885 continue; 8886 8887 /* filter definition begins */ 8888 if (state == IF_STATE_ACTION) { 8889 filter = perf_addr_filter_new(event, filters); 8890 if (!filter) 8891 goto fail; 8892 } 8893 8894 token = match_token(start, if_tokens, args); 8895 switch (token) { 8896 case IF_ACT_FILTER: 8897 case IF_ACT_START: 8898 case IF_ACT_STOP: 8899 if (state != IF_STATE_ACTION) 8900 goto fail; 8901 8902 filter->action = actions[token]; 8903 state = IF_STATE_SOURCE; 8904 break; 8905 8906 case IF_SRC_KERNELADDR: 8907 case IF_SRC_KERNEL: 8908 kernel = 1; 8909 8910 case IF_SRC_FILEADDR: 8911 case IF_SRC_FILE: 8912 if (state != IF_STATE_SOURCE) 8913 goto fail; 8914 8915 *args[0].to = 0; 8916 ret = kstrtoul(args[0].from, 0, &filter->offset); 8917 if (ret) 8918 goto fail; 8919 8920 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 8921 *args[1].to = 0; 8922 ret = kstrtoul(args[1].from, 0, &filter->size); 8923 if (ret) 8924 goto fail; 8925 } 8926 8927 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8928 int fpos = token == IF_SRC_FILE ? 2 : 1; 8929 8930 filename = match_strdup(&args[fpos]); 8931 if (!filename) { 8932 ret = -ENOMEM; 8933 goto fail; 8934 } 8935 } 8936 8937 state = IF_STATE_END; 8938 break; 8939 8940 default: 8941 goto fail; 8942 } 8943 8944 /* 8945 * Filter definition is fully parsed, validate and install it. 8946 * Make sure that it doesn't contradict itself or the event's 8947 * attribute. 8948 */ 8949 if (state == IF_STATE_END) { 8950 ret = -EINVAL; 8951 if (kernel && event->attr.exclude_kernel) 8952 goto fail; 8953 8954 /* 8955 * ACTION "filter" must have a non-zero length region 8956 * specified. 8957 */ 8958 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 8959 !filter->size) 8960 goto fail; 8961 8962 if (!kernel) { 8963 if (!filename) 8964 goto fail; 8965 8966 /* 8967 * For now, we only support file-based filters 8968 * in per-task events; doing so for CPU-wide 8969 * events requires additional context switching 8970 * trickery, since same object code will be 8971 * mapped at different virtual addresses in 8972 * different processes. 8973 */ 8974 ret = -EOPNOTSUPP; 8975 if (!event->ctx->task) 8976 goto fail_free_name; 8977 8978 /* look up the path and grab its inode */ 8979 ret = kern_path(filename, LOOKUP_FOLLOW, 8980 &filter->path); 8981 if (ret) 8982 goto fail_free_name; 8983 8984 kfree(filename); 8985 filename = NULL; 8986 8987 ret = -EINVAL; 8988 if (!filter->path.dentry || 8989 !S_ISREG(d_inode(filter->path.dentry) 8990 ->i_mode)) 8991 goto fail; 8992 8993 event->addr_filters.nr_file_filters++; 8994 } 8995 8996 /* ready to consume more filters */ 8997 state = IF_STATE_ACTION; 8998 filter = NULL; 8999 } 9000 } 9001 9002 if (state != IF_STATE_ACTION) 9003 goto fail; 9004 9005 kfree(orig); 9006 9007 return 0; 9008 9009 fail_free_name: 9010 kfree(filename); 9011 fail: 9012 free_filters_list(filters); 9013 kfree(orig); 9014 9015 return ret; 9016 } 9017 9018 static int 9019 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9020 { 9021 LIST_HEAD(filters); 9022 int ret; 9023 9024 /* 9025 * Since this is called in perf_ioctl() path, we're already holding 9026 * ctx::mutex. 9027 */ 9028 lockdep_assert_held(&event->ctx->mutex); 9029 9030 if (WARN_ON_ONCE(event->parent)) 9031 return -EINVAL; 9032 9033 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9034 if (ret) 9035 goto fail_clear_files; 9036 9037 ret = event->pmu->addr_filters_validate(&filters); 9038 if (ret) 9039 goto fail_free_filters; 9040 9041 /* remove existing filters, if any */ 9042 perf_addr_filters_splice(event, &filters); 9043 9044 /* install new filters */ 9045 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9046 9047 return ret; 9048 9049 fail_free_filters: 9050 free_filters_list(&filters); 9051 9052 fail_clear_files: 9053 event->addr_filters.nr_file_filters = 0; 9054 9055 return ret; 9056 } 9057 9058 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9059 { 9060 int ret = -EINVAL; 9061 char *filter_str; 9062 9063 filter_str = strndup_user(arg, PAGE_SIZE); 9064 if (IS_ERR(filter_str)) 9065 return PTR_ERR(filter_str); 9066 9067 #ifdef CONFIG_EVENT_TRACING 9068 if (perf_event_is_tracing(event)) { 9069 struct perf_event_context *ctx = event->ctx; 9070 9071 /* 9072 * Beware, here be dragons!! 9073 * 9074 * the tracepoint muck will deadlock against ctx->mutex, but 9075 * the tracepoint stuff does not actually need it. So 9076 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9077 * already have a reference on ctx. 9078 * 9079 * This can result in event getting moved to a different ctx, 9080 * but that does not affect the tracepoint state. 9081 */ 9082 mutex_unlock(&ctx->mutex); 9083 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9084 mutex_lock(&ctx->mutex); 9085 } else 9086 #endif 9087 if (has_addr_filter(event)) 9088 ret = perf_event_set_addr_filter(event, filter_str); 9089 9090 kfree(filter_str); 9091 return ret; 9092 } 9093 9094 /* 9095 * hrtimer based swevent callback 9096 */ 9097 9098 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9099 { 9100 enum hrtimer_restart ret = HRTIMER_RESTART; 9101 struct perf_sample_data data; 9102 struct pt_regs *regs; 9103 struct perf_event *event; 9104 u64 period; 9105 9106 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9107 9108 if (event->state != PERF_EVENT_STATE_ACTIVE) 9109 return HRTIMER_NORESTART; 9110 9111 event->pmu->read(event); 9112 9113 perf_sample_data_init(&data, 0, event->hw.last_period); 9114 regs = get_irq_regs(); 9115 9116 if (regs && !perf_exclude_event(event, regs)) { 9117 if (!(event->attr.exclude_idle && is_idle_task(current))) 9118 if (__perf_event_overflow(event, 1, &data, regs)) 9119 ret = HRTIMER_NORESTART; 9120 } 9121 9122 period = max_t(u64, 10000, event->hw.sample_period); 9123 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9124 9125 return ret; 9126 } 9127 9128 static void perf_swevent_start_hrtimer(struct perf_event *event) 9129 { 9130 struct hw_perf_event *hwc = &event->hw; 9131 s64 period; 9132 9133 if (!is_sampling_event(event)) 9134 return; 9135 9136 period = local64_read(&hwc->period_left); 9137 if (period) { 9138 if (period < 0) 9139 period = 10000; 9140 9141 local64_set(&hwc->period_left, 0); 9142 } else { 9143 period = max_t(u64, 10000, hwc->sample_period); 9144 } 9145 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9146 HRTIMER_MODE_REL_PINNED); 9147 } 9148 9149 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9150 { 9151 struct hw_perf_event *hwc = &event->hw; 9152 9153 if (is_sampling_event(event)) { 9154 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9155 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9156 9157 hrtimer_cancel(&hwc->hrtimer); 9158 } 9159 } 9160 9161 static void perf_swevent_init_hrtimer(struct perf_event *event) 9162 { 9163 struct hw_perf_event *hwc = &event->hw; 9164 9165 if (!is_sampling_event(event)) 9166 return; 9167 9168 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9169 hwc->hrtimer.function = perf_swevent_hrtimer; 9170 9171 /* 9172 * Since hrtimers have a fixed rate, we can do a static freq->period 9173 * mapping and avoid the whole period adjust feedback stuff. 9174 */ 9175 if (event->attr.freq) { 9176 long freq = event->attr.sample_freq; 9177 9178 event->attr.sample_period = NSEC_PER_SEC / freq; 9179 hwc->sample_period = event->attr.sample_period; 9180 local64_set(&hwc->period_left, hwc->sample_period); 9181 hwc->last_period = hwc->sample_period; 9182 event->attr.freq = 0; 9183 } 9184 } 9185 9186 /* 9187 * Software event: cpu wall time clock 9188 */ 9189 9190 static void cpu_clock_event_update(struct perf_event *event) 9191 { 9192 s64 prev; 9193 u64 now; 9194 9195 now = local_clock(); 9196 prev = local64_xchg(&event->hw.prev_count, now); 9197 local64_add(now - prev, &event->count); 9198 } 9199 9200 static void cpu_clock_event_start(struct perf_event *event, int flags) 9201 { 9202 local64_set(&event->hw.prev_count, local_clock()); 9203 perf_swevent_start_hrtimer(event); 9204 } 9205 9206 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9207 { 9208 perf_swevent_cancel_hrtimer(event); 9209 cpu_clock_event_update(event); 9210 } 9211 9212 static int cpu_clock_event_add(struct perf_event *event, int flags) 9213 { 9214 if (flags & PERF_EF_START) 9215 cpu_clock_event_start(event, flags); 9216 perf_event_update_userpage(event); 9217 9218 return 0; 9219 } 9220 9221 static void cpu_clock_event_del(struct perf_event *event, int flags) 9222 { 9223 cpu_clock_event_stop(event, flags); 9224 } 9225 9226 static void cpu_clock_event_read(struct perf_event *event) 9227 { 9228 cpu_clock_event_update(event); 9229 } 9230 9231 static int cpu_clock_event_init(struct perf_event *event) 9232 { 9233 if (event->attr.type != PERF_TYPE_SOFTWARE) 9234 return -ENOENT; 9235 9236 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9237 return -ENOENT; 9238 9239 /* 9240 * no branch sampling for software events 9241 */ 9242 if (has_branch_stack(event)) 9243 return -EOPNOTSUPP; 9244 9245 perf_swevent_init_hrtimer(event); 9246 9247 return 0; 9248 } 9249 9250 static struct pmu perf_cpu_clock = { 9251 .task_ctx_nr = perf_sw_context, 9252 9253 .capabilities = PERF_PMU_CAP_NO_NMI, 9254 9255 .event_init = cpu_clock_event_init, 9256 .add = cpu_clock_event_add, 9257 .del = cpu_clock_event_del, 9258 .start = cpu_clock_event_start, 9259 .stop = cpu_clock_event_stop, 9260 .read = cpu_clock_event_read, 9261 }; 9262 9263 /* 9264 * Software event: task time clock 9265 */ 9266 9267 static void task_clock_event_update(struct perf_event *event, u64 now) 9268 { 9269 u64 prev; 9270 s64 delta; 9271 9272 prev = local64_xchg(&event->hw.prev_count, now); 9273 delta = now - prev; 9274 local64_add(delta, &event->count); 9275 } 9276 9277 static void task_clock_event_start(struct perf_event *event, int flags) 9278 { 9279 local64_set(&event->hw.prev_count, event->ctx->time); 9280 perf_swevent_start_hrtimer(event); 9281 } 9282 9283 static void task_clock_event_stop(struct perf_event *event, int flags) 9284 { 9285 perf_swevent_cancel_hrtimer(event); 9286 task_clock_event_update(event, event->ctx->time); 9287 } 9288 9289 static int task_clock_event_add(struct perf_event *event, int flags) 9290 { 9291 if (flags & PERF_EF_START) 9292 task_clock_event_start(event, flags); 9293 perf_event_update_userpage(event); 9294 9295 return 0; 9296 } 9297 9298 static void task_clock_event_del(struct perf_event *event, int flags) 9299 { 9300 task_clock_event_stop(event, PERF_EF_UPDATE); 9301 } 9302 9303 static void task_clock_event_read(struct perf_event *event) 9304 { 9305 u64 now = perf_clock(); 9306 u64 delta = now - event->ctx->timestamp; 9307 u64 time = event->ctx->time + delta; 9308 9309 task_clock_event_update(event, time); 9310 } 9311 9312 static int task_clock_event_init(struct perf_event *event) 9313 { 9314 if (event->attr.type != PERF_TYPE_SOFTWARE) 9315 return -ENOENT; 9316 9317 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9318 return -ENOENT; 9319 9320 /* 9321 * no branch sampling for software events 9322 */ 9323 if (has_branch_stack(event)) 9324 return -EOPNOTSUPP; 9325 9326 perf_swevent_init_hrtimer(event); 9327 9328 return 0; 9329 } 9330 9331 static struct pmu perf_task_clock = { 9332 .task_ctx_nr = perf_sw_context, 9333 9334 .capabilities = PERF_PMU_CAP_NO_NMI, 9335 9336 .event_init = task_clock_event_init, 9337 .add = task_clock_event_add, 9338 .del = task_clock_event_del, 9339 .start = task_clock_event_start, 9340 .stop = task_clock_event_stop, 9341 .read = task_clock_event_read, 9342 }; 9343 9344 static void perf_pmu_nop_void(struct pmu *pmu) 9345 { 9346 } 9347 9348 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9349 { 9350 } 9351 9352 static int perf_pmu_nop_int(struct pmu *pmu) 9353 { 9354 return 0; 9355 } 9356 9357 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9358 9359 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9360 { 9361 __this_cpu_write(nop_txn_flags, flags); 9362 9363 if (flags & ~PERF_PMU_TXN_ADD) 9364 return; 9365 9366 perf_pmu_disable(pmu); 9367 } 9368 9369 static int perf_pmu_commit_txn(struct pmu *pmu) 9370 { 9371 unsigned int flags = __this_cpu_read(nop_txn_flags); 9372 9373 __this_cpu_write(nop_txn_flags, 0); 9374 9375 if (flags & ~PERF_PMU_TXN_ADD) 9376 return 0; 9377 9378 perf_pmu_enable(pmu); 9379 return 0; 9380 } 9381 9382 static void perf_pmu_cancel_txn(struct pmu *pmu) 9383 { 9384 unsigned int flags = __this_cpu_read(nop_txn_flags); 9385 9386 __this_cpu_write(nop_txn_flags, 0); 9387 9388 if (flags & ~PERF_PMU_TXN_ADD) 9389 return; 9390 9391 perf_pmu_enable(pmu); 9392 } 9393 9394 static int perf_event_idx_default(struct perf_event *event) 9395 { 9396 return 0; 9397 } 9398 9399 /* 9400 * Ensures all contexts with the same task_ctx_nr have the same 9401 * pmu_cpu_context too. 9402 */ 9403 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9404 { 9405 struct pmu *pmu; 9406 9407 if (ctxn < 0) 9408 return NULL; 9409 9410 list_for_each_entry(pmu, &pmus, entry) { 9411 if (pmu->task_ctx_nr == ctxn) 9412 return pmu->pmu_cpu_context; 9413 } 9414 9415 return NULL; 9416 } 9417 9418 static void free_pmu_context(struct pmu *pmu) 9419 { 9420 /* 9421 * Static contexts such as perf_sw_context have a global lifetime 9422 * and may be shared between different PMUs. Avoid freeing them 9423 * when a single PMU is going away. 9424 */ 9425 if (pmu->task_ctx_nr > perf_invalid_context) 9426 return; 9427 9428 mutex_lock(&pmus_lock); 9429 free_percpu(pmu->pmu_cpu_context); 9430 mutex_unlock(&pmus_lock); 9431 } 9432 9433 /* 9434 * Let userspace know that this PMU supports address range filtering: 9435 */ 9436 static ssize_t nr_addr_filters_show(struct device *dev, 9437 struct device_attribute *attr, 9438 char *page) 9439 { 9440 struct pmu *pmu = dev_get_drvdata(dev); 9441 9442 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9443 } 9444 DEVICE_ATTR_RO(nr_addr_filters); 9445 9446 static struct idr pmu_idr; 9447 9448 static ssize_t 9449 type_show(struct device *dev, struct device_attribute *attr, char *page) 9450 { 9451 struct pmu *pmu = dev_get_drvdata(dev); 9452 9453 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9454 } 9455 static DEVICE_ATTR_RO(type); 9456 9457 static ssize_t 9458 perf_event_mux_interval_ms_show(struct device *dev, 9459 struct device_attribute *attr, 9460 char *page) 9461 { 9462 struct pmu *pmu = dev_get_drvdata(dev); 9463 9464 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9465 } 9466 9467 static DEFINE_MUTEX(mux_interval_mutex); 9468 9469 static ssize_t 9470 perf_event_mux_interval_ms_store(struct device *dev, 9471 struct device_attribute *attr, 9472 const char *buf, size_t count) 9473 { 9474 struct pmu *pmu = dev_get_drvdata(dev); 9475 int timer, cpu, ret; 9476 9477 ret = kstrtoint(buf, 0, &timer); 9478 if (ret) 9479 return ret; 9480 9481 if (timer < 1) 9482 return -EINVAL; 9483 9484 /* same value, noting to do */ 9485 if (timer == pmu->hrtimer_interval_ms) 9486 return count; 9487 9488 mutex_lock(&mux_interval_mutex); 9489 pmu->hrtimer_interval_ms = timer; 9490 9491 /* update all cpuctx for this PMU */ 9492 cpus_read_lock(); 9493 for_each_online_cpu(cpu) { 9494 struct perf_cpu_context *cpuctx; 9495 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9496 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9497 9498 cpu_function_call(cpu, 9499 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9500 } 9501 cpus_read_unlock(); 9502 mutex_unlock(&mux_interval_mutex); 9503 9504 return count; 9505 } 9506 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9507 9508 static struct attribute *pmu_dev_attrs[] = { 9509 &dev_attr_type.attr, 9510 &dev_attr_perf_event_mux_interval_ms.attr, 9511 NULL, 9512 }; 9513 ATTRIBUTE_GROUPS(pmu_dev); 9514 9515 static int pmu_bus_running; 9516 static struct bus_type pmu_bus = { 9517 .name = "event_source", 9518 .dev_groups = pmu_dev_groups, 9519 }; 9520 9521 static void pmu_dev_release(struct device *dev) 9522 { 9523 kfree(dev); 9524 } 9525 9526 static int pmu_dev_alloc(struct pmu *pmu) 9527 { 9528 int ret = -ENOMEM; 9529 9530 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9531 if (!pmu->dev) 9532 goto out; 9533 9534 pmu->dev->groups = pmu->attr_groups; 9535 device_initialize(pmu->dev); 9536 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9537 if (ret) 9538 goto free_dev; 9539 9540 dev_set_drvdata(pmu->dev, pmu); 9541 pmu->dev->bus = &pmu_bus; 9542 pmu->dev->release = pmu_dev_release; 9543 ret = device_add(pmu->dev); 9544 if (ret) 9545 goto free_dev; 9546 9547 /* For PMUs with address filters, throw in an extra attribute: */ 9548 if (pmu->nr_addr_filters) 9549 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9550 9551 if (ret) 9552 goto del_dev; 9553 9554 out: 9555 return ret; 9556 9557 del_dev: 9558 device_del(pmu->dev); 9559 9560 free_dev: 9561 put_device(pmu->dev); 9562 goto out; 9563 } 9564 9565 static struct lock_class_key cpuctx_mutex; 9566 static struct lock_class_key cpuctx_lock; 9567 9568 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9569 { 9570 int cpu, ret; 9571 9572 mutex_lock(&pmus_lock); 9573 ret = -ENOMEM; 9574 pmu->pmu_disable_count = alloc_percpu(int); 9575 if (!pmu->pmu_disable_count) 9576 goto unlock; 9577 9578 pmu->type = -1; 9579 if (!name) 9580 goto skip_type; 9581 pmu->name = name; 9582 9583 if (type < 0) { 9584 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9585 if (type < 0) { 9586 ret = type; 9587 goto free_pdc; 9588 } 9589 } 9590 pmu->type = type; 9591 9592 if (pmu_bus_running) { 9593 ret = pmu_dev_alloc(pmu); 9594 if (ret) 9595 goto free_idr; 9596 } 9597 9598 skip_type: 9599 if (pmu->task_ctx_nr == perf_hw_context) { 9600 static int hw_context_taken = 0; 9601 9602 /* 9603 * Other than systems with heterogeneous CPUs, it never makes 9604 * sense for two PMUs to share perf_hw_context. PMUs which are 9605 * uncore must use perf_invalid_context. 9606 */ 9607 if (WARN_ON_ONCE(hw_context_taken && 9608 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9609 pmu->task_ctx_nr = perf_invalid_context; 9610 9611 hw_context_taken = 1; 9612 } 9613 9614 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9615 if (pmu->pmu_cpu_context) 9616 goto got_cpu_context; 9617 9618 ret = -ENOMEM; 9619 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9620 if (!pmu->pmu_cpu_context) 9621 goto free_dev; 9622 9623 for_each_possible_cpu(cpu) { 9624 struct perf_cpu_context *cpuctx; 9625 9626 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9627 __perf_event_init_context(&cpuctx->ctx); 9628 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9629 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9630 cpuctx->ctx.pmu = pmu; 9631 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9632 9633 __perf_mux_hrtimer_init(cpuctx, cpu); 9634 } 9635 9636 got_cpu_context: 9637 if (!pmu->start_txn) { 9638 if (pmu->pmu_enable) { 9639 /* 9640 * If we have pmu_enable/pmu_disable calls, install 9641 * transaction stubs that use that to try and batch 9642 * hardware accesses. 9643 */ 9644 pmu->start_txn = perf_pmu_start_txn; 9645 pmu->commit_txn = perf_pmu_commit_txn; 9646 pmu->cancel_txn = perf_pmu_cancel_txn; 9647 } else { 9648 pmu->start_txn = perf_pmu_nop_txn; 9649 pmu->commit_txn = perf_pmu_nop_int; 9650 pmu->cancel_txn = perf_pmu_nop_void; 9651 } 9652 } 9653 9654 if (!pmu->pmu_enable) { 9655 pmu->pmu_enable = perf_pmu_nop_void; 9656 pmu->pmu_disable = perf_pmu_nop_void; 9657 } 9658 9659 if (!pmu->event_idx) 9660 pmu->event_idx = perf_event_idx_default; 9661 9662 list_add_rcu(&pmu->entry, &pmus); 9663 atomic_set(&pmu->exclusive_cnt, 0); 9664 ret = 0; 9665 unlock: 9666 mutex_unlock(&pmus_lock); 9667 9668 return ret; 9669 9670 free_dev: 9671 device_del(pmu->dev); 9672 put_device(pmu->dev); 9673 9674 free_idr: 9675 if (pmu->type >= PERF_TYPE_MAX) 9676 idr_remove(&pmu_idr, pmu->type); 9677 9678 free_pdc: 9679 free_percpu(pmu->pmu_disable_count); 9680 goto unlock; 9681 } 9682 EXPORT_SYMBOL_GPL(perf_pmu_register); 9683 9684 void perf_pmu_unregister(struct pmu *pmu) 9685 { 9686 int remove_device; 9687 9688 mutex_lock(&pmus_lock); 9689 remove_device = pmu_bus_running; 9690 list_del_rcu(&pmu->entry); 9691 mutex_unlock(&pmus_lock); 9692 9693 /* 9694 * We dereference the pmu list under both SRCU and regular RCU, so 9695 * synchronize against both of those. 9696 */ 9697 synchronize_srcu(&pmus_srcu); 9698 synchronize_rcu(); 9699 9700 free_percpu(pmu->pmu_disable_count); 9701 if (pmu->type >= PERF_TYPE_MAX) 9702 idr_remove(&pmu_idr, pmu->type); 9703 if (remove_device) { 9704 if (pmu->nr_addr_filters) 9705 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9706 device_del(pmu->dev); 9707 put_device(pmu->dev); 9708 } 9709 free_pmu_context(pmu); 9710 } 9711 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9712 9713 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9714 { 9715 struct perf_event_context *ctx = NULL; 9716 int ret; 9717 9718 if (!try_module_get(pmu->module)) 9719 return -ENODEV; 9720 9721 /* 9722 * A number of pmu->event_init() methods iterate the sibling_list to, 9723 * for example, validate if the group fits on the PMU. Therefore, 9724 * if this is a sibling event, acquire the ctx->mutex to protect 9725 * the sibling_list. 9726 */ 9727 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9728 /* 9729 * This ctx->mutex can nest when we're called through 9730 * inheritance. See the perf_event_ctx_lock_nested() comment. 9731 */ 9732 ctx = perf_event_ctx_lock_nested(event->group_leader, 9733 SINGLE_DEPTH_NESTING); 9734 BUG_ON(!ctx); 9735 } 9736 9737 event->pmu = pmu; 9738 ret = pmu->event_init(event); 9739 9740 if (ctx) 9741 perf_event_ctx_unlock(event->group_leader, ctx); 9742 9743 if (ret) 9744 module_put(pmu->module); 9745 9746 return ret; 9747 } 9748 9749 static struct pmu *perf_init_event(struct perf_event *event) 9750 { 9751 struct pmu *pmu; 9752 int idx; 9753 int ret; 9754 9755 idx = srcu_read_lock(&pmus_srcu); 9756 9757 /* Try parent's PMU first: */ 9758 if (event->parent && event->parent->pmu) { 9759 pmu = event->parent->pmu; 9760 ret = perf_try_init_event(pmu, event); 9761 if (!ret) 9762 goto unlock; 9763 } 9764 9765 rcu_read_lock(); 9766 pmu = idr_find(&pmu_idr, event->attr.type); 9767 rcu_read_unlock(); 9768 if (pmu) { 9769 ret = perf_try_init_event(pmu, event); 9770 if (ret) 9771 pmu = ERR_PTR(ret); 9772 goto unlock; 9773 } 9774 9775 list_for_each_entry_rcu(pmu, &pmus, entry) { 9776 ret = perf_try_init_event(pmu, event); 9777 if (!ret) 9778 goto unlock; 9779 9780 if (ret != -ENOENT) { 9781 pmu = ERR_PTR(ret); 9782 goto unlock; 9783 } 9784 } 9785 pmu = ERR_PTR(-ENOENT); 9786 unlock: 9787 srcu_read_unlock(&pmus_srcu, idx); 9788 9789 return pmu; 9790 } 9791 9792 static void attach_sb_event(struct perf_event *event) 9793 { 9794 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9795 9796 raw_spin_lock(&pel->lock); 9797 list_add_rcu(&event->sb_list, &pel->list); 9798 raw_spin_unlock(&pel->lock); 9799 } 9800 9801 /* 9802 * We keep a list of all !task (and therefore per-cpu) events 9803 * that need to receive side-band records. 9804 * 9805 * This avoids having to scan all the various PMU per-cpu contexts 9806 * looking for them. 9807 */ 9808 static void account_pmu_sb_event(struct perf_event *event) 9809 { 9810 if (is_sb_event(event)) 9811 attach_sb_event(event); 9812 } 9813 9814 static void account_event_cpu(struct perf_event *event, int cpu) 9815 { 9816 if (event->parent) 9817 return; 9818 9819 if (is_cgroup_event(event)) 9820 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9821 } 9822 9823 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9824 static void account_freq_event_nohz(void) 9825 { 9826 #ifdef CONFIG_NO_HZ_FULL 9827 /* Lock so we don't race with concurrent unaccount */ 9828 spin_lock(&nr_freq_lock); 9829 if (atomic_inc_return(&nr_freq_events) == 1) 9830 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9831 spin_unlock(&nr_freq_lock); 9832 #endif 9833 } 9834 9835 static void account_freq_event(void) 9836 { 9837 if (tick_nohz_full_enabled()) 9838 account_freq_event_nohz(); 9839 else 9840 atomic_inc(&nr_freq_events); 9841 } 9842 9843 9844 static void account_event(struct perf_event *event) 9845 { 9846 bool inc = false; 9847 9848 if (event->parent) 9849 return; 9850 9851 if (event->attach_state & PERF_ATTACH_TASK) 9852 inc = true; 9853 if (event->attr.mmap || event->attr.mmap_data) 9854 atomic_inc(&nr_mmap_events); 9855 if (event->attr.comm) 9856 atomic_inc(&nr_comm_events); 9857 if (event->attr.namespaces) 9858 atomic_inc(&nr_namespaces_events); 9859 if (event->attr.task) 9860 atomic_inc(&nr_task_events); 9861 if (event->attr.freq) 9862 account_freq_event(); 9863 if (event->attr.context_switch) { 9864 atomic_inc(&nr_switch_events); 9865 inc = true; 9866 } 9867 if (has_branch_stack(event)) 9868 inc = true; 9869 if (is_cgroup_event(event)) 9870 inc = true; 9871 9872 if (inc) { 9873 /* 9874 * We need the mutex here because static_branch_enable() 9875 * must complete *before* the perf_sched_count increment 9876 * becomes visible. 9877 */ 9878 if (atomic_inc_not_zero(&perf_sched_count)) 9879 goto enabled; 9880 9881 mutex_lock(&perf_sched_mutex); 9882 if (!atomic_read(&perf_sched_count)) { 9883 static_branch_enable(&perf_sched_events); 9884 /* 9885 * Guarantee that all CPUs observe they key change and 9886 * call the perf scheduling hooks before proceeding to 9887 * install events that need them. 9888 */ 9889 synchronize_sched(); 9890 } 9891 /* 9892 * Now that we have waited for the sync_sched(), allow further 9893 * increments to by-pass the mutex. 9894 */ 9895 atomic_inc(&perf_sched_count); 9896 mutex_unlock(&perf_sched_mutex); 9897 } 9898 enabled: 9899 9900 account_event_cpu(event, event->cpu); 9901 9902 account_pmu_sb_event(event); 9903 } 9904 9905 /* 9906 * Allocate and initialize an event structure 9907 */ 9908 static struct perf_event * 9909 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9910 struct task_struct *task, 9911 struct perf_event *group_leader, 9912 struct perf_event *parent_event, 9913 perf_overflow_handler_t overflow_handler, 9914 void *context, int cgroup_fd) 9915 { 9916 struct pmu *pmu; 9917 struct perf_event *event; 9918 struct hw_perf_event *hwc; 9919 long err = -EINVAL; 9920 9921 if ((unsigned)cpu >= nr_cpu_ids) { 9922 if (!task || cpu != -1) 9923 return ERR_PTR(-EINVAL); 9924 } 9925 9926 event = kzalloc(sizeof(*event), GFP_KERNEL); 9927 if (!event) 9928 return ERR_PTR(-ENOMEM); 9929 9930 /* 9931 * Single events are their own group leaders, with an 9932 * empty sibling list: 9933 */ 9934 if (!group_leader) 9935 group_leader = event; 9936 9937 mutex_init(&event->child_mutex); 9938 INIT_LIST_HEAD(&event->child_list); 9939 9940 INIT_LIST_HEAD(&event->event_entry); 9941 INIT_LIST_HEAD(&event->sibling_list); 9942 INIT_LIST_HEAD(&event->active_list); 9943 init_event_group(event); 9944 INIT_LIST_HEAD(&event->rb_entry); 9945 INIT_LIST_HEAD(&event->active_entry); 9946 INIT_LIST_HEAD(&event->addr_filters.list); 9947 INIT_HLIST_NODE(&event->hlist_entry); 9948 9949 9950 init_waitqueue_head(&event->waitq); 9951 init_irq_work(&event->pending, perf_pending_event); 9952 9953 mutex_init(&event->mmap_mutex); 9954 raw_spin_lock_init(&event->addr_filters.lock); 9955 9956 atomic_long_set(&event->refcount, 1); 9957 event->cpu = cpu; 9958 event->attr = *attr; 9959 event->group_leader = group_leader; 9960 event->pmu = NULL; 9961 event->oncpu = -1; 9962 9963 event->parent = parent_event; 9964 9965 event->ns = get_pid_ns(task_active_pid_ns(current)); 9966 event->id = atomic64_inc_return(&perf_event_id); 9967 9968 event->state = PERF_EVENT_STATE_INACTIVE; 9969 9970 if (task) { 9971 event->attach_state = PERF_ATTACH_TASK; 9972 /* 9973 * XXX pmu::event_init needs to know what task to account to 9974 * and we cannot use the ctx information because we need the 9975 * pmu before we get a ctx. 9976 */ 9977 get_task_struct(task); 9978 event->hw.target = task; 9979 } 9980 9981 event->clock = &local_clock; 9982 if (parent_event) 9983 event->clock = parent_event->clock; 9984 9985 if (!overflow_handler && parent_event) { 9986 overflow_handler = parent_event->overflow_handler; 9987 context = parent_event->overflow_handler_context; 9988 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9989 if (overflow_handler == bpf_overflow_handler) { 9990 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9991 9992 if (IS_ERR(prog)) { 9993 err = PTR_ERR(prog); 9994 goto err_ns; 9995 } 9996 event->prog = prog; 9997 event->orig_overflow_handler = 9998 parent_event->orig_overflow_handler; 9999 } 10000 #endif 10001 } 10002 10003 if (overflow_handler) { 10004 event->overflow_handler = overflow_handler; 10005 event->overflow_handler_context = context; 10006 } else if (is_write_backward(event)){ 10007 event->overflow_handler = perf_event_output_backward; 10008 event->overflow_handler_context = NULL; 10009 } else { 10010 event->overflow_handler = perf_event_output_forward; 10011 event->overflow_handler_context = NULL; 10012 } 10013 10014 perf_event__state_init(event); 10015 10016 pmu = NULL; 10017 10018 hwc = &event->hw; 10019 hwc->sample_period = attr->sample_period; 10020 if (attr->freq && attr->sample_freq) 10021 hwc->sample_period = 1; 10022 hwc->last_period = hwc->sample_period; 10023 10024 local64_set(&hwc->period_left, hwc->sample_period); 10025 10026 /* 10027 * We currently do not support PERF_SAMPLE_READ on inherited events. 10028 * See perf_output_read(). 10029 */ 10030 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10031 goto err_ns; 10032 10033 if (!has_branch_stack(event)) 10034 event->attr.branch_sample_type = 0; 10035 10036 if (cgroup_fd != -1) { 10037 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10038 if (err) 10039 goto err_ns; 10040 } 10041 10042 pmu = perf_init_event(event); 10043 if (IS_ERR(pmu)) { 10044 err = PTR_ERR(pmu); 10045 goto err_ns; 10046 } 10047 10048 err = exclusive_event_init(event); 10049 if (err) 10050 goto err_pmu; 10051 10052 if (has_addr_filter(event)) { 10053 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 10054 sizeof(unsigned long), 10055 GFP_KERNEL); 10056 if (!event->addr_filters_offs) { 10057 err = -ENOMEM; 10058 goto err_per_task; 10059 } 10060 10061 /* force hw sync on the address filters */ 10062 event->addr_filters_gen = 1; 10063 } 10064 10065 if (!event->parent) { 10066 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10067 err = get_callchain_buffers(attr->sample_max_stack); 10068 if (err) 10069 goto err_addr_filters; 10070 } 10071 } 10072 10073 /* symmetric to unaccount_event() in _free_event() */ 10074 account_event(event); 10075 10076 return event; 10077 10078 err_addr_filters: 10079 kfree(event->addr_filters_offs); 10080 10081 err_per_task: 10082 exclusive_event_destroy(event); 10083 10084 err_pmu: 10085 if (event->destroy) 10086 event->destroy(event); 10087 module_put(pmu->module); 10088 err_ns: 10089 if (is_cgroup_event(event)) 10090 perf_detach_cgroup(event); 10091 if (event->ns) 10092 put_pid_ns(event->ns); 10093 if (event->hw.target) 10094 put_task_struct(event->hw.target); 10095 kfree(event); 10096 10097 return ERR_PTR(err); 10098 } 10099 10100 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10101 struct perf_event_attr *attr) 10102 { 10103 u32 size; 10104 int ret; 10105 10106 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 10107 return -EFAULT; 10108 10109 /* 10110 * zero the full structure, so that a short copy will be nice. 10111 */ 10112 memset(attr, 0, sizeof(*attr)); 10113 10114 ret = get_user(size, &uattr->size); 10115 if (ret) 10116 return ret; 10117 10118 if (size > PAGE_SIZE) /* silly large */ 10119 goto err_size; 10120 10121 if (!size) /* abi compat */ 10122 size = PERF_ATTR_SIZE_VER0; 10123 10124 if (size < PERF_ATTR_SIZE_VER0) 10125 goto err_size; 10126 10127 /* 10128 * If we're handed a bigger struct than we know of, 10129 * ensure all the unknown bits are 0 - i.e. new 10130 * user-space does not rely on any kernel feature 10131 * extensions we dont know about yet. 10132 */ 10133 if (size > sizeof(*attr)) { 10134 unsigned char __user *addr; 10135 unsigned char __user *end; 10136 unsigned char val; 10137 10138 addr = (void __user *)uattr + sizeof(*attr); 10139 end = (void __user *)uattr + size; 10140 10141 for (; addr < end; addr++) { 10142 ret = get_user(val, addr); 10143 if (ret) 10144 return ret; 10145 if (val) 10146 goto err_size; 10147 } 10148 size = sizeof(*attr); 10149 } 10150 10151 ret = copy_from_user(attr, uattr, size); 10152 if (ret) 10153 return -EFAULT; 10154 10155 attr->size = size; 10156 10157 if (attr->__reserved_1) 10158 return -EINVAL; 10159 10160 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10161 return -EINVAL; 10162 10163 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10164 return -EINVAL; 10165 10166 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10167 u64 mask = attr->branch_sample_type; 10168 10169 /* only using defined bits */ 10170 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10171 return -EINVAL; 10172 10173 /* at least one branch bit must be set */ 10174 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10175 return -EINVAL; 10176 10177 /* propagate priv level, when not set for branch */ 10178 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10179 10180 /* exclude_kernel checked on syscall entry */ 10181 if (!attr->exclude_kernel) 10182 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10183 10184 if (!attr->exclude_user) 10185 mask |= PERF_SAMPLE_BRANCH_USER; 10186 10187 if (!attr->exclude_hv) 10188 mask |= PERF_SAMPLE_BRANCH_HV; 10189 /* 10190 * adjust user setting (for HW filter setup) 10191 */ 10192 attr->branch_sample_type = mask; 10193 } 10194 /* privileged levels capture (kernel, hv): check permissions */ 10195 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10196 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10197 return -EACCES; 10198 } 10199 10200 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10201 ret = perf_reg_validate(attr->sample_regs_user); 10202 if (ret) 10203 return ret; 10204 } 10205 10206 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10207 if (!arch_perf_have_user_stack_dump()) 10208 return -ENOSYS; 10209 10210 /* 10211 * We have __u32 type for the size, but so far 10212 * we can only use __u16 as maximum due to the 10213 * __u16 sample size limit. 10214 */ 10215 if (attr->sample_stack_user >= USHRT_MAX) 10216 return -EINVAL; 10217 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10218 return -EINVAL; 10219 } 10220 10221 if (!attr->sample_max_stack) 10222 attr->sample_max_stack = sysctl_perf_event_max_stack; 10223 10224 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10225 ret = perf_reg_validate(attr->sample_regs_intr); 10226 out: 10227 return ret; 10228 10229 err_size: 10230 put_user(sizeof(*attr), &uattr->size); 10231 ret = -E2BIG; 10232 goto out; 10233 } 10234 10235 static int 10236 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10237 { 10238 struct ring_buffer *rb = NULL; 10239 int ret = -EINVAL; 10240 10241 if (!output_event) 10242 goto set; 10243 10244 /* don't allow circular references */ 10245 if (event == output_event) 10246 goto out; 10247 10248 /* 10249 * Don't allow cross-cpu buffers 10250 */ 10251 if (output_event->cpu != event->cpu) 10252 goto out; 10253 10254 /* 10255 * If its not a per-cpu rb, it must be the same task. 10256 */ 10257 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10258 goto out; 10259 10260 /* 10261 * Mixing clocks in the same buffer is trouble you don't need. 10262 */ 10263 if (output_event->clock != event->clock) 10264 goto out; 10265 10266 /* 10267 * Either writing ring buffer from beginning or from end. 10268 * Mixing is not allowed. 10269 */ 10270 if (is_write_backward(output_event) != is_write_backward(event)) 10271 goto out; 10272 10273 /* 10274 * If both events generate aux data, they must be on the same PMU 10275 */ 10276 if (has_aux(event) && has_aux(output_event) && 10277 event->pmu != output_event->pmu) 10278 goto out; 10279 10280 set: 10281 mutex_lock(&event->mmap_mutex); 10282 /* Can't redirect output if we've got an active mmap() */ 10283 if (atomic_read(&event->mmap_count)) 10284 goto unlock; 10285 10286 if (output_event) { 10287 /* get the rb we want to redirect to */ 10288 rb = ring_buffer_get(output_event); 10289 if (!rb) 10290 goto unlock; 10291 } 10292 10293 ring_buffer_attach(event, rb); 10294 10295 ret = 0; 10296 unlock: 10297 mutex_unlock(&event->mmap_mutex); 10298 10299 out: 10300 return ret; 10301 } 10302 10303 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10304 { 10305 if (b < a) 10306 swap(a, b); 10307 10308 mutex_lock(a); 10309 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10310 } 10311 10312 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10313 { 10314 bool nmi_safe = false; 10315 10316 switch (clk_id) { 10317 case CLOCK_MONOTONIC: 10318 event->clock = &ktime_get_mono_fast_ns; 10319 nmi_safe = true; 10320 break; 10321 10322 case CLOCK_MONOTONIC_RAW: 10323 event->clock = &ktime_get_raw_fast_ns; 10324 nmi_safe = true; 10325 break; 10326 10327 case CLOCK_REALTIME: 10328 event->clock = &ktime_get_real_ns; 10329 break; 10330 10331 case CLOCK_BOOTTIME: 10332 event->clock = &ktime_get_boot_ns; 10333 break; 10334 10335 case CLOCK_TAI: 10336 event->clock = &ktime_get_tai_ns; 10337 break; 10338 10339 default: 10340 return -EINVAL; 10341 } 10342 10343 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10344 return -EINVAL; 10345 10346 return 0; 10347 } 10348 10349 /* 10350 * Variation on perf_event_ctx_lock_nested(), except we take two context 10351 * mutexes. 10352 */ 10353 static struct perf_event_context * 10354 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10355 struct perf_event_context *ctx) 10356 { 10357 struct perf_event_context *gctx; 10358 10359 again: 10360 rcu_read_lock(); 10361 gctx = READ_ONCE(group_leader->ctx); 10362 if (!atomic_inc_not_zero(&gctx->refcount)) { 10363 rcu_read_unlock(); 10364 goto again; 10365 } 10366 rcu_read_unlock(); 10367 10368 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10369 10370 if (group_leader->ctx != gctx) { 10371 mutex_unlock(&ctx->mutex); 10372 mutex_unlock(&gctx->mutex); 10373 put_ctx(gctx); 10374 goto again; 10375 } 10376 10377 return gctx; 10378 } 10379 10380 /** 10381 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10382 * 10383 * @attr_uptr: event_id type attributes for monitoring/sampling 10384 * @pid: target pid 10385 * @cpu: target cpu 10386 * @group_fd: group leader event fd 10387 */ 10388 SYSCALL_DEFINE5(perf_event_open, 10389 struct perf_event_attr __user *, attr_uptr, 10390 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10391 { 10392 struct perf_event *group_leader = NULL, *output_event = NULL; 10393 struct perf_event *event, *sibling; 10394 struct perf_event_attr attr; 10395 struct perf_event_context *ctx, *uninitialized_var(gctx); 10396 struct file *event_file = NULL; 10397 struct fd group = {NULL, 0}; 10398 struct task_struct *task = NULL; 10399 struct pmu *pmu; 10400 int event_fd; 10401 int move_group = 0; 10402 int err; 10403 int f_flags = O_RDWR; 10404 int cgroup_fd = -1; 10405 10406 /* for future expandability... */ 10407 if (flags & ~PERF_FLAG_ALL) 10408 return -EINVAL; 10409 10410 err = perf_copy_attr(attr_uptr, &attr); 10411 if (err) 10412 return err; 10413 10414 if (!attr.exclude_kernel) { 10415 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10416 return -EACCES; 10417 } 10418 10419 if (attr.namespaces) { 10420 if (!capable(CAP_SYS_ADMIN)) 10421 return -EACCES; 10422 } 10423 10424 if (attr.freq) { 10425 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10426 return -EINVAL; 10427 } else { 10428 if (attr.sample_period & (1ULL << 63)) 10429 return -EINVAL; 10430 } 10431 10432 /* Only privileged users can get physical addresses */ 10433 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10434 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10435 return -EACCES; 10436 10437 /* 10438 * In cgroup mode, the pid argument is used to pass the fd 10439 * opened to the cgroup directory in cgroupfs. The cpu argument 10440 * designates the cpu on which to monitor threads from that 10441 * cgroup. 10442 */ 10443 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10444 return -EINVAL; 10445 10446 if (flags & PERF_FLAG_FD_CLOEXEC) 10447 f_flags |= O_CLOEXEC; 10448 10449 event_fd = get_unused_fd_flags(f_flags); 10450 if (event_fd < 0) 10451 return event_fd; 10452 10453 if (group_fd != -1) { 10454 err = perf_fget_light(group_fd, &group); 10455 if (err) 10456 goto err_fd; 10457 group_leader = group.file->private_data; 10458 if (flags & PERF_FLAG_FD_OUTPUT) 10459 output_event = group_leader; 10460 if (flags & PERF_FLAG_FD_NO_GROUP) 10461 group_leader = NULL; 10462 } 10463 10464 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10465 task = find_lively_task_by_vpid(pid); 10466 if (IS_ERR(task)) { 10467 err = PTR_ERR(task); 10468 goto err_group_fd; 10469 } 10470 } 10471 10472 if (task && group_leader && 10473 group_leader->attr.inherit != attr.inherit) { 10474 err = -EINVAL; 10475 goto err_task; 10476 } 10477 10478 if (task) { 10479 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10480 if (err) 10481 goto err_task; 10482 10483 /* 10484 * Reuse ptrace permission checks for now. 10485 * 10486 * We must hold cred_guard_mutex across this and any potential 10487 * perf_install_in_context() call for this new event to 10488 * serialize against exec() altering our credentials (and the 10489 * perf_event_exit_task() that could imply). 10490 */ 10491 err = -EACCES; 10492 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10493 goto err_cred; 10494 } 10495 10496 if (flags & PERF_FLAG_PID_CGROUP) 10497 cgroup_fd = pid; 10498 10499 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10500 NULL, NULL, cgroup_fd); 10501 if (IS_ERR(event)) { 10502 err = PTR_ERR(event); 10503 goto err_cred; 10504 } 10505 10506 if (is_sampling_event(event)) { 10507 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10508 err = -EOPNOTSUPP; 10509 goto err_alloc; 10510 } 10511 } 10512 10513 /* 10514 * Special case software events and allow them to be part of 10515 * any hardware group. 10516 */ 10517 pmu = event->pmu; 10518 10519 if (attr.use_clockid) { 10520 err = perf_event_set_clock(event, attr.clockid); 10521 if (err) 10522 goto err_alloc; 10523 } 10524 10525 if (pmu->task_ctx_nr == perf_sw_context) 10526 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10527 10528 if (group_leader) { 10529 if (is_software_event(event) && 10530 !in_software_context(group_leader)) { 10531 /* 10532 * If the event is a sw event, but the group_leader 10533 * is on hw context. 10534 * 10535 * Allow the addition of software events to hw 10536 * groups, this is safe because software events 10537 * never fail to schedule. 10538 */ 10539 pmu = group_leader->ctx->pmu; 10540 } else if (!is_software_event(event) && 10541 is_software_event(group_leader) && 10542 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10543 /* 10544 * In case the group is a pure software group, and we 10545 * try to add a hardware event, move the whole group to 10546 * the hardware context. 10547 */ 10548 move_group = 1; 10549 } 10550 } 10551 10552 /* 10553 * Get the target context (task or percpu): 10554 */ 10555 ctx = find_get_context(pmu, task, event); 10556 if (IS_ERR(ctx)) { 10557 err = PTR_ERR(ctx); 10558 goto err_alloc; 10559 } 10560 10561 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10562 err = -EBUSY; 10563 goto err_context; 10564 } 10565 10566 /* 10567 * Look up the group leader (we will attach this event to it): 10568 */ 10569 if (group_leader) { 10570 err = -EINVAL; 10571 10572 /* 10573 * Do not allow a recursive hierarchy (this new sibling 10574 * becoming part of another group-sibling): 10575 */ 10576 if (group_leader->group_leader != group_leader) 10577 goto err_context; 10578 10579 /* All events in a group should have the same clock */ 10580 if (group_leader->clock != event->clock) 10581 goto err_context; 10582 10583 /* 10584 * Make sure we're both events for the same CPU; 10585 * grouping events for different CPUs is broken; since 10586 * you can never concurrently schedule them anyhow. 10587 */ 10588 if (group_leader->cpu != event->cpu) 10589 goto err_context; 10590 10591 /* 10592 * Make sure we're both on the same task, or both 10593 * per-CPU events. 10594 */ 10595 if (group_leader->ctx->task != ctx->task) 10596 goto err_context; 10597 10598 /* 10599 * Do not allow to attach to a group in a different task 10600 * or CPU context. If we're moving SW events, we'll fix 10601 * this up later, so allow that. 10602 */ 10603 if (!move_group && group_leader->ctx != ctx) 10604 goto err_context; 10605 10606 /* 10607 * Only a group leader can be exclusive or pinned 10608 */ 10609 if (attr.exclusive || attr.pinned) 10610 goto err_context; 10611 } 10612 10613 if (output_event) { 10614 err = perf_event_set_output(event, output_event); 10615 if (err) 10616 goto err_context; 10617 } 10618 10619 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10620 f_flags); 10621 if (IS_ERR(event_file)) { 10622 err = PTR_ERR(event_file); 10623 event_file = NULL; 10624 goto err_context; 10625 } 10626 10627 if (move_group) { 10628 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10629 10630 if (gctx->task == TASK_TOMBSTONE) { 10631 err = -ESRCH; 10632 goto err_locked; 10633 } 10634 10635 /* 10636 * Check if we raced against another sys_perf_event_open() call 10637 * moving the software group underneath us. 10638 */ 10639 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10640 /* 10641 * If someone moved the group out from under us, check 10642 * if this new event wound up on the same ctx, if so 10643 * its the regular !move_group case, otherwise fail. 10644 */ 10645 if (gctx != ctx) { 10646 err = -EINVAL; 10647 goto err_locked; 10648 } else { 10649 perf_event_ctx_unlock(group_leader, gctx); 10650 move_group = 0; 10651 } 10652 } 10653 } else { 10654 mutex_lock(&ctx->mutex); 10655 } 10656 10657 if (ctx->task == TASK_TOMBSTONE) { 10658 err = -ESRCH; 10659 goto err_locked; 10660 } 10661 10662 if (!perf_event_validate_size(event)) { 10663 err = -E2BIG; 10664 goto err_locked; 10665 } 10666 10667 if (!task) { 10668 /* 10669 * Check if the @cpu we're creating an event for is online. 10670 * 10671 * We use the perf_cpu_context::ctx::mutex to serialize against 10672 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10673 */ 10674 struct perf_cpu_context *cpuctx = 10675 container_of(ctx, struct perf_cpu_context, ctx); 10676 10677 if (!cpuctx->online) { 10678 err = -ENODEV; 10679 goto err_locked; 10680 } 10681 } 10682 10683 10684 /* 10685 * Must be under the same ctx::mutex as perf_install_in_context(), 10686 * because we need to serialize with concurrent event creation. 10687 */ 10688 if (!exclusive_event_installable(event, ctx)) { 10689 /* exclusive and group stuff are assumed mutually exclusive */ 10690 WARN_ON_ONCE(move_group); 10691 10692 err = -EBUSY; 10693 goto err_locked; 10694 } 10695 10696 WARN_ON_ONCE(ctx->parent_ctx); 10697 10698 /* 10699 * This is the point on no return; we cannot fail hereafter. This is 10700 * where we start modifying current state. 10701 */ 10702 10703 if (move_group) { 10704 /* 10705 * See perf_event_ctx_lock() for comments on the details 10706 * of swizzling perf_event::ctx. 10707 */ 10708 perf_remove_from_context(group_leader, 0); 10709 put_ctx(gctx); 10710 10711 for_each_sibling_event(sibling, group_leader) { 10712 perf_remove_from_context(sibling, 0); 10713 put_ctx(gctx); 10714 } 10715 10716 /* 10717 * Wait for everybody to stop referencing the events through 10718 * the old lists, before installing it on new lists. 10719 */ 10720 synchronize_rcu(); 10721 10722 /* 10723 * Install the group siblings before the group leader. 10724 * 10725 * Because a group leader will try and install the entire group 10726 * (through the sibling list, which is still in-tact), we can 10727 * end up with siblings installed in the wrong context. 10728 * 10729 * By installing siblings first we NO-OP because they're not 10730 * reachable through the group lists. 10731 */ 10732 for_each_sibling_event(sibling, group_leader) { 10733 perf_event__state_init(sibling); 10734 perf_install_in_context(ctx, sibling, sibling->cpu); 10735 get_ctx(ctx); 10736 } 10737 10738 /* 10739 * Removing from the context ends up with disabled 10740 * event. What we want here is event in the initial 10741 * startup state, ready to be add into new context. 10742 */ 10743 perf_event__state_init(group_leader); 10744 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10745 get_ctx(ctx); 10746 } 10747 10748 /* 10749 * Precalculate sample_data sizes; do while holding ctx::mutex such 10750 * that we're serialized against further additions and before 10751 * perf_install_in_context() which is the point the event is active and 10752 * can use these values. 10753 */ 10754 perf_event__header_size(event); 10755 perf_event__id_header_size(event); 10756 10757 event->owner = current; 10758 10759 perf_install_in_context(ctx, event, event->cpu); 10760 perf_unpin_context(ctx); 10761 10762 if (move_group) 10763 perf_event_ctx_unlock(group_leader, gctx); 10764 mutex_unlock(&ctx->mutex); 10765 10766 if (task) { 10767 mutex_unlock(&task->signal->cred_guard_mutex); 10768 put_task_struct(task); 10769 } 10770 10771 mutex_lock(¤t->perf_event_mutex); 10772 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10773 mutex_unlock(¤t->perf_event_mutex); 10774 10775 /* 10776 * Drop the reference on the group_event after placing the 10777 * new event on the sibling_list. This ensures destruction 10778 * of the group leader will find the pointer to itself in 10779 * perf_group_detach(). 10780 */ 10781 fdput(group); 10782 fd_install(event_fd, event_file); 10783 return event_fd; 10784 10785 err_locked: 10786 if (move_group) 10787 perf_event_ctx_unlock(group_leader, gctx); 10788 mutex_unlock(&ctx->mutex); 10789 /* err_file: */ 10790 fput(event_file); 10791 err_context: 10792 perf_unpin_context(ctx); 10793 put_ctx(ctx); 10794 err_alloc: 10795 /* 10796 * If event_file is set, the fput() above will have called ->release() 10797 * and that will take care of freeing the event. 10798 */ 10799 if (!event_file) 10800 free_event(event); 10801 err_cred: 10802 if (task) 10803 mutex_unlock(&task->signal->cred_guard_mutex); 10804 err_task: 10805 if (task) 10806 put_task_struct(task); 10807 err_group_fd: 10808 fdput(group); 10809 err_fd: 10810 put_unused_fd(event_fd); 10811 return err; 10812 } 10813 10814 /** 10815 * perf_event_create_kernel_counter 10816 * 10817 * @attr: attributes of the counter to create 10818 * @cpu: cpu in which the counter is bound 10819 * @task: task to profile (NULL for percpu) 10820 */ 10821 struct perf_event * 10822 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10823 struct task_struct *task, 10824 perf_overflow_handler_t overflow_handler, 10825 void *context) 10826 { 10827 struct perf_event_context *ctx; 10828 struct perf_event *event; 10829 int err; 10830 10831 /* 10832 * Get the target context (task or percpu): 10833 */ 10834 10835 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10836 overflow_handler, context, -1); 10837 if (IS_ERR(event)) { 10838 err = PTR_ERR(event); 10839 goto err; 10840 } 10841 10842 /* Mark owner so we could distinguish it from user events. */ 10843 event->owner = TASK_TOMBSTONE; 10844 10845 ctx = find_get_context(event->pmu, task, event); 10846 if (IS_ERR(ctx)) { 10847 err = PTR_ERR(ctx); 10848 goto err_free; 10849 } 10850 10851 WARN_ON_ONCE(ctx->parent_ctx); 10852 mutex_lock(&ctx->mutex); 10853 if (ctx->task == TASK_TOMBSTONE) { 10854 err = -ESRCH; 10855 goto err_unlock; 10856 } 10857 10858 if (!task) { 10859 /* 10860 * Check if the @cpu we're creating an event for is online. 10861 * 10862 * We use the perf_cpu_context::ctx::mutex to serialize against 10863 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10864 */ 10865 struct perf_cpu_context *cpuctx = 10866 container_of(ctx, struct perf_cpu_context, ctx); 10867 if (!cpuctx->online) { 10868 err = -ENODEV; 10869 goto err_unlock; 10870 } 10871 } 10872 10873 if (!exclusive_event_installable(event, ctx)) { 10874 err = -EBUSY; 10875 goto err_unlock; 10876 } 10877 10878 perf_install_in_context(ctx, event, cpu); 10879 perf_unpin_context(ctx); 10880 mutex_unlock(&ctx->mutex); 10881 10882 return event; 10883 10884 err_unlock: 10885 mutex_unlock(&ctx->mutex); 10886 perf_unpin_context(ctx); 10887 put_ctx(ctx); 10888 err_free: 10889 free_event(event); 10890 err: 10891 return ERR_PTR(err); 10892 } 10893 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10894 10895 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10896 { 10897 struct perf_event_context *src_ctx; 10898 struct perf_event_context *dst_ctx; 10899 struct perf_event *event, *tmp; 10900 LIST_HEAD(events); 10901 10902 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10903 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10904 10905 /* 10906 * See perf_event_ctx_lock() for comments on the details 10907 * of swizzling perf_event::ctx. 10908 */ 10909 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10910 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10911 event_entry) { 10912 perf_remove_from_context(event, 0); 10913 unaccount_event_cpu(event, src_cpu); 10914 put_ctx(src_ctx); 10915 list_add(&event->migrate_entry, &events); 10916 } 10917 10918 /* 10919 * Wait for the events to quiesce before re-instating them. 10920 */ 10921 synchronize_rcu(); 10922 10923 /* 10924 * Re-instate events in 2 passes. 10925 * 10926 * Skip over group leaders and only install siblings on this first 10927 * pass, siblings will not get enabled without a leader, however a 10928 * leader will enable its siblings, even if those are still on the old 10929 * context. 10930 */ 10931 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10932 if (event->group_leader == event) 10933 continue; 10934 10935 list_del(&event->migrate_entry); 10936 if (event->state >= PERF_EVENT_STATE_OFF) 10937 event->state = PERF_EVENT_STATE_INACTIVE; 10938 account_event_cpu(event, dst_cpu); 10939 perf_install_in_context(dst_ctx, event, dst_cpu); 10940 get_ctx(dst_ctx); 10941 } 10942 10943 /* 10944 * Once all the siblings are setup properly, install the group leaders 10945 * to make it go. 10946 */ 10947 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10948 list_del(&event->migrate_entry); 10949 if (event->state >= PERF_EVENT_STATE_OFF) 10950 event->state = PERF_EVENT_STATE_INACTIVE; 10951 account_event_cpu(event, dst_cpu); 10952 perf_install_in_context(dst_ctx, event, dst_cpu); 10953 get_ctx(dst_ctx); 10954 } 10955 mutex_unlock(&dst_ctx->mutex); 10956 mutex_unlock(&src_ctx->mutex); 10957 } 10958 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10959 10960 static void sync_child_event(struct perf_event *child_event, 10961 struct task_struct *child) 10962 { 10963 struct perf_event *parent_event = child_event->parent; 10964 u64 child_val; 10965 10966 if (child_event->attr.inherit_stat) 10967 perf_event_read_event(child_event, child); 10968 10969 child_val = perf_event_count(child_event); 10970 10971 /* 10972 * Add back the child's count to the parent's count: 10973 */ 10974 atomic64_add(child_val, &parent_event->child_count); 10975 atomic64_add(child_event->total_time_enabled, 10976 &parent_event->child_total_time_enabled); 10977 atomic64_add(child_event->total_time_running, 10978 &parent_event->child_total_time_running); 10979 } 10980 10981 static void 10982 perf_event_exit_event(struct perf_event *child_event, 10983 struct perf_event_context *child_ctx, 10984 struct task_struct *child) 10985 { 10986 struct perf_event *parent_event = child_event->parent; 10987 10988 /* 10989 * Do not destroy the 'original' grouping; because of the context 10990 * switch optimization the original events could've ended up in a 10991 * random child task. 10992 * 10993 * If we were to destroy the original group, all group related 10994 * operations would cease to function properly after this random 10995 * child dies. 10996 * 10997 * Do destroy all inherited groups, we don't care about those 10998 * and being thorough is better. 10999 */ 11000 raw_spin_lock_irq(&child_ctx->lock); 11001 WARN_ON_ONCE(child_ctx->is_active); 11002 11003 if (parent_event) 11004 perf_group_detach(child_event); 11005 list_del_event(child_event, child_ctx); 11006 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11007 raw_spin_unlock_irq(&child_ctx->lock); 11008 11009 /* 11010 * Parent events are governed by their filedesc, retain them. 11011 */ 11012 if (!parent_event) { 11013 perf_event_wakeup(child_event); 11014 return; 11015 } 11016 /* 11017 * Child events can be cleaned up. 11018 */ 11019 11020 sync_child_event(child_event, child); 11021 11022 /* 11023 * Remove this event from the parent's list 11024 */ 11025 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11026 mutex_lock(&parent_event->child_mutex); 11027 list_del_init(&child_event->child_list); 11028 mutex_unlock(&parent_event->child_mutex); 11029 11030 /* 11031 * Kick perf_poll() for is_event_hup(). 11032 */ 11033 perf_event_wakeup(parent_event); 11034 free_event(child_event); 11035 put_event(parent_event); 11036 } 11037 11038 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11039 { 11040 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11041 struct perf_event *child_event, *next; 11042 11043 WARN_ON_ONCE(child != current); 11044 11045 child_ctx = perf_pin_task_context(child, ctxn); 11046 if (!child_ctx) 11047 return; 11048 11049 /* 11050 * In order to reduce the amount of tricky in ctx tear-down, we hold 11051 * ctx::mutex over the entire thing. This serializes against almost 11052 * everything that wants to access the ctx. 11053 * 11054 * The exception is sys_perf_event_open() / 11055 * perf_event_create_kernel_count() which does find_get_context() 11056 * without ctx::mutex (it cannot because of the move_group double mutex 11057 * lock thing). See the comments in perf_install_in_context(). 11058 */ 11059 mutex_lock(&child_ctx->mutex); 11060 11061 /* 11062 * In a single ctx::lock section, de-schedule the events and detach the 11063 * context from the task such that we cannot ever get it scheduled back 11064 * in. 11065 */ 11066 raw_spin_lock_irq(&child_ctx->lock); 11067 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11068 11069 /* 11070 * Now that the context is inactive, destroy the task <-> ctx relation 11071 * and mark the context dead. 11072 */ 11073 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11074 put_ctx(child_ctx); /* cannot be last */ 11075 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11076 put_task_struct(current); /* cannot be last */ 11077 11078 clone_ctx = unclone_ctx(child_ctx); 11079 raw_spin_unlock_irq(&child_ctx->lock); 11080 11081 if (clone_ctx) 11082 put_ctx(clone_ctx); 11083 11084 /* 11085 * Report the task dead after unscheduling the events so that we 11086 * won't get any samples after PERF_RECORD_EXIT. We can however still 11087 * get a few PERF_RECORD_READ events. 11088 */ 11089 perf_event_task(child, child_ctx, 0); 11090 11091 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11092 perf_event_exit_event(child_event, child_ctx, child); 11093 11094 mutex_unlock(&child_ctx->mutex); 11095 11096 put_ctx(child_ctx); 11097 } 11098 11099 /* 11100 * When a child task exits, feed back event values to parent events. 11101 * 11102 * Can be called with cred_guard_mutex held when called from 11103 * install_exec_creds(). 11104 */ 11105 void perf_event_exit_task(struct task_struct *child) 11106 { 11107 struct perf_event *event, *tmp; 11108 int ctxn; 11109 11110 mutex_lock(&child->perf_event_mutex); 11111 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11112 owner_entry) { 11113 list_del_init(&event->owner_entry); 11114 11115 /* 11116 * Ensure the list deletion is visible before we clear 11117 * the owner, closes a race against perf_release() where 11118 * we need to serialize on the owner->perf_event_mutex. 11119 */ 11120 smp_store_release(&event->owner, NULL); 11121 } 11122 mutex_unlock(&child->perf_event_mutex); 11123 11124 for_each_task_context_nr(ctxn) 11125 perf_event_exit_task_context(child, ctxn); 11126 11127 /* 11128 * The perf_event_exit_task_context calls perf_event_task 11129 * with child's task_ctx, which generates EXIT events for 11130 * child contexts and sets child->perf_event_ctxp[] to NULL. 11131 * At this point we need to send EXIT events to cpu contexts. 11132 */ 11133 perf_event_task(child, NULL, 0); 11134 } 11135 11136 static void perf_free_event(struct perf_event *event, 11137 struct perf_event_context *ctx) 11138 { 11139 struct perf_event *parent = event->parent; 11140 11141 if (WARN_ON_ONCE(!parent)) 11142 return; 11143 11144 mutex_lock(&parent->child_mutex); 11145 list_del_init(&event->child_list); 11146 mutex_unlock(&parent->child_mutex); 11147 11148 put_event(parent); 11149 11150 raw_spin_lock_irq(&ctx->lock); 11151 perf_group_detach(event); 11152 list_del_event(event, ctx); 11153 raw_spin_unlock_irq(&ctx->lock); 11154 free_event(event); 11155 } 11156 11157 /* 11158 * Free an unexposed, unused context as created by inheritance by 11159 * perf_event_init_task below, used by fork() in case of fail. 11160 * 11161 * Not all locks are strictly required, but take them anyway to be nice and 11162 * help out with the lockdep assertions. 11163 */ 11164 void perf_event_free_task(struct task_struct *task) 11165 { 11166 struct perf_event_context *ctx; 11167 struct perf_event *event, *tmp; 11168 int ctxn; 11169 11170 for_each_task_context_nr(ctxn) { 11171 ctx = task->perf_event_ctxp[ctxn]; 11172 if (!ctx) 11173 continue; 11174 11175 mutex_lock(&ctx->mutex); 11176 raw_spin_lock_irq(&ctx->lock); 11177 /* 11178 * Destroy the task <-> ctx relation and mark the context dead. 11179 * 11180 * This is important because even though the task hasn't been 11181 * exposed yet the context has been (through child_list). 11182 */ 11183 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11184 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11185 put_task_struct(task); /* cannot be last */ 11186 raw_spin_unlock_irq(&ctx->lock); 11187 11188 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11189 perf_free_event(event, ctx); 11190 11191 mutex_unlock(&ctx->mutex); 11192 put_ctx(ctx); 11193 } 11194 } 11195 11196 void perf_event_delayed_put(struct task_struct *task) 11197 { 11198 int ctxn; 11199 11200 for_each_task_context_nr(ctxn) 11201 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11202 } 11203 11204 struct file *perf_event_get(unsigned int fd) 11205 { 11206 struct file *file; 11207 11208 file = fget_raw(fd); 11209 if (!file) 11210 return ERR_PTR(-EBADF); 11211 11212 if (file->f_op != &perf_fops) { 11213 fput(file); 11214 return ERR_PTR(-EBADF); 11215 } 11216 11217 return file; 11218 } 11219 11220 const struct perf_event *perf_get_event(struct file *file) 11221 { 11222 if (file->f_op != &perf_fops) 11223 return ERR_PTR(-EINVAL); 11224 11225 return file->private_data; 11226 } 11227 11228 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11229 { 11230 if (!event) 11231 return ERR_PTR(-EINVAL); 11232 11233 return &event->attr; 11234 } 11235 11236 /* 11237 * Inherit an event from parent task to child task. 11238 * 11239 * Returns: 11240 * - valid pointer on success 11241 * - NULL for orphaned events 11242 * - IS_ERR() on error 11243 */ 11244 static struct perf_event * 11245 inherit_event(struct perf_event *parent_event, 11246 struct task_struct *parent, 11247 struct perf_event_context *parent_ctx, 11248 struct task_struct *child, 11249 struct perf_event *group_leader, 11250 struct perf_event_context *child_ctx) 11251 { 11252 enum perf_event_state parent_state = parent_event->state; 11253 struct perf_event *child_event; 11254 unsigned long flags; 11255 11256 /* 11257 * Instead of creating recursive hierarchies of events, 11258 * we link inherited events back to the original parent, 11259 * which has a filp for sure, which we use as the reference 11260 * count: 11261 */ 11262 if (parent_event->parent) 11263 parent_event = parent_event->parent; 11264 11265 child_event = perf_event_alloc(&parent_event->attr, 11266 parent_event->cpu, 11267 child, 11268 group_leader, parent_event, 11269 NULL, NULL, -1); 11270 if (IS_ERR(child_event)) 11271 return child_event; 11272 11273 11274 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11275 !child_ctx->task_ctx_data) { 11276 struct pmu *pmu = child_event->pmu; 11277 11278 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11279 GFP_KERNEL); 11280 if (!child_ctx->task_ctx_data) { 11281 free_event(child_event); 11282 return NULL; 11283 } 11284 } 11285 11286 /* 11287 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11288 * must be under the same lock in order to serialize against 11289 * perf_event_release_kernel(), such that either we must observe 11290 * is_orphaned_event() or they will observe us on the child_list. 11291 */ 11292 mutex_lock(&parent_event->child_mutex); 11293 if (is_orphaned_event(parent_event) || 11294 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11295 mutex_unlock(&parent_event->child_mutex); 11296 /* task_ctx_data is freed with child_ctx */ 11297 free_event(child_event); 11298 return NULL; 11299 } 11300 11301 get_ctx(child_ctx); 11302 11303 /* 11304 * Make the child state follow the state of the parent event, 11305 * not its attr.disabled bit. We hold the parent's mutex, 11306 * so we won't race with perf_event_{en, dis}able_family. 11307 */ 11308 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11309 child_event->state = PERF_EVENT_STATE_INACTIVE; 11310 else 11311 child_event->state = PERF_EVENT_STATE_OFF; 11312 11313 if (parent_event->attr.freq) { 11314 u64 sample_period = parent_event->hw.sample_period; 11315 struct hw_perf_event *hwc = &child_event->hw; 11316 11317 hwc->sample_period = sample_period; 11318 hwc->last_period = sample_period; 11319 11320 local64_set(&hwc->period_left, sample_period); 11321 } 11322 11323 child_event->ctx = child_ctx; 11324 child_event->overflow_handler = parent_event->overflow_handler; 11325 child_event->overflow_handler_context 11326 = parent_event->overflow_handler_context; 11327 11328 /* 11329 * Precalculate sample_data sizes 11330 */ 11331 perf_event__header_size(child_event); 11332 perf_event__id_header_size(child_event); 11333 11334 /* 11335 * Link it up in the child's context: 11336 */ 11337 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11338 add_event_to_ctx(child_event, child_ctx); 11339 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11340 11341 /* 11342 * Link this into the parent event's child list 11343 */ 11344 list_add_tail(&child_event->child_list, &parent_event->child_list); 11345 mutex_unlock(&parent_event->child_mutex); 11346 11347 return child_event; 11348 } 11349 11350 /* 11351 * Inherits an event group. 11352 * 11353 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11354 * This matches with perf_event_release_kernel() removing all child events. 11355 * 11356 * Returns: 11357 * - 0 on success 11358 * - <0 on error 11359 */ 11360 static int inherit_group(struct perf_event *parent_event, 11361 struct task_struct *parent, 11362 struct perf_event_context *parent_ctx, 11363 struct task_struct *child, 11364 struct perf_event_context *child_ctx) 11365 { 11366 struct perf_event *leader; 11367 struct perf_event *sub; 11368 struct perf_event *child_ctr; 11369 11370 leader = inherit_event(parent_event, parent, parent_ctx, 11371 child, NULL, child_ctx); 11372 if (IS_ERR(leader)) 11373 return PTR_ERR(leader); 11374 /* 11375 * @leader can be NULL here because of is_orphaned_event(). In this 11376 * case inherit_event() will create individual events, similar to what 11377 * perf_group_detach() would do anyway. 11378 */ 11379 for_each_sibling_event(sub, parent_event) { 11380 child_ctr = inherit_event(sub, parent, parent_ctx, 11381 child, leader, child_ctx); 11382 if (IS_ERR(child_ctr)) 11383 return PTR_ERR(child_ctr); 11384 } 11385 return 0; 11386 } 11387 11388 /* 11389 * Creates the child task context and tries to inherit the event-group. 11390 * 11391 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11392 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11393 * consistent with perf_event_release_kernel() removing all child events. 11394 * 11395 * Returns: 11396 * - 0 on success 11397 * - <0 on error 11398 */ 11399 static int 11400 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11401 struct perf_event_context *parent_ctx, 11402 struct task_struct *child, int ctxn, 11403 int *inherited_all) 11404 { 11405 int ret; 11406 struct perf_event_context *child_ctx; 11407 11408 if (!event->attr.inherit) { 11409 *inherited_all = 0; 11410 return 0; 11411 } 11412 11413 child_ctx = child->perf_event_ctxp[ctxn]; 11414 if (!child_ctx) { 11415 /* 11416 * This is executed from the parent task context, so 11417 * inherit events that have been marked for cloning. 11418 * First allocate and initialize a context for the 11419 * child. 11420 */ 11421 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11422 if (!child_ctx) 11423 return -ENOMEM; 11424 11425 child->perf_event_ctxp[ctxn] = child_ctx; 11426 } 11427 11428 ret = inherit_group(event, parent, parent_ctx, 11429 child, child_ctx); 11430 11431 if (ret) 11432 *inherited_all = 0; 11433 11434 return ret; 11435 } 11436 11437 /* 11438 * Initialize the perf_event context in task_struct 11439 */ 11440 static int perf_event_init_context(struct task_struct *child, int ctxn) 11441 { 11442 struct perf_event_context *child_ctx, *parent_ctx; 11443 struct perf_event_context *cloned_ctx; 11444 struct perf_event *event; 11445 struct task_struct *parent = current; 11446 int inherited_all = 1; 11447 unsigned long flags; 11448 int ret = 0; 11449 11450 if (likely(!parent->perf_event_ctxp[ctxn])) 11451 return 0; 11452 11453 /* 11454 * If the parent's context is a clone, pin it so it won't get 11455 * swapped under us. 11456 */ 11457 parent_ctx = perf_pin_task_context(parent, ctxn); 11458 if (!parent_ctx) 11459 return 0; 11460 11461 /* 11462 * No need to check if parent_ctx != NULL here; since we saw 11463 * it non-NULL earlier, the only reason for it to become NULL 11464 * is if we exit, and since we're currently in the middle of 11465 * a fork we can't be exiting at the same time. 11466 */ 11467 11468 /* 11469 * Lock the parent list. No need to lock the child - not PID 11470 * hashed yet and not running, so nobody can access it. 11471 */ 11472 mutex_lock(&parent_ctx->mutex); 11473 11474 /* 11475 * We dont have to disable NMIs - we are only looking at 11476 * the list, not manipulating it: 11477 */ 11478 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11479 ret = inherit_task_group(event, parent, parent_ctx, 11480 child, ctxn, &inherited_all); 11481 if (ret) 11482 goto out_unlock; 11483 } 11484 11485 /* 11486 * We can't hold ctx->lock when iterating the ->flexible_group list due 11487 * to allocations, but we need to prevent rotation because 11488 * rotate_ctx() will change the list from interrupt context. 11489 */ 11490 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11491 parent_ctx->rotate_disable = 1; 11492 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11493 11494 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11495 ret = inherit_task_group(event, parent, parent_ctx, 11496 child, ctxn, &inherited_all); 11497 if (ret) 11498 goto out_unlock; 11499 } 11500 11501 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11502 parent_ctx->rotate_disable = 0; 11503 11504 child_ctx = child->perf_event_ctxp[ctxn]; 11505 11506 if (child_ctx && inherited_all) { 11507 /* 11508 * Mark the child context as a clone of the parent 11509 * context, or of whatever the parent is a clone of. 11510 * 11511 * Note that if the parent is a clone, the holding of 11512 * parent_ctx->lock avoids it from being uncloned. 11513 */ 11514 cloned_ctx = parent_ctx->parent_ctx; 11515 if (cloned_ctx) { 11516 child_ctx->parent_ctx = cloned_ctx; 11517 child_ctx->parent_gen = parent_ctx->parent_gen; 11518 } else { 11519 child_ctx->parent_ctx = parent_ctx; 11520 child_ctx->parent_gen = parent_ctx->generation; 11521 } 11522 get_ctx(child_ctx->parent_ctx); 11523 } 11524 11525 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11526 out_unlock: 11527 mutex_unlock(&parent_ctx->mutex); 11528 11529 perf_unpin_context(parent_ctx); 11530 put_ctx(parent_ctx); 11531 11532 return ret; 11533 } 11534 11535 /* 11536 * Initialize the perf_event context in task_struct 11537 */ 11538 int perf_event_init_task(struct task_struct *child) 11539 { 11540 int ctxn, ret; 11541 11542 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11543 mutex_init(&child->perf_event_mutex); 11544 INIT_LIST_HEAD(&child->perf_event_list); 11545 11546 for_each_task_context_nr(ctxn) { 11547 ret = perf_event_init_context(child, ctxn); 11548 if (ret) { 11549 perf_event_free_task(child); 11550 return ret; 11551 } 11552 } 11553 11554 return 0; 11555 } 11556 11557 static void __init perf_event_init_all_cpus(void) 11558 { 11559 struct swevent_htable *swhash; 11560 int cpu; 11561 11562 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11563 11564 for_each_possible_cpu(cpu) { 11565 swhash = &per_cpu(swevent_htable, cpu); 11566 mutex_init(&swhash->hlist_mutex); 11567 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11568 11569 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11570 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11571 11572 #ifdef CONFIG_CGROUP_PERF 11573 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11574 #endif 11575 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11576 } 11577 } 11578 11579 void perf_swevent_init_cpu(unsigned int cpu) 11580 { 11581 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11582 11583 mutex_lock(&swhash->hlist_mutex); 11584 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11585 struct swevent_hlist *hlist; 11586 11587 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11588 WARN_ON(!hlist); 11589 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11590 } 11591 mutex_unlock(&swhash->hlist_mutex); 11592 } 11593 11594 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11595 static void __perf_event_exit_context(void *__info) 11596 { 11597 struct perf_event_context *ctx = __info; 11598 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11599 struct perf_event *event; 11600 11601 raw_spin_lock(&ctx->lock); 11602 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11603 list_for_each_entry(event, &ctx->event_list, event_entry) 11604 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11605 raw_spin_unlock(&ctx->lock); 11606 } 11607 11608 static void perf_event_exit_cpu_context(int cpu) 11609 { 11610 struct perf_cpu_context *cpuctx; 11611 struct perf_event_context *ctx; 11612 struct pmu *pmu; 11613 11614 mutex_lock(&pmus_lock); 11615 list_for_each_entry(pmu, &pmus, entry) { 11616 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11617 ctx = &cpuctx->ctx; 11618 11619 mutex_lock(&ctx->mutex); 11620 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11621 cpuctx->online = 0; 11622 mutex_unlock(&ctx->mutex); 11623 } 11624 cpumask_clear_cpu(cpu, perf_online_mask); 11625 mutex_unlock(&pmus_lock); 11626 } 11627 #else 11628 11629 static void perf_event_exit_cpu_context(int cpu) { } 11630 11631 #endif 11632 11633 int perf_event_init_cpu(unsigned int cpu) 11634 { 11635 struct perf_cpu_context *cpuctx; 11636 struct perf_event_context *ctx; 11637 struct pmu *pmu; 11638 11639 perf_swevent_init_cpu(cpu); 11640 11641 mutex_lock(&pmus_lock); 11642 cpumask_set_cpu(cpu, perf_online_mask); 11643 list_for_each_entry(pmu, &pmus, entry) { 11644 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11645 ctx = &cpuctx->ctx; 11646 11647 mutex_lock(&ctx->mutex); 11648 cpuctx->online = 1; 11649 mutex_unlock(&ctx->mutex); 11650 } 11651 mutex_unlock(&pmus_lock); 11652 11653 return 0; 11654 } 11655 11656 int perf_event_exit_cpu(unsigned int cpu) 11657 { 11658 perf_event_exit_cpu_context(cpu); 11659 return 0; 11660 } 11661 11662 static int 11663 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11664 { 11665 int cpu; 11666 11667 for_each_online_cpu(cpu) 11668 perf_event_exit_cpu(cpu); 11669 11670 return NOTIFY_OK; 11671 } 11672 11673 /* 11674 * Run the perf reboot notifier at the very last possible moment so that 11675 * the generic watchdog code runs as long as possible. 11676 */ 11677 static struct notifier_block perf_reboot_notifier = { 11678 .notifier_call = perf_reboot, 11679 .priority = INT_MIN, 11680 }; 11681 11682 void __init perf_event_init(void) 11683 { 11684 int ret; 11685 11686 idr_init(&pmu_idr); 11687 11688 perf_event_init_all_cpus(); 11689 init_srcu_struct(&pmus_srcu); 11690 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11691 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11692 perf_pmu_register(&perf_task_clock, NULL, -1); 11693 perf_tp_register(); 11694 perf_event_init_cpu(smp_processor_id()); 11695 register_reboot_notifier(&perf_reboot_notifier); 11696 11697 ret = init_hw_breakpoint(); 11698 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11699 11700 /* 11701 * Build time assertion that we keep the data_head at the intended 11702 * location. IOW, validation we got the __reserved[] size right. 11703 */ 11704 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11705 != 1024); 11706 } 11707 11708 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11709 char *page) 11710 { 11711 struct perf_pmu_events_attr *pmu_attr = 11712 container_of(attr, struct perf_pmu_events_attr, attr); 11713 11714 if (pmu_attr->event_str) 11715 return sprintf(page, "%s\n", pmu_attr->event_str); 11716 11717 return 0; 11718 } 11719 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11720 11721 static int __init perf_event_sysfs_init(void) 11722 { 11723 struct pmu *pmu; 11724 int ret; 11725 11726 mutex_lock(&pmus_lock); 11727 11728 ret = bus_register(&pmu_bus); 11729 if (ret) 11730 goto unlock; 11731 11732 list_for_each_entry(pmu, &pmus, entry) { 11733 if (!pmu->name || pmu->type < 0) 11734 continue; 11735 11736 ret = pmu_dev_alloc(pmu); 11737 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11738 } 11739 pmu_bus_running = 1; 11740 ret = 0; 11741 11742 unlock: 11743 mutex_unlock(&pmus_lock); 11744 11745 return ret; 11746 } 11747 device_initcall(perf_event_sysfs_init); 11748 11749 #ifdef CONFIG_CGROUP_PERF 11750 static struct cgroup_subsys_state * 11751 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11752 { 11753 struct perf_cgroup *jc; 11754 11755 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11756 if (!jc) 11757 return ERR_PTR(-ENOMEM); 11758 11759 jc->info = alloc_percpu(struct perf_cgroup_info); 11760 if (!jc->info) { 11761 kfree(jc); 11762 return ERR_PTR(-ENOMEM); 11763 } 11764 11765 return &jc->css; 11766 } 11767 11768 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11769 { 11770 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11771 11772 free_percpu(jc->info); 11773 kfree(jc); 11774 } 11775 11776 static int __perf_cgroup_move(void *info) 11777 { 11778 struct task_struct *task = info; 11779 rcu_read_lock(); 11780 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11781 rcu_read_unlock(); 11782 return 0; 11783 } 11784 11785 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11786 { 11787 struct task_struct *task; 11788 struct cgroup_subsys_state *css; 11789 11790 cgroup_taskset_for_each(task, css, tset) 11791 task_function_call(task, __perf_cgroup_move, task); 11792 } 11793 11794 struct cgroup_subsys perf_event_cgrp_subsys = { 11795 .css_alloc = perf_cgroup_css_alloc, 11796 .css_free = perf_cgroup_css_free, 11797 .attach = perf_cgroup_attach, 11798 /* 11799 * Implicitly enable on dfl hierarchy so that perf events can 11800 * always be filtered by cgroup2 path as long as perf_event 11801 * controller is not mounted on a legacy hierarchy. 11802 */ 11803 .implicit_on_dfl = true, 11804 .threaded = true, 11805 }; 11806 #endif /* CONFIG_CGROUP_PERF */ 11807