1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/hugetlb.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 #include <linux/min_heap.h> 54 #include <linux/highmem.h> 55 #include <linux/pgtable.h> 56 #include <linux/buildid.h> 57 #include <linux/task_work.h> 58 59 #include "internal.h" 60 61 #include <asm/irq_regs.h> 62 63 typedef int (*remote_function_f)(void *); 64 65 struct remote_function_call { 66 struct task_struct *p; 67 remote_function_f func; 68 void *info; 69 int ret; 70 }; 71 72 static void remote_function(void *data) 73 { 74 struct remote_function_call *tfc = data; 75 struct task_struct *p = tfc->p; 76 77 if (p) { 78 /* -EAGAIN */ 79 if (task_cpu(p) != smp_processor_id()) 80 return; 81 82 /* 83 * Now that we're on right CPU with IRQs disabled, we can test 84 * if we hit the right task without races. 85 */ 86 87 tfc->ret = -ESRCH; /* No such (running) process */ 88 if (p != current) 89 return; 90 } 91 92 tfc->ret = tfc->func(tfc->info); 93 } 94 95 /** 96 * task_function_call - call a function on the cpu on which a task runs 97 * @p: the task to evaluate 98 * @func: the function to be called 99 * @info: the function call argument 100 * 101 * Calls the function @func when the task is currently running. This might 102 * be on the current CPU, which just calls the function directly. This will 103 * retry due to any failures in smp_call_function_single(), such as if the 104 * task_cpu() goes offline concurrently. 105 * 106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running 107 */ 108 static int 109 task_function_call(struct task_struct *p, remote_function_f func, void *info) 110 { 111 struct remote_function_call data = { 112 .p = p, 113 .func = func, 114 .info = info, 115 .ret = -EAGAIN, 116 }; 117 int ret; 118 119 for (;;) { 120 ret = smp_call_function_single(task_cpu(p), remote_function, 121 &data, 1); 122 if (!ret) 123 ret = data.ret; 124 125 if (ret != -EAGAIN) 126 break; 127 128 cond_resched(); 129 } 130 131 return ret; 132 } 133 134 /** 135 * cpu_function_call - call a function on the cpu 136 * @cpu: target cpu to queue this function 137 * @func: the function to be called 138 * @info: the function call argument 139 * 140 * Calls the function @func on the remote cpu. 141 * 142 * returns: @func return value or -ENXIO when the cpu is offline 143 */ 144 static int cpu_function_call(int cpu, remote_function_f func, void *info) 145 { 146 struct remote_function_call data = { 147 .p = NULL, 148 .func = func, 149 .info = info, 150 .ret = -ENXIO, /* No such CPU */ 151 }; 152 153 smp_call_function_single(cpu, remote_function, &data, 1); 154 155 return data.ret; 156 } 157 158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 159 struct perf_event_context *ctx) 160 { 161 raw_spin_lock(&cpuctx->ctx.lock); 162 if (ctx) 163 raw_spin_lock(&ctx->lock); 164 } 165 166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 167 struct perf_event_context *ctx) 168 { 169 if (ctx) 170 raw_spin_unlock(&ctx->lock); 171 raw_spin_unlock(&cpuctx->ctx.lock); 172 } 173 174 #define TASK_TOMBSTONE ((void *)-1L) 175 176 static bool is_kernel_event(struct perf_event *event) 177 { 178 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 179 } 180 181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); 182 183 struct perf_event_context *perf_cpu_task_ctx(void) 184 { 185 lockdep_assert_irqs_disabled(); 186 return this_cpu_ptr(&perf_cpu_context)->task_ctx; 187 } 188 189 /* 190 * On task ctx scheduling... 191 * 192 * When !ctx->nr_events a task context will not be scheduled. This means 193 * we can disable the scheduler hooks (for performance) without leaving 194 * pending task ctx state. 195 * 196 * This however results in two special cases: 197 * 198 * - removing the last event from a task ctx; this is relatively straight 199 * forward and is done in __perf_remove_from_context. 200 * 201 * - adding the first event to a task ctx; this is tricky because we cannot 202 * rely on ctx->is_active and therefore cannot use event_function_call(). 203 * See perf_install_in_context(). 204 * 205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 206 */ 207 208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 209 struct perf_event_context *, void *); 210 211 struct event_function_struct { 212 struct perf_event *event; 213 event_f func; 214 void *data; 215 }; 216 217 static int event_function(void *info) 218 { 219 struct event_function_struct *efs = info; 220 struct perf_event *event = efs->event; 221 struct perf_event_context *ctx = event->ctx; 222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 223 struct perf_event_context *task_ctx = cpuctx->task_ctx; 224 int ret = 0; 225 226 lockdep_assert_irqs_disabled(); 227 228 perf_ctx_lock(cpuctx, task_ctx); 229 /* 230 * Since we do the IPI call without holding ctx->lock things can have 231 * changed, double check we hit the task we set out to hit. 232 */ 233 if (ctx->task) { 234 if (ctx->task != current) { 235 ret = -ESRCH; 236 goto unlock; 237 } 238 239 /* 240 * We only use event_function_call() on established contexts, 241 * and event_function() is only ever called when active (or 242 * rather, we'll have bailed in task_function_call() or the 243 * above ctx->task != current test), therefore we must have 244 * ctx->is_active here. 245 */ 246 WARN_ON_ONCE(!ctx->is_active); 247 /* 248 * And since we have ctx->is_active, cpuctx->task_ctx must 249 * match. 250 */ 251 WARN_ON_ONCE(task_ctx != ctx); 252 } else { 253 WARN_ON_ONCE(&cpuctx->ctx != ctx); 254 } 255 256 efs->func(event, cpuctx, ctx, efs->data); 257 unlock: 258 perf_ctx_unlock(cpuctx, task_ctx); 259 260 return ret; 261 } 262 263 static void event_function_call(struct perf_event *event, event_f func, void *data) 264 { 265 struct perf_event_context *ctx = event->ctx; 266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 267 struct perf_cpu_context *cpuctx; 268 struct event_function_struct efs = { 269 .event = event, 270 .func = func, 271 .data = data, 272 }; 273 274 if (!event->parent) { 275 /* 276 * If this is a !child event, we must hold ctx::mutex to 277 * stabilize the event->ctx relation. See 278 * perf_event_ctx_lock(). 279 */ 280 lockdep_assert_held(&ctx->mutex); 281 } 282 283 if (!task) { 284 cpu_function_call(event->cpu, event_function, &efs); 285 return; 286 } 287 288 if (task == TASK_TOMBSTONE) 289 return; 290 291 again: 292 if (!task_function_call(task, event_function, &efs)) 293 return; 294 295 local_irq_disable(); 296 cpuctx = this_cpu_ptr(&perf_cpu_context); 297 perf_ctx_lock(cpuctx, ctx); 298 /* 299 * Reload the task pointer, it might have been changed by 300 * a concurrent perf_event_context_sched_out(). 301 */ 302 task = ctx->task; 303 if (task == TASK_TOMBSTONE) 304 goto unlock; 305 if (ctx->is_active) { 306 perf_ctx_unlock(cpuctx, ctx); 307 local_irq_enable(); 308 goto again; 309 } 310 func(event, NULL, ctx, data); 311 unlock: 312 perf_ctx_unlock(cpuctx, ctx); 313 local_irq_enable(); 314 } 315 316 /* 317 * Similar to event_function_call() + event_function(), but hard assumes IRQs 318 * are already disabled and we're on the right CPU. 319 */ 320 static void event_function_local(struct perf_event *event, event_f func, void *data) 321 { 322 struct perf_event_context *ctx = event->ctx; 323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 324 struct task_struct *task = READ_ONCE(ctx->task); 325 struct perf_event_context *task_ctx = NULL; 326 327 lockdep_assert_irqs_disabled(); 328 329 if (task) { 330 if (task == TASK_TOMBSTONE) 331 return; 332 333 task_ctx = ctx; 334 } 335 336 perf_ctx_lock(cpuctx, task_ctx); 337 338 task = ctx->task; 339 if (task == TASK_TOMBSTONE) 340 goto unlock; 341 342 if (task) { 343 /* 344 * We must be either inactive or active and the right task, 345 * otherwise we're screwed, since we cannot IPI to somewhere 346 * else. 347 */ 348 if (ctx->is_active) { 349 if (WARN_ON_ONCE(task != current)) 350 goto unlock; 351 352 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 353 goto unlock; 354 } 355 } else { 356 WARN_ON_ONCE(&cpuctx->ctx != ctx); 357 } 358 359 func(event, cpuctx, ctx, data); 360 unlock: 361 perf_ctx_unlock(cpuctx, task_ctx); 362 } 363 364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 365 PERF_FLAG_FD_OUTPUT |\ 366 PERF_FLAG_PID_CGROUP |\ 367 PERF_FLAG_FD_CLOEXEC) 368 369 /* 370 * branch priv levels that need permission checks 371 */ 372 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 373 (PERF_SAMPLE_BRANCH_KERNEL |\ 374 PERF_SAMPLE_BRANCH_HV) 375 376 enum event_type_t { 377 EVENT_FLEXIBLE = 0x1, 378 EVENT_PINNED = 0x2, 379 EVENT_TIME = 0x4, 380 /* see ctx_resched() for details */ 381 EVENT_CPU = 0x8, 382 EVENT_CGROUP = 0x10, 383 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 384 }; 385 386 /* 387 * perf_sched_events : >0 events exist 388 */ 389 390 static void perf_sched_delayed(struct work_struct *work); 391 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 393 static DEFINE_MUTEX(perf_sched_mutex); 394 static atomic_t perf_sched_count; 395 396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 397 398 static atomic_t nr_mmap_events __read_mostly; 399 static atomic_t nr_comm_events __read_mostly; 400 static atomic_t nr_namespaces_events __read_mostly; 401 static atomic_t nr_task_events __read_mostly; 402 static atomic_t nr_freq_events __read_mostly; 403 static atomic_t nr_switch_events __read_mostly; 404 static atomic_t nr_ksymbol_events __read_mostly; 405 static atomic_t nr_bpf_events __read_mostly; 406 static atomic_t nr_cgroup_events __read_mostly; 407 static atomic_t nr_text_poke_events __read_mostly; 408 static atomic_t nr_build_id_events __read_mostly; 409 410 static LIST_HEAD(pmus); 411 static DEFINE_MUTEX(pmus_lock); 412 static struct srcu_struct pmus_srcu; 413 static cpumask_var_t perf_online_mask; 414 static struct kmem_cache *perf_event_cache; 415 416 /* 417 * perf event paranoia level: 418 * -1 - not paranoid at all 419 * 0 - disallow raw tracepoint access for unpriv 420 * 1 - disallow cpu events for unpriv 421 * 2 - disallow kernel profiling for unpriv 422 */ 423 int sysctl_perf_event_paranoid __read_mostly = 2; 424 425 /* Minimum for 512 kiB + 1 user control page */ 426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 427 428 /* 429 * max perf event sample rate 430 */ 431 #define DEFAULT_MAX_SAMPLE_RATE 100000 432 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 433 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 434 435 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 436 437 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 438 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 439 440 static int perf_sample_allowed_ns __read_mostly = 441 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 442 443 static void update_perf_cpu_limits(void) 444 { 445 u64 tmp = perf_sample_period_ns; 446 447 tmp *= sysctl_perf_cpu_time_max_percent; 448 tmp = div_u64(tmp, 100); 449 if (!tmp) 450 tmp = 1; 451 452 WRITE_ONCE(perf_sample_allowed_ns, tmp); 453 } 454 455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc); 456 457 int perf_proc_update_handler(struct ctl_table *table, int write, 458 void *buffer, size_t *lenp, loff_t *ppos) 459 { 460 int ret; 461 int perf_cpu = sysctl_perf_cpu_time_max_percent; 462 /* 463 * If throttling is disabled don't allow the write: 464 */ 465 if (write && (perf_cpu == 100 || perf_cpu == 0)) 466 return -EINVAL; 467 468 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 469 if (ret || !write) 470 return ret; 471 472 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 473 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 474 update_perf_cpu_limits(); 475 476 return 0; 477 } 478 479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 480 481 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 482 void *buffer, size_t *lenp, loff_t *ppos) 483 { 484 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 485 486 if (ret || !write) 487 return ret; 488 489 if (sysctl_perf_cpu_time_max_percent == 100 || 490 sysctl_perf_cpu_time_max_percent == 0) { 491 printk(KERN_WARNING 492 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 493 WRITE_ONCE(perf_sample_allowed_ns, 0); 494 } else { 495 update_perf_cpu_limits(); 496 } 497 498 return 0; 499 } 500 501 /* 502 * perf samples are done in some very critical code paths (NMIs). 503 * If they take too much CPU time, the system can lock up and not 504 * get any real work done. This will drop the sample rate when 505 * we detect that events are taking too long. 506 */ 507 #define NR_ACCUMULATED_SAMPLES 128 508 static DEFINE_PER_CPU(u64, running_sample_length); 509 510 static u64 __report_avg; 511 static u64 __report_allowed; 512 513 static void perf_duration_warn(struct irq_work *w) 514 { 515 printk_ratelimited(KERN_INFO 516 "perf: interrupt took too long (%lld > %lld), lowering " 517 "kernel.perf_event_max_sample_rate to %d\n", 518 __report_avg, __report_allowed, 519 sysctl_perf_event_sample_rate); 520 } 521 522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 523 524 void perf_sample_event_took(u64 sample_len_ns) 525 { 526 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 527 u64 running_len; 528 u64 avg_len; 529 u32 max; 530 531 if (max_len == 0) 532 return; 533 534 /* Decay the counter by 1 average sample. */ 535 running_len = __this_cpu_read(running_sample_length); 536 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 537 running_len += sample_len_ns; 538 __this_cpu_write(running_sample_length, running_len); 539 540 /* 541 * Note: this will be biased artifically low until we have 542 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 543 * from having to maintain a count. 544 */ 545 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 546 if (avg_len <= max_len) 547 return; 548 549 __report_avg = avg_len; 550 __report_allowed = max_len; 551 552 /* 553 * Compute a throttle threshold 25% below the current duration. 554 */ 555 avg_len += avg_len / 4; 556 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 557 if (avg_len < max) 558 max /= (u32)avg_len; 559 else 560 max = 1; 561 562 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 563 WRITE_ONCE(max_samples_per_tick, max); 564 565 sysctl_perf_event_sample_rate = max * HZ; 566 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 567 568 if (!irq_work_queue(&perf_duration_work)) { 569 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 570 "kernel.perf_event_max_sample_rate to %d\n", 571 __report_avg, __report_allowed, 572 sysctl_perf_event_sample_rate); 573 } 574 } 575 576 static atomic64_t perf_event_id; 577 578 static void update_context_time(struct perf_event_context *ctx); 579 static u64 perf_event_time(struct perf_event *event); 580 581 void __weak perf_event_print_debug(void) { } 582 583 static inline u64 perf_clock(void) 584 { 585 return local_clock(); 586 } 587 588 static inline u64 perf_event_clock(struct perf_event *event) 589 { 590 return event->clock(); 591 } 592 593 /* 594 * State based event timekeeping... 595 * 596 * The basic idea is to use event->state to determine which (if any) time 597 * fields to increment with the current delta. This means we only need to 598 * update timestamps when we change state or when they are explicitly requested 599 * (read). 600 * 601 * Event groups make things a little more complicated, but not terribly so. The 602 * rules for a group are that if the group leader is OFF the entire group is 603 * OFF, irrespecive of what the group member states are. This results in 604 * __perf_effective_state(). 605 * 606 * A futher ramification is that when a group leader flips between OFF and 607 * !OFF, we need to update all group member times. 608 * 609 * 610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 611 * need to make sure the relevant context time is updated before we try and 612 * update our timestamps. 613 */ 614 615 static __always_inline enum perf_event_state 616 __perf_effective_state(struct perf_event *event) 617 { 618 struct perf_event *leader = event->group_leader; 619 620 if (leader->state <= PERF_EVENT_STATE_OFF) 621 return leader->state; 622 623 return event->state; 624 } 625 626 static __always_inline void 627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 628 { 629 enum perf_event_state state = __perf_effective_state(event); 630 u64 delta = now - event->tstamp; 631 632 *enabled = event->total_time_enabled; 633 if (state >= PERF_EVENT_STATE_INACTIVE) 634 *enabled += delta; 635 636 *running = event->total_time_running; 637 if (state >= PERF_EVENT_STATE_ACTIVE) 638 *running += delta; 639 } 640 641 static void perf_event_update_time(struct perf_event *event) 642 { 643 u64 now = perf_event_time(event); 644 645 __perf_update_times(event, now, &event->total_time_enabled, 646 &event->total_time_running); 647 event->tstamp = now; 648 } 649 650 static void perf_event_update_sibling_time(struct perf_event *leader) 651 { 652 struct perf_event *sibling; 653 654 for_each_sibling_event(sibling, leader) 655 perf_event_update_time(sibling); 656 } 657 658 static void 659 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 660 { 661 if (event->state == state) 662 return; 663 664 perf_event_update_time(event); 665 /* 666 * If a group leader gets enabled/disabled all its siblings 667 * are affected too. 668 */ 669 if ((event->state < 0) ^ (state < 0)) 670 perf_event_update_sibling_time(event); 671 672 WRITE_ONCE(event->state, state); 673 } 674 675 /* 676 * UP store-release, load-acquire 677 */ 678 679 #define __store_release(ptr, val) \ 680 do { \ 681 barrier(); \ 682 WRITE_ONCE(*(ptr), (val)); \ 683 } while (0) 684 685 #define __load_acquire(ptr) \ 686 ({ \ 687 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \ 688 barrier(); \ 689 ___p; \ 690 }) 691 692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup) 693 { 694 struct perf_event_pmu_context *pmu_ctx; 695 696 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 697 if (cgroup && !pmu_ctx->nr_cgroups) 698 continue; 699 perf_pmu_disable(pmu_ctx->pmu); 700 } 701 } 702 703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup) 704 { 705 struct perf_event_pmu_context *pmu_ctx; 706 707 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 708 if (cgroup && !pmu_ctx->nr_cgroups) 709 continue; 710 perf_pmu_enable(pmu_ctx->pmu); 711 } 712 } 713 714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type); 715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type); 716 717 #ifdef CONFIG_CGROUP_PERF 718 719 static inline bool 720 perf_cgroup_match(struct perf_event *event) 721 { 722 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 723 724 /* @event doesn't care about cgroup */ 725 if (!event->cgrp) 726 return true; 727 728 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 729 if (!cpuctx->cgrp) 730 return false; 731 732 /* 733 * Cgroup scoping is recursive. An event enabled for a cgroup is 734 * also enabled for all its descendant cgroups. If @cpuctx's 735 * cgroup is a descendant of @event's (the test covers identity 736 * case), it's a match. 737 */ 738 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 739 event->cgrp->css.cgroup); 740 } 741 742 static inline void perf_detach_cgroup(struct perf_event *event) 743 { 744 css_put(&event->cgrp->css); 745 event->cgrp = NULL; 746 } 747 748 static inline int is_cgroup_event(struct perf_event *event) 749 { 750 return event->cgrp != NULL; 751 } 752 753 static inline u64 perf_cgroup_event_time(struct perf_event *event) 754 { 755 struct perf_cgroup_info *t; 756 757 t = per_cpu_ptr(event->cgrp->info, event->cpu); 758 return t->time; 759 } 760 761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 762 { 763 struct perf_cgroup_info *t; 764 765 t = per_cpu_ptr(event->cgrp->info, event->cpu); 766 if (!__load_acquire(&t->active)) 767 return t->time; 768 now += READ_ONCE(t->timeoffset); 769 return now; 770 } 771 772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv) 773 { 774 if (adv) 775 info->time += now - info->timestamp; 776 info->timestamp = now; 777 /* 778 * see update_context_time() 779 */ 780 WRITE_ONCE(info->timeoffset, info->time - info->timestamp); 781 } 782 783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final) 784 { 785 struct perf_cgroup *cgrp = cpuctx->cgrp; 786 struct cgroup_subsys_state *css; 787 struct perf_cgroup_info *info; 788 789 if (cgrp) { 790 u64 now = perf_clock(); 791 792 for (css = &cgrp->css; css; css = css->parent) { 793 cgrp = container_of(css, struct perf_cgroup, css); 794 info = this_cpu_ptr(cgrp->info); 795 796 __update_cgrp_time(info, now, true); 797 if (final) 798 __store_release(&info->active, 0); 799 } 800 } 801 } 802 803 static inline void update_cgrp_time_from_event(struct perf_event *event) 804 { 805 struct perf_cgroup_info *info; 806 807 /* 808 * ensure we access cgroup data only when needed and 809 * when we know the cgroup is pinned (css_get) 810 */ 811 if (!is_cgroup_event(event)) 812 return; 813 814 info = this_cpu_ptr(event->cgrp->info); 815 /* 816 * Do not update time when cgroup is not active 817 */ 818 if (info->active) 819 __update_cgrp_time(info, perf_clock(), true); 820 } 821 822 static inline void 823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 824 { 825 struct perf_event_context *ctx = &cpuctx->ctx; 826 struct perf_cgroup *cgrp = cpuctx->cgrp; 827 struct perf_cgroup_info *info; 828 struct cgroup_subsys_state *css; 829 830 /* 831 * ctx->lock held by caller 832 * ensure we do not access cgroup data 833 * unless we have the cgroup pinned (css_get) 834 */ 835 if (!cgrp) 836 return; 837 838 WARN_ON_ONCE(!ctx->nr_cgroups); 839 840 for (css = &cgrp->css; css; css = css->parent) { 841 cgrp = container_of(css, struct perf_cgroup, css); 842 info = this_cpu_ptr(cgrp->info); 843 __update_cgrp_time(info, ctx->timestamp, false); 844 __store_release(&info->active, 1); 845 } 846 } 847 848 /* 849 * reschedule events based on the cgroup constraint of task. 850 */ 851 static void perf_cgroup_switch(struct task_struct *task) 852 { 853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 854 struct perf_cgroup *cgrp; 855 856 /* 857 * cpuctx->cgrp is set when the first cgroup event enabled, 858 * and is cleared when the last cgroup event disabled. 859 */ 860 if (READ_ONCE(cpuctx->cgrp) == NULL) 861 return; 862 863 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 864 865 cgrp = perf_cgroup_from_task(task, NULL); 866 if (READ_ONCE(cpuctx->cgrp) == cgrp) 867 return; 868 869 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 870 perf_ctx_disable(&cpuctx->ctx, true); 871 872 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 873 /* 874 * must not be done before ctxswout due 875 * to update_cgrp_time_from_cpuctx() in 876 * ctx_sched_out() 877 */ 878 cpuctx->cgrp = cgrp; 879 /* 880 * set cgrp before ctxsw in to allow 881 * perf_cgroup_set_timestamp() in ctx_sched_in() 882 * to not have to pass task around 883 */ 884 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP); 885 886 perf_ctx_enable(&cpuctx->ctx, true); 887 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 888 } 889 890 static int perf_cgroup_ensure_storage(struct perf_event *event, 891 struct cgroup_subsys_state *css) 892 { 893 struct perf_cpu_context *cpuctx; 894 struct perf_event **storage; 895 int cpu, heap_size, ret = 0; 896 897 /* 898 * Allow storage to have sufficent space for an iterator for each 899 * possibly nested cgroup plus an iterator for events with no cgroup. 900 */ 901 for (heap_size = 1; css; css = css->parent) 902 heap_size++; 903 904 for_each_possible_cpu(cpu) { 905 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 906 if (heap_size <= cpuctx->heap_size) 907 continue; 908 909 storage = kmalloc_node(heap_size * sizeof(struct perf_event *), 910 GFP_KERNEL, cpu_to_node(cpu)); 911 if (!storage) { 912 ret = -ENOMEM; 913 break; 914 } 915 916 raw_spin_lock_irq(&cpuctx->ctx.lock); 917 if (cpuctx->heap_size < heap_size) { 918 swap(cpuctx->heap, storage); 919 if (storage == cpuctx->heap_default) 920 storage = NULL; 921 cpuctx->heap_size = heap_size; 922 } 923 raw_spin_unlock_irq(&cpuctx->ctx.lock); 924 925 kfree(storage); 926 } 927 928 return ret; 929 } 930 931 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 932 struct perf_event_attr *attr, 933 struct perf_event *group_leader) 934 { 935 struct perf_cgroup *cgrp; 936 struct cgroup_subsys_state *css; 937 struct fd f = fdget(fd); 938 int ret = 0; 939 940 if (!f.file) 941 return -EBADF; 942 943 css = css_tryget_online_from_dir(f.file->f_path.dentry, 944 &perf_event_cgrp_subsys); 945 if (IS_ERR(css)) { 946 ret = PTR_ERR(css); 947 goto out; 948 } 949 950 ret = perf_cgroup_ensure_storage(event, css); 951 if (ret) 952 goto out; 953 954 cgrp = container_of(css, struct perf_cgroup, css); 955 event->cgrp = cgrp; 956 957 /* 958 * all events in a group must monitor 959 * the same cgroup because a task belongs 960 * to only one perf cgroup at a time 961 */ 962 if (group_leader && group_leader->cgrp != cgrp) { 963 perf_detach_cgroup(event); 964 ret = -EINVAL; 965 } 966 out: 967 fdput(f); 968 return ret; 969 } 970 971 static inline void 972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 973 { 974 struct perf_cpu_context *cpuctx; 975 976 if (!is_cgroup_event(event)) 977 return; 978 979 event->pmu_ctx->nr_cgroups++; 980 981 /* 982 * Because cgroup events are always per-cpu events, 983 * @ctx == &cpuctx->ctx. 984 */ 985 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 986 987 if (ctx->nr_cgroups++) 988 return; 989 990 cpuctx->cgrp = perf_cgroup_from_task(current, ctx); 991 } 992 993 static inline void 994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 995 { 996 struct perf_cpu_context *cpuctx; 997 998 if (!is_cgroup_event(event)) 999 return; 1000 1001 event->pmu_ctx->nr_cgroups--; 1002 1003 /* 1004 * Because cgroup events are always per-cpu events, 1005 * @ctx == &cpuctx->ctx. 1006 */ 1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx); 1008 1009 if (--ctx->nr_cgroups) 1010 return; 1011 1012 cpuctx->cgrp = NULL; 1013 } 1014 1015 #else /* !CONFIG_CGROUP_PERF */ 1016 1017 static inline bool 1018 perf_cgroup_match(struct perf_event *event) 1019 { 1020 return true; 1021 } 1022 1023 static inline void perf_detach_cgroup(struct perf_event *event) 1024 {} 1025 1026 static inline int is_cgroup_event(struct perf_event *event) 1027 { 1028 return 0; 1029 } 1030 1031 static inline void update_cgrp_time_from_event(struct perf_event *event) 1032 { 1033 } 1034 1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, 1036 bool final) 1037 { 1038 } 1039 1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1041 struct perf_event_attr *attr, 1042 struct perf_event *group_leader) 1043 { 1044 return -EINVAL; 1045 } 1046 1047 static inline void 1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx) 1049 { 1050 } 1051 1052 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1053 { 1054 return 0; 1055 } 1056 1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now) 1058 { 1059 return 0; 1060 } 1061 1062 static inline void 1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx) 1064 { 1065 } 1066 1067 static inline void 1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx) 1069 { 1070 } 1071 1072 static void perf_cgroup_switch(struct task_struct *task) 1073 { 1074 } 1075 #endif 1076 1077 /* 1078 * set default to be dependent on timer tick just 1079 * like original code 1080 */ 1081 #define PERF_CPU_HRTIMER (1000 / HZ) 1082 /* 1083 * function must be called with interrupts disabled 1084 */ 1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1086 { 1087 struct perf_cpu_pmu_context *cpc; 1088 bool rotations; 1089 1090 lockdep_assert_irqs_disabled(); 1091 1092 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer); 1093 rotations = perf_rotate_context(cpc); 1094 1095 raw_spin_lock(&cpc->hrtimer_lock); 1096 if (rotations) 1097 hrtimer_forward_now(hr, cpc->hrtimer_interval); 1098 else 1099 cpc->hrtimer_active = 0; 1100 raw_spin_unlock(&cpc->hrtimer_lock); 1101 1102 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1103 } 1104 1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu) 1106 { 1107 struct hrtimer *timer = &cpc->hrtimer; 1108 struct pmu *pmu = cpc->epc.pmu; 1109 u64 interval; 1110 1111 /* 1112 * check default is sane, if not set then force to 1113 * default interval (1/tick) 1114 */ 1115 interval = pmu->hrtimer_interval_ms; 1116 if (interval < 1) 1117 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1118 1119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1120 1121 raw_spin_lock_init(&cpc->hrtimer_lock); 1122 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD); 1123 timer->function = perf_mux_hrtimer_handler; 1124 } 1125 1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc) 1127 { 1128 struct hrtimer *timer = &cpc->hrtimer; 1129 unsigned long flags; 1130 1131 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags); 1132 if (!cpc->hrtimer_active) { 1133 cpc->hrtimer_active = 1; 1134 hrtimer_forward_now(timer, cpc->hrtimer_interval); 1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD); 1136 } 1137 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags); 1138 1139 return 0; 1140 } 1141 1142 static int perf_mux_hrtimer_restart_ipi(void *arg) 1143 { 1144 return perf_mux_hrtimer_restart(arg); 1145 } 1146 1147 void perf_pmu_disable(struct pmu *pmu) 1148 { 1149 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1150 if (!(*count)++) 1151 pmu->pmu_disable(pmu); 1152 } 1153 1154 void perf_pmu_enable(struct pmu *pmu) 1155 { 1156 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1157 if (!--(*count)) 1158 pmu->pmu_enable(pmu); 1159 } 1160 1161 static void perf_assert_pmu_disabled(struct pmu *pmu) 1162 { 1163 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0); 1164 } 1165 1166 static void get_ctx(struct perf_event_context *ctx) 1167 { 1168 refcount_inc(&ctx->refcount); 1169 } 1170 1171 static void *alloc_task_ctx_data(struct pmu *pmu) 1172 { 1173 if (pmu->task_ctx_cache) 1174 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL); 1175 1176 return NULL; 1177 } 1178 1179 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data) 1180 { 1181 if (pmu->task_ctx_cache && task_ctx_data) 1182 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data); 1183 } 1184 1185 static void free_ctx(struct rcu_head *head) 1186 { 1187 struct perf_event_context *ctx; 1188 1189 ctx = container_of(head, struct perf_event_context, rcu_head); 1190 kfree(ctx); 1191 } 1192 1193 static void put_ctx(struct perf_event_context *ctx) 1194 { 1195 if (refcount_dec_and_test(&ctx->refcount)) { 1196 if (ctx->parent_ctx) 1197 put_ctx(ctx->parent_ctx); 1198 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1199 put_task_struct(ctx->task); 1200 call_rcu(&ctx->rcu_head, free_ctx); 1201 } 1202 } 1203 1204 /* 1205 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1206 * perf_pmu_migrate_context() we need some magic. 1207 * 1208 * Those places that change perf_event::ctx will hold both 1209 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1210 * 1211 * Lock ordering is by mutex address. There are two other sites where 1212 * perf_event_context::mutex nests and those are: 1213 * 1214 * - perf_event_exit_task_context() [ child , 0 ] 1215 * perf_event_exit_event() 1216 * put_event() [ parent, 1 ] 1217 * 1218 * - perf_event_init_context() [ parent, 0 ] 1219 * inherit_task_group() 1220 * inherit_group() 1221 * inherit_event() 1222 * perf_event_alloc() 1223 * perf_init_event() 1224 * perf_try_init_event() [ child , 1 ] 1225 * 1226 * While it appears there is an obvious deadlock here -- the parent and child 1227 * nesting levels are inverted between the two. This is in fact safe because 1228 * life-time rules separate them. That is an exiting task cannot fork, and a 1229 * spawning task cannot (yet) exit. 1230 * 1231 * But remember that these are parent<->child context relations, and 1232 * migration does not affect children, therefore these two orderings should not 1233 * interact. 1234 * 1235 * The change in perf_event::ctx does not affect children (as claimed above) 1236 * because the sys_perf_event_open() case will install a new event and break 1237 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1238 * concerned with cpuctx and that doesn't have children. 1239 * 1240 * The places that change perf_event::ctx will issue: 1241 * 1242 * perf_remove_from_context(); 1243 * synchronize_rcu(); 1244 * perf_install_in_context(); 1245 * 1246 * to affect the change. The remove_from_context() + synchronize_rcu() should 1247 * quiesce the event, after which we can install it in the new location. This 1248 * means that only external vectors (perf_fops, prctl) can perturb the event 1249 * while in transit. Therefore all such accessors should also acquire 1250 * perf_event_context::mutex to serialize against this. 1251 * 1252 * However; because event->ctx can change while we're waiting to acquire 1253 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1254 * function. 1255 * 1256 * Lock order: 1257 * exec_update_lock 1258 * task_struct::perf_event_mutex 1259 * perf_event_context::mutex 1260 * perf_event::child_mutex; 1261 * perf_event_context::lock 1262 * mmap_lock 1263 * perf_event::mmap_mutex 1264 * perf_buffer::aux_mutex 1265 * perf_addr_filters_head::lock 1266 * 1267 * cpu_hotplug_lock 1268 * pmus_lock 1269 * cpuctx->mutex / perf_event_context::mutex 1270 */ 1271 static struct perf_event_context * 1272 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1273 { 1274 struct perf_event_context *ctx; 1275 1276 again: 1277 rcu_read_lock(); 1278 ctx = READ_ONCE(event->ctx); 1279 if (!refcount_inc_not_zero(&ctx->refcount)) { 1280 rcu_read_unlock(); 1281 goto again; 1282 } 1283 rcu_read_unlock(); 1284 1285 mutex_lock_nested(&ctx->mutex, nesting); 1286 if (event->ctx != ctx) { 1287 mutex_unlock(&ctx->mutex); 1288 put_ctx(ctx); 1289 goto again; 1290 } 1291 1292 return ctx; 1293 } 1294 1295 static inline struct perf_event_context * 1296 perf_event_ctx_lock(struct perf_event *event) 1297 { 1298 return perf_event_ctx_lock_nested(event, 0); 1299 } 1300 1301 static void perf_event_ctx_unlock(struct perf_event *event, 1302 struct perf_event_context *ctx) 1303 { 1304 mutex_unlock(&ctx->mutex); 1305 put_ctx(ctx); 1306 } 1307 1308 /* 1309 * This must be done under the ctx->lock, such as to serialize against 1310 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1311 * calling scheduler related locks and ctx->lock nests inside those. 1312 */ 1313 static __must_check struct perf_event_context * 1314 unclone_ctx(struct perf_event_context *ctx) 1315 { 1316 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1317 1318 lockdep_assert_held(&ctx->lock); 1319 1320 if (parent_ctx) 1321 ctx->parent_ctx = NULL; 1322 ctx->generation++; 1323 1324 return parent_ctx; 1325 } 1326 1327 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1328 enum pid_type type) 1329 { 1330 u32 nr; 1331 /* 1332 * only top level events have the pid namespace they were created in 1333 */ 1334 if (event->parent) 1335 event = event->parent; 1336 1337 nr = __task_pid_nr_ns(p, type, event->ns); 1338 /* avoid -1 if it is idle thread or runs in another ns */ 1339 if (!nr && !pid_alive(p)) 1340 nr = -1; 1341 return nr; 1342 } 1343 1344 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1345 { 1346 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1347 } 1348 1349 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1350 { 1351 return perf_event_pid_type(event, p, PIDTYPE_PID); 1352 } 1353 1354 /* 1355 * If we inherit events we want to return the parent event id 1356 * to userspace. 1357 */ 1358 static u64 primary_event_id(struct perf_event *event) 1359 { 1360 u64 id = event->id; 1361 1362 if (event->parent) 1363 id = event->parent->id; 1364 1365 return id; 1366 } 1367 1368 /* 1369 * Get the perf_event_context for a task and lock it. 1370 * 1371 * This has to cope with the fact that until it is locked, 1372 * the context could get moved to another task. 1373 */ 1374 static struct perf_event_context * 1375 perf_lock_task_context(struct task_struct *task, unsigned long *flags) 1376 { 1377 struct perf_event_context *ctx; 1378 1379 retry: 1380 /* 1381 * One of the few rules of preemptible RCU is that one cannot do 1382 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1383 * part of the read side critical section was irqs-enabled -- see 1384 * rcu_read_unlock_special(). 1385 * 1386 * Since ctx->lock nests under rq->lock we must ensure the entire read 1387 * side critical section has interrupts disabled. 1388 */ 1389 local_irq_save(*flags); 1390 rcu_read_lock(); 1391 ctx = rcu_dereference(task->perf_event_ctxp); 1392 if (ctx) { 1393 /* 1394 * If this context is a clone of another, it might 1395 * get swapped for another underneath us by 1396 * perf_event_task_sched_out, though the 1397 * rcu_read_lock() protects us from any context 1398 * getting freed. Lock the context and check if it 1399 * got swapped before we could get the lock, and retry 1400 * if so. If we locked the right context, then it 1401 * can't get swapped on us any more. 1402 */ 1403 raw_spin_lock(&ctx->lock); 1404 if (ctx != rcu_dereference(task->perf_event_ctxp)) { 1405 raw_spin_unlock(&ctx->lock); 1406 rcu_read_unlock(); 1407 local_irq_restore(*flags); 1408 goto retry; 1409 } 1410 1411 if (ctx->task == TASK_TOMBSTONE || 1412 !refcount_inc_not_zero(&ctx->refcount)) { 1413 raw_spin_unlock(&ctx->lock); 1414 ctx = NULL; 1415 } else { 1416 WARN_ON_ONCE(ctx->task != task); 1417 } 1418 } 1419 rcu_read_unlock(); 1420 if (!ctx) 1421 local_irq_restore(*flags); 1422 return ctx; 1423 } 1424 1425 /* 1426 * Get the context for a task and increment its pin_count so it 1427 * can't get swapped to another task. This also increments its 1428 * reference count so that the context can't get freed. 1429 */ 1430 static struct perf_event_context * 1431 perf_pin_task_context(struct task_struct *task) 1432 { 1433 struct perf_event_context *ctx; 1434 unsigned long flags; 1435 1436 ctx = perf_lock_task_context(task, &flags); 1437 if (ctx) { 1438 ++ctx->pin_count; 1439 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1440 } 1441 return ctx; 1442 } 1443 1444 static void perf_unpin_context(struct perf_event_context *ctx) 1445 { 1446 unsigned long flags; 1447 1448 raw_spin_lock_irqsave(&ctx->lock, flags); 1449 --ctx->pin_count; 1450 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1451 } 1452 1453 /* 1454 * Update the record of the current time in a context. 1455 */ 1456 static void __update_context_time(struct perf_event_context *ctx, bool adv) 1457 { 1458 u64 now = perf_clock(); 1459 1460 lockdep_assert_held(&ctx->lock); 1461 1462 if (adv) 1463 ctx->time += now - ctx->timestamp; 1464 ctx->timestamp = now; 1465 1466 /* 1467 * The above: time' = time + (now - timestamp), can be re-arranged 1468 * into: time` = now + (time - timestamp), which gives a single value 1469 * offset to compute future time without locks on. 1470 * 1471 * See perf_event_time_now(), which can be used from NMI context where 1472 * it's (obviously) not possible to acquire ctx->lock in order to read 1473 * both the above values in a consistent manner. 1474 */ 1475 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp); 1476 } 1477 1478 static void update_context_time(struct perf_event_context *ctx) 1479 { 1480 __update_context_time(ctx, true); 1481 } 1482 1483 static u64 perf_event_time(struct perf_event *event) 1484 { 1485 struct perf_event_context *ctx = event->ctx; 1486 1487 if (unlikely(!ctx)) 1488 return 0; 1489 1490 if (is_cgroup_event(event)) 1491 return perf_cgroup_event_time(event); 1492 1493 return ctx->time; 1494 } 1495 1496 static u64 perf_event_time_now(struct perf_event *event, u64 now) 1497 { 1498 struct perf_event_context *ctx = event->ctx; 1499 1500 if (unlikely(!ctx)) 1501 return 0; 1502 1503 if (is_cgroup_event(event)) 1504 return perf_cgroup_event_time_now(event, now); 1505 1506 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME)) 1507 return ctx->time; 1508 1509 now += READ_ONCE(ctx->timeoffset); 1510 return now; 1511 } 1512 1513 static enum event_type_t get_event_type(struct perf_event *event) 1514 { 1515 struct perf_event_context *ctx = event->ctx; 1516 enum event_type_t event_type; 1517 1518 lockdep_assert_held(&ctx->lock); 1519 1520 /* 1521 * It's 'group type', really, because if our group leader is 1522 * pinned, so are we. 1523 */ 1524 if (event->group_leader != event) 1525 event = event->group_leader; 1526 1527 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1528 if (!ctx->task) 1529 event_type |= EVENT_CPU; 1530 1531 return event_type; 1532 } 1533 1534 /* 1535 * Helper function to initialize event group nodes. 1536 */ 1537 static void init_event_group(struct perf_event *event) 1538 { 1539 RB_CLEAR_NODE(&event->group_node); 1540 event->group_index = 0; 1541 } 1542 1543 /* 1544 * Extract pinned or flexible groups from the context 1545 * based on event attrs bits. 1546 */ 1547 static struct perf_event_groups * 1548 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1549 { 1550 if (event->attr.pinned) 1551 return &ctx->pinned_groups; 1552 else 1553 return &ctx->flexible_groups; 1554 } 1555 1556 /* 1557 * Helper function to initializes perf_event_group trees. 1558 */ 1559 static void perf_event_groups_init(struct perf_event_groups *groups) 1560 { 1561 groups->tree = RB_ROOT; 1562 groups->index = 0; 1563 } 1564 1565 static inline struct cgroup *event_cgroup(const struct perf_event *event) 1566 { 1567 struct cgroup *cgroup = NULL; 1568 1569 #ifdef CONFIG_CGROUP_PERF 1570 if (event->cgrp) 1571 cgroup = event->cgrp->css.cgroup; 1572 #endif 1573 1574 return cgroup; 1575 } 1576 1577 /* 1578 * Compare function for event groups; 1579 * 1580 * Implements complex key that first sorts by CPU and then by virtual index 1581 * which provides ordering when rotating groups for the same CPU. 1582 */ 1583 static __always_inline int 1584 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu, 1585 const struct cgroup *left_cgroup, const u64 left_group_index, 1586 const struct perf_event *right) 1587 { 1588 if (left_cpu < right->cpu) 1589 return -1; 1590 if (left_cpu > right->cpu) 1591 return 1; 1592 1593 if (left_pmu) { 1594 if (left_pmu < right->pmu_ctx->pmu) 1595 return -1; 1596 if (left_pmu > right->pmu_ctx->pmu) 1597 return 1; 1598 } 1599 1600 #ifdef CONFIG_CGROUP_PERF 1601 { 1602 const struct cgroup *right_cgroup = event_cgroup(right); 1603 1604 if (left_cgroup != right_cgroup) { 1605 if (!left_cgroup) { 1606 /* 1607 * Left has no cgroup but right does, no 1608 * cgroups come first. 1609 */ 1610 return -1; 1611 } 1612 if (!right_cgroup) { 1613 /* 1614 * Right has no cgroup but left does, no 1615 * cgroups come first. 1616 */ 1617 return 1; 1618 } 1619 /* Two dissimilar cgroups, order by id. */ 1620 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup)) 1621 return -1; 1622 1623 return 1; 1624 } 1625 } 1626 #endif 1627 1628 if (left_group_index < right->group_index) 1629 return -1; 1630 if (left_group_index > right->group_index) 1631 return 1; 1632 1633 return 0; 1634 } 1635 1636 #define __node_2_pe(node) \ 1637 rb_entry((node), struct perf_event, group_node) 1638 1639 static inline bool __group_less(struct rb_node *a, const struct rb_node *b) 1640 { 1641 struct perf_event *e = __node_2_pe(a); 1642 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e), 1643 e->group_index, __node_2_pe(b)) < 0; 1644 } 1645 1646 struct __group_key { 1647 int cpu; 1648 struct pmu *pmu; 1649 struct cgroup *cgroup; 1650 }; 1651 1652 static inline int __group_cmp(const void *key, const struct rb_node *node) 1653 { 1654 const struct __group_key *a = key; 1655 const struct perf_event *b = __node_2_pe(node); 1656 1657 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */ 1658 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b); 1659 } 1660 1661 static inline int 1662 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node) 1663 { 1664 const struct __group_key *a = key; 1665 const struct perf_event *b = __node_2_pe(node); 1666 1667 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */ 1668 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b), 1669 b->group_index, b); 1670 } 1671 1672 /* 1673 * Insert @event into @groups' tree; using 1674 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index} 1675 * as key. This places it last inside the {cpu,pmu,cgroup} subtree. 1676 */ 1677 static void 1678 perf_event_groups_insert(struct perf_event_groups *groups, 1679 struct perf_event *event) 1680 { 1681 event->group_index = ++groups->index; 1682 1683 rb_add(&event->group_node, &groups->tree, __group_less); 1684 } 1685 1686 /* 1687 * Helper function to insert event into the pinned or flexible groups. 1688 */ 1689 static void 1690 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1691 { 1692 struct perf_event_groups *groups; 1693 1694 groups = get_event_groups(event, ctx); 1695 perf_event_groups_insert(groups, event); 1696 } 1697 1698 /* 1699 * Delete a group from a tree. 1700 */ 1701 static void 1702 perf_event_groups_delete(struct perf_event_groups *groups, 1703 struct perf_event *event) 1704 { 1705 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1706 RB_EMPTY_ROOT(&groups->tree)); 1707 1708 rb_erase(&event->group_node, &groups->tree); 1709 init_event_group(event); 1710 } 1711 1712 /* 1713 * Helper function to delete event from its groups. 1714 */ 1715 static void 1716 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1717 { 1718 struct perf_event_groups *groups; 1719 1720 groups = get_event_groups(event, ctx); 1721 perf_event_groups_delete(groups, event); 1722 } 1723 1724 /* 1725 * Get the leftmost event in the {cpu,pmu,cgroup} subtree. 1726 */ 1727 static struct perf_event * 1728 perf_event_groups_first(struct perf_event_groups *groups, int cpu, 1729 struct pmu *pmu, struct cgroup *cgrp) 1730 { 1731 struct __group_key key = { 1732 .cpu = cpu, 1733 .pmu = pmu, 1734 .cgroup = cgrp, 1735 }; 1736 struct rb_node *node; 1737 1738 node = rb_find_first(&key, &groups->tree, __group_cmp); 1739 if (node) 1740 return __node_2_pe(node); 1741 1742 return NULL; 1743 } 1744 1745 static struct perf_event * 1746 perf_event_groups_next(struct perf_event *event, struct pmu *pmu) 1747 { 1748 struct __group_key key = { 1749 .cpu = event->cpu, 1750 .pmu = pmu, 1751 .cgroup = event_cgroup(event), 1752 }; 1753 struct rb_node *next; 1754 1755 next = rb_next_match(&key, &event->group_node, __group_cmp); 1756 if (next) 1757 return __node_2_pe(next); 1758 1759 return NULL; 1760 } 1761 1762 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \ 1763 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \ 1764 event; event = perf_event_groups_next(event, pmu)) 1765 1766 /* 1767 * Iterate through the whole groups tree. 1768 */ 1769 #define perf_event_groups_for_each(event, groups) \ 1770 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1771 typeof(*event), group_node); event; \ 1772 event = rb_entry_safe(rb_next(&event->group_node), \ 1773 typeof(*event), group_node)) 1774 1775 /* 1776 * Add an event from the lists for its context. 1777 * Must be called with ctx->mutex and ctx->lock held. 1778 */ 1779 static void 1780 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1781 { 1782 lockdep_assert_held(&ctx->lock); 1783 1784 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1785 event->attach_state |= PERF_ATTACH_CONTEXT; 1786 1787 event->tstamp = perf_event_time(event); 1788 1789 /* 1790 * If we're a stand alone event or group leader, we go to the context 1791 * list, group events are kept attached to the group so that 1792 * perf_group_detach can, at all times, locate all siblings. 1793 */ 1794 if (event->group_leader == event) { 1795 event->group_caps = event->event_caps; 1796 add_event_to_groups(event, ctx); 1797 } 1798 1799 list_add_rcu(&event->event_entry, &ctx->event_list); 1800 ctx->nr_events++; 1801 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 1802 ctx->nr_user++; 1803 if (event->attr.inherit_stat) 1804 ctx->nr_stat++; 1805 1806 if (event->state > PERF_EVENT_STATE_OFF) 1807 perf_cgroup_event_enable(event, ctx); 1808 1809 ctx->generation++; 1810 event->pmu_ctx->nr_events++; 1811 } 1812 1813 /* 1814 * Initialize event state based on the perf_event_attr::disabled. 1815 */ 1816 static inline void perf_event__state_init(struct perf_event *event) 1817 { 1818 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1819 PERF_EVENT_STATE_INACTIVE; 1820 } 1821 1822 static int __perf_event_read_size(u64 read_format, int nr_siblings) 1823 { 1824 int entry = sizeof(u64); /* value */ 1825 int size = 0; 1826 int nr = 1; 1827 1828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1829 size += sizeof(u64); 1830 1831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1832 size += sizeof(u64); 1833 1834 if (read_format & PERF_FORMAT_ID) 1835 entry += sizeof(u64); 1836 1837 if (read_format & PERF_FORMAT_LOST) 1838 entry += sizeof(u64); 1839 1840 if (read_format & PERF_FORMAT_GROUP) { 1841 nr += nr_siblings; 1842 size += sizeof(u64); 1843 } 1844 1845 /* 1846 * Since perf_event_validate_size() limits this to 16k and inhibits 1847 * adding more siblings, this will never overflow. 1848 */ 1849 return size + nr * entry; 1850 } 1851 1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1853 { 1854 struct perf_sample_data *data; 1855 u16 size = 0; 1856 1857 if (sample_type & PERF_SAMPLE_IP) 1858 size += sizeof(data->ip); 1859 1860 if (sample_type & PERF_SAMPLE_ADDR) 1861 size += sizeof(data->addr); 1862 1863 if (sample_type & PERF_SAMPLE_PERIOD) 1864 size += sizeof(data->period); 1865 1866 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 1867 size += sizeof(data->weight.full); 1868 1869 if (sample_type & PERF_SAMPLE_READ) 1870 size += event->read_size; 1871 1872 if (sample_type & PERF_SAMPLE_DATA_SRC) 1873 size += sizeof(data->data_src.val); 1874 1875 if (sample_type & PERF_SAMPLE_TRANSACTION) 1876 size += sizeof(data->txn); 1877 1878 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1879 size += sizeof(data->phys_addr); 1880 1881 if (sample_type & PERF_SAMPLE_CGROUP) 1882 size += sizeof(data->cgroup); 1883 1884 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 1885 size += sizeof(data->data_page_size); 1886 1887 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 1888 size += sizeof(data->code_page_size); 1889 1890 event->header_size = size; 1891 } 1892 1893 /* 1894 * Called at perf_event creation and when events are attached/detached from a 1895 * group. 1896 */ 1897 static void perf_event__header_size(struct perf_event *event) 1898 { 1899 event->read_size = 1900 __perf_event_read_size(event->attr.read_format, 1901 event->group_leader->nr_siblings); 1902 __perf_event_header_size(event, event->attr.sample_type); 1903 } 1904 1905 static void perf_event__id_header_size(struct perf_event *event) 1906 { 1907 struct perf_sample_data *data; 1908 u64 sample_type = event->attr.sample_type; 1909 u16 size = 0; 1910 1911 if (sample_type & PERF_SAMPLE_TID) 1912 size += sizeof(data->tid_entry); 1913 1914 if (sample_type & PERF_SAMPLE_TIME) 1915 size += sizeof(data->time); 1916 1917 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1918 size += sizeof(data->id); 1919 1920 if (sample_type & PERF_SAMPLE_ID) 1921 size += sizeof(data->id); 1922 1923 if (sample_type & PERF_SAMPLE_STREAM_ID) 1924 size += sizeof(data->stream_id); 1925 1926 if (sample_type & PERF_SAMPLE_CPU) 1927 size += sizeof(data->cpu_entry); 1928 1929 event->id_header_size = size; 1930 } 1931 1932 /* 1933 * Check that adding an event to the group does not result in anybody 1934 * overflowing the 64k event limit imposed by the output buffer. 1935 * 1936 * Specifically, check that the read_size for the event does not exceed 16k, 1937 * read_size being the one term that grows with groups size. Since read_size 1938 * depends on per-event read_format, also (re)check the existing events. 1939 * 1940 * This leaves 48k for the constant size fields and things like callchains, 1941 * branch stacks and register sets. 1942 */ 1943 static bool perf_event_validate_size(struct perf_event *event) 1944 { 1945 struct perf_event *sibling, *group_leader = event->group_leader; 1946 1947 if (__perf_event_read_size(event->attr.read_format, 1948 group_leader->nr_siblings + 1) > 16*1024) 1949 return false; 1950 1951 if (__perf_event_read_size(group_leader->attr.read_format, 1952 group_leader->nr_siblings + 1) > 16*1024) 1953 return false; 1954 1955 /* 1956 * When creating a new group leader, group_leader->ctx is initialized 1957 * after the size has been validated, but we cannot safely use 1958 * for_each_sibling_event() until group_leader->ctx is set. A new group 1959 * leader cannot have any siblings yet, so we can safely skip checking 1960 * the non-existent siblings. 1961 */ 1962 if (event == group_leader) 1963 return true; 1964 1965 for_each_sibling_event(sibling, group_leader) { 1966 if (__perf_event_read_size(sibling->attr.read_format, 1967 group_leader->nr_siblings + 1) > 16*1024) 1968 return false; 1969 } 1970 1971 return true; 1972 } 1973 1974 static void perf_group_attach(struct perf_event *event) 1975 { 1976 struct perf_event *group_leader = event->group_leader, *pos; 1977 1978 lockdep_assert_held(&event->ctx->lock); 1979 1980 /* 1981 * We can have double attach due to group movement (move_group) in 1982 * perf_event_open(). 1983 */ 1984 if (event->attach_state & PERF_ATTACH_GROUP) 1985 return; 1986 1987 event->attach_state |= PERF_ATTACH_GROUP; 1988 1989 if (group_leader == event) 1990 return; 1991 1992 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1993 1994 group_leader->group_caps &= event->event_caps; 1995 1996 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1997 group_leader->nr_siblings++; 1998 group_leader->group_generation++; 1999 2000 perf_event__header_size(group_leader); 2001 2002 for_each_sibling_event(pos, group_leader) 2003 perf_event__header_size(pos); 2004 } 2005 2006 /* 2007 * Remove an event from the lists for its context. 2008 * Must be called with ctx->mutex and ctx->lock held. 2009 */ 2010 static void 2011 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 2012 { 2013 WARN_ON_ONCE(event->ctx != ctx); 2014 lockdep_assert_held(&ctx->lock); 2015 2016 /* 2017 * We can have double detach due to exit/hot-unplug + close. 2018 */ 2019 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 2020 return; 2021 2022 event->attach_state &= ~PERF_ATTACH_CONTEXT; 2023 2024 ctx->nr_events--; 2025 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT) 2026 ctx->nr_user--; 2027 if (event->attr.inherit_stat) 2028 ctx->nr_stat--; 2029 2030 list_del_rcu(&event->event_entry); 2031 2032 if (event->group_leader == event) 2033 del_event_from_groups(event, ctx); 2034 2035 /* 2036 * If event was in error state, then keep it 2037 * that way, otherwise bogus counts will be 2038 * returned on read(). The only way to get out 2039 * of error state is by explicit re-enabling 2040 * of the event 2041 */ 2042 if (event->state > PERF_EVENT_STATE_OFF) { 2043 perf_cgroup_event_disable(event, ctx); 2044 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2045 } 2046 2047 ctx->generation++; 2048 event->pmu_ctx->nr_events--; 2049 } 2050 2051 static int 2052 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event) 2053 { 2054 if (!has_aux(aux_event)) 2055 return 0; 2056 2057 if (!event->pmu->aux_output_match) 2058 return 0; 2059 2060 return event->pmu->aux_output_match(aux_event); 2061 } 2062 2063 static void put_event(struct perf_event *event); 2064 static void event_sched_out(struct perf_event *event, 2065 struct perf_event_context *ctx); 2066 2067 static void perf_put_aux_event(struct perf_event *event) 2068 { 2069 struct perf_event_context *ctx = event->ctx; 2070 struct perf_event *iter; 2071 2072 /* 2073 * If event uses aux_event tear down the link 2074 */ 2075 if (event->aux_event) { 2076 iter = event->aux_event; 2077 event->aux_event = NULL; 2078 put_event(iter); 2079 return; 2080 } 2081 2082 /* 2083 * If the event is an aux_event, tear down all links to 2084 * it from other events. 2085 */ 2086 for_each_sibling_event(iter, event->group_leader) { 2087 if (iter->aux_event != event) 2088 continue; 2089 2090 iter->aux_event = NULL; 2091 put_event(event); 2092 2093 /* 2094 * If it's ACTIVE, schedule it out and put it into ERROR 2095 * state so that we don't try to schedule it again. Note 2096 * that perf_event_enable() will clear the ERROR status. 2097 */ 2098 event_sched_out(iter, ctx); 2099 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2100 } 2101 } 2102 2103 static bool perf_need_aux_event(struct perf_event *event) 2104 { 2105 return !!event->attr.aux_output || !!event->attr.aux_sample_size; 2106 } 2107 2108 static int perf_get_aux_event(struct perf_event *event, 2109 struct perf_event *group_leader) 2110 { 2111 /* 2112 * Our group leader must be an aux event if we want to be 2113 * an aux_output. This way, the aux event will precede its 2114 * aux_output events in the group, and therefore will always 2115 * schedule first. 2116 */ 2117 if (!group_leader) 2118 return 0; 2119 2120 /* 2121 * aux_output and aux_sample_size are mutually exclusive. 2122 */ 2123 if (event->attr.aux_output && event->attr.aux_sample_size) 2124 return 0; 2125 2126 if (event->attr.aux_output && 2127 !perf_aux_output_match(event, group_leader)) 2128 return 0; 2129 2130 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux) 2131 return 0; 2132 2133 if (!atomic_long_inc_not_zero(&group_leader->refcount)) 2134 return 0; 2135 2136 /* 2137 * Link aux_outputs to their aux event; this is undone in 2138 * perf_group_detach() by perf_put_aux_event(). When the 2139 * group in torn down, the aux_output events loose their 2140 * link to the aux_event and can't schedule any more. 2141 */ 2142 event->aux_event = group_leader; 2143 2144 return 1; 2145 } 2146 2147 static inline struct list_head *get_event_list(struct perf_event *event) 2148 { 2149 return event->attr.pinned ? &event->pmu_ctx->pinned_active : 2150 &event->pmu_ctx->flexible_active; 2151 } 2152 2153 /* 2154 * Events that have PERF_EV_CAP_SIBLING require being part of a group and 2155 * cannot exist on their own, schedule them out and move them into the ERROR 2156 * state. Also see _perf_event_enable(), it will not be able to recover 2157 * this ERROR state. 2158 */ 2159 static inline void perf_remove_sibling_event(struct perf_event *event) 2160 { 2161 event_sched_out(event, event->ctx); 2162 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 2163 } 2164 2165 static void perf_group_detach(struct perf_event *event) 2166 { 2167 struct perf_event *leader = event->group_leader; 2168 struct perf_event *sibling, *tmp; 2169 struct perf_event_context *ctx = event->ctx; 2170 2171 lockdep_assert_held(&ctx->lock); 2172 2173 /* 2174 * We can have double detach due to exit/hot-unplug + close. 2175 */ 2176 if (!(event->attach_state & PERF_ATTACH_GROUP)) 2177 return; 2178 2179 event->attach_state &= ~PERF_ATTACH_GROUP; 2180 2181 perf_put_aux_event(event); 2182 2183 /* 2184 * If this is a sibling, remove it from its group. 2185 */ 2186 if (leader != event) { 2187 list_del_init(&event->sibling_list); 2188 event->group_leader->nr_siblings--; 2189 event->group_leader->group_generation++; 2190 goto out; 2191 } 2192 2193 /* 2194 * If this was a group event with sibling events then 2195 * upgrade the siblings to singleton events by adding them 2196 * to whatever list we are on. 2197 */ 2198 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 2199 2200 if (sibling->event_caps & PERF_EV_CAP_SIBLING) 2201 perf_remove_sibling_event(sibling); 2202 2203 sibling->group_leader = sibling; 2204 list_del_init(&sibling->sibling_list); 2205 2206 /* Inherit group flags from the previous leader */ 2207 sibling->group_caps = event->group_caps; 2208 2209 if (sibling->attach_state & PERF_ATTACH_CONTEXT) { 2210 add_event_to_groups(sibling, event->ctx); 2211 2212 if (sibling->state == PERF_EVENT_STATE_ACTIVE) 2213 list_add_tail(&sibling->active_list, get_event_list(sibling)); 2214 } 2215 2216 WARN_ON_ONCE(sibling->ctx != event->ctx); 2217 } 2218 2219 out: 2220 for_each_sibling_event(tmp, leader) 2221 perf_event__header_size(tmp); 2222 2223 perf_event__header_size(leader); 2224 } 2225 2226 static void sync_child_event(struct perf_event *child_event); 2227 2228 static void perf_child_detach(struct perf_event *event) 2229 { 2230 struct perf_event *parent_event = event->parent; 2231 2232 if (!(event->attach_state & PERF_ATTACH_CHILD)) 2233 return; 2234 2235 event->attach_state &= ~PERF_ATTACH_CHILD; 2236 2237 if (WARN_ON_ONCE(!parent_event)) 2238 return; 2239 2240 lockdep_assert_held(&parent_event->child_mutex); 2241 2242 sync_child_event(event); 2243 list_del_init(&event->child_list); 2244 } 2245 2246 static bool is_orphaned_event(struct perf_event *event) 2247 { 2248 return event->state == PERF_EVENT_STATE_DEAD; 2249 } 2250 2251 static inline int 2252 event_filter_match(struct perf_event *event) 2253 { 2254 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 2255 perf_cgroup_match(event); 2256 } 2257 2258 static void 2259 event_sched_out(struct perf_event *event, struct perf_event_context *ctx) 2260 { 2261 struct perf_event_pmu_context *epc = event->pmu_ctx; 2262 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2263 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 2264 2265 // XXX cpc serialization, probably per-cpu IRQ disabled 2266 2267 WARN_ON_ONCE(event->ctx != ctx); 2268 lockdep_assert_held(&ctx->lock); 2269 2270 if (event->state != PERF_EVENT_STATE_ACTIVE) 2271 return; 2272 2273 /* 2274 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2275 * we can schedule events _OUT_ individually through things like 2276 * __perf_remove_from_context(). 2277 */ 2278 list_del_init(&event->active_list); 2279 2280 perf_pmu_disable(event->pmu); 2281 2282 event->pmu->del(event, 0); 2283 event->oncpu = -1; 2284 2285 if (event->pending_disable) { 2286 event->pending_disable = 0; 2287 perf_cgroup_event_disable(event, ctx); 2288 state = PERF_EVENT_STATE_OFF; 2289 } 2290 2291 if (event->pending_sigtrap) { 2292 event->pending_sigtrap = 0; 2293 if (state != PERF_EVENT_STATE_OFF && 2294 !event->pending_work && 2295 !task_work_add(current, &event->pending_task, TWA_RESUME)) { 2296 event->pending_work = 1; 2297 } else { 2298 local_dec(&event->ctx->nr_pending); 2299 } 2300 } 2301 2302 perf_event_set_state(event, state); 2303 2304 if (!is_software_event(event)) 2305 cpc->active_oncpu--; 2306 if (event->attr.freq && event->attr.sample_freq) 2307 ctx->nr_freq--; 2308 if (event->attr.exclusive || !cpc->active_oncpu) 2309 cpc->exclusive = 0; 2310 2311 perf_pmu_enable(event->pmu); 2312 } 2313 2314 static void 2315 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx) 2316 { 2317 struct perf_event *event; 2318 2319 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2320 return; 2321 2322 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu); 2323 2324 event_sched_out(group_event, ctx); 2325 2326 /* 2327 * Schedule out siblings (if any): 2328 */ 2329 for_each_sibling_event(event, group_event) 2330 event_sched_out(event, ctx); 2331 } 2332 2333 #define DETACH_GROUP 0x01UL 2334 #define DETACH_CHILD 0x02UL 2335 #define DETACH_DEAD 0x04UL 2336 2337 /* 2338 * Cross CPU call to remove a performance event 2339 * 2340 * We disable the event on the hardware level first. After that we 2341 * remove it from the context list. 2342 */ 2343 static void 2344 __perf_remove_from_context(struct perf_event *event, 2345 struct perf_cpu_context *cpuctx, 2346 struct perf_event_context *ctx, 2347 void *info) 2348 { 2349 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx; 2350 unsigned long flags = (unsigned long)info; 2351 2352 if (ctx->is_active & EVENT_TIME) { 2353 update_context_time(ctx); 2354 update_cgrp_time_from_cpuctx(cpuctx, false); 2355 } 2356 2357 /* 2358 * Ensure event_sched_out() switches to OFF, at the very least 2359 * this avoids raising perf_pending_task() at this time. 2360 */ 2361 if (flags & DETACH_DEAD) 2362 event->pending_disable = 1; 2363 event_sched_out(event, ctx); 2364 if (flags & DETACH_GROUP) 2365 perf_group_detach(event); 2366 if (flags & DETACH_CHILD) 2367 perf_child_detach(event); 2368 list_del_event(event, ctx); 2369 if (flags & DETACH_DEAD) 2370 event->state = PERF_EVENT_STATE_DEAD; 2371 2372 if (!pmu_ctx->nr_events) { 2373 pmu_ctx->rotate_necessary = 0; 2374 2375 if (ctx->task && ctx->is_active) { 2376 struct perf_cpu_pmu_context *cpc; 2377 2378 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 2379 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 2380 cpc->task_epc = NULL; 2381 } 2382 } 2383 2384 if (!ctx->nr_events && ctx->is_active) { 2385 if (ctx == &cpuctx->ctx) 2386 update_cgrp_time_from_cpuctx(cpuctx, true); 2387 2388 ctx->is_active = 0; 2389 if (ctx->task) { 2390 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2391 cpuctx->task_ctx = NULL; 2392 } 2393 } 2394 } 2395 2396 /* 2397 * Remove the event from a task's (or a CPU's) list of events. 2398 * 2399 * If event->ctx is a cloned context, callers must make sure that 2400 * every task struct that event->ctx->task could possibly point to 2401 * remains valid. This is OK when called from perf_release since 2402 * that only calls us on the top-level context, which can't be a clone. 2403 * When called from perf_event_exit_task, it's OK because the 2404 * context has been detached from its task. 2405 */ 2406 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2407 { 2408 struct perf_event_context *ctx = event->ctx; 2409 2410 lockdep_assert_held(&ctx->mutex); 2411 2412 /* 2413 * Because of perf_event_exit_task(), perf_remove_from_context() ought 2414 * to work in the face of TASK_TOMBSTONE, unlike every other 2415 * event_function_call() user. 2416 */ 2417 raw_spin_lock_irq(&ctx->lock); 2418 if (!ctx->is_active) { 2419 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context), 2420 ctx, (void *)flags); 2421 raw_spin_unlock_irq(&ctx->lock); 2422 return; 2423 } 2424 raw_spin_unlock_irq(&ctx->lock); 2425 2426 event_function_call(event, __perf_remove_from_context, (void *)flags); 2427 } 2428 2429 /* 2430 * Cross CPU call to disable a performance event 2431 */ 2432 static void __perf_event_disable(struct perf_event *event, 2433 struct perf_cpu_context *cpuctx, 2434 struct perf_event_context *ctx, 2435 void *info) 2436 { 2437 if (event->state < PERF_EVENT_STATE_INACTIVE) 2438 return; 2439 2440 if (ctx->is_active & EVENT_TIME) { 2441 update_context_time(ctx); 2442 update_cgrp_time_from_event(event); 2443 } 2444 2445 perf_pmu_disable(event->pmu_ctx->pmu); 2446 2447 if (event == event->group_leader) 2448 group_sched_out(event, ctx); 2449 else 2450 event_sched_out(event, ctx); 2451 2452 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2453 perf_cgroup_event_disable(event, ctx); 2454 2455 perf_pmu_enable(event->pmu_ctx->pmu); 2456 } 2457 2458 /* 2459 * Disable an event. 2460 * 2461 * If event->ctx is a cloned context, callers must make sure that 2462 * every task struct that event->ctx->task could possibly point to 2463 * remains valid. This condition is satisfied when called through 2464 * perf_event_for_each_child or perf_event_for_each because they 2465 * hold the top-level event's child_mutex, so any descendant that 2466 * goes to exit will block in perf_event_exit_event(). 2467 * 2468 * When called from perf_pending_irq it's OK because event->ctx 2469 * is the current context on this CPU and preemption is disabled, 2470 * hence we can't get into perf_event_task_sched_out for this context. 2471 */ 2472 static void _perf_event_disable(struct perf_event *event) 2473 { 2474 struct perf_event_context *ctx = event->ctx; 2475 2476 raw_spin_lock_irq(&ctx->lock); 2477 if (event->state <= PERF_EVENT_STATE_OFF) { 2478 raw_spin_unlock_irq(&ctx->lock); 2479 return; 2480 } 2481 raw_spin_unlock_irq(&ctx->lock); 2482 2483 event_function_call(event, __perf_event_disable, NULL); 2484 } 2485 2486 void perf_event_disable_local(struct perf_event *event) 2487 { 2488 event_function_local(event, __perf_event_disable, NULL); 2489 } 2490 2491 /* 2492 * Strictly speaking kernel users cannot create groups and therefore this 2493 * interface does not need the perf_event_ctx_lock() magic. 2494 */ 2495 void perf_event_disable(struct perf_event *event) 2496 { 2497 struct perf_event_context *ctx; 2498 2499 ctx = perf_event_ctx_lock(event); 2500 _perf_event_disable(event); 2501 perf_event_ctx_unlock(event, ctx); 2502 } 2503 EXPORT_SYMBOL_GPL(perf_event_disable); 2504 2505 void perf_event_disable_inatomic(struct perf_event *event) 2506 { 2507 event->pending_disable = 1; 2508 irq_work_queue(&event->pending_irq); 2509 } 2510 2511 #define MAX_INTERRUPTS (~0ULL) 2512 2513 static void perf_log_throttle(struct perf_event *event, int enable); 2514 static void perf_log_itrace_start(struct perf_event *event); 2515 2516 static int 2517 event_sched_in(struct perf_event *event, struct perf_event_context *ctx) 2518 { 2519 struct perf_event_pmu_context *epc = event->pmu_ctx; 2520 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2521 int ret = 0; 2522 2523 WARN_ON_ONCE(event->ctx != ctx); 2524 2525 lockdep_assert_held(&ctx->lock); 2526 2527 if (event->state <= PERF_EVENT_STATE_OFF) 2528 return 0; 2529 2530 WRITE_ONCE(event->oncpu, smp_processor_id()); 2531 /* 2532 * Order event::oncpu write to happen before the ACTIVE state is 2533 * visible. This allows perf_event_{stop,read}() to observe the correct 2534 * ->oncpu if it sees ACTIVE. 2535 */ 2536 smp_wmb(); 2537 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2538 2539 /* 2540 * Unthrottle events, since we scheduled we might have missed several 2541 * ticks already, also for a heavily scheduling task there is little 2542 * guarantee it'll get a tick in a timely manner. 2543 */ 2544 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2545 perf_log_throttle(event, 1); 2546 event->hw.interrupts = 0; 2547 } 2548 2549 perf_pmu_disable(event->pmu); 2550 2551 perf_log_itrace_start(event); 2552 2553 if (event->pmu->add(event, PERF_EF_START)) { 2554 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2555 event->oncpu = -1; 2556 ret = -EAGAIN; 2557 goto out; 2558 } 2559 2560 if (!is_software_event(event)) 2561 cpc->active_oncpu++; 2562 if (event->attr.freq && event->attr.sample_freq) 2563 ctx->nr_freq++; 2564 2565 if (event->attr.exclusive) 2566 cpc->exclusive = 1; 2567 2568 out: 2569 perf_pmu_enable(event->pmu); 2570 2571 return ret; 2572 } 2573 2574 static int 2575 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx) 2576 { 2577 struct perf_event *event, *partial_group = NULL; 2578 struct pmu *pmu = group_event->pmu_ctx->pmu; 2579 2580 if (group_event->state == PERF_EVENT_STATE_OFF) 2581 return 0; 2582 2583 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2584 2585 if (event_sched_in(group_event, ctx)) 2586 goto error; 2587 2588 /* 2589 * Schedule in siblings as one group (if any): 2590 */ 2591 for_each_sibling_event(event, group_event) { 2592 if (event_sched_in(event, ctx)) { 2593 partial_group = event; 2594 goto group_error; 2595 } 2596 } 2597 2598 if (!pmu->commit_txn(pmu)) 2599 return 0; 2600 2601 group_error: 2602 /* 2603 * Groups can be scheduled in as one unit only, so undo any 2604 * partial group before returning: 2605 * The events up to the failed event are scheduled out normally. 2606 */ 2607 for_each_sibling_event(event, group_event) { 2608 if (event == partial_group) 2609 break; 2610 2611 event_sched_out(event, ctx); 2612 } 2613 event_sched_out(group_event, ctx); 2614 2615 error: 2616 pmu->cancel_txn(pmu); 2617 return -EAGAIN; 2618 } 2619 2620 /* 2621 * Work out whether we can put this event group on the CPU now. 2622 */ 2623 static int group_can_go_on(struct perf_event *event, int can_add_hw) 2624 { 2625 struct perf_event_pmu_context *epc = event->pmu_ctx; 2626 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context); 2627 2628 /* 2629 * Groups consisting entirely of software events can always go on. 2630 */ 2631 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2632 return 1; 2633 /* 2634 * If an exclusive group is already on, no other hardware 2635 * events can go on. 2636 */ 2637 if (cpc->exclusive) 2638 return 0; 2639 /* 2640 * If this group is exclusive and there are already 2641 * events on the CPU, it can't go on. 2642 */ 2643 if (event->attr.exclusive && !list_empty(get_event_list(event))) 2644 return 0; 2645 /* 2646 * Otherwise, try to add it if all previous groups were able 2647 * to go on. 2648 */ 2649 return can_add_hw; 2650 } 2651 2652 static void add_event_to_ctx(struct perf_event *event, 2653 struct perf_event_context *ctx) 2654 { 2655 list_add_event(event, ctx); 2656 perf_group_attach(event); 2657 } 2658 2659 static void task_ctx_sched_out(struct perf_event_context *ctx, 2660 enum event_type_t event_type) 2661 { 2662 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2663 2664 if (!cpuctx->task_ctx) 2665 return; 2666 2667 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2668 return; 2669 2670 ctx_sched_out(ctx, event_type); 2671 } 2672 2673 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2674 struct perf_event_context *ctx) 2675 { 2676 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED); 2677 if (ctx) 2678 ctx_sched_in(ctx, EVENT_PINNED); 2679 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE); 2680 if (ctx) 2681 ctx_sched_in(ctx, EVENT_FLEXIBLE); 2682 } 2683 2684 /* 2685 * We want to maintain the following priority of scheduling: 2686 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2687 * - task pinned (EVENT_PINNED) 2688 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2689 * - task flexible (EVENT_FLEXIBLE). 2690 * 2691 * In order to avoid unscheduling and scheduling back in everything every 2692 * time an event is added, only do it for the groups of equal priority and 2693 * below. 2694 * 2695 * This can be called after a batch operation on task events, in which case 2696 * event_type is a bit mask of the types of events involved. For CPU events, 2697 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2698 */ 2699 /* 2700 * XXX: ctx_resched() reschedule entire perf_event_context while adding new 2701 * event to the context or enabling existing event in the context. We can 2702 * probably optimize it by rescheduling only affected pmu_ctx. 2703 */ 2704 static void ctx_resched(struct perf_cpu_context *cpuctx, 2705 struct perf_event_context *task_ctx, 2706 enum event_type_t event_type) 2707 { 2708 bool cpu_event = !!(event_type & EVENT_CPU); 2709 2710 /* 2711 * If pinned groups are involved, flexible groups also need to be 2712 * scheduled out. 2713 */ 2714 if (event_type & EVENT_PINNED) 2715 event_type |= EVENT_FLEXIBLE; 2716 2717 event_type &= EVENT_ALL; 2718 2719 perf_ctx_disable(&cpuctx->ctx, false); 2720 if (task_ctx) { 2721 perf_ctx_disable(task_ctx, false); 2722 task_ctx_sched_out(task_ctx, event_type); 2723 } 2724 2725 /* 2726 * Decide which cpu ctx groups to schedule out based on the types 2727 * of events that caused rescheduling: 2728 * - EVENT_CPU: schedule out corresponding groups; 2729 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2730 * - otherwise, do nothing more. 2731 */ 2732 if (cpu_event) 2733 ctx_sched_out(&cpuctx->ctx, event_type); 2734 else if (event_type & EVENT_PINNED) 2735 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 2736 2737 perf_event_sched_in(cpuctx, task_ctx); 2738 2739 perf_ctx_enable(&cpuctx->ctx, false); 2740 if (task_ctx) 2741 perf_ctx_enable(task_ctx, false); 2742 } 2743 2744 void perf_pmu_resched(struct pmu *pmu) 2745 { 2746 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2747 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2748 2749 perf_ctx_lock(cpuctx, task_ctx); 2750 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU); 2751 perf_ctx_unlock(cpuctx, task_ctx); 2752 } 2753 2754 /* 2755 * Cross CPU call to install and enable a performance event 2756 * 2757 * Very similar to remote_function() + event_function() but cannot assume that 2758 * things like ctx->is_active and cpuctx->task_ctx are set. 2759 */ 2760 static int __perf_install_in_context(void *info) 2761 { 2762 struct perf_event *event = info; 2763 struct perf_event_context *ctx = event->ctx; 2764 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 2765 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2766 bool reprogram = true; 2767 int ret = 0; 2768 2769 raw_spin_lock(&cpuctx->ctx.lock); 2770 if (ctx->task) { 2771 raw_spin_lock(&ctx->lock); 2772 task_ctx = ctx; 2773 2774 reprogram = (ctx->task == current); 2775 2776 /* 2777 * If the task is running, it must be running on this CPU, 2778 * otherwise we cannot reprogram things. 2779 * 2780 * If its not running, we don't care, ctx->lock will 2781 * serialize against it becoming runnable. 2782 */ 2783 if (task_curr(ctx->task) && !reprogram) { 2784 ret = -ESRCH; 2785 goto unlock; 2786 } 2787 2788 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2789 } else if (task_ctx) { 2790 raw_spin_lock(&task_ctx->lock); 2791 } 2792 2793 #ifdef CONFIG_CGROUP_PERF 2794 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) { 2795 /* 2796 * If the current cgroup doesn't match the event's 2797 * cgroup, we should not try to schedule it. 2798 */ 2799 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2800 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2801 event->cgrp->css.cgroup); 2802 } 2803 #endif 2804 2805 if (reprogram) { 2806 ctx_sched_out(ctx, EVENT_TIME); 2807 add_event_to_ctx(event, ctx); 2808 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2809 } else { 2810 add_event_to_ctx(event, ctx); 2811 } 2812 2813 unlock: 2814 perf_ctx_unlock(cpuctx, task_ctx); 2815 2816 return ret; 2817 } 2818 2819 static bool exclusive_event_installable(struct perf_event *event, 2820 struct perf_event_context *ctx); 2821 2822 /* 2823 * Attach a performance event to a context. 2824 * 2825 * Very similar to event_function_call, see comment there. 2826 */ 2827 static void 2828 perf_install_in_context(struct perf_event_context *ctx, 2829 struct perf_event *event, 2830 int cpu) 2831 { 2832 struct task_struct *task = READ_ONCE(ctx->task); 2833 2834 lockdep_assert_held(&ctx->mutex); 2835 2836 WARN_ON_ONCE(!exclusive_event_installable(event, ctx)); 2837 2838 if (event->cpu != -1) 2839 WARN_ON_ONCE(event->cpu != cpu); 2840 2841 /* 2842 * Ensures that if we can observe event->ctx, both the event and ctx 2843 * will be 'complete'. See perf_iterate_sb_cpu(). 2844 */ 2845 smp_store_release(&event->ctx, ctx); 2846 2847 /* 2848 * perf_event_attr::disabled events will not run and can be initialized 2849 * without IPI. Except when this is the first event for the context, in 2850 * that case we need the magic of the IPI to set ctx->is_active. 2851 * 2852 * The IOC_ENABLE that is sure to follow the creation of a disabled 2853 * event will issue the IPI and reprogram the hardware. 2854 */ 2855 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && 2856 ctx->nr_events && !is_cgroup_event(event)) { 2857 raw_spin_lock_irq(&ctx->lock); 2858 if (ctx->task == TASK_TOMBSTONE) { 2859 raw_spin_unlock_irq(&ctx->lock); 2860 return; 2861 } 2862 add_event_to_ctx(event, ctx); 2863 raw_spin_unlock_irq(&ctx->lock); 2864 return; 2865 } 2866 2867 if (!task) { 2868 cpu_function_call(cpu, __perf_install_in_context, event); 2869 return; 2870 } 2871 2872 /* 2873 * Should not happen, we validate the ctx is still alive before calling. 2874 */ 2875 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2876 return; 2877 2878 /* 2879 * Installing events is tricky because we cannot rely on ctx->is_active 2880 * to be set in case this is the nr_events 0 -> 1 transition. 2881 * 2882 * Instead we use task_curr(), which tells us if the task is running. 2883 * However, since we use task_curr() outside of rq::lock, we can race 2884 * against the actual state. This means the result can be wrong. 2885 * 2886 * If we get a false positive, we retry, this is harmless. 2887 * 2888 * If we get a false negative, things are complicated. If we are after 2889 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2890 * value must be correct. If we're before, it doesn't matter since 2891 * perf_event_context_sched_in() will program the counter. 2892 * 2893 * However, this hinges on the remote context switch having observed 2894 * our task->perf_event_ctxp[] store, such that it will in fact take 2895 * ctx::lock in perf_event_context_sched_in(). 2896 * 2897 * We do this by task_function_call(), if the IPI fails to hit the task 2898 * we know any future context switch of task must see the 2899 * perf_event_ctpx[] store. 2900 */ 2901 2902 /* 2903 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2904 * task_cpu() load, such that if the IPI then does not find the task 2905 * running, a future context switch of that task must observe the 2906 * store. 2907 */ 2908 smp_mb(); 2909 again: 2910 if (!task_function_call(task, __perf_install_in_context, event)) 2911 return; 2912 2913 raw_spin_lock_irq(&ctx->lock); 2914 task = ctx->task; 2915 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2916 /* 2917 * Cannot happen because we already checked above (which also 2918 * cannot happen), and we hold ctx->mutex, which serializes us 2919 * against perf_event_exit_task_context(). 2920 */ 2921 raw_spin_unlock_irq(&ctx->lock); 2922 return; 2923 } 2924 /* 2925 * If the task is not running, ctx->lock will avoid it becoming so, 2926 * thus we can safely install the event. 2927 */ 2928 if (task_curr(task)) { 2929 raw_spin_unlock_irq(&ctx->lock); 2930 goto again; 2931 } 2932 add_event_to_ctx(event, ctx); 2933 raw_spin_unlock_irq(&ctx->lock); 2934 } 2935 2936 /* 2937 * Cross CPU call to enable a performance event 2938 */ 2939 static void __perf_event_enable(struct perf_event *event, 2940 struct perf_cpu_context *cpuctx, 2941 struct perf_event_context *ctx, 2942 void *info) 2943 { 2944 struct perf_event *leader = event->group_leader; 2945 struct perf_event_context *task_ctx; 2946 2947 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2948 event->state <= PERF_EVENT_STATE_ERROR) 2949 return; 2950 2951 if (ctx->is_active) 2952 ctx_sched_out(ctx, EVENT_TIME); 2953 2954 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2955 perf_cgroup_event_enable(event, ctx); 2956 2957 if (!ctx->is_active) 2958 return; 2959 2960 if (!event_filter_match(event)) { 2961 ctx_sched_in(ctx, EVENT_TIME); 2962 return; 2963 } 2964 2965 /* 2966 * If the event is in a group and isn't the group leader, 2967 * then don't put it on unless the group is on. 2968 */ 2969 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2970 ctx_sched_in(ctx, EVENT_TIME); 2971 return; 2972 } 2973 2974 task_ctx = cpuctx->task_ctx; 2975 if (ctx->task) 2976 WARN_ON_ONCE(task_ctx != ctx); 2977 2978 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2979 } 2980 2981 /* 2982 * Enable an event. 2983 * 2984 * If event->ctx is a cloned context, callers must make sure that 2985 * every task struct that event->ctx->task could possibly point to 2986 * remains valid. This condition is satisfied when called through 2987 * perf_event_for_each_child or perf_event_for_each as described 2988 * for perf_event_disable. 2989 */ 2990 static void _perf_event_enable(struct perf_event *event) 2991 { 2992 struct perf_event_context *ctx = event->ctx; 2993 2994 raw_spin_lock_irq(&ctx->lock); 2995 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2996 event->state < PERF_EVENT_STATE_ERROR) { 2997 out: 2998 raw_spin_unlock_irq(&ctx->lock); 2999 return; 3000 } 3001 3002 /* 3003 * If the event is in error state, clear that first. 3004 * 3005 * That way, if we see the event in error state below, we know that it 3006 * has gone back into error state, as distinct from the task having 3007 * been scheduled away before the cross-call arrived. 3008 */ 3009 if (event->state == PERF_EVENT_STATE_ERROR) { 3010 /* 3011 * Detached SIBLING events cannot leave ERROR state. 3012 */ 3013 if (event->event_caps & PERF_EV_CAP_SIBLING && 3014 event->group_leader == event) 3015 goto out; 3016 3017 event->state = PERF_EVENT_STATE_OFF; 3018 } 3019 raw_spin_unlock_irq(&ctx->lock); 3020 3021 event_function_call(event, __perf_event_enable, NULL); 3022 } 3023 3024 /* 3025 * See perf_event_disable(); 3026 */ 3027 void perf_event_enable(struct perf_event *event) 3028 { 3029 struct perf_event_context *ctx; 3030 3031 ctx = perf_event_ctx_lock(event); 3032 _perf_event_enable(event); 3033 perf_event_ctx_unlock(event, ctx); 3034 } 3035 EXPORT_SYMBOL_GPL(perf_event_enable); 3036 3037 struct stop_event_data { 3038 struct perf_event *event; 3039 unsigned int restart; 3040 }; 3041 3042 static int __perf_event_stop(void *info) 3043 { 3044 struct stop_event_data *sd = info; 3045 struct perf_event *event = sd->event; 3046 3047 /* if it's already INACTIVE, do nothing */ 3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3049 return 0; 3050 3051 /* matches smp_wmb() in event_sched_in() */ 3052 smp_rmb(); 3053 3054 /* 3055 * There is a window with interrupts enabled before we get here, 3056 * so we need to check again lest we try to stop another CPU's event. 3057 */ 3058 if (READ_ONCE(event->oncpu) != smp_processor_id()) 3059 return -EAGAIN; 3060 3061 event->pmu->stop(event, PERF_EF_UPDATE); 3062 3063 /* 3064 * May race with the actual stop (through perf_pmu_output_stop()), 3065 * but it is only used for events with AUX ring buffer, and such 3066 * events will refuse to restart because of rb::aux_mmap_count==0, 3067 * see comments in perf_aux_output_begin(). 3068 * 3069 * Since this is happening on an event-local CPU, no trace is lost 3070 * while restarting. 3071 */ 3072 if (sd->restart) 3073 event->pmu->start(event, 0); 3074 3075 return 0; 3076 } 3077 3078 static int perf_event_stop(struct perf_event *event, int restart) 3079 { 3080 struct stop_event_data sd = { 3081 .event = event, 3082 .restart = restart, 3083 }; 3084 int ret = 0; 3085 3086 do { 3087 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 3088 return 0; 3089 3090 /* matches smp_wmb() in event_sched_in() */ 3091 smp_rmb(); 3092 3093 /* 3094 * We only want to restart ACTIVE events, so if the event goes 3095 * inactive here (event->oncpu==-1), there's nothing more to do; 3096 * fall through with ret==-ENXIO. 3097 */ 3098 ret = cpu_function_call(READ_ONCE(event->oncpu), 3099 __perf_event_stop, &sd); 3100 } while (ret == -EAGAIN); 3101 3102 return ret; 3103 } 3104 3105 /* 3106 * In order to contain the amount of racy and tricky in the address filter 3107 * configuration management, it is a two part process: 3108 * 3109 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 3110 * we update the addresses of corresponding vmas in 3111 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 3112 * (p2) when an event is scheduled in (pmu::add), it calls 3113 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 3114 * if the generation has changed since the previous call. 3115 * 3116 * If (p1) happens while the event is active, we restart it to force (p2). 3117 * 3118 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 3119 * pre-existing mappings, called once when new filters arrive via SET_FILTER 3120 * ioctl; 3121 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 3122 * registered mapping, called for every new mmap(), with mm::mmap_lock down 3123 * for reading; 3124 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 3125 * of exec. 3126 */ 3127 void perf_event_addr_filters_sync(struct perf_event *event) 3128 { 3129 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 3130 3131 if (!has_addr_filter(event)) 3132 return; 3133 3134 raw_spin_lock(&ifh->lock); 3135 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 3136 event->pmu->addr_filters_sync(event); 3137 event->hw.addr_filters_gen = event->addr_filters_gen; 3138 } 3139 raw_spin_unlock(&ifh->lock); 3140 } 3141 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 3142 3143 static int _perf_event_refresh(struct perf_event *event, int refresh) 3144 { 3145 /* 3146 * not supported on inherited events 3147 */ 3148 if (event->attr.inherit || !is_sampling_event(event)) 3149 return -EINVAL; 3150 3151 atomic_add(refresh, &event->event_limit); 3152 _perf_event_enable(event); 3153 3154 return 0; 3155 } 3156 3157 /* 3158 * See perf_event_disable() 3159 */ 3160 int perf_event_refresh(struct perf_event *event, int refresh) 3161 { 3162 struct perf_event_context *ctx; 3163 int ret; 3164 3165 ctx = perf_event_ctx_lock(event); 3166 ret = _perf_event_refresh(event, refresh); 3167 perf_event_ctx_unlock(event, ctx); 3168 3169 return ret; 3170 } 3171 EXPORT_SYMBOL_GPL(perf_event_refresh); 3172 3173 static int perf_event_modify_breakpoint(struct perf_event *bp, 3174 struct perf_event_attr *attr) 3175 { 3176 int err; 3177 3178 _perf_event_disable(bp); 3179 3180 err = modify_user_hw_breakpoint_check(bp, attr, true); 3181 3182 if (!bp->attr.disabled) 3183 _perf_event_enable(bp); 3184 3185 return err; 3186 } 3187 3188 /* 3189 * Copy event-type-independent attributes that may be modified. 3190 */ 3191 static void perf_event_modify_copy_attr(struct perf_event_attr *to, 3192 const struct perf_event_attr *from) 3193 { 3194 to->sig_data = from->sig_data; 3195 } 3196 3197 static int perf_event_modify_attr(struct perf_event *event, 3198 struct perf_event_attr *attr) 3199 { 3200 int (*func)(struct perf_event *, struct perf_event_attr *); 3201 struct perf_event *child; 3202 int err; 3203 3204 if (event->attr.type != attr->type) 3205 return -EINVAL; 3206 3207 switch (event->attr.type) { 3208 case PERF_TYPE_BREAKPOINT: 3209 func = perf_event_modify_breakpoint; 3210 break; 3211 default: 3212 /* Place holder for future additions. */ 3213 return -EOPNOTSUPP; 3214 } 3215 3216 WARN_ON_ONCE(event->ctx->parent_ctx); 3217 3218 mutex_lock(&event->child_mutex); 3219 /* 3220 * Event-type-independent attributes must be copied before event-type 3221 * modification, which will validate that final attributes match the 3222 * source attributes after all relevant attributes have been copied. 3223 */ 3224 perf_event_modify_copy_attr(&event->attr, attr); 3225 err = func(event, attr); 3226 if (err) 3227 goto out; 3228 list_for_each_entry(child, &event->child_list, child_list) { 3229 perf_event_modify_copy_attr(&child->attr, attr); 3230 err = func(child, attr); 3231 if (err) 3232 goto out; 3233 } 3234 out: 3235 mutex_unlock(&event->child_mutex); 3236 return err; 3237 } 3238 3239 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx, 3240 enum event_type_t event_type) 3241 { 3242 struct perf_event_context *ctx = pmu_ctx->ctx; 3243 struct perf_event *event, *tmp; 3244 struct pmu *pmu = pmu_ctx->pmu; 3245 3246 if (ctx->task && !ctx->is_active) { 3247 struct perf_cpu_pmu_context *cpc; 3248 3249 cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3250 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3251 cpc->task_epc = NULL; 3252 } 3253 3254 if (!event_type) 3255 return; 3256 3257 perf_pmu_disable(pmu); 3258 if (event_type & EVENT_PINNED) { 3259 list_for_each_entry_safe(event, tmp, 3260 &pmu_ctx->pinned_active, 3261 active_list) 3262 group_sched_out(event, ctx); 3263 } 3264 3265 if (event_type & EVENT_FLEXIBLE) { 3266 list_for_each_entry_safe(event, tmp, 3267 &pmu_ctx->flexible_active, 3268 active_list) 3269 group_sched_out(event, ctx); 3270 /* 3271 * Since we cleared EVENT_FLEXIBLE, also clear 3272 * rotate_necessary, is will be reset by 3273 * ctx_flexible_sched_in() when needed. 3274 */ 3275 pmu_ctx->rotate_necessary = 0; 3276 } 3277 perf_pmu_enable(pmu); 3278 } 3279 3280 static void 3281 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type) 3282 { 3283 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3284 struct perf_event_pmu_context *pmu_ctx; 3285 int is_active = ctx->is_active; 3286 bool cgroup = event_type & EVENT_CGROUP; 3287 3288 event_type &= ~EVENT_CGROUP; 3289 3290 lockdep_assert_held(&ctx->lock); 3291 3292 if (likely(!ctx->nr_events)) { 3293 /* 3294 * See __perf_remove_from_context(). 3295 */ 3296 WARN_ON_ONCE(ctx->is_active); 3297 if (ctx->task) 3298 WARN_ON_ONCE(cpuctx->task_ctx); 3299 return; 3300 } 3301 3302 /* 3303 * Always update time if it was set; not only when it changes. 3304 * Otherwise we can 'forget' to update time for any but the last 3305 * context we sched out. For example: 3306 * 3307 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 3308 * ctx_sched_out(.event_type = EVENT_PINNED) 3309 * 3310 * would only update time for the pinned events. 3311 */ 3312 if (is_active & EVENT_TIME) { 3313 /* update (and stop) ctx time */ 3314 update_context_time(ctx); 3315 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx); 3316 /* 3317 * CPU-release for the below ->is_active store, 3318 * see __load_acquire() in perf_event_time_now() 3319 */ 3320 barrier(); 3321 } 3322 3323 ctx->is_active &= ~event_type; 3324 if (!(ctx->is_active & EVENT_ALL)) 3325 ctx->is_active = 0; 3326 3327 if (ctx->task) { 3328 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3329 if (!ctx->is_active) 3330 cpuctx->task_ctx = NULL; 3331 } 3332 3333 is_active ^= ctx->is_active; /* changed bits */ 3334 3335 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3336 if (cgroup && !pmu_ctx->nr_cgroups) 3337 continue; 3338 __pmu_ctx_sched_out(pmu_ctx, is_active); 3339 } 3340 } 3341 3342 /* 3343 * Test whether two contexts are equivalent, i.e. whether they have both been 3344 * cloned from the same version of the same context. 3345 * 3346 * Equivalence is measured using a generation number in the context that is 3347 * incremented on each modification to it; see unclone_ctx(), list_add_event() 3348 * and list_del_event(). 3349 */ 3350 static int context_equiv(struct perf_event_context *ctx1, 3351 struct perf_event_context *ctx2) 3352 { 3353 lockdep_assert_held(&ctx1->lock); 3354 lockdep_assert_held(&ctx2->lock); 3355 3356 /* Pinning disables the swap optimization */ 3357 if (ctx1->pin_count || ctx2->pin_count) 3358 return 0; 3359 3360 /* If ctx1 is the parent of ctx2 */ 3361 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 3362 return 1; 3363 3364 /* If ctx2 is the parent of ctx1 */ 3365 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 3366 return 1; 3367 3368 /* 3369 * If ctx1 and ctx2 have the same parent; we flatten the parent 3370 * hierarchy, see perf_event_init_context(). 3371 */ 3372 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 3373 ctx1->parent_gen == ctx2->parent_gen) 3374 return 1; 3375 3376 /* Unmatched */ 3377 return 0; 3378 } 3379 3380 static void __perf_event_sync_stat(struct perf_event *event, 3381 struct perf_event *next_event) 3382 { 3383 u64 value; 3384 3385 if (!event->attr.inherit_stat) 3386 return; 3387 3388 /* 3389 * Update the event value, we cannot use perf_event_read() 3390 * because we're in the middle of a context switch and have IRQs 3391 * disabled, which upsets smp_call_function_single(), however 3392 * we know the event must be on the current CPU, therefore we 3393 * don't need to use it. 3394 */ 3395 if (event->state == PERF_EVENT_STATE_ACTIVE) 3396 event->pmu->read(event); 3397 3398 perf_event_update_time(event); 3399 3400 /* 3401 * In order to keep per-task stats reliable we need to flip the event 3402 * values when we flip the contexts. 3403 */ 3404 value = local64_read(&next_event->count); 3405 value = local64_xchg(&event->count, value); 3406 local64_set(&next_event->count, value); 3407 3408 swap(event->total_time_enabled, next_event->total_time_enabled); 3409 swap(event->total_time_running, next_event->total_time_running); 3410 3411 /* 3412 * Since we swizzled the values, update the user visible data too. 3413 */ 3414 perf_event_update_userpage(event); 3415 perf_event_update_userpage(next_event); 3416 } 3417 3418 static void perf_event_sync_stat(struct perf_event_context *ctx, 3419 struct perf_event_context *next_ctx) 3420 { 3421 struct perf_event *event, *next_event; 3422 3423 if (!ctx->nr_stat) 3424 return; 3425 3426 update_context_time(ctx); 3427 3428 event = list_first_entry(&ctx->event_list, 3429 struct perf_event, event_entry); 3430 3431 next_event = list_first_entry(&next_ctx->event_list, 3432 struct perf_event, event_entry); 3433 3434 while (&event->event_entry != &ctx->event_list && 3435 &next_event->event_entry != &next_ctx->event_list) { 3436 3437 __perf_event_sync_stat(event, next_event); 3438 3439 event = list_next_entry(event, event_entry); 3440 next_event = list_next_entry(next_event, event_entry); 3441 } 3442 } 3443 3444 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \ 3445 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \ 3446 pos2 = list_first_entry(head2, typeof(*pos2), member); \ 3447 !list_entry_is_head(pos1, head1, member) && \ 3448 !list_entry_is_head(pos2, head2, member); \ 3449 pos1 = list_next_entry(pos1, member), \ 3450 pos2 = list_next_entry(pos2, member)) 3451 3452 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx, 3453 struct perf_event_context *next_ctx) 3454 { 3455 struct perf_event_pmu_context *prev_epc, *next_epc; 3456 3457 if (!prev_ctx->nr_task_data) 3458 return; 3459 3460 double_list_for_each_entry(prev_epc, next_epc, 3461 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list, 3462 pmu_ctx_entry) { 3463 3464 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu)) 3465 continue; 3466 3467 /* 3468 * PMU specific parts of task perf context can require 3469 * additional synchronization. As an example of such 3470 * synchronization see implementation details of Intel 3471 * LBR call stack data profiling; 3472 */ 3473 if (prev_epc->pmu->swap_task_ctx) 3474 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc); 3475 else 3476 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data); 3477 } 3478 } 3479 3480 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in) 3481 { 3482 struct perf_event_pmu_context *pmu_ctx; 3483 struct perf_cpu_pmu_context *cpc; 3484 3485 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3486 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3487 3488 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task) 3489 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in); 3490 } 3491 } 3492 3493 static void 3494 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next) 3495 { 3496 struct perf_event_context *ctx = task->perf_event_ctxp; 3497 struct perf_event_context *next_ctx; 3498 struct perf_event_context *parent, *next_parent; 3499 int do_switch = 1; 3500 3501 if (likely(!ctx)) 3502 return; 3503 3504 rcu_read_lock(); 3505 next_ctx = rcu_dereference(next->perf_event_ctxp); 3506 if (!next_ctx) 3507 goto unlock; 3508 3509 parent = rcu_dereference(ctx->parent_ctx); 3510 next_parent = rcu_dereference(next_ctx->parent_ctx); 3511 3512 /* If neither context have a parent context; they cannot be clones. */ 3513 if (!parent && !next_parent) 3514 goto unlock; 3515 3516 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3517 /* 3518 * Looks like the two contexts are clones, so we might be 3519 * able to optimize the context switch. We lock both 3520 * contexts and check that they are clones under the 3521 * lock (including re-checking that neither has been 3522 * uncloned in the meantime). It doesn't matter which 3523 * order we take the locks because no other cpu could 3524 * be trying to lock both of these tasks. 3525 */ 3526 raw_spin_lock(&ctx->lock); 3527 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3528 if (context_equiv(ctx, next_ctx)) { 3529 3530 perf_ctx_disable(ctx, false); 3531 3532 /* PMIs are disabled; ctx->nr_pending is stable. */ 3533 if (local_read(&ctx->nr_pending) || 3534 local_read(&next_ctx->nr_pending)) { 3535 /* 3536 * Must not swap out ctx when there's pending 3537 * events that rely on the ctx->task relation. 3538 */ 3539 raw_spin_unlock(&next_ctx->lock); 3540 rcu_read_unlock(); 3541 goto inside_switch; 3542 } 3543 3544 WRITE_ONCE(ctx->task, next); 3545 WRITE_ONCE(next_ctx->task, task); 3546 3547 perf_ctx_sched_task_cb(ctx, false); 3548 perf_event_swap_task_ctx_data(ctx, next_ctx); 3549 3550 perf_ctx_enable(ctx, false); 3551 3552 /* 3553 * RCU_INIT_POINTER here is safe because we've not 3554 * modified the ctx and the above modification of 3555 * ctx->task and ctx->task_ctx_data are immaterial 3556 * since those values are always verified under 3557 * ctx->lock which we're now holding. 3558 */ 3559 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx); 3560 RCU_INIT_POINTER(next->perf_event_ctxp, ctx); 3561 3562 do_switch = 0; 3563 3564 perf_event_sync_stat(ctx, next_ctx); 3565 } 3566 raw_spin_unlock(&next_ctx->lock); 3567 raw_spin_unlock(&ctx->lock); 3568 } 3569 unlock: 3570 rcu_read_unlock(); 3571 3572 if (do_switch) { 3573 raw_spin_lock(&ctx->lock); 3574 perf_ctx_disable(ctx, false); 3575 3576 inside_switch: 3577 perf_ctx_sched_task_cb(ctx, false); 3578 task_ctx_sched_out(ctx, EVENT_ALL); 3579 3580 perf_ctx_enable(ctx, false); 3581 raw_spin_unlock(&ctx->lock); 3582 } 3583 } 3584 3585 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3586 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 3587 3588 void perf_sched_cb_dec(struct pmu *pmu) 3589 { 3590 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3591 3592 this_cpu_dec(perf_sched_cb_usages); 3593 barrier(); 3594 3595 if (!--cpc->sched_cb_usage) 3596 list_del(&cpc->sched_cb_entry); 3597 } 3598 3599 3600 void perf_sched_cb_inc(struct pmu *pmu) 3601 { 3602 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context); 3603 3604 if (!cpc->sched_cb_usage++) 3605 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3606 3607 barrier(); 3608 this_cpu_inc(perf_sched_cb_usages); 3609 } 3610 3611 /* 3612 * This function provides the context switch callback to the lower code 3613 * layer. It is invoked ONLY when the context switch callback is enabled. 3614 * 3615 * This callback is relevant even to per-cpu events; for example multi event 3616 * PEBS requires this to provide PID/TID information. This requires we flush 3617 * all queued PEBS records before we context switch to a new task. 3618 */ 3619 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in) 3620 { 3621 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3622 struct pmu *pmu; 3623 3624 pmu = cpc->epc.pmu; 3625 3626 /* software PMUs will not have sched_task */ 3627 if (WARN_ON_ONCE(!pmu->sched_task)) 3628 return; 3629 3630 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3631 perf_pmu_disable(pmu); 3632 3633 pmu->sched_task(cpc->task_epc, sched_in); 3634 3635 perf_pmu_enable(pmu); 3636 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3637 } 3638 3639 static void perf_pmu_sched_task(struct task_struct *prev, 3640 struct task_struct *next, 3641 bool sched_in) 3642 { 3643 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3644 struct perf_cpu_pmu_context *cpc; 3645 3646 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */ 3647 if (prev == next || cpuctx->task_ctx) 3648 return; 3649 3650 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry) 3651 __perf_pmu_sched_task(cpc, sched_in); 3652 } 3653 3654 static void perf_event_switch(struct task_struct *task, 3655 struct task_struct *next_prev, bool sched_in); 3656 3657 /* 3658 * Called from scheduler to remove the events of the current task, 3659 * with interrupts disabled. 3660 * 3661 * We stop each event and update the event value in event->count. 3662 * 3663 * This does not protect us against NMI, but disable() 3664 * sets the disabled bit in the control field of event _before_ 3665 * accessing the event control register. If a NMI hits, then it will 3666 * not restart the event. 3667 */ 3668 void __perf_event_task_sched_out(struct task_struct *task, 3669 struct task_struct *next) 3670 { 3671 if (__this_cpu_read(perf_sched_cb_usages)) 3672 perf_pmu_sched_task(task, next, false); 3673 3674 if (atomic_read(&nr_switch_events)) 3675 perf_event_switch(task, next, false); 3676 3677 perf_event_context_sched_out(task, next); 3678 3679 /* 3680 * if cgroup events exist on this CPU, then we need 3681 * to check if we have to switch out PMU state. 3682 * cgroup event are system-wide mode only 3683 */ 3684 perf_cgroup_switch(next); 3685 } 3686 3687 static bool perf_less_group_idx(const void *l, const void *r) 3688 { 3689 const struct perf_event *le = *(const struct perf_event **)l; 3690 const struct perf_event *re = *(const struct perf_event **)r; 3691 3692 return le->group_index < re->group_index; 3693 } 3694 3695 static void swap_ptr(void *l, void *r) 3696 { 3697 void **lp = l, **rp = r; 3698 3699 swap(*lp, *rp); 3700 } 3701 3702 static const struct min_heap_callbacks perf_min_heap = { 3703 .elem_size = sizeof(struct perf_event *), 3704 .less = perf_less_group_idx, 3705 .swp = swap_ptr, 3706 }; 3707 3708 static void __heap_add(struct min_heap *heap, struct perf_event *event) 3709 { 3710 struct perf_event **itrs = heap->data; 3711 3712 if (event) { 3713 itrs[heap->nr] = event; 3714 heap->nr++; 3715 } 3716 } 3717 3718 static void __link_epc(struct perf_event_pmu_context *pmu_ctx) 3719 { 3720 struct perf_cpu_pmu_context *cpc; 3721 3722 if (!pmu_ctx->ctx->task) 3723 return; 3724 3725 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context); 3726 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx); 3727 cpc->task_epc = pmu_ctx; 3728 } 3729 3730 static noinline int visit_groups_merge(struct perf_event_context *ctx, 3731 struct perf_event_groups *groups, int cpu, 3732 struct pmu *pmu, 3733 int (*func)(struct perf_event *, void *), 3734 void *data) 3735 { 3736 #ifdef CONFIG_CGROUP_PERF 3737 struct cgroup_subsys_state *css = NULL; 3738 #endif 3739 struct perf_cpu_context *cpuctx = NULL; 3740 /* Space for per CPU and/or any CPU event iterators. */ 3741 struct perf_event *itrs[2]; 3742 struct min_heap event_heap; 3743 struct perf_event **evt; 3744 int ret; 3745 3746 if (pmu->filter && pmu->filter(pmu, cpu)) 3747 return 0; 3748 3749 if (!ctx->task) { 3750 cpuctx = this_cpu_ptr(&perf_cpu_context); 3751 event_heap = (struct min_heap){ 3752 .data = cpuctx->heap, 3753 .nr = 0, 3754 .size = cpuctx->heap_size, 3755 }; 3756 3757 lockdep_assert_held(&cpuctx->ctx.lock); 3758 3759 #ifdef CONFIG_CGROUP_PERF 3760 if (cpuctx->cgrp) 3761 css = &cpuctx->cgrp->css; 3762 #endif 3763 } else { 3764 event_heap = (struct min_heap){ 3765 .data = itrs, 3766 .nr = 0, 3767 .size = ARRAY_SIZE(itrs), 3768 }; 3769 /* Events not within a CPU context may be on any CPU. */ 3770 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL)); 3771 } 3772 evt = event_heap.data; 3773 3774 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL)); 3775 3776 #ifdef CONFIG_CGROUP_PERF 3777 for (; css; css = css->parent) 3778 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup)); 3779 #endif 3780 3781 if (event_heap.nr) { 3782 __link_epc((*evt)->pmu_ctx); 3783 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu); 3784 } 3785 3786 min_heapify_all(&event_heap, &perf_min_heap); 3787 3788 while (event_heap.nr) { 3789 ret = func(*evt, data); 3790 if (ret) 3791 return ret; 3792 3793 *evt = perf_event_groups_next(*evt, pmu); 3794 if (*evt) 3795 min_heapify(&event_heap, 0, &perf_min_heap); 3796 else 3797 min_heap_pop(&event_heap, &perf_min_heap); 3798 } 3799 3800 return 0; 3801 } 3802 3803 /* 3804 * Because the userpage is strictly per-event (there is no concept of context, 3805 * so there cannot be a context indirection), every userpage must be updated 3806 * when context time starts :-( 3807 * 3808 * IOW, we must not miss EVENT_TIME edges. 3809 */ 3810 static inline bool event_update_userpage(struct perf_event *event) 3811 { 3812 if (likely(!atomic_read(&event->mmap_count))) 3813 return false; 3814 3815 perf_event_update_time(event); 3816 perf_event_update_userpage(event); 3817 3818 return true; 3819 } 3820 3821 static inline void group_update_userpage(struct perf_event *group_event) 3822 { 3823 struct perf_event *event; 3824 3825 if (!event_update_userpage(group_event)) 3826 return; 3827 3828 for_each_sibling_event(event, group_event) 3829 event_update_userpage(event); 3830 } 3831 3832 static int merge_sched_in(struct perf_event *event, void *data) 3833 { 3834 struct perf_event_context *ctx = event->ctx; 3835 int *can_add_hw = data; 3836 3837 if (event->state <= PERF_EVENT_STATE_OFF) 3838 return 0; 3839 3840 if (!event_filter_match(event)) 3841 return 0; 3842 3843 if (group_can_go_on(event, *can_add_hw)) { 3844 if (!group_sched_in(event, ctx)) 3845 list_add_tail(&event->active_list, get_event_list(event)); 3846 } 3847 3848 if (event->state == PERF_EVENT_STATE_INACTIVE) { 3849 *can_add_hw = 0; 3850 if (event->attr.pinned) { 3851 perf_cgroup_event_disable(event, ctx); 3852 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3853 } else { 3854 struct perf_cpu_pmu_context *cpc; 3855 3856 event->pmu_ctx->rotate_necessary = 1; 3857 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context); 3858 perf_mux_hrtimer_restart(cpc); 3859 group_update_userpage(event); 3860 } 3861 } 3862 3863 return 0; 3864 } 3865 3866 static void pmu_groups_sched_in(struct perf_event_context *ctx, 3867 struct perf_event_groups *groups, 3868 struct pmu *pmu) 3869 { 3870 int can_add_hw = 1; 3871 visit_groups_merge(ctx, groups, smp_processor_id(), pmu, 3872 merge_sched_in, &can_add_hw); 3873 } 3874 3875 static void ctx_groups_sched_in(struct perf_event_context *ctx, 3876 struct perf_event_groups *groups, 3877 bool cgroup) 3878 { 3879 struct perf_event_pmu_context *pmu_ctx; 3880 3881 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) { 3882 if (cgroup && !pmu_ctx->nr_cgroups) 3883 continue; 3884 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu); 3885 } 3886 } 3887 3888 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, 3889 struct pmu *pmu) 3890 { 3891 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu); 3892 } 3893 3894 static void 3895 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type) 3896 { 3897 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3898 int is_active = ctx->is_active; 3899 bool cgroup = event_type & EVENT_CGROUP; 3900 3901 event_type &= ~EVENT_CGROUP; 3902 3903 lockdep_assert_held(&ctx->lock); 3904 3905 if (likely(!ctx->nr_events)) 3906 return; 3907 3908 if (!(is_active & EVENT_TIME)) { 3909 /* start ctx time */ 3910 __update_context_time(ctx, false); 3911 perf_cgroup_set_timestamp(cpuctx); 3912 /* 3913 * CPU-release for the below ->is_active store, 3914 * see __load_acquire() in perf_event_time_now() 3915 */ 3916 barrier(); 3917 } 3918 3919 ctx->is_active |= (event_type | EVENT_TIME); 3920 if (ctx->task) { 3921 if (!is_active) 3922 cpuctx->task_ctx = ctx; 3923 else 3924 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3925 } 3926 3927 is_active ^= ctx->is_active; /* changed bits */ 3928 3929 /* 3930 * First go through the list and put on any pinned groups 3931 * in order to give them the best chance of going on. 3932 */ 3933 if (is_active & EVENT_PINNED) 3934 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup); 3935 3936 /* Then walk through the lower prio flexible groups */ 3937 if (is_active & EVENT_FLEXIBLE) 3938 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup); 3939 } 3940 3941 static void perf_event_context_sched_in(struct task_struct *task) 3942 { 3943 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 3944 struct perf_event_context *ctx; 3945 3946 rcu_read_lock(); 3947 ctx = rcu_dereference(task->perf_event_ctxp); 3948 if (!ctx) 3949 goto rcu_unlock; 3950 3951 if (cpuctx->task_ctx == ctx) { 3952 perf_ctx_lock(cpuctx, ctx); 3953 perf_ctx_disable(ctx, false); 3954 3955 perf_ctx_sched_task_cb(ctx, true); 3956 3957 perf_ctx_enable(ctx, false); 3958 perf_ctx_unlock(cpuctx, ctx); 3959 goto rcu_unlock; 3960 } 3961 3962 perf_ctx_lock(cpuctx, ctx); 3963 /* 3964 * We must check ctx->nr_events while holding ctx->lock, such 3965 * that we serialize against perf_install_in_context(). 3966 */ 3967 if (!ctx->nr_events) 3968 goto unlock; 3969 3970 perf_ctx_disable(ctx, false); 3971 /* 3972 * We want to keep the following priority order: 3973 * cpu pinned (that don't need to move), task pinned, 3974 * cpu flexible, task flexible. 3975 * 3976 * However, if task's ctx is not carrying any pinned 3977 * events, no need to flip the cpuctx's events around. 3978 */ 3979 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) { 3980 perf_ctx_disable(&cpuctx->ctx, false); 3981 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE); 3982 } 3983 3984 perf_event_sched_in(cpuctx, ctx); 3985 3986 perf_ctx_sched_task_cb(cpuctx->task_ctx, true); 3987 3988 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3989 perf_ctx_enable(&cpuctx->ctx, false); 3990 3991 perf_ctx_enable(ctx, false); 3992 3993 unlock: 3994 perf_ctx_unlock(cpuctx, ctx); 3995 rcu_unlock: 3996 rcu_read_unlock(); 3997 } 3998 3999 /* 4000 * Called from scheduler to add the events of the current task 4001 * with interrupts disabled. 4002 * 4003 * We restore the event value and then enable it. 4004 * 4005 * This does not protect us against NMI, but enable() 4006 * sets the enabled bit in the control field of event _before_ 4007 * accessing the event control register. If a NMI hits, then it will 4008 * keep the event running. 4009 */ 4010 void __perf_event_task_sched_in(struct task_struct *prev, 4011 struct task_struct *task) 4012 { 4013 perf_event_context_sched_in(task); 4014 4015 if (atomic_read(&nr_switch_events)) 4016 perf_event_switch(task, prev, true); 4017 4018 if (__this_cpu_read(perf_sched_cb_usages)) 4019 perf_pmu_sched_task(prev, task, true); 4020 } 4021 4022 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 4023 { 4024 u64 frequency = event->attr.sample_freq; 4025 u64 sec = NSEC_PER_SEC; 4026 u64 divisor, dividend; 4027 4028 int count_fls, nsec_fls, frequency_fls, sec_fls; 4029 4030 count_fls = fls64(count); 4031 nsec_fls = fls64(nsec); 4032 frequency_fls = fls64(frequency); 4033 sec_fls = 30; 4034 4035 /* 4036 * We got @count in @nsec, with a target of sample_freq HZ 4037 * the target period becomes: 4038 * 4039 * @count * 10^9 4040 * period = ------------------- 4041 * @nsec * sample_freq 4042 * 4043 */ 4044 4045 /* 4046 * Reduce accuracy by one bit such that @a and @b converge 4047 * to a similar magnitude. 4048 */ 4049 #define REDUCE_FLS(a, b) \ 4050 do { \ 4051 if (a##_fls > b##_fls) { \ 4052 a >>= 1; \ 4053 a##_fls--; \ 4054 } else { \ 4055 b >>= 1; \ 4056 b##_fls--; \ 4057 } \ 4058 } while (0) 4059 4060 /* 4061 * Reduce accuracy until either term fits in a u64, then proceed with 4062 * the other, so that finally we can do a u64/u64 division. 4063 */ 4064 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 4065 REDUCE_FLS(nsec, frequency); 4066 REDUCE_FLS(sec, count); 4067 } 4068 4069 if (count_fls + sec_fls > 64) { 4070 divisor = nsec * frequency; 4071 4072 while (count_fls + sec_fls > 64) { 4073 REDUCE_FLS(count, sec); 4074 divisor >>= 1; 4075 } 4076 4077 dividend = count * sec; 4078 } else { 4079 dividend = count * sec; 4080 4081 while (nsec_fls + frequency_fls > 64) { 4082 REDUCE_FLS(nsec, frequency); 4083 dividend >>= 1; 4084 } 4085 4086 divisor = nsec * frequency; 4087 } 4088 4089 if (!divisor) 4090 return dividend; 4091 4092 return div64_u64(dividend, divisor); 4093 } 4094 4095 static DEFINE_PER_CPU(int, perf_throttled_count); 4096 static DEFINE_PER_CPU(u64, perf_throttled_seq); 4097 4098 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 4099 { 4100 struct hw_perf_event *hwc = &event->hw; 4101 s64 period, sample_period; 4102 s64 delta; 4103 4104 period = perf_calculate_period(event, nsec, count); 4105 4106 delta = (s64)(period - hwc->sample_period); 4107 if (delta >= 0) 4108 delta += 7; 4109 else 4110 delta -= 7; 4111 delta /= 8; /* low pass filter */ 4112 4113 sample_period = hwc->sample_period + delta; 4114 4115 if (!sample_period) 4116 sample_period = 1; 4117 4118 hwc->sample_period = sample_period; 4119 4120 if (local64_read(&hwc->period_left) > 8*sample_period) { 4121 if (disable) 4122 event->pmu->stop(event, PERF_EF_UPDATE); 4123 4124 local64_set(&hwc->period_left, 0); 4125 4126 if (disable) 4127 event->pmu->start(event, PERF_EF_RELOAD); 4128 } 4129 } 4130 4131 /* 4132 * combine freq adjustment with unthrottling to avoid two passes over the 4133 * events. At the same time, make sure, having freq events does not change 4134 * the rate of unthrottling as that would introduce bias. 4135 */ 4136 static void 4137 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle) 4138 { 4139 struct perf_event *event; 4140 struct hw_perf_event *hwc; 4141 u64 now, period = TICK_NSEC; 4142 s64 delta; 4143 4144 /* 4145 * only need to iterate over all events iff: 4146 * - context have events in frequency mode (needs freq adjust) 4147 * - there are events to unthrottle on this cpu 4148 */ 4149 if (!(ctx->nr_freq || unthrottle)) 4150 return; 4151 4152 raw_spin_lock(&ctx->lock); 4153 4154 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4155 if (event->state != PERF_EVENT_STATE_ACTIVE) 4156 continue; 4157 4158 // XXX use visit thingy to avoid the -1,cpu match 4159 if (!event_filter_match(event)) 4160 continue; 4161 4162 perf_pmu_disable(event->pmu); 4163 4164 hwc = &event->hw; 4165 4166 if (hwc->interrupts == MAX_INTERRUPTS) { 4167 hwc->interrupts = 0; 4168 perf_log_throttle(event, 1); 4169 event->pmu->start(event, 0); 4170 } 4171 4172 if (!event->attr.freq || !event->attr.sample_freq) 4173 goto next; 4174 4175 /* 4176 * stop the event and update event->count 4177 */ 4178 event->pmu->stop(event, PERF_EF_UPDATE); 4179 4180 now = local64_read(&event->count); 4181 delta = now - hwc->freq_count_stamp; 4182 hwc->freq_count_stamp = now; 4183 4184 /* 4185 * restart the event 4186 * reload only if value has changed 4187 * we have stopped the event so tell that 4188 * to perf_adjust_period() to avoid stopping it 4189 * twice. 4190 */ 4191 if (delta > 0) 4192 perf_adjust_period(event, period, delta, false); 4193 4194 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 4195 next: 4196 perf_pmu_enable(event->pmu); 4197 } 4198 4199 raw_spin_unlock(&ctx->lock); 4200 } 4201 4202 /* 4203 * Move @event to the tail of the @ctx's elegible events. 4204 */ 4205 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 4206 { 4207 /* 4208 * Rotate the first entry last of non-pinned groups. Rotation might be 4209 * disabled by the inheritance code. 4210 */ 4211 if (ctx->rotate_disable) 4212 return; 4213 4214 perf_event_groups_delete(&ctx->flexible_groups, event); 4215 perf_event_groups_insert(&ctx->flexible_groups, event); 4216 } 4217 4218 /* pick an event from the flexible_groups to rotate */ 4219 static inline struct perf_event * 4220 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx) 4221 { 4222 struct perf_event *event; 4223 struct rb_node *node; 4224 struct rb_root *tree; 4225 struct __group_key key = { 4226 .pmu = pmu_ctx->pmu, 4227 }; 4228 4229 /* pick the first active flexible event */ 4230 event = list_first_entry_or_null(&pmu_ctx->flexible_active, 4231 struct perf_event, active_list); 4232 if (event) 4233 goto out; 4234 4235 /* if no active flexible event, pick the first event */ 4236 tree = &pmu_ctx->ctx->flexible_groups.tree; 4237 4238 if (!pmu_ctx->ctx->task) { 4239 key.cpu = smp_processor_id(); 4240 4241 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4242 if (node) 4243 event = __node_2_pe(node); 4244 goto out; 4245 } 4246 4247 key.cpu = -1; 4248 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4249 if (node) { 4250 event = __node_2_pe(node); 4251 goto out; 4252 } 4253 4254 key.cpu = smp_processor_id(); 4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup); 4256 if (node) 4257 event = __node_2_pe(node); 4258 4259 out: 4260 /* 4261 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in() 4262 * finds there are unschedulable events, it will set it again. 4263 */ 4264 pmu_ctx->rotate_necessary = 0; 4265 4266 return event; 4267 } 4268 4269 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc) 4270 { 4271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4272 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL; 4273 struct perf_event *cpu_event = NULL, *task_event = NULL; 4274 int cpu_rotate, task_rotate; 4275 struct pmu *pmu; 4276 4277 /* 4278 * Since we run this from IRQ context, nobody can install new 4279 * events, thus the event count values are stable. 4280 */ 4281 4282 cpu_epc = &cpc->epc; 4283 pmu = cpu_epc->pmu; 4284 task_epc = cpc->task_epc; 4285 4286 cpu_rotate = cpu_epc->rotate_necessary; 4287 task_rotate = task_epc ? task_epc->rotate_necessary : 0; 4288 4289 if (!(cpu_rotate || task_rotate)) 4290 return false; 4291 4292 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 4293 perf_pmu_disable(pmu); 4294 4295 if (task_rotate) 4296 task_event = ctx_event_to_rotate(task_epc); 4297 if (cpu_rotate) 4298 cpu_event = ctx_event_to_rotate(cpu_epc); 4299 4300 /* 4301 * As per the order given at ctx_resched() first 'pop' task flexible 4302 * and then, if needed CPU flexible. 4303 */ 4304 if (task_event || (task_epc && cpu_event)) { 4305 update_context_time(task_epc->ctx); 4306 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE); 4307 } 4308 4309 if (cpu_event) { 4310 update_context_time(&cpuctx->ctx); 4311 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE); 4312 rotate_ctx(&cpuctx->ctx, cpu_event); 4313 __pmu_ctx_sched_in(&cpuctx->ctx, pmu); 4314 } 4315 4316 if (task_event) 4317 rotate_ctx(task_epc->ctx, task_event); 4318 4319 if (task_event || (task_epc && cpu_event)) 4320 __pmu_ctx_sched_in(task_epc->ctx, pmu); 4321 4322 perf_pmu_enable(pmu); 4323 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 4324 4325 return true; 4326 } 4327 4328 void perf_event_task_tick(void) 4329 { 4330 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4331 struct perf_event_context *ctx; 4332 int throttled; 4333 4334 lockdep_assert_irqs_disabled(); 4335 4336 __this_cpu_inc(perf_throttled_seq); 4337 throttled = __this_cpu_xchg(perf_throttled_count, 0); 4338 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 4339 4340 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled); 4341 4342 rcu_read_lock(); 4343 ctx = rcu_dereference(current->perf_event_ctxp); 4344 if (ctx) 4345 perf_adjust_freq_unthr_context(ctx, !!throttled); 4346 rcu_read_unlock(); 4347 } 4348 4349 static int event_enable_on_exec(struct perf_event *event, 4350 struct perf_event_context *ctx) 4351 { 4352 if (!event->attr.enable_on_exec) 4353 return 0; 4354 4355 event->attr.enable_on_exec = 0; 4356 if (event->state >= PERF_EVENT_STATE_INACTIVE) 4357 return 0; 4358 4359 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 4360 4361 return 1; 4362 } 4363 4364 /* 4365 * Enable all of a task's events that have been marked enable-on-exec. 4366 * This expects task == current. 4367 */ 4368 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 4369 { 4370 struct perf_event_context *clone_ctx = NULL; 4371 enum event_type_t event_type = 0; 4372 struct perf_cpu_context *cpuctx; 4373 struct perf_event *event; 4374 unsigned long flags; 4375 int enabled = 0; 4376 4377 local_irq_save(flags); 4378 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx)) 4379 goto out; 4380 4381 if (!ctx->nr_events) 4382 goto out; 4383 4384 cpuctx = this_cpu_ptr(&perf_cpu_context); 4385 perf_ctx_lock(cpuctx, ctx); 4386 ctx_sched_out(ctx, EVENT_TIME); 4387 4388 list_for_each_entry(event, &ctx->event_list, event_entry) { 4389 enabled |= event_enable_on_exec(event, ctx); 4390 event_type |= get_event_type(event); 4391 } 4392 4393 /* 4394 * Unclone and reschedule this context if we enabled any event. 4395 */ 4396 if (enabled) { 4397 clone_ctx = unclone_ctx(ctx); 4398 ctx_resched(cpuctx, ctx, event_type); 4399 } else { 4400 ctx_sched_in(ctx, EVENT_TIME); 4401 } 4402 perf_ctx_unlock(cpuctx, ctx); 4403 4404 out: 4405 local_irq_restore(flags); 4406 4407 if (clone_ctx) 4408 put_ctx(clone_ctx); 4409 } 4410 4411 static void perf_remove_from_owner(struct perf_event *event); 4412 static void perf_event_exit_event(struct perf_event *event, 4413 struct perf_event_context *ctx); 4414 4415 /* 4416 * Removes all events from the current task that have been marked 4417 * remove-on-exec, and feeds their values back to parent events. 4418 */ 4419 static void perf_event_remove_on_exec(struct perf_event_context *ctx) 4420 { 4421 struct perf_event_context *clone_ctx = NULL; 4422 struct perf_event *event, *next; 4423 unsigned long flags; 4424 bool modified = false; 4425 4426 mutex_lock(&ctx->mutex); 4427 4428 if (WARN_ON_ONCE(ctx->task != current)) 4429 goto unlock; 4430 4431 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) { 4432 if (!event->attr.remove_on_exec) 4433 continue; 4434 4435 if (!is_kernel_event(event)) 4436 perf_remove_from_owner(event); 4437 4438 modified = true; 4439 4440 perf_event_exit_event(event, ctx); 4441 } 4442 4443 raw_spin_lock_irqsave(&ctx->lock, flags); 4444 if (modified) 4445 clone_ctx = unclone_ctx(ctx); 4446 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4447 4448 unlock: 4449 mutex_unlock(&ctx->mutex); 4450 4451 if (clone_ctx) 4452 put_ctx(clone_ctx); 4453 } 4454 4455 struct perf_read_data { 4456 struct perf_event *event; 4457 bool group; 4458 int ret; 4459 }; 4460 4461 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 4462 { 4463 u16 local_pkg, event_pkg; 4464 4465 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 4466 int local_cpu = smp_processor_id(); 4467 4468 event_pkg = topology_physical_package_id(event_cpu); 4469 local_pkg = topology_physical_package_id(local_cpu); 4470 4471 if (event_pkg == local_pkg) 4472 return local_cpu; 4473 } 4474 4475 return event_cpu; 4476 } 4477 4478 /* 4479 * Cross CPU call to read the hardware event 4480 */ 4481 static void __perf_event_read(void *info) 4482 { 4483 struct perf_read_data *data = info; 4484 struct perf_event *sub, *event = data->event; 4485 struct perf_event_context *ctx = event->ctx; 4486 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 4487 struct pmu *pmu = event->pmu; 4488 4489 /* 4490 * If this is a task context, we need to check whether it is 4491 * the current task context of this cpu. If not it has been 4492 * scheduled out before the smp call arrived. In that case 4493 * event->count would have been updated to a recent sample 4494 * when the event was scheduled out. 4495 */ 4496 if (ctx->task && cpuctx->task_ctx != ctx) 4497 return; 4498 4499 raw_spin_lock(&ctx->lock); 4500 if (ctx->is_active & EVENT_TIME) { 4501 update_context_time(ctx); 4502 update_cgrp_time_from_event(event); 4503 } 4504 4505 perf_event_update_time(event); 4506 if (data->group) 4507 perf_event_update_sibling_time(event); 4508 4509 if (event->state != PERF_EVENT_STATE_ACTIVE) 4510 goto unlock; 4511 4512 if (!data->group) { 4513 pmu->read(event); 4514 data->ret = 0; 4515 goto unlock; 4516 } 4517 4518 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 4519 4520 pmu->read(event); 4521 4522 for_each_sibling_event(sub, event) { 4523 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 4524 /* 4525 * Use sibling's PMU rather than @event's since 4526 * sibling could be on different (eg: software) PMU. 4527 */ 4528 sub->pmu->read(sub); 4529 } 4530 } 4531 4532 data->ret = pmu->commit_txn(pmu); 4533 4534 unlock: 4535 raw_spin_unlock(&ctx->lock); 4536 } 4537 4538 static inline u64 perf_event_count(struct perf_event *event) 4539 { 4540 return local64_read(&event->count) + atomic64_read(&event->child_count); 4541 } 4542 4543 static void calc_timer_values(struct perf_event *event, 4544 u64 *now, 4545 u64 *enabled, 4546 u64 *running) 4547 { 4548 u64 ctx_time; 4549 4550 *now = perf_clock(); 4551 ctx_time = perf_event_time_now(event, *now); 4552 __perf_update_times(event, ctx_time, enabled, running); 4553 } 4554 4555 /* 4556 * NMI-safe method to read a local event, that is an event that 4557 * is: 4558 * - either for the current task, or for this CPU 4559 * - does not have inherit set, for inherited task events 4560 * will not be local and we cannot read them atomically 4561 * - must not have a pmu::count method 4562 */ 4563 int perf_event_read_local(struct perf_event *event, u64 *value, 4564 u64 *enabled, u64 *running) 4565 { 4566 unsigned long flags; 4567 int ret = 0; 4568 4569 /* 4570 * Disabling interrupts avoids all counter scheduling (context 4571 * switches, timer based rotation and IPIs). 4572 */ 4573 local_irq_save(flags); 4574 4575 /* 4576 * It must not be an event with inherit set, we cannot read 4577 * all child counters from atomic context. 4578 */ 4579 if (event->attr.inherit) { 4580 ret = -EOPNOTSUPP; 4581 goto out; 4582 } 4583 4584 /* If this is a per-task event, it must be for current */ 4585 if ((event->attach_state & PERF_ATTACH_TASK) && 4586 event->hw.target != current) { 4587 ret = -EINVAL; 4588 goto out; 4589 } 4590 4591 /* If this is a per-CPU event, it must be for this CPU */ 4592 if (!(event->attach_state & PERF_ATTACH_TASK) && 4593 event->cpu != smp_processor_id()) { 4594 ret = -EINVAL; 4595 goto out; 4596 } 4597 4598 /* If this is a pinned event it must be running on this CPU */ 4599 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 4600 ret = -EBUSY; 4601 goto out; 4602 } 4603 4604 /* 4605 * If the event is currently on this CPU, its either a per-task event, 4606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 4607 * oncpu == -1). 4608 */ 4609 if (event->oncpu == smp_processor_id()) 4610 event->pmu->read(event); 4611 4612 *value = local64_read(&event->count); 4613 if (enabled || running) { 4614 u64 __enabled, __running, __now; 4615 4616 calc_timer_values(event, &__now, &__enabled, &__running); 4617 if (enabled) 4618 *enabled = __enabled; 4619 if (running) 4620 *running = __running; 4621 } 4622 out: 4623 local_irq_restore(flags); 4624 4625 return ret; 4626 } 4627 4628 static int perf_event_read(struct perf_event *event, bool group) 4629 { 4630 enum perf_event_state state = READ_ONCE(event->state); 4631 int event_cpu, ret = 0; 4632 4633 /* 4634 * If event is enabled and currently active on a CPU, update the 4635 * value in the event structure: 4636 */ 4637 again: 4638 if (state == PERF_EVENT_STATE_ACTIVE) { 4639 struct perf_read_data data; 4640 4641 /* 4642 * Orders the ->state and ->oncpu loads such that if we see 4643 * ACTIVE we must also see the right ->oncpu. 4644 * 4645 * Matches the smp_wmb() from event_sched_in(). 4646 */ 4647 smp_rmb(); 4648 4649 event_cpu = READ_ONCE(event->oncpu); 4650 if ((unsigned)event_cpu >= nr_cpu_ids) 4651 return 0; 4652 4653 data = (struct perf_read_data){ 4654 .event = event, 4655 .group = group, 4656 .ret = 0, 4657 }; 4658 4659 preempt_disable(); 4660 event_cpu = __perf_event_read_cpu(event, event_cpu); 4661 4662 /* 4663 * Purposely ignore the smp_call_function_single() return 4664 * value. 4665 * 4666 * If event_cpu isn't a valid CPU it means the event got 4667 * scheduled out and that will have updated the event count. 4668 * 4669 * Therefore, either way, we'll have an up-to-date event count 4670 * after this. 4671 */ 4672 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4673 preempt_enable(); 4674 ret = data.ret; 4675 4676 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4677 struct perf_event_context *ctx = event->ctx; 4678 unsigned long flags; 4679 4680 raw_spin_lock_irqsave(&ctx->lock, flags); 4681 state = event->state; 4682 if (state != PERF_EVENT_STATE_INACTIVE) { 4683 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4684 goto again; 4685 } 4686 4687 /* 4688 * May read while context is not active (e.g., thread is 4689 * blocked), in that case we cannot update context time 4690 */ 4691 if (ctx->is_active & EVENT_TIME) { 4692 update_context_time(ctx); 4693 update_cgrp_time_from_event(event); 4694 } 4695 4696 perf_event_update_time(event); 4697 if (group) 4698 perf_event_update_sibling_time(event); 4699 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4700 } 4701 4702 return ret; 4703 } 4704 4705 /* 4706 * Initialize the perf_event context in a task_struct: 4707 */ 4708 static void __perf_event_init_context(struct perf_event_context *ctx) 4709 { 4710 raw_spin_lock_init(&ctx->lock); 4711 mutex_init(&ctx->mutex); 4712 INIT_LIST_HEAD(&ctx->pmu_ctx_list); 4713 perf_event_groups_init(&ctx->pinned_groups); 4714 perf_event_groups_init(&ctx->flexible_groups); 4715 INIT_LIST_HEAD(&ctx->event_list); 4716 refcount_set(&ctx->refcount, 1); 4717 } 4718 4719 static void 4720 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu) 4721 { 4722 epc->pmu = pmu; 4723 INIT_LIST_HEAD(&epc->pmu_ctx_entry); 4724 INIT_LIST_HEAD(&epc->pinned_active); 4725 INIT_LIST_HEAD(&epc->flexible_active); 4726 atomic_set(&epc->refcount, 1); 4727 } 4728 4729 static struct perf_event_context * 4730 alloc_perf_context(struct task_struct *task) 4731 { 4732 struct perf_event_context *ctx; 4733 4734 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4735 if (!ctx) 4736 return NULL; 4737 4738 __perf_event_init_context(ctx); 4739 if (task) 4740 ctx->task = get_task_struct(task); 4741 4742 return ctx; 4743 } 4744 4745 static struct task_struct * 4746 find_lively_task_by_vpid(pid_t vpid) 4747 { 4748 struct task_struct *task; 4749 4750 rcu_read_lock(); 4751 if (!vpid) 4752 task = current; 4753 else 4754 task = find_task_by_vpid(vpid); 4755 if (task) 4756 get_task_struct(task); 4757 rcu_read_unlock(); 4758 4759 if (!task) 4760 return ERR_PTR(-ESRCH); 4761 4762 return task; 4763 } 4764 4765 /* 4766 * Returns a matching context with refcount and pincount. 4767 */ 4768 static struct perf_event_context * 4769 find_get_context(struct task_struct *task, struct perf_event *event) 4770 { 4771 struct perf_event_context *ctx, *clone_ctx = NULL; 4772 struct perf_cpu_context *cpuctx; 4773 unsigned long flags; 4774 int err; 4775 4776 if (!task) { 4777 /* Must be root to operate on a CPU event: */ 4778 err = perf_allow_cpu(&event->attr); 4779 if (err) 4780 return ERR_PTR(err); 4781 4782 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 4783 ctx = &cpuctx->ctx; 4784 get_ctx(ctx); 4785 raw_spin_lock_irqsave(&ctx->lock, flags); 4786 ++ctx->pin_count; 4787 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4788 4789 return ctx; 4790 } 4791 4792 err = -EINVAL; 4793 retry: 4794 ctx = perf_lock_task_context(task, &flags); 4795 if (ctx) { 4796 clone_ctx = unclone_ctx(ctx); 4797 ++ctx->pin_count; 4798 4799 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4800 4801 if (clone_ctx) 4802 put_ctx(clone_ctx); 4803 } else { 4804 ctx = alloc_perf_context(task); 4805 err = -ENOMEM; 4806 if (!ctx) 4807 goto errout; 4808 4809 err = 0; 4810 mutex_lock(&task->perf_event_mutex); 4811 /* 4812 * If it has already passed perf_event_exit_task(). 4813 * we must see PF_EXITING, it takes this mutex too. 4814 */ 4815 if (task->flags & PF_EXITING) 4816 err = -ESRCH; 4817 else if (task->perf_event_ctxp) 4818 err = -EAGAIN; 4819 else { 4820 get_ctx(ctx); 4821 ++ctx->pin_count; 4822 rcu_assign_pointer(task->perf_event_ctxp, ctx); 4823 } 4824 mutex_unlock(&task->perf_event_mutex); 4825 4826 if (unlikely(err)) { 4827 put_ctx(ctx); 4828 4829 if (err == -EAGAIN) 4830 goto retry; 4831 goto errout; 4832 } 4833 } 4834 4835 return ctx; 4836 4837 errout: 4838 return ERR_PTR(err); 4839 } 4840 4841 static struct perf_event_pmu_context * 4842 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx, 4843 struct perf_event *event) 4844 { 4845 struct perf_event_pmu_context *new = NULL, *epc; 4846 void *task_ctx_data = NULL; 4847 4848 if (!ctx->task) { 4849 /* 4850 * perf_pmu_migrate_context() / __perf_pmu_install_event() 4851 * relies on the fact that find_get_pmu_context() cannot fail 4852 * for CPU contexts. 4853 */ 4854 struct perf_cpu_pmu_context *cpc; 4855 4856 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu); 4857 epc = &cpc->epc; 4858 raw_spin_lock_irq(&ctx->lock); 4859 if (!epc->ctx) { 4860 atomic_set(&epc->refcount, 1); 4861 epc->embedded = 1; 4862 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4863 epc->ctx = ctx; 4864 } else { 4865 WARN_ON_ONCE(epc->ctx != ctx); 4866 atomic_inc(&epc->refcount); 4867 } 4868 raw_spin_unlock_irq(&ctx->lock); 4869 return epc; 4870 } 4871 4872 new = kzalloc(sizeof(*epc), GFP_KERNEL); 4873 if (!new) 4874 return ERR_PTR(-ENOMEM); 4875 4876 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4877 task_ctx_data = alloc_task_ctx_data(pmu); 4878 if (!task_ctx_data) { 4879 kfree(new); 4880 return ERR_PTR(-ENOMEM); 4881 } 4882 } 4883 4884 __perf_init_event_pmu_context(new, pmu); 4885 4886 /* 4887 * XXX 4888 * 4889 * lockdep_assert_held(&ctx->mutex); 4890 * 4891 * can't because perf_event_init_task() doesn't actually hold the 4892 * child_ctx->mutex. 4893 */ 4894 4895 raw_spin_lock_irq(&ctx->lock); 4896 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) { 4897 if (epc->pmu == pmu) { 4898 WARN_ON_ONCE(epc->ctx != ctx); 4899 atomic_inc(&epc->refcount); 4900 goto found_epc; 4901 } 4902 } 4903 4904 epc = new; 4905 new = NULL; 4906 4907 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list); 4908 epc->ctx = ctx; 4909 4910 found_epc: 4911 if (task_ctx_data && !epc->task_ctx_data) { 4912 epc->task_ctx_data = task_ctx_data; 4913 task_ctx_data = NULL; 4914 ctx->nr_task_data++; 4915 } 4916 raw_spin_unlock_irq(&ctx->lock); 4917 4918 free_task_ctx_data(pmu, task_ctx_data); 4919 kfree(new); 4920 4921 return epc; 4922 } 4923 4924 static void get_pmu_ctx(struct perf_event_pmu_context *epc) 4925 { 4926 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount)); 4927 } 4928 4929 static void free_epc_rcu(struct rcu_head *head) 4930 { 4931 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head); 4932 4933 kfree(epc->task_ctx_data); 4934 kfree(epc); 4935 } 4936 4937 static void put_pmu_ctx(struct perf_event_pmu_context *epc) 4938 { 4939 struct perf_event_context *ctx = epc->ctx; 4940 unsigned long flags; 4941 4942 /* 4943 * XXX 4944 * 4945 * lockdep_assert_held(&ctx->mutex); 4946 * 4947 * can't because of the call-site in _free_event()/put_event() 4948 * which isn't always called under ctx->mutex. 4949 */ 4950 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags)) 4951 return; 4952 4953 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry)); 4954 4955 list_del_init(&epc->pmu_ctx_entry); 4956 epc->ctx = NULL; 4957 4958 WARN_ON_ONCE(!list_empty(&epc->pinned_active)); 4959 WARN_ON_ONCE(!list_empty(&epc->flexible_active)); 4960 4961 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4962 4963 if (epc->embedded) 4964 return; 4965 4966 call_rcu(&epc->rcu_head, free_epc_rcu); 4967 } 4968 4969 static void perf_event_free_filter(struct perf_event *event); 4970 4971 static void free_event_rcu(struct rcu_head *head) 4972 { 4973 struct perf_event *event = container_of(head, typeof(*event), rcu_head); 4974 4975 if (event->ns) 4976 put_pid_ns(event->ns); 4977 perf_event_free_filter(event); 4978 kmem_cache_free(perf_event_cache, event); 4979 } 4980 4981 static void ring_buffer_attach(struct perf_event *event, 4982 struct perf_buffer *rb); 4983 4984 static void detach_sb_event(struct perf_event *event) 4985 { 4986 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4987 4988 raw_spin_lock(&pel->lock); 4989 list_del_rcu(&event->sb_list); 4990 raw_spin_unlock(&pel->lock); 4991 } 4992 4993 static bool is_sb_event(struct perf_event *event) 4994 { 4995 struct perf_event_attr *attr = &event->attr; 4996 4997 if (event->parent) 4998 return false; 4999 5000 if (event->attach_state & PERF_ATTACH_TASK) 5001 return false; 5002 5003 if (attr->mmap || attr->mmap_data || attr->mmap2 || 5004 attr->comm || attr->comm_exec || 5005 attr->task || attr->ksymbol || 5006 attr->context_switch || attr->text_poke || 5007 attr->bpf_event) 5008 return true; 5009 return false; 5010 } 5011 5012 static void unaccount_pmu_sb_event(struct perf_event *event) 5013 { 5014 if (is_sb_event(event)) 5015 detach_sb_event(event); 5016 } 5017 5018 #ifdef CONFIG_NO_HZ_FULL 5019 static DEFINE_SPINLOCK(nr_freq_lock); 5020 #endif 5021 5022 static void unaccount_freq_event_nohz(void) 5023 { 5024 #ifdef CONFIG_NO_HZ_FULL 5025 spin_lock(&nr_freq_lock); 5026 if (atomic_dec_and_test(&nr_freq_events)) 5027 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 5028 spin_unlock(&nr_freq_lock); 5029 #endif 5030 } 5031 5032 static void unaccount_freq_event(void) 5033 { 5034 if (tick_nohz_full_enabled()) 5035 unaccount_freq_event_nohz(); 5036 else 5037 atomic_dec(&nr_freq_events); 5038 } 5039 5040 static void unaccount_event(struct perf_event *event) 5041 { 5042 bool dec = false; 5043 5044 if (event->parent) 5045 return; 5046 5047 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 5048 dec = true; 5049 if (event->attr.mmap || event->attr.mmap_data) 5050 atomic_dec(&nr_mmap_events); 5051 if (event->attr.build_id) 5052 atomic_dec(&nr_build_id_events); 5053 if (event->attr.comm) 5054 atomic_dec(&nr_comm_events); 5055 if (event->attr.namespaces) 5056 atomic_dec(&nr_namespaces_events); 5057 if (event->attr.cgroup) 5058 atomic_dec(&nr_cgroup_events); 5059 if (event->attr.task) 5060 atomic_dec(&nr_task_events); 5061 if (event->attr.freq) 5062 unaccount_freq_event(); 5063 if (event->attr.context_switch) { 5064 dec = true; 5065 atomic_dec(&nr_switch_events); 5066 } 5067 if (is_cgroup_event(event)) 5068 dec = true; 5069 if (has_branch_stack(event)) 5070 dec = true; 5071 if (event->attr.ksymbol) 5072 atomic_dec(&nr_ksymbol_events); 5073 if (event->attr.bpf_event) 5074 atomic_dec(&nr_bpf_events); 5075 if (event->attr.text_poke) 5076 atomic_dec(&nr_text_poke_events); 5077 5078 if (dec) { 5079 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 5080 schedule_delayed_work(&perf_sched_work, HZ); 5081 } 5082 5083 unaccount_pmu_sb_event(event); 5084 } 5085 5086 static void perf_sched_delayed(struct work_struct *work) 5087 { 5088 mutex_lock(&perf_sched_mutex); 5089 if (atomic_dec_and_test(&perf_sched_count)) 5090 static_branch_disable(&perf_sched_events); 5091 mutex_unlock(&perf_sched_mutex); 5092 } 5093 5094 /* 5095 * The following implement mutual exclusion of events on "exclusive" pmus 5096 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 5097 * at a time, so we disallow creating events that might conflict, namely: 5098 * 5099 * 1) cpu-wide events in the presence of per-task events, 5100 * 2) per-task events in the presence of cpu-wide events, 5101 * 3) two matching events on the same perf_event_context. 5102 * 5103 * The former two cases are handled in the allocation path (perf_event_alloc(), 5104 * _free_event()), the latter -- before the first perf_install_in_context(). 5105 */ 5106 static int exclusive_event_init(struct perf_event *event) 5107 { 5108 struct pmu *pmu = event->pmu; 5109 5110 if (!is_exclusive_pmu(pmu)) 5111 return 0; 5112 5113 /* 5114 * Prevent co-existence of per-task and cpu-wide events on the 5115 * same exclusive pmu. 5116 * 5117 * Negative pmu::exclusive_cnt means there are cpu-wide 5118 * events on this "exclusive" pmu, positive means there are 5119 * per-task events. 5120 * 5121 * Since this is called in perf_event_alloc() path, event::ctx 5122 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 5123 * to mean "per-task event", because unlike other attach states it 5124 * never gets cleared. 5125 */ 5126 if (event->attach_state & PERF_ATTACH_TASK) { 5127 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 5128 return -EBUSY; 5129 } else { 5130 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 5131 return -EBUSY; 5132 } 5133 5134 return 0; 5135 } 5136 5137 static void exclusive_event_destroy(struct perf_event *event) 5138 { 5139 struct pmu *pmu = event->pmu; 5140 5141 if (!is_exclusive_pmu(pmu)) 5142 return; 5143 5144 /* see comment in exclusive_event_init() */ 5145 if (event->attach_state & PERF_ATTACH_TASK) 5146 atomic_dec(&pmu->exclusive_cnt); 5147 else 5148 atomic_inc(&pmu->exclusive_cnt); 5149 } 5150 5151 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 5152 { 5153 if ((e1->pmu == e2->pmu) && 5154 (e1->cpu == e2->cpu || 5155 e1->cpu == -1 || 5156 e2->cpu == -1)) 5157 return true; 5158 return false; 5159 } 5160 5161 static bool exclusive_event_installable(struct perf_event *event, 5162 struct perf_event_context *ctx) 5163 { 5164 struct perf_event *iter_event; 5165 struct pmu *pmu = event->pmu; 5166 5167 lockdep_assert_held(&ctx->mutex); 5168 5169 if (!is_exclusive_pmu(pmu)) 5170 return true; 5171 5172 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 5173 if (exclusive_event_match(iter_event, event)) 5174 return false; 5175 } 5176 5177 return true; 5178 } 5179 5180 static void perf_addr_filters_splice(struct perf_event *event, 5181 struct list_head *head); 5182 5183 static void perf_pending_task_sync(struct perf_event *event) 5184 { 5185 struct callback_head *head = &event->pending_task; 5186 5187 if (!event->pending_work) 5188 return; 5189 /* 5190 * If the task is queued to the current task's queue, we 5191 * obviously can't wait for it to complete. Simply cancel it. 5192 */ 5193 if (task_work_cancel(current, head)) { 5194 event->pending_work = 0; 5195 local_dec(&event->ctx->nr_pending); 5196 return; 5197 } 5198 5199 /* 5200 * All accesses related to the event are within the same 5201 * non-preemptible section in perf_pending_task(). The RCU 5202 * grace period before the event is freed will make sure all 5203 * those accesses are complete by then. 5204 */ 5205 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE); 5206 } 5207 5208 static void _free_event(struct perf_event *event) 5209 { 5210 irq_work_sync(&event->pending_irq); 5211 perf_pending_task_sync(event); 5212 5213 unaccount_event(event); 5214 5215 security_perf_event_free(event); 5216 5217 if (event->rb) { 5218 /* 5219 * Can happen when we close an event with re-directed output. 5220 * 5221 * Since we have a 0 refcount, perf_mmap_close() will skip 5222 * over us; possibly making our ring_buffer_put() the last. 5223 */ 5224 mutex_lock(&event->mmap_mutex); 5225 ring_buffer_attach(event, NULL); 5226 mutex_unlock(&event->mmap_mutex); 5227 } 5228 5229 if (is_cgroup_event(event)) 5230 perf_detach_cgroup(event); 5231 5232 if (!event->parent) { 5233 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 5234 put_callchain_buffers(); 5235 } 5236 5237 perf_event_free_bpf_prog(event); 5238 perf_addr_filters_splice(event, NULL); 5239 kfree(event->addr_filter_ranges); 5240 5241 if (event->destroy) 5242 event->destroy(event); 5243 5244 /* 5245 * Must be after ->destroy(), due to uprobe_perf_close() using 5246 * hw.target. 5247 */ 5248 if (event->hw.target) 5249 put_task_struct(event->hw.target); 5250 5251 if (event->pmu_ctx) 5252 put_pmu_ctx(event->pmu_ctx); 5253 5254 /* 5255 * perf_event_free_task() relies on put_ctx() being 'last', in particular 5256 * all task references must be cleaned up. 5257 */ 5258 if (event->ctx) 5259 put_ctx(event->ctx); 5260 5261 exclusive_event_destroy(event); 5262 module_put(event->pmu->module); 5263 5264 call_rcu(&event->rcu_head, free_event_rcu); 5265 } 5266 5267 /* 5268 * Used to free events which have a known refcount of 1, such as in error paths 5269 * where the event isn't exposed yet and inherited events. 5270 */ 5271 static void free_event(struct perf_event *event) 5272 { 5273 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 5274 "unexpected event refcount: %ld; ptr=%p\n", 5275 atomic_long_read(&event->refcount), event)) { 5276 /* leak to avoid use-after-free */ 5277 return; 5278 } 5279 5280 _free_event(event); 5281 } 5282 5283 /* 5284 * Remove user event from the owner task. 5285 */ 5286 static void perf_remove_from_owner(struct perf_event *event) 5287 { 5288 struct task_struct *owner; 5289 5290 rcu_read_lock(); 5291 /* 5292 * Matches the smp_store_release() in perf_event_exit_task(). If we 5293 * observe !owner it means the list deletion is complete and we can 5294 * indeed free this event, otherwise we need to serialize on 5295 * owner->perf_event_mutex. 5296 */ 5297 owner = READ_ONCE(event->owner); 5298 if (owner) { 5299 /* 5300 * Since delayed_put_task_struct() also drops the last 5301 * task reference we can safely take a new reference 5302 * while holding the rcu_read_lock(). 5303 */ 5304 get_task_struct(owner); 5305 } 5306 rcu_read_unlock(); 5307 5308 if (owner) { 5309 /* 5310 * If we're here through perf_event_exit_task() we're already 5311 * holding ctx->mutex which would be an inversion wrt. the 5312 * normal lock order. 5313 * 5314 * However we can safely take this lock because its the child 5315 * ctx->mutex. 5316 */ 5317 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 5318 5319 /* 5320 * We have to re-check the event->owner field, if it is cleared 5321 * we raced with perf_event_exit_task(), acquiring the mutex 5322 * ensured they're done, and we can proceed with freeing the 5323 * event. 5324 */ 5325 if (event->owner) { 5326 list_del_init(&event->owner_entry); 5327 smp_store_release(&event->owner, NULL); 5328 } 5329 mutex_unlock(&owner->perf_event_mutex); 5330 put_task_struct(owner); 5331 } 5332 } 5333 5334 static void put_event(struct perf_event *event) 5335 { 5336 if (!atomic_long_dec_and_test(&event->refcount)) 5337 return; 5338 5339 _free_event(event); 5340 } 5341 5342 /* 5343 * Kill an event dead; while event:refcount will preserve the event 5344 * object, it will not preserve its functionality. Once the last 'user' 5345 * gives up the object, we'll destroy the thing. 5346 */ 5347 int perf_event_release_kernel(struct perf_event *event) 5348 { 5349 struct perf_event_context *ctx = event->ctx; 5350 struct perf_event *child, *tmp; 5351 LIST_HEAD(free_list); 5352 5353 /* 5354 * If we got here through err_alloc: free_event(event); we will not 5355 * have attached to a context yet. 5356 */ 5357 if (!ctx) { 5358 WARN_ON_ONCE(event->attach_state & 5359 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 5360 goto no_ctx; 5361 } 5362 5363 if (!is_kernel_event(event)) 5364 perf_remove_from_owner(event); 5365 5366 ctx = perf_event_ctx_lock(event); 5367 WARN_ON_ONCE(ctx->parent_ctx); 5368 5369 /* 5370 * Mark this event as STATE_DEAD, there is no external reference to it 5371 * anymore. 5372 * 5373 * Anybody acquiring event->child_mutex after the below loop _must_ 5374 * also see this, most importantly inherit_event() which will avoid 5375 * placing more children on the list. 5376 * 5377 * Thus this guarantees that we will in fact observe and kill _ALL_ 5378 * child events. 5379 */ 5380 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD); 5381 5382 perf_event_ctx_unlock(event, ctx); 5383 5384 again: 5385 mutex_lock(&event->child_mutex); 5386 list_for_each_entry(child, &event->child_list, child_list) { 5387 void *var = NULL; 5388 5389 /* 5390 * Cannot change, child events are not migrated, see the 5391 * comment with perf_event_ctx_lock_nested(). 5392 */ 5393 ctx = READ_ONCE(child->ctx); 5394 /* 5395 * Since child_mutex nests inside ctx::mutex, we must jump 5396 * through hoops. We start by grabbing a reference on the ctx. 5397 * 5398 * Since the event cannot get freed while we hold the 5399 * child_mutex, the context must also exist and have a !0 5400 * reference count. 5401 */ 5402 get_ctx(ctx); 5403 5404 /* 5405 * Now that we have a ctx ref, we can drop child_mutex, and 5406 * acquire ctx::mutex without fear of it going away. Then we 5407 * can re-acquire child_mutex. 5408 */ 5409 mutex_unlock(&event->child_mutex); 5410 mutex_lock(&ctx->mutex); 5411 mutex_lock(&event->child_mutex); 5412 5413 /* 5414 * Now that we hold ctx::mutex and child_mutex, revalidate our 5415 * state, if child is still the first entry, it didn't get freed 5416 * and we can continue doing so. 5417 */ 5418 tmp = list_first_entry_or_null(&event->child_list, 5419 struct perf_event, child_list); 5420 if (tmp == child) { 5421 perf_remove_from_context(child, DETACH_GROUP); 5422 list_move(&child->child_list, &free_list); 5423 /* 5424 * This matches the refcount bump in inherit_event(); 5425 * this can't be the last reference. 5426 */ 5427 put_event(event); 5428 } else { 5429 var = &ctx->refcount; 5430 } 5431 5432 mutex_unlock(&event->child_mutex); 5433 mutex_unlock(&ctx->mutex); 5434 put_ctx(ctx); 5435 5436 if (var) { 5437 /* 5438 * If perf_event_free_task() has deleted all events from the 5439 * ctx while the child_mutex got released above, make sure to 5440 * notify about the preceding put_ctx(). 5441 */ 5442 smp_mb(); /* pairs with wait_var_event() */ 5443 wake_up_var(var); 5444 } 5445 goto again; 5446 } 5447 mutex_unlock(&event->child_mutex); 5448 5449 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 5450 void *var = &child->ctx->refcount; 5451 5452 list_del(&child->child_list); 5453 free_event(child); 5454 5455 /* 5456 * Wake any perf_event_free_task() waiting for this event to be 5457 * freed. 5458 */ 5459 smp_mb(); /* pairs with wait_var_event() */ 5460 wake_up_var(var); 5461 } 5462 5463 no_ctx: 5464 put_event(event); /* Must be the 'last' reference */ 5465 return 0; 5466 } 5467 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 5468 5469 /* 5470 * Called when the last reference to the file is gone. 5471 */ 5472 static int perf_release(struct inode *inode, struct file *file) 5473 { 5474 perf_event_release_kernel(file->private_data); 5475 return 0; 5476 } 5477 5478 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5479 { 5480 struct perf_event *child; 5481 u64 total = 0; 5482 5483 *enabled = 0; 5484 *running = 0; 5485 5486 mutex_lock(&event->child_mutex); 5487 5488 (void)perf_event_read(event, false); 5489 total += perf_event_count(event); 5490 5491 *enabled += event->total_time_enabled + 5492 atomic64_read(&event->child_total_time_enabled); 5493 *running += event->total_time_running + 5494 atomic64_read(&event->child_total_time_running); 5495 5496 list_for_each_entry(child, &event->child_list, child_list) { 5497 (void)perf_event_read(child, false); 5498 total += perf_event_count(child); 5499 *enabled += child->total_time_enabled; 5500 *running += child->total_time_running; 5501 } 5502 mutex_unlock(&event->child_mutex); 5503 5504 return total; 5505 } 5506 5507 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 5508 { 5509 struct perf_event_context *ctx; 5510 u64 count; 5511 5512 ctx = perf_event_ctx_lock(event); 5513 count = __perf_event_read_value(event, enabled, running); 5514 perf_event_ctx_unlock(event, ctx); 5515 5516 return count; 5517 } 5518 EXPORT_SYMBOL_GPL(perf_event_read_value); 5519 5520 static int __perf_read_group_add(struct perf_event *leader, 5521 u64 read_format, u64 *values) 5522 { 5523 struct perf_event_context *ctx = leader->ctx; 5524 struct perf_event *sub, *parent; 5525 unsigned long flags; 5526 int n = 1; /* skip @nr */ 5527 int ret; 5528 5529 ret = perf_event_read(leader, true); 5530 if (ret) 5531 return ret; 5532 5533 raw_spin_lock_irqsave(&ctx->lock, flags); 5534 /* 5535 * Verify the grouping between the parent and child (inherited) 5536 * events is still in tact. 5537 * 5538 * Specifically: 5539 * - leader->ctx->lock pins leader->sibling_list 5540 * - parent->child_mutex pins parent->child_list 5541 * - parent->ctx->mutex pins parent->sibling_list 5542 * 5543 * Because parent->ctx != leader->ctx (and child_list nests inside 5544 * ctx->mutex), group destruction is not atomic between children, also 5545 * see perf_event_release_kernel(). Additionally, parent can grow the 5546 * group. 5547 * 5548 * Therefore it is possible to have parent and child groups in a 5549 * different configuration and summing over such a beast makes no sense 5550 * what so ever. 5551 * 5552 * Reject this. 5553 */ 5554 parent = leader->parent; 5555 if (parent && 5556 (parent->group_generation != leader->group_generation || 5557 parent->nr_siblings != leader->nr_siblings)) { 5558 ret = -ECHILD; 5559 goto unlock; 5560 } 5561 5562 /* 5563 * Since we co-schedule groups, {enabled,running} times of siblings 5564 * will be identical to those of the leader, so we only publish one 5565 * set. 5566 */ 5567 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5568 values[n++] += leader->total_time_enabled + 5569 atomic64_read(&leader->child_total_time_enabled); 5570 } 5571 5572 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5573 values[n++] += leader->total_time_running + 5574 atomic64_read(&leader->child_total_time_running); 5575 } 5576 5577 /* 5578 * Write {count,id} tuples for every sibling. 5579 */ 5580 values[n++] += perf_event_count(leader); 5581 if (read_format & PERF_FORMAT_ID) 5582 values[n++] = primary_event_id(leader); 5583 if (read_format & PERF_FORMAT_LOST) 5584 values[n++] = atomic64_read(&leader->lost_samples); 5585 5586 for_each_sibling_event(sub, leader) { 5587 values[n++] += perf_event_count(sub); 5588 if (read_format & PERF_FORMAT_ID) 5589 values[n++] = primary_event_id(sub); 5590 if (read_format & PERF_FORMAT_LOST) 5591 values[n++] = atomic64_read(&sub->lost_samples); 5592 } 5593 5594 unlock: 5595 raw_spin_unlock_irqrestore(&ctx->lock, flags); 5596 return ret; 5597 } 5598 5599 static int perf_read_group(struct perf_event *event, 5600 u64 read_format, char __user *buf) 5601 { 5602 struct perf_event *leader = event->group_leader, *child; 5603 struct perf_event_context *ctx = leader->ctx; 5604 int ret; 5605 u64 *values; 5606 5607 lockdep_assert_held(&ctx->mutex); 5608 5609 values = kzalloc(event->read_size, GFP_KERNEL); 5610 if (!values) 5611 return -ENOMEM; 5612 5613 values[0] = 1 + leader->nr_siblings; 5614 5615 mutex_lock(&leader->child_mutex); 5616 5617 ret = __perf_read_group_add(leader, read_format, values); 5618 if (ret) 5619 goto unlock; 5620 5621 list_for_each_entry(child, &leader->child_list, child_list) { 5622 ret = __perf_read_group_add(child, read_format, values); 5623 if (ret) 5624 goto unlock; 5625 } 5626 5627 mutex_unlock(&leader->child_mutex); 5628 5629 ret = event->read_size; 5630 if (copy_to_user(buf, values, event->read_size)) 5631 ret = -EFAULT; 5632 goto out; 5633 5634 unlock: 5635 mutex_unlock(&leader->child_mutex); 5636 out: 5637 kfree(values); 5638 return ret; 5639 } 5640 5641 static int perf_read_one(struct perf_event *event, 5642 u64 read_format, char __user *buf) 5643 { 5644 u64 enabled, running; 5645 u64 values[5]; 5646 int n = 0; 5647 5648 values[n++] = __perf_event_read_value(event, &enabled, &running); 5649 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5650 values[n++] = enabled; 5651 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5652 values[n++] = running; 5653 if (read_format & PERF_FORMAT_ID) 5654 values[n++] = primary_event_id(event); 5655 if (read_format & PERF_FORMAT_LOST) 5656 values[n++] = atomic64_read(&event->lost_samples); 5657 5658 if (copy_to_user(buf, values, n * sizeof(u64))) 5659 return -EFAULT; 5660 5661 return n * sizeof(u64); 5662 } 5663 5664 static bool is_event_hup(struct perf_event *event) 5665 { 5666 bool no_children; 5667 5668 if (event->state > PERF_EVENT_STATE_EXIT) 5669 return false; 5670 5671 mutex_lock(&event->child_mutex); 5672 no_children = list_empty(&event->child_list); 5673 mutex_unlock(&event->child_mutex); 5674 return no_children; 5675 } 5676 5677 /* 5678 * Read the performance event - simple non blocking version for now 5679 */ 5680 static ssize_t 5681 __perf_read(struct perf_event *event, char __user *buf, size_t count) 5682 { 5683 u64 read_format = event->attr.read_format; 5684 int ret; 5685 5686 /* 5687 * Return end-of-file for a read on an event that is in 5688 * error state (i.e. because it was pinned but it couldn't be 5689 * scheduled on to the CPU at some point). 5690 */ 5691 if (event->state == PERF_EVENT_STATE_ERROR) 5692 return 0; 5693 5694 if (count < event->read_size) 5695 return -ENOSPC; 5696 5697 WARN_ON_ONCE(event->ctx->parent_ctx); 5698 if (read_format & PERF_FORMAT_GROUP) 5699 ret = perf_read_group(event, read_format, buf); 5700 else 5701 ret = perf_read_one(event, read_format, buf); 5702 5703 return ret; 5704 } 5705 5706 static ssize_t 5707 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 5708 { 5709 struct perf_event *event = file->private_data; 5710 struct perf_event_context *ctx; 5711 int ret; 5712 5713 ret = security_perf_event_read(event); 5714 if (ret) 5715 return ret; 5716 5717 ctx = perf_event_ctx_lock(event); 5718 ret = __perf_read(event, buf, count); 5719 perf_event_ctx_unlock(event, ctx); 5720 5721 return ret; 5722 } 5723 5724 static __poll_t perf_poll(struct file *file, poll_table *wait) 5725 { 5726 struct perf_event *event = file->private_data; 5727 struct perf_buffer *rb; 5728 __poll_t events = EPOLLHUP; 5729 5730 poll_wait(file, &event->waitq, wait); 5731 5732 if (is_event_hup(event)) 5733 return events; 5734 5735 /* 5736 * Pin the event->rb by taking event->mmap_mutex; otherwise 5737 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 5738 */ 5739 mutex_lock(&event->mmap_mutex); 5740 rb = event->rb; 5741 if (rb) 5742 events = atomic_xchg(&rb->poll, 0); 5743 mutex_unlock(&event->mmap_mutex); 5744 return events; 5745 } 5746 5747 static void _perf_event_reset(struct perf_event *event) 5748 { 5749 (void)perf_event_read(event, false); 5750 local64_set(&event->count, 0); 5751 perf_event_update_userpage(event); 5752 } 5753 5754 /* Assume it's not an event with inherit set. */ 5755 u64 perf_event_pause(struct perf_event *event, bool reset) 5756 { 5757 struct perf_event_context *ctx; 5758 u64 count; 5759 5760 ctx = perf_event_ctx_lock(event); 5761 WARN_ON_ONCE(event->attr.inherit); 5762 _perf_event_disable(event); 5763 count = local64_read(&event->count); 5764 if (reset) 5765 local64_set(&event->count, 0); 5766 perf_event_ctx_unlock(event, ctx); 5767 5768 return count; 5769 } 5770 EXPORT_SYMBOL_GPL(perf_event_pause); 5771 5772 /* 5773 * Holding the top-level event's child_mutex means that any 5774 * descendant process that has inherited this event will block 5775 * in perf_event_exit_event() if it goes to exit, thus satisfying the 5776 * task existence requirements of perf_event_enable/disable. 5777 */ 5778 static void perf_event_for_each_child(struct perf_event *event, 5779 void (*func)(struct perf_event *)) 5780 { 5781 struct perf_event *child; 5782 5783 WARN_ON_ONCE(event->ctx->parent_ctx); 5784 5785 mutex_lock(&event->child_mutex); 5786 func(event); 5787 list_for_each_entry(child, &event->child_list, child_list) 5788 func(child); 5789 mutex_unlock(&event->child_mutex); 5790 } 5791 5792 static void perf_event_for_each(struct perf_event *event, 5793 void (*func)(struct perf_event *)) 5794 { 5795 struct perf_event_context *ctx = event->ctx; 5796 struct perf_event *sibling; 5797 5798 lockdep_assert_held(&ctx->mutex); 5799 5800 event = event->group_leader; 5801 5802 perf_event_for_each_child(event, func); 5803 for_each_sibling_event(sibling, event) 5804 perf_event_for_each_child(sibling, func); 5805 } 5806 5807 static void __perf_event_period(struct perf_event *event, 5808 struct perf_cpu_context *cpuctx, 5809 struct perf_event_context *ctx, 5810 void *info) 5811 { 5812 u64 value = *((u64 *)info); 5813 bool active; 5814 5815 if (event->attr.freq) { 5816 event->attr.sample_freq = value; 5817 } else { 5818 event->attr.sample_period = value; 5819 event->hw.sample_period = value; 5820 } 5821 5822 active = (event->state == PERF_EVENT_STATE_ACTIVE); 5823 if (active) { 5824 perf_pmu_disable(event->pmu); 5825 /* 5826 * We could be throttled; unthrottle now to avoid the tick 5827 * trying to unthrottle while we already re-started the event. 5828 */ 5829 if (event->hw.interrupts == MAX_INTERRUPTS) { 5830 event->hw.interrupts = 0; 5831 perf_log_throttle(event, 1); 5832 } 5833 event->pmu->stop(event, PERF_EF_UPDATE); 5834 } 5835 5836 local64_set(&event->hw.period_left, 0); 5837 5838 if (active) { 5839 event->pmu->start(event, PERF_EF_RELOAD); 5840 perf_pmu_enable(event->pmu); 5841 } 5842 } 5843 5844 static int perf_event_check_period(struct perf_event *event, u64 value) 5845 { 5846 return event->pmu->check_period(event, value); 5847 } 5848 5849 static int _perf_event_period(struct perf_event *event, u64 value) 5850 { 5851 if (!is_sampling_event(event)) 5852 return -EINVAL; 5853 5854 if (!value) 5855 return -EINVAL; 5856 5857 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 5858 return -EINVAL; 5859 5860 if (perf_event_check_period(event, value)) 5861 return -EINVAL; 5862 5863 if (!event->attr.freq && (value & (1ULL << 63))) 5864 return -EINVAL; 5865 5866 event_function_call(event, __perf_event_period, &value); 5867 5868 return 0; 5869 } 5870 5871 int perf_event_period(struct perf_event *event, u64 value) 5872 { 5873 struct perf_event_context *ctx; 5874 int ret; 5875 5876 ctx = perf_event_ctx_lock(event); 5877 ret = _perf_event_period(event, value); 5878 perf_event_ctx_unlock(event, ctx); 5879 5880 return ret; 5881 } 5882 EXPORT_SYMBOL_GPL(perf_event_period); 5883 5884 static const struct file_operations perf_fops; 5885 5886 static inline int perf_fget_light(int fd, struct fd *p) 5887 { 5888 struct fd f = fdget(fd); 5889 if (!f.file) 5890 return -EBADF; 5891 5892 if (f.file->f_op != &perf_fops) { 5893 fdput(f); 5894 return -EBADF; 5895 } 5896 *p = f; 5897 return 0; 5898 } 5899 5900 static int perf_event_set_output(struct perf_event *event, 5901 struct perf_event *output_event); 5902 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5903 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5904 struct perf_event_attr *attr); 5905 5906 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5907 { 5908 void (*func)(struct perf_event *); 5909 u32 flags = arg; 5910 5911 switch (cmd) { 5912 case PERF_EVENT_IOC_ENABLE: 5913 func = _perf_event_enable; 5914 break; 5915 case PERF_EVENT_IOC_DISABLE: 5916 func = _perf_event_disable; 5917 break; 5918 case PERF_EVENT_IOC_RESET: 5919 func = _perf_event_reset; 5920 break; 5921 5922 case PERF_EVENT_IOC_REFRESH: 5923 return _perf_event_refresh(event, arg); 5924 5925 case PERF_EVENT_IOC_PERIOD: 5926 { 5927 u64 value; 5928 5929 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value))) 5930 return -EFAULT; 5931 5932 return _perf_event_period(event, value); 5933 } 5934 case PERF_EVENT_IOC_ID: 5935 { 5936 u64 id = primary_event_id(event); 5937 5938 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5939 return -EFAULT; 5940 return 0; 5941 } 5942 5943 case PERF_EVENT_IOC_SET_OUTPUT: 5944 { 5945 int ret; 5946 if (arg != -1) { 5947 struct perf_event *output_event; 5948 struct fd output; 5949 ret = perf_fget_light(arg, &output); 5950 if (ret) 5951 return ret; 5952 output_event = output.file->private_data; 5953 ret = perf_event_set_output(event, output_event); 5954 fdput(output); 5955 } else { 5956 ret = perf_event_set_output(event, NULL); 5957 } 5958 return ret; 5959 } 5960 5961 case PERF_EVENT_IOC_SET_FILTER: 5962 return perf_event_set_filter(event, (void __user *)arg); 5963 5964 case PERF_EVENT_IOC_SET_BPF: 5965 { 5966 struct bpf_prog *prog; 5967 int err; 5968 5969 prog = bpf_prog_get(arg); 5970 if (IS_ERR(prog)) 5971 return PTR_ERR(prog); 5972 5973 err = perf_event_set_bpf_prog(event, prog, 0); 5974 if (err) { 5975 bpf_prog_put(prog); 5976 return err; 5977 } 5978 5979 return 0; 5980 } 5981 5982 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5983 struct perf_buffer *rb; 5984 5985 rcu_read_lock(); 5986 rb = rcu_dereference(event->rb); 5987 if (!rb || !rb->nr_pages) { 5988 rcu_read_unlock(); 5989 return -EINVAL; 5990 } 5991 rb_toggle_paused(rb, !!arg); 5992 rcu_read_unlock(); 5993 return 0; 5994 } 5995 5996 case PERF_EVENT_IOC_QUERY_BPF: 5997 return perf_event_query_prog_array(event, (void __user *)arg); 5998 5999 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 6000 struct perf_event_attr new_attr; 6001 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 6002 &new_attr); 6003 6004 if (err) 6005 return err; 6006 6007 return perf_event_modify_attr(event, &new_attr); 6008 } 6009 default: 6010 return -ENOTTY; 6011 } 6012 6013 if (flags & PERF_IOC_FLAG_GROUP) 6014 perf_event_for_each(event, func); 6015 else 6016 perf_event_for_each_child(event, func); 6017 6018 return 0; 6019 } 6020 6021 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 6022 { 6023 struct perf_event *event = file->private_data; 6024 struct perf_event_context *ctx; 6025 long ret; 6026 6027 /* Treat ioctl like writes as it is likely a mutating operation. */ 6028 ret = security_perf_event_write(event); 6029 if (ret) 6030 return ret; 6031 6032 ctx = perf_event_ctx_lock(event); 6033 ret = _perf_ioctl(event, cmd, arg); 6034 perf_event_ctx_unlock(event, ctx); 6035 6036 return ret; 6037 } 6038 6039 #ifdef CONFIG_COMPAT 6040 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 6041 unsigned long arg) 6042 { 6043 switch (_IOC_NR(cmd)) { 6044 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 6045 case _IOC_NR(PERF_EVENT_IOC_ID): 6046 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 6047 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 6048 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 6049 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 6050 cmd &= ~IOCSIZE_MASK; 6051 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 6052 } 6053 break; 6054 } 6055 return perf_ioctl(file, cmd, arg); 6056 } 6057 #else 6058 # define perf_compat_ioctl NULL 6059 #endif 6060 6061 int perf_event_task_enable(void) 6062 { 6063 struct perf_event_context *ctx; 6064 struct perf_event *event; 6065 6066 mutex_lock(¤t->perf_event_mutex); 6067 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6068 ctx = perf_event_ctx_lock(event); 6069 perf_event_for_each_child(event, _perf_event_enable); 6070 perf_event_ctx_unlock(event, ctx); 6071 } 6072 mutex_unlock(¤t->perf_event_mutex); 6073 6074 return 0; 6075 } 6076 6077 int perf_event_task_disable(void) 6078 { 6079 struct perf_event_context *ctx; 6080 struct perf_event *event; 6081 6082 mutex_lock(¤t->perf_event_mutex); 6083 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 6084 ctx = perf_event_ctx_lock(event); 6085 perf_event_for_each_child(event, _perf_event_disable); 6086 perf_event_ctx_unlock(event, ctx); 6087 } 6088 mutex_unlock(¤t->perf_event_mutex); 6089 6090 return 0; 6091 } 6092 6093 static int perf_event_index(struct perf_event *event) 6094 { 6095 if (event->hw.state & PERF_HES_STOPPED) 6096 return 0; 6097 6098 if (event->state != PERF_EVENT_STATE_ACTIVE) 6099 return 0; 6100 6101 return event->pmu->event_idx(event); 6102 } 6103 6104 static void perf_event_init_userpage(struct perf_event *event) 6105 { 6106 struct perf_event_mmap_page *userpg; 6107 struct perf_buffer *rb; 6108 6109 rcu_read_lock(); 6110 rb = rcu_dereference(event->rb); 6111 if (!rb) 6112 goto unlock; 6113 6114 userpg = rb->user_page; 6115 6116 /* Allow new userspace to detect that bit 0 is deprecated */ 6117 userpg->cap_bit0_is_deprecated = 1; 6118 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 6119 userpg->data_offset = PAGE_SIZE; 6120 userpg->data_size = perf_data_size(rb); 6121 6122 unlock: 6123 rcu_read_unlock(); 6124 } 6125 6126 void __weak arch_perf_update_userpage( 6127 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 6128 { 6129 } 6130 6131 /* 6132 * Callers need to ensure there can be no nesting of this function, otherwise 6133 * the seqlock logic goes bad. We can not serialize this because the arch 6134 * code calls this from NMI context. 6135 */ 6136 void perf_event_update_userpage(struct perf_event *event) 6137 { 6138 struct perf_event_mmap_page *userpg; 6139 struct perf_buffer *rb; 6140 u64 enabled, running, now; 6141 6142 rcu_read_lock(); 6143 rb = rcu_dereference(event->rb); 6144 if (!rb) 6145 goto unlock; 6146 6147 /* 6148 * compute total_time_enabled, total_time_running 6149 * based on snapshot values taken when the event 6150 * was last scheduled in. 6151 * 6152 * we cannot simply called update_context_time() 6153 * because of locking issue as we can be called in 6154 * NMI context 6155 */ 6156 calc_timer_values(event, &now, &enabled, &running); 6157 6158 userpg = rb->user_page; 6159 /* 6160 * Disable preemption to guarantee consistent time stamps are stored to 6161 * the user page. 6162 */ 6163 preempt_disable(); 6164 ++userpg->lock; 6165 barrier(); 6166 userpg->index = perf_event_index(event); 6167 userpg->offset = perf_event_count(event); 6168 if (userpg->index) 6169 userpg->offset -= local64_read(&event->hw.prev_count); 6170 6171 userpg->time_enabled = enabled + 6172 atomic64_read(&event->child_total_time_enabled); 6173 6174 userpg->time_running = running + 6175 atomic64_read(&event->child_total_time_running); 6176 6177 arch_perf_update_userpage(event, userpg, now); 6178 6179 barrier(); 6180 ++userpg->lock; 6181 preempt_enable(); 6182 unlock: 6183 rcu_read_unlock(); 6184 } 6185 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 6186 6187 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 6188 { 6189 struct perf_event *event = vmf->vma->vm_file->private_data; 6190 struct perf_buffer *rb; 6191 vm_fault_t ret = VM_FAULT_SIGBUS; 6192 6193 if (vmf->flags & FAULT_FLAG_MKWRITE) { 6194 if (vmf->pgoff == 0) 6195 ret = 0; 6196 return ret; 6197 } 6198 6199 rcu_read_lock(); 6200 rb = rcu_dereference(event->rb); 6201 if (!rb) 6202 goto unlock; 6203 6204 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 6205 goto unlock; 6206 6207 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 6208 if (!vmf->page) 6209 goto unlock; 6210 6211 get_page(vmf->page); 6212 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 6213 vmf->page->index = vmf->pgoff; 6214 6215 ret = 0; 6216 unlock: 6217 rcu_read_unlock(); 6218 6219 return ret; 6220 } 6221 6222 static void ring_buffer_attach(struct perf_event *event, 6223 struct perf_buffer *rb) 6224 { 6225 struct perf_buffer *old_rb = NULL; 6226 unsigned long flags; 6227 6228 WARN_ON_ONCE(event->parent); 6229 6230 if (event->rb) { 6231 /* 6232 * Should be impossible, we set this when removing 6233 * event->rb_entry and wait/clear when adding event->rb_entry. 6234 */ 6235 WARN_ON_ONCE(event->rcu_pending); 6236 6237 old_rb = event->rb; 6238 spin_lock_irqsave(&old_rb->event_lock, flags); 6239 list_del_rcu(&event->rb_entry); 6240 spin_unlock_irqrestore(&old_rb->event_lock, flags); 6241 6242 event->rcu_batches = get_state_synchronize_rcu(); 6243 event->rcu_pending = 1; 6244 } 6245 6246 if (rb) { 6247 if (event->rcu_pending) { 6248 cond_synchronize_rcu(event->rcu_batches); 6249 event->rcu_pending = 0; 6250 } 6251 6252 spin_lock_irqsave(&rb->event_lock, flags); 6253 list_add_rcu(&event->rb_entry, &rb->event_list); 6254 spin_unlock_irqrestore(&rb->event_lock, flags); 6255 } 6256 6257 /* 6258 * Avoid racing with perf_mmap_close(AUX): stop the event 6259 * before swizzling the event::rb pointer; if it's getting 6260 * unmapped, its aux_mmap_count will be 0 and it won't 6261 * restart. See the comment in __perf_pmu_output_stop(). 6262 * 6263 * Data will inevitably be lost when set_output is done in 6264 * mid-air, but then again, whoever does it like this is 6265 * not in for the data anyway. 6266 */ 6267 if (has_aux(event)) 6268 perf_event_stop(event, 0); 6269 6270 rcu_assign_pointer(event->rb, rb); 6271 6272 if (old_rb) { 6273 ring_buffer_put(old_rb); 6274 /* 6275 * Since we detached before setting the new rb, so that we 6276 * could attach the new rb, we could have missed a wakeup. 6277 * Provide it now. 6278 */ 6279 wake_up_all(&event->waitq); 6280 } 6281 } 6282 6283 static void ring_buffer_wakeup(struct perf_event *event) 6284 { 6285 struct perf_buffer *rb; 6286 6287 if (event->parent) 6288 event = event->parent; 6289 6290 rcu_read_lock(); 6291 rb = rcu_dereference(event->rb); 6292 if (rb) { 6293 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 6294 wake_up_all(&event->waitq); 6295 } 6296 rcu_read_unlock(); 6297 } 6298 6299 struct perf_buffer *ring_buffer_get(struct perf_event *event) 6300 { 6301 struct perf_buffer *rb; 6302 6303 if (event->parent) 6304 event = event->parent; 6305 6306 rcu_read_lock(); 6307 rb = rcu_dereference(event->rb); 6308 if (rb) { 6309 if (!refcount_inc_not_zero(&rb->refcount)) 6310 rb = NULL; 6311 } 6312 rcu_read_unlock(); 6313 6314 return rb; 6315 } 6316 6317 void ring_buffer_put(struct perf_buffer *rb) 6318 { 6319 if (!refcount_dec_and_test(&rb->refcount)) 6320 return; 6321 6322 WARN_ON_ONCE(!list_empty(&rb->event_list)); 6323 6324 call_rcu(&rb->rcu_head, rb_free_rcu); 6325 } 6326 6327 static void perf_mmap_open(struct vm_area_struct *vma) 6328 { 6329 struct perf_event *event = vma->vm_file->private_data; 6330 6331 atomic_inc(&event->mmap_count); 6332 atomic_inc(&event->rb->mmap_count); 6333 6334 if (vma->vm_pgoff) 6335 atomic_inc(&event->rb->aux_mmap_count); 6336 6337 if (event->pmu->event_mapped) 6338 event->pmu->event_mapped(event, vma->vm_mm); 6339 } 6340 6341 static void perf_pmu_output_stop(struct perf_event *event); 6342 6343 /* 6344 * A buffer can be mmap()ed multiple times; either directly through the same 6345 * event, or through other events by use of perf_event_set_output(). 6346 * 6347 * In order to undo the VM accounting done by perf_mmap() we need to destroy 6348 * the buffer here, where we still have a VM context. This means we need 6349 * to detach all events redirecting to us. 6350 */ 6351 static void perf_mmap_close(struct vm_area_struct *vma) 6352 { 6353 struct perf_event *event = vma->vm_file->private_data; 6354 struct perf_buffer *rb = ring_buffer_get(event); 6355 struct user_struct *mmap_user = rb->mmap_user; 6356 int mmap_locked = rb->mmap_locked; 6357 unsigned long size = perf_data_size(rb); 6358 bool detach_rest = false; 6359 6360 if (event->pmu->event_unmapped) 6361 event->pmu->event_unmapped(event, vma->vm_mm); 6362 6363 /* 6364 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex 6365 * to avoid complications. 6366 */ 6367 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 6368 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) { 6369 /* 6370 * Stop all AUX events that are writing to this buffer, 6371 * so that we can free its AUX pages and corresponding PMU 6372 * data. Note that after rb::aux_mmap_count dropped to zero, 6373 * they won't start any more (see perf_aux_output_begin()). 6374 */ 6375 perf_pmu_output_stop(event); 6376 6377 /* now it's safe to free the pages */ 6378 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm); 6379 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 6380 6381 /* this has to be the last one */ 6382 rb_free_aux(rb); 6383 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 6384 6385 mutex_unlock(&rb->aux_mutex); 6386 } 6387 6388 if (atomic_dec_and_test(&rb->mmap_count)) 6389 detach_rest = true; 6390 6391 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 6392 goto out_put; 6393 6394 ring_buffer_attach(event, NULL); 6395 mutex_unlock(&event->mmap_mutex); 6396 6397 /* If there's still other mmap()s of this buffer, we're done. */ 6398 if (!detach_rest) 6399 goto out_put; 6400 6401 /* 6402 * No other mmap()s, detach from all other events that might redirect 6403 * into the now unreachable buffer. Somewhat complicated by the 6404 * fact that rb::event_lock otherwise nests inside mmap_mutex. 6405 */ 6406 again: 6407 rcu_read_lock(); 6408 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 6409 if (!atomic_long_inc_not_zero(&event->refcount)) { 6410 /* 6411 * This event is en-route to free_event() which will 6412 * detach it and remove it from the list. 6413 */ 6414 continue; 6415 } 6416 rcu_read_unlock(); 6417 6418 mutex_lock(&event->mmap_mutex); 6419 /* 6420 * Check we didn't race with perf_event_set_output() which can 6421 * swizzle the rb from under us while we were waiting to 6422 * acquire mmap_mutex. 6423 * 6424 * If we find a different rb; ignore this event, a next 6425 * iteration will no longer find it on the list. We have to 6426 * still restart the iteration to make sure we're not now 6427 * iterating the wrong list. 6428 */ 6429 if (event->rb == rb) 6430 ring_buffer_attach(event, NULL); 6431 6432 mutex_unlock(&event->mmap_mutex); 6433 put_event(event); 6434 6435 /* 6436 * Restart the iteration; either we're on the wrong list or 6437 * destroyed its integrity by doing a deletion. 6438 */ 6439 goto again; 6440 } 6441 rcu_read_unlock(); 6442 6443 /* 6444 * It could be there's still a few 0-ref events on the list; they'll 6445 * get cleaned up by free_event() -- they'll also still have their 6446 * ref on the rb and will free it whenever they are done with it. 6447 * 6448 * Aside from that, this buffer is 'fully' detached and unmapped, 6449 * undo the VM accounting. 6450 */ 6451 6452 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked, 6453 &mmap_user->locked_vm); 6454 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 6455 free_uid(mmap_user); 6456 6457 out_put: 6458 ring_buffer_put(rb); /* could be last */ 6459 } 6460 6461 static const struct vm_operations_struct perf_mmap_vmops = { 6462 .open = perf_mmap_open, 6463 .close = perf_mmap_close, /* non mergeable */ 6464 .fault = perf_mmap_fault, 6465 .page_mkwrite = perf_mmap_fault, 6466 }; 6467 6468 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 6469 { 6470 struct perf_event *event = file->private_data; 6471 unsigned long user_locked, user_lock_limit; 6472 struct user_struct *user = current_user(); 6473 struct mutex *aux_mutex = NULL; 6474 struct perf_buffer *rb = NULL; 6475 unsigned long locked, lock_limit; 6476 unsigned long vma_size; 6477 unsigned long nr_pages; 6478 long user_extra = 0, extra = 0; 6479 int ret = 0, flags = 0; 6480 6481 /* 6482 * Don't allow mmap() of inherited per-task counters. This would 6483 * create a performance issue due to all children writing to the 6484 * same rb. 6485 */ 6486 if (event->cpu == -1 && event->attr.inherit) 6487 return -EINVAL; 6488 6489 if (!(vma->vm_flags & VM_SHARED)) 6490 return -EINVAL; 6491 6492 ret = security_perf_event_read(event); 6493 if (ret) 6494 return ret; 6495 6496 vma_size = vma->vm_end - vma->vm_start; 6497 6498 if (vma->vm_pgoff == 0) { 6499 nr_pages = (vma_size / PAGE_SIZE) - 1; 6500 } else { 6501 /* 6502 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 6503 * mapped, all subsequent mappings should have the same size 6504 * and offset. Must be above the normal perf buffer. 6505 */ 6506 u64 aux_offset, aux_size; 6507 6508 if (!event->rb) 6509 return -EINVAL; 6510 6511 nr_pages = vma_size / PAGE_SIZE; 6512 if (nr_pages > INT_MAX) 6513 return -ENOMEM; 6514 6515 mutex_lock(&event->mmap_mutex); 6516 ret = -EINVAL; 6517 6518 rb = event->rb; 6519 if (!rb) 6520 goto aux_unlock; 6521 6522 aux_mutex = &rb->aux_mutex; 6523 mutex_lock(aux_mutex); 6524 6525 aux_offset = READ_ONCE(rb->user_page->aux_offset); 6526 aux_size = READ_ONCE(rb->user_page->aux_size); 6527 6528 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 6529 goto aux_unlock; 6530 6531 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 6532 goto aux_unlock; 6533 6534 /* already mapped with a different offset */ 6535 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 6536 goto aux_unlock; 6537 6538 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 6539 goto aux_unlock; 6540 6541 /* already mapped with a different size */ 6542 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 6543 goto aux_unlock; 6544 6545 if (!is_power_of_2(nr_pages)) 6546 goto aux_unlock; 6547 6548 if (!atomic_inc_not_zero(&rb->mmap_count)) 6549 goto aux_unlock; 6550 6551 if (rb_has_aux(rb)) { 6552 atomic_inc(&rb->aux_mmap_count); 6553 ret = 0; 6554 goto unlock; 6555 } 6556 6557 atomic_set(&rb->aux_mmap_count, 1); 6558 user_extra = nr_pages; 6559 6560 goto accounting; 6561 } 6562 6563 /* 6564 * If we have rb pages ensure they're a power-of-two number, so we 6565 * can do bitmasks instead of modulo. 6566 */ 6567 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 6568 return -EINVAL; 6569 6570 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 6571 return -EINVAL; 6572 6573 WARN_ON_ONCE(event->ctx->parent_ctx); 6574 again: 6575 mutex_lock(&event->mmap_mutex); 6576 if (event->rb) { 6577 if (data_page_nr(event->rb) != nr_pages) { 6578 ret = -EINVAL; 6579 goto unlock; 6580 } 6581 6582 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 6583 /* 6584 * Raced against perf_mmap_close(); remove the 6585 * event and try again. 6586 */ 6587 ring_buffer_attach(event, NULL); 6588 mutex_unlock(&event->mmap_mutex); 6589 goto again; 6590 } 6591 6592 goto unlock; 6593 } 6594 6595 user_extra = nr_pages + 1; 6596 6597 accounting: 6598 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 6599 6600 /* 6601 * Increase the limit linearly with more CPUs: 6602 */ 6603 user_lock_limit *= num_online_cpus(); 6604 6605 user_locked = atomic_long_read(&user->locked_vm); 6606 6607 /* 6608 * sysctl_perf_event_mlock may have changed, so that 6609 * user->locked_vm > user_lock_limit 6610 */ 6611 if (user_locked > user_lock_limit) 6612 user_locked = user_lock_limit; 6613 user_locked += user_extra; 6614 6615 if (user_locked > user_lock_limit) { 6616 /* 6617 * charge locked_vm until it hits user_lock_limit; 6618 * charge the rest from pinned_vm 6619 */ 6620 extra = user_locked - user_lock_limit; 6621 user_extra -= extra; 6622 } 6623 6624 lock_limit = rlimit(RLIMIT_MEMLOCK); 6625 lock_limit >>= PAGE_SHIFT; 6626 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 6627 6628 if ((locked > lock_limit) && perf_is_paranoid() && 6629 !capable(CAP_IPC_LOCK)) { 6630 ret = -EPERM; 6631 goto unlock; 6632 } 6633 6634 WARN_ON(!rb && event->rb); 6635 6636 if (vma->vm_flags & VM_WRITE) 6637 flags |= RING_BUFFER_WRITABLE; 6638 6639 if (!rb) { 6640 rb = rb_alloc(nr_pages, 6641 event->attr.watermark ? event->attr.wakeup_watermark : 0, 6642 event->cpu, flags); 6643 6644 if (!rb) { 6645 ret = -ENOMEM; 6646 goto unlock; 6647 } 6648 6649 atomic_set(&rb->mmap_count, 1); 6650 rb->mmap_user = get_current_user(); 6651 rb->mmap_locked = extra; 6652 6653 ring_buffer_attach(event, rb); 6654 6655 perf_event_update_time(event); 6656 perf_event_init_userpage(event); 6657 perf_event_update_userpage(event); 6658 } else { 6659 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 6660 event->attr.aux_watermark, flags); 6661 if (!ret) 6662 rb->aux_mmap_locked = extra; 6663 } 6664 6665 unlock: 6666 if (!ret) { 6667 atomic_long_add(user_extra, &user->locked_vm); 6668 atomic64_add(extra, &vma->vm_mm->pinned_vm); 6669 6670 atomic_inc(&event->mmap_count); 6671 } else if (rb) { 6672 atomic_dec(&rb->mmap_count); 6673 } 6674 aux_unlock: 6675 if (aux_mutex) 6676 mutex_unlock(aux_mutex); 6677 mutex_unlock(&event->mmap_mutex); 6678 6679 /* 6680 * Since pinned accounting is per vm we cannot allow fork() to copy our 6681 * vma. 6682 */ 6683 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP); 6684 vma->vm_ops = &perf_mmap_vmops; 6685 6686 if (event->pmu->event_mapped) 6687 event->pmu->event_mapped(event, vma->vm_mm); 6688 6689 return ret; 6690 } 6691 6692 static int perf_fasync(int fd, struct file *filp, int on) 6693 { 6694 struct inode *inode = file_inode(filp); 6695 struct perf_event *event = filp->private_data; 6696 int retval; 6697 6698 inode_lock(inode); 6699 retval = fasync_helper(fd, filp, on, &event->fasync); 6700 inode_unlock(inode); 6701 6702 if (retval < 0) 6703 return retval; 6704 6705 return 0; 6706 } 6707 6708 static const struct file_operations perf_fops = { 6709 .llseek = no_llseek, 6710 .release = perf_release, 6711 .read = perf_read, 6712 .poll = perf_poll, 6713 .unlocked_ioctl = perf_ioctl, 6714 .compat_ioctl = perf_compat_ioctl, 6715 .mmap = perf_mmap, 6716 .fasync = perf_fasync, 6717 }; 6718 6719 /* 6720 * Perf event wakeup 6721 * 6722 * If there's data, ensure we set the poll() state and publish everything 6723 * to user-space before waking everybody up. 6724 */ 6725 6726 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 6727 { 6728 /* only the parent has fasync state */ 6729 if (event->parent) 6730 event = event->parent; 6731 return &event->fasync; 6732 } 6733 6734 void perf_event_wakeup(struct perf_event *event) 6735 { 6736 ring_buffer_wakeup(event); 6737 6738 if (event->pending_kill) { 6739 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 6740 event->pending_kill = 0; 6741 } 6742 } 6743 6744 static void perf_sigtrap(struct perf_event *event) 6745 { 6746 /* 6747 * We'd expect this to only occur if the irq_work is delayed and either 6748 * ctx->task or current has changed in the meantime. This can be the 6749 * case on architectures that do not implement arch_irq_work_raise(). 6750 */ 6751 if (WARN_ON_ONCE(event->ctx->task != current)) 6752 return; 6753 6754 /* 6755 * Both perf_pending_task() and perf_pending_irq() can race with the 6756 * task exiting. 6757 */ 6758 if (current->flags & PF_EXITING) 6759 return; 6760 6761 send_sig_perf((void __user *)event->pending_addr, 6762 event->orig_type, event->attr.sig_data); 6763 } 6764 6765 /* 6766 * Deliver the pending work in-event-context or follow the context. 6767 */ 6768 static void __perf_pending_irq(struct perf_event *event) 6769 { 6770 int cpu = READ_ONCE(event->oncpu); 6771 6772 /* 6773 * If the event isn't running; we done. event_sched_out() will have 6774 * taken care of things. 6775 */ 6776 if (cpu < 0) 6777 return; 6778 6779 /* 6780 * Yay, we hit home and are in the context of the event. 6781 */ 6782 if (cpu == smp_processor_id()) { 6783 if (event->pending_sigtrap) { 6784 event->pending_sigtrap = 0; 6785 perf_sigtrap(event); 6786 local_dec(&event->ctx->nr_pending); 6787 } 6788 if (event->pending_disable) { 6789 event->pending_disable = 0; 6790 perf_event_disable_local(event); 6791 } 6792 return; 6793 } 6794 6795 /* 6796 * CPU-A CPU-B 6797 * 6798 * perf_event_disable_inatomic() 6799 * @pending_disable = CPU-A; 6800 * irq_work_queue(); 6801 * 6802 * sched-out 6803 * @pending_disable = -1; 6804 * 6805 * sched-in 6806 * perf_event_disable_inatomic() 6807 * @pending_disable = CPU-B; 6808 * irq_work_queue(); // FAILS 6809 * 6810 * irq_work_run() 6811 * perf_pending_irq() 6812 * 6813 * But the event runs on CPU-B and wants disabling there. 6814 */ 6815 irq_work_queue_on(&event->pending_irq, cpu); 6816 } 6817 6818 static void perf_pending_irq(struct irq_work *entry) 6819 { 6820 struct perf_event *event = container_of(entry, struct perf_event, pending_irq); 6821 int rctx; 6822 6823 /* 6824 * If we 'fail' here, that's OK, it means recursion is already disabled 6825 * and we won't recurse 'further'. 6826 */ 6827 rctx = perf_swevent_get_recursion_context(); 6828 6829 /* 6830 * The wakeup isn't bound to the context of the event -- it can happen 6831 * irrespective of where the event is. 6832 */ 6833 if (event->pending_wakeup) { 6834 event->pending_wakeup = 0; 6835 perf_event_wakeup(event); 6836 } 6837 6838 __perf_pending_irq(event); 6839 6840 if (rctx >= 0) 6841 perf_swevent_put_recursion_context(rctx); 6842 } 6843 6844 static void perf_pending_task(struct callback_head *head) 6845 { 6846 struct perf_event *event = container_of(head, struct perf_event, pending_task); 6847 int rctx; 6848 6849 /* 6850 * All accesses to the event must belong to the same implicit RCU read-side 6851 * critical section as the ->pending_work reset. See comment in 6852 * perf_pending_task_sync(). 6853 */ 6854 preempt_disable_notrace(); 6855 /* 6856 * If we 'fail' here, that's OK, it means recursion is already disabled 6857 * and we won't recurse 'further'. 6858 */ 6859 rctx = perf_swevent_get_recursion_context(); 6860 6861 if (event->pending_work) { 6862 event->pending_work = 0; 6863 perf_sigtrap(event); 6864 local_dec(&event->ctx->nr_pending); 6865 rcuwait_wake_up(&event->pending_work_wait); 6866 } 6867 6868 if (rctx >= 0) 6869 perf_swevent_put_recursion_context(rctx); 6870 preempt_enable_notrace(); 6871 } 6872 6873 #ifdef CONFIG_GUEST_PERF_EVENTS 6874 struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 6875 6876 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state); 6877 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 6878 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 6879 6880 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6881 { 6882 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs))) 6883 return; 6884 6885 rcu_assign_pointer(perf_guest_cbs, cbs); 6886 static_call_update(__perf_guest_state, cbs->state); 6887 static_call_update(__perf_guest_get_ip, cbs->get_ip); 6888 6889 /* Implementing ->handle_intel_pt_intr is optional. */ 6890 if (cbs->handle_intel_pt_intr) 6891 static_call_update(__perf_guest_handle_intel_pt_intr, 6892 cbs->handle_intel_pt_intr); 6893 } 6894 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 6895 6896 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 6897 { 6898 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs)) 6899 return; 6900 6901 rcu_assign_pointer(perf_guest_cbs, NULL); 6902 static_call_update(__perf_guest_state, (void *)&__static_call_return0); 6903 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0); 6904 static_call_update(__perf_guest_handle_intel_pt_intr, 6905 (void *)&__static_call_return0); 6906 synchronize_rcu(); 6907 } 6908 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 6909 #endif 6910 6911 static void 6912 perf_output_sample_regs(struct perf_output_handle *handle, 6913 struct pt_regs *regs, u64 mask) 6914 { 6915 int bit; 6916 DECLARE_BITMAP(_mask, 64); 6917 6918 bitmap_from_u64(_mask, mask); 6919 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 6920 u64 val; 6921 6922 val = perf_reg_value(regs, bit); 6923 perf_output_put(handle, val); 6924 } 6925 } 6926 6927 static void perf_sample_regs_user(struct perf_regs *regs_user, 6928 struct pt_regs *regs) 6929 { 6930 if (user_mode(regs)) { 6931 regs_user->abi = perf_reg_abi(current); 6932 regs_user->regs = regs; 6933 } else if (!(current->flags & PF_KTHREAD)) { 6934 perf_get_regs_user(regs_user, regs); 6935 } else { 6936 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 6937 regs_user->regs = NULL; 6938 } 6939 } 6940 6941 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 6942 struct pt_regs *regs) 6943 { 6944 regs_intr->regs = regs; 6945 regs_intr->abi = perf_reg_abi(current); 6946 } 6947 6948 6949 /* 6950 * Get remaining task size from user stack pointer. 6951 * 6952 * It'd be better to take stack vma map and limit this more 6953 * precisely, but there's no way to get it safely under interrupt, 6954 * so using TASK_SIZE as limit. 6955 */ 6956 static u64 perf_ustack_task_size(struct pt_regs *regs) 6957 { 6958 unsigned long addr = perf_user_stack_pointer(regs); 6959 6960 if (!addr || addr >= TASK_SIZE) 6961 return 0; 6962 6963 return TASK_SIZE - addr; 6964 } 6965 6966 static u16 6967 perf_sample_ustack_size(u16 stack_size, u16 header_size, 6968 struct pt_regs *regs) 6969 { 6970 u64 task_size; 6971 6972 /* No regs, no stack pointer, no dump. */ 6973 if (!regs) 6974 return 0; 6975 6976 /* 6977 * Check if we fit in with the requested stack size into the: 6978 * - TASK_SIZE 6979 * If we don't, we limit the size to the TASK_SIZE. 6980 * 6981 * - remaining sample size 6982 * If we don't, we customize the stack size to 6983 * fit in to the remaining sample size. 6984 */ 6985 6986 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 6987 stack_size = min(stack_size, (u16) task_size); 6988 6989 /* Current header size plus static size and dynamic size. */ 6990 header_size += 2 * sizeof(u64); 6991 6992 /* Do we fit in with the current stack dump size? */ 6993 if ((u16) (header_size + stack_size) < header_size) { 6994 /* 6995 * If we overflow the maximum size for the sample, 6996 * we customize the stack dump size to fit in. 6997 */ 6998 stack_size = USHRT_MAX - header_size - sizeof(u64); 6999 stack_size = round_up(stack_size, sizeof(u64)); 7000 } 7001 7002 return stack_size; 7003 } 7004 7005 static void 7006 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 7007 struct pt_regs *regs) 7008 { 7009 /* Case of a kernel thread, nothing to dump */ 7010 if (!regs) { 7011 u64 size = 0; 7012 perf_output_put(handle, size); 7013 } else { 7014 unsigned long sp; 7015 unsigned int rem; 7016 u64 dyn_size; 7017 7018 /* 7019 * We dump: 7020 * static size 7021 * - the size requested by user or the best one we can fit 7022 * in to the sample max size 7023 * data 7024 * - user stack dump data 7025 * dynamic size 7026 * - the actual dumped size 7027 */ 7028 7029 /* Static size. */ 7030 perf_output_put(handle, dump_size); 7031 7032 /* Data. */ 7033 sp = perf_user_stack_pointer(regs); 7034 rem = __output_copy_user(handle, (void *) sp, dump_size); 7035 dyn_size = dump_size - rem; 7036 7037 perf_output_skip(handle, rem); 7038 7039 /* Dynamic size. */ 7040 perf_output_put(handle, dyn_size); 7041 } 7042 } 7043 7044 static unsigned long perf_prepare_sample_aux(struct perf_event *event, 7045 struct perf_sample_data *data, 7046 size_t size) 7047 { 7048 struct perf_event *sampler = event->aux_event; 7049 struct perf_buffer *rb; 7050 7051 data->aux_size = 0; 7052 7053 if (!sampler) 7054 goto out; 7055 7056 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE)) 7057 goto out; 7058 7059 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id())) 7060 goto out; 7061 7062 rb = ring_buffer_get(sampler); 7063 if (!rb) 7064 goto out; 7065 7066 /* 7067 * If this is an NMI hit inside sampling code, don't take 7068 * the sample. See also perf_aux_sample_output(). 7069 */ 7070 if (READ_ONCE(rb->aux_in_sampling)) { 7071 data->aux_size = 0; 7072 } else { 7073 size = min_t(size_t, size, perf_aux_size(rb)); 7074 data->aux_size = ALIGN(size, sizeof(u64)); 7075 } 7076 ring_buffer_put(rb); 7077 7078 out: 7079 return data->aux_size; 7080 } 7081 7082 static long perf_pmu_snapshot_aux(struct perf_buffer *rb, 7083 struct perf_event *event, 7084 struct perf_output_handle *handle, 7085 unsigned long size) 7086 { 7087 unsigned long flags; 7088 long ret; 7089 7090 /* 7091 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler 7092 * paths. If we start calling them in NMI context, they may race with 7093 * the IRQ ones, that is, for example, re-starting an event that's just 7094 * been stopped, which is why we're using a separate callback that 7095 * doesn't change the event state. 7096 * 7097 * IRQs need to be disabled to prevent IPIs from racing with us. 7098 */ 7099 local_irq_save(flags); 7100 /* 7101 * Guard against NMI hits inside the critical section; 7102 * see also perf_prepare_sample_aux(). 7103 */ 7104 WRITE_ONCE(rb->aux_in_sampling, 1); 7105 barrier(); 7106 7107 ret = event->pmu->snapshot_aux(event, handle, size); 7108 7109 barrier(); 7110 WRITE_ONCE(rb->aux_in_sampling, 0); 7111 local_irq_restore(flags); 7112 7113 return ret; 7114 } 7115 7116 static void perf_aux_sample_output(struct perf_event *event, 7117 struct perf_output_handle *handle, 7118 struct perf_sample_data *data) 7119 { 7120 struct perf_event *sampler = event->aux_event; 7121 struct perf_buffer *rb; 7122 unsigned long pad; 7123 long size; 7124 7125 if (WARN_ON_ONCE(!sampler || !data->aux_size)) 7126 return; 7127 7128 rb = ring_buffer_get(sampler); 7129 if (!rb) 7130 return; 7131 7132 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size); 7133 7134 /* 7135 * An error here means that perf_output_copy() failed (returned a 7136 * non-zero surplus that it didn't copy), which in its current 7137 * enlightened implementation is not possible. If that changes, we'd 7138 * like to know. 7139 */ 7140 if (WARN_ON_ONCE(size < 0)) 7141 goto out_put; 7142 7143 /* 7144 * The pad comes from ALIGN()ing data->aux_size up to u64 in 7145 * perf_prepare_sample_aux(), so should not be more than that. 7146 */ 7147 pad = data->aux_size - size; 7148 if (WARN_ON_ONCE(pad >= sizeof(u64))) 7149 pad = 8; 7150 7151 if (pad) { 7152 u64 zero = 0; 7153 perf_output_copy(handle, &zero, pad); 7154 } 7155 7156 out_put: 7157 ring_buffer_put(rb); 7158 } 7159 7160 /* 7161 * A set of common sample data types saved even for non-sample records 7162 * when event->attr.sample_id_all is set. 7163 */ 7164 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \ 7165 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \ 7166 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER) 7167 7168 static void __perf_event_header__init_id(struct perf_sample_data *data, 7169 struct perf_event *event, 7170 u64 sample_type) 7171 { 7172 data->type = event->attr.sample_type; 7173 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL; 7174 7175 if (sample_type & PERF_SAMPLE_TID) { 7176 /* namespace issues */ 7177 data->tid_entry.pid = perf_event_pid(event, current); 7178 data->tid_entry.tid = perf_event_tid(event, current); 7179 } 7180 7181 if (sample_type & PERF_SAMPLE_TIME) 7182 data->time = perf_event_clock(event); 7183 7184 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 7185 data->id = primary_event_id(event); 7186 7187 if (sample_type & PERF_SAMPLE_STREAM_ID) 7188 data->stream_id = event->id; 7189 7190 if (sample_type & PERF_SAMPLE_CPU) { 7191 data->cpu_entry.cpu = raw_smp_processor_id(); 7192 data->cpu_entry.reserved = 0; 7193 } 7194 } 7195 7196 void perf_event_header__init_id(struct perf_event_header *header, 7197 struct perf_sample_data *data, 7198 struct perf_event *event) 7199 { 7200 if (event->attr.sample_id_all) { 7201 header->size += event->id_header_size; 7202 __perf_event_header__init_id(data, event, event->attr.sample_type); 7203 } 7204 } 7205 7206 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 7207 struct perf_sample_data *data) 7208 { 7209 u64 sample_type = data->type; 7210 7211 if (sample_type & PERF_SAMPLE_TID) 7212 perf_output_put(handle, data->tid_entry); 7213 7214 if (sample_type & PERF_SAMPLE_TIME) 7215 perf_output_put(handle, data->time); 7216 7217 if (sample_type & PERF_SAMPLE_ID) 7218 perf_output_put(handle, data->id); 7219 7220 if (sample_type & PERF_SAMPLE_STREAM_ID) 7221 perf_output_put(handle, data->stream_id); 7222 7223 if (sample_type & PERF_SAMPLE_CPU) 7224 perf_output_put(handle, data->cpu_entry); 7225 7226 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7227 perf_output_put(handle, data->id); 7228 } 7229 7230 void perf_event__output_id_sample(struct perf_event *event, 7231 struct perf_output_handle *handle, 7232 struct perf_sample_data *sample) 7233 { 7234 if (event->attr.sample_id_all) 7235 __perf_event__output_id_sample(handle, sample); 7236 } 7237 7238 static void perf_output_read_one(struct perf_output_handle *handle, 7239 struct perf_event *event, 7240 u64 enabled, u64 running) 7241 { 7242 u64 read_format = event->attr.read_format; 7243 u64 values[5]; 7244 int n = 0; 7245 7246 values[n++] = perf_event_count(event); 7247 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 7248 values[n++] = enabled + 7249 atomic64_read(&event->child_total_time_enabled); 7250 } 7251 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 7252 values[n++] = running + 7253 atomic64_read(&event->child_total_time_running); 7254 } 7255 if (read_format & PERF_FORMAT_ID) 7256 values[n++] = primary_event_id(event); 7257 if (read_format & PERF_FORMAT_LOST) 7258 values[n++] = atomic64_read(&event->lost_samples); 7259 7260 __output_copy(handle, values, n * sizeof(u64)); 7261 } 7262 7263 static void perf_output_read_group(struct perf_output_handle *handle, 7264 struct perf_event *event, 7265 u64 enabled, u64 running) 7266 { 7267 struct perf_event *leader = event->group_leader, *sub; 7268 u64 read_format = event->attr.read_format; 7269 unsigned long flags; 7270 u64 values[6]; 7271 int n = 0; 7272 7273 /* 7274 * Disabling interrupts avoids all counter scheduling 7275 * (context switches, timer based rotation and IPIs). 7276 */ 7277 local_irq_save(flags); 7278 7279 values[n++] = 1 + leader->nr_siblings; 7280 7281 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 7282 values[n++] = enabled; 7283 7284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 7285 values[n++] = running; 7286 7287 if ((leader != event) && 7288 (leader->state == PERF_EVENT_STATE_ACTIVE)) 7289 leader->pmu->read(leader); 7290 7291 values[n++] = perf_event_count(leader); 7292 if (read_format & PERF_FORMAT_ID) 7293 values[n++] = primary_event_id(leader); 7294 if (read_format & PERF_FORMAT_LOST) 7295 values[n++] = atomic64_read(&leader->lost_samples); 7296 7297 __output_copy(handle, values, n * sizeof(u64)); 7298 7299 for_each_sibling_event(sub, leader) { 7300 n = 0; 7301 7302 if ((sub != event) && 7303 (sub->state == PERF_EVENT_STATE_ACTIVE)) 7304 sub->pmu->read(sub); 7305 7306 values[n++] = perf_event_count(sub); 7307 if (read_format & PERF_FORMAT_ID) 7308 values[n++] = primary_event_id(sub); 7309 if (read_format & PERF_FORMAT_LOST) 7310 values[n++] = atomic64_read(&sub->lost_samples); 7311 7312 __output_copy(handle, values, n * sizeof(u64)); 7313 } 7314 7315 local_irq_restore(flags); 7316 } 7317 7318 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 7319 PERF_FORMAT_TOTAL_TIME_RUNNING) 7320 7321 /* 7322 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 7323 * 7324 * The problem is that its both hard and excessively expensive to iterate the 7325 * child list, not to mention that its impossible to IPI the children running 7326 * on another CPU, from interrupt/NMI context. 7327 */ 7328 static void perf_output_read(struct perf_output_handle *handle, 7329 struct perf_event *event) 7330 { 7331 u64 enabled = 0, running = 0, now; 7332 u64 read_format = event->attr.read_format; 7333 7334 /* 7335 * compute total_time_enabled, total_time_running 7336 * based on snapshot values taken when the event 7337 * was last scheduled in. 7338 * 7339 * we cannot simply called update_context_time() 7340 * because of locking issue as we are called in 7341 * NMI context 7342 */ 7343 if (read_format & PERF_FORMAT_TOTAL_TIMES) 7344 calc_timer_values(event, &now, &enabled, &running); 7345 7346 if (event->attr.read_format & PERF_FORMAT_GROUP) 7347 perf_output_read_group(handle, event, enabled, running); 7348 else 7349 perf_output_read_one(handle, event, enabled, running); 7350 } 7351 7352 void perf_output_sample(struct perf_output_handle *handle, 7353 struct perf_event_header *header, 7354 struct perf_sample_data *data, 7355 struct perf_event *event) 7356 { 7357 u64 sample_type = data->type; 7358 7359 perf_output_put(handle, *header); 7360 7361 if (sample_type & PERF_SAMPLE_IDENTIFIER) 7362 perf_output_put(handle, data->id); 7363 7364 if (sample_type & PERF_SAMPLE_IP) 7365 perf_output_put(handle, data->ip); 7366 7367 if (sample_type & PERF_SAMPLE_TID) 7368 perf_output_put(handle, data->tid_entry); 7369 7370 if (sample_type & PERF_SAMPLE_TIME) 7371 perf_output_put(handle, data->time); 7372 7373 if (sample_type & PERF_SAMPLE_ADDR) 7374 perf_output_put(handle, data->addr); 7375 7376 if (sample_type & PERF_SAMPLE_ID) 7377 perf_output_put(handle, data->id); 7378 7379 if (sample_type & PERF_SAMPLE_STREAM_ID) 7380 perf_output_put(handle, data->stream_id); 7381 7382 if (sample_type & PERF_SAMPLE_CPU) 7383 perf_output_put(handle, data->cpu_entry); 7384 7385 if (sample_type & PERF_SAMPLE_PERIOD) 7386 perf_output_put(handle, data->period); 7387 7388 if (sample_type & PERF_SAMPLE_READ) 7389 perf_output_read(handle, event); 7390 7391 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 7392 int size = 1; 7393 7394 size += data->callchain->nr; 7395 size *= sizeof(u64); 7396 __output_copy(handle, data->callchain, size); 7397 } 7398 7399 if (sample_type & PERF_SAMPLE_RAW) { 7400 struct perf_raw_record *raw = data->raw; 7401 7402 if (raw) { 7403 struct perf_raw_frag *frag = &raw->frag; 7404 7405 perf_output_put(handle, raw->size); 7406 do { 7407 if (frag->copy) { 7408 __output_custom(handle, frag->copy, 7409 frag->data, frag->size); 7410 } else { 7411 __output_copy(handle, frag->data, 7412 frag->size); 7413 } 7414 if (perf_raw_frag_last(frag)) 7415 break; 7416 frag = frag->next; 7417 } while (1); 7418 if (frag->pad) 7419 __output_skip(handle, NULL, frag->pad); 7420 } else { 7421 struct { 7422 u32 size; 7423 u32 data; 7424 } raw = { 7425 .size = sizeof(u32), 7426 .data = 0, 7427 }; 7428 perf_output_put(handle, raw); 7429 } 7430 } 7431 7432 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 7433 if (data->br_stack) { 7434 size_t size; 7435 7436 size = data->br_stack->nr 7437 * sizeof(struct perf_branch_entry); 7438 7439 perf_output_put(handle, data->br_stack->nr); 7440 if (branch_sample_hw_index(event)) 7441 perf_output_put(handle, data->br_stack->hw_idx); 7442 perf_output_copy(handle, data->br_stack->entries, size); 7443 } else { 7444 /* 7445 * we always store at least the value of nr 7446 */ 7447 u64 nr = 0; 7448 perf_output_put(handle, nr); 7449 } 7450 } 7451 7452 if (sample_type & PERF_SAMPLE_REGS_USER) { 7453 u64 abi = data->regs_user.abi; 7454 7455 /* 7456 * If there are no regs to dump, notice it through 7457 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7458 */ 7459 perf_output_put(handle, abi); 7460 7461 if (abi) { 7462 u64 mask = event->attr.sample_regs_user; 7463 perf_output_sample_regs(handle, 7464 data->regs_user.regs, 7465 mask); 7466 } 7467 } 7468 7469 if (sample_type & PERF_SAMPLE_STACK_USER) { 7470 perf_output_sample_ustack(handle, 7471 data->stack_user_size, 7472 data->regs_user.regs); 7473 } 7474 7475 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) 7476 perf_output_put(handle, data->weight.full); 7477 7478 if (sample_type & PERF_SAMPLE_DATA_SRC) 7479 perf_output_put(handle, data->data_src.val); 7480 7481 if (sample_type & PERF_SAMPLE_TRANSACTION) 7482 perf_output_put(handle, data->txn); 7483 7484 if (sample_type & PERF_SAMPLE_REGS_INTR) { 7485 u64 abi = data->regs_intr.abi; 7486 /* 7487 * If there are no regs to dump, notice it through 7488 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 7489 */ 7490 perf_output_put(handle, abi); 7491 7492 if (abi) { 7493 u64 mask = event->attr.sample_regs_intr; 7494 7495 perf_output_sample_regs(handle, 7496 data->regs_intr.regs, 7497 mask); 7498 } 7499 } 7500 7501 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 7502 perf_output_put(handle, data->phys_addr); 7503 7504 if (sample_type & PERF_SAMPLE_CGROUP) 7505 perf_output_put(handle, data->cgroup); 7506 7507 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) 7508 perf_output_put(handle, data->data_page_size); 7509 7510 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) 7511 perf_output_put(handle, data->code_page_size); 7512 7513 if (sample_type & PERF_SAMPLE_AUX) { 7514 perf_output_put(handle, data->aux_size); 7515 7516 if (data->aux_size) 7517 perf_aux_sample_output(event, handle, data); 7518 } 7519 7520 if (!event->attr.watermark) { 7521 int wakeup_events = event->attr.wakeup_events; 7522 7523 if (wakeup_events) { 7524 struct perf_buffer *rb = handle->rb; 7525 int events = local_inc_return(&rb->events); 7526 7527 if (events >= wakeup_events) { 7528 local_sub(wakeup_events, &rb->events); 7529 local_inc(&rb->wakeup); 7530 } 7531 } 7532 } 7533 } 7534 7535 static u64 perf_virt_to_phys(u64 virt) 7536 { 7537 u64 phys_addr = 0; 7538 7539 if (!virt) 7540 return 0; 7541 7542 if (virt >= TASK_SIZE) { 7543 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 7544 if (virt_addr_valid((void *)(uintptr_t)virt) && 7545 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 7546 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 7547 } else { 7548 /* 7549 * Walking the pages tables for user address. 7550 * Interrupts are disabled, so it prevents any tear down 7551 * of the page tables. 7552 * Try IRQ-safe get_user_page_fast_only first. 7553 * If failed, leave phys_addr as 0. 7554 */ 7555 if (current->mm != NULL) { 7556 struct page *p; 7557 7558 pagefault_disable(); 7559 if (get_user_page_fast_only(virt, 0, &p)) { 7560 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 7561 put_page(p); 7562 } 7563 pagefault_enable(); 7564 } 7565 } 7566 7567 return phys_addr; 7568 } 7569 7570 /* 7571 * Return the pagetable size of a given virtual address. 7572 */ 7573 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr) 7574 { 7575 u64 size = 0; 7576 7577 #ifdef CONFIG_HAVE_FAST_GUP 7578 pgd_t *pgdp, pgd; 7579 p4d_t *p4dp, p4d; 7580 pud_t *pudp, pud; 7581 pmd_t *pmdp, pmd; 7582 pte_t *ptep, pte; 7583 7584 pgdp = pgd_offset(mm, addr); 7585 pgd = READ_ONCE(*pgdp); 7586 if (pgd_none(pgd)) 7587 return 0; 7588 7589 if (pgd_leaf(pgd)) 7590 return pgd_leaf_size(pgd); 7591 7592 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 7593 p4d = READ_ONCE(*p4dp); 7594 if (!p4d_present(p4d)) 7595 return 0; 7596 7597 if (p4d_leaf(p4d)) 7598 return p4d_leaf_size(p4d); 7599 7600 pudp = pud_offset_lockless(p4dp, p4d, addr); 7601 pud = READ_ONCE(*pudp); 7602 if (!pud_present(pud)) 7603 return 0; 7604 7605 if (pud_leaf(pud)) 7606 return pud_leaf_size(pud); 7607 7608 pmdp = pmd_offset_lockless(pudp, pud, addr); 7609 again: 7610 pmd = pmdp_get_lockless(pmdp); 7611 if (!pmd_present(pmd)) 7612 return 0; 7613 7614 if (pmd_leaf(pmd)) 7615 return pmd_leaf_size(pmd); 7616 7617 ptep = pte_offset_map(&pmd, addr); 7618 if (!ptep) 7619 goto again; 7620 7621 pte = ptep_get_lockless(ptep); 7622 if (pte_present(pte)) 7623 size = pte_leaf_size(pte); 7624 pte_unmap(ptep); 7625 #endif /* CONFIG_HAVE_FAST_GUP */ 7626 7627 return size; 7628 } 7629 7630 static u64 perf_get_page_size(unsigned long addr) 7631 { 7632 struct mm_struct *mm; 7633 unsigned long flags; 7634 u64 size; 7635 7636 if (!addr) 7637 return 0; 7638 7639 /* 7640 * Software page-table walkers must disable IRQs, 7641 * which prevents any tear down of the page tables. 7642 */ 7643 local_irq_save(flags); 7644 7645 mm = current->mm; 7646 if (!mm) { 7647 /* 7648 * For kernel threads and the like, use init_mm so that 7649 * we can find kernel memory. 7650 */ 7651 mm = &init_mm; 7652 } 7653 7654 size = perf_get_pgtable_size(mm, addr); 7655 7656 local_irq_restore(flags); 7657 7658 return size; 7659 } 7660 7661 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 7662 7663 struct perf_callchain_entry * 7664 perf_callchain(struct perf_event *event, struct pt_regs *regs) 7665 { 7666 bool kernel = !event->attr.exclude_callchain_kernel; 7667 bool user = !event->attr.exclude_callchain_user; 7668 /* Disallow cross-task user callchains. */ 7669 bool crosstask = event->ctx->task && event->ctx->task != current; 7670 const u32 max_stack = event->attr.sample_max_stack; 7671 struct perf_callchain_entry *callchain; 7672 7673 if (!kernel && !user) 7674 return &__empty_callchain; 7675 7676 callchain = get_perf_callchain(regs, 0, kernel, user, 7677 max_stack, crosstask, true); 7678 return callchain ?: &__empty_callchain; 7679 } 7680 7681 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d) 7682 { 7683 return d * !!(flags & s); 7684 } 7685 7686 void perf_prepare_sample(struct perf_sample_data *data, 7687 struct perf_event *event, 7688 struct pt_regs *regs) 7689 { 7690 u64 sample_type = event->attr.sample_type; 7691 u64 filtered_sample_type; 7692 7693 /* 7694 * Add the sample flags that are dependent to others. And clear the 7695 * sample flags that have already been done by the PMU driver. 7696 */ 7697 filtered_sample_type = sample_type; 7698 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE, 7699 PERF_SAMPLE_IP); 7700 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE | 7701 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR); 7702 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER, 7703 PERF_SAMPLE_REGS_USER); 7704 filtered_sample_type &= ~data->sample_flags; 7705 7706 if (filtered_sample_type == 0) { 7707 /* Make sure it has the correct data->type for output */ 7708 data->type = event->attr.sample_type; 7709 return; 7710 } 7711 7712 __perf_event_header__init_id(data, event, filtered_sample_type); 7713 7714 if (filtered_sample_type & PERF_SAMPLE_IP) { 7715 data->ip = perf_instruction_pointer(regs); 7716 data->sample_flags |= PERF_SAMPLE_IP; 7717 } 7718 7719 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN) 7720 perf_sample_save_callchain(data, event, regs); 7721 7722 if (filtered_sample_type & PERF_SAMPLE_RAW) { 7723 data->raw = NULL; 7724 data->dyn_size += sizeof(u64); 7725 data->sample_flags |= PERF_SAMPLE_RAW; 7726 } 7727 7728 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) { 7729 data->br_stack = NULL; 7730 data->dyn_size += sizeof(u64); 7731 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK; 7732 } 7733 7734 if (filtered_sample_type & PERF_SAMPLE_REGS_USER) 7735 perf_sample_regs_user(&data->regs_user, regs); 7736 7737 /* 7738 * It cannot use the filtered_sample_type here as REGS_USER can be set 7739 * by STACK_USER (using __cond_set() above) and we don't want to update 7740 * the dyn_size if it's not requested by users. 7741 */ 7742 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) { 7743 /* regs dump ABI info */ 7744 int size = sizeof(u64); 7745 7746 if (data->regs_user.regs) { 7747 u64 mask = event->attr.sample_regs_user; 7748 size += hweight64(mask) * sizeof(u64); 7749 } 7750 7751 data->dyn_size += size; 7752 data->sample_flags |= PERF_SAMPLE_REGS_USER; 7753 } 7754 7755 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) { 7756 /* 7757 * Either we need PERF_SAMPLE_STACK_USER bit to be always 7758 * processed as the last one or have additional check added 7759 * in case new sample type is added, because we could eat 7760 * up the rest of the sample size. 7761 */ 7762 u16 stack_size = event->attr.sample_stack_user; 7763 u16 header_size = perf_sample_data_size(data, event); 7764 u16 size = sizeof(u64); 7765 7766 stack_size = perf_sample_ustack_size(stack_size, header_size, 7767 data->regs_user.regs); 7768 7769 /* 7770 * If there is something to dump, add space for the dump 7771 * itself and for the field that tells the dynamic size, 7772 * which is how many have been actually dumped. 7773 */ 7774 if (stack_size) 7775 size += sizeof(u64) + stack_size; 7776 7777 data->stack_user_size = stack_size; 7778 data->dyn_size += size; 7779 data->sample_flags |= PERF_SAMPLE_STACK_USER; 7780 } 7781 7782 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) { 7783 data->weight.full = 0; 7784 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; 7785 } 7786 7787 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) { 7788 data->data_src.val = PERF_MEM_NA; 7789 data->sample_flags |= PERF_SAMPLE_DATA_SRC; 7790 } 7791 7792 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) { 7793 data->txn = 0; 7794 data->sample_flags |= PERF_SAMPLE_TRANSACTION; 7795 } 7796 7797 if (filtered_sample_type & PERF_SAMPLE_ADDR) { 7798 data->addr = 0; 7799 data->sample_flags |= PERF_SAMPLE_ADDR; 7800 } 7801 7802 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) { 7803 /* regs dump ABI info */ 7804 int size = sizeof(u64); 7805 7806 perf_sample_regs_intr(&data->regs_intr, regs); 7807 7808 if (data->regs_intr.regs) { 7809 u64 mask = event->attr.sample_regs_intr; 7810 7811 size += hweight64(mask) * sizeof(u64); 7812 } 7813 7814 data->dyn_size += size; 7815 data->sample_flags |= PERF_SAMPLE_REGS_INTR; 7816 } 7817 7818 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) { 7819 data->phys_addr = perf_virt_to_phys(data->addr); 7820 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; 7821 } 7822 7823 #ifdef CONFIG_CGROUP_PERF 7824 if (filtered_sample_type & PERF_SAMPLE_CGROUP) { 7825 struct cgroup *cgrp; 7826 7827 /* protected by RCU */ 7828 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup; 7829 data->cgroup = cgroup_id(cgrp); 7830 data->sample_flags |= PERF_SAMPLE_CGROUP; 7831 } 7832 #endif 7833 7834 /* 7835 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't 7836 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr, 7837 * but the value will not dump to the userspace. 7838 */ 7839 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) { 7840 data->data_page_size = perf_get_page_size(data->addr); 7841 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE; 7842 } 7843 7844 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) { 7845 data->code_page_size = perf_get_page_size(data->ip); 7846 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE; 7847 } 7848 7849 if (filtered_sample_type & PERF_SAMPLE_AUX) { 7850 u64 size; 7851 u16 header_size = perf_sample_data_size(data, event); 7852 7853 header_size += sizeof(u64); /* size */ 7854 7855 /* 7856 * Given the 16bit nature of header::size, an AUX sample can 7857 * easily overflow it, what with all the preceding sample bits. 7858 * Make sure this doesn't happen by using up to U16_MAX bytes 7859 * per sample in total (rounded down to 8 byte boundary). 7860 */ 7861 size = min_t(size_t, U16_MAX - header_size, 7862 event->attr.aux_sample_size); 7863 size = rounddown(size, 8); 7864 size = perf_prepare_sample_aux(event, data, size); 7865 7866 WARN_ON_ONCE(size + header_size > U16_MAX); 7867 data->dyn_size += size + sizeof(u64); /* size above */ 7868 data->sample_flags |= PERF_SAMPLE_AUX; 7869 } 7870 } 7871 7872 void perf_prepare_header(struct perf_event_header *header, 7873 struct perf_sample_data *data, 7874 struct perf_event *event, 7875 struct pt_regs *regs) 7876 { 7877 header->type = PERF_RECORD_SAMPLE; 7878 header->size = perf_sample_data_size(data, event); 7879 header->misc = perf_misc_flags(regs); 7880 7881 /* 7882 * If you're adding more sample types here, you likely need to do 7883 * something about the overflowing header::size, like repurpose the 7884 * lowest 3 bits of size, which should be always zero at the moment. 7885 * This raises a more important question, do we really need 512k sized 7886 * samples and why, so good argumentation is in order for whatever you 7887 * do here next. 7888 */ 7889 WARN_ON_ONCE(header->size & 7); 7890 } 7891 7892 static __always_inline int 7893 __perf_event_output(struct perf_event *event, 7894 struct perf_sample_data *data, 7895 struct pt_regs *regs, 7896 int (*output_begin)(struct perf_output_handle *, 7897 struct perf_sample_data *, 7898 struct perf_event *, 7899 unsigned int)) 7900 { 7901 struct perf_output_handle handle; 7902 struct perf_event_header header; 7903 int err; 7904 7905 /* protect the callchain buffers */ 7906 rcu_read_lock(); 7907 7908 perf_prepare_sample(data, event, regs); 7909 perf_prepare_header(&header, data, event, regs); 7910 7911 err = output_begin(&handle, data, event, header.size); 7912 if (err) 7913 goto exit; 7914 7915 perf_output_sample(&handle, &header, data, event); 7916 7917 perf_output_end(&handle); 7918 7919 exit: 7920 rcu_read_unlock(); 7921 return err; 7922 } 7923 7924 void 7925 perf_event_output_forward(struct perf_event *event, 7926 struct perf_sample_data *data, 7927 struct pt_regs *regs) 7928 { 7929 __perf_event_output(event, data, regs, perf_output_begin_forward); 7930 } 7931 7932 void 7933 perf_event_output_backward(struct perf_event *event, 7934 struct perf_sample_data *data, 7935 struct pt_regs *regs) 7936 { 7937 __perf_event_output(event, data, regs, perf_output_begin_backward); 7938 } 7939 7940 int 7941 perf_event_output(struct perf_event *event, 7942 struct perf_sample_data *data, 7943 struct pt_regs *regs) 7944 { 7945 return __perf_event_output(event, data, regs, perf_output_begin); 7946 } 7947 7948 /* 7949 * read event_id 7950 */ 7951 7952 struct perf_read_event { 7953 struct perf_event_header header; 7954 7955 u32 pid; 7956 u32 tid; 7957 }; 7958 7959 static void 7960 perf_event_read_event(struct perf_event *event, 7961 struct task_struct *task) 7962 { 7963 struct perf_output_handle handle; 7964 struct perf_sample_data sample; 7965 struct perf_read_event read_event = { 7966 .header = { 7967 .type = PERF_RECORD_READ, 7968 .misc = 0, 7969 .size = sizeof(read_event) + event->read_size, 7970 }, 7971 .pid = perf_event_pid(event, task), 7972 .tid = perf_event_tid(event, task), 7973 }; 7974 int ret; 7975 7976 perf_event_header__init_id(&read_event.header, &sample, event); 7977 ret = perf_output_begin(&handle, &sample, event, read_event.header.size); 7978 if (ret) 7979 return; 7980 7981 perf_output_put(&handle, read_event); 7982 perf_output_read(&handle, event); 7983 perf_event__output_id_sample(event, &handle, &sample); 7984 7985 perf_output_end(&handle); 7986 } 7987 7988 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 7989 7990 static void 7991 perf_iterate_ctx(struct perf_event_context *ctx, 7992 perf_iterate_f output, 7993 void *data, bool all) 7994 { 7995 struct perf_event *event; 7996 7997 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7998 if (!all) { 7999 if (event->state < PERF_EVENT_STATE_INACTIVE) 8000 continue; 8001 if (!event_filter_match(event)) 8002 continue; 8003 } 8004 8005 output(event, data); 8006 } 8007 } 8008 8009 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 8010 { 8011 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 8012 struct perf_event *event; 8013 8014 list_for_each_entry_rcu(event, &pel->list, sb_list) { 8015 /* 8016 * Skip events that are not fully formed yet; ensure that 8017 * if we observe event->ctx, both event and ctx will be 8018 * complete enough. See perf_install_in_context(). 8019 */ 8020 if (!smp_load_acquire(&event->ctx)) 8021 continue; 8022 8023 if (event->state < PERF_EVENT_STATE_INACTIVE) 8024 continue; 8025 if (!event_filter_match(event)) 8026 continue; 8027 output(event, data); 8028 } 8029 } 8030 8031 /* 8032 * Iterate all events that need to receive side-band events. 8033 * 8034 * For new callers; ensure that account_pmu_sb_event() includes 8035 * your event, otherwise it might not get delivered. 8036 */ 8037 static void 8038 perf_iterate_sb(perf_iterate_f output, void *data, 8039 struct perf_event_context *task_ctx) 8040 { 8041 struct perf_event_context *ctx; 8042 8043 rcu_read_lock(); 8044 preempt_disable(); 8045 8046 /* 8047 * If we have task_ctx != NULL we only notify the task context itself. 8048 * The task_ctx is set only for EXIT events before releasing task 8049 * context. 8050 */ 8051 if (task_ctx) { 8052 perf_iterate_ctx(task_ctx, output, data, false); 8053 goto done; 8054 } 8055 8056 perf_iterate_sb_cpu(output, data); 8057 8058 ctx = rcu_dereference(current->perf_event_ctxp); 8059 if (ctx) 8060 perf_iterate_ctx(ctx, output, data, false); 8061 done: 8062 preempt_enable(); 8063 rcu_read_unlock(); 8064 } 8065 8066 /* 8067 * Clear all file-based filters at exec, they'll have to be 8068 * re-instated when/if these objects are mmapped again. 8069 */ 8070 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 8071 { 8072 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8073 struct perf_addr_filter *filter; 8074 unsigned int restart = 0, count = 0; 8075 unsigned long flags; 8076 8077 if (!has_addr_filter(event)) 8078 return; 8079 8080 raw_spin_lock_irqsave(&ifh->lock, flags); 8081 list_for_each_entry(filter, &ifh->list, entry) { 8082 if (filter->path.dentry) { 8083 event->addr_filter_ranges[count].start = 0; 8084 event->addr_filter_ranges[count].size = 0; 8085 restart++; 8086 } 8087 8088 count++; 8089 } 8090 8091 if (restart) 8092 event->addr_filters_gen++; 8093 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8094 8095 if (restart) 8096 perf_event_stop(event, 1); 8097 } 8098 8099 void perf_event_exec(void) 8100 { 8101 struct perf_event_context *ctx; 8102 8103 ctx = perf_pin_task_context(current); 8104 if (!ctx) 8105 return; 8106 8107 perf_event_enable_on_exec(ctx); 8108 perf_event_remove_on_exec(ctx); 8109 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true); 8110 8111 perf_unpin_context(ctx); 8112 put_ctx(ctx); 8113 } 8114 8115 struct remote_output { 8116 struct perf_buffer *rb; 8117 int err; 8118 }; 8119 8120 static void __perf_event_output_stop(struct perf_event *event, void *data) 8121 { 8122 struct perf_event *parent = event->parent; 8123 struct remote_output *ro = data; 8124 struct perf_buffer *rb = ro->rb; 8125 struct stop_event_data sd = { 8126 .event = event, 8127 }; 8128 8129 if (!has_aux(event)) 8130 return; 8131 8132 if (!parent) 8133 parent = event; 8134 8135 /* 8136 * In case of inheritance, it will be the parent that links to the 8137 * ring-buffer, but it will be the child that's actually using it. 8138 * 8139 * We are using event::rb to determine if the event should be stopped, 8140 * however this may race with ring_buffer_attach() (through set_output), 8141 * which will make us skip the event that actually needs to be stopped. 8142 * So ring_buffer_attach() has to stop an aux event before re-assigning 8143 * its rb pointer. 8144 */ 8145 if (rcu_dereference(parent->rb) == rb) 8146 ro->err = __perf_event_stop(&sd); 8147 } 8148 8149 static int __perf_pmu_output_stop(void *info) 8150 { 8151 struct perf_event *event = info; 8152 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 8153 struct remote_output ro = { 8154 .rb = event->rb, 8155 }; 8156 8157 rcu_read_lock(); 8158 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 8159 if (cpuctx->task_ctx) 8160 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 8161 &ro, false); 8162 rcu_read_unlock(); 8163 8164 return ro.err; 8165 } 8166 8167 static void perf_pmu_output_stop(struct perf_event *event) 8168 { 8169 struct perf_event *iter; 8170 int err, cpu; 8171 8172 restart: 8173 rcu_read_lock(); 8174 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 8175 /* 8176 * For per-CPU events, we need to make sure that neither they 8177 * nor their children are running; for cpu==-1 events it's 8178 * sufficient to stop the event itself if it's active, since 8179 * it can't have children. 8180 */ 8181 cpu = iter->cpu; 8182 if (cpu == -1) 8183 cpu = READ_ONCE(iter->oncpu); 8184 8185 if (cpu == -1) 8186 continue; 8187 8188 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 8189 if (err == -EAGAIN) { 8190 rcu_read_unlock(); 8191 goto restart; 8192 } 8193 } 8194 rcu_read_unlock(); 8195 } 8196 8197 /* 8198 * task tracking -- fork/exit 8199 * 8200 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 8201 */ 8202 8203 struct perf_task_event { 8204 struct task_struct *task; 8205 struct perf_event_context *task_ctx; 8206 8207 struct { 8208 struct perf_event_header header; 8209 8210 u32 pid; 8211 u32 ppid; 8212 u32 tid; 8213 u32 ptid; 8214 u64 time; 8215 } event_id; 8216 }; 8217 8218 static int perf_event_task_match(struct perf_event *event) 8219 { 8220 return event->attr.comm || event->attr.mmap || 8221 event->attr.mmap2 || event->attr.mmap_data || 8222 event->attr.task; 8223 } 8224 8225 static void perf_event_task_output(struct perf_event *event, 8226 void *data) 8227 { 8228 struct perf_task_event *task_event = data; 8229 struct perf_output_handle handle; 8230 struct perf_sample_data sample; 8231 struct task_struct *task = task_event->task; 8232 int ret, size = task_event->event_id.header.size; 8233 8234 if (!perf_event_task_match(event)) 8235 return; 8236 8237 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 8238 8239 ret = perf_output_begin(&handle, &sample, event, 8240 task_event->event_id.header.size); 8241 if (ret) 8242 goto out; 8243 8244 task_event->event_id.pid = perf_event_pid(event, task); 8245 task_event->event_id.tid = perf_event_tid(event, task); 8246 8247 if (task_event->event_id.header.type == PERF_RECORD_EXIT) { 8248 task_event->event_id.ppid = perf_event_pid(event, 8249 task->real_parent); 8250 task_event->event_id.ptid = perf_event_pid(event, 8251 task->real_parent); 8252 } else { /* PERF_RECORD_FORK */ 8253 task_event->event_id.ppid = perf_event_pid(event, current); 8254 task_event->event_id.ptid = perf_event_tid(event, current); 8255 } 8256 8257 task_event->event_id.time = perf_event_clock(event); 8258 8259 perf_output_put(&handle, task_event->event_id); 8260 8261 perf_event__output_id_sample(event, &handle, &sample); 8262 8263 perf_output_end(&handle); 8264 out: 8265 task_event->event_id.header.size = size; 8266 } 8267 8268 static void perf_event_task(struct task_struct *task, 8269 struct perf_event_context *task_ctx, 8270 int new) 8271 { 8272 struct perf_task_event task_event; 8273 8274 if (!atomic_read(&nr_comm_events) && 8275 !atomic_read(&nr_mmap_events) && 8276 !atomic_read(&nr_task_events)) 8277 return; 8278 8279 task_event = (struct perf_task_event){ 8280 .task = task, 8281 .task_ctx = task_ctx, 8282 .event_id = { 8283 .header = { 8284 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 8285 .misc = 0, 8286 .size = sizeof(task_event.event_id), 8287 }, 8288 /* .pid */ 8289 /* .ppid */ 8290 /* .tid */ 8291 /* .ptid */ 8292 /* .time */ 8293 }, 8294 }; 8295 8296 perf_iterate_sb(perf_event_task_output, 8297 &task_event, 8298 task_ctx); 8299 } 8300 8301 void perf_event_fork(struct task_struct *task) 8302 { 8303 perf_event_task(task, NULL, 1); 8304 perf_event_namespaces(task); 8305 } 8306 8307 /* 8308 * comm tracking 8309 */ 8310 8311 struct perf_comm_event { 8312 struct task_struct *task; 8313 char *comm; 8314 int comm_size; 8315 8316 struct { 8317 struct perf_event_header header; 8318 8319 u32 pid; 8320 u32 tid; 8321 } event_id; 8322 }; 8323 8324 static int perf_event_comm_match(struct perf_event *event) 8325 { 8326 return event->attr.comm; 8327 } 8328 8329 static void perf_event_comm_output(struct perf_event *event, 8330 void *data) 8331 { 8332 struct perf_comm_event *comm_event = data; 8333 struct perf_output_handle handle; 8334 struct perf_sample_data sample; 8335 int size = comm_event->event_id.header.size; 8336 int ret; 8337 8338 if (!perf_event_comm_match(event)) 8339 return; 8340 8341 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 8342 ret = perf_output_begin(&handle, &sample, event, 8343 comm_event->event_id.header.size); 8344 8345 if (ret) 8346 goto out; 8347 8348 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 8349 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 8350 8351 perf_output_put(&handle, comm_event->event_id); 8352 __output_copy(&handle, comm_event->comm, 8353 comm_event->comm_size); 8354 8355 perf_event__output_id_sample(event, &handle, &sample); 8356 8357 perf_output_end(&handle); 8358 out: 8359 comm_event->event_id.header.size = size; 8360 } 8361 8362 static void perf_event_comm_event(struct perf_comm_event *comm_event) 8363 { 8364 char comm[TASK_COMM_LEN]; 8365 unsigned int size; 8366 8367 memset(comm, 0, sizeof(comm)); 8368 strscpy(comm, comm_event->task->comm, sizeof(comm)); 8369 size = ALIGN(strlen(comm)+1, sizeof(u64)); 8370 8371 comm_event->comm = comm; 8372 comm_event->comm_size = size; 8373 8374 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 8375 8376 perf_iterate_sb(perf_event_comm_output, 8377 comm_event, 8378 NULL); 8379 } 8380 8381 void perf_event_comm(struct task_struct *task, bool exec) 8382 { 8383 struct perf_comm_event comm_event; 8384 8385 if (!atomic_read(&nr_comm_events)) 8386 return; 8387 8388 comm_event = (struct perf_comm_event){ 8389 .task = task, 8390 /* .comm */ 8391 /* .comm_size */ 8392 .event_id = { 8393 .header = { 8394 .type = PERF_RECORD_COMM, 8395 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 8396 /* .size */ 8397 }, 8398 /* .pid */ 8399 /* .tid */ 8400 }, 8401 }; 8402 8403 perf_event_comm_event(&comm_event); 8404 } 8405 8406 /* 8407 * namespaces tracking 8408 */ 8409 8410 struct perf_namespaces_event { 8411 struct task_struct *task; 8412 8413 struct { 8414 struct perf_event_header header; 8415 8416 u32 pid; 8417 u32 tid; 8418 u64 nr_namespaces; 8419 struct perf_ns_link_info link_info[NR_NAMESPACES]; 8420 } event_id; 8421 }; 8422 8423 static int perf_event_namespaces_match(struct perf_event *event) 8424 { 8425 return event->attr.namespaces; 8426 } 8427 8428 static void perf_event_namespaces_output(struct perf_event *event, 8429 void *data) 8430 { 8431 struct perf_namespaces_event *namespaces_event = data; 8432 struct perf_output_handle handle; 8433 struct perf_sample_data sample; 8434 u16 header_size = namespaces_event->event_id.header.size; 8435 int ret; 8436 8437 if (!perf_event_namespaces_match(event)) 8438 return; 8439 8440 perf_event_header__init_id(&namespaces_event->event_id.header, 8441 &sample, event); 8442 ret = perf_output_begin(&handle, &sample, event, 8443 namespaces_event->event_id.header.size); 8444 if (ret) 8445 goto out; 8446 8447 namespaces_event->event_id.pid = perf_event_pid(event, 8448 namespaces_event->task); 8449 namespaces_event->event_id.tid = perf_event_tid(event, 8450 namespaces_event->task); 8451 8452 perf_output_put(&handle, namespaces_event->event_id); 8453 8454 perf_event__output_id_sample(event, &handle, &sample); 8455 8456 perf_output_end(&handle); 8457 out: 8458 namespaces_event->event_id.header.size = header_size; 8459 } 8460 8461 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 8462 struct task_struct *task, 8463 const struct proc_ns_operations *ns_ops) 8464 { 8465 struct path ns_path; 8466 struct inode *ns_inode; 8467 int error; 8468 8469 error = ns_get_path(&ns_path, task, ns_ops); 8470 if (!error) { 8471 ns_inode = ns_path.dentry->d_inode; 8472 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 8473 ns_link_info->ino = ns_inode->i_ino; 8474 path_put(&ns_path); 8475 } 8476 } 8477 8478 void perf_event_namespaces(struct task_struct *task) 8479 { 8480 struct perf_namespaces_event namespaces_event; 8481 struct perf_ns_link_info *ns_link_info; 8482 8483 if (!atomic_read(&nr_namespaces_events)) 8484 return; 8485 8486 namespaces_event = (struct perf_namespaces_event){ 8487 .task = task, 8488 .event_id = { 8489 .header = { 8490 .type = PERF_RECORD_NAMESPACES, 8491 .misc = 0, 8492 .size = sizeof(namespaces_event.event_id), 8493 }, 8494 /* .pid */ 8495 /* .tid */ 8496 .nr_namespaces = NR_NAMESPACES, 8497 /* .link_info[NR_NAMESPACES] */ 8498 }, 8499 }; 8500 8501 ns_link_info = namespaces_event.event_id.link_info; 8502 8503 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 8504 task, &mntns_operations); 8505 8506 #ifdef CONFIG_USER_NS 8507 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 8508 task, &userns_operations); 8509 #endif 8510 #ifdef CONFIG_NET_NS 8511 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 8512 task, &netns_operations); 8513 #endif 8514 #ifdef CONFIG_UTS_NS 8515 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 8516 task, &utsns_operations); 8517 #endif 8518 #ifdef CONFIG_IPC_NS 8519 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 8520 task, &ipcns_operations); 8521 #endif 8522 #ifdef CONFIG_PID_NS 8523 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 8524 task, &pidns_operations); 8525 #endif 8526 #ifdef CONFIG_CGROUPS 8527 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 8528 task, &cgroupns_operations); 8529 #endif 8530 8531 perf_iterate_sb(perf_event_namespaces_output, 8532 &namespaces_event, 8533 NULL); 8534 } 8535 8536 /* 8537 * cgroup tracking 8538 */ 8539 #ifdef CONFIG_CGROUP_PERF 8540 8541 struct perf_cgroup_event { 8542 char *path; 8543 int path_size; 8544 struct { 8545 struct perf_event_header header; 8546 u64 id; 8547 char path[]; 8548 } event_id; 8549 }; 8550 8551 static int perf_event_cgroup_match(struct perf_event *event) 8552 { 8553 return event->attr.cgroup; 8554 } 8555 8556 static void perf_event_cgroup_output(struct perf_event *event, void *data) 8557 { 8558 struct perf_cgroup_event *cgroup_event = data; 8559 struct perf_output_handle handle; 8560 struct perf_sample_data sample; 8561 u16 header_size = cgroup_event->event_id.header.size; 8562 int ret; 8563 8564 if (!perf_event_cgroup_match(event)) 8565 return; 8566 8567 perf_event_header__init_id(&cgroup_event->event_id.header, 8568 &sample, event); 8569 ret = perf_output_begin(&handle, &sample, event, 8570 cgroup_event->event_id.header.size); 8571 if (ret) 8572 goto out; 8573 8574 perf_output_put(&handle, cgroup_event->event_id); 8575 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size); 8576 8577 perf_event__output_id_sample(event, &handle, &sample); 8578 8579 perf_output_end(&handle); 8580 out: 8581 cgroup_event->event_id.header.size = header_size; 8582 } 8583 8584 static void perf_event_cgroup(struct cgroup *cgrp) 8585 { 8586 struct perf_cgroup_event cgroup_event; 8587 char path_enomem[16] = "//enomem"; 8588 char *pathname; 8589 size_t size; 8590 8591 if (!atomic_read(&nr_cgroup_events)) 8592 return; 8593 8594 cgroup_event = (struct perf_cgroup_event){ 8595 .event_id = { 8596 .header = { 8597 .type = PERF_RECORD_CGROUP, 8598 .misc = 0, 8599 .size = sizeof(cgroup_event.event_id), 8600 }, 8601 .id = cgroup_id(cgrp), 8602 }, 8603 }; 8604 8605 pathname = kmalloc(PATH_MAX, GFP_KERNEL); 8606 if (pathname == NULL) { 8607 cgroup_event.path = path_enomem; 8608 } else { 8609 /* just to be sure to have enough space for alignment */ 8610 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64)); 8611 cgroup_event.path = pathname; 8612 } 8613 8614 /* 8615 * Since our buffer works in 8 byte units we need to align our string 8616 * size to a multiple of 8. However, we must guarantee the tail end is 8617 * zero'd out to avoid leaking random bits to userspace. 8618 */ 8619 size = strlen(cgroup_event.path) + 1; 8620 while (!IS_ALIGNED(size, sizeof(u64))) 8621 cgroup_event.path[size++] = '\0'; 8622 8623 cgroup_event.event_id.header.size += size; 8624 cgroup_event.path_size = size; 8625 8626 perf_iterate_sb(perf_event_cgroup_output, 8627 &cgroup_event, 8628 NULL); 8629 8630 kfree(pathname); 8631 } 8632 8633 #endif 8634 8635 /* 8636 * mmap tracking 8637 */ 8638 8639 struct perf_mmap_event { 8640 struct vm_area_struct *vma; 8641 8642 const char *file_name; 8643 int file_size; 8644 int maj, min; 8645 u64 ino; 8646 u64 ino_generation; 8647 u32 prot, flags; 8648 u8 build_id[BUILD_ID_SIZE_MAX]; 8649 u32 build_id_size; 8650 8651 struct { 8652 struct perf_event_header header; 8653 8654 u32 pid; 8655 u32 tid; 8656 u64 start; 8657 u64 len; 8658 u64 pgoff; 8659 } event_id; 8660 }; 8661 8662 static int perf_event_mmap_match(struct perf_event *event, 8663 void *data) 8664 { 8665 struct perf_mmap_event *mmap_event = data; 8666 struct vm_area_struct *vma = mmap_event->vma; 8667 int executable = vma->vm_flags & VM_EXEC; 8668 8669 return (!executable && event->attr.mmap_data) || 8670 (executable && (event->attr.mmap || event->attr.mmap2)); 8671 } 8672 8673 static void perf_event_mmap_output(struct perf_event *event, 8674 void *data) 8675 { 8676 struct perf_mmap_event *mmap_event = data; 8677 struct perf_output_handle handle; 8678 struct perf_sample_data sample; 8679 int size = mmap_event->event_id.header.size; 8680 u32 type = mmap_event->event_id.header.type; 8681 bool use_build_id; 8682 int ret; 8683 8684 if (!perf_event_mmap_match(event, data)) 8685 return; 8686 8687 if (event->attr.mmap2) { 8688 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 8689 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 8690 mmap_event->event_id.header.size += sizeof(mmap_event->min); 8691 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 8692 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 8693 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 8694 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 8695 } 8696 8697 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 8698 ret = perf_output_begin(&handle, &sample, event, 8699 mmap_event->event_id.header.size); 8700 if (ret) 8701 goto out; 8702 8703 mmap_event->event_id.pid = perf_event_pid(event, current); 8704 mmap_event->event_id.tid = perf_event_tid(event, current); 8705 8706 use_build_id = event->attr.build_id && mmap_event->build_id_size; 8707 8708 if (event->attr.mmap2 && use_build_id) 8709 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID; 8710 8711 perf_output_put(&handle, mmap_event->event_id); 8712 8713 if (event->attr.mmap2) { 8714 if (use_build_id) { 8715 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 }; 8716 8717 __output_copy(&handle, size, 4); 8718 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX); 8719 } else { 8720 perf_output_put(&handle, mmap_event->maj); 8721 perf_output_put(&handle, mmap_event->min); 8722 perf_output_put(&handle, mmap_event->ino); 8723 perf_output_put(&handle, mmap_event->ino_generation); 8724 } 8725 perf_output_put(&handle, mmap_event->prot); 8726 perf_output_put(&handle, mmap_event->flags); 8727 } 8728 8729 __output_copy(&handle, mmap_event->file_name, 8730 mmap_event->file_size); 8731 8732 perf_event__output_id_sample(event, &handle, &sample); 8733 8734 perf_output_end(&handle); 8735 out: 8736 mmap_event->event_id.header.size = size; 8737 mmap_event->event_id.header.type = type; 8738 } 8739 8740 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 8741 { 8742 struct vm_area_struct *vma = mmap_event->vma; 8743 struct file *file = vma->vm_file; 8744 int maj = 0, min = 0; 8745 u64 ino = 0, gen = 0; 8746 u32 prot = 0, flags = 0; 8747 unsigned int size; 8748 char tmp[16]; 8749 char *buf = NULL; 8750 char *name = NULL; 8751 8752 if (vma->vm_flags & VM_READ) 8753 prot |= PROT_READ; 8754 if (vma->vm_flags & VM_WRITE) 8755 prot |= PROT_WRITE; 8756 if (vma->vm_flags & VM_EXEC) 8757 prot |= PROT_EXEC; 8758 8759 if (vma->vm_flags & VM_MAYSHARE) 8760 flags = MAP_SHARED; 8761 else 8762 flags = MAP_PRIVATE; 8763 8764 if (vma->vm_flags & VM_LOCKED) 8765 flags |= MAP_LOCKED; 8766 if (is_vm_hugetlb_page(vma)) 8767 flags |= MAP_HUGETLB; 8768 8769 if (file) { 8770 struct inode *inode; 8771 dev_t dev; 8772 8773 buf = kmalloc(PATH_MAX, GFP_KERNEL); 8774 if (!buf) { 8775 name = "//enomem"; 8776 goto cpy_name; 8777 } 8778 /* 8779 * d_path() works from the end of the rb backwards, so we 8780 * need to add enough zero bytes after the string to handle 8781 * the 64bit alignment we do later. 8782 */ 8783 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 8784 if (IS_ERR(name)) { 8785 name = "//toolong"; 8786 goto cpy_name; 8787 } 8788 inode = file_inode(vma->vm_file); 8789 dev = inode->i_sb->s_dev; 8790 ino = inode->i_ino; 8791 gen = inode->i_generation; 8792 maj = MAJOR(dev); 8793 min = MINOR(dev); 8794 8795 goto got_name; 8796 } else { 8797 if (vma->vm_ops && vma->vm_ops->name) 8798 name = (char *) vma->vm_ops->name(vma); 8799 if (!name) 8800 name = (char *)arch_vma_name(vma); 8801 if (!name) { 8802 if (vma_is_initial_heap(vma)) 8803 name = "[heap]"; 8804 else if (vma_is_initial_stack(vma)) 8805 name = "[stack]"; 8806 else 8807 name = "//anon"; 8808 } 8809 } 8810 8811 cpy_name: 8812 strscpy(tmp, name, sizeof(tmp)); 8813 name = tmp; 8814 got_name: 8815 /* 8816 * Since our buffer works in 8 byte units we need to align our string 8817 * size to a multiple of 8. However, we must guarantee the tail end is 8818 * zero'd out to avoid leaking random bits to userspace. 8819 */ 8820 size = strlen(name)+1; 8821 while (!IS_ALIGNED(size, sizeof(u64))) 8822 name[size++] = '\0'; 8823 8824 mmap_event->file_name = name; 8825 mmap_event->file_size = size; 8826 mmap_event->maj = maj; 8827 mmap_event->min = min; 8828 mmap_event->ino = ino; 8829 mmap_event->ino_generation = gen; 8830 mmap_event->prot = prot; 8831 mmap_event->flags = flags; 8832 8833 if (!(vma->vm_flags & VM_EXEC)) 8834 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 8835 8836 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 8837 8838 if (atomic_read(&nr_build_id_events)) 8839 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size); 8840 8841 perf_iterate_sb(perf_event_mmap_output, 8842 mmap_event, 8843 NULL); 8844 8845 kfree(buf); 8846 } 8847 8848 /* 8849 * Check whether inode and address range match filter criteria. 8850 */ 8851 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 8852 struct file *file, unsigned long offset, 8853 unsigned long size) 8854 { 8855 /* d_inode(NULL) won't be equal to any mapped user-space file */ 8856 if (!filter->path.dentry) 8857 return false; 8858 8859 if (d_inode(filter->path.dentry) != file_inode(file)) 8860 return false; 8861 8862 if (filter->offset > offset + size) 8863 return false; 8864 8865 if (filter->offset + filter->size < offset) 8866 return false; 8867 8868 return true; 8869 } 8870 8871 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 8872 struct vm_area_struct *vma, 8873 struct perf_addr_filter_range *fr) 8874 { 8875 unsigned long vma_size = vma->vm_end - vma->vm_start; 8876 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8877 struct file *file = vma->vm_file; 8878 8879 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8880 return false; 8881 8882 if (filter->offset < off) { 8883 fr->start = vma->vm_start; 8884 fr->size = min(vma_size, filter->size - (off - filter->offset)); 8885 } else { 8886 fr->start = vma->vm_start + filter->offset - off; 8887 fr->size = min(vma->vm_end - fr->start, filter->size); 8888 } 8889 8890 return true; 8891 } 8892 8893 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 8894 { 8895 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8896 struct vm_area_struct *vma = data; 8897 struct perf_addr_filter *filter; 8898 unsigned int restart = 0, count = 0; 8899 unsigned long flags; 8900 8901 if (!has_addr_filter(event)) 8902 return; 8903 8904 if (!vma->vm_file) 8905 return; 8906 8907 raw_spin_lock_irqsave(&ifh->lock, flags); 8908 list_for_each_entry(filter, &ifh->list, entry) { 8909 if (perf_addr_filter_vma_adjust(filter, vma, 8910 &event->addr_filter_ranges[count])) 8911 restart++; 8912 8913 count++; 8914 } 8915 8916 if (restart) 8917 event->addr_filters_gen++; 8918 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8919 8920 if (restart) 8921 perf_event_stop(event, 1); 8922 } 8923 8924 /* 8925 * Adjust all task's events' filters to the new vma 8926 */ 8927 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 8928 { 8929 struct perf_event_context *ctx; 8930 8931 /* 8932 * Data tracing isn't supported yet and as such there is no need 8933 * to keep track of anything that isn't related to executable code: 8934 */ 8935 if (!(vma->vm_flags & VM_EXEC)) 8936 return; 8937 8938 rcu_read_lock(); 8939 ctx = rcu_dereference(current->perf_event_ctxp); 8940 if (ctx) 8941 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 8942 rcu_read_unlock(); 8943 } 8944 8945 void perf_event_mmap(struct vm_area_struct *vma) 8946 { 8947 struct perf_mmap_event mmap_event; 8948 8949 if (!atomic_read(&nr_mmap_events)) 8950 return; 8951 8952 mmap_event = (struct perf_mmap_event){ 8953 .vma = vma, 8954 /* .file_name */ 8955 /* .file_size */ 8956 .event_id = { 8957 .header = { 8958 .type = PERF_RECORD_MMAP, 8959 .misc = PERF_RECORD_MISC_USER, 8960 /* .size */ 8961 }, 8962 /* .pid */ 8963 /* .tid */ 8964 .start = vma->vm_start, 8965 .len = vma->vm_end - vma->vm_start, 8966 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 8967 }, 8968 /* .maj (attr_mmap2 only) */ 8969 /* .min (attr_mmap2 only) */ 8970 /* .ino (attr_mmap2 only) */ 8971 /* .ino_generation (attr_mmap2 only) */ 8972 /* .prot (attr_mmap2 only) */ 8973 /* .flags (attr_mmap2 only) */ 8974 }; 8975 8976 perf_addr_filters_adjust(vma); 8977 perf_event_mmap_event(&mmap_event); 8978 } 8979 8980 void perf_event_aux_event(struct perf_event *event, unsigned long head, 8981 unsigned long size, u64 flags) 8982 { 8983 struct perf_output_handle handle; 8984 struct perf_sample_data sample; 8985 struct perf_aux_event { 8986 struct perf_event_header header; 8987 u64 offset; 8988 u64 size; 8989 u64 flags; 8990 } rec = { 8991 .header = { 8992 .type = PERF_RECORD_AUX, 8993 .misc = 0, 8994 .size = sizeof(rec), 8995 }, 8996 .offset = head, 8997 .size = size, 8998 .flags = flags, 8999 }; 9000 int ret; 9001 9002 perf_event_header__init_id(&rec.header, &sample, event); 9003 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9004 9005 if (ret) 9006 return; 9007 9008 perf_output_put(&handle, rec); 9009 perf_event__output_id_sample(event, &handle, &sample); 9010 9011 perf_output_end(&handle); 9012 } 9013 9014 /* 9015 * Lost/dropped samples logging 9016 */ 9017 void perf_log_lost_samples(struct perf_event *event, u64 lost) 9018 { 9019 struct perf_output_handle handle; 9020 struct perf_sample_data sample; 9021 int ret; 9022 9023 struct { 9024 struct perf_event_header header; 9025 u64 lost; 9026 } lost_samples_event = { 9027 .header = { 9028 .type = PERF_RECORD_LOST_SAMPLES, 9029 .misc = 0, 9030 .size = sizeof(lost_samples_event), 9031 }, 9032 .lost = lost, 9033 }; 9034 9035 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 9036 9037 ret = perf_output_begin(&handle, &sample, event, 9038 lost_samples_event.header.size); 9039 if (ret) 9040 return; 9041 9042 perf_output_put(&handle, lost_samples_event); 9043 perf_event__output_id_sample(event, &handle, &sample); 9044 perf_output_end(&handle); 9045 } 9046 9047 /* 9048 * context_switch tracking 9049 */ 9050 9051 struct perf_switch_event { 9052 struct task_struct *task; 9053 struct task_struct *next_prev; 9054 9055 struct { 9056 struct perf_event_header header; 9057 u32 next_prev_pid; 9058 u32 next_prev_tid; 9059 } event_id; 9060 }; 9061 9062 static int perf_event_switch_match(struct perf_event *event) 9063 { 9064 return event->attr.context_switch; 9065 } 9066 9067 static void perf_event_switch_output(struct perf_event *event, void *data) 9068 { 9069 struct perf_switch_event *se = data; 9070 struct perf_output_handle handle; 9071 struct perf_sample_data sample; 9072 int ret; 9073 9074 if (!perf_event_switch_match(event)) 9075 return; 9076 9077 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 9078 if (event->ctx->task) { 9079 se->event_id.header.type = PERF_RECORD_SWITCH; 9080 se->event_id.header.size = sizeof(se->event_id.header); 9081 } else { 9082 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 9083 se->event_id.header.size = sizeof(se->event_id); 9084 se->event_id.next_prev_pid = 9085 perf_event_pid(event, se->next_prev); 9086 se->event_id.next_prev_tid = 9087 perf_event_tid(event, se->next_prev); 9088 } 9089 9090 perf_event_header__init_id(&se->event_id.header, &sample, event); 9091 9092 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size); 9093 if (ret) 9094 return; 9095 9096 if (event->ctx->task) 9097 perf_output_put(&handle, se->event_id.header); 9098 else 9099 perf_output_put(&handle, se->event_id); 9100 9101 perf_event__output_id_sample(event, &handle, &sample); 9102 9103 perf_output_end(&handle); 9104 } 9105 9106 static void perf_event_switch(struct task_struct *task, 9107 struct task_struct *next_prev, bool sched_in) 9108 { 9109 struct perf_switch_event switch_event; 9110 9111 /* N.B. caller checks nr_switch_events != 0 */ 9112 9113 switch_event = (struct perf_switch_event){ 9114 .task = task, 9115 .next_prev = next_prev, 9116 .event_id = { 9117 .header = { 9118 /* .type */ 9119 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 9120 /* .size */ 9121 }, 9122 /* .next_prev_pid */ 9123 /* .next_prev_tid */ 9124 }, 9125 }; 9126 9127 if (!sched_in && task->on_rq) { 9128 switch_event.event_id.header.misc |= 9129 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 9130 } 9131 9132 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL); 9133 } 9134 9135 /* 9136 * IRQ throttle logging 9137 */ 9138 9139 static void perf_log_throttle(struct perf_event *event, int enable) 9140 { 9141 struct perf_output_handle handle; 9142 struct perf_sample_data sample; 9143 int ret; 9144 9145 struct { 9146 struct perf_event_header header; 9147 u64 time; 9148 u64 id; 9149 u64 stream_id; 9150 } throttle_event = { 9151 .header = { 9152 .type = PERF_RECORD_THROTTLE, 9153 .misc = 0, 9154 .size = sizeof(throttle_event), 9155 }, 9156 .time = perf_event_clock(event), 9157 .id = primary_event_id(event), 9158 .stream_id = event->id, 9159 }; 9160 9161 if (enable) 9162 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 9163 9164 perf_event_header__init_id(&throttle_event.header, &sample, event); 9165 9166 ret = perf_output_begin(&handle, &sample, event, 9167 throttle_event.header.size); 9168 if (ret) 9169 return; 9170 9171 perf_output_put(&handle, throttle_event); 9172 perf_event__output_id_sample(event, &handle, &sample); 9173 perf_output_end(&handle); 9174 } 9175 9176 /* 9177 * ksymbol register/unregister tracking 9178 */ 9179 9180 struct perf_ksymbol_event { 9181 const char *name; 9182 int name_len; 9183 struct { 9184 struct perf_event_header header; 9185 u64 addr; 9186 u32 len; 9187 u16 ksym_type; 9188 u16 flags; 9189 } event_id; 9190 }; 9191 9192 static int perf_event_ksymbol_match(struct perf_event *event) 9193 { 9194 return event->attr.ksymbol; 9195 } 9196 9197 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 9198 { 9199 struct perf_ksymbol_event *ksymbol_event = data; 9200 struct perf_output_handle handle; 9201 struct perf_sample_data sample; 9202 int ret; 9203 9204 if (!perf_event_ksymbol_match(event)) 9205 return; 9206 9207 perf_event_header__init_id(&ksymbol_event->event_id.header, 9208 &sample, event); 9209 ret = perf_output_begin(&handle, &sample, event, 9210 ksymbol_event->event_id.header.size); 9211 if (ret) 9212 return; 9213 9214 perf_output_put(&handle, ksymbol_event->event_id); 9215 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 9216 perf_event__output_id_sample(event, &handle, &sample); 9217 9218 perf_output_end(&handle); 9219 } 9220 9221 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 9222 const char *sym) 9223 { 9224 struct perf_ksymbol_event ksymbol_event; 9225 char name[KSYM_NAME_LEN]; 9226 u16 flags = 0; 9227 int name_len; 9228 9229 if (!atomic_read(&nr_ksymbol_events)) 9230 return; 9231 9232 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 9233 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 9234 goto err; 9235 9236 strscpy(name, sym, KSYM_NAME_LEN); 9237 name_len = strlen(name) + 1; 9238 while (!IS_ALIGNED(name_len, sizeof(u64))) 9239 name[name_len++] = '\0'; 9240 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 9241 9242 if (unregister) 9243 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 9244 9245 ksymbol_event = (struct perf_ksymbol_event){ 9246 .name = name, 9247 .name_len = name_len, 9248 .event_id = { 9249 .header = { 9250 .type = PERF_RECORD_KSYMBOL, 9251 .size = sizeof(ksymbol_event.event_id) + 9252 name_len, 9253 }, 9254 .addr = addr, 9255 .len = len, 9256 .ksym_type = ksym_type, 9257 .flags = flags, 9258 }, 9259 }; 9260 9261 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 9262 return; 9263 err: 9264 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 9265 } 9266 9267 /* 9268 * bpf program load/unload tracking 9269 */ 9270 9271 struct perf_bpf_event { 9272 struct bpf_prog *prog; 9273 struct { 9274 struct perf_event_header header; 9275 u16 type; 9276 u16 flags; 9277 u32 id; 9278 u8 tag[BPF_TAG_SIZE]; 9279 } event_id; 9280 }; 9281 9282 static int perf_event_bpf_match(struct perf_event *event) 9283 { 9284 return event->attr.bpf_event; 9285 } 9286 9287 static void perf_event_bpf_output(struct perf_event *event, void *data) 9288 { 9289 struct perf_bpf_event *bpf_event = data; 9290 struct perf_output_handle handle; 9291 struct perf_sample_data sample; 9292 int ret; 9293 9294 if (!perf_event_bpf_match(event)) 9295 return; 9296 9297 perf_event_header__init_id(&bpf_event->event_id.header, 9298 &sample, event); 9299 ret = perf_output_begin(&handle, &sample, event, 9300 bpf_event->event_id.header.size); 9301 if (ret) 9302 return; 9303 9304 perf_output_put(&handle, bpf_event->event_id); 9305 perf_event__output_id_sample(event, &handle, &sample); 9306 9307 perf_output_end(&handle); 9308 } 9309 9310 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 9311 enum perf_bpf_event_type type) 9312 { 9313 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 9314 int i; 9315 9316 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 9317 (u64)(unsigned long)prog->bpf_func, 9318 prog->jited_len, unregister, 9319 prog->aux->ksym.name); 9320 9321 for (i = 1; i < prog->aux->func_cnt; i++) { 9322 struct bpf_prog *subprog = prog->aux->func[i]; 9323 9324 perf_event_ksymbol( 9325 PERF_RECORD_KSYMBOL_TYPE_BPF, 9326 (u64)(unsigned long)subprog->bpf_func, 9327 subprog->jited_len, unregister, 9328 subprog->aux->ksym.name); 9329 } 9330 } 9331 9332 void perf_event_bpf_event(struct bpf_prog *prog, 9333 enum perf_bpf_event_type type, 9334 u16 flags) 9335 { 9336 struct perf_bpf_event bpf_event; 9337 9338 if (type <= PERF_BPF_EVENT_UNKNOWN || 9339 type >= PERF_BPF_EVENT_MAX) 9340 return; 9341 9342 switch (type) { 9343 case PERF_BPF_EVENT_PROG_LOAD: 9344 case PERF_BPF_EVENT_PROG_UNLOAD: 9345 if (atomic_read(&nr_ksymbol_events)) 9346 perf_event_bpf_emit_ksymbols(prog, type); 9347 break; 9348 default: 9349 break; 9350 } 9351 9352 if (!atomic_read(&nr_bpf_events)) 9353 return; 9354 9355 bpf_event = (struct perf_bpf_event){ 9356 .prog = prog, 9357 .event_id = { 9358 .header = { 9359 .type = PERF_RECORD_BPF_EVENT, 9360 .size = sizeof(bpf_event.event_id), 9361 }, 9362 .type = type, 9363 .flags = flags, 9364 .id = prog->aux->id, 9365 }, 9366 }; 9367 9368 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 9369 9370 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 9371 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 9372 } 9373 9374 struct perf_text_poke_event { 9375 const void *old_bytes; 9376 const void *new_bytes; 9377 size_t pad; 9378 u16 old_len; 9379 u16 new_len; 9380 9381 struct { 9382 struct perf_event_header header; 9383 9384 u64 addr; 9385 } event_id; 9386 }; 9387 9388 static int perf_event_text_poke_match(struct perf_event *event) 9389 { 9390 return event->attr.text_poke; 9391 } 9392 9393 static void perf_event_text_poke_output(struct perf_event *event, void *data) 9394 { 9395 struct perf_text_poke_event *text_poke_event = data; 9396 struct perf_output_handle handle; 9397 struct perf_sample_data sample; 9398 u64 padding = 0; 9399 int ret; 9400 9401 if (!perf_event_text_poke_match(event)) 9402 return; 9403 9404 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event); 9405 9406 ret = perf_output_begin(&handle, &sample, event, 9407 text_poke_event->event_id.header.size); 9408 if (ret) 9409 return; 9410 9411 perf_output_put(&handle, text_poke_event->event_id); 9412 perf_output_put(&handle, text_poke_event->old_len); 9413 perf_output_put(&handle, text_poke_event->new_len); 9414 9415 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len); 9416 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len); 9417 9418 if (text_poke_event->pad) 9419 __output_copy(&handle, &padding, text_poke_event->pad); 9420 9421 perf_event__output_id_sample(event, &handle, &sample); 9422 9423 perf_output_end(&handle); 9424 } 9425 9426 void perf_event_text_poke(const void *addr, const void *old_bytes, 9427 size_t old_len, const void *new_bytes, size_t new_len) 9428 { 9429 struct perf_text_poke_event text_poke_event; 9430 size_t tot, pad; 9431 9432 if (!atomic_read(&nr_text_poke_events)) 9433 return; 9434 9435 tot = sizeof(text_poke_event.old_len) + old_len; 9436 tot += sizeof(text_poke_event.new_len) + new_len; 9437 pad = ALIGN(tot, sizeof(u64)) - tot; 9438 9439 text_poke_event = (struct perf_text_poke_event){ 9440 .old_bytes = old_bytes, 9441 .new_bytes = new_bytes, 9442 .pad = pad, 9443 .old_len = old_len, 9444 .new_len = new_len, 9445 .event_id = { 9446 .header = { 9447 .type = PERF_RECORD_TEXT_POKE, 9448 .misc = PERF_RECORD_MISC_KERNEL, 9449 .size = sizeof(text_poke_event.event_id) + tot + pad, 9450 }, 9451 .addr = (unsigned long)addr, 9452 }, 9453 }; 9454 9455 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL); 9456 } 9457 9458 void perf_event_itrace_started(struct perf_event *event) 9459 { 9460 event->attach_state |= PERF_ATTACH_ITRACE; 9461 } 9462 9463 static void perf_log_itrace_start(struct perf_event *event) 9464 { 9465 struct perf_output_handle handle; 9466 struct perf_sample_data sample; 9467 struct perf_aux_event { 9468 struct perf_event_header header; 9469 u32 pid; 9470 u32 tid; 9471 } rec; 9472 int ret; 9473 9474 if (event->parent) 9475 event = event->parent; 9476 9477 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 9478 event->attach_state & PERF_ATTACH_ITRACE) 9479 return; 9480 9481 rec.header.type = PERF_RECORD_ITRACE_START; 9482 rec.header.misc = 0; 9483 rec.header.size = sizeof(rec); 9484 rec.pid = perf_event_pid(event, current); 9485 rec.tid = perf_event_tid(event, current); 9486 9487 perf_event_header__init_id(&rec.header, &sample, event); 9488 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9489 9490 if (ret) 9491 return; 9492 9493 perf_output_put(&handle, rec); 9494 perf_event__output_id_sample(event, &handle, &sample); 9495 9496 perf_output_end(&handle); 9497 } 9498 9499 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id) 9500 { 9501 struct perf_output_handle handle; 9502 struct perf_sample_data sample; 9503 struct perf_aux_event { 9504 struct perf_event_header header; 9505 u64 hw_id; 9506 } rec; 9507 int ret; 9508 9509 if (event->parent) 9510 event = event->parent; 9511 9512 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID; 9513 rec.header.misc = 0; 9514 rec.header.size = sizeof(rec); 9515 rec.hw_id = hw_id; 9516 9517 perf_event_header__init_id(&rec.header, &sample, event); 9518 ret = perf_output_begin(&handle, &sample, event, rec.header.size); 9519 9520 if (ret) 9521 return; 9522 9523 perf_output_put(&handle, rec); 9524 perf_event__output_id_sample(event, &handle, &sample); 9525 9526 perf_output_end(&handle); 9527 } 9528 EXPORT_SYMBOL_GPL(perf_report_aux_output_id); 9529 9530 static int 9531 __perf_event_account_interrupt(struct perf_event *event, int throttle) 9532 { 9533 struct hw_perf_event *hwc = &event->hw; 9534 int ret = 0; 9535 u64 seq; 9536 9537 seq = __this_cpu_read(perf_throttled_seq); 9538 if (seq != hwc->interrupts_seq) { 9539 hwc->interrupts_seq = seq; 9540 hwc->interrupts = 1; 9541 } else { 9542 hwc->interrupts++; 9543 if (unlikely(throttle && 9544 hwc->interrupts > max_samples_per_tick)) { 9545 __this_cpu_inc(perf_throttled_count); 9546 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 9547 hwc->interrupts = MAX_INTERRUPTS; 9548 perf_log_throttle(event, 0); 9549 ret = 1; 9550 } 9551 } 9552 9553 if (event->attr.freq) { 9554 u64 now = perf_clock(); 9555 s64 delta = now - hwc->freq_time_stamp; 9556 9557 hwc->freq_time_stamp = now; 9558 9559 if (delta > 0 && delta < 2*TICK_NSEC) 9560 perf_adjust_period(event, delta, hwc->last_period, true); 9561 } 9562 9563 return ret; 9564 } 9565 9566 int perf_event_account_interrupt(struct perf_event *event) 9567 { 9568 return __perf_event_account_interrupt(event, 1); 9569 } 9570 9571 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs) 9572 { 9573 /* 9574 * Due to interrupt latency (AKA "skid"), we may enter the 9575 * kernel before taking an overflow, even if the PMU is only 9576 * counting user events. 9577 */ 9578 if (event->attr.exclude_kernel && !user_mode(regs)) 9579 return false; 9580 9581 return true; 9582 } 9583 9584 /* 9585 * Generic event overflow handling, sampling. 9586 */ 9587 9588 static int __perf_event_overflow(struct perf_event *event, 9589 int throttle, struct perf_sample_data *data, 9590 struct pt_regs *regs) 9591 { 9592 int events = atomic_read(&event->event_limit); 9593 int ret = 0; 9594 9595 /* 9596 * Non-sampling counters might still use the PMI to fold short 9597 * hardware counters, ignore those. 9598 */ 9599 if (unlikely(!is_sampling_event(event))) 9600 return 0; 9601 9602 ret = __perf_event_account_interrupt(event, throttle); 9603 9604 /* 9605 * XXX event_limit might not quite work as expected on inherited 9606 * events 9607 */ 9608 9609 event->pending_kill = POLL_IN; 9610 if (events && atomic_dec_and_test(&event->event_limit)) { 9611 ret = 1; 9612 event->pending_kill = POLL_HUP; 9613 perf_event_disable_inatomic(event); 9614 } 9615 9616 if (event->attr.sigtrap) { 9617 /* 9618 * The desired behaviour of sigtrap vs invalid samples is a bit 9619 * tricky; on the one hand, one should not loose the SIGTRAP if 9620 * it is the first event, on the other hand, we should also not 9621 * trigger the WARN or override the data address. 9622 */ 9623 bool valid_sample = sample_is_allowed(event, regs); 9624 unsigned int pending_id = 1; 9625 9626 if (regs) 9627 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1; 9628 if (!event->pending_sigtrap) { 9629 event->pending_sigtrap = pending_id; 9630 local_inc(&event->ctx->nr_pending); 9631 } else if (event->attr.exclude_kernel && valid_sample) { 9632 /* 9633 * Should not be able to return to user space without 9634 * consuming pending_sigtrap; with exceptions: 9635 * 9636 * 1. Where !exclude_kernel, events can overflow again 9637 * in the kernel without returning to user space. 9638 * 9639 * 2. Events that can overflow again before the IRQ- 9640 * work without user space progress (e.g. hrtimer). 9641 * To approximate progress (with false negatives), 9642 * check 32-bit hash of the current IP. 9643 */ 9644 WARN_ON_ONCE(event->pending_sigtrap != pending_id); 9645 } 9646 9647 event->pending_addr = 0; 9648 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR)) 9649 event->pending_addr = data->addr; 9650 irq_work_queue(&event->pending_irq); 9651 } 9652 9653 READ_ONCE(event->overflow_handler)(event, data, regs); 9654 9655 if (*perf_event_fasync(event) && event->pending_kill) { 9656 event->pending_wakeup = 1; 9657 irq_work_queue(&event->pending_irq); 9658 } 9659 9660 return ret; 9661 } 9662 9663 int perf_event_overflow(struct perf_event *event, 9664 struct perf_sample_data *data, 9665 struct pt_regs *regs) 9666 { 9667 return __perf_event_overflow(event, 1, data, regs); 9668 } 9669 9670 /* 9671 * Generic software event infrastructure 9672 */ 9673 9674 struct swevent_htable { 9675 struct swevent_hlist *swevent_hlist; 9676 struct mutex hlist_mutex; 9677 int hlist_refcount; 9678 9679 /* Recursion avoidance in each contexts */ 9680 int recursion[PERF_NR_CONTEXTS]; 9681 }; 9682 9683 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 9684 9685 /* 9686 * We directly increment event->count and keep a second value in 9687 * event->hw.period_left to count intervals. This period event 9688 * is kept in the range [-sample_period, 0] so that we can use the 9689 * sign as trigger. 9690 */ 9691 9692 u64 perf_swevent_set_period(struct perf_event *event) 9693 { 9694 struct hw_perf_event *hwc = &event->hw; 9695 u64 period = hwc->last_period; 9696 u64 nr, offset; 9697 s64 old, val; 9698 9699 hwc->last_period = hwc->sample_period; 9700 9701 old = local64_read(&hwc->period_left); 9702 do { 9703 val = old; 9704 if (val < 0) 9705 return 0; 9706 9707 nr = div64_u64(period + val, period); 9708 offset = nr * period; 9709 val -= offset; 9710 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val)); 9711 9712 return nr; 9713 } 9714 9715 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 9716 struct perf_sample_data *data, 9717 struct pt_regs *regs) 9718 { 9719 struct hw_perf_event *hwc = &event->hw; 9720 int throttle = 0; 9721 9722 if (!overflow) 9723 overflow = perf_swevent_set_period(event); 9724 9725 if (hwc->interrupts == MAX_INTERRUPTS) 9726 return; 9727 9728 for (; overflow; overflow--) { 9729 if (__perf_event_overflow(event, throttle, 9730 data, regs)) { 9731 /* 9732 * We inhibit the overflow from happening when 9733 * hwc->interrupts == MAX_INTERRUPTS. 9734 */ 9735 break; 9736 } 9737 throttle = 1; 9738 } 9739 } 9740 9741 static void perf_swevent_event(struct perf_event *event, u64 nr, 9742 struct perf_sample_data *data, 9743 struct pt_regs *regs) 9744 { 9745 struct hw_perf_event *hwc = &event->hw; 9746 9747 local64_add(nr, &event->count); 9748 9749 if (!regs) 9750 return; 9751 9752 if (!is_sampling_event(event)) 9753 return; 9754 9755 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 9756 data->period = nr; 9757 return perf_swevent_overflow(event, 1, data, regs); 9758 } else 9759 data->period = event->hw.last_period; 9760 9761 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 9762 return perf_swevent_overflow(event, 1, data, regs); 9763 9764 if (local64_add_negative(nr, &hwc->period_left)) 9765 return; 9766 9767 perf_swevent_overflow(event, 0, data, regs); 9768 } 9769 9770 static int perf_exclude_event(struct perf_event *event, 9771 struct pt_regs *regs) 9772 { 9773 if (event->hw.state & PERF_HES_STOPPED) 9774 return 1; 9775 9776 if (regs) { 9777 if (event->attr.exclude_user && user_mode(regs)) 9778 return 1; 9779 9780 if (event->attr.exclude_kernel && !user_mode(regs)) 9781 return 1; 9782 } 9783 9784 return 0; 9785 } 9786 9787 static int perf_swevent_match(struct perf_event *event, 9788 enum perf_type_id type, 9789 u32 event_id, 9790 struct perf_sample_data *data, 9791 struct pt_regs *regs) 9792 { 9793 if (event->attr.type != type) 9794 return 0; 9795 9796 if (event->attr.config != event_id) 9797 return 0; 9798 9799 if (perf_exclude_event(event, regs)) 9800 return 0; 9801 9802 return 1; 9803 } 9804 9805 static inline u64 swevent_hash(u64 type, u32 event_id) 9806 { 9807 u64 val = event_id | (type << 32); 9808 9809 return hash_64(val, SWEVENT_HLIST_BITS); 9810 } 9811 9812 static inline struct hlist_head * 9813 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 9814 { 9815 u64 hash = swevent_hash(type, event_id); 9816 9817 return &hlist->heads[hash]; 9818 } 9819 9820 /* For the read side: events when they trigger */ 9821 static inline struct hlist_head * 9822 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 9823 { 9824 struct swevent_hlist *hlist; 9825 9826 hlist = rcu_dereference(swhash->swevent_hlist); 9827 if (!hlist) 9828 return NULL; 9829 9830 return __find_swevent_head(hlist, type, event_id); 9831 } 9832 9833 /* For the event head insertion and removal in the hlist */ 9834 static inline struct hlist_head * 9835 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 9836 { 9837 struct swevent_hlist *hlist; 9838 u32 event_id = event->attr.config; 9839 u64 type = event->attr.type; 9840 9841 /* 9842 * Event scheduling is always serialized against hlist allocation 9843 * and release. Which makes the protected version suitable here. 9844 * The context lock guarantees that. 9845 */ 9846 hlist = rcu_dereference_protected(swhash->swevent_hlist, 9847 lockdep_is_held(&event->ctx->lock)); 9848 if (!hlist) 9849 return NULL; 9850 9851 return __find_swevent_head(hlist, type, event_id); 9852 } 9853 9854 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 9855 u64 nr, 9856 struct perf_sample_data *data, 9857 struct pt_regs *regs) 9858 { 9859 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9860 struct perf_event *event; 9861 struct hlist_head *head; 9862 9863 rcu_read_lock(); 9864 head = find_swevent_head_rcu(swhash, type, event_id); 9865 if (!head) 9866 goto end; 9867 9868 hlist_for_each_entry_rcu(event, head, hlist_entry) { 9869 if (perf_swevent_match(event, type, event_id, data, regs)) 9870 perf_swevent_event(event, nr, data, regs); 9871 } 9872 end: 9873 rcu_read_unlock(); 9874 } 9875 9876 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 9877 9878 int perf_swevent_get_recursion_context(void) 9879 { 9880 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9881 9882 return get_recursion_context(swhash->recursion); 9883 } 9884 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 9885 9886 void perf_swevent_put_recursion_context(int rctx) 9887 { 9888 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9889 9890 put_recursion_context(swhash->recursion, rctx); 9891 } 9892 9893 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9894 { 9895 struct perf_sample_data data; 9896 9897 if (WARN_ON_ONCE(!regs)) 9898 return; 9899 9900 perf_sample_data_init(&data, addr, 0); 9901 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 9902 } 9903 9904 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 9905 { 9906 int rctx; 9907 9908 preempt_disable_notrace(); 9909 rctx = perf_swevent_get_recursion_context(); 9910 if (unlikely(rctx < 0)) 9911 goto fail; 9912 9913 ___perf_sw_event(event_id, nr, regs, addr); 9914 9915 perf_swevent_put_recursion_context(rctx); 9916 fail: 9917 preempt_enable_notrace(); 9918 } 9919 9920 static void perf_swevent_read(struct perf_event *event) 9921 { 9922 } 9923 9924 static int perf_swevent_add(struct perf_event *event, int flags) 9925 { 9926 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 9927 struct hw_perf_event *hwc = &event->hw; 9928 struct hlist_head *head; 9929 9930 if (is_sampling_event(event)) { 9931 hwc->last_period = hwc->sample_period; 9932 perf_swevent_set_period(event); 9933 } 9934 9935 hwc->state = !(flags & PERF_EF_START); 9936 9937 head = find_swevent_head(swhash, event); 9938 if (WARN_ON_ONCE(!head)) 9939 return -EINVAL; 9940 9941 hlist_add_head_rcu(&event->hlist_entry, head); 9942 perf_event_update_userpage(event); 9943 9944 return 0; 9945 } 9946 9947 static void perf_swevent_del(struct perf_event *event, int flags) 9948 { 9949 hlist_del_rcu(&event->hlist_entry); 9950 } 9951 9952 static void perf_swevent_start(struct perf_event *event, int flags) 9953 { 9954 event->hw.state = 0; 9955 } 9956 9957 static void perf_swevent_stop(struct perf_event *event, int flags) 9958 { 9959 event->hw.state = PERF_HES_STOPPED; 9960 } 9961 9962 /* Deref the hlist from the update side */ 9963 static inline struct swevent_hlist * 9964 swevent_hlist_deref(struct swevent_htable *swhash) 9965 { 9966 return rcu_dereference_protected(swhash->swevent_hlist, 9967 lockdep_is_held(&swhash->hlist_mutex)); 9968 } 9969 9970 static void swevent_hlist_release(struct swevent_htable *swhash) 9971 { 9972 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 9973 9974 if (!hlist) 9975 return; 9976 9977 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 9978 kfree_rcu(hlist, rcu_head); 9979 } 9980 9981 static void swevent_hlist_put_cpu(int cpu) 9982 { 9983 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 9984 9985 mutex_lock(&swhash->hlist_mutex); 9986 9987 if (!--swhash->hlist_refcount) 9988 swevent_hlist_release(swhash); 9989 9990 mutex_unlock(&swhash->hlist_mutex); 9991 } 9992 9993 static void swevent_hlist_put(void) 9994 { 9995 int cpu; 9996 9997 for_each_possible_cpu(cpu) 9998 swevent_hlist_put_cpu(cpu); 9999 } 10000 10001 static int swevent_hlist_get_cpu(int cpu) 10002 { 10003 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 10004 int err = 0; 10005 10006 mutex_lock(&swhash->hlist_mutex); 10007 if (!swevent_hlist_deref(swhash) && 10008 cpumask_test_cpu(cpu, perf_online_mask)) { 10009 struct swevent_hlist *hlist; 10010 10011 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 10012 if (!hlist) { 10013 err = -ENOMEM; 10014 goto exit; 10015 } 10016 rcu_assign_pointer(swhash->swevent_hlist, hlist); 10017 } 10018 swhash->hlist_refcount++; 10019 exit: 10020 mutex_unlock(&swhash->hlist_mutex); 10021 10022 return err; 10023 } 10024 10025 static int swevent_hlist_get(void) 10026 { 10027 int err, cpu, failed_cpu; 10028 10029 mutex_lock(&pmus_lock); 10030 for_each_possible_cpu(cpu) { 10031 err = swevent_hlist_get_cpu(cpu); 10032 if (err) { 10033 failed_cpu = cpu; 10034 goto fail; 10035 } 10036 } 10037 mutex_unlock(&pmus_lock); 10038 return 0; 10039 fail: 10040 for_each_possible_cpu(cpu) { 10041 if (cpu == failed_cpu) 10042 break; 10043 swevent_hlist_put_cpu(cpu); 10044 } 10045 mutex_unlock(&pmus_lock); 10046 return err; 10047 } 10048 10049 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 10050 10051 static void sw_perf_event_destroy(struct perf_event *event) 10052 { 10053 u64 event_id = event->attr.config; 10054 10055 WARN_ON(event->parent); 10056 10057 static_key_slow_dec(&perf_swevent_enabled[event_id]); 10058 swevent_hlist_put(); 10059 } 10060 10061 static struct pmu perf_cpu_clock; /* fwd declaration */ 10062 static struct pmu perf_task_clock; 10063 10064 static int perf_swevent_init(struct perf_event *event) 10065 { 10066 u64 event_id = event->attr.config; 10067 10068 if (event->attr.type != PERF_TYPE_SOFTWARE) 10069 return -ENOENT; 10070 10071 /* 10072 * no branch sampling for software events 10073 */ 10074 if (has_branch_stack(event)) 10075 return -EOPNOTSUPP; 10076 10077 switch (event_id) { 10078 case PERF_COUNT_SW_CPU_CLOCK: 10079 event->attr.type = perf_cpu_clock.type; 10080 return -ENOENT; 10081 case PERF_COUNT_SW_TASK_CLOCK: 10082 event->attr.type = perf_task_clock.type; 10083 return -ENOENT; 10084 10085 default: 10086 break; 10087 } 10088 10089 if (event_id >= PERF_COUNT_SW_MAX) 10090 return -ENOENT; 10091 10092 if (!event->parent) { 10093 int err; 10094 10095 err = swevent_hlist_get(); 10096 if (err) 10097 return err; 10098 10099 static_key_slow_inc(&perf_swevent_enabled[event_id]); 10100 event->destroy = sw_perf_event_destroy; 10101 } 10102 10103 return 0; 10104 } 10105 10106 static struct pmu perf_swevent = { 10107 .task_ctx_nr = perf_sw_context, 10108 10109 .capabilities = PERF_PMU_CAP_NO_NMI, 10110 10111 .event_init = perf_swevent_init, 10112 .add = perf_swevent_add, 10113 .del = perf_swevent_del, 10114 .start = perf_swevent_start, 10115 .stop = perf_swevent_stop, 10116 .read = perf_swevent_read, 10117 }; 10118 10119 #ifdef CONFIG_EVENT_TRACING 10120 10121 static void tp_perf_event_destroy(struct perf_event *event) 10122 { 10123 perf_trace_destroy(event); 10124 } 10125 10126 static int perf_tp_event_init(struct perf_event *event) 10127 { 10128 int err; 10129 10130 if (event->attr.type != PERF_TYPE_TRACEPOINT) 10131 return -ENOENT; 10132 10133 /* 10134 * no branch sampling for tracepoint events 10135 */ 10136 if (has_branch_stack(event)) 10137 return -EOPNOTSUPP; 10138 10139 err = perf_trace_init(event); 10140 if (err) 10141 return err; 10142 10143 event->destroy = tp_perf_event_destroy; 10144 10145 return 0; 10146 } 10147 10148 static struct pmu perf_tracepoint = { 10149 .task_ctx_nr = perf_sw_context, 10150 10151 .event_init = perf_tp_event_init, 10152 .add = perf_trace_add, 10153 .del = perf_trace_del, 10154 .start = perf_swevent_start, 10155 .stop = perf_swevent_stop, 10156 .read = perf_swevent_read, 10157 }; 10158 10159 static int perf_tp_filter_match(struct perf_event *event, 10160 struct perf_sample_data *data) 10161 { 10162 void *record = data->raw->frag.data; 10163 10164 /* only top level events have filters set */ 10165 if (event->parent) 10166 event = event->parent; 10167 10168 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 10169 return 1; 10170 return 0; 10171 } 10172 10173 static int perf_tp_event_match(struct perf_event *event, 10174 struct perf_sample_data *data, 10175 struct pt_regs *regs) 10176 { 10177 if (event->hw.state & PERF_HES_STOPPED) 10178 return 0; 10179 /* 10180 * If exclude_kernel, only trace user-space tracepoints (uprobes) 10181 */ 10182 if (event->attr.exclude_kernel && !user_mode(regs)) 10183 return 0; 10184 10185 if (!perf_tp_filter_match(event, data)) 10186 return 0; 10187 10188 return 1; 10189 } 10190 10191 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 10192 struct trace_event_call *call, u64 count, 10193 struct pt_regs *regs, struct hlist_head *head, 10194 struct task_struct *task) 10195 { 10196 if (bpf_prog_array_valid(call)) { 10197 *(struct pt_regs **)raw_data = regs; 10198 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 10199 perf_swevent_put_recursion_context(rctx); 10200 return; 10201 } 10202 } 10203 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 10204 rctx, task); 10205 } 10206 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 10207 10208 static void __perf_tp_event_target_task(u64 count, void *record, 10209 struct pt_regs *regs, 10210 struct perf_sample_data *data, 10211 struct perf_event *event) 10212 { 10213 struct trace_entry *entry = record; 10214 10215 if (event->attr.config != entry->type) 10216 return; 10217 /* Cannot deliver synchronous signal to other task. */ 10218 if (event->attr.sigtrap) 10219 return; 10220 if (perf_tp_event_match(event, data, regs)) 10221 perf_swevent_event(event, count, data, regs); 10222 } 10223 10224 static void perf_tp_event_target_task(u64 count, void *record, 10225 struct pt_regs *regs, 10226 struct perf_sample_data *data, 10227 struct perf_event_context *ctx) 10228 { 10229 unsigned int cpu = smp_processor_id(); 10230 struct pmu *pmu = &perf_tracepoint; 10231 struct perf_event *event, *sibling; 10232 10233 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) { 10234 __perf_tp_event_target_task(count, record, regs, data, event); 10235 for_each_sibling_event(sibling, event) 10236 __perf_tp_event_target_task(count, record, regs, data, sibling); 10237 } 10238 10239 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) { 10240 __perf_tp_event_target_task(count, record, regs, data, event); 10241 for_each_sibling_event(sibling, event) 10242 __perf_tp_event_target_task(count, record, regs, data, sibling); 10243 } 10244 } 10245 10246 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 10247 struct pt_regs *regs, struct hlist_head *head, int rctx, 10248 struct task_struct *task) 10249 { 10250 struct perf_sample_data data; 10251 struct perf_event *event; 10252 10253 struct perf_raw_record raw = { 10254 .frag = { 10255 .size = entry_size, 10256 .data = record, 10257 }, 10258 }; 10259 10260 perf_sample_data_init(&data, 0, 0); 10261 perf_sample_save_raw_data(&data, &raw); 10262 10263 perf_trace_buf_update(record, event_type); 10264 10265 hlist_for_each_entry_rcu(event, head, hlist_entry) { 10266 if (perf_tp_event_match(event, &data, regs)) { 10267 perf_swevent_event(event, count, &data, regs); 10268 10269 /* 10270 * Here use the same on-stack perf_sample_data, 10271 * some members in data are event-specific and 10272 * need to be re-computed for different sweveents. 10273 * Re-initialize data->sample_flags safely to avoid 10274 * the problem that next event skips preparing data 10275 * because data->sample_flags is set. 10276 */ 10277 perf_sample_data_init(&data, 0, 0); 10278 perf_sample_save_raw_data(&data, &raw); 10279 } 10280 } 10281 10282 /* 10283 * If we got specified a target task, also iterate its context and 10284 * deliver this event there too. 10285 */ 10286 if (task && task != current) { 10287 struct perf_event_context *ctx; 10288 10289 rcu_read_lock(); 10290 ctx = rcu_dereference(task->perf_event_ctxp); 10291 if (!ctx) 10292 goto unlock; 10293 10294 raw_spin_lock(&ctx->lock); 10295 perf_tp_event_target_task(count, record, regs, &data, ctx); 10296 raw_spin_unlock(&ctx->lock); 10297 unlock: 10298 rcu_read_unlock(); 10299 } 10300 10301 perf_swevent_put_recursion_context(rctx); 10302 } 10303 EXPORT_SYMBOL_GPL(perf_tp_event); 10304 10305 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 10306 /* 10307 * Flags in config, used by dynamic PMU kprobe and uprobe 10308 * The flags should match following PMU_FORMAT_ATTR(). 10309 * 10310 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 10311 * if not set, create kprobe/uprobe 10312 * 10313 * The following values specify a reference counter (or semaphore in the 10314 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 10315 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 10316 * 10317 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 10318 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 10319 */ 10320 enum perf_probe_config { 10321 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 10322 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 10323 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 10324 }; 10325 10326 PMU_FORMAT_ATTR(retprobe, "config:0"); 10327 #endif 10328 10329 #ifdef CONFIG_KPROBE_EVENTS 10330 static struct attribute *kprobe_attrs[] = { 10331 &format_attr_retprobe.attr, 10332 NULL, 10333 }; 10334 10335 static struct attribute_group kprobe_format_group = { 10336 .name = "format", 10337 .attrs = kprobe_attrs, 10338 }; 10339 10340 static const struct attribute_group *kprobe_attr_groups[] = { 10341 &kprobe_format_group, 10342 NULL, 10343 }; 10344 10345 static int perf_kprobe_event_init(struct perf_event *event); 10346 static struct pmu perf_kprobe = { 10347 .task_ctx_nr = perf_sw_context, 10348 .event_init = perf_kprobe_event_init, 10349 .add = perf_trace_add, 10350 .del = perf_trace_del, 10351 .start = perf_swevent_start, 10352 .stop = perf_swevent_stop, 10353 .read = perf_swevent_read, 10354 .attr_groups = kprobe_attr_groups, 10355 }; 10356 10357 static int perf_kprobe_event_init(struct perf_event *event) 10358 { 10359 int err; 10360 bool is_retprobe; 10361 10362 if (event->attr.type != perf_kprobe.type) 10363 return -ENOENT; 10364 10365 if (!perfmon_capable()) 10366 return -EACCES; 10367 10368 /* 10369 * no branch sampling for probe events 10370 */ 10371 if (has_branch_stack(event)) 10372 return -EOPNOTSUPP; 10373 10374 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10375 err = perf_kprobe_init(event, is_retprobe); 10376 if (err) 10377 return err; 10378 10379 event->destroy = perf_kprobe_destroy; 10380 10381 return 0; 10382 } 10383 #endif /* CONFIG_KPROBE_EVENTS */ 10384 10385 #ifdef CONFIG_UPROBE_EVENTS 10386 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 10387 10388 static struct attribute *uprobe_attrs[] = { 10389 &format_attr_retprobe.attr, 10390 &format_attr_ref_ctr_offset.attr, 10391 NULL, 10392 }; 10393 10394 static struct attribute_group uprobe_format_group = { 10395 .name = "format", 10396 .attrs = uprobe_attrs, 10397 }; 10398 10399 static const struct attribute_group *uprobe_attr_groups[] = { 10400 &uprobe_format_group, 10401 NULL, 10402 }; 10403 10404 static int perf_uprobe_event_init(struct perf_event *event); 10405 static struct pmu perf_uprobe = { 10406 .task_ctx_nr = perf_sw_context, 10407 .event_init = perf_uprobe_event_init, 10408 .add = perf_trace_add, 10409 .del = perf_trace_del, 10410 .start = perf_swevent_start, 10411 .stop = perf_swevent_stop, 10412 .read = perf_swevent_read, 10413 .attr_groups = uprobe_attr_groups, 10414 }; 10415 10416 static int perf_uprobe_event_init(struct perf_event *event) 10417 { 10418 int err; 10419 unsigned long ref_ctr_offset; 10420 bool is_retprobe; 10421 10422 if (event->attr.type != perf_uprobe.type) 10423 return -ENOENT; 10424 10425 if (!perfmon_capable()) 10426 return -EACCES; 10427 10428 /* 10429 * no branch sampling for probe events 10430 */ 10431 if (has_branch_stack(event)) 10432 return -EOPNOTSUPP; 10433 10434 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 10435 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10436 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 10437 if (err) 10438 return err; 10439 10440 event->destroy = perf_uprobe_destroy; 10441 10442 return 0; 10443 } 10444 #endif /* CONFIG_UPROBE_EVENTS */ 10445 10446 static inline void perf_tp_register(void) 10447 { 10448 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 10449 #ifdef CONFIG_KPROBE_EVENTS 10450 perf_pmu_register(&perf_kprobe, "kprobe", -1); 10451 #endif 10452 #ifdef CONFIG_UPROBE_EVENTS 10453 perf_pmu_register(&perf_uprobe, "uprobe", -1); 10454 #endif 10455 } 10456 10457 static void perf_event_free_filter(struct perf_event *event) 10458 { 10459 ftrace_profile_free_filter(event); 10460 } 10461 10462 #ifdef CONFIG_BPF_SYSCALL 10463 static void bpf_overflow_handler(struct perf_event *event, 10464 struct perf_sample_data *data, 10465 struct pt_regs *regs) 10466 { 10467 struct bpf_perf_event_data_kern ctx = { 10468 .data = data, 10469 .event = event, 10470 }; 10471 struct bpf_prog *prog; 10472 int ret = 0; 10473 10474 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 10475 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 10476 goto out; 10477 rcu_read_lock(); 10478 prog = READ_ONCE(event->prog); 10479 if (prog) { 10480 perf_prepare_sample(data, event, regs); 10481 ret = bpf_prog_run(prog, &ctx); 10482 } 10483 rcu_read_unlock(); 10484 out: 10485 __this_cpu_dec(bpf_prog_active); 10486 if (!ret) 10487 return; 10488 10489 event->orig_overflow_handler(event, data, regs); 10490 } 10491 10492 static int perf_event_set_bpf_handler(struct perf_event *event, 10493 struct bpf_prog *prog, 10494 u64 bpf_cookie) 10495 { 10496 if (event->overflow_handler_context) 10497 /* hw breakpoint or kernel counter */ 10498 return -EINVAL; 10499 10500 if (event->prog) 10501 return -EEXIST; 10502 10503 if (prog->type != BPF_PROG_TYPE_PERF_EVENT) 10504 return -EINVAL; 10505 10506 if (event->attr.precise_ip && 10507 prog->call_get_stack && 10508 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) || 10509 event->attr.exclude_callchain_kernel || 10510 event->attr.exclude_callchain_user)) { 10511 /* 10512 * On perf_event with precise_ip, calling bpf_get_stack() 10513 * may trigger unwinder warnings and occasional crashes. 10514 * bpf_get_[stack|stackid] works around this issue by using 10515 * callchain attached to perf_sample_data. If the 10516 * perf_event does not full (kernel and user) callchain 10517 * attached to perf_sample_data, do not allow attaching BPF 10518 * program that calls bpf_get_[stack|stackid]. 10519 */ 10520 return -EPROTO; 10521 } 10522 10523 event->prog = prog; 10524 event->bpf_cookie = bpf_cookie; 10525 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 10526 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 10527 return 0; 10528 } 10529 10530 static void perf_event_free_bpf_handler(struct perf_event *event) 10531 { 10532 struct bpf_prog *prog = event->prog; 10533 10534 if (!prog) 10535 return; 10536 10537 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 10538 event->prog = NULL; 10539 bpf_prog_put(prog); 10540 } 10541 #else 10542 static int perf_event_set_bpf_handler(struct perf_event *event, 10543 struct bpf_prog *prog, 10544 u64 bpf_cookie) 10545 { 10546 return -EOPNOTSUPP; 10547 } 10548 static void perf_event_free_bpf_handler(struct perf_event *event) 10549 { 10550 } 10551 #endif 10552 10553 /* 10554 * returns true if the event is a tracepoint, or a kprobe/upprobe created 10555 * with perf_event_open() 10556 */ 10557 static inline bool perf_event_is_tracing(struct perf_event *event) 10558 { 10559 if (event->pmu == &perf_tracepoint) 10560 return true; 10561 #ifdef CONFIG_KPROBE_EVENTS 10562 if (event->pmu == &perf_kprobe) 10563 return true; 10564 #endif 10565 #ifdef CONFIG_UPROBE_EVENTS 10566 if (event->pmu == &perf_uprobe) 10567 return true; 10568 #endif 10569 return false; 10570 } 10571 10572 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10573 u64 bpf_cookie) 10574 { 10575 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp; 10576 10577 if (!perf_event_is_tracing(event)) 10578 return perf_event_set_bpf_handler(event, prog, bpf_cookie); 10579 10580 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE; 10581 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE; 10582 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 10583 is_syscall_tp = is_syscall_trace_event(event->tp_event); 10584 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp) 10585 /* bpf programs can only be attached to u/kprobe or tracepoint */ 10586 return -EINVAL; 10587 10588 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) || 10589 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 10590 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) 10591 return -EINVAL; 10592 10593 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe) 10594 /* only uprobe programs are allowed to be sleepable */ 10595 return -EINVAL; 10596 10597 /* Kprobe override only works for kprobes, not uprobes. */ 10598 if (prog->kprobe_override && !is_kprobe) 10599 return -EINVAL; 10600 10601 if (is_tracepoint || is_syscall_tp) { 10602 int off = trace_event_get_offsets(event->tp_event); 10603 10604 if (prog->aux->max_ctx_offset > off) 10605 return -EACCES; 10606 } 10607 10608 return perf_event_attach_bpf_prog(event, prog, bpf_cookie); 10609 } 10610 10611 void perf_event_free_bpf_prog(struct perf_event *event) 10612 { 10613 if (!perf_event_is_tracing(event)) { 10614 perf_event_free_bpf_handler(event); 10615 return; 10616 } 10617 perf_event_detach_bpf_prog(event); 10618 } 10619 10620 #else 10621 10622 static inline void perf_tp_register(void) 10623 { 10624 } 10625 10626 static void perf_event_free_filter(struct perf_event *event) 10627 { 10628 } 10629 10630 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog, 10631 u64 bpf_cookie) 10632 { 10633 return -ENOENT; 10634 } 10635 10636 void perf_event_free_bpf_prog(struct perf_event *event) 10637 { 10638 } 10639 #endif /* CONFIG_EVENT_TRACING */ 10640 10641 #ifdef CONFIG_HAVE_HW_BREAKPOINT 10642 void perf_bp_event(struct perf_event *bp, void *data) 10643 { 10644 struct perf_sample_data sample; 10645 struct pt_regs *regs = data; 10646 10647 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 10648 10649 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 10650 perf_swevent_event(bp, 1, &sample, regs); 10651 } 10652 #endif 10653 10654 /* 10655 * Allocate a new address filter 10656 */ 10657 static struct perf_addr_filter * 10658 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 10659 { 10660 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 10661 struct perf_addr_filter *filter; 10662 10663 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 10664 if (!filter) 10665 return NULL; 10666 10667 INIT_LIST_HEAD(&filter->entry); 10668 list_add_tail(&filter->entry, filters); 10669 10670 return filter; 10671 } 10672 10673 static void free_filters_list(struct list_head *filters) 10674 { 10675 struct perf_addr_filter *filter, *iter; 10676 10677 list_for_each_entry_safe(filter, iter, filters, entry) { 10678 path_put(&filter->path); 10679 list_del(&filter->entry); 10680 kfree(filter); 10681 } 10682 } 10683 10684 /* 10685 * Free existing address filters and optionally install new ones 10686 */ 10687 static void perf_addr_filters_splice(struct perf_event *event, 10688 struct list_head *head) 10689 { 10690 unsigned long flags; 10691 LIST_HEAD(list); 10692 10693 if (!has_addr_filter(event)) 10694 return; 10695 10696 /* don't bother with children, they don't have their own filters */ 10697 if (event->parent) 10698 return; 10699 10700 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 10701 10702 list_splice_init(&event->addr_filters.list, &list); 10703 if (head) 10704 list_splice(head, &event->addr_filters.list); 10705 10706 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 10707 10708 free_filters_list(&list); 10709 } 10710 10711 /* 10712 * Scan through mm's vmas and see if one of them matches the 10713 * @filter; if so, adjust filter's address range. 10714 * Called with mm::mmap_lock down for reading. 10715 */ 10716 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 10717 struct mm_struct *mm, 10718 struct perf_addr_filter_range *fr) 10719 { 10720 struct vm_area_struct *vma; 10721 VMA_ITERATOR(vmi, mm, 0); 10722 10723 for_each_vma(vmi, vma) { 10724 if (!vma->vm_file) 10725 continue; 10726 10727 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 10728 return; 10729 } 10730 } 10731 10732 /* 10733 * Update event's address range filters based on the 10734 * task's existing mappings, if any. 10735 */ 10736 static void perf_event_addr_filters_apply(struct perf_event *event) 10737 { 10738 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10739 struct task_struct *task = READ_ONCE(event->ctx->task); 10740 struct perf_addr_filter *filter; 10741 struct mm_struct *mm = NULL; 10742 unsigned int count = 0; 10743 unsigned long flags; 10744 10745 /* 10746 * We may observe TASK_TOMBSTONE, which means that the event tear-down 10747 * will stop on the parent's child_mutex that our caller is also holding 10748 */ 10749 if (task == TASK_TOMBSTONE) 10750 return; 10751 10752 if (ifh->nr_file_filters) { 10753 mm = get_task_mm(task); 10754 if (!mm) 10755 goto restart; 10756 10757 mmap_read_lock(mm); 10758 } 10759 10760 raw_spin_lock_irqsave(&ifh->lock, flags); 10761 list_for_each_entry(filter, &ifh->list, entry) { 10762 if (filter->path.dentry) { 10763 /* 10764 * Adjust base offset if the filter is associated to a 10765 * binary that needs to be mapped: 10766 */ 10767 event->addr_filter_ranges[count].start = 0; 10768 event->addr_filter_ranges[count].size = 0; 10769 10770 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 10771 } else { 10772 event->addr_filter_ranges[count].start = filter->offset; 10773 event->addr_filter_ranges[count].size = filter->size; 10774 } 10775 10776 count++; 10777 } 10778 10779 event->addr_filters_gen++; 10780 raw_spin_unlock_irqrestore(&ifh->lock, flags); 10781 10782 if (ifh->nr_file_filters) { 10783 mmap_read_unlock(mm); 10784 10785 mmput(mm); 10786 } 10787 10788 restart: 10789 perf_event_stop(event, 1); 10790 } 10791 10792 /* 10793 * Address range filtering: limiting the data to certain 10794 * instruction address ranges. Filters are ioctl()ed to us from 10795 * userspace as ascii strings. 10796 * 10797 * Filter string format: 10798 * 10799 * ACTION RANGE_SPEC 10800 * where ACTION is one of the 10801 * * "filter": limit the trace to this region 10802 * * "start": start tracing from this address 10803 * * "stop": stop tracing at this address/region; 10804 * RANGE_SPEC is 10805 * * for kernel addresses: <start address>[/<size>] 10806 * * for object files: <start address>[/<size>]@</path/to/object/file> 10807 * 10808 * if <size> is not specified or is zero, the range is treated as a single 10809 * address; not valid for ACTION=="filter". 10810 */ 10811 enum { 10812 IF_ACT_NONE = -1, 10813 IF_ACT_FILTER, 10814 IF_ACT_START, 10815 IF_ACT_STOP, 10816 IF_SRC_FILE, 10817 IF_SRC_KERNEL, 10818 IF_SRC_FILEADDR, 10819 IF_SRC_KERNELADDR, 10820 }; 10821 10822 enum { 10823 IF_STATE_ACTION = 0, 10824 IF_STATE_SOURCE, 10825 IF_STATE_END, 10826 }; 10827 10828 static const match_table_t if_tokens = { 10829 { IF_ACT_FILTER, "filter" }, 10830 { IF_ACT_START, "start" }, 10831 { IF_ACT_STOP, "stop" }, 10832 { IF_SRC_FILE, "%u/%u@%s" }, 10833 { IF_SRC_KERNEL, "%u/%u" }, 10834 { IF_SRC_FILEADDR, "%u@%s" }, 10835 { IF_SRC_KERNELADDR, "%u" }, 10836 { IF_ACT_NONE, NULL }, 10837 }; 10838 10839 /* 10840 * Address filter string parser 10841 */ 10842 static int 10843 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 10844 struct list_head *filters) 10845 { 10846 struct perf_addr_filter *filter = NULL; 10847 char *start, *orig, *filename = NULL; 10848 substring_t args[MAX_OPT_ARGS]; 10849 int state = IF_STATE_ACTION, token; 10850 unsigned int kernel = 0; 10851 int ret = -EINVAL; 10852 10853 orig = fstr = kstrdup(fstr, GFP_KERNEL); 10854 if (!fstr) 10855 return -ENOMEM; 10856 10857 while ((start = strsep(&fstr, " ,\n")) != NULL) { 10858 static const enum perf_addr_filter_action_t actions[] = { 10859 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 10860 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 10861 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 10862 }; 10863 ret = -EINVAL; 10864 10865 if (!*start) 10866 continue; 10867 10868 /* filter definition begins */ 10869 if (state == IF_STATE_ACTION) { 10870 filter = perf_addr_filter_new(event, filters); 10871 if (!filter) 10872 goto fail; 10873 } 10874 10875 token = match_token(start, if_tokens, args); 10876 switch (token) { 10877 case IF_ACT_FILTER: 10878 case IF_ACT_START: 10879 case IF_ACT_STOP: 10880 if (state != IF_STATE_ACTION) 10881 goto fail; 10882 10883 filter->action = actions[token]; 10884 state = IF_STATE_SOURCE; 10885 break; 10886 10887 case IF_SRC_KERNELADDR: 10888 case IF_SRC_KERNEL: 10889 kernel = 1; 10890 fallthrough; 10891 10892 case IF_SRC_FILEADDR: 10893 case IF_SRC_FILE: 10894 if (state != IF_STATE_SOURCE) 10895 goto fail; 10896 10897 *args[0].to = 0; 10898 ret = kstrtoul(args[0].from, 0, &filter->offset); 10899 if (ret) 10900 goto fail; 10901 10902 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 10903 *args[1].to = 0; 10904 ret = kstrtoul(args[1].from, 0, &filter->size); 10905 if (ret) 10906 goto fail; 10907 } 10908 10909 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 10910 int fpos = token == IF_SRC_FILE ? 2 : 1; 10911 10912 kfree(filename); 10913 filename = match_strdup(&args[fpos]); 10914 if (!filename) { 10915 ret = -ENOMEM; 10916 goto fail; 10917 } 10918 } 10919 10920 state = IF_STATE_END; 10921 break; 10922 10923 default: 10924 goto fail; 10925 } 10926 10927 /* 10928 * Filter definition is fully parsed, validate and install it. 10929 * Make sure that it doesn't contradict itself or the event's 10930 * attribute. 10931 */ 10932 if (state == IF_STATE_END) { 10933 ret = -EINVAL; 10934 10935 /* 10936 * ACTION "filter" must have a non-zero length region 10937 * specified. 10938 */ 10939 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 10940 !filter->size) 10941 goto fail; 10942 10943 if (!kernel) { 10944 if (!filename) 10945 goto fail; 10946 10947 /* 10948 * For now, we only support file-based filters 10949 * in per-task events; doing so for CPU-wide 10950 * events requires additional context switching 10951 * trickery, since same object code will be 10952 * mapped at different virtual addresses in 10953 * different processes. 10954 */ 10955 ret = -EOPNOTSUPP; 10956 if (!event->ctx->task) 10957 goto fail; 10958 10959 /* look up the path and grab its inode */ 10960 ret = kern_path(filename, LOOKUP_FOLLOW, 10961 &filter->path); 10962 if (ret) 10963 goto fail; 10964 10965 ret = -EINVAL; 10966 if (!filter->path.dentry || 10967 !S_ISREG(d_inode(filter->path.dentry) 10968 ->i_mode)) 10969 goto fail; 10970 10971 event->addr_filters.nr_file_filters++; 10972 } 10973 10974 /* ready to consume more filters */ 10975 kfree(filename); 10976 filename = NULL; 10977 state = IF_STATE_ACTION; 10978 filter = NULL; 10979 kernel = 0; 10980 } 10981 } 10982 10983 if (state != IF_STATE_ACTION) 10984 goto fail; 10985 10986 kfree(filename); 10987 kfree(orig); 10988 10989 return 0; 10990 10991 fail: 10992 kfree(filename); 10993 free_filters_list(filters); 10994 kfree(orig); 10995 10996 return ret; 10997 } 10998 10999 static int 11000 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 11001 { 11002 LIST_HEAD(filters); 11003 int ret; 11004 11005 /* 11006 * Since this is called in perf_ioctl() path, we're already holding 11007 * ctx::mutex. 11008 */ 11009 lockdep_assert_held(&event->ctx->mutex); 11010 11011 if (WARN_ON_ONCE(event->parent)) 11012 return -EINVAL; 11013 11014 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 11015 if (ret) 11016 goto fail_clear_files; 11017 11018 ret = event->pmu->addr_filters_validate(&filters); 11019 if (ret) 11020 goto fail_free_filters; 11021 11022 /* remove existing filters, if any */ 11023 perf_addr_filters_splice(event, &filters); 11024 11025 /* install new filters */ 11026 perf_event_for_each_child(event, perf_event_addr_filters_apply); 11027 11028 return ret; 11029 11030 fail_free_filters: 11031 free_filters_list(&filters); 11032 11033 fail_clear_files: 11034 event->addr_filters.nr_file_filters = 0; 11035 11036 return ret; 11037 } 11038 11039 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 11040 { 11041 int ret = -EINVAL; 11042 char *filter_str; 11043 11044 filter_str = strndup_user(arg, PAGE_SIZE); 11045 if (IS_ERR(filter_str)) 11046 return PTR_ERR(filter_str); 11047 11048 #ifdef CONFIG_EVENT_TRACING 11049 if (perf_event_is_tracing(event)) { 11050 struct perf_event_context *ctx = event->ctx; 11051 11052 /* 11053 * Beware, here be dragons!! 11054 * 11055 * the tracepoint muck will deadlock against ctx->mutex, but 11056 * the tracepoint stuff does not actually need it. So 11057 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 11058 * already have a reference on ctx. 11059 * 11060 * This can result in event getting moved to a different ctx, 11061 * but that does not affect the tracepoint state. 11062 */ 11063 mutex_unlock(&ctx->mutex); 11064 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 11065 mutex_lock(&ctx->mutex); 11066 } else 11067 #endif 11068 if (has_addr_filter(event)) 11069 ret = perf_event_set_addr_filter(event, filter_str); 11070 11071 kfree(filter_str); 11072 return ret; 11073 } 11074 11075 /* 11076 * hrtimer based swevent callback 11077 */ 11078 11079 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 11080 { 11081 enum hrtimer_restart ret = HRTIMER_RESTART; 11082 struct perf_sample_data data; 11083 struct pt_regs *regs; 11084 struct perf_event *event; 11085 u64 period; 11086 11087 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 11088 11089 if (event->state != PERF_EVENT_STATE_ACTIVE) 11090 return HRTIMER_NORESTART; 11091 11092 event->pmu->read(event); 11093 11094 perf_sample_data_init(&data, 0, event->hw.last_period); 11095 regs = get_irq_regs(); 11096 11097 if (regs && !perf_exclude_event(event, regs)) { 11098 if (!(event->attr.exclude_idle && is_idle_task(current))) 11099 if (__perf_event_overflow(event, 1, &data, regs)) 11100 ret = HRTIMER_NORESTART; 11101 } 11102 11103 period = max_t(u64, 10000, event->hw.sample_period); 11104 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 11105 11106 return ret; 11107 } 11108 11109 static void perf_swevent_start_hrtimer(struct perf_event *event) 11110 { 11111 struct hw_perf_event *hwc = &event->hw; 11112 s64 period; 11113 11114 if (!is_sampling_event(event)) 11115 return; 11116 11117 period = local64_read(&hwc->period_left); 11118 if (period) { 11119 if (period < 0) 11120 period = 10000; 11121 11122 local64_set(&hwc->period_left, 0); 11123 } else { 11124 period = max_t(u64, 10000, hwc->sample_period); 11125 } 11126 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 11127 HRTIMER_MODE_REL_PINNED_HARD); 11128 } 11129 11130 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 11131 { 11132 struct hw_perf_event *hwc = &event->hw; 11133 11134 if (is_sampling_event(event)) { 11135 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 11136 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 11137 11138 hrtimer_cancel(&hwc->hrtimer); 11139 } 11140 } 11141 11142 static void perf_swevent_init_hrtimer(struct perf_event *event) 11143 { 11144 struct hw_perf_event *hwc = &event->hw; 11145 11146 if (!is_sampling_event(event)) 11147 return; 11148 11149 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 11150 hwc->hrtimer.function = perf_swevent_hrtimer; 11151 11152 /* 11153 * Since hrtimers have a fixed rate, we can do a static freq->period 11154 * mapping and avoid the whole period adjust feedback stuff. 11155 */ 11156 if (event->attr.freq) { 11157 long freq = event->attr.sample_freq; 11158 11159 event->attr.sample_period = NSEC_PER_SEC / freq; 11160 hwc->sample_period = event->attr.sample_period; 11161 local64_set(&hwc->period_left, hwc->sample_period); 11162 hwc->last_period = hwc->sample_period; 11163 event->attr.freq = 0; 11164 } 11165 } 11166 11167 /* 11168 * Software event: cpu wall time clock 11169 */ 11170 11171 static void cpu_clock_event_update(struct perf_event *event) 11172 { 11173 s64 prev; 11174 u64 now; 11175 11176 now = local_clock(); 11177 prev = local64_xchg(&event->hw.prev_count, now); 11178 local64_add(now - prev, &event->count); 11179 } 11180 11181 static void cpu_clock_event_start(struct perf_event *event, int flags) 11182 { 11183 local64_set(&event->hw.prev_count, local_clock()); 11184 perf_swevent_start_hrtimer(event); 11185 } 11186 11187 static void cpu_clock_event_stop(struct perf_event *event, int flags) 11188 { 11189 perf_swevent_cancel_hrtimer(event); 11190 cpu_clock_event_update(event); 11191 } 11192 11193 static int cpu_clock_event_add(struct perf_event *event, int flags) 11194 { 11195 if (flags & PERF_EF_START) 11196 cpu_clock_event_start(event, flags); 11197 perf_event_update_userpage(event); 11198 11199 return 0; 11200 } 11201 11202 static void cpu_clock_event_del(struct perf_event *event, int flags) 11203 { 11204 cpu_clock_event_stop(event, flags); 11205 } 11206 11207 static void cpu_clock_event_read(struct perf_event *event) 11208 { 11209 cpu_clock_event_update(event); 11210 } 11211 11212 static int cpu_clock_event_init(struct perf_event *event) 11213 { 11214 if (event->attr.type != perf_cpu_clock.type) 11215 return -ENOENT; 11216 11217 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 11218 return -ENOENT; 11219 11220 /* 11221 * no branch sampling for software events 11222 */ 11223 if (has_branch_stack(event)) 11224 return -EOPNOTSUPP; 11225 11226 perf_swevent_init_hrtimer(event); 11227 11228 return 0; 11229 } 11230 11231 static struct pmu perf_cpu_clock = { 11232 .task_ctx_nr = perf_sw_context, 11233 11234 .capabilities = PERF_PMU_CAP_NO_NMI, 11235 .dev = PMU_NULL_DEV, 11236 11237 .event_init = cpu_clock_event_init, 11238 .add = cpu_clock_event_add, 11239 .del = cpu_clock_event_del, 11240 .start = cpu_clock_event_start, 11241 .stop = cpu_clock_event_stop, 11242 .read = cpu_clock_event_read, 11243 }; 11244 11245 /* 11246 * Software event: task time clock 11247 */ 11248 11249 static void task_clock_event_update(struct perf_event *event, u64 now) 11250 { 11251 u64 prev; 11252 s64 delta; 11253 11254 prev = local64_xchg(&event->hw.prev_count, now); 11255 delta = now - prev; 11256 local64_add(delta, &event->count); 11257 } 11258 11259 static void task_clock_event_start(struct perf_event *event, int flags) 11260 { 11261 local64_set(&event->hw.prev_count, event->ctx->time); 11262 perf_swevent_start_hrtimer(event); 11263 } 11264 11265 static void task_clock_event_stop(struct perf_event *event, int flags) 11266 { 11267 perf_swevent_cancel_hrtimer(event); 11268 task_clock_event_update(event, event->ctx->time); 11269 } 11270 11271 static int task_clock_event_add(struct perf_event *event, int flags) 11272 { 11273 if (flags & PERF_EF_START) 11274 task_clock_event_start(event, flags); 11275 perf_event_update_userpage(event); 11276 11277 return 0; 11278 } 11279 11280 static void task_clock_event_del(struct perf_event *event, int flags) 11281 { 11282 task_clock_event_stop(event, PERF_EF_UPDATE); 11283 } 11284 11285 static void task_clock_event_read(struct perf_event *event) 11286 { 11287 u64 now = perf_clock(); 11288 u64 delta = now - event->ctx->timestamp; 11289 u64 time = event->ctx->time + delta; 11290 11291 task_clock_event_update(event, time); 11292 } 11293 11294 static int task_clock_event_init(struct perf_event *event) 11295 { 11296 if (event->attr.type != perf_task_clock.type) 11297 return -ENOENT; 11298 11299 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 11300 return -ENOENT; 11301 11302 /* 11303 * no branch sampling for software events 11304 */ 11305 if (has_branch_stack(event)) 11306 return -EOPNOTSUPP; 11307 11308 perf_swevent_init_hrtimer(event); 11309 11310 return 0; 11311 } 11312 11313 static struct pmu perf_task_clock = { 11314 .task_ctx_nr = perf_sw_context, 11315 11316 .capabilities = PERF_PMU_CAP_NO_NMI, 11317 .dev = PMU_NULL_DEV, 11318 11319 .event_init = task_clock_event_init, 11320 .add = task_clock_event_add, 11321 .del = task_clock_event_del, 11322 .start = task_clock_event_start, 11323 .stop = task_clock_event_stop, 11324 .read = task_clock_event_read, 11325 }; 11326 11327 static void perf_pmu_nop_void(struct pmu *pmu) 11328 { 11329 } 11330 11331 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 11332 { 11333 } 11334 11335 static int perf_pmu_nop_int(struct pmu *pmu) 11336 { 11337 return 0; 11338 } 11339 11340 static int perf_event_nop_int(struct perf_event *event, u64 value) 11341 { 11342 return 0; 11343 } 11344 11345 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 11346 11347 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 11348 { 11349 __this_cpu_write(nop_txn_flags, flags); 11350 11351 if (flags & ~PERF_PMU_TXN_ADD) 11352 return; 11353 11354 perf_pmu_disable(pmu); 11355 } 11356 11357 static int perf_pmu_commit_txn(struct pmu *pmu) 11358 { 11359 unsigned int flags = __this_cpu_read(nop_txn_flags); 11360 11361 __this_cpu_write(nop_txn_flags, 0); 11362 11363 if (flags & ~PERF_PMU_TXN_ADD) 11364 return 0; 11365 11366 perf_pmu_enable(pmu); 11367 return 0; 11368 } 11369 11370 static void perf_pmu_cancel_txn(struct pmu *pmu) 11371 { 11372 unsigned int flags = __this_cpu_read(nop_txn_flags); 11373 11374 __this_cpu_write(nop_txn_flags, 0); 11375 11376 if (flags & ~PERF_PMU_TXN_ADD) 11377 return; 11378 11379 perf_pmu_enable(pmu); 11380 } 11381 11382 static int perf_event_idx_default(struct perf_event *event) 11383 { 11384 return 0; 11385 } 11386 11387 static void free_pmu_context(struct pmu *pmu) 11388 { 11389 free_percpu(pmu->cpu_pmu_context); 11390 } 11391 11392 /* 11393 * Let userspace know that this PMU supports address range filtering: 11394 */ 11395 static ssize_t nr_addr_filters_show(struct device *dev, 11396 struct device_attribute *attr, 11397 char *page) 11398 { 11399 struct pmu *pmu = dev_get_drvdata(dev); 11400 11401 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 11402 } 11403 DEVICE_ATTR_RO(nr_addr_filters); 11404 11405 static struct idr pmu_idr; 11406 11407 static ssize_t 11408 type_show(struct device *dev, struct device_attribute *attr, char *page) 11409 { 11410 struct pmu *pmu = dev_get_drvdata(dev); 11411 11412 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type); 11413 } 11414 static DEVICE_ATTR_RO(type); 11415 11416 static ssize_t 11417 perf_event_mux_interval_ms_show(struct device *dev, 11418 struct device_attribute *attr, 11419 char *page) 11420 { 11421 struct pmu *pmu = dev_get_drvdata(dev); 11422 11423 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms); 11424 } 11425 11426 static DEFINE_MUTEX(mux_interval_mutex); 11427 11428 static ssize_t 11429 perf_event_mux_interval_ms_store(struct device *dev, 11430 struct device_attribute *attr, 11431 const char *buf, size_t count) 11432 { 11433 struct pmu *pmu = dev_get_drvdata(dev); 11434 int timer, cpu, ret; 11435 11436 ret = kstrtoint(buf, 0, &timer); 11437 if (ret) 11438 return ret; 11439 11440 if (timer < 1) 11441 return -EINVAL; 11442 11443 /* same value, noting to do */ 11444 if (timer == pmu->hrtimer_interval_ms) 11445 return count; 11446 11447 mutex_lock(&mux_interval_mutex); 11448 pmu->hrtimer_interval_ms = timer; 11449 11450 /* update all cpuctx for this PMU */ 11451 cpus_read_lock(); 11452 for_each_online_cpu(cpu) { 11453 struct perf_cpu_pmu_context *cpc; 11454 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11455 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 11456 11457 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc); 11458 } 11459 cpus_read_unlock(); 11460 mutex_unlock(&mux_interval_mutex); 11461 11462 return count; 11463 } 11464 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 11465 11466 static struct attribute *pmu_dev_attrs[] = { 11467 &dev_attr_type.attr, 11468 &dev_attr_perf_event_mux_interval_ms.attr, 11469 &dev_attr_nr_addr_filters.attr, 11470 NULL, 11471 }; 11472 11473 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n) 11474 { 11475 struct device *dev = kobj_to_dev(kobj); 11476 struct pmu *pmu = dev_get_drvdata(dev); 11477 11478 if (n == 2 && !pmu->nr_addr_filters) 11479 return 0; 11480 11481 return a->mode; 11482 } 11483 11484 static struct attribute_group pmu_dev_attr_group = { 11485 .is_visible = pmu_dev_is_visible, 11486 .attrs = pmu_dev_attrs, 11487 }; 11488 11489 static const struct attribute_group *pmu_dev_groups[] = { 11490 &pmu_dev_attr_group, 11491 NULL, 11492 }; 11493 11494 static int pmu_bus_running; 11495 static struct bus_type pmu_bus = { 11496 .name = "event_source", 11497 .dev_groups = pmu_dev_groups, 11498 }; 11499 11500 static void pmu_dev_release(struct device *dev) 11501 { 11502 kfree(dev); 11503 } 11504 11505 static int pmu_dev_alloc(struct pmu *pmu) 11506 { 11507 int ret = -ENOMEM; 11508 11509 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 11510 if (!pmu->dev) 11511 goto out; 11512 11513 pmu->dev->groups = pmu->attr_groups; 11514 device_initialize(pmu->dev); 11515 11516 dev_set_drvdata(pmu->dev, pmu); 11517 pmu->dev->bus = &pmu_bus; 11518 pmu->dev->parent = pmu->parent; 11519 pmu->dev->release = pmu_dev_release; 11520 11521 ret = dev_set_name(pmu->dev, "%s", pmu->name); 11522 if (ret) 11523 goto free_dev; 11524 11525 ret = device_add(pmu->dev); 11526 if (ret) 11527 goto free_dev; 11528 11529 if (pmu->attr_update) { 11530 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update); 11531 if (ret) 11532 goto del_dev; 11533 } 11534 11535 out: 11536 return ret; 11537 11538 del_dev: 11539 device_del(pmu->dev); 11540 11541 free_dev: 11542 put_device(pmu->dev); 11543 goto out; 11544 } 11545 11546 static struct lock_class_key cpuctx_mutex; 11547 static struct lock_class_key cpuctx_lock; 11548 11549 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 11550 { 11551 int cpu, ret, max = PERF_TYPE_MAX; 11552 11553 mutex_lock(&pmus_lock); 11554 ret = -ENOMEM; 11555 pmu->pmu_disable_count = alloc_percpu(int); 11556 if (!pmu->pmu_disable_count) 11557 goto unlock; 11558 11559 pmu->type = -1; 11560 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) { 11561 ret = -EINVAL; 11562 goto free_pdc; 11563 } 11564 11565 pmu->name = name; 11566 11567 if (type >= 0) 11568 max = type; 11569 11570 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL); 11571 if (ret < 0) 11572 goto free_pdc; 11573 11574 WARN_ON(type >= 0 && ret != type); 11575 11576 type = ret; 11577 pmu->type = type; 11578 11579 if (pmu_bus_running && !pmu->dev) { 11580 ret = pmu_dev_alloc(pmu); 11581 if (ret) 11582 goto free_idr; 11583 } 11584 11585 ret = -ENOMEM; 11586 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context); 11587 if (!pmu->cpu_pmu_context) 11588 goto free_dev; 11589 11590 for_each_possible_cpu(cpu) { 11591 struct perf_cpu_pmu_context *cpc; 11592 11593 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu); 11594 __perf_init_event_pmu_context(&cpc->epc, pmu); 11595 __perf_mux_hrtimer_init(cpc, cpu); 11596 } 11597 11598 if (!pmu->start_txn) { 11599 if (pmu->pmu_enable) { 11600 /* 11601 * If we have pmu_enable/pmu_disable calls, install 11602 * transaction stubs that use that to try and batch 11603 * hardware accesses. 11604 */ 11605 pmu->start_txn = perf_pmu_start_txn; 11606 pmu->commit_txn = perf_pmu_commit_txn; 11607 pmu->cancel_txn = perf_pmu_cancel_txn; 11608 } else { 11609 pmu->start_txn = perf_pmu_nop_txn; 11610 pmu->commit_txn = perf_pmu_nop_int; 11611 pmu->cancel_txn = perf_pmu_nop_void; 11612 } 11613 } 11614 11615 if (!pmu->pmu_enable) { 11616 pmu->pmu_enable = perf_pmu_nop_void; 11617 pmu->pmu_disable = perf_pmu_nop_void; 11618 } 11619 11620 if (!pmu->check_period) 11621 pmu->check_period = perf_event_nop_int; 11622 11623 if (!pmu->event_idx) 11624 pmu->event_idx = perf_event_idx_default; 11625 11626 list_add_rcu(&pmu->entry, &pmus); 11627 atomic_set(&pmu->exclusive_cnt, 0); 11628 ret = 0; 11629 unlock: 11630 mutex_unlock(&pmus_lock); 11631 11632 return ret; 11633 11634 free_dev: 11635 if (pmu->dev && pmu->dev != PMU_NULL_DEV) { 11636 device_del(pmu->dev); 11637 put_device(pmu->dev); 11638 } 11639 11640 free_idr: 11641 idr_remove(&pmu_idr, pmu->type); 11642 11643 free_pdc: 11644 free_percpu(pmu->pmu_disable_count); 11645 goto unlock; 11646 } 11647 EXPORT_SYMBOL_GPL(perf_pmu_register); 11648 11649 void perf_pmu_unregister(struct pmu *pmu) 11650 { 11651 mutex_lock(&pmus_lock); 11652 list_del_rcu(&pmu->entry); 11653 11654 /* 11655 * We dereference the pmu list under both SRCU and regular RCU, so 11656 * synchronize against both of those. 11657 */ 11658 synchronize_srcu(&pmus_srcu); 11659 synchronize_rcu(); 11660 11661 free_percpu(pmu->pmu_disable_count); 11662 idr_remove(&pmu_idr, pmu->type); 11663 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) { 11664 if (pmu->nr_addr_filters) 11665 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 11666 device_del(pmu->dev); 11667 put_device(pmu->dev); 11668 } 11669 free_pmu_context(pmu); 11670 mutex_unlock(&pmus_lock); 11671 } 11672 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 11673 11674 static inline bool has_extended_regs(struct perf_event *event) 11675 { 11676 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) || 11677 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK); 11678 } 11679 11680 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 11681 { 11682 struct perf_event_context *ctx = NULL; 11683 int ret; 11684 11685 if (!try_module_get(pmu->module)) 11686 return -ENODEV; 11687 11688 /* 11689 * A number of pmu->event_init() methods iterate the sibling_list to, 11690 * for example, validate if the group fits on the PMU. Therefore, 11691 * if this is a sibling event, acquire the ctx->mutex to protect 11692 * the sibling_list. 11693 */ 11694 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 11695 /* 11696 * This ctx->mutex can nest when we're called through 11697 * inheritance. See the perf_event_ctx_lock_nested() comment. 11698 */ 11699 ctx = perf_event_ctx_lock_nested(event->group_leader, 11700 SINGLE_DEPTH_NESTING); 11701 BUG_ON(!ctx); 11702 } 11703 11704 event->pmu = pmu; 11705 ret = pmu->event_init(event); 11706 11707 if (ctx) 11708 perf_event_ctx_unlock(event->group_leader, ctx); 11709 11710 if (!ret) { 11711 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) && 11712 has_extended_regs(event)) 11713 ret = -EOPNOTSUPP; 11714 11715 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 11716 event_has_any_exclude_flag(event)) 11717 ret = -EINVAL; 11718 11719 if (ret && event->destroy) 11720 event->destroy(event); 11721 } 11722 11723 if (ret) 11724 module_put(pmu->module); 11725 11726 return ret; 11727 } 11728 11729 static struct pmu *perf_init_event(struct perf_event *event) 11730 { 11731 bool extended_type = false; 11732 int idx, type, ret; 11733 struct pmu *pmu; 11734 11735 idx = srcu_read_lock(&pmus_srcu); 11736 11737 /* 11738 * Save original type before calling pmu->event_init() since certain 11739 * pmus overwrites event->attr.type to forward event to another pmu. 11740 */ 11741 event->orig_type = event->attr.type; 11742 11743 /* Try parent's PMU first: */ 11744 if (event->parent && event->parent->pmu) { 11745 pmu = event->parent->pmu; 11746 ret = perf_try_init_event(pmu, event); 11747 if (!ret) 11748 goto unlock; 11749 } 11750 11751 /* 11752 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE 11753 * are often aliases for PERF_TYPE_RAW. 11754 */ 11755 type = event->attr.type; 11756 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) { 11757 type = event->attr.config >> PERF_PMU_TYPE_SHIFT; 11758 if (!type) { 11759 type = PERF_TYPE_RAW; 11760 } else { 11761 extended_type = true; 11762 event->attr.config &= PERF_HW_EVENT_MASK; 11763 } 11764 } 11765 11766 again: 11767 rcu_read_lock(); 11768 pmu = idr_find(&pmu_idr, type); 11769 rcu_read_unlock(); 11770 if (pmu) { 11771 if (event->attr.type != type && type != PERF_TYPE_RAW && 11772 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE)) 11773 goto fail; 11774 11775 ret = perf_try_init_event(pmu, event); 11776 if (ret == -ENOENT && event->attr.type != type && !extended_type) { 11777 type = event->attr.type; 11778 goto again; 11779 } 11780 11781 if (ret) 11782 pmu = ERR_PTR(ret); 11783 11784 goto unlock; 11785 } 11786 11787 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) { 11788 ret = perf_try_init_event(pmu, event); 11789 if (!ret) 11790 goto unlock; 11791 11792 if (ret != -ENOENT) { 11793 pmu = ERR_PTR(ret); 11794 goto unlock; 11795 } 11796 } 11797 fail: 11798 pmu = ERR_PTR(-ENOENT); 11799 unlock: 11800 srcu_read_unlock(&pmus_srcu, idx); 11801 11802 return pmu; 11803 } 11804 11805 static void attach_sb_event(struct perf_event *event) 11806 { 11807 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 11808 11809 raw_spin_lock(&pel->lock); 11810 list_add_rcu(&event->sb_list, &pel->list); 11811 raw_spin_unlock(&pel->lock); 11812 } 11813 11814 /* 11815 * We keep a list of all !task (and therefore per-cpu) events 11816 * that need to receive side-band records. 11817 * 11818 * This avoids having to scan all the various PMU per-cpu contexts 11819 * looking for them. 11820 */ 11821 static void account_pmu_sb_event(struct perf_event *event) 11822 { 11823 if (is_sb_event(event)) 11824 attach_sb_event(event); 11825 } 11826 11827 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 11828 static void account_freq_event_nohz(void) 11829 { 11830 #ifdef CONFIG_NO_HZ_FULL 11831 /* Lock so we don't race with concurrent unaccount */ 11832 spin_lock(&nr_freq_lock); 11833 if (atomic_inc_return(&nr_freq_events) == 1) 11834 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 11835 spin_unlock(&nr_freq_lock); 11836 #endif 11837 } 11838 11839 static void account_freq_event(void) 11840 { 11841 if (tick_nohz_full_enabled()) 11842 account_freq_event_nohz(); 11843 else 11844 atomic_inc(&nr_freq_events); 11845 } 11846 11847 11848 static void account_event(struct perf_event *event) 11849 { 11850 bool inc = false; 11851 11852 if (event->parent) 11853 return; 11854 11855 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB)) 11856 inc = true; 11857 if (event->attr.mmap || event->attr.mmap_data) 11858 atomic_inc(&nr_mmap_events); 11859 if (event->attr.build_id) 11860 atomic_inc(&nr_build_id_events); 11861 if (event->attr.comm) 11862 atomic_inc(&nr_comm_events); 11863 if (event->attr.namespaces) 11864 atomic_inc(&nr_namespaces_events); 11865 if (event->attr.cgroup) 11866 atomic_inc(&nr_cgroup_events); 11867 if (event->attr.task) 11868 atomic_inc(&nr_task_events); 11869 if (event->attr.freq) 11870 account_freq_event(); 11871 if (event->attr.context_switch) { 11872 atomic_inc(&nr_switch_events); 11873 inc = true; 11874 } 11875 if (has_branch_stack(event)) 11876 inc = true; 11877 if (is_cgroup_event(event)) 11878 inc = true; 11879 if (event->attr.ksymbol) 11880 atomic_inc(&nr_ksymbol_events); 11881 if (event->attr.bpf_event) 11882 atomic_inc(&nr_bpf_events); 11883 if (event->attr.text_poke) 11884 atomic_inc(&nr_text_poke_events); 11885 11886 if (inc) { 11887 /* 11888 * We need the mutex here because static_branch_enable() 11889 * must complete *before* the perf_sched_count increment 11890 * becomes visible. 11891 */ 11892 if (atomic_inc_not_zero(&perf_sched_count)) 11893 goto enabled; 11894 11895 mutex_lock(&perf_sched_mutex); 11896 if (!atomic_read(&perf_sched_count)) { 11897 static_branch_enable(&perf_sched_events); 11898 /* 11899 * Guarantee that all CPUs observe they key change and 11900 * call the perf scheduling hooks before proceeding to 11901 * install events that need them. 11902 */ 11903 synchronize_rcu(); 11904 } 11905 /* 11906 * Now that we have waited for the sync_sched(), allow further 11907 * increments to by-pass the mutex. 11908 */ 11909 atomic_inc(&perf_sched_count); 11910 mutex_unlock(&perf_sched_mutex); 11911 } 11912 enabled: 11913 11914 account_pmu_sb_event(event); 11915 } 11916 11917 /* 11918 * Allocate and initialize an event structure 11919 */ 11920 static struct perf_event * 11921 perf_event_alloc(struct perf_event_attr *attr, int cpu, 11922 struct task_struct *task, 11923 struct perf_event *group_leader, 11924 struct perf_event *parent_event, 11925 perf_overflow_handler_t overflow_handler, 11926 void *context, int cgroup_fd) 11927 { 11928 struct pmu *pmu; 11929 struct perf_event *event; 11930 struct hw_perf_event *hwc; 11931 long err = -EINVAL; 11932 int node; 11933 11934 if ((unsigned)cpu >= nr_cpu_ids) { 11935 if (!task || cpu != -1) 11936 return ERR_PTR(-EINVAL); 11937 } 11938 if (attr->sigtrap && !task) { 11939 /* Requires a task: avoid signalling random tasks. */ 11940 return ERR_PTR(-EINVAL); 11941 } 11942 11943 node = (cpu >= 0) ? cpu_to_node(cpu) : -1; 11944 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO, 11945 node); 11946 if (!event) 11947 return ERR_PTR(-ENOMEM); 11948 11949 /* 11950 * Single events are their own group leaders, with an 11951 * empty sibling list: 11952 */ 11953 if (!group_leader) 11954 group_leader = event; 11955 11956 mutex_init(&event->child_mutex); 11957 INIT_LIST_HEAD(&event->child_list); 11958 11959 INIT_LIST_HEAD(&event->event_entry); 11960 INIT_LIST_HEAD(&event->sibling_list); 11961 INIT_LIST_HEAD(&event->active_list); 11962 init_event_group(event); 11963 INIT_LIST_HEAD(&event->rb_entry); 11964 INIT_LIST_HEAD(&event->active_entry); 11965 INIT_LIST_HEAD(&event->addr_filters.list); 11966 INIT_HLIST_NODE(&event->hlist_entry); 11967 11968 11969 init_waitqueue_head(&event->waitq); 11970 init_irq_work(&event->pending_irq, perf_pending_irq); 11971 init_task_work(&event->pending_task, perf_pending_task); 11972 rcuwait_init(&event->pending_work_wait); 11973 11974 mutex_init(&event->mmap_mutex); 11975 raw_spin_lock_init(&event->addr_filters.lock); 11976 11977 atomic_long_set(&event->refcount, 1); 11978 event->cpu = cpu; 11979 event->attr = *attr; 11980 event->group_leader = group_leader; 11981 event->pmu = NULL; 11982 event->oncpu = -1; 11983 11984 event->parent = parent_event; 11985 11986 event->ns = get_pid_ns(task_active_pid_ns(current)); 11987 event->id = atomic64_inc_return(&perf_event_id); 11988 11989 event->state = PERF_EVENT_STATE_INACTIVE; 11990 11991 if (parent_event) 11992 event->event_caps = parent_event->event_caps; 11993 11994 if (task) { 11995 event->attach_state = PERF_ATTACH_TASK; 11996 /* 11997 * XXX pmu::event_init needs to know what task to account to 11998 * and we cannot use the ctx information because we need the 11999 * pmu before we get a ctx. 12000 */ 12001 event->hw.target = get_task_struct(task); 12002 } 12003 12004 event->clock = &local_clock; 12005 if (parent_event) 12006 event->clock = parent_event->clock; 12007 12008 if (!overflow_handler && parent_event) { 12009 overflow_handler = parent_event->overflow_handler; 12010 context = parent_event->overflow_handler_context; 12011 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 12012 if (overflow_handler == bpf_overflow_handler) { 12013 struct bpf_prog *prog = parent_event->prog; 12014 12015 bpf_prog_inc(prog); 12016 event->prog = prog; 12017 event->orig_overflow_handler = 12018 parent_event->orig_overflow_handler; 12019 } 12020 #endif 12021 } 12022 12023 if (overflow_handler) { 12024 event->overflow_handler = overflow_handler; 12025 event->overflow_handler_context = context; 12026 } else if (is_write_backward(event)){ 12027 event->overflow_handler = perf_event_output_backward; 12028 event->overflow_handler_context = NULL; 12029 } else { 12030 event->overflow_handler = perf_event_output_forward; 12031 event->overflow_handler_context = NULL; 12032 } 12033 12034 perf_event__state_init(event); 12035 12036 pmu = NULL; 12037 12038 hwc = &event->hw; 12039 hwc->sample_period = attr->sample_period; 12040 if (attr->freq && attr->sample_freq) 12041 hwc->sample_period = 1; 12042 hwc->last_period = hwc->sample_period; 12043 12044 local64_set(&hwc->period_left, hwc->sample_period); 12045 12046 /* 12047 * We currently do not support PERF_SAMPLE_READ on inherited events. 12048 * See perf_output_read(). 12049 */ 12050 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 12051 goto err_ns; 12052 12053 if (!has_branch_stack(event)) 12054 event->attr.branch_sample_type = 0; 12055 12056 pmu = perf_init_event(event); 12057 if (IS_ERR(pmu)) { 12058 err = PTR_ERR(pmu); 12059 goto err_ns; 12060 } 12061 12062 /* 12063 * Disallow uncore-task events. Similarly, disallow uncore-cgroup 12064 * events (they don't make sense as the cgroup will be different 12065 * on other CPUs in the uncore mask). 12066 */ 12067 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) { 12068 err = -EINVAL; 12069 goto err_pmu; 12070 } 12071 12072 if (event->attr.aux_output && 12073 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) { 12074 err = -EOPNOTSUPP; 12075 goto err_pmu; 12076 } 12077 12078 if (cgroup_fd != -1) { 12079 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 12080 if (err) 12081 goto err_pmu; 12082 } 12083 12084 err = exclusive_event_init(event); 12085 if (err) 12086 goto err_pmu; 12087 12088 if (has_addr_filter(event)) { 12089 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 12090 sizeof(struct perf_addr_filter_range), 12091 GFP_KERNEL); 12092 if (!event->addr_filter_ranges) { 12093 err = -ENOMEM; 12094 goto err_per_task; 12095 } 12096 12097 /* 12098 * Clone the parent's vma offsets: they are valid until exec() 12099 * even if the mm is not shared with the parent. 12100 */ 12101 if (event->parent) { 12102 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 12103 12104 raw_spin_lock_irq(&ifh->lock); 12105 memcpy(event->addr_filter_ranges, 12106 event->parent->addr_filter_ranges, 12107 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 12108 raw_spin_unlock_irq(&ifh->lock); 12109 } 12110 12111 /* force hw sync on the address filters */ 12112 event->addr_filters_gen = 1; 12113 } 12114 12115 if (!event->parent) { 12116 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 12117 err = get_callchain_buffers(attr->sample_max_stack); 12118 if (err) 12119 goto err_addr_filters; 12120 } 12121 } 12122 12123 err = security_perf_event_alloc(event); 12124 if (err) 12125 goto err_callchain_buffer; 12126 12127 /* symmetric to unaccount_event() in _free_event() */ 12128 account_event(event); 12129 12130 return event; 12131 12132 err_callchain_buffer: 12133 if (!event->parent) { 12134 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 12135 put_callchain_buffers(); 12136 } 12137 err_addr_filters: 12138 kfree(event->addr_filter_ranges); 12139 12140 err_per_task: 12141 exclusive_event_destroy(event); 12142 12143 err_pmu: 12144 if (is_cgroup_event(event)) 12145 perf_detach_cgroup(event); 12146 if (event->destroy) 12147 event->destroy(event); 12148 module_put(pmu->module); 12149 err_ns: 12150 if (event->hw.target) 12151 put_task_struct(event->hw.target); 12152 call_rcu(&event->rcu_head, free_event_rcu); 12153 12154 return ERR_PTR(err); 12155 } 12156 12157 static int perf_copy_attr(struct perf_event_attr __user *uattr, 12158 struct perf_event_attr *attr) 12159 { 12160 u32 size; 12161 int ret; 12162 12163 /* Zero the full structure, so that a short copy will be nice. */ 12164 memset(attr, 0, sizeof(*attr)); 12165 12166 ret = get_user(size, &uattr->size); 12167 if (ret) 12168 return ret; 12169 12170 /* ABI compatibility quirk: */ 12171 if (!size) 12172 size = PERF_ATTR_SIZE_VER0; 12173 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE) 12174 goto err_size; 12175 12176 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); 12177 if (ret) { 12178 if (ret == -E2BIG) 12179 goto err_size; 12180 return ret; 12181 } 12182 12183 attr->size = size; 12184 12185 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) 12186 return -EINVAL; 12187 12188 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 12189 return -EINVAL; 12190 12191 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 12192 return -EINVAL; 12193 12194 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 12195 u64 mask = attr->branch_sample_type; 12196 12197 /* only using defined bits */ 12198 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 12199 return -EINVAL; 12200 12201 /* at least one branch bit must be set */ 12202 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 12203 return -EINVAL; 12204 12205 /* propagate priv level, when not set for branch */ 12206 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 12207 12208 /* exclude_kernel checked on syscall entry */ 12209 if (!attr->exclude_kernel) 12210 mask |= PERF_SAMPLE_BRANCH_KERNEL; 12211 12212 if (!attr->exclude_user) 12213 mask |= PERF_SAMPLE_BRANCH_USER; 12214 12215 if (!attr->exclude_hv) 12216 mask |= PERF_SAMPLE_BRANCH_HV; 12217 /* 12218 * adjust user setting (for HW filter setup) 12219 */ 12220 attr->branch_sample_type = mask; 12221 } 12222 /* privileged levels capture (kernel, hv): check permissions */ 12223 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) { 12224 ret = perf_allow_kernel(attr); 12225 if (ret) 12226 return ret; 12227 } 12228 } 12229 12230 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 12231 ret = perf_reg_validate(attr->sample_regs_user); 12232 if (ret) 12233 return ret; 12234 } 12235 12236 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 12237 if (!arch_perf_have_user_stack_dump()) 12238 return -ENOSYS; 12239 12240 /* 12241 * We have __u32 type for the size, but so far 12242 * we can only use __u16 as maximum due to the 12243 * __u16 sample size limit. 12244 */ 12245 if (attr->sample_stack_user >= USHRT_MAX) 12246 return -EINVAL; 12247 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 12248 return -EINVAL; 12249 } 12250 12251 if (!attr->sample_max_stack) 12252 attr->sample_max_stack = sysctl_perf_event_max_stack; 12253 12254 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 12255 ret = perf_reg_validate(attr->sample_regs_intr); 12256 12257 #ifndef CONFIG_CGROUP_PERF 12258 if (attr->sample_type & PERF_SAMPLE_CGROUP) 12259 return -EINVAL; 12260 #endif 12261 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) && 12262 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT)) 12263 return -EINVAL; 12264 12265 if (!attr->inherit && attr->inherit_thread) 12266 return -EINVAL; 12267 12268 if (attr->remove_on_exec && attr->enable_on_exec) 12269 return -EINVAL; 12270 12271 if (attr->sigtrap && !attr->remove_on_exec) 12272 return -EINVAL; 12273 12274 out: 12275 return ret; 12276 12277 err_size: 12278 put_user(sizeof(*attr), &uattr->size); 12279 ret = -E2BIG; 12280 goto out; 12281 } 12282 12283 static void mutex_lock_double(struct mutex *a, struct mutex *b) 12284 { 12285 if (b < a) 12286 swap(a, b); 12287 12288 mutex_lock(a); 12289 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 12290 } 12291 12292 static int 12293 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 12294 { 12295 struct perf_buffer *rb = NULL; 12296 int ret = -EINVAL; 12297 12298 if (!output_event) { 12299 mutex_lock(&event->mmap_mutex); 12300 goto set; 12301 } 12302 12303 /* don't allow circular references */ 12304 if (event == output_event) 12305 goto out; 12306 12307 /* 12308 * Don't allow cross-cpu buffers 12309 */ 12310 if (output_event->cpu != event->cpu) 12311 goto out; 12312 12313 /* 12314 * If its not a per-cpu rb, it must be the same task. 12315 */ 12316 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target) 12317 goto out; 12318 12319 /* 12320 * Mixing clocks in the same buffer is trouble you don't need. 12321 */ 12322 if (output_event->clock != event->clock) 12323 goto out; 12324 12325 /* 12326 * Either writing ring buffer from beginning or from end. 12327 * Mixing is not allowed. 12328 */ 12329 if (is_write_backward(output_event) != is_write_backward(event)) 12330 goto out; 12331 12332 /* 12333 * If both events generate aux data, they must be on the same PMU 12334 */ 12335 if (has_aux(event) && has_aux(output_event) && 12336 event->pmu != output_event->pmu) 12337 goto out; 12338 12339 /* 12340 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since 12341 * output_event is already on rb->event_list, and the list iteration 12342 * restarts after every removal, it is guaranteed this new event is 12343 * observed *OR* if output_event is already removed, it's guaranteed we 12344 * observe !rb->mmap_count. 12345 */ 12346 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex); 12347 set: 12348 /* Can't redirect output if we've got an active mmap() */ 12349 if (atomic_read(&event->mmap_count)) 12350 goto unlock; 12351 12352 if (output_event) { 12353 /* get the rb we want to redirect to */ 12354 rb = ring_buffer_get(output_event); 12355 if (!rb) 12356 goto unlock; 12357 12358 /* did we race against perf_mmap_close() */ 12359 if (!atomic_read(&rb->mmap_count)) { 12360 ring_buffer_put(rb); 12361 goto unlock; 12362 } 12363 } 12364 12365 ring_buffer_attach(event, rb); 12366 12367 ret = 0; 12368 unlock: 12369 mutex_unlock(&event->mmap_mutex); 12370 if (output_event) 12371 mutex_unlock(&output_event->mmap_mutex); 12372 12373 out: 12374 return ret; 12375 } 12376 12377 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 12378 { 12379 bool nmi_safe = false; 12380 12381 switch (clk_id) { 12382 case CLOCK_MONOTONIC: 12383 event->clock = &ktime_get_mono_fast_ns; 12384 nmi_safe = true; 12385 break; 12386 12387 case CLOCK_MONOTONIC_RAW: 12388 event->clock = &ktime_get_raw_fast_ns; 12389 nmi_safe = true; 12390 break; 12391 12392 case CLOCK_REALTIME: 12393 event->clock = &ktime_get_real_ns; 12394 break; 12395 12396 case CLOCK_BOOTTIME: 12397 event->clock = &ktime_get_boottime_ns; 12398 break; 12399 12400 case CLOCK_TAI: 12401 event->clock = &ktime_get_clocktai_ns; 12402 break; 12403 12404 default: 12405 return -EINVAL; 12406 } 12407 12408 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 12409 return -EINVAL; 12410 12411 return 0; 12412 } 12413 12414 static bool 12415 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task) 12416 { 12417 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS; 12418 bool is_capable = perfmon_capable(); 12419 12420 if (attr->sigtrap) { 12421 /* 12422 * perf_event_attr::sigtrap sends signals to the other task. 12423 * Require the current task to also have CAP_KILL. 12424 */ 12425 rcu_read_lock(); 12426 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL); 12427 rcu_read_unlock(); 12428 12429 /* 12430 * If the required capabilities aren't available, checks for 12431 * ptrace permissions: upgrade to ATTACH, since sending signals 12432 * can effectively change the target task. 12433 */ 12434 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS; 12435 } 12436 12437 /* 12438 * Preserve ptrace permission check for backwards compatibility. The 12439 * ptrace check also includes checks that the current task and other 12440 * task have matching uids, and is therefore not done here explicitly. 12441 */ 12442 return is_capable || ptrace_may_access(task, ptrace_mode); 12443 } 12444 12445 /** 12446 * sys_perf_event_open - open a performance event, associate it to a task/cpu 12447 * 12448 * @attr_uptr: event_id type attributes for monitoring/sampling 12449 * @pid: target pid 12450 * @cpu: target cpu 12451 * @group_fd: group leader event fd 12452 * @flags: perf event open flags 12453 */ 12454 SYSCALL_DEFINE5(perf_event_open, 12455 struct perf_event_attr __user *, attr_uptr, 12456 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 12457 { 12458 struct perf_event *group_leader = NULL, *output_event = NULL; 12459 struct perf_event_pmu_context *pmu_ctx; 12460 struct perf_event *event, *sibling; 12461 struct perf_event_attr attr; 12462 struct perf_event_context *ctx; 12463 struct file *event_file = NULL; 12464 struct fd group = {NULL, 0}; 12465 struct task_struct *task = NULL; 12466 struct pmu *pmu; 12467 int event_fd; 12468 int move_group = 0; 12469 int err; 12470 int f_flags = O_RDWR; 12471 int cgroup_fd = -1; 12472 12473 /* for future expandability... */ 12474 if (flags & ~PERF_FLAG_ALL) 12475 return -EINVAL; 12476 12477 err = perf_copy_attr(attr_uptr, &attr); 12478 if (err) 12479 return err; 12480 12481 /* Do we allow access to perf_event_open(2) ? */ 12482 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN); 12483 if (err) 12484 return err; 12485 12486 if (!attr.exclude_kernel) { 12487 err = perf_allow_kernel(&attr); 12488 if (err) 12489 return err; 12490 } 12491 12492 if (attr.namespaces) { 12493 if (!perfmon_capable()) 12494 return -EACCES; 12495 } 12496 12497 if (attr.freq) { 12498 if (attr.sample_freq > sysctl_perf_event_sample_rate) 12499 return -EINVAL; 12500 } else { 12501 if (attr.sample_period & (1ULL << 63)) 12502 return -EINVAL; 12503 } 12504 12505 /* Only privileged users can get physical addresses */ 12506 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) { 12507 err = perf_allow_kernel(&attr); 12508 if (err) 12509 return err; 12510 } 12511 12512 /* REGS_INTR can leak data, lockdown must prevent this */ 12513 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) { 12514 err = security_locked_down(LOCKDOWN_PERF); 12515 if (err) 12516 return err; 12517 } 12518 12519 /* 12520 * In cgroup mode, the pid argument is used to pass the fd 12521 * opened to the cgroup directory in cgroupfs. The cpu argument 12522 * designates the cpu on which to monitor threads from that 12523 * cgroup. 12524 */ 12525 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 12526 return -EINVAL; 12527 12528 if (flags & PERF_FLAG_FD_CLOEXEC) 12529 f_flags |= O_CLOEXEC; 12530 12531 event_fd = get_unused_fd_flags(f_flags); 12532 if (event_fd < 0) 12533 return event_fd; 12534 12535 if (group_fd != -1) { 12536 err = perf_fget_light(group_fd, &group); 12537 if (err) 12538 goto err_fd; 12539 group_leader = group.file->private_data; 12540 if (flags & PERF_FLAG_FD_OUTPUT) 12541 output_event = group_leader; 12542 if (flags & PERF_FLAG_FD_NO_GROUP) 12543 group_leader = NULL; 12544 } 12545 12546 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 12547 task = find_lively_task_by_vpid(pid); 12548 if (IS_ERR(task)) { 12549 err = PTR_ERR(task); 12550 goto err_group_fd; 12551 } 12552 } 12553 12554 if (task && group_leader && 12555 group_leader->attr.inherit != attr.inherit) { 12556 err = -EINVAL; 12557 goto err_task; 12558 } 12559 12560 if (flags & PERF_FLAG_PID_CGROUP) 12561 cgroup_fd = pid; 12562 12563 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 12564 NULL, NULL, cgroup_fd); 12565 if (IS_ERR(event)) { 12566 err = PTR_ERR(event); 12567 goto err_task; 12568 } 12569 12570 if (is_sampling_event(event)) { 12571 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 12572 err = -EOPNOTSUPP; 12573 goto err_alloc; 12574 } 12575 } 12576 12577 /* 12578 * Special case software events and allow them to be part of 12579 * any hardware group. 12580 */ 12581 pmu = event->pmu; 12582 12583 if (attr.use_clockid) { 12584 err = perf_event_set_clock(event, attr.clockid); 12585 if (err) 12586 goto err_alloc; 12587 } 12588 12589 if (pmu->task_ctx_nr == perf_sw_context) 12590 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12591 12592 if (task) { 12593 err = down_read_interruptible(&task->signal->exec_update_lock); 12594 if (err) 12595 goto err_alloc; 12596 12597 /* 12598 * We must hold exec_update_lock across this and any potential 12599 * perf_install_in_context() call for this new event to 12600 * serialize against exec() altering our credentials (and the 12601 * perf_event_exit_task() that could imply). 12602 */ 12603 err = -EACCES; 12604 if (!perf_check_permission(&attr, task)) 12605 goto err_cred; 12606 } 12607 12608 /* 12609 * Get the target context (task or percpu): 12610 */ 12611 ctx = find_get_context(task, event); 12612 if (IS_ERR(ctx)) { 12613 err = PTR_ERR(ctx); 12614 goto err_cred; 12615 } 12616 12617 mutex_lock(&ctx->mutex); 12618 12619 if (ctx->task == TASK_TOMBSTONE) { 12620 err = -ESRCH; 12621 goto err_locked; 12622 } 12623 12624 if (!task) { 12625 /* 12626 * Check if the @cpu we're creating an event for is online. 12627 * 12628 * We use the perf_cpu_context::ctx::mutex to serialize against 12629 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12630 */ 12631 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu); 12632 12633 if (!cpuctx->online) { 12634 err = -ENODEV; 12635 goto err_locked; 12636 } 12637 } 12638 12639 if (group_leader) { 12640 err = -EINVAL; 12641 12642 /* 12643 * Do not allow a recursive hierarchy (this new sibling 12644 * becoming part of another group-sibling): 12645 */ 12646 if (group_leader->group_leader != group_leader) 12647 goto err_locked; 12648 12649 /* All events in a group should have the same clock */ 12650 if (group_leader->clock != event->clock) 12651 goto err_locked; 12652 12653 /* 12654 * Make sure we're both events for the same CPU; 12655 * grouping events for different CPUs is broken; since 12656 * you can never concurrently schedule them anyhow. 12657 */ 12658 if (group_leader->cpu != event->cpu) 12659 goto err_locked; 12660 12661 /* 12662 * Make sure we're both on the same context; either task or cpu. 12663 */ 12664 if (group_leader->ctx != ctx) 12665 goto err_locked; 12666 12667 /* 12668 * Only a group leader can be exclusive or pinned 12669 */ 12670 if (attr.exclusive || attr.pinned) 12671 goto err_locked; 12672 12673 if (is_software_event(event) && 12674 !in_software_context(group_leader)) { 12675 /* 12676 * If the event is a sw event, but the group_leader 12677 * is on hw context. 12678 * 12679 * Allow the addition of software events to hw 12680 * groups, this is safe because software events 12681 * never fail to schedule. 12682 * 12683 * Note the comment that goes with struct 12684 * perf_event_pmu_context. 12685 */ 12686 pmu = group_leader->pmu_ctx->pmu; 12687 } else if (!is_software_event(event)) { 12688 if (is_software_event(group_leader) && 12689 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 12690 /* 12691 * In case the group is a pure software group, and we 12692 * try to add a hardware event, move the whole group to 12693 * the hardware context. 12694 */ 12695 move_group = 1; 12696 } 12697 12698 /* Don't allow group of multiple hw events from different pmus */ 12699 if (!in_software_context(group_leader) && 12700 group_leader->pmu_ctx->pmu != pmu) 12701 goto err_locked; 12702 } 12703 } 12704 12705 /* 12706 * Now that we're certain of the pmu; find the pmu_ctx. 12707 */ 12708 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12709 if (IS_ERR(pmu_ctx)) { 12710 err = PTR_ERR(pmu_ctx); 12711 goto err_locked; 12712 } 12713 event->pmu_ctx = pmu_ctx; 12714 12715 if (output_event) { 12716 err = perf_event_set_output(event, output_event); 12717 if (err) 12718 goto err_context; 12719 } 12720 12721 if (!perf_event_validate_size(event)) { 12722 err = -E2BIG; 12723 goto err_context; 12724 } 12725 12726 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) { 12727 err = -EINVAL; 12728 goto err_context; 12729 } 12730 12731 /* 12732 * Must be under the same ctx::mutex as perf_install_in_context(), 12733 * because we need to serialize with concurrent event creation. 12734 */ 12735 if (!exclusive_event_installable(event, ctx)) { 12736 err = -EBUSY; 12737 goto err_context; 12738 } 12739 12740 WARN_ON_ONCE(ctx->parent_ctx); 12741 12742 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags); 12743 if (IS_ERR(event_file)) { 12744 err = PTR_ERR(event_file); 12745 event_file = NULL; 12746 goto err_context; 12747 } 12748 12749 /* 12750 * This is the point on no return; we cannot fail hereafter. This is 12751 * where we start modifying current state. 12752 */ 12753 12754 if (move_group) { 12755 perf_remove_from_context(group_leader, 0); 12756 put_pmu_ctx(group_leader->pmu_ctx); 12757 12758 for_each_sibling_event(sibling, group_leader) { 12759 perf_remove_from_context(sibling, 0); 12760 put_pmu_ctx(sibling->pmu_ctx); 12761 } 12762 12763 /* 12764 * Install the group siblings before the group leader. 12765 * 12766 * Because a group leader will try and install the entire group 12767 * (through the sibling list, which is still in-tact), we can 12768 * end up with siblings installed in the wrong context. 12769 * 12770 * By installing siblings first we NO-OP because they're not 12771 * reachable through the group lists. 12772 */ 12773 for_each_sibling_event(sibling, group_leader) { 12774 sibling->pmu_ctx = pmu_ctx; 12775 get_pmu_ctx(pmu_ctx); 12776 perf_event__state_init(sibling); 12777 perf_install_in_context(ctx, sibling, sibling->cpu); 12778 } 12779 12780 /* 12781 * Removing from the context ends up with disabled 12782 * event. What we want here is event in the initial 12783 * startup state, ready to be add into new context. 12784 */ 12785 group_leader->pmu_ctx = pmu_ctx; 12786 get_pmu_ctx(pmu_ctx); 12787 perf_event__state_init(group_leader); 12788 perf_install_in_context(ctx, group_leader, group_leader->cpu); 12789 } 12790 12791 /* 12792 * Precalculate sample_data sizes; do while holding ctx::mutex such 12793 * that we're serialized against further additions and before 12794 * perf_install_in_context() which is the point the event is active and 12795 * can use these values. 12796 */ 12797 perf_event__header_size(event); 12798 perf_event__id_header_size(event); 12799 12800 event->owner = current; 12801 12802 perf_install_in_context(ctx, event, event->cpu); 12803 perf_unpin_context(ctx); 12804 12805 mutex_unlock(&ctx->mutex); 12806 12807 if (task) { 12808 up_read(&task->signal->exec_update_lock); 12809 put_task_struct(task); 12810 } 12811 12812 mutex_lock(¤t->perf_event_mutex); 12813 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 12814 mutex_unlock(¤t->perf_event_mutex); 12815 12816 /* 12817 * Drop the reference on the group_event after placing the 12818 * new event on the sibling_list. This ensures destruction 12819 * of the group leader will find the pointer to itself in 12820 * perf_group_detach(). 12821 */ 12822 fdput(group); 12823 fd_install(event_fd, event_file); 12824 return event_fd; 12825 12826 err_context: 12827 put_pmu_ctx(event->pmu_ctx); 12828 event->pmu_ctx = NULL; /* _free_event() */ 12829 err_locked: 12830 mutex_unlock(&ctx->mutex); 12831 perf_unpin_context(ctx); 12832 put_ctx(ctx); 12833 err_cred: 12834 if (task) 12835 up_read(&task->signal->exec_update_lock); 12836 err_alloc: 12837 free_event(event); 12838 err_task: 12839 if (task) 12840 put_task_struct(task); 12841 err_group_fd: 12842 fdput(group); 12843 err_fd: 12844 put_unused_fd(event_fd); 12845 return err; 12846 } 12847 12848 /** 12849 * perf_event_create_kernel_counter 12850 * 12851 * @attr: attributes of the counter to create 12852 * @cpu: cpu in which the counter is bound 12853 * @task: task to profile (NULL for percpu) 12854 * @overflow_handler: callback to trigger when we hit the event 12855 * @context: context data could be used in overflow_handler callback 12856 */ 12857 struct perf_event * 12858 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 12859 struct task_struct *task, 12860 perf_overflow_handler_t overflow_handler, 12861 void *context) 12862 { 12863 struct perf_event_pmu_context *pmu_ctx; 12864 struct perf_event_context *ctx; 12865 struct perf_event *event; 12866 struct pmu *pmu; 12867 int err; 12868 12869 /* 12870 * Grouping is not supported for kernel events, neither is 'AUX', 12871 * make sure the caller's intentions are adjusted. 12872 */ 12873 if (attr->aux_output) 12874 return ERR_PTR(-EINVAL); 12875 12876 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 12877 overflow_handler, context, -1); 12878 if (IS_ERR(event)) { 12879 err = PTR_ERR(event); 12880 goto err; 12881 } 12882 12883 /* Mark owner so we could distinguish it from user events. */ 12884 event->owner = TASK_TOMBSTONE; 12885 pmu = event->pmu; 12886 12887 if (pmu->task_ctx_nr == perf_sw_context) 12888 event->event_caps |= PERF_EV_CAP_SOFTWARE; 12889 12890 /* 12891 * Get the target context (task or percpu): 12892 */ 12893 ctx = find_get_context(task, event); 12894 if (IS_ERR(ctx)) { 12895 err = PTR_ERR(ctx); 12896 goto err_alloc; 12897 } 12898 12899 WARN_ON_ONCE(ctx->parent_ctx); 12900 mutex_lock(&ctx->mutex); 12901 if (ctx->task == TASK_TOMBSTONE) { 12902 err = -ESRCH; 12903 goto err_unlock; 12904 } 12905 12906 pmu_ctx = find_get_pmu_context(pmu, ctx, event); 12907 if (IS_ERR(pmu_ctx)) { 12908 err = PTR_ERR(pmu_ctx); 12909 goto err_unlock; 12910 } 12911 event->pmu_ctx = pmu_ctx; 12912 12913 if (!task) { 12914 /* 12915 * Check if the @cpu we're creating an event for is online. 12916 * 12917 * We use the perf_cpu_context::ctx::mutex to serialize against 12918 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 12919 */ 12920 struct perf_cpu_context *cpuctx = 12921 container_of(ctx, struct perf_cpu_context, ctx); 12922 if (!cpuctx->online) { 12923 err = -ENODEV; 12924 goto err_pmu_ctx; 12925 } 12926 } 12927 12928 if (!exclusive_event_installable(event, ctx)) { 12929 err = -EBUSY; 12930 goto err_pmu_ctx; 12931 } 12932 12933 perf_install_in_context(ctx, event, event->cpu); 12934 perf_unpin_context(ctx); 12935 mutex_unlock(&ctx->mutex); 12936 12937 return event; 12938 12939 err_pmu_ctx: 12940 put_pmu_ctx(pmu_ctx); 12941 event->pmu_ctx = NULL; /* _free_event() */ 12942 err_unlock: 12943 mutex_unlock(&ctx->mutex); 12944 perf_unpin_context(ctx); 12945 put_ctx(ctx); 12946 err_alloc: 12947 free_event(event); 12948 err: 12949 return ERR_PTR(err); 12950 } 12951 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 12952 12953 static void __perf_pmu_remove(struct perf_event_context *ctx, 12954 int cpu, struct pmu *pmu, 12955 struct perf_event_groups *groups, 12956 struct list_head *events) 12957 { 12958 struct perf_event *event, *sibling; 12959 12960 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) { 12961 perf_remove_from_context(event, 0); 12962 put_pmu_ctx(event->pmu_ctx); 12963 list_add(&event->migrate_entry, events); 12964 12965 for_each_sibling_event(sibling, event) { 12966 perf_remove_from_context(sibling, 0); 12967 put_pmu_ctx(sibling->pmu_ctx); 12968 list_add(&sibling->migrate_entry, events); 12969 } 12970 } 12971 } 12972 12973 static void __perf_pmu_install_event(struct pmu *pmu, 12974 struct perf_event_context *ctx, 12975 int cpu, struct perf_event *event) 12976 { 12977 struct perf_event_pmu_context *epc; 12978 struct perf_event_context *old_ctx = event->ctx; 12979 12980 get_ctx(ctx); /* normally find_get_context() */ 12981 12982 event->cpu = cpu; 12983 epc = find_get_pmu_context(pmu, ctx, event); 12984 event->pmu_ctx = epc; 12985 12986 if (event->state >= PERF_EVENT_STATE_OFF) 12987 event->state = PERF_EVENT_STATE_INACTIVE; 12988 perf_install_in_context(ctx, event, cpu); 12989 12990 /* 12991 * Now that event->ctx is updated and visible, put the old ctx. 12992 */ 12993 put_ctx(old_ctx); 12994 } 12995 12996 static void __perf_pmu_install(struct perf_event_context *ctx, 12997 int cpu, struct pmu *pmu, struct list_head *events) 12998 { 12999 struct perf_event *event, *tmp; 13000 13001 /* 13002 * Re-instate events in 2 passes. 13003 * 13004 * Skip over group leaders and only install siblings on this first 13005 * pass, siblings will not get enabled without a leader, however a 13006 * leader will enable its siblings, even if those are still on the old 13007 * context. 13008 */ 13009 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13010 if (event->group_leader == event) 13011 continue; 13012 13013 list_del(&event->migrate_entry); 13014 __perf_pmu_install_event(pmu, ctx, cpu, event); 13015 } 13016 13017 /* 13018 * Once all the siblings are setup properly, install the group leaders 13019 * to make it go. 13020 */ 13021 list_for_each_entry_safe(event, tmp, events, migrate_entry) { 13022 list_del(&event->migrate_entry); 13023 __perf_pmu_install_event(pmu, ctx, cpu, event); 13024 } 13025 } 13026 13027 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 13028 { 13029 struct perf_event_context *src_ctx, *dst_ctx; 13030 LIST_HEAD(events); 13031 13032 /* 13033 * Since per-cpu context is persistent, no need to grab an extra 13034 * reference. 13035 */ 13036 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx; 13037 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx; 13038 13039 /* 13040 * See perf_event_ctx_lock() for comments on the details 13041 * of swizzling perf_event::ctx. 13042 */ 13043 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 13044 13045 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events); 13046 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events); 13047 13048 if (!list_empty(&events)) { 13049 /* 13050 * Wait for the events to quiesce before re-instating them. 13051 */ 13052 synchronize_rcu(); 13053 13054 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events); 13055 } 13056 13057 mutex_unlock(&dst_ctx->mutex); 13058 mutex_unlock(&src_ctx->mutex); 13059 } 13060 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 13061 13062 static void sync_child_event(struct perf_event *child_event) 13063 { 13064 struct perf_event *parent_event = child_event->parent; 13065 u64 child_val; 13066 13067 if (child_event->attr.inherit_stat) { 13068 struct task_struct *task = child_event->ctx->task; 13069 13070 if (task && task != TASK_TOMBSTONE) 13071 perf_event_read_event(child_event, task); 13072 } 13073 13074 child_val = perf_event_count(child_event); 13075 13076 /* 13077 * Add back the child's count to the parent's count: 13078 */ 13079 atomic64_add(child_val, &parent_event->child_count); 13080 atomic64_add(child_event->total_time_enabled, 13081 &parent_event->child_total_time_enabled); 13082 atomic64_add(child_event->total_time_running, 13083 &parent_event->child_total_time_running); 13084 } 13085 13086 static void 13087 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx) 13088 { 13089 struct perf_event *parent_event = event->parent; 13090 unsigned long detach_flags = 0; 13091 13092 if (parent_event) { 13093 /* 13094 * Do not destroy the 'original' grouping; because of the 13095 * context switch optimization the original events could've 13096 * ended up in a random child task. 13097 * 13098 * If we were to destroy the original group, all group related 13099 * operations would cease to function properly after this 13100 * random child dies. 13101 * 13102 * Do destroy all inherited groups, we don't care about those 13103 * and being thorough is better. 13104 */ 13105 detach_flags = DETACH_GROUP | DETACH_CHILD; 13106 mutex_lock(&parent_event->child_mutex); 13107 } 13108 13109 perf_remove_from_context(event, detach_flags); 13110 13111 raw_spin_lock_irq(&ctx->lock); 13112 if (event->state > PERF_EVENT_STATE_EXIT) 13113 perf_event_set_state(event, PERF_EVENT_STATE_EXIT); 13114 raw_spin_unlock_irq(&ctx->lock); 13115 13116 /* 13117 * Child events can be freed. 13118 */ 13119 if (parent_event) { 13120 mutex_unlock(&parent_event->child_mutex); 13121 /* 13122 * Kick perf_poll() for is_event_hup(); 13123 */ 13124 perf_event_wakeup(parent_event); 13125 free_event(event); 13126 put_event(parent_event); 13127 return; 13128 } 13129 13130 /* 13131 * Parent events are governed by their filedesc, retain them. 13132 */ 13133 perf_event_wakeup(event); 13134 } 13135 13136 static void perf_event_exit_task_context(struct task_struct *child) 13137 { 13138 struct perf_event_context *child_ctx, *clone_ctx = NULL; 13139 struct perf_event *child_event, *next; 13140 13141 WARN_ON_ONCE(child != current); 13142 13143 child_ctx = perf_pin_task_context(child); 13144 if (!child_ctx) 13145 return; 13146 13147 /* 13148 * In order to reduce the amount of tricky in ctx tear-down, we hold 13149 * ctx::mutex over the entire thing. This serializes against almost 13150 * everything that wants to access the ctx. 13151 * 13152 * The exception is sys_perf_event_open() / 13153 * perf_event_create_kernel_count() which does find_get_context() 13154 * without ctx::mutex (it cannot because of the move_group double mutex 13155 * lock thing). See the comments in perf_install_in_context(). 13156 */ 13157 mutex_lock(&child_ctx->mutex); 13158 13159 /* 13160 * In a single ctx::lock section, de-schedule the events and detach the 13161 * context from the task such that we cannot ever get it scheduled back 13162 * in. 13163 */ 13164 raw_spin_lock_irq(&child_ctx->lock); 13165 task_ctx_sched_out(child_ctx, EVENT_ALL); 13166 13167 /* 13168 * Now that the context is inactive, destroy the task <-> ctx relation 13169 * and mark the context dead. 13170 */ 13171 RCU_INIT_POINTER(child->perf_event_ctxp, NULL); 13172 put_ctx(child_ctx); /* cannot be last */ 13173 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 13174 put_task_struct(current); /* cannot be last */ 13175 13176 clone_ctx = unclone_ctx(child_ctx); 13177 raw_spin_unlock_irq(&child_ctx->lock); 13178 13179 if (clone_ctx) 13180 put_ctx(clone_ctx); 13181 13182 /* 13183 * Report the task dead after unscheduling the events so that we 13184 * won't get any samples after PERF_RECORD_EXIT. We can however still 13185 * get a few PERF_RECORD_READ events. 13186 */ 13187 perf_event_task(child, child_ctx, 0); 13188 13189 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 13190 perf_event_exit_event(child_event, child_ctx); 13191 13192 mutex_unlock(&child_ctx->mutex); 13193 13194 put_ctx(child_ctx); 13195 } 13196 13197 /* 13198 * When a child task exits, feed back event values to parent events. 13199 * 13200 * Can be called with exec_update_lock held when called from 13201 * setup_new_exec(). 13202 */ 13203 void perf_event_exit_task(struct task_struct *child) 13204 { 13205 struct perf_event *event, *tmp; 13206 13207 mutex_lock(&child->perf_event_mutex); 13208 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 13209 owner_entry) { 13210 list_del_init(&event->owner_entry); 13211 13212 /* 13213 * Ensure the list deletion is visible before we clear 13214 * the owner, closes a race against perf_release() where 13215 * we need to serialize on the owner->perf_event_mutex. 13216 */ 13217 smp_store_release(&event->owner, NULL); 13218 } 13219 mutex_unlock(&child->perf_event_mutex); 13220 13221 perf_event_exit_task_context(child); 13222 13223 /* 13224 * The perf_event_exit_task_context calls perf_event_task 13225 * with child's task_ctx, which generates EXIT events for 13226 * child contexts and sets child->perf_event_ctxp[] to NULL. 13227 * At this point we need to send EXIT events to cpu contexts. 13228 */ 13229 perf_event_task(child, NULL, 0); 13230 } 13231 13232 static void perf_free_event(struct perf_event *event, 13233 struct perf_event_context *ctx) 13234 { 13235 struct perf_event *parent = event->parent; 13236 13237 if (WARN_ON_ONCE(!parent)) 13238 return; 13239 13240 mutex_lock(&parent->child_mutex); 13241 list_del_init(&event->child_list); 13242 mutex_unlock(&parent->child_mutex); 13243 13244 put_event(parent); 13245 13246 raw_spin_lock_irq(&ctx->lock); 13247 perf_group_detach(event); 13248 list_del_event(event, ctx); 13249 raw_spin_unlock_irq(&ctx->lock); 13250 free_event(event); 13251 } 13252 13253 /* 13254 * Free a context as created by inheritance by perf_event_init_task() below, 13255 * used by fork() in case of fail. 13256 * 13257 * Even though the task has never lived, the context and events have been 13258 * exposed through the child_list, so we must take care tearing it all down. 13259 */ 13260 void perf_event_free_task(struct task_struct *task) 13261 { 13262 struct perf_event_context *ctx; 13263 struct perf_event *event, *tmp; 13264 13265 ctx = rcu_access_pointer(task->perf_event_ctxp); 13266 if (!ctx) 13267 return; 13268 13269 mutex_lock(&ctx->mutex); 13270 raw_spin_lock_irq(&ctx->lock); 13271 /* 13272 * Destroy the task <-> ctx relation and mark the context dead. 13273 * 13274 * This is important because even though the task hasn't been 13275 * exposed yet the context has been (through child_list). 13276 */ 13277 RCU_INIT_POINTER(task->perf_event_ctxp, NULL); 13278 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 13279 put_task_struct(task); /* cannot be last */ 13280 raw_spin_unlock_irq(&ctx->lock); 13281 13282 13283 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 13284 perf_free_event(event, ctx); 13285 13286 mutex_unlock(&ctx->mutex); 13287 13288 /* 13289 * perf_event_release_kernel() could've stolen some of our 13290 * child events and still have them on its free_list. In that 13291 * case we must wait for these events to have been freed (in 13292 * particular all their references to this task must've been 13293 * dropped). 13294 * 13295 * Without this copy_process() will unconditionally free this 13296 * task (irrespective of its reference count) and 13297 * _free_event()'s put_task_struct(event->hw.target) will be a 13298 * use-after-free. 13299 * 13300 * Wait for all events to drop their context reference. 13301 */ 13302 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1); 13303 put_ctx(ctx); /* must be last */ 13304 } 13305 13306 void perf_event_delayed_put(struct task_struct *task) 13307 { 13308 WARN_ON_ONCE(task->perf_event_ctxp); 13309 } 13310 13311 struct file *perf_event_get(unsigned int fd) 13312 { 13313 struct file *file = fget(fd); 13314 if (!file) 13315 return ERR_PTR(-EBADF); 13316 13317 if (file->f_op != &perf_fops) { 13318 fput(file); 13319 return ERR_PTR(-EBADF); 13320 } 13321 13322 return file; 13323 } 13324 13325 const struct perf_event *perf_get_event(struct file *file) 13326 { 13327 if (file->f_op != &perf_fops) 13328 return ERR_PTR(-EINVAL); 13329 13330 return file->private_data; 13331 } 13332 13333 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 13334 { 13335 if (!event) 13336 return ERR_PTR(-EINVAL); 13337 13338 return &event->attr; 13339 } 13340 13341 int perf_allow_kernel(struct perf_event_attr *attr) 13342 { 13343 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 13344 return -EACCES; 13345 13346 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 13347 } 13348 EXPORT_SYMBOL_GPL(perf_allow_kernel); 13349 13350 /* 13351 * Inherit an event from parent task to child task. 13352 * 13353 * Returns: 13354 * - valid pointer on success 13355 * - NULL for orphaned events 13356 * - IS_ERR() on error 13357 */ 13358 static struct perf_event * 13359 inherit_event(struct perf_event *parent_event, 13360 struct task_struct *parent, 13361 struct perf_event_context *parent_ctx, 13362 struct task_struct *child, 13363 struct perf_event *group_leader, 13364 struct perf_event_context *child_ctx) 13365 { 13366 enum perf_event_state parent_state = parent_event->state; 13367 struct perf_event_pmu_context *pmu_ctx; 13368 struct perf_event *child_event; 13369 unsigned long flags; 13370 13371 /* 13372 * Instead of creating recursive hierarchies of events, 13373 * we link inherited events back to the original parent, 13374 * which has a filp for sure, which we use as the reference 13375 * count: 13376 */ 13377 if (parent_event->parent) 13378 parent_event = parent_event->parent; 13379 13380 child_event = perf_event_alloc(&parent_event->attr, 13381 parent_event->cpu, 13382 child, 13383 group_leader, parent_event, 13384 NULL, NULL, -1); 13385 if (IS_ERR(child_event)) 13386 return child_event; 13387 13388 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event); 13389 if (IS_ERR(pmu_ctx)) { 13390 free_event(child_event); 13391 return ERR_CAST(pmu_ctx); 13392 } 13393 child_event->pmu_ctx = pmu_ctx; 13394 13395 /* 13396 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 13397 * must be under the same lock in order to serialize against 13398 * perf_event_release_kernel(), such that either we must observe 13399 * is_orphaned_event() or they will observe us on the child_list. 13400 */ 13401 mutex_lock(&parent_event->child_mutex); 13402 if (is_orphaned_event(parent_event) || 13403 !atomic_long_inc_not_zero(&parent_event->refcount)) { 13404 mutex_unlock(&parent_event->child_mutex); 13405 /* task_ctx_data is freed with child_ctx */ 13406 free_event(child_event); 13407 return NULL; 13408 } 13409 13410 get_ctx(child_ctx); 13411 13412 /* 13413 * Make the child state follow the state of the parent event, 13414 * not its attr.disabled bit. We hold the parent's mutex, 13415 * so we won't race with perf_event_{en, dis}able_family. 13416 */ 13417 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 13418 child_event->state = PERF_EVENT_STATE_INACTIVE; 13419 else 13420 child_event->state = PERF_EVENT_STATE_OFF; 13421 13422 if (parent_event->attr.freq) { 13423 u64 sample_period = parent_event->hw.sample_period; 13424 struct hw_perf_event *hwc = &child_event->hw; 13425 13426 hwc->sample_period = sample_period; 13427 hwc->last_period = sample_period; 13428 13429 local64_set(&hwc->period_left, sample_period); 13430 } 13431 13432 child_event->ctx = child_ctx; 13433 child_event->overflow_handler = parent_event->overflow_handler; 13434 child_event->overflow_handler_context 13435 = parent_event->overflow_handler_context; 13436 13437 /* 13438 * Precalculate sample_data sizes 13439 */ 13440 perf_event__header_size(child_event); 13441 perf_event__id_header_size(child_event); 13442 13443 /* 13444 * Link it up in the child's context: 13445 */ 13446 raw_spin_lock_irqsave(&child_ctx->lock, flags); 13447 add_event_to_ctx(child_event, child_ctx); 13448 child_event->attach_state |= PERF_ATTACH_CHILD; 13449 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 13450 13451 /* 13452 * Link this into the parent event's child list 13453 */ 13454 list_add_tail(&child_event->child_list, &parent_event->child_list); 13455 mutex_unlock(&parent_event->child_mutex); 13456 13457 return child_event; 13458 } 13459 13460 /* 13461 * Inherits an event group. 13462 * 13463 * This will quietly suppress orphaned events; !inherit_event() is not an error. 13464 * This matches with perf_event_release_kernel() removing all child events. 13465 * 13466 * Returns: 13467 * - 0 on success 13468 * - <0 on error 13469 */ 13470 static int inherit_group(struct perf_event *parent_event, 13471 struct task_struct *parent, 13472 struct perf_event_context *parent_ctx, 13473 struct task_struct *child, 13474 struct perf_event_context *child_ctx) 13475 { 13476 struct perf_event *leader; 13477 struct perf_event *sub; 13478 struct perf_event *child_ctr; 13479 13480 leader = inherit_event(parent_event, parent, parent_ctx, 13481 child, NULL, child_ctx); 13482 if (IS_ERR(leader)) 13483 return PTR_ERR(leader); 13484 /* 13485 * @leader can be NULL here because of is_orphaned_event(). In this 13486 * case inherit_event() will create individual events, similar to what 13487 * perf_group_detach() would do anyway. 13488 */ 13489 for_each_sibling_event(sub, parent_event) { 13490 child_ctr = inherit_event(sub, parent, parent_ctx, 13491 child, leader, child_ctx); 13492 if (IS_ERR(child_ctr)) 13493 return PTR_ERR(child_ctr); 13494 13495 if (sub->aux_event == parent_event && child_ctr && 13496 !perf_get_aux_event(child_ctr, leader)) 13497 return -EINVAL; 13498 } 13499 if (leader) 13500 leader->group_generation = parent_event->group_generation; 13501 return 0; 13502 } 13503 13504 /* 13505 * Creates the child task context and tries to inherit the event-group. 13506 * 13507 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 13508 * inherited_all set when we 'fail' to inherit an orphaned event; this is 13509 * consistent with perf_event_release_kernel() removing all child events. 13510 * 13511 * Returns: 13512 * - 0 on success 13513 * - <0 on error 13514 */ 13515 static int 13516 inherit_task_group(struct perf_event *event, struct task_struct *parent, 13517 struct perf_event_context *parent_ctx, 13518 struct task_struct *child, 13519 u64 clone_flags, int *inherited_all) 13520 { 13521 struct perf_event_context *child_ctx; 13522 int ret; 13523 13524 if (!event->attr.inherit || 13525 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) || 13526 /* Do not inherit if sigtrap and signal handlers were cleared. */ 13527 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) { 13528 *inherited_all = 0; 13529 return 0; 13530 } 13531 13532 child_ctx = child->perf_event_ctxp; 13533 if (!child_ctx) { 13534 /* 13535 * This is executed from the parent task context, so 13536 * inherit events that have been marked for cloning. 13537 * First allocate and initialize a context for the 13538 * child. 13539 */ 13540 child_ctx = alloc_perf_context(child); 13541 if (!child_ctx) 13542 return -ENOMEM; 13543 13544 child->perf_event_ctxp = child_ctx; 13545 } 13546 13547 ret = inherit_group(event, parent, parent_ctx, child, child_ctx); 13548 if (ret) 13549 *inherited_all = 0; 13550 13551 return ret; 13552 } 13553 13554 /* 13555 * Initialize the perf_event context in task_struct 13556 */ 13557 static int perf_event_init_context(struct task_struct *child, u64 clone_flags) 13558 { 13559 struct perf_event_context *child_ctx, *parent_ctx; 13560 struct perf_event_context *cloned_ctx; 13561 struct perf_event *event; 13562 struct task_struct *parent = current; 13563 int inherited_all = 1; 13564 unsigned long flags; 13565 int ret = 0; 13566 13567 if (likely(!parent->perf_event_ctxp)) 13568 return 0; 13569 13570 /* 13571 * If the parent's context is a clone, pin it so it won't get 13572 * swapped under us. 13573 */ 13574 parent_ctx = perf_pin_task_context(parent); 13575 if (!parent_ctx) 13576 return 0; 13577 13578 /* 13579 * No need to check if parent_ctx != NULL here; since we saw 13580 * it non-NULL earlier, the only reason for it to become NULL 13581 * is if we exit, and since we're currently in the middle of 13582 * a fork we can't be exiting at the same time. 13583 */ 13584 13585 /* 13586 * Lock the parent list. No need to lock the child - not PID 13587 * hashed yet and not running, so nobody can access it. 13588 */ 13589 mutex_lock(&parent_ctx->mutex); 13590 13591 /* 13592 * We dont have to disable NMIs - we are only looking at 13593 * the list, not manipulating it: 13594 */ 13595 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 13596 ret = inherit_task_group(event, parent, parent_ctx, 13597 child, clone_flags, &inherited_all); 13598 if (ret) 13599 goto out_unlock; 13600 } 13601 13602 /* 13603 * We can't hold ctx->lock when iterating the ->flexible_group list due 13604 * to allocations, but we need to prevent rotation because 13605 * rotate_ctx() will change the list from interrupt context. 13606 */ 13607 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13608 parent_ctx->rotate_disable = 1; 13609 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13610 13611 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 13612 ret = inherit_task_group(event, parent, parent_ctx, 13613 child, clone_flags, &inherited_all); 13614 if (ret) 13615 goto out_unlock; 13616 } 13617 13618 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 13619 parent_ctx->rotate_disable = 0; 13620 13621 child_ctx = child->perf_event_ctxp; 13622 13623 if (child_ctx && inherited_all) { 13624 /* 13625 * Mark the child context as a clone of the parent 13626 * context, or of whatever the parent is a clone of. 13627 * 13628 * Note that if the parent is a clone, the holding of 13629 * parent_ctx->lock avoids it from being uncloned. 13630 */ 13631 cloned_ctx = parent_ctx->parent_ctx; 13632 if (cloned_ctx) { 13633 child_ctx->parent_ctx = cloned_ctx; 13634 child_ctx->parent_gen = parent_ctx->parent_gen; 13635 } else { 13636 child_ctx->parent_ctx = parent_ctx; 13637 child_ctx->parent_gen = parent_ctx->generation; 13638 } 13639 get_ctx(child_ctx->parent_ctx); 13640 } 13641 13642 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 13643 out_unlock: 13644 mutex_unlock(&parent_ctx->mutex); 13645 13646 perf_unpin_context(parent_ctx); 13647 put_ctx(parent_ctx); 13648 13649 return ret; 13650 } 13651 13652 /* 13653 * Initialize the perf_event context in task_struct 13654 */ 13655 int perf_event_init_task(struct task_struct *child, u64 clone_flags) 13656 { 13657 int ret; 13658 13659 child->perf_event_ctxp = NULL; 13660 mutex_init(&child->perf_event_mutex); 13661 INIT_LIST_HEAD(&child->perf_event_list); 13662 13663 ret = perf_event_init_context(child, clone_flags); 13664 if (ret) { 13665 perf_event_free_task(child); 13666 return ret; 13667 } 13668 13669 return 0; 13670 } 13671 13672 static void __init perf_event_init_all_cpus(void) 13673 { 13674 struct swevent_htable *swhash; 13675 struct perf_cpu_context *cpuctx; 13676 int cpu; 13677 13678 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 13679 13680 for_each_possible_cpu(cpu) { 13681 swhash = &per_cpu(swevent_htable, cpu); 13682 mutex_init(&swhash->hlist_mutex); 13683 13684 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 13685 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 13686 13687 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 13688 13689 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13690 __perf_event_init_context(&cpuctx->ctx); 13691 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 13692 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 13693 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 13694 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default); 13695 cpuctx->heap = cpuctx->heap_default; 13696 } 13697 } 13698 13699 static void perf_swevent_init_cpu(unsigned int cpu) 13700 { 13701 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 13702 13703 mutex_lock(&swhash->hlist_mutex); 13704 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 13705 struct swevent_hlist *hlist; 13706 13707 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 13708 WARN_ON(!hlist); 13709 rcu_assign_pointer(swhash->swevent_hlist, hlist); 13710 } 13711 mutex_unlock(&swhash->hlist_mutex); 13712 } 13713 13714 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 13715 static void __perf_event_exit_context(void *__info) 13716 { 13717 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context); 13718 struct perf_event_context *ctx = __info; 13719 struct perf_event *event; 13720 13721 raw_spin_lock(&ctx->lock); 13722 ctx_sched_out(ctx, EVENT_TIME); 13723 list_for_each_entry(event, &ctx->event_list, event_entry) 13724 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 13725 raw_spin_unlock(&ctx->lock); 13726 } 13727 13728 static void perf_event_exit_cpu_context(int cpu) 13729 { 13730 struct perf_cpu_context *cpuctx; 13731 struct perf_event_context *ctx; 13732 13733 // XXX simplify cpuctx->online 13734 mutex_lock(&pmus_lock); 13735 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13736 ctx = &cpuctx->ctx; 13737 13738 mutex_lock(&ctx->mutex); 13739 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 13740 cpuctx->online = 0; 13741 mutex_unlock(&ctx->mutex); 13742 cpumask_clear_cpu(cpu, perf_online_mask); 13743 mutex_unlock(&pmus_lock); 13744 } 13745 #else 13746 13747 static void perf_event_exit_cpu_context(int cpu) { } 13748 13749 #endif 13750 13751 int perf_event_init_cpu(unsigned int cpu) 13752 { 13753 struct perf_cpu_context *cpuctx; 13754 struct perf_event_context *ctx; 13755 13756 perf_swevent_init_cpu(cpu); 13757 13758 mutex_lock(&pmus_lock); 13759 cpumask_set_cpu(cpu, perf_online_mask); 13760 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu); 13761 ctx = &cpuctx->ctx; 13762 13763 mutex_lock(&ctx->mutex); 13764 cpuctx->online = 1; 13765 mutex_unlock(&ctx->mutex); 13766 mutex_unlock(&pmus_lock); 13767 13768 return 0; 13769 } 13770 13771 int perf_event_exit_cpu(unsigned int cpu) 13772 { 13773 perf_event_exit_cpu_context(cpu); 13774 return 0; 13775 } 13776 13777 static int 13778 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 13779 { 13780 int cpu; 13781 13782 for_each_online_cpu(cpu) 13783 perf_event_exit_cpu(cpu); 13784 13785 return NOTIFY_OK; 13786 } 13787 13788 /* 13789 * Run the perf reboot notifier at the very last possible moment so that 13790 * the generic watchdog code runs as long as possible. 13791 */ 13792 static struct notifier_block perf_reboot_notifier = { 13793 .notifier_call = perf_reboot, 13794 .priority = INT_MIN, 13795 }; 13796 13797 void __init perf_event_init(void) 13798 { 13799 int ret; 13800 13801 idr_init(&pmu_idr); 13802 13803 perf_event_init_all_cpus(); 13804 init_srcu_struct(&pmus_srcu); 13805 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 13806 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1); 13807 perf_pmu_register(&perf_task_clock, "task_clock", -1); 13808 perf_tp_register(); 13809 perf_event_init_cpu(smp_processor_id()); 13810 register_reboot_notifier(&perf_reboot_notifier); 13811 13812 ret = init_hw_breakpoint(); 13813 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 13814 13815 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC); 13816 13817 /* 13818 * Build time assertion that we keep the data_head at the intended 13819 * location. IOW, validation we got the __reserved[] size right. 13820 */ 13821 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 13822 != 1024); 13823 } 13824 13825 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 13826 char *page) 13827 { 13828 struct perf_pmu_events_attr *pmu_attr = 13829 container_of(attr, struct perf_pmu_events_attr, attr); 13830 13831 if (pmu_attr->event_str) 13832 return sprintf(page, "%s\n", pmu_attr->event_str); 13833 13834 return 0; 13835 } 13836 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 13837 13838 static int __init perf_event_sysfs_init(void) 13839 { 13840 struct pmu *pmu; 13841 int ret; 13842 13843 mutex_lock(&pmus_lock); 13844 13845 ret = bus_register(&pmu_bus); 13846 if (ret) 13847 goto unlock; 13848 13849 list_for_each_entry(pmu, &pmus, entry) { 13850 if (pmu->dev) 13851 continue; 13852 13853 ret = pmu_dev_alloc(pmu); 13854 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 13855 } 13856 pmu_bus_running = 1; 13857 ret = 0; 13858 13859 unlock: 13860 mutex_unlock(&pmus_lock); 13861 13862 return ret; 13863 } 13864 device_initcall(perf_event_sysfs_init); 13865 13866 #ifdef CONFIG_CGROUP_PERF 13867 static struct cgroup_subsys_state * 13868 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 13869 { 13870 struct perf_cgroup *jc; 13871 13872 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 13873 if (!jc) 13874 return ERR_PTR(-ENOMEM); 13875 13876 jc->info = alloc_percpu(struct perf_cgroup_info); 13877 if (!jc->info) { 13878 kfree(jc); 13879 return ERR_PTR(-ENOMEM); 13880 } 13881 13882 return &jc->css; 13883 } 13884 13885 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 13886 { 13887 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 13888 13889 free_percpu(jc->info); 13890 kfree(jc); 13891 } 13892 13893 static int perf_cgroup_css_online(struct cgroup_subsys_state *css) 13894 { 13895 perf_event_cgroup(css->cgroup); 13896 return 0; 13897 } 13898 13899 static int __perf_cgroup_move(void *info) 13900 { 13901 struct task_struct *task = info; 13902 13903 preempt_disable(); 13904 perf_cgroup_switch(task); 13905 preempt_enable(); 13906 13907 return 0; 13908 } 13909 13910 static void perf_cgroup_attach(struct cgroup_taskset *tset) 13911 { 13912 struct task_struct *task; 13913 struct cgroup_subsys_state *css; 13914 13915 cgroup_taskset_for_each(task, css, tset) 13916 task_function_call(task, __perf_cgroup_move, task); 13917 } 13918 13919 struct cgroup_subsys perf_event_cgrp_subsys = { 13920 .css_alloc = perf_cgroup_css_alloc, 13921 .css_free = perf_cgroup_css_free, 13922 .css_online = perf_cgroup_css_online, 13923 .attach = perf_cgroup_attach, 13924 /* 13925 * Implicitly enable on dfl hierarchy so that perf events can 13926 * always be filtered by cgroup2 path as long as perf_event 13927 * controller is not mounted on a legacy hierarchy. 13928 */ 13929 .implicit_on_dfl = true, 13930 .threaded = true, 13931 }; 13932 #endif /* CONFIG_CGROUP_PERF */ 13933 13934 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 13935