1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/perf_event.h> 38 #include <linux/ftrace_event.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/cgroup.h> 42 43 #include "internal.h" 44 45 #include <asm/irq_regs.h> 46 47 struct remote_function_call { 48 struct task_struct *p; 49 int (*func)(void *info); 50 void *info; 51 int ret; 52 }; 53 54 static void remote_function(void *data) 55 { 56 struct remote_function_call *tfc = data; 57 struct task_struct *p = tfc->p; 58 59 if (p) { 60 tfc->ret = -EAGAIN; 61 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 62 return; 63 } 64 65 tfc->ret = tfc->func(tfc->info); 66 } 67 68 /** 69 * task_function_call - call a function on the cpu on which a task runs 70 * @p: the task to evaluate 71 * @func: the function to be called 72 * @info: the function call argument 73 * 74 * Calls the function @func when the task is currently running. This might 75 * be on the current CPU, which just calls the function directly 76 * 77 * returns: @func return value, or 78 * -ESRCH - when the process isn't running 79 * -EAGAIN - when the process moved away 80 */ 81 static int 82 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 83 { 84 struct remote_function_call data = { 85 .p = p, 86 .func = func, 87 .info = info, 88 .ret = -ESRCH, /* No such (running) process */ 89 }; 90 91 if (task_curr(p)) 92 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 93 94 return data.ret; 95 } 96 97 /** 98 * cpu_function_call - call a function on the cpu 99 * @func: the function to be called 100 * @info: the function call argument 101 * 102 * Calls the function @func on the remote cpu. 103 * 104 * returns: @func return value or -ENXIO when the cpu is offline 105 */ 106 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 107 { 108 struct remote_function_call data = { 109 .p = NULL, 110 .func = func, 111 .info = info, 112 .ret = -ENXIO, /* No such CPU */ 113 }; 114 115 smp_call_function_single(cpu, remote_function, &data, 1); 116 117 return data.ret; 118 } 119 120 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 121 PERF_FLAG_FD_OUTPUT |\ 122 PERF_FLAG_PID_CGROUP) 123 124 /* 125 * branch priv levels that need permission checks 126 */ 127 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 128 (PERF_SAMPLE_BRANCH_KERNEL |\ 129 PERF_SAMPLE_BRANCH_HV) 130 131 enum event_type_t { 132 EVENT_FLEXIBLE = 0x1, 133 EVENT_PINNED = 0x2, 134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 135 }; 136 137 /* 138 * perf_sched_events : >0 events exist 139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 140 */ 141 struct static_key_deferred perf_sched_events __read_mostly; 142 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 143 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 144 145 static atomic_t nr_mmap_events __read_mostly; 146 static atomic_t nr_comm_events __read_mostly; 147 static atomic_t nr_task_events __read_mostly; 148 static atomic_t nr_freq_events __read_mostly; 149 150 static LIST_HEAD(pmus); 151 static DEFINE_MUTEX(pmus_lock); 152 static struct srcu_struct pmus_srcu; 153 154 /* 155 * perf event paranoia level: 156 * -1 - not paranoid at all 157 * 0 - disallow raw tracepoint access for unpriv 158 * 1 - disallow cpu events for unpriv 159 * 2 - disallow kernel profiling for unpriv 160 */ 161 int sysctl_perf_event_paranoid __read_mostly = 1; 162 163 /* Minimum for 512 kiB + 1 user control page */ 164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 165 166 /* 167 * max perf event sample rate 168 */ 169 #define DEFAULT_MAX_SAMPLE_RATE 100000 170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 172 173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 174 175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 177 178 static int perf_sample_allowed_ns __read_mostly = 179 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 180 181 void update_perf_cpu_limits(void) 182 { 183 u64 tmp = perf_sample_period_ns; 184 185 tmp *= sysctl_perf_cpu_time_max_percent; 186 do_div(tmp, 100); 187 ACCESS_ONCE(perf_sample_allowed_ns) = tmp; 188 } 189 190 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 191 192 int perf_proc_update_handler(struct ctl_table *table, int write, 193 void __user *buffer, size_t *lenp, 194 loff_t *ppos) 195 { 196 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 197 198 if (ret || !write) 199 return ret; 200 201 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 202 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 203 update_perf_cpu_limits(); 204 205 return 0; 206 } 207 208 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 209 210 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 211 void __user *buffer, size_t *lenp, 212 loff_t *ppos) 213 { 214 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 215 216 if (ret || !write) 217 return ret; 218 219 update_perf_cpu_limits(); 220 221 return 0; 222 } 223 224 /* 225 * perf samples are done in some very critical code paths (NMIs). 226 * If they take too much CPU time, the system can lock up and not 227 * get any real work done. This will drop the sample rate when 228 * we detect that events are taking too long. 229 */ 230 #define NR_ACCUMULATED_SAMPLES 128 231 static DEFINE_PER_CPU(u64, running_sample_length); 232 233 void perf_sample_event_took(u64 sample_len_ns) 234 { 235 u64 avg_local_sample_len; 236 u64 local_samples_len; 237 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns); 238 239 if (allowed_ns == 0) 240 return; 241 242 /* decay the counter by 1 average sample */ 243 local_samples_len = __get_cpu_var(running_sample_length); 244 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES; 245 local_samples_len += sample_len_ns; 246 __get_cpu_var(running_sample_length) = local_samples_len; 247 248 /* 249 * note: this will be biased artifically low until we have 250 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 251 * from having to maintain a count. 252 */ 253 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES; 254 255 if (avg_local_sample_len <= allowed_ns) 256 return; 257 258 if (max_samples_per_tick <= 1) 259 return; 260 261 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2); 262 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ; 263 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 264 265 printk_ratelimited(KERN_WARNING 266 "perf samples too long (%lld > %lld), lowering " 267 "kernel.perf_event_max_sample_rate to %d\n", 268 avg_local_sample_len, allowed_ns, 269 sysctl_perf_event_sample_rate); 270 271 update_perf_cpu_limits(); 272 } 273 274 static atomic64_t perf_event_id; 275 276 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 277 enum event_type_t event_type); 278 279 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 280 enum event_type_t event_type, 281 struct task_struct *task); 282 283 static void update_context_time(struct perf_event_context *ctx); 284 static u64 perf_event_time(struct perf_event *event); 285 286 void __weak perf_event_print_debug(void) { } 287 288 extern __weak const char *perf_pmu_name(void) 289 { 290 return "pmu"; 291 } 292 293 static inline u64 perf_clock(void) 294 { 295 return local_clock(); 296 } 297 298 static inline struct perf_cpu_context * 299 __get_cpu_context(struct perf_event_context *ctx) 300 { 301 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 302 } 303 304 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 305 struct perf_event_context *ctx) 306 { 307 raw_spin_lock(&cpuctx->ctx.lock); 308 if (ctx) 309 raw_spin_lock(&ctx->lock); 310 } 311 312 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 313 struct perf_event_context *ctx) 314 { 315 if (ctx) 316 raw_spin_unlock(&ctx->lock); 317 raw_spin_unlock(&cpuctx->ctx.lock); 318 } 319 320 #ifdef CONFIG_CGROUP_PERF 321 322 /* 323 * perf_cgroup_info keeps track of time_enabled for a cgroup. 324 * This is a per-cpu dynamically allocated data structure. 325 */ 326 struct perf_cgroup_info { 327 u64 time; 328 u64 timestamp; 329 }; 330 331 struct perf_cgroup { 332 struct cgroup_subsys_state css; 333 struct perf_cgroup_info __percpu *info; 334 }; 335 336 /* 337 * Must ensure cgroup is pinned (css_get) before calling 338 * this function. In other words, we cannot call this function 339 * if there is no cgroup event for the current CPU context. 340 */ 341 static inline struct perf_cgroup * 342 perf_cgroup_from_task(struct task_struct *task) 343 { 344 return container_of(task_css(task, perf_subsys_id), 345 struct perf_cgroup, css); 346 } 347 348 static inline bool 349 perf_cgroup_match(struct perf_event *event) 350 { 351 struct perf_event_context *ctx = event->ctx; 352 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 353 354 /* @event doesn't care about cgroup */ 355 if (!event->cgrp) 356 return true; 357 358 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 359 if (!cpuctx->cgrp) 360 return false; 361 362 /* 363 * Cgroup scoping is recursive. An event enabled for a cgroup is 364 * also enabled for all its descendant cgroups. If @cpuctx's 365 * cgroup is a descendant of @event's (the test covers identity 366 * case), it's a match. 367 */ 368 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 369 event->cgrp->css.cgroup); 370 } 371 372 static inline bool perf_tryget_cgroup(struct perf_event *event) 373 { 374 return css_tryget(&event->cgrp->css); 375 } 376 377 static inline void perf_put_cgroup(struct perf_event *event) 378 { 379 css_put(&event->cgrp->css); 380 } 381 382 static inline void perf_detach_cgroup(struct perf_event *event) 383 { 384 perf_put_cgroup(event); 385 event->cgrp = NULL; 386 } 387 388 static inline int is_cgroup_event(struct perf_event *event) 389 { 390 return event->cgrp != NULL; 391 } 392 393 static inline u64 perf_cgroup_event_time(struct perf_event *event) 394 { 395 struct perf_cgroup_info *t; 396 397 t = per_cpu_ptr(event->cgrp->info, event->cpu); 398 return t->time; 399 } 400 401 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 402 { 403 struct perf_cgroup_info *info; 404 u64 now; 405 406 now = perf_clock(); 407 408 info = this_cpu_ptr(cgrp->info); 409 410 info->time += now - info->timestamp; 411 info->timestamp = now; 412 } 413 414 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 415 { 416 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 417 if (cgrp_out) 418 __update_cgrp_time(cgrp_out); 419 } 420 421 static inline void update_cgrp_time_from_event(struct perf_event *event) 422 { 423 struct perf_cgroup *cgrp; 424 425 /* 426 * ensure we access cgroup data only when needed and 427 * when we know the cgroup is pinned (css_get) 428 */ 429 if (!is_cgroup_event(event)) 430 return; 431 432 cgrp = perf_cgroup_from_task(current); 433 /* 434 * Do not update time when cgroup is not active 435 */ 436 if (cgrp == event->cgrp) 437 __update_cgrp_time(event->cgrp); 438 } 439 440 static inline void 441 perf_cgroup_set_timestamp(struct task_struct *task, 442 struct perf_event_context *ctx) 443 { 444 struct perf_cgroup *cgrp; 445 struct perf_cgroup_info *info; 446 447 /* 448 * ctx->lock held by caller 449 * ensure we do not access cgroup data 450 * unless we have the cgroup pinned (css_get) 451 */ 452 if (!task || !ctx->nr_cgroups) 453 return; 454 455 cgrp = perf_cgroup_from_task(task); 456 info = this_cpu_ptr(cgrp->info); 457 info->timestamp = ctx->timestamp; 458 } 459 460 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 461 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 462 463 /* 464 * reschedule events based on the cgroup constraint of task. 465 * 466 * mode SWOUT : schedule out everything 467 * mode SWIN : schedule in based on cgroup for next 468 */ 469 void perf_cgroup_switch(struct task_struct *task, int mode) 470 { 471 struct perf_cpu_context *cpuctx; 472 struct pmu *pmu; 473 unsigned long flags; 474 475 /* 476 * disable interrupts to avoid geting nr_cgroup 477 * changes via __perf_event_disable(). Also 478 * avoids preemption. 479 */ 480 local_irq_save(flags); 481 482 /* 483 * we reschedule only in the presence of cgroup 484 * constrained events. 485 */ 486 rcu_read_lock(); 487 488 list_for_each_entry_rcu(pmu, &pmus, entry) { 489 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 490 if (cpuctx->unique_pmu != pmu) 491 continue; /* ensure we process each cpuctx once */ 492 493 /* 494 * perf_cgroup_events says at least one 495 * context on this CPU has cgroup events. 496 * 497 * ctx->nr_cgroups reports the number of cgroup 498 * events for a context. 499 */ 500 if (cpuctx->ctx.nr_cgroups > 0) { 501 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 502 perf_pmu_disable(cpuctx->ctx.pmu); 503 504 if (mode & PERF_CGROUP_SWOUT) { 505 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 506 /* 507 * must not be done before ctxswout due 508 * to event_filter_match() in event_sched_out() 509 */ 510 cpuctx->cgrp = NULL; 511 } 512 513 if (mode & PERF_CGROUP_SWIN) { 514 WARN_ON_ONCE(cpuctx->cgrp); 515 /* 516 * set cgrp before ctxsw in to allow 517 * event_filter_match() to not have to pass 518 * task around 519 */ 520 cpuctx->cgrp = perf_cgroup_from_task(task); 521 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 522 } 523 perf_pmu_enable(cpuctx->ctx.pmu); 524 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 525 } 526 } 527 528 rcu_read_unlock(); 529 530 local_irq_restore(flags); 531 } 532 533 static inline void perf_cgroup_sched_out(struct task_struct *task, 534 struct task_struct *next) 535 { 536 struct perf_cgroup *cgrp1; 537 struct perf_cgroup *cgrp2 = NULL; 538 539 /* 540 * we come here when we know perf_cgroup_events > 0 541 */ 542 cgrp1 = perf_cgroup_from_task(task); 543 544 /* 545 * next is NULL when called from perf_event_enable_on_exec() 546 * that will systematically cause a cgroup_switch() 547 */ 548 if (next) 549 cgrp2 = perf_cgroup_from_task(next); 550 551 /* 552 * only schedule out current cgroup events if we know 553 * that we are switching to a different cgroup. Otherwise, 554 * do no touch the cgroup events. 555 */ 556 if (cgrp1 != cgrp2) 557 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 558 } 559 560 static inline void perf_cgroup_sched_in(struct task_struct *prev, 561 struct task_struct *task) 562 { 563 struct perf_cgroup *cgrp1; 564 struct perf_cgroup *cgrp2 = NULL; 565 566 /* 567 * we come here when we know perf_cgroup_events > 0 568 */ 569 cgrp1 = perf_cgroup_from_task(task); 570 571 /* prev can never be NULL */ 572 cgrp2 = perf_cgroup_from_task(prev); 573 574 /* 575 * only need to schedule in cgroup events if we are changing 576 * cgroup during ctxsw. Cgroup events were not scheduled 577 * out of ctxsw out if that was not the case. 578 */ 579 if (cgrp1 != cgrp2) 580 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 581 } 582 583 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 584 struct perf_event_attr *attr, 585 struct perf_event *group_leader) 586 { 587 struct perf_cgroup *cgrp; 588 struct cgroup_subsys_state *css; 589 struct fd f = fdget(fd); 590 int ret = 0; 591 592 if (!f.file) 593 return -EBADF; 594 595 rcu_read_lock(); 596 597 css = css_from_dir(f.file->f_dentry, &perf_subsys); 598 if (IS_ERR(css)) { 599 ret = PTR_ERR(css); 600 goto out; 601 } 602 603 cgrp = container_of(css, struct perf_cgroup, css); 604 event->cgrp = cgrp; 605 606 /* must be done before we fput() the file */ 607 if (!perf_tryget_cgroup(event)) { 608 event->cgrp = NULL; 609 ret = -ENOENT; 610 goto out; 611 } 612 613 /* 614 * all events in a group must monitor 615 * the same cgroup because a task belongs 616 * to only one perf cgroup at a time 617 */ 618 if (group_leader && group_leader->cgrp != cgrp) { 619 perf_detach_cgroup(event); 620 ret = -EINVAL; 621 } 622 out: 623 rcu_read_unlock(); 624 fdput(f); 625 return ret; 626 } 627 628 static inline void 629 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 630 { 631 struct perf_cgroup_info *t; 632 t = per_cpu_ptr(event->cgrp->info, event->cpu); 633 event->shadow_ctx_time = now - t->timestamp; 634 } 635 636 static inline void 637 perf_cgroup_defer_enabled(struct perf_event *event) 638 { 639 /* 640 * when the current task's perf cgroup does not match 641 * the event's, we need to remember to call the 642 * perf_mark_enable() function the first time a task with 643 * a matching perf cgroup is scheduled in. 644 */ 645 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 646 event->cgrp_defer_enabled = 1; 647 } 648 649 static inline void 650 perf_cgroup_mark_enabled(struct perf_event *event, 651 struct perf_event_context *ctx) 652 { 653 struct perf_event *sub; 654 u64 tstamp = perf_event_time(event); 655 656 if (!event->cgrp_defer_enabled) 657 return; 658 659 event->cgrp_defer_enabled = 0; 660 661 event->tstamp_enabled = tstamp - event->total_time_enabled; 662 list_for_each_entry(sub, &event->sibling_list, group_entry) { 663 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 664 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 665 sub->cgrp_defer_enabled = 0; 666 } 667 } 668 } 669 #else /* !CONFIG_CGROUP_PERF */ 670 671 static inline bool 672 perf_cgroup_match(struct perf_event *event) 673 { 674 return true; 675 } 676 677 static inline void perf_detach_cgroup(struct perf_event *event) 678 {} 679 680 static inline int is_cgroup_event(struct perf_event *event) 681 { 682 return 0; 683 } 684 685 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 686 { 687 return 0; 688 } 689 690 static inline void update_cgrp_time_from_event(struct perf_event *event) 691 { 692 } 693 694 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 695 { 696 } 697 698 static inline void perf_cgroup_sched_out(struct task_struct *task, 699 struct task_struct *next) 700 { 701 } 702 703 static inline void perf_cgroup_sched_in(struct task_struct *prev, 704 struct task_struct *task) 705 { 706 } 707 708 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 709 struct perf_event_attr *attr, 710 struct perf_event *group_leader) 711 { 712 return -EINVAL; 713 } 714 715 static inline void 716 perf_cgroup_set_timestamp(struct task_struct *task, 717 struct perf_event_context *ctx) 718 { 719 } 720 721 void 722 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 723 { 724 } 725 726 static inline void 727 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 728 { 729 } 730 731 static inline u64 perf_cgroup_event_time(struct perf_event *event) 732 { 733 return 0; 734 } 735 736 static inline void 737 perf_cgroup_defer_enabled(struct perf_event *event) 738 { 739 } 740 741 static inline void 742 perf_cgroup_mark_enabled(struct perf_event *event, 743 struct perf_event_context *ctx) 744 { 745 } 746 #endif 747 748 /* 749 * set default to be dependent on timer tick just 750 * like original code 751 */ 752 #define PERF_CPU_HRTIMER (1000 / HZ) 753 /* 754 * function must be called with interrupts disbled 755 */ 756 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr) 757 { 758 struct perf_cpu_context *cpuctx; 759 enum hrtimer_restart ret = HRTIMER_NORESTART; 760 int rotations = 0; 761 762 WARN_ON(!irqs_disabled()); 763 764 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 765 766 rotations = perf_rotate_context(cpuctx); 767 768 /* 769 * arm timer if needed 770 */ 771 if (rotations) { 772 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 773 ret = HRTIMER_RESTART; 774 } 775 776 return ret; 777 } 778 779 /* CPU is going down */ 780 void perf_cpu_hrtimer_cancel(int cpu) 781 { 782 struct perf_cpu_context *cpuctx; 783 struct pmu *pmu; 784 unsigned long flags; 785 786 if (WARN_ON(cpu != smp_processor_id())) 787 return; 788 789 local_irq_save(flags); 790 791 rcu_read_lock(); 792 793 list_for_each_entry_rcu(pmu, &pmus, entry) { 794 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 795 796 if (pmu->task_ctx_nr == perf_sw_context) 797 continue; 798 799 hrtimer_cancel(&cpuctx->hrtimer); 800 } 801 802 rcu_read_unlock(); 803 804 local_irq_restore(flags); 805 } 806 807 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 808 { 809 struct hrtimer *hr = &cpuctx->hrtimer; 810 struct pmu *pmu = cpuctx->ctx.pmu; 811 int timer; 812 813 /* no multiplexing needed for SW PMU */ 814 if (pmu->task_ctx_nr == perf_sw_context) 815 return; 816 817 /* 818 * check default is sane, if not set then force to 819 * default interval (1/tick) 820 */ 821 timer = pmu->hrtimer_interval_ms; 822 if (timer < 1) 823 timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 824 825 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 826 827 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 828 hr->function = perf_cpu_hrtimer_handler; 829 } 830 831 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx) 832 { 833 struct hrtimer *hr = &cpuctx->hrtimer; 834 struct pmu *pmu = cpuctx->ctx.pmu; 835 836 /* not for SW PMU */ 837 if (pmu->task_ctx_nr == perf_sw_context) 838 return; 839 840 if (hrtimer_active(hr)) 841 return; 842 843 if (!hrtimer_callback_running(hr)) 844 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval, 845 0, HRTIMER_MODE_REL_PINNED, 0); 846 } 847 848 void perf_pmu_disable(struct pmu *pmu) 849 { 850 int *count = this_cpu_ptr(pmu->pmu_disable_count); 851 if (!(*count)++) 852 pmu->pmu_disable(pmu); 853 } 854 855 void perf_pmu_enable(struct pmu *pmu) 856 { 857 int *count = this_cpu_ptr(pmu->pmu_disable_count); 858 if (!--(*count)) 859 pmu->pmu_enable(pmu); 860 } 861 862 static DEFINE_PER_CPU(struct list_head, rotation_list); 863 864 /* 865 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 866 * because they're strictly cpu affine and rotate_start is called with IRQs 867 * disabled, while rotate_context is called from IRQ context. 868 */ 869 static void perf_pmu_rotate_start(struct pmu *pmu) 870 { 871 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 872 struct list_head *head = &__get_cpu_var(rotation_list); 873 874 WARN_ON(!irqs_disabled()); 875 876 if (list_empty(&cpuctx->rotation_list)) 877 list_add(&cpuctx->rotation_list, head); 878 } 879 880 static void get_ctx(struct perf_event_context *ctx) 881 { 882 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 883 } 884 885 static void put_ctx(struct perf_event_context *ctx) 886 { 887 if (atomic_dec_and_test(&ctx->refcount)) { 888 if (ctx->parent_ctx) 889 put_ctx(ctx->parent_ctx); 890 if (ctx->task) 891 put_task_struct(ctx->task); 892 kfree_rcu(ctx, rcu_head); 893 } 894 } 895 896 static void unclone_ctx(struct perf_event_context *ctx) 897 { 898 if (ctx->parent_ctx) { 899 put_ctx(ctx->parent_ctx); 900 ctx->parent_ctx = NULL; 901 } 902 ctx->generation++; 903 } 904 905 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 906 { 907 /* 908 * only top level events have the pid namespace they were created in 909 */ 910 if (event->parent) 911 event = event->parent; 912 913 return task_tgid_nr_ns(p, event->ns); 914 } 915 916 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 917 { 918 /* 919 * only top level events have the pid namespace they were created in 920 */ 921 if (event->parent) 922 event = event->parent; 923 924 return task_pid_nr_ns(p, event->ns); 925 } 926 927 /* 928 * If we inherit events we want to return the parent event id 929 * to userspace. 930 */ 931 static u64 primary_event_id(struct perf_event *event) 932 { 933 u64 id = event->id; 934 935 if (event->parent) 936 id = event->parent->id; 937 938 return id; 939 } 940 941 /* 942 * Get the perf_event_context for a task and lock it. 943 * This has to cope with with the fact that until it is locked, 944 * the context could get moved to another task. 945 */ 946 static struct perf_event_context * 947 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 948 { 949 struct perf_event_context *ctx; 950 951 retry: 952 /* 953 * One of the few rules of preemptible RCU is that one cannot do 954 * rcu_read_unlock() while holding a scheduler (or nested) lock when 955 * part of the read side critical section was preemptible -- see 956 * rcu_read_unlock_special(). 957 * 958 * Since ctx->lock nests under rq->lock we must ensure the entire read 959 * side critical section is non-preemptible. 960 */ 961 preempt_disable(); 962 rcu_read_lock(); 963 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 964 if (ctx) { 965 /* 966 * If this context is a clone of another, it might 967 * get swapped for another underneath us by 968 * perf_event_task_sched_out, though the 969 * rcu_read_lock() protects us from any context 970 * getting freed. Lock the context and check if it 971 * got swapped before we could get the lock, and retry 972 * if so. If we locked the right context, then it 973 * can't get swapped on us any more. 974 */ 975 raw_spin_lock_irqsave(&ctx->lock, *flags); 976 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 977 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 978 rcu_read_unlock(); 979 preempt_enable(); 980 goto retry; 981 } 982 983 if (!atomic_inc_not_zero(&ctx->refcount)) { 984 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 985 ctx = NULL; 986 } 987 } 988 rcu_read_unlock(); 989 preempt_enable(); 990 return ctx; 991 } 992 993 /* 994 * Get the context for a task and increment its pin_count so it 995 * can't get swapped to another task. This also increments its 996 * reference count so that the context can't get freed. 997 */ 998 static struct perf_event_context * 999 perf_pin_task_context(struct task_struct *task, int ctxn) 1000 { 1001 struct perf_event_context *ctx; 1002 unsigned long flags; 1003 1004 ctx = perf_lock_task_context(task, ctxn, &flags); 1005 if (ctx) { 1006 ++ctx->pin_count; 1007 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1008 } 1009 return ctx; 1010 } 1011 1012 static void perf_unpin_context(struct perf_event_context *ctx) 1013 { 1014 unsigned long flags; 1015 1016 raw_spin_lock_irqsave(&ctx->lock, flags); 1017 --ctx->pin_count; 1018 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1019 } 1020 1021 /* 1022 * Update the record of the current time in a context. 1023 */ 1024 static void update_context_time(struct perf_event_context *ctx) 1025 { 1026 u64 now = perf_clock(); 1027 1028 ctx->time += now - ctx->timestamp; 1029 ctx->timestamp = now; 1030 } 1031 1032 static u64 perf_event_time(struct perf_event *event) 1033 { 1034 struct perf_event_context *ctx = event->ctx; 1035 1036 if (is_cgroup_event(event)) 1037 return perf_cgroup_event_time(event); 1038 1039 return ctx ? ctx->time : 0; 1040 } 1041 1042 /* 1043 * Update the total_time_enabled and total_time_running fields for a event. 1044 * The caller of this function needs to hold the ctx->lock. 1045 */ 1046 static void update_event_times(struct perf_event *event) 1047 { 1048 struct perf_event_context *ctx = event->ctx; 1049 u64 run_end; 1050 1051 if (event->state < PERF_EVENT_STATE_INACTIVE || 1052 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 1053 return; 1054 /* 1055 * in cgroup mode, time_enabled represents 1056 * the time the event was enabled AND active 1057 * tasks were in the monitored cgroup. This is 1058 * independent of the activity of the context as 1059 * there may be a mix of cgroup and non-cgroup events. 1060 * 1061 * That is why we treat cgroup events differently 1062 * here. 1063 */ 1064 if (is_cgroup_event(event)) 1065 run_end = perf_cgroup_event_time(event); 1066 else if (ctx->is_active) 1067 run_end = ctx->time; 1068 else 1069 run_end = event->tstamp_stopped; 1070 1071 event->total_time_enabled = run_end - event->tstamp_enabled; 1072 1073 if (event->state == PERF_EVENT_STATE_INACTIVE) 1074 run_end = event->tstamp_stopped; 1075 else 1076 run_end = perf_event_time(event); 1077 1078 event->total_time_running = run_end - event->tstamp_running; 1079 1080 } 1081 1082 /* 1083 * Update total_time_enabled and total_time_running for all events in a group. 1084 */ 1085 static void update_group_times(struct perf_event *leader) 1086 { 1087 struct perf_event *event; 1088 1089 update_event_times(leader); 1090 list_for_each_entry(event, &leader->sibling_list, group_entry) 1091 update_event_times(event); 1092 } 1093 1094 static struct list_head * 1095 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1096 { 1097 if (event->attr.pinned) 1098 return &ctx->pinned_groups; 1099 else 1100 return &ctx->flexible_groups; 1101 } 1102 1103 /* 1104 * Add a event from the lists for its context. 1105 * Must be called with ctx->mutex and ctx->lock held. 1106 */ 1107 static void 1108 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1109 { 1110 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1111 event->attach_state |= PERF_ATTACH_CONTEXT; 1112 1113 /* 1114 * If we're a stand alone event or group leader, we go to the context 1115 * list, group events are kept attached to the group so that 1116 * perf_group_detach can, at all times, locate all siblings. 1117 */ 1118 if (event->group_leader == event) { 1119 struct list_head *list; 1120 1121 if (is_software_event(event)) 1122 event->group_flags |= PERF_GROUP_SOFTWARE; 1123 1124 list = ctx_group_list(event, ctx); 1125 list_add_tail(&event->group_entry, list); 1126 } 1127 1128 if (is_cgroup_event(event)) 1129 ctx->nr_cgroups++; 1130 1131 if (has_branch_stack(event)) 1132 ctx->nr_branch_stack++; 1133 1134 list_add_rcu(&event->event_entry, &ctx->event_list); 1135 if (!ctx->nr_events) 1136 perf_pmu_rotate_start(ctx->pmu); 1137 ctx->nr_events++; 1138 if (event->attr.inherit_stat) 1139 ctx->nr_stat++; 1140 1141 ctx->generation++; 1142 } 1143 1144 /* 1145 * Initialize event state based on the perf_event_attr::disabled. 1146 */ 1147 static inline void perf_event__state_init(struct perf_event *event) 1148 { 1149 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1150 PERF_EVENT_STATE_INACTIVE; 1151 } 1152 1153 /* 1154 * Called at perf_event creation and when events are attached/detached from a 1155 * group. 1156 */ 1157 static void perf_event__read_size(struct perf_event *event) 1158 { 1159 int entry = sizeof(u64); /* value */ 1160 int size = 0; 1161 int nr = 1; 1162 1163 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1164 size += sizeof(u64); 1165 1166 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1167 size += sizeof(u64); 1168 1169 if (event->attr.read_format & PERF_FORMAT_ID) 1170 entry += sizeof(u64); 1171 1172 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1173 nr += event->group_leader->nr_siblings; 1174 size += sizeof(u64); 1175 } 1176 1177 size += entry * nr; 1178 event->read_size = size; 1179 } 1180 1181 static void perf_event__header_size(struct perf_event *event) 1182 { 1183 struct perf_sample_data *data; 1184 u64 sample_type = event->attr.sample_type; 1185 u16 size = 0; 1186 1187 perf_event__read_size(event); 1188 1189 if (sample_type & PERF_SAMPLE_IP) 1190 size += sizeof(data->ip); 1191 1192 if (sample_type & PERF_SAMPLE_ADDR) 1193 size += sizeof(data->addr); 1194 1195 if (sample_type & PERF_SAMPLE_PERIOD) 1196 size += sizeof(data->period); 1197 1198 if (sample_type & PERF_SAMPLE_WEIGHT) 1199 size += sizeof(data->weight); 1200 1201 if (sample_type & PERF_SAMPLE_READ) 1202 size += event->read_size; 1203 1204 if (sample_type & PERF_SAMPLE_DATA_SRC) 1205 size += sizeof(data->data_src.val); 1206 1207 if (sample_type & PERF_SAMPLE_TRANSACTION) 1208 size += sizeof(data->txn); 1209 1210 event->header_size = size; 1211 } 1212 1213 static void perf_event__id_header_size(struct perf_event *event) 1214 { 1215 struct perf_sample_data *data; 1216 u64 sample_type = event->attr.sample_type; 1217 u16 size = 0; 1218 1219 if (sample_type & PERF_SAMPLE_TID) 1220 size += sizeof(data->tid_entry); 1221 1222 if (sample_type & PERF_SAMPLE_TIME) 1223 size += sizeof(data->time); 1224 1225 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1226 size += sizeof(data->id); 1227 1228 if (sample_type & PERF_SAMPLE_ID) 1229 size += sizeof(data->id); 1230 1231 if (sample_type & PERF_SAMPLE_STREAM_ID) 1232 size += sizeof(data->stream_id); 1233 1234 if (sample_type & PERF_SAMPLE_CPU) 1235 size += sizeof(data->cpu_entry); 1236 1237 event->id_header_size = size; 1238 } 1239 1240 static void perf_group_attach(struct perf_event *event) 1241 { 1242 struct perf_event *group_leader = event->group_leader, *pos; 1243 1244 /* 1245 * We can have double attach due to group movement in perf_event_open. 1246 */ 1247 if (event->attach_state & PERF_ATTACH_GROUP) 1248 return; 1249 1250 event->attach_state |= PERF_ATTACH_GROUP; 1251 1252 if (group_leader == event) 1253 return; 1254 1255 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1256 !is_software_event(event)) 1257 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1258 1259 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1260 group_leader->nr_siblings++; 1261 1262 perf_event__header_size(group_leader); 1263 1264 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1265 perf_event__header_size(pos); 1266 } 1267 1268 /* 1269 * Remove a event from the lists for its context. 1270 * Must be called with ctx->mutex and ctx->lock held. 1271 */ 1272 static void 1273 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1274 { 1275 struct perf_cpu_context *cpuctx; 1276 /* 1277 * We can have double detach due to exit/hot-unplug + close. 1278 */ 1279 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1280 return; 1281 1282 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1283 1284 if (is_cgroup_event(event)) { 1285 ctx->nr_cgroups--; 1286 cpuctx = __get_cpu_context(ctx); 1287 /* 1288 * if there are no more cgroup events 1289 * then cler cgrp to avoid stale pointer 1290 * in update_cgrp_time_from_cpuctx() 1291 */ 1292 if (!ctx->nr_cgroups) 1293 cpuctx->cgrp = NULL; 1294 } 1295 1296 if (has_branch_stack(event)) 1297 ctx->nr_branch_stack--; 1298 1299 ctx->nr_events--; 1300 if (event->attr.inherit_stat) 1301 ctx->nr_stat--; 1302 1303 list_del_rcu(&event->event_entry); 1304 1305 if (event->group_leader == event) 1306 list_del_init(&event->group_entry); 1307 1308 update_group_times(event); 1309 1310 /* 1311 * If event was in error state, then keep it 1312 * that way, otherwise bogus counts will be 1313 * returned on read(). The only way to get out 1314 * of error state is by explicit re-enabling 1315 * of the event 1316 */ 1317 if (event->state > PERF_EVENT_STATE_OFF) 1318 event->state = PERF_EVENT_STATE_OFF; 1319 1320 ctx->generation++; 1321 } 1322 1323 static void perf_group_detach(struct perf_event *event) 1324 { 1325 struct perf_event *sibling, *tmp; 1326 struct list_head *list = NULL; 1327 1328 /* 1329 * We can have double detach due to exit/hot-unplug + close. 1330 */ 1331 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1332 return; 1333 1334 event->attach_state &= ~PERF_ATTACH_GROUP; 1335 1336 /* 1337 * If this is a sibling, remove it from its group. 1338 */ 1339 if (event->group_leader != event) { 1340 list_del_init(&event->group_entry); 1341 event->group_leader->nr_siblings--; 1342 goto out; 1343 } 1344 1345 if (!list_empty(&event->group_entry)) 1346 list = &event->group_entry; 1347 1348 /* 1349 * If this was a group event with sibling events then 1350 * upgrade the siblings to singleton events by adding them 1351 * to whatever list we are on. 1352 */ 1353 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1354 if (list) 1355 list_move_tail(&sibling->group_entry, list); 1356 sibling->group_leader = sibling; 1357 1358 /* Inherit group flags from the previous leader */ 1359 sibling->group_flags = event->group_flags; 1360 } 1361 1362 out: 1363 perf_event__header_size(event->group_leader); 1364 1365 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1366 perf_event__header_size(tmp); 1367 } 1368 1369 static inline int 1370 event_filter_match(struct perf_event *event) 1371 { 1372 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1373 && perf_cgroup_match(event); 1374 } 1375 1376 static void 1377 event_sched_out(struct perf_event *event, 1378 struct perf_cpu_context *cpuctx, 1379 struct perf_event_context *ctx) 1380 { 1381 u64 tstamp = perf_event_time(event); 1382 u64 delta; 1383 /* 1384 * An event which could not be activated because of 1385 * filter mismatch still needs to have its timings 1386 * maintained, otherwise bogus information is return 1387 * via read() for time_enabled, time_running: 1388 */ 1389 if (event->state == PERF_EVENT_STATE_INACTIVE 1390 && !event_filter_match(event)) { 1391 delta = tstamp - event->tstamp_stopped; 1392 event->tstamp_running += delta; 1393 event->tstamp_stopped = tstamp; 1394 } 1395 1396 if (event->state != PERF_EVENT_STATE_ACTIVE) 1397 return; 1398 1399 event->state = PERF_EVENT_STATE_INACTIVE; 1400 if (event->pending_disable) { 1401 event->pending_disable = 0; 1402 event->state = PERF_EVENT_STATE_OFF; 1403 } 1404 event->tstamp_stopped = tstamp; 1405 event->pmu->del(event, 0); 1406 event->oncpu = -1; 1407 1408 if (!is_software_event(event)) 1409 cpuctx->active_oncpu--; 1410 ctx->nr_active--; 1411 if (event->attr.freq && event->attr.sample_freq) 1412 ctx->nr_freq--; 1413 if (event->attr.exclusive || !cpuctx->active_oncpu) 1414 cpuctx->exclusive = 0; 1415 } 1416 1417 static void 1418 group_sched_out(struct perf_event *group_event, 1419 struct perf_cpu_context *cpuctx, 1420 struct perf_event_context *ctx) 1421 { 1422 struct perf_event *event; 1423 int state = group_event->state; 1424 1425 event_sched_out(group_event, cpuctx, ctx); 1426 1427 /* 1428 * Schedule out siblings (if any): 1429 */ 1430 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1431 event_sched_out(event, cpuctx, ctx); 1432 1433 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1434 cpuctx->exclusive = 0; 1435 } 1436 1437 /* 1438 * Cross CPU call to remove a performance event 1439 * 1440 * We disable the event on the hardware level first. After that we 1441 * remove it from the context list. 1442 */ 1443 static int __perf_remove_from_context(void *info) 1444 { 1445 struct perf_event *event = info; 1446 struct perf_event_context *ctx = event->ctx; 1447 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1448 1449 raw_spin_lock(&ctx->lock); 1450 event_sched_out(event, cpuctx, ctx); 1451 list_del_event(event, ctx); 1452 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1453 ctx->is_active = 0; 1454 cpuctx->task_ctx = NULL; 1455 } 1456 raw_spin_unlock(&ctx->lock); 1457 1458 return 0; 1459 } 1460 1461 1462 /* 1463 * Remove the event from a task's (or a CPU's) list of events. 1464 * 1465 * CPU events are removed with a smp call. For task events we only 1466 * call when the task is on a CPU. 1467 * 1468 * If event->ctx is a cloned context, callers must make sure that 1469 * every task struct that event->ctx->task could possibly point to 1470 * remains valid. This is OK when called from perf_release since 1471 * that only calls us on the top-level context, which can't be a clone. 1472 * When called from perf_event_exit_task, it's OK because the 1473 * context has been detached from its task. 1474 */ 1475 static void perf_remove_from_context(struct perf_event *event) 1476 { 1477 struct perf_event_context *ctx = event->ctx; 1478 struct task_struct *task = ctx->task; 1479 1480 lockdep_assert_held(&ctx->mutex); 1481 1482 if (!task) { 1483 /* 1484 * Per cpu events are removed via an smp call and 1485 * the removal is always successful. 1486 */ 1487 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1488 return; 1489 } 1490 1491 retry: 1492 if (!task_function_call(task, __perf_remove_from_context, event)) 1493 return; 1494 1495 raw_spin_lock_irq(&ctx->lock); 1496 /* 1497 * If we failed to find a running task, but find the context active now 1498 * that we've acquired the ctx->lock, retry. 1499 */ 1500 if (ctx->is_active) { 1501 raw_spin_unlock_irq(&ctx->lock); 1502 goto retry; 1503 } 1504 1505 /* 1506 * Since the task isn't running, its safe to remove the event, us 1507 * holding the ctx->lock ensures the task won't get scheduled in. 1508 */ 1509 list_del_event(event, ctx); 1510 raw_spin_unlock_irq(&ctx->lock); 1511 } 1512 1513 /* 1514 * Cross CPU call to disable a performance event 1515 */ 1516 int __perf_event_disable(void *info) 1517 { 1518 struct perf_event *event = info; 1519 struct perf_event_context *ctx = event->ctx; 1520 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1521 1522 /* 1523 * If this is a per-task event, need to check whether this 1524 * event's task is the current task on this cpu. 1525 * 1526 * Can trigger due to concurrent perf_event_context_sched_out() 1527 * flipping contexts around. 1528 */ 1529 if (ctx->task && cpuctx->task_ctx != ctx) 1530 return -EINVAL; 1531 1532 raw_spin_lock(&ctx->lock); 1533 1534 /* 1535 * If the event is on, turn it off. 1536 * If it is in error state, leave it in error state. 1537 */ 1538 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1539 update_context_time(ctx); 1540 update_cgrp_time_from_event(event); 1541 update_group_times(event); 1542 if (event == event->group_leader) 1543 group_sched_out(event, cpuctx, ctx); 1544 else 1545 event_sched_out(event, cpuctx, ctx); 1546 event->state = PERF_EVENT_STATE_OFF; 1547 } 1548 1549 raw_spin_unlock(&ctx->lock); 1550 1551 return 0; 1552 } 1553 1554 /* 1555 * Disable a event. 1556 * 1557 * If event->ctx is a cloned context, callers must make sure that 1558 * every task struct that event->ctx->task could possibly point to 1559 * remains valid. This condition is satisifed when called through 1560 * perf_event_for_each_child or perf_event_for_each because they 1561 * hold the top-level event's child_mutex, so any descendant that 1562 * goes to exit will block in sync_child_event. 1563 * When called from perf_pending_event it's OK because event->ctx 1564 * is the current context on this CPU and preemption is disabled, 1565 * hence we can't get into perf_event_task_sched_out for this context. 1566 */ 1567 void perf_event_disable(struct perf_event *event) 1568 { 1569 struct perf_event_context *ctx = event->ctx; 1570 struct task_struct *task = ctx->task; 1571 1572 if (!task) { 1573 /* 1574 * Disable the event on the cpu that it's on 1575 */ 1576 cpu_function_call(event->cpu, __perf_event_disable, event); 1577 return; 1578 } 1579 1580 retry: 1581 if (!task_function_call(task, __perf_event_disable, event)) 1582 return; 1583 1584 raw_spin_lock_irq(&ctx->lock); 1585 /* 1586 * If the event is still active, we need to retry the cross-call. 1587 */ 1588 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1589 raw_spin_unlock_irq(&ctx->lock); 1590 /* 1591 * Reload the task pointer, it might have been changed by 1592 * a concurrent perf_event_context_sched_out(). 1593 */ 1594 task = ctx->task; 1595 goto retry; 1596 } 1597 1598 /* 1599 * Since we have the lock this context can't be scheduled 1600 * in, so we can change the state safely. 1601 */ 1602 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1603 update_group_times(event); 1604 event->state = PERF_EVENT_STATE_OFF; 1605 } 1606 raw_spin_unlock_irq(&ctx->lock); 1607 } 1608 EXPORT_SYMBOL_GPL(perf_event_disable); 1609 1610 static void perf_set_shadow_time(struct perf_event *event, 1611 struct perf_event_context *ctx, 1612 u64 tstamp) 1613 { 1614 /* 1615 * use the correct time source for the time snapshot 1616 * 1617 * We could get by without this by leveraging the 1618 * fact that to get to this function, the caller 1619 * has most likely already called update_context_time() 1620 * and update_cgrp_time_xx() and thus both timestamp 1621 * are identical (or very close). Given that tstamp is, 1622 * already adjusted for cgroup, we could say that: 1623 * tstamp - ctx->timestamp 1624 * is equivalent to 1625 * tstamp - cgrp->timestamp. 1626 * 1627 * Then, in perf_output_read(), the calculation would 1628 * work with no changes because: 1629 * - event is guaranteed scheduled in 1630 * - no scheduled out in between 1631 * - thus the timestamp would be the same 1632 * 1633 * But this is a bit hairy. 1634 * 1635 * So instead, we have an explicit cgroup call to remain 1636 * within the time time source all along. We believe it 1637 * is cleaner and simpler to understand. 1638 */ 1639 if (is_cgroup_event(event)) 1640 perf_cgroup_set_shadow_time(event, tstamp); 1641 else 1642 event->shadow_ctx_time = tstamp - ctx->timestamp; 1643 } 1644 1645 #define MAX_INTERRUPTS (~0ULL) 1646 1647 static void perf_log_throttle(struct perf_event *event, int enable); 1648 1649 static int 1650 event_sched_in(struct perf_event *event, 1651 struct perf_cpu_context *cpuctx, 1652 struct perf_event_context *ctx) 1653 { 1654 u64 tstamp = perf_event_time(event); 1655 1656 if (event->state <= PERF_EVENT_STATE_OFF) 1657 return 0; 1658 1659 event->state = PERF_EVENT_STATE_ACTIVE; 1660 event->oncpu = smp_processor_id(); 1661 1662 /* 1663 * Unthrottle events, since we scheduled we might have missed several 1664 * ticks already, also for a heavily scheduling task there is little 1665 * guarantee it'll get a tick in a timely manner. 1666 */ 1667 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1668 perf_log_throttle(event, 1); 1669 event->hw.interrupts = 0; 1670 } 1671 1672 /* 1673 * The new state must be visible before we turn it on in the hardware: 1674 */ 1675 smp_wmb(); 1676 1677 if (event->pmu->add(event, PERF_EF_START)) { 1678 event->state = PERF_EVENT_STATE_INACTIVE; 1679 event->oncpu = -1; 1680 return -EAGAIN; 1681 } 1682 1683 event->tstamp_running += tstamp - event->tstamp_stopped; 1684 1685 perf_set_shadow_time(event, ctx, tstamp); 1686 1687 if (!is_software_event(event)) 1688 cpuctx->active_oncpu++; 1689 ctx->nr_active++; 1690 if (event->attr.freq && event->attr.sample_freq) 1691 ctx->nr_freq++; 1692 1693 if (event->attr.exclusive) 1694 cpuctx->exclusive = 1; 1695 1696 return 0; 1697 } 1698 1699 static int 1700 group_sched_in(struct perf_event *group_event, 1701 struct perf_cpu_context *cpuctx, 1702 struct perf_event_context *ctx) 1703 { 1704 struct perf_event *event, *partial_group = NULL; 1705 struct pmu *pmu = group_event->pmu; 1706 u64 now = ctx->time; 1707 bool simulate = false; 1708 1709 if (group_event->state == PERF_EVENT_STATE_OFF) 1710 return 0; 1711 1712 pmu->start_txn(pmu); 1713 1714 if (event_sched_in(group_event, cpuctx, ctx)) { 1715 pmu->cancel_txn(pmu); 1716 perf_cpu_hrtimer_restart(cpuctx); 1717 return -EAGAIN; 1718 } 1719 1720 /* 1721 * Schedule in siblings as one group (if any): 1722 */ 1723 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1724 if (event_sched_in(event, cpuctx, ctx)) { 1725 partial_group = event; 1726 goto group_error; 1727 } 1728 } 1729 1730 if (!pmu->commit_txn(pmu)) 1731 return 0; 1732 1733 group_error: 1734 /* 1735 * Groups can be scheduled in as one unit only, so undo any 1736 * partial group before returning: 1737 * The events up to the failed event are scheduled out normally, 1738 * tstamp_stopped will be updated. 1739 * 1740 * The failed events and the remaining siblings need to have 1741 * their timings updated as if they had gone thru event_sched_in() 1742 * and event_sched_out(). This is required to get consistent timings 1743 * across the group. This also takes care of the case where the group 1744 * could never be scheduled by ensuring tstamp_stopped is set to mark 1745 * the time the event was actually stopped, such that time delta 1746 * calculation in update_event_times() is correct. 1747 */ 1748 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1749 if (event == partial_group) 1750 simulate = true; 1751 1752 if (simulate) { 1753 event->tstamp_running += now - event->tstamp_stopped; 1754 event->tstamp_stopped = now; 1755 } else { 1756 event_sched_out(event, cpuctx, ctx); 1757 } 1758 } 1759 event_sched_out(group_event, cpuctx, ctx); 1760 1761 pmu->cancel_txn(pmu); 1762 1763 perf_cpu_hrtimer_restart(cpuctx); 1764 1765 return -EAGAIN; 1766 } 1767 1768 /* 1769 * Work out whether we can put this event group on the CPU now. 1770 */ 1771 static int group_can_go_on(struct perf_event *event, 1772 struct perf_cpu_context *cpuctx, 1773 int can_add_hw) 1774 { 1775 /* 1776 * Groups consisting entirely of software events can always go on. 1777 */ 1778 if (event->group_flags & PERF_GROUP_SOFTWARE) 1779 return 1; 1780 /* 1781 * If an exclusive group is already on, no other hardware 1782 * events can go on. 1783 */ 1784 if (cpuctx->exclusive) 1785 return 0; 1786 /* 1787 * If this group is exclusive and there are already 1788 * events on the CPU, it can't go on. 1789 */ 1790 if (event->attr.exclusive && cpuctx->active_oncpu) 1791 return 0; 1792 /* 1793 * Otherwise, try to add it if all previous groups were able 1794 * to go on. 1795 */ 1796 return can_add_hw; 1797 } 1798 1799 static void add_event_to_ctx(struct perf_event *event, 1800 struct perf_event_context *ctx) 1801 { 1802 u64 tstamp = perf_event_time(event); 1803 1804 list_add_event(event, ctx); 1805 perf_group_attach(event); 1806 event->tstamp_enabled = tstamp; 1807 event->tstamp_running = tstamp; 1808 event->tstamp_stopped = tstamp; 1809 } 1810 1811 static void task_ctx_sched_out(struct perf_event_context *ctx); 1812 static void 1813 ctx_sched_in(struct perf_event_context *ctx, 1814 struct perf_cpu_context *cpuctx, 1815 enum event_type_t event_type, 1816 struct task_struct *task); 1817 1818 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1819 struct perf_event_context *ctx, 1820 struct task_struct *task) 1821 { 1822 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1823 if (ctx) 1824 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1825 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1826 if (ctx) 1827 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1828 } 1829 1830 /* 1831 * Cross CPU call to install and enable a performance event 1832 * 1833 * Must be called with ctx->mutex held 1834 */ 1835 static int __perf_install_in_context(void *info) 1836 { 1837 struct perf_event *event = info; 1838 struct perf_event_context *ctx = event->ctx; 1839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1840 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1841 struct task_struct *task = current; 1842 1843 perf_ctx_lock(cpuctx, task_ctx); 1844 perf_pmu_disable(cpuctx->ctx.pmu); 1845 1846 /* 1847 * If there was an active task_ctx schedule it out. 1848 */ 1849 if (task_ctx) 1850 task_ctx_sched_out(task_ctx); 1851 1852 /* 1853 * If the context we're installing events in is not the 1854 * active task_ctx, flip them. 1855 */ 1856 if (ctx->task && task_ctx != ctx) { 1857 if (task_ctx) 1858 raw_spin_unlock(&task_ctx->lock); 1859 raw_spin_lock(&ctx->lock); 1860 task_ctx = ctx; 1861 } 1862 1863 if (task_ctx) { 1864 cpuctx->task_ctx = task_ctx; 1865 task = task_ctx->task; 1866 } 1867 1868 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1869 1870 update_context_time(ctx); 1871 /* 1872 * update cgrp time only if current cgrp 1873 * matches event->cgrp. Must be done before 1874 * calling add_event_to_ctx() 1875 */ 1876 update_cgrp_time_from_event(event); 1877 1878 add_event_to_ctx(event, ctx); 1879 1880 /* 1881 * Schedule everything back in 1882 */ 1883 perf_event_sched_in(cpuctx, task_ctx, task); 1884 1885 perf_pmu_enable(cpuctx->ctx.pmu); 1886 perf_ctx_unlock(cpuctx, task_ctx); 1887 1888 return 0; 1889 } 1890 1891 /* 1892 * Attach a performance event to a context 1893 * 1894 * First we add the event to the list with the hardware enable bit 1895 * in event->hw_config cleared. 1896 * 1897 * If the event is attached to a task which is on a CPU we use a smp 1898 * call to enable it in the task context. The task might have been 1899 * scheduled away, but we check this in the smp call again. 1900 */ 1901 static void 1902 perf_install_in_context(struct perf_event_context *ctx, 1903 struct perf_event *event, 1904 int cpu) 1905 { 1906 struct task_struct *task = ctx->task; 1907 1908 lockdep_assert_held(&ctx->mutex); 1909 1910 event->ctx = ctx; 1911 if (event->cpu != -1) 1912 event->cpu = cpu; 1913 1914 if (!task) { 1915 /* 1916 * Per cpu events are installed via an smp call and 1917 * the install is always successful. 1918 */ 1919 cpu_function_call(cpu, __perf_install_in_context, event); 1920 return; 1921 } 1922 1923 retry: 1924 if (!task_function_call(task, __perf_install_in_context, event)) 1925 return; 1926 1927 raw_spin_lock_irq(&ctx->lock); 1928 /* 1929 * If we failed to find a running task, but find the context active now 1930 * that we've acquired the ctx->lock, retry. 1931 */ 1932 if (ctx->is_active) { 1933 raw_spin_unlock_irq(&ctx->lock); 1934 goto retry; 1935 } 1936 1937 /* 1938 * Since the task isn't running, its safe to add the event, us holding 1939 * the ctx->lock ensures the task won't get scheduled in. 1940 */ 1941 add_event_to_ctx(event, ctx); 1942 raw_spin_unlock_irq(&ctx->lock); 1943 } 1944 1945 /* 1946 * Put a event into inactive state and update time fields. 1947 * Enabling the leader of a group effectively enables all 1948 * the group members that aren't explicitly disabled, so we 1949 * have to update their ->tstamp_enabled also. 1950 * Note: this works for group members as well as group leaders 1951 * since the non-leader members' sibling_lists will be empty. 1952 */ 1953 static void __perf_event_mark_enabled(struct perf_event *event) 1954 { 1955 struct perf_event *sub; 1956 u64 tstamp = perf_event_time(event); 1957 1958 event->state = PERF_EVENT_STATE_INACTIVE; 1959 event->tstamp_enabled = tstamp - event->total_time_enabled; 1960 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1961 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1962 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1963 } 1964 } 1965 1966 /* 1967 * Cross CPU call to enable a performance event 1968 */ 1969 static int __perf_event_enable(void *info) 1970 { 1971 struct perf_event *event = info; 1972 struct perf_event_context *ctx = event->ctx; 1973 struct perf_event *leader = event->group_leader; 1974 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1975 int err; 1976 1977 /* 1978 * There's a time window between 'ctx->is_active' check 1979 * in perf_event_enable function and this place having: 1980 * - IRQs on 1981 * - ctx->lock unlocked 1982 * 1983 * where the task could be killed and 'ctx' deactivated 1984 * by perf_event_exit_task. 1985 */ 1986 if (!ctx->is_active) 1987 return -EINVAL; 1988 1989 raw_spin_lock(&ctx->lock); 1990 update_context_time(ctx); 1991 1992 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1993 goto unlock; 1994 1995 /* 1996 * set current task's cgroup time reference point 1997 */ 1998 perf_cgroup_set_timestamp(current, ctx); 1999 2000 __perf_event_mark_enabled(event); 2001 2002 if (!event_filter_match(event)) { 2003 if (is_cgroup_event(event)) 2004 perf_cgroup_defer_enabled(event); 2005 goto unlock; 2006 } 2007 2008 /* 2009 * If the event is in a group and isn't the group leader, 2010 * then don't put it on unless the group is on. 2011 */ 2012 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 2013 goto unlock; 2014 2015 if (!group_can_go_on(event, cpuctx, 1)) { 2016 err = -EEXIST; 2017 } else { 2018 if (event == leader) 2019 err = group_sched_in(event, cpuctx, ctx); 2020 else 2021 err = event_sched_in(event, cpuctx, ctx); 2022 } 2023 2024 if (err) { 2025 /* 2026 * If this event can't go on and it's part of a 2027 * group, then the whole group has to come off. 2028 */ 2029 if (leader != event) { 2030 group_sched_out(leader, cpuctx, ctx); 2031 perf_cpu_hrtimer_restart(cpuctx); 2032 } 2033 if (leader->attr.pinned) { 2034 update_group_times(leader); 2035 leader->state = PERF_EVENT_STATE_ERROR; 2036 } 2037 } 2038 2039 unlock: 2040 raw_spin_unlock(&ctx->lock); 2041 2042 return 0; 2043 } 2044 2045 /* 2046 * Enable a event. 2047 * 2048 * If event->ctx is a cloned context, callers must make sure that 2049 * every task struct that event->ctx->task could possibly point to 2050 * remains valid. This condition is satisfied when called through 2051 * perf_event_for_each_child or perf_event_for_each as described 2052 * for perf_event_disable. 2053 */ 2054 void perf_event_enable(struct perf_event *event) 2055 { 2056 struct perf_event_context *ctx = event->ctx; 2057 struct task_struct *task = ctx->task; 2058 2059 if (!task) { 2060 /* 2061 * Enable the event on the cpu that it's on 2062 */ 2063 cpu_function_call(event->cpu, __perf_event_enable, event); 2064 return; 2065 } 2066 2067 raw_spin_lock_irq(&ctx->lock); 2068 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2069 goto out; 2070 2071 /* 2072 * If the event is in error state, clear that first. 2073 * That way, if we see the event in error state below, we 2074 * know that it has gone back into error state, as distinct 2075 * from the task having been scheduled away before the 2076 * cross-call arrived. 2077 */ 2078 if (event->state == PERF_EVENT_STATE_ERROR) 2079 event->state = PERF_EVENT_STATE_OFF; 2080 2081 retry: 2082 if (!ctx->is_active) { 2083 __perf_event_mark_enabled(event); 2084 goto out; 2085 } 2086 2087 raw_spin_unlock_irq(&ctx->lock); 2088 2089 if (!task_function_call(task, __perf_event_enable, event)) 2090 return; 2091 2092 raw_spin_lock_irq(&ctx->lock); 2093 2094 /* 2095 * If the context is active and the event is still off, 2096 * we need to retry the cross-call. 2097 */ 2098 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 2099 /* 2100 * task could have been flipped by a concurrent 2101 * perf_event_context_sched_out() 2102 */ 2103 task = ctx->task; 2104 goto retry; 2105 } 2106 2107 out: 2108 raw_spin_unlock_irq(&ctx->lock); 2109 } 2110 EXPORT_SYMBOL_GPL(perf_event_enable); 2111 2112 int perf_event_refresh(struct perf_event *event, int refresh) 2113 { 2114 /* 2115 * not supported on inherited events 2116 */ 2117 if (event->attr.inherit || !is_sampling_event(event)) 2118 return -EINVAL; 2119 2120 atomic_add(refresh, &event->event_limit); 2121 perf_event_enable(event); 2122 2123 return 0; 2124 } 2125 EXPORT_SYMBOL_GPL(perf_event_refresh); 2126 2127 static void ctx_sched_out(struct perf_event_context *ctx, 2128 struct perf_cpu_context *cpuctx, 2129 enum event_type_t event_type) 2130 { 2131 struct perf_event *event; 2132 int is_active = ctx->is_active; 2133 2134 ctx->is_active &= ~event_type; 2135 if (likely(!ctx->nr_events)) 2136 return; 2137 2138 update_context_time(ctx); 2139 update_cgrp_time_from_cpuctx(cpuctx); 2140 if (!ctx->nr_active) 2141 return; 2142 2143 perf_pmu_disable(ctx->pmu); 2144 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 2145 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2146 group_sched_out(event, cpuctx, ctx); 2147 } 2148 2149 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 2150 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2151 group_sched_out(event, cpuctx, ctx); 2152 } 2153 perf_pmu_enable(ctx->pmu); 2154 } 2155 2156 /* 2157 * Test whether two contexts are equivalent, i.e. whether they have both been 2158 * cloned from the same version of the same context. 2159 * 2160 * Equivalence is measured using a generation number in the context that is 2161 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2162 * and list_del_event(). 2163 */ 2164 static int context_equiv(struct perf_event_context *ctx1, 2165 struct perf_event_context *ctx2) 2166 { 2167 /* Pinning disables the swap optimization */ 2168 if (ctx1->pin_count || ctx2->pin_count) 2169 return 0; 2170 2171 /* If ctx1 is the parent of ctx2 */ 2172 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2173 return 1; 2174 2175 /* If ctx2 is the parent of ctx1 */ 2176 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2177 return 1; 2178 2179 /* 2180 * If ctx1 and ctx2 have the same parent; we flatten the parent 2181 * hierarchy, see perf_event_init_context(). 2182 */ 2183 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2184 ctx1->parent_gen == ctx2->parent_gen) 2185 return 1; 2186 2187 /* Unmatched */ 2188 return 0; 2189 } 2190 2191 static void __perf_event_sync_stat(struct perf_event *event, 2192 struct perf_event *next_event) 2193 { 2194 u64 value; 2195 2196 if (!event->attr.inherit_stat) 2197 return; 2198 2199 /* 2200 * Update the event value, we cannot use perf_event_read() 2201 * because we're in the middle of a context switch and have IRQs 2202 * disabled, which upsets smp_call_function_single(), however 2203 * we know the event must be on the current CPU, therefore we 2204 * don't need to use it. 2205 */ 2206 switch (event->state) { 2207 case PERF_EVENT_STATE_ACTIVE: 2208 event->pmu->read(event); 2209 /* fall-through */ 2210 2211 case PERF_EVENT_STATE_INACTIVE: 2212 update_event_times(event); 2213 break; 2214 2215 default: 2216 break; 2217 } 2218 2219 /* 2220 * In order to keep per-task stats reliable we need to flip the event 2221 * values when we flip the contexts. 2222 */ 2223 value = local64_read(&next_event->count); 2224 value = local64_xchg(&event->count, value); 2225 local64_set(&next_event->count, value); 2226 2227 swap(event->total_time_enabled, next_event->total_time_enabled); 2228 swap(event->total_time_running, next_event->total_time_running); 2229 2230 /* 2231 * Since we swizzled the values, update the user visible data too. 2232 */ 2233 perf_event_update_userpage(event); 2234 perf_event_update_userpage(next_event); 2235 } 2236 2237 #define list_next_entry(pos, member) \ 2238 list_entry(pos->member.next, typeof(*pos), member) 2239 2240 static void perf_event_sync_stat(struct perf_event_context *ctx, 2241 struct perf_event_context *next_ctx) 2242 { 2243 struct perf_event *event, *next_event; 2244 2245 if (!ctx->nr_stat) 2246 return; 2247 2248 update_context_time(ctx); 2249 2250 event = list_first_entry(&ctx->event_list, 2251 struct perf_event, event_entry); 2252 2253 next_event = list_first_entry(&next_ctx->event_list, 2254 struct perf_event, event_entry); 2255 2256 while (&event->event_entry != &ctx->event_list && 2257 &next_event->event_entry != &next_ctx->event_list) { 2258 2259 __perf_event_sync_stat(event, next_event); 2260 2261 event = list_next_entry(event, event_entry); 2262 next_event = list_next_entry(next_event, event_entry); 2263 } 2264 } 2265 2266 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2267 struct task_struct *next) 2268 { 2269 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2270 struct perf_event_context *next_ctx; 2271 struct perf_event_context *parent, *next_parent; 2272 struct perf_cpu_context *cpuctx; 2273 int do_switch = 1; 2274 2275 if (likely(!ctx)) 2276 return; 2277 2278 cpuctx = __get_cpu_context(ctx); 2279 if (!cpuctx->task_ctx) 2280 return; 2281 2282 rcu_read_lock(); 2283 next_ctx = next->perf_event_ctxp[ctxn]; 2284 if (!next_ctx) 2285 goto unlock; 2286 2287 parent = rcu_dereference(ctx->parent_ctx); 2288 next_parent = rcu_dereference(next_ctx->parent_ctx); 2289 2290 /* If neither context have a parent context; they cannot be clones. */ 2291 if (!parent && !next_parent) 2292 goto unlock; 2293 2294 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2295 /* 2296 * Looks like the two contexts are clones, so we might be 2297 * able to optimize the context switch. We lock both 2298 * contexts and check that they are clones under the 2299 * lock (including re-checking that neither has been 2300 * uncloned in the meantime). It doesn't matter which 2301 * order we take the locks because no other cpu could 2302 * be trying to lock both of these tasks. 2303 */ 2304 raw_spin_lock(&ctx->lock); 2305 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2306 if (context_equiv(ctx, next_ctx)) { 2307 /* 2308 * XXX do we need a memory barrier of sorts 2309 * wrt to rcu_dereference() of perf_event_ctxp 2310 */ 2311 task->perf_event_ctxp[ctxn] = next_ctx; 2312 next->perf_event_ctxp[ctxn] = ctx; 2313 ctx->task = next; 2314 next_ctx->task = task; 2315 do_switch = 0; 2316 2317 perf_event_sync_stat(ctx, next_ctx); 2318 } 2319 raw_spin_unlock(&next_ctx->lock); 2320 raw_spin_unlock(&ctx->lock); 2321 } 2322 unlock: 2323 rcu_read_unlock(); 2324 2325 if (do_switch) { 2326 raw_spin_lock(&ctx->lock); 2327 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2328 cpuctx->task_ctx = NULL; 2329 raw_spin_unlock(&ctx->lock); 2330 } 2331 } 2332 2333 #define for_each_task_context_nr(ctxn) \ 2334 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2335 2336 /* 2337 * Called from scheduler to remove the events of the current task, 2338 * with interrupts disabled. 2339 * 2340 * We stop each event and update the event value in event->count. 2341 * 2342 * This does not protect us against NMI, but disable() 2343 * sets the disabled bit in the control field of event _before_ 2344 * accessing the event control register. If a NMI hits, then it will 2345 * not restart the event. 2346 */ 2347 void __perf_event_task_sched_out(struct task_struct *task, 2348 struct task_struct *next) 2349 { 2350 int ctxn; 2351 2352 for_each_task_context_nr(ctxn) 2353 perf_event_context_sched_out(task, ctxn, next); 2354 2355 /* 2356 * if cgroup events exist on this CPU, then we need 2357 * to check if we have to switch out PMU state. 2358 * cgroup event are system-wide mode only 2359 */ 2360 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2361 perf_cgroup_sched_out(task, next); 2362 } 2363 2364 static void task_ctx_sched_out(struct perf_event_context *ctx) 2365 { 2366 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2367 2368 if (!cpuctx->task_ctx) 2369 return; 2370 2371 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2372 return; 2373 2374 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2375 cpuctx->task_ctx = NULL; 2376 } 2377 2378 /* 2379 * Called with IRQs disabled 2380 */ 2381 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2382 enum event_type_t event_type) 2383 { 2384 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2385 } 2386 2387 static void 2388 ctx_pinned_sched_in(struct perf_event_context *ctx, 2389 struct perf_cpu_context *cpuctx) 2390 { 2391 struct perf_event *event; 2392 2393 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2394 if (event->state <= PERF_EVENT_STATE_OFF) 2395 continue; 2396 if (!event_filter_match(event)) 2397 continue; 2398 2399 /* may need to reset tstamp_enabled */ 2400 if (is_cgroup_event(event)) 2401 perf_cgroup_mark_enabled(event, ctx); 2402 2403 if (group_can_go_on(event, cpuctx, 1)) 2404 group_sched_in(event, cpuctx, ctx); 2405 2406 /* 2407 * If this pinned group hasn't been scheduled, 2408 * put it in error state. 2409 */ 2410 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2411 update_group_times(event); 2412 event->state = PERF_EVENT_STATE_ERROR; 2413 } 2414 } 2415 } 2416 2417 static void 2418 ctx_flexible_sched_in(struct perf_event_context *ctx, 2419 struct perf_cpu_context *cpuctx) 2420 { 2421 struct perf_event *event; 2422 int can_add_hw = 1; 2423 2424 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2425 /* Ignore events in OFF or ERROR state */ 2426 if (event->state <= PERF_EVENT_STATE_OFF) 2427 continue; 2428 /* 2429 * Listen to the 'cpu' scheduling filter constraint 2430 * of events: 2431 */ 2432 if (!event_filter_match(event)) 2433 continue; 2434 2435 /* may need to reset tstamp_enabled */ 2436 if (is_cgroup_event(event)) 2437 perf_cgroup_mark_enabled(event, ctx); 2438 2439 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2440 if (group_sched_in(event, cpuctx, ctx)) 2441 can_add_hw = 0; 2442 } 2443 } 2444 } 2445 2446 static void 2447 ctx_sched_in(struct perf_event_context *ctx, 2448 struct perf_cpu_context *cpuctx, 2449 enum event_type_t event_type, 2450 struct task_struct *task) 2451 { 2452 u64 now; 2453 int is_active = ctx->is_active; 2454 2455 ctx->is_active |= event_type; 2456 if (likely(!ctx->nr_events)) 2457 return; 2458 2459 now = perf_clock(); 2460 ctx->timestamp = now; 2461 perf_cgroup_set_timestamp(task, ctx); 2462 /* 2463 * First go through the list and put on any pinned groups 2464 * in order to give them the best chance of going on. 2465 */ 2466 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2467 ctx_pinned_sched_in(ctx, cpuctx); 2468 2469 /* Then walk through the lower prio flexible groups */ 2470 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2471 ctx_flexible_sched_in(ctx, cpuctx); 2472 } 2473 2474 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2475 enum event_type_t event_type, 2476 struct task_struct *task) 2477 { 2478 struct perf_event_context *ctx = &cpuctx->ctx; 2479 2480 ctx_sched_in(ctx, cpuctx, event_type, task); 2481 } 2482 2483 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2484 struct task_struct *task) 2485 { 2486 struct perf_cpu_context *cpuctx; 2487 2488 cpuctx = __get_cpu_context(ctx); 2489 if (cpuctx->task_ctx == ctx) 2490 return; 2491 2492 perf_ctx_lock(cpuctx, ctx); 2493 perf_pmu_disable(ctx->pmu); 2494 /* 2495 * We want to keep the following priority order: 2496 * cpu pinned (that don't need to move), task pinned, 2497 * cpu flexible, task flexible. 2498 */ 2499 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2500 2501 if (ctx->nr_events) 2502 cpuctx->task_ctx = ctx; 2503 2504 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2505 2506 perf_pmu_enable(ctx->pmu); 2507 perf_ctx_unlock(cpuctx, ctx); 2508 2509 /* 2510 * Since these rotations are per-cpu, we need to ensure the 2511 * cpu-context we got scheduled on is actually rotating. 2512 */ 2513 perf_pmu_rotate_start(ctx->pmu); 2514 } 2515 2516 /* 2517 * When sampling the branck stack in system-wide, it may be necessary 2518 * to flush the stack on context switch. This happens when the branch 2519 * stack does not tag its entries with the pid of the current task. 2520 * Otherwise it becomes impossible to associate a branch entry with a 2521 * task. This ambiguity is more likely to appear when the branch stack 2522 * supports priv level filtering and the user sets it to monitor only 2523 * at the user level (which could be a useful measurement in system-wide 2524 * mode). In that case, the risk is high of having a branch stack with 2525 * branch from multiple tasks. Flushing may mean dropping the existing 2526 * entries or stashing them somewhere in the PMU specific code layer. 2527 * 2528 * This function provides the context switch callback to the lower code 2529 * layer. It is invoked ONLY when there is at least one system-wide context 2530 * with at least one active event using taken branch sampling. 2531 */ 2532 static void perf_branch_stack_sched_in(struct task_struct *prev, 2533 struct task_struct *task) 2534 { 2535 struct perf_cpu_context *cpuctx; 2536 struct pmu *pmu; 2537 unsigned long flags; 2538 2539 /* no need to flush branch stack if not changing task */ 2540 if (prev == task) 2541 return; 2542 2543 local_irq_save(flags); 2544 2545 rcu_read_lock(); 2546 2547 list_for_each_entry_rcu(pmu, &pmus, entry) { 2548 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2549 2550 /* 2551 * check if the context has at least one 2552 * event using PERF_SAMPLE_BRANCH_STACK 2553 */ 2554 if (cpuctx->ctx.nr_branch_stack > 0 2555 && pmu->flush_branch_stack) { 2556 2557 pmu = cpuctx->ctx.pmu; 2558 2559 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2560 2561 perf_pmu_disable(pmu); 2562 2563 pmu->flush_branch_stack(); 2564 2565 perf_pmu_enable(pmu); 2566 2567 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2568 } 2569 } 2570 2571 rcu_read_unlock(); 2572 2573 local_irq_restore(flags); 2574 } 2575 2576 /* 2577 * Called from scheduler to add the events of the current task 2578 * with interrupts disabled. 2579 * 2580 * We restore the event value and then enable it. 2581 * 2582 * This does not protect us against NMI, but enable() 2583 * sets the enabled bit in the control field of event _before_ 2584 * accessing the event control register. If a NMI hits, then it will 2585 * keep the event running. 2586 */ 2587 void __perf_event_task_sched_in(struct task_struct *prev, 2588 struct task_struct *task) 2589 { 2590 struct perf_event_context *ctx; 2591 int ctxn; 2592 2593 for_each_task_context_nr(ctxn) { 2594 ctx = task->perf_event_ctxp[ctxn]; 2595 if (likely(!ctx)) 2596 continue; 2597 2598 perf_event_context_sched_in(ctx, task); 2599 } 2600 /* 2601 * if cgroup events exist on this CPU, then we need 2602 * to check if we have to switch in PMU state. 2603 * cgroup event are system-wide mode only 2604 */ 2605 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2606 perf_cgroup_sched_in(prev, task); 2607 2608 /* check for system-wide branch_stack events */ 2609 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2610 perf_branch_stack_sched_in(prev, task); 2611 } 2612 2613 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2614 { 2615 u64 frequency = event->attr.sample_freq; 2616 u64 sec = NSEC_PER_SEC; 2617 u64 divisor, dividend; 2618 2619 int count_fls, nsec_fls, frequency_fls, sec_fls; 2620 2621 count_fls = fls64(count); 2622 nsec_fls = fls64(nsec); 2623 frequency_fls = fls64(frequency); 2624 sec_fls = 30; 2625 2626 /* 2627 * We got @count in @nsec, with a target of sample_freq HZ 2628 * the target period becomes: 2629 * 2630 * @count * 10^9 2631 * period = ------------------- 2632 * @nsec * sample_freq 2633 * 2634 */ 2635 2636 /* 2637 * Reduce accuracy by one bit such that @a and @b converge 2638 * to a similar magnitude. 2639 */ 2640 #define REDUCE_FLS(a, b) \ 2641 do { \ 2642 if (a##_fls > b##_fls) { \ 2643 a >>= 1; \ 2644 a##_fls--; \ 2645 } else { \ 2646 b >>= 1; \ 2647 b##_fls--; \ 2648 } \ 2649 } while (0) 2650 2651 /* 2652 * Reduce accuracy until either term fits in a u64, then proceed with 2653 * the other, so that finally we can do a u64/u64 division. 2654 */ 2655 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2656 REDUCE_FLS(nsec, frequency); 2657 REDUCE_FLS(sec, count); 2658 } 2659 2660 if (count_fls + sec_fls > 64) { 2661 divisor = nsec * frequency; 2662 2663 while (count_fls + sec_fls > 64) { 2664 REDUCE_FLS(count, sec); 2665 divisor >>= 1; 2666 } 2667 2668 dividend = count * sec; 2669 } else { 2670 dividend = count * sec; 2671 2672 while (nsec_fls + frequency_fls > 64) { 2673 REDUCE_FLS(nsec, frequency); 2674 dividend >>= 1; 2675 } 2676 2677 divisor = nsec * frequency; 2678 } 2679 2680 if (!divisor) 2681 return dividend; 2682 2683 return div64_u64(dividend, divisor); 2684 } 2685 2686 static DEFINE_PER_CPU(int, perf_throttled_count); 2687 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2688 2689 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2690 { 2691 struct hw_perf_event *hwc = &event->hw; 2692 s64 period, sample_period; 2693 s64 delta; 2694 2695 period = perf_calculate_period(event, nsec, count); 2696 2697 delta = (s64)(period - hwc->sample_period); 2698 delta = (delta + 7) / 8; /* low pass filter */ 2699 2700 sample_period = hwc->sample_period + delta; 2701 2702 if (!sample_period) 2703 sample_period = 1; 2704 2705 hwc->sample_period = sample_period; 2706 2707 if (local64_read(&hwc->period_left) > 8*sample_period) { 2708 if (disable) 2709 event->pmu->stop(event, PERF_EF_UPDATE); 2710 2711 local64_set(&hwc->period_left, 0); 2712 2713 if (disable) 2714 event->pmu->start(event, PERF_EF_RELOAD); 2715 } 2716 } 2717 2718 /* 2719 * combine freq adjustment with unthrottling to avoid two passes over the 2720 * events. At the same time, make sure, having freq events does not change 2721 * the rate of unthrottling as that would introduce bias. 2722 */ 2723 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2724 int needs_unthr) 2725 { 2726 struct perf_event *event; 2727 struct hw_perf_event *hwc; 2728 u64 now, period = TICK_NSEC; 2729 s64 delta; 2730 2731 /* 2732 * only need to iterate over all events iff: 2733 * - context have events in frequency mode (needs freq adjust) 2734 * - there are events to unthrottle on this cpu 2735 */ 2736 if (!(ctx->nr_freq || needs_unthr)) 2737 return; 2738 2739 raw_spin_lock(&ctx->lock); 2740 perf_pmu_disable(ctx->pmu); 2741 2742 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2743 if (event->state != PERF_EVENT_STATE_ACTIVE) 2744 continue; 2745 2746 if (!event_filter_match(event)) 2747 continue; 2748 2749 hwc = &event->hw; 2750 2751 if (hwc->interrupts == MAX_INTERRUPTS) { 2752 hwc->interrupts = 0; 2753 perf_log_throttle(event, 1); 2754 event->pmu->start(event, 0); 2755 } 2756 2757 if (!event->attr.freq || !event->attr.sample_freq) 2758 continue; 2759 2760 /* 2761 * stop the event and update event->count 2762 */ 2763 event->pmu->stop(event, PERF_EF_UPDATE); 2764 2765 now = local64_read(&event->count); 2766 delta = now - hwc->freq_count_stamp; 2767 hwc->freq_count_stamp = now; 2768 2769 /* 2770 * restart the event 2771 * reload only if value has changed 2772 * we have stopped the event so tell that 2773 * to perf_adjust_period() to avoid stopping it 2774 * twice. 2775 */ 2776 if (delta > 0) 2777 perf_adjust_period(event, period, delta, false); 2778 2779 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2780 } 2781 2782 perf_pmu_enable(ctx->pmu); 2783 raw_spin_unlock(&ctx->lock); 2784 } 2785 2786 /* 2787 * Round-robin a context's events: 2788 */ 2789 static void rotate_ctx(struct perf_event_context *ctx) 2790 { 2791 /* 2792 * Rotate the first entry last of non-pinned groups. Rotation might be 2793 * disabled by the inheritance code. 2794 */ 2795 if (!ctx->rotate_disable) 2796 list_rotate_left(&ctx->flexible_groups); 2797 } 2798 2799 /* 2800 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2801 * because they're strictly cpu affine and rotate_start is called with IRQs 2802 * disabled, while rotate_context is called from IRQ context. 2803 */ 2804 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 2805 { 2806 struct perf_event_context *ctx = NULL; 2807 int rotate = 0, remove = 1; 2808 2809 if (cpuctx->ctx.nr_events) { 2810 remove = 0; 2811 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2812 rotate = 1; 2813 } 2814 2815 ctx = cpuctx->task_ctx; 2816 if (ctx && ctx->nr_events) { 2817 remove = 0; 2818 if (ctx->nr_events != ctx->nr_active) 2819 rotate = 1; 2820 } 2821 2822 if (!rotate) 2823 goto done; 2824 2825 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2826 perf_pmu_disable(cpuctx->ctx.pmu); 2827 2828 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2829 if (ctx) 2830 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2831 2832 rotate_ctx(&cpuctx->ctx); 2833 if (ctx) 2834 rotate_ctx(ctx); 2835 2836 perf_event_sched_in(cpuctx, ctx, current); 2837 2838 perf_pmu_enable(cpuctx->ctx.pmu); 2839 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2840 done: 2841 if (remove) 2842 list_del_init(&cpuctx->rotation_list); 2843 2844 return rotate; 2845 } 2846 2847 #ifdef CONFIG_NO_HZ_FULL 2848 bool perf_event_can_stop_tick(void) 2849 { 2850 if (atomic_read(&nr_freq_events) || 2851 __this_cpu_read(perf_throttled_count)) 2852 return false; 2853 else 2854 return true; 2855 } 2856 #endif 2857 2858 void perf_event_task_tick(void) 2859 { 2860 struct list_head *head = &__get_cpu_var(rotation_list); 2861 struct perf_cpu_context *cpuctx, *tmp; 2862 struct perf_event_context *ctx; 2863 int throttled; 2864 2865 WARN_ON(!irqs_disabled()); 2866 2867 __this_cpu_inc(perf_throttled_seq); 2868 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2869 2870 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2871 ctx = &cpuctx->ctx; 2872 perf_adjust_freq_unthr_context(ctx, throttled); 2873 2874 ctx = cpuctx->task_ctx; 2875 if (ctx) 2876 perf_adjust_freq_unthr_context(ctx, throttled); 2877 } 2878 } 2879 2880 static int event_enable_on_exec(struct perf_event *event, 2881 struct perf_event_context *ctx) 2882 { 2883 if (!event->attr.enable_on_exec) 2884 return 0; 2885 2886 event->attr.enable_on_exec = 0; 2887 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2888 return 0; 2889 2890 __perf_event_mark_enabled(event); 2891 2892 return 1; 2893 } 2894 2895 /* 2896 * Enable all of a task's events that have been marked enable-on-exec. 2897 * This expects task == current. 2898 */ 2899 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2900 { 2901 struct perf_event *event; 2902 unsigned long flags; 2903 int enabled = 0; 2904 int ret; 2905 2906 local_irq_save(flags); 2907 if (!ctx || !ctx->nr_events) 2908 goto out; 2909 2910 /* 2911 * We must ctxsw out cgroup events to avoid conflict 2912 * when invoking perf_task_event_sched_in() later on 2913 * in this function. Otherwise we end up trying to 2914 * ctxswin cgroup events which are already scheduled 2915 * in. 2916 */ 2917 perf_cgroup_sched_out(current, NULL); 2918 2919 raw_spin_lock(&ctx->lock); 2920 task_ctx_sched_out(ctx); 2921 2922 list_for_each_entry(event, &ctx->event_list, event_entry) { 2923 ret = event_enable_on_exec(event, ctx); 2924 if (ret) 2925 enabled = 1; 2926 } 2927 2928 /* 2929 * Unclone this context if we enabled any event. 2930 */ 2931 if (enabled) 2932 unclone_ctx(ctx); 2933 2934 raw_spin_unlock(&ctx->lock); 2935 2936 /* 2937 * Also calls ctxswin for cgroup events, if any: 2938 */ 2939 perf_event_context_sched_in(ctx, ctx->task); 2940 out: 2941 local_irq_restore(flags); 2942 } 2943 2944 /* 2945 * Cross CPU call to read the hardware event 2946 */ 2947 static void __perf_event_read(void *info) 2948 { 2949 struct perf_event *event = info; 2950 struct perf_event_context *ctx = event->ctx; 2951 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2952 2953 /* 2954 * If this is a task context, we need to check whether it is 2955 * the current task context of this cpu. If not it has been 2956 * scheduled out before the smp call arrived. In that case 2957 * event->count would have been updated to a recent sample 2958 * when the event was scheduled out. 2959 */ 2960 if (ctx->task && cpuctx->task_ctx != ctx) 2961 return; 2962 2963 raw_spin_lock(&ctx->lock); 2964 if (ctx->is_active) { 2965 update_context_time(ctx); 2966 update_cgrp_time_from_event(event); 2967 } 2968 update_event_times(event); 2969 if (event->state == PERF_EVENT_STATE_ACTIVE) 2970 event->pmu->read(event); 2971 raw_spin_unlock(&ctx->lock); 2972 } 2973 2974 static inline u64 perf_event_count(struct perf_event *event) 2975 { 2976 return local64_read(&event->count) + atomic64_read(&event->child_count); 2977 } 2978 2979 static u64 perf_event_read(struct perf_event *event) 2980 { 2981 /* 2982 * If event is enabled and currently active on a CPU, update the 2983 * value in the event structure: 2984 */ 2985 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2986 smp_call_function_single(event->oncpu, 2987 __perf_event_read, event, 1); 2988 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2989 struct perf_event_context *ctx = event->ctx; 2990 unsigned long flags; 2991 2992 raw_spin_lock_irqsave(&ctx->lock, flags); 2993 /* 2994 * may read while context is not active 2995 * (e.g., thread is blocked), in that case 2996 * we cannot update context time 2997 */ 2998 if (ctx->is_active) { 2999 update_context_time(ctx); 3000 update_cgrp_time_from_event(event); 3001 } 3002 update_event_times(event); 3003 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3004 } 3005 3006 return perf_event_count(event); 3007 } 3008 3009 /* 3010 * Initialize the perf_event context in a task_struct: 3011 */ 3012 static void __perf_event_init_context(struct perf_event_context *ctx) 3013 { 3014 raw_spin_lock_init(&ctx->lock); 3015 mutex_init(&ctx->mutex); 3016 INIT_LIST_HEAD(&ctx->pinned_groups); 3017 INIT_LIST_HEAD(&ctx->flexible_groups); 3018 INIT_LIST_HEAD(&ctx->event_list); 3019 atomic_set(&ctx->refcount, 1); 3020 } 3021 3022 static struct perf_event_context * 3023 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3024 { 3025 struct perf_event_context *ctx; 3026 3027 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3028 if (!ctx) 3029 return NULL; 3030 3031 __perf_event_init_context(ctx); 3032 if (task) { 3033 ctx->task = task; 3034 get_task_struct(task); 3035 } 3036 ctx->pmu = pmu; 3037 3038 return ctx; 3039 } 3040 3041 static struct task_struct * 3042 find_lively_task_by_vpid(pid_t vpid) 3043 { 3044 struct task_struct *task; 3045 int err; 3046 3047 rcu_read_lock(); 3048 if (!vpid) 3049 task = current; 3050 else 3051 task = find_task_by_vpid(vpid); 3052 if (task) 3053 get_task_struct(task); 3054 rcu_read_unlock(); 3055 3056 if (!task) 3057 return ERR_PTR(-ESRCH); 3058 3059 /* Reuse ptrace permission checks for now. */ 3060 err = -EACCES; 3061 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 3062 goto errout; 3063 3064 return task; 3065 errout: 3066 put_task_struct(task); 3067 return ERR_PTR(err); 3068 3069 } 3070 3071 /* 3072 * Returns a matching context with refcount and pincount. 3073 */ 3074 static struct perf_event_context * 3075 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 3076 { 3077 struct perf_event_context *ctx; 3078 struct perf_cpu_context *cpuctx; 3079 unsigned long flags; 3080 int ctxn, err; 3081 3082 if (!task) { 3083 /* Must be root to operate on a CPU event: */ 3084 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3085 return ERR_PTR(-EACCES); 3086 3087 /* 3088 * We could be clever and allow to attach a event to an 3089 * offline CPU and activate it when the CPU comes up, but 3090 * that's for later. 3091 */ 3092 if (!cpu_online(cpu)) 3093 return ERR_PTR(-ENODEV); 3094 3095 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3096 ctx = &cpuctx->ctx; 3097 get_ctx(ctx); 3098 ++ctx->pin_count; 3099 3100 return ctx; 3101 } 3102 3103 err = -EINVAL; 3104 ctxn = pmu->task_ctx_nr; 3105 if (ctxn < 0) 3106 goto errout; 3107 3108 retry: 3109 ctx = perf_lock_task_context(task, ctxn, &flags); 3110 if (ctx) { 3111 unclone_ctx(ctx); 3112 ++ctx->pin_count; 3113 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3114 } else { 3115 ctx = alloc_perf_context(pmu, task); 3116 err = -ENOMEM; 3117 if (!ctx) 3118 goto errout; 3119 3120 err = 0; 3121 mutex_lock(&task->perf_event_mutex); 3122 /* 3123 * If it has already passed perf_event_exit_task(). 3124 * we must see PF_EXITING, it takes this mutex too. 3125 */ 3126 if (task->flags & PF_EXITING) 3127 err = -ESRCH; 3128 else if (task->perf_event_ctxp[ctxn]) 3129 err = -EAGAIN; 3130 else { 3131 get_ctx(ctx); 3132 ++ctx->pin_count; 3133 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3134 } 3135 mutex_unlock(&task->perf_event_mutex); 3136 3137 if (unlikely(err)) { 3138 put_ctx(ctx); 3139 3140 if (err == -EAGAIN) 3141 goto retry; 3142 goto errout; 3143 } 3144 } 3145 3146 return ctx; 3147 3148 errout: 3149 return ERR_PTR(err); 3150 } 3151 3152 static void perf_event_free_filter(struct perf_event *event); 3153 3154 static void free_event_rcu(struct rcu_head *head) 3155 { 3156 struct perf_event *event; 3157 3158 event = container_of(head, struct perf_event, rcu_head); 3159 if (event->ns) 3160 put_pid_ns(event->ns); 3161 perf_event_free_filter(event); 3162 kfree(event); 3163 } 3164 3165 static void ring_buffer_put(struct ring_buffer *rb); 3166 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb); 3167 3168 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3169 { 3170 if (event->parent) 3171 return; 3172 3173 if (has_branch_stack(event)) { 3174 if (!(event->attach_state & PERF_ATTACH_TASK)) 3175 atomic_dec(&per_cpu(perf_branch_stack_events, cpu)); 3176 } 3177 if (is_cgroup_event(event)) 3178 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3179 } 3180 3181 static void unaccount_event(struct perf_event *event) 3182 { 3183 if (event->parent) 3184 return; 3185 3186 if (event->attach_state & PERF_ATTACH_TASK) 3187 static_key_slow_dec_deferred(&perf_sched_events); 3188 if (event->attr.mmap || event->attr.mmap_data) 3189 atomic_dec(&nr_mmap_events); 3190 if (event->attr.comm) 3191 atomic_dec(&nr_comm_events); 3192 if (event->attr.task) 3193 atomic_dec(&nr_task_events); 3194 if (event->attr.freq) 3195 atomic_dec(&nr_freq_events); 3196 if (is_cgroup_event(event)) 3197 static_key_slow_dec_deferred(&perf_sched_events); 3198 if (has_branch_stack(event)) 3199 static_key_slow_dec_deferred(&perf_sched_events); 3200 3201 unaccount_event_cpu(event, event->cpu); 3202 } 3203 3204 static void __free_event(struct perf_event *event) 3205 { 3206 if (!event->parent) { 3207 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 3208 put_callchain_buffers(); 3209 } 3210 3211 if (event->destroy) 3212 event->destroy(event); 3213 3214 if (event->ctx) 3215 put_ctx(event->ctx); 3216 3217 call_rcu(&event->rcu_head, free_event_rcu); 3218 } 3219 static void free_event(struct perf_event *event) 3220 { 3221 irq_work_sync(&event->pending); 3222 3223 unaccount_event(event); 3224 3225 if (event->rb) { 3226 struct ring_buffer *rb; 3227 3228 /* 3229 * Can happen when we close an event with re-directed output. 3230 * 3231 * Since we have a 0 refcount, perf_mmap_close() will skip 3232 * over us; possibly making our ring_buffer_put() the last. 3233 */ 3234 mutex_lock(&event->mmap_mutex); 3235 rb = event->rb; 3236 if (rb) { 3237 rcu_assign_pointer(event->rb, NULL); 3238 ring_buffer_detach(event, rb); 3239 ring_buffer_put(rb); /* could be last */ 3240 } 3241 mutex_unlock(&event->mmap_mutex); 3242 } 3243 3244 if (is_cgroup_event(event)) 3245 perf_detach_cgroup(event); 3246 3247 3248 __free_event(event); 3249 } 3250 3251 int perf_event_release_kernel(struct perf_event *event) 3252 { 3253 struct perf_event_context *ctx = event->ctx; 3254 3255 WARN_ON_ONCE(ctx->parent_ctx); 3256 /* 3257 * There are two ways this annotation is useful: 3258 * 3259 * 1) there is a lock recursion from perf_event_exit_task 3260 * see the comment there. 3261 * 3262 * 2) there is a lock-inversion with mmap_sem through 3263 * perf_event_read_group(), which takes faults while 3264 * holding ctx->mutex, however this is called after 3265 * the last filedesc died, so there is no possibility 3266 * to trigger the AB-BA case. 3267 */ 3268 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 3269 raw_spin_lock_irq(&ctx->lock); 3270 perf_group_detach(event); 3271 raw_spin_unlock_irq(&ctx->lock); 3272 perf_remove_from_context(event); 3273 mutex_unlock(&ctx->mutex); 3274 3275 free_event(event); 3276 3277 return 0; 3278 } 3279 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 3280 3281 /* 3282 * Called when the last reference to the file is gone. 3283 */ 3284 static void put_event(struct perf_event *event) 3285 { 3286 struct task_struct *owner; 3287 3288 if (!atomic_long_dec_and_test(&event->refcount)) 3289 return; 3290 3291 rcu_read_lock(); 3292 owner = ACCESS_ONCE(event->owner); 3293 /* 3294 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 3295 * !owner it means the list deletion is complete and we can indeed 3296 * free this event, otherwise we need to serialize on 3297 * owner->perf_event_mutex. 3298 */ 3299 smp_read_barrier_depends(); 3300 if (owner) { 3301 /* 3302 * Since delayed_put_task_struct() also drops the last 3303 * task reference we can safely take a new reference 3304 * while holding the rcu_read_lock(). 3305 */ 3306 get_task_struct(owner); 3307 } 3308 rcu_read_unlock(); 3309 3310 if (owner) { 3311 mutex_lock(&owner->perf_event_mutex); 3312 /* 3313 * We have to re-check the event->owner field, if it is cleared 3314 * we raced with perf_event_exit_task(), acquiring the mutex 3315 * ensured they're done, and we can proceed with freeing the 3316 * event. 3317 */ 3318 if (event->owner) 3319 list_del_init(&event->owner_entry); 3320 mutex_unlock(&owner->perf_event_mutex); 3321 put_task_struct(owner); 3322 } 3323 3324 perf_event_release_kernel(event); 3325 } 3326 3327 static int perf_release(struct inode *inode, struct file *file) 3328 { 3329 put_event(file->private_data); 3330 return 0; 3331 } 3332 3333 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 3334 { 3335 struct perf_event *child; 3336 u64 total = 0; 3337 3338 *enabled = 0; 3339 *running = 0; 3340 3341 mutex_lock(&event->child_mutex); 3342 total += perf_event_read(event); 3343 *enabled += event->total_time_enabled + 3344 atomic64_read(&event->child_total_time_enabled); 3345 *running += event->total_time_running + 3346 atomic64_read(&event->child_total_time_running); 3347 3348 list_for_each_entry(child, &event->child_list, child_list) { 3349 total += perf_event_read(child); 3350 *enabled += child->total_time_enabled; 3351 *running += child->total_time_running; 3352 } 3353 mutex_unlock(&event->child_mutex); 3354 3355 return total; 3356 } 3357 EXPORT_SYMBOL_GPL(perf_event_read_value); 3358 3359 static int perf_event_read_group(struct perf_event *event, 3360 u64 read_format, char __user *buf) 3361 { 3362 struct perf_event *leader = event->group_leader, *sub; 3363 int n = 0, size = 0, ret = -EFAULT; 3364 struct perf_event_context *ctx = leader->ctx; 3365 u64 values[5]; 3366 u64 count, enabled, running; 3367 3368 mutex_lock(&ctx->mutex); 3369 count = perf_event_read_value(leader, &enabled, &running); 3370 3371 values[n++] = 1 + leader->nr_siblings; 3372 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3373 values[n++] = enabled; 3374 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3375 values[n++] = running; 3376 values[n++] = count; 3377 if (read_format & PERF_FORMAT_ID) 3378 values[n++] = primary_event_id(leader); 3379 3380 size = n * sizeof(u64); 3381 3382 if (copy_to_user(buf, values, size)) 3383 goto unlock; 3384 3385 ret = size; 3386 3387 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3388 n = 0; 3389 3390 values[n++] = perf_event_read_value(sub, &enabled, &running); 3391 if (read_format & PERF_FORMAT_ID) 3392 values[n++] = primary_event_id(sub); 3393 3394 size = n * sizeof(u64); 3395 3396 if (copy_to_user(buf + ret, values, size)) { 3397 ret = -EFAULT; 3398 goto unlock; 3399 } 3400 3401 ret += size; 3402 } 3403 unlock: 3404 mutex_unlock(&ctx->mutex); 3405 3406 return ret; 3407 } 3408 3409 static int perf_event_read_one(struct perf_event *event, 3410 u64 read_format, char __user *buf) 3411 { 3412 u64 enabled, running; 3413 u64 values[4]; 3414 int n = 0; 3415 3416 values[n++] = perf_event_read_value(event, &enabled, &running); 3417 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3418 values[n++] = enabled; 3419 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3420 values[n++] = running; 3421 if (read_format & PERF_FORMAT_ID) 3422 values[n++] = primary_event_id(event); 3423 3424 if (copy_to_user(buf, values, n * sizeof(u64))) 3425 return -EFAULT; 3426 3427 return n * sizeof(u64); 3428 } 3429 3430 /* 3431 * Read the performance event - simple non blocking version for now 3432 */ 3433 static ssize_t 3434 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3435 { 3436 u64 read_format = event->attr.read_format; 3437 int ret; 3438 3439 /* 3440 * Return end-of-file for a read on a event that is in 3441 * error state (i.e. because it was pinned but it couldn't be 3442 * scheduled on to the CPU at some point). 3443 */ 3444 if (event->state == PERF_EVENT_STATE_ERROR) 3445 return 0; 3446 3447 if (count < event->read_size) 3448 return -ENOSPC; 3449 3450 WARN_ON_ONCE(event->ctx->parent_ctx); 3451 if (read_format & PERF_FORMAT_GROUP) 3452 ret = perf_event_read_group(event, read_format, buf); 3453 else 3454 ret = perf_event_read_one(event, read_format, buf); 3455 3456 return ret; 3457 } 3458 3459 static ssize_t 3460 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3461 { 3462 struct perf_event *event = file->private_data; 3463 3464 return perf_read_hw(event, buf, count); 3465 } 3466 3467 static unsigned int perf_poll(struct file *file, poll_table *wait) 3468 { 3469 struct perf_event *event = file->private_data; 3470 struct ring_buffer *rb; 3471 unsigned int events = POLL_HUP; 3472 3473 /* 3474 * Pin the event->rb by taking event->mmap_mutex; otherwise 3475 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 3476 */ 3477 mutex_lock(&event->mmap_mutex); 3478 rb = event->rb; 3479 if (rb) 3480 events = atomic_xchg(&rb->poll, 0); 3481 mutex_unlock(&event->mmap_mutex); 3482 3483 poll_wait(file, &event->waitq, wait); 3484 3485 return events; 3486 } 3487 3488 static void perf_event_reset(struct perf_event *event) 3489 { 3490 (void)perf_event_read(event); 3491 local64_set(&event->count, 0); 3492 perf_event_update_userpage(event); 3493 } 3494 3495 /* 3496 * Holding the top-level event's child_mutex means that any 3497 * descendant process that has inherited this event will block 3498 * in sync_child_event if it goes to exit, thus satisfying the 3499 * task existence requirements of perf_event_enable/disable. 3500 */ 3501 static void perf_event_for_each_child(struct perf_event *event, 3502 void (*func)(struct perf_event *)) 3503 { 3504 struct perf_event *child; 3505 3506 WARN_ON_ONCE(event->ctx->parent_ctx); 3507 mutex_lock(&event->child_mutex); 3508 func(event); 3509 list_for_each_entry(child, &event->child_list, child_list) 3510 func(child); 3511 mutex_unlock(&event->child_mutex); 3512 } 3513 3514 static void perf_event_for_each(struct perf_event *event, 3515 void (*func)(struct perf_event *)) 3516 { 3517 struct perf_event_context *ctx = event->ctx; 3518 struct perf_event *sibling; 3519 3520 WARN_ON_ONCE(ctx->parent_ctx); 3521 mutex_lock(&ctx->mutex); 3522 event = event->group_leader; 3523 3524 perf_event_for_each_child(event, func); 3525 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3526 perf_event_for_each_child(sibling, func); 3527 mutex_unlock(&ctx->mutex); 3528 } 3529 3530 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3531 { 3532 struct perf_event_context *ctx = event->ctx; 3533 int ret = 0; 3534 u64 value; 3535 3536 if (!is_sampling_event(event)) 3537 return -EINVAL; 3538 3539 if (copy_from_user(&value, arg, sizeof(value))) 3540 return -EFAULT; 3541 3542 if (!value) 3543 return -EINVAL; 3544 3545 raw_spin_lock_irq(&ctx->lock); 3546 if (event->attr.freq) { 3547 if (value > sysctl_perf_event_sample_rate) { 3548 ret = -EINVAL; 3549 goto unlock; 3550 } 3551 3552 event->attr.sample_freq = value; 3553 } else { 3554 event->attr.sample_period = value; 3555 event->hw.sample_period = value; 3556 } 3557 unlock: 3558 raw_spin_unlock_irq(&ctx->lock); 3559 3560 return ret; 3561 } 3562 3563 static const struct file_operations perf_fops; 3564 3565 static inline int perf_fget_light(int fd, struct fd *p) 3566 { 3567 struct fd f = fdget(fd); 3568 if (!f.file) 3569 return -EBADF; 3570 3571 if (f.file->f_op != &perf_fops) { 3572 fdput(f); 3573 return -EBADF; 3574 } 3575 *p = f; 3576 return 0; 3577 } 3578 3579 static int perf_event_set_output(struct perf_event *event, 3580 struct perf_event *output_event); 3581 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3582 3583 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3584 { 3585 struct perf_event *event = file->private_data; 3586 void (*func)(struct perf_event *); 3587 u32 flags = arg; 3588 3589 switch (cmd) { 3590 case PERF_EVENT_IOC_ENABLE: 3591 func = perf_event_enable; 3592 break; 3593 case PERF_EVENT_IOC_DISABLE: 3594 func = perf_event_disable; 3595 break; 3596 case PERF_EVENT_IOC_RESET: 3597 func = perf_event_reset; 3598 break; 3599 3600 case PERF_EVENT_IOC_REFRESH: 3601 return perf_event_refresh(event, arg); 3602 3603 case PERF_EVENT_IOC_PERIOD: 3604 return perf_event_period(event, (u64 __user *)arg); 3605 3606 case PERF_EVENT_IOC_ID: 3607 { 3608 u64 id = primary_event_id(event); 3609 3610 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 3611 return -EFAULT; 3612 return 0; 3613 } 3614 3615 case PERF_EVENT_IOC_SET_OUTPUT: 3616 { 3617 int ret; 3618 if (arg != -1) { 3619 struct perf_event *output_event; 3620 struct fd output; 3621 ret = perf_fget_light(arg, &output); 3622 if (ret) 3623 return ret; 3624 output_event = output.file->private_data; 3625 ret = perf_event_set_output(event, output_event); 3626 fdput(output); 3627 } else { 3628 ret = perf_event_set_output(event, NULL); 3629 } 3630 return ret; 3631 } 3632 3633 case PERF_EVENT_IOC_SET_FILTER: 3634 return perf_event_set_filter(event, (void __user *)arg); 3635 3636 default: 3637 return -ENOTTY; 3638 } 3639 3640 if (flags & PERF_IOC_FLAG_GROUP) 3641 perf_event_for_each(event, func); 3642 else 3643 perf_event_for_each_child(event, func); 3644 3645 return 0; 3646 } 3647 3648 int perf_event_task_enable(void) 3649 { 3650 struct perf_event *event; 3651 3652 mutex_lock(¤t->perf_event_mutex); 3653 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3654 perf_event_for_each_child(event, perf_event_enable); 3655 mutex_unlock(¤t->perf_event_mutex); 3656 3657 return 0; 3658 } 3659 3660 int perf_event_task_disable(void) 3661 { 3662 struct perf_event *event; 3663 3664 mutex_lock(¤t->perf_event_mutex); 3665 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3666 perf_event_for_each_child(event, perf_event_disable); 3667 mutex_unlock(¤t->perf_event_mutex); 3668 3669 return 0; 3670 } 3671 3672 static int perf_event_index(struct perf_event *event) 3673 { 3674 if (event->hw.state & PERF_HES_STOPPED) 3675 return 0; 3676 3677 if (event->state != PERF_EVENT_STATE_ACTIVE) 3678 return 0; 3679 3680 return event->pmu->event_idx(event); 3681 } 3682 3683 static void calc_timer_values(struct perf_event *event, 3684 u64 *now, 3685 u64 *enabled, 3686 u64 *running) 3687 { 3688 u64 ctx_time; 3689 3690 *now = perf_clock(); 3691 ctx_time = event->shadow_ctx_time + *now; 3692 *enabled = ctx_time - event->tstamp_enabled; 3693 *running = ctx_time - event->tstamp_running; 3694 } 3695 3696 static void perf_event_init_userpage(struct perf_event *event) 3697 { 3698 struct perf_event_mmap_page *userpg; 3699 struct ring_buffer *rb; 3700 3701 rcu_read_lock(); 3702 rb = rcu_dereference(event->rb); 3703 if (!rb) 3704 goto unlock; 3705 3706 userpg = rb->user_page; 3707 3708 /* Allow new userspace to detect that bit 0 is deprecated */ 3709 userpg->cap_bit0_is_deprecated = 1; 3710 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 3711 3712 unlock: 3713 rcu_read_unlock(); 3714 } 3715 3716 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3717 { 3718 } 3719 3720 /* 3721 * Callers need to ensure there can be no nesting of this function, otherwise 3722 * the seqlock logic goes bad. We can not serialize this because the arch 3723 * code calls this from NMI context. 3724 */ 3725 void perf_event_update_userpage(struct perf_event *event) 3726 { 3727 struct perf_event_mmap_page *userpg; 3728 struct ring_buffer *rb; 3729 u64 enabled, running, now; 3730 3731 rcu_read_lock(); 3732 rb = rcu_dereference(event->rb); 3733 if (!rb) 3734 goto unlock; 3735 3736 /* 3737 * compute total_time_enabled, total_time_running 3738 * based on snapshot values taken when the event 3739 * was last scheduled in. 3740 * 3741 * we cannot simply called update_context_time() 3742 * because of locking issue as we can be called in 3743 * NMI context 3744 */ 3745 calc_timer_values(event, &now, &enabled, &running); 3746 3747 userpg = rb->user_page; 3748 /* 3749 * Disable preemption so as to not let the corresponding user-space 3750 * spin too long if we get preempted. 3751 */ 3752 preempt_disable(); 3753 ++userpg->lock; 3754 barrier(); 3755 userpg->index = perf_event_index(event); 3756 userpg->offset = perf_event_count(event); 3757 if (userpg->index) 3758 userpg->offset -= local64_read(&event->hw.prev_count); 3759 3760 userpg->time_enabled = enabled + 3761 atomic64_read(&event->child_total_time_enabled); 3762 3763 userpg->time_running = running + 3764 atomic64_read(&event->child_total_time_running); 3765 3766 arch_perf_update_userpage(userpg, now); 3767 3768 barrier(); 3769 ++userpg->lock; 3770 preempt_enable(); 3771 unlock: 3772 rcu_read_unlock(); 3773 } 3774 3775 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3776 { 3777 struct perf_event *event = vma->vm_file->private_data; 3778 struct ring_buffer *rb; 3779 int ret = VM_FAULT_SIGBUS; 3780 3781 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3782 if (vmf->pgoff == 0) 3783 ret = 0; 3784 return ret; 3785 } 3786 3787 rcu_read_lock(); 3788 rb = rcu_dereference(event->rb); 3789 if (!rb) 3790 goto unlock; 3791 3792 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3793 goto unlock; 3794 3795 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3796 if (!vmf->page) 3797 goto unlock; 3798 3799 get_page(vmf->page); 3800 vmf->page->mapping = vma->vm_file->f_mapping; 3801 vmf->page->index = vmf->pgoff; 3802 3803 ret = 0; 3804 unlock: 3805 rcu_read_unlock(); 3806 3807 return ret; 3808 } 3809 3810 static void ring_buffer_attach(struct perf_event *event, 3811 struct ring_buffer *rb) 3812 { 3813 unsigned long flags; 3814 3815 if (!list_empty(&event->rb_entry)) 3816 return; 3817 3818 spin_lock_irqsave(&rb->event_lock, flags); 3819 if (list_empty(&event->rb_entry)) 3820 list_add(&event->rb_entry, &rb->event_list); 3821 spin_unlock_irqrestore(&rb->event_lock, flags); 3822 } 3823 3824 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb) 3825 { 3826 unsigned long flags; 3827 3828 if (list_empty(&event->rb_entry)) 3829 return; 3830 3831 spin_lock_irqsave(&rb->event_lock, flags); 3832 list_del_init(&event->rb_entry); 3833 wake_up_all(&event->waitq); 3834 spin_unlock_irqrestore(&rb->event_lock, flags); 3835 } 3836 3837 static void ring_buffer_wakeup(struct perf_event *event) 3838 { 3839 struct ring_buffer *rb; 3840 3841 rcu_read_lock(); 3842 rb = rcu_dereference(event->rb); 3843 if (rb) { 3844 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3845 wake_up_all(&event->waitq); 3846 } 3847 rcu_read_unlock(); 3848 } 3849 3850 static void rb_free_rcu(struct rcu_head *rcu_head) 3851 { 3852 struct ring_buffer *rb; 3853 3854 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3855 rb_free(rb); 3856 } 3857 3858 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3859 { 3860 struct ring_buffer *rb; 3861 3862 rcu_read_lock(); 3863 rb = rcu_dereference(event->rb); 3864 if (rb) { 3865 if (!atomic_inc_not_zero(&rb->refcount)) 3866 rb = NULL; 3867 } 3868 rcu_read_unlock(); 3869 3870 return rb; 3871 } 3872 3873 static void ring_buffer_put(struct ring_buffer *rb) 3874 { 3875 if (!atomic_dec_and_test(&rb->refcount)) 3876 return; 3877 3878 WARN_ON_ONCE(!list_empty(&rb->event_list)); 3879 3880 call_rcu(&rb->rcu_head, rb_free_rcu); 3881 } 3882 3883 static void perf_mmap_open(struct vm_area_struct *vma) 3884 { 3885 struct perf_event *event = vma->vm_file->private_data; 3886 3887 atomic_inc(&event->mmap_count); 3888 atomic_inc(&event->rb->mmap_count); 3889 } 3890 3891 /* 3892 * A buffer can be mmap()ed multiple times; either directly through the same 3893 * event, or through other events by use of perf_event_set_output(). 3894 * 3895 * In order to undo the VM accounting done by perf_mmap() we need to destroy 3896 * the buffer here, where we still have a VM context. This means we need 3897 * to detach all events redirecting to us. 3898 */ 3899 static void perf_mmap_close(struct vm_area_struct *vma) 3900 { 3901 struct perf_event *event = vma->vm_file->private_data; 3902 3903 struct ring_buffer *rb = event->rb; 3904 struct user_struct *mmap_user = rb->mmap_user; 3905 int mmap_locked = rb->mmap_locked; 3906 unsigned long size = perf_data_size(rb); 3907 3908 atomic_dec(&rb->mmap_count); 3909 3910 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 3911 return; 3912 3913 /* Detach current event from the buffer. */ 3914 rcu_assign_pointer(event->rb, NULL); 3915 ring_buffer_detach(event, rb); 3916 mutex_unlock(&event->mmap_mutex); 3917 3918 /* If there's still other mmap()s of this buffer, we're done. */ 3919 if (atomic_read(&rb->mmap_count)) { 3920 ring_buffer_put(rb); /* can't be last */ 3921 return; 3922 } 3923 3924 /* 3925 * No other mmap()s, detach from all other events that might redirect 3926 * into the now unreachable buffer. Somewhat complicated by the 3927 * fact that rb::event_lock otherwise nests inside mmap_mutex. 3928 */ 3929 again: 3930 rcu_read_lock(); 3931 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 3932 if (!atomic_long_inc_not_zero(&event->refcount)) { 3933 /* 3934 * This event is en-route to free_event() which will 3935 * detach it and remove it from the list. 3936 */ 3937 continue; 3938 } 3939 rcu_read_unlock(); 3940 3941 mutex_lock(&event->mmap_mutex); 3942 /* 3943 * Check we didn't race with perf_event_set_output() which can 3944 * swizzle the rb from under us while we were waiting to 3945 * acquire mmap_mutex. 3946 * 3947 * If we find a different rb; ignore this event, a next 3948 * iteration will no longer find it on the list. We have to 3949 * still restart the iteration to make sure we're not now 3950 * iterating the wrong list. 3951 */ 3952 if (event->rb == rb) { 3953 rcu_assign_pointer(event->rb, NULL); 3954 ring_buffer_detach(event, rb); 3955 ring_buffer_put(rb); /* can't be last, we still have one */ 3956 } 3957 mutex_unlock(&event->mmap_mutex); 3958 put_event(event); 3959 3960 /* 3961 * Restart the iteration; either we're on the wrong list or 3962 * destroyed its integrity by doing a deletion. 3963 */ 3964 goto again; 3965 } 3966 rcu_read_unlock(); 3967 3968 /* 3969 * It could be there's still a few 0-ref events on the list; they'll 3970 * get cleaned up by free_event() -- they'll also still have their 3971 * ref on the rb and will free it whenever they are done with it. 3972 * 3973 * Aside from that, this buffer is 'fully' detached and unmapped, 3974 * undo the VM accounting. 3975 */ 3976 3977 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 3978 vma->vm_mm->pinned_vm -= mmap_locked; 3979 free_uid(mmap_user); 3980 3981 ring_buffer_put(rb); /* could be last */ 3982 } 3983 3984 static const struct vm_operations_struct perf_mmap_vmops = { 3985 .open = perf_mmap_open, 3986 .close = perf_mmap_close, 3987 .fault = perf_mmap_fault, 3988 .page_mkwrite = perf_mmap_fault, 3989 }; 3990 3991 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3992 { 3993 struct perf_event *event = file->private_data; 3994 unsigned long user_locked, user_lock_limit; 3995 struct user_struct *user = current_user(); 3996 unsigned long locked, lock_limit; 3997 struct ring_buffer *rb; 3998 unsigned long vma_size; 3999 unsigned long nr_pages; 4000 long user_extra, extra; 4001 int ret = 0, flags = 0; 4002 4003 /* 4004 * Don't allow mmap() of inherited per-task counters. This would 4005 * create a performance issue due to all children writing to the 4006 * same rb. 4007 */ 4008 if (event->cpu == -1 && event->attr.inherit) 4009 return -EINVAL; 4010 4011 if (!(vma->vm_flags & VM_SHARED)) 4012 return -EINVAL; 4013 4014 vma_size = vma->vm_end - vma->vm_start; 4015 nr_pages = (vma_size / PAGE_SIZE) - 1; 4016 4017 /* 4018 * If we have rb pages ensure they're a power-of-two number, so we 4019 * can do bitmasks instead of modulo. 4020 */ 4021 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 4022 return -EINVAL; 4023 4024 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 4025 return -EINVAL; 4026 4027 if (vma->vm_pgoff != 0) 4028 return -EINVAL; 4029 4030 WARN_ON_ONCE(event->ctx->parent_ctx); 4031 again: 4032 mutex_lock(&event->mmap_mutex); 4033 if (event->rb) { 4034 if (event->rb->nr_pages != nr_pages) { 4035 ret = -EINVAL; 4036 goto unlock; 4037 } 4038 4039 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 4040 /* 4041 * Raced against perf_mmap_close() through 4042 * perf_event_set_output(). Try again, hope for better 4043 * luck. 4044 */ 4045 mutex_unlock(&event->mmap_mutex); 4046 goto again; 4047 } 4048 4049 goto unlock; 4050 } 4051 4052 user_extra = nr_pages + 1; 4053 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 4054 4055 /* 4056 * Increase the limit linearly with more CPUs: 4057 */ 4058 user_lock_limit *= num_online_cpus(); 4059 4060 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 4061 4062 extra = 0; 4063 if (user_locked > user_lock_limit) 4064 extra = user_locked - user_lock_limit; 4065 4066 lock_limit = rlimit(RLIMIT_MEMLOCK); 4067 lock_limit >>= PAGE_SHIFT; 4068 locked = vma->vm_mm->pinned_vm + extra; 4069 4070 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 4071 !capable(CAP_IPC_LOCK)) { 4072 ret = -EPERM; 4073 goto unlock; 4074 } 4075 4076 WARN_ON(event->rb); 4077 4078 if (vma->vm_flags & VM_WRITE) 4079 flags |= RING_BUFFER_WRITABLE; 4080 4081 rb = rb_alloc(nr_pages, 4082 event->attr.watermark ? event->attr.wakeup_watermark : 0, 4083 event->cpu, flags); 4084 4085 if (!rb) { 4086 ret = -ENOMEM; 4087 goto unlock; 4088 } 4089 4090 atomic_set(&rb->mmap_count, 1); 4091 rb->mmap_locked = extra; 4092 rb->mmap_user = get_current_user(); 4093 4094 atomic_long_add(user_extra, &user->locked_vm); 4095 vma->vm_mm->pinned_vm += extra; 4096 4097 ring_buffer_attach(event, rb); 4098 rcu_assign_pointer(event->rb, rb); 4099 4100 perf_event_init_userpage(event); 4101 perf_event_update_userpage(event); 4102 4103 unlock: 4104 if (!ret) 4105 atomic_inc(&event->mmap_count); 4106 mutex_unlock(&event->mmap_mutex); 4107 4108 /* 4109 * Since pinned accounting is per vm we cannot allow fork() to copy our 4110 * vma. 4111 */ 4112 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 4113 vma->vm_ops = &perf_mmap_vmops; 4114 4115 return ret; 4116 } 4117 4118 static int perf_fasync(int fd, struct file *filp, int on) 4119 { 4120 struct inode *inode = file_inode(filp); 4121 struct perf_event *event = filp->private_data; 4122 int retval; 4123 4124 mutex_lock(&inode->i_mutex); 4125 retval = fasync_helper(fd, filp, on, &event->fasync); 4126 mutex_unlock(&inode->i_mutex); 4127 4128 if (retval < 0) 4129 return retval; 4130 4131 return 0; 4132 } 4133 4134 static const struct file_operations perf_fops = { 4135 .llseek = no_llseek, 4136 .release = perf_release, 4137 .read = perf_read, 4138 .poll = perf_poll, 4139 .unlocked_ioctl = perf_ioctl, 4140 .compat_ioctl = perf_ioctl, 4141 .mmap = perf_mmap, 4142 .fasync = perf_fasync, 4143 }; 4144 4145 /* 4146 * Perf event wakeup 4147 * 4148 * If there's data, ensure we set the poll() state and publish everything 4149 * to user-space before waking everybody up. 4150 */ 4151 4152 void perf_event_wakeup(struct perf_event *event) 4153 { 4154 ring_buffer_wakeup(event); 4155 4156 if (event->pending_kill) { 4157 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 4158 event->pending_kill = 0; 4159 } 4160 } 4161 4162 static void perf_pending_event(struct irq_work *entry) 4163 { 4164 struct perf_event *event = container_of(entry, 4165 struct perf_event, pending); 4166 4167 if (event->pending_disable) { 4168 event->pending_disable = 0; 4169 __perf_event_disable(event); 4170 } 4171 4172 if (event->pending_wakeup) { 4173 event->pending_wakeup = 0; 4174 perf_event_wakeup(event); 4175 } 4176 } 4177 4178 /* 4179 * We assume there is only KVM supporting the callbacks. 4180 * Later on, we might change it to a list if there is 4181 * another virtualization implementation supporting the callbacks. 4182 */ 4183 struct perf_guest_info_callbacks *perf_guest_cbs; 4184 4185 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4186 { 4187 perf_guest_cbs = cbs; 4188 return 0; 4189 } 4190 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 4191 4192 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 4193 { 4194 perf_guest_cbs = NULL; 4195 return 0; 4196 } 4197 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 4198 4199 static void 4200 perf_output_sample_regs(struct perf_output_handle *handle, 4201 struct pt_regs *regs, u64 mask) 4202 { 4203 int bit; 4204 4205 for_each_set_bit(bit, (const unsigned long *) &mask, 4206 sizeof(mask) * BITS_PER_BYTE) { 4207 u64 val; 4208 4209 val = perf_reg_value(regs, bit); 4210 perf_output_put(handle, val); 4211 } 4212 } 4213 4214 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 4215 struct pt_regs *regs) 4216 { 4217 if (!user_mode(regs)) { 4218 if (current->mm) 4219 regs = task_pt_regs(current); 4220 else 4221 regs = NULL; 4222 } 4223 4224 if (regs) { 4225 regs_user->regs = regs; 4226 regs_user->abi = perf_reg_abi(current); 4227 } 4228 } 4229 4230 /* 4231 * Get remaining task size from user stack pointer. 4232 * 4233 * It'd be better to take stack vma map and limit this more 4234 * precisly, but there's no way to get it safely under interrupt, 4235 * so using TASK_SIZE as limit. 4236 */ 4237 static u64 perf_ustack_task_size(struct pt_regs *regs) 4238 { 4239 unsigned long addr = perf_user_stack_pointer(regs); 4240 4241 if (!addr || addr >= TASK_SIZE) 4242 return 0; 4243 4244 return TASK_SIZE - addr; 4245 } 4246 4247 static u16 4248 perf_sample_ustack_size(u16 stack_size, u16 header_size, 4249 struct pt_regs *regs) 4250 { 4251 u64 task_size; 4252 4253 /* No regs, no stack pointer, no dump. */ 4254 if (!regs) 4255 return 0; 4256 4257 /* 4258 * Check if we fit in with the requested stack size into the: 4259 * - TASK_SIZE 4260 * If we don't, we limit the size to the TASK_SIZE. 4261 * 4262 * - remaining sample size 4263 * If we don't, we customize the stack size to 4264 * fit in to the remaining sample size. 4265 */ 4266 4267 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 4268 stack_size = min(stack_size, (u16) task_size); 4269 4270 /* Current header size plus static size and dynamic size. */ 4271 header_size += 2 * sizeof(u64); 4272 4273 /* Do we fit in with the current stack dump size? */ 4274 if ((u16) (header_size + stack_size) < header_size) { 4275 /* 4276 * If we overflow the maximum size for the sample, 4277 * we customize the stack dump size to fit in. 4278 */ 4279 stack_size = USHRT_MAX - header_size - sizeof(u64); 4280 stack_size = round_up(stack_size, sizeof(u64)); 4281 } 4282 4283 return stack_size; 4284 } 4285 4286 static void 4287 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 4288 struct pt_regs *regs) 4289 { 4290 /* Case of a kernel thread, nothing to dump */ 4291 if (!regs) { 4292 u64 size = 0; 4293 perf_output_put(handle, size); 4294 } else { 4295 unsigned long sp; 4296 unsigned int rem; 4297 u64 dyn_size; 4298 4299 /* 4300 * We dump: 4301 * static size 4302 * - the size requested by user or the best one we can fit 4303 * in to the sample max size 4304 * data 4305 * - user stack dump data 4306 * dynamic size 4307 * - the actual dumped size 4308 */ 4309 4310 /* Static size. */ 4311 perf_output_put(handle, dump_size); 4312 4313 /* Data. */ 4314 sp = perf_user_stack_pointer(regs); 4315 rem = __output_copy_user(handle, (void *) sp, dump_size); 4316 dyn_size = dump_size - rem; 4317 4318 perf_output_skip(handle, rem); 4319 4320 /* Dynamic size. */ 4321 perf_output_put(handle, dyn_size); 4322 } 4323 } 4324 4325 static void __perf_event_header__init_id(struct perf_event_header *header, 4326 struct perf_sample_data *data, 4327 struct perf_event *event) 4328 { 4329 u64 sample_type = event->attr.sample_type; 4330 4331 data->type = sample_type; 4332 header->size += event->id_header_size; 4333 4334 if (sample_type & PERF_SAMPLE_TID) { 4335 /* namespace issues */ 4336 data->tid_entry.pid = perf_event_pid(event, current); 4337 data->tid_entry.tid = perf_event_tid(event, current); 4338 } 4339 4340 if (sample_type & PERF_SAMPLE_TIME) 4341 data->time = perf_clock(); 4342 4343 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 4344 data->id = primary_event_id(event); 4345 4346 if (sample_type & PERF_SAMPLE_STREAM_ID) 4347 data->stream_id = event->id; 4348 4349 if (sample_type & PERF_SAMPLE_CPU) { 4350 data->cpu_entry.cpu = raw_smp_processor_id(); 4351 data->cpu_entry.reserved = 0; 4352 } 4353 } 4354 4355 void perf_event_header__init_id(struct perf_event_header *header, 4356 struct perf_sample_data *data, 4357 struct perf_event *event) 4358 { 4359 if (event->attr.sample_id_all) 4360 __perf_event_header__init_id(header, data, event); 4361 } 4362 4363 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 4364 struct perf_sample_data *data) 4365 { 4366 u64 sample_type = data->type; 4367 4368 if (sample_type & PERF_SAMPLE_TID) 4369 perf_output_put(handle, data->tid_entry); 4370 4371 if (sample_type & PERF_SAMPLE_TIME) 4372 perf_output_put(handle, data->time); 4373 4374 if (sample_type & PERF_SAMPLE_ID) 4375 perf_output_put(handle, data->id); 4376 4377 if (sample_type & PERF_SAMPLE_STREAM_ID) 4378 perf_output_put(handle, data->stream_id); 4379 4380 if (sample_type & PERF_SAMPLE_CPU) 4381 perf_output_put(handle, data->cpu_entry); 4382 4383 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4384 perf_output_put(handle, data->id); 4385 } 4386 4387 void perf_event__output_id_sample(struct perf_event *event, 4388 struct perf_output_handle *handle, 4389 struct perf_sample_data *sample) 4390 { 4391 if (event->attr.sample_id_all) 4392 __perf_event__output_id_sample(handle, sample); 4393 } 4394 4395 static void perf_output_read_one(struct perf_output_handle *handle, 4396 struct perf_event *event, 4397 u64 enabled, u64 running) 4398 { 4399 u64 read_format = event->attr.read_format; 4400 u64 values[4]; 4401 int n = 0; 4402 4403 values[n++] = perf_event_count(event); 4404 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4405 values[n++] = enabled + 4406 atomic64_read(&event->child_total_time_enabled); 4407 } 4408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4409 values[n++] = running + 4410 atomic64_read(&event->child_total_time_running); 4411 } 4412 if (read_format & PERF_FORMAT_ID) 4413 values[n++] = primary_event_id(event); 4414 4415 __output_copy(handle, values, n * sizeof(u64)); 4416 } 4417 4418 /* 4419 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 4420 */ 4421 static void perf_output_read_group(struct perf_output_handle *handle, 4422 struct perf_event *event, 4423 u64 enabled, u64 running) 4424 { 4425 struct perf_event *leader = event->group_leader, *sub; 4426 u64 read_format = event->attr.read_format; 4427 u64 values[5]; 4428 int n = 0; 4429 4430 values[n++] = 1 + leader->nr_siblings; 4431 4432 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4433 values[n++] = enabled; 4434 4435 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4436 values[n++] = running; 4437 4438 if (leader != event) 4439 leader->pmu->read(leader); 4440 4441 values[n++] = perf_event_count(leader); 4442 if (read_format & PERF_FORMAT_ID) 4443 values[n++] = primary_event_id(leader); 4444 4445 __output_copy(handle, values, n * sizeof(u64)); 4446 4447 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4448 n = 0; 4449 4450 if ((sub != event) && 4451 (sub->state == PERF_EVENT_STATE_ACTIVE)) 4452 sub->pmu->read(sub); 4453 4454 values[n++] = perf_event_count(sub); 4455 if (read_format & PERF_FORMAT_ID) 4456 values[n++] = primary_event_id(sub); 4457 4458 __output_copy(handle, values, n * sizeof(u64)); 4459 } 4460 } 4461 4462 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4463 PERF_FORMAT_TOTAL_TIME_RUNNING) 4464 4465 static void perf_output_read(struct perf_output_handle *handle, 4466 struct perf_event *event) 4467 { 4468 u64 enabled = 0, running = 0, now; 4469 u64 read_format = event->attr.read_format; 4470 4471 /* 4472 * compute total_time_enabled, total_time_running 4473 * based on snapshot values taken when the event 4474 * was last scheduled in. 4475 * 4476 * we cannot simply called update_context_time() 4477 * because of locking issue as we are called in 4478 * NMI context 4479 */ 4480 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4481 calc_timer_values(event, &now, &enabled, &running); 4482 4483 if (event->attr.read_format & PERF_FORMAT_GROUP) 4484 perf_output_read_group(handle, event, enabled, running); 4485 else 4486 perf_output_read_one(handle, event, enabled, running); 4487 } 4488 4489 void perf_output_sample(struct perf_output_handle *handle, 4490 struct perf_event_header *header, 4491 struct perf_sample_data *data, 4492 struct perf_event *event) 4493 { 4494 u64 sample_type = data->type; 4495 4496 perf_output_put(handle, *header); 4497 4498 if (sample_type & PERF_SAMPLE_IDENTIFIER) 4499 perf_output_put(handle, data->id); 4500 4501 if (sample_type & PERF_SAMPLE_IP) 4502 perf_output_put(handle, data->ip); 4503 4504 if (sample_type & PERF_SAMPLE_TID) 4505 perf_output_put(handle, data->tid_entry); 4506 4507 if (sample_type & PERF_SAMPLE_TIME) 4508 perf_output_put(handle, data->time); 4509 4510 if (sample_type & PERF_SAMPLE_ADDR) 4511 perf_output_put(handle, data->addr); 4512 4513 if (sample_type & PERF_SAMPLE_ID) 4514 perf_output_put(handle, data->id); 4515 4516 if (sample_type & PERF_SAMPLE_STREAM_ID) 4517 perf_output_put(handle, data->stream_id); 4518 4519 if (sample_type & PERF_SAMPLE_CPU) 4520 perf_output_put(handle, data->cpu_entry); 4521 4522 if (sample_type & PERF_SAMPLE_PERIOD) 4523 perf_output_put(handle, data->period); 4524 4525 if (sample_type & PERF_SAMPLE_READ) 4526 perf_output_read(handle, event); 4527 4528 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4529 if (data->callchain) { 4530 int size = 1; 4531 4532 if (data->callchain) 4533 size += data->callchain->nr; 4534 4535 size *= sizeof(u64); 4536 4537 __output_copy(handle, data->callchain, size); 4538 } else { 4539 u64 nr = 0; 4540 perf_output_put(handle, nr); 4541 } 4542 } 4543 4544 if (sample_type & PERF_SAMPLE_RAW) { 4545 if (data->raw) { 4546 perf_output_put(handle, data->raw->size); 4547 __output_copy(handle, data->raw->data, 4548 data->raw->size); 4549 } else { 4550 struct { 4551 u32 size; 4552 u32 data; 4553 } raw = { 4554 .size = sizeof(u32), 4555 .data = 0, 4556 }; 4557 perf_output_put(handle, raw); 4558 } 4559 } 4560 4561 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4562 if (data->br_stack) { 4563 size_t size; 4564 4565 size = data->br_stack->nr 4566 * sizeof(struct perf_branch_entry); 4567 4568 perf_output_put(handle, data->br_stack->nr); 4569 perf_output_copy(handle, data->br_stack->entries, size); 4570 } else { 4571 /* 4572 * we always store at least the value of nr 4573 */ 4574 u64 nr = 0; 4575 perf_output_put(handle, nr); 4576 } 4577 } 4578 4579 if (sample_type & PERF_SAMPLE_REGS_USER) { 4580 u64 abi = data->regs_user.abi; 4581 4582 /* 4583 * If there are no regs to dump, notice it through 4584 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4585 */ 4586 perf_output_put(handle, abi); 4587 4588 if (abi) { 4589 u64 mask = event->attr.sample_regs_user; 4590 perf_output_sample_regs(handle, 4591 data->regs_user.regs, 4592 mask); 4593 } 4594 } 4595 4596 if (sample_type & PERF_SAMPLE_STACK_USER) { 4597 perf_output_sample_ustack(handle, 4598 data->stack_user_size, 4599 data->regs_user.regs); 4600 } 4601 4602 if (sample_type & PERF_SAMPLE_WEIGHT) 4603 perf_output_put(handle, data->weight); 4604 4605 if (sample_type & PERF_SAMPLE_DATA_SRC) 4606 perf_output_put(handle, data->data_src.val); 4607 4608 if (sample_type & PERF_SAMPLE_TRANSACTION) 4609 perf_output_put(handle, data->txn); 4610 4611 if (!event->attr.watermark) { 4612 int wakeup_events = event->attr.wakeup_events; 4613 4614 if (wakeup_events) { 4615 struct ring_buffer *rb = handle->rb; 4616 int events = local_inc_return(&rb->events); 4617 4618 if (events >= wakeup_events) { 4619 local_sub(wakeup_events, &rb->events); 4620 local_inc(&rb->wakeup); 4621 } 4622 } 4623 } 4624 } 4625 4626 void perf_prepare_sample(struct perf_event_header *header, 4627 struct perf_sample_data *data, 4628 struct perf_event *event, 4629 struct pt_regs *regs) 4630 { 4631 u64 sample_type = event->attr.sample_type; 4632 4633 header->type = PERF_RECORD_SAMPLE; 4634 header->size = sizeof(*header) + event->header_size; 4635 4636 header->misc = 0; 4637 header->misc |= perf_misc_flags(regs); 4638 4639 __perf_event_header__init_id(header, data, event); 4640 4641 if (sample_type & PERF_SAMPLE_IP) 4642 data->ip = perf_instruction_pointer(regs); 4643 4644 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4645 int size = 1; 4646 4647 data->callchain = perf_callchain(event, regs); 4648 4649 if (data->callchain) 4650 size += data->callchain->nr; 4651 4652 header->size += size * sizeof(u64); 4653 } 4654 4655 if (sample_type & PERF_SAMPLE_RAW) { 4656 int size = sizeof(u32); 4657 4658 if (data->raw) 4659 size += data->raw->size; 4660 else 4661 size += sizeof(u32); 4662 4663 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4664 header->size += size; 4665 } 4666 4667 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4668 int size = sizeof(u64); /* nr */ 4669 if (data->br_stack) { 4670 size += data->br_stack->nr 4671 * sizeof(struct perf_branch_entry); 4672 } 4673 header->size += size; 4674 } 4675 4676 if (sample_type & PERF_SAMPLE_REGS_USER) { 4677 /* regs dump ABI info */ 4678 int size = sizeof(u64); 4679 4680 perf_sample_regs_user(&data->regs_user, regs); 4681 4682 if (data->regs_user.regs) { 4683 u64 mask = event->attr.sample_regs_user; 4684 size += hweight64(mask) * sizeof(u64); 4685 } 4686 4687 header->size += size; 4688 } 4689 4690 if (sample_type & PERF_SAMPLE_STACK_USER) { 4691 /* 4692 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4693 * processed as the last one or have additional check added 4694 * in case new sample type is added, because we could eat 4695 * up the rest of the sample size. 4696 */ 4697 struct perf_regs_user *uregs = &data->regs_user; 4698 u16 stack_size = event->attr.sample_stack_user; 4699 u16 size = sizeof(u64); 4700 4701 if (!uregs->abi) 4702 perf_sample_regs_user(uregs, regs); 4703 4704 stack_size = perf_sample_ustack_size(stack_size, header->size, 4705 uregs->regs); 4706 4707 /* 4708 * If there is something to dump, add space for the dump 4709 * itself and for the field that tells the dynamic size, 4710 * which is how many have been actually dumped. 4711 */ 4712 if (stack_size) 4713 size += sizeof(u64) + stack_size; 4714 4715 data->stack_user_size = stack_size; 4716 header->size += size; 4717 } 4718 } 4719 4720 static void perf_event_output(struct perf_event *event, 4721 struct perf_sample_data *data, 4722 struct pt_regs *regs) 4723 { 4724 struct perf_output_handle handle; 4725 struct perf_event_header header; 4726 4727 /* protect the callchain buffers */ 4728 rcu_read_lock(); 4729 4730 perf_prepare_sample(&header, data, event, regs); 4731 4732 if (perf_output_begin(&handle, event, header.size)) 4733 goto exit; 4734 4735 perf_output_sample(&handle, &header, data, event); 4736 4737 perf_output_end(&handle); 4738 4739 exit: 4740 rcu_read_unlock(); 4741 } 4742 4743 /* 4744 * read event_id 4745 */ 4746 4747 struct perf_read_event { 4748 struct perf_event_header header; 4749 4750 u32 pid; 4751 u32 tid; 4752 }; 4753 4754 static void 4755 perf_event_read_event(struct perf_event *event, 4756 struct task_struct *task) 4757 { 4758 struct perf_output_handle handle; 4759 struct perf_sample_data sample; 4760 struct perf_read_event read_event = { 4761 .header = { 4762 .type = PERF_RECORD_READ, 4763 .misc = 0, 4764 .size = sizeof(read_event) + event->read_size, 4765 }, 4766 .pid = perf_event_pid(event, task), 4767 .tid = perf_event_tid(event, task), 4768 }; 4769 int ret; 4770 4771 perf_event_header__init_id(&read_event.header, &sample, event); 4772 ret = perf_output_begin(&handle, event, read_event.header.size); 4773 if (ret) 4774 return; 4775 4776 perf_output_put(&handle, read_event); 4777 perf_output_read(&handle, event); 4778 perf_event__output_id_sample(event, &handle, &sample); 4779 4780 perf_output_end(&handle); 4781 } 4782 4783 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data); 4784 4785 static void 4786 perf_event_aux_ctx(struct perf_event_context *ctx, 4787 perf_event_aux_output_cb output, 4788 void *data) 4789 { 4790 struct perf_event *event; 4791 4792 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4793 if (event->state < PERF_EVENT_STATE_INACTIVE) 4794 continue; 4795 if (!event_filter_match(event)) 4796 continue; 4797 output(event, data); 4798 } 4799 } 4800 4801 static void 4802 perf_event_aux(perf_event_aux_output_cb output, void *data, 4803 struct perf_event_context *task_ctx) 4804 { 4805 struct perf_cpu_context *cpuctx; 4806 struct perf_event_context *ctx; 4807 struct pmu *pmu; 4808 int ctxn; 4809 4810 rcu_read_lock(); 4811 list_for_each_entry_rcu(pmu, &pmus, entry) { 4812 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4813 if (cpuctx->unique_pmu != pmu) 4814 goto next; 4815 perf_event_aux_ctx(&cpuctx->ctx, output, data); 4816 if (task_ctx) 4817 goto next; 4818 ctxn = pmu->task_ctx_nr; 4819 if (ctxn < 0) 4820 goto next; 4821 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4822 if (ctx) 4823 perf_event_aux_ctx(ctx, output, data); 4824 next: 4825 put_cpu_ptr(pmu->pmu_cpu_context); 4826 } 4827 4828 if (task_ctx) { 4829 preempt_disable(); 4830 perf_event_aux_ctx(task_ctx, output, data); 4831 preempt_enable(); 4832 } 4833 rcu_read_unlock(); 4834 } 4835 4836 /* 4837 * task tracking -- fork/exit 4838 * 4839 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 4840 */ 4841 4842 struct perf_task_event { 4843 struct task_struct *task; 4844 struct perf_event_context *task_ctx; 4845 4846 struct { 4847 struct perf_event_header header; 4848 4849 u32 pid; 4850 u32 ppid; 4851 u32 tid; 4852 u32 ptid; 4853 u64 time; 4854 } event_id; 4855 }; 4856 4857 static int perf_event_task_match(struct perf_event *event) 4858 { 4859 return event->attr.comm || event->attr.mmap || 4860 event->attr.mmap2 || event->attr.mmap_data || 4861 event->attr.task; 4862 } 4863 4864 static void perf_event_task_output(struct perf_event *event, 4865 void *data) 4866 { 4867 struct perf_task_event *task_event = data; 4868 struct perf_output_handle handle; 4869 struct perf_sample_data sample; 4870 struct task_struct *task = task_event->task; 4871 int ret, size = task_event->event_id.header.size; 4872 4873 if (!perf_event_task_match(event)) 4874 return; 4875 4876 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4877 4878 ret = perf_output_begin(&handle, event, 4879 task_event->event_id.header.size); 4880 if (ret) 4881 goto out; 4882 4883 task_event->event_id.pid = perf_event_pid(event, task); 4884 task_event->event_id.ppid = perf_event_pid(event, current); 4885 4886 task_event->event_id.tid = perf_event_tid(event, task); 4887 task_event->event_id.ptid = perf_event_tid(event, current); 4888 4889 perf_output_put(&handle, task_event->event_id); 4890 4891 perf_event__output_id_sample(event, &handle, &sample); 4892 4893 perf_output_end(&handle); 4894 out: 4895 task_event->event_id.header.size = size; 4896 } 4897 4898 static void perf_event_task(struct task_struct *task, 4899 struct perf_event_context *task_ctx, 4900 int new) 4901 { 4902 struct perf_task_event task_event; 4903 4904 if (!atomic_read(&nr_comm_events) && 4905 !atomic_read(&nr_mmap_events) && 4906 !atomic_read(&nr_task_events)) 4907 return; 4908 4909 task_event = (struct perf_task_event){ 4910 .task = task, 4911 .task_ctx = task_ctx, 4912 .event_id = { 4913 .header = { 4914 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4915 .misc = 0, 4916 .size = sizeof(task_event.event_id), 4917 }, 4918 /* .pid */ 4919 /* .ppid */ 4920 /* .tid */ 4921 /* .ptid */ 4922 .time = perf_clock(), 4923 }, 4924 }; 4925 4926 perf_event_aux(perf_event_task_output, 4927 &task_event, 4928 task_ctx); 4929 } 4930 4931 void perf_event_fork(struct task_struct *task) 4932 { 4933 perf_event_task(task, NULL, 1); 4934 } 4935 4936 /* 4937 * comm tracking 4938 */ 4939 4940 struct perf_comm_event { 4941 struct task_struct *task; 4942 char *comm; 4943 int comm_size; 4944 4945 struct { 4946 struct perf_event_header header; 4947 4948 u32 pid; 4949 u32 tid; 4950 } event_id; 4951 }; 4952 4953 static int perf_event_comm_match(struct perf_event *event) 4954 { 4955 return event->attr.comm; 4956 } 4957 4958 static void perf_event_comm_output(struct perf_event *event, 4959 void *data) 4960 { 4961 struct perf_comm_event *comm_event = data; 4962 struct perf_output_handle handle; 4963 struct perf_sample_data sample; 4964 int size = comm_event->event_id.header.size; 4965 int ret; 4966 4967 if (!perf_event_comm_match(event)) 4968 return; 4969 4970 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4971 ret = perf_output_begin(&handle, event, 4972 comm_event->event_id.header.size); 4973 4974 if (ret) 4975 goto out; 4976 4977 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4978 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4979 4980 perf_output_put(&handle, comm_event->event_id); 4981 __output_copy(&handle, comm_event->comm, 4982 comm_event->comm_size); 4983 4984 perf_event__output_id_sample(event, &handle, &sample); 4985 4986 perf_output_end(&handle); 4987 out: 4988 comm_event->event_id.header.size = size; 4989 } 4990 4991 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4992 { 4993 char comm[TASK_COMM_LEN]; 4994 unsigned int size; 4995 4996 memset(comm, 0, sizeof(comm)); 4997 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4998 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4999 5000 comm_event->comm = comm; 5001 comm_event->comm_size = size; 5002 5003 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 5004 5005 perf_event_aux(perf_event_comm_output, 5006 comm_event, 5007 NULL); 5008 } 5009 5010 void perf_event_comm(struct task_struct *task) 5011 { 5012 struct perf_comm_event comm_event; 5013 struct perf_event_context *ctx; 5014 int ctxn; 5015 5016 rcu_read_lock(); 5017 for_each_task_context_nr(ctxn) { 5018 ctx = task->perf_event_ctxp[ctxn]; 5019 if (!ctx) 5020 continue; 5021 5022 perf_event_enable_on_exec(ctx); 5023 } 5024 rcu_read_unlock(); 5025 5026 if (!atomic_read(&nr_comm_events)) 5027 return; 5028 5029 comm_event = (struct perf_comm_event){ 5030 .task = task, 5031 /* .comm */ 5032 /* .comm_size */ 5033 .event_id = { 5034 .header = { 5035 .type = PERF_RECORD_COMM, 5036 .misc = 0, 5037 /* .size */ 5038 }, 5039 /* .pid */ 5040 /* .tid */ 5041 }, 5042 }; 5043 5044 perf_event_comm_event(&comm_event); 5045 } 5046 5047 /* 5048 * mmap tracking 5049 */ 5050 5051 struct perf_mmap_event { 5052 struct vm_area_struct *vma; 5053 5054 const char *file_name; 5055 int file_size; 5056 int maj, min; 5057 u64 ino; 5058 u64 ino_generation; 5059 5060 struct { 5061 struct perf_event_header header; 5062 5063 u32 pid; 5064 u32 tid; 5065 u64 start; 5066 u64 len; 5067 u64 pgoff; 5068 } event_id; 5069 }; 5070 5071 static int perf_event_mmap_match(struct perf_event *event, 5072 void *data) 5073 { 5074 struct perf_mmap_event *mmap_event = data; 5075 struct vm_area_struct *vma = mmap_event->vma; 5076 int executable = vma->vm_flags & VM_EXEC; 5077 5078 return (!executable && event->attr.mmap_data) || 5079 (executable && (event->attr.mmap || event->attr.mmap2)); 5080 } 5081 5082 static void perf_event_mmap_output(struct perf_event *event, 5083 void *data) 5084 { 5085 struct perf_mmap_event *mmap_event = data; 5086 struct perf_output_handle handle; 5087 struct perf_sample_data sample; 5088 int size = mmap_event->event_id.header.size; 5089 int ret; 5090 5091 if (!perf_event_mmap_match(event, data)) 5092 return; 5093 5094 if (event->attr.mmap2) { 5095 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 5096 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 5097 mmap_event->event_id.header.size += sizeof(mmap_event->min); 5098 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 5099 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 5100 } 5101 5102 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 5103 ret = perf_output_begin(&handle, event, 5104 mmap_event->event_id.header.size); 5105 if (ret) 5106 goto out; 5107 5108 mmap_event->event_id.pid = perf_event_pid(event, current); 5109 mmap_event->event_id.tid = perf_event_tid(event, current); 5110 5111 perf_output_put(&handle, mmap_event->event_id); 5112 5113 if (event->attr.mmap2) { 5114 perf_output_put(&handle, mmap_event->maj); 5115 perf_output_put(&handle, mmap_event->min); 5116 perf_output_put(&handle, mmap_event->ino); 5117 perf_output_put(&handle, mmap_event->ino_generation); 5118 } 5119 5120 __output_copy(&handle, mmap_event->file_name, 5121 mmap_event->file_size); 5122 5123 perf_event__output_id_sample(event, &handle, &sample); 5124 5125 perf_output_end(&handle); 5126 out: 5127 mmap_event->event_id.header.size = size; 5128 } 5129 5130 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 5131 { 5132 struct vm_area_struct *vma = mmap_event->vma; 5133 struct file *file = vma->vm_file; 5134 int maj = 0, min = 0; 5135 u64 ino = 0, gen = 0; 5136 unsigned int size; 5137 char tmp[16]; 5138 char *buf = NULL; 5139 char *name; 5140 5141 if (file) { 5142 struct inode *inode; 5143 dev_t dev; 5144 5145 buf = kmalloc(PATH_MAX, GFP_KERNEL); 5146 if (!buf) { 5147 name = "//enomem"; 5148 goto cpy_name; 5149 } 5150 /* 5151 * d_path() works from the end of the rb backwards, so we 5152 * need to add enough zero bytes after the string to handle 5153 * the 64bit alignment we do later. 5154 */ 5155 name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64)); 5156 if (IS_ERR(name)) { 5157 name = "//toolong"; 5158 goto cpy_name; 5159 } 5160 inode = file_inode(vma->vm_file); 5161 dev = inode->i_sb->s_dev; 5162 ino = inode->i_ino; 5163 gen = inode->i_generation; 5164 maj = MAJOR(dev); 5165 min = MINOR(dev); 5166 goto got_name; 5167 } else { 5168 name = (char *)arch_vma_name(vma); 5169 if (name) 5170 goto cpy_name; 5171 5172 if (vma->vm_start <= vma->vm_mm->start_brk && 5173 vma->vm_end >= vma->vm_mm->brk) { 5174 name = "[heap]"; 5175 goto cpy_name; 5176 } 5177 if (vma->vm_start <= vma->vm_mm->start_stack && 5178 vma->vm_end >= vma->vm_mm->start_stack) { 5179 name = "[stack]"; 5180 goto cpy_name; 5181 } 5182 5183 name = "//anon"; 5184 goto cpy_name; 5185 } 5186 5187 cpy_name: 5188 strlcpy(tmp, name, sizeof(tmp)); 5189 name = tmp; 5190 got_name: 5191 /* 5192 * Since our buffer works in 8 byte units we need to align our string 5193 * size to a multiple of 8. However, we must guarantee the tail end is 5194 * zero'd out to avoid leaking random bits to userspace. 5195 */ 5196 size = strlen(name)+1; 5197 while (!IS_ALIGNED(size, sizeof(u64))) 5198 name[size++] = '\0'; 5199 5200 mmap_event->file_name = name; 5201 mmap_event->file_size = size; 5202 mmap_event->maj = maj; 5203 mmap_event->min = min; 5204 mmap_event->ino = ino; 5205 mmap_event->ino_generation = gen; 5206 5207 if (!(vma->vm_flags & VM_EXEC)) 5208 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 5209 5210 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 5211 5212 perf_event_aux(perf_event_mmap_output, 5213 mmap_event, 5214 NULL); 5215 5216 kfree(buf); 5217 } 5218 5219 void perf_event_mmap(struct vm_area_struct *vma) 5220 { 5221 struct perf_mmap_event mmap_event; 5222 5223 if (!atomic_read(&nr_mmap_events)) 5224 return; 5225 5226 mmap_event = (struct perf_mmap_event){ 5227 .vma = vma, 5228 /* .file_name */ 5229 /* .file_size */ 5230 .event_id = { 5231 .header = { 5232 .type = PERF_RECORD_MMAP, 5233 .misc = PERF_RECORD_MISC_USER, 5234 /* .size */ 5235 }, 5236 /* .pid */ 5237 /* .tid */ 5238 .start = vma->vm_start, 5239 .len = vma->vm_end - vma->vm_start, 5240 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 5241 }, 5242 /* .maj (attr_mmap2 only) */ 5243 /* .min (attr_mmap2 only) */ 5244 /* .ino (attr_mmap2 only) */ 5245 /* .ino_generation (attr_mmap2 only) */ 5246 }; 5247 5248 perf_event_mmap_event(&mmap_event); 5249 } 5250 5251 /* 5252 * IRQ throttle logging 5253 */ 5254 5255 static void perf_log_throttle(struct perf_event *event, int enable) 5256 { 5257 struct perf_output_handle handle; 5258 struct perf_sample_data sample; 5259 int ret; 5260 5261 struct { 5262 struct perf_event_header header; 5263 u64 time; 5264 u64 id; 5265 u64 stream_id; 5266 } throttle_event = { 5267 .header = { 5268 .type = PERF_RECORD_THROTTLE, 5269 .misc = 0, 5270 .size = sizeof(throttle_event), 5271 }, 5272 .time = perf_clock(), 5273 .id = primary_event_id(event), 5274 .stream_id = event->id, 5275 }; 5276 5277 if (enable) 5278 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 5279 5280 perf_event_header__init_id(&throttle_event.header, &sample, event); 5281 5282 ret = perf_output_begin(&handle, event, 5283 throttle_event.header.size); 5284 if (ret) 5285 return; 5286 5287 perf_output_put(&handle, throttle_event); 5288 perf_event__output_id_sample(event, &handle, &sample); 5289 perf_output_end(&handle); 5290 } 5291 5292 /* 5293 * Generic event overflow handling, sampling. 5294 */ 5295 5296 static int __perf_event_overflow(struct perf_event *event, 5297 int throttle, struct perf_sample_data *data, 5298 struct pt_regs *regs) 5299 { 5300 int events = atomic_read(&event->event_limit); 5301 struct hw_perf_event *hwc = &event->hw; 5302 u64 seq; 5303 int ret = 0; 5304 5305 /* 5306 * Non-sampling counters might still use the PMI to fold short 5307 * hardware counters, ignore those. 5308 */ 5309 if (unlikely(!is_sampling_event(event))) 5310 return 0; 5311 5312 seq = __this_cpu_read(perf_throttled_seq); 5313 if (seq != hwc->interrupts_seq) { 5314 hwc->interrupts_seq = seq; 5315 hwc->interrupts = 1; 5316 } else { 5317 hwc->interrupts++; 5318 if (unlikely(throttle 5319 && hwc->interrupts >= max_samples_per_tick)) { 5320 __this_cpu_inc(perf_throttled_count); 5321 hwc->interrupts = MAX_INTERRUPTS; 5322 perf_log_throttle(event, 0); 5323 tick_nohz_full_kick(); 5324 ret = 1; 5325 } 5326 } 5327 5328 if (event->attr.freq) { 5329 u64 now = perf_clock(); 5330 s64 delta = now - hwc->freq_time_stamp; 5331 5332 hwc->freq_time_stamp = now; 5333 5334 if (delta > 0 && delta < 2*TICK_NSEC) 5335 perf_adjust_period(event, delta, hwc->last_period, true); 5336 } 5337 5338 /* 5339 * XXX event_limit might not quite work as expected on inherited 5340 * events 5341 */ 5342 5343 event->pending_kill = POLL_IN; 5344 if (events && atomic_dec_and_test(&event->event_limit)) { 5345 ret = 1; 5346 event->pending_kill = POLL_HUP; 5347 event->pending_disable = 1; 5348 irq_work_queue(&event->pending); 5349 } 5350 5351 if (event->overflow_handler) 5352 event->overflow_handler(event, data, regs); 5353 else 5354 perf_event_output(event, data, regs); 5355 5356 if (event->fasync && event->pending_kill) { 5357 event->pending_wakeup = 1; 5358 irq_work_queue(&event->pending); 5359 } 5360 5361 return ret; 5362 } 5363 5364 int perf_event_overflow(struct perf_event *event, 5365 struct perf_sample_data *data, 5366 struct pt_regs *regs) 5367 { 5368 return __perf_event_overflow(event, 1, data, regs); 5369 } 5370 5371 /* 5372 * Generic software event infrastructure 5373 */ 5374 5375 struct swevent_htable { 5376 struct swevent_hlist *swevent_hlist; 5377 struct mutex hlist_mutex; 5378 int hlist_refcount; 5379 5380 /* Recursion avoidance in each contexts */ 5381 int recursion[PERF_NR_CONTEXTS]; 5382 }; 5383 5384 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 5385 5386 /* 5387 * We directly increment event->count and keep a second value in 5388 * event->hw.period_left to count intervals. This period event 5389 * is kept in the range [-sample_period, 0] so that we can use the 5390 * sign as trigger. 5391 */ 5392 5393 u64 perf_swevent_set_period(struct perf_event *event) 5394 { 5395 struct hw_perf_event *hwc = &event->hw; 5396 u64 period = hwc->last_period; 5397 u64 nr, offset; 5398 s64 old, val; 5399 5400 hwc->last_period = hwc->sample_period; 5401 5402 again: 5403 old = val = local64_read(&hwc->period_left); 5404 if (val < 0) 5405 return 0; 5406 5407 nr = div64_u64(period + val, period); 5408 offset = nr * period; 5409 val -= offset; 5410 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 5411 goto again; 5412 5413 return nr; 5414 } 5415 5416 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 5417 struct perf_sample_data *data, 5418 struct pt_regs *regs) 5419 { 5420 struct hw_perf_event *hwc = &event->hw; 5421 int throttle = 0; 5422 5423 if (!overflow) 5424 overflow = perf_swevent_set_period(event); 5425 5426 if (hwc->interrupts == MAX_INTERRUPTS) 5427 return; 5428 5429 for (; overflow; overflow--) { 5430 if (__perf_event_overflow(event, throttle, 5431 data, regs)) { 5432 /* 5433 * We inhibit the overflow from happening when 5434 * hwc->interrupts == MAX_INTERRUPTS. 5435 */ 5436 break; 5437 } 5438 throttle = 1; 5439 } 5440 } 5441 5442 static void perf_swevent_event(struct perf_event *event, u64 nr, 5443 struct perf_sample_data *data, 5444 struct pt_regs *regs) 5445 { 5446 struct hw_perf_event *hwc = &event->hw; 5447 5448 local64_add(nr, &event->count); 5449 5450 if (!regs) 5451 return; 5452 5453 if (!is_sampling_event(event)) 5454 return; 5455 5456 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5457 data->period = nr; 5458 return perf_swevent_overflow(event, 1, data, regs); 5459 } else 5460 data->period = event->hw.last_period; 5461 5462 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5463 return perf_swevent_overflow(event, 1, data, regs); 5464 5465 if (local64_add_negative(nr, &hwc->period_left)) 5466 return; 5467 5468 perf_swevent_overflow(event, 0, data, regs); 5469 } 5470 5471 static int perf_exclude_event(struct perf_event *event, 5472 struct pt_regs *regs) 5473 { 5474 if (event->hw.state & PERF_HES_STOPPED) 5475 return 1; 5476 5477 if (regs) { 5478 if (event->attr.exclude_user && user_mode(regs)) 5479 return 1; 5480 5481 if (event->attr.exclude_kernel && !user_mode(regs)) 5482 return 1; 5483 } 5484 5485 return 0; 5486 } 5487 5488 static int perf_swevent_match(struct perf_event *event, 5489 enum perf_type_id type, 5490 u32 event_id, 5491 struct perf_sample_data *data, 5492 struct pt_regs *regs) 5493 { 5494 if (event->attr.type != type) 5495 return 0; 5496 5497 if (event->attr.config != event_id) 5498 return 0; 5499 5500 if (perf_exclude_event(event, regs)) 5501 return 0; 5502 5503 return 1; 5504 } 5505 5506 static inline u64 swevent_hash(u64 type, u32 event_id) 5507 { 5508 u64 val = event_id | (type << 32); 5509 5510 return hash_64(val, SWEVENT_HLIST_BITS); 5511 } 5512 5513 static inline struct hlist_head * 5514 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5515 { 5516 u64 hash = swevent_hash(type, event_id); 5517 5518 return &hlist->heads[hash]; 5519 } 5520 5521 /* For the read side: events when they trigger */ 5522 static inline struct hlist_head * 5523 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5524 { 5525 struct swevent_hlist *hlist; 5526 5527 hlist = rcu_dereference(swhash->swevent_hlist); 5528 if (!hlist) 5529 return NULL; 5530 5531 return __find_swevent_head(hlist, type, event_id); 5532 } 5533 5534 /* For the event head insertion and removal in the hlist */ 5535 static inline struct hlist_head * 5536 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5537 { 5538 struct swevent_hlist *hlist; 5539 u32 event_id = event->attr.config; 5540 u64 type = event->attr.type; 5541 5542 /* 5543 * Event scheduling is always serialized against hlist allocation 5544 * and release. Which makes the protected version suitable here. 5545 * The context lock guarantees that. 5546 */ 5547 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5548 lockdep_is_held(&event->ctx->lock)); 5549 if (!hlist) 5550 return NULL; 5551 5552 return __find_swevent_head(hlist, type, event_id); 5553 } 5554 5555 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5556 u64 nr, 5557 struct perf_sample_data *data, 5558 struct pt_regs *regs) 5559 { 5560 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5561 struct perf_event *event; 5562 struct hlist_head *head; 5563 5564 rcu_read_lock(); 5565 head = find_swevent_head_rcu(swhash, type, event_id); 5566 if (!head) 5567 goto end; 5568 5569 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5570 if (perf_swevent_match(event, type, event_id, data, regs)) 5571 perf_swevent_event(event, nr, data, regs); 5572 } 5573 end: 5574 rcu_read_unlock(); 5575 } 5576 5577 int perf_swevent_get_recursion_context(void) 5578 { 5579 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5580 5581 return get_recursion_context(swhash->recursion); 5582 } 5583 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5584 5585 inline void perf_swevent_put_recursion_context(int rctx) 5586 { 5587 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5588 5589 put_recursion_context(swhash->recursion, rctx); 5590 } 5591 5592 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5593 { 5594 struct perf_sample_data data; 5595 int rctx; 5596 5597 preempt_disable_notrace(); 5598 rctx = perf_swevent_get_recursion_context(); 5599 if (rctx < 0) 5600 return; 5601 5602 perf_sample_data_init(&data, addr, 0); 5603 5604 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5605 5606 perf_swevent_put_recursion_context(rctx); 5607 preempt_enable_notrace(); 5608 } 5609 5610 static void perf_swevent_read(struct perf_event *event) 5611 { 5612 } 5613 5614 static int perf_swevent_add(struct perf_event *event, int flags) 5615 { 5616 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5617 struct hw_perf_event *hwc = &event->hw; 5618 struct hlist_head *head; 5619 5620 if (is_sampling_event(event)) { 5621 hwc->last_period = hwc->sample_period; 5622 perf_swevent_set_period(event); 5623 } 5624 5625 hwc->state = !(flags & PERF_EF_START); 5626 5627 head = find_swevent_head(swhash, event); 5628 if (WARN_ON_ONCE(!head)) 5629 return -EINVAL; 5630 5631 hlist_add_head_rcu(&event->hlist_entry, head); 5632 5633 return 0; 5634 } 5635 5636 static void perf_swevent_del(struct perf_event *event, int flags) 5637 { 5638 hlist_del_rcu(&event->hlist_entry); 5639 } 5640 5641 static void perf_swevent_start(struct perf_event *event, int flags) 5642 { 5643 event->hw.state = 0; 5644 } 5645 5646 static void perf_swevent_stop(struct perf_event *event, int flags) 5647 { 5648 event->hw.state = PERF_HES_STOPPED; 5649 } 5650 5651 /* Deref the hlist from the update side */ 5652 static inline struct swevent_hlist * 5653 swevent_hlist_deref(struct swevent_htable *swhash) 5654 { 5655 return rcu_dereference_protected(swhash->swevent_hlist, 5656 lockdep_is_held(&swhash->hlist_mutex)); 5657 } 5658 5659 static void swevent_hlist_release(struct swevent_htable *swhash) 5660 { 5661 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5662 5663 if (!hlist) 5664 return; 5665 5666 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5667 kfree_rcu(hlist, rcu_head); 5668 } 5669 5670 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5671 { 5672 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5673 5674 mutex_lock(&swhash->hlist_mutex); 5675 5676 if (!--swhash->hlist_refcount) 5677 swevent_hlist_release(swhash); 5678 5679 mutex_unlock(&swhash->hlist_mutex); 5680 } 5681 5682 static void swevent_hlist_put(struct perf_event *event) 5683 { 5684 int cpu; 5685 5686 if (event->cpu != -1) { 5687 swevent_hlist_put_cpu(event, event->cpu); 5688 return; 5689 } 5690 5691 for_each_possible_cpu(cpu) 5692 swevent_hlist_put_cpu(event, cpu); 5693 } 5694 5695 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5696 { 5697 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5698 int err = 0; 5699 5700 mutex_lock(&swhash->hlist_mutex); 5701 5702 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5703 struct swevent_hlist *hlist; 5704 5705 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5706 if (!hlist) { 5707 err = -ENOMEM; 5708 goto exit; 5709 } 5710 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5711 } 5712 swhash->hlist_refcount++; 5713 exit: 5714 mutex_unlock(&swhash->hlist_mutex); 5715 5716 return err; 5717 } 5718 5719 static int swevent_hlist_get(struct perf_event *event) 5720 { 5721 int err; 5722 int cpu, failed_cpu; 5723 5724 if (event->cpu != -1) 5725 return swevent_hlist_get_cpu(event, event->cpu); 5726 5727 get_online_cpus(); 5728 for_each_possible_cpu(cpu) { 5729 err = swevent_hlist_get_cpu(event, cpu); 5730 if (err) { 5731 failed_cpu = cpu; 5732 goto fail; 5733 } 5734 } 5735 put_online_cpus(); 5736 5737 return 0; 5738 fail: 5739 for_each_possible_cpu(cpu) { 5740 if (cpu == failed_cpu) 5741 break; 5742 swevent_hlist_put_cpu(event, cpu); 5743 } 5744 5745 put_online_cpus(); 5746 return err; 5747 } 5748 5749 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5750 5751 static void sw_perf_event_destroy(struct perf_event *event) 5752 { 5753 u64 event_id = event->attr.config; 5754 5755 WARN_ON(event->parent); 5756 5757 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5758 swevent_hlist_put(event); 5759 } 5760 5761 static int perf_swevent_init(struct perf_event *event) 5762 { 5763 u64 event_id = event->attr.config; 5764 5765 if (event->attr.type != PERF_TYPE_SOFTWARE) 5766 return -ENOENT; 5767 5768 /* 5769 * no branch sampling for software events 5770 */ 5771 if (has_branch_stack(event)) 5772 return -EOPNOTSUPP; 5773 5774 switch (event_id) { 5775 case PERF_COUNT_SW_CPU_CLOCK: 5776 case PERF_COUNT_SW_TASK_CLOCK: 5777 return -ENOENT; 5778 5779 default: 5780 break; 5781 } 5782 5783 if (event_id >= PERF_COUNT_SW_MAX) 5784 return -ENOENT; 5785 5786 if (!event->parent) { 5787 int err; 5788 5789 err = swevent_hlist_get(event); 5790 if (err) 5791 return err; 5792 5793 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5794 event->destroy = sw_perf_event_destroy; 5795 } 5796 5797 return 0; 5798 } 5799 5800 static int perf_swevent_event_idx(struct perf_event *event) 5801 { 5802 return 0; 5803 } 5804 5805 static struct pmu perf_swevent = { 5806 .task_ctx_nr = perf_sw_context, 5807 5808 .event_init = perf_swevent_init, 5809 .add = perf_swevent_add, 5810 .del = perf_swevent_del, 5811 .start = perf_swevent_start, 5812 .stop = perf_swevent_stop, 5813 .read = perf_swevent_read, 5814 5815 .event_idx = perf_swevent_event_idx, 5816 }; 5817 5818 #ifdef CONFIG_EVENT_TRACING 5819 5820 static int perf_tp_filter_match(struct perf_event *event, 5821 struct perf_sample_data *data) 5822 { 5823 void *record = data->raw->data; 5824 5825 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5826 return 1; 5827 return 0; 5828 } 5829 5830 static int perf_tp_event_match(struct perf_event *event, 5831 struct perf_sample_data *data, 5832 struct pt_regs *regs) 5833 { 5834 if (event->hw.state & PERF_HES_STOPPED) 5835 return 0; 5836 /* 5837 * All tracepoints are from kernel-space. 5838 */ 5839 if (event->attr.exclude_kernel) 5840 return 0; 5841 5842 if (!perf_tp_filter_match(event, data)) 5843 return 0; 5844 5845 return 1; 5846 } 5847 5848 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5849 struct pt_regs *regs, struct hlist_head *head, int rctx, 5850 struct task_struct *task) 5851 { 5852 struct perf_sample_data data; 5853 struct perf_event *event; 5854 5855 struct perf_raw_record raw = { 5856 .size = entry_size, 5857 .data = record, 5858 }; 5859 5860 perf_sample_data_init(&data, addr, 0); 5861 data.raw = &raw; 5862 5863 hlist_for_each_entry_rcu(event, head, hlist_entry) { 5864 if (perf_tp_event_match(event, &data, regs)) 5865 perf_swevent_event(event, count, &data, regs); 5866 } 5867 5868 /* 5869 * If we got specified a target task, also iterate its context and 5870 * deliver this event there too. 5871 */ 5872 if (task && task != current) { 5873 struct perf_event_context *ctx; 5874 struct trace_entry *entry = record; 5875 5876 rcu_read_lock(); 5877 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5878 if (!ctx) 5879 goto unlock; 5880 5881 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5882 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5883 continue; 5884 if (event->attr.config != entry->type) 5885 continue; 5886 if (perf_tp_event_match(event, &data, regs)) 5887 perf_swevent_event(event, count, &data, regs); 5888 } 5889 unlock: 5890 rcu_read_unlock(); 5891 } 5892 5893 perf_swevent_put_recursion_context(rctx); 5894 } 5895 EXPORT_SYMBOL_GPL(perf_tp_event); 5896 5897 static void tp_perf_event_destroy(struct perf_event *event) 5898 { 5899 perf_trace_destroy(event); 5900 } 5901 5902 static int perf_tp_event_init(struct perf_event *event) 5903 { 5904 int err; 5905 5906 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5907 return -ENOENT; 5908 5909 /* 5910 * no branch sampling for tracepoint events 5911 */ 5912 if (has_branch_stack(event)) 5913 return -EOPNOTSUPP; 5914 5915 err = perf_trace_init(event); 5916 if (err) 5917 return err; 5918 5919 event->destroy = tp_perf_event_destroy; 5920 5921 return 0; 5922 } 5923 5924 static struct pmu perf_tracepoint = { 5925 .task_ctx_nr = perf_sw_context, 5926 5927 .event_init = perf_tp_event_init, 5928 .add = perf_trace_add, 5929 .del = perf_trace_del, 5930 .start = perf_swevent_start, 5931 .stop = perf_swevent_stop, 5932 .read = perf_swevent_read, 5933 5934 .event_idx = perf_swevent_event_idx, 5935 }; 5936 5937 static inline void perf_tp_register(void) 5938 { 5939 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5940 } 5941 5942 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5943 { 5944 char *filter_str; 5945 int ret; 5946 5947 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5948 return -EINVAL; 5949 5950 filter_str = strndup_user(arg, PAGE_SIZE); 5951 if (IS_ERR(filter_str)) 5952 return PTR_ERR(filter_str); 5953 5954 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5955 5956 kfree(filter_str); 5957 return ret; 5958 } 5959 5960 static void perf_event_free_filter(struct perf_event *event) 5961 { 5962 ftrace_profile_free_filter(event); 5963 } 5964 5965 #else 5966 5967 static inline void perf_tp_register(void) 5968 { 5969 } 5970 5971 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5972 { 5973 return -ENOENT; 5974 } 5975 5976 static void perf_event_free_filter(struct perf_event *event) 5977 { 5978 } 5979 5980 #endif /* CONFIG_EVENT_TRACING */ 5981 5982 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5983 void perf_bp_event(struct perf_event *bp, void *data) 5984 { 5985 struct perf_sample_data sample; 5986 struct pt_regs *regs = data; 5987 5988 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5989 5990 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5991 perf_swevent_event(bp, 1, &sample, regs); 5992 } 5993 #endif 5994 5995 /* 5996 * hrtimer based swevent callback 5997 */ 5998 5999 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 6000 { 6001 enum hrtimer_restart ret = HRTIMER_RESTART; 6002 struct perf_sample_data data; 6003 struct pt_regs *regs; 6004 struct perf_event *event; 6005 u64 period; 6006 6007 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 6008 6009 if (event->state != PERF_EVENT_STATE_ACTIVE) 6010 return HRTIMER_NORESTART; 6011 6012 event->pmu->read(event); 6013 6014 perf_sample_data_init(&data, 0, event->hw.last_period); 6015 regs = get_irq_regs(); 6016 6017 if (regs && !perf_exclude_event(event, regs)) { 6018 if (!(event->attr.exclude_idle && is_idle_task(current))) 6019 if (__perf_event_overflow(event, 1, &data, regs)) 6020 ret = HRTIMER_NORESTART; 6021 } 6022 6023 period = max_t(u64, 10000, event->hw.sample_period); 6024 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 6025 6026 return ret; 6027 } 6028 6029 static void perf_swevent_start_hrtimer(struct perf_event *event) 6030 { 6031 struct hw_perf_event *hwc = &event->hw; 6032 s64 period; 6033 6034 if (!is_sampling_event(event)) 6035 return; 6036 6037 period = local64_read(&hwc->period_left); 6038 if (period) { 6039 if (period < 0) 6040 period = 10000; 6041 6042 local64_set(&hwc->period_left, 0); 6043 } else { 6044 period = max_t(u64, 10000, hwc->sample_period); 6045 } 6046 __hrtimer_start_range_ns(&hwc->hrtimer, 6047 ns_to_ktime(period), 0, 6048 HRTIMER_MODE_REL_PINNED, 0); 6049 } 6050 6051 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 6052 { 6053 struct hw_perf_event *hwc = &event->hw; 6054 6055 if (is_sampling_event(event)) { 6056 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 6057 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 6058 6059 hrtimer_cancel(&hwc->hrtimer); 6060 } 6061 } 6062 6063 static void perf_swevent_init_hrtimer(struct perf_event *event) 6064 { 6065 struct hw_perf_event *hwc = &event->hw; 6066 6067 if (!is_sampling_event(event)) 6068 return; 6069 6070 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6071 hwc->hrtimer.function = perf_swevent_hrtimer; 6072 6073 /* 6074 * Since hrtimers have a fixed rate, we can do a static freq->period 6075 * mapping and avoid the whole period adjust feedback stuff. 6076 */ 6077 if (event->attr.freq) { 6078 long freq = event->attr.sample_freq; 6079 6080 event->attr.sample_period = NSEC_PER_SEC / freq; 6081 hwc->sample_period = event->attr.sample_period; 6082 local64_set(&hwc->period_left, hwc->sample_period); 6083 hwc->last_period = hwc->sample_period; 6084 event->attr.freq = 0; 6085 } 6086 } 6087 6088 /* 6089 * Software event: cpu wall time clock 6090 */ 6091 6092 static void cpu_clock_event_update(struct perf_event *event) 6093 { 6094 s64 prev; 6095 u64 now; 6096 6097 now = local_clock(); 6098 prev = local64_xchg(&event->hw.prev_count, now); 6099 local64_add(now - prev, &event->count); 6100 } 6101 6102 static void cpu_clock_event_start(struct perf_event *event, int flags) 6103 { 6104 local64_set(&event->hw.prev_count, local_clock()); 6105 perf_swevent_start_hrtimer(event); 6106 } 6107 6108 static void cpu_clock_event_stop(struct perf_event *event, int flags) 6109 { 6110 perf_swevent_cancel_hrtimer(event); 6111 cpu_clock_event_update(event); 6112 } 6113 6114 static int cpu_clock_event_add(struct perf_event *event, int flags) 6115 { 6116 if (flags & PERF_EF_START) 6117 cpu_clock_event_start(event, flags); 6118 6119 return 0; 6120 } 6121 6122 static void cpu_clock_event_del(struct perf_event *event, int flags) 6123 { 6124 cpu_clock_event_stop(event, flags); 6125 } 6126 6127 static void cpu_clock_event_read(struct perf_event *event) 6128 { 6129 cpu_clock_event_update(event); 6130 } 6131 6132 static int cpu_clock_event_init(struct perf_event *event) 6133 { 6134 if (event->attr.type != PERF_TYPE_SOFTWARE) 6135 return -ENOENT; 6136 6137 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 6138 return -ENOENT; 6139 6140 /* 6141 * no branch sampling for software events 6142 */ 6143 if (has_branch_stack(event)) 6144 return -EOPNOTSUPP; 6145 6146 perf_swevent_init_hrtimer(event); 6147 6148 return 0; 6149 } 6150 6151 static struct pmu perf_cpu_clock = { 6152 .task_ctx_nr = perf_sw_context, 6153 6154 .event_init = cpu_clock_event_init, 6155 .add = cpu_clock_event_add, 6156 .del = cpu_clock_event_del, 6157 .start = cpu_clock_event_start, 6158 .stop = cpu_clock_event_stop, 6159 .read = cpu_clock_event_read, 6160 6161 .event_idx = perf_swevent_event_idx, 6162 }; 6163 6164 /* 6165 * Software event: task time clock 6166 */ 6167 6168 static void task_clock_event_update(struct perf_event *event, u64 now) 6169 { 6170 u64 prev; 6171 s64 delta; 6172 6173 prev = local64_xchg(&event->hw.prev_count, now); 6174 delta = now - prev; 6175 local64_add(delta, &event->count); 6176 } 6177 6178 static void task_clock_event_start(struct perf_event *event, int flags) 6179 { 6180 local64_set(&event->hw.prev_count, event->ctx->time); 6181 perf_swevent_start_hrtimer(event); 6182 } 6183 6184 static void task_clock_event_stop(struct perf_event *event, int flags) 6185 { 6186 perf_swevent_cancel_hrtimer(event); 6187 task_clock_event_update(event, event->ctx->time); 6188 } 6189 6190 static int task_clock_event_add(struct perf_event *event, int flags) 6191 { 6192 if (flags & PERF_EF_START) 6193 task_clock_event_start(event, flags); 6194 6195 return 0; 6196 } 6197 6198 static void task_clock_event_del(struct perf_event *event, int flags) 6199 { 6200 task_clock_event_stop(event, PERF_EF_UPDATE); 6201 } 6202 6203 static void task_clock_event_read(struct perf_event *event) 6204 { 6205 u64 now = perf_clock(); 6206 u64 delta = now - event->ctx->timestamp; 6207 u64 time = event->ctx->time + delta; 6208 6209 task_clock_event_update(event, time); 6210 } 6211 6212 static int task_clock_event_init(struct perf_event *event) 6213 { 6214 if (event->attr.type != PERF_TYPE_SOFTWARE) 6215 return -ENOENT; 6216 6217 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 6218 return -ENOENT; 6219 6220 /* 6221 * no branch sampling for software events 6222 */ 6223 if (has_branch_stack(event)) 6224 return -EOPNOTSUPP; 6225 6226 perf_swevent_init_hrtimer(event); 6227 6228 return 0; 6229 } 6230 6231 static struct pmu perf_task_clock = { 6232 .task_ctx_nr = perf_sw_context, 6233 6234 .event_init = task_clock_event_init, 6235 .add = task_clock_event_add, 6236 .del = task_clock_event_del, 6237 .start = task_clock_event_start, 6238 .stop = task_clock_event_stop, 6239 .read = task_clock_event_read, 6240 6241 .event_idx = perf_swevent_event_idx, 6242 }; 6243 6244 static void perf_pmu_nop_void(struct pmu *pmu) 6245 { 6246 } 6247 6248 static int perf_pmu_nop_int(struct pmu *pmu) 6249 { 6250 return 0; 6251 } 6252 6253 static void perf_pmu_start_txn(struct pmu *pmu) 6254 { 6255 perf_pmu_disable(pmu); 6256 } 6257 6258 static int perf_pmu_commit_txn(struct pmu *pmu) 6259 { 6260 perf_pmu_enable(pmu); 6261 return 0; 6262 } 6263 6264 static void perf_pmu_cancel_txn(struct pmu *pmu) 6265 { 6266 perf_pmu_enable(pmu); 6267 } 6268 6269 static int perf_event_idx_default(struct perf_event *event) 6270 { 6271 return event->hw.idx + 1; 6272 } 6273 6274 /* 6275 * Ensures all contexts with the same task_ctx_nr have the same 6276 * pmu_cpu_context too. 6277 */ 6278 static void *find_pmu_context(int ctxn) 6279 { 6280 struct pmu *pmu; 6281 6282 if (ctxn < 0) 6283 return NULL; 6284 6285 list_for_each_entry(pmu, &pmus, entry) { 6286 if (pmu->task_ctx_nr == ctxn) 6287 return pmu->pmu_cpu_context; 6288 } 6289 6290 return NULL; 6291 } 6292 6293 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 6294 { 6295 int cpu; 6296 6297 for_each_possible_cpu(cpu) { 6298 struct perf_cpu_context *cpuctx; 6299 6300 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6301 6302 if (cpuctx->unique_pmu == old_pmu) 6303 cpuctx->unique_pmu = pmu; 6304 } 6305 } 6306 6307 static void free_pmu_context(struct pmu *pmu) 6308 { 6309 struct pmu *i; 6310 6311 mutex_lock(&pmus_lock); 6312 /* 6313 * Like a real lame refcount. 6314 */ 6315 list_for_each_entry(i, &pmus, entry) { 6316 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 6317 update_pmu_context(i, pmu); 6318 goto out; 6319 } 6320 } 6321 6322 free_percpu(pmu->pmu_cpu_context); 6323 out: 6324 mutex_unlock(&pmus_lock); 6325 } 6326 static struct idr pmu_idr; 6327 6328 static ssize_t 6329 type_show(struct device *dev, struct device_attribute *attr, char *page) 6330 { 6331 struct pmu *pmu = dev_get_drvdata(dev); 6332 6333 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 6334 } 6335 static DEVICE_ATTR_RO(type); 6336 6337 static ssize_t 6338 perf_event_mux_interval_ms_show(struct device *dev, 6339 struct device_attribute *attr, 6340 char *page) 6341 { 6342 struct pmu *pmu = dev_get_drvdata(dev); 6343 6344 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 6345 } 6346 6347 static ssize_t 6348 perf_event_mux_interval_ms_store(struct device *dev, 6349 struct device_attribute *attr, 6350 const char *buf, size_t count) 6351 { 6352 struct pmu *pmu = dev_get_drvdata(dev); 6353 int timer, cpu, ret; 6354 6355 ret = kstrtoint(buf, 0, &timer); 6356 if (ret) 6357 return ret; 6358 6359 if (timer < 1) 6360 return -EINVAL; 6361 6362 /* same value, noting to do */ 6363 if (timer == pmu->hrtimer_interval_ms) 6364 return count; 6365 6366 pmu->hrtimer_interval_ms = timer; 6367 6368 /* update all cpuctx for this PMU */ 6369 for_each_possible_cpu(cpu) { 6370 struct perf_cpu_context *cpuctx; 6371 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6372 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 6373 6374 if (hrtimer_active(&cpuctx->hrtimer)) 6375 hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval); 6376 } 6377 6378 return count; 6379 } 6380 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 6381 6382 static struct attribute *pmu_dev_attrs[] = { 6383 &dev_attr_type.attr, 6384 &dev_attr_perf_event_mux_interval_ms.attr, 6385 NULL, 6386 }; 6387 ATTRIBUTE_GROUPS(pmu_dev); 6388 6389 static int pmu_bus_running; 6390 static struct bus_type pmu_bus = { 6391 .name = "event_source", 6392 .dev_groups = pmu_dev_groups, 6393 }; 6394 6395 static void pmu_dev_release(struct device *dev) 6396 { 6397 kfree(dev); 6398 } 6399 6400 static int pmu_dev_alloc(struct pmu *pmu) 6401 { 6402 int ret = -ENOMEM; 6403 6404 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 6405 if (!pmu->dev) 6406 goto out; 6407 6408 pmu->dev->groups = pmu->attr_groups; 6409 device_initialize(pmu->dev); 6410 ret = dev_set_name(pmu->dev, "%s", pmu->name); 6411 if (ret) 6412 goto free_dev; 6413 6414 dev_set_drvdata(pmu->dev, pmu); 6415 pmu->dev->bus = &pmu_bus; 6416 pmu->dev->release = pmu_dev_release; 6417 ret = device_add(pmu->dev); 6418 if (ret) 6419 goto free_dev; 6420 6421 out: 6422 return ret; 6423 6424 free_dev: 6425 put_device(pmu->dev); 6426 goto out; 6427 } 6428 6429 static struct lock_class_key cpuctx_mutex; 6430 static struct lock_class_key cpuctx_lock; 6431 6432 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 6433 { 6434 int cpu, ret; 6435 6436 mutex_lock(&pmus_lock); 6437 ret = -ENOMEM; 6438 pmu->pmu_disable_count = alloc_percpu(int); 6439 if (!pmu->pmu_disable_count) 6440 goto unlock; 6441 6442 pmu->type = -1; 6443 if (!name) 6444 goto skip_type; 6445 pmu->name = name; 6446 6447 if (type < 0) { 6448 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 6449 if (type < 0) { 6450 ret = type; 6451 goto free_pdc; 6452 } 6453 } 6454 pmu->type = type; 6455 6456 if (pmu_bus_running) { 6457 ret = pmu_dev_alloc(pmu); 6458 if (ret) 6459 goto free_idr; 6460 } 6461 6462 skip_type: 6463 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 6464 if (pmu->pmu_cpu_context) 6465 goto got_cpu_context; 6466 6467 ret = -ENOMEM; 6468 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 6469 if (!pmu->pmu_cpu_context) 6470 goto free_dev; 6471 6472 for_each_possible_cpu(cpu) { 6473 struct perf_cpu_context *cpuctx; 6474 6475 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 6476 __perf_event_init_context(&cpuctx->ctx); 6477 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 6478 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 6479 cpuctx->ctx.type = cpu_context; 6480 cpuctx->ctx.pmu = pmu; 6481 6482 __perf_cpu_hrtimer_init(cpuctx, cpu); 6483 6484 INIT_LIST_HEAD(&cpuctx->rotation_list); 6485 cpuctx->unique_pmu = pmu; 6486 } 6487 6488 got_cpu_context: 6489 if (!pmu->start_txn) { 6490 if (pmu->pmu_enable) { 6491 /* 6492 * If we have pmu_enable/pmu_disable calls, install 6493 * transaction stubs that use that to try and batch 6494 * hardware accesses. 6495 */ 6496 pmu->start_txn = perf_pmu_start_txn; 6497 pmu->commit_txn = perf_pmu_commit_txn; 6498 pmu->cancel_txn = perf_pmu_cancel_txn; 6499 } else { 6500 pmu->start_txn = perf_pmu_nop_void; 6501 pmu->commit_txn = perf_pmu_nop_int; 6502 pmu->cancel_txn = perf_pmu_nop_void; 6503 } 6504 } 6505 6506 if (!pmu->pmu_enable) { 6507 pmu->pmu_enable = perf_pmu_nop_void; 6508 pmu->pmu_disable = perf_pmu_nop_void; 6509 } 6510 6511 if (!pmu->event_idx) 6512 pmu->event_idx = perf_event_idx_default; 6513 6514 list_add_rcu(&pmu->entry, &pmus); 6515 ret = 0; 6516 unlock: 6517 mutex_unlock(&pmus_lock); 6518 6519 return ret; 6520 6521 free_dev: 6522 device_del(pmu->dev); 6523 put_device(pmu->dev); 6524 6525 free_idr: 6526 if (pmu->type >= PERF_TYPE_MAX) 6527 idr_remove(&pmu_idr, pmu->type); 6528 6529 free_pdc: 6530 free_percpu(pmu->pmu_disable_count); 6531 goto unlock; 6532 } 6533 6534 void perf_pmu_unregister(struct pmu *pmu) 6535 { 6536 mutex_lock(&pmus_lock); 6537 list_del_rcu(&pmu->entry); 6538 mutex_unlock(&pmus_lock); 6539 6540 /* 6541 * We dereference the pmu list under both SRCU and regular RCU, so 6542 * synchronize against both of those. 6543 */ 6544 synchronize_srcu(&pmus_srcu); 6545 synchronize_rcu(); 6546 6547 free_percpu(pmu->pmu_disable_count); 6548 if (pmu->type >= PERF_TYPE_MAX) 6549 idr_remove(&pmu_idr, pmu->type); 6550 device_del(pmu->dev); 6551 put_device(pmu->dev); 6552 free_pmu_context(pmu); 6553 } 6554 6555 struct pmu *perf_init_event(struct perf_event *event) 6556 { 6557 struct pmu *pmu = NULL; 6558 int idx; 6559 int ret; 6560 6561 idx = srcu_read_lock(&pmus_srcu); 6562 6563 rcu_read_lock(); 6564 pmu = idr_find(&pmu_idr, event->attr.type); 6565 rcu_read_unlock(); 6566 if (pmu) { 6567 event->pmu = pmu; 6568 ret = pmu->event_init(event); 6569 if (ret) 6570 pmu = ERR_PTR(ret); 6571 goto unlock; 6572 } 6573 6574 list_for_each_entry_rcu(pmu, &pmus, entry) { 6575 event->pmu = pmu; 6576 ret = pmu->event_init(event); 6577 if (!ret) 6578 goto unlock; 6579 6580 if (ret != -ENOENT) { 6581 pmu = ERR_PTR(ret); 6582 goto unlock; 6583 } 6584 } 6585 pmu = ERR_PTR(-ENOENT); 6586 unlock: 6587 srcu_read_unlock(&pmus_srcu, idx); 6588 6589 return pmu; 6590 } 6591 6592 static void account_event_cpu(struct perf_event *event, int cpu) 6593 { 6594 if (event->parent) 6595 return; 6596 6597 if (has_branch_stack(event)) { 6598 if (!(event->attach_state & PERF_ATTACH_TASK)) 6599 atomic_inc(&per_cpu(perf_branch_stack_events, cpu)); 6600 } 6601 if (is_cgroup_event(event)) 6602 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 6603 } 6604 6605 static void account_event(struct perf_event *event) 6606 { 6607 if (event->parent) 6608 return; 6609 6610 if (event->attach_state & PERF_ATTACH_TASK) 6611 static_key_slow_inc(&perf_sched_events.key); 6612 if (event->attr.mmap || event->attr.mmap_data) 6613 atomic_inc(&nr_mmap_events); 6614 if (event->attr.comm) 6615 atomic_inc(&nr_comm_events); 6616 if (event->attr.task) 6617 atomic_inc(&nr_task_events); 6618 if (event->attr.freq) { 6619 if (atomic_inc_return(&nr_freq_events) == 1) 6620 tick_nohz_full_kick_all(); 6621 } 6622 if (has_branch_stack(event)) 6623 static_key_slow_inc(&perf_sched_events.key); 6624 if (is_cgroup_event(event)) 6625 static_key_slow_inc(&perf_sched_events.key); 6626 6627 account_event_cpu(event, event->cpu); 6628 } 6629 6630 /* 6631 * Allocate and initialize a event structure 6632 */ 6633 static struct perf_event * 6634 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6635 struct task_struct *task, 6636 struct perf_event *group_leader, 6637 struct perf_event *parent_event, 6638 perf_overflow_handler_t overflow_handler, 6639 void *context) 6640 { 6641 struct pmu *pmu; 6642 struct perf_event *event; 6643 struct hw_perf_event *hwc; 6644 long err = -EINVAL; 6645 6646 if ((unsigned)cpu >= nr_cpu_ids) { 6647 if (!task || cpu != -1) 6648 return ERR_PTR(-EINVAL); 6649 } 6650 6651 event = kzalloc(sizeof(*event), GFP_KERNEL); 6652 if (!event) 6653 return ERR_PTR(-ENOMEM); 6654 6655 /* 6656 * Single events are their own group leaders, with an 6657 * empty sibling list: 6658 */ 6659 if (!group_leader) 6660 group_leader = event; 6661 6662 mutex_init(&event->child_mutex); 6663 INIT_LIST_HEAD(&event->child_list); 6664 6665 INIT_LIST_HEAD(&event->group_entry); 6666 INIT_LIST_HEAD(&event->event_entry); 6667 INIT_LIST_HEAD(&event->sibling_list); 6668 INIT_LIST_HEAD(&event->rb_entry); 6669 6670 init_waitqueue_head(&event->waitq); 6671 init_irq_work(&event->pending, perf_pending_event); 6672 6673 mutex_init(&event->mmap_mutex); 6674 6675 atomic_long_set(&event->refcount, 1); 6676 event->cpu = cpu; 6677 event->attr = *attr; 6678 event->group_leader = group_leader; 6679 event->pmu = NULL; 6680 event->oncpu = -1; 6681 6682 event->parent = parent_event; 6683 6684 event->ns = get_pid_ns(task_active_pid_ns(current)); 6685 event->id = atomic64_inc_return(&perf_event_id); 6686 6687 event->state = PERF_EVENT_STATE_INACTIVE; 6688 6689 if (task) { 6690 event->attach_state = PERF_ATTACH_TASK; 6691 6692 if (attr->type == PERF_TYPE_TRACEPOINT) 6693 event->hw.tp_target = task; 6694 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6695 /* 6696 * hw_breakpoint is a bit difficult here.. 6697 */ 6698 else if (attr->type == PERF_TYPE_BREAKPOINT) 6699 event->hw.bp_target = task; 6700 #endif 6701 } 6702 6703 if (!overflow_handler && parent_event) { 6704 overflow_handler = parent_event->overflow_handler; 6705 context = parent_event->overflow_handler_context; 6706 } 6707 6708 event->overflow_handler = overflow_handler; 6709 event->overflow_handler_context = context; 6710 6711 perf_event__state_init(event); 6712 6713 pmu = NULL; 6714 6715 hwc = &event->hw; 6716 hwc->sample_period = attr->sample_period; 6717 if (attr->freq && attr->sample_freq) 6718 hwc->sample_period = 1; 6719 hwc->last_period = hwc->sample_period; 6720 6721 local64_set(&hwc->period_left, hwc->sample_period); 6722 6723 /* 6724 * we currently do not support PERF_FORMAT_GROUP on inherited events 6725 */ 6726 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6727 goto err_ns; 6728 6729 pmu = perf_init_event(event); 6730 if (!pmu) 6731 goto err_ns; 6732 else if (IS_ERR(pmu)) { 6733 err = PTR_ERR(pmu); 6734 goto err_ns; 6735 } 6736 6737 if (!event->parent) { 6738 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6739 err = get_callchain_buffers(); 6740 if (err) 6741 goto err_pmu; 6742 } 6743 } 6744 6745 return event; 6746 6747 err_pmu: 6748 if (event->destroy) 6749 event->destroy(event); 6750 err_ns: 6751 if (event->ns) 6752 put_pid_ns(event->ns); 6753 kfree(event); 6754 6755 return ERR_PTR(err); 6756 } 6757 6758 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6759 struct perf_event_attr *attr) 6760 { 6761 u32 size; 6762 int ret; 6763 6764 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6765 return -EFAULT; 6766 6767 /* 6768 * zero the full structure, so that a short copy will be nice. 6769 */ 6770 memset(attr, 0, sizeof(*attr)); 6771 6772 ret = get_user(size, &uattr->size); 6773 if (ret) 6774 return ret; 6775 6776 if (size > PAGE_SIZE) /* silly large */ 6777 goto err_size; 6778 6779 if (!size) /* abi compat */ 6780 size = PERF_ATTR_SIZE_VER0; 6781 6782 if (size < PERF_ATTR_SIZE_VER0) 6783 goto err_size; 6784 6785 /* 6786 * If we're handed a bigger struct than we know of, 6787 * ensure all the unknown bits are 0 - i.e. new 6788 * user-space does not rely on any kernel feature 6789 * extensions we dont know about yet. 6790 */ 6791 if (size > sizeof(*attr)) { 6792 unsigned char __user *addr; 6793 unsigned char __user *end; 6794 unsigned char val; 6795 6796 addr = (void __user *)uattr + sizeof(*attr); 6797 end = (void __user *)uattr + size; 6798 6799 for (; addr < end; addr++) { 6800 ret = get_user(val, addr); 6801 if (ret) 6802 return ret; 6803 if (val) 6804 goto err_size; 6805 } 6806 size = sizeof(*attr); 6807 } 6808 6809 ret = copy_from_user(attr, uattr, size); 6810 if (ret) 6811 return -EFAULT; 6812 6813 /* disabled for now */ 6814 if (attr->mmap2) 6815 return -EINVAL; 6816 6817 if (attr->__reserved_1) 6818 return -EINVAL; 6819 6820 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6821 return -EINVAL; 6822 6823 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6824 return -EINVAL; 6825 6826 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6827 u64 mask = attr->branch_sample_type; 6828 6829 /* only using defined bits */ 6830 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6831 return -EINVAL; 6832 6833 /* at least one branch bit must be set */ 6834 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6835 return -EINVAL; 6836 6837 /* propagate priv level, when not set for branch */ 6838 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6839 6840 /* exclude_kernel checked on syscall entry */ 6841 if (!attr->exclude_kernel) 6842 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6843 6844 if (!attr->exclude_user) 6845 mask |= PERF_SAMPLE_BRANCH_USER; 6846 6847 if (!attr->exclude_hv) 6848 mask |= PERF_SAMPLE_BRANCH_HV; 6849 /* 6850 * adjust user setting (for HW filter setup) 6851 */ 6852 attr->branch_sample_type = mask; 6853 } 6854 /* privileged levels capture (kernel, hv): check permissions */ 6855 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6856 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6857 return -EACCES; 6858 } 6859 6860 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6861 ret = perf_reg_validate(attr->sample_regs_user); 6862 if (ret) 6863 return ret; 6864 } 6865 6866 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6867 if (!arch_perf_have_user_stack_dump()) 6868 return -ENOSYS; 6869 6870 /* 6871 * We have __u32 type for the size, but so far 6872 * we can only use __u16 as maximum due to the 6873 * __u16 sample size limit. 6874 */ 6875 if (attr->sample_stack_user >= USHRT_MAX) 6876 ret = -EINVAL; 6877 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6878 ret = -EINVAL; 6879 } 6880 6881 out: 6882 return ret; 6883 6884 err_size: 6885 put_user(sizeof(*attr), &uattr->size); 6886 ret = -E2BIG; 6887 goto out; 6888 } 6889 6890 static int 6891 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6892 { 6893 struct ring_buffer *rb = NULL, *old_rb = NULL; 6894 int ret = -EINVAL; 6895 6896 if (!output_event) 6897 goto set; 6898 6899 /* don't allow circular references */ 6900 if (event == output_event) 6901 goto out; 6902 6903 /* 6904 * Don't allow cross-cpu buffers 6905 */ 6906 if (output_event->cpu != event->cpu) 6907 goto out; 6908 6909 /* 6910 * If its not a per-cpu rb, it must be the same task. 6911 */ 6912 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6913 goto out; 6914 6915 set: 6916 mutex_lock(&event->mmap_mutex); 6917 /* Can't redirect output if we've got an active mmap() */ 6918 if (atomic_read(&event->mmap_count)) 6919 goto unlock; 6920 6921 old_rb = event->rb; 6922 6923 if (output_event) { 6924 /* get the rb we want to redirect to */ 6925 rb = ring_buffer_get(output_event); 6926 if (!rb) 6927 goto unlock; 6928 } 6929 6930 if (old_rb) 6931 ring_buffer_detach(event, old_rb); 6932 6933 if (rb) 6934 ring_buffer_attach(event, rb); 6935 6936 rcu_assign_pointer(event->rb, rb); 6937 6938 if (old_rb) { 6939 ring_buffer_put(old_rb); 6940 /* 6941 * Since we detached before setting the new rb, so that we 6942 * could attach the new rb, we could have missed a wakeup. 6943 * Provide it now. 6944 */ 6945 wake_up_all(&event->waitq); 6946 } 6947 6948 ret = 0; 6949 unlock: 6950 mutex_unlock(&event->mmap_mutex); 6951 6952 out: 6953 return ret; 6954 } 6955 6956 /** 6957 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6958 * 6959 * @attr_uptr: event_id type attributes for monitoring/sampling 6960 * @pid: target pid 6961 * @cpu: target cpu 6962 * @group_fd: group leader event fd 6963 */ 6964 SYSCALL_DEFINE5(perf_event_open, 6965 struct perf_event_attr __user *, attr_uptr, 6966 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6967 { 6968 struct perf_event *group_leader = NULL, *output_event = NULL; 6969 struct perf_event *event, *sibling; 6970 struct perf_event_attr attr; 6971 struct perf_event_context *ctx; 6972 struct file *event_file = NULL; 6973 struct fd group = {NULL, 0}; 6974 struct task_struct *task = NULL; 6975 struct pmu *pmu; 6976 int event_fd; 6977 int move_group = 0; 6978 int err; 6979 6980 /* for future expandability... */ 6981 if (flags & ~PERF_FLAG_ALL) 6982 return -EINVAL; 6983 6984 err = perf_copy_attr(attr_uptr, &attr); 6985 if (err) 6986 return err; 6987 6988 if (!attr.exclude_kernel) { 6989 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6990 return -EACCES; 6991 } 6992 6993 if (attr.freq) { 6994 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6995 return -EINVAL; 6996 } 6997 6998 /* 6999 * In cgroup mode, the pid argument is used to pass the fd 7000 * opened to the cgroup directory in cgroupfs. The cpu argument 7001 * designates the cpu on which to monitor threads from that 7002 * cgroup. 7003 */ 7004 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 7005 return -EINVAL; 7006 7007 event_fd = get_unused_fd(); 7008 if (event_fd < 0) 7009 return event_fd; 7010 7011 if (group_fd != -1) { 7012 err = perf_fget_light(group_fd, &group); 7013 if (err) 7014 goto err_fd; 7015 group_leader = group.file->private_data; 7016 if (flags & PERF_FLAG_FD_OUTPUT) 7017 output_event = group_leader; 7018 if (flags & PERF_FLAG_FD_NO_GROUP) 7019 group_leader = NULL; 7020 } 7021 7022 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 7023 task = find_lively_task_by_vpid(pid); 7024 if (IS_ERR(task)) { 7025 err = PTR_ERR(task); 7026 goto err_group_fd; 7027 } 7028 } 7029 7030 get_online_cpus(); 7031 7032 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 7033 NULL, NULL); 7034 if (IS_ERR(event)) { 7035 err = PTR_ERR(event); 7036 goto err_task; 7037 } 7038 7039 if (flags & PERF_FLAG_PID_CGROUP) { 7040 err = perf_cgroup_connect(pid, event, &attr, group_leader); 7041 if (err) { 7042 __free_event(event); 7043 goto err_task; 7044 } 7045 } 7046 7047 account_event(event); 7048 7049 /* 7050 * Special case software events and allow them to be part of 7051 * any hardware group. 7052 */ 7053 pmu = event->pmu; 7054 7055 if (group_leader && 7056 (is_software_event(event) != is_software_event(group_leader))) { 7057 if (is_software_event(event)) { 7058 /* 7059 * If event and group_leader are not both a software 7060 * event, and event is, then group leader is not. 7061 * 7062 * Allow the addition of software events to !software 7063 * groups, this is safe because software events never 7064 * fail to schedule. 7065 */ 7066 pmu = group_leader->pmu; 7067 } else if (is_software_event(group_leader) && 7068 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 7069 /* 7070 * In case the group is a pure software group, and we 7071 * try to add a hardware event, move the whole group to 7072 * the hardware context. 7073 */ 7074 move_group = 1; 7075 } 7076 } 7077 7078 /* 7079 * Get the target context (task or percpu): 7080 */ 7081 ctx = find_get_context(pmu, task, event->cpu); 7082 if (IS_ERR(ctx)) { 7083 err = PTR_ERR(ctx); 7084 goto err_alloc; 7085 } 7086 7087 if (task) { 7088 put_task_struct(task); 7089 task = NULL; 7090 } 7091 7092 /* 7093 * Look up the group leader (we will attach this event to it): 7094 */ 7095 if (group_leader) { 7096 err = -EINVAL; 7097 7098 /* 7099 * Do not allow a recursive hierarchy (this new sibling 7100 * becoming part of another group-sibling): 7101 */ 7102 if (group_leader->group_leader != group_leader) 7103 goto err_context; 7104 /* 7105 * Do not allow to attach to a group in a different 7106 * task or CPU context: 7107 */ 7108 if (move_group) { 7109 if (group_leader->ctx->type != ctx->type) 7110 goto err_context; 7111 } else { 7112 if (group_leader->ctx != ctx) 7113 goto err_context; 7114 } 7115 7116 /* 7117 * Only a group leader can be exclusive or pinned 7118 */ 7119 if (attr.exclusive || attr.pinned) 7120 goto err_context; 7121 } 7122 7123 if (output_event) { 7124 err = perf_event_set_output(event, output_event); 7125 if (err) 7126 goto err_context; 7127 } 7128 7129 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 7130 if (IS_ERR(event_file)) { 7131 err = PTR_ERR(event_file); 7132 goto err_context; 7133 } 7134 7135 if (move_group) { 7136 struct perf_event_context *gctx = group_leader->ctx; 7137 7138 mutex_lock(&gctx->mutex); 7139 perf_remove_from_context(group_leader); 7140 7141 /* 7142 * Removing from the context ends up with disabled 7143 * event. What we want here is event in the initial 7144 * startup state, ready to be add into new context. 7145 */ 7146 perf_event__state_init(group_leader); 7147 list_for_each_entry(sibling, &group_leader->sibling_list, 7148 group_entry) { 7149 perf_remove_from_context(sibling); 7150 perf_event__state_init(sibling); 7151 put_ctx(gctx); 7152 } 7153 mutex_unlock(&gctx->mutex); 7154 put_ctx(gctx); 7155 } 7156 7157 WARN_ON_ONCE(ctx->parent_ctx); 7158 mutex_lock(&ctx->mutex); 7159 7160 if (move_group) { 7161 synchronize_rcu(); 7162 perf_install_in_context(ctx, group_leader, event->cpu); 7163 get_ctx(ctx); 7164 list_for_each_entry(sibling, &group_leader->sibling_list, 7165 group_entry) { 7166 perf_install_in_context(ctx, sibling, event->cpu); 7167 get_ctx(ctx); 7168 } 7169 } 7170 7171 perf_install_in_context(ctx, event, event->cpu); 7172 perf_unpin_context(ctx); 7173 mutex_unlock(&ctx->mutex); 7174 7175 put_online_cpus(); 7176 7177 event->owner = current; 7178 7179 mutex_lock(¤t->perf_event_mutex); 7180 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 7181 mutex_unlock(¤t->perf_event_mutex); 7182 7183 /* 7184 * Precalculate sample_data sizes 7185 */ 7186 perf_event__header_size(event); 7187 perf_event__id_header_size(event); 7188 7189 /* 7190 * Drop the reference on the group_event after placing the 7191 * new event on the sibling_list. This ensures destruction 7192 * of the group leader will find the pointer to itself in 7193 * perf_group_detach(). 7194 */ 7195 fdput(group); 7196 fd_install(event_fd, event_file); 7197 return event_fd; 7198 7199 err_context: 7200 perf_unpin_context(ctx); 7201 put_ctx(ctx); 7202 err_alloc: 7203 free_event(event); 7204 err_task: 7205 put_online_cpus(); 7206 if (task) 7207 put_task_struct(task); 7208 err_group_fd: 7209 fdput(group); 7210 err_fd: 7211 put_unused_fd(event_fd); 7212 return err; 7213 } 7214 7215 /** 7216 * perf_event_create_kernel_counter 7217 * 7218 * @attr: attributes of the counter to create 7219 * @cpu: cpu in which the counter is bound 7220 * @task: task to profile (NULL for percpu) 7221 */ 7222 struct perf_event * 7223 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 7224 struct task_struct *task, 7225 perf_overflow_handler_t overflow_handler, 7226 void *context) 7227 { 7228 struct perf_event_context *ctx; 7229 struct perf_event *event; 7230 int err; 7231 7232 /* 7233 * Get the target context (task or percpu): 7234 */ 7235 7236 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 7237 overflow_handler, context); 7238 if (IS_ERR(event)) { 7239 err = PTR_ERR(event); 7240 goto err; 7241 } 7242 7243 account_event(event); 7244 7245 ctx = find_get_context(event->pmu, task, cpu); 7246 if (IS_ERR(ctx)) { 7247 err = PTR_ERR(ctx); 7248 goto err_free; 7249 } 7250 7251 WARN_ON_ONCE(ctx->parent_ctx); 7252 mutex_lock(&ctx->mutex); 7253 perf_install_in_context(ctx, event, cpu); 7254 perf_unpin_context(ctx); 7255 mutex_unlock(&ctx->mutex); 7256 7257 return event; 7258 7259 err_free: 7260 free_event(event); 7261 err: 7262 return ERR_PTR(err); 7263 } 7264 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 7265 7266 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 7267 { 7268 struct perf_event_context *src_ctx; 7269 struct perf_event_context *dst_ctx; 7270 struct perf_event *event, *tmp; 7271 LIST_HEAD(events); 7272 7273 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 7274 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 7275 7276 mutex_lock(&src_ctx->mutex); 7277 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 7278 event_entry) { 7279 perf_remove_from_context(event); 7280 unaccount_event_cpu(event, src_cpu); 7281 put_ctx(src_ctx); 7282 list_add(&event->migrate_entry, &events); 7283 } 7284 mutex_unlock(&src_ctx->mutex); 7285 7286 synchronize_rcu(); 7287 7288 mutex_lock(&dst_ctx->mutex); 7289 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 7290 list_del(&event->migrate_entry); 7291 if (event->state >= PERF_EVENT_STATE_OFF) 7292 event->state = PERF_EVENT_STATE_INACTIVE; 7293 account_event_cpu(event, dst_cpu); 7294 perf_install_in_context(dst_ctx, event, dst_cpu); 7295 get_ctx(dst_ctx); 7296 } 7297 mutex_unlock(&dst_ctx->mutex); 7298 } 7299 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 7300 7301 static void sync_child_event(struct perf_event *child_event, 7302 struct task_struct *child) 7303 { 7304 struct perf_event *parent_event = child_event->parent; 7305 u64 child_val; 7306 7307 if (child_event->attr.inherit_stat) 7308 perf_event_read_event(child_event, child); 7309 7310 child_val = perf_event_count(child_event); 7311 7312 /* 7313 * Add back the child's count to the parent's count: 7314 */ 7315 atomic64_add(child_val, &parent_event->child_count); 7316 atomic64_add(child_event->total_time_enabled, 7317 &parent_event->child_total_time_enabled); 7318 atomic64_add(child_event->total_time_running, 7319 &parent_event->child_total_time_running); 7320 7321 /* 7322 * Remove this event from the parent's list 7323 */ 7324 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7325 mutex_lock(&parent_event->child_mutex); 7326 list_del_init(&child_event->child_list); 7327 mutex_unlock(&parent_event->child_mutex); 7328 7329 /* 7330 * Release the parent event, if this was the last 7331 * reference to it. 7332 */ 7333 put_event(parent_event); 7334 } 7335 7336 static void 7337 __perf_event_exit_task(struct perf_event *child_event, 7338 struct perf_event_context *child_ctx, 7339 struct task_struct *child) 7340 { 7341 if (child_event->parent) { 7342 raw_spin_lock_irq(&child_ctx->lock); 7343 perf_group_detach(child_event); 7344 raw_spin_unlock_irq(&child_ctx->lock); 7345 } 7346 7347 perf_remove_from_context(child_event); 7348 7349 /* 7350 * It can happen that the parent exits first, and has events 7351 * that are still around due to the child reference. These 7352 * events need to be zapped. 7353 */ 7354 if (child_event->parent) { 7355 sync_child_event(child_event, child); 7356 free_event(child_event); 7357 } 7358 } 7359 7360 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 7361 { 7362 struct perf_event *child_event, *tmp; 7363 struct perf_event_context *child_ctx; 7364 unsigned long flags; 7365 7366 if (likely(!child->perf_event_ctxp[ctxn])) { 7367 perf_event_task(child, NULL, 0); 7368 return; 7369 } 7370 7371 local_irq_save(flags); 7372 /* 7373 * We can't reschedule here because interrupts are disabled, 7374 * and either child is current or it is a task that can't be 7375 * scheduled, so we are now safe from rescheduling changing 7376 * our context. 7377 */ 7378 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 7379 7380 /* 7381 * Take the context lock here so that if find_get_context is 7382 * reading child->perf_event_ctxp, we wait until it has 7383 * incremented the context's refcount before we do put_ctx below. 7384 */ 7385 raw_spin_lock(&child_ctx->lock); 7386 task_ctx_sched_out(child_ctx); 7387 child->perf_event_ctxp[ctxn] = NULL; 7388 /* 7389 * If this context is a clone; unclone it so it can't get 7390 * swapped to another process while we're removing all 7391 * the events from it. 7392 */ 7393 unclone_ctx(child_ctx); 7394 update_context_time(child_ctx); 7395 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7396 7397 /* 7398 * Report the task dead after unscheduling the events so that we 7399 * won't get any samples after PERF_RECORD_EXIT. We can however still 7400 * get a few PERF_RECORD_READ events. 7401 */ 7402 perf_event_task(child, child_ctx, 0); 7403 7404 /* 7405 * We can recurse on the same lock type through: 7406 * 7407 * __perf_event_exit_task() 7408 * sync_child_event() 7409 * put_event() 7410 * mutex_lock(&ctx->mutex) 7411 * 7412 * But since its the parent context it won't be the same instance. 7413 */ 7414 mutex_lock(&child_ctx->mutex); 7415 7416 again: 7417 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 7418 group_entry) 7419 __perf_event_exit_task(child_event, child_ctx, child); 7420 7421 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 7422 group_entry) 7423 __perf_event_exit_task(child_event, child_ctx, child); 7424 7425 /* 7426 * If the last event was a group event, it will have appended all 7427 * its siblings to the list, but we obtained 'tmp' before that which 7428 * will still point to the list head terminating the iteration. 7429 */ 7430 if (!list_empty(&child_ctx->pinned_groups) || 7431 !list_empty(&child_ctx->flexible_groups)) 7432 goto again; 7433 7434 mutex_unlock(&child_ctx->mutex); 7435 7436 put_ctx(child_ctx); 7437 } 7438 7439 /* 7440 * When a child task exits, feed back event values to parent events. 7441 */ 7442 void perf_event_exit_task(struct task_struct *child) 7443 { 7444 struct perf_event *event, *tmp; 7445 int ctxn; 7446 7447 mutex_lock(&child->perf_event_mutex); 7448 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 7449 owner_entry) { 7450 list_del_init(&event->owner_entry); 7451 7452 /* 7453 * Ensure the list deletion is visible before we clear 7454 * the owner, closes a race against perf_release() where 7455 * we need to serialize on the owner->perf_event_mutex. 7456 */ 7457 smp_wmb(); 7458 event->owner = NULL; 7459 } 7460 mutex_unlock(&child->perf_event_mutex); 7461 7462 for_each_task_context_nr(ctxn) 7463 perf_event_exit_task_context(child, ctxn); 7464 } 7465 7466 static void perf_free_event(struct perf_event *event, 7467 struct perf_event_context *ctx) 7468 { 7469 struct perf_event *parent = event->parent; 7470 7471 if (WARN_ON_ONCE(!parent)) 7472 return; 7473 7474 mutex_lock(&parent->child_mutex); 7475 list_del_init(&event->child_list); 7476 mutex_unlock(&parent->child_mutex); 7477 7478 put_event(parent); 7479 7480 perf_group_detach(event); 7481 list_del_event(event, ctx); 7482 free_event(event); 7483 } 7484 7485 /* 7486 * free an unexposed, unused context as created by inheritance by 7487 * perf_event_init_task below, used by fork() in case of fail. 7488 */ 7489 void perf_event_free_task(struct task_struct *task) 7490 { 7491 struct perf_event_context *ctx; 7492 struct perf_event *event, *tmp; 7493 int ctxn; 7494 7495 for_each_task_context_nr(ctxn) { 7496 ctx = task->perf_event_ctxp[ctxn]; 7497 if (!ctx) 7498 continue; 7499 7500 mutex_lock(&ctx->mutex); 7501 again: 7502 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 7503 group_entry) 7504 perf_free_event(event, ctx); 7505 7506 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 7507 group_entry) 7508 perf_free_event(event, ctx); 7509 7510 if (!list_empty(&ctx->pinned_groups) || 7511 !list_empty(&ctx->flexible_groups)) 7512 goto again; 7513 7514 mutex_unlock(&ctx->mutex); 7515 7516 put_ctx(ctx); 7517 } 7518 } 7519 7520 void perf_event_delayed_put(struct task_struct *task) 7521 { 7522 int ctxn; 7523 7524 for_each_task_context_nr(ctxn) 7525 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 7526 } 7527 7528 /* 7529 * inherit a event from parent task to child task: 7530 */ 7531 static struct perf_event * 7532 inherit_event(struct perf_event *parent_event, 7533 struct task_struct *parent, 7534 struct perf_event_context *parent_ctx, 7535 struct task_struct *child, 7536 struct perf_event *group_leader, 7537 struct perf_event_context *child_ctx) 7538 { 7539 struct perf_event *child_event; 7540 unsigned long flags; 7541 7542 /* 7543 * Instead of creating recursive hierarchies of events, 7544 * we link inherited events back to the original parent, 7545 * which has a filp for sure, which we use as the reference 7546 * count: 7547 */ 7548 if (parent_event->parent) 7549 parent_event = parent_event->parent; 7550 7551 child_event = perf_event_alloc(&parent_event->attr, 7552 parent_event->cpu, 7553 child, 7554 group_leader, parent_event, 7555 NULL, NULL); 7556 if (IS_ERR(child_event)) 7557 return child_event; 7558 7559 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7560 free_event(child_event); 7561 return NULL; 7562 } 7563 7564 get_ctx(child_ctx); 7565 7566 /* 7567 * Make the child state follow the state of the parent event, 7568 * not its attr.disabled bit. We hold the parent's mutex, 7569 * so we won't race with perf_event_{en, dis}able_family. 7570 */ 7571 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7572 child_event->state = PERF_EVENT_STATE_INACTIVE; 7573 else 7574 child_event->state = PERF_EVENT_STATE_OFF; 7575 7576 if (parent_event->attr.freq) { 7577 u64 sample_period = parent_event->hw.sample_period; 7578 struct hw_perf_event *hwc = &child_event->hw; 7579 7580 hwc->sample_period = sample_period; 7581 hwc->last_period = sample_period; 7582 7583 local64_set(&hwc->period_left, sample_period); 7584 } 7585 7586 child_event->ctx = child_ctx; 7587 child_event->overflow_handler = parent_event->overflow_handler; 7588 child_event->overflow_handler_context 7589 = parent_event->overflow_handler_context; 7590 7591 /* 7592 * Precalculate sample_data sizes 7593 */ 7594 perf_event__header_size(child_event); 7595 perf_event__id_header_size(child_event); 7596 7597 /* 7598 * Link it up in the child's context: 7599 */ 7600 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7601 add_event_to_ctx(child_event, child_ctx); 7602 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7603 7604 /* 7605 * Link this into the parent event's child list 7606 */ 7607 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7608 mutex_lock(&parent_event->child_mutex); 7609 list_add_tail(&child_event->child_list, &parent_event->child_list); 7610 mutex_unlock(&parent_event->child_mutex); 7611 7612 return child_event; 7613 } 7614 7615 static int inherit_group(struct perf_event *parent_event, 7616 struct task_struct *parent, 7617 struct perf_event_context *parent_ctx, 7618 struct task_struct *child, 7619 struct perf_event_context *child_ctx) 7620 { 7621 struct perf_event *leader; 7622 struct perf_event *sub; 7623 struct perf_event *child_ctr; 7624 7625 leader = inherit_event(parent_event, parent, parent_ctx, 7626 child, NULL, child_ctx); 7627 if (IS_ERR(leader)) 7628 return PTR_ERR(leader); 7629 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7630 child_ctr = inherit_event(sub, parent, parent_ctx, 7631 child, leader, child_ctx); 7632 if (IS_ERR(child_ctr)) 7633 return PTR_ERR(child_ctr); 7634 } 7635 return 0; 7636 } 7637 7638 static int 7639 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7640 struct perf_event_context *parent_ctx, 7641 struct task_struct *child, int ctxn, 7642 int *inherited_all) 7643 { 7644 int ret; 7645 struct perf_event_context *child_ctx; 7646 7647 if (!event->attr.inherit) { 7648 *inherited_all = 0; 7649 return 0; 7650 } 7651 7652 child_ctx = child->perf_event_ctxp[ctxn]; 7653 if (!child_ctx) { 7654 /* 7655 * This is executed from the parent task context, so 7656 * inherit events that have been marked for cloning. 7657 * First allocate and initialize a context for the 7658 * child. 7659 */ 7660 7661 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 7662 if (!child_ctx) 7663 return -ENOMEM; 7664 7665 child->perf_event_ctxp[ctxn] = child_ctx; 7666 } 7667 7668 ret = inherit_group(event, parent, parent_ctx, 7669 child, child_ctx); 7670 7671 if (ret) 7672 *inherited_all = 0; 7673 7674 return ret; 7675 } 7676 7677 /* 7678 * Initialize the perf_event context in task_struct 7679 */ 7680 int perf_event_init_context(struct task_struct *child, int ctxn) 7681 { 7682 struct perf_event_context *child_ctx, *parent_ctx; 7683 struct perf_event_context *cloned_ctx; 7684 struct perf_event *event; 7685 struct task_struct *parent = current; 7686 int inherited_all = 1; 7687 unsigned long flags; 7688 int ret = 0; 7689 7690 if (likely(!parent->perf_event_ctxp[ctxn])) 7691 return 0; 7692 7693 /* 7694 * If the parent's context is a clone, pin it so it won't get 7695 * swapped under us. 7696 */ 7697 parent_ctx = perf_pin_task_context(parent, ctxn); 7698 7699 /* 7700 * No need to check if parent_ctx != NULL here; since we saw 7701 * it non-NULL earlier, the only reason for it to become NULL 7702 * is if we exit, and since we're currently in the middle of 7703 * a fork we can't be exiting at the same time. 7704 */ 7705 7706 /* 7707 * Lock the parent list. No need to lock the child - not PID 7708 * hashed yet and not running, so nobody can access it. 7709 */ 7710 mutex_lock(&parent_ctx->mutex); 7711 7712 /* 7713 * We dont have to disable NMIs - we are only looking at 7714 * the list, not manipulating it: 7715 */ 7716 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7717 ret = inherit_task_group(event, parent, parent_ctx, 7718 child, ctxn, &inherited_all); 7719 if (ret) 7720 break; 7721 } 7722 7723 /* 7724 * We can't hold ctx->lock when iterating the ->flexible_group list due 7725 * to allocations, but we need to prevent rotation because 7726 * rotate_ctx() will change the list from interrupt context. 7727 */ 7728 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7729 parent_ctx->rotate_disable = 1; 7730 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7731 7732 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7733 ret = inherit_task_group(event, parent, parent_ctx, 7734 child, ctxn, &inherited_all); 7735 if (ret) 7736 break; 7737 } 7738 7739 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7740 parent_ctx->rotate_disable = 0; 7741 7742 child_ctx = child->perf_event_ctxp[ctxn]; 7743 7744 if (child_ctx && inherited_all) { 7745 /* 7746 * Mark the child context as a clone of the parent 7747 * context, or of whatever the parent is a clone of. 7748 * 7749 * Note that if the parent is a clone, the holding of 7750 * parent_ctx->lock avoids it from being uncloned. 7751 */ 7752 cloned_ctx = parent_ctx->parent_ctx; 7753 if (cloned_ctx) { 7754 child_ctx->parent_ctx = cloned_ctx; 7755 child_ctx->parent_gen = parent_ctx->parent_gen; 7756 } else { 7757 child_ctx->parent_ctx = parent_ctx; 7758 child_ctx->parent_gen = parent_ctx->generation; 7759 } 7760 get_ctx(child_ctx->parent_ctx); 7761 } 7762 7763 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7764 mutex_unlock(&parent_ctx->mutex); 7765 7766 perf_unpin_context(parent_ctx); 7767 put_ctx(parent_ctx); 7768 7769 return ret; 7770 } 7771 7772 /* 7773 * Initialize the perf_event context in task_struct 7774 */ 7775 int perf_event_init_task(struct task_struct *child) 7776 { 7777 int ctxn, ret; 7778 7779 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7780 mutex_init(&child->perf_event_mutex); 7781 INIT_LIST_HEAD(&child->perf_event_list); 7782 7783 for_each_task_context_nr(ctxn) { 7784 ret = perf_event_init_context(child, ctxn); 7785 if (ret) 7786 return ret; 7787 } 7788 7789 return 0; 7790 } 7791 7792 static void __init perf_event_init_all_cpus(void) 7793 { 7794 struct swevent_htable *swhash; 7795 int cpu; 7796 7797 for_each_possible_cpu(cpu) { 7798 swhash = &per_cpu(swevent_htable, cpu); 7799 mutex_init(&swhash->hlist_mutex); 7800 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7801 } 7802 } 7803 7804 static void perf_event_init_cpu(int cpu) 7805 { 7806 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7807 7808 mutex_lock(&swhash->hlist_mutex); 7809 if (swhash->hlist_refcount > 0) { 7810 struct swevent_hlist *hlist; 7811 7812 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7813 WARN_ON(!hlist); 7814 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7815 } 7816 mutex_unlock(&swhash->hlist_mutex); 7817 } 7818 7819 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7820 static void perf_pmu_rotate_stop(struct pmu *pmu) 7821 { 7822 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7823 7824 WARN_ON(!irqs_disabled()); 7825 7826 list_del_init(&cpuctx->rotation_list); 7827 } 7828 7829 static void __perf_event_exit_context(void *__info) 7830 { 7831 struct perf_event_context *ctx = __info; 7832 struct perf_event *event, *tmp; 7833 7834 perf_pmu_rotate_stop(ctx->pmu); 7835 7836 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7837 __perf_remove_from_context(event); 7838 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7839 __perf_remove_from_context(event); 7840 } 7841 7842 static void perf_event_exit_cpu_context(int cpu) 7843 { 7844 struct perf_event_context *ctx; 7845 struct pmu *pmu; 7846 int idx; 7847 7848 idx = srcu_read_lock(&pmus_srcu); 7849 list_for_each_entry_rcu(pmu, &pmus, entry) { 7850 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7851 7852 mutex_lock(&ctx->mutex); 7853 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7854 mutex_unlock(&ctx->mutex); 7855 } 7856 srcu_read_unlock(&pmus_srcu, idx); 7857 } 7858 7859 static void perf_event_exit_cpu(int cpu) 7860 { 7861 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7862 7863 mutex_lock(&swhash->hlist_mutex); 7864 swevent_hlist_release(swhash); 7865 mutex_unlock(&swhash->hlist_mutex); 7866 7867 perf_event_exit_cpu_context(cpu); 7868 } 7869 #else 7870 static inline void perf_event_exit_cpu(int cpu) { } 7871 #endif 7872 7873 static int 7874 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7875 { 7876 int cpu; 7877 7878 for_each_online_cpu(cpu) 7879 perf_event_exit_cpu(cpu); 7880 7881 return NOTIFY_OK; 7882 } 7883 7884 /* 7885 * Run the perf reboot notifier at the very last possible moment so that 7886 * the generic watchdog code runs as long as possible. 7887 */ 7888 static struct notifier_block perf_reboot_notifier = { 7889 .notifier_call = perf_reboot, 7890 .priority = INT_MIN, 7891 }; 7892 7893 static int 7894 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7895 { 7896 unsigned int cpu = (long)hcpu; 7897 7898 switch (action & ~CPU_TASKS_FROZEN) { 7899 7900 case CPU_UP_PREPARE: 7901 case CPU_DOWN_FAILED: 7902 perf_event_init_cpu(cpu); 7903 break; 7904 7905 case CPU_UP_CANCELED: 7906 case CPU_DOWN_PREPARE: 7907 perf_event_exit_cpu(cpu); 7908 break; 7909 default: 7910 break; 7911 } 7912 7913 return NOTIFY_OK; 7914 } 7915 7916 void __init perf_event_init(void) 7917 { 7918 int ret; 7919 7920 idr_init(&pmu_idr); 7921 7922 perf_event_init_all_cpus(); 7923 init_srcu_struct(&pmus_srcu); 7924 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7925 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7926 perf_pmu_register(&perf_task_clock, NULL, -1); 7927 perf_tp_register(); 7928 perf_cpu_notifier(perf_cpu_notify); 7929 register_reboot_notifier(&perf_reboot_notifier); 7930 7931 ret = init_hw_breakpoint(); 7932 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7933 7934 /* do not patch jump label more than once per second */ 7935 jump_label_rate_limit(&perf_sched_events, HZ); 7936 7937 /* 7938 * Build time assertion that we keep the data_head at the intended 7939 * location. IOW, validation we got the __reserved[] size right. 7940 */ 7941 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7942 != 1024); 7943 } 7944 7945 static int __init perf_event_sysfs_init(void) 7946 { 7947 struct pmu *pmu; 7948 int ret; 7949 7950 mutex_lock(&pmus_lock); 7951 7952 ret = bus_register(&pmu_bus); 7953 if (ret) 7954 goto unlock; 7955 7956 list_for_each_entry(pmu, &pmus, entry) { 7957 if (!pmu->name || pmu->type < 0) 7958 continue; 7959 7960 ret = pmu_dev_alloc(pmu); 7961 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7962 } 7963 pmu_bus_running = 1; 7964 ret = 0; 7965 7966 unlock: 7967 mutex_unlock(&pmus_lock); 7968 7969 return ret; 7970 } 7971 device_initcall(perf_event_sysfs_init); 7972 7973 #ifdef CONFIG_CGROUP_PERF 7974 static struct cgroup_subsys_state * 7975 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 7976 { 7977 struct perf_cgroup *jc; 7978 7979 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7980 if (!jc) 7981 return ERR_PTR(-ENOMEM); 7982 7983 jc->info = alloc_percpu(struct perf_cgroup_info); 7984 if (!jc->info) { 7985 kfree(jc); 7986 return ERR_PTR(-ENOMEM); 7987 } 7988 7989 return &jc->css; 7990 } 7991 7992 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 7993 { 7994 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 7995 7996 free_percpu(jc->info); 7997 kfree(jc); 7998 } 7999 8000 static int __perf_cgroup_move(void *info) 8001 { 8002 struct task_struct *task = info; 8003 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 8004 return 0; 8005 } 8006 8007 static void perf_cgroup_attach(struct cgroup_subsys_state *css, 8008 struct cgroup_taskset *tset) 8009 { 8010 struct task_struct *task; 8011 8012 cgroup_taskset_for_each(task, css, tset) 8013 task_function_call(task, __perf_cgroup_move, task); 8014 } 8015 8016 static void perf_cgroup_exit(struct cgroup_subsys_state *css, 8017 struct cgroup_subsys_state *old_css, 8018 struct task_struct *task) 8019 { 8020 /* 8021 * cgroup_exit() is called in the copy_process() failure path. 8022 * Ignore this case since the task hasn't ran yet, this avoids 8023 * trying to poke a half freed task state from generic code. 8024 */ 8025 if (!(task->flags & PF_EXITING)) 8026 return; 8027 8028 task_function_call(task, __perf_cgroup_move, task); 8029 } 8030 8031 struct cgroup_subsys perf_subsys = { 8032 .name = "perf_event", 8033 .subsys_id = perf_subsys_id, 8034 .css_alloc = perf_cgroup_css_alloc, 8035 .css_free = perf_cgroup_css_free, 8036 .exit = perf_cgroup_exit, 8037 .attach = perf_cgroup_attach, 8038 }; 8039 #endif /* CONFIG_CGROUP_PERF */ 8040