xref: /openbmc/linux/kernel/events/core.c (revision 161f4089)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 
43 #include "internal.h"
44 
45 #include <asm/irq_regs.h>
46 
47 struct remote_function_call {
48 	struct task_struct	*p;
49 	int			(*func)(void *info);
50 	void			*info;
51 	int			ret;
52 };
53 
54 static void remote_function(void *data)
55 {
56 	struct remote_function_call *tfc = data;
57 	struct task_struct *p = tfc->p;
58 
59 	if (p) {
60 		tfc->ret = -EAGAIN;
61 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 			return;
63 	}
64 
65 	tfc->ret = tfc->func(tfc->info);
66 }
67 
68 /**
69  * task_function_call - call a function on the cpu on which a task runs
70  * @p:		the task to evaluate
71  * @func:	the function to be called
72  * @info:	the function call argument
73  *
74  * Calls the function @func when the task is currently running. This might
75  * be on the current CPU, which just calls the function directly
76  *
77  * returns: @func return value, or
78  *	    -ESRCH  - when the process isn't running
79  *	    -EAGAIN - when the process moved away
80  */
81 static int
82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83 {
84 	struct remote_function_call data = {
85 		.p	= p,
86 		.func	= func,
87 		.info	= info,
88 		.ret	= -ESRCH, /* No such (running) process */
89 	};
90 
91 	if (task_curr(p))
92 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93 
94 	return data.ret;
95 }
96 
97 /**
98  * cpu_function_call - call a function on the cpu
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func on the remote cpu.
103  *
104  * returns: @func return value or -ENXIO when the cpu is offline
105  */
106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107 {
108 	struct remote_function_call data = {
109 		.p	= NULL,
110 		.func	= func,
111 		.info	= info,
112 		.ret	= -ENXIO, /* No such CPU */
113 	};
114 
115 	smp_call_function_single(cpu, remote_function, &data, 1);
116 
117 	return data.ret;
118 }
119 
120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 		       PERF_FLAG_FD_OUTPUT  |\
122 		       PERF_FLAG_PID_CGROUP)
123 
124 /*
125  * branch priv levels that need permission checks
126  */
127 #define PERF_SAMPLE_BRANCH_PERM_PLM \
128 	(PERF_SAMPLE_BRANCH_KERNEL |\
129 	 PERF_SAMPLE_BRANCH_HV)
130 
131 enum event_type_t {
132 	EVENT_FLEXIBLE = 0x1,
133 	EVENT_PINNED = 0x2,
134 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135 };
136 
137 /*
138  * perf_sched_events : >0 events exist
139  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140  */
141 struct static_key_deferred perf_sched_events __read_mostly;
142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
144 
145 static atomic_t nr_mmap_events __read_mostly;
146 static atomic_t nr_comm_events __read_mostly;
147 static atomic_t nr_task_events __read_mostly;
148 static atomic_t nr_freq_events __read_mostly;
149 
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153 
154 /*
155  * perf event paranoia level:
156  *  -1 - not paranoid at all
157  *   0 - disallow raw tracepoint access for unpriv
158  *   1 - disallow cpu events for unpriv
159  *   2 - disallow kernel profiling for unpriv
160  */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162 
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165 
166 /*
167  * max perf event sample rate
168  */
169 #define DEFAULT_MAX_SAMPLE_RATE		100000
170 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
172 
173 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
174 
175 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
177 
178 static int perf_sample_allowed_ns __read_mostly =
179 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
180 
181 void update_perf_cpu_limits(void)
182 {
183 	u64 tmp = perf_sample_period_ns;
184 
185 	tmp *= sysctl_perf_cpu_time_max_percent;
186 	do_div(tmp, 100);
187 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
188 }
189 
190 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
191 
192 int perf_proc_update_handler(struct ctl_table *table, int write,
193 		void __user *buffer, size_t *lenp,
194 		loff_t *ppos)
195 {
196 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
197 
198 	if (ret || !write)
199 		return ret;
200 
201 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
202 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
203 	update_perf_cpu_limits();
204 
205 	return 0;
206 }
207 
208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
209 
210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
211 				void __user *buffer, size_t *lenp,
212 				loff_t *ppos)
213 {
214 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	update_perf_cpu_limits();
220 
221 	return 0;
222 }
223 
224 /*
225  * perf samples are done in some very critical code paths (NMIs).
226  * If they take too much CPU time, the system can lock up and not
227  * get any real work done.  This will drop the sample rate when
228  * we detect that events are taking too long.
229  */
230 #define NR_ACCUMULATED_SAMPLES 128
231 static DEFINE_PER_CPU(u64, running_sample_length);
232 
233 void perf_sample_event_took(u64 sample_len_ns)
234 {
235 	u64 avg_local_sample_len;
236 	u64 local_samples_len;
237 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
238 
239 	if (allowed_ns == 0)
240 		return;
241 
242 	/* decay the counter by 1 average sample */
243 	local_samples_len = __get_cpu_var(running_sample_length);
244 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
245 	local_samples_len += sample_len_ns;
246 	__get_cpu_var(running_sample_length) = local_samples_len;
247 
248 	/*
249 	 * note: this will be biased artifically low until we have
250 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
251 	 * from having to maintain a count.
252 	 */
253 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
254 
255 	if (avg_local_sample_len <= allowed_ns)
256 		return;
257 
258 	if (max_samples_per_tick <= 1)
259 		return;
260 
261 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
262 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
263 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
264 
265 	printk_ratelimited(KERN_WARNING
266 			"perf samples too long (%lld > %lld), lowering "
267 			"kernel.perf_event_max_sample_rate to %d\n",
268 			avg_local_sample_len, allowed_ns,
269 			sysctl_perf_event_sample_rate);
270 
271 	update_perf_cpu_limits();
272 }
273 
274 static atomic64_t perf_event_id;
275 
276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
277 			      enum event_type_t event_type);
278 
279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
280 			     enum event_type_t event_type,
281 			     struct task_struct *task);
282 
283 static void update_context_time(struct perf_event_context *ctx);
284 static u64 perf_event_time(struct perf_event *event);
285 
286 void __weak perf_event_print_debug(void)	{ }
287 
288 extern __weak const char *perf_pmu_name(void)
289 {
290 	return "pmu";
291 }
292 
293 static inline u64 perf_clock(void)
294 {
295 	return local_clock();
296 }
297 
298 static inline struct perf_cpu_context *
299 __get_cpu_context(struct perf_event_context *ctx)
300 {
301 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
302 }
303 
304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
305 			  struct perf_event_context *ctx)
306 {
307 	raw_spin_lock(&cpuctx->ctx.lock);
308 	if (ctx)
309 		raw_spin_lock(&ctx->lock);
310 }
311 
312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
313 			    struct perf_event_context *ctx)
314 {
315 	if (ctx)
316 		raw_spin_unlock(&ctx->lock);
317 	raw_spin_unlock(&cpuctx->ctx.lock);
318 }
319 
320 #ifdef CONFIG_CGROUP_PERF
321 
322 /*
323  * perf_cgroup_info keeps track of time_enabled for a cgroup.
324  * This is a per-cpu dynamically allocated data structure.
325  */
326 struct perf_cgroup_info {
327 	u64				time;
328 	u64				timestamp;
329 };
330 
331 struct perf_cgroup {
332 	struct cgroup_subsys_state	css;
333 	struct perf_cgroup_info	__percpu *info;
334 };
335 
336 /*
337  * Must ensure cgroup is pinned (css_get) before calling
338  * this function. In other words, we cannot call this function
339  * if there is no cgroup event for the current CPU context.
340  */
341 static inline struct perf_cgroup *
342 perf_cgroup_from_task(struct task_struct *task)
343 {
344 	return container_of(task_css(task, perf_subsys_id),
345 			    struct perf_cgroup, css);
346 }
347 
348 static inline bool
349 perf_cgroup_match(struct perf_event *event)
350 {
351 	struct perf_event_context *ctx = event->ctx;
352 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
353 
354 	/* @event doesn't care about cgroup */
355 	if (!event->cgrp)
356 		return true;
357 
358 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
359 	if (!cpuctx->cgrp)
360 		return false;
361 
362 	/*
363 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
364 	 * also enabled for all its descendant cgroups.  If @cpuctx's
365 	 * cgroup is a descendant of @event's (the test covers identity
366 	 * case), it's a match.
367 	 */
368 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
369 				    event->cgrp->css.cgroup);
370 }
371 
372 static inline bool perf_tryget_cgroup(struct perf_event *event)
373 {
374 	return css_tryget(&event->cgrp->css);
375 }
376 
377 static inline void perf_put_cgroup(struct perf_event *event)
378 {
379 	css_put(&event->cgrp->css);
380 }
381 
382 static inline void perf_detach_cgroup(struct perf_event *event)
383 {
384 	perf_put_cgroup(event);
385 	event->cgrp = NULL;
386 }
387 
388 static inline int is_cgroup_event(struct perf_event *event)
389 {
390 	return event->cgrp != NULL;
391 }
392 
393 static inline u64 perf_cgroup_event_time(struct perf_event *event)
394 {
395 	struct perf_cgroup_info *t;
396 
397 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
398 	return t->time;
399 }
400 
401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
402 {
403 	struct perf_cgroup_info *info;
404 	u64 now;
405 
406 	now = perf_clock();
407 
408 	info = this_cpu_ptr(cgrp->info);
409 
410 	info->time += now - info->timestamp;
411 	info->timestamp = now;
412 }
413 
414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
415 {
416 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
417 	if (cgrp_out)
418 		__update_cgrp_time(cgrp_out);
419 }
420 
421 static inline void update_cgrp_time_from_event(struct perf_event *event)
422 {
423 	struct perf_cgroup *cgrp;
424 
425 	/*
426 	 * ensure we access cgroup data only when needed and
427 	 * when we know the cgroup is pinned (css_get)
428 	 */
429 	if (!is_cgroup_event(event))
430 		return;
431 
432 	cgrp = perf_cgroup_from_task(current);
433 	/*
434 	 * Do not update time when cgroup is not active
435 	 */
436 	if (cgrp == event->cgrp)
437 		__update_cgrp_time(event->cgrp);
438 }
439 
440 static inline void
441 perf_cgroup_set_timestamp(struct task_struct *task,
442 			  struct perf_event_context *ctx)
443 {
444 	struct perf_cgroup *cgrp;
445 	struct perf_cgroup_info *info;
446 
447 	/*
448 	 * ctx->lock held by caller
449 	 * ensure we do not access cgroup data
450 	 * unless we have the cgroup pinned (css_get)
451 	 */
452 	if (!task || !ctx->nr_cgroups)
453 		return;
454 
455 	cgrp = perf_cgroup_from_task(task);
456 	info = this_cpu_ptr(cgrp->info);
457 	info->timestamp = ctx->timestamp;
458 }
459 
460 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
461 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
462 
463 /*
464  * reschedule events based on the cgroup constraint of task.
465  *
466  * mode SWOUT : schedule out everything
467  * mode SWIN : schedule in based on cgroup for next
468  */
469 void perf_cgroup_switch(struct task_struct *task, int mode)
470 {
471 	struct perf_cpu_context *cpuctx;
472 	struct pmu *pmu;
473 	unsigned long flags;
474 
475 	/*
476 	 * disable interrupts to avoid geting nr_cgroup
477 	 * changes via __perf_event_disable(). Also
478 	 * avoids preemption.
479 	 */
480 	local_irq_save(flags);
481 
482 	/*
483 	 * we reschedule only in the presence of cgroup
484 	 * constrained events.
485 	 */
486 	rcu_read_lock();
487 
488 	list_for_each_entry_rcu(pmu, &pmus, entry) {
489 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
490 		if (cpuctx->unique_pmu != pmu)
491 			continue; /* ensure we process each cpuctx once */
492 
493 		/*
494 		 * perf_cgroup_events says at least one
495 		 * context on this CPU has cgroup events.
496 		 *
497 		 * ctx->nr_cgroups reports the number of cgroup
498 		 * events for a context.
499 		 */
500 		if (cpuctx->ctx.nr_cgroups > 0) {
501 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
502 			perf_pmu_disable(cpuctx->ctx.pmu);
503 
504 			if (mode & PERF_CGROUP_SWOUT) {
505 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
506 				/*
507 				 * must not be done before ctxswout due
508 				 * to event_filter_match() in event_sched_out()
509 				 */
510 				cpuctx->cgrp = NULL;
511 			}
512 
513 			if (mode & PERF_CGROUP_SWIN) {
514 				WARN_ON_ONCE(cpuctx->cgrp);
515 				/*
516 				 * set cgrp before ctxsw in to allow
517 				 * event_filter_match() to not have to pass
518 				 * task around
519 				 */
520 				cpuctx->cgrp = perf_cgroup_from_task(task);
521 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
522 			}
523 			perf_pmu_enable(cpuctx->ctx.pmu);
524 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
525 		}
526 	}
527 
528 	rcu_read_unlock();
529 
530 	local_irq_restore(flags);
531 }
532 
533 static inline void perf_cgroup_sched_out(struct task_struct *task,
534 					 struct task_struct *next)
535 {
536 	struct perf_cgroup *cgrp1;
537 	struct perf_cgroup *cgrp2 = NULL;
538 
539 	/*
540 	 * we come here when we know perf_cgroup_events > 0
541 	 */
542 	cgrp1 = perf_cgroup_from_task(task);
543 
544 	/*
545 	 * next is NULL when called from perf_event_enable_on_exec()
546 	 * that will systematically cause a cgroup_switch()
547 	 */
548 	if (next)
549 		cgrp2 = perf_cgroup_from_task(next);
550 
551 	/*
552 	 * only schedule out current cgroup events if we know
553 	 * that we are switching to a different cgroup. Otherwise,
554 	 * do no touch the cgroup events.
555 	 */
556 	if (cgrp1 != cgrp2)
557 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
558 }
559 
560 static inline void perf_cgroup_sched_in(struct task_struct *prev,
561 					struct task_struct *task)
562 {
563 	struct perf_cgroup *cgrp1;
564 	struct perf_cgroup *cgrp2 = NULL;
565 
566 	/*
567 	 * we come here when we know perf_cgroup_events > 0
568 	 */
569 	cgrp1 = perf_cgroup_from_task(task);
570 
571 	/* prev can never be NULL */
572 	cgrp2 = perf_cgroup_from_task(prev);
573 
574 	/*
575 	 * only need to schedule in cgroup events if we are changing
576 	 * cgroup during ctxsw. Cgroup events were not scheduled
577 	 * out of ctxsw out if that was not the case.
578 	 */
579 	if (cgrp1 != cgrp2)
580 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
581 }
582 
583 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
584 				      struct perf_event_attr *attr,
585 				      struct perf_event *group_leader)
586 {
587 	struct perf_cgroup *cgrp;
588 	struct cgroup_subsys_state *css;
589 	struct fd f = fdget(fd);
590 	int ret = 0;
591 
592 	if (!f.file)
593 		return -EBADF;
594 
595 	rcu_read_lock();
596 
597 	css = css_from_dir(f.file->f_dentry, &perf_subsys);
598 	if (IS_ERR(css)) {
599 		ret = PTR_ERR(css);
600 		goto out;
601 	}
602 
603 	cgrp = container_of(css, struct perf_cgroup, css);
604 	event->cgrp = cgrp;
605 
606 	/* must be done before we fput() the file */
607 	if (!perf_tryget_cgroup(event)) {
608 		event->cgrp = NULL;
609 		ret = -ENOENT;
610 		goto out;
611 	}
612 
613 	/*
614 	 * all events in a group must monitor
615 	 * the same cgroup because a task belongs
616 	 * to only one perf cgroup at a time
617 	 */
618 	if (group_leader && group_leader->cgrp != cgrp) {
619 		perf_detach_cgroup(event);
620 		ret = -EINVAL;
621 	}
622 out:
623 	rcu_read_unlock();
624 	fdput(f);
625 	return ret;
626 }
627 
628 static inline void
629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
630 {
631 	struct perf_cgroup_info *t;
632 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
633 	event->shadow_ctx_time = now - t->timestamp;
634 }
635 
636 static inline void
637 perf_cgroup_defer_enabled(struct perf_event *event)
638 {
639 	/*
640 	 * when the current task's perf cgroup does not match
641 	 * the event's, we need to remember to call the
642 	 * perf_mark_enable() function the first time a task with
643 	 * a matching perf cgroup is scheduled in.
644 	 */
645 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
646 		event->cgrp_defer_enabled = 1;
647 }
648 
649 static inline void
650 perf_cgroup_mark_enabled(struct perf_event *event,
651 			 struct perf_event_context *ctx)
652 {
653 	struct perf_event *sub;
654 	u64 tstamp = perf_event_time(event);
655 
656 	if (!event->cgrp_defer_enabled)
657 		return;
658 
659 	event->cgrp_defer_enabled = 0;
660 
661 	event->tstamp_enabled = tstamp - event->total_time_enabled;
662 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
663 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
664 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
665 			sub->cgrp_defer_enabled = 0;
666 		}
667 	}
668 }
669 #else /* !CONFIG_CGROUP_PERF */
670 
671 static inline bool
672 perf_cgroup_match(struct perf_event *event)
673 {
674 	return true;
675 }
676 
677 static inline void perf_detach_cgroup(struct perf_event *event)
678 {}
679 
680 static inline int is_cgroup_event(struct perf_event *event)
681 {
682 	return 0;
683 }
684 
685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
686 {
687 	return 0;
688 }
689 
690 static inline void update_cgrp_time_from_event(struct perf_event *event)
691 {
692 }
693 
694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
695 {
696 }
697 
698 static inline void perf_cgroup_sched_out(struct task_struct *task,
699 					 struct task_struct *next)
700 {
701 }
702 
703 static inline void perf_cgroup_sched_in(struct task_struct *prev,
704 					struct task_struct *task)
705 {
706 }
707 
708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
709 				      struct perf_event_attr *attr,
710 				      struct perf_event *group_leader)
711 {
712 	return -EINVAL;
713 }
714 
715 static inline void
716 perf_cgroup_set_timestamp(struct task_struct *task,
717 			  struct perf_event_context *ctx)
718 {
719 }
720 
721 void
722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
723 {
724 }
725 
726 static inline void
727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
728 {
729 }
730 
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733 	return 0;
734 }
735 
736 static inline void
737 perf_cgroup_defer_enabled(struct perf_event *event)
738 {
739 }
740 
741 static inline void
742 perf_cgroup_mark_enabled(struct perf_event *event,
743 			 struct perf_event_context *ctx)
744 {
745 }
746 #endif
747 
748 /*
749  * set default to be dependent on timer tick just
750  * like original code
751  */
752 #define PERF_CPU_HRTIMER (1000 / HZ)
753 /*
754  * function must be called with interrupts disbled
755  */
756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
757 {
758 	struct perf_cpu_context *cpuctx;
759 	enum hrtimer_restart ret = HRTIMER_NORESTART;
760 	int rotations = 0;
761 
762 	WARN_ON(!irqs_disabled());
763 
764 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
765 
766 	rotations = perf_rotate_context(cpuctx);
767 
768 	/*
769 	 * arm timer if needed
770 	 */
771 	if (rotations) {
772 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
773 		ret = HRTIMER_RESTART;
774 	}
775 
776 	return ret;
777 }
778 
779 /* CPU is going down */
780 void perf_cpu_hrtimer_cancel(int cpu)
781 {
782 	struct perf_cpu_context *cpuctx;
783 	struct pmu *pmu;
784 	unsigned long flags;
785 
786 	if (WARN_ON(cpu != smp_processor_id()))
787 		return;
788 
789 	local_irq_save(flags);
790 
791 	rcu_read_lock();
792 
793 	list_for_each_entry_rcu(pmu, &pmus, entry) {
794 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
795 
796 		if (pmu->task_ctx_nr == perf_sw_context)
797 			continue;
798 
799 		hrtimer_cancel(&cpuctx->hrtimer);
800 	}
801 
802 	rcu_read_unlock();
803 
804 	local_irq_restore(flags);
805 }
806 
807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
808 {
809 	struct hrtimer *hr = &cpuctx->hrtimer;
810 	struct pmu *pmu = cpuctx->ctx.pmu;
811 	int timer;
812 
813 	/* no multiplexing needed for SW PMU */
814 	if (pmu->task_ctx_nr == perf_sw_context)
815 		return;
816 
817 	/*
818 	 * check default is sane, if not set then force to
819 	 * default interval (1/tick)
820 	 */
821 	timer = pmu->hrtimer_interval_ms;
822 	if (timer < 1)
823 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
824 
825 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
826 
827 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
828 	hr->function = perf_cpu_hrtimer_handler;
829 }
830 
831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
832 {
833 	struct hrtimer *hr = &cpuctx->hrtimer;
834 	struct pmu *pmu = cpuctx->ctx.pmu;
835 
836 	/* not for SW PMU */
837 	if (pmu->task_ctx_nr == perf_sw_context)
838 		return;
839 
840 	if (hrtimer_active(hr))
841 		return;
842 
843 	if (!hrtimer_callback_running(hr))
844 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
845 					 0, HRTIMER_MODE_REL_PINNED, 0);
846 }
847 
848 void perf_pmu_disable(struct pmu *pmu)
849 {
850 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
851 	if (!(*count)++)
852 		pmu->pmu_disable(pmu);
853 }
854 
855 void perf_pmu_enable(struct pmu *pmu)
856 {
857 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
858 	if (!--(*count))
859 		pmu->pmu_enable(pmu);
860 }
861 
862 static DEFINE_PER_CPU(struct list_head, rotation_list);
863 
864 /*
865  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
866  * because they're strictly cpu affine and rotate_start is called with IRQs
867  * disabled, while rotate_context is called from IRQ context.
868  */
869 static void perf_pmu_rotate_start(struct pmu *pmu)
870 {
871 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
872 	struct list_head *head = &__get_cpu_var(rotation_list);
873 
874 	WARN_ON(!irqs_disabled());
875 
876 	if (list_empty(&cpuctx->rotation_list))
877 		list_add(&cpuctx->rotation_list, head);
878 }
879 
880 static void get_ctx(struct perf_event_context *ctx)
881 {
882 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
883 }
884 
885 static void put_ctx(struct perf_event_context *ctx)
886 {
887 	if (atomic_dec_and_test(&ctx->refcount)) {
888 		if (ctx->parent_ctx)
889 			put_ctx(ctx->parent_ctx);
890 		if (ctx->task)
891 			put_task_struct(ctx->task);
892 		kfree_rcu(ctx, rcu_head);
893 	}
894 }
895 
896 static void unclone_ctx(struct perf_event_context *ctx)
897 {
898 	if (ctx->parent_ctx) {
899 		put_ctx(ctx->parent_ctx);
900 		ctx->parent_ctx = NULL;
901 	}
902 	ctx->generation++;
903 }
904 
905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
906 {
907 	/*
908 	 * only top level events have the pid namespace they were created in
909 	 */
910 	if (event->parent)
911 		event = event->parent;
912 
913 	return task_tgid_nr_ns(p, event->ns);
914 }
915 
916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
917 {
918 	/*
919 	 * only top level events have the pid namespace they were created in
920 	 */
921 	if (event->parent)
922 		event = event->parent;
923 
924 	return task_pid_nr_ns(p, event->ns);
925 }
926 
927 /*
928  * If we inherit events we want to return the parent event id
929  * to userspace.
930  */
931 static u64 primary_event_id(struct perf_event *event)
932 {
933 	u64 id = event->id;
934 
935 	if (event->parent)
936 		id = event->parent->id;
937 
938 	return id;
939 }
940 
941 /*
942  * Get the perf_event_context for a task and lock it.
943  * This has to cope with with the fact that until it is locked,
944  * the context could get moved to another task.
945  */
946 static struct perf_event_context *
947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
948 {
949 	struct perf_event_context *ctx;
950 
951 retry:
952 	/*
953 	 * One of the few rules of preemptible RCU is that one cannot do
954 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
955 	 * part of the read side critical section was preemptible -- see
956 	 * rcu_read_unlock_special().
957 	 *
958 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
959 	 * side critical section is non-preemptible.
960 	 */
961 	preempt_disable();
962 	rcu_read_lock();
963 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
964 	if (ctx) {
965 		/*
966 		 * If this context is a clone of another, it might
967 		 * get swapped for another underneath us by
968 		 * perf_event_task_sched_out, though the
969 		 * rcu_read_lock() protects us from any context
970 		 * getting freed.  Lock the context and check if it
971 		 * got swapped before we could get the lock, and retry
972 		 * if so.  If we locked the right context, then it
973 		 * can't get swapped on us any more.
974 		 */
975 		raw_spin_lock_irqsave(&ctx->lock, *flags);
976 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
977 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
978 			rcu_read_unlock();
979 			preempt_enable();
980 			goto retry;
981 		}
982 
983 		if (!atomic_inc_not_zero(&ctx->refcount)) {
984 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
985 			ctx = NULL;
986 		}
987 	}
988 	rcu_read_unlock();
989 	preempt_enable();
990 	return ctx;
991 }
992 
993 /*
994  * Get the context for a task and increment its pin_count so it
995  * can't get swapped to another task.  This also increments its
996  * reference count so that the context can't get freed.
997  */
998 static struct perf_event_context *
999 perf_pin_task_context(struct task_struct *task, int ctxn)
1000 {
1001 	struct perf_event_context *ctx;
1002 	unsigned long flags;
1003 
1004 	ctx = perf_lock_task_context(task, ctxn, &flags);
1005 	if (ctx) {
1006 		++ctx->pin_count;
1007 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1008 	}
1009 	return ctx;
1010 }
1011 
1012 static void perf_unpin_context(struct perf_event_context *ctx)
1013 {
1014 	unsigned long flags;
1015 
1016 	raw_spin_lock_irqsave(&ctx->lock, flags);
1017 	--ctx->pin_count;
1018 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1019 }
1020 
1021 /*
1022  * Update the record of the current time in a context.
1023  */
1024 static void update_context_time(struct perf_event_context *ctx)
1025 {
1026 	u64 now = perf_clock();
1027 
1028 	ctx->time += now - ctx->timestamp;
1029 	ctx->timestamp = now;
1030 }
1031 
1032 static u64 perf_event_time(struct perf_event *event)
1033 {
1034 	struct perf_event_context *ctx = event->ctx;
1035 
1036 	if (is_cgroup_event(event))
1037 		return perf_cgroup_event_time(event);
1038 
1039 	return ctx ? ctx->time : 0;
1040 }
1041 
1042 /*
1043  * Update the total_time_enabled and total_time_running fields for a event.
1044  * The caller of this function needs to hold the ctx->lock.
1045  */
1046 static void update_event_times(struct perf_event *event)
1047 {
1048 	struct perf_event_context *ctx = event->ctx;
1049 	u64 run_end;
1050 
1051 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1052 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1053 		return;
1054 	/*
1055 	 * in cgroup mode, time_enabled represents
1056 	 * the time the event was enabled AND active
1057 	 * tasks were in the monitored cgroup. This is
1058 	 * independent of the activity of the context as
1059 	 * there may be a mix of cgroup and non-cgroup events.
1060 	 *
1061 	 * That is why we treat cgroup events differently
1062 	 * here.
1063 	 */
1064 	if (is_cgroup_event(event))
1065 		run_end = perf_cgroup_event_time(event);
1066 	else if (ctx->is_active)
1067 		run_end = ctx->time;
1068 	else
1069 		run_end = event->tstamp_stopped;
1070 
1071 	event->total_time_enabled = run_end - event->tstamp_enabled;
1072 
1073 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1074 		run_end = event->tstamp_stopped;
1075 	else
1076 		run_end = perf_event_time(event);
1077 
1078 	event->total_time_running = run_end - event->tstamp_running;
1079 
1080 }
1081 
1082 /*
1083  * Update total_time_enabled and total_time_running for all events in a group.
1084  */
1085 static void update_group_times(struct perf_event *leader)
1086 {
1087 	struct perf_event *event;
1088 
1089 	update_event_times(leader);
1090 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1091 		update_event_times(event);
1092 }
1093 
1094 static struct list_head *
1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1096 {
1097 	if (event->attr.pinned)
1098 		return &ctx->pinned_groups;
1099 	else
1100 		return &ctx->flexible_groups;
1101 }
1102 
1103 /*
1104  * Add a event from the lists for its context.
1105  * Must be called with ctx->mutex and ctx->lock held.
1106  */
1107 static void
1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1109 {
1110 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1111 	event->attach_state |= PERF_ATTACH_CONTEXT;
1112 
1113 	/*
1114 	 * If we're a stand alone event or group leader, we go to the context
1115 	 * list, group events are kept attached to the group so that
1116 	 * perf_group_detach can, at all times, locate all siblings.
1117 	 */
1118 	if (event->group_leader == event) {
1119 		struct list_head *list;
1120 
1121 		if (is_software_event(event))
1122 			event->group_flags |= PERF_GROUP_SOFTWARE;
1123 
1124 		list = ctx_group_list(event, ctx);
1125 		list_add_tail(&event->group_entry, list);
1126 	}
1127 
1128 	if (is_cgroup_event(event))
1129 		ctx->nr_cgroups++;
1130 
1131 	if (has_branch_stack(event))
1132 		ctx->nr_branch_stack++;
1133 
1134 	list_add_rcu(&event->event_entry, &ctx->event_list);
1135 	if (!ctx->nr_events)
1136 		perf_pmu_rotate_start(ctx->pmu);
1137 	ctx->nr_events++;
1138 	if (event->attr.inherit_stat)
1139 		ctx->nr_stat++;
1140 
1141 	ctx->generation++;
1142 }
1143 
1144 /*
1145  * Initialize event state based on the perf_event_attr::disabled.
1146  */
1147 static inline void perf_event__state_init(struct perf_event *event)
1148 {
1149 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1150 					      PERF_EVENT_STATE_INACTIVE;
1151 }
1152 
1153 /*
1154  * Called at perf_event creation and when events are attached/detached from a
1155  * group.
1156  */
1157 static void perf_event__read_size(struct perf_event *event)
1158 {
1159 	int entry = sizeof(u64); /* value */
1160 	int size = 0;
1161 	int nr = 1;
1162 
1163 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1164 		size += sizeof(u64);
1165 
1166 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1167 		size += sizeof(u64);
1168 
1169 	if (event->attr.read_format & PERF_FORMAT_ID)
1170 		entry += sizeof(u64);
1171 
1172 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1173 		nr += event->group_leader->nr_siblings;
1174 		size += sizeof(u64);
1175 	}
1176 
1177 	size += entry * nr;
1178 	event->read_size = size;
1179 }
1180 
1181 static void perf_event__header_size(struct perf_event *event)
1182 {
1183 	struct perf_sample_data *data;
1184 	u64 sample_type = event->attr.sample_type;
1185 	u16 size = 0;
1186 
1187 	perf_event__read_size(event);
1188 
1189 	if (sample_type & PERF_SAMPLE_IP)
1190 		size += sizeof(data->ip);
1191 
1192 	if (sample_type & PERF_SAMPLE_ADDR)
1193 		size += sizeof(data->addr);
1194 
1195 	if (sample_type & PERF_SAMPLE_PERIOD)
1196 		size += sizeof(data->period);
1197 
1198 	if (sample_type & PERF_SAMPLE_WEIGHT)
1199 		size += sizeof(data->weight);
1200 
1201 	if (sample_type & PERF_SAMPLE_READ)
1202 		size += event->read_size;
1203 
1204 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1205 		size += sizeof(data->data_src.val);
1206 
1207 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1208 		size += sizeof(data->txn);
1209 
1210 	event->header_size = size;
1211 }
1212 
1213 static void perf_event__id_header_size(struct perf_event *event)
1214 {
1215 	struct perf_sample_data *data;
1216 	u64 sample_type = event->attr.sample_type;
1217 	u16 size = 0;
1218 
1219 	if (sample_type & PERF_SAMPLE_TID)
1220 		size += sizeof(data->tid_entry);
1221 
1222 	if (sample_type & PERF_SAMPLE_TIME)
1223 		size += sizeof(data->time);
1224 
1225 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1226 		size += sizeof(data->id);
1227 
1228 	if (sample_type & PERF_SAMPLE_ID)
1229 		size += sizeof(data->id);
1230 
1231 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1232 		size += sizeof(data->stream_id);
1233 
1234 	if (sample_type & PERF_SAMPLE_CPU)
1235 		size += sizeof(data->cpu_entry);
1236 
1237 	event->id_header_size = size;
1238 }
1239 
1240 static void perf_group_attach(struct perf_event *event)
1241 {
1242 	struct perf_event *group_leader = event->group_leader, *pos;
1243 
1244 	/*
1245 	 * We can have double attach due to group movement in perf_event_open.
1246 	 */
1247 	if (event->attach_state & PERF_ATTACH_GROUP)
1248 		return;
1249 
1250 	event->attach_state |= PERF_ATTACH_GROUP;
1251 
1252 	if (group_leader == event)
1253 		return;
1254 
1255 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1256 			!is_software_event(event))
1257 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1258 
1259 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1260 	group_leader->nr_siblings++;
1261 
1262 	perf_event__header_size(group_leader);
1263 
1264 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1265 		perf_event__header_size(pos);
1266 }
1267 
1268 /*
1269  * Remove a event from the lists for its context.
1270  * Must be called with ctx->mutex and ctx->lock held.
1271  */
1272 static void
1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1274 {
1275 	struct perf_cpu_context *cpuctx;
1276 	/*
1277 	 * We can have double detach due to exit/hot-unplug + close.
1278 	 */
1279 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1280 		return;
1281 
1282 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1283 
1284 	if (is_cgroup_event(event)) {
1285 		ctx->nr_cgroups--;
1286 		cpuctx = __get_cpu_context(ctx);
1287 		/*
1288 		 * if there are no more cgroup events
1289 		 * then cler cgrp to avoid stale pointer
1290 		 * in update_cgrp_time_from_cpuctx()
1291 		 */
1292 		if (!ctx->nr_cgroups)
1293 			cpuctx->cgrp = NULL;
1294 	}
1295 
1296 	if (has_branch_stack(event))
1297 		ctx->nr_branch_stack--;
1298 
1299 	ctx->nr_events--;
1300 	if (event->attr.inherit_stat)
1301 		ctx->nr_stat--;
1302 
1303 	list_del_rcu(&event->event_entry);
1304 
1305 	if (event->group_leader == event)
1306 		list_del_init(&event->group_entry);
1307 
1308 	update_group_times(event);
1309 
1310 	/*
1311 	 * If event was in error state, then keep it
1312 	 * that way, otherwise bogus counts will be
1313 	 * returned on read(). The only way to get out
1314 	 * of error state is by explicit re-enabling
1315 	 * of the event
1316 	 */
1317 	if (event->state > PERF_EVENT_STATE_OFF)
1318 		event->state = PERF_EVENT_STATE_OFF;
1319 
1320 	ctx->generation++;
1321 }
1322 
1323 static void perf_group_detach(struct perf_event *event)
1324 {
1325 	struct perf_event *sibling, *tmp;
1326 	struct list_head *list = NULL;
1327 
1328 	/*
1329 	 * We can have double detach due to exit/hot-unplug + close.
1330 	 */
1331 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1332 		return;
1333 
1334 	event->attach_state &= ~PERF_ATTACH_GROUP;
1335 
1336 	/*
1337 	 * If this is a sibling, remove it from its group.
1338 	 */
1339 	if (event->group_leader != event) {
1340 		list_del_init(&event->group_entry);
1341 		event->group_leader->nr_siblings--;
1342 		goto out;
1343 	}
1344 
1345 	if (!list_empty(&event->group_entry))
1346 		list = &event->group_entry;
1347 
1348 	/*
1349 	 * If this was a group event with sibling events then
1350 	 * upgrade the siblings to singleton events by adding them
1351 	 * to whatever list we are on.
1352 	 */
1353 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1354 		if (list)
1355 			list_move_tail(&sibling->group_entry, list);
1356 		sibling->group_leader = sibling;
1357 
1358 		/* Inherit group flags from the previous leader */
1359 		sibling->group_flags = event->group_flags;
1360 	}
1361 
1362 out:
1363 	perf_event__header_size(event->group_leader);
1364 
1365 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1366 		perf_event__header_size(tmp);
1367 }
1368 
1369 static inline int
1370 event_filter_match(struct perf_event *event)
1371 {
1372 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1373 	    && perf_cgroup_match(event);
1374 }
1375 
1376 static void
1377 event_sched_out(struct perf_event *event,
1378 		  struct perf_cpu_context *cpuctx,
1379 		  struct perf_event_context *ctx)
1380 {
1381 	u64 tstamp = perf_event_time(event);
1382 	u64 delta;
1383 	/*
1384 	 * An event which could not be activated because of
1385 	 * filter mismatch still needs to have its timings
1386 	 * maintained, otherwise bogus information is return
1387 	 * via read() for time_enabled, time_running:
1388 	 */
1389 	if (event->state == PERF_EVENT_STATE_INACTIVE
1390 	    && !event_filter_match(event)) {
1391 		delta = tstamp - event->tstamp_stopped;
1392 		event->tstamp_running += delta;
1393 		event->tstamp_stopped = tstamp;
1394 	}
1395 
1396 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1397 		return;
1398 
1399 	event->state = PERF_EVENT_STATE_INACTIVE;
1400 	if (event->pending_disable) {
1401 		event->pending_disable = 0;
1402 		event->state = PERF_EVENT_STATE_OFF;
1403 	}
1404 	event->tstamp_stopped = tstamp;
1405 	event->pmu->del(event, 0);
1406 	event->oncpu = -1;
1407 
1408 	if (!is_software_event(event))
1409 		cpuctx->active_oncpu--;
1410 	ctx->nr_active--;
1411 	if (event->attr.freq && event->attr.sample_freq)
1412 		ctx->nr_freq--;
1413 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1414 		cpuctx->exclusive = 0;
1415 }
1416 
1417 static void
1418 group_sched_out(struct perf_event *group_event,
1419 		struct perf_cpu_context *cpuctx,
1420 		struct perf_event_context *ctx)
1421 {
1422 	struct perf_event *event;
1423 	int state = group_event->state;
1424 
1425 	event_sched_out(group_event, cpuctx, ctx);
1426 
1427 	/*
1428 	 * Schedule out siblings (if any):
1429 	 */
1430 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1431 		event_sched_out(event, cpuctx, ctx);
1432 
1433 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1434 		cpuctx->exclusive = 0;
1435 }
1436 
1437 /*
1438  * Cross CPU call to remove a performance event
1439  *
1440  * We disable the event on the hardware level first. After that we
1441  * remove it from the context list.
1442  */
1443 static int __perf_remove_from_context(void *info)
1444 {
1445 	struct perf_event *event = info;
1446 	struct perf_event_context *ctx = event->ctx;
1447 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1448 
1449 	raw_spin_lock(&ctx->lock);
1450 	event_sched_out(event, cpuctx, ctx);
1451 	list_del_event(event, ctx);
1452 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1453 		ctx->is_active = 0;
1454 		cpuctx->task_ctx = NULL;
1455 	}
1456 	raw_spin_unlock(&ctx->lock);
1457 
1458 	return 0;
1459 }
1460 
1461 
1462 /*
1463  * Remove the event from a task's (or a CPU's) list of events.
1464  *
1465  * CPU events are removed with a smp call. For task events we only
1466  * call when the task is on a CPU.
1467  *
1468  * If event->ctx is a cloned context, callers must make sure that
1469  * every task struct that event->ctx->task could possibly point to
1470  * remains valid.  This is OK when called from perf_release since
1471  * that only calls us on the top-level context, which can't be a clone.
1472  * When called from perf_event_exit_task, it's OK because the
1473  * context has been detached from its task.
1474  */
1475 static void perf_remove_from_context(struct perf_event *event)
1476 {
1477 	struct perf_event_context *ctx = event->ctx;
1478 	struct task_struct *task = ctx->task;
1479 
1480 	lockdep_assert_held(&ctx->mutex);
1481 
1482 	if (!task) {
1483 		/*
1484 		 * Per cpu events are removed via an smp call and
1485 		 * the removal is always successful.
1486 		 */
1487 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1488 		return;
1489 	}
1490 
1491 retry:
1492 	if (!task_function_call(task, __perf_remove_from_context, event))
1493 		return;
1494 
1495 	raw_spin_lock_irq(&ctx->lock);
1496 	/*
1497 	 * If we failed to find a running task, but find the context active now
1498 	 * that we've acquired the ctx->lock, retry.
1499 	 */
1500 	if (ctx->is_active) {
1501 		raw_spin_unlock_irq(&ctx->lock);
1502 		goto retry;
1503 	}
1504 
1505 	/*
1506 	 * Since the task isn't running, its safe to remove the event, us
1507 	 * holding the ctx->lock ensures the task won't get scheduled in.
1508 	 */
1509 	list_del_event(event, ctx);
1510 	raw_spin_unlock_irq(&ctx->lock);
1511 }
1512 
1513 /*
1514  * Cross CPU call to disable a performance event
1515  */
1516 int __perf_event_disable(void *info)
1517 {
1518 	struct perf_event *event = info;
1519 	struct perf_event_context *ctx = event->ctx;
1520 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1521 
1522 	/*
1523 	 * If this is a per-task event, need to check whether this
1524 	 * event's task is the current task on this cpu.
1525 	 *
1526 	 * Can trigger due to concurrent perf_event_context_sched_out()
1527 	 * flipping contexts around.
1528 	 */
1529 	if (ctx->task && cpuctx->task_ctx != ctx)
1530 		return -EINVAL;
1531 
1532 	raw_spin_lock(&ctx->lock);
1533 
1534 	/*
1535 	 * If the event is on, turn it off.
1536 	 * If it is in error state, leave it in error state.
1537 	 */
1538 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1539 		update_context_time(ctx);
1540 		update_cgrp_time_from_event(event);
1541 		update_group_times(event);
1542 		if (event == event->group_leader)
1543 			group_sched_out(event, cpuctx, ctx);
1544 		else
1545 			event_sched_out(event, cpuctx, ctx);
1546 		event->state = PERF_EVENT_STATE_OFF;
1547 	}
1548 
1549 	raw_spin_unlock(&ctx->lock);
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Disable a event.
1556  *
1557  * If event->ctx is a cloned context, callers must make sure that
1558  * every task struct that event->ctx->task could possibly point to
1559  * remains valid.  This condition is satisifed when called through
1560  * perf_event_for_each_child or perf_event_for_each because they
1561  * hold the top-level event's child_mutex, so any descendant that
1562  * goes to exit will block in sync_child_event.
1563  * When called from perf_pending_event it's OK because event->ctx
1564  * is the current context on this CPU and preemption is disabled,
1565  * hence we can't get into perf_event_task_sched_out for this context.
1566  */
1567 void perf_event_disable(struct perf_event *event)
1568 {
1569 	struct perf_event_context *ctx = event->ctx;
1570 	struct task_struct *task = ctx->task;
1571 
1572 	if (!task) {
1573 		/*
1574 		 * Disable the event on the cpu that it's on
1575 		 */
1576 		cpu_function_call(event->cpu, __perf_event_disable, event);
1577 		return;
1578 	}
1579 
1580 retry:
1581 	if (!task_function_call(task, __perf_event_disable, event))
1582 		return;
1583 
1584 	raw_spin_lock_irq(&ctx->lock);
1585 	/*
1586 	 * If the event is still active, we need to retry the cross-call.
1587 	 */
1588 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1589 		raw_spin_unlock_irq(&ctx->lock);
1590 		/*
1591 		 * Reload the task pointer, it might have been changed by
1592 		 * a concurrent perf_event_context_sched_out().
1593 		 */
1594 		task = ctx->task;
1595 		goto retry;
1596 	}
1597 
1598 	/*
1599 	 * Since we have the lock this context can't be scheduled
1600 	 * in, so we can change the state safely.
1601 	 */
1602 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1603 		update_group_times(event);
1604 		event->state = PERF_EVENT_STATE_OFF;
1605 	}
1606 	raw_spin_unlock_irq(&ctx->lock);
1607 }
1608 EXPORT_SYMBOL_GPL(perf_event_disable);
1609 
1610 static void perf_set_shadow_time(struct perf_event *event,
1611 				 struct perf_event_context *ctx,
1612 				 u64 tstamp)
1613 {
1614 	/*
1615 	 * use the correct time source for the time snapshot
1616 	 *
1617 	 * We could get by without this by leveraging the
1618 	 * fact that to get to this function, the caller
1619 	 * has most likely already called update_context_time()
1620 	 * and update_cgrp_time_xx() and thus both timestamp
1621 	 * are identical (or very close). Given that tstamp is,
1622 	 * already adjusted for cgroup, we could say that:
1623 	 *    tstamp - ctx->timestamp
1624 	 * is equivalent to
1625 	 *    tstamp - cgrp->timestamp.
1626 	 *
1627 	 * Then, in perf_output_read(), the calculation would
1628 	 * work with no changes because:
1629 	 * - event is guaranteed scheduled in
1630 	 * - no scheduled out in between
1631 	 * - thus the timestamp would be the same
1632 	 *
1633 	 * But this is a bit hairy.
1634 	 *
1635 	 * So instead, we have an explicit cgroup call to remain
1636 	 * within the time time source all along. We believe it
1637 	 * is cleaner and simpler to understand.
1638 	 */
1639 	if (is_cgroup_event(event))
1640 		perf_cgroup_set_shadow_time(event, tstamp);
1641 	else
1642 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1643 }
1644 
1645 #define MAX_INTERRUPTS (~0ULL)
1646 
1647 static void perf_log_throttle(struct perf_event *event, int enable);
1648 
1649 static int
1650 event_sched_in(struct perf_event *event,
1651 		 struct perf_cpu_context *cpuctx,
1652 		 struct perf_event_context *ctx)
1653 {
1654 	u64 tstamp = perf_event_time(event);
1655 
1656 	if (event->state <= PERF_EVENT_STATE_OFF)
1657 		return 0;
1658 
1659 	event->state = PERF_EVENT_STATE_ACTIVE;
1660 	event->oncpu = smp_processor_id();
1661 
1662 	/*
1663 	 * Unthrottle events, since we scheduled we might have missed several
1664 	 * ticks already, also for a heavily scheduling task there is little
1665 	 * guarantee it'll get a tick in a timely manner.
1666 	 */
1667 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1668 		perf_log_throttle(event, 1);
1669 		event->hw.interrupts = 0;
1670 	}
1671 
1672 	/*
1673 	 * The new state must be visible before we turn it on in the hardware:
1674 	 */
1675 	smp_wmb();
1676 
1677 	if (event->pmu->add(event, PERF_EF_START)) {
1678 		event->state = PERF_EVENT_STATE_INACTIVE;
1679 		event->oncpu = -1;
1680 		return -EAGAIN;
1681 	}
1682 
1683 	event->tstamp_running += tstamp - event->tstamp_stopped;
1684 
1685 	perf_set_shadow_time(event, ctx, tstamp);
1686 
1687 	if (!is_software_event(event))
1688 		cpuctx->active_oncpu++;
1689 	ctx->nr_active++;
1690 	if (event->attr.freq && event->attr.sample_freq)
1691 		ctx->nr_freq++;
1692 
1693 	if (event->attr.exclusive)
1694 		cpuctx->exclusive = 1;
1695 
1696 	return 0;
1697 }
1698 
1699 static int
1700 group_sched_in(struct perf_event *group_event,
1701 	       struct perf_cpu_context *cpuctx,
1702 	       struct perf_event_context *ctx)
1703 {
1704 	struct perf_event *event, *partial_group = NULL;
1705 	struct pmu *pmu = group_event->pmu;
1706 	u64 now = ctx->time;
1707 	bool simulate = false;
1708 
1709 	if (group_event->state == PERF_EVENT_STATE_OFF)
1710 		return 0;
1711 
1712 	pmu->start_txn(pmu);
1713 
1714 	if (event_sched_in(group_event, cpuctx, ctx)) {
1715 		pmu->cancel_txn(pmu);
1716 		perf_cpu_hrtimer_restart(cpuctx);
1717 		return -EAGAIN;
1718 	}
1719 
1720 	/*
1721 	 * Schedule in siblings as one group (if any):
1722 	 */
1723 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1724 		if (event_sched_in(event, cpuctx, ctx)) {
1725 			partial_group = event;
1726 			goto group_error;
1727 		}
1728 	}
1729 
1730 	if (!pmu->commit_txn(pmu))
1731 		return 0;
1732 
1733 group_error:
1734 	/*
1735 	 * Groups can be scheduled in as one unit only, so undo any
1736 	 * partial group before returning:
1737 	 * The events up to the failed event are scheduled out normally,
1738 	 * tstamp_stopped will be updated.
1739 	 *
1740 	 * The failed events and the remaining siblings need to have
1741 	 * their timings updated as if they had gone thru event_sched_in()
1742 	 * and event_sched_out(). This is required to get consistent timings
1743 	 * across the group. This also takes care of the case where the group
1744 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1745 	 * the time the event was actually stopped, such that time delta
1746 	 * calculation in update_event_times() is correct.
1747 	 */
1748 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1749 		if (event == partial_group)
1750 			simulate = true;
1751 
1752 		if (simulate) {
1753 			event->tstamp_running += now - event->tstamp_stopped;
1754 			event->tstamp_stopped = now;
1755 		} else {
1756 			event_sched_out(event, cpuctx, ctx);
1757 		}
1758 	}
1759 	event_sched_out(group_event, cpuctx, ctx);
1760 
1761 	pmu->cancel_txn(pmu);
1762 
1763 	perf_cpu_hrtimer_restart(cpuctx);
1764 
1765 	return -EAGAIN;
1766 }
1767 
1768 /*
1769  * Work out whether we can put this event group on the CPU now.
1770  */
1771 static int group_can_go_on(struct perf_event *event,
1772 			   struct perf_cpu_context *cpuctx,
1773 			   int can_add_hw)
1774 {
1775 	/*
1776 	 * Groups consisting entirely of software events can always go on.
1777 	 */
1778 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1779 		return 1;
1780 	/*
1781 	 * If an exclusive group is already on, no other hardware
1782 	 * events can go on.
1783 	 */
1784 	if (cpuctx->exclusive)
1785 		return 0;
1786 	/*
1787 	 * If this group is exclusive and there are already
1788 	 * events on the CPU, it can't go on.
1789 	 */
1790 	if (event->attr.exclusive && cpuctx->active_oncpu)
1791 		return 0;
1792 	/*
1793 	 * Otherwise, try to add it if all previous groups were able
1794 	 * to go on.
1795 	 */
1796 	return can_add_hw;
1797 }
1798 
1799 static void add_event_to_ctx(struct perf_event *event,
1800 			       struct perf_event_context *ctx)
1801 {
1802 	u64 tstamp = perf_event_time(event);
1803 
1804 	list_add_event(event, ctx);
1805 	perf_group_attach(event);
1806 	event->tstamp_enabled = tstamp;
1807 	event->tstamp_running = tstamp;
1808 	event->tstamp_stopped = tstamp;
1809 }
1810 
1811 static void task_ctx_sched_out(struct perf_event_context *ctx);
1812 static void
1813 ctx_sched_in(struct perf_event_context *ctx,
1814 	     struct perf_cpu_context *cpuctx,
1815 	     enum event_type_t event_type,
1816 	     struct task_struct *task);
1817 
1818 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1819 				struct perf_event_context *ctx,
1820 				struct task_struct *task)
1821 {
1822 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1823 	if (ctx)
1824 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1825 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1826 	if (ctx)
1827 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1828 }
1829 
1830 /*
1831  * Cross CPU call to install and enable a performance event
1832  *
1833  * Must be called with ctx->mutex held
1834  */
1835 static int  __perf_install_in_context(void *info)
1836 {
1837 	struct perf_event *event = info;
1838 	struct perf_event_context *ctx = event->ctx;
1839 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1840 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1841 	struct task_struct *task = current;
1842 
1843 	perf_ctx_lock(cpuctx, task_ctx);
1844 	perf_pmu_disable(cpuctx->ctx.pmu);
1845 
1846 	/*
1847 	 * If there was an active task_ctx schedule it out.
1848 	 */
1849 	if (task_ctx)
1850 		task_ctx_sched_out(task_ctx);
1851 
1852 	/*
1853 	 * If the context we're installing events in is not the
1854 	 * active task_ctx, flip them.
1855 	 */
1856 	if (ctx->task && task_ctx != ctx) {
1857 		if (task_ctx)
1858 			raw_spin_unlock(&task_ctx->lock);
1859 		raw_spin_lock(&ctx->lock);
1860 		task_ctx = ctx;
1861 	}
1862 
1863 	if (task_ctx) {
1864 		cpuctx->task_ctx = task_ctx;
1865 		task = task_ctx->task;
1866 	}
1867 
1868 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1869 
1870 	update_context_time(ctx);
1871 	/*
1872 	 * update cgrp time only if current cgrp
1873 	 * matches event->cgrp. Must be done before
1874 	 * calling add_event_to_ctx()
1875 	 */
1876 	update_cgrp_time_from_event(event);
1877 
1878 	add_event_to_ctx(event, ctx);
1879 
1880 	/*
1881 	 * Schedule everything back in
1882 	 */
1883 	perf_event_sched_in(cpuctx, task_ctx, task);
1884 
1885 	perf_pmu_enable(cpuctx->ctx.pmu);
1886 	perf_ctx_unlock(cpuctx, task_ctx);
1887 
1888 	return 0;
1889 }
1890 
1891 /*
1892  * Attach a performance event to a context
1893  *
1894  * First we add the event to the list with the hardware enable bit
1895  * in event->hw_config cleared.
1896  *
1897  * If the event is attached to a task which is on a CPU we use a smp
1898  * call to enable it in the task context. The task might have been
1899  * scheduled away, but we check this in the smp call again.
1900  */
1901 static void
1902 perf_install_in_context(struct perf_event_context *ctx,
1903 			struct perf_event *event,
1904 			int cpu)
1905 {
1906 	struct task_struct *task = ctx->task;
1907 
1908 	lockdep_assert_held(&ctx->mutex);
1909 
1910 	event->ctx = ctx;
1911 	if (event->cpu != -1)
1912 		event->cpu = cpu;
1913 
1914 	if (!task) {
1915 		/*
1916 		 * Per cpu events are installed via an smp call and
1917 		 * the install is always successful.
1918 		 */
1919 		cpu_function_call(cpu, __perf_install_in_context, event);
1920 		return;
1921 	}
1922 
1923 retry:
1924 	if (!task_function_call(task, __perf_install_in_context, event))
1925 		return;
1926 
1927 	raw_spin_lock_irq(&ctx->lock);
1928 	/*
1929 	 * If we failed to find a running task, but find the context active now
1930 	 * that we've acquired the ctx->lock, retry.
1931 	 */
1932 	if (ctx->is_active) {
1933 		raw_spin_unlock_irq(&ctx->lock);
1934 		goto retry;
1935 	}
1936 
1937 	/*
1938 	 * Since the task isn't running, its safe to add the event, us holding
1939 	 * the ctx->lock ensures the task won't get scheduled in.
1940 	 */
1941 	add_event_to_ctx(event, ctx);
1942 	raw_spin_unlock_irq(&ctx->lock);
1943 }
1944 
1945 /*
1946  * Put a event into inactive state and update time fields.
1947  * Enabling the leader of a group effectively enables all
1948  * the group members that aren't explicitly disabled, so we
1949  * have to update their ->tstamp_enabled also.
1950  * Note: this works for group members as well as group leaders
1951  * since the non-leader members' sibling_lists will be empty.
1952  */
1953 static void __perf_event_mark_enabled(struct perf_event *event)
1954 {
1955 	struct perf_event *sub;
1956 	u64 tstamp = perf_event_time(event);
1957 
1958 	event->state = PERF_EVENT_STATE_INACTIVE;
1959 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1960 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1961 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1962 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1963 	}
1964 }
1965 
1966 /*
1967  * Cross CPU call to enable a performance event
1968  */
1969 static int __perf_event_enable(void *info)
1970 {
1971 	struct perf_event *event = info;
1972 	struct perf_event_context *ctx = event->ctx;
1973 	struct perf_event *leader = event->group_leader;
1974 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1975 	int err;
1976 
1977 	/*
1978 	 * There's a time window between 'ctx->is_active' check
1979 	 * in perf_event_enable function and this place having:
1980 	 *   - IRQs on
1981 	 *   - ctx->lock unlocked
1982 	 *
1983 	 * where the task could be killed and 'ctx' deactivated
1984 	 * by perf_event_exit_task.
1985 	 */
1986 	if (!ctx->is_active)
1987 		return -EINVAL;
1988 
1989 	raw_spin_lock(&ctx->lock);
1990 	update_context_time(ctx);
1991 
1992 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1993 		goto unlock;
1994 
1995 	/*
1996 	 * set current task's cgroup time reference point
1997 	 */
1998 	perf_cgroup_set_timestamp(current, ctx);
1999 
2000 	__perf_event_mark_enabled(event);
2001 
2002 	if (!event_filter_match(event)) {
2003 		if (is_cgroup_event(event))
2004 			perf_cgroup_defer_enabled(event);
2005 		goto unlock;
2006 	}
2007 
2008 	/*
2009 	 * If the event is in a group and isn't the group leader,
2010 	 * then don't put it on unless the group is on.
2011 	 */
2012 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2013 		goto unlock;
2014 
2015 	if (!group_can_go_on(event, cpuctx, 1)) {
2016 		err = -EEXIST;
2017 	} else {
2018 		if (event == leader)
2019 			err = group_sched_in(event, cpuctx, ctx);
2020 		else
2021 			err = event_sched_in(event, cpuctx, ctx);
2022 	}
2023 
2024 	if (err) {
2025 		/*
2026 		 * If this event can't go on and it's part of a
2027 		 * group, then the whole group has to come off.
2028 		 */
2029 		if (leader != event) {
2030 			group_sched_out(leader, cpuctx, ctx);
2031 			perf_cpu_hrtimer_restart(cpuctx);
2032 		}
2033 		if (leader->attr.pinned) {
2034 			update_group_times(leader);
2035 			leader->state = PERF_EVENT_STATE_ERROR;
2036 		}
2037 	}
2038 
2039 unlock:
2040 	raw_spin_unlock(&ctx->lock);
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * Enable a event.
2047  *
2048  * If event->ctx is a cloned context, callers must make sure that
2049  * every task struct that event->ctx->task could possibly point to
2050  * remains valid.  This condition is satisfied when called through
2051  * perf_event_for_each_child or perf_event_for_each as described
2052  * for perf_event_disable.
2053  */
2054 void perf_event_enable(struct perf_event *event)
2055 {
2056 	struct perf_event_context *ctx = event->ctx;
2057 	struct task_struct *task = ctx->task;
2058 
2059 	if (!task) {
2060 		/*
2061 		 * Enable the event on the cpu that it's on
2062 		 */
2063 		cpu_function_call(event->cpu, __perf_event_enable, event);
2064 		return;
2065 	}
2066 
2067 	raw_spin_lock_irq(&ctx->lock);
2068 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2069 		goto out;
2070 
2071 	/*
2072 	 * If the event is in error state, clear that first.
2073 	 * That way, if we see the event in error state below, we
2074 	 * know that it has gone back into error state, as distinct
2075 	 * from the task having been scheduled away before the
2076 	 * cross-call arrived.
2077 	 */
2078 	if (event->state == PERF_EVENT_STATE_ERROR)
2079 		event->state = PERF_EVENT_STATE_OFF;
2080 
2081 retry:
2082 	if (!ctx->is_active) {
2083 		__perf_event_mark_enabled(event);
2084 		goto out;
2085 	}
2086 
2087 	raw_spin_unlock_irq(&ctx->lock);
2088 
2089 	if (!task_function_call(task, __perf_event_enable, event))
2090 		return;
2091 
2092 	raw_spin_lock_irq(&ctx->lock);
2093 
2094 	/*
2095 	 * If the context is active and the event is still off,
2096 	 * we need to retry the cross-call.
2097 	 */
2098 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2099 		/*
2100 		 * task could have been flipped by a concurrent
2101 		 * perf_event_context_sched_out()
2102 		 */
2103 		task = ctx->task;
2104 		goto retry;
2105 	}
2106 
2107 out:
2108 	raw_spin_unlock_irq(&ctx->lock);
2109 }
2110 EXPORT_SYMBOL_GPL(perf_event_enable);
2111 
2112 int perf_event_refresh(struct perf_event *event, int refresh)
2113 {
2114 	/*
2115 	 * not supported on inherited events
2116 	 */
2117 	if (event->attr.inherit || !is_sampling_event(event))
2118 		return -EINVAL;
2119 
2120 	atomic_add(refresh, &event->event_limit);
2121 	perf_event_enable(event);
2122 
2123 	return 0;
2124 }
2125 EXPORT_SYMBOL_GPL(perf_event_refresh);
2126 
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128 			  struct perf_cpu_context *cpuctx,
2129 			  enum event_type_t event_type)
2130 {
2131 	struct perf_event *event;
2132 	int is_active = ctx->is_active;
2133 
2134 	ctx->is_active &= ~event_type;
2135 	if (likely(!ctx->nr_events))
2136 		return;
2137 
2138 	update_context_time(ctx);
2139 	update_cgrp_time_from_cpuctx(cpuctx);
2140 	if (!ctx->nr_active)
2141 		return;
2142 
2143 	perf_pmu_disable(ctx->pmu);
2144 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2145 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2146 			group_sched_out(event, cpuctx, ctx);
2147 	}
2148 
2149 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2150 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2151 			group_sched_out(event, cpuctx, ctx);
2152 	}
2153 	perf_pmu_enable(ctx->pmu);
2154 }
2155 
2156 /*
2157  * Test whether two contexts are equivalent, i.e. whether they have both been
2158  * cloned from the same version of the same context.
2159  *
2160  * Equivalence is measured using a generation number in the context that is
2161  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2162  * and list_del_event().
2163  */
2164 static int context_equiv(struct perf_event_context *ctx1,
2165 			 struct perf_event_context *ctx2)
2166 {
2167 	/* Pinning disables the swap optimization */
2168 	if (ctx1->pin_count || ctx2->pin_count)
2169 		return 0;
2170 
2171 	/* If ctx1 is the parent of ctx2 */
2172 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2173 		return 1;
2174 
2175 	/* If ctx2 is the parent of ctx1 */
2176 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2177 		return 1;
2178 
2179 	/*
2180 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2181 	 * hierarchy, see perf_event_init_context().
2182 	 */
2183 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2184 			ctx1->parent_gen == ctx2->parent_gen)
2185 		return 1;
2186 
2187 	/* Unmatched */
2188 	return 0;
2189 }
2190 
2191 static void __perf_event_sync_stat(struct perf_event *event,
2192 				     struct perf_event *next_event)
2193 {
2194 	u64 value;
2195 
2196 	if (!event->attr.inherit_stat)
2197 		return;
2198 
2199 	/*
2200 	 * Update the event value, we cannot use perf_event_read()
2201 	 * because we're in the middle of a context switch and have IRQs
2202 	 * disabled, which upsets smp_call_function_single(), however
2203 	 * we know the event must be on the current CPU, therefore we
2204 	 * don't need to use it.
2205 	 */
2206 	switch (event->state) {
2207 	case PERF_EVENT_STATE_ACTIVE:
2208 		event->pmu->read(event);
2209 		/* fall-through */
2210 
2211 	case PERF_EVENT_STATE_INACTIVE:
2212 		update_event_times(event);
2213 		break;
2214 
2215 	default:
2216 		break;
2217 	}
2218 
2219 	/*
2220 	 * In order to keep per-task stats reliable we need to flip the event
2221 	 * values when we flip the contexts.
2222 	 */
2223 	value = local64_read(&next_event->count);
2224 	value = local64_xchg(&event->count, value);
2225 	local64_set(&next_event->count, value);
2226 
2227 	swap(event->total_time_enabled, next_event->total_time_enabled);
2228 	swap(event->total_time_running, next_event->total_time_running);
2229 
2230 	/*
2231 	 * Since we swizzled the values, update the user visible data too.
2232 	 */
2233 	perf_event_update_userpage(event);
2234 	perf_event_update_userpage(next_event);
2235 }
2236 
2237 #define list_next_entry(pos, member) \
2238 	list_entry(pos->member.next, typeof(*pos), member)
2239 
2240 static void perf_event_sync_stat(struct perf_event_context *ctx,
2241 				   struct perf_event_context *next_ctx)
2242 {
2243 	struct perf_event *event, *next_event;
2244 
2245 	if (!ctx->nr_stat)
2246 		return;
2247 
2248 	update_context_time(ctx);
2249 
2250 	event = list_first_entry(&ctx->event_list,
2251 				   struct perf_event, event_entry);
2252 
2253 	next_event = list_first_entry(&next_ctx->event_list,
2254 					struct perf_event, event_entry);
2255 
2256 	while (&event->event_entry != &ctx->event_list &&
2257 	       &next_event->event_entry != &next_ctx->event_list) {
2258 
2259 		__perf_event_sync_stat(event, next_event);
2260 
2261 		event = list_next_entry(event, event_entry);
2262 		next_event = list_next_entry(next_event, event_entry);
2263 	}
2264 }
2265 
2266 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2267 					 struct task_struct *next)
2268 {
2269 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2270 	struct perf_event_context *next_ctx;
2271 	struct perf_event_context *parent, *next_parent;
2272 	struct perf_cpu_context *cpuctx;
2273 	int do_switch = 1;
2274 
2275 	if (likely(!ctx))
2276 		return;
2277 
2278 	cpuctx = __get_cpu_context(ctx);
2279 	if (!cpuctx->task_ctx)
2280 		return;
2281 
2282 	rcu_read_lock();
2283 	next_ctx = next->perf_event_ctxp[ctxn];
2284 	if (!next_ctx)
2285 		goto unlock;
2286 
2287 	parent = rcu_dereference(ctx->parent_ctx);
2288 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2289 
2290 	/* If neither context have a parent context; they cannot be clones. */
2291 	if (!parent && !next_parent)
2292 		goto unlock;
2293 
2294 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2295 		/*
2296 		 * Looks like the two contexts are clones, so we might be
2297 		 * able to optimize the context switch.  We lock both
2298 		 * contexts and check that they are clones under the
2299 		 * lock (including re-checking that neither has been
2300 		 * uncloned in the meantime).  It doesn't matter which
2301 		 * order we take the locks because no other cpu could
2302 		 * be trying to lock both of these tasks.
2303 		 */
2304 		raw_spin_lock(&ctx->lock);
2305 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2306 		if (context_equiv(ctx, next_ctx)) {
2307 			/*
2308 			 * XXX do we need a memory barrier of sorts
2309 			 * wrt to rcu_dereference() of perf_event_ctxp
2310 			 */
2311 			task->perf_event_ctxp[ctxn] = next_ctx;
2312 			next->perf_event_ctxp[ctxn] = ctx;
2313 			ctx->task = next;
2314 			next_ctx->task = task;
2315 			do_switch = 0;
2316 
2317 			perf_event_sync_stat(ctx, next_ctx);
2318 		}
2319 		raw_spin_unlock(&next_ctx->lock);
2320 		raw_spin_unlock(&ctx->lock);
2321 	}
2322 unlock:
2323 	rcu_read_unlock();
2324 
2325 	if (do_switch) {
2326 		raw_spin_lock(&ctx->lock);
2327 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2328 		cpuctx->task_ctx = NULL;
2329 		raw_spin_unlock(&ctx->lock);
2330 	}
2331 }
2332 
2333 #define for_each_task_context_nr(ctxn)					\
2334 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2335 
2336 /*
2337  * Called from scheduler to remove the events of the current task,
2338  * with interrupts disabled.
2339  *
2340  * We stop each event and update the event value in event->count.
2341  *
2342  * This does not protect us against NMI, but disable()
2343  * sets the disabled bit in the control field of event _before_
2344  * accessing the event control register. If a NMI hits, then it will
2345  * not restart the event.
2346  */
2347 void __perf_event_task_sched_out(struct task_struct *task,
2348 				 struct task_struct *next)
2349 {
2350 	int ctxn;
2351 
2352 	for_each_task_context_nr(ctxn)
2353 		perf_event_context_sched_out(task, ctxn, next);
2354 
2355 	/*
2356 	 * if cgroup events exist on this CPU, then we need
2357 	 * to check if we have to switch out PMU state.
2358 	 * cgroup event are system-wide mode only
2359 	 */
2360 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2361 		perf_cgroup_sched_out(task, next);
2362 }
2363 
2364 static void task_ctx_sched_out(struct perf_event_context *ctx)
2365 {
2366 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2367 
2368 	if (!cpuctx->task_ctx)
2369 		return;
2370 
2371 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2372 		return;
2373 
2374 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2375 	cpuctx->task_ctx = NULL;
2376 }
2377 
2378 /*
2379  * Called with IRQs disabled
2380  */
2381 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2382 			      enum event_type_t event_type)
2383 {
2384 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2385 }
2386 
2387 static void
2388 ctx_pinned_sched_in(struct perf_event_context *ctx,
2389 		    struct perf_cpu_context *cpuctx)
2390 {
2391 	struct perf_event *event;
2392 
2393 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2394 		if (event->state <= PERF_EVENT_STATE_OFF)
2395 			continue;
2396 		if (!event_filter_match(event))
2397 			continue;
2398 
2399 		/* may need to reset tstamp_enabled */
2400 		if (is_cgroup_event(event))
2401 			perf_cgroup_mark_enabled(event, ctx);
2402 
2403 		if (group_can_go_on(event, cpuctx, 1))
2404 			group_sched_in(event, cpuctx, ctx);
2405 
2406 		/*
2407 		 * If this pinned group hasn't been scheduled,
2408 		 * put it in error state.
2409 		 */
2410 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2411 			update_group_times(event);
2412 			event->state = PERF_EVENT_STATE_ERROR;
2413 		}
2414 	}
2415 }
2416 
2417 static void
2418 ctx_flexible_sched_in(struct perf_event_context *ctx,
2419 		      struct perf_cpu_context *cpuctx)
2420 {
2421 	struct perf_event *event;
2422 	int can_add_hw = 1;
2423 
2424 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2425 		/* Ignore events in OFF or ERROR state */
2426 		if (event->state <= PERF_EVENT_STATE_OFF)
2427 			continue;
2428 		/*
2429 		 * Listen to the 'cpu' scheduling filter constraint
2430 		 * of events:
2431 		 */
2432 		if (!event_filter_match(event))
2433 			continue;
2434 
2435 		/* may need to reset tstamp_enabled */
2436 		if (is_cgroup_event(event))
2437 			perf_cgroup_mark_enabled(event, ctx);
2438 
2439 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2440 			if (group_sched_in(event, cpuctx, ctx))
2441 				can_add_hw = 0;
2442 		}
2443 	}
2444 }
2445 
2446 static void
2447 ctx_sched_in(struct perf_event_context *ctx,
2448 	     struct perf_cpu_context *cpuctx,
2449 	     enum event_type_t event_type,
2450 	     struct task_struct *task)
2451 {
2452 	u64 now;
2453 	int is_active = ctx->is_active;
2454 
2455 	ctx->is_active |= event_type;
2456 	if (likely(!ctx->nr_events))
2457 		return;
2458 
2459 	now = perf_clock();
2460 	ctx->timestamp = now;
2461 	perf_cgroup_set_timestamp(task, ctx);
2462 	/*
2463 	 * First go through the list and put on any pinned groups
2464 	 * in order to give them the best chance of going on.
2465 	 */
2466 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2467 		ctx_pinned_sched_in(ctx, cpuctx);
2468 
2469 	/* Then walk through the lower prio flexible groups */
2470 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2471 		ctx_flexible_sched_in(ctx, cpuctx);
2472 }
2473 
2474 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2475 			     enum event_type_t event_type,
2476 			     struct task_struct *task)
2477 {
2478 	struct perf_event_context *ctx = &cpuctx->ctx;
2479 
2480 	ctx_sched_in(ctx, cpuctx, event_type, task);
2481 }
2482 
2483 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2484 					struct task_struct *task)
2485 {
2486 	struct perf_cpu_context *cpuctx;
2487 
2488 	cpuctx = __get_cpu_context(ctx);
2489 	if (cpuctx->task_ctx == ctx)
2490 		return;
2491 
2492 	perf_ctx_lock(cpuctx, ctx);
2493 	perf_pmu_disable(ctx->pmu);
2494 	/*
2495 	 * We want to keep the following priority order:
2496 	 * cpu pinned (that don't need to move), task pinned,
2497 	 * cpu flexible, task flexible.
2498 	 */
2499 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2500 
2501 	if (ctx->nr_events)
2502 		cpuctx->task_ctx = ctx;
2503 
2504 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2505 
2506 	perf_pmu_enable(ctx->pmu);
2507 	perf_ctx_unlock(cpuctx, ctx);
2508 
2509 	/*
2510 	 * Since these rotations are per-cpu, we need to ensure the
2511 	 * cpu-context we got scheduled on is actually rotating.
2512 	 */
2513 	perf_pmu_rotate_start(ctx->pmu);
2514 }
2515 
2516 /*
2517  * When sampling the branck stack in system-wide, it may be necessary
2518  * to flush the stack on context switch. This happens when the branch
2519  * stack does not tag its entries with the pid of the current task.
2520  * Otherwise it becomes impossible to associate a branch entry with a
2521  * task. This ambiguity is more likely to appear when the branch stack
2522  * supports priv level filtering and the user sets it to monitor only
2523  * at the user level (which could be a useful measurement in system-wide
2524  * mode). In that case, the risk is high of having a branch stack with
2525  * branch from multiple tasks. Flushing may mean dropping the existing
2526  * entries or stashing them somewhere in the PMU specific code layer.
2527  *
2528  * This function provides the context switch callback to the lower code
2529  * layer. It is invoked ONLY when there is at least one system-wide context
2530  * with at least one active event using taken branch sampling.
2531  */
2532 static void perf_branch_stack_sched_in(struct task_struct *prev,
2533 				       struct task_struct *task)
2534 {
2535 	struct perf_cpu_context *cpuctx;
2536 	struct pmu *pmu;
2537 	unsigned long flags;
2538 
2539 	/* no need to flush branch stack if not changing task */
2540 	if (prev == task)
2541 		return;
2542 
2543 	local_irq_save(flags);
2544 
2545 	rcu_read_lock();
2546 
2547 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2548 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2549 
2550 		/*
2551 		 * check if the context has at least one
2552 		 * event using PERF_SAMPLE_BRANCH_STACK
2553 		 */
2554 		if (cpuctx->ctx.nr_branch_stack > 0
2555 		    && pmu->flush_branch_stack) {
2556 
2557 			pmu = cpuctx->ctx.pmu;
2558 
2559 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2560 
2561 			perf_pmu_disable(pmu);
2562 
2563 			pmu->flush_branch_stack();
2564 
2565 			perf_pmu_enable(pmu);
2566 
2567 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2568 		}
2569 	}
2570 
2571 	rcu_read_unlock();
2572 
2573 	local_irq_restore(flags);
2574 }
2575 
2576 /*
2577  * Called from scheduler to add the events of the current task
2578  * with interrupts disabled.
2579  *
2580  * We restore the event value and then enable it.
2581  *
2582  * This does not protect us against NMI, but enable()
2583  * sets the enabled bit in the control field of event _before_
2584  * accessing the event control register. If a NMI hits, then it will
2585  * keep the event running.
2586  */
2587 void __perf_event_task_sched_in(struct task_struct *prev,
2588 				struct task_struct *task)
2589 {
2590 	struct perf_event_context *ctx;
2591 	int ctxn;
2592 
2593 	for_each_task_context_nr(ctxn) {
2594 		ctx = task->perf_event_ctxp[ctxn];
2595 		if (likely(!ctx))
2596 			continue;
2597 
2598 		perf_event_context_sched_in(ctx, task);
2599 	}
2600 	/*
2601 	 * if cgroup events exist on this CPU, then we need
2602 	 * to check if we have to switch in PMU state.
2603 	 * cgroup event are system-wide mode only
2604 	 */
2605 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2606 		perf_cgroup_sched_in(prev, task);
2607 
2608 	/* check for system-wide branch_stack events */
2609 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2610 		perf_branch_stack_sched_in(prev, task);
2611 }
2612 
2613 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2614 {
2615 	u64 frequency = event->attr.sample_freq;
2616 	u64 sec = NSEC_PER_SEC;
2617 	u64 divisor, dividend;
2618 
2619 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2620 
2621 	count_fls = fls64(count);
2622 	nsec_fls = fls64(nsec);
2623 	frequency_fls = fls64(frequency);
2624 	sec_fls = 30;
2625 
2626 	/*
2627 	 * We got @count in @nsec, with a target of sample_freq HZ
2628 	 * the target period becomes:
2629 	 *
2630 	 *             @count * 10^9
2631 	 * period = -------------------
2632 	 *          @nsec * sample_freq
2633 	 *
2634 	 */
2635 
2636 	/*
2637 	 * Reduce accuracy by one bit such that @a and @b converge
2638 	 * to a similar magnitude.
2639 	 */
2640 #define REDUCE_FLS(a, b)		\
2641 do {					\
2642 	if (a##_fls > b##_fls) {	\
2643 		a >>= 1;		\
2644 		a##_fls--;		\
2645 	} else {			\
2646 		b >>= 1;		\
2647 		b##_fls--;		\
2648 	}				\
2649 } while (0)
2650 
2651 	/*
2652 	 * Reduce accuracy until either term fits in a u64, then proceed with
2653 	 * the other, so that finally we can do a u64/u64 division.
2654 	 */
2655 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2656 		REDUCE_FLS(nsec, frequency);
2657 		REDUCE_FLS(sec, count);
2658 	}
2659 
2660 	if (count_fls + sec_fls > 64) {
2661 		divisor = nsec * frequency;
2662 
2663 		while (count_fls + sec_fls > 64) {
2664 			REDUCE_FLS(count, sec);
2665 			divisor >>= 1;
2666 		}
2667 
2668 		dividend = count * sec;
2669 	} else {
2670 		dividend = count * sec;
2671 
2672 		while (nsec_fls + frequency_fls > 64) {
2673 			REDUCE_FLS(nsec, frequency);
2674 			dividend >>= 1;
2675 		}
2676 
2677 		divisor = nsec * frequency;
2678 	}
2679 
2680 	if (!divisor)
2681 		return dividend;
2682 
2683 	return div64_u64(dividend, divisor);
2684 }
2685 
2686 static DEFINE_PER_CPU(int, perf_throttled_count);
2687 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2688 
2689 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2690 {
2691 	struct hw_perf_event *hwc = &event->hw;
2692 	s64 period, sample_period;
2693 	s64 delta;
2694 
2695 	period = perf_calculate_period(event, nsec, count);
2696 
2697 	delta = (s64)(period - hwc->sample_period);
2698 	delta = (delta + 7) / 8; /* low pass filter */
2699 
2700 	sample_period = hwc->sample_period + delta;
2701 
2702 	if (!sample_period)
2703 		sample_period = 1;
2704 
2705 	hwc->sample_period = sample_period;
2706 
2707 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2708 		if (disable)
2709 			event->pmu->stop(event, PERF_EF_UPDATE);
2710 
2711 		local64_set(&hwc->period_left, 0);
2712 
2713 		if (disable)
2714 			event->pmu->start(event, PERF_EF_RELOAD);
2715 	}
2716 }
2717 
2718 /*
2719  * combine freq adjustment with unthrottling to avoid two passes over the
2720  * events. At the same time, make sure, having freq events does not change
2721  * the rate of unthrottling as that would introduce bias.
2722  */
2723 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2724 					   int needs_unthr)
2725 {
2726 	struct perf_event *event;
2727 	struct hw_perf_event *hwc;
2728 	u64 now, period = TICK_NSEC;
2729 	s64 delta;
2730 
2731 	/*
2732 	 * only need to iterate over all events iff:
2733 	 * - context have events in frequency mode (needs freq adjust)
2734 	 * - there are events to unthrottle on this cpu
2735 	 */
2736 	if (!(ctx->nr_freq || needs_unthr))
2737 		return;
2738 
2739 	raw_spin_lock(&ctx->lock);
2740 	perf_pmu_disable(ctx->pmu);
2741 
2742 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2743 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2744 			continue;
2745 
2746 		if (!event_filter_match(event))
2747 			continue;
2748 
2749 		hwc = &event->hw;
2750 
2751 		if (hwc->interrupts == MAX_INTERRUPTS) {
2752 			hwc->interrupts = 0;
2753 			perf_log_throttle(event, 1);
2754 			event->pmu->start(event, 0);
2755 		}
2756 
2757 		if (!event->attr.freq || !event->attr.sample_freq)
2758 			continue;
2759 
2760 		/*
2761 		 * stop the event and update event->count
2762 		 */
2763 		event->pmu->stop(event, PERF_EF_UPDATE);
2764 
2765 		now = local64_read(&event->count);
2766 		delta = now - hwc->freq_count_stamp;
2767 		hwc->freq_count_stamp = now;
2768 
2769 		/*
2770 		 * restart the event
2771 		 * reload only if value has changed
2772 		 * we have stopped the event so tell that
2773 		 * to perf_adjust_period() to avoid stopping it
2774 		 * twice.
2775 		 */
2776 		if (delta > 0)
2777 			perf_adjust_period(event, period, delta, false);
2778 
2779 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2780 	}
2781 
2782 	perf_pmu_enable(ctx->pmu);
2783 	raw_spin_unlock(&ctx->lock);
2784 }
2785 
2786 /*
2787  * Round-robin a context's events:
2788  */
2789 static void rotate_ctx(struct perf_event_context *ctx)
2790 {
2791 	/*
2792 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2793 	 * disabled by the inheritance code.
2794 	 */
2795 	if (!ctx->rotate_disable)
2796 		list_rotate_left(&ctx->flexible_groups);
2797 }
2798 
2799 /*
2800  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2801  * because they're strictly cpu affine and rotate_start is called with IRQs
2802  * disabled, while rotate_context is called from IRQ context.
2803  */
2804 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
2805 {
2806 	struct perf_event_context *ctx = NULL;
2807 	int rotate = 0, remove = 1;
2808 
2809 	if (cpuctx->ctx.nr_events) {
2810 		remove = 0;
2811 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2812 			rotate = 1;
2813 	}
2814 
2815 	ctx = cpuctx->task_ctx;
2816 	if (ctx && ctx->nr_events) {
2817 		remove = 0;
2818 		if (ctx->nr_events != ctx->nr_active)
2819 			rotate = 1;
2820 	}
2821 
2822 	if (!rotate)
2823 		goto done;
2824 
2825 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2826 	perf_pmu_disable(cpuctx->ctx.pmu);
2827 
2828 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2829 	if (ctx)
2830 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2831 
2832 	rotate_ctx(&cpuctx->ctx);
2833 	if (ctx)
2834 		rotate_ctx(ctx);
2835 
2836 	perf_event_sched_in(cpuctx, ctx, current);
2837 
2838 	perf_pmu_enable(cpuctx->ctx.pmu);
2839 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2840 done:
2841 	if (remove)
2842 		list_del_init(&cpuctx->rotation_list);
2843 
2844 	return rotate;
2845 }
2846 
2847 #ifdef CONFIG_NO_HZ_FULL
2848 bool perf_event_can_stop_tick(void)
2849 {
2850 	if (atomic_read(&nr_freq_events) ||
2851 	    __this_cpu_read(perf_throttled_count))
2852 		return false;
2853 	else
2854 		return true;
2855 }
2856 #endif
2857 
2858 void perf_event_task_tick(void)
2859 {
2860 	struct list_head *head = &__get_cpu_var(rotation_list);
2861 	struct perf_cpu_context *cpuctx, *tmp;
2862 	struct perf_event_context *ctx;
2863 	int throttled;
2864 
2865 	WARN_ON(!irqs_disabled());
2866 
2867 	__this_cpu_inc(perf_throttled_seq);
2868 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2869 
2870 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2871 		ctx = &cpuctx->ctx;
2872 		perf_adjust_freq_unthr_context(ctx, throttled);
2873 
2874 		ctx = cpuctx->task_ctx;
2875 		if (ctx)
2876 			perf_adjust_freq_unthr_context(ctx, throttled);
2877 	}
2878 }
2879 
2880 static int event_enable_on_exec(struct perf_event *event,
2881 				struct perf_event_context *ctx)
2882 {
2883 	if (!event->attr.enable_on_exec)
2884 		return 0;
2885 
2886 	event->attr.enable_on_exec = 0;
2887 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2888 		return 0;
2889 
2890 	__perf_event_mark_enabled(event);
2891 
2892 	return 1;
2893 }
2894 
2895 /*
2896  * Enable all of a task's events that have been marked enable-on-exec.
2897  * This expects task == current.
2898  */
2899 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2900 {
2901 	struct perf_event *event;
2902 	unsigned long flags;
2903 	int enabled = 0;
2904 	int ret;
2905 
2906 	local_irq_save(flags);
2907 	if (!ctx || !ctx->nr_events)
2908 		goto out;
2909 
2910 	/*
2911 	 * We must ctxsw out cgroup events to avoid conflict
2912 	 * when invoking perf_task_event_sched_in() later on
2913 	 * in this function. Otherwise we end up trying to
2914 	 * ctxswin cgroup events which are already scheduled
2915 	 * in.
2916 	 */
2917 	perf_cgroup_sched_out(current, NULL);
2918 
2919 	raw_spin_lock(&ctx->lock);
2920 	task_ctx_sched_out(ctx);
2921 
2922 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2923 		ret = event_enable_on_exec(event, ctx);
2924 		if (ret)
2925 			enabled = 1;
2926 	}
2927 
2928 	/*
2929 	 * Unclone this context if we enabled any event.
2930 	 */
2931 	if (enabled)
2932 		unclone_ctx(ctx);
2933 
2934 	raw_spin_unlock(&ctx->lock);
2935 
2936 	/*
2937 	 * Also calls ctxswin for cgroup events, if any:
2938 	 */
2939 	perf_event_context_sched_in(ctx, ctx->task);
2940 out:
2941 	local_irq_restore(flags);
2942 }
2943 
2944 /*
2945  * Cross CPU call to read the hardware event
2946  */
2947 static void __perf_event_read(void *info)
2948 {
2949 	struct perf_event *event = info;
2950 	struct perf_event_context *ctx = event->ctx;
2951 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2952 
2953 	/*
2954 	 * If this is a task context, we need to check whether it is
2955 	 * the current task context of this cpu.  If not it has been
2956 	 * scheduled out before the smp call arrived.  In that case
2957 	 * event->count would have been updated to a recent sample
2958 	 * when the event was scheduled out.
2959 	 */
2960 	if (ctx->task && cpuctx->task_ctx != ctx)
2961 		return;
2962 
2963 	raw_spin_lock(&ctx->lock);
2964 	if (ctx->is_active) {
2965 		update_context_time(ctx);
2966 		update_cgrp_time_from_event(event);
2967 	}
2968 	update_event_times(event);
2969 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2970 		event->pmu->read(event);
2971 	raw_spin_unlock(&ctx->lock);
2972 }
2973 
2974 static inline u64 perf_event_count(struct perf_event *event)
2975 {
2976 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2977 }
2978 
2979 static u64 perf_event_read(struct perf_event *event)
2980 {
2981 	/*
2982 	 * If event is enabled and currently active on a CPU, update the
2983 	 * value in the event structure:
2984 	 */
2985 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2986 		smp_call_function_single(event->oncpu,
2987 					 __perf_event_read, event, 1);
2988 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2989 		struct perf_event_context *ctx = event->ctx;
2990 		unsigned long flags;
2991 
2992 		raw_spin_lock_irqsave(&ctx->lock, flags);
2993 		/*
2994 		 * may read while context is not active
2995 		 * (e.g., thread is blocked), in that case
2996 		 * we cannot update context time
2997 		 */
2998 		if (ctx->is_active) {
2999 			update_context_time(ctx);
3000 			update_cgrp_time_from_event(event);
3001 		}
3002 		update_event_times(event);
3003 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3004 	}
3005 
3006 	return perf_event_count(event);
3007 }
3008 
3009 /*
3010  * Initialize the perf_event context in a task_struct:
3011  */
3012 static void __perf_event_init_context(struct perf_event_context *ctx)
3013 {
3014 	raw_spin_lock_init(&ctx->lock);
3015 	mutex_init(&ctx->mutex);
3016 	INIT_LIST_HEAD(&ctx->pinned_groups);
3017 	INIT_LIST_HEAD(&ctx->flexible_groups);
3018 	INIT_LIST_HEAD(&ctx->event_list);
3019 	atomic_set(&ctx->refcount, 1);
3020 }
3021 
3022 static struct perf_event_context *
3023 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3024 {
3025 	struct perf_event_context *ctx;
3026 
3027 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3028 	if (!ctx)
3029 		return NULL;
3030 
3031 	__perf_event_init_context(ctx);
3032 	if (task) {
3033 		ctx->task = task;
3034 		get_task_struct(task);
3035 	}
3036 	ctx->pmu = pmu;
3037 
3038 	return ctx;
3039 }
3040 
3041 static struct task_struct *
3042 find_lively_task_by_vpid(pid_t vpid)
3043 {
3044 	struct task_struct *task;
3045 	int err;
3046 
3047 	rcu_read_lock();
3048 	if (!vpid)
3049 		task = current;
3050 	else
3051 		task = find_task_by_vpid(vpid);
3052 	if (task)
3053 		get_task_struct(task);
3054 	rcu_read_unlock();
3055 
3056 	if (!task)
3057 		return ERR_PTR(-ESRCH);
3058 
3059 	/* Reuse ptrace permission checks for now. */
3060 	err = -EACCES;
3061 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3062 		goto errout;
3063 
3064 	return task;
3065 errout:
3066 	put_task_struct(task);
3067 	return ERR_PTR(err);
3068 
3069 }
3070 
3071 /*
3072  * Returns a matching context with refcount and pincount.
3073  */
3074 static struct perf_event_context *
3075 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
3076 {
3077 	struct perf_event_context *ctx;
3078 	struct perf_cpu_context *cpuctx;
3079 	unsigned long flags;
3080 	int ctxn, err;
3081 
3082 	if (!task) {
3083 		/* Must be root to operate on a CPU event: */
3084 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3085 			return ERR_PTR(-EACCES);
3086 
3087 		/*
3088 		 * We could be clever and allow to attach a event to an
3089 		 * offline CPU and activate it when the CPU comes up, but
3090 		 * that's for later.
3091 		 */
3092 		if (!cpu_online(cpu))
3093 			return ERR_PTR(-ENODEV);
3094 
3095 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3096 		ctx = &cpuctx->ctx;
3097 		get_ctx(ctx);
3098 		++ctx->pin_count;
3099 
3100 		return ctx;
3101 	}
3102 
3103 	err = -EINVAL;
3104 	ctxn = pmu->task_ctx_nr;
3105 	if (ctxn < 0)
3106 		goto errout;
3107 
3108 retry:
3109 	ctx = perf_lock_task_context(task, ctxn, &flags);
3110 	if (ctx) {
3111 		unclone_ctx(ctx);
3112 		++ctx->pin_count;
3113 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3114 	} else {
3115 		ctx = alloc_perf_context(pmu, task);
3116 		err = -ENOMEM;
3117 		if (!ctx)
3118 			goto errout;
3119 
3120 		err = 0;
3121 		mutex_lock(&task->perf_event_mutex);
3122 		/*
3123 		 * If it has already passed perf_event_exit_task().
3124 		 * we must see PF_EXITING, it takes this mutex too.
3125 		 */
3126 		if (task->flags & PF_EXITING)
3127 			err = -ESRCH;
3128 		else if (task->perf_event_ctxp[ctxn])
3129 			err = -EAGAIN;
3130 		else {
3131 			get_ctx(ctx);
3132 			++ctx->pin_count;
3133 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3134 		}
3135 		mutex_unlock(&task->perf_event_mutex);
3136 
3137 		if (unlikely(err)) {
3138 			put_ctx(ctx);
3139 
3140 			if (err == -EAGAIN)
3141 				goto retry;
3142 			goto errout;
3143 		}
3144 	}
3145 
3146 	return ctx;
3147 
3148 errout:
3149 	return ERR_PTR(err);
3150 }
3151 
3152 static void perf_event_free_filter(struct perf_event *event);
3153 
3154 static void free_event_rcu(struct rcu_head *head)
3155 {
3156 	struct perf_event *event;
3157 
3158 	event = container_of(head, struct perf_event, rcu_head);
3159 	if (event->ns)
3160 		put_pid_ns(event->ns);
3161 	perf_event_free_filter(event);
3162 	kfree(event);
3163 }
3164 
3165 static void ring_buffer_put(struct ring_buffer *rb);
3166 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3167 
3168 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3169 {
3170 	if (event->parent)
3171 		return;
3172 
3173 	if (has_branch_stack(event)) {
3174 		if (!(event->attach_state & PERF_ATTACH_TASK))
3175 			atomic_dec(&per_cpu(perf_branch_stack_events, cpu));
3176 	}
3177 	if (is_cgroup_event(event))
3178 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3179 }
3180 
3181 static void unaccount_event(struct perf_event *event)
3182 {
3183 	if (event->parent)
3184 		return;
3185 
3186 	if (event->attach_state & PERF_ATTACH_TASK)
3187 		static_key_slow_dec_deferred(&perf_sched_events);
3188 	if (event->attr.mmap || event->attr.mmap_data)
3189 		atomic_dec(&nr_mmap_events);
3190 	if (event->attr.comm)
3191 		atomic_dec(&nr_comm_events);
3192 	if (event->attr.task)
3193 		atomic_dec(&nr_task_events);
3194 	if (event->attr.freq)
3195 		atomic_dec(&nr_freq_events);
3196 	if (is_cgroup_event(event))
3197 		static_key_slow_dec_deferred(&perf_sched_events);
3198 	if (has_branch_stack(event))
3199 		static_key_slow_dec_deferred(&perf_sched_events);
3200 
3201 	unaccount_event_cpu(event, event->cpu);
3202 }
3203 
3204 static void __free_event(struct perf_event *event)
3205 {
3206 	if (!event->parent) {
3207 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3208 			put_callchain_buffers();
3209 	}
3210 
3211 	if (event->destroy)
3212 		event->destroy(event);
3213 
3214 	if (event->ctx)
3215 		put_ctx(event->ctx);
3216 
3217 	call_rcu(&event->rcu_head, free_event_rcu);
3218 }
3219 static void free_event(struct perf_event *event)
3220 {
3221 	irq_work_sync(&event->pending);
3222 
3223 	unaccount_event(event);
3224 
3225 	if (event->rb) {
3226 		struct ring_buffer *rb;
3227 
3228 		/*
3229 		 * Can happen when we close an event with re-directed output.
3230 		 *
3231 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3232 		 * over us; possibly making our ring_buffer_put() the last.
3233 		 */
3234 		mutex_lock(&event->mmap_mutex);
3235 		rb = event->rb;
3236 		if (rb) {
3237 			rcu_assign_pointer(event->rb, NULL);
3238 			ring_buffer_detach(event, rb);
3239 			ring_buffer_put(rb); /* could be last */
3240 		}
3241 		mutex_unlock(&event->mmap_mutex);
3242 	}
3243 
3244 	if (is_cgroup_event(event))
3245 		perf_detach_cgroup(event);
3246 
3247 
3248 	__free_event(event);
3249 }
3250 
3251 int perf_event_release_kernel(struct perf_event *event)
3252 {
3253 	struct perf_event_context *ctx = event->ctx;
3254 
3255 	WARN_ON_ONCE(ctx->parent_ctx);
3256 	/*
3257 	 * There are two ways this annotation is useful:
3258 	 *
3259 	 *  1) there is a lock recursion from perf_event_exit_task
3260 	 *     see the comment there.
3261 	 *
3262 	 *  2) there is a lock-inversion with mmap_sem through
3263 	 *     perf_event_read_group(), which takes faults while
3264 	 *     holding ctx->mutex, however this is called after
3265 	 *     the last filedesc died, so there is no possibility
3266 	 *     to trigger the AB-BA case.
3267 	 */
3268 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3269 	raw_spin_lock_irq(&ctx->lock);
3270 	perf_group_detach(event);
3271 	raw_spin_unlock_irq(&ctx->lock);
3272 	perf_remove_from_context(event);
3273 	mutex_unlock(&ctx->mutex);
3274 
3275 	free_event(event);
3276 
3277 	return 0;
3278 }
3279 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3280 
3281 /*
3282  * Called when the last reference to the file is gone.
3283  */
3284 static void put_event(struct perf_event *event)
3285 {
3286 	struct task_struct *owner;
3287 
3288 	if (!atomic_long_dec_and_test(&event->refcount))
3289 		return;
3290 
3291 	rcu_read_lock();
3292 	owner = ACCESS_ONCE(event->owner);
3293 	/*
3294 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3295 	 * !owner it means the list deletion is complete and we can indeed
3296 	 * free this event, otherwise we need to serialize on
3297 	 * owner->perf_event_mutex.
3298 	 */
3299 	smp_read_barrier_depends();
3300 	if (owner) {
3301 		/*
3302 		 * Since delayed_put_task_struct() also drops the last
3303 		 * task reference we can safely take a new reference
3304 		 * while holding the rcu_read_lock().
3305 		 */
3306 		get_task_struct(owner);
3307 	}
3308 	rcu_read_unlock();
3309 
3310 	if (owner) {
3311 		mutex_lock(&owner->perf_event_mutex);
3312 		/*
3313 		 * We have to re-check the event->owner field, if it is cleared
3314 		 * we raced with perf_event_exit_task(), acquiring the mutex
3315 		 * ensured they're done, and we can proceed with freeing the
3316 		 * event.
3317 		 */
3318 		if (event->owner)
3319 			list_del_init(&event->owner_entry);
3320 		mutex_unlock(&owner->perf_event_mutex);
3321 		put_task_struct(owner);
3322 	}
3323 
3324 	perf_event_release_kernel(event);
3325 }
3326 
3327 static int perf_release(struct inode *inode, struct file *file)
3328 {
3329 	put_event(file->private_data);
3330 	return 0;
3331 }
3332 
3333 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3334 {
3335 	struct perf_event *child;
3336 	u64 total = 0;
3337 
3338 	*enabled = 0;
3339 	*running = 0;
3340 
3341 	mutex_lock(&event->child_mutex);
3342 	total += perf_event_read(event);
3343 	*enabled += event->total_time_enabled +
3344 			atomic64_read(&event->child_total_time_enabled);
3345 	*running += event->total_time_running +
3346 			atomic64_read(&event->child_total_time_running);
3347 
3348 	list_for_each_entry(child, &event->child_list, child_list) {
3349 		total += perf_event_read(child);
3350 		*enabled += child->total_time_enabled;
3351 		*running += child->total_time_running;
3352 	}
3353 	mutex_unlock(&event->child_mutex);
3354 
3355 	return total;
3356 }
3357 EXPORT_SYMBOL_GPL(perf_event_read_value);
3358 
3359 static int perf_event_read_group(struct perf_event *event,
3360 				   u64 read_format, char __user *buf)
3361 {
3362 	struct perf_event *leader = event->group_leader, *sub;
3363 	int n = 0, size = 0, ret = -EFAULT;
3364 	struct perf_event_context *ctx = leader->ctx;
3365 	u64 values[5];
3366 	u64 count, enabled, running;
3367 
3368 	mutex_lock(&ctx->mutex);
3369 	count = perf_event_read_value(leader, &enabled, &running);
3370 
3371 	values[n++] = 1 + leader->nr_siblings;
3372 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3373 		values[n++] = enabled;
3374 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3375 		values[n++] = running;
3376 	values[n++] = count;
3377 	if (read_format & PERF_FORMAT_ID)
3378 		values[n++] = primary_event_id(leader);
3379 
3380 	size = n * sizeof(u64);
3381 
3382 	if (copy_to_user(buf, values, size))
3383 		goto unlock;
3384 
3385 	ret = size;
3386 
3387 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3388 		n = 0;
3389 
3390 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3391 		if (read_format & PERF_FORMAT_ID)
3392 			values[n++] = primary_event_id(sub);
3393 
3394 		size = n * sizeof(u64);
3395 
3396 		if (copy_to_user(buf + ret, values, size)) {
3397 			ret = -EFAULT;
3398 			goto unlock;
3399 		}
3400 
3401 		ret += size;
3402 	}
3403 unlock:
3404 	mutex_unlock(&ctx->mutex);
3405 
3406 	return ret;
3407 }
3408 
3409 static int perf_event_read_one(struct perf_event *event,
3410 				 u64 read_format, char __user *buf)
3411 {
3412 	u64 enabled, running;
3413 	u64 values[4];
3414 	int n = 0;
3415 
3416 	values[n++] = perf_event_read_value(event, &enabled, &running);
3417 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3418 		values[n++] = enabled;
3419 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3420 		values[n++] = running;
3421 	if (read_format & PERF_FORMAT_ID)
3422 		values[n++] = primary_event_id(event);
3423 
3424 	if (copy_to_user(buf, values, n * sizeof(u64)))
3425 		return -EFAULT;
3426 
3427 	return n * sizeof(u64);
3428 }
3429 
3430 /*
3431  * Read the performance event - simple non blocking version for now
3432  */
3433 static ssize_t
3434 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3435 {
3436 	u64 read_format = event->attr.read_format;
3437 	int ret;
3438 
3439 	/*
3440 	 * Return end-of-file for a read on a event that is in
3441 	 * error state (i.e. because it was pinned but it couldn't be
3442 	 * scheduled on to the CPU at some point).
3443 	 */
3444 	if (event->state == PERF_EVENT_STATE_ERROR)
3445 		return 0;
3446 
3447 	if (count < event->read_size)
3448 		return -ENOSPC;
3449 
3450 	WARN_ON_ONCE(event->ctx->parent_ctx);
3451 	if (read_format & PERF_FORMAT_GROUP)
3452 		ret = perf_event_read_group(event, read_format, buf);
3453 	else
3454 		ret = perf_event_read_one(event, read_format, buf);
3455 
3456 	return ret;
3457 }
3458 
3459 static ssize_t
3460 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3461 {
3462 	struct perf_event *event = file->private_data;
3463 
3464 	return perf_read_hw(event, buf, count);
3465 }
3466 
3467 static unsigned int perf_poll(struct file *file, poll_table *wait)
3468 {
3469 	struct perf_event *event = file->private_data;
3470 	struct ring_buffer *rb;
3471 	unsigned int events = POLL_HUP;
3472 
3473 	/*
3474 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3475 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3476 	 */
3477 	mutex_lock(&event->mmap_mutex);
3478 	rb = event->rb;
3479 	if (rb)
3480 		events = atomic_xchg(&rb->poll, 0);
3481 	mutex_unlock(&event->mmap_mutex);
3482 
3483 	poll_wait(file, &event->waitq, wait);
3484 
3485 	return events;
3486 }
3487 
3488 static void perf_event_reset(struct perf_event *event)
3489 {
3490 	(void)perf_event_read(event);
3491 	local64_set(&event->count, 0);
3492 	perf_event_update_userpage(event);
3493 }
3494 
3495 /*
3496  * Holding the top-level event's child_mutex means that any
3497  * descendant process that has inherited this event will block
3498  * in sync_child_event if it goes to exit, thus satisfying the
3499  * task existence requirements of perf_event_enable/disable.
3500  */
3501 static void perf_event_for_each_child(struct perf_event *event,
3502 					void (*func)(struct perf_event *))
3503 {
3504 	struct perf_event *child;
3505 
3506 	WARN_ON_ONCE(event->ctx->parent_ctx);
3507 	mutex_lock(&event->child_mutex);
3508 	func(event);
3509 	list_for_each_entry(child, &event->child_list, child_list)
3510 		func(child);
3511 	mutex_unlock(&event->child_mutex);
3512 }
3513 
3514 static void perf_event_for_each(struct perf_event *event,
3515 				  void (*func)(struct perf_event *))
3516 {
3517 	struct perf_event_context *ctx = event->ctx;
3518 	struct perf_event *sibling;
3519 
3520 	WARN_ON_ONCE(ctx->parent_ctx);
3521 	mutex_lock(&ctx->mutex);
3522 	event = event->group_leader;
3523 
3524 	perf_event_for_each_child(event, func);
3525 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3526 		perf_event_for_each_child(sibling, func);
3527 	mutex_unlock(&ctx->mutex);
3528 }
3529 
3530 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3531 {
3532 	struct perf_event_context *ctx = event->ctx;
3533 	int ret = 0;
3534 	u64 value;
3535 
3536 	if (!is_sampling_event(event))
3537 		return -EINVAL;
3538 
3539 	if (copy_from_user(&value, arg, sizeof(value)))
3540 		return -EFAULT;
3541 
3542 	if (!value)
3543 		return -EINVAL;
3544 
3545 	raw_spin_lock_irq(&ctx->lock);
3546 	if (event->attr.freq) {
3547 		if (value > sysctl_perf_event_sample_rate) {
3548 			ret = -EINVAL;
3549 			goto unlock;
3550 		}
3551 
3552 		event->attr.sample_freq = value;
3553 	} else {
3554 		event->attr.sample_period = value;
3555 		event->hw.sample_period = value;
3556 	}
3557 unlock:
3558 	raw_spin_unlock_irq(&ctx->lock);
3559 
3560 	return ret;
3561 }
3562 
3563 static const struct file_operations perf_fops;
3564 
3565 static inline int perf_fget_light(int fd, struct fd *p)
3566 {
3567 	struct fd f = fdget(fd);
3568 	if (!f.file)
3569 		return -EBADF;
3570 
3571 	if (f.file->f_op != &perf_fops) {
3572 		fdput(f);
3573 		return -EBADF;
3574 	}
3575 	*p = f;
3576 	return 0;
3577 }
3578 
3579 static int perf_event_set_output(struct perf_event *event,
3580 				 struct perf_event *output_event);
3581 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3582 
3583 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3584 {
3585 	struct perf_event *event = file->private_data;
3586 	void (*func)(struct perf_event *);
3587 	u32 flags = arg;
3588 
3589 	switch (cmd) {
3590 	case PERF_EVENT_IOC_ENABLE:
3591 		func = perf_event_enable;
3592 		break;
3593 	case PERF_EVENT_IOC_DISABLE:
3594 		func = perf_event_disable;
3595 		break;
3596 	case PERF_EVENT_IOC_RESET:
3597 		func = perf_event_reset;
3598 		break;
3599 
3600 	case PERF_EVENT_IOC_REFRESH:
3601 		return perf_event_refresh(event, arg);
3602 
3603 	case PERF_EVENT_IOC_PERIOD:
3604 		return perf_event_period(event, (u64 __user *)arg);
3605 
3606 	case PERF_EVENT_IOC_ID:
3607 	{
3608 		u64 id = primary_event_id(event);
3609 
3610 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
3611 			return -EFAULT;
3612 		return 0;
3613 	}
3614 
3615 	case PERF_EVENT_IOC_SET_OUTPUT:
3616 	{
3617 		int ret;
3618 		if (arg != -1) {
3619 			struct perf_event *output_event;
3620 			struct fd output;
3621 			ret = perf_fget_light(arg, &output);
3622 			if (ret)
3623 				return ret;
3624 			output_event = output.file->private_data;
3625 			ret = perf_event_set_output(event, output_event);
3626 			fdput(output);
3627 		} else {
3628 			ret = perf_event_set_output(event, NULL);
3629 		}
3630 		return ret;
3631 	}
3632 
3633 	case PERF_EVENT_IOC_SET_FILTER:
3634 		return perf_event_set_filter(event, (void __user *)arg);
3635 
3636 	default:
3637 		return -ENOTTY;
3638 	}
3639 
3640 	if (flags & PERF_IOC_FLAG_GROUP)
3641 		perf_event_for_each(event, func);
3642 	else
3643 		perf_event_for_each_child(event, func);
3644 
3645 	return 0;
3646 }
3647 
3648 int perf_event_task_enable(void)
3649 {
3650 	struct perf_event *event;
3651 
3652 	mutex_lock(&current->perf_event_mutex);
3653 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3654 		perf_event_for_each_child(event, perf_event_enable);
3655 	mutex_unlock(&current->perf_event_mutex);
3656 
3657 	return 0;
3658 }
3659 
3660 int perf_event_task_disable(void)
3661 {
3662 	struct perf_event *event;
3663 
3664 	mutex_lock(&current->perf_event_mutex);
3665 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3666 		perf_event_for_each_child(event, perf_event_disable);
3667 	mutex_unlock(&current->perf_event_mutex);
3668 
3669 	return 0;
3670 }
3671 
3672 static int perf_event_index(struct perf_event *event)
3673 {
3674 	if (event->hw.state & PERF_HES_STOPPED)
3675 		return 0;
3676 
3677 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3678 		return 0;
3679 
3680 	return event->pmu->event_idx(event);
3681 }
3682 
3683 static void calc_timer_values(struct perf_event *event,
3684 				u64 *now,
3685 				u64 *enabled,
3686 				u64 *running)
3687 {
3688 	u64 ctx_time;
3689 
3690 	*now = perf_clock();
3691 	ctx_time = event->shadow_ctx_time + *now;
3692 	*enabled = ctx_time - event->tstamp_enabled;
3693 	*running = ctx_time - event->tstamp_running;
3694 }
3695 
3696 static void perf_event_init_userpage(struct perf_event *event)
3697 {
3698 	struct perf_event_mmap_page *userpg;
3699 	struct ring_buffer *rb;
3700 
3701 	rcu_read_lock();
3702 	rb = rcu_dereference(event->rb);
3703 	if (!rb)
3704 		goto unlock;
3705 
3706 	userpg = rb->user_page;
3707 
3708 	/* Allow new userspace to detect that bit 0 is deprecated */
3709 	userpg->cap_bit0_is_deprecated = 1;
3710 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
3711 
3712 unlock:
3713 	rcu_read_unlock();
3714 }
3715 
3716 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3717 {
3718 }
3719 
3720 /*
3721  * Callers need to ensure there can be no nesting of this function, otherwise
3722  * the seqlock logic goes bad. We can not serialize this because the arch
3723  * code calls this from NMI context.
3724  */
3725 void perf_event_update_userpage(struct perf_event *event)
3726 {
3727 	struct perf_event_mmap_page *userpg;
3728 	struct ring_buffer *rb;
3729 	u64 enabled, running, now;
3730 
3731 	rcu_read_lock();
3732 	rb = rcu_dereference(event->rb);
3733 	if (!rb)
3734 		goto unlock;
3735 
3736 	/*
3737 	 * compute total_time_enabled, total_time_running
3738 	 * based on snapshot values taken when the event
3739 	 * was last scheduled in.
3740 	 *
3741 	 * we cannot simply called update_context_time()
3742 	 * because of locking issue as we can be called in
3743 	 * NMI context
3744 	 */
3745 	calc_timer_values(event, &now, &enabled, &running);
3746 
3747 	userpg = rb->user_page;
3748 	/*
3749 	 * Disable preemption so as to not let the corresponding user-space
3750 	 * spin too long if we get preempted.
3751 	 */
3752 	preempt_disable();
3753 	++userpg->lock;
3754 	barrier();
3755 	userpg->index = perf_event_index(event);
3756 	userpg->offset = perf_event_count(event);
3757 	if (userpg->index)
3758 		userpg->offset -= local64_read(&event->hw.prev_count);
3759 
3760 	userpg->time_enabled = enabled +
3761 			atomic64_read(&event->child_total_time_enabled);
3762 
3763 	userpg->time_running = running +
3764 			atomic64_read(&event->child_total_time_running);
3765 
3766 	arch_perf_update_userpage(userpg, now);
3767 
3768 	barrier();
3769 	++userpg->lock;
3770 	preempt_enable();
3771 unlock:
3772 	rcu_read_unlock();
3773 }
3774 
3775 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3776 {
3777 	struct perf_event *event = vma->vm_file->private_data;
3778 	struct ring_buffer *rb;
3779 	int ret = VM_FAULT_SIGBUS;
3780 
3781 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3782 		if (vmf->pgoff == 0)
3783 			ret = 0;
3784 		return ret;
3785 	}
3786 
3787 	rcu_read_lock();
3788 	rb = rcu_dereference(event->rb);
3789 	if (!rb)
3790 		goto unlock;
3791 
3792 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3793 		goto unlock;
3794 
3795 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3796 	if (!vmf->page)
3797 		goto unlock;
3798 
3799 	get_page(vmf->page);
3800 	vmf->page->mapping = vma->vm_file->f_mapping;
3801 	vmf->page->index   = vmf->pgoff;
3802 
3803 	ret = 0;
3804 unlock:
3805 	rcu_read_unlock();
3806 
3807 	return ret;
3808 }
3809 
3810 static void ring_buffer_attach(struct perf_event *event,
3811 			       struct ring_buffer *rb)
3812 {
3813 	unsigned long flags;
3814 
3815 	if (!list_empty(&event->rb_entry))
3816 		return;
3817 
3818 	spin_lock_irqsave(&rb->event_lock, flags);
3819 	if (list_empty(&event->rb_entry))
3820 		list_add(&event->rb_entry, &rb->event_list);
3821 	spin_unlock_irqrestore(&rb->event_lock, flags);
3822 }
3823 
3824 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3825 {
3826 	unsigned long flags;
3827 
3828 	if (list_empty(&event->rb_entry))
3829 		return;
3830 
3831 	spin_lock_irqsave(&rb->event_lock, flags);
3832 	list_del_init(&event->rb_entry);
3833 	wake_up_all(&event->waitq);
3834 	spin_unlock_irqrestore(&rb->event_lock, flags);
3835 }
3836 
3837 static void ring_buffer_wakeup(struct perf_event *event)
3838 {
3839 	struct ring_buffer *rb;
3840 
3841 	rcu_read_lock();
3842 	rb = rcu_dereference(event->rb);
3843 	if (rb) {
3844 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3845 			wake_up_all(&event->waitq);
3846 	}
3847 	rcu_read_unlock();
3848 }
3849 
3850 static void rb_free_rcu(struct rcu_head *rcu_head)
3851 {
3852 	struct ring_buffer *rb;
3853 
3854 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3855 	rb_free(rb);
3856 }
3857 
3858 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3859 {
3860 	struct ring_buffer *rb;
3861 
3862 	rcu_read_lock();
3863 	rb = rcu_dereference(event->rb);
3864 	if (rb) {
3865 		if (!atomic_inc_not_zero(&rb->refcount))
3866 			rb = NULL;
3867 	}
3868 	rcu_read_unlock();
3869 
3870 	return rb;
3871 }
3872 
3873 static void ring_buffer_put(struct ring_buffer *rb)
3874 {
3875 	if (!atomic_dec_and_test(&rb->refcount))
3876 		return;
3877 
3878 	WARN_ON_ONCE(!list_empty(&rb->event_list));
3879 
3880 	call_rcu(&rb->rcu_head, rb_free_rcu);
3881 }
3882 
3883 static void perf_mmap_open(struct vm_area_struct *vma)
3884 {
3885 	struct perf_event *event = vma->vm_file->private_data;
3886 
3887 	atomic_inc(&event->mmap_count);
3888 	atomic_inc(&event->rb->mmap_count);
3889 }
3890 
3891 /*
3892  * A buffer can be mmap()ed multiple times; either directly through the same
3893  * event, or through other events by use of perf_event_set_output().
3894  *
3895  * In order to undo the VM accounting done by perf_mmap() we need to destroy
3896  * the buffer here, where we still have a VM context. This means we need
3897  * to detach all events redirecting to us.
3898  */
3899 static void perf_mmap_close(struct vm_area_struct *vma)
3900 {
3901 	struct perf_event *event = vma->vm_file->private_data;
3902 
3903 	struct ring_buffer *rb = event->rb;
3904 	struct user_struct *mmap_user = rb->mmap_user;
3905 	int mmap_locked = rb->mmap_locked;
3906 	unsigned long size = perf_data_size(rb);
3907 
3908 	atomic_dec(&rb->mmap_count);
3909 
3910 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3911 		return;
3912 
3913 	/* Detach current event from the buffer. */
3914 	rcu_assign_pointer(event->rb, NULL);
3915 	ring_buffer_detach(event, rb);
3916 	mutex_unlock(&event->mmap_mutex);
3917 
3918 	/* If there's still other mmap()s of this buffer, we're done. */
3919 	if (atomic_read(&rb->mmap_count)) {
3920 		ring_buffer_put(rb); /* can't be last */
3921 		return;
3922 	}
3923 
3924 	/*
3925 	 * No other mmap()s, detach from all other events that might redirect
3926 	 * into the now unreachable buffer. Somewhat complicated by the
3927 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3928 	 */
3929 again:
3930 	rcu_read_lock();
3931 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3932 		if (!atomic_long_inc_not_zero(&event->refcount)) {
3933 			/*
3934 			 * This event is en-route to free_event() which will
3935 			 * detach it and remove it from the list.
3936 			 */
3937 			continue;
3938 		}
3939 		rcu_read_unlock();
3940 
3941 		mutex_lock(&event->mmap_mutex);
3942 		/*
3943 		 * Check we didn't race with perf_event_set_output() which can
3944 		 * swizzle the rb from under us while we were waiting to
3945 		 * acquire mmap_mutex.
3946 		 *
3947 		 * If we find a different rb; ignore this event, a next
3948 		 * iteration will no longer find it on the list. We have to
3949 		 * still restart the iteration to make sure we're not now
3950 		 * iterating the wrong list.
3951 		 */
3952 		if (event->rb == rb) {
3953 			rcu_assign_pointer(event->rb, NULL);
3954 			ring_buffer_detach(event, rb);
3955 			ring_buffer_put(rb); /* can't be last, we still have one */
3956 		}
3957 		mutex_unlock(&event->mmap_mutex);
3958 		put_event(event);
3959 
3960 		/*
3961 		 * Restart the iteration; either we're on the wrong list or
3962 		 * destroyed its integrity by doing a deletion.
3963 		 */
3964 		goto again;
3965 	}
3966 	rcu_read_unlock();
3967 
3968 	/*
3969 	 * It could be there's still a few 0-ref events on the list; they'll
3970 	 * get cleaned up by free_event() -- they'll also still have their
3971 	 * ref on the rb and will free it whenever they are done with it.
3972 	 *
3973 	 * Aside from that, this buffer is 'fully' detached and unmapped,
3974 	 * undo the VM accounting.
3975 	 */
3976 
3977 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3978 	vma->vm_mm->pinned_vm -= mmap_locked;
3979 	free_uid(mmap_user);
3980 
3981 	ring_buffer_put(rb); /* could be last */
3982 }
3983 
3984 static const struct vm_operations_struct perf_mmap_vmops = {
3985 	.open		= perf_mmap_open,
3986 	.close		= perf_mmap_close,
3987 	.fault		= perf_mmap_fault,
3988 	.page_mkwrite	= perf_mmap_fault,
3989 };
3990 
3991 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3992 {
3993 	struct perf_event *event = file->private_data;
3994 	unsigned long user_locked, user_lock_limit;
3995 	struct user_struct *user = current_user();
3996 	unsigned long locked, lock_limit;
3997 	struct ring_buffer *rb;
3998 	unsigned long vma_size;
3999 	unsigned long nr_pages;
4000 	long user_extra, extra;
4001 	int ret = 0, flags = 0;
4002 
4003 	/*
4004 	 * Don't allow mmap() of inherited per-task counters. This would
4005 	 * create a performance issue due to all children writing to the
4006 	 * same rb.
4007 	 */
4008 	if (event->cpu == -1 && event->attr.inherit)
4009 		return -EINVAL;
4010 
4011 	if (!(vma->vm_flags & VM_SHARED))
4012 		return -EINVAL;
4013 
4014 	vma_size = vma->vm_end - vma->vm_start;
4015 	nr_pages = (vma_size / PAGE_SIZE) - 1;
4016 
4017 	/*
4018 	 * If we have rb pages ensure they're a power-of-two number, so we
4019 	 * can do bitmasks instead of modulo.
4020 	 */
4021 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4022 		return -EINVAL;
4023 
4024 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4025 		return -EINVAL;
4026 
4027 	if (vma->vm_pgoff != 0)
4028 		return -EINVAL;
4029 
4030 	WARN_ON_ONCE(event->ctx->parent_ctx);
4031 again:
4032 	mutex_lock(&event->mmap_mutex);
4033 	if (event->rb) {
4034 		if (event->rb->nr_pages != nr_pages) {
4035 			ret = -EINVAL;
4036 			goto unlock;
4037 		}
4038 
4039 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4040 			/*
4041 			 * Raced against perf_mmap_close() through
4042 			 * perf_event_set_output(). Try again, hope for better
4043 			 * luck.
4044 			 */
4045 			mutex_unlock(&event->mmap_mutex);
4046 			goto again;
4047 		}
4048 
4049 		goto unlock;
4050 	}
4051 
4052 	user_extra = nr_pages + 1;
4053 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4054 
4055 	/*
4056 	 * Increase the limit linearly with more CPUs:
4057 	 */
4058 	user_lock_limit *= num_online_cpus();
4059 
4060 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4061 
4062 	extra = 0;
4063 	if (user_locked > user_lock_limit)
4064 		extra = user_locked - user_lock_limit;
4065 
4066 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4067 	lock_limit >>= PAGE_SHIFT;
4068 	locked = vma->vm_mm->pinned_vm + extra;
4069 
4070 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4071 		!capable(CAP_IPC_LOCK)) {
4072 		ret = -EPERM;
4073 		goto unlock;
4074 	}
4075 
4076 	WARN_ON(event->rb);
4077 
4078 	if (vma->vm_flags & VM_WRITE)
4079 		flags |= RING_BUFFER_WRITABLE;
4080 
4081 	rb = rb_alloc(nr_pages,
4082 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
4083 		event->cpu, flags);
4084 
4085 	if (!rb) {
4086 		ret = -ENOMEM;
4087 		goto unlock;
4088 	}
4089 
4090 	atomic_set(&rb->mmap_count, 1);
4091 	rb->mmap_locked = extra;
4092 	rb->mmap_user = get_current_user();
4093 
4094 	atomic_long_add(user_extra, &user->locked_vm);
4095 	vma->vm_mm->pinned_vm += extra;
4096 
4097 	ring_buffer_attach(event, rb);
4098 	rcu_assign_pointer(event->rb, rb);
4099 
4100 	perf_event_init_userpage(event);
4101 	perf_event_update_userpage(event);
4102 
4103 unlock:
4104 	if (!ret)
4105 		atomic_inc(&event->mmap_count);
4106 	mutex_unlock(&event->mmap_mutex);
4107 
4108 	/*
4109 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4110 	 * vma.
4111 	 */
4112 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4113 	vma->vm_ops = &perf_mmap_vmops;
4114 
4115 	return ret;
4116 }
4117 
4118 static int perf_fasync(int fd, struct file *filp, int on)
4119 {
4120 	struct inode *inode = file_inode(filp);
4121 	struct perf_event *event = filp->private_data;
4122 	int retval;
4123 
4124 	mutex_lock(&inode->i_mutex);
4125 	retval = fasync_helper(fd, filp, on, &event->fasync);
4126 	mutex_unlock(&inode->i_mutex);
4127 
4128 	if (retval < 0)
4129 		return retval;
4130 
4131 	return 0;
4132 }
4133 
4134 static const struct file_operations perf_fops = {
4135 	.llseek			= no_llseek,
4136 	.release		= perf_release,
4137 	.read			= perf_read,
4138 	.poll			= perf_poll,
4139 	.unlocked_ioctl		= perf_ioctl,
4140 	.compat_ioctl		= perf_ioctl,
4141 	.mmap			= perf_mmap,
4142 	.fasync			= perf_fasync,
4143 };
4144 
4145 /*
4146  * Perf event wakeup
4147  *
4148  * If there's data, ensure we set the poll() state and publish everything
4149  * to user-space before waking everybody up.
4150  */
4151 
4152 void perf_event_wakeup(struct perf_event *event)
4153 {
4154 	ring_buffer_wakeup(event);
4155 
4156 	if (event->pending_kill) {
4157 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
4158 		event->pending_kill = 0;
4159 	}
4160 }
4161 
4162 static void perf_pending_event(struct irq_work *entry)
4163 {
4164 	struct perf_event *event = container_of(entry,
4165 			struct perf_event, pending);
4166 
4167 	if (event->pending_disable) {
4168 		event->pending_disable = 0;
4169 		__perf_event_disable(event);
4170 	}
4171 
4172 	if (event->pending_wakeup) {
4173 		event->pending_wakeup = 0;
4174 		perf_event_wakeup(event);
4175 	}
4176 }
4177 
4178 /*
4179  * We assume there is only KVM supporting the callbacks.
4180  * Later on, we might change it to a list if there is
4181  * another virtualization implementation supporting the callbacks.
4182  */
4183 struct perf_guest_info_callbacks *perf_guest_cbs;
4184 
4185 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4186 {
4187 	perf_guest_cbs = cbs;
4188 	return 0;
4189 }
4190 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4191 
4192 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4193 {
4194 	perf_guest_cbs = NULL;
4195 	return 0;
4196 }
4197 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4198 
4199 static void
4200 perf_output_sample_regs(struct perf_output_handle *handle,
4201 			struct pt_regs *regs, u64 mask)
4202 {
4203 	int bit;
4204 
4205 	for_each_set_bit(bit, (const unsigned long *) &mask,
4206 			 sizeof(mask) * BITS_PER_BYTE) {
4207 		u64 val;
4208 
4209 		val = perf_reg_value(regs, bit);
4210 		perf_output_put(handle, val);
4211 	}
4212 }
4213 
4214 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4215 				  struct pt_regs *regs)
4216 {
4217 	if (!user_mode(regs)) {
4218 		if (current->mm)
4219 			regs = task_pt_regs(current);
4220 		else
4221 			regs = NULL;
4222 	}
4223 
4224 	if (regs) {
4225 		regs_user->regs = regs;
4226 		regs_user->abi  = perf_reg_abi(current);
4227 	}
4228 }
4229 
4230 /*
4231  * Get remaining task size from user stack pointer.
4232  *
4233  * It'd be better to take stack vma map and limit this more
4234  * precisly, but there's no way to get it safely under interrupt,
4235  * so using TASK_SIZE as limit.
4236  */
4237 static u64 perf_ustack_task_size(struct pt_regs *regs)
4238 {
4239 	unsigned long addr = perf_user_stack_pointer(regs);
4240 
4241 	if (!addr || addr >= TASK_SIZE)
4242 		return 0;
4243 
4244 	return TASK_SIZE - addr;
4245 }
4246 
4247 static u16
4248 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4249 			struct pt_regs *regs)
4250 {
4251 	u64 task_size;
4252 
4253 	/* No regs, no stack pointer, no dump. */
4254 	if (!regs)
4255 		return 0;
4256 
4257 	/*
4258 	 * Check if we fit in with the requested stack size into the:
4259 	 * - TASK_SIZE
4260 	 *   If we don't, we limit the size to the TASK_SIZE.
4261 	 *
4262 	 * - remaining sample size
4263 	 *   If we don't, we customize the stack size to
4264 	 *   fit in to the remaining sample size.
4265 	 */
4266 
4267 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4268 	stack_size = min(stack_size, (u16) task_size);
4269 
4270 	/* Current header size plus static size and dynamic size. */
4271 	header_size += 2 * sizeof(u64);
4272 
4273 	/* Do we fit in with the current stack dump size? */
4274 	if ((u16) (header_size + stack_size) < header_size) {
4275 		/*
4276 		 * If we overflow the maximum size for the sample,
4277 		 * we customize the stack dump size to fit in.
4278 		 */
4279 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4280 		stack_size = round_up(stack_size, sizeof(u64));
4281 	}
4282 
4283 	return stack_size;
4284 }
4285 
4286 static void
4287 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4288 			  struct pt_regs *regs)
4289 {
4290 	/* Case of a kernel thread, nothing to dump */
4291 	if (!regs) {
4292 		u64 size = 0;
4293 		perf_output_put(handle, size);
4294 	} else {
4295 		unsigned long sp;
4296 		unsigned int rem;
4297 		u64 dyn_size;
4298 
4299 		/*
4300 		 * We dump:
4301 		 * static size
4302 		 *   - the size requested by user or the best one we can fit
4303 		 *     in to the sample max size
4304 		 * data
4305 		 *   - user stack dump data
4306 		 * dynamic size
4307 		 *   - the actual dumped size
4308 		 */
4309 
4310 		/* Static size. */
4311 		perf_output_put(handle, dump_size);
4312 
4313 		/* Data. */
4314 		sp = perf_user_stack_pointer(regs);
4315 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4316 		dyn_size = dump_size - rem;
4317 
4318 		perf_output_skip(handle, rem);
4319 
4320 		/* Dynamic size. */
4321 		perf_output_put(handle, dyn_size);
4322 	}
4323 }
4324 
4325 static void __perf_event_header__init_id(struct perf_event_header *header,
4326 					 struct perf_sample_data *data,
4327 					 struct perf_event *event)
4328 {
4329 	u64 sample_type = event->attr.sample_type;
4330 
4331 	data->type = sample_type;
4332 	header->size += event->id_header_size;
4333 
4334 	if (sample_type & PERF_SAMPLE_TID) {
4335 		/* namespace issues */
4336 		data->tid_entry.pid = perf_event_pid(event, current);
4337 		data->tid_entry.tid = perf_event_tid(event, current);
4338 	}
4339 
4340 	if (sample_type & PERF_SAMPLE_TIME)
4341 		data->time = perf_clock();
4342 
4343 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
4344 		data->id = primary_event_id(event);
4345 
4346 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4347 		data->stream_id = event->id;
4348 
4349 	if (sample_type & PERF_SAMPLE_CPU) {
4350 		data->cpu_entry.cpu	 = raw_smp_processor_id();
4351 		data->cpu_entry.reserved = 0;
4352 	}
4353 }
4354 
4355 void perf_event_header__init_id(struct perf_event_header *header,
4356 				struct perf_sample_data *data,
4357 				struct perf_event *event)
4358 {
4359 	if (event->attr.sample_id_all)
4360 		__perf_event_header__init_id(header, data, event);
4361 }
4362 
4363 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4364 					   struct perf_sample_data *data)
4365 {
4366 	u64 sample_type = data->type;
4367 
4368 	if (sample_type & PERF_SAMPLE_TID)
4369 		perf_output_put(handle, data->tid_entry);
4370 
4371 	if (sample_type & PERF_SAMPLE_TIME)
4372 		perf_output_put(handle, data->time);
4373 
4374 	if (sample_type & PERF_SAMPLE_ID)
4375 		perf_output_put(handle, data->id);
4376 
4377 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4378 		perf_output_put(handle, data->stream_id);
4379 
4380 	if (sample_type & PERF_SAMPLE_CPU)
4381 		perf_output_put(handle, data->cpu_entry);
4382 
4383 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4384 		perf_output_put(handle, data->id);
4385 }
4386 
4387 void perf_event__output_id_sample(struct perf_event *event,
4388 				  struct perf_output_handle *handle,
4389 				  struct perf_sample_data *sample)
4390 {
4391 	if (event->attr.sample_id_all)
4392 		__perf_event__output_id_sample(handle, sample);
4393 }
4394 
4395 static void perf_output_read_one(struct perf_output_handle *handle,
4396 				 struct perf_event *event,
4397 				 u64 enabled, u64 running)
4398 {
4399 	u64 read_format = event->attr.read_format;
4400 	u64 values[4];
4401 	int n = 0;
4402 
4403 	values[n++] = perf_event_count(event);
4404 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4405 		values[n++] = enabled +
4406 			atomic64_read(&event->child_total_time_enabled);
4407 	}
4408 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4409 		values[n++] = running +
4410 			atomic64_read(&event->child_total_time_running);
4411 	}
4412 	if (read_format & PERF_FORMAT_ID)
4413 		values[n++] = primary_event_id(event);
4414 
4415 	__output_copy(handle, values, n * sizeof(u64));
4416 }
4417 
4418 /*
4419  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4420  */
4421 static void perf_output_read_group(struct perf_output_handle *handle,
4422 			    struct perf_event *event,
4423 			    u64 enabled, u64 running)
4424 {
4425 	struct perf_event *leader = event->group_leader, *sub;
4426 	u64 read_format = event->attr.read_format;
4427 	u64 values[5];
4428 	int n = 0;
4429 
4430 	values[n++] = 1 + leader->nr_siblings;
4431 
4432 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4433 		values[n++] = enabled;
4434 
4435 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4436 		values[n++] = running;
4437 
4438 	if (leader != event)
4439 		leader->pmu->read(leader);
4440 
4441 	values[n++] = perf_event_count(leader);
4442 	if (read_format & PERF_FORMAT_ID)
4443 		values[n++] = primary_event_id(leader);
4444 
4445 	__output_copy(handle, values, n * sizeof(u64));
4446 
4447 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4448 		n = 0;
4449 
4450 		if ((sub != event) &&
4451 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
4452 			sub->pmu->read(sub);
4453 
4454 		values[n++] = perf_event_count(sub);
4455 		if (read_format & PERF_FORMAT_ID)
4456 			values[n++] = primary_event_id(sub);
4457 
4458 		__output_copy(handle, values, n * sizeof(u64));
4459 	}
4460 }
4461 
4462 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4463 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4464 
4465 static void perf_output_read(struct perf_output_handle *handle,
4466 			     struct perf_event *event)
4467 {
4468 	u64 enabled = 0, running = 0, now;
4469 	u64 read_format = event->attr.read_format;
4470 
4471 	/*
4472 	 * compute total_time_enabled, total_time_running
4473 	 * based on snapshot values taken when the event
4474 	 * was last scheduled in.
4475 	 *
4476 	 * we cannot simply called update_context_time()
4477 	 * because of locking issue as we are called in
4478 	 * NMI context
4479 	 */
4480 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4481 		calc_timer_values(event, &now, &enabled, &running);
4482 
4483 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4484 		perf_output_read_group(handle, event, enabled, running);
4485 	else
4486 		perf_output_read_one(handle, event, enabled, running);
4487 }
4488 
4489 void perf_output_sample(struct perf_output_handle *handle,
4490 			struct perf_event_header *header,
4491 			struct perf_sample_data *data,
4492 			struct perf_event *event)
4493 {
4494 	u64 sample_type = data->type;
4495 
4496 	perf_output_put(handle, *header);
4497 
4498 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
4499 		perf_output_put(handle, data->id);
4500 
4501 	if (sample_type & PERF_SAMPLE_IP)
4502 		perf_output_put(handle, data->ip);
4503 
4504 	if (sample_type & PERF_SAMPLE_TID)
4505 		perf_output_put(handle, data->tid_entry);
4506 
4507 	if (sample_type & PERF_SAMPLE_TIME)
4508 		perf_output_put(handle, data->time);
4509 
4510 	if (sample_type & PERF_SAMPLE_ADDR)
4511 		perf_output_put(handle, data->addr);
4512 
4513 	if (sample_type & PERF_SAMPLE_ID)
4514 		perf_output_put(handle, data->id);
4515 
4516 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4517 		perf_output_put(handle, data->stream_id);
4518 
4519 	if (sample_type & PERF_SAMPLE_CPU)
4520 		perf_output_put(handle, data->cpu_entry);
4521 
4522 	if (sample_type & PERF_SAMPLE_PERIOD)
4523 		perf_output_put(handle, data->period);
4524 
4525 	if (sample_type & PERF_SAMPLE_READ)
4526 		perf_output_read(handle, event);
4527 
4528 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4529 		if (data->callchain) {
4530 			int size = 1;
4531 
4532 			if (data->callchain)
4533 				size += data->callchain->nr;
4534 
4535 			size *= sizeof(u64);
4536 
4537 			__output_copy(handle, data->callchain, size);
4538 		} else {
4539 			u64 nr = 0;
4540 			perf_output_put(handle, nr);
4541 		}
4542 	}
4543 
4544 	if (sample_type & PERF_SAMPLE_RAW) {
4545 		if (data->raw) {
4546 			perf_output_put(handle, data->raw->size);
4547 			__output_copy(handle, data->raw->data,
4548 					   data->raw->size);
4549 		} else {
4550 			struct {
4551 				u32	size;
4552 				u32	data;
4553 			} raw = {
4554 				.size = sizeof(u32),
4555 				.data = 0,
4556 			};
4557 			perf_output_put(handle, raw);
4558 		}
4559 	}
4560 
4561 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4562 		if (data->br_stack) {
4563 			size_t size;
4564 
4565 			size = data->br_stack->nr
4566 			     * sizeof(struct perf_branch_entry);
4567 
4568 			perf_output_put(handle, data->br_stack->nr);
4569 			perf_output_copy(handle, data->br_stack->entries, size);
4570 		} else {
4571 			/*
4572 			 * we always store at least the value of nr
4573 			 */
4574 			u64 nr = 0;
4575 			perf_output_put(handle, nr);
4576 		}
4577 	}
4578 
4579 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4580 		u64 abi = data->regs_user.abi;
4581 
4582 		/*
4583 		 * If there are no regs to dump, notice it through
4584 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4585 		 */
4586 		perf_output_put(handle, abi);
4587 
4588 		if (abi) {
4589 			u64 mask = event->attr.sample_regs_user;
4590 			perf_output_sample_regs(handle,
4591 						data->regs_user.regs,
4592 						mask);
4593 		}
4594 	}
4595 
4596 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4597 		perf_output_sample_ustack(handle,
4598 					  data->stack_user_size,
4599 					  data->regs_user.regs);
4600 	}
4601 
4602 	if (sample_type & PERF_SAMPLE_WEIGHT)
4603 		perf_output_put(handle, data->weight);
4604 
4605 	if (sample_type & PERF_SAMPLE_DATA_SRC)
4606 		perf_output_put(handle, data->data_src.val);
4607 
4608 	if (sample_type & PERF_SAMPLE_TRANSACTION)
4609 		perf_output_put(handle, data->txn);
4610 
4611 	if (!event->attr.watermark) {
4612 		int wakeup_events = event->attr.wakeup_events;
4613 
4614 		if (wakeup_events) {
4615 			struct ring_buffer *rb = handle->rb;
4616 			int events = local_inc_return(&rb->events);
4617 
4618 			if (events >= wakeup_events) {
4619 				local_sub(wakeup_events, &rb->events);
4620 				local_inc(&rb->wakeup);
4621 			}
4622 		}
4623 	}
4624 }
4625 
4626 void perf_prepare_sample(struct perf_event_header *header,
4627 			 struct perf_sample_data *data,
4628 			 struct perf_event *event,
4629 			 struct pt_regs *regs)
4630 {
4631 	u64 sample_type = event->attr.sample_type;
4632 
4633 	header->type = PERF_RECORD_SAMPLE;
4634 	header->size = sizeof(*header) + event->header_size;
4635 
4636 	header->misc = 0;
4637 	header->misc |= perf_misc_flags(regs);
4638 
4639 	__perf_event_header__init_id(header, data, event);
4640 
4641 	if (sample_type & PERF_SAMPLE_IP)
4642 		data->ip = perf_instruction_pointer(regs);
4643 
4644 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4645 		int size = 1;
4646 
4647 		data->callchain = perf_callchain(event, regs);
4648 
4649 		if (data->callchain)
4650 			size += data->callchain->nr;
4651 
4652 		header->size += size * sizeof(u64);
4653 	}
4654 
4655 	if (sample_type & PERF_SAMPLE_RAW) {
4656 		int size = sizeof(u32);
4657 
4658 		if (data->raw)
4659 			size += data->raw->size;
4660 		else
4661 			size += sizeof(u32);
4662 
4663 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4664 		header->size += size;
4665 	}
4666 
4667 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4668 		int size = sizeof(u64); /* nr */
4669 		if (data->br_stack) {
4670 			size += data->br_stack->nr
4671 			      * sizeof(struct perf_branch_entry);
4672 		}
4673 		header->size += size;
4674 	}
4675 
4676 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4677 		/* regs dump ABI info */
4678 		int size = sizeof(u64);
4679 
4680 		perf_sample_regs_user(&data->regs_user, regs);
4681 
4682 		if (data->regs_user.regs) {
4683 			u64 mask = event->attr.sample_regs_user;
4684 			size += hweight64(mask) * sizeof(u64);
4685 		}
4686 
4687 		header->size += size;
4688 	}
4689 
4690 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4691 		/*
4692 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4693 		 * processed as the last one or have additional check added
4694 		 * in case new sample type is added, because we could eat
4695 		 * up the rest of the sample size.
4696 		 */
4697 		struct perf_regs_user *uregs = &data->regs_user;
4698 		u16 stack_size = event->attr.sample_stack_user;
4699 		u16 size = sizeof(u64);
4700 
4701 		if (!uregs->abi)
4702 			perf_sample_regs_user(uregs, regs);
4703 
4704 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4705 						     uregs->regs);
4706 
4707 		/*
4708 		 * If there is something to dump, add space for the dump
4709 		 * itself and for the field that tells the dynamic size,
4710 		 * which is how many have been actually dumped.
4711 		 */
4712 		if (stack_size)
4713 			size += sizeof(u64) + stack_size;
4714 
4715 		data->stack_user_size = stack_size;
4716 		header->size += size;
4717 	}
4718 }
4719 
4720 static void perf_event_output(struct perf_event *event,
4721 				struct perf_sample_data *data,
4722 				struct pt_regs *regs)
4723 {
4724 	struct perf_output_handle handle;
4725 	struct perf_event_header header;
4726 
4727 	/* protect the callchain buffers */
4728 	rcu_read_lock();
4729 
4730 	perf_prepare_sample(&header, data, event, regs);
4731 
4732 	if (perf_output_begin(&handle, event, header.size))
4733 		goto exit;
4734 
4735 	perf_output_sample(&handle, &header, data, event);
4736 
4737 	perf_output_end(&handle);
4738 
4739 exit:
4740 	rcu_read_unlock();
4741 }
4742 
4743 /*
4744  * read event_id
4745  */
4746 
4747 struct perf_read_event {
4748 	struct perf_event_header	header;
4749 
4750 	u32				pid;
4751 	u32				tid;
4752 };
4753 
4754 static void
4755 perf_event_read_event(struct perf_event *event,
4756 			struct task_struct *task)
4757 {
4758 	struct perf_output_handle handle;
4759 	struct perf_sample_data sample;
4760 	struct perf_read_event read_event = {
4761 		.header = {
4762 			.type = PERF_RECORD_READ,
4763 			.misc = 0,
4764 			.size = sizeof(read_event) + event->read_size,
4765 		},
4766 		.pid = perf_event_pid(event, task),
4767 		.tid = perf_event_tid(event, task),
4768 	};
4769 	int ret;
4770 
4771 	perf_event_header__init_id(&read_event.header, &sample, event);
4772 	ret = perf_output_begin(&handle, event, read_event.header.size);
4773 	if (ret)
4774 		return;
4775 
4776 	perf_output_put(&handle, read_event);
4777 	perf_output_read(&handle, event);
4778 	perf_event__output_id_sample(event, &handle, &sample);
4779 
4780 	perf_output_end(&handle);
4781 }
4782 
4783 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4784 
4785 static void
4786 perf_event_aux_ctx(struct perf_event_context *ctx,
4787 		   perf_event_aux_output_cb output,
4788 		   void *data)
4789 {
4790 	struct perf_event *event;
4791 
4792 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4793 		if (event->state < PERF_EVENT_STATE_INACTIVE)
4794 			continue;
4795 		if (!event_filter_match(event))
4796 			continue;
4797 		output(event, data);
4798 	}
4799 }
4800 
4801 static void
4802 perf_event_aux(perf_event_aux_output_cb output, void *data,
4803 	       struct perf_event_context *task_ctx)
4804 {
4805 	struct perf_cpu_context *cpuctx;
4806 	struct perf_event_context *ctx;
4807 	struct pmu *pmu;
4808 	int ctxn;
4809 
4810 	rcu_read_lock();
4811 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4812 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4813 		if (cpuctx->unique_pmu != pmu)
4814 			goto next;
4815 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
4816 		if (task_ctx)
4817 			goto next;
4818 		ctxn = pmu->task_ctx_nr;
4819 		if (ctxn < 0)
4820 			goto next;
4821 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4822 		if (ctx)
4823 			perf_event_aux_ctx(ctx, output, data);
4824 next:
4825 		put_cpu_ptr(pmu->pmu_cpu_context);
4826 	}
4827 
4828 	if (task_ctx) {
4829 		preempt_disable();
4830 		perf_event_aux_ctx(task_ctx, output, data);
4831 		preempt_enable();
4832 	}
4833 	rcu_read_unlock();
4834 }
4835 
4836 /*
4837  * task tracking -- fork/exit
4838  *
4839  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
4840  */
4841 
4842 struct perf_task_event {
4843 	struct task_struct		*task;
4844 	struct perf_event_context	*task_ctx;
4845 
4846 	struct {
4847 		struct perf_event_header	header;
4848 
4849 		u32				pid;
4850 		u32				ppid;
4851 		u32				tid;
4852 		u32				ptid;
4853 		u64				time;
4854 	} event_id;
4855 };
4856 
4857 static int perf_event_task_match(struct perf_event *event)
4858 {
4859 	return event->attr.comm  || event->attr.mmap ||
4860 	       event->attr.mmap2 || event->attr.mmap_data ||
4861 	       event->attr.task;
4862 }
4863 
4864 static void perf_event_task_output(struct perf_event *event,
4865 				   void *data)
4866 {
4867 	struct perf_task_event *task_event = data;
4868 	struct perf_output_handle handle;
4869 	struct perf_sample_data	sample;
4870 	struct task_struct *task = task_event->task;
4871 	int ret, size = task_event->event_id.header.size;
4872 
4873 	if (!perf_event_task_match(event))
4874 		return;
4875 
4876 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4877 
4878 	ret = perf_output_begin(&handle, event,
4879 				task_event->event_id.header.size);
4880 	if (ret)
4881 		goto out;
4882 
4883 	task_event->event_id.pid = perf_event_pid(event, task);
4884 	task_event->event_id.ppid = perf_event_pid(event, current);
4885 
4886 	task_event->event_id.tid = perf_event_tid(event, task);
4887 	task_event->event_id.ptid = perf_event_tid(event, current);
4888 
4889 	perf_output_put(&handle, task_event->event_id);
4890 
4891 	perf_event__output_id_sample(event, &handle, &sample);
4892 
4893 	perf_output_end(&handle);
4894 out:
4895 	task_event->event_id.header.size = size;
4896 }
4897 
4898 static void perf_event_task(struct task_struct *task,
4899 			      struct perf_event_context *task_ctx,
4900 			      int new)
4901 {
4902 	struct perf_task_event task_event;
4903 
4904 	if (!atomic_read(&nr_comm_events) &&
4905 	    !atomic_read(&nr_mmap_events) &&
4906 	    !atomic_read(&nr_task_events))
4907 		return;
4908 
4909 	task_event = (struct perf_task_event){
4910 		.task	  = task,
4911 		.task_ctx = task_ctx,
4912 		.event_id    = {
4913 			.header = {
4914 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4915 				.misc = 0,
4916 				.size = sizeof(task_event.event_id),
4917 			},
4918 			/* .pid  */
4919 			/* .ppid */
4920 			/* .tid  */
4921 			/* .ptid */
4922 			.time = perf_clock(),
4923 		},
4924 	};
4925 
4926 	perf_event_aux(perf_event_task_output,
4927 		       &task_event,
4928 		       task_ctx);
4929 }
4930 
4931 void perf_event_fork(struct task_struct *task)
4932 {
4933 	perf_event_task(task, NULL, 1);
4934 }
4935 
4936 /*
4937  * comm tracking
4938  */
4939 
4940 struct perf_comm_event {
4941 	struct task_struct	*task;
4942 	char			*comm;
4943 	int			comm_size;
4944 
4945 	struct {
4946 		struct perf_event_header	header;
4947 
4948 		u32				pid;
4949 		u32				tid;
4950 	} event_id;
4951 };
4952 
4953 static int perf_event_comm_match(struct perf_event *event)
4954 {
4955 	return event->attr.comm;
4956 }
4957 
4958 static void perf_event_comm_output(struct perf_event *event,
4959 				   void *data)
4960 {
4961 	struct perf_comm_event *comm_event = data;
4962 	struct perf_output_handle handle;
4963 	struct perf_sample_data sample;
4964 	int size = comm_event->event_id.header.size;
4965 	int ret;
4966 
4967 	if (!perf_event_comm_match(event))
4968 		return;
4969 
4970 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4971 	ret = perf_output_begin(&handle, event,
4972 				comm_event->event_id.header.size);
4973 
4974 	if (ret)
4975 		goto out;
4976 
4977 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4978 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4979 
4980 	perf_output_put(&handle, comm_event->event_id);
4981 	__output_copy(&handle, comm_event->comm,
4982 				   comm_event->comm_size);
4983 
4984 	perf_event__output_id_sample(event, &handle, &sample);
4985 
4986 	perf_output_end(&handle);
4987 out:
4988 	comm_event->event_id.header.size = size;
4989 }
4990 
4991 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4992 {
4993 	char comm[TASK_COMM_LEN];
4994 	unsigned int size;
4995 
4996 	memset(comm, 0, sizeof(comm));
4997 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4998 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4999 
5000 	comm_event->comm = comm;
5001 	comm_event->comm_size = size;
5002 
5003 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5004 
5005 	perf_event_aux(perf_event_comm_output,
5006 		       comm_event,
5007 		       NULL);
5008 }
5009 
5010 void perf_event_comm(struct task_struct *task)
5011 {
5012 	struct perf_comm_event comm_event;
5013 	struct perf_event_context *ctx;
5014 	int ctxn;
5015 
5016 	rcu_read_lock();
5017 	for_each_task_context_nr(ctxn) {
5018 		ctx = task->perf_event_ctxp[ctxn];
5019 		if (!ctx)
5020 			continue;
5021 
5022 		perf_event_enable_on_exec(ctx);
5023 	}
5024 	rcu_read_unlock();
5025 
5026 	if (!atomic_read(&nr_comm_events))
5027 		return;
5028 
5029 	comm_event = (struct perf_comm_event){
5030 		.task	= task,
5031 		/* .comm      */
5032 		/* .comm_size */
5033 		.event_id  = {
5034 			.header = {
5035 				.type = PERF_RECORD_COMM,
5036 				.misc = 0,
5037 				/* .size */
5038 			},
5039 			/* .pid */
5040 			/* .tid */
5041 		},
5042 	};
5043 
5044 	perf_event_comm_event(&comm_event);
5045 }
5046 
5047 /*
5048  * mmap tracking
5049  */
5050 
5051 struct perf_mmap_event {
5052 	struct vm_area_struct	*vma;
5053 
5054 	const char		*file_name;
5055 	int			file_size;
5056 	int			maj, min;
5057 	u64			ino;
5058 	u64			ino_generation;
5059 
5060 	struct {
5061 		struct perf_event_header	header;
5062 
5063 		u32				pid;
5064 		u32				tid;
5065 		u64				start;
5066 		u64				len;
5067 		u64				pgoff;
5068 	} event_id;
5069 };
5070 
5071 static int perf_event_mmap_match(struct perf_event *event,
5072 				 void *data)
5073 {
5074 	struct perf_mmap_event *mmap_event = data;
5075 	struct vm_area_struct *vma = mmap_event->vma;
5076 	int executable = vma->vm_flags & VM_EXEC;
5077 
5078 	return (!executable && event->attr.mmap_data) ||
5079 	       (executable && (event->attr.mmap || event->attr.mmap2));
5080 }
5081 
5082 static void perf_event_mmap_output(struct perf_event *event,
5083 				   void *data)
5084 {
5085 	struct perf_mmap_event *mmap_event = data;
5086 	struct perf_output_handle handle;
5087 	struct perf_sample_data sample;
5088 	int size = mmap_event->event_id.header.size;
5089 	int ret;
5090 
5091 	if (!perf_event_mmap_match(event, data))
5092 		return;
5093 
5094 	if (event->attr.mmap2) {
5095 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5096 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5097 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5098 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5099 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5100 	}
5101 
5102 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5103 	ret = perf_output_begin(&handle, event,
5104 				mmap_event->event_id.header.size);
5105 	if (ret)
5106 		goto out;
5107 
5108 	mmap_event->event_id.pid = perf_event_pid(event, current);
5109 	mmap_event->event_id.tid = perf_event_tid(event, current);
5110 
5111 	perf_output_put(&handle, mmap_event->event_id);
5112 
5113 	if (event->attr.mmap2) {
5114 		perf_output_put(&handle, mmap_event->maj);
5115 		perf_output_put(&handle, mmap_event->min);
5116 		perf_output_put(&handle, mmap_event->ino);
5117 		perf_output_put(&handle, mmap_event->ino_generation);
5118 	}
5119 
5120 	__output_copy(&handle, mmap_event->file_name,
5121 				   mmap_event->file_size);
5122 
5123 	perf_event__output_id_sample(event, &handle, &sample);
5124 
5125 	perf_output_end(&handle);
5126 out:
5127 	mmap_event->event_id.header.size = size;
5128 }
5129 
5130 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5131 {
5132 	struct vm_area_struct *vma = mmap_event->vma;
5133 	struct file *file = vma->vm_file;
5134 	int maj = 0, min = 0;
5135 	u64 ino = 0, gen = 0;
5136 	unsigned int size;
5137 	char tmp[16];
5138 	char *buf = NULL;
5139 	char *name;
5140 
5141 	if (file) {
5142 		struct inode *inode;
5143 		dev_t dev;
5144 
5145 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5146 		if (!buf) {
5147 			name = "//enomem";
5148 			goto cpy_name;
5149 		}
5150 		/*
5151 		 * d_path() works from the end of the rb backwards, so we
5152 		 * need to add enough zero bytes after the string to handle
5153 		 * the 64bit alignment we do later.
5154 		 */
5155 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5156 		if (IS_ERR(name)) {
5157 			name = "//toolong";
5158 			goto cpy_name;
5159 		}
5160 		inode = file_inode(vma->vm_file);
5161 		dev = inode->i_sb->s_dev;
5162 		ino = inode->i_ino;
5163 		gen = inode->i_generation;
5164 		maj = MAJOR(dev);
5165 		min = MINOR(dev);
5166 		goto got_name;
5167 	} else {
5168 		name = (char *)arch_vma_name(vma);
5169 		if (name)
5170 			goto cpy_name;
5171 
5172 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5173 				vma->vm_end >= vma->vm_mm->brk) {
5174 			name = "[heap]";
5175 			goto cpy_name;
5176 		}
5177 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5178 				vma->vm_end >= vma->vm_mm->start_stack) {
5179 			name = "[stack]";
5180 			goto cpy_name;
5181 		}
5182 
5183 		name = "//anon";
5184 		goto cpy_name;
5185 	}
5186 
5187 cpy_name:
5188 	strlcpy(tmp, name, sizeof(tmp));
5189 	name = tmp;
5190 got_name:
5191 	/*
5192 	 * Since our buffer works in 8 byte units we need to align our string
5193 	 * size to a multiple of 8. However, we must guarantee the tail end is
5194 	 * zero'd out to avoid leaking random bits to userspace.
5195 	 */
5196 	size = strlen(name)+1;
5197 	while (!IS_ALIGNED(size, sizeof(u64)))
5198 		name[size++] = '\0';
5199 
5200 	mmap_event->file_name = name;
5201 	mmap_event->file_size = size;
5202 	mmap_event->maj = maj;
5203 	mmap_event->min = min;
5204 	mmap_event->ino = ino;
5205 	mmap_event->ino_generation = gen;
5206 
5207 	if (!(vma->vm_flags & VM_EXEC))
5208 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5209 
5210 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5211 
5212 	perf_event_aux(perf_event_mmap_output,
5213 		       mmap_event,
5214 		       NULL);
5215 
5216 	kfree(buf);
5217 }
5218 
5219 void perf_event_mmap(struct vm_area_struct *vma)
5220 {
5221 	struct perf_mmap_event mmap_event;
5222 
5223 	if (!atomic_read(&nr_mmap_events))
5224 		return;
5225 
5226 	mmap_event = (struct perf_mmap_event){
5227 		.vma	= vma,
5228 		/* .file_name */
5229 		/* .file_size */
5230 		.event_id  = {
5231 			.header = {
5232 				.type = PERF_RECORD_MMAP,
5233 				.misc = PERF_RECORD_MISC_USER,
5234 				/* .size */
5235 			},
5236 			/* .pid */
5237 			/* .tid */
5238 			.start  = vma->vm_start,
5239 			.len    = vma->vm_end - vma->vm_start,
5240 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5241 		},
5242 		/* .maj (attr_mmap2 only) */
5243 		/* .min (attr_mmap2 only) */
5244 		/* .ino (attr_mmap2 only) */
5245 		/* .ino_generation (attr_mmap2 only) */
5246 	};
5247 
5248 	perf_event_mmap_event(&mmap_event);
5249 }
5250 
5251 /*
5252  * IRQ throttle logging
5253  */
5254 
5255 static void perf_log_throttle(struct perf_event *event, int enable)
5256 {
5257 	struct perf_output_handle handle;
5258 	struct perf_sample_data sample;
5259 	int ret;
5260 
5261 	struct {
5262 		struct perf_event_header	header;
5263 		u64				time;
5264 		u64				id;
5265 		u64				stream_id;
5266 	} throttle_event = {
5267 		.header = {
5268 			.type = PERF_RECORD_THROTTLE,
5269 			.misc = 0,
5270 			.size = sizeof(throttle_event),
5271 		},
5272 		.time		= perf_clock(),
5273 		.id		= primary_event_id(event),
5274 		.stream_id	= event->id,
5275 	};
5276 
5277 	if (enable)
5278 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5279 
5280 	perf_event_header__init_id(&throttle_event.header, &sample, event);
5281 
5282 	ret = perf_output_begin(&handle, event,
5283 				throttle_event.header.size);
5284 	if (ret)
5285 		return;
5286 
5287 	perf_output_put(&handle, throttle_event);
5288 	perf_event__output_id_sample(event, &handle, &sample);
5289 	perf_output_end(&handle);
5290 }
5291 
5292 /*
5293  * Generic event overflow handling, sampling.
5294  */
5295 
5296 static int __perf_event_overflow(struct perf_event *event,
5297 				   int throttle, struct perf_sample_data *data,
5298 				   struct pt_regs *regs)
5299 {
5300 	int events = atomic_read(&event->event_limit);
5301 	struct hw_perf_event *hwc = &event->hw;
5302 	u64 seq;
5303 	int ret = 0;
5304 
5305 	/*
5306 	 * Non-sampling counters might still use the PMI to fold short
5307 	 * hardware counters, ignore those.
5308 	 */
5309 	if (unlikely(!is_sampling_event(event)))
5310 		return 0;
5311 
5312 	seq = __this_cpu_read(perf_throttled_seq);
5313 	if (seq != hwc->interrupts_seq) {
5314 		hwc->interrupts_seq = seq;
5315 		hwc->interrupts = 1;
5316 	} else {
5317 		hwc->interrupts++;
5318 		if (unlikely(throttle
5319 			     && hwc->interrupts >= max_samples_per_tick)) {
5320 			__this_cpu_inc(perf_throttled_count);
5321 			hwc->interrupts = MAX_INTERRUPTS;
5322 			perf_log_throttle(event, 0);
5323 			tick_nohz_full_kick();
5324 			ret = 1;
5325 		}
5326 	}
5327 
5328 	if (event->attr.freq) {
5329 		u64 now = perf_clock();
5330 		s64 delta = now - hwc->freq_time_stamp;
5331 
5332 		hwc->freq_time_stamp = now;
5333 
5334 		if (delta > 0 && delta < 2*TICK_NSEC)
5335 			perf_adjust_period(event, delta, hwc->last_period, true);
5336 	}
5337 
5338 	/*
5339 	 * XXX event_limit might not quite work as expected on inherited
5340 	 * events
5341 	 */
5342 
5343 	event->pending_kill = POLL_IN;
5344 	if (events && atomic_dec_and_test(&event->event_limit)) {
5345 		ret = 1;
5346 		event->pending_kill = POLL_HUP;
5347 		event->pending_disable = 1;
5348 		irq_work_queue(&event->pending);
5349 	}
5350 
5351 	if (event->overflow_handler)
5352 		event->overflow_handler(event, data, regs);
5353 	else
5354 		perf_event_output(event, data, regs);
5355 
5356 	if (event->fasync && event->pending_kill) {
5357 		event->pending_wakeup = 1;
5358 		irq_work_queue(&event->pending);
5359 	}
5360 
5361 	return ret;
5362 }
5363 
5364 int perf_event_overflow(struct perf_event *event,
5365 			  struct perf_sample_data *data,
5366 			  struct pt_regs *regs)
5367 {
5368 	return __perf_event_overflow(event, 1, data, regs);
5369 }
5370 
5371 /*
5372  * Generic software event infrastructure
5373  */
5374 
5375 struct swevent_htable {
5376 	struct swevent_hlist		*swevent_hlist;
5377 	struct mutex			hlist_mutex;
5378 	int				hlist_refcount;
5379 
5380 	/* Recursion avoidance in each contexts */
5381 	int				recursion[PERF_NR_CONTEXTS];
5382 };
5383 
5384 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5385 
5386 /*
5387  * We directly increment event->count and keep a second value in
5388  * event->hw.period_left to count intervals. This period event
5389  * is kept in the range [-sample_period, 0] so that we can use the
5390  * sign as trigger.
5391  */
5392 
5393 u64 perf_swevent_set_period(struct perf_event *event)
5394 {
5395 	struct hw_perf_event *hwc = &event->hw;
5396 	u64 period = hwc->last_period;
5397 	u64 nr, offset;
5398 	s64 old, val;
5399 
5400 	hwc->last_period = hwc->sample_period;
5401 
5402 again:
5403 	old = val = local64_read(&hwc->period_left);
5404 	if (val < 0)
5405 		return 0;
5406 
5407 	nr = div64_u64(period + val, period);
5408 	offset = nr * period;
5409 	val -= offset;
5410 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5411 		goto again;
5412 
5413 	return nr;
5414 }
5415 
5416 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5417 				    struct perf_sample_data *data,
5418 				    struct pt_regs *regs)
5419 {
5420 	struct hw_perf_event *hwc = &event->hw;
5421 	int throttle = 0;
5422 
5423 	if (!overflow)
5424 		overflow = perf_swevent_set_period(event);
5425 
5426 	if (hwc->interrupts == MAX_INTERRUPTS)
5427 		return;
5428 
5429 	for (; overflow; overflow--) {
5430 		if (__perf_event_overflow(event, throttle,
5431 					    data, regs)) {
5432 			/*
5433 			 * We inhibit the overflow from happening when
5434 			 * hwc->interrupts == MAX_INTERRUPTS.
5435 			 */
5436 			break;
5437 		}
5438 		throttle = 1;
5439 	}
5440 }
5441 
5442 static void perf_swevent_event(struct perf_event *event, u64 nr,
5443 			       struct perf_sample_data *data,
5444 			       struct pt_regs *regs)
5445 {
5446 	struct hw_perf_event *hwc = &event->hw;
5447 
5448 	local64_add(nr, &event->count);
5449 
5450 	if (!regs)
5451 		return;
5452 
5453 	if (!is_sampling_event(event))
5454 		return;
5455 
5456 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5457 		data->period = nr;
5458 		return perf_swevent_overflow(event, 1, data, regs);
5459 	} else
5460 		data->period = event->hw.last_period;
5461 
5462 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5463 		return perf_swevent_overflow(event, 1, data, regs);
5464 
5465 	if (local64_add_negative(nr, &hwc->period_left))
5466 		return;
5467 
5468 	perf_swevent_overflow(event, 0, data, regs);
5469 }
5470 
5471 static int perf_exclude_event(struct perf_event *event,
5472 			      struct pt_regs *regs)
5473 {
5474 	if (event->hw.state & PERF_HES_STOPPED)
5475 		return 1;
5476 
5477 	if (regs) {
5478 		if (event->attr.exclude_user && user_mode(regs))
5479 			return 1;
5480 
5481 		if (event->attr.exclude_kernel && !user_mode(regs))
5482 			return 1;
5483 	}
5484 
5485 	return 0;
5486 }
5487 
5488 static int perf_swevent_match(struct perf_event *event,
5489 				enum perf_type_id type,
5490 				u32 event_id,
5491 				struct perf_sample_data *data,
5492 				struct pt_regs *regs)
5493 {
5494 	if (event->attr.type != type)
5495 		return 0;
5496 
5497 	if (event->attr.config != event_id)
5498 		return 0;
5499 
5500 	if (perf_exclude_event(event, regs))
5501 		return 0;
5502 
5503 	return 1;
5504 }
5505 
5506 static inline u64 swevent_hash(u64 type, u32 event_id)
5507 {
5508 	u64 val = event_id | (type << 32);
5509 
5510 	return hash_64(val, SWEVENT_HLIST_BITS);
5511 }
5512 
5513 static inline struct hlist_head *
5514 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5515 {
5516 	u64 hash = swevent_hash(type, event_id);
5517 
5518 	return &hlist->heads[hash];
5519 }
5520 
5521 /* For the read side: events when they trigger */
5522 static inline struct hlist_head *
5523 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5524 {
5525 	struct swevent_hlist *hlist;
5526 
5527 	hlist = rcu_dereference(swhash->swevent_hlist);
5528 	if (!hlist)
5529 		return NULL;
5530 
5531 	return __find_swevent_head(hlist, type, event_id);
5532 }
5533 
5534 /* For the event head insertion and removal in the hlist */
5535 static inline struct hlist_head *
5536 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5537 {
5538 	struct swevent_hlist *hlist;
5539 	u32 event_id = event->attr.config;
5540 	u64 type = event->attr.type;
5541 
5542 	/*
5543 	 * Event scheduling is always serialized against hlist allocation
5544 	 * and release. Which makes the protected version suitable here.
5545 	 * The context lock guarantees that.
5546 	 */
5547 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5548 					  lockdep_is_held(&event->ctx->lock));
5549 	if (!hlist)
5550 		return NULL;
5551 
5552 	return __find_swevent_head(hlist, type, event_id);
5553 }
5554 
5555 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5556 				    u64 nr,
5557 				    struct perf_sample_data *data,
5558 				    struct pt_regs *regs)
5559 {
5560 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5561 	struct perf_event *event;
5562 	struct hlist_head *head;
5563 
5564 	rcu_read_lock();
5565 	head = find_swevent_head_rcu(swhash, type, event_id);
5566 	if (!head)
5567 		goto end;
5568 
5569 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5570 		if (perf_swevent_match(event, type, event_id, data, regs))
5571 			perf_swevent_event(event, nr, data, regs);
5572 	}
5573 end:
5574 	rcu_read_unlock();
5575 }
5576 
5577 int perf_swevent_get_recursion_context(void)
5578 {
5579 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5580 
5581 	return get_recursion_context(swhash->recursion);
5582 }
5583 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5584 
5585 inline void perf_swevent_put_recursion_context(int rctx)
5586 {
5587 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5588 
5589 	put_recursion_context(swhash->recursion, rctx);
5590 }
5591 
5592 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5593 {
5594 	struct perf_sample_data data;
5595 	int rctx;
5596 
5597 	preempt_disable_notrace();
5598 	rctx = perf_swevent_get_recursion_context();
5599 	if (rctx < 0)
5600 		return;
5601 
5602 	perf_sample_data_init(&data, addr, 0);
5603 
5604 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5605 
5606 	perf_swevent_put_recursion_context(rctx);
5607 	preempt_enable_notrace();
5608 }
5609 
5610 static void perf_swevent_read(struct perf_event *event)
5611 {
5612 }
5613 
5614 static int perf_swevent_add(struct perf_event *event, int flags)
5615 {
5616 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5617 	struct hw_perf_event *hwc = &event->hw;
5618 	struct hlist_head *head;
5619 
5620 	if (is_sampling_event(event)) {
5621 		hwc->last_period = hwc->sample_period;
5622 		perf_swevent_set_period(event);
5623 	}
5624 
5625 	hwc->state = !(flags & PERF_EF_START);
5626 
5627 	head = find_swevent_head(swhash, event);
5628 	if (WARN_ON_ONCE(!head))
5629 		return -EINVAL;
5630 
5631 	hlist_add_head_rcu(&event->hlist_entry, head);
5632 
5633 	return 0;
5634 }
5635 
5636 static void perf_swevent_del(struct perf_event *event, int flags)
5637 {
5638 	hlist_del_rcu(&event->hlist_entry);
5639 }
5640 
5641 static void perf_swevent_start(struct perf_event *event, int flags)
5642 {
5643 	event->hw.state = 0;
5644 }
5645 
5646 static void perf_swevent_stop(struct perf_event *event, int flags)
5647 {
5648 	event->hw.state = PERF_HES_STOPPED;
5649 }
5650 
5651 /* Deref the hlist from the update side */
5652 static inline struct swevent_hlist *
5653 swevent_hlist_deref(struct swevent_htable *swhash)
5654 {
5655 	return rcu_dereference_protected(swhash->swevent_hlist,
5656 					 lockdep_is_held(&swhash->hlist_mutex));
5657 }
5658 
5659 static void swevent_hlist_release(struct swevent_htable *swhash)
5660 {
5661 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5662 
5663 	if (!hlist)
5664 		return;
5665 
5666 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5667 	kfree_rcu(hlist, rcu_head);
5668 }
5669 
5670 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5671 {
5672 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5673 
5674 	mutex_lock(&swhash->hlist_mutex);
5675 
5676 	if (!--swhash->hlist_refcount)
5677 		swevent_hlist_release(swhash);
5678 
5679 	mutex_unlock(&swhash->hlist_mutex);
5680 }
5681 
5682 static void swevent_hlist_put(struct perf_event *event)
5683 {
5684 	int cpu;
5685 
5686 	if (event->cpu != -1) {
5687 		swevent_hlist_put_cpu(event, event->cpu);
5688 		return;
5689 	}
5690 
5691 	for_each_possible_cpu(cpu)
5692 		swevent_hlist_put_cpu(event, cpu);
5693 }
5694 
5695 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5696 {
5697 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5698 	int err = 0;
5699 
5700 	mutex_lock(&swhash->hlist_mutex);
5701 
5702 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5703 		struct swevent_hlist *hlist;
5704 
5705 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5706 		if (!hlist) {
5707 			err = -ENOMEM;
5708 			goto exit;
5709 		}
5710 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5711 	}
5712 	swhash->hlist_refcount++;
5713 exit:
5714 	mutex_unlock(&swhash->hlist_mutex);
5715 
5716 	return err;
5717 }
5718 
5719 static int swevent_hlist_get(struct perf_event *event)
5720 {
5721 	int err;
5722 	int cpu, failed_cpu;
5723 
5724 	if (event->cpu != -1)
5725 		return swevent_hlist_get_cpu(event, event->cpu);
5726 
5727 	get_online_cpus();
5728 	for_each_possible_cpu(cpu) {
5729 		err = swevent_hlist_get_cpu(event, cpu);
5730 		if (err) {
5731 			failed_cpu = cpu;
5732 			goto fail;
5733 		}
5734 	}
5735 	put_online_cpus();
5736 
5737 	return 0;
5738 fail:
5739 	for_each_possible_cpu(cpu) {
5740 		if (cpu == failed_cpu)
5741 			break;
5742 		swevent_hlist_put_cpu(event, cpu);
5743 	}
5744 
5745 	put_online_cpus();
5746 	return err;
5747 }
5748 
5749 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5750 
5751 static void sw_perf_event_destroy(struct perf_event *event)
5752 {
5753 	u64 event_id = event->attr.config;
5754 
5755 	WARN_ON(event->parent);
5756 
5757 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5758 	swevent_hlist_put(event);
5759 }
5760 
5761 static int perf_swevent_init(struct perf_event *event)
5762 {
5763 	u64 event_id = event->attr.config;
5764 
5765 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5766 		return -ENOENT;
5767 
5768 	/*
5769 	 * no branch sampling for software events
5770 	 */
5771 	if (has_branch_stack(event))
5772 		return -EOPNOTSUPP;
5773 
5774 	switch (event_id) {
5775 	case PERF_COUNT_SW_CPU_CLOCK:
5776 	case PERF_COUNT_SW_TASK_CLOCK:
5777 		return -ENOENT;
5778 
5779 	default:
5780 		break;
5781 	}
5782 
5783 	if (event_id >= PERF_COUNT_SW_MAX)
5784 		return -ENOENT;
5785 
5786 	if (!event->parent) {
5787 		int err;
5788 
5789 		err = swevent_hlist_get(event);
5790 		if (err)
5791 			return err;
5792 
5793 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5794 		event->destroy = sw_perf_event_destroy;
5795 	}
5796 
5797 	return 0;
5798 }
5799 
5800 static int perf_swevent_event_idx(struct perf_event *event)
5801 {
5802 	return 0;
5803 }
5804 
5805 static struct pmu perf_swevent = {
5806 	.task_ctx_nr	= perf_sw_context,
5807 
5808 	.event_init	= perf_swevent_init,
5809 	.add		= perf_swevent_add,
5810 	.del		= perf_swevent_del,
5811 	.start		= perf_swevent_start,
5812 	.stop		= perf_swevent_stop,
5813 	.read		= perf_swevent_read,
5814 
5815 	.event_idx	= perf_swevent_event_idx,
5816 };
5817 
5818 #ifdef CONFIG_EVENT_TRACING
5819 
5820 static int perf_tp_filter_match(struct perf_event *event,
5821 				struct perf_sample_data *data)
5822 {
5823 	void *record = data->raw->data;
5824 
5825 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5826 		return 1;
5827 	return 0;
5828 }
5829 
5830 static int perf_tp_event_match(struct perf_event *event,
5831 				struct perf_sample_data *data,
5832 				struct pt_regs *regs)
5833 {
5834 	if (event->hw.state & PERF_HES_STOPPED)
5835 		return 0;
5836 	/*
5837 	 * All tracepoints are from kernel-space.
5838 	 */
5839 	if (event->attr.exclude_kernel)
5840 		return 0;
5841 
5842 	if (!perf_tp_filter_match(event, data))
5843 		return 0;
5844 
5845 	return 1;
5846 }
5847 
5848 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5849 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5850 		   struct task_struct *task)
5851 {
5852 	struct perf_sample_data data;
5853 	struct perf_event *event;
5854 
5855 	struct perf_raw_record raw = {
5856 		.size = entry_size,
5857 		.data = record,
5858 	};
5859 
5860 	perf_sample_data_init(&data, addr, 0);
5861 	data.raw = &raw;
5862 
5863 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
5864 		if (perf_tp_event_match(event, &data, regs))
5865 			perf_swevent_event(event, count, &data, regs);
5866 	}
5867 
5868 	/*
5869 	 * If we got specified a target task, also iterate its context and
5870 	 * deliver this event there too.
5871 	 */
5872 	if (task && task != current) {
5873 		struct perf_event_context *ctx;
5874 		struct trace_entry *entry = record;
5875 
5876 		rcu_read_lock();
5877 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5878 		if (!ctx)
5879 			goto unlock;
5880 
5881 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5882 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5883 				continue;
5884 			if (event->attr.config != entry->type)
5885 				continue;
5886 			if (perf_tp_event_match(event, &data, regs))
5887 				perf_swevent_event(event, count, &data, regs);
5888 		}
5889 unlock:
5890 		rcu_read_unlock();
5891 	}
5892 
5893 	perf_swevent_put_recursion_context(rctx);
5894 }
5895 EXPORT_SYMBOL_GPL(perf_tp_event);
5896 
5897 static void tp_perf_event_destroy(struct perf_event *event)
5898 {
5899 	perf_trace_destroy(event);
5900 }
5901 
5902 static int perf_tp_event_init(struct perf_event *event)
5903 {
5904 	int err;
5905 
5906 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5907 		return -ENOENT;
5908 
5909 	/*
5910 	 * no branch sampling for tracepoint events
5911 	 */
5912 	if (has_branch_stack(event))
5913 		return -EOPNOTSUPP;
5914 
5915 	err = perf_trace_init(event);
5916 	if (err)
5917 		return err;
5918 
5919 	event->destroy = tp_perf_event_destroy;
5920 
5921 	return 0;
5922 }
5923 
5924 static struct pmu perf_tracepoint = {
5925 	.task_ctx_nr	= perf_sw_context,
5926 
5927 	.event_init	= perf_tp_event_init,
5928 	.add		= perf_trace_add,
5929 	.del		= perf_trace_del,
5930 	.start		= perf_swevent_start,
5931 	.stop		= perf_swevent_stop,
5932 	.read		= perf_swevent_read,
5933 
5934 	.event_idx	= perf_swevent_event_idx,
5935 };
5936 
5937 static inline void perf_tp_register(void)
5938 {
5939 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5940 }
5941 
5942 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5943 {
5944 	char *filter_str;
5945 	int ret;
5946 
5947 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5948 		return -EINVAL;
5949 
5950 	filter_str = strndup_user(arg, PAGE_SIZE);
5951 	if (IS_ERR(filter_str))
5952 		return PTR_ERR(filter_str);
5953 
5954 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5955 
5956 	kfree(filter_str);
5957 	return ret;
5958 }
5959 
5960 static void perf_event_free_filter(struct perf_event *event)
5961 {
5962 	ftrace_profile_free_filter(event);
5963 }
5964 
5965 #else
5966 
5967 static inline void perf_tp_register(void)
5968 {
5969 }
5970 
5971 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5972 {
5973 	return -ENOENT;
5974 }
5975 
5976 static void perf_event_free_filter(struct perf_event *event)
5977 {
5978 }
5979 
5980 #endif /* CONFIG_EVENT_TRACING */
5981 
5982 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5983 void perf_bp_event(struct perf_event *bp, void *data)
5984 {
5985 	struct perf_sample_data sample;
5986 	struct pt_regs *regs = data;
5987 
5988 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5989 
5990 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5991 		perf_swevent_event(bp, 1, &sample, regs);
5992 }
5993 #endif
5994 
5995 /*
5996  * hrtimer based swevent callback
5997  */
5998 
5999 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6000 {
6001 	enum hrtimer_restart ret = HRTIMER_RESTART;
6002 	struct perf_sample_data data;
6003 	struct pt_regs *regs;
6004 	struct perf_event *event;
6005 	u64 period;
6006 
6007 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6008 
6009 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6010 		return HRTIMER_NORESTART;
6011 
6012 	event->pmu->read(event);
6013 
6014 	perf_sample_data_init(&data, 0, event->hw.last_period);
6015 	regs = get_irq_regs();
6016 
6017 	if (regs && !perf_exclude_event(event, regs)) {
6018 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6019 			if (__perf_event_overflow(event, 1, &data, regs))
6020 				ret = HRTIMER_NORESTART;
6021 	}
6022 
6023 	period = max_t(u64, 10000, event->hw.sample_period);
6024 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6025 
6026 	return ret;
6027 }
6028 
6029 static void perf_swevent_start_hrtimer(struct perf_event *event)
6030 {
6031 	struct hw_perf_event *hwc = &event->hw;
6032 	s64 period;
6033 
6034 	if (!is_sampling_event(event))
6035 		return;
6036 
6037 	period = local64_read(&hwc->period_left);
6038 	if (period) {
6039 		if (period < 0)
6040 			period = 10000;
6041 
6042 		local64_set(&hwc->period_left, 0);
6043 	} else {
6044 		period = max_t(u64, 10000, hwc->sample_period);
6045 	}
6046 	__hrtimer_start_range_ns(&hwc->hrtimer,
6047 				ns_to_ktime(period), 0,
6048 				HRTIMER_MODE_REL_PINNED, 0);
6049 }
6050 
6051 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6052 {
6053 	struct hw_perf_event *hwc = &event->hw;
6054 
6055 	if (is_sampling_event(event)) {
6056 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6057 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6058 
6059 		hrtimer_cancel(&hwc->hrtimer);
6060 	}
6061 }
6062 
6063 static void perf_swevent_init_hrtimer(struct perf_event *event)
6064 {
6065 	struct hw_perf_event *hwc = &event->hw;
6066 
6067 	if (!is_sampling_event(event))
6068 		return;
6069 
6070 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6071 	hwc->hrtimer.function = perf_swevent_hrtimer;
6072 
6073 	/*
6074 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6075 	 * mapping and avoid the whole period adjust feedback stuff.
6076 	 */
6077 	if (event->attr.freq) {
6078 		long freq = event->attr.sample_freq;
6079 
6080 		event->attr.sample_period = NSEC_PER_SEC / freq;
6081 		hwc->sample_period = event->attr.sample_period;
6082 		local64_set(&hwc->period_left, hwc->sample_period);
6083 		hwc->last_period = hwc->sample_period;
6084 		event->attr.freq = 0;
6085 	}
6086 }
6087 
6088 /*
6089  * Software event: cpu wall time clock
6090  */
6091 
6092 static void cpu_clock_event_update(struct perf_event *event)
6093 {
6094 	s64 prev;
6095 	u64 now;
6096 
6097 	now = local_clock();
6098 	prev = local64_xchg(&event->hw.prev_count, now);
6099 	local64_add(now - prev, &event->count);
6100 }
6101 
6102 static void cpu_clock_event_start(struct perf_event *event, int flags)
6103 {
6104 	local64_set(&event->hw.prev_count, local_clock());
6105 	perf_swevent_start_hrtimer(event);
6106 }
6107 
6108 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6109 {
6110 	perf_swevent_cancel_hrtimer(event);
6111 	cpu_clock_event_update(event);
6112 }
6113 
6114 static int cpu_clock_event_add(struct perf_event *event, int flags)
6115 {
6116 	if (flags & PERF_EF_START)
6117 		cpu_clock_event_start(event, flags);
6118 
6119 	return 0;
6120 }
6121 
6122 static void cpu_clock_event_del(struct perf_event *event, int flags)
6123 {
6124 	cpu_clock_event_stop(event, flags);
6125 }
6126 
6127 static void cpu_clock_event_read(struct perf_event *event)
6128 {
6129 	cpu_clock_event_update(event);
6130 }
6131 
6132 static int cpu_clock_event_init(struct perf_event *event)
6133 {
6134 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6135 		return -ENOENT;
6136 
6137 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6138 		return -ENOENT;
6139 
6140 	/*
6141 	 * no branch sampling for software events
6142 	 */
6143 	if (has_branch_stack(event))
6144 		return -EOPNOTSUPP;
6145 
6146 	perf_swevent_init_hrtimer(event);
6147 
6148 	return 0;
6149 }
6150 
6151 static struct pmu perf_cpu_clock = {
6152 	.task_ctx_nr	= perf_sw_context,
6153 
6154 	.event_init	= cpu_clock_event_init,
6155 	.add		= cpu_clock_event_add,
6156 	.del		= cpu_clock_event_del,
6157 	.start		= cpu_clock_event_start,
6158 	.stop		= cpu_clock_event_stop,
6159 	.read		= cpu_clock_event_read,
6160 
6161 	.event_idx	= perf_swevent_event_idx,
6162 };
6163 
6164 /*
6165  * Software event: task time clock
6166  */
6167 
6168 static void task_clock_event_update(struct perf_event *event, u64 now)
6169 {
6170 	u64 prev;
6171 	s64 delta;
6172 
6173 	prev = local64_xchg(&event->hw.prev_count, now);
6174 	delta = now - prev;
6175 	local64_add(delta, &event->count);
6176 }
6177 
6178 static void task_clock_event_start(struct perf_event *event, int flags)
6179 {
6180 	local64_set(&event->hw.prev_count, event->ctx->time);
6181 	perf_swevent_start_hrtimer(event);
6182 }
6183 
6184 static void task_clock_event_stop(struct perf_event *event, int flags)
6185 {
6186 	perf_swevent_cancel_hrtimer(event);
6187 	task_clock_event_update(event, event->ctx->time);
6188 }
6189 
6190 static int task_clock_event_add(struct perf_event *event, int flags)
6191 {
6192 	if (flags & PERF_EF_START)
6193 		task_clock_event_start(event, flags);
6194 
6195 	return 0;
6196 }
6197 
6198 static void task_clock_event_del(struct perf_event *event, int flags)
6199 {
6200 	task_clock_event_stop(event, PERF_EF_UPDATE);
6201 }
6202 
6203 static void task_clock_event_read(struct perf_event *event)
6204 {
6205 	u64 now = perf_clock();
6206 	u64 delta = now - event->ctx->timestamp;
6207 	u64 time = event->ctx->time + delta;
6208 
6209 	task_clock_event_update(event, time);
6210 }
6211 
6212 static int task_clock_event_init(struct perf_event *event)
6213 {
6214 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6215 		return -ENOENT;
6216 
6217 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6218 		return -ENOENT;
6219 
6220 	/*
6221 	 * no branch sampling for software events
6222 	 */
6223 	if (has_branch_stack(event))
6224 		return -EOPNOTSUPP;
6225 
6226 	perf_swevent_init_hrtimer(event);
6227 
6228 	return 0;
6229 }
6230 
6231 static struct pmu perf_task_clock = {
6232 	.task_ctx_nr	= perf_sw_context,
6233 
6234 	.event_init	= task_clock_event_init,
6235 	.add		= task_clock_event_add,
6236 	.del		= task_clock_event_del,
6237 	.start		= task_clock_event_start,
6238 	.stop		= task_clock_event_stop,
6239 	.read		= task_clock_event_read,
6240 
6241 	.event_idx	= perf_swevent_event_idx,
6242 };
6243 
6244 static void perf_pmu_nop_void(struct pmu *pmu)
6245 {
6246 }
6247 
6248 static int perf_pmu_nop_int(struct pmu *pmu)
6249 {
6250 	return 0;
6251 }
6252 
6253 static void perf_pmu_start_txn(struct pmu *pmu)
6254 {
6255 	perf_pmu_disable(pmu);
6256 }
6257 
6258 static int perf_pmu_commit_txn(struct pmu *pmu)
6259 {
6260 	perf_pmu_enable(pmu);
6261 	return 0;
6262 }
6263 
6264 static void perf_pmu_cancel_txn(struct pmu *pmu)
6265 {
6266 	perf_pmu_enable(pmu);
6267 }
6268 
6269 static int perf_event_idx_default(struct perf_event *event)
6270 {
6271 	return event->hw.idx + 1;
6272 }
6273 
6274 /*
6275  * Ensures all contexts with the same task_ctx_nr have the same
6276  * pmu_cpu_context too.
6277  */
6278 static void *find_pmu_context(int ctxn)
6279 {
6280 	struct pmu *pmu;
6281 
6282 	if (ctxn < 0)
6283 		return NULL;
6284 
6285 	list_for_each_entry(pmu, &pmus, entry) {
6286 		if (pmu->task_ctx_nr == ctxn)
6287 			return pmu->pmu_cpu_context;
6288 	}
6289 
6290 	return NULL;
6291 }
6292 
6293 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6294 {
6295 	int cpu;
6296 
6297 	for_each_possible_cpu(cpu) {
6298 		struct perf_cpu_context *cpuctx;
6299 
6300 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6301 
6302 		if (cpuctx->unique_pmu == old_pmu)
6303 			cpuctx->unique_pmu = pmu;
6304 	}
6305 }
6306 
6307 static void free_pmu_context(struct pmu *pmu)
6308 {
6309 	struct pmu *i;
6310 
6311 	mutex_lock(&pmus_lock);
6312 	/*
6313 	 * Like a real lame refcount.
6314 	 */
6315 	list_for_each_entry(i, &pmus, entry) {
6316 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6317 			update_pmu_context(i, pmu);
6318 			goto out;
6319 		}
6320 	}
6321 
6322 	free_percpu(pmu->pmu_cpu_context);
6323 out:
6324 	mutex_unlock(&pmus_lock);
6325 }
6326 static struct idr pmu_idr;
6327 
6328 static ssize_t
6329 type_show(struct device *dev, struct device_attribute *attr, char *page)
6330 {
6331 	struct pmu *pmu = dev_get_drvdata(dev);
6332 
6333 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6334 }
6335 static DEVICE_ATTR_RO(type);
6336 
6337 static ssize_t
6338 perf_event_mux_interval_ms_show(struct device *dev,
6339 				struct device_attribute *attr,
6340 				char *page)
6341 {
6342 	struct pmu *pmu = dev_get_drvdata(dev);
6343 
6344 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
6345 }
6346 
6347 static ssize_t
6348 perf_event_mux_interval_ms_store(struct device *dev,
6349 				 struct device_attribute *attr,
6350 				 const char *buf, size_t count)
6351 {
6352 	struct pmu *pmu = dev_get_drvdata(dev);
6353 	int timer, cpu, ret;
6354 
6355 	ret = kstrtoint(buf, 0, &timer);
6356 	if (ret)
6357 		return ret;
6358 
6359 	if (timer < 1)
6360 		return -EINVAL;
6361 
6362 	/* same value, noting to do */
6363 	if (timer == pmu->hrtimer_interval_ms)
6364 		return count;
6365 
6366 	pmu->hrtimer_interval_ms = timer;
6367 
6368 	/* update all cpuctx for this PMU */
6369 	for_each_possible_cpu(cpu) {
6370 		struct perf_cpu_context *cpuctx;
6371 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6372 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
6373 
6374 		if (hrtimer_active(&cpuctx->hrtimer))
6375 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
6376 	}
6377 
6378 	return count;
6379 }
6380 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
6381 
6382 static struct attribute *pmu_dev_attrs[] = {
6383 	&dev_attr_type.attr,
6384 	&dev_attr_perf_event_mux_interval_ms.attr,
6385 	NULL,
6386 };
6387 ATTRIBUTE_GROUPS(pmu_dev);
6388 
6389 static int pmu_bus_running;
6390 static struct bus_type pmu_bus = {
6391 	.name		= "event_source",
6392 	.dev_groups	= pmu_dev_groups,
6393 };
6394 
6395 static void pmu_dev_release(struct device *dev)
6396 {
6397 	kfree(dev);
6398 }
6399 
6400 static int pmu_dev_alloc(struct pmu *pmu)
6401 {
6402 	int ret = -ENOMEM;
6403 
6404 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6405 	if (!pmu->dev)
6406 		goto out;
6407 
6408 	pmu->dev->groups = pmu->attr_groups;
6409 	device_initialize(pmu->dev);
6410 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
6411 	if (ret)
6412 		goto free_dev;
6413 
6414 	dev_set_drvdata(pmu->dev, pmu);
6415 	pmu->dev->bus = &pmu_bus;
6416 	pmu->dev->release = pmu_dev_release;
6417 	ret = device_add(pmu->dev);
6418 	if (ret)
6419 		goto free_dev;
6420 
6421 out:
6422 	return ret;
6423 
6424 free_dev:
6425 	put_device(pmu->dev);
6426 	goto out;
6427 }
6428 
6429 static struct lock_class_key cpuctx_mutex;
6430 static struct lock_class_key cpuctx_lock;
6431 
6432 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
6433 {
6434 	int cpu, ret;
6435 
6436 	mutex_lock(&pmus_lock);
6437 	ret = -ENOMEM;
6438 	pmu->pmu_disable_count = alloc_percpu(int);
6439 	if (!pmu->pmu_disable_count)
6440 		goto unlock;
6441 
6442 	pmu->type = -1;
6443 	if (!name)
6444 		goto skip_type;
6445 	pmu->name = name;
6446 
6447 	if (type < 0) {
6448 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6449 		if (type < 0) {
6450 			ret = type;
6451 			goto free_pdc;
6452 		}
6453 	}
6454 	pmu->type = type;
6455 
6456 	if (pmu_bus_running) {
6457 		ret = pmu_dev_alloc(pmu);
6458 		if (ret)
6459 			goto free_idr;
6460 	}
6461 
6462 skip_type:
6463 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6464 	if (pmu->pmu_cpu_context)
6465 		goto got_cpu_context;
6466 
6467 	ret = -ENOMEM;
6468 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6469 	if (!pmu->pmu_cpu_context)
6470 		goto free_dev;
6471 
6472 	for_each_possible_cpu(cpu) {
6473 		struct perf_cpu_context *cpuctx;
6474 
6475 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6476 		__perf_event_init_context(&cpuctx->ctx);
6477 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6478 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6479 		cpuctx->ctx.type = cpu_context;
6480 		cpuctx->ctx.pmu = pmu;
6481 
6482 		__perf_cpu_hrtimer_init(cpuctx, cpu);
6483 
6484 		INIT_LIST_HEAD(&cpuctx->rotation_list);
6485 		cpuctx->unique_pmu = pmu;
6486 	}
6487 
6488 got_cpu_context:
6489 	if (!pmu->start_txn) {
6490 		if (pmu->pmu_enable) {
6491 			/*
6492 			 * If we have pmu_enable/pmu_disable calls, install
6493 			 * transaction stubs that use that to try and batch
6494 			 * hardware accesses.
6495 			 */
6496 			pmu->start_txn  = perf_pmu_start_txn;
6497 			pmu->commit_txn = perf_pmu_commit_txn;
6498 			pmu->cancel_txn = perf_pmu_cancel_txn;
6499 		} else {
6500 			pmu->start_txn  = perf_pmu_nop_void;
6501 			pmu->commit_txn = perf_pmu_nop_int;
6502 			pmu->cancel_txn = perf_pmu_nop_void;
6503 		}
6504 	}
6505 
6506 	if (!pmu->pmu_enable) {
6507 		pmu->pmu_enable  = perf_pmu_nop_void;
6508 		pmu->pmu_disable = perf_pmu_nop_void;
6509 	}
6510 
6511 	if (!pmu->event_idx)
6512 		pmu->event_idx = perf_event_idx_default;
6513 
6514 	list_add_rcu(&pmu->entry, &pmus);
6515 	ret = 0;
6516 unlock:
6517 	mutex_unlock(&pmus_lock);
6518 
6519 	return ret;
6520 
6521 free_dev:
6522 	device_del(pmu->dev);
6523 	put_device(pmu->dev);
6524 
6525 free_idr:
6526 	if (pmu->type >= PERF_TYPE_MAX)
6527 		idr_remove(&pmu_idr, pmu->type);
6528 
6529 free_pdc:
6530 	free_percpu(pmu->pmu_disable_count);
6531 	goto unlock;
6532 }
6533 
6534 void perf_pmu_unregister(struct pmu *pmu)
6535 {
6536 	mutex_lock(&pmus_lock);
6537 	list_del_rcu(&pmu->entry);
6538 	mutex_unlock(&pmus_lock);
6539 
6540 	/*
6541 	 * We dereference the pmu list under both SRCU and regular RCU, so
6542 	 * synchronize against both of those.
6543 	 */
6544 	synchronize_srcu(&pmus_srcu);
6545 	synchronize_rcu();
6546 
6547 	free_percpu(pmu->pmu_disable_count);
6548 	if (pmu->type >= PERF_TYPE_MAX)
6549 		idr_remove(&pmu_idr, pmu->type);
6550 	device_del(pmu->dev);
6551 	put_device(pmu->dev);
6552 	free_pmu_context(pmu);
6553 }
6554 
6555 struct pmu *perf_init_event(struct perf_event *event)
6556 {
6557 	struct pmu *pmu = NULL;
6558 	int idx;
6559 	int ret;
6560 
6561 	idx = srcu_read_lock(&pmus_srcu);
6562 
6563 	rcu_read_lock();
6564 	pmu = idr_find(&pmu_idr, event->attr.type);
6565 	rcu_read_unlock();
6566 	if (pmu) {
6567 		event->pmu = pmu;
6568 		ret = pmu->event_init(event);
6569 		if (ret)
6570 			pmu = ERR_PTR(ret);
6571 		goto unlock;
6572 	}
6573 
6574 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6575 		event->pmu = pmu;
6576 		ret = pmu->event_init(event);
6577 		if (!ret)
6578 			goto unlock;
6579 
6580 		if (ret != -ENOENT) {
6581 			pmu = ERR_PTR(ret);
6582 			goto unlock;
6583 		}
6584 	}
6585 	pmu = ERR_PTR(-ENOENT);
6586 unlock:
6587 	srcu_read_unlock(&pmus_srcu, idx);
6588 
6589 	return pmu;
6590 }
6591 
6592 static void account_event_cpu(struct perf_event *event, int cpu)
6593 {
6594 	if (event->parent)
6595 		return;
6596 
6597 	if (has_branch_stack(event)) {
6598 		if (!(event->attach_state & PERF_ATTACH_TASK))
6599 			atomic_inc(&per_cpu(perf_branch_stack_events, cpu));
6600 	}
6601 	if (is_cgroup_event(event))
6602 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
6603 }
6604 
6605 static void account_event(struct perf_event *event)
6606 {
6607 	if (event->parent)
6608 		return;
6609 
6610 	if (event->attach_state & PERF_ATTACH_TASK)
6611 		static_key_slow_inc(&perf_sched_events.key);
6612 	if (event->attr.mmap || event->attr.mmap_data)
6613 		atomic_inc(&nr_mmap_events);
6614 	if (event->attr.comm)
6615 		atomic_inc(&nr_comm_events);
6616 	if (event->attr.task)
6617 		atomic_inc(&nr_task_events);
6618 	if (event->attr.freq) {
6619 		if (atomic_inc_return(&nr_freq_events) == 1)
6620 			tick_nohz_full_kick_all();
6621 	}
6622 	if (has_branch_stack(event))
6623 		static_key_slow_inc(&perf_sched_events.key);
6624 	if (is_cgroup_event(event))
6625 		static_key_slow_inc(&perf_sched_events.key);
6626 
6627 	account_event_cpu(event, event->cpu);
6628 }
6629 
6630 /*
6631  * Allocate and initialize a event structure
6632  */
6633 static struct perf_event *
6634 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6635 		 struct task_struct *task,
6636 		 struct perf_event *group_leader,
6637 		 struct perf_event *parent_event,
6638 		 perf_overflow_handler_t overflow_handler,
6639 		 void *context)
6640 {
6641 	struct pmu *pmu;
6642 	struct perf_event *event;
6643 	struct hw_perf_event *hwc;
6644 	long err = -EINVAL;
6645 
6646 	if ((unsigned)cpu >= nr_cpu_ids) {
6647 		if (!task || cpu != -1)
6648 			return ERR_PTR(-EINVAL);
6649 	}
6650 
6651 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6652 	if (!event)
6653 		return ERR_PTR(-ENOMEM);
6654 
6655 	/*
6656 	 * Single events are their own group leaders, with an
6657 	 * empty sibling list:
6658 	 */
6659 	if (!group_leader)
6660 		group_leader = event;
6661 
6662 	mutex_init(&event->child_mutex);
6663 	INIT_LIST_HEAD(&event->child_list);
6664 
6665 	INIT_LIST_HEAD(&event->group_entry);
6666 	INIT_LIST_HEAD(&event->event_entry);
6667 	INIT_LIST_HEAD(&event->sibling_list);
6668 	INIT_LIST_HEAD(&event->rb_entry);
6669 
6670 	init_waitqueue_head(&event->waitq);
6671 	init_irq_work(&event->pending, perf_pending_event);
6672 
6673 	mutex_init(&event->mmap_mutex);
6674 
6675 	atomic_long_set(&event->refcount, 1);
6676 	event->cpu		= cpu;
6677 	event->attr		= *attr;
6678 	event->group_leader	= group_leader;
6679 	event->pmu		= NULL;
6680 	event->oncpu		= -1;
6681 
6682 	event->parent		= parent_event;
6683 
6684 	event->ns		= get_pid_ns(task_active_pid_ns(current));
6685 	event->id		= atomic64_inc_return(&perf_event_id);
6686 
6687 	event->state		= PERF_EVENT_STATE_INACTIVE;
6688 
6689 	if (task) {
6690 		event->attach_state = PERF_ATTACH_TASK;
6691 
6692 		if (attr->type == PERF_TYPE_TRACEPOINT)
6693 			event->hw.tp_target = task;
6694 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6695 		/*
6696 		 * hw_breakpoint is a bit difficult here..
6697 		 */
6698 		else if (attr->type == PERF_TYPE_BREAKPOINT)
6699 			event->hw.bp_target = task;
6700 #endif
6701 	}
6702 
6703 	if (!overflow_handler && parent_event) {
6704 		overflow_handler = parent_event->overflow_handler;
6705 		context = parent_event->overflow_handler_context;
6706 	}
6707 
6708 	event->overflow_handler	= overflow_handler;
6709 	event->overflow_handler_context = context;
6710 
6711 	perf_event__state_init(event);
6712 
6713 	pmu = NULL;
6714 
6715 	hwc = &event->hw;
6716 	hwc->sample_period = attr->sample_period;
6717 	if (attr->freq && attr->sample_freq)
6718 		hwc->sample_period = 1;
6719 	hwc->last_period = hwc->sample_period;
6720 
6721 	local64_set(&hwc->period_left, hwc->sample_period);
6722 
6723 	/*
6724 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6725 	 */
6726 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6727 		goto err_ns;
6728 
6729 	pmu = perf_init_event(event);
6730 	if (!pmu)
6731 		goto err_ns;
6732 	else if (IS_ERR(pmu)) {
6733 		err = PTR_ERR(pmu);
6734 		goto err_ns;
6735 	}
6736 
6737 	if (!event->parent) {
6738 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6739 			err = get_callchain_buffers();
6740 			if (err)
6741 				goto err_pmu;
6742 		}
6743 	}
6744 
6745 	return event;
6746 
6747 err_pmu:
6748 	if (event->destroy)
6749 		event->destroy(event);
6750 err_ns:
6751 	if (event->ns)
6752 		put_pid_ns(event->ns);
6753 	kfree(event);
6754 
6755 	return ERR_PTR(err);
6756 }
6757 
6758 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6759 			  struct perf_event_attr *attr)
6760 {
6761 	u32 size;
6762 	int ret;
6763 
6764 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6765 		return -EFAULT;
6766 
6767 	/*
6768 	 * zero the full structure, so that a short copy will be nice.
6769 	 */
6770 	memset(attr, 0, sizeof(*attr));
6771 
6772 	ret = get_user(size, &uattr->size);
6773 	if (ret)
6774 		return ret;
6775 
6776 	if (size > PAGE_SIZE)	/* silly large */
6777 		goto err_size;
6778 
6779 	if (!size)		/* abi compat */
6780 		size = PERF_ATTR_SIZE_VER0;
6781 
6782 	if (size < PERF_ATTR_SIZE_VER0)
6783 		goto err_size;
6784 
6785 	/*
6786 	 * If we're handed a bigger struct than we know of,
6787 	 * ensure all the unknown bits are 0 - i.e. new
6788 	 * user-space does not rely on any kernel feature
6789 	 * extensions we dont know about yet.
6790 	 */
6791 	if (size > sizeof(*attr)) {
6792 		unsigned char __user *addr;
6793 		unsigned char __user *end;
6794 		unsigned char val;
6795 
6796 		addr = (void __user *)uattr + sizeof(*attr);
6797 		end  = (void __user *)uattr + size;
6798 
6799 		for (; addr < end; addr++) {
6800 			ret = get_user(val, addr);
6801 			if (ret)
6802 				return ret;
6803 			if (val)
6804 				goto err_size;
6805 		}
6806 		size = sizeof(*attr);
6807 	}
6808 
6809 	ret = copy_from_user(attr, uattr, size);
6810 	if (ret)
6811 		return -EFAULT;
6812 
6813 	/* disabled for now */
6814 	if (attr->mmap2)
6815 		return -EINVAL;
6816 
6817 	if (attr->__reserved_1)
6818 		return -EINVAL;
6819 
6820 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6821 		return -EINVAL;
6822 
6823 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6824 		return -EINVAL;
6825 
6826 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6827 		u64 mask = attr->branch_sample_type;
6828 
6829 		/* only using defined bits */
6830 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6831 			return -EINVAL;
6832 
6833 		/* at least one branch bit must be set */
6834 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6835 			return -EINVAL;
6836 
6837 		/* propagate priv level, when not set for branch */
6838 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6839 
6840 			/* exclude_kernel checked on syscall entry */
6841 			if (!attr->exclude_kernel)
6842 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6843 
6844 			if (!attr->exclude_user)
6845 				mask |= PERF_SAMPLE_BRANCH_USER;
6846 
6847 			if (!attr->exclude_hv)
6848 				mask |= PERF_SAMPLE_BRANCH_HV;
6849 			/*
6850 			 * adjust user setting (for HW filter setup)
6851 			 */
6852 			attr->branch_sample_type = mask;
6853 		}
6854 		/* privileged levels capture (kernel, hv): check permissions */
6855 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6856 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6857 			return -EACCES;
6858 	}
6859 
6860 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6861 		ret = perf_reg_validate(attr->sample_regs_user);
6862 		if (ret)
6863 			return ret;
6864 	}
6865 
6866 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6867 		if (!arch_perf_have_user_stack_dump())
6868 			return -ENOSYS;
6869 
6870 		/*
6871 		 * We have __u32 type for the size, but so far
6872 		 * we can only use __u16 as maximum due to the
6873 		 * __u16 sample size limit.
6874 		 */
6875 		if (attr->sample_stack_user >= USHRT_MAX)
6876 			ret = -EINVAL;
6877 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6878 			ret = -EINVAL;
6879 	}
6880 
6881 out:
6882 	return ret;
6883 
6884 err_size:
6885 	put_user(sizeof(*attr), &uattr->size);
6886 	ret = -E2BIG;
6887 	goto out;
6888 }
6889 
6890 static int
6891 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6892 {
6893 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6894 	int ret = -EINVAL;
6895 
6896 	if (!output_event)
6897 		goto set;
6898 
6899 	/* don't allow circular references */
6900 	if (event == output_event)
6901 		goto out;
6902 
6903 	/*
6904 	 * Don't allow cross-cpu buffers
6905 	 */
6906 	if (output_event->cpu != event->cpu)
6907 		goto out;
6908 
6909 	/*
6910 	 * If its not a per-cpu rb, it must be the same task.
6911 	 */
6912 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6913 		goto out;
6914 
6915 set:
6916 	mutex_lock(&event->mmap_mutex);
6917 	/* Can't redirect output if we've got an active mmap() */
6918 	if (atomic_read(&event->mmap_count))
6919 		goto unlock;
6920 
6921 	old_rb = event->rb;
6922 
6923 	if (output_event) {
6924 		/* get the rb we want to redirect to */
6925 		rb = ring_buffer_get(output_event);
6926 		if (!rb)
6927 			goto unlock;
6928 	}
6929 
6930 	if (old_rb)
6931 		ring_buffer_detach(event, old_rb);
6932 
6933 	if (rb)
6934 		ring_buffer_attach(event, rb);
6935 
6936 	rcu_assign_pointer(event->rb, rb);
6937 
6938 	if (old_rb) {
6939 		ring_buffer_put(old_rb);
6940 		/*
6941 		 * Since we detached before setting the new rb, so that we
6942 		 * could attach the new rb, we could have missed a wakeup.
6943 		 * Provide it now.
6944 		 */
6945 		wake_up_all(&event->waitq);
6946 	}
6947 
6948 	ret = 0;
6949 unlock:
6950 	mutex_unlock(&event->mmap_mutex);
6951 
6952 out:
6953 	return ret;
6954 }
6955 
6956 /**
6957  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6958  *
6959  * @attr_uptr:	event_id type attributes for monitoring/sampling
6960  * @pid:		target pid
6961  * @cpu:		target cpu
6962  * @group_fd:		group leader event fd
6963  */
6964 SYSCALL_DEFINE5(perf_event_open,
6965 		struct perf_event_attr __user *, attr_uptr,
6966 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6967 {
6968 	struct perf_event *group_leader = NULL, *output_event = NULL;
6969 	struct perf_event *event, *sibling;
6970 	struct perf_event_attr attr;
6971 	struct perf_event_context *ctx;
6972 	struct file *event_file = NULL;
6973 	struct fd group = {NULL, 0};
6974 	struct task_struct *task = NULL;
6975 	struct pmu *pmu;
6976 	int event_fd;
6977 	int move_group = 0;
6978 	int err;
6979 
6980 	/* for future expandability... */
6981 	if (flags & ~PERF_FLAG_ALL)
6982 		return -EINVAL;
6983 
6984 	err = perf_copy_attr(attr_uptr, &attr);
6985 	if (err)
6986 		return err;
6987 
6988 	if (!attr.exclude_kernel) {
6989 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6990 			return -EACCES;
6991 	}
6992 
6993 	if (attr.freq) {
6994 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6995 			return -EINVAL;
6996 	}
6997 
6998 	/*
6999 	 * In cgroup mode, the pid argument is used to pass the fd
7000 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7001 	 * designates the cpu on which to monitor threads from that
7002 	 * cgroup.
7003 	 */
7004 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7005 		return -EINVAL;
7006 
7007 	event_fd = get_unused_fd();
7008 	if (event_fd < 0)
7009 		return event_fd;
7010 
7011 	if (group_fd != -1) {
7012 		err = perf_fget_light(group_fd, &group);
7013 		if (err)
7014 			goto err_fd;
7015 		group_leader = group.file->private_data;
7016 		if (flags & PERF_FLAG_FD_OUTPUT)
7017 			output_event = group_leader;
7018 		if (flags & PERF_FLAG_FD_NO_GROUP)
7019 			group_leader = NULL;
7020 	}
7021 
7022 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7023 		task = find_lively_task_by_vpid(pid);
7024 		if (IS_ERR(task)) {
7025 			err = PTR_ERR(task);
7026 			goto err_group_fd;
7027 		}
7028 	}
7029 
7030 	get_online_cpus();
7031 
7032 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7033 				 NULL, NULL);
7034 	if (IS_ERR(event)) {
7035 		err = PTR_ERR(event);
7036 		goto err_task;
7037 	}
7038 
7039 	if (flags & PERF_FLAG_PID_CGROUP) {
7040 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
7041 		if (err) {
7042 			__free_event(event);
7043 			goto err_task;
7044 		}
7045 	}
7046 
7047 	account_event(event);
7048 
7049 	/*
7050 	 * Special case software events and allow them to be part of
7051 	 * any hardware group.
7052 	 */
7053 	pmu = event->pmu;
7054 
7055 	if (group_leader &&
7056 	    (is_software_event(event) != is_software_event(group_leader))) {
7057 		if (is_software_event(event)) {
7058 			/*
7059 			 * If event and group_leader are not both a software
7060 			 * event, and event is, then group leader is not.
7061 			 *
7062 			 * Allow the addition of software events to !software
7063 			 * groups, this is safe because software events never
7064 			 * fail to schedule.
7065 			 */
7066 			pmu = group_leader->pmu;
7067 		} else if (is_software_event(group_leader) &&
7068 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
7069 			/*
7070 			 * In case the group is a pure software group, and we
7071 			 * try to add a hardware event, move the whole group to
7072 			 * the hardware context.
7073 			 */
7074 			move_group = 1;
7075 		}
7076 	}
7077 
7078 	/*
7079 	 * Get the target context (task or percpu):
7080 	 */
7081 	ctx = find_get_context(pmu, task, event->cpu);
7082 	if (IS_ERR(ctx)) {
7083 		err = PTR_ERR(ctx);
7084 		goto err_alloc;
7085 	}
7086 
7087 	if (task) {
7088 		put_task_struct(task);
7089 		task = NULL;
7090 	}
7091 
7092 	/*
7093 	 * Look up the group leader (we will attach this event to it):
7094 	 */
7095 	if (group_leader) {
7096 		err = -EINVAL;
7097 
7098 		/*
7099 		 * Do not allow a recursive hierarchy (this new sibling
7100 		 * becoming part of another group-sibling):
7101 		 */
7102 		if (group_leader->group_leader != group_leader)
7103 			goto err_context;
7104 		/*
7105 		 * Do not allow to attach to a group in a different
7106 		 * task or CPU context:
7107 		 */
7108 		if (move_group) {
7109 			if (group_leader->ctx->type != ctx->type)
7110 				goto err_context;
7111 		} else {
7112 			if (group_leader->ctx != ctx)
7113 				goto err_context;
7114 		}
7115 
7116 		/*
7117 		 * Only a group leader can be exclusive or pinned
7118 		 */
7119 		if (attr.exclusive || attr.pinned)
7120 			goto err_context;
7121 	}
7122 
7123 	if (output_event) {
7124 		err = perf_event_set_output(event, output_event);
7125 		if (err)
7126 			goto err_context;
7127 	}
7128 
7129 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
7130 	if (IS_ERR(event_file)) {
7131 		err = PTR_ERR(event_file);
7132 		goto err_context;
7133 	}
7134 
7135 	if (move_group) {
7136 		struct perf_event_context *gctx = group_leader->ctx;
7137 
7138 		mutex_lock(&gctx->mutex);
7139 		perf_remove_from_context(group_leader);
7140 
7141 		/*
7142 		 * Removing from the context ends up with disabled
7143 		 * event. What we want here is event in the initial
7144 		 * startup state, ready to be add into new context.
7145 		 */
7146 		perf_event__state_init(group_leader);
7147 		list_for_each_entry(sibling, &group_leader->sibling_list,
7148 				    group_entry) {
7149 			perf_remove_from_context(sibling);
7150 			perf_event__state_init(sibling);
7151 			put_ctx(gctx);
7152 		}
7153 		mutex_unlock(&gctx->mutex);
7154 		put_ctx(gctx);
7155 	}
7156 
7157 	WARN_ON_ONCE(ctx->parent_ctx);
7158 	mutex_lock(&ctx->mutex);
7159 
7160 	if (move_group) {
7161 		synchronize_rcu();
7162 		perf_install_in_context(ctx, group_leader, event->cpu);
7163 		get_ctx(ctx);
7164 		list_for_each_entry(sibling, &group_leader->sibling_list,
7165 				    group_entry) {
7166 			perf_install_in_context(ctx, sibling, event->cpu);
7167 			get_ctx(ctx);
7168 		}
7169 	}
7170 
7171 	perf_install_in_context(ctx, event, event->cpu);
7172 	perf_unpin_context(ctx);
7173 	mutex_unlock(&ctx->mutex);
7174 
7175 	put_online_cpus();
7176 
7177 	event->owner = current;
7178 
7179 	mutex_lock(&current->perf_event_mutex);
7180 	list_add_tail(&event->owner_entry, &current->perf_event_list);
7181 	mutex_unlock(&current->perf_event_mutex);
7182 
7183 	/*
7184 	 * Precalculate sample_data sizes
7185 	 */
7186 	perf_event__header_size(event);
7187 	perf_event__id_header_size(event);
7188 
7189 	/*
7190 	 * Drop the reference on the group_event after placing the
7191 	 * new event on the sibling_list. This ensures destruction
7192 	 * of the group leader will find the pointer to itself in
7193 	 * perf_group_detach().
7194 	 */
7195 	fdput(group);
7196 	fd_install(event_fd, event_file);
7197 	return event_fd;
7198 
7199 err_context:
7200 	perf_unpin_context(ctx);
7201 	put_ctx(ctx);
7202 err_alloc:
7203 	free_event(event);
7204 err_task:
7205 	put_online_cpus();
7206 	if (task)
7207 		put_task_struct(task);
7208 err_group_fd:
7209 	fdput(group);
7210 err_fd:
7211 	put_unused_fd(event_fd);
7212 	return err;
7213 }
7214 
7215 /**
7216  * perf_event_create_kernel_counter
7217  *
7218  * @attr: attributes of the counter to create
7219  * @cpu: cpu in which the counter is bound
7220  * @task: task to profile (NULL for percpu)
7221  */
7222 struct perf_event *
7223 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
7224 				 struct task_struct *task,
7225 				 perf_overflow_handler_t overflow_handler,
7226 				 void *context)
7227 {
7228 	struct perf_event_context *ctx;
7229 	struct perf_event *event;
7230 	int err;
7231 
7232 	/*
7233 	 * Get the target context (task or percpu):
7234 	 */
7235 
7236 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
7237 				 overflow_handler, context);
7238 	if (IS_ERR(event)) {
7239 		err = PTR_ERR(event);
7240 		goto err;
7241 	}
7242 
7243 	account_event(event);
7244 
7245 	ctx = find_get_context(event->pmu, task, cpu);
7246 	if (IS_ERR(ctx)) {
7247 		err = PTR_ERR(ctx);
7248 		goto err_free;
7249 	}
7250 
7251 	WARN_ON_ONCE(ctx->parent_ctx);
7252 	mutex_lock(&ctx->mutex);
7253 	perf_install_in_context(ctx, event, cpu);
7254 	perf_unpin_context(ctx);
7255 	mutex_unlock(&ctx->mutex);
7256 
7257 	return event;
7258 
7259 err_free:
7260 	free_event(event);
7261 err:
7262 	return ERR_PTR(err);
7263 }
7264 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7265 
7266 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7267 {
7268 	struct perf_event_context *src_ctx;
7269 	struct perf_event_context *dst_ctx;
7270 	struct perf_event *event, *tmp;
7271 	LIST_HEAD(events);
7272 
7273 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7274 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7275 
7276 	mutex_lock(&src_ctx->mutex);
7277 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7278 				 event_entry) {
7279 		perf_remove_from_context(event);
7280 		unaccount_event_cpu(event, src_cpu);
7281 		put_ctx(src_ctx);
7282 		list_add(&event->migrate_entry, &events);
7283 	}
7284 	mutex_unlock(&src_ctx->mutex);
7285 
7286 	synchronize_rcu();
7287 
7288 	mutex_lock(&dst_ctx->mutex);
7289 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
7290 		list_del(&event->migrate_entry);
7291 		if (event->state >= PERF_EVENT_STATE_OFF)
7292 			event->state = PERF_EVENT_STATE_INACTIVE;
7293 		account_event_cpu(event, dst_cpu);
7294 		perf_install_in_context(dst_ctx, event, dst_cpu);
7295 		get_ctx(dst_ctx);
7296 	}
7297 	mutex_unlock(&dst_ctx->mutex);
7298 }
7299 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7300 
7301 static void sync_child_event(struct perf_event *child_event,
7302 			       struct task_struct *child)
7303 {
7304 	struct perf_event *parent_event = child_event->parent;
7305 	u64 child_val;
7306 
7307 	if (child_event->attr.inherit_stat)
7308 		perf_event_read_event(child_event, child);
7309 
7310 	child_val = perf_event_count(child_event);
7311 
7312 	/*
7313 	 * Add back the child's count to the parent's count:
7314 	 */
7315 	atomic64_add(child_val, &parent_event->child_count);
7316 	atomic64_add(child_event->total_time_enabled,
7317 		     &parent_event->child_total_time_enabled);
7318 	atomic64_add(child_event->total_time_running,
7319 		     &parent_event->child_total_time_running);
7320 
7321 	/*
7322 	 * Remove this event from the parent's list
7323 	 */
7324 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7325 	mutex_lock(&parent_event->child_mutex);
7326 	list_del_init(&child_event->child_list);
7327 	mutex_unlock(&parent_event->child_mutex);
7328 
7329 	/*
7330 	 * Release the parent event, if this was the last
7331 	 * reference to it.
7332 	 */
7333 	put_event(parent_event);
7334 }
7335 
7336 static void
7337 __perf_event_exit_task(struct perf_event *child_event,
7338 			 struct perf_event_context *child_ctx,
7339 			 struct task_struct *child)
7340 {
7341 	if (child_event->parent) {
7342 		raw_spin_lock_irq(&child_ctx->lock);
7343 		perf_group_detach(child_event);
7344 		raw_spin_unlock_irq(&child_ctx->lock);
7345 	}
7346 
7347 	perf_remove_from_context(child_event);
7348 
7349 	/*
7350 	 * It can happen that the parent exits first, and has events
7351 	 * that are still around due to the child reference. These
7352 	 * events need to be zapped.
7353 	 */
7354 	if (child_event->parent) {
7355 		sync_child_event(child_event, child);
7356 		free_event(child_event);
7357 	}
7358 }
7359 
7360 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7361 {
7362 	struct perf_event *child_event, *tmp;
7363 	struct perf_event_context *child_ctx;
7364 	unsigned long flags;
7365 
7366 	if (likely(!child->perf_event_ctxp[ctxn])) {
7367 		perf_event_task(child, NULL, 0);
7368 		return;
7369 	}
7370 
7371 	local_irq_save(flags);
7372 	/*
7373 	 * We can't reschedule here because interrupts are disabled,
7374 	 * and either child is current or it is a task that can't be
7375 	 * scheduled, so we are now safe from rescheduling changing
7376 	 * our context.
7377 	 */
7378 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7379 
7380 	/*
7381 	 * Take the context lock here so that if find_get_context is
7382 	 * reading child->perf_event_ctxp, we wait until it has
7383 	 * incremented the context's refcount before we do put_ctx below.
7384 	 */
7385 	raw_spin_lock(&child_ctx->lock);
7386 	task_ctx_sched_out(child_ctx);
7387 	child->perf_event_ctxp[ctxn] = NULL;
7388 	/*
7389 	 * If this context is a clone; unclone it so it can't get
7390 	 * swapped to another process while we're removing all
7391 	 * the events from it.
7392 	 */
7393 	unclone_ctx(child_ctx);
7394 	update_context_time(child_ctx);
7395 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7396 
7397 	/*
7398 	 * Report the task dead after unscheduling the events so that we
7399 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
7400 	 * get a few PERF_RECORD_READ events.
7401 	 */
7402 	perf_event_task(child, child_ctx, 0);
7403 
7404 	/*
7405 	 * We can recurse on the same lock type through:
7406 	 *
7407 	 *   __perf_event_exit_task()
7408 	 *     sync_child_event()
7409 	 *       put_event()
7410 	 *         mutex_lock(&ctx->mutex)
7411 	 *
7412 	 * But since its the parent context it won't be the same instance.
7413 	 */
7414 	mutex_lock(&child_ctx->mutex);
7415 
7416 again:
7417 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7418 				 group_entry)
7419 		__perf_event_exit_task(child_event, child_ctx, child);
7420 
7421 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7422 				 group_entry)
7423 		__perf_event_exit_task(child_event, child_ctx, child);
7424 
7425 	/*
7426 	 * If the last event was a group event, it will have appended all
7427 	 * its siblings to the list, but we obtained 'tmp' before that which
7428 	 * will still point to the list head terminating the iteration.
7429 	 */
7430 	if (!list_empty(&child_ctx->pinned_groups) ||
7431 	    !list_empty(&child_ctx->flexible_groups))
7432 		goto again;
7433 
7434 	mutex_unlock(&child_ctx->mutex);
7435 
7436 	put_ctx(child_ctx);
7437 }
7438 
7439 /*
7440  * When a child task exits, feed back event values to parent events.
7441  */
7442 void perf_event_exit_task(struct task_struct *child)
7443 {
7444 	struct perf_event *event, *tmp;
7445 	int ctxn;
7446 
7447 	mutex_lock(&child->perf_event_mutex);
7448 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7449 				 owner_entry) {
7450 		list_del_init(&event->owner_entry);
7451 
7452 		/*
7453 		 * Ensure the list deletion is visible before we clear
7454 		 * the owner, closes a race against perf_release() where
7455 		 * we need to serialize on the owner->perf_event_mutex.
7456 		 */
7457 		smp_wmb();
7458 		event->owner = NULL;
7459 	}
7460 	mutex_unlock(&child->perf_event_mutex);
7461 
7462 	for_each_task_context_nr(ctxn)
7463 		perf_event_exit_task_context(child, ctxn);
7464 }
7465 
7466 static void perf_free_event(struct perf_event *event,
7467 			    struct perf_event_context *ctx)
7468 {
7469 	struct perf_event *parent = event->parent;
7470 
7471 	if (WARN_ON_ONCE(!parent))
7472 		return;
7473 
7474 	mutex_lock(&parent->child_mutex);
7475 	list_del_init(&event->child_list);
7476 	mutex_unlock(&parent->child_mutex);
7477 
7478 	put_event(parent);
7479 
7480 	perf_group_detach(event);
7481 	list_del_event(event, ctx);
7482 	free_event(event);
7483 }
7484 
7485 /*
7486  * free an unexposed, unused context as created by inheritance by
7487  * perf_event_init_task below, used by fork() in case of fail.
7488  */
7489 void perf_event_free_task(struct task_struct *task)
7490 {
7491 	struct perf_event_context *ctx;
7492 	struct perf_event *event, *tmp;
7493 	int ctxn;
7494 
7495 	for_each_task_context_nr(ctxn) {
7496 		ctx = task->perf_event_ctxp[ctxn];
7497 		if (!ctx)
7498 			continue;
7499 
7500 		mutex_lock(&ctx->mutex);
7501 again:
7502 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7503 				group_entry)
7504 			perf_free_event(event, ctx);
7505 
7506 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7507 				group_entry)
7508 			perf_free_event(event, ctx);
7509 
7510 		if (!list_empty(&ctx->pinned_groups) ||
7511 				!list_empty(&ctx->flexible_groups))
7512 			goto again;
7513 
7514 		mutex_unlock(&ctx->mutex);
7515 
7516 		put_ctx(ctx);
7517 	}
7518 }
7519 
7520 void perf_event_delayed_put(struct task_struct *task)
7521 {
7522 	int ctxn;
7523 
7524 	for_each_task_context_nr(ctxn)
7525 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7526 }
7527 
7528 /*
7529  * inherit a event from parent task to child task:
7530  */
7531 static struct perf_event *
7532 inherit_event(struct perf_event *parent_event,
7533 	      struct task_struct *parent,
7534 	      struct perf_event_context *parent_ctx,
7535 	      struct task_struct *child,
7536 	      struct perf_event *group_leader,
7537 	      struct perf_event_context *child_ctx)
7538 {
7539 	struct perf_event *child_event;
7540 	unsigned long flags;
7541 
7542 	/*
7543 	 * Instead of creating recursive hierarchies of events,
7544 	 * we link inherited events back to the original parent,
7545 	 * which has a filp for sure, which we use as the reference
7546 	 * count:
7547 	 */
7548 	if (parent_event->parent)
7549 		parent_event = parent_event->parent;
7550 
7551 	child_event = perf_event_alloc(&parent_event->attr,
7552 					   parent_event->cpu,
7553 					   child,
7554 					   group_leader, parent_event,
7555 				           NULL, NULL);
7556 	if (IS_ERR(child_event))
7557 		return child_event;
7558 
7559 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7560 		free_event(child_event);
7561 		return NULL;
7562 	}
7563 
7564 	get_ctx(child_ctx);
7565 
7566 	/*
7567 	 * Make the child state follow the state of the parent event,
7568 	 * not its attr.disabled bit.  We hold the parent's mutex,
7569 	 * so we won't race with perf_event_{en, dis}able_family.
7570 	 */
7571 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7572 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7573 	else
7574 		child_event->state = PERF_EVENT_STATE_OFF;
7575 
7576 	if (parent_event->attr.freq) {
7577 		u64 sample_period = parent_event->hw.sample_period;
7578 		struct hw_perf_event *hwc = &child_event->hw;
7579 
7580 		hwc->sample_period = sample_period;
7581 		hwc->last_period   = sample_period;
7582 
7583 		local64_set(&hwc->period_left, sample_period);
7584 	}
7585 
7586 	child_event->ctx = child_ctx;
7587 	child_event->overflow_handler = parent_event->overflow_handler;
7588 	child_event->overflow_handler_context
7589 		= parent_event->overflow_handler_context;
7590 
7591 	/*
7592 	 * Precalculate sample_data sizes
7593 	 */
7594 	perf_event__header_size(child_event);
7595 	perf_event__id_header_size(child_event);
7596 
7597 	/*
7598 	 * Link it up in the child's context:
7599 	 */
7600 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7601 	add_event_to_ctx(child_event, child_ctx);
7602 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7603 
7604 	/*
7605 	 * Link this into the parent event's child list
7606 	 */
7607 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7608 	mutex_lock(&parent_event->child_mutex);
7609 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7610 	mutex_unlock(&parent_event->child_mutex);
7611 
7612 	return child_event;
7613 }
7614 
7615 static int inherit_group(struct perf_event *parent_event,
7616 	      struct task_struct *parent,
7617 	      struct perf_event_context *parent_ctx,
7618 	      struct task_struct *child,
7619 	      struct perf_event_context *child_ctx)
7620 {
7621 	struct perf_event *leader;
7622 	struct perf_event *sub;
7623 	struct perf_event *child_ctr;
7624 
7625 	leader = inherit_event(parent_event, parent, parent_ctx,
7626 				 child, NULL, child_ctx);
7627 	if (IS_ERR(leader))
7628 		return PTR_ERR(leader);
7629 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7630 		child_ctr = inherit_event(sub, parent, parent_ctx,
7631 					    child, leader, child_ctx);
7632 		if (IS_ERR(child_ctr))
7633 			return PTR_ERR(child_ctr);
7634 	}
7635 	return 0;
7636 }
7637 
7638 static int
7639 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7640 		   struct perf_event_context *parent_ctx,
7641 		   struct task_struct *child, int ctxn,
7642 		   int *inherited_all)
7643 {
7644 	int ret;
7645 	struct perf_event_context *child_ctx;
7646 
7647 	if (!event->attr.inherit) {
7648 		*inherited_all = 0;
7649 		return 0;
7650 	}
7651 
7652 	child_ctx = child->perf_event_ctxp[ctxn];
7653 	if (!child_ctx) {
7654 		/*
7655 		 * This is executed from the parent task context, so
7656 		 * inherit events that have been marked for cloning.
7657 		 * First allocate and initialize a context for the
7658 		 * child.
7659 		 */
7660 
7661 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7662 		if (!child_ctx)
7663 			return -ENOMEM;
7664 
7665 		child->perf_event_ctxp[ctxn] = child_ctx;
7666 	}
7667 
7668 	ret = inherit_group(event, parent, parent_ctx,
7669 			    child, child_ctx);
7670 
7671 	if (ret)
7672 		*inherited_all = 0;
7673 
7674 	return ret;
7675 }
7676 
7677 /*
7678  * Initialize the perf_event context in task_struct
7679  */
7680 int perf_event_init_context(struct task_struct *child, int ctxn)
7681 {
7682 	struct perf_event_context *child_ctx, *parent_ctx;
7683 	struct perf_event_context *cloned_ctx;
7684 	struct perf_event *event;
7685 	struct task_struct *parent = current;
7686 	int inherited_all = 1;
7687 	unsigned long flags;
7688 	int ret = 0;
7689 
7690 	if (likely(!parent->perf_event_ctxp[ctxn]))
7691 		return 0;
7692 
7693 	/*
7694 	 * If the parent's context is a clone, pin it so it won't get
7695 	 * swapped under us.
7696 	 */
7697 	parent_ctx = perf_pin_task_context(parent, ctxn);
7698 
7699 	/*
7700 	 * No need to check if parent_ctx != NULL here; since we saw
7701 	 * it non-NULL earlier, the only reason for it to become NULL
7702 	 * is if we exit, and since we're currently in the middle of
7703 	 * a fork we can't be exiting at the same time.
7704 	 */
7705 
7706 	/*
7707 	 * Lock the parent list. No need to lock the child - not PID
7708 	 * hashed yet and not running, so nobody can access it.
7709 	 */
7710 	mutex_lock(&parent_ctx->mutex);
7711 
7712 	/*
7713 	 * We dont have to disable NMIs - we are only looking at
7714 	 * the list, not manipulating it:
7715 	 */
7716 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7717 		ret = inherit_task_group(event, parent, parent_ctx,
7718 					 child, ctxn, &inherited_all);
7719 		if (ret)
7720 			break;
7721 	}
7722 
7723 	/*
7724 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7725 	 * to allocations, but we need to prevent rotation because
7726 	 * rotate_ctx() will change the list from interrupt context.
7727 	 */
7728 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7729 	parent_ctx->rotate_disable = 1;
7730 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7731 
7732 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7733 		ret = inherit_task_group(event, parent, parent_ctx,
7734 					 child, ctxn, &inherited_all);
7735 		if (ret)
7736 			break;
7737 	}
7738 
7739 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7740 	parent_ctx->rotate_disable = 0;
7741 
7742 	child_ctx = child->perf_event_ctxp[ctxn];
7743 
7744 	if (child_ctx && inherited_all) {
7745 		/*
7746 		 * Mark the child context as a clone of the parent
7747 		 * context, or of whatever the parent is a clone of.
7748 		 *
7749 		 * Note that if the parent is a clone, the holding of
7750 		 * parent_ctx->lock avoids it from being uncloned.
7751 		 */
7752 		cloned_ctx = parent_ctx->parent_ctx;
7753 		if (cloned_ctx) {
7754 			child_ctx->parent_ctx = cloned_ctx;
7755 			child_ctx->parent_gen = parent_ctx->parent_gen;
7756 		} else {
7757 			child_ctx->parent_ctx = parent_ctx;
7758 			child_ctx->parent_gen = parent_ctx->generation;
7759 		}
7760 		get_ctx(child_ctx->parent_ctx);
7761 	}
7762 
7763 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7764 	mutex_unlock(&parent_ctx->mutex);
7765 
7766 	perf_unpin_context(parent_ctx);
7767 	put_ctx(parent_ctx);
7768 
7769 	return ret;
7770 }
7771 
7772 /*
7773  * Initialize the perf_event context in task_struct
7774  */
7775 int perf_event_init_task(struct task_struct *child)
7776 {
7777 	int ctxn, ret;
7778 
7779 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7780 	mutex_init(&child->perf_event_mutex);
7781 	INIT_LIST_HEAD(&child->perf_event_list);
7782 
7783 	for_each_task_context_nr(ctxn) {
7784 		ret = perf_event_init_context(child, ctxn);
7785 		if (ret)
7786 			return ret;
7787 	}
7788 
7789 	return 0;
7790 }
7791 
7792 static void __init perf_event_init_all_cpus(void)
7793 {
7794 	struct swevent_htable *swhash;
7795 	int cpu;
7796 
7797 	for_each_possible_cpu(cpu) {
7798 		swhash = &per_cpu(swevent_htable, cpu);
7799 		mutex_init(&swhash->hlist_mutex);
7800 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7801 	}
7802 }
7803 
7804 static void perf_event_init_cpu(int cpu)
7805 {
7806 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7807 
7808 	mutex_lock(&swhash->hlist_mutex);
7809 	if (swhash->hlist_refcount > 0) {
7810 		struct swevent_hlist *hlist;
7811 
7812 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7813 		WARN_ON(!hlist);
7814 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7815 	}
7816 	mutex_unlock(&swhash->hlist_mutex);
7817 }
7818 
7819 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7820 static void perf_pmu_rotate_stop(struct pmu *pmu)
7821 {
7822 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7823 
7824 	WARN_ON(!irqs_disabled());
7825 
7826 	list_del_init(&cpuctx->rotation_list);
7827 }
7828 
7829 static void __perf_event_exit_context(void *__info)
7830 {
7831 	struct perf_event_context *ctx = __info;
7832 	struct perf_event *event, *tmp;
7833 
7834 	perf_pmu_rotate_stop(ctx->pmu);
7835 
7836 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7837 		__perf_remove_from_context(event);
7838 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7839 		__perf_remove_from_context(event);
7840 }
7841 
7842 static void perf_event_exit_cpu_context(int cpu)
7843 {
7844 	struct perf_event_context *ctx;
7845 	struct pmu *pmu;
7846 	int idx;
7847 
7848 	idx = srcu_read_lock(&pmus_srcu);
7849 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7850 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7851 
7852 		mutex_lock(&ctx->mutex);
7853 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7854 		mutex_unlock(&ctx->mutex);
7855 	}
7856 	srcu_read_unlock(&pmus_srcu, idx);
7857 }
7858 
7859 static void perf_event_exit_cpu(int cpu)
7860 {
7861 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7862 
7863 	mutex_lock(&swhash->hlist_mutex);
7864 	swevent_hlist_release(swhash);
7865 	mutex_unlock(&swhash->hlist_mutex);
7866 
7867 	perf_event_exit_cpu_context(cpu);
7868 }
7869 #else
7870 static inline void perf_event_exit_cpu(int cpu) { }
7871 #endif
7872 
7873 static int
7874 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7875 {
7876 	int cpu;
7877 
7878 	for_each_online_cpu(cpu)
7879 		perf_event_exit_cpu(cpu);
7880 
7881 	return NOTIFY_OK;
7882 }
7883 
7884 /*
7885  * Run the perf reboot notifier at the very last possible moment so that
7886  * the generic watchdog code runs as long as possible.
7887  */
7888 static struct notifier_block perf_reboot_notifier = {
7889 	.notifier_call = perf_reboot,
7890 	.priority = INT_MIN,
7891 };
7892 
7893 static int
7894 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7895 {
7896 	unsigned int cpu = (long)hcpu;
7897 
7898 	switch (action & ~CPU_TASKS_FROZEN) {
7899 
7900 	case CPU_UP_PREPARE:
7901 	case CPU_DOWN_FAILED:
7902 		perf_event_init_cpu(cpu);
7903 		break;
7904 
7905 	case CPU_UP_CANCELED:
7906 	case CPU_DOWN_PREPARE:
7907 		perf_event_exit_cpu(cpu);
7908 		break;
7909 	default:
7910 		break;
7911 	}
7912 
7913 	return NOTIFY_OK;
7914 }
7915 
7916 void __init perf_event_init(void)
7917 {
7918 	int ret;
7919 
7920 	idr_init(&pmu_idr);
7921 
7922 	perf_event_init_all_cpus();
7923 	init_srcu_struct(&pmus_srcu);
7924 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7925 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7926 	perf_pmu_register(&perf_task_clock, NULL, -1);
7927 	perf_tp_register();
7928 	perf_cpu_notifier(perf_cpu_notify);
7929 	register_reboot_notifier(&perf_reboot_notifier);
7930 
7931 	ret = init_hw_breakpoint();
7932 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7933 
7934 	/* do not patch jump label more than once per second */
7935 	jump_label_rate_limit(&perf_sched_events, HZ);
7936 
7937 	/*
7938 	 * Build time assertion that we keep the data_head at the intended
7939 	 * location.  IOW, validation we got the __reserved[] size right.
7940 	 */
7941 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7942 		     != 1024);
7943 }
7944 
7945 static int __init perf_event_sysfs_init(void)
7946 {
7947 	struct pmu *pmu;
7948 	int ret;
7949 
7950 	mutex_lock(&pmus_lock);
7951 
7952 	ret = bus_register(&pmu_bus);
7953 	if (ret)
7954 		goto unlock;
7955 
7956 	list_for_each_entry(pmu, &pmus, entry) {
7957 		if (!pmu->name || pmu->type < 0)
7958 			continue;
7959 
7960 		ret = pmu_dev_alloc(pmu);
7961 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7962 	}
7963 	pmu_bus_running = 1;
7964 	ret = 0;
7965 
7966 unlock:
7967 	mutex_unlock(&pmus_lock);
7968 
7969 	return ret;
7970 }
7971 device_initcall(perf_event_sysfs_init);
7972 
7973 #ifdef CONFIG_CGROUP_PERF
7974 static struct cgroup_subsys_state *
7975 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7976 {
7977 	struct perf_cgroup *jc;
7978 
7979 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7980 	if (!jc)
7981 		return ERR_PTR(-ENOMEM);
7982 
7983 	jc->info = alloc_percpu(struct perf_cgroup_info);
7984 	if (!jc->info) {
7985 		kfree(jc);
7986 		return ERR_PTR(-ENOMEM);
7987 	}
7988 
7989 	return &jc->css;
7990 }
7991 
7992 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
7993 {
7994 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
7995 
7996 	free_percpu(jc->info);
7997 	kfree(jc);
7998 }
7999 
8000 static int __perf_cgroup_move(void *info)
8001 {
8002 	struct task_struct *task = info;
8003 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
8004 	return 0;
8005 }
8006 
8007 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
8008 			       struct cgroup_taskset *tset)
8009 {
8010 	struct task_struct *task;
8011 
8012 	cgroup_taskset_for_each(task, css, tset)
8013 		task_function_call(task, __perf_cgroup_move, task);
8014 }
8015 
8016 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
8017 			     struct cgroup_subsys_state *old_css,
8018 			     struct task_struct *task)
8019 {
8020 	/*
8021 	 * cgroup_exit() is called in the copy_process() failure path.
8022 	 * Ignore this case since the task hasn't ran yet, this avoids
8023 	 * trying to poke a half freed task state from generic code.
8024 	 */
8025 	if (!(task->flags & PF_EXITING))
8026 		return;
8027 
8028 	task_function_call(task, __perf_cgroup_move, task);
8029 }
8030 
8031 struct cgroup_subsys perf_subsys = {
8032 	.name		= "perf_event",
8033 	.subsys_id	= perf_subsys_id,
8034 	.css_alloc	= perf_cgroup_css_alloc,
8035 	.css_free	= perf_cgroup_css_free,
8036 	.exit		= perf_cgroup_exit,
8037 	.attach		= perf_cgroup_attach,
8038 };
8039 #endif /* CONFIG_CGROUP_PERF */
8040