1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/tick.h> 22 #include <linux/sysfs.h> 23 #include <linux/dcache.h> 24 #include <linux/percpu.h> 25 #include <linux/ptrace.h> 26 #include <linux/reboot.h> 27 #include <linux/vmstat.h> 28 #include <linux/device.h> 29 #include <linux/export.h> 30 #include <linux/vmalloc.h> 31 #include <linux/hardirq.h> 32 #include <linux/rculist.h> 33 #include <linux/uaccess.h> 34 #include <linux/syscalls.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/kernel_stat.h> 37 #include <linux/cgroup.h> 38 #include <linux/perf_event.h> 39 #include <linux/trace_events.h> 40 #include <linux/hw_breakpoint.h> 41 #include <linux/mm_types.h> 42 #include <linux/module.h> 43 #include <linux/mman.h> 44 #include <linux/compat.h> 45 #include <linux/bpf.h> 46 #include <linux/filter.h> 47 #include <linux/namei.h> 48 #include <linux/parser.h> 49 #include <linux/sched/clock.h> 50 #include <linux/sched/mm.h> 51 #include <linux/proc_ns.h> 52 #include <linux/mount.h> 53 54 #include "internal.h" 55 56 #include <asm/irq_regs.h> 57 58 typedef int (*remote_function_f)(void *); 59 60 struct remote_function_call { 61 struct task_struct *p; 62 remote_function_f func; 63 void *info; 64 int ret; 65 }; 66 67 static void remote_function(void *data) 68 { 69 struct remote_function_call *tfc = data; 70 struct task_struct *p = tfc->p; 71 72 if (p) { 73 /* -EAGAIN */ 74 if (task_cpu(p) != smp_processor_id()) 75 return; 76 77 /* 78 * Now that we're on right CPU with IRQs disabled, we can test 79 * if we hit the right task without races. 80 */ 81 82 tfc->ret = -ESRCH; /* No such (running) process */ 83 if (p != current) 84 return; 85 } 86 87 tfc->ret = tfc->func(tfc->info); 88 } 89 90 /** 91 * task_function_call - call a function on the cpu on which a task runs 92 * @p: the task to evaluate 93 * @func: the function to be called 94 * @info: the function call argument 95 * 96 * Calls the function @func when the task is currently running. This might 97 * be on the current CPU, which just calls the function directly 98 * 99 * returns: @func return value, or 100 * -ESRCH - when the process isn't running 101 * -EAGAIN - when the process moved away 102 */ 103 static int 104 task_function_call(struct task_struct *p, remote_function_f func, void *info) 105 { 106 struct remote_function_call data = { 107 .p = p, 108 .func = func, 109 .info = info, 110 .ret = -EAGAIN, 111 }; 112 int ret; 113 114 do { 115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 116 if (!ret) 117 ret = data.ret; 118 } while (ret == -EAGAIN); 119 120 return ret; 121 } 122 123 /** 124 * cpu_function_call - call a function on the cpu 125 * @func: the function to be called 126 * @info: the function call argument 127 * 128 * Calls the function @func on the remote cpu. 129 * 130 * returns: @func return value or -ENXIO when the cpu is offline 131 */ 132 static int cpu_function_call(int cpu, remote_function_f func, void *info) 133 { 134 struct remote_function_call data = { 135 .p = NULL, 136 .func = func, 137 .info = info, 138 .ret = -ENXIO, /* No such CPU */ 139 }; 140 141 smp_call_function_single(cpu, remote_function, &data, 1); 142 143 return data.ret; 144 } 145 146 static inline struct perf_cpu_context * 147 __get_cpu_context(struct perf_event_context *ctx) 148 { 149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 150 } 151 152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 153 struct perf_event_context *ctx) 154 { 155 raw_spin_lock(&cpuctx->ctx.lock); 156 if (ctx) 157 raw_spin_lock(&ctx->lock); 158 } 159 160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 161 struct perf_event_context *ctx) 162 { 163 if (ctx) 164 raw_spin_unlock(&ctx->lock); 165 raw_spin_unlock(&cpuctx->ctx.lock); 166 } 167 168 #define TASK_TOMBSTONE ((void *)-1L) 169 170 static bool is_kernel_event(struct perf_event *event) 171 { 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 173 } 174 175 /* 176 * On task ctx scheduling... 177 * 178 * When !ctx->nr_events a task context will not be scheduled. This means 179 * we can disable the scheduler hooks (for performance) without leaving 180 * pending task ctx state. 181 * 182 * This however results in two special cases: 183 * 184 * - removing the last event from a task ctx; this is relatively straight 185 * forward and is done in __perf_remove_from_context. 186 * 187 * - adding the first event to a task ctx; this is tricky because we cannot 188 * rely on ctx->is_active and therefore cannot use event_function_call(). 189 * See perf_install_in_context(). 190 * 191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 192 */ 193 194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 195 struct perf_event_context *, void *); 196 197 struct event_function_struct { 198 struct perf_event *event; 199 event_f func; 200 void *data; 201 }; 202 203 static int event_function(void *info) 204 { 205 struct event_function_struct *efs = info; 206 struct perf_event *event = efs->event; 207 struct perf_event_context *ctx = event->ctx; 208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 209 struct perf_event_context *task_ctx = cpuctx->task_ctx; 210 int ret = 0; 211 212 lockdep_assert_irqs_disabled(); 213 214 perf_ctx_lock(cpuctx, task_ctx); 215 /* 216 * Since we do the IPI call without holding ctx->lock things can have 217 * changed, double check we hit the task we set out to hit. 218 */ 219 if (ctx->task) { 220 if (ctx->task != current) { 221 ret = -ESRCH; 222 goto unlock; 223 } 224 225 /* 226 * We only use event_function_call() on established contexts, 227 * and event_function() is only ever called when active (or 228 * rather, we'll have bailed in task_function_call() or the 229 * above ctx->task != current test), therefore we must have 230 * ctx->is_active here. 231 */ 232 WARN_ON_ONCE(!ctx->is_active); 233 /* 234 * And since we have ctx->is_active, cpuctx->task_ctx must 235 * match. 236 */ 237 WARN_ON_ONCE(task_ctx != ctx); 238 } else { 239 WARN_ON_ONCE(&cpuctx->ctx != ctx); 240 } 241 242 efs->func(event, cpuctx, ctx, efs->data); 243 unlock: 244 perf_ctx_unlock(cpuctx, task_ctx); 245 246 return ret; 247 } 248 249 static void event_function_call(struct perf_event *event, event_f func, void *data) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 253 struct event_function_struct efs = { 254 .event = event, 255 .func = func, 256 .data = data, 257 }; 258 259 if (!event->parent) { 260 /* 261 * If this is a !child event, we must hold ctx::mutex to 262 * stabilize the the event->ctx relation. See 263 * perf_event_ctx_lock(). 264 */ 265 lockdep_assert_held(&ctx->mutex); 266 } 267 268 if (!task) { 269 cpu_function_call(event->cpu, event_function, &efs); 270 return; 271 } 272 273 if (task == TASK_TOMBSTONE) 274 return; 275 276 again: 277 if (!task_function_call(task, event_function, &efs)) 278 return; 279 280 raw_spin_lock_irq(&ctx->lock); 281 /* 282 * Reload the task pointer, it might have been changed by 283 * a concurrent perf_event_context_sched_out(). 284 */ 285 task = ctx->task; 286 if (task == TASK_TOMBSTONE) { 287 raw_spin_unlock_irq(&ctx->lock); 288 return; 289 } 290 if (ctx->is_active) { 291 raw_spin_unlock_irq(&ctx->lock); 292 goto again; 293 } 294 func(event, NULL, ctx, data); 295 raw_spin_unlock_irq(&ctx->lock); 296 } 297 298 /* 299 * Similar to event_function_call() + event_function(), but hard assumes IRQs 300 * are already disabled and we're on the right CPU. 301 */ 302 static void event_function_local(struct perf_event *event, event_f func, void *data) 303 { 304 struct perf_event_context *ctx = event->ctx; 305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 306 struct task_struct *task = READ_ONCE(ctx->task); 307 struct perf_event_context *task_ctx = NULL; 308 309 lockdep_assert_irqs_disabled(); 310 311 if (task) { 312 if (task == TASK_TOMBSTONE) 313 return; 314 315 task_ctx = ctx; 316 } 317 318 perf_ctx_lock(cpuctx, task_ctx); 319 320 task = ctx->task; 321 if (task == TASK_TOMBSTONE) 322 goto unlock; 323 324 if (task) { 325 /* 326 * We must be either inactive or active and the right task, 327 * otherwise we're screwed, since we cannot IPI to somewhere 328 * else. 329 */ 330 if (ctx->is_active) { 331 if (WARN_ON_ONCE(task != current)) 332 goto unlock; 333 334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 335 goto unlock; 336 } 337 } else { 338 WARN_ON_ONCE(&cpuctx->ctx != ctx); 339 } 340 341 func(event, cpuctx, ctx, data); 342 unlock: 343 perf_ctx_unlock(cpuctx, task_ctx); 344 } 345 346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 347 PERF_FLAG_FD_OUTPUT |\ 348 PERF_FLAG_PID_CGROUP |\ 349 PERF_FLAG_FD_CLOEXEC) 350 351 /* 352 * branch priv levels that need permission checks 353 */ 354 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 355 (PERF_SAMPLE_BRANCH_KERNEL |\ 356 PERF_SAMPLE_BRANCH_HV) 357 358 enum event_type_t { 359 EVENT_FLEXIBLE = 0x1, 360 EVENT_PINNED = 0x2, 361 EVENT_TIME = 0x4, 362 /* see ctx_resched() for details */ 363 EVENT_CPU = 0x8, 364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 365 }; 366 367 /* 368 * perf_sched_events : >0 events exist 369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 370 */ 371 372 static void perf_sched_delayed(struct work_struct *work); 373 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 375 static DEFINE_MUTEX(perf_sched_mutex); 376 static atomic_t perf_sched_count; 377 378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 379 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 381 382 static atomic_t nr_mmap_events __read_mostly; 383 static atomic_t nr_comm_events __read_mostly; 384 static atomic_t nr_namespaces_events __read_mostly; 385 static atomic_t nr_task_events __read_mostly; 386 static atomic_t nr_freq_events __read_mostly; 387 static atomic_t nr_switch_events __read_mostly; 388 389 static LIST_HEAD(pmus); 390 static DEFINE_MUTEX(pmus_lock); 391 static struct srcu_struct pmus_srcu; 392 static cpumask_var_t perf_online_mask; 393 394 /* 395 * perf event paranoia level: 396 * -1 - not paranoid at all 397 * 0 - disallow raw tracepoint access for unpriv 398 * 1 - disallow cpu events for unpriv 399 * 2 - disallow kernel profiling for unpriv 400 */ 401 int sysctl_perf_event_paranoid __read_mostly = 2; 402 403 /* Minimum for 512 kiB + 1 user control page */ 404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 405 406 /* 407 * max perf event sample rate 408 */ 409 #define DEFAULT_MAX_SAMPLE_RATE 100000 410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 412 413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 414 415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 417 418 static int perf_sample_allowed_ns __read_mostly = 419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 420 421 static void update_perf_cpu_limits(void) 422 { 423 u64 tmp = perf_sample_period_ns; 424 425 tmp *= sysctl_perf_cpu_time_max_percent; 426 tmp = div_u64(tmp, 100); 427 if (!tmp) 428 tmp = 1; 429 430 WRITE_ONCE(perf_sample_allowed_ns, tmp); 431 } 432 433 static int perf_rotate_context(struct perf_cpu_context *cpuctx); 434 435 int perf_proc_update_handler(struct ctl_table *table, int write, 436 void __user *buffer, size_t *lenp, 437 loff_t *ppos) 438 { 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 440 441 if (ret || !write) 442 return ret; 443 444 /* 445 * If throttling is disabled don't allow the write: 446 */ 447 if (sysctl_perf_cpu_time_max_percent == 100 || 448 sysctl_perf_cpu_time_max_percent == 0) 449 return -EINVAL; 450 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 453 update_perf_cpu_limits(); 454 455 return 0; 456 } 457 458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 459 460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 461 void __user *buffer, size_t *lenp, 462 loff_t *ppos) 463 { 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 465 466 if (ret || !write) 467 return ret; 468 469 if (sysctl_perf_cpu_time_max_percent == 100 || 470 sysctl_perf_cpu_time_max_percent == 0) { 471 printk(KERN_WARNING 472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 473 WRITE_ONCE(perf_sample_allowed_ns, 0); 474 } else { 475 update_perf_cpu_limits(); 476 } 477 478 return 0; 479 } 480 481 /* 482 * perf samples are done in some very critical code paths (NMIs). 483 * If they take too much CPU time, the system can lock up and not 484 * get any real work done. This will drop the sample rate when 485 * we detect that events are taking too long. 486 */ 487 #define NR_ACCUMULATED_SAMPLES 128 488 static DEFINE_PER_CPU(u64, running_sample_length); 489 490 static u64 __report_avg; 491 static u64 __report_allowed; 492 493 static void perf_duration_warn(struct irq_work *w) 494 { 495 printk_ratelimited(KERN_INFO 496 "perf: interrupt took too long (%lld > %lld), lowering " 497 "kernel.perf_event_max_sample_rate to %d\n", 498 __report_avg, __report_allowed, 499 sysctl_perf_event_sample_rate); 500 } 501 502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 503 504 void perf_sample_event_took(u64 sample_len_ns) 505 { 506 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 507 u64 running_len; 508 u64 avg_len; 509 u32 max; 510 511 if (max_len == 0) 512 return; 513 514 /* Decay the counter by 1 average sample. */ 515 running_len = __this_cpu_read(running_sample_length); 516 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 517 running_len += sample_len_ns; 518 __this_cpu_write(running_sample_length, running_len); 519 520 /* 521 * Note: this will be biased artifically low until we have 522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 523 * from having to maintain a count. 524 */ 525 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 526 if (avg_len <= max_len) 527 return; 528 529 __report_avg = avg_len; 530 __report_allowed = max_len; 531 532 /* 533 * Compute a throttle threshold 25% below the current duration. 534 */ 535 avg_len += avg_len / 4; 536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 537 if (avg_len < max) 538 max /= (u32)avg_len; 539 else 540 max = 1; 541 542 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 543 WRITE_ONCE(max_samples_per_tick, max); 544 545 sysctl_perf_event_sample_rate = max * HZ; 546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 547 548 if (!irq_work_queue(&perf_duration_work)) { 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 550 "kernel.perf_event_max_sample_rate to %d\n", 551 __report_avg, __report_allowed, 552 sysctl_perf_event_sample_rate); 553 } 554 } 555 556 static atomic64_t perf_event_id; 557 558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 559 enum event_type_t event_type); 560 561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 562 enum event_type_t event_type, 563 struct task_struct *task); 564 565 static void update_context_time(struct perf_event_context *ctx); 566 static u64 perf_event_time(struct perf_event *event); 567 568 void __weak perf_event_print_debug(void) { } 569 570 extern __weak const char *perf_pmu_name(void) 571 { 572 return "pmu"; 573 } 574 575 static inline u64 perf_clock(void) 576 { 577 return local_clock(); 578 } 579 580 static inline u64 perf_event_clock(struct perf_event *event) 581 { 582 return event->clock(); 583 } 584 585 /* 586 * State based event timekeeping... 587 * 588 * The basic idea is to use event->state to determine which (if any) time 589 * fields to increment with the current delta. This means we only need to 590 * update timestamps when we change state or when they are explicitly requested 591 * (read). 592 * 593 * Event groups make things a little more complicated, but not terribly so. The 594 * rules for a group are that if the group leader is OFF the entire group is 595 * OFF, irrespecive of what the group member states are. This results in 596 * __perf_effective_state(). 597 * 598 * A futher ramification is that when a group leader flips between OFF and 599 * !OFF, we need to update all group member times. 600 * 601 * 602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 603 * need to make sure the relevant context time is updated before we try and 604 * update our timestamps. 605 */ 606 607 static __always_inline enum perf_event_state 608 __perf_effective_state(struct perf_event *event) 609 { 610 struct perf_event *leader = event->group_leader; 611 612 if (leader->state <= PERF_EVENT_STATE_OFF) 613 return leader->state; 614 615 return event->state; 616 } 617 618 static __always_inline void 619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 620 { 621 enum perf_event_state state = __perf_effective_state(event); 622 u64 delta = now - event->tstamp; 623 624 *enabled = event->total_time_enabled; 625 if (state >= PERF_EVENT_STATE_INACTIVE) 626 *enabled += delta; 627 628 *running = event->total_time_running; 629 if (state >= PERF_EVENT_STATE_ACTIVE) 630 *running += delta; 631 } 632 633 static void perf_event_update_time(struct perf_event *event) 634 { 635 u64 now = perf_event_time(event); 636 637 __perf_update_times(event, now, &event->total_time_enabled, 638 &event->total_time_running); 639 event->tstamp = now; 640 } 641 642 static void perf_event_update_sibling_time(struct perf_event *leader) 643 { 644 struct perf_event *sibling; 645 646 list_for_each_entry(sibling, &leader->sibling_list, group_entry) 647 perf_event_update_time(sibling); 648 } 649 650 static void 651 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 652 { 653 if (event->state == state) 654 return; 655 656 perf_event_update_time(event); 657 /* 658 * If a group leader gets enabled/disabled all its siblings 659 * are affected too. 660 */ 661 if ((event->state < 0) ^ (state < 0)) 662 perf_event_update_sibling_time(event); 663 664 WRITE_ONCE(event->state, state); 665 } 666 667 #ifdef CONFIG_CGROUP_PERF 668 669 static inline bool 670 perf_cgroup_match(struct perf_event *event) 671 { 672 struct perf_event_context *ctx = event->ctx; 673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 674 675 /* @event doesn't care about cgroup */ 676 if (!event->cgrp) 677 return true; 678 679 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 680 if (!cpuctx->cgrp) 681 return false; 682 683 /* 684 * Cgroup scoping is recursive. An event enabled for a cgroup is 685 * also enabled for all its descendant cgroups. If @cpuctx's 686 * cgroup is a descendant of @event's (the test covers identity 687 * case), it's a match. 688 */ 689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 690 event->cgrp->css.cgroup); 691 } 692 693 static inline void perf_detach_cgroup(struct perf_event *event) 694 { 695 css_put(&event->cgrp->css); 696 event->cgrp = NULL; 697 } 698 699 static inline int is_cgroup_event(struct perf_event *event) 700 { 701 return event->cgrp != NULL; 702 } 703 704 static inline u64 perf_cgroup_event_time(struct perf_event *event) 705 { 706 struct perf_cgroup_info *t; 707 708 t = per_cpu_ptr(event->cgrp->info, event->cpu); 709 return t->time; 710 } 711 712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 713 { 714 struct perf_cgroup_info *info; 715 u64 now; 716 717 now = perf_clock(); 718 719 info = this_cpu_ptr(cgrp->info); 720 721 info->time += now - info->timestamp; 722 info->timestamp = now; 723 } 724 725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 726 { 727 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 728 if (cgrp_out) 729 __update_cgrp_time(cgrp_out); 730 } 731 732 static inline void update_cgrp_time_from_event(struct perf_event *event) 733 { 734 struct perf_cgroup *cgrp; 735 736 /* 737 * ensure we access cgroup data only when needed and 738 * when we know the cgroup is pinned (css_get) 739 */ 740 if (!is_cgroup_event(event)) 741 return; 742 743 cgrp = perf_cgroup_from_task(current, event->ctx); 744 /* 745 * Do not update time when cgroup is not active 746 */ 747 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 748 __update_cgrp_time(event->cgrp); 749 } 750 751 static inline void 752 perf_cgroup_set_timestamp(struct task_struct *task, 753 struct perf_event_context *ctx) 754 { 755 struct perf_cgroup *cgrp; 756 struct perf_cgroup_info *info; 757 758 /* 759 * ctx->lock held by caller 760 * ensure we do not access cgroup data 761 * unless we have the cgroup pinned (css_get) 762 */ 763 if (!task || !ctx->nr_cgroups) 764 return; 765 766 cgrp = perf_cgroup_from_task(task, ctx); 767 info = this_cpu_ptr(cgrp->info); 768 info->timestamp = ctx->timestamp; 769 } 770 771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 772 773 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 774 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 775 776 /* 777 * reschedule events based on the cgroup constraint of task. 778 * 779 * mode SWOUT : schedule out everything 780 * mode SWIN : schedule in based on cgroup for next 781 */ 782 static void perf_cgroup_switch(struct task_struct *task, int mode) 783 { 784 struct perf_cpu_context *cpuctx; 785 struct list_head *list; 786 unsigned long flags; 787 788 /* 789 * Disable interrupts and preemption to avoid this CPU's 790 * cgrp_cpuctx_entry to change under us. 791 */ 792 local_irq_save(flags); 793 794 list = this_cpu_ptr(&cgrp_cpuctx_list); 795 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 796 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 797 798 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 799 perf_pmu_disable(cpuctx->ctx.pmu); 800 801 if (mode & PERF_CGROUP_SWOUT) { 802 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 803 /* 804 * must not be done before ctxswout due 805 * to event_filter_match() in event_sched_out() 806 */ 807 cpuctx->cgrp = NULL; 808 } 809 810 if (mode & PERF_CGROUP_SWIN) { 811 WARN_ON_ONCE(cpuctx->cgrp); 812 /* 813 * set cgrp before ctxsw in to allow 814 * event_filter_match() to not have to pass 815 * task around 816 * we pass the cpuctx->ctx to perf_cgroup_from_task() 817 * because cgorup events are only per-cpu 818 */ 819 cpuctx->cgrp = perf_cgroup_from_task(task, 820 &cpuctx->ctx); 821 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 822 } 823 perf_pmu_enable(cpuctx->ctx.pmu); 824 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 825 } 826 827 local_irq_restore(flags); 828 } 829 830 static inline void perf_cgroup_sched_out(struct task_struct *task, 831 struct task_struct *next) 832 { 833 struct perf_cgroup *cgrp1; 834 struct perf_cgroup *cgrp2 = NULL; 835 836 rcu_read_lock(); 837 /* 838 * we come here when we know perf_cgroup_events > 0 839 * we do not need to pass the ctx here because we know 840 * we are holding the rcu lock 841 */ 842 cgrp1 = perf_cgroup_from_task(task, NULL); 843 cgrp2 = perf_cgroup_from_task(next, NULL); 844 845 /* 846 * only schedule out current cgroup events if we know 847 * that we are switching to a different cgroup. Otherwise, 848 * do no touch the cgroup events. 849 */ 850 if (cgrp1 != cgrp2) 851 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 852 853 rcu_read_unlock(); 854 } 855 856 static inline void perf_cgroup_sched_in(struct task_struct *prev, 857 struct task_struct *task) 858 { 859 struct perf_cgroup *cgrp1; 860 struct perf_cgroup *cgrp2 = NULL; 861 862 rcu_read_lock(); 863 /* 864 * we come here when we know perf_cgroup_events > 0 865 * we do not need to pass the ctx here because we know 866 * we are holding the rcu lock 867 */ 868 cgrp1 = perf_cgroup_from_task(task, NULL); 869 cgrp2 = perf_cgroup_from_task(prev, NULL); 870 871 /* 872 * only need to schedule in cgroup events if we are changing 873 * cgroup during ctxsw. Cgroup events were not scheduled 874 * out of ctxsw out if that was not the case. 875 */ 876 if (cgrp1 != cgrp2) 877 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 878 879 rcu_read_unlock(); 880 } 881 882 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 883 struct perf_event_attr *attr, 884 struct perf_event *group_leader) 885 { 886 struct perf_cgroup *cgrp; 887 struct cgroup_subsys_state *css; 888 struct fd f = fdget(fd); 889 int ret = 0; 890 891 if (!f.file) 892 return -EBADF; 893 894 css = css_tryget_online_from_dir(f.file->f_path.dentry, 895 &perf_event_cgrp_subsys); 896 if (IS_ERR(css)) { 897 ret = PTR_ERR(css); 898 goto out; 899 } 900 901 cgrp = container_of(css, struct perf_cgroup, css); 902 event->cgrp = cgrp; 903 904 /* 905 * all events in a group must monitor 906 * the same cgroup because a task belongs 907 * to only one perf cgroup at a time 908 */ 909 if (group_leader && group_leader->cgrp != cgrp) { 910 perf_detach_cgroup(event); 911 ret = -EINVAL; 912 } 913 out: 914 fdput(f); 915 return ret; 916 } 917 918 static inline void 919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 920 { 921 struct perf_cgroup_info *t; 922 t = per_cpu_ptr(event->cgrp->info, event->cpu); 923 event->shadow_ctx_time = now - t->timestamp; 924 } 925 926 /* 927 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 928 * cleared when last cgroup event is removed. 929 */ 930 static inline void 931 list_update_cgroup_event(struct perf_event *event, 932 struct perf_event_context *ctx, bool add) 933 { 934 struct perf_cpu_context *cpuctx; 935 struct list_head *cpuctx_entry; 936 937 if (!is_cgroup_event(event)) 938 return; 939 940 if (add && ctx->nr_cgroups++) 941 return; 942 else if (!add && --ctx->nr_cgroups) 943 return; 944 /* 945 * Because cgroup events are always per-cpu events, 946 * this will always be called from the right CPU. 947 */ 948 cpuctx = __get_cpu_context(ctx); 949 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 950 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/ 951 if (add) { 952 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 953 954 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 955 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 956 cpuctx->cgrp = cgrp; 957 } else { 958 list_del(cpuctx_entry); 959 cpuctx->cgrp = NULL; 960 } 961 } 962 963 #else /* !CONFIG_CGROUP_PERF */ 964 965 static inline bool 966 perf_cgroup_match(struct perf_event *event) 967 { 968 return true; 969 } 970 971 static inline void perf_detach_cgroup(struct perf_event *event) 972 {} 973 974 static inline int is_cgroup_event(struct perf_event *event) 975 { 976 return 0; 977 } 978 979 static inline void update_cgrp_time_from_event(struct perf_event *event) 980 { 981 } 982 983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 984 { 985 } 986 987 static inline void perf_cgroup_sched_out(struct task_struct *task, 988 struct task_struct *next) 989 { 990 } 991 992 static inline void perf_cgroup_sched_in(struct task_struct *prev, 993 struct task_struct *task) 994 { 995 } 996 997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 998 struct perf_event_attr *attr, 999 struct perf_event *group_leader) 1000 { 1001 return -EINVAL; 1002 } 1003 1004 static inline void 1005 perf_cgroup_set_timestamp(struct task_struct *task, 1006 struct perf_event_context *ctx) 1007 { 1008 } 1009 1010 void 1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1012 { 1013 } 1014 1015 static inline void 1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1017 { 1018 } 1019 1020 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1021 { 1022 return 0; 1023 } 1024 1025 static inline void 1026 list_update_cgroup_event(struct perf_event *event, 1027 struct perf_event_context *ctx, bool add) 1028 { 1029 } 1030 1031 #endif 1032 1033 /* 1034 * set default to be dependent on timer tick just 1035 * like original code 1036 */ 1037 #define PERF_CPU_HRTIMER (1000 / HZ) 1038 /* 1039 * function must be called with interrupts disabled 1040 */ 1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1042 { 1043 struct perf_cpu_context *cpuctx; 1044 int rotations = 0; 1045 1046 lockdep_assert_irqs_disabled(); 1047 1048 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1049 rotations = perf_rotate_context(cpuctx); 1050 1051 raw_spin_lock(&cpuctx->hrtimer_lock); 1052 if (rotations) 1053 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1054 else 1055 cpuctx->hrtimer_active = 0; 1056 raw_spin_unlock(&cpuctx->hrtimer_lock); 1057 1058 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1059 } 1060 1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1062 { 1063 struct hrtimer *timer = &cpuctx->hrtimer; 1064 struct pmu *pmu = cpuctx->ctx.pmu; 1065 u64 interval; 1066 1067 /* no multiplexing needed for SW PMU */ 1068 if (pmu->task_ctx_nr == perf_sw_context) 1069 return; 1070 1071 /* 1072 * check default is sane, if not set then force to 1073 * default interval (1/tick) 1074 */ 1075 interval = pmu->hrtimer_interval_ms; 1076 if (interval < 1) 1077 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1078 1079 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1080 1081 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1082 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1083 timer->function = perf_mux_hrtimer_handler; 1084 } 1085 1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1087 { 1088 struct hrtimer *timer = &cpuctx->hrtimer; 1089 struct pmu *pmu = cpuctx->ctx.pmu; 1090 unsigned long flags; 1091 1092 /* not for SW PMU */ 1093 if (pmu->task_ctx_nr == perf_sw_context) 1094 return 0; 1095 1096 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1097 if (!cpuctx->hrtimer_active) { 1098 cpuctx->hrtimer_active = 1; 1099 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1100 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1101 } 1102 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1103 1104 return 0; 1105 } 1106 1107 void perf_pmu_disable(struct pmu *pmu) 1108 { 1109 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1110 if (!(*count)++) 1111 pmu->pmu_disable(pmu); 1112 } 1113 1114 void perf_pmu_enable(struct pmu *pmu) 1115 { 1116 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1117 if (!--(*count)) 1118 pmu->pmu_enable(pmu); 1119 } 1120 1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1122 1123 /* 1124 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1125 * perf_event_task_tick() are fully serialized because they're strictly cpu 1126 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1127 * disabled, while perf_event_task_tick is called from IRQ context. 1128 */ 1129 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1130 { 1131 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1132 1133 lockdep_assert_irqs_disabled(); 1134 1135 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1136 1137 list_add(&ctx->active_ctx_list, head); 1138 } 1139 1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1141 { 1142 lockdep_assert_irqs_disabled(); 1143 1144 WARN_ON(list_empty(&ctx->active_ctx_list)); 1145 1146 list_del_init(&ctx->active_ctx_list); 1147 } 1148 1149 static void get_ctx(struct perf_event_context *ctx) 1150 { 1151 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 1152 } 1153 1154 static void free_ctx(struct rcu_head *head) 1155 { 1156 struct perf_event_context *ctx; 1157 1158 ctx = container_of(head, struct perf_event_context, rcu_head); 1159 kfree(ctx->task_ctx_data); 1160 kfree(ctx); 1161 } 1162 1163 static void put_ctx(struct perf_event_context *ctx) 1164 { 1165 if (atomic_dec_and_test(&ctx->refcount)) { 1166 if (ctx->parent_ctx) 1167 put_ctx(ctx->parent_ctx); 1168 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1169 put_task_struct(ctx->task); 1170 call_rcu(&ctx->rcu_head, free_ctx); 1171 } 1172 } 1173 1174 /* 1175 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1176 * perf_pmu_migrate_context() we need some magic. 1177 * 1178 * Those places that change perf_event::ctx will hold both 1179 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1180 * 1181 * Lock ordering is by mutex address. There are two other sites where 1182 * perf_event_context::mutex nests and those are: 1183 * 1184 * - perf_event_exit_task_context() [ child , 0 ] 1185 * perf_event_exit_event() 1186 * put_event() [ parent, 1 ] 1187 * 1188 * - perf_event_init_context() [ parent, 0 ] 1189 * inherit_task_group() 1190 * inherit_group() 1191 * inherit_event() 1192 * perf_event_alloc() 1193 * perf_init_event() 1194 * perf_try_init_event() [ child , 1 ] 1195 * 1196 * While it appears there is an obvious deadlock here -- the parent and child 1197 * nesting levels are inverted between the two. This is in fact safe because 1198 * life-time rules separate them. That is an exiting task cannot fork, and a 1199 * spawning task cannot (yet) exit. 1200 * 1201 * But remember that that these are parent<->child context relations, and 1202 * migration does not affect children, therefore these two orderings should not 1203 * interact. 1204 * 1205 * The change in perf_event::ctx does not affect children (as claimed above) 1206 * because the sys_perf_event_open() case will install a new event and break 1207 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1208 * concerned with cpuctx and that doesn't have children. 1209 * 1210 * The places that change perf_event::ctx will issue: 1211 * 1212 * perf_remove_from_context(); 1213 * synchronize_rcu(); 1214 * perf_install_in_context(); 1215 * 1216 * to affect the change. The remove_from_context() + synchronize_rcu() should 1217 * quiesce the event, after which we can install it in the new location. This 1218 * means that only external vectors (perf_fops, prctl) can perturb the event 1219 * while in transit. Therefore all such accessors should also acquire 1220 * perf_event_context::mutex to serialize against this. 1221 * 1222 * However; because event->ctx can change while we're waiting to acquire 1223 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1224 * function. 1225 * 1226 * Lock order: 1227 * cred_guard_mutex 1228 * task_struct::perf_event_mutex 1229 * perf_event_context::mutex 1230 * perf_event::child_mutex; 1231 * perf_event_context::lock 1232 * perf_event::mmap_mutex 1233 * mmap_sem 1234 * 1235 * cpu_hotplug_lock 1236 * pmus_lock 1237 * cpuctx->mutex / perf_event_context::mutex 1238 */ 1239 static struct perf_event_context * 1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1241 { 1242 struct perf_event_context *ctx; 1243 1244 again: 1245 rcu_read_lock(); 1246 ctx = READ_ONCE(event->ctx); 1247 if (!atomic_inc_not_zero(&ctx->refcount)) { 1248 rcu_read_unlock(); 1249 goto again; 1250 } 1251 rcu_read_unlock(); 1252 1253 mutex_lock_nested(&ctx->mutex, nesting); 1254 if (event->ctx != ctx) { 1255 mutex_unlock(&ctx->mutex); 1256 put_ctx(ctx); 1257 goto again; 1258 } 1259 1260 return ctx; 1261 } 1262 1263 static inline struct perf_event_context * 1264 perf_event_ctx_lock(struct perf_event *event) 1265 { 1266 return perf_event_ctx_lock_nested(event, 0); 1267 } 1268 1269 static void perf_event_ctx_unlock(struct perf_event *event, 1270 struct perf_event_context *ctx) 1271 { 1272 mutex_unlock(&ctx->mutex); 1273 put_ctx(ctx); 1274 } 1275 1276 /* 1277 * This must be done under the ctx->lock, such as to serialize against 1278 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1279 * calling scheduler related locks and ctx->lock nests inside those. 1280 */ 1281 static __must_check struct perf_event_context * 1282 unclone_ctx(struct perf_event_context *ctx) 1283 { 1284 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1285 1286 lockdep_assert_held(&ctx->lock); 1287 1288 if (parent_ctx) 1289 ctx->parent_ctx = NULL; 1290 ctx->generation++; 1291 1292 return parent_ctx; 1293 } 1294 1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1296 enum pid_type type) 1297 { 1298 u32 nr; 1299 /* 1300 * only top level events have the pid namespace they were created in 1301 */ 1302 if (event->parent) 1303 event = event->parent; 1304 1305 nr = __task_pid_nr_ns(p, type, event->ns); 1306 /* avoid -1 if it is idle thread or runs in another ns */ 1307 if (!nr && !pid_alive(p)) 1308 nr = -1; 1309 return nr; 1310 } 1311 1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1313 { 1314 return perf_event_pid_type(event, p, __PIDTYPE_TGID); 1315 } 1316 1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1318 { 1319 return perf_event_pid_type(event, p, PIDTYPE_PID); 1320 } 1321 1322 /* 1323 * If we inherit events we want to return the parent event id 1324 * to userspace. 1325 */ 1326 static u64 primary_event_id(struct perf_event *event) 1327 { 1328 u64 id = event->id; 1329 1330 if (event->parent) 1331 id = event->parent->id; 1332 1333 return id; 1334 } 1335 1336 /* 1337 * Get the perf_event_context for a task and lock it. 1338 * 1339 * This has to cope with with the fact that until it is locked, 1340 * the context could get moved to another task. 1341 */ 1342 static struct perf_event_context * 1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1344 { 1345 struct perf_event_context *ctx; 1346 1347 retry: 1348 /* 1349 * One of the few rules of preemptible RCU is that one cannot do 1350 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1351 * part of the read side critical section was irqs-enabled -- see 1352 * rcu_read_unlock_special(). 1353 * 1354 * Since ctx->lock nests under rq->lock we must ensure the entire read 1355 * side critical section has interrupts disabled. 1356 */ 1357 local_irq_save(*flags); 1358 rcu_read_lock(); 1359 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1360 if (ctx) { 1361 /* 1362 * If this context is a clone of another, it might 1363 * get swapped for another underneath us by 1364 * perf_event_task_sched_out, though the 1365 * rcu_read_lock() protects us from any context 1366 * getting freed. Lock the context and check if it 1367 * got swapped before we could get the lock, and retry 1368 * if so. If we locked the right context, then it 1369 * can't get swapped on us any more. 1370 */ 1371 raw_spin_lock(&ctx->lock); 1372 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1373 raw_spin_unlock(&ctx->lock); 1374 rcu_read_unlock(); 1375 local_irq_restore(*flags); 1376 goto retry; 1377 } 1378 1379 if (ctx->task == TASK_TOMBSTONE || 1380 !atomic_inc_not_zero(&ctx->refcount)) { 1381 raw_spin_unlock(&ctx->lock); 1382 ctx = NULL; 1383 } else { 1384 WARN_ON_ONCE(ctx->task != task); 1385 } 1386 } 1387 rcu_read_unlock(); 1388 if (!ctx) 1389 local_irq_restore(*flags); 1390 return ctx; 1391 } 1392 1393 /* 1394 * Get the context for a task and increment its pin_count so it 1395 * can't get swapped to another task. This also increments its 1396 * reference count so that the context can't get freed. 1397 */ 1398 static struct perf_event_context * 1399 perf_pin_task_context(struct task_struct *task, int ctxn) 1400 { 1401 struct perf_event_context *ctx; 1402 unsigned long flags; 1403 1404 ctx = perf_lock_task_context(task, ctxn, &flags); 1405 if (ctx) { 1406 ++ctx->pin_count; 1407 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1408 } 1409 return ctx; 1410 } 1411 1412 static void perf_unpin_context(struct perf_event_context *ctx) 1413 { 1414 unsigned long flags; 1415 1416 raw_spin_lock_irqsave(&ctx->lock, flags); 1417 --ctx->pin_count; 1418 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1419 } 1420 1421 /* 1422 * Update the record of the current time in a context. 1423 */ 1424 static void update_context_time(struct perf_event_context *ctx) 1425 { 1426 u64 now = perf_clock(); 1427 1428 ctx->time += now - ctx->timestamp; 1429 ctx->timestamp = now; 1430 } 1431 1432 static u64 perf_event_time(struct perf_event *event) 1433 { 1434 struct perf_event_context *ctx = event->ctx; 1435 1436 if (is_cgroup_event(event)) 1437 return perf_cgroup_event_time(event); 1438 1439 return ctx ? ctx->time : 0; 1440 } 1441 1442 static enum event_type_t get_event_type(struct perf_event *event) 1443 { 1444 struct perf_event_context *ctx = event->ctx; 1445 enum event_type_t event_type; 1446 1447 lockdep_assert_held(&ctx->lock); 1448 1449 /* 1450 * It's 'group type', really, because if our group leader is 1451 * pinned, so are we. 1452 */ 1453 if (event->group_leader != event) 1454 event = event->group_leader; 1455 1456 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1457 if (!ctx->task) 1458 event_type |= EVENT_CPU; 1459 1460 return event_type; 1461 } 1462 1463 static struct list_head * 1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 1465 { 1466 if (event->attr.pinned) 1467 return &ctx->pinned_groups; 1468 else 1469 return &ctx->flexible_groups; 1470 } 1471 1472 /* 1473 * Add a event from the lists for its context. 1474 * Must be called with ctx->mutex and ctx->lock held. 1475 */ 1476 static void 1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1478 { 1479 lockdep_assert_held(&ctx->lock); 1480 1481 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1482 event->attach_state |= PERF_ATTACH_CONTEXT; 1483 1484 event->tstamp = perf_event_time(event); 1485 1486 /* 1487 * If we're a stand alone event or group leader, we go to the context 1488 * list, group events are kept attached to the group so that 1489 * perf_group_detach can, at all times, locate all siblings. 1490 */ 1491 if (event->group_leader == event) { 1492 struct list_head *list; 1493 1494 event->group_caps = event->event_caps; 1495 1496 list = ctx_group_list(event, ctx); 1497 list_add_tail(&event->group_entry, list); 1498 } 1499 1500 list_update_cgroup_event(event, ctx, true); 1501 1502 list_add_rcu(&event->event_entry, &ctx->event_list); 1503 ctx->nr_events++; 1504 if (event->attr.inherit_stat) 1505 ctx->nr_stat++; 1506 1507 ctx->generation++; 1508 } 1509 1510 /* 1511 * Initialize event state based on the perf_event_attr::disabled. 1512 */ 1513 static inline void perf_event__state_init(struct perf_event *event) 1514 { 1515 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1516 PERF_EVENT_STATE_INACTIVE; 1517 } 1518 1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1520 { 1521 int entry = sizeof(u64); /* value */ 1522 int size = 0; 1523 int nr = 1; 1524 1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1526 size += sizeof(u64); 1527 1528 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1529 size += sizeof(u64); 1530 1531 if (event->attr.read_format & PERF_FORMAT_ID) 1532 entry += sizeof(u64); 1533 1534 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1535 nr += nr_siblings; 1536 size += sizeof(u64); 1537 } 1538 1539 size += entry * nr; 1540 event->read_size = size; 1541 } 1542 1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1544 { 1545 struct perf_sample_data *data; 1546 u16 size = 0; 1547 1548 if (sample_type & PERF_SAMPLE_IP) 1549 size += sizeof(data->ip); 1550 1551 if (sample_type & PERF_SAMPLE_ADDR) 1552 size += sizeof(data->addr); 1553 1554 if (sample_type & PERF_SAMPLE_PERIOD) 1555 size += sizeof(data->period); 1556 1557 if (sample_type & PERF_SAMPLE_WEIGHT) 1558 size += sizeof(data->weight); 1559 1560 if (sample_type & PERF_SAMPLE_READ) 1561 size += event->read_size; 1562 1563 if (sample_type & PERF_SAMPLE_DATA_SRC) 1564 size += sizeof(data->data_src.val); 1565 1566 if (sample_type & PERF_SAMPLE_TRANSACTION) 1567 size += sizeof(data->txn); 1568 1569 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1570 size += sizeof(data->phys_addr); 1571 1572 event->header_size = size; 1573 } 1574 1575 /* 1576 * Called at perf_event creation and when events are attached/detached from a 1577 * group. 1578 */ 1579 static void perf_event__header_size(struct perf_event *event) 1580 { 1581 __perf_event_read_size(event, 1582 event->group_leader->nr_siblings); 1583 __perf_event_header_size(event, event->attr.sample_type); 1584 } 1585 1586 static void perf_event__id_header_size(struct perf_event *event) 1587 { 1588 struct perf_sample_data *data; 1589 u64 sample_type = event->attr.sample_type; 1590 u16 size = 0; 1591 1592 if (sample_type & PERF_SAMPLE_TID) 1593 size += sizeof(data->tid_entry); 1594 1595 if (sample_type & PERF_SAMPLE_TIME) 1596 size += sizeof(data->time); 1597 1598 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1599 size += sizeof(data->id); 1600 1601 if (sample_type & PERF_SAMPLE_ID) 1602 size += sizeof(data->id); 1603 1604 if (sample_type & PERF_SAMPLE_STREAM_ID) 1605 size += sizeof(data->stream_id); 1606 1607 if (sample_type & PERF_SAMPLE_CPU) 1608 size += sizeof(data->cpu_entry); 1609 1610 event->id_header_size = size; 1611 } 1612 1613 static bool perf_event_validate_size(struct perf_event *event) 1614 { 1615 /* 1616 * The values computed here will be over-written when we actually 1617 * attach the event. 1618 */ 1619 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1620 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1621 perf_event__id_header_size(event); 1622 1623 /* 1624 * Sum the lot; should not exceed the 64k limit we have on records. 1625 * Conservative limit to allow for callchains and other variable fields. 1626 */ 1627 if (event->read_size + event->header_size + 1628 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1629 return false; 1630 1631 return true; 1632 } 1633 1634 static void perf_group_attach(struct perf_event *event) 1635 { 1636 struct perf_event *group_leader = event->group_leader, *pos; 1637 1638 lockdep_assert_held(&event->ctx->lock); 1639 1640 /* 1641 * We can have double attach due to group movement in perf_event_open. 1642 */ 1643 if (event->attach_state & PERF_ATTACH_GROUP) 1644 return; 1645 1646 event->attach_state |= PERF_ATTACH_GROUP; 1647 1648 if (group_leader == event) 1649 return; 1650 1651 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1652 1653 group_leader->group_caps &= event->event_caps; 1654 1655 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1656 group_leader->nr_siblings++; 1657 1658 perf_event__header_size(group_leader); 1659 1660 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1661 perf_event__header_size(pos); 1662 } 1663 1664 /* 1665 * Remove a event from the lists for its context. 1666 * Must be called with ctx->mutex and ctx->lock held. 1667 */ 1668 static void 1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1670 { 1671 WARN_ON_ONCE(event->ctx != ctx); 1672 lockdep_assert_held(&ctx->lock); 1673 1674 /* 1675 * We can have double detach due to exit/hot-unplug + close. 1676 */ 1677 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1678 return; 1679 1680 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1681 1682 list_update_cgroup_event(event, ctx, false); 1683 1684 ctx->nr_events--; 1685 if (event->attr.inherit_stat) 1686 ctx->nr_stat--; 1687 1688 list_del_rcu(&event->event_entry); 1689 1690 if (event->group_leader == event) 1691 list_del_init(&event->group_entry); 1692 1693 /* 1694 * If event was in error state, then keep it 1695 * that way, otherwise bogus counts will be 1696 * returned on read(). The only way to get out 1697 * of error state is by explicit re-enabling 1698 * of the event 1699 */ 1700 if (event->state > PERF_EVENT_STATE_OFF) 1701 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1702 1703 ctx->generation++; 1704 } 1705 1706 static void perf_group_detach(struct perf_event *event) 1707 { 1708 struct perf_event *sibling, *tmp; 1709 struct list_head *list = NULL; 1710 1711 lockdep_assert_held(&event->ctx->lock); 1712 1713 /* 1714 * We can have double detach due to exit/hot-unplug + close. 1715 */ 1716 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1717 return; 1718 1719 event->attach_state &= ~PERF_ATTACH_GROUP; 1720 1721 /* 1722 * If this is a sibling, remove it from its group. 1723 */ 1724 if (event->group_leader != event) { 1725 list_del_init(&event->group_entry); 1726 event->group_leader->nr_siblings--; 1727 goto out; 1728 } 1729 1730 if (!list_empty(&event->group_entry)) 1731 list = &event->group_entry; 1732 1733 /* 1734 * If this was a group event with sibling events then 1735 * upgrade the siblings to singleton events by adding them 1736 * to whatever list we are on. 1737 */ 1738 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1739 if (list) 1740 list_move_tail(&sibling->group_entry, list); 1741 sibling->group_leader = sibling; 1742 1743 /* Inherit group flags from the previous leader */ 1744 sibling->group_caps = event->group_caps; 1745 1746 WARN_ON_ONCE(sibling->ctx != event->ctx); 1747 } 1748 1749 out: 1750 perf_event__header_size(event->group_leader); 1751 1752 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1753 perf_event__header_size(tmp); 1754 } 1755 1756 static bool is_orphaned_event(struct perf_event *event) 1757 { 1758 return event->state == PERF_EVENT_STATE_DEAD; 1759 } 1760 1761 static inline int __pmu_filter_match(struct perf_event *event) 1762 { 1763 struct pmu *pmu = event->pmu; 1764 return pmu->filter_match ? pmu->filter_match(event) : 1; 1765 } 1766 1767 /* 1768 * Check whether we should attempt to schedule an event group based on 1769 * PMU-specific filtering. An event group can consist of HW and SW events, 1770 * potentially with a SW leader, so we must check all the filters, to 1771 * determine whether a group is schedulable: 1772 */ 1773 static inline int pmu_filter_match(struct perf_event *event) 1774 { 1775 struct perf_event *child; 1776 1777 if (!__pmu_filter_match(event)) 1778 return 0; 1779 1780 list_for_each_entry(child, &event->sibling_list, group_entry) { 1781 if (!__pmu_filter_match(child)) 1782 return 0; 1783 } 1784 1785 return 1; 1786 } 1787 1788 static inline int 1789 event_filter_match(struct perf_event *event) 1790 { 1791 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1792 perf_cgroup_match(event) && pmu_filter_match(event); 1793 } 1794 1795 static void 1796 event_sched_out(struct perf_event *event, 1797 struct perf_cpu_context *cpuctx, 1798 struct perf_event_context *ctx) 1799 { 1800 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1801 1802 WARN_ON_ONCE(event->ctx != ctx); 1803 lockdep_assert_held(&ctx->lock); 1804 1805 if (event->state != PERF_EVENT_STATE_ACTIVE) 1806 return; 1807 1808 perf_pmu_disable(event->pmu); 1809 1810 event->pmu->del(event, 0); 1811 event->oncpu = -1; 1812 1813 if (event->pending_disable) { 1814 event->pending_disable = 0; 1815 state = PERF_EVENT_STATE_OFF; 1816 } 1817 perf_event_set_state(event, state); 1818 1819 if (!is_software_event(event)) 1820 cpuctx->active_oncpu--; 1821 if (!--ctx->nr_active) 1822 perf_event_ctx_deactivate(ctx); 1823 if (event->attr.freq && event->attr.sample_freq) 1824 ctx->nr_freq--; 1825 if (event->attr.exclusive || !cpuctx->active_oncpu) 1826 cpuctx->exclusive = 0; 1827 1828 perf_pmu_enable(event->pmu); 1829 } 1830 1831 static void 1832 group_sched_out(struct perf_event *group_event, 1833 struct perf_cpu_context *cpuctx, 1834 struct perf_event_context *ctx) 1835 { 1836 struct perf_event *event; 1837 1838 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 1839 return; 1840 1841 perf_pmu_disable(ctx->pmu); 1842 1843 event_sched_out(group_event, cpuctx, ctx); 1844 1845 /* 1846 * Schedule out siblings (if any): 1847 */ 1848 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1849 event_sched_out(event, cpuctx, ctx); 1850 1851 perf_pmu_enable(ctx->pmu); 1852 1853 if (group_event->attr.exclusive) 1854 cpuctx->exclusive = 0; 1855 } 1856 1857 #define DETACH_GROUP 0x01UL 1858 1859 /* 1860 * Cross CPU call to remove a performance event 1861 * 1862 * We disable the event on the hardware level first. After that we 1863 * remove it from the context list. 1864 */ 1865 static void 1866 __perf_remove_from_context(struct perf_event *event, 1867 struct perf_cpu_context *cpuctx, 1868 struct perf_event_context *ctx, 1869 void *info) 1870 { 1871 unsigned long flags = (unsigned long)info; 1872 1873 if (ctx->is_active & EVENT_TIME) { 1874 update_context_time(ctx); 1875 update_cgrp_time_from_cpuctx(cpuctx); 1876 } 1877 1878 event_sched_out(event, cpuctx, ctx); 1879 if (flags & DETACH_GROUP) 1880 perf_group_detach(event); 1881 list_del_event(event, ctx); 1882 1883 if (!ctx->nr_events && ctx->is_active) { 1884 ctx->is_active = 0; 1885 if (ctx->task) { 1886 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 1887 cpuctx->task_ctx = NULL; 1888 } 1889 } 1890 } 1891 1892 /* 1893 * Remove the event from a task's (or a CPU's) list of events. 1894 * 1895 * If event->ctx is a cloned context, callers must make sure that 1896 * every task struct that event->ctx->task could possibly point to 1897 * remains valid. This is OK when called from perf_release since 1898 * that only calls us on the top-level context, which can't be a clone. 1899 * When called from perf_event_exit_task, it's OK because the 1900 * context has been detached from its task. 1901 */ 1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 1903 { 1904 struct perf_event_context *ctx = event->ctx; 1905 1906 lockdep_assert_held(&ctx->mutex); 1907 1908 event_function_call(event, __perf_remove_from_context, (void *)flags); 1909 1910 /* 1911 * The above event_function_call() can NO-OP when it hits 1912 * TASK_TOMBSTONE. In that case we must already have been detached 1913 * from the context (by perf_event_exit_event()) but the grouping 1914 * might still be in-tact. 1915 */ 1916 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1917 if ((flags & DETACH_GROUP) && 1918 (event->attach_state & PERF_ATTACH_GROUP)) { 1919 /* 1920 * Since in that case we cannot possibly be scheduled, simply 1921 * detach now. 1922 */ 1923 raw_spin_lock_irq(&ctx->lock); 1924 perf_group_detach(event); 1925 raw_spin_unlock_irq(&ctx->lock); 1926 } 1927 } 1928 1929 /* 1930 * Cross CPU call to disable a performance event 1931 */ 1932 static void __perf_event_disable(struct perf_event *event, 1933 struct perf_cpu_context *cpuctx, 1934 struct perf_event_context *ctx, 1935 void *info) 1936 { 1937 if (event->state < PERF_EVENT_STATE_INACTIVE) 1938 return; 1939 1940 if (ctx->is_active & EVENT_TIME) { 1941 update_context_time(ctx); 1942 update_cgrp_time_from_event(event); 1943 } 1944 1945 if (event == event->group_leader) 1946 group_sched_out(event, cpuctx, ctx); 1947 else 1948 event_sched_out(event, cpuctx, ctx); 1949 1950 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1951 } 1952 1953 /* 1954 * Disable a event. 1955 * 1956 * If event->ctx is a cloned context, callers must make sure that 1957 * every task struct that event->ctx->task could possibly point to 1958 * remains valid. This condition is satisifed when called through 1959 * perf_event_for_each_child or perf_event_for_each because they 1960 * hold the top-level event's child_mutex, so any descendant that 1961 * goes to exit will block in perf_event_exit_event(). 1962 * 1963 * When called from perf_pending_event it's OK because event->ctx 1964 * is the current context on this CPU and preemption is disabled, 1965 * hence we can't get into perf_event_task_sched_out for this context. 1966 */ 1967 static void _perf_event_disable(struct perf_event *event) 1968 { 1969 struct perf_event_context *ctx = event->ctx; 1970 1971 raw_spin_lock_irq(&ctx->lock); 1972 if (event->state <= PERF_EVENT_STATE_OFF) { 1973 raw_spin_unlock_irq(&ctx->lock); 1974 return; 1975 } 1976 raw_spin_unlock_irq(&ctx->lock); 1977 1978 event_function_call(event, __perf_event_disable, NULL); 1979 } 1980 1981 void perf_event_disable_local(struct perf_event *event) 1982 { 1983 event_function_local(event, __perf_event_disable, NULL); 1984 } 1985 1986 /* 1987 * Strictly speaking kernel users cannot create groups and therefore this 1988 * interface does not need the perf_event_ctx_lock() magic. 1989 */ 1990 void perf_event_disable(struct perf_event *event) 1991 { 1992 struct perf_event_context *ctx; 1993 1994 ctx = perf_event_ctx_lock(event); 1995 _perf_event_disable(event); 1996 perf_event_ctx_unlock(event, ctx); 1997 } 1998 EXPORT_SYMBOL_GPL(perf_event_disable); 1999 2000 void perf_event_disable_inatomic(struct perf_event *event) 2001 { 2002 event->pending_disable = 1; 2003 irq_work_queue(&event->pending); 2004 } 2005 2006 static void perf_set_shadow_time(struct perf_event *event, 2007 struct perf_event_context *ctx) 2008 { 2009 /* 2010 * use the correct time source for the time snapshot 2011 * 2012 * We could get by without this by leveraging the 2013 * fact that to get to this function, the caller 2014 * has most likely already called update_context_time() 2015 * and update_cgrp_time_xx() and thus both timestamp 2016 * are identical (or very close). Given that tstamp is, 2017 * already adjusted for cgroup, we could say that: 2018 * tstamp - ctx->timestamp 2019 * is equivalent to 2020 * tstamp - cgrp->timestamp. 2021 * 2022 * Then, in perf_output_read(), the calculation would 2023 * work with no changes because: 2024 * - event is guaranteed scheduled in 2025 * - no scheduled out in between 2026 * - thus the timestamp would be the same 2027 * 2028 * But this is a bit hairy. 2029 * 2030 * So instead, we have an explicit cgroup call to remain 2031 * within the time time source all along. We believe it 2032 * is cleaner and simpler to understand. 2033 */ 2034 if (is_cgroup_event(event)) 2035 perf_cgroup_set_shadow_time(event, event->tstamp); 2036 else 2037 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2038 } 2039 2040 #define MAX_INTERRUPTS (~0ULL) 2041 2042 static void perf_log_throttle(struct perf_event *event, int enable); 2043 static void perf_log_itrace_start(struct perf_event *event); 2044 2045 static int 2046 event_sched_in(struct perf_event *event, 2047 struct perf_cpu_context *cpuctx, 2048 struct perf_event_context *ctx) 2049 { 2050 int ret = 0; 2051 2052 lockdep_assert_held(&ctx->lock); 2053 2054 if (event->state <= PERF_EVENT_STATE_OFF) 2055 return 0; 2056 2057 WRITE_ONCE(event->oncpu, smp_processor_id()); 2058 /* 2059 * Order event::oncpu write to happen before the ACTIVE state is 2060 * visible. This allows perf_event_{stop,read}() to observe the correct 2061 * ->oncpu if it sees ACTIVE. 2062 */ 2063 smp_wmb(); 2064 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2065 2066 /* 2067 * Unthrottle events, since we scheduled we might have missed several 2068 * ticks already, also for a heavily scheduling task there is little 2069 * guarantee it'll get a tick in a timely manner. 2070 */ 2071 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2072 perf_log_throttle(event, 1); 2073 event->hw.interrupts = 0; 2074 } 2075 2076 perf_pmu_disable(event->pmu); 2077 2078 perf_set_shadow_time(event, ctx); 2079 2080 perf_log_itrace_start(event); 2081 2082 if (event->pmu->add(event, PERF_EF_START)) { 2083 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2084 event->oncpu = -1; 2085 ret = -EAGAIN; 2086 goto out; 2087 } 2088 2089 if (!is_software_event(event)) 2090 cpuctx->active_oncpu++; 2091 if (!ctx->nr_active++) 2092 perf_event_ctx_activate(ctx); 2093 if (event->attr.freq && event->attr.sample_freq) 2094 ctx->nr_freq++; 2095 2096 if (event->attr.exclusive) 2097 cpuctx->exclusive = 1; 2098 2099 out: 2100 perf_pmu_enable(event->pmu); 2101 2102 return ret; 2103 } 2104 2105 static int 2106 group_sched_in(struct perf_event *group_event, 2107 struct perf_cpu_context *cpuctx, 2108 struct perf_event_context *ctx) 2109 { 2110 struct perf_event *event, *partial_group = NULL; 2111 struct pmu *pmu = ctx->pmu; 2112 2113 if (group_event->state == PERF_EVENT_STATE_OFF) 2114 return 0; 2115 2116 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2117 2118 if (event_sched_in(group_event, cpuctx, ctx)) { 2119 pmu->cancel_txn(pmu); 2120 perf_mux_hrtimer_restart(cpuctx); 2121 return -EAGAIN; 2122 } 2123 2124 /* 2125 * Schedule in siblings as one group (if any): 2126 */ 2127 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2128 if (event_sched_in(event, cpuctx, ctx)) { 2129 partial_group = event; 2130 goto group_error; 2131 } 2132 } 2133 2134 if (!pmu->commit_txn(pmu)) 2135 return 0; 2136 2137 group_error: 2138 /* 2139 * Groups can be scheduled in as one unit only, so undo any 2140 * partial group before returning: 2141 * The events up to the failed event are scheduled out normally. 2142 */ 2143 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 2144 if (event == partial_group) 2145 break; 2146 2147 event_sched_out(event, cpuctx, ctx); 2148 } 2149 event_sched_out(group_event, cpuctx, ctx); 2150 2151 pmu->cancel_txn(pmu); 2152 2153 perf_mux_hrtimer_restart(cpuctx); 2154 2155 return -EAGAIN; 2156 } 2157 2158 /* 2159 * Work out whether we can put this event group on the CPU now. 2160 */ 2161 static int group_can_go_on(struct perf_event *event, 2162 struct perf_cpu_context *cpuctx, 2163 int can_add_hw) 2164 { 2165 /* 2166 * Groups consisting entirely of software events can always go on. 2167 */ 2168 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2169 return 1; 2170 /* 2171 * If an exclusive group is already on, no other hardware 2172 * events can go on. 2173 */ 2174 if (cpuctx->exclusive) 2175 return 0; 2176 /* 2177 * If this group is exclusive and there are already 2178 * events on the CPU, it can't go on. 2179 */ 2180 if (event->attr.exclusive && cpuctx->active_oncpu) 2181 return 0; 2182 /* 2183 * Otherwise, try to add it if all previous groups were able 2184 * to go on. 2185 */ 2186 return can_add_hw; 2187 } 2188 2189 static void add_event_to_ctx(struct perf_event *event, 2190 struct perf_event_context *ctx) 2191 { 2192 list_add_event(event, ctx); 2193 perf_group_attach(event); 2194 } 2195 2196 static void ctx_sched_out(struct perf_event_context *ctx, 2197 struct perf_cpu_context *cpuctx, 2198 enum event_type_t event_type); 2199 static void 2200 ctx_sched_in(struct perf_event_context *ctx, 2201 struct perf_cpu_context *cpuctx, 2202 enum event_type_t event_type, 2203 struct task_struct *task); 2204 2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2206 struct perf_event_context *ctx, 2207 enum event_type_t event_type) 2208 { 2209 if (!cpuctx->task_ctx) 2210 return; 2211 2212 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2213 return; 2214 2215 ctx_sched_out(ctx, cpuctx, event_type); 2216 } 2217 2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2219 struct perf_event_context *ctx, 2220 struct task_struct *task) 2221 { 2222 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2223 if (ctx) 2224 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2225 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2226 if (ctx) 2227 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2228 } 2229 2230 /* 2231 * We want to maintain the following priority of scheduling: 2232 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2233 * - task pinned (EVENT_PINNED) 2234 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2235 * - task flexible (EVENT_FLEXIBLE). 2236 * 2237 * In order to avoid unscheduling and scheduling back in everything every 2238 * time an event is added, only do it for the groups of equal priority and 2239 * below. 2240 * 2241 * This can be called after a batch operation on task events, in which case 2242 * event_type is a bit mask of the types of events involved. For CPU events, 2243 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2244 */ 2245 static void ctx_resched(struct perf_cpu_context *cpuctx, 2246 struct perf_event_context *task_ctx, 2247 enum event_type_t event_type) 2248 { 2249 enum event_type_t ctx_event_type = event_type & EVENT_ALL; 2250 bool cpu_event = !!(event_type & EVENT_CPU); 2251 2252 /* 2253 * If pinned groups are involved, flexible groups also need to be 2254 * scheduled out. 2255 */ 2256 if (event_type & EVENT_PINNED) 2257 event_type |= EVENT_FLEXIBLE; 2258 2259 perf_pmu_disable(cpuctx->ctx.pmu); 2260 if (task_ctx) 2261 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2262 2263 /* 2264 * Decide which cpu ctx groups to schedule out based on the types 2265 * of events that caused rescheduling: 2266 * - EVENT_CPU: schedule out corresponding groups; 2267 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2268 * - otherwise, do nothing more. 2269 */ 2270 if (cpu_event) 2271 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2272 else if (ctx_event_type & EVENT_PINNED) 2273 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2274 2275 perf_event_sched_in(cpuctx, task_ctx, current); 2276 perf_pmu_enable(cpuctx->ctx.pmu); 2277 } 2278 2279 /* 2280 * Cross CPU call to install and enable a performance event 2281 * 2282 * Very similar to remote_function() + event_function() but cannot assume that 2283 * things like ctx->is_active and cpuctx->task_ctx are set. 2284 */ 2285 static int __perf_install_in_context(void *info) 2286 { 2287 struct perf_event *event = info; 2288 struct perf_event_context *ctx = event->ctx; 2289 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2290 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2291 bool reprogram = true; 2292 int ret = 0; 2293 2294 raw_spin_lock(&cpuctx->ctx.lock); 2295 if (ctx->task) { 2296 raw_spin_lock(&ctx->lock); 2297 task_ctx = ctx; 2298 2299 reprogram = (ctx->task == current); 2300 2301 /* 2302 * If the task is running, it must be running on this CPU, 2303 * otherwise we cannot reprogram things. 2304 * 2305 * If its not running, we don't care, ctx->lock will 2306 * serialize against it becoming runnable. 2307 */ 2308 if (task_curr(ctx->task) && !reprogram) { 2309 ret = -ESRCH; 2310 goto unlock; 2311 } 2312 2313 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2314 } else if (task_ctx) { 2315 raw_spin_lock(&task_ctx->lock); 2316 } 2317 2318 if (reprogram) { 2319 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2320 add_event_to_ctx(event, ctx); 2321 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2322 } else { 2323 add_event_to_ctx(event, ctx); 2324 } 2325 2326 unlock: 2327 perf_ctx_unlock(cpuctx, task_ctx); 2328 2329 return ret; 2330 } 2331 2332 /* 2333 * Attach a performance event to a context. 2334 * 2335 * Very similar to event_function_call, see comment there. 2336 */ 2337 static void 2338 perf_install_in_context(struct perf_event_context *ctx, 2339 struct perf_event *event, 2340 int cpu) 2341 { 2342 struct task_struct *task = READ_ONCE(ctx->task); 2343 2344 lockdep_assert_held(&ctx->mutex); 2345 2346 if (event->cpu != -1) 2347 event->cpu = cpu; 2348 2349 /* 2350 * Ensures that if we can observe event->ctx, both the event and ctx 2351 * will be 'complete'. See perf_iterate_sb_cpu(). 2352 */ 2353 smp_store_release(&event->ctx, ctx); 2354 2355 if (!task) { 2356 cpu_function_call(cpu, __perf_install_in_context, event); 2357 return; 2358 } 2359 2360 /* 2361 * Should not happen, we validate the ctx is still alive before calling. 2362 */ 2363 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2364 return; 2365 2366 /* 2367 * Installing events is tricky because we cannot rely on ctx->is_active 2368 * to be set in case this is the nr_events 0 -> 1 transition. 2369 * 2370 * Instead we use task_curr(), which tells us if the task is running. 2371 * However, since we use task_curr() outside of rq::lock, we can race 2372 * against the actual state. This means the result can be wrong. 2373 * 2374 * If we get a false positive, we retry, this is harmless. 2375 * 2376 * If we get a false negative, things are complicated. If we are after 2377 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2378 * value must be correct. If we're before, it doesn't matter since 2379 * perf_event_context_sched_in() will program the counter. 2380 * 2381 * However, this hinges on the remote context switch having observed 2382 * our task->perf_event_ctxp[] store, such that it will in fact take 2383 * ctx::lock in perf_event_context_sched_in(). 2384 * 2385 * We do this by task_function_call(), if the IPI fails to hit the task 2386 * we know any future context switch of task must see the 2387 * perf_event_ctpx[] store. 2388 */ 2389 2390 /* 2391 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2392 * task_cpu() load, such that if the IPI then does not find the task 2393 * running, a future context switch of that task must observe the 2394 * store. 2395 */ 2396 smp_mb(); 2397 again: 2398 if (!task_function_call(task, __perf_install_in_context, event)) 2399 return; 2400 2401 raw_spin_lock_irq(&ctx->lock); 2402 task = ctx->task; 2403 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2404 /* 2405 * Cannot happen because we already checked above (which also 2406 * cannot happen), and we hold ctx->mutex, which serializes us 2407 * against perf_event_exit_task_context(). 2408 */ 2409 raw_spin_unlock_irq(&ctx->lock); 2410 return; 2411 } 2412 /* 2413 * If the task is not running, ctx->lock will avoid it becoming so, 2414 * thus we can safely install the event. 2415 */ 2416 if (task_curr(task)) { 2417 raw_spin_unlock_irq(&ctx->lock); 2418 goto again; 2419 } 2420 add_event_to_ctx(event, ctx); 2421 raw_spin_unlock_irq(&ctx->lock); 2422 } 2423 2424 /* 2425 * Cross CPU call to enable a performance event 2426 */ 2427 static void __perf_event_enable(struct perf_event *event, 2428 struct perf_cpu_context *cpuctx, 2429 struct perf_event_context *ctx, 2430 void *info) 2431 { 2432 struct perf_event *leader = event->group_leader; 2433 struct perf_event_context *task_ctx; 2434 2435 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2436 event->state <= PERF_EVENT_STATE_ERROR) 2437 return; 2438 2439 if (ctx->is_active) 2440 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2441 2442 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2443 2444 if (!ctx->is_active) 2445 return; 2446 2447 if (!event_filter_match(event)) { 2448 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2449 return; 2450 } 2451 2452 /* 2453 * If the event is in a group and isn't the group leader, 2454 * then don't put it on unless the group is on. 2455 */ 2456 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2457 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2458 return; 2459 } 2460 2461 task_ctx = cpuctx->task_ctx; 2462 if (ctx->task) 2463 WARN_ON_ONCE(task_ctx != ctx); 2464 2465 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2466 } 2467 2468 /* 2469 * Enable a event. 2470 * 2471 * If event->ctx is a cloned context, callers must make sure that 2472 * every task struct that event->ctx->task could possibly point to 2473 * remains valid. This condition is satisfied when called through 2474 * perf_event_for_each_child or perf_event_for_each as described 2475 * for perf_event_disable. 2476 */ 2477 static void _perf_event_enable(struct perf_event *event) 2478 { 2479 struct perf_event_context *ctx = event->ctx; 2480 2481 raw_spin_lock_irq(&ctx->lock); 2482 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2483 event->state < PERF_EVENT_STATE_ERROR) { 2484 raw_spin_unlock_irq(&ctx->lock); 2485 return; 2486 } 2487 2488 /* 2489 * If the event is in error state, clear that first. 2490 * 2491 * That way, if we see the event in error state below, we know that it 2492 * has gone back into error state, as distinct from the task having 2493 * been scheduled away before the cross-call arrived. 2494 */ 2495 if (event->state == PERF_EVENT_STATE_ERROR) 2496 event->state = PERF_EVENT_STATE_OFF; 2497 raw_spin_unlock_irq(&ctx->lock); 2498 2499 event_function_call(event, __perf_event_enable, NULL); 2500 } 2501 2502 /* 2503 * See perf_event_disable(); 2504 */ 2505 void perf_event_enable(struct perf_event *event) 2506 { 2507 struct perf_event_context *ctx; 2508 2509 ctx = perf_event_ctx_lock(event); 2510 _perf_event_enable(event); 2511 perf_event_ctx_unlock(event, ctx); 2512 } 2513 EXPORT_SYMBOL_GPL(perf_event_enable); 2514 2515 struct stop_event_data { 2516 struct perf_event *event; 2517 unsigned int restart; 2518 }; 2519 2520 static int __perf_event_stop(void *info) 2521 { 2522 struct stop_event_data *sd = info; 2523 struct perf_event *event = sd->event; 2524 2525 /* if it's already INACTIVE, do nothing */ 2526 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2527 return 0; 2528 2529 /* matches smp_wmb() in event_sched_in() */ 2530 smp_rmb(); 2531 2532 /* 2533 * There is a window with interrupts enabled before we get here, 2534 * so we need to check again lest we try to stop another CPU's event. 2535 */ 2536 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2537 return -EAGAIN; 2538 2539 event->pmu->stop(event, PERF_EF_UPDATE); 2540 2541 /* 2542 * May race with the actual stop (through perf_pmu_output_stop()), 2543 * but it is only used for events with AUX ring buffer, and such 2544 * events will refuse to restart because of rb::aux_mmap_count==0, 2545 * see comments in perf_aux_output_begin(). 2546 * 2547 * Since this is happening on a event-local CPU, no trace is lost 2548 * while restarting. 2549 */ 2550 if (sd->restart) 2551 event->pmu->start(event, 0); 2552 2553 return 0; 2554 } 2555 2556 static int perf_event_stop(struct perf_event *event, int restart) 2557 { 2558 struct stop_event_data sd = { 2559 .event = event, 2560 .restart = restart, 2561 }; 2562 int ret = 0; 2563 2564 do { 2565 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2566 return 0; 2567 2568 /* matches smp_wmb() in event_sched_in() */ 2569 smp_rmb(); 2570 2571 /* 2572 * We only want to restart ACTIVE events, so if the event goes 2573 * inactive here (event->oncpu==-1), there's nothing more to do; 2574 * fall through with ret==-ENXIO. 2575 */ 2576 ret = cpu_function_call(READ_ONCE(event->oncpu), 2577 __perf_event_stop, &sd); 2578 } while (ret == -EAGAIN); 2579 2580 return ret; 2581 } 2582 2583 /* 2584 * In order to contain the amount of racy and tricky in the address filter 2585 * configuration management, it is a two part process: 2586 * 2587 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2588 * we update the addresses of corresponding vmas in 2589 * event::addr_filters_offs array and bump the event::addr_filters_gen; 2590 * (p2) when an event is scheduled in (pmu::add), it calls 2591 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2592 * if the generation has changed since the previous call. 2593 * 2594 * If (p1) happens while the event is active, we restart it to force (p2). 2595 * 2596 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2597 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2598 * ioctl; 2599 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2600 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2601 * for reading; 2602 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2603 * of exec. 2604 */ 2605 void perf_event_addr_filters_sync(struct perf_event *event) 2606 { 2607 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2608 2609 if (!has_addr_filter(event)) 2610 return; 2611 2612 raw_spin_lock(&ifh->lock); 2613 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2614 event->pmu->addr_filters_sync(event); 2615 event->hw.addr_filters_gen = event->addr_filters_gen; 2616 } 2617 raw_spin_unlock(&ifh->lock); 2618 } 2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2620 2621 static int _perf_event_refresh(struct perf_event *event, int refresh) 2622 { 2623 /* 2624 * not supported on inherited events 2625 */ 2626 if (event->attr.inherit || !is_sampling_event(event)) 2627 return -EINVAL; 2628 2629 atomic_add(refresh, &event->event_limit); 2630 _perf_event_enable(event); 2631 2632 return 0; 2633 } 2634 2635 /* 2636 * See perf_event_disable() 2637 */ 2638 int perf_event_refresh(struct perf_event *event, int refresh) 2639 { 2640 struct perf_event_context *ctx; 2641 int ret; 2642 2643 ctx = perf_event_ctx_lock(event); 2644 ret = _perf_event_refresh(event, refresh); 2645 perf_event_ctx_unlock(event, ctx); 2646 2647 return ret; 2648 } 2649 EXPORT_SYMBOL_GPL(perf_event_refresh); 2650 2651 static void ctx_sched_out(struct perf_event_context *ctx, 2652 struct perf_cpu_context *cpuctx, 2653 enum event_type_t event_type) 2654 { 2655 int is_active = ctx->is_active; 2656 struct perf_event *event; 2657 2658 lockdep_assert_held(&ctx->lock); 2659 2660 if (likely(!ctx->nr_events)) { 2661 /* 2662 * See __perf_remove_from_context(). 2663 */ 2664 WARN_ON_ONCE(ctx->is_active); 2665 if (ctx->task) 2666 WARN_ON_ONCE(cpuctx->task_ctx); 2667 return; 2668 } 2669 2670 ctx->is_active &= ~event_type; 2671 if (!(ctx->is_active & EVENT_ALL)) 2672 ctx->is_active = 0; 2673 2674 if (ctx->task) { 2675 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2676 if (!ctx->is_active) 2677 cpuctx->task_ctx = NULL; 2678 } 2679 2680 /* 2681 * Always update time if it was set; not only when it changes. 2682 * Otherwise we can 'forget' to update time for any but the last 2683 * context we sched out. For example: 2684 * 2685 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2686 * ctx_sched_out(.event_type = EVENT_PINNED) 2687 * 2688 * would only update time for the pinned events. 2689 */ 2690 if (is_active & EVENT_TIME) { 2691 /* update (and stop) ctx time */ 2692 update_context_time(ctx); 2693 update_cgrp_time_from_cpuctx(cpuctx); 2694 } 2695 2696 is_active ^= ctx->is_active; /* changed bits */ 2697 2698 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2699 return; 2700 2701 perf_pmu_disable(ctx->pmu); 2702 if (is_active & EVENT_PINNED) { 2703 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 2704 group_sched_out(event, cpuctx, ctx); 2705 } 2706 2707 if (is_active & EVENT_FLEXIBLE) { 2708 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 2709 group_sched_out(event, cpuctx, ctx); 2710 } 2711 perf_pmu_enable(ctx->pmu); 2712 } 2713 2714 /* 2715 * Test whether two contexts are equivalent, i.e. whether they have both been 2716 * cloned from the same version of the same context. 2717 * 2718 * Equivalence is measured using a generation number in the context that is 2719 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2720 * and list_del_event(). 2721 */ 2722 static int context_equiv(struct perf_event_context *ctx1, 2723 struct perf_event_context *ctx2) 2724 { 2725 lockdep_assert_held(&ctx1->lock); 2726 lockdep_assert_held(&ctx2->lock); 2727 2728 /* Pinning disables the swap optimization */ 2729 if (ctx1->pin_count || ctx2->pin_count) 2730 return 0; 2731 2732 /* If ctx1 is the parent of ctx2 */ 2733 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2734 return 1; 2735 2736 /* If ctx2 is the parent of ctx1 */ 2737 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2738 return 1; 2739 2740 /* 2741 * If ctx1 and ctx2 have the same parent; we flatten the parent 2742 * hierarchy, see perf_event_init_context(). 2743 */ 2744 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2745 ctx1->parent_gen == ctx2->parent_gen) 2746 return 1; 2747 2748 /* Unmatched */ 2749 return 0; 2750 } 2751 2752 static void __perf_event_sync_stat(struct perf_event *event, 2753 struct perf_event *next_event) 2754 { 2755 u64 value; 2756 2757 if (!event->attr.inherit_stat) 2758 return; 2759 2760 /* 2761 * Update the event value, we cannot use perf_event_read() 2762 * because we're in the middle of a context switch and have IRQs 2763 * disabled, which upsets smp_call_function_single(), however 2764 * we know the event must be on the current CPU, therefore we 2765 * don't need to use it. 2766 */ 2767 if (event->state == PERF_EVENT_STATE_ACTIVE) 2768 event->pmu->read(event); 2769 2770 perf_event_update_time(event); 2771 2772 /* 2773 * In order to keep per-task stats reliable we need to flip the event 2774 * values when we flip the contexts. 2775 */ 2776 value = local64_read(&next_event->count); 2777 value = local64_xchg(&event->count, value); 2778 local64_set(&next_event->count, value); 2779 2780 swap(event->total_time_enabled, next_event->total_time_enabled); 2781 swap(event->total_time_running, next_event->total_time_running); 2782 2783 /* 2784 * Since we swizzled the values, update the user visible data too. 2785 */ 2786 perf_event_update_userpage(event); 2787 perf_event_update_userpage(next_event); 2788 } 2789 2790 static void perf_event_sync_stat(struct perf_event_context *ctx, 2791 struct perf_event_context *next_ctx) 2792 { 2793 struct perf_event *event, *next_event; 2794 2795 if (!ctx->nr_stat) 2796 return; 2797 2798 update_context_time(ctx); 2799 2800 event = list_first_entry(&ctx->event_list, 2801 struct perf_event, event_entry); 2802 2803 next_event = list_first_entry(&next_ctx->event_list, 2804 struct perf_event, event_entry); 2805 2806 while (&event->event_entry != &ctx->event_list && 2807 &next_event->event_entry != &next_ctx->event_list) { 2808 2809 __perf_event_sync_stat(event, next_event); 2810 2811 event = list_next_entry(event, event_entry); 2812 next_event = list_next_entry(next_event, event_entry); 2813 } 2814 } 2815 2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 2817 struct task_struct *next) 2818 { 2819 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 2820 struct perf_event_context *next_ctx; 2821 struct perf_event_context *parent, *next_parent; 2822 struct perf_cpu_context *cpuctx; 2823 int do_switch = 1; 2824 2825 if (likely(!ctx)) 2826 return; 2827 2828 cpuctx = __get_cpu_context(ctx); 2829 if (!cpuctx->task_ctx) 2830 return; 2831 2832 rcu_read_lock(); 2833 next_ctx = next->perf_event_ctxp[ctxn]; 2834 if (!next_ctx) 2835 goto unlock; 2836 2837 parent = rcu_dereference(ctx->parent_ctx); 2838 next_parent = rcu_dereference(next_ctx->parent_ctx); 2839 2840 /* If neither context have a parent context; they cannot be clones. */ 2841 if (!parent && !next_parent) 2842 goto unlock; 2843 2844 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 2845 /* 2846 * Looks like the two contexts are clones, so we might be 2847 * able to optimize the context switch. We lock both 2848 * contexts and check that they are clones under the 2849 * lock (including re-checking that neither has been 2850 * uncloned in the meantime). It doesn't matter which 2851 * order we take the locks because no other cpu could 2852 * be trying to lock both of these tasks. 2853 */ 2854 raw_spin_lock(&ctx->lock); 2855 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2856 if (context_equiv(ctx, next_ctx)) { 2857 WRITE_ONCE(ctx->task, next); 2858 WRITE_ONCE(next_ctx->task, task); 2859 2860 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 2861 2862 /* 2863 * RCU_INIT_POINTER here is safe because we've not 2864 * modified the ctx and the above modification of 2865 * ctx->task and ctx->task_ctx_data are immaterial 2866 * since those values are always verified under 2867 * ctx->lock which we're now holding. 2868 */ 2869 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 2870 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 2871 2872 do_switch = 0; 2873 2874 perf_event_sync_stat(ctx, next_ctx); 2875 } 2876 raw_spin_unlock(&next_ctx->lock); 2877 raw_spin_unlock(&ctx->lock); 2878 } 2879 unlock: 2880 rcu_read_unlock(); 2881 2882 if (do_switch) { 2883 raw_spin_lock(&ctx->lock); 2884 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 2885 raw_spin_unlock(&ctx->lock); 2886 } 2887 } 2888 2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 2890 2891 void perf_sched_cb_dec(struct pmu *pmu) 2892 { 2893 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2894 2895 this_cpu_dec(perf_sched_cb_usages); 2896 2897 if (!--cpuctx->sched_cb_usage) 2898 list_del(&cpuctx->sched_cb_entry); 2899 } 2900 2901 2902 void perf_sched_cb_inc(struct pmu *pmu) 2903 { 2904 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2905 2906 if (!cpuctx->sched_cb_usage++) 2907 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 2908 2909 this_cpu_inc(perf_sched_cb_usages); 2910 } 2911 2912 /* 2913 * This function provides the context switch callback to the lower code 2914 * layer. It is invoked ONLY when the context switch callback is enabled. 2915 * 2916 * This callback is relevant even to per-cpu events; for example multi event 2917 * PEBS requires this to provide PID/TID information. This requires we flush 2918 * all queued PEBS records before we context switch to a new task. 2919 */ 2920 static void perf_pmu_sched_task(struct task_struct *prev, 2921 struct task_struct *next, 2922 bool sched_in) 2923 { 2924 struct perf_cpu_context *cpuctx; 2925 struct pmu *pmu; 2926 2927 if (prev == next) 2928 return; 2929 2930 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 2931 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 2932 2933 if (WARN_ON_ONCE(!pmu->sched_task)) 2934 continue; 2935 2936 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2937 perf_pmu_disable(pmu); 2938 2939 pmu->sched_task(cpuctx->task_ctx, sched_in); 2940 2941 perf_pmu_enable(pmu); 2942 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2943 } 2944 } 2945 2946 static void perf_event_switch(struct task_struct *task, 2947 struct task_struct *next_prev, bool sched_in); 2948 2949 #define for_each_task_context_nr(ctxn) \ 2950 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2951 2952 /* 2953 * Called from scheduler to remove the events of the current task, 2954 * with interrupts disabled. 2955 * 2956 * We stop each event and update the event value in event->count. 2957 * 2958 * This does not protect us against NMI, but disable() 2959 * sets the disabled bit in the control field of event _before_ 2960 * accessing the event control register. If a NMI hits, then it will 2961 * not restart the event. 2962 */ 2963 void __perf_event_task_sched_out(struct task_struct *task, 2964 struct task_struct *next) 2965 { 2966 int ctxn; 2967 2968 if (__this_cpu_read(perf_sched_cb_usages)) 2969 perf_pmu_sched_task(task, next, false); 2970 2971 if (atomic_read(&nr_switch_events)) 2972 perf_event_switch(task, next, false); 2973 2974 for_each_task_context_nr(ctxn) 2975 perf_event_context_sched_out(task, ctxn, next); 2976 2977 /* 2978 * if cgroup events exist on this CPU, then we need 2979 * to check if we have to switch out PMU state. 2980 * cgroup event are system-wide mode only 2981 */ 2982 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 2983 perf_cgroup_sched_out(task, next); 2984 } 2985 2986 /* 2987 * Called with IRQs disabled 2988 */ 2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2990 enum event_type_t event_type) 2991 { 2992 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2993 } 2994 2995 static void 2996 ctx_pinned_sched_in(struct perf_event_context *ctx, 2997 struct perf_cpu_context *cpuctx) 2998 { 2999 struct perf_event *event; 3000 3001 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 3002 if (event->state <= PERF_EVENT_STATE_OFF) 3003 continue; 3004 if (!event_filter_match(event)) 3005 continue; 3006 3007 if (group_can_go_on(event, cpuctx, 1)) 3008 group_sched_in(event, cpuctx, ctx); 3009 3010 /* 3011 * If this pinned group hasn't been scheduled, 3012 * put it in error state. 3013 */ 3014 if (event->state == PERF_EVENT_STATE_INACTIVE) 3015 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3016 } 3017 } 3018 3019 static void 3020 ctx_flexible_sched_in(struct perf_event_context *ctx, 3021 struct perf_cpu_context *cpuctx) 3022 { 3023 struct perf_event *event; 3024 int can_add_hw = 1; 3025 3026 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 3027 /* Ignore events in OFF or ERROR state */ 3028 if (event->state <= PERF_EVENT_STATE_OFF) 3029 continue; 3030 /* 3031 * Listen to the 'cpu' scheduling filter constraint 3032 * of events: 3033 */ 3034 if (!event_filter_match(event)) 3035 continue; 3036 3037 if (group_can_go_on(event, cpuctx, can_add_hw)) { 3038 if (group_sched_in(event, cpuctx, ctx)) 3039 can_add_hw = 0; 3040 } 3041 } 3042 } 3043 3044 static void 3045 ctx_sched_in(struct perf_event_context *ctx, 3046 struct perf_cpu_context *cpuctx, 3047 enum event_type_t event_type, 3048 struct task_struct *task) 3049 { 3050 int is_active = ctx->is_active; 3051 u64 now; 3052 3053 lockdep_assert_held(&ctx->lock); 3054 3055 if (likely(!ctx->nr_events)) 3056 return; 3057 3058 ctx->is_active |= (event_type | EVENT_TIME); 3059 if (ctx->task) { 3060 if (!is_active) 3061 cpuctx->task_ctx = ctx; 3062 else 3063 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3064 } 3065 3066 is_active ^= ctx->is_active; /* changed bits */ 3067 3068 if (is_active & EVENT_TIME) { 3069 /* start ctx time */ 3070 now = perf_clock(); 3071 ctx->timestamp = now; 3072 perf_cgroup_set_timestamp(task, ctx); 3073 } 3074 3075 /* 3076 * First go through the list and put on any pinned groups 3077 * in order to give them the best chance of going on. 3078 */ 3079 if (is_active & EVENT_PINNED) 3080 ctx_pinned_sched_in(ctx, cpuctx); 3081 3082 /* Then walk through the lower prio flexible groups */ 3083 if (is_active & EVENT_FLEXIBLE) 3084 ctx_flexible_sched_in(ctx, cpuctx); 3085 } 3086 3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3088 enum event_type_t event_type, 3089 struct task_struct *task) 3090 { 3091 struct perf_event_context *ctx = &cpuctx->ctx; 3092 3093 ctx_sched_in(ctx, cpuctx, event_type, task); 3094 } 3095 3096 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3097 struct task_struct *task) 3098 { 3099 struct perf_cpu_context *cpuctx; 3100 3101 cpuctx = __get_cpu_context(ctx); 3102 if (cpuctx->task_ctx == ctx) 3103 return; 3104 3105 perf_ctx_lock(cpuctx, ctx); 3106 /* 3107 * We must check ctx->nr_events while holding ctx->lock, such 3108 * that we serialize against perf_install_in_context(). 3109 */ 3110 if (!ctx->nr_events) 3111 goto unlock; 3112 3113 perf_pmu_disable(ctx->pmu); 3114 /* 3115 * We want to keep the following priority order: 3116 * cpu pinned (that don't need to move), task pinned, 3117 * cpu flexible, task flexible. 3118 * 3119 * However, if task's ctx is not carrying any pinned 3120 * events, no need to flip the cpuctx's events around. 3121 */ 3122 if (!list_empty(&ctx->pinned_groups)) 3123 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3124 perf_event_sched_in(cpuctx, ctx, task); 3125 perf_pmu_enable(ctx->pmu); 3126 3127 unlock: 3128 perf_ctx_unlock(cpuctx, ctx); 3129 } 3130 3131 /* 3132 * Called from scheduler to add the events of the current task 3133 * with interrupts disabled. 3134 * 3135 * We restore the event value and then enable it. 3136 * 3137 * This does not protect us against NMI, but enable() 3138 * sets the enabled bit in the control field of event _before_ 3139 * accessing the event control register. If a NMI hits, then it will 3140 * keep the event running. 3141 */ 3142 void __perf_event_task_sched_in(struct task_struct *prev, 3143 struct task_struct *task) 3144 { 3145 struct perf_event_context *ctx; 3146 int ctxn; 3147 3148 /* 3149 * If cgroup events exist on this CPU, then we need to check if we have 3150 * to switch in PMU state; cgroup event are system-wide mode only. 3151 * 3152 * Since cgroup events are CPU events, we must schedule these in before 3153 * we schedule in the task events. 3154 */ 3155 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3156 perf_cgroup_sched_in(prev, task); 3157 3158 for_each_task_context_nr(ctxn) { 3159 ctx = task->perf_event_ctxp[ctxn]; 3160 if (likely(!ctx)) 3161 continue; 3162 3163 perf_event_context_sched_in(ctx, task); 3164 } 3165 3166 if (atomic_read(&nr_switch_events)) 3167 perf_event_switch(task, prev, true); 3168 3169 if (__this_cpu_read(perf_sched_cb_usages)) 3170 perf_pmu_sched_task(prev, task, true); 3171 } 3172 3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3174 { 3175 u64 frequency = event->attr.sample_freq; 3176 u64 sec = NSEC_PER_SEC; 3177 u64 divisor, dividend; 3178 3179 int count_fls, nsec_fls, frequency_fls, sec_fls; 3180 3181 count_fls = fls64(count); 3182 nsec_fls = fls64(nsec); 3183 frequency_fls = fls64(frequency); 3184 sec_fls = 30; 3185 3186 /* 3187 * We got @count in @nsec, with a target of sample_freq HZ 3188 * the target period becomes: 3189 * 3190 * @count * 10^9 3191 * period = ------------------- 3192 * @nsec * sample_freq 3193 * 3194 */ 3195 3196 /* 3197 * Reduce accuracy by one bit such that @a and @b converge 3198 * to a similar magnitude. 3199 */ 3200 #define REDUCE_FLS(a, b) \ 3201 do { \ 3202 if (a##_fls > b##_fls) { \ 3203 a >>= 1; \ 3204 a##_fls--; \ 3205 } else { \ 3206 b >>= 1; \ 3207 b##_fls--; \ 3208 } \ 3209 } while (0) 3210 3211 /* 3212 * Reduce accuracy until either term fits in a u64, then proceed with 3213 * the other, so that finally we can do a u64/u64 division. 3214 */ 3215 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3216 REDUCE_FLS(nsec, frequency); 3217 REDUCE_FLS(sec, count); 3218 } 3219 3220 if (count_fls + sec_fls > 64) { 3221 divisor = nsec * frequency; 3222 3223 while (count_fls + sec_fls > 64) { 3224 REDUCE_FLS(count, sec); 3225 divisor >>= 1; 3226 } 3227 3228 dividend = count * sec; 3229 } else { 3230 dividend = count * sec; 3231 3232 while (nsec_fls + frequency_fls > 64) { 3233 REDUCE_FLS(nsec, frequency); 3234 dividend >>= 1; 3235 } 3236 3237 divisor = nsec * frequency; 3238 } 3239 3240 if (!divisor) 3241 return dividend; 3242 3243 return div64_u64(dividend, divisor); 3244 } 3245 3246 static DEFINE_PER_CPU(int, perf_throttled_count); 3247 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3248 3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3250 { 3251 struct hw_perf_event *hwc = &event->hw; 3252 s64 period, sample_period; 3253 s64 delta; 3254 3255 period = perf_calculate_period(event, nsec, count); 3256 3257 delta = (s64)(period - hwc->sample_period); 3258 delta = (delta + 7) / 8; /* low pass filter */ 3259 3260 sample_period = hwc->sample_period + delta; 3261 3262 if (!sample_period) 3263 sample_period = 1; 3264 3265 hwc->sample_period = sample_period; 3266 3267 if (local64_read(&hwc->period_left) > 8*sample_period) { 3268 if (disable) 3269 event->pmu->stop(event, PERF_EF_UPDATE); 3270 3271 local64_set(&hwc->period_left, 0); 3272 3273 if (disable) 3274 event->pmu->start(event, PERF_EF_RELOAD); 3275 } 3276 } 3277 3278 /* 3279 * combine freq adjustment with unthrottling to avoid two passes over the 3280 * events. At the same time, make sure, having freq events does not change 3281 * the rate of unthrottling as that would introduce bias. 3282 */ 3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3284 int needs_unthr) 3285 { 3286 struct perf_event *event; 3287 struct hw_perf_event *hwc; 3288 u64 now, period = TICK_NSEC; 3289 s64 delta; 3290 3291 /* 3292 * only need to iterate over all events iff: 3293 * - context have events in frequency mode (needs freq adjust) 3294 * - there are events to unthrottle on this cpu 3295 */ 3296 if (!(ctx->nr_freq || needs_unthr)) 3297 return; 3298 3299 raw_spin_lock(&ctx->lock); 3300 perf_pmu_disable(ctx->pmu); 3301 3302 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3303 if (event->state != PERF_EVENT_STATE_ACTIVE) 3304 continue; 3305 3306 if (!event_filter_match(event)) 3307 continue; 3308 3309 perf_pmu_disable(event->pmu); 3310 3311 hwc = &event->hw; 3312 3313 if (hwc->interrupts == MAX_INTERRUPTS) { 3314 hwc->interrupts = 0; 3315 perf_log_throttle(event, 1); 3316 event->pmu->start(event, 0); 3317 } 3318 3319 if (!event->attr.freq || !event->attr.sample_freq) 3320 goto next; 3321 3322 /* 3323 * stop the event and update event->count 3324 */ 3325 event->pmu->stop(event, PERF_EF_UPDATE); 3326 3327 now = local64_read(&event->count); 3328 delta = now - hwc->freq_count_stamp; 3329 hwc->freq_count_stamp = now; 3330 3331 /* 3332 * restart the event 3333 * reload only if value has changed 3334 * we have stopped the event so tell that 3335 * to perf_adjust_period() to avoid stopping it 3336 * twice. 3337 */ 3338 if (delta > 0) 3339 perf_adjust_period(event, period, delta, false); 3340 3341 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3342 next: 3343 perf_pmu_enable(event->pmu); 3344 } 3345 3346 perf_pmu_enable(ctx->pmu); 3347 raw_spin_unlock(&ctx->lock); 3348 } 3349 3350 /* 3351 * Round-robin a context's events: 3352 */ 3353 static void rotate_ctx(struct perf_event_context *ctx) 3354 { 3355 /* 3356 * Rotate the first entry last of non-pinned groups. Rotation might be 3357 * disabled by the inheritance code. 3358 */ 3359 if (!ctx->rotate_disable) 3360 list_rotate_left(&ctx->flexible_groups); 3361 } 3362 3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx) 3364 { 3365 struct perf_event_context *ctx = NULL; 3366 int rotate = 0; 3367 3368 if (cpuctx->ctx.nr_events) { 3369 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3370 rotate = 1; 3371 } 3372 3373 ctx = cpuctx->task_ctx; 3374 if (ctx && ctx->nr_events) { 3375 if (ctx->nr_events != ctx->nr_active) 3376 rotate = 1; 3377 } 3378 3379 if (!rotate) 3380 goto done; 3381 3382 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3383 perf_pmu_disable(cpuctx->ctx.pmu); 3384 3385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3386 if (ctx) 3387 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3388 3389 rotate_ctx(&cpuctx->ctx); 3390 if (ctx) 3391 rotate_ctx(ctx); 3392 3393 perf_event_sched_in(cpuctx, ctx, current); 3394 3395 perf_pmu_enable(cpuctx->ctx.pmu); 3396 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3397 done: 3398 3399 return rotate; 3400 } 3401 3402 void perf_event_task_tick(void) 3403 { 3404 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3405 struct perf_event_context *ctx, *tmp; 3406 int throttled; 3407 3408 lockdep_assert_irqs_disabled(); 3409 3410 __this_cpu_inc(perf_throttled_seq); 3411 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3412 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3413 3414 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3415 perf_adjust_freq_unthr_context(ctx, throttled); 3416 } 3417 3418 static int event_enable_on_exec(struct perf_event *event, 3419 struct perf_event_context *ctx) 3420 { 3421 if (!event->attr.enable_on_exec) 3422 return 0; 3423 3424 event->attr.enable_on_exec = 0; 3425 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3426 return 0; 3427 3428 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3429 3430 return 1; 3431 } 3432 3433 /* 3434 * Enable all of a task's events that have been marked enable-on-exec. 3435 * This expects task == current. 3436 */ 3437 static void perf_event_enable_on_exec(int ctxn) 3438 { 3439 struct perf_event_context *ctx, *clone_ctx = NULL; 3440 enum event_type_t event_type = 0; 3441 struct perf_cpu_context *cpuctx; 3442 struct perf_event *event; 3443 unsigned long flags; 3444 int enabled = 0; 3445 3446 local_irq_save(flags); 3447 ctx = current->perf_event_ctxp[ctxn]; 3448 if (!ctx || !ctx->nr_events) 3449 goto out; 3450 3451 cpuctx = __get_cpu_context(ctx); 3452 perf_ctx_lock(cpuctx, ctx); 3453 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3454 list_for_each_entry(event, &ctx->event_list, event_entry) { 3455 enabled |= event_enable_on_exec(event, ctx); 3456 event_type |= get_event_type(event); 3457 } 3458 3459 /* 3460 * Unclone and reschedule this context if we enabled any event. 3461 */ 3462 if (enabled) { 3463 clone_ctx = unclone_ctx(ctx); 3464 ctx_resched(cpuctx, ctx, event_type); 3465 } else { 3466 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3467 } 3468 perf_ctx_unlock(cpuctx, ctx); 3469 3470 out: 3471 local_irq_restore(flags); 3472 3473 if (clone_ctx) 3474 put_ctx(clone_ctx); 3475 } 3476 3477 struct perf_read_data { 3478 struct perf_event *event; 3479 bool group; 3480 int ret; 3481 }; 3482 3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3484 { 3485 u16 local_pkg, event_pkg; 3486 3487 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3488 int local_cpu = smp_processor_id(); 3489 3490 event_pkg = topology_physical_package_id(event_cpu); 3491 local_pkg = topology_physical_package_id(local_cpu); 3492 3493 if (event_pkg == local_pkg) 3494 return local_cpu; 3495 } 3496 3497 return event_cpu; 3498 } 3499 3500 /* 3501 * Cross CPU call to read the hardware event 3502 */ 3503 static void __perf_event_read(void *info) 3504 { 3505 struct perf_read_data *data = info; 3506 struct perf_event *sub, *event = data->event; 3507 struct perf_event_context *ctx = event->ctx; 3508 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3509 struct pmu *pmu = event->pmu; 3510 3511 /* 3512 * If this is a task context, we need to check whether it is 3513 * the current task context of this cpu. If not it has been 3514 * scheduled out before the smp call arrived. In that case 3515 * event->count would have been updated to a recent sample 3516 * when the event was scheduled out. 3517 */ 3518 if (ctx->task && cpuctx->task_ctx != ctx) 3519 return; 3520 3521 raw_spin_lock(&ctx->lock); 3522 if (ctx->is_active & EVENT_TIME) { 3523 update_context_time(ctx); 3524 update_cgrp_time_from_event(event); 3525 } 3526 3527 perf_event_update_time(event); 3528 if (data->group) 3529 perf_event_update_sibling_time(event); 3530 3531 if (event->state != PERF_EVENT_STATE_ACTIVE) 3532 goto unlock; 3533 3534 if (!data->group) { 3535 pmu->read(event); 3536 data->ret = 0; 3537 goto unlock; 3538 } 3539 3540 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3541 3542 pmu->read(event); 3543 3544 list_for_each_entry(sub, &event->sibling_list, group_entry) { 3545 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3546 /* 3547 * Use sibling's PMU rather than @event's since 3548 * sibling could be on different (eg: software) PMU. 3549 */ 3550 sub->pmu->read(sub); 3551 } 3552 } 3553 3554 data->ret = pmu->commit_txn(pmu); 3555 3556 unlock: 3557 raw_spin_unlock(&ctx->lock); 3558 } 3559 3560 static inline u64 perf_event_count(struct perf_event *event) 3561 { 3562 return local64_read(&event->count) + atomic64_read(&event->child_count); 3563 } 3564 3565 /* 3566 * NMI-safe method to read a local event, that is an event that 3567 * is: 3568 * - either for the current task, or for this CPU 3569 * - does not have inherit set, for inherited task events 3570 * will not be local and we cannot read them atomically 3571 * - must not have a pmu::count method 3572 */ 3573 int perf_event_read_local(struct perf_event *event, u64 *value, 3574 u64 *enabled, u64 *running) 3575 { 3576 unsigned long flags; 3577 int ret = 0; 3578 3579 /* 3580 * Disabling interrupts avoids all counter scheduling (context 3581 * switches, timer based rotation and IPIs). 3582 */ 3583 local_irq_save(flags); 3584 3585 /* 3586 * It must not be an event with inherit set, we cannot read 3587 * all child counters from atomic context. 3588 */ 3589 if (event->attr.inherit) { 3590 ret = -EOPNOTSUPP; 3591 goto out; 3592 } 3593 3594 /* If this is a per-task event, it must be for current */ 3595 if ((event->attach_state & PERF_ATTACH_TASK) && 3596 event->hw.target != current) { 3597 ret = -EINVAL; 3598 goto out; 3599 } 3600 3601 /* If this is a per-CPU event, it must be for this CPU */ 3602 if (!(event->attach_state & PERF_ATTACH_TASK) && 3603 event->cpu != smp_processor_id()) { 3604 ret = -EINVAL; 3605 goto out; 3606 } 3607 3608 /* 3609 * If the event is currently on this CPU, its either a per-task event, 3610 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3611 * oncpu == -1). 3612 */ 3613 if (event->oncpu == smp_processor_id()) 3614 event->pmu->read(event); 3615 3616 *value = local64_read(&event->count); 3617 if (enabled || running) { 3618 u64 now = event->shadow_ctx_time + perf_clock(); 3619 u64 __enabled, __running; 3620 3621 __perf_update_times(event, now, &__enabled, &__running); 3622 if (enabled) 3623 *enabled = __enabled; 3624 if (running) 3625 *running = __running; 3626 } 3627 out: 3628 local_irq_restore(flags); 3629 3630 return ret; 3631 } 3632 3633 static int perf_event_read(struct perf_event *event, bool group) 3634 { 3635 enum perf_event_state state = READ_ONCE(event->state); 3636 int event_cpu, ret = 0; 3637 3638 /* 3639 * If event is enabled and currently active on a CPU, update the 3640 * value in the event structure: 3641 */ 3642 again: 3643 if (state == PERF_EVENT_STATE_ACTIVE) { 3644 struct perf_read_data data; 3645 3646 /* 3647 * Orders the ->state and ->oncpu loads such that if we see 3648 * ACTIVE we must also see the right ->oncpu. 3649 * 3650 * Matches the smp_wmb() from event_sched_in(). 3651 */ 3652 smp_rmb(); 3653 3654 event_cpu = READ_ONCE(event->oncpu); 3655 if ((unsigned)event_cpu >= nr_cpu_ids) 3656 return 0; 3657 3658 data = (struct perf_read_data){ 3659 .event = event, 3660 .group = group, 3661 .ret = 0, 3662 }; 3663 3664 preempt_disable(); 3665 event_cpu = __perf_event_read_cpu(event, event_cpu); 3666 3667 /* 3668 * Purposely ignore the smp_call_function_single() return 3669 * value. 3670 * 3671 * If event_cpu isn't a valid CPU it means the event got 3672 * scheduled out and that will have updated the event count. 3673 * 3674 * Therefore, either way, we'll have an up-to-date event count 3675 * after this. 3676 */ 3677 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 3678 preempt_enable(); 3679 ret = data.ret; 3680 3681 } else if (state == PERF_EVENT_STATE_INACTIVE) { 3682 struct perf_event_context *ctx = event->ctx; 3683 unsigned long flags; 3684 3685 raw_spin_lock_irqsave(&ctx->lock, flags); 3686 state = event->state; 3687 if (state != PERF_EVENT_STATE_INACTIVE) { 3688 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3689 goto again; 3690 } 3691 3692 /* 3693 * May read while context is not active (e.g., thread is 3694 * blocked), in that case we cannot update context time 3695 */ 3696 if (ctx->is_active & EVENT_TIME) { 3697 update_context_time(ctx); 3698 update_cgrp_time_from_event(event); 3699 } 3700 3701 perf_event_update_time(event); 3702 if (group) 3703 perf_event_update_sibling_time(event); 3704 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3705 } 3706 3707 return ret; 3708 } 3709 3710 /* 3711 * Initialize the perf_event context in a task_struct: 3712 */ 3713 static void __perf_event_init_context(struct perf_event_context *ctx) 3714 { 3715 raw_spin_lock_init(&ctx->lock); 3716 mutex_init(&ctx->mutex); 3717 INIT_LIST_HEAD(&ctx->active_ctx_list); 3718 INIT_LIST_HEAD(&ctx->pinned_groups); 3719 INIT_LIST_HEAD(&ctx->flexible_groups); 3720 INIT_LIST_HEAD(&ctx->event_list); 3721 atomic_set(&ctx->refcount, 1); 3722 } 3723 3724 static struct perf_event_context * 3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 3726 { 3727 struct perf_event_context *ctx; 3728 3729 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 3730 if (!ctx) 3731 return NULL; 3732 3733 __perf_event_init_context(ctx); 3734 if (task) { 3735 ctx->task = task; 3736 get_task_struct(task); 3737 } 3738 ctx->pmu = pmu; 3739 3740 return ctx; 3741 } 3742 3743 static struct task_struct * 3744 find_lively_task_by_vpid(pid_t vpid) 3745 { 3746 struct task_struct *task; 3747 3748 rcu_read_lock(); 3749 if (!vpid) 3750 task = current; 3751 else 3752 task = find_task_by_vpid(vpid); 3753 if (task) 3754 get_task_struct(task); 3755 rcu_read_unlock(); 3756 3757 if (!task) 3758 return ERR_PTR(-ESRCH); 3759 3760 return task; 3761 } 3762 3763 /* 3764 * Returns a matching context with refcount and pincount. 3765 */ 3766 static struct perf_event_context * 3767 find_get_context(struct pmu *pmu, struct task_struct *task, 3768 struct perf_event *event) 3769 { 3770 struct perf_event_context *ctx, *clone_ctx = NULL; 3771 struct perf_cpu_context *cpuctx; 3772 void *task_ctx_data = NULL; 3773 unsigned long flags; 3774 int ctxn, err; 3775 int cpu = event->cpu; 3776 3777 if (!task) { 3778 /* Must be root to operate on a CPU event: */ 3779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 3780 return ERR_PTR(-EACCES); 3781 3782 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 3783 ctx = &cpuctx->ctx; 3784 get_ctx(ctx); 3785 ++ctx->pin_count; 3786 3787 return ctx; 3788 } 3789 3790 err = -EINVAL; 3791 ctxn = pmu->task_ctx_nr; 3792 if (ctxn < 0) 3793 goto errout; 3794 3795 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 3796 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 3797 if (!task_ctx_data) { 3798 err = -ENOMEM; 3799 goto errout; 3800 } 3801 } 3802 3803 retry: 3804 ctx = perf_lock_task_context(task, ctxn, &flags); 3805 if (ctx) { 3806 clone_ctx = unclone_ctx(ctx); 3807 ++ctx->pin_count; 3808 3809 if (task_ctx_data && !ctx->task_ctx_data) { 3810 ctx->task_ctx_data = task_ctx_data; 3811 task_ctx_data = NULL; 3812 } 3813 raw_spin_unlock_irqrestore(&ctx->lock, flags); 3814 3815 if (clone_ctx) 3816 put_ctx(clone_ctx); 3817 } else { 3818 ctx = alloc_perf_context(pmu, task); 3819 err = -ENOMEM; 3820 if (!ctx) 3821 goto errout; 3822 3823 if (task_ctx_data) { 3824 ctx->task_ctx_data = task_ctx_data; 3825 task_ctx_data = NULL; 3826 } 3827 3828 err = 0; 3829 mutex_lock(&task->perf_event_mutex); 3830 /* 3831 * If it has already passed perf_event_exit_task(). 3832 * we must see PF_EXITING, it takes this mutex too. 3833 */ 3834 if (task->flags & PF_EXITING) 3835 err = -ESRCH; 3836 else if (task->perf_event_ctxp[ctxn]) 3837 err = -EAGAIN; 3838 else { 3839 get_ctx(ctx); 3840 ++ctx->pin_count; 3841 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 3842 } 3843 mutex_unlock(&task->perf_event_mutex); 3844 3845 if (unlikely(err)) { 3846 put_ctx(ctx); 3847 3848 if (err == -EAGAIN) 3849 goto retry; 3850 goto errout; 3851 } 3852 } 3853 3854 kfree(task_ctx_data); 3855 return ctx; 3856 3857 errout: 3858 kfree(task_ctx_data); 3859 return ERR_PTR(err); 3860 } 3861 3862 static void perf_event_free_filter(struct perf_event *event); 3863 static void perf_event_free_bpf_prog(struct perf_event *event); 3864 3865 static void free_event_rcu(struct rcu_head *head) 3866 { 3867 struct perf_event *event; 3868 3869 event = container_of(head, struct perf_event, rcu_head); 3870 if (event->ns) 3871 put_pid_ns(event->ns); 3872 perf_event_free_filter(event); 3873 kfree(event); 3874 } 3875 3876 static void ring_buffer_attach(struct perf_event *event, 3877 struct ring_buffer *rb); 3878 3879 static void detach_sb_event(struct perf_event *event) 3880 { 3881 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 3882 3883 raw_spin_lock(&pel->lock); 3884 list_del_rcu(&event->sb_list); 3885 raw_spin_unlock(&pel->lock); 3886 } 3887 3888 static bool is_sb_event(struct perf_event *event) 3889 { 3890 struct perf_event_attr *attr = &event->attr; 3891 3892 if (event->parent) 3893 return false; 3894 3895 if (event->attach_state & PERF_ATTACH_TASK) 3896 return false; 3897 3898 if (attr->mmap || attr->mmap_data || attr->mmap2 || 3899 attr->comm || attr->comm_exec || 3900 attr->task || 3901 attr->context_switch) 3902 return true; 3903 return false; 3904 } 3905 3906 static void unaccount_pmu_sb_event(struct perf_event *event) 3907 { 3908 if (is_sb_event(event)) 3909 detach_sb_event(event); 3910 } 3911 3912 static void unaccount_event_cpu(struct perf_event *event, int cpu) 3913 { 3914 if (event->parent) 3915 return; 3916 3917 if (is_cgroup_event(event)) 3918 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 3919 } 3920 3921 #ifdef CONFIG_NO_HZ_FULL 3922 static DEFINE_SPINLOCK(nr_freq_lock); 3923 #endif 3924 3925 static void unaccount_freq_event_nohz(void) 3926 { 3927 #ifdef CONFIG_NO_HZ_FULL 3928 spin_lock(&nr_freq_lock); 3929 if (atomic_dec_and_test(&nr_freq_events)) 3930 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 3931 spin_unlock(&nr_freq_lock); 3932 #endif 3933 } 3934 3935 static void unaccount_freq_event(void) 3936 { 3937 if (tick_nohz_full_enabled()) 3938 unaccount_freq_event_nohz(); 3939 else 3940 atomic_dec(&nr_freq_events); 3941 } 3942 3943 static void unaccount_event(struct perf_event *event) 3944 { 3945 bool dec = false; 3946 3947 if (event->parent) 3948 return; 3949 3950 if (event->attach_state & PERF_ATTACH_TASK) 3951 dec = true; 3952 if (event->attr.mmap || event->attr.mmap_data) 3953 atomic_dec(&nr_mmap_events); 3954 if (event->attr.comm) 3955 atomic_dec(&nr_comm_events); 3956 if (event->attr.namespaces) 3957 atomic_dec(&nr_namespaces_events); 3958 if (event->attr.task) 3959 atomic_dec(&nr_task_events); 3960 if (event->attr.freq) 3961 unaccount_freq_event(); 3962 if (event->attr.context_switch) { 3963 dec = true; 3964 atomic_dec(&nr_switch_events); 3965 } 3966 if (is_cgroup_event(event)) 3967 dec = true; 3968 if (has_branch_stack(event)) 3969 dec = true; 3970 3971 if (dec) { 3972 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 3973 schedule_delayed_work(&perf_sched_work, HZ); 3974 } 3975 3976 unaccount_event_cpu(event, event->cpu); 3977 3978 unaccount_pmu_sb_event(event); 3979 } 3980 3981 static void perf_sched_delayed(struct work_struct *work) 3982 { 3983 mutex_lock(&perf_sched_mutex); 3984 if (atomic_dec_and_test(&perf_sched_count)) 3985 static_branch_disable(&perf_sched_events); 3986 mutex_unlock(&perf_sched_mutex); 3987 } 3988 3989 /* 3990 * The following implement mutual exclusion of events on "exclusive" pmus 3991 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 3992 * at a time, so we disallow creating events that might conflict, namely: 3993 * 3994 * 1) cpu-wide events in the presence of per-task events, 3995 * 2) per-task events in the presence of cpu-wide events, 3996 * 3) two matching events on the same context. 3997 * 3998 * The former two cases are handled in the allocation path (perf_event_alloc(), 3999 * _free_event()), the latter -- before the first perf_install_in_context(). 4000 */ 4001 static int exclusive_event_init(struct perf_event *event) 4002 { 4003 struct pmu *pmu = event->pmu; 4004 4005 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4006 return 0; 4007 4008 /* 4009 * Prevent co-existence of per-task and cpu-wide events on the 4010 * same exclusive pmu. 4011 * 4012 * Negative pmu::exclusive_cnt means there are cpu-wide 4013 * events on this "exclusive" pmu, positive means there are 4014 * per-task events. 4015 * 4016 * Since this is called in perf_event_alloc() path, event::ctx 4017 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4018 * to mean "per-task event", because unlike other attach states it 4019 * never gets cleared. 4020 */ 4021 if (event->attach_state & PERF_ATTACH_TASK) { 4022 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4023 return -EBUSY; 4024 } else { 4025 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4026 return -EBUSY; 4027 } 4028 4029 return 0; 4030 } 4031 4032 static void exclusive_event_destroy(struct perf_event *event) 4033 { 4034 struct pmu *pmu = event->pmu; 4035 4036 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4037 return; 4038 4039 /* see comment in exclusive_event_init() */ 4040 if (event->attach_state & PERF_ATTACH_TASK) 4041 atomic_dec(&pmu->exclusive_cnt); 4042 else 4043 atomic_inc(&pmu->exclusive_cnt); 4044 } 4045 4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4047 { 4048 if ((e1->pmu == e2->pmu) && 4049 (e1->cpu == e2->cpu || 4050 e1->cpu == -1 || 4051 e2->cpu == -1)) 4052 return true; 4053 return false; 4054 } 4055 4056 /* Called under the same ctx::mutex as perf_install_in_context() */ 4057 static bool exclusive_event_installable(struct perf_event *event, 4058 struct perf_event_context *ctx) 4059 { 4060 struct perf_event *iter_event; 4061 struct pmu *pmu = event->pmu; 4062 4063 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4064 return true; 4065 4066 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4067 if (exclusive_event_match(iter_event, event)) 4068 return false; 4069 } 4070 4071 return true; 4072 } 4073 4074 static void perf_addr_filters_splice(struct perf_event *event, 4075 struct list_head *head); 4076 4077 static void _free_event(struct perf_event *event) 4078 { 4079 irq_work_sync(&event->pending); 4080 4081 unaccount_event(event); 4082 4083 if (event->rb) { 4084 /* 4085 * Can happen when we close an event with re-directed output. 4086 * 4087 * Since we have a 0 refcount, perf_mmap_close() will skip 4088 * over us; possibly making our ring_buffer_put() the last. 4089 */ 4090 mutex_lock(&event->mmap_mutex); 4091 ring_buffer_attach(event, NULL); 4092 mutex_unlock(&event->mmap_mutex); 4093 } 4094 4095 if (is_cgroup_event(event)) 4096 perf_detach_cgroup(event); 4097 4098 if (!event->parent) { 4099 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4100 put_callchain_buffers(); 4101 } 4102 4103 perf_event_free_bpf_prog(event); 4104 perf_addr_filters_splice(event, NULL); 4105 kfree(event->addr_filters_offs); 4106 4107 if (event->destroy) 4108 event->destroy(event); 4109 4110 if (event->ctx) 4111 put_ctx(event->ctx); 4112 4113 exclusive_event_destroy(event); 4114 module_put(event->pmu->module); 4115 4116 call_rcu(&event->rcu_head, free_event_rcu); 4117 } 4118 4119 /* 4120 * Used to free events which have a known refcount of 1, such as in error paths 4121 * where the event isn't exposed yet and inherited events. 4122 */ 4123 static void free_event(struct perf_event *event) 4124 { 4125 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4126 "unexpected event refcount: %ld; ptr=%p\n", 4127 atomic_long_read(&event->refcount), event)) { 4128 /* leak to avoid use-after-free */ 4129 return; 4130 } 4131 4132 _free_event(event); 4133 } 4134 4135 /* 4136 * Remove user event from the owner task. 4137 */ 4138 static void perf_remove_from_owner(struct perf_event *event) 4139 { 4140 struct task_struct *owner; 4141 4142 rcu_read_lock(); 4143 /* 4144 * Matches the smp_store_release() in perf_event_exit_task(). If we 4145 * observe !owner it means the list deletion is complete and we can 4146 * indeed free this event, otherwise we need to serialize on 4147 * owner->perf_event_mutex. 4148 */ 4149 owner = READ_ONCE(event->owner); 4150 if (owner) { 4151 /* 4152 * Since delayed_put_task_struct() also drops the last 4153 * task reference we can safely take a new reference 4154 * while holding the rcu_read_lock(). 4155 */ 4156 get_task_struct(owner); 4157 } 4158 rcu_read_unlock(); 4159 4160 if (owner) { 4161 /* 4162 * If we're here through perf_event_exit_task() we're already 4163 * holding ctx->mutex which would be an inversion wrt. the 4164 * normal lock order. 4165 * 4166 * However we can safely take this lock because its the child 4167 * ctx->mutex. 4168 */ 4169 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4170 4171 /* 4172 * We have to re-check the event->owner field, if it is cleared 4173 * we raced with perf_event_exit_task(), acquiring the mutex 4174 * ensured they're done, and we can proceed with freeing the 4175 * event. 4176 */ 4177 if (event->owner) { 4178 list_del_init(&event->owner_entry); 4179 smp_store_release(&event->owner, NULL); 4180 } 4181 mutex_unlock(&owner->perf_event_mutex); 4182 put_task_struct(owner); 4183 } 4184 } 4185 4186 static void put_event(struct perf_event *event) 4187 { 4188 if (!atomic_long_dec_and_test(&event->refcount)) 4189 return; 4190 4191 _free_event(event); 4192 } 4193 4194 /* 4195 * Kill an event dead; while event:refcount will preserve the event 4196 * object, it will not preserve its functionality. Once the last 'user' 4197 * gives up the object, we'll destroy the thing. 4198 */ 4199 int perf_event_release_kernel(struct perf_event *event) 4200 { 4201 struct perf_event_context *ctx = event->ctx; 4202 struct perf_event *child, *tmp; 4203 LIST_HEAD(free_list); 4204 4205 /* 4206 * If we got here through err_file: fput(event_file); we will not have 4207 * attached to a context yet. 4208 */ 4209 if (!ctx) { 4210 WARN_ON_ONCE(event->attach_state & 4211 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4212 goto no_ctx; 4213 } 4214 4215 if (!is_kernel_event(event)) 4216 perf_remove_from_owner(event); 4217 4218 ctx = perf_event_ctx_lock(event); 4219 WARN_ON_ONCE(ctx->parent_ctx); 4220 perf_remove_from_context(event, DETACH_GROUP); 4221 4222 raw_spin_lock_irq(&ctx->lock); 4223 /* 4224 * Mark this event as STATE_DEAD, there is no external reference to it 4225 * anymore. 4226 * 4227 * Anybody acquiring event->child_mutex after the below loop _must_ 4228 * also see this, most importantly inherit_event() which will avoid 4229 * placing more children on the list. 4230 * 4231 * Thus this guarantees that we will in fact observe and kill _ALL_ 4232 * child events. 4233 */ 4234 event->state = PERF_EVENT_STATE_DEAD; 4235 raw_spin_unlock_irq(&ctx->lock); 4236 4237 perf_event_ctx_unlock(event, ctx); 4238 4239 again: 4240 mutex_lock(&event->child_mutex); 4241 list_for_each_entry(child, &event->child_list, child_list) { 4242 4243 /* 4244 * Cannot change, child events are not migrated, see the 4245 * comment with perf_event_ctx_lock_nested(). 4246 */ 4247 ctx = READ_ONCE(child->ctx); 4248 /* 4249 * Since child_mutex nests inside ctx::mutex, we must jump 4250 * through hoops. We start by grabbing a reference on the ctx. 4251 * 4252 * Since the event cannot get freed while we hold the 4253 * child_mutex, the context must also exist and have a !0 4254 * reference count. 4255 */ 4256 get_ctx(ctx); 4257 4258 /* 4259 * Now that we have a ctx ref, we can drop child_mutex, and 4260 * acquire ctx::mutex without fear of it going away. Then we 4261 * can re-acquire child_mutex. 4262 */ 4263 mutex_unlock(&event->child_mutex); 4264 mutex_lock(&ctx->mutex); 4265 mutex_lock(&event->child_mutex); 4266 4267 /* 4268 * Now that we hold ctx::mutex and child_mutex, revalidate our 4269 * state, if child is still the first entry, it didn't get freed 4270 * and we can continue doing so. 4271 */ 4272 tmp = list_first_entry_or_null(&event->child_list, 4273 struct perf_event, child_list); 4274 if (tmp == child) { 4275 perf_remove_from_context(child, DETACH_GROUP); 4276 list_move(&child->child_list, &free_list); 4277 /* 4278 * This matches the refcount bump in inherit_event(); 4279 * this can't be the last reference. 4280 */ 4281 put_event(event); 4282 } 4283 4284 mutex_unlock(&event->child_mutex); 4285 mutex_unlock(&ctx->mutex); 4286 put_ctx(ctx); 4287 goto again; 4288 } 4289 mutex_unlock(&event->child_mutex); 4290 4291 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4292 list_del(&child->child_list); 4293 free_event(child); 4294 } 4295 4296 no_ctx: 4297 put_event(event); /* Must be the 'last' reference */ 4298 return 0; 4299 } 4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4301 4302 /* 4303 * Called when the last reference to the file is gone. 4304 */ 4305 static int perf_release(struct inode *inode, struct file *file) 4306 { 4307 perf_event_release_kernel(file->private_data); 4308 return 0; 4309 } 4310 4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4312 { 4313 struct perf_event *child; 4314 u64 total = 0; 4315 4316 *enabled = 0; 4317 *running = 0; 4318 4319 mutex_lock(&event->child_mutex); 4320 4321 (void)perf_event_read(event, false); 4322 total += perf_event_count(event); 4323 4324 *enabled += event->total_time_enabled + 4325 atomic64_read(&event->child_total_time_enabled); 4326 *running += event->total_time_running + 4327 atomic64_read(&event->child_total_time_running); 4328 4329 list_for_each_entry(child, &event->child_list, child_list) { 4330 (void)perf_event_read(child, false); 4331 total += perf_event_count(child); 4332 *enabled += child->total_time_enabled; 4333 *running += child->total_time_running; 4334 } 4335 mutex_unlock(&event->child_mutex); 4336 4337 return total; 4338 } 4339 4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4341 { 4342 struct perf_event_context *ctx; 4343 u64 count; 4344 4345 ctx = perf_event_ctx_lock(event); 4346 count = __perf_event_read_value(event, enabled, running); 4347 perf_event_ctx_unlock(event, ctx); 4348 4349 return count; 4350 } 4351 EXPORT_SYMBOL_GPL(perf_event_read_value); 4352 4353 static int __perf_read_group_add(struct perf_event *leader, 4354 u64 read_format, u64 *values) 4355 { 4356 struct perf_event_context *ctx = leader->ctx; 4357 struct perf_event *sub; 4358 unsigned long flags; 4359 int n = 1; /* skip @nr */ 4360 int ret; 4361 4362 ret = perf_event_read(leader, true); 4363 if (ret) 4364 return ret; 4365 4366 raw_spin_lock_irqsave(&ctx->lock, flags); 4367 4368 /* 4369 * Since we co-schedule groups, {enabled,running} times of siblings 4370 * will be identical to those of the leader, so we only publish one 4371 * set. 4372 */ 4373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4374 values[n++] += leader->total_time_enabled + 4375 atomic64_read(&leader->child_total_time_enabled); 4376 } 4377 4378 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4379 values[n++] += leader->total_time_running + 4380 atomic64_read(&leader->child_total_time_running); 4381 } 4382 4383 /* 4384 * Write {count,id} tuples for every sibling. 4385 */ 4386 values[n++] += perf_event_count(leader); 4387 if (read_format & PERF_FORMAT_ID) 4388 values[n++] = primary_event_id(leader); 4389 4390 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4391 values[n++] += perf_event_count(sub); 4392 if (read_format & PERF_FORMAT_ID) 4393 values[n++] = primary_event_id(sub); 4394 } 4395 4396 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4397 return 0; 4398 } 4399 4400 static int perf_read_group(struct perf_event *event, 4401 u64 read_format, char __user *buf) 4402 { 4403 struct perf_event *leader = event->group_leader, *child; 4404 struct perf_event_context *ctx = leader->ctx; 4405 int ret; 4406 u64 *values; 4407 4408 lockdep_assert_held(&ctx->mutex); 4409 4410 values = kzalloc(event->read_size, GFP_KERNEL); 4411 if (!values) 4412 return -ENOMEM; 4413 4414 values[0] = 1 + leader->nr_siblings; 4415 4416 /* 4417 * By locking the child_mutex of the leader we effectively 4418 * lock the child list of all siblings.. XXX explain how. 4419 */ 4420 mutex_lock(&leader->child_mutex); 4421 4422 ret = __perf_read_group_add(leader, read_format, values); 4423 if (ret) 4424 goto unlock; 4425 4426 list_for_each_entry(child, &leader->child_list, child_list) { 4427 ret = __perf_read_group_add(child, read_format, values); 4428 if (ret) 4429 goto unlock; 4430 } 4431 4432 mutex_unlock(&leader->child_mutex); 4433 4434 ret = event->read_size; 4435 if (copy_to_user(buf, values, event->read_size)) 4436 ret = -EFAULT; 4437 goto out; 4438 4439 unlock: 4440 mutex_unlock(&leader->child_mutex); 4441 out: 4442 kfree(values); 4443 return ret; 4444 } 4445 4446 static int perf_read_one(struct perf_event *event, 4447 u64 read_format, char __user *buf) 4448 { 4449 u64 enabled, running; 4450 u64 values[4]; 4451 int n = 0; 4452 4453 values[n++] = __perf_event_read_value(event, &enabled, &running); 4454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4455 values[n++] = enabled; 4456 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4457 values[n++] = running; 4458 if (read_format & PERF_FORMAT_ID) 4459 values[n++] = primary_event_id(event); 4460 4461 if (copy_to_user(buf, values, n * sizeof(u64))) 4462 return -EFAULT; 4463 4464 return n * sizeof(u64); 4465 } 4466 4467 static bool is_event_hup(struct perf_event *event) 4468 { 4469 bool no_children; 4470 4471 if (event->state > PERF_EVENT_STATE_EXIT) 4472 return false; 4473 4474 mutex_lock(&event->child_mutex); 4475 no_children = list_empty(&event->child_list); 4476 mutex_unlock(&event->child_mutex); 4477 return no_children; 4478 } 4479 4480 /* 4481 * Read the performance event - simple non blocking version for now 4482 */ 4483 static ssize_t 4484 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4485 { 4486 u64 read_format = event->attr.read_format; 4487 int ret; 4488 4489 /* 4490 * Return end-of-file for a read on a event that is in 4491 * error state (i.e. because it was pinned but it couldn't be 4492 * scheduled on to the CPU at some point). 4493 */ 4494 if (event->state == PERF_EVENT_STATE_ERROR) 4495 return 0; 4496 4497 if (count < event->read_size) 4498 return -ENOSPC; 4499 4500 WARN_ON_ONCE(event->ctx->parent_ctx); 4501 if (read_format & PERF_FORMAT_GROUP) 4502 ret = perf_read_group(event, read_format, buf); 4503 else 4504 ret = perf_read_one(event, read_format, buf); 4505 4506 return ret; 4507 } 4508 4509 static ssize_t 4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4511 { 4512 struct perf_event *event = file->private_data; 4513 struct perf_event_context *ctx; 4514 int ret; 4515 4516 ctx = perf_event_ctx_lock(event); 4517 ret = __perf_read(event, buf, count); 4518 perf_event_ctx_unlock(event, ctx); 4519 4520 return ret; 4521 } 4522 4523 static __poll_t perf_poll(struct file *file, poll_table *wait) 4524 { 4525 struct perf_event *event = file->private_data; 4526 struct ring_buffer *rb; 4527 __poll_t events = EPOLLHUP; 4528 4529 poll_wait(file, &event->waitq, wait); 4530 4531 if (is_event_hup(event)) 4532 return events; 4533 4534 /* 4535 * Pin the event->rb by taking event->mmap_mutex; otherwise 4536 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4537 */ 4538 mutex_lock(&event->mmap_mutex); 4539 rb = event->rb; 4540 if (rb) 4541 events = atomic_xchg(&rb->poll, 0); 4542 mutex_unlock(&event->mmap_mutex); 4543 return events; 4544 } 4545 4546 static void _perf_event_reset(struct perf_event *event) 4547 { 4548 (void)perf_event_read(event, false); 4549 local64_set(&event->count, 0); 4550 perf_event_update_userpage(event); 4551 } 4552 4553 /* 4554 * Holding the top-level event's child_mutex means that any 4555 * descendant process that has inherited this event will block 4556 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4557 * task existence requirements of perf_event_enable/disable. 4558 */ 4559 static void perf_event_for_each_child(struct perf_event *event, 4560 void (*func)(struct perf_event *)) 4561 { 4562 struct perf_event *child; 4563 4564 WARN_ON_ONCE(event->ctx->parent_ctx); 4565 4566 mutex_lock(&event->child_mutex); 4567 func(event); 4568 list_for_each_entry(child, &event->child_list, child_list) 4569 func(child); 4570 mutex_unlock(&event->child_mutex); 4571 } 4572 4573 static void perf_event_for_each(struct perf_event *event, 4574 void (*func)(struct perf_event *)) 4575 { 4576 struct perf_event_context *ctx = event->ctx; 4577 struct perf_event *sibling; 4578 4579 lockdep_assert_held(&ctx->mutex); 4580 4581 event = event->group_leader; 4582 4583 perf_event_for_each_child(event, func); 4584 list_for_each_entry(sibling, &event->sibling_list, group_entry) 4585 perf_event_for_each_child(sibling, func); 4586 } 4587 4588 static void __perf_event_period(struct perf_event *event, 4589 struct perf_cpu_context *cpuctx, 4590 struct perf_event_context *ctx, 4591 void *info) 4592 { 4593 u64 value = *((u64 *)info); 4594 bool active; 4595 4596 if (event->attr.freq) { 4597 event->attr.sample_freq = value; 4598 } else { 4599 event->attr.sample_period = value; 4600 event->hw.sample_period = value; 4601 } 4602 4603 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4604 if (active) { 4605 perf_pmu_disable(ctx->pmu); 4606 /* 4607 * We could be throttled; unthrottle now to avoid the tick 4608 * trying to unthrottle while we already re-started the event. 4609 */ 4610 if (event->hw.interrupts == MAX_INTERRUPTS) { 4611 event->hw.interrupts = 0; 4612 perf_log_throttle(event, 1); 4613 } 4614 event->pmu->stop(event, PERF_EF_UPDATE); 4615 } 4616 4617 local64_set(&event->hw.period_left, 0); 4618 4619 if (active) { 4620 event->pmu->start(event, PERF_EF_RELOAD); 4621 perf_pmu_enable(ctx->pmu); 4622 } 4623 } 4624 4625 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4626 { 4627 u64 value; 4628 4629 if (!is_sampling_event(event)) 4630 return -EINVAL; 4631 4632 if (copy_from_user(&value, arg, sizeof(value))) 4633 return -EFAULT; 4634 4635 if (!value) 4636 return -EINVAL; 4637 4638 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4639 return -EINVAL; 4640 4641 event_function_call(event, __perf_event_period, &value); 4642 4643 return 0; 4644 } 4645 4646 static const struct file_operations perf_fops; 4647 4648 static inline int perf_fget_light(int fd, struct fd *p) 4649 { 4650 struct fd f = fdget(fd); 4651 if (!f.file) 4652 return -EBADF; 4653 4654 if (f.file->f_op != &perf_fops) { 4655 fdput(f); 4656 return -EBADF; 4657 } 4658 *p = f; 4659 return 0; 4660 } 4661 4662 static int perf_event_set_output(struct perf_event *event, 4663 struct perf_event *output_event); 4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 4666 4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 4668 { 4669 void (*func)(struct perf_event *); 4670 u32 flags = arg; 4671 4672 switch (cmd) { 4673 case PERF_EVENT_IOC_ENABLE: 4674 func = _perf_event_enable; 4675 break; 4676 case PERF_EVENT_IOC_DISABLE: 4677 func = _perf_event_disable; 4678 break; 4679 case PERF_EVENT_IOC_RESET: 4680 func = _perf_event_reset; 4681 break; 4682 4683 case PERF_EVENT_IOC_REFRESH: 4684 return _perf_event_refresh(event, arg); 4685 4686 case PERF_EVENT_IOC_PERIOD: 4687 return perf_event_period(event, (u64 __user *)arg); 4688 4689 case PERF_EVENT_IOC_ID: 4690 { 4691 u64 id = primary_event_id(event); 4692 4693 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 4694 return -EFAULT; 4695 return 0; 4696 } 4697 4698 case PERF_EVENT_IOC_SET_OUTPUT: 4699 { 4700 int ret; 4701 if (arg != -1) { 4702 struct perf_event *output_event; 4703 struct fd output; 4704 ret = perf_fget_light(arg, &output); 4705 if (ret) 4706 return ret; 4707 output_event = output.file->private_data; 4708 ret = perf_event_set_output(event, output_event); 4709 fdput(output); 4710 } else { 4711 ret = perf_event_set_output(event, NULL); 4712 } 4713 return ret; 4714 } 4715 4716 case PERF_EVENT_IOC_SET_FILTER: 4717 return perf_event_set_filter(event, (void __user *)arg); 4718 4719 case PERF_EVENT_IOC_SET_BPF: 4720 return perf_event_set_bpf_prog(event, arg); 4721 4722 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 4723 struct ring_buffer *rb; 4724 4725 rcu_read_lock(); 4726 rb = rcu_dereference(event->rb); 4727 if (!rb || !rb->nr_pages) { 4728 rcu_read_unlock(); 4729 return -EINVAL; 4730 } 4731 rb_toggle_paused(rb, !!arg); 4732 rcu_read_unlock(); 4733 return 0; 4734 } 4735 4736 case PERF_EVENT_IOC_QUERY_BPF: 4737 return perf_event_query_prog_array(event, (void __user *)arg); 4738 default: 4739 return -ENOTTY; 4740 } 4741 4742 if (flags & PERF_IOC_FLAG_GROUP) 4743 perf_event_for_each(event, func); 4744 else 4745 perf_event_for_each_child(event, func); 4746 4747 return 0; 4748 } 4749 4750 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4751 { 4752 struct perf_event *event = file->private_data; 4753 struct perf_event_context *ctx; 4754 long ret; 4755 4756 ctx = perf_event_ctx_lock(event); 4757 ret = _perf_ioctl(event, cmd, arg); 4758 perf_event_ctx_unlock(event, ctx); 4759 4760 return ret; 4761 } 4762 4763 #ifdef CONFIG_COMPAT 4764 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 4765 unsigned long arg) 4766 { 4767 switch (_IOC_NR(cmd)) { 4768 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 4769 case _IOC_NR(PERF_EVENT_IOC_ID): 4770 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 4771 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 4772 cmd &= ~IOCSIZE_MASK; 4773 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 4774 } 4775 break; 4776 } 4777 return perf_ioctl(file, cmd, arg); 4778 } 4779 #else 4780 # define perf_compat_ioctl NULL 4781 #endif 4782 4783 int perf_event_task_enable(void) 4784 { 4785 struct perf_event_context *ctx; 4786 struct perf_event *event; 4787 4788 mutex_lock(¤t->perf_event_mutex); 4789 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4790 ctx = perf_event_ctx_lock(event); 4791 perf_event_for_each_child(event, _perf_event_enable); 4792 perf_event_ctx_unlock(event, ctx); 4793 } 4794 mutex_unlock(¤t->perf_event_mutex); 4795 4796 return 0; 4797 } 4798 4799 int perf_event_task_disable(void) 4800 { 4801 struct perf_event_context *ctx; 4802 struct perf_event *event; 4803 4804 mutex_lock(¤t->perf_event_mutex); 4805 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 4806 ctx = perf_event_ctx_lock(event); 4807 perf_event_for_each_child(event, _perf_event_disable); 4808 perf_event_ctx_unlock(event, ctx); 4809 } 4810 mutex_unlock(¤t->perf_event_mutex); 4811 4812 return 0; 4813 } 4814 4815 static int perf_event_index(struct perf_event *event) 4816 { 4817 if (event->hw.state & PERF_HES_STOPPED) 4818 return 0; 4819 4820 if (event->state != PERF_EVENT_STATE_ACTIVE) 4821 return 0; 4822 4823 return event->pmu->event_idx(event); 4824 } 4825 4826 static void calc_timer_values(struct perf_event *event, 4827 u64 *now, 4828 u64 *enabled, 4829 u64 *running) 4830 { 4831 u64 ctx_time; 4832 4833 *now = perf_clock(); 4834 ctx_time = event->shadow_ctx_time + *now; 4835 __perf_update_times(event, ctx_time, enabled, running); 4836 } 4837 4838 static void perf_event_init_userpage(struct perf_event *event) 4839 { 4840 struct perf_event_mmap_page *userpg; 4841 struct ring_buffer *rb; 4842 4843 rcu_read_lock(); 4844 rb = rcu_dereference(event->rb); 4845 if (!rb) 4846 goto unlock; 4847 4848 userpg = rb->user_page; 4849 4850 /* Allow new userspace to detect that bit 0 is deprecated */ 4851 userpg->cap_bit0_is_deprecated = 1; 4852 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 4853 userpg->data_offset = PAGE_SIZE; 4854 userpg->data_size = perf_data_size(rb); 4855 4856 unlock: 4857 rcu_read_unlock(); 4858 } 4859 4860 void __weak arch_perf_update_userpage( 4861 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 4862 { 4863 } 4864 4865 /* 4866 * Callers need to ensure there can be no nesting of this function, otherwise 4867 * the seqlock logic goes bad. We can not serialize this because the arch 4868 * code calls this from NMI context. 4869 */ 4870 void perf_event_update_userpage(struct perf_event *event) 4871 { 4872 struct perf_event_mmap_page *userpg; 4873 struct ring_buffer *rb; 4874 u64 enabled, running, now; 4875 4876 rcu_read_lock(); 4877 rb = rcu_dereference(event->rb); 4878 if (!rb) 4879 goto unlock; 4880 4881 /* 4882 * compute total_time_enabled, total_time_running 4883 * based on snapshot values taken when the event 4884 * was last scheduled in. 4885 * 4886 * we cannot simply called update_context_time() 4887 * because of locking issue as we can be called in 4888 * NMI context 4889 */ 4890 calc_timer_values(event, &now, &enabled, &running); 4891 4892 userpg = rb->user_page; 4893 /* 4894 * Disable preemption so as to not let the corresponding user-space 4895 * spin too long if we get preempted. 4896 */ 4897 preempt_disable(); 4898 ++userpg->lock; 4899 barrier(); 4900 userpg->index = perf_event_index(event); 4901 userpg->offset = perf_event_count(event); 4902 if (userpg->index) 4903 userpg->offset -= local64_read(&event->hw.prev_count); 4904 4905 userpg->time_enabled = enabled + 4906 atomic64_read(&event->child_total_time_enabled); 4907 4908 userpg->time_running = running + 4909 atomic64_read(&event->child_total_time_running); 4910 4911 arch_perf_update_userpage(event, userpg, now); 4912 4913 barrier(); 4914 ++userpg->lock; 4915 preempt_enable(); 4916 unlock: 4917 rcu_read_unlock(); 4918 } 4919 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 4920 4921 static int perf_mmap_fault(struct vm_fault *vmf) 4922 { 4923 struct perf_event *event = vmf->vma->vm_file->private_data; 4924 struct ring_buffer *rb; 4925 int ret = VM_FAULT_SIGBUS; 4926 4927 if (vmf->flags & FAULT_FLAG_MKWRITE) { 4928 if (vmf->pgoff == 0) 4929 ret = 0; 4930 return ret; 4931 } 4932 4933 rcu_read_lock(); 4934 rb = rcu_dereference(event->rb); 4935 if (!rb) 4936 goto unlock; 4937 4938 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 4939 goto unlock; 4940 4941 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 4942 if (!vmf->page) 4943 goto unlock; 4944 4945 get_page(vmf->page); 4946 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 4947 vmf->page->index = vmf->pgoff; 4948 4949 ret = 0; 4950 unlock: 4951 rcu_read_unlock(); 4952 4953 return ret; 4954 } 4955 4956 static void ring_buffer_attach(struct perf_event *event, 4957 struct ring_buffer *rb) 4958 { 4959 struct ring_buffer *old_rb = NULL; 4960 unsigned long flags; 4961 4962 if (event->rb) { 4963 /* 4964 * Should be impossible, we set this when removing 4965 * event->rb_entry and wait/clear when adding event->rb_entry. 4966 */ 4967 WARN_ON_ONCE(event->rcu_pending); 4968 4969 old_rb = event->rb; 4970 spin_lock_irqsave(&old_rb->event_lock, flags); 4971 list_del_rcu(&event->rb_entry); 4972 spin_unlock_irqrestore(&old_rb->event_lock, flags); 4973 4974 event->rcu_batches = get_state_synchronize_rcu(); 4975 event->rcu_pending = 1; 4976 } 4977 4978 if (rb) { 4979 if (event->rcu_pending) { 4980 cond_synchronize_rcu(event->rcu_batches); 4981 event->rcu_pending = 0; 4982 } 4983 4984 spin_lock_irqsave(&rb->event_lock, flags); 4985 list_add_rcu(&event->rb_entry, &rb->event_list); 4986 spin_unlock_irqrestore(&rb->event_lock, flags); 4987 } 4988 4989 /* 4990 * Avoid racing with perf_mmap_close(AUX): stop the event 4991 * before swizzling the event::rb pointer; if it's getting 4992 * unmapped, its aux_mmap_count will be 0 and it won't 4993 * restart. See the comment in __perf_pmu_output_stop(). 4994 * 4995 * Data will inevitably be lost when set_output is done in 4996 * mid-air, but then again, whoever does it like this is 4997 * not in for the data anyway. 4998 */ 4999 if (has_aux(event)) 5000 perf_event_stop(event, 0); 5001 5002 rcu_assign_pointer(event->rb, rb); 5003 5004 if (old_rb) { 5005 ring_buffer_put(old_rb); 5006 /* 5007 * Since we detached before setting the new rb, so that we 5008 * could attach the new rb, we could have missed a wakeup. 5009 * Provide it now. 5010 */ 5011 wake_up_all(&event->waitq); 5012 } 5013 } 5014 5015 static void ring_buffer_wakeup(struct perf_event *event) 5016 { 5017 struct ring_buffer *rb; 5018 5019 rcu_read_lock(); 5020 rb = rcu_dereference(event->rb); 5021 if (rb) { 5022 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5023 wake_up_all(&event->waitq); 5024 } 5025 rcu_read_unlock(); 5026 } 5027 5028 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5029 { 5030 struct ring_buffer *rb; 5031 5032 rcu_read_lock(); 5033 rb = rcu_dereference(event->rb); 5034 if (rb) { 5035 if (!atomic_inc_not_zero(&rb->refcount)) 5036 rb = NULL; 5037 } 5038 rcu_read_unlock(); 5039 5040 return rb; 5041 } 5042 5043 void ring_buffer_put(struct ring_buffer *rb) 5044 { 5045 if (!atomic_dec_and_test(&rb->refcount)) 5046 return; 5047 5048 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5049 5050 call_rcu(&rb->rcu_head, rb_free_rcu); 5051 } 5052 5053 static void perf_mmap_open(struct vm_area_struct *vma) 5054 { 5055 struct perf_event *event = vma->vm_file->private_data; 5056 5057 atomic_inc(&event->mmap_count); 5058 atomic_inc(&event->rb->mmap_count); 5059 5060 if (vma->vm_pgoff) 5061 atomic_inc(&event->rb->aux_mmap_count); 5062 5063 if (event->pmu->event_mapped) 5064 event->pmu->event_mapped(event, vma->vm_mm); 5065 } 5066 5067 static void perf_pmu_output_stop(struct perf_event *event); 5068 5069 /* 5070 * A buffer can be mmap()ed multiple times; either directly through the same 5071 * event, or through other events by use of perf_event_set_output(). 5072 * 5073 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5074 * the buffer here, where we still have a VM context. This means we need 5075 * to detach all events redirecting to us. 5076 */ 5077 static void perf_mmap_close(struct vm_area_struct *vma) 5078 { 5079 struct perf_event *event = vma->vm_file->private_data; 5080 5081 struct ring_buffer *rb = ring_buffer_get(event); 5082 struct user_struct *mmap_user = rb->mmap_user; 5083 int mmap_locked = rb->mmap_locked; 5084 unsigned long size = perf_data_size(rb); 5085 5086 if (event->pmu->event_unmapped) 5087 event->pmu->event_unmapped(event, vma->vm_mm); 5088 5089 /* 5090 * rb->aux_mmap_count will always drop before rb->mmap_count and 5091 * event->mmap_count, so it is ok to use event->mmap_mutex to 5092 * serialize with perf_mmap here. 5093 */ 5094 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5095 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5096 /* 5097 * Stop all AUX events that are writing to this buffer, 5098 * so that we can free its AUX pages and corresponding PMU 5099 * data. Note that after rb::aux_mmap_count dropped to zero, 5100 * they won't start any more (see perf_aux_output_begin()). 5101 */ 5102 perf_pmu_output_stop(event); 5103 5104 /* now it's safe to free the pages */ 5105 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5106 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked; 5107 5108 /* this has to be the last one */ 5109 rb_free_aux(rb); 5110 WARN_ON_ONCE(atomic_read(&rb->aux_refcount)); 5111 5112 mutex_unlock(&event->mmap_mutex); 5113 } 5114 5115 atomic_dec(&rb->mmap_count); 5116 5117 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5118 goto out_put; 5119 5120 ring_buffer_attach(event, NULL); 5121 mutex_unlock(&event->mmap_mutex); 5122 5123 /* If there's still other mmap()s of this buffer, we're done. */ 5124 if (atomic_read(&rb->mmap_count)) 5125 goto out_put; 5126 5127 /* 5128 * No other mmap()s, detach from all other events that might redirect 5129 * into the now unreachable buffer. Somewhat complicated by the 5130 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5131 */ 5132 again: 5133 rcu_read_lock(); 5134 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5135 if (!atomic_long_inc_not_zero(&event->refcount)) { 5136 /* 5137 * This event is en-route to free_event() which will 5138 * detach it and remove it from the list. 5139 */ 5140 continue; 5141 } 5142 rcu_read_unlock(); 5143 5144 mutex_lock(&event->mmap_mutex); 5145 /* 5146 * Check we didn't race with perf_event_set_output() which can 5147 * swizzle the rb from under us while we were waiting to 5148 * acquire mmap_mutex. 5149 * 5150 * If we find a different rb; ignore this event, a next 5151 * iteration will no longer find it on the list. We have to 5152 * still restart the iteration to make sure we're not now 5153 * iterating the wrong list. 5154 */ 5155 if (event->rb == rb) 5156 ring_buffer_attach(event, NULL); 5157 5158 mutex_unlock(&event->mmap_mutex); 5159 put_event(event); 5160 5161 /* 5162 * Restart the iteration; either we're on the wrong list or 5163 * destroyed its integrity by doing a deletion. 5164 */ 5165 goto again; 5166 } 5167 rcu_read_unlock(); 5168 5169 /* 5170 * It could be there's still a few 0-ref events on the list; they'll 5171 * get cleaned up by free_event() -- they'll also still have their 5172 * ref on the rb and will free it whenever they are done with it. 5173 * 5174 * Aside from that, this buffer is 'fully' detached and unmapped, 5175 * undo the VM accounting. 5176 */ 5177 5178 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5179 vma->vm_mm->pinned_vm -= mmap_locked; 5180 free_uid(mmap_user); 5181 5182 out_put: 5183 ring_buffer_put(rb); /* could be last */ 5184 } 5185 5186 static const struct vm_operations_struct perf_mmap_vmops = { 5187 .open = perf_mmap_open, 5188 .close = perf_mmap_close, /* non mergable */ 5189 .fault = perf_mmap_fault, 5190 .page_mkwrite = perf_mmap_fault, 5191 }; 5192 5193 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5194 { 5195 struct perf_event *event = file->private_data; 5196 unsigned long user_locked, user_lock_limit; 5197 struct user_struct *user = current_user(); 5198 unsigned long locked, lock_limit; 5199 struct ring_buffer *rb = NULL; 5200 unsigned long vma_size; 5201 unsigned long nr_pages; 5202 long user_extra = 0, extra = 0; 5203 int ret = 0, flags = 0; 5204 5205 /* 5206 * Don't allow mmap() of inherited per-task counters. This would 5207 * create a performance issue due to all children writing to the 5208 * same rb. 5209 */ 5210 if (event->cpu == -1 && event->attr.inherit) 5211 return -EINVAL; 5212 5213 if (!(vma->vm_flags & VM_SHARED)) 5214 return -EINVAL; 5215 5216 vma_size = vma->vm_end - vma->vm_start; 5217 5218 if (vma->vm_pgoff == 0) { 5219 nr_pages = (vma_size / PAGE_SIZE) - 1; 5220 } else { 5221 /* 5222 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5223 * mapped, all subsequent mappings should have the same size 5224 * and offset. Must be above the normal perf buffer. 5225 */ 5226 u64 aux_offset, aux_size; 5227 5228 if (!event->rb) 5229 return -EINVAL; 5230 5231 nr_pages = vma_size / PAGE_SIZE; 5232 5233 mutex_lock(&event->mmap_mutex); 5234 ret = -EINVAL; 5235 5236 rb = event->rb; 5237 if (!rb) 5238 goto aux_unlock; 5239 5240 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5241 aux_size = READ_ONCE(rb->user_page->aux_size); 5242 5243 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5244 goto aux_unlock; 5245 5246 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5247 goto aux_unlock; 5248 5249 /* already mapped with a different offset */ 5250 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5251 goto aux_unlock; 5252 5253 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5254 goto aux_unlock; 5255 5256 /* already mapped with a different size */ 5257 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5258 goto aux_unlock; 5259 5260 if (!is_power_of_2(nr_pages)) 5261 goto aux_unlock; 5262 5263 if (!atomic_inc_not_zero(&rb->mmap_count)) 5264 goto aux_unlock; 5265 5266 if (rb_has_aux(rb)) { 5267 atomic_inc(&rb->aux_mmap_count); 5268 ret = 0; 5269 goto unlock; 5270 } 5271 5272 atomic_set(&rb->aux_mmap_count, 1); 5273 user_extra = nr_pages; 5274 5275 goto accounting; 5276 } 5277 5278 /* 5279 * If we have rb pages ensure they're a power-of-two number, so we 5280 * can do bitmasks instead of modulo. 5281 */ 5282 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5283 return -EINVAL; 5284 5285 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5286 return -EINVAL; 5287 5288 WARN_ON_ONCE(event->ctx->parent_ctx); 5289 again: 5290 mutex_lock(&event->mmap_mutex); 5291 if (event->rb) { 5292 if (event->rb->nr_pages != nr_pages) { 5293 ret = -EINVAL; 5294 goto unlock; 5295 } 5296 5297 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5298 /* 5299 * Raced against perf_mmap_close() through 5300 * perf_event_set_output(). Try again, hope for better 5301 * luck. 5302 */ 5303 mutex_unlock(&event->mmap_mutex); 5304 goto again; 5305 } 5306 5307 goto unlock; 5308 } 5309 5310 user_extra = nr_pages + 1; 5311 5312 accounting: 5313 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5314 5315 /* 5316 * Increase the limit linearly with more CPUs: 5317 */ 5318 user_lock_limit *= num_online_cpus(); 5319 5320 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5321 5322 if (user_locked > user_lock_limit) 5323 extra = user_locked - user_lock_limit; 5324 5325 lock_limit = rlimit(RLIMIT_MEMLOCK); 5326 lock_limit >>= PAGE_SHIFT; 5327 locked = vma->vm_mm->pinned_vm + extra; 5328 5329 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5330 !capable(CAP_IPC_LOCK)) { 5331 ret = -EPERM; 5332 goto unlock; 5333 } 5334 5335 WARN_ON(!rb && event->rb); 5336 5337 if (vma->vm_flags & VM_WRITE) 5338 flags |= RING_BUFFER_WRITABLE; 5339 5340 if (!rb) { 5341 rb = rb_alloc(nr_pages, 5342 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5343 event->cpu, flags); 5344 5345 if (!rb) { 5346 ret = -ENOMEM; 5347 goto unlock; 5348 } 5349 5350 atomic_set(&rb->mmap_count, 1); 5351 rb->mmap_user = get_current_user(); 5352 rb->mmap_locked = extra; 5353 5354 ring_buffer_attach(event, rb); 5355 5356 perf_event_init_userpage(event); 5357 perf_event_update_userpage(event); 5358 } else { 5359 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5360 event->attr.aux_watermark, flags); 5361 if (!ret) 5362 rb->aux_mmap_locked = extra; 5363 } 5364 5365 unlock: 5366 if (!ret) { 5367 atomic_long_add(user_extra, &user->locked_vm); 5368 vma->vm_mm->pinned_vm += extra; 5369 5370 atomic_inc(&event->mmap_count); 5371 } else if (rb) { 5372 atomic_dec(&rb->mmap_count); 5373 } 5374 aux_unlock: 5375 mutex_unlock(&event->mmap_mutex); 5376 5377 /* 5378 * Since pinned accounting is per vm we cannot allow fork() to copy our 5379 * vma. 5380 */ 5381 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5382 vma->vm_ops = &perf_mmap_vmops; 5383 5384 if (event->pmu->event_mapped) 5385 event->pmu->event_mapped(event, vma->vm_mm); 5386 5387 return ret; 5388 } 5389 5390 static int perf_fasync(int fd, struct file *filp, int on) 5391 { 5392 struct inode *inode = file_inode(filp); 5393 struct perf_event *event = filp->private_data; 5394 int retval; 5395 5396 inode_lock(inode); 5397 retval = fasync_helper(fd, filp, on, &event->fasync); 5398 inode_unlock(inode); 5399 5400 if (retval < 0) 5401 return retval; 5402 5403 return 0; 5404 } 5405 5406 static const struct file_operations perf_fops = { 5407 .llseek = no_llseek, 5408 .release = perf_release, 5409 .read = perf_read, 5410 .poll = perf_poll, 5411 .unlocked_ioctl = perf_ioctl, 5412 .compat_ioctl = perf_compat_ioctl, 5413 .mmap = perf_mmap, 5414 .fasync = perf_fasync, 5415 }; 5416 5417 /* 5418 * Perf event wakeup 5419 * 5420 * If there's data, ensure we set the poll() state and publish everything 5421 * to user-space before waking everybody up. 5422 */ 5423 5424 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5425 { 5426 /* only the parent has fasync state */ 5427 if (event->parent) 5428 event = event->parent; 5429 return &event->fasync; 5430 } 5431 5432 void perf_event_wakeup(struct perf_event *event) 5433 { 5434 ring_buffer_wakeup(event); 5435 5436 if (event->pending_kill) { 5437 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5438 event->pending_kill = 0; 5439 } 5440 } 5441 5442 static void perf_pending_event(struct irq_work *entry) 5443 { 5444 struct perf_event *event = container_of(entry, 5445 struct perf_event, pending); 5446 int rctx; 5447 5448 rctx = perf_swevent_get_recursion_context(); 5449 /* 5450 * If we 'fail' here, that's OK, it means recursion is already disabled 5451 * and we won't recurse 'further'. 5452 */ 5453 5454 if (event->pending_disable) { 5455 event->pending_disable = 0; 5456 perf_event_disable_local(event); 5457 } 5458 5459 if (event->pending_wakeup) { 5460 event->pending_wakeup = 0; 5461 perf_event_wakeup(event); 5462 } 5463 5464 if (rctx >= 0) 5465 perf_swevent_put_recursion_context(rctx); 5466 } 5467 5468 /* 5469 * We assume there is only KVM supporting the callbacks. 5470 * Later on, we might change it to a list if there is 5471 * another virtualization implementation supporting the callbacks. 5472 */ 5473 struct perf_guest_info_callbacks *perf_guest_cbs; 5474 5475 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5476 { 5477 perf_guest_cbs = cbs; 5478 return 0; 5479 } 5480 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5481 5482 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5483 { 5484 perf_guest_cbs = NULL; 5485 return 0; 5486 } 5487 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5488 5489 static void 5490 perf_output_sample_regs(struct perf_output_handle *handle, 5491 struct pt_regs *regs, u64 mask) 5492 { 5493 int bit; 5494 DECLARE_BITMAP(_mask, 64); 5495 5496 bitmap_from_u64(_mask, mask); 5497 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5498 u64 val; 5499 5500 val = perf_reg_value(regs, bit); 5501 perf_output_put(handle, val); 5502 } 5503 } 5504 5505 static void perf_sample_regs_user(struct perf_regs *regs_user, 5506 struct pt_regs *regs, 5507 struct pt_regs *regs_user_copy) 5508 { 5509 if (user_mode(regs)) { 5510 regs_user->abi = perf_reg_abi(current); 5511 regs_user->regs = regs; 5512 } else if (current->mm) { 5513 perf_get_regs_user(regs_user, regs, regs_user_copy); 5514 } else { 5515 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5516 regs_user->regs = NULL; 5517 } 5518 } 5519 5520 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5521 struct pt_regs *regs) 5522 { 5523 regs_intr->regs = regs; 5524 regs_intr->abi = perf_reg_abi(current); 5525 } 5526 5527 5528 /* 5529 * Get remaining task size from user stack pointer. 5530 * 5531 * It'd be better to take stack vma map and limit this more 5532 * precisly, but there's no way to get it safely under interrupt, 5533 * so using TASK_SIZE as limit. 5534 */ 5535 static u64 perf_ustack_task_size(struct pt_regs *regs) 5536 { 5537 unsigned long addr = perf_user_stack_pointer(regs); 5538 5539 if (!addr || addr >= TASK_SIZE) 5540 return 0; 5541 5542 return TASK_SIZE - addr; 5543 } 5544 5545 static u16 5546 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5547 struct pt_regs *regs) 5548 { 5549 u64 task_size; 5550 5551 /* No regs, no stack pointer, no dump. */ 5552 if (!regs) 5553 return 0; 5554 5555 /* 5556 * Check if we fit in with the requested stack size into the: 5557 * - TASK_SIZE 5558 * If we don't, we limit the size to the TASK_SIZE. 5559 * 5560 * - remaining sample size 5561 * If we don't, we customize the stack size to 5562 * fit in to the remaining sample size. 5563 */ 5564 5565 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5566 stack_size = min(stack_size, (u16) task_size); 5567 5568 /* Current header size plus static size and dynamic size. */ 5569 header_size += 2 * sizeof(u64); 5570 5571 /* Do we fit in with the current stack dump size? */ 5572 if ((u16) (header_size + stack_size) < header_size) { 5573 /* 5574 * If we overflow the maximum size for the sample, 5575 * we customize the stack dump size to fit in. 5576 */ 5577 stack_size = USHRT_MAX - header_size - sizeof(u64); 5578 stack_size = round_up(stack_size, sizeof(u64)); 5579 } 5580 5581 return stack_size; 5582 } 5583 5584 static void 5585 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5586 struct pt_regs *regs) 5587 { 5588 /* Case of a kernel thread, nothing to dump */ 5589 if (!regs) { 5590 u64 size = 0; 5591 perf_output_put(handle, size); 5592 } else { 5593 unsigned long sp; 5594 unsigned int rem; 5595 u64 dyn_size; 5596 5597 /* 5598 * We dump: 5599 * static size 5600 * - the size requested by user or the best one we can fit 5601 * in to the sample max size 5602 * data 5603 * - user stack dump data 5604 * dynamic size 5605 * - the actual dumped size 5606 */ 5607 5608 /* Static size. */ 5609 perf_output_put(handle, dump_size); 5610 5611 /* Data. */ 5612 sp = perf_user_stack_pointer(regs); 5613 rem = __output_copy_user(handle, (void *) sp, dump_size); 5614 dyn_size = dump_size - rem; 5615 5616 perf_output_skip(handle, rem); 5617 5618 /* Dynamic size. */ 5619 perf_output_put(handle, dyn_size); 5620 } 5621 } 5622 5623 static void __perf_event_header__init_id(struct perf_event_header *header, 5624 struct perf_sample_data *data, 5625 struct perf_event *event) 5626 { 5627 u64 sample_type = event->attr.sample_type; 5628 5629 data->type = sample_type; 5630 header->size += event->id_header_size; 5631 5632 if (sample_type & PERF_SAMPLE_TID) { 5633 /* namespace issues */ 5634 data->tid_entry.pid = perf_event_pid(event, current); 5635 data->tid_entry.tid = perf_event_tid(event, current); 5636 } 5637 5638 if (sample_type & PERF_SAMPLE_TIME) 5639 data->time = perf_event_clock(event); 5640 5641 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 5642 data->id = primary_event_id(event); 5643 5644 if (sample_type & PERF_SAMPLE_STREAM_ID) 5645 data->stream_id = event->id; 5646 5647 if (sample_type & PERF_SAMPLE_CPU) { 5648 data->cpu_entry.cpu = raw_smp_processor_id(); 5649 data->cpu_entry.reserved = 0; 5650 } 5651 } 5652 5653 void perf_event_header__init_id(struct perf_event_header *header, 5654 struct perf_sample_data *data, 5655 struct perf_event *event) 5656 { 5657 if (event->attr.sample_id_all) 5658 __perf_event_header__init_id(header, data, event); 5659 } 5660 5661 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 5662 struct perf_sample_data *data) 5663 { 5664 u64 sample_type = data->type; 5665 5666 if (sample_type & PERF_SAMPLE_TID) 5667 perf_output_put(handle, data->tid_entry); 5668 5669 if (sample_type & PERF_SAMPLE_TIME) 5670 perf_output_put(handle, data->time); 5671 5672 if (sample_type & PERF_SAMPLE_ID) 5673 perf_output_put(handle, data->id); 5674 5675 if (sample_type & PERF_SAMPLE_STREAM_ID) 5676 perf_output_put(handle, data->stream_id); 5677 5678 if (sample_type & PERF_SAMPLE_CPU) 5679 perf_output_put(handle, data->cpu_entry); 5680 5681 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5682 perf_output_put(handle, data->id); 5683 } 5684 5685 void perf_event__output_id_sample(struct perf_event *event, 5686 struct perf_output_handle *handle, 5687 struct perf_sample_data *sample) 5688 { 5689 if (event->attr.sample_id_all) 5690 __perf_event__output_id_sample(handle, sample); 5691 } 5692 5693 static void perf_output_read_one(struct perf_output_handle *handle, 5694 struct perf_event *event, 5695 u64 enabled, u64 running) 5696 { 5697 u64 read_format = event->attr.read_format; 5698 u64 values[4]; 5699 int n = 0; 5700 5701 values[n++] = perf_event_count(event); 5702 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 5703 values[n++] = enabled + 5704 atomic64_read(&event->child_total_time_enabled); 5705 } 5706 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 5707 values[n++] = running + 5708 atomic64_read(&event->child_total_time_running); 5709 } 5710 if (read_format & PERF_FORMAT_ID) 5711 values[n++] = primary_event_id(event); 5712 5713 __output_copy(handle, values, n * sizeof(u64)); 5714 } 5715 5716 static void perf_output_read_group(struct perf_output_handle *handle, 5717 struct perf_event *event, 5718 u64 enabled, u64 running) 5719 { 5720 struct perf_event *leader = event->group_leader, *sub; 5721 u64 read_format = event->attr.read_format; 5722 u64 values[5]; 5723 int n = 0; 5724 5725 values[n++] = 1 + leader->nr_siblings; 5726 5727 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 5728 values[n++] = enabled; 5729 5730 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 5731 values[n++] = running; 5732 5733 if (leader != event) 5734 leader->pmu->read(leader); 5735 5736 values[n++] = perf_event_count(leader); 5737 if (read_format & PERF_FORMAT_ID) 5738 values[n++] = primary_event_id(leader); 5739 5740 __output_copy(handle, values, n * sizeof(u64)); 5741 5742 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 5743 n = 0; 5744 5745 if ((sub != event) && 5746 (sub->state == PERF_EVENT_STATE_ACTIVE)) 5747 sub->pmu->read(sub); 5748 5749 values[n++] = perf_event_count(sub); 5750 if (read_format & PERF_FORMAT_ID) 5751 values[n++] = primary_event_id(sub); 5752 5753 __output_copy(handle, values, n * sizeof(u64)); 5754 } 5755 } 5756 5757 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 5758 PERF_FORMAT_TOTAL_TIME_RUNNING) 5759 5760 /* 5761 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 5762 * 5763 * The problem is that its both hard and excessively expensive to iterate the 5764 * child list, not to mention that its impossible to IPI the children running 5765 * on another CPU, from interrupt/NMI context. 5766 */ 5767 static void perf_output_read(struct perf_output_handle *handle, 5768 struct perf_event *event) 5769 { 5770 u64 enabled = 0, running = 0, now; 5771 u64 read_format = event->attr.read_format; 5772 5773 /* 5774 * compute total_time_enabled, total_time_running 5775 * based on snapshot values taken when the event 5776 * was last scheduled in. 5777 * 5778 * we cannot simply called update_context_time() 5779 * because of locking issue as we are called in 5780 * NMI context 5781 */ 5782 if (read_format & PERF_FORMAT_TOTAL_TIMES) 5783 calc_timer_values(event, &now, &enabled, &running); 5784 5785 if (event->attr.read_format & PERF_FORMAT_GROUP) 5786 perf_output_read_group(handle, event, enabled, running); 5787 else 5788 perf_output_read_one(handle, event, enabled, running); 5789 } 5790 5791 void perf_output_sample(struct perf_output_handle *handle, 5792 struct perf_event_header *header, 5793 struct perf_sample_data *data, 5794 struct perf_event *event) 5795 { 5796 u64 sample_type = data->type; 5797 5798 perf_output_put(handle, *header); 5799 5800 if (sample_type & PERF_SAMPLE_IDENTIFIER) 5801 perf_output_put(handle, data->id); 5802 5803 if (sample_type & PERF_SAMPLE_IP) 5804 perf_output_put(handle, data->ip); 5805 5806 if (sample_type & PERF_SAMPLE_TID) 5807 perf_output_put(handle, data->tid_entry); 5808 5809 if (sample_type & PERF_SAMPLE_TIME) 5810 perf_output_put(handle, data->time); 5811 5812 if (sample_type & PERF_SAMPLE_ADDR) 5813 perf_output_put(handle, data->addr); 5814 5815 if (sample_type & PERF_SAMPLE_ID) 5816 perf_output_put(handle, data->id); 5817 5818 if (sample_type & PERF_SAMPLE_STREAM_ID) 5819 perf_output_put(handle, data->stream_id); 5820 5821 if (sample_type & PERF_SAMPLE_CPU) 5822 perf_output_put(handle, data->cpu_entry); 5823 5824 if (sample_type & PERF_SAMPLE_PERIOD) 5825 perf_output_put(handle, data->period); 5826 5827 if (sample_type & PERF_SAMPLE_READ) 5828 perf_output_read(handle, event); 5829 5830 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 5831 int size = 1; 5832 5833 size += data->callchain->nr; 5834 size *= sizeof(u64); 5835 __output_copy(handle, data->callchain, size); 5836 } 5837 5838 if (sample_type & PERF_SAMPLE_RAW) { 5839 struct perf_raw_record *raw = data->raw; 5840 5841 if (raw) { 5842 struct perf_raw_frag *frag = &raw->frag; 5843 5844 perf_output_put(handle, raw->size); 5845 do { 5846 if (frag->copy) { 5847 __output_custom(handle, frag->copy, 5848 frag->data, frag->size); 5849 } else { 5850 __output_copy(handle, frag->data, 5851 frag->size); 5852 } 5853 if (perf_raw_frag_last(frag)) 5854 break; 5855 frag = frag->next; 5856 } while (1); 5857 if (frag->pad) 5858 __output_skip(handle, NULL, frag->pad); 5859 } else { 5860 struct { 5861 u32 size; 5862 u32 data; 5863 } raw = { 5864 .size = sizeof(u32), 5865 .data = 0, 5866 }; 5867 perf_output_put(handle, raw); 5868 } 5869 } 5870 5871 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 5872 if (data->br_stack) { 5873 size_t size; 5874 5875 size = data->br_stack->nr 5876 * sizeof(struct perf_branch_entry); 5877 5878 perf_output_put(handle, data->br_stack->nr); 5879 perf_output_copy(handle, data->br_stack->entries, size); 5880 } else { 5881 /* 5882 * we always store at least the value of nr 5883 */ 5884 u64 nr = 0; 5885 perf_output_put(handle, nr); 5886 } 5887 } 5888 5889 if (sample_type & PERF_SAMPLE_REGS_USER) { 5890 u64 abi = data->regs_user.abi; 5891 5892 /* 5893 * If there are no regs to dump, notice it through 5894 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5895 */ 5896 perf_output_put(handle, abi); 5897 5898 if (abi) { 5899 u64 mask = event->attr.sample_regs_user; 5900 perf_output_sample_regs(handle, 5901 data->regs_user.regs, 5902 mask); 5903 } 5904 } 5905 5906 if (sample_type & PERF_SAMPLE_STACK_USER) { 5907 perf_output_sample_ustack(handle, 5908 data->stack_user_size, 5909 data->regs_user.regs); 5910 } 5911 5912 if (sample_type & PERF_SAMPLE_WEIGHT) 5913 perf_output_put(handle, data->weight); 5914 5915 if (sample_type & PERF_SAMPLE_DATA_SRC) 5916 perf_output_put(handle, data->data_src.val); 5917 5918 if (sample_type & PERF_SAMPLE_TRANSACTION) 5919 perf_output_put(handle, data->txn); 5920 5921 if (sample_type & PERF_SAMPLE_REGS_INTR) { 5922 u64 abi = data->regs_intr.abi; 5923 /* 5924 * If there are no regs to dump, notice it through 5925 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 5926 */ 5927 perf_output_put(handle, abi); 5928 5929 if (abi) { 5930 u64 mask = event->attr.sample_regs_intr; 5931 5932 perf_output_sample_regs(handle, 5933 data->regs_intr.regs, 5934 mask); 5935 } 5936 } 5937 5938 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 5939 perf_output_put(handle, data->phys_addr); 5940 5941 if (!event->attr.watermark) { 5942 int wakeup_events = event->attr.wakeup_events; 5943 5944 if (wakeup_events) { 5945 struct ring_buffer *rb = handle->rb; 5946 int events = local_inc_return(&rb->events); 5947 5948 if (events >= wakeup_events) { 5949 local_sub(wakeup_events, &rb->events); 5950 local_inc(&rb->wakeup); 5951 } 5952 } 5953 } 5954 } 5955 5956 static u64 perf_virt_to_phys(u64 virt) 5957 { 5958 u64 phys_addr = 0; 5959 struct page *p = NULL; 5960 5961 if (!virt) 5962 return 0; 5963 5964 if (virt >= TASK_SIZE) { 5965 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 5966 if (virt_addr_valid((void *)(uintptr_t)virt) && 5967 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 5968 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 5969 } else { 5970 /* 5971 * Walking the pages tables for user address. 5972 * Interrupts are disabled, so it prevents any tear down 5973 * of the page tables. 5974 * Try IRQ-safe __get_user_pages_fast first. 5975 * If failed, leave phys_addr as 0. 5976 */ 5977 if ((current->mm != NULL) && 5978 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 5979 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 5980 5981 if (p) 5982 put_page(p); 5983 } 5984 5985 return phys_addr; 5986 } 5987 5988 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 5989 5990 static struct perf_callchain_entry * 5991 perf_callchain(struct perf_event *event, struct pt_regs *regs) 5992 { 5993 bool kernel = !event->attr.exclude_callchain_kernel; 5994 bool user = !event->attr.exclude_callchain_user; 5995 /* Disallow cross-task user callchains. */ 5996 bool crosstask = event->ctx->task && event->ctx->task != current; 5997 const u32 max_stack = event->attr.sample_max_stack; 5998 struct perf_callchain_entry *callchain; 5999 6000 if (!kernel && !user) 6001 return &__empty_callchain; 6002 6003 callchain = get_perf_callchain(regs, 0, kernel, user, 6004 max_stack, crosstask, true); 6005 return callchain ?: &__empty_callchain; 6006 } 6007 6008 void perf_prepare_sample(struct perf_event_header *header, 6009 struct perf_sample_data *data, 6010 struct perf_event *event, 6011 struct pt_regs *regs) 6012 { 6013 u64 sample_type = event->attr.sample_type; 6014 6015 header->type = PERF_RECORD_SAMPLE; 6016 header->size = sizeof(*header) + event->header_size; 6017 6018 header->misc = 0; 6019 header->misc |= perf_misc_flags(regs); 6020 6021 __perf_event_header__init_id(header, data, event); 6022 6023 if (sample_type & PERF_SAMPLE_IP) 6024 data->ip = perf_instruction_pointer(regs); 6025 6026 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6027 int size = 1; 6028 6029 data->callchain = perf_callchain(event, regs); 6030 size += data->callchain->nr; 6031 6032 header->size += size * sizeof(u64); 6033 } 6034 6035 if (sample_type & PERF_SAMPLE_RAW) { 6036 struct perf_raw_record *raw = data->raw; 6037 int size; 6038 6039 if (raw) { 6040 struct perf_raw_frag *frag = &raw->frag; 6041 u32 sum = 0; 6042 6043 do { 6044 sum += frag->size; 6045 if (perf_raw_frag_last(frag)) 6046 break; 6047 frag = frag->next; 6048 } while (1); 6049 6050 size = round_up(sum + sizeof(u32), sizeof(u64)); 6051 raw->size = size - sizeof(u32); 6052 frag->pad = raw->size - sum; 6053 } else { 6054 size = sizeof(u64); 6055 } 6056 6057 header->size += size; 6058 } 6059 6060 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6061 int size = sizeof(u64); /* nr */ 6062 if (data->br_stack) { 6063 size += data->br_stack->nr 6064 * sizeof(struct perf_branch_entry); 6065 } 6066 header->size += size; 6067 } 6068 6069 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6070 perf_sample_regs_user(&data->regs_user, regs, 6071 &data->regs_user_copy); 6072 6073 if (sample_type & PERF_SAMPLE_REGS_USER) { 6074 /* regs dump ABI info */ 6075 int size = sizeof(u64); 6076 6077 if (data->regs_user.regs) { 6078 u64 mask = event->attr.sample_regs_user; 6079 size += hweight64(mask) * sizeof(u64); 6080 } 6081 6082 header->size += size; 6083 } 6084 6085 if (sample_type & PERF_SAMPLE_STACK_USER) { 6086 /* 6087 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6088 * processed as the last one or have additional check added 6089 * in case new sample type is added, because we could eat 6090 * up the rest of the sample size. 6091 */ 6092 u16 stack_size = event->attr.sample_stack_user; 6093 u16 size = sizeof(u64); 6094 6095 stack_size = perf_sample_ustack_size(stack_size, header->size, 6096 data->regs_user.regs); 6097 6098 /* 6099 * If there is something to dump, add space for the dump 6100 * itself and for the field that tells the dynamic size, 6101 * which is how many have been actually dumped. 6102 */ 6103 if (stack_size) 6104 size += sizeof(u64) + stack_size; 6105 6106 data->stack_user_size = stack_size; 6107 header->size += size; 6108 } 6109 6110 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6111 /* regs dump ABI info */ 6112 int size = sizeof(u64); 6113 6114 perf_sample_regs_intr(&data->regs_intr, regs); 6115 6116 if (data->regs_intr.regs) { 6117 u64 mask = event->attr.sample_regs_intr; 6118 6119 size += hweight64(mask) * sizeof(u64); 6120 } 6121 6122 header->size += size; 6123 } 6124 6125 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6126 data->phys_addr = perf_virt_to_phys(data->addr); 6127 } 6128 6129 static void __always_inline 6130 __perf_event_output(struct perf_event *event, 6131 struct perf_sample_data *data, 6132 struct pt_regs *regs, 6133 int (*output_begin)(struct perf_output_handle *, 6134 struct perf_event *, 6135 unsigned int)) 6136 { 6137 struct perf_output_handle handle; 6138 struct perf_event_header header; 6139 6140 /* protect the callchain buffers */ 6141 rcu_read_lock(); 6142 6143 perf_prepare_sample(&header, data, event, regs); 6144 6145 if (output_begin(&handle, event, header.size)) 6146 goto exit; 6147 6148 perf_output_sample(&handle, &header, data, event); 6149 6150 perf_output_end(&handle); 6151 6152 exit: 6153 rcu_read_unlock(); 6154 } 6155 6156 void 6157 perf_event_output_forward(struct perf_event *event, 6158 struct perf_sample_data *data, 6159 struct pt_regs *regs) 6160 { 6161 __perf_event_output(event, data, regs, perf_output_begin_forward); 6162 } 6163 6164 void 6165 perf_event_output_backward(struct perf_event *event, 6166 struct perf_sample_data *data, 6167 struct pt_regs *regs) 6168 { 6169 __perf_event_output(event, data, regs, perf_output_begin_backward); 6170 } 6171 6172 void 6173 perf_event_output(struct perf_event *event, 6174 struct perf_sample_data *data, 6175 struct pt_regs *regs) 6176 { 6177 __perf_event_output(event, data, regs, perf_output_begin); 6178 } 6179 6180 /* 6181 * read event_id 6182 */ 6183 6184 struct perf_read_event { 6185 struct perf_event_header header; 6186 6187 u32 pid; 6188 u32 tid; 6189 }; 6190 6191 static void 6192 perf_event_read_event(struct perf_event *event, 6193 struct task_struct *task) 6194 { 6195 struct perf_output_handle handle; 6196 struct perf_sample_data sample; 6197 struct perf_read_event read_event = { 6198 .header = { 6199 .type = PERF_RECORD_READ, 6200 .misc = 0, 6201 .size = sizeof(read_event) + event->read_size, 6202 }, 6203 .pid = perf_event_pid(event, task), 6204 .tid = perf_event_tid(event, task), 6205 }; 6206 int ret; 6207 6208 perf_event_header__init_id(&read_event.header, &sample, event); 6209 ret = perf_output_begin(&handle, event, read_event.header.size); 6210 if (ret) 6211 return; 6212 6213 perf_output_put(&handle, read_event); 6214 perf_output_read(&handle, event); 6215 perf_event__output_id_sample(event, &handle, &sample); 6216 6217 perf_output_end(&handle); 6218 } 6219 6220 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6221 6222 static void 6223 perf_iterate_ctx(struct perf_event_context *ctx, 6224 perf_iterate_f output, 6225 void *data, bool all) 6226 { 6227 struct perf_event *event; 6228 6229 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6230 if (!all) { 6231 if (event->state < PERF_EVENT_STATE_INACTIVE) 6232 continue; 6233 if (!event_filter_match(event)) 6234 continue; 6235 } 6236 6237 output(event, data); 6238 } 6239 } 6240 6241 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6242 { 6243 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6244 struct perf_event *event; 6245 6246 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6247 /* 6248 * Skip events that are not fully formed yet; ensure that 6249 * if we observe event->ctx, both event and ctx will be 6250 * complete enough. See perf_install_in_context(). 6251 */ 6252 if (!smp_load_acquire(&event->ctx)) 6253 continue; 6254 6255 if (event->state < PERF_EVENT_STATE_INACTIVE) 6256 continue; 6257 if (!event_filter_match(event)) 6258 continue; 6259 output(event, data); 6260 } 6261 } 6262 6263 /* 6264 * Iterate all events that need to receive side-band events. 6265 * 6266 * For new callers; ensure that account_pmu_sb_event() includes 6267 * your event, otherwise it might not get delivered. 6268 */ 6269 static void 6270 perf_iterate_sb(perf_iterate_f output, void *data, 6271 struct perf_event_context *task_ctx) 6272 { 6273 struct perf_event_context *ctx; 6274 int ctxn; 6275 6276 rcu_read_lock(); 6277 preempt_disable(); 6278 6279 /* 6280 * If we have task_ctx != NULL we only notify the task context itself. 6281 * The task_ctx is set only for EXIT events before releasing task 6282 * context. 6283 */ 6284 if (task_ctx) { 6285 perf_iterate_ctx(task_ctx, output, data, false); 6286 goto done; 6287 } 6288 6289 perf_iterate_sb_cpu(output, data); 6290 6291 for_each_task_context_nr(ctxn) { 6292 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6293 if (ctx) 6294 perf_iterate_ctx(ctx, output, data, false); 6295 } 6296 done: 6297 preempt_enable(); 6298 rcu_read_unlock(); 6299 } 6300 6301 /* 6302 * Clear all file-based filters at exec, they'll have to be 6303 * re-instated when/if these objects are mmapped again. 6304 */ 6305 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6306 { 6307 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6308 struct perf_addr_filter *filter; 6309 unsigned int restart = 0, count = 0; 6310 unsigned long flags; 6311 6312 if (!has_addr_filter(event)) 6313 return; 6314 6315 raw_spin_lock_irqsave(&ifh->lock, flags); 6316 list_for_each_entry(filter, &ifh->list, entry) { 6317 if (filter->inode) { 6318 event->addr_filters_offs[count] = 0; 6319 restart++; 6320 } 6321 6322 count++; 6323 } 6324 6325 if (restart) 6326 event->addr_filters_gen++; 6327 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6328 6329 if (restart) 6330 perf_event_stop(event, 1); 6331 } 6332 6333 void perf_event_exec(void) 6334 { 6335 struct perf_event_context *ctx; 6336 int ctxn; 6337 6338 rcu_read_lock(); 6339 for_each_task_context_nr(ctxn) { 6340 ctx = current->perf_event_ctxp[ctxn]; 6341 if (!ctx) 6342 continue; 6343 6344 perf_event_enable_on_exec(ctxn); 6345 6346 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6347 true); 6348 } 6349 rcu_read_unlock(); 6350 } 6351 6352 struct remote_output { 6353 struct ring_buffer *rb; 6354 int err; 6355 }; 6356 6357 static void __perf_event_output_stop(struct perf_event *event, void *data) 6358 { 6359 struct perf_event *parent = event->parent; 6360 struct remote_output *ro = data; 6361 struct ring_buffer *rb = ro->rb; 6362 struct stop_event_data sd = { 6363 .event = event, 6364 }; 6365 6366 if (!has_aux(event)) 6367 return; 6368 6369 if (!parent) 6370 parent = event; 6371 6372 /* 6373 * In case of inheritance, it will be the parent that links to the 6374 * ring-buffer, but it will be the child that's actually using it. 6375 * 6376 * We are using event::rb to determine if the event should be stopped, 6377 * however this may race with ring_buffer_attach() (through set_output), 6378 * which will make us skip the event that actually needs to be stopped. 6379 * So ring_buffer_attach() has to stop an aux event before re-assigning 6380 * its rb pointer. 6381 */ 6382 if (rcu_dereference(parent->rb) == rb) 6383 ro->err = __perf_event_stop(&sd); 6384 } 6385 6386 static int __perf_pmu_output_stop(void *info) 6387 { 6388 struct perf_event *event = info; 6389 struct pmu *pmu = event->pmu; 6390 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6391 struct remote_output ro = { 6392 .rb = event->rb, 6393 }; 6394 6395 rcu_read_lock(); 6396 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6397 if (cpuctx->task_ctx) 6398 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6399 &ro, false); 6400 rcu_read_unlock(); 6401 6402 return ro.err; 6403 } 6404 6405 static void perf_pmu_output_stop(struct perf_event *event) 6406 { 6407 struct perf_event *iter; 6408 int err, cpu; 6409 6410 restart: 6411 rcu_read_lock(); 6412 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6413 /* 6414 * For per-CPU events, we need to make sure that neither they 6415 * nor their children are running; for cpu==-1 events it's 6416 * sufficient to stop the event itself if it's active, since 6417 * it can't have children. 6418 */ 6419 cpu = iter->cpu; 6420 if (cpu == -1) 6421 cpu = READ_ONCE(iter->oncpu); 6422 6423 if (cpu == -1) 6424 continue; 6425 6426 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6427 if (err == -EAGAIN) { 6428 rcu_read_unlock(); 6429 goto restart; 6430 } 6431 } 6432 rcu_read_unlock(); 6433 } 6434 6435 /* 6436 * task tracking -- fork/exit 6437 * 6438 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6439 */ 6440 6441 struct perf_task_event { 6442 struct task_struct *task; 6443 struct perf_event_context *task_ctx; 6444 6445 struct { 6446 struct perf_event_header header; 6447 6448 u32 pid; 6449 u32 ppid; 6450 u32 tid; 6451 u32 ptid; 6452 u64 time; 6453 } event_id; 6454 }; 6455 6456 static int perf_event_task_match(struct perf_event *event) 6457 { 6458 return event->attr.comm || event->attr.mmap || 6459 event->attr.mmap2 || event->attr.mmap_data || 6460 event->attr.task; 6461 } 6462 6463 static void perf_event_task_output(struct perf_event *event, 6464 void *data) 6465 { 6466 struct perf_task_event *task_event = data; 6467 struct perf_output_handle handle; 6468 struct perf_sample_data sample; 6469 struct task_struct *task = task_event->task; 6470 int ret, size = task_event->event_id.header.size; 6471 6472 if (!perf_event_task_match(event)) 6473 return; 6474 6475 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6476 6477 ret = perf_output_begin(&handle, event, 6478 task_event->event_id.header.size); 6479 if (ret) 6480 goto out; 6481 6482 task_event->event_id.pid = perf_event_pid(event, task); 6483 task_event->event_id.ppid = perf_event_pid(event, current); 6484 6485 task_event->event_id.tid = perf_event_tid(event, task); 6486 task_event->event_id.ptid = perf_event_tid(event, current); 6487 6488 task_event->event_id.time = perf_event_clock(event); 6489 6490 perf_output_put(&handle, task_event->event_id); 6491 6492 perf_event__output_id_sample(event, &handle, &sample); 6493 6494 perf_output_end(&handle); 6495 out: 6496 task_event->event_id.header.size = size; 6497 } 6498 6499 static void perf_event_task(struct task_struct *task, 6500 struct perf_event_context *task_ctx, 6501 int new) 6502 { 6503 struct perf_task_event task_event; 6504 6505 if (!atomic_read(&nr_comm_events) && 6506 !atomic_read(&nr_mmap_events) && 6507 !atomic_read(&nr_task_events)) 6508 return; 6509 6510 task_event = (struct perf_task_event){ 6511 .task = task, 6512 .task_ctx = task_ctx, 6513 .event_id = { 6514 .header = { 6515 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6516 .misc = 0, 6517 .size = sizeof(task_event.event_id), 6518 }, 6519 /* .pid */ 6520 /* .ppid */ 6521 /* .tid */ 6522 /* .ptid */ 6523 /* .time */ 6524 }, 6525 }; 6526 6527 perf_iterate_sb(perf_event_task_output, 6528 &task_event, 6529 task_ctx); 6530 } 6531 6532 void perf_event_fork(struct task_struct *task) 6533 { 6534 perf_event_task(task, NULL, 1); 6535 perf_event_namespaces(task); 6536 } 6537 6538 /* 6539 * comm tracking 6540 */ 6541 6542 struct perf_comm_event { 6543 struct task_struct *task; 6544 char *comm; 6545 int comm_size; 6546 6547 struct { 6548 struct perf_event_header header; 6549 6550 u32 pid; 6551 u32 tid; 6552 } event_id; 6553 }; 6554 6555 static int perf_event_comm_match(struct perf_event *event) 6556 { 6557 return event->attr.comm; 6558 } 6559 6560 static void perf_event_comm_output(struct perf_event *event, 6561 void *data) 6562 { 6563 struct perf_comm_event *comm_event = data; 6564 struct perf_output_handle handle; 6565 struct perf_sample_data sample; 6566 int size = comm_event->event_id.header.size; 6567 int ret; 6568 6569 if (!perf_event_comm_match(event)) 6570 return; 6571 6572 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6573 ret = perf_output_begin(&handle, event, 6574 comm_event->event_id.header.size); 6575 6576 if (ret) 6577 goto out; 6578 6579 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6580 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6581 6582 perf_output_put(&handle, comm_event->event_id); 6583 __output_copy(&handle, comm_event->comm, 6584 comm_event->comm_size); 6585 6586 perf_event__output_id_sample(event, &handle, &sample); 6587 6588 perf_output_end(&handle); 6589 out: 6590 comm_event->event_id.header.size = size; 6591 } 6592 6593 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6594 { 6595 char comm[TASK_COMM_LEN]; 6596 unsigned int size; 6597 6598 memset(comm, 0, sizeof(comm)); 6599 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6600 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6601 6602 comm_event->comm = comm; 6603 comm_event->comm_size = size; 6604 6605 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6606 6607 perf_iterate_sb(perf_event_comm_output, 6608 comm_event, 6609 NULL); 6610 } 6611 6612 void perf_event_comm(struct task_struct *task, bool exec) 6613 { 6614 struct perf_comm_event comm_event; 6615 6616 if (!atomic_read(&nr_comm_events)) 6617 return; 6618 6619 comm_event = (struct perf_comm_event){ 6620 .task = task, 6621 /* .comm */ 6622 /* .comm_size */ 6623 .event_id = { 6624 .header = { 6625 .type = PERF_RECORD_COMM, 6626 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 6627 /* .size */ 6628 }, 6629 /* .pid */ 6630 /* .tid */ 6631 }, 6632 }; 6633 6634 perf_event_comm_event(&comm_event); 6635 } 6636 6637 /* 6638 * namespaces tracking 6639 */ 6640 6641 struct perf_namespaces_event { 6642 struct task_struct *task; 6643 6644 struct { 6645 struct perf_event_header header; 6646 6647 u32 pid; 6648 u32 tid; 6649 u64 nr_namespaces; 6650 struct perf_ns_link_info link_info[NR_NAMESPACES]; 6651 } event_id; 6652 }; 6653 6654 static int perf_event_namespaces_match(struct perf_event *event) 6655 { 6656 return event->attr.namespaces; 6657 } 6658 6659 static void perf_event_namespaces_output(struct perf_event *event, 6660 void *data) 6661 { 6662 struct perf_namespaces_event *namespaces_event = data; 6663 struct perf_output_handle handle; 6664 struct perf_sample_data sample; 6665 u16 header_size = namespaces_event->event_id.header.size; 6666 int ret; 6667 6668 if (!perf_event_namespaces_match(event)) 6669 return; 6670 6671 perf_event_header__init_id(&namespaces_event->event_id.header, 6672 &sample, event); 6673 ret = perf_output_begin(&handle, event, 6674 namespaces_event->event_id.header.size); 6675 if (ret) 6676 goto out; 6677 6678 namespaces_event->event_id.pid = perf_event_pid(event, 6679 namespaces_event->task); 6680 namespaces_event->event_id.tid = perf_event_tid(event, 6681 namespaces_event->task); 6682 6683 perf_output_put(&handle, namespaces_event->event_id); 6684 6685 perf_event__output_id_sample(event, &handle, &sample); 6686 6687 perf_output_end(&handle); 6688 out: 6689 namespaces_event->event_id.header.size = header_size; 6690 } 6691 6692 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 6693 struct task_struct *task, 6694 const struct proc_ns_operations *ns_ops) 6695 { 6696 struct path ns_path; 6697 struct inode *ns_inode; 6698 void *error; 6699 6700 error = ns_get_path(&ns_path, task, ns_ops); 6701 if (!error) { 6702 ns_inode = ns_path.dentry->d_inode; 6703 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 6704 ns_link_info->ino = ns_inode->i_ino; 6705 path_put(&ns_path); 6706 } 6707 } 6708 6709 void perf_event_namespaces(struct task_struct *task) 6710 { 6711 struct perf_namespaces_event namespaces_event; 6712 struct perf_ns_link_info *ns_link_info; 6713 6714 if (!atomic_read(&nr_namespaces_events)) 6715 return; 6716 6717 namespaces_event = (struct perf_namespaces_event){ 6718 .task = task, 6719 .event_id = { 6720 .header = { 6721 .type = PERF_RECORD_NAMESPACES, 6722 .misc = 0, 6723 .size = sizeof(namespaces_event.event_id), 6724 }, 6725 /* .pid */ 6726 /* .tid */ 6727 .nr_namespaces = NR_NAMESPACES, 6728 /* .link_info[NR_NAMESPACES] */ 6729 }, 6730 }; 6731 6732 ns_link_info = namespaces_event.event_id.link_info; 6733 6734 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 6735 task, &mntns_operations); 6736 6737 #ifdef CONFIG_USER_NS 6738 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 6739 task, &userns_operations); 6740 #endif 6741 #ifdef CONFIG_NET_NS 6742 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 6743 task, &netns_operations); 6744 #endif 6745 #ifdef CONFIG_UTS_NS 6746 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 6747 task, &utsns_operations); 6748 #endif 6749 #ifdef CONFIG_IPC_NS 6750 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 6751 task, &ipcns_operations); 6752 #endif 6753 #ifdef CONFIG_PID_NS 6754 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 6755 task, &pidns_operations); 6756 #endif 6757 #ifdef CONFIG_CGROUPS 6758 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 6759 task, &cgroupns_operations); 6760 #endif 6761 6762 perf_iterate_sb(perf_event_namespaces_output, 6763 &namespaces_event, 6764 NULL); 6765 } 6766 6767 /* 6768 * mmap tracking 6769 */ 6770 6771 struct perf_mmap_event { 6772 struct vm_area_struct *vma; 6773 6774 const char *file_name; 6775 int file_size; 6776 int maj, min; 6777 u64 ino; 6778 u64 ino_generation; 6779 u32 prot, flags; 6780 6781 struct { 6782 struct perf_event_header header; 6783 6784 u32 pid; 6785 u32 tid; 6786 u64 start; 6787 u64 len; 6788 u64 pgoff; 6789 } event_id; 6790 }; 6791 6792 static int perf_event_mmap_match(struct perf_event *event, 6793 void *data) 6794 { 6795 struct perf_mmap_event *mmap_event = data; 6796 struct vm_area_struct *vma = mmap_event->vma; 6797 int executable = vma->vm_flags & VM_EXEC; 6798 6799 return (!executable && event->attr.mmap_data) || 6800 (executable && (event->attr.mmap || event->attr.mmap2)); 6801 } 6802 6803 static void perf_event_mmap_output(struct perf_event *event, 6804 void *data) 6805 { 6806 struct perf_mmap_event *mmap_event = data; 6807 struct perf_output_handle handle; 6808 struct perf_sample_data sample; 6809 int size = mmap_event->event_id.header.size; 6810 int ret; 6811 6812 if (!perf_event_mmap_match(event, data)) 6813 return; 6814 6815 if (event->attr.mmap2) { 6816 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 6817 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 6818 mmap_event->event_id.header.size += sizeof(mmap_event->min); 6819 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 6820 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 6821 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 6822 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 6823 } 6824 6825 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 6826 ret = perf_output_begin(&handle, event, 6827 mmap_event->event_id.header.size); 6828 if (ret) 6829 goto out; 6830 6831 mmap_event->event_id.pid = perf_event_pid(event, current); 6832 mmap_event->event_id.tid = perf_event_tid(event, current); 6833 6834 perf_output_put(&handle, mmap_event->event_id); 6835 6836 if (event->attr.mmap2) { 6837 perf_output_put(&handle, mmap_event->maj); 6838 perf_output_put(&handle, mmap_event->min); 6839 perf_output_put(&handle, mmap_event->ino); 6840 perf_output_put(&handle, mmap_event->ino_generation); 6841 perf_output_put(&handle, mmap_event->prot); 6842 perf_output_put(&handle, mmap_event->flags); 6843 } 6844 6845 __output_copy(&handle, mmap_event->file_name, 6846 mmap_event->file_size); 6847 6848 perf_event__output_id_sample(event, &handle, &sample); 6849 6850 perf_output_end(&handle); 6851 out: 6852 mmap_event->event_id.header.size = size; 6853 } 6854 6855 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 6856 { 6857 struct vm_area_struct *vma = mmap_event->vma; 6858 struct file *file = vma->vm_file; 6859 int maj = 0, min = 0; 6860 u64 ino = 0, gen = 0; 6861 u32 prot = 0, flags = 0; 6862 unsigned int size; 6863 char tmp[16]; 6864 char *buf = NULL; 6865 char *name; 6866 6867 if (vma->vm_flags & VM_READ) 6868 prot |= PROT_READ; 6869 if (vma->vm_flags & VM_WRITE) 6870 prot |= PROT_WRITE; 6871 if (vma->vm_flags & VM_EXEC) 6872 prot |= PROT_EXEC; 6873 6874 if (vma->vm_flags & VM_MAYSHARE) 6875 flags = MAP_SHARED; 6876 else 6877 flags = MAP_PRIVATE; 6878 6879 if (vma->vm_flags & VM_DENYWRITE) 6880 flags |= MAP_DENYWRITE; 6881 if (vma->vm_flags & VM_MAYEXEC) 6882 flags |= MAP_EXECUTABLE; 6883 if (vma->vm_flags & VM_LOCKED) 6884 flags |= MAP_LOCKED; 6885 if (vma->vm_flags & VM_HUGETLB) 6886 flags |= MAP_HUGETLB; 6887 6888 if (file) { 6889 struct inode *inode; 6890 dev_t dev; 6891 6892 buf = kmalloc(PATH_MAX, GFP_KERNEL); 6893 if (!buf) { 6894 name = "//enomem"; 6895 goto cpy_name; 6896 } 6897 /* 6898 * d_path() works from the end of the rb backwards, so we 6899 * need to add enough zero bytes after the string to handle 6900 * the 64bit alignment we do later. 6901 */ 6902 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 6903 if (IS_ERR(name)) { 6904 name = "//toolong"; 6905 goto cpy_name; 6906 } 6907 inode = file_inode(vma->vm_file); 6908 dev = inode->i_sb->s_dev; 6909 ino = inode->i_ino; 6910 gen = inode->i_generation; 6911 maj = MAJOR(dev); 6912 min = MINOR(dev); 6913 6914 goto got_name; 6915 } else { 6916 if (vma->vm_ops && vma->vm_ops->name) { 6917 name = (char *) vma->vm_ops->name(vma); 6918 if (name) 6919 goto cpy_name; 6920 } 6921 6922 name = (char *)arch_vma_name(vma); 6923 if (name) 6924 goto cpy_name; 6925 6926 if (vma->vm_start <= vma->vm_mm->start_brk && 6927 vma->vm_end >= vma->vm_mm->brk) { 6928 name = "[heap]"; 6929 goto cpy_name; 6930 } 6931 if (vma->vm_start <= vma->vm_mm->start_stack && 6932 vma->vm_end >= vma->vm_mm->start_stack) { 6933 name = "[stack]"; 6934 goto cpy_name; 6935 } 6936 6937 name = "//anon"; 6938 goto cpy_name; 6939 } 6940 6941 cpy_name: 6942 strlcpy(tmp, name, sizeof(tmp)); 6943 name = tmp; 6944 got_name: 6945 /* 6946 * Since our buffer works in 8 byte units we need to align our string 6947 * size to a multiple of 8. However, we must guarantee the tail end is 6948 * zero'd out to avoid leaking random bits to userspace. 6949 */ 6950 size = strlen(name)+1; 6951 while (!IS_ALIGNED(size, sizeof(u64))) 6952 name[size++] = '\0'; 6953 6954 mmap_event->file_name = name; 6955 mmap_event->file_size = size; 6956 mmap_event->maj = maj; 6957 mmap_event->min = min; 6958 mmap_event->ino = ino; 6959 mmap_event->ino_generation = gen; 6960 mmap_event->prot = prot; 6961 mmap_event->flags = flags; 6962 6963 if (!(vma->vm_flags & VM_EXEC)) 6964 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 6965 6966 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 6967 6968 perf_iterate_sb(perf_event_mmap_output, 6969 mmap_event, 6970 NULL); 6971 6972 kfree(buf); 6973 } 6974 6975 /* 6976 * Check whether inode and address range match filter criteria. 6977 */ 6978 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 6979 struct file *file, unsigned long offset, 6980 unsigned long size) 6981 { 6982 if (filter->inode != file_inode(file)) 6983 return false; 6984 6985 if (filter->offset > offset + size) 6986 return false; 6987 6988 if (filter->offset + filter->size < offset) 6989 return false; 6990 6991 return true; 6992 } 6993 6994 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 6995 { 6996 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6997 struct vm_area_struct *vma = data; 6998 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags; 6999 struct file *file = vma->vm_file; 7000 struct perf_addr_filter *filter; 7001 unsigned int restart = 0, count = 0; 7002 7003 if (!has_addr_filter(event)) 7004 return; 7005 7006 if (!file) 7007 return; 7008 7009 raw_spin_lock_irqsave(&ifh->lock, flags); 7010 list_for_each_entry(filter, &ifh->list, entry) { 7011 if (perf_addr_filter_match(filter, file, off, 7012 vma->vm_end - vma->vm_start)) { 7013 event->addr_filters_offs[count] = vma->vm_start; 7014 restart++; 7015 } 7016 7017 count++; 7018 } 7019 7020 if (restart) 7021 event->addr_filters_gen++; 7022 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7023 7024 if (restart) 7025 perf_event_stop(event, 1); 7026 } 7027 7028 /* 7029 * Adjust all task's events' filters to the new vma 7030 */ 7031 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7032 { 7033 struct perf_event_context *ctx; 7034 int ctxn; 7035 7036 /* 7037 * Data tracing isn't supported yet and as such there is no need 7038 * to keep track of anything that isn't related to executable code: 7039 */ 7040 if (!(vma->vm_flags & VM_EXEC)) 7041 return; 7042 7043 rcu_read_lock(); 7044 for_each_task_context_nr(ctxn) { 7045 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7046 if (!ctx) 7047 continue; 7048 7049 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7050 } 7051 rcu_read_unlock(); 7052 } 7053 7054 void perf_event_mmap(struct vm_area_struct *vma) 7055 { 7056 struct perf_mmap_event mmap_event; 7057 7058 if (!atomic_read(&nr_mmap_events)) 7059 return; 7060 7061 mmap_event = (struct perf_mmap_event){ 7062 .vma = vma, 7063 /* .file_name */ 7064 /* .file_size */ 7065 .event_id = { 7066 .header = { 7067 .type = PERF_RECORD_MMAP, 7068 .misc = PERF_RECORD_MISC_USER, 7069 /* .size */ 7070 }, 7071 /* .pid */ 7072 /* .tid */ 7073 .start = vma->vm_start, 7074 .len = vma->vm_end - vma->vm_start, 7075 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7076 }, 7077 /* .maj (attr_mmap2 only) */ 7078 /* .min (attr_mmap2 only) */ 7079 /* .ino (attr_mmap2 only) */ 7080 /* .ino_generation (attr_mmap2 only) */ 7081 /* .prot (attr_mmap2 only) */ 7082 /* .flags (attr_mmap2 only) */ 7083 }; 7084 7085 perf_addr_filters_adjust(vma); 7086 perf_event_mmap_event(&mmap_event); 7087 } 7088 7089 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7090 unsigned long size, u64 flags) 7091 { 7092 struct perf_output_handle handle; 7093 struct perf_sample_data sample; 7094 struct perf_aux_event { 7095 struct perf_event_header header; 7096 u64 offset; 7097 u64 size; 7098 u64 flags; 7099 } rec = { 7100 .header = { 7101 .type = PERF_RECORD_AUX, 7102 .misc = 0, 7103 .size = sizeof(rec), 7104 }, 7105 .offset = head, 7106 .size = size, 7107 .flags = flags, 7108 }; 7109 int ret; 7110 7111 perf_event_header__init_id(&rec.header, &sample, event); 7112 ret = perf_output_begin(&handle, event, rec.header.size); 7113 7114 if (ret) 7115 return; 7116 7117 perf_output_put(&handle, rec); 7118 perf_event__output_id_sample(event, &handle, &sample); 7119 7120 perf_output_end(&handle); 7121 } 7122 7123 /* 7124 * Lost/dropped samples logging 7125 */ 7126 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7127 { 7128 struct perf_output_handle handle; 7129 struct perf_sample_data sample; 7130 int ret; 7131 7132 struct { 7133 struct perf_event_header header; 7134 u64 lost; 7135 } lost_samples_event = { 7136 .header = { 7137 .type = PERF_RECORD_LOST_SAMPLES, 7138 .misc = 0, 7139 .size = sizeof(lost_samples_event), 7140 }, 7141 .lost = lost, 7142 }; 7143 7144 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7145 7146 ret = perf_output_begin(&handle, event, 7147 lost_samples_event.header.size); 7148 if (ret) 7149 return; 7150 7151 perf_output_put(&handle, lost_samples_event); 7152 perf_event__output_id_sample(event, &handle, &sample); 7153 perf_output_end(&handle); 7154 } 7155 7156 /* 7157 * context_switch tracking 7158 */ 7159 7160 struct perf_switch_event { 7161 struct task_struct *task; 7162 struct task_struct *next_prev; 7163 7164 struct { 7165 struct perf_event_header header; 7166 u32 next_prev_pid; 7167 u32 next_prev_tid; 7168 } event_id; 7169 }; 7170 7171 static int perf_event_switch_match(struct perf_event *event) 7172 { 7173 return event->attr.context_switch; 7174 } 7175 7176 static void perf_event_switch_output(struct perf_event *event, void *data) 7177 { 7178 struct perf_switch_event *se = data; 7179 struct perf_output_handle handle; 7180 struct perf_sample_data sample; 7181 int ret; 7182 7183 if (!perf_event_switch_match(event)) 7184 return; 7185 7186 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7187 if (event->ctx->task) { 7188 se->event_id.header.type = PERF_RECORD_SWITCH; 7189 se->event_id.header.size = sizeof(se->event_id.header); 7190 } else { 7191 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7192 se->event_id.header.size = sizeof(se->event_id); 7193 se->event_id.next_prev_pid = 7194 perf_event_pid(event, se->next_prev); 7195 se->event_id.next_prev_tid = 7196 perf_event_tid(event, se->next_prev); 7197 } 7198 7199 perf_event_header__init_id(&se->event_id.header, &sample, event); 7200 7201 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7202 if (ret) 7203 return; 7204 7205 if (event->ctx->task) 7206 perf_output_put(&handle, se->event_id.header); 7207 else 7208 perf_output_put(&handle, se->event_id); 7209 7210 perf_event__output_id_sample(event, &handle, &sample); 7211 7212 perf_output_end(&handle); 7213 } 7214 7215 static void perf_event_switch(struct task_struct *task, 7216 struct task_struct *next_prev, bool sched_in) 7217 { 7218 struct perf_switch_event switch_event; 7219 7220 /* N.B. caller checks nr_switch_events != 0 */ 7221 7222 switch_event = (struct perf_switch_event){ 7223 .task = task, 7224 .next_prev = next_prev, 7225 .event_id = { 7226 .header = { 7227 /* .type */ 7228 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7229 /* .size */ 7230 }, 7231 /* .next_prev_pid */ 7232 /* .next_prev_tid */ 7233 }, 7234 }; 7235 7236 perf_iterate_sb(perf_event_switch_output, 7237 &switch_event, 7238 NULL); 7239 } 7240 7241 /* 7242 * IRQ throttle logging 7243 */ 7244 7245 static void perf_log_throttle(struct perf_event *event, int enable) 7246 { 7247 struct perf_output_handle handle; 7248 struct perf_sample_data sample; 7249 int ret; 7250 7251 struct { 7252 struct perf_event_header header; 7253 u64 time; 7254 u64 id; 7255 u64 stream_id; 7256 } throttle_event = { 7257 .header = { 7258 .type = PERF_RECORD_THROTTLE, 7259 .misc = 0, 7260 .size = sizeof(throttle_event), 7261 }, 7262 .time = perf_event_clock(event), 7263 .id = primary_event_id(event), 7264 .stream_id = event->id, 7265 }; 7266 7267 if (enable) 7268 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7269 7270 perf_event_header__init_id(&throttle_event.header, &sample, event); 7271 7272 ret = perf_output_begin(&handle, event, 7273 throttle_event.header.size); 7274 if (ret) 7275 return; 7276 7277 perf_output_put(&handle, throttle_event); 7278 perf_event__output_id_sample(event, &handle, &sample); 7279 perf_output_end(&handle); 7280 } 7281 7282 void perf_event_itrace_started(struct perf_event *event) 7283 { 7284 event->attach_state |= PERF_ATTACH_ITRACE; 7285 } 7286 7287 static void perf_log_itrace_start(struct perf_event *event) 7288 { 7289 struct perf_output_handle handle; 7290 struct perf_sample_data sample; 7291 struct perf_aux_event { 7292 struct perf_event_header header; 7293 u32 pid; 7294 u32 tid; 7295 } rec; 7296 int ret; 7297 7298 if (event->parent) 7299 event = event->parent; 7300 7301 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7302 event->attach_state & PERF_ATTACH_ITRACE) 7303 return; 7304 7305 rec.header.type = PERF_RECORD_ITRACE_START; 7306 rec.header.misc = 0; 7307 rec.header.size = sizeof(rec); 7308 rec.pid = perf_event_pid(event, current); 7309 rec.tid = perf_event_tid(event, current); 7310 7311 perf_event_header__init_id(&rec.header, &sample, event); 7312 ret = perf_output_begin(&handle, event, rec.header.size); 7313 7314 if (ret) 7315 return; 7316 7317 perf_output_put(&handle, rec); 7318 perf_event__output_id_sample(event, &handle, &sample); 7319 7320 perf_output_end(&handle); 7321 } 7322 7323 static int 7324 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7325 { 7326 struct hw_perf_event *hwc = &event->hw; 7327 int ret = 0; 7328 u64 seq; 7329 7330 seq = __this_cpu_read(perf_throttled_seq); 7331 if (seq != hwc->interrupts_seq) { 7332 hwc->interrupts_seq = seq; 7333 hwc->interrupts = 1; 7334 } else { 7335 hwc->interrupts++; 7336 if (unlikely(throttle 7337 && hwc->interrupts >= max_samples_per_tick)) { 7338 __this_cpu_inc(perf_throttled_count); 7339 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7340 hwc->interrupts = MAX_INTERRUPTS; 7341 perf_log_throttle(event, 0); 7342 ret = 1; 7343 } 7344 } 7345 7346 if (event->attr.freq) { 7347 u64 now = perf_clock(); 7348 s64 delta = now - hwc->freq_time_stamp; 7349 7350 hwc->freq_time_stamp = now; 7351 7352 if (delta > 0 && delta < 2*TICK_NSEC) 7353 perf_adjust_period(event, delta, hwc->last_period, true); 7354 } 7355 7356 return ret; 7357 } 7358 7359 int perf_event_account_interrupt(struct perf_event *event) 7360 { 7361 return __perf_event_account_interrupt(event, 1); 7362 } 7363 7364 /* 7365 * Generic event overflow handling, sampling. 7366 */ 7367 7368 static int __perf_event_overflow(struct perf_event *event, 7369 int throttle, struct perf_sample_data *data, 7370 struct pt_regs *regs) 7371 { 7372 int events = atomic_read(&event->event_limit); 7373 int ret = 0; 7374 7375 /* 7376 * Non-sampling counters might still use the PMI to fold short 7377 * hardware counters, ignore those. 7378 */ 7379 if (unlikely(!is_sampling_event(event))) 7380 return 0; 7381 7382 ret = __perf_event_account_interrupt(event, throttle); 7383 7384 /* 7385 * XXX event_limit might not quite work as expected on inherited 7386 * events 7387 */ 7388 7389 event->pending_kill = POLL_IN; 7390 if (events && atomic_dec_and_test(&event->event_limit)) { 7391 ret = 1; 7392 event->pending_kill = POLL_HUP; 7393 7394 perf_event_disable_inatomic(event); 7395 } 7396 7397 READ_ONCE(event->overflow_handler)(event, data, regs); 7398 7399 if (*perf_event_fasync(event) && event->pending_kill) { 7400 event->pending_wakeup = 1; 7401 irq_work_queue(&event->pending); 7402 } 7403 7404 return ret; 7405 } 7406 7407 int perf_event_overflow(struct perf_event *event, 7408 struct perf_sample_data *data, 7409 struct pt_regs *regs) 7410 { 7411 return __perf_event_overflow(event, 1, data, regs); 7412 } 7413 7414 /* 7415 * Generic software event infrastructure 7416 */ 7417 7418 struct swevent_htable { 7419 struct swevent_hlist *swevent_hlist; 7420 struct mutex hlist_mutex; 7421 int hlist_refcount; 7422 7423 /* Recursion avoidance in each contexts */ 7424 int recursion[PERF_NR_CONTEXTS]; 7425 }; 7426 7427 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 7428 7429 /* 7430 * We directly increment event->count and keep a second value in 7431 * event->hw.period_left to count intervals. This period event 7432 * is kept in the range [-sample_period, 0] so that we can use the 7433 * sign as trigger. 7434 */ 7435 7436 u64 perf_swevent_set_period(struct perf_event *event) 7437 { 7438 struct hw_perf_event *hwc = &event->hw; 7439 u64 period = hwc->last_period; 7440 u64 nr, offset; 7441 s64 old, val; 7442 7443 hwc->last_period = hwc->sample_period; 7444 7445 again: 7446 old = val = local64_read(&hwc->period_left); 7447 if (val < 0) 7448 return 0; 7449 7450 nr = div64_u64(period + val, period); 7451 offset = nr * period; 7452 val -= offset; 7453 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 7454 goto again; 7455 7456 return nr; 7457 } 7458 7459 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 7460 struct perf_sample_data *data, 7461 struct pt_regs *regs) 7462 { 7463 struct hw_perf_event *hwc = &event->hw; 7464 int throttle = 0; 7465 7466 if (!overflow) 7467 overflow = perf_swevent_set_period(event); 7468 7469 if (hwc->interrupts == MAX_INTERRUPTS) 7470 return; 7471 7472 for (; overflow; overflow--) { 7473 if (__perf_event_overflow(event, throttle, 7474 data, regs)) { 7475 /* 7476 * We inhibit the overflow from happening when 7477 * hwc->interrupts == MAX_INTERRUPTS. 7478 */ 7479 break; 7480 } 7481 throttle = 1; 7482 } 7483 } 7484 7485 static void perf_swevent_event(struct perf_event *event, u64 nr, 7486 struct perf_sample_data *data, 7487 struct pt_regs *regs) 7488 { 7489 struct hw_perf_event *hwc = &event->hw; 7490 7491 local64_add(nr, &event->count); 7492 7493 if (!regs) 7494 return; 7495 7496 if (!is_sampling_event(event)) 7497 return; 7498 7499 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 7500 data->period = nr; 7501 return perf_swevent_overflow(event, 1, data, regs); 7502 } else 7503 data->period = event->hw.last_period; 7504 7505 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 7506 return perf_swevent_overflow(event, 1, data, regs); 7507 7508 if (local64_add_negative(nr, &hwc->period_left)) 7509 return; 7510 7511 perf_swevent_overflow(event, 0, data, regs); 7512 } 7513 7514 static int perf_exclude_event(struct perf_event *event, 7515 struct pt_regs *regs) 7516 { 7517 if (event->hw.state & PERF_HES_STOPPED) 7518 return 1; 7519 7520 if (regs) { 7521 if (event->attr.exclude_user && user_mode(regs)) 7522 return 1; 7523 7524 if (event->attr.exclude_kernel && !user_mode(regs)) 7525 return 1; 7526 } 7527 7528 return 0; 7529 } 7530 7531 static int perf_swevent_match(struct perf_event *event, 7532 enum perf_type_id type, 7533 u32 event_id, 7534 struct perf_sample_data *data, 7535 struct pt_regs *regs) 7536 { 7537 if (event->attr.type != type) 7538 return 0; 7539 7540 if (event->attr.config != event_id) 7541 return 0; 7542 7543 if (perf_exclude_event(event, regs)) 7544 return 0; 7545 7546 return 1; 7547 } 7548 7549 static inline u64 swevent_hash(u64 type, u32 event_id) 7550 { 7551 u64 val = event_id | (type << 32); 7552 7553 return hash_64(val, SWEVENT_HLIST_BITS); 7554 } 7555 7556 static inline struct hlist_head * 7557 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 7558 { 7559 u64 hash = swevent_hash(type, event_id); 7560 7561 return &hlist->heads[hash]; 7562 } 7563 7564 /* For the read side: events when they trigger */ 7565 static inline struct hlist_head * 7566 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 7567 { 7568 struct swevent_hlist *hlist; 7569 7570 hlist = rcu_dereference(swhash->swevent_hlist); 7571 if (!hlist) 7572 return NULL; 7573 7574 return __find_swevent_head(hlist, type, event_id); 7575 } 7576 7577 /* For the event head insertion and removal in the hlist */ 7578 static inline struct hlist_head * 7579 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 7580 { 7581 struct swevent_hlist *hlist; 7582 u32 event_id = event->attr.config; 7583 u64 type = event->attr.type; 7584 7585 /* 7586 * Event scheduling is always serialized against hlist allocation 7587 * and release. Which makes the protected version suitable here. 7588 * The context lock guarantees that. 7589 */ 7590 hlist = rcu_dereference_protected(swhash->swevent_hlist, 7591 lockdep_is_held(&event->ctx->lock)); 7592 if (!hlist) 7593 return NULL; 7594 7595 return __find_swevent_head(hlist, type, event_id); 7596 } 7597 7598 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 7599 u64 nr, 7600 struct perf_sample_data *data, 7601 struct pt_regs *regs) 7602 { 7603 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7604 struct perf_event *event; 7605 struct hlist_head *head; 7606 7607 rcu_read_lock(); 7608 head = find_swevent_head_rcu(swhash, type, event_id); 7609 if (!head) 7610 goto end; 7611 7612 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7613 if (perf_swevent_match(event, type, event_id, data, regs)) 7614 perf_swevent_event(event, nr, data, regs); 7615 } 7616 end: 7617 rcu_read_unlock(); 7618 } 7619 7620 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 7621 7622 int perf_swevent_get_recursion_context(void) 7623 { 7624 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7625 7626 return get_recursion_context(swhash->recursion); 7627 } 7628 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 7629 7630 void perf_swevent_put_recursion_context(int rctx) 7631 { 7632 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7633 7634 put_recursion_context(swhash->recursion, rctx); 7635 } 7636 7637 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7638 { 7639 struct perf_sample_data data; 7640 7641 if (WARN_ON_ONCE(!regs)) 7642 return; 7643 7644 perf_sample_data_init(&data, addr, 0); 7645 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 7646 } 7647 7648 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 7649 { 7650 int rctx; 7651 7652 preempt_disable_notrace(); 7653 rctx = perf_swevent_get_recursion_context(); 7654 if (unlikely(rctx < 0)) 7655 goto fail; 7656 7657 ___perf_sw_event(event_id, nr, regs, addr); 7658 7659 perf_swevent_put_recursion_context(rctx); 7660 fail: 7661 preempt_enable_notrace(); 7662 } 7663 7664 static void perf_swevent_read(struct perf_event *event) 7665 { 7666 } 7667 7668 static int perf_swevent_add(struct perf_event *event, int flags) 7669 { 7670 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 7671 struct hw_perf_event *hwc = &event->hw; 7672 struct hlist_head *head; 7673 7674 if (is_sampling_event(event)) { 7675 hwc->last_period = hwc->sample_period; 7676 perf_swevent_set_period(event); 7677 } 7678 7679 hwc->state = !(flags & PERF_EF_START); 7680 7681 head = find_swevent_head(swhash, event); 7682 if (WARN_ON_ONCE(!head)) 7683 return -EINVAL; 7684 7685 hlist_add_head_rcu(&event->hlist_entry, head); 7686 perf_event_update_userpage(event); 7687 7688 return 0; 7689 } 7690 7691 static void perf_swevent_del(struct perf_event *event, int flags) 7692 { 7693 hlist_del_rcu(&event->hlist_entry); 7694 } 7695 7696 static void perf_swevent_start(struct perf_event *event, int flags) 7697 { 7698 event->hw.state = 0; 7699 } 7700 7701 static void perf_swevent_stop(struct perf_event *event, int flags) 7702 { 7703 event->hw.state = PERF_HES_STOPPED; 7704 } 7705 7706 /* Deref the hlist from the update side */ 7707 static inline struct swevent_hlist * 7708 swevent_hlist_deref(struct swevent_htable *swhash) 7709 { 7710 return rcu_dereference_protected(swhash->swevent_hlist, 7711 lockdep_is_held(&swhash->hlist_mutex)); 7712 } 7713 7714 static void swevent_hlist_release(struct swevent_htable *swhash) 7715 { 7716 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 7717 7718 if (!hlist) 7719 return; 7720 7721 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 7722 kfree_rcu(hlist, rcu_head); 7723 } 7724 7725 static void swevent_hlist_put_cpu(int cpu) 7726 { 7727 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7728 7729 mutex_lock(&swhash->hlist_mutex); 7730 7731 if (!--swhash->hlist_refcount) 7732 swevent_hlist_release(swhash); 7733 7734 mutex_unlock(&swhash->hlist_mutex); 7735 } 7736 7737 static void swevent_hlist_put(void) 7738 { 7739 int cpu; 7740 7741 for_each_possible_cpu(cpu) 7742 swevent_hlist_put_cpu(cpu); 7743 } 7744 7745 static int swevent_hlist_get_cpu(int cpu) 7746 { 7747 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7748 int err = 0; 7749 7750 mutex_lock(&swhash->hlist_mutex); 7751 if (!swevent_hlist_deref(swhash) && 7752 cpumask_test_cpu(cpu, perf_online_mask)) { 7753 struct swevent_hlist *hlist; 7754 7755 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 7756 if (!hlist) { 7757 err = -ENOMEM; 7758 goto exit; 7759 } 7760 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7761 } 7762 swhash->hlist_refcount++; 7763 exit: 7764 mutex_unlock(&swhash->hlist_mutex); 7765 7766 return err; 7767 } 7768 7769 static int swevent_hlist_get(void) 7770 { 7771 int err, cpu, failed_cpu; 7772 7773 mutex_lock(&pmus_lock); 7774 for_each_possible_cpu(cpu) { 7775 err = swevent_hlist_get_cpu(cpu); 7776 if (err) { 7777 failed_cpu = cpu; 7778 goto fail; 7779 } 7780 } 7781 mutex_unlock(&pmus_lock); 7782 return 0; 7783 fail: 7784 for_each_possible_cpu(cpu) { 7785 if (cpu == failed_cpu) 7786 break; 7787 swevent_hlist_put_cpu(cpu); 7788 } 7789 mutex_unlock(&pmus_lock); 7790 return err; 7791 } 7792 7793 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 7794 7795 static void sw_perf_event_destroy(struct perf_event *event) 7796 { 7797 u64 event_id = event->attr.config; 7798 7799 WARN_ON(event->parent); 7800 7801 static_key_slow_dec(&perf_swevent_enabled[event_id]); 7802 swevent_hlist_put(); 7803 } 7804 7805 static int perf_swevent_init(struct perf_event *event) 7806 { 7807 u64 event_id = event->attr.config; 7808 7809 if (event->attr.type != PERF_TYPE_SOFTWARE) 7810 return -ENOENT; 7811 7812 /* 7813 * no branch sampling for software events 7814 */ 7815 if (has_branch_stack(event)) 7816 return -EOPNOTSUPP; 7817 7818 switch (event_id) { 7819 case PERF_COUNT_SW_CPU_CLOCK: 7820 case PERF_COUNT_SW_TASK_CLOCK: 7821 return -ENOENT; 7822 7823 default: 7824 break; 7825 } 7826 7827 if (event_id >= PERF_COUNT_SW_MAX) 7828 return -ENOENT; 7829 7830 if (!event->parent) { 7831 int err; 7832 7833 err = swevent_hlist_get(); 7834 if (err) 7835 return err; 7836 7837 static_key_slow_inc(&perf_swevent_enabled[event_id]); 7838 event->destroy = sw_perf_event_destroy; 7839 } 7840 7841 return 0; 7842 } 7843 7844 static struct pmu perf_swevent = { 7845 .task_ctx_nr = perf_sw_context, 7846 7847 .capabilities = PERF_PMU_CAP_NO_NMI, 7848 7849 .event_init = perf_swevent_init, 7850 .add = perf_swevent_add, 7851 .del = perf_swevent_del, 7852 .start = perf_swevent_start, 7853 .stop = perf_swevent_stop, 7854 .read = perf_swevent_read, 7855 }; 7856 7857 #ifdef CONFIG_EVENT_TRACING 7858 7859 static int perf_tp_filter_match(struct perf_event *event, 7860 struct perf_sample_data *data) 7861 { 7862 void *record = data->raw->frag.data; 7863 7864 /* only top level events have filters set */ 7865 if (event->parent) 7866 event = event->parent; 7867 7868 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 7869 return 1; 7870 return 0; 7871 } 7872 7873 static int perf_tp_event_match(struct perf_event *event, 7874 struct perf_sample_data *data, 7875 struct pt_regs *regs) 7876 { 7877 if (event->hw.state & PERF_HES_STOPPED) 7878 return 0; 7879 /* 7880 * All tracepoints are from kernel-space. 7881 */ 7882 if (event->attr.exclude_kernel) 7883 return 0; 7884 7885 if (!perf_tp_filter_match(event, data)) 7886 return 0; 7887 7888 return 1; 7889 } 7890 7891 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 7892 struct trace_event_call *call, u64 count, 7893 struct pt_regs *regs, struct hlist_head *head, 7894 struct task_struct *task) 7895 { 7896 if (bpf_prog_array_valid(call)) { 7897 *(struct pt_regs **)raw_data = regs; 7898 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 7899 perf_swevent_put_recursion_context(rctx); 7900 return; 7901 } 7902 } 7903 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 7904 rctx, task); 7905 } 7906 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 7907 7908 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 7909 struct pt_regs *regs, struct hlist_head *head, int rctx, 7910 struct task_struct *task) 7911 { 7912 struct perf_sample_data data; 7913 struct perf_event *event; 7914 7915 struct perf_raw_record raw = { 7916 .frag = { 7917 .size = entry_size, 7918 .data = record, 7919 }, 7920 }; 7921 7922 perf_sample_data_init(&data, 0, 0); 7923 data.raw = &raw; 7924 7925 perf_trace_buf_update(record, event_type); 7926 7927 hlist_for_each_entry_rcu(event, head, hlist_entry) { 7928 if (perf_tp_event_match(event, &data, regs)) 7929 perf_swevent_event(event, count, &data, regs); 7930 } 7931 7932 /* 7933 * If we got specified a target task, also iterate its context and 7934 * deliver this event there too. 7935 */ 7936 if (task && task != current) { 7937 struct perf_event_context *ctx; 7938 struct trace_entry *entry = record; 7939 7940 rcu_read_lock(); 7941 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 7942 if (!ctx) 7943 goto unlock; 7944 7945 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 7946 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7947 continue; 7948 if (event->attr.config != entry->type) 7949 continue; 7950 if (perf_tp_event_match(event, &data, regs)) 7951 perf_swevent_event(event, count, &data, regs); 7952 } 7953 unlock: 7954 rcu_read_unlock(); 7955 } 7956 7957 perf_swevent_put_recursion_context(rctx); 7958 } 7959 EXPORT_SYMBOL_GPL(perf_tp_event); 7960 7961 static void tp_perf_event_destroy(struct perf_event *event) 7962 { 7963 perf_trace_destroy(event); 7964 } 7965 7966 static int perf_tp_event_init(struct perf_event *event) 7967 { 7968 int err; 7969 7970 if (event->attr.type != PERF_TYPE_TRACEPOINT) 7971 return -ENOENT; 7972 7973 /* 7974 * no branch sampling for tracepoint events 7975 */ 7976 if (has_branch_stack(event)) 7977 return -EOPNOTSUPP; 7978 7979 err = perf_trace_init(event); 7980 if (err) 7981 return err; 7982 7983 event->destroy = tp_perf_event_destroy; 7984 7985 return 0; 7986 } 7987 7988 static struct pmu perf_tracepoint = { 7989 .task_ctx_nr = perf_sw_context, 7990 7991 .event_init = perf_tp_event_init, 7992 .add = perf_trace_add, 7993 .del = perf_trace_del, 7994 .start = perf_swevent_start, 7995 .stop = perf_swevent_stop, 7996 .read = perf_swevent_read, 7997 }; 7998 7999 static inline void perf_tp_register(void) 8000 { 8001 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8002 } 8003 8004 static void perf_event_free_filter(struct perf_event *event) 8005 { 8006 ftrace_profile_free_filter(event); 8007 } 8008 8009 #ifdef CONFIG_BPF_SYSCALL 8010 static void bpf_overflow_handler(struct perf_event *event, 8011 struct perf_sample_data *data, 8012 struct pt_regs *regs) 8013 { 8014 struct bpf_perf_event_data_kern ctx = { 8015 .data = data, 8016 .event = event, 8017 }; 8018 int ret = 0; 8019 8020 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8021 preempt_disable(); 8022 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8023 goto out; 8024 rcu_read_lock(); 8025 ret = BPF_PROG_RUN(event->prog, &ctx); 8026 rcu_read_unlock(); 8027 out: 8028 __this_cpu_dec(bpf_prog_active); 8029 preempt_enable(); 8030 if (!ret) 8031 return; 8032 8033 event->orig_overflow_handler(event, data, regs); 8034 } 8035 8036 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8037 { 8038 struct bpf_prog *prog; 8039 8040 if (event->overflow_handler_context) 8041 /* hw breakpoint or kernel counter */ 8042 return -EINVAL; 8043 8044 if (event->prog) 8045 return -EEXIST; 8046 8047 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8048 if (IS_ERR(prog)) 8049 return PTR_ERR(prog); 8050 8051 event->prog = prog; 8052 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8053 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8054 return 0; 8055 } 8056 8057 static void perf_event_free_bpf_handler(struct perf_event *event) 8058 { 8059 struct bpf_prog *prog = event->prog; 8060 8061 if (!prog) 8062 return; 8063 8064 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8065 event->prog = NULL; 8066 bpf_prog_put(prog); 8067 } 8068 #else 8069 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8070 { 8071 return -EOPNOTSUPP; 8072 } 8073 static void perf_event_free_bpf_handler(struct perf_event *event) 8074 { 8075 } 8076 #endif 8077 8078 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8079 { 8080 bool is_kprobe, is_tracepoint, is_syscall_tp; 8081 struct bpf_prog *prog; 8082 int ret; 8083 8084 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8085 return perf_event_set_bpf_handler(event, prog_fd); 8086 8087 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8088 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8089 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8090 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8091 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8092 return -EINVAL; 8093 8094 prog = bpf_prog_get(prog_fd); 8095 if (IS_ERR(prog)) 8096 return PTR_ERR(prog); 8097 8098 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8099 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8100 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8101 /* valid fd, but invalid bpf program type */ 8102 bpf_prog_put(prog); 8103 return -EINVAL; 8104 } 8105 8106 /* Kprobe override only works for kprobes, not uprobes. */ 8107 if (prog->kprobe_override && 8108 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8109 bpf_prog_put(prog); 8110 return -EINVAL; 8111 } 8112 8113 if (is_tracepoint || is_syscall_tp) { 8114 int off = trace_event_get_offsets(event->tp_event); 8115 8116 if (prog->aux->max_ctx_offset > off) { 8117 bpf_prog_put(prog); 8118 return -EACCES; 8119 } 8120 } 8121 8122 ret = perf_event_attach_bpf_prog(event, prog); 8123 if (ret) 8124 bpf_prog_put(prog); 8125 return ret; 8126 } 8127 8128 static void perf_event_free_bpf_prog(struct perf_event *event) 8129 { 8130 if (event->attr.type != PERF_TYPE_TRACEPOINT) { 8131 perf_event_free_bpf_handler(event); 8132 return; 8133 } 8134 perf_event_detach_bpf_prog(event); 8135 } 8136 8137 #else 8138 8139 static inline void perf_tp_register(void) 8140 { 8141 } 8142 8143 static void perf_event_free_filter(struct perf_event *event) 8144 { 8145 } 8146 8147 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8148 { 8149 return -ENOENT; 8150 } 8151 8152 static void perf_event_free_bpf_prog(struct perf_event *event) 8153 { 8154 } 8155 #endif /* CONFIG_EVENT_TRACING */ 8156 8157 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8158 void perf_bp_event(struct perf_event *bp, void *data) 8159 { 8160 struct perf_sample_data sample; 8161 struct pt_regs *regs = data; 8162 8163 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8164 8165 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8166 perf_swevent_event(bp, 1, &sample, regs); 8167 } 8168 #endif 8169 8170 /* 8171 * Allocate a new address filter 8172 */ 8173 static struct perf_addr_filter * 8174 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8175 { 8176 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8177 struct perf_addr_filter *filter; 8178 8179 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8180 if (!filter) 8181 return NULL; 8182 8183 INIT_LIST_HEAD(&filter->entry); 8184 list_add_tail(&filter->entry, filters); 8185 8186 return filter; 8187 } 8188 8189 static void free_filters_list(struct list_head *filters) 8190 { 8191 struct perf_addr_filter *filter, *iter; 8192 8193 list_for_each_entry_safe(filter, iter, filters, entry) { 8194 if (filter->inode) 8195 iput(filter->inode); 8196 list_del(&filter->entry); 8197 kfree(filter); 8198 } 8199 } 8200 8201 /* 8202 * Free existing address filters and optionally install new ones 8203 */ 8204 static void perf_addr_filters_splice(struct perf_event *event, 8205 struct list_head *head) 8206 { 8207 unsigned long flags; 8208 LIST_HEAD(list); 8209 8210 if (!has_addr_filter(event)) 8211 return; 8212 8213 /* don't bother with children, they don't have their own filters */ 8214 if (event->parent) 8215 return; 8216 8217 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8218 8219 list_splice_init(&event->addr_filters.list, &list); 8220 if (head) 8221 list_splice(head, &event->addr_filters.list); 8222 8223 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 8224 8225 free_filters_list(&list); 8226 } 8227 8228 /* 8229 * Scan through mm's vmas and see if one of them matches the 8230 * @filter; if so, adjust filter's address range. 8231 * Called with mm::mmap_sem down for reading. 8232 */ 8233 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter, 8234 struct mm_struct *mm) 8235 { 8236 struct vm_area_struct *vma; 8237 8238 for (vma = mm->mmap; vma; vma = vma->vm_next) { 8239 struct file *file = vma->vm_file; 8240 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 8241 unsigned long vma_size = vma->vm_end - vma->vm_start; 8242 8243 if (!file) 8244 continue; 8245 8246 if (!perf_addr_filter_match(filter, file, off, vma_size)) 8247 continue; 8248 8249 return vma->vm_start; 8250 } 8251 8252 return 0; 8253 } 8254 8255 /* 8256 * Update event's address range filters based on the 8257 * task's existing mappings, if any. 8258 */ 8259 static void perf_event_addr_filters_apply(struct perf_event *event) 8260 { 8261 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 8262 struct task_struct *task = READ_ONCE(event->ctx->task); 8263 struct perf_addr_filter *filter; 8264 struct mm_struct *mm = NULL; 8265 unsigned int count = 0; 8266 unsigned long flags; 8267 8268 /* 8269 * We may observe TASK_TOMBSTONE, which means that the event tear-down 8270 * will stop on the parent's child_mutex that our caller is also holding 8271 */ 8272 if (task == TASK_TOMBSTONE) 8273 return; 8274 8275 if (!ifh->nr_file_filters) 8276 return; 8277 8278 mm = get_task_mm(event->ctx->task); 8279 if (!mm) 8280 goto restart; 8281 8282 down_read(&mm->mmap_sem); 8283 8284 raw_spin_lock_irqsave(&ifh->lock, flags); 8285 list_for_each_entry(filter, &ifh->list, entry) { 8286 event->addr_filters_offs[count] = 0; 8287 8288 /* 8289 * Adjust base offset if the filter is associated to a binary 8290 * that needs to be mapped: 8291 */ 8292 if (filter->inode) 8293 event->addr_filters_offs[count] = 8294 perf_addr_filter_apply(filter, mm); 8295 8296 count++; 8297 } 8298 8299 event->addr_filters_gen++; 8300 raw_spin_unlock_irqrestore(&ifh->lock, flags); 8301 8302 up_read(&mm->mmap_sem); 8303 8304 mmput(mm); 8305 8306 restart: 8307 perf_event_stop(event, 1); 8308 } 8309 8310 /* 8311 * Address range filtering: limiting the data to certain 8312 * instruction address ranges. Filters are ioctl()ed to us from 8313 * userspace as ascii strings. 8314 * 8315 * Filter string format: 8316 * 8317 * ACTION RANGE_SPEC 8318 * where ACTION is one of the 8319 * * "filter": limit the trace to this region 8320 * * "start": start tracing from this address 8321 * * "stop": stop tracing at this address/region; 8322 * RANGE_SPEC is 8323 * * for kernel addresses: <start address>[/<size>] 8324 * * for object files: <start address>[/<size>]@</path/to/object/file> 8325 * 8326 * if <size> is not specified, the range is treated as a single address. 8327 */ 8328 enum { 8329 IF_ACT_NONE = -1, 8330 IF_ACT_FILTER, 8331 IF_ACT_START, 8332 IF_ACT_STOP, 8333 IF_SRC_FILE, 8334 IF_SRC_KERNEL, 8335 IF_SRC_FILEADDR, 8336 IF_SRC_KERNELADDR, 8337 }; 8338 8339 enum { 8340 IF_STATE_ACTION = 0, 8341 IF_STATE_SOURCE, 8342 IF_STATE_END, 8343 }; 8344 8345 static const match_table_t if_tokens = { 8346 { IF_ACT_FILTER, "filter" }, 8347 { IF_ACT_START, "start" }, 8348 { IF_ACT_STOP, "stop" }, 8349 { IF_SRC_FILE, "%u/%u@%s" }, 8350 { IF_SRC_KERNEL, "%u/%u" }, 8351 { IF_SRC_FILEADDR, "%u@%s" }, 8352 { IF_SRC_KERNELADDR, "%u" }, 8353 { IF_ACT_NONE, NULL }, 8354 }; 8355 8356 /* 8357 * Address filter string parser 8358 */ 8359 static int 8360 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 8361 struct list_head *filters) 8362 { 8363 struct perf_addr_filter *filter = NULL; 8364 char *start, *orig, *filename = NULL; 8365 struct path path; 8366 substring_t args[MAX_OPT_ARGS]; 8367 int state = IF_STATE_ACTION, token; 8368 unsigned int kernel = 0; 8369 int ret = -EINVAL; 8370 8371 orig = fstr = kstrdup(fstr, GFP_KERNEL); 8372 if (!fstr) 8373 return -ENOMEM; 8374 8375 while ((start = strsep(&fstr, " ,\n")) != NULL) { 8376 ret = -EINVAL; 8377 8378 if (!*start) 8379 continue; 8380 8381 /* filter definition begins */ 8382 if (state == IF_STATE_ACTION) { 8383 filter = perf_addr_filter_new(event, filters); 8384 if (!filter) 8385 goto fail; 8386 } 8387 8388 token = match_token(start, if_tokens, args); 8389 switch (token) { 8390 case IF_ACT_FILTER: 8391 case IF_ACT_START: 8392 filter->filter = 1; 8393 8394 case IF_ACT_STOP: 8395 if (state != IF_STATE_ACTION) 8396 goto fail; 8397 8398 state = IF_STATE_SOURCE; 8399 break; 8400 8401 case IF_SRC_KERNELADDR: 8402 case IF_SRC_KERNEL: 8403 kernel = 1; 8404 8405 case IF_SRC_FILEADDR: 8406 case IF_SRC_FILE: 8407 if (state != IF_STATE_SOURCE) 8408 goto fail; 8409 8410 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL) 8411 filter->range = 1; 8412 8413 *args[0].to = 0; 8414 ret = kstrtoul(args[0].from, 0, &filter->offset); 8415 if (ret) 8416 goto fail; 8417 8418 if (filter->range) { 8419 *args[1].to = 0; 8420 ret = kstrtoul(args[1].from, 0, &filter->size); 8421 if (ret) 8422 goto fail; 8423 } 8424 8425 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 8426 int fpos = filter->range ? 2 : 1; 8427 8428 filename = match_strdup(&args[fpos]); 8429 if (!filename) { 8430 ret = -ENOMEM; 8431 goto fail; 8432 } 8433 } 8434 8435 state = IF_STATE_END; 8436 break; 8437 8438 default: 8439 goto fail; 8440 } 8441 8442 /* 8443 * Filter definition is fully parsed, validate and install it. 8444 * Make sure that it doesn't contradict itself or the event's 8445 * attribute. 8446 */ 8447 if (state == IF_STATE_END) { 8448 ret = -EINVAL; 8449 if (kernel && event->attr.exclude_kernel) 8450 goto fail; 8451 8452 if (!kernel) { 8453 if (!filename) 8454 goto fail; 8455 8456 /* 8457 * For now, we only support file-based filters 8458 * in per-task events; doing so for CPU-wide 8459 * events requires additional context switching 8460 * trickery, since same object code will be 8461 * mapped at different virtual addresses in 8462 * different processes. 8463 */ 8464 ret = -EOPNOTSUPP; 8465 if (!event->ctx->task) 8466 goto fail_free_name; 8467 8468 /* look up the path and grab its inode */ 8469 ret = kern_path(filename, LOOKUP_FOLLOW, &path); 8470 if (ret) 8471 goto fail_free_name; 8472 8473 filter->inode = igrab(d_inode(path.dentry)); 8474 path_put(&path); 8475 kfree(filename); 8476 filename = NULL; 8477 8478 ret = -EINVAL; 8479 if (!filter->inode || 8480 !S_ISREG(filter->inode->i_mode)) 8481 /* free_filters_list() will iput() */ 8482 goto fail; 8483 8484 event->addr_filters.nr_file_filters++; 8485 } 8486 8487 /* ready to consume more filters */ 8488 state = IF_STATE_ACTION; 8489 filter = NULL; 8490 } 8491 } 8492 8493 if (state != IF_STATE_ACTION) 8494 goto fail; 8495 8496 kfree(orig); 8497 8498 return 0; 8499 8500 fail_free_name: 8501 kfree(filename); 8502 fail: 8503 free_filters_list(filters); 8504 kfree(orig); 8505 8506 return ret; 8507 } 8508 8509 static int 8510 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 8511 { 8512 LIST_HEAD(filters); 8513 int ret; 8514 8515 /* 8516 * Since this is called in perf_ioctl() path, we're already holding 8517 * ctx::mutex. 8518 */ 8519 lockdep_assert_held(&event->ctx->mutex); 8520 8521 if (WARN_ON_ONCE(event->parent)) 8522 return -EINVAL; 8523 8524 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 8525 if (ret) 8526 goto fail_clear_files; 8527 8528 ret = event->pmu->addr_filters_validate(&filters); 8529 if (ret) 8530 goto fail_free_filters; 8531 8532 /* remove existing filters, if any */ 8533 perf_addr_filters_splice(event, &filters); 8534 8535 /* install new filters */ 8536 perf_event_for_each_child(event, perf_event_addr_filters_apply); 8537 8538 return ret; 8539 8540 fail_free_filters: 8541 free_filters_list(&filters); 8542 8543 fail_clear_files: 8544 event->addr_filters.nr_file_filters = 0; 8545 8546 return ret; 8547 } 8548 8549 static int 8550 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str) 8551 { 8552 struct perf_event_context *ctx = event->ctx; 8553 int ret; 8554 8555 /* 8556 * Beware, here be dragons!! 8557 * 8558 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint 8559 * stuff does not actually need it. So temporarily drop ctx->mutex. As per 8560 * perf_event_ctx_lock() we already have a reference on ctx. 8561 * 8562 * This can result in event getting moved to a different ctx, but that 8563 * does not affect the tracepoint state. 8564 */ 8565 mutex_unlock(&ctx->mutex); 8566 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 8567 mutex_lock(&ctx->mutex); 8568 8569 return ret; 8570 } 8571 8572 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 8573 { 8574 char *filter_str; 8575 int ret = -EINVAL; 8576 8577 if ((event->attr.type != PERF_TYPE_TRACEPOINT || 8578 !IS_ENABLED(CONFIG_EVENT_TRACING)) && 8579 !has_addr_filter(event)) 8580 return -EINVAL; 8581 8582 filter_str = strndup_user(arg, PAGE_SIZE); 8583 if (IS_ERR(filter_str)) 8584 return PTR_ERR(filter_str); 8585 8586 if (IS_ENABLED(CONFIG_EVENT_TRACING) && 8587 event->attr.type == PERF_TYPE_TRACEPOINT) 8588 ret = perf_tracepoint_set_filter(event, filter_str); 8589 else if (has_addr_filter(event)) 8590 ret = perf_event_set_addr_filter(event, filter_str); 8591 8592 kfree(filter_str); 8593 return ret; 8594 } 8595 8596 /* 8597 * hrtimer based swevent callback 8598 */ 8599 8600 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 8601 { 8602 enum hrtimer_restart ret = HRTIMER_RESTART; 8603 struct perf_sample_data data; 8604 struct pt_regs *regs; 8605 struct perf_event *event; 8606 u64 period; 8607 8608 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 8609 8610 if (event->state != PERF_EVENT_STATE_ACTIVE) 8611 return HRTIMER_NORESTART; 8612 8613 event->pmu->read(event); 8614 8615 perf_sample_data_init(&data, 0, event->hw.last_period); 8616 regs = get_irq_regs(); 8617 8618 if (regs && !perf_exclude_event(event, regs)) { 8619 if (!(event->attr.exclude_idle && is_idle_task(current))) 8620 if (__perf_event_overflow(event, 1, &data, regs)) 8621 ret = HRTIMER_NORESTART; 8622 } 8623 8624 period = max_t(u64, 10000, event->hw.sample_period); 8625 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 8626 8627 return ret; 8628 } 8629 8630 static void perf_swevent_start_hrtimer(struct perf_event *event) 8631 { 8632 struct hw_perf_event *hwc = &event->hw; 8633 s64 period; 8634 8635 if (!is_sampling_event(event)) 8636 return; 8637 8638 period = local64_read(&hwc->period_left); 8639 if (period) { 8640 if (period < 0) 8641 period = 10000; 8642 8643 local64_set(&hwc->period_left, 0); 8644 } else { 8645 period = max_t(u64, 10000, hwc->sample_period); 8646 } 8647 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 8648 HRTIMER_MODE_REL_PINNED); 8649 } 8650 8651 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 8652 { 8653 struct hw_perf_event *hwc = &event->hw; 8654 8655 if (is_sampling_event(event)) { 8656 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 8657 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 8658 8659 hrtimer_cancel(&hwc->hrtimer); 8660 } 8661 } 8662 8663 static void perf_swevent_init_hrtimer(struct perf_event *event) 8664 { 8665 struct hw_perf_event *hwc = &event->hw; 8666 8667 if (!is_sampling_event(event)) 8668 return; 8669 8670 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 8671 hwc->hrtimer.function = perf_swevent_hrtimer; 8672 8673 /* 8674 * Since hrtimers have a fixed rate, we can do a static freq->period 8675 * mapping and avoid the whole period adjust feedback stuff. 8676 */ 8677 if (event->attr.freq) { 8678 long freq = event->attr.sample_freq; 8679 8680 event->attr.sample_period = NSEC_PER_SEC / freq; 8681 hwc->sample_period = event->attr.sample_period; 8682 local64_set(&hwc->period_left, hwc->sample_period); 8683 hwc->last_period = hwc->sample_period; 8684 event->attr.freq = 0; 8685 } 8686 } 8687 8688 /* 8689 * Software event: cpu wall time clock 8690 */ 8691 8692 static void cpu_clock_event_update(struct perf_event *event) 8693 { 8694 s64 prev; 8695 u64 now; 8696 8697 now = local_clock(); 8698 prev = local64_xchg(&event->hw.prev_count, now); 8699 local64_add(now - prev, &event->count); 8700 } 8701 8702 static void cpu_clock_event_start(struct perf_event *event, int flags) 8703 { 8704 local64_set(&event->hw.prev_count, local_clock()); 8705 perf_swevent_start_hrtimer(event); 8706 } 8707 8708 static void cpu_clock_event_stop(struct perf_event *event, int flags) 8709 { 8710 perf_swevent_cancel_hrtimer(event); 8711 cpu_clock_event_update(event); 8712 } 8713 8714 static int cpu_clock_event_add(struct perf_event *event, int flags) 8715 { 8716 if (flags & PERF_EF_START) 8717 cpu_clock_event_start(event, flags); 8718 perf_event_update_userpage(event); 8719 8720 return 0; 8721 } 8722 8723 static void cpu_clock_event_del(struct perf_event *event, int flags) 8724 { 8725 cpu_clock_event_stop(event, flags); 8726 } 8727 8728 static void cpu_clock_event_read(struct perf_event *event) 8729 { 8730 cpu_clock_event_update(event); 8731 } 8732 8733 static int cpu_clock_event_init(struct perf_event *event) 8734 { 8735 if (event->attr.type != PERF_TYPE_SOFTWARE) 8736 return -ENOENT; 8737 8738 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 8739 return -ENOENT; 8740 8741 /* 8742 * no branch sampling for software events 8743 */ 8744 if (has_branch_stack(event)) 8745 return -EOPNOTSUPP; 8746 8747 perf_swevent_init_hrtimer(event); 8748 8749 return 0; 8750 } 8751 8752 static struct pmu perf_cpu_clock = { 8753 .task_ctx_nr = perf_sw_context, 8754 8755 .capabilities = PERF_PMU_CAP_NO_NMI, 8756 8757 .event_init = cpu_clock_event_init, 8758 .add = cpu_clock_event_add, 8759 .del = cpu_clock_event_del, 8760 .start = cpu_clock_event_start, 8761 .stop = cpu_clock_event_stop, 8762 .read = cpu_clock_event_read, 8763 }; 8764 8765 /* 8766 * Software event: task time clock 8767 */ 8768 8769 static void task_clock_event_update(struct perf_event *event, u64 now) 8770 { 8771 u64 prev; 8772 s64 delta; 8773 8774 prev = local64_xchg(&event->hw.prev_count, now); 8775 delta = now - prev; 8776 local64_add(delta, &event->count); 8777 } 8778 8779 static void task_clock_event_start(struct perf_event *event, int flags) 8780 { 8781 local64_set(&event->hw.prev_count, event->ctx->time); 8782 perf_swevent_start_hrtimer(event); 8783 } 8784 8785 static void task_clock_event_stop(struct perf_event *event, int flags) 8786 { 8787 perf_swevent_cancel_hrtimer(event); 8788 task_clock_event_update(event, event->ctx->time); 8789 } 8790 8791 static int task_clock_event_add(struct perf_event *event, int flags) 8792 { 8793 if (flags & PERF_EF_START) 8794 task_clock_event_start(event, flags); 8795 perf_event_update_userpage(event); 8796 8797 return 0; 8798 } 8799 8800 static void task_clock_event_del(struct perf_event *event, int flags) 8801 { 8802 task_clock_event_stop(event, PERF_EF_UPDATE); 8803 } 8804 8805 static void task_clock_event_read(struct perf_event *event) 8806 { 8807 u64 now = perf_clock(); 8808 u64 delta = now - event->ctx->timestamp; 8809 u64 time = event->ctx->time + delta; 8810 8811 task_clock_event_update(event, time); 8812 } 8813 8814 static int task_clock_event_init(struct perf_event *event) 8815 { 8816 if (event->attr.type != PERF_TYPE_SOFTWARE) 8817 return -ENOENT; 8818 8819 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 8820 return -ENOENT; 8821 8822 /* 8823 * no branch sampling for software events 8824 */ 8825 if (has_branch_stack(event)) 8826 return -EOPNOTSUPP; 8827 8828 perf_swevent_init_hrtimer(event); 8829 8830 return 0; 8831 } 8832 8833 static struct pmu perf_task_clock = { 8834 .task_ctx_nr = perf_sw_context, 8835 8836 .capabilities = PERF_PMU_CAP_NO_NMI, 8837 8838 .event_init = task_clock_event_init, 8839 .add = task_clock_event_add, 8840 .del = task_clock_event_del, 8841 .start = task_clock_event_start, 8842 .stop = task_clock_event_stop, 8843 .read = task_clock_event_read, 8844 }; 8845 8846 static void perf_pmu_nop_void(struct pmu *pmu) 8847 { 8848 } 8849 8850 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 8851 { 8852 } 8853 8854 static int perf_pmu_nop_int(struct pmu *pmu) 8855 { 8856 return 0; 8857 } 8858 8859 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 8860 8861 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 8862 { 8863 __this_cpu_write(nop_txn_flags, flags); 8864 8865 if (flags & ~PERF_PMU_TXN_ADD) 8866 return; 8867 8868 perf_pmu_disable(pmu); 8869 } 8870 8871 static int perf_pmu_commit_txn(struct pmu *pmu) 8872 { 8873 unsigned int flags = __this_cpu_read(nop_txn_flags); 8874 8875 __this_cpu_write(nop_txn_flags, 0); 8876 8877 if (flags & ~PERF_PMU_TXN_ADD) 8878 return 0; 8879 8880 perf_pmu_enable(pmu); 8881 return 0; 8882 } 8883 8884 static void perf_pmu_cancel_txn(struct pmu *pmu) 8885 { 8886 unsigned int flags = __this_cpu_read(nop_txn_flags); 8887 8888 __this_cpu_write(nop_txn_flags, 0); 8889 8890 if (flags & ~PERF_PMU_TXN_ADD) 8891 return; 8892 8893 perf_pmu_enable(pmu); 8894 } 8895 8896 static int perf_event_idx_default(struct perf_event *event) 8897 { 8898 return 0; 8899 } 8900 8901 /* 8902 * Ensures all contexts with the same task_ctx_nr have the same 8903 * pmu_cpu_context too. 8904 */ 8905 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 8906 { 8907 struct pmu *pmu; 8908 8909 if (ctxn < 0) 8910 return NULL; 8911 8912 list_for_each_entry(pmu, &pmus, entry) { 8913 if (pmu->task_ctx_nr == ctxn) 8914 return pmu->pmu_cpu_context; 8915 } 8916 8917 return NULL; 8918 } 8919 8920 static void free_pmu_context(struct pmu *pmu) 8921 { 8922 /* 8923 * Static contexts such as perf_sw_context have a global lifetime 8924 * and may be shared between different PMUs. Avoid freeing them 8925 * when a single PMU is going away. 8926 */ 8927 if (pmu->task_ctx_nr > perf_invalid_context) 8928 return; 8929 8930 mutex_lock(&pmus_lock); 8931 free_percpu(pmu->pmu_cpu_context); 8932 mutex_unlock(&pmus_lock); 8933 } 8934 8935 /* 8936 * Let userspace know that this PMU supports address range filtering: 8937 */ 8938 static ssize_t nr_addr_filters_show(struct device *dev, 8939 struct device_attribute *attr, 8940 char *page) 8941 { 8942 struct pmu *pmu = dev_get_drvdata(dev); 8943 8944 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 8945 } 8946 DEVICE_ATTR_RO(nr_addr_filters); 8947 8948 static struct idr pmu_idr; 8949 8950 static ssize_t 8951 type_show(struct device *dev, struct device_attribute *attr, char *page) 8952 { 8953 struct pmu *pmu = dev_get_drvdata(dev); 8954 8955 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 8956 } 8957 static DEVICE_ATTR_RO(type); 8958 8959 static ssize_t 8960 perf_event_mux_interval_ms_show(struct device *dev, 8961 struct device_attribute *attr, 8962 char *page) 8963 { 8964 struct pmu *pmu = dev_get_drvdata(dev); 8965 8966 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 8967 } 8968 8969 static DEFINE_MUTEX(mux_interval_mutex); 8970 8971 static ssize_t 8972 perf_event_mux_interval_ms_store(struct device *dev, 8973 struct device_attribute *attr, 8974 const char *buf, size_t count) 8975 { 8976 struct pmu *pmu = dev_get_drvdata(dev); 8977 int timer, cpu, ret; 8978 8979 ret = kstrtoint(buf, 0, &timer); 8980 if (ret) 8981 return ret; 8982 8983 if (timer < 1) 8984 return -EINVAL; 8985 8986 /* same value, noting to do */ 8987 if (timer == pmu->hrtimer_interval_ms) 8988 return count; 8989 8990 mutex_lock(&mux_interval_mutex); 8991 pmu->hrtimer_interval_ms = timer; 8992 8993 /* update all cpuctx for this PMU */ 8994 cpus_read_lock(); 8995 for_each_online_cpu(cpu) { 8996 struct perf_cpu_context *cpuctx; 8997 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 8998 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 8999 9000 cpu_function_call(cpu, 9001 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9002 } 9003 cpus_read_unlock(); 9004 mutex_unlock(&mux_interval_mutex); 9005 9006 return count; 9007 } 9008 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9009 9010 static struct attribute *pmu_dev_attrs[] = { 9011 &dev_attr_type.attr, 9012 &dev_attr_perf_event_mux_interval_ms.attr, 9013 NULL, 9014 }; 9015 ATTRIBUTE_GROUPS(pmu_dev); 9016 9017 static int pmu_bus_running; 9018 static struct bus_type pmu_bus = { 9019 .name = "event_source", 9020 .dev_groups = pmu_dev_groups, 9021 }; 9022 9023 static void pmu_dev_release(struct device *dev) 9024 { 9025 kfree(dev); 9026 } 9027 9028 static int pmu_dev_alloc(struct pmu *pmu) 9029 { 9030 int ret = -ENOMEM; 9031 9032 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9033 if (!pmu->dev) 9034 goto out; 9035 9036 pmu->dev->groups = pmu->attr_groups; 9037 device_initialize(pmu->dev); 9038 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9039 if (ret) 9040 goto free_dev; 9041 9042 dev_set_drvdata(pmu->dev, pmu); 9043 pmu->dev->bus = &pmu_bus; 9044 pmu->dev->release = pmu_dev_release; 9045 ret = device_add(pmu->dev); 9046 if (ret) 9047 goto free_dev; 9048 9049 /* For PMUs with address filters, throw in an extra attribute: */ 9050 if (pmu->nr_addr_filters) 9051 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9052 9053 if (ret) 9054 goto del_dev; 9055 9056 out: 9057 return ret; 9058 9059 del_dev: 9060 device_del(pmu->dev); 9061 9062 free_dev: 9063 put_device(pmu->dev); 9064 goto out; 9065 } 9066 9067 static struct lock_class_key cpuctx_mutex; 9068 static struct lock_class_key cpuctx_lock; 9069 9070 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9071 { 9072 int cpu, ret; 9073 9074 mutex_lock(&pmus_lock); 9075 ret = -ENOMEM; 9076 pmu->pmu_disable_count = alloc_percpu(int); 9077 if (!pmu->pmu_disable_count) 9078 goto unlock; 9079 9080 pmu->type = -1; 9081 if (!name) 9082 goto skip_type; 9083 pmu->name = name; 9084 9085 if (type < 0) { 9086 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9087 if (type < 0) { 9088 ret = type; 9089 goto free_pdc; 9090 } 9091 } 9092 pmu->type = type; 9093 9094 if (pmu_bus_running) { 9095 ret = pmu_dev_alloc(pmu); 9096 if (ret) 9097 goto free_idr; 9098 } 9099 9100 skip_type: 9101 if (pmu->task_ctx_nr == perf_hw_context) { 9102 static int hw_context_taken = 0; 9103 9104 /* 9105 * Other than systems with heterogeneous CPUs, it never makes 9106 * sense for two PMUs to share perf_hw_context. PMUs which are 9107 * uncore must use perf_invalid_context. 9108 */ 9109 if (WARN_ON_ONCE(hw_context_taken && 9110 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9111 pmu->task_ctx_nr = perf_invalid_context; 9112 9113 hw_context_taken = 1; 9114 } 9115 9116 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9117 if (pmu->pmu_cpu_context) 9118 goto got_cpu_context; 9119 9120 ret = -ENOMEM; 9121 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9122 if (!pmu->pmu_cpu_context) 9123 goto free_dev; 9124 9125 for_each_possible_cpu(cpu) { 9126 struct perf_cpu_context *cpuctx; 9127 9128 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9129 __perf_event_init_context(&cpuctx->ctx); 9130 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9131 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9132 cpuctx->ctx.pmu = pmu; 9133 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9134 9135 __perf_mux_hrtimer_init(cpuctx, cpu); 9136 } 9137 9138 got_cpu_context: 9139 if (!pmu->start_txn) { 9140 if (pmu->pmu_enable) { 9141 /* 9142 * If we have pmu_enable/pmu_disable calls, install 9143 * transaction stubs that use that to try and batch 9144 * hardware accesses. 9145 */ 9146 pmu->start_txn = perf_pmu_start_txn; 9147 pmu->commit_txn = perf_pmu_commit_txn; 9148 pmu->cancel_txn = perf_pmu_cancel_txn; 9149 } else { 9150 pmu->start_txn = perf_pmu_nop_txn; 9151 pmu->commit_txn = perf_pmu_nop_int; 9152 pmu->cancel_txn = perf_pmu_nop_void; 9153 } 9154 } 9155 9156 if (!pmu->pmu_enable) { 9157 pmu->pmu_enable = perf_pmu_nop_void; 9158 pmu->pmu_disable = perf_pmu_nop_void; 9159 } 9160 9161 if (!pmu->event_idx) 9162 pmu->event_idx = perf_event_idx_default; 9163 9164 list_add_rcu(&pmu->entry, &pmus); 9165 atomic_set(&pmu->exclusive_cnt, 0); 9166 ret = 0; 9167 unlock: 9168 mutex_unlock(&pmus_lock); 9169 9170 return ret; 9171 9172 free_dev: 9173 device_del(pmu->dev); 9174 put_device(pmu->dev); 9175 9176 free_idr: 9177 if (pmu->type >= PERF_TYPE_MAX) 9178 idr_remove(&pmu_idr, pmu->type); 9179 9180 free_pdc: 9181 free_percpu(pmu->pmu_disable_count); 9182 goto unlock; 9183 } 9184 EXPORT_SYMBOL_GPL(perf_pmu_register); 9185 9186 void perf_pmu_unregister(struct pmu *pmu) 9187 { 9188 int remove_device; 9189 9190 mutex_lock(&pmus_lock); 9191 remove_device = pmu_bus_running; 9192 list_del_rcu(&pmu->entry); 9193 mutex_unlock(&pmus_lock); 9194 9195 /* 9196 * We dereference the pmu list under both SRCU and regular RCU, so 9197 * synchronize against both of those. 9198 */ 9199 synchronize_srcu(&pmus_srcu); 9200 synchronize_rcu(); 9201 9202 free_percpu(pmu->pmu_disable_count); 9203 if (pmu->type >= PERF_TYPE_MAX) 9204 idr_remove(&pmu_idr, pmu->type); 9205 if (remove_device) { 9206 if (pmu->nr_addr_filters) 9207 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9208 device_del(pmu->dev); 9209 put_device(pmu->dev); 9210 } 9211 free_pmu_context(pmu); 9212 } 9213 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9214 9215 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9216 { 9217 struct perf_event_context *ctx = NULL; 9218 int ret; 9219 9220 if (!try_module_get(pmu->module)) 9221 return -ENODEV; 9222 9223 /* 9224 * A number of pmu->event_init() methods iterate the sibling_list to, 9225 * for example, validate if the group fits on the PMU. Therefore, 9226 * if this is a sibling event, acquire the ctx->mutex to protect 9227 * the sibling_list. 9228 */ 9229 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 9230 /* 9231 * This ctx->mutex can nest when we're called through 9232 * inheritance. See the perf_event_ctx_lock_nested() comment. 9233 */ 9234 ctx = perf_event_ctx_lock_nested(event->group_leader, 9235 SINGLE_DEPTH_NESTING); 9236 BUG_ON(!ctx); 9237 } 9238 9239 event->pmu = pmu; 9240 ret = pmu->event_init(event); 9241 9242 if (ctx) 9243 perf_event_ctx_unlock(event->group_leader, ctx); 9244 9245 if (ret) 9246 module_put(pmu->module); 9247 9248 return ret; 9249 } 9250 9251 static struct pmu *perf_init_event(struct perf_event *event) 9252 { 9253 struct pmu *pmu; 9254 int idx; 9255 int ret; 9256 9257 idx = srcu_read_lock(&pmus_srcu); 9258 9259 /* Try parent's PMU first: */ 9260 if (event->parent && event->parent->pmu) { 9261 pmu = event->parent->pmu; 9262 ret = perf_try_init_event(pmu, event); 9263 if (!ret) 9264 goto unlock; 9265 } 9266 9267 rcu_read_lock(); 9268 pmu = idr_find(&pmu_idr, event->attr.type); 9269 rcu_read_unlock(); 9270 if (pmu) { 9271 ret = perf_try_init_event(pmu, event); 9272 if (ret) 9273 pmu = ERR_PTR(ret); 9274 goto unlock; 9275 } 9276 9277 list_for_each_entry_rcu(pmu, &pmus, entry) { 9278 ret = perf_try_init_event(pmu, event); 9279 if (!ret) 9280 goto unlock; 9281 9282 if (ret != -ENOENT) { 9283 pmu = ERR_PTR(ret); 9284 goto unlock; 9285 } 9286 } 9287 pmu = ERR_PTR(-ENOENT); 9288 unlock: 9289 srcu_read_unlock(&pmus_srcu, idx); 9290 9291 return pmu; 9292 } 9293 9294 static void attach_sb_event(struct perf_event *event) 9295 { 9296 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 9297 9298 raw_spin_lock(&pel->lock); 9299 list_add_rcu(&event->sb_list, &pel->list); 9300 raw_spin_unlock(&pel->lock); 9301 } 9302 9303 /* 9304 * We keep a list of all !task (and therefore per-cpu) events 9305 * that need to receive side-band records. 9306 * 9307 * This avoids having to scan all the various PMU per-cpu contexts 9308 * looking for them. 9309 */ 9310 static void account_pmu_sb_event(struct perf_event *event) 9311 { 9312 if (is_sb_event(event)) 9313 attach_sb_event(event); 9314 } 9315 9316 static void account_event_cpu(struct perf_event *event, int cpu) 9317 { 9318 if (event->parent) 9319 return; 9320 9321 if (is_cgroup_event(event)) 9322 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 9323 } 9324 9325 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 9326 static void account_freq_event_nohz(void) 9327 { 9328 #ifdef CONFIG_NO_HZ_FULL 9329 /* Lock so we don't race with concurrent unaccount */ 9330 spin_lock(&nr_freq_lock); 9331 if (atomic_inc_return(&nr_freq_events) == 1) 9332 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 9333 spin_unlock(&nr_freq_lock); 9334 #endif 9335 } 9336 9337 static void account_freq_event(void) 9338 { 9339 if (tick_nohz_full_enabled()) 9340 account_freq_event_nohz(); 9341 else 9342 atomic_inc(&nr_freq_events); 9343 } 9344 9345 9346 static void account_event(struct perf_event *event) 9347 { 9348 bool inc = false; 9349 9350 if (event->parent) 9351 return; 9352 9353 if (event->attach_state & PERF_ATTACH_TASK) 9354 inc = true; 9355 if (event->attr.mmap || event->attr.mmap_data) 9356 atomic_inc(&nr_mmap_events); 9357 if (event->attr.comm) 9358 atomic_inc(&nr_comm_events); 9359 if (event->attr.namespaces) 9360 atomic_inc(&nr_namespaces_events); 9361 if (event->attr.task) 9362 atomic_inc(&nr_task_events); 9363 if (event->attr.freq) 9364 account_freq_event(); 9365 if (event->attr.context_switch) { 9366 atomic_inc(&nr_switch_events); 9367 inc = true; 9368 } 9369 if (has_branch_stack(event)) 9370 inc = true; 9371 if (is_cgroup_event(event)) 9372 inc = true; 9373 9374 if (inc) { 9375 /* 9376 * We need the mutex here because static_branch_enable() 9377 * must complete *before* the perf_sched_count increment 9378 * becomes visible. 9379 */ 9380 if (atomic_inc_not_zero(&perf_sched_count)) 9381 goto enabled; 9382 9383 mutex_lock(&perf_sched_mutex); 9384 if (!atomic_read(&perf_sched_count)) { 9385 static_branch_enable(&perf_sched_events); 9386 /* 9387 * Guarantee that all CPUs observe they key change and 9388 * call the perf scheduling hooks before proceeding to 9389 * install events that need them. 9390 */ 9391 synchronize_sched(); 9392 } 9393 /* 9394 * Now that we have waited for the sync_sched(), allow further 9395 * increments to by-pass the mutex. 9396 */ 9397 atomic_inc(&perf_sched_count); 9398 mutex_unlock(&perf_sched_mutex); 9399 } 9400 enabled: 9401 9402 account_event_cpu(event, event->cpu); 9403 9404 account_pmu_sb_event(event); 9405 } 9406 9407 /* 9408 * Allocate and initialize a event structure 9409 */ 9410 static struct perf_event * 9411 perf_event_alloc(struct perf_event_attr *attr, int cpu, 9412 struct task_struct *task, 9413 struct perf_event *group_leader, 9414 struct perf_event *parent_event, 9415 perf_overflow_handler_t overflow_handler, 9416 void *context, int cgroup_fd) 9417 { 9418 struct pmu *pmu; 9419 struct perf_event *event; 9420 struct hw_perf_event *hwc; 9421 long err = -EINVAL; 9422 9423 if ((unsigned)cpu >= nr_cpu_ids) { 9424 if (!task || cpu != -1) 9425 return ERR_PTR(-EINVAL); 9426 } 9427 9428 event = kzalloc(sizeof(*event), GFP_KERNEL); 9429 if (!event) 9430 return ERR_PTR(-ENOMEM); 9431 9432 /* 9433 * Single events are their own group leaders, with an 9434 * empty sibling list: 9435 */ 9436 if (!group_leader) 9437 group_leader = event; 9438 9439 mutex_init(&event->child_mutex); 9440 INIT_LIST_HEAD(&event->child_list); 9441 9442 INIT_LIST_HEAD(&event->group_entry); 9443 INIT_LIST_HEAD(&event->event_entry); 9444 INIT_LIST_HEAD(&event->sibling_list); 9445 INIT_LIST_HEAD(&event->rb_entry); 9446 INIT_LIST_HEAD(&event->active_entry); 9447 INIT_LIST_HEAD(&event->addr_filters.list); 9448 INIT_HLIST_NODE(&event->hlist_entry); 9449 9450 9451 init_waitqueue_head(&event->waitq); 9452 init_irq_work(&event->pending, perf_pending_event); 9453 9454 mutex_init(&event->mmap_mutex); 9455 raw_spin_lock_init(&event->addr_filters.lock); 9456 9457 atomic_long_set(&event->refcount, 1); 9458 event->cpu = cpu; 9459 event->attr = *attr; 9460 event->group_leader = group_leader; 9461 event->pmu = NULL; 9462 event->oncpu = -1; 9463 9464 event->parent = parent_event; 9465 9466 event->ns = get_pid_ns(task_active_pid_ns(current)); 9467 event->id = atomic64_inc_return(&perf_event_id); 9468 9469 event->state = PERF_EVENT_STATE_INACTIVE; 9470 9471 if (task) { 9472 event->attach_state = PERF_ATTACH_TASK; 9473 /* 9474 * XXX pmu::event_init needs to know what task to account to 9475 * and we cannot use the ctx information because we need the 9476 * pmu before we get a ctx. 9477 */ 9478 event->hw.target = task; 9479 } 9480 9481 event->clock = &local_clock; 9482 if (parent_event) 9483 event->clock = parent_event->clock; 9484 9485 if (!overflow_handler && parent_event) { 9486 overflow_handler = parent_event->overflow_handler; 9487 context = parent_event->overflow_handler_context; 9488 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 9489 if (overflow_handler == bpf_overflow_handler) { 9490 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 9491 9492 if (IS_ERR(prog)) { 9493 err = PTR_ERR(prog); 9494 goto err_ns; 9495 } 9496 event->prog = prog; 9497 event->orig_overflow_handler = 9498 parent_event->orig_overflow_handler; 9499 } 9500 #endif 9501 } 9502 9503 if (overflow_handler) { 9504 event->overflow_handler = overflow_handler; 9505 event->overflow_handler_context = context; 9506 } else if (is_write_backward(event)){ 9507 event->overflow_handler = perf_event_output_backward; 9508 event->overflow_handler_context = NULL; 9509 } else { 9510 event->overflow_handler = perf_event_output_forward; 9511 event->overflow_handler_context = NULL; 9512 } 9513 9514 perf_event__state_init(event); 9515 9516 pmu = NULL; 9517 9518 hwc = &event->hw; 9519 hwc->sample_period = attr->sample_period; 9520 if (attr->freq && attr->sample_freq) 9521 hwc->sample_period = 1; 9522 hwc->last_period = hwc->sample_period; 9523 9524 local64_set(&hwc->period_left, hwc->sample_period); 9525 9526 /* 9527 * We currently do not support PERF_SAMPLE_READ on inherited events. 9528 * See perf_output_read(). 9529 */ 9530 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 9531 goto err_ns; 9532 9533 if (!has_branch_stack(event)) 9534 event->attr.branch_sample_type = 0; 9535 9536 if (cgroup_fd != -1) { 9537 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 9538 if (err) 9539 goto err_ns; 9540 } 9541 9542 pmu = perf_init_event(event); 9543 if (IS_ERR(pmu)) { 9544 err = PTR_ERR(pmu); 9545 goto err_ns; 9546 } 9547 9548 err = exclusive_event_init(event); 9549 if (err) 9550 goto err_pmu; 9551 9552 if (has_addr_filter(event)) { 9553 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters, 9554 sizeof(unsigned long), 9555 GFP_KERNEL); 9556 if (!event->addr_filters_offs) { 9557 err = -ENOMEM; 9558 goto err_per_task; 9559 } 9560 9561 /* force hw sync on the address filters */ 9562 event->addr_filters_gen = 1; 9563 } 9564 9565 if (!event->parent) { 9566 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 9567 err = get_callchain_buffers(attr->sample_max_stack); 9568 if (err) 9569 goto err_addr_filters; 9570 } 9571 } 9572 9573 /* symmetric to unaccount_event() in _free_event() */ 9574 account_event(event); 9575 9576 return event; 9577 9578 err_addr_filters: 9579 kfree(event->addr_filters_offs); 9580 9581 err_per_task: 9582 exclusive_event_destroy(event); 9583 9584 err_pmu: 9585 if (event->destroy) 9586 event->destroy(event); 9587 module_put(pmu->module); 9588 err_ns: 9589 if (is_cgroup_event(event)) 9590 perf_detach_cgroup(event); 9591 if (event->ns) 9592 put_pid_ns(event->ns); 9593 kfree(event); 9594 9595 return ERR_PTR(err); 9596 } 9597 9598 static int perf_copy_attr(struct perf_event_attr __user *uattr, 9599 struct perf_event_attr *attr) 9600 { 9601 u32 size; 9602 int ret; 9603 9604 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 9605 return -EFAULT; 9606 9607 /* 9608 * zero the full structure, so that a short copy will be nice. 9609 */ 9610 memset(attr, 0, sizeof(*attr)); 9611 9612 ret = get_user(size, &uattr->size); 9613 if (ret) 9614 return ret; 9615 9616 if (size > PAGE_SIZE) /* silly large */ 9617 goto err_size; 9618 9619 if (!size) /* abi compat */ 9620 size = PERF_ATTR_SIZE_VER0; 9621 9622 if (size < PERF_ATTR_SIZE_VER0) 9623 goto err_size; 9624 9625 /* 9626 * If we're handed a bigger struct than we know of, 9627 * ensure all the unknown bits are 0 - i.e. new 9628 * user-space does not rely on any kernel feature 9629 * extensions we dont know about yet. 9630 */ 9631 if (size > sizeof(*attr)) { 9632 unsigned char __user *addr; 9633 unsigned char __user *end; 9634 unsigned char val; 9635 9636 addr = (void __user *)uattr + sizeof(*attr); 9637 end = (void __user *)uattr + size; 9638 9639 for (; addr < end; addr++) { 9640 ret = get_user(val, addr); 9641 if (ret) 9642 return ret; 9643 if (val) 9644 goto err_size; 9645 } 9646 size = sizeof(*attr); 9647 } 9648 9649 ret = copy_from_user(attr, uattr, size); 9650 if (ret) 9651 return -EFAULT; 9652 9653 attr->size = size; 9654 9655 if (attr->__reserved_1) 9656 return -EINVAL; 9657 9658 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 9659 return -EINVAL; 9660 9661 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 9662 return -EINVAL; 9663 9664 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 9665 u64 mask = attr->branch_sample_type; 9666 9667 /* only using defined bits */ 9668 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 9669 return -EINVAL; 9670 9671 /* at least one branch bit must be set */ 9672 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 9673 return -EINVAL; 9674 9675 /* propagate priv level, when not set for branch */ 9676 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 9677 9678 /* exclude_kernel checked on syscall entry */ 9679 if (!attr->exclude_kernel) 9680 mask |= PERF_SAMPLE_BRANCH_KERNEL; 9681 9682 if (!attr->exclude_user) 9683 mask |= PERF_SAMPLE_BRANCH_USER; 9684 9685 if (!attr->exclude_hv) 9686 mask |= PERF_SAMPLE_BRANCH_HV; 9687 /* 9688 * adjust user setting (for HW filter setup) 9689 */ 9690 attr->branch_sample_type = mask; 9691 } 9692 /* privileged levels capture (kernel, hv): check permissions */ 9693 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 9694 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9695 return -EACCES; 9696 } 9697 9698 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 9699 ret = perf_reg_validate(attr->sample_regs_user); 9700 if (ret) 9701 return ret; 9702 } 9703 9704 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 9705 if (!arch_perf_have_user_stack_dump()) 9706 return -ENOSYS; 9707 9708 /* 9709 * We have __u32 type for the size, but so far 9710 * we can only use __u16 as maximum due to the 9711 * __u16 sample size limit. 9712 */ 9713 if (attr->sample_stack_user >= USHRT_MAX) 9714 ret = -EINVAL; 9715 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 9716 ret = -EINVAL; 9717 } 9718 9719 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 9720 ret = perf_reg_validate(attr->sample_regs_intr); 9721 out: 9722 return ret; 9723 9724 err_size: 9725 put_user(sizeof(*attr), &uattr->size); 9726 ret = -E2BIG; 9727 goto out; 9728 } 9729 9730 static int 9731 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 9732 { 9733 struct ring_buffer *rb = NULL; 9734 int ret = -EINVAL; 9735 9736 if (!output_event) 9737 goto set; 9738 9739 /* don't allow circular references */ 9740 if (event == output_event) 9741 goto out; 9742 9743 /* 9744 * Don't allow cross-cpu buffers 9745 */ 9746 if (output_event->cpu != event->cpu) 9747 goto out; 9748 9749 /* 9750 * If its not a per-cpu rb, it must be the same task. 9751 */ 9752 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 9753 goto out; 9754 9755 /* 9756 * Mixing clocks in the same buffer is trouble you don't need. 9757 */ 9758 if (output_event->clock != event->clock) 9759 goto out; 9760 9761 /* 9762 * Either writing ring buffer from beginning or from end. 9763 * Mixing is not allowed. 9764 */ 9765 if (is_write_backward(output_event) != is_write_backward(event)) 9766 goto out; 9767 9768 /* 9769 * If both events generate aux data, they must be on the same PMU 9770 */ 9771 if (has_aux(event) && has_aux(output_event) && 9772 event->pmu != output_event->pmu) 9773 goto out; 9774 9775 set: 9776 mutex_lock(&event->mmap_mutex); 9777 /* Can't redirect output if we've got an active mmap() */ 9778 if (atomic_read(&event->mmap_count)) 9779 goto unlock; 9780 9781 if (output_event) { 9782 /* get the rb we want to redirect to */ 9783 rb = ring_buffer_get(output_event); 9784 if (!rb) 9785 goto unlock; 9786 } 9787 9788 ring_buffer_attach(event, rb); 9789 9790 ret = 0; 9791 unlock: 9792 mutex_unlock(&event->mmap_mutex); 9793 9794 out: 9795 return ret; 9796 } 9797 9798 static void mutex_lock_double(struct mutex *a, struct mutex *b) 9799 { 9800 if (b < a) 9801 swap(a, b); 9802 9803 mutex_lock(a); 9804 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 9805 } 9806 9807 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 9808 { 9809 bool nmi_safe = false; 9810 9811 switch (clk_id) { 9812 case CLOCK_MONOTONIC: 9813 event->clock = &ktime_get_mono_fast_ns; 9814 nmi_safe = true; 9815 break; 9816 9817 case CLOCK_MONOTONIC_RAW: 9818 event->clock = &ktime_get_raw_fast_ns; 9819 nmi_safe = true; 9820 break; 9821 9822 case CLOCK_REALTIME: 9823 event->clock = &ktime_get_real_ns; 9824 break; 9825 9826 case CLOCK_BOOTTIME: 9827 event->clock = &ktime_get_boot_ns; 9828 break; 9829 9830 case CLOCK_TAI: 9831 event->clock = &ktime_get_tai_ns; 9832 break; 9833 9834 default: 9835 return -EINVAL; 9836 } 9837 9838 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 9839 return -EINVAL; 9840 9841 return 0; 9842 } 9843 9844 /* 9845 * Variation on perf_event_ctx_lock_nested(), except we take two context 9846 * mutexes. 9847 */ 9848 static struct perf_event_context * 9849 __perf_event_ctx_lock_double(struct perf_event *group_leader, 9850 struct perf_event_context *ctx) 9851 { 9852 struct perf_event_context *gctx; 9853 9854 again: 9855 rcu_read_lock(); 9856 gctx = READ_ONCE(group_leader->ctx); 9857 if (!atomic_inc_not_zero(&gctx->refcount)) { 9858 rcu_read_unlock(); 9859 goto again; 9860 } 9861 rcu_read_unlock(); 9862 9863 mutex_lock_double(&gctx->mutex, &ctx->mutex); 9864 9865 if (group_leader->ctx != gctx) { 9866 mutex_unlock(&ctx->mutex); 9867 mutex_unlock(&gctx->mutex); 9868 put_ctx(gctx); 9869 goto again; 9870 } 9871 9872 return gctx; 9873 } 9874 9875 /** 9876 * sys_perf_event_open - open a performance event, associate it to a task/cpu 9877 * 9878 * @attr_uptr: event_id type attributes for monitoring/sampling 9879 * @pid: target pid 9880 * @cpu: target cpu 9881 * @group_fd: group leader event fd 9882 */ 9883 SYSCALL_DEFINE5(perf_event_open, 9884 struct perf_event_attr __user *, attr_uptr, 9885 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 9886 { 9887 struct perf_event *group_leader = NULL, *output_event = NULL; 9888 struct perf_event *event, *sibling; 9889 struct perf_event_attr attr; 9890 struct perf_event_context *ctx, *uninitialized_var(gctx); 9891 struct file *event_file = NULL; 9892 struct fd group = {NULL, 0}; 9893 struct task_struct *task = NULL; 9894 struct pmu *pmu; 9895 int event_fd; 9896 int move_group = 0; 9897 int err; 9898 int f_flags = O_RDWR; 9899 int cgroup_fd = -1; 9900 9901 /* for future expandability... */ 9902 if (flags & ~PERF_FLAG_ALL) 9903 return -EINVAL; 9904 9905 err = perf_copy_attr(attr_uptr, &attr); 9906 if (err) 9907 return err; 9908 9909 if (!attr.exclude_kernel) { 9910 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9911 return -EACCES; 9912 } 9913 9914 if (attr.namespaces) { 9915 if (!capable(CAP_SYS_ADMIN)) 9916 return -EACCES; 9917 } 9918 9919 if (attr.freq) { 9920 if (attr.sample_freq > sysctl_perf_event_sample_rate) 9921 return -EINVAL; 9922 } else { 9923 if (attr.sample_period & (1ULL << 63)) 9924 return -EINVAL; 9925 } 9926 9927 /* Only privileged users can get physical addresses */ 9928 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 9929 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 9930 return -EACCES; 9931 9932 if (!attr.sample_max_stack) 9933 attr.sample_max_stack = sysctl_perf_event_max_stack; 9934 9935 /* 9936 * In cgroup mode, the pid argument is used to pass the fd 9937 * opened to the cgroup directory in cgroupfs. The cpu argument 9938 * designates the cpu on which to monitor threads from that 9939 * cgroup. 9940 */ 9941 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 9942 return -EINVAL; 9943 9944 if (flags & PERF_FLAG_FD_CLOEXEC) 9945 f_flags |= O_CLOEXEC; 9946 9947 event_fd = get_unused_fd_flags(f_flags); 9948 if (event_fd < 0) 9949 return event_fd; 9950 9951 if (group_fd != -1) { 9952 err = perf_fget_light(group_fd, &group); 9953 if (err) 9954 goto err_fd; 9955 group_leader = group.file->private_data; 9956 if (flags & PERF_FLAG_FD_OUTPUT) 9957 output_event = group_leader; 9958 if (flags & PERF_FLAG_FD_NO_GROUP) 9959 group_leader = NULL; 9960 } 9961 9962 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 9963 task = find_lively_task_by_vpid(pid); 9964 if (IS_ERR(task)) { 9965 err = PTR_ERR(task); 9966 goto err_group_fd; 9967 } 9968 } 9969 9970 if (task && group_leader && 9971 group_leader->attr.inherit != attr.inherit) { 9972 err = -EINVAL; 9973 goto err_task; 9974 } 9975 9976 if (task) { 9977 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 9978 if (err) 9979 goto err_task; 9980 9981 /* 9982 * Reuse ptrace permission checks for now. 9983 * 9984 * We must hold cred_guard_mutex across this and any potential 9985 * perf_install_in_context() call for this new event to 9986 * serialize against exec() altering our credentials (and the 9987 * perf_event_exit_task() that could imply). 9988 */ 9989 err = -EACCES; 9990 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 9991 goto err_cred; 9992 } 9993 9994 if (flags & PERF_FLAG_PID_CGROUP) 9995 cgroup_fd = pid; 9996 9997 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 9998 NULL, NULL, cgroup_fd); 9999 if (IS_ERR(event)) { 10000 err = PTR_ERR(event); 10001 goto err_cred; 10002 } 10003 10004 if (is_sampling_event(event)) { 10005 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10006 err = -EOPNOTSUPP; 10007 goto err_alloc; 10008 } 10009 } 10010 10011 /* 10012 * Special case software events and allow them to be part of 10013 * any hardware group. 10014 */ 10015 pmu = event->pmu; 10016 10017 if (attr.use_clockid) { 10018 err = perf_event_set_clock(event, attr.clockid); 10019 if (err) 10020 goto err_alloc; 10021 } 10022 10023 if (pmu->task_ctx_nr == perf_sw_context) 10024 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10025 10026 if (group_leader && 10027 (is_software_event(event) != is_software_event(group_leader))) { 10028 if (is_software_event(event)) { 10029 /* 10030 * If event and group_leader are not both a software 10031 * event, and event is, then group leader is not. 10032 * 10033 * Allow the addition of software events to !software 10034 * groups, this is safe because software events never 10035 * fail to schedule. 10036 */ 10037 pmu = group_leader->pmu; 10038 } else if (is_software_event(group_leader) && 10039 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10040 /* 10041 * In case the group is a pure software group, and we 10042 * try to add a hardware event, move the whole group to 10043 * the hardware context. 10044 */ 10045 move_group = 1; 10046 } 10047 } 10048 10049 /* 10050 * Get the target context (task or percpu): 10051 */ 10052 ctx = find_get_context(pmu, task, event); 10053 if (IS_ERR(ctx)) { 10054 err = PTR_ERR(ctx); 10055 goto err_alloc; 10056 } 10057 10058 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10059 err = -EBUSY; 10060 goto err_context; 10061 } 10062 10063 /* 10064 * Look up the group leader (we will attach this event to it): 10065 */ 10066 if (group_leader) { 10067 err = -EINVAL; 10068 10069 /* 10070 * Do not allow a recursive hierarchy (this new sibling 10071 * becoming part of another group-sibling): 10072 */ 10073 if (group_leader->group_leader != group_leader) 10074 goto err_context; 10075 10076 /* All events in a group should have the same clock */ 10077 if (group_leader->clock != event->clock) 10078 goto err_context; 10079 10080 /* 10081 * Make sure we're both events for the same CPU; 10082 * grouping events for different CPUs is broken; since 10083 * you can never concurrently schedule them anyhow. 10084 */ 10085 if (group_leader->cpu != event->cpu) 10086 goto err_context; 10087 10088 /* 10089 * Make sure we're both on the same task, or both 10090 * per-CPU events. 10091 */ 10092 if (group_leader->ctx->task != ctx->task) 10093 goto err_context; 10094 10095 /* 10096 * Do not allow to attach to a group in a different task 10097 * or CPU context. If we're moving SW events, we'll fix 10098 * this up later, so allow that. 10099 */ 10100 if (!move_group && group_leader->ctx != ctx) 10101 goto err_context; 10102 10103 /* 10104 * Only a group leader can be exclusive or pinned 10105 */ 10106 if (attr.exclusive || attr.pinned) 10107 goto err_context; 10108 } 10109 10110 if (output_event) { 10111 err = perf_event_set_output(event, output_event); 10112 if (err) 10113 goto err_context; 10114 } 10115 10116 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10117 f_flags); 10118 if (IS_ERR(event_file)) { 10119 err = PTR_ERR(event_file); 10120 event_file = NULL; 10121 goto err_context; 10122 } 10123 10124 if (move_group) { 10125 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10126 10127 if (gctx->task == TASK_TOMBSTONE) { 10128 err = -ESRCH; 10129 goto err_locked; 10130 } 10131 10132 /* 10133 * Check if we raced against another sys_perf_event_open() call 10134 * moving the software group underneath us. 10135 */ 10136 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10137 /* 10138 * If someone moved the group out from under us, check 10139 * if this new event wound up on the same ctx, if so 10140 * its the regular !move_group case, otherwise fail. 10141 */ 10142 if (gctx != ctx) { 10143 err = -EINVAL; 10144 goto err_locked; 10145 } else { 10146 perf_event_ctx_unlock(group_leader, gctx); 10147 move_group = 0; 10148 } 10149 } 10150 } else { 10151 mutex_lock(&ctx->mutex); 10152 } 10153 10154 if (ctx->task == TASK_TOMBSTONE) { 10155 err = -ESRCH; 10156 goto err_locked; 10157 } 10158 10159 if (!perf_event_validate_size(event)) { 10160 err = -E2BIG; 10161 goto err_locked; 10162 } 10163 10164 if (!task) { 10165 /* 10166 * Check if the @cpu we're creating an event for is online. 10167 * 10168 * We use the perf_cpu_context::ctx::mutex to serialize against 10169 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10170 */ 10171 struct perf_cpu_context *cpuctx = 10172 container_of(ctx, struct perf_cpu_context, ctx); 10173 10174 if (!cpuctx->online) { 10175 err = -ENODEV; 10176 goto err_locked; 10177 } 10178 } 10179 10180 10181 /* 10182 * Must be under the same ctx::mutex as perf_install_in_context(), 10183 * because we need to serialize with concurrent event creation. 10184 */ 10185 if (!exclusive_event_installable(event, ctx)) { 10186 /* exclusive and group stuff are assumed mutually exclusive */ 10187 WARN_ON_ONCE(move_group); 10188 10189 err = -EBUSY; 10190 goto err_locked; 10191 } 10192 10193 WARN_ON_ONCE(ctx->parent_ctx); 10194 10195 /* 10196 * This is the point on no return; we cannot fail hereafter. This is 10197 * where we start modifying current state. 10198 */ 10199 10200 if (move_group) { 10201 /* 10202 * See perf_event_ctx_lock() for comments on the details 10203 * of swizzling perf_event::ctx. 10204 */ 10205 perf_remove_from_context(group_leader, 0); 10206 put_ctx(gctx); 10207 10208 list_for_each_entry(sibling, &group_leader->sibling_list, 10209 group_entry) { 10210 perf_remove_from_context(sibling, 0); 10211 put_ctx(gctx); 10212 } 10213 10214 /* 10215 * Wait for everybody to stop referencing the events through 10216 * the old lists, before installing it on new lists. 10217 */ 10218 synchronize_rcu(); 10219 10220 /* 10221 * Install the group siblings before the group leader. 10222 * 10223 * Because a group leader will try and install the entire group 10224 * (through the sibling list, which is still in-tact), we can 10225 * end up with siblings installed in the wrong context. 10226 * 10227 * By installing siblings first we NO-OP because they're not 10228 * reachable through the group lists. 10229 */ 10230 list_for_each_entry(sibling, &group_leader->sibling_list, 10231 group_entry) { 10232 perf_event__state_init(sibling); 10233 perf_install_in_context(ctx, sibling, sibling->cpu); 10234 get_ctx(ctx); 10235 } 10236 10237 /* 10238 * Removing from the context ends up with disabled 10239 * event. What we want here is event in the initial 10240 * startup state, ready to be add into new context. 10241 */ 10242 perf_event__state_init(group_leader); 10243 perf_install_in_context(ctx, group_leader, group_leader->cpu); 10244 get_ctx(ctx); 10245 } 10246 10247 /* 10248 * Precalculate sample_data sizes; do while holding ctx::mutex such 10249 * that we're serialized against further additions and before 10250 * perf_install_in_context() which is the point the event is active and 10251 * can use these values. 10252 */ 10253 perf_event__header_size(event); 10254 perf_event__id_header_size(event); 10255 10256 event->owner = current; 10257 10258 perf_install_in_context(ctx, event, event->cpu); 10259 perf_unpin_context(ctx); 10260 10261 if (move_group) 10262 perf_event_ctx_unlock(group_leader, gctx); 10263 mutex_unlock(&ctx->mutex); 10264 10265 if (task) { 10266 mutex_unlock(&task->signal->cred_guard_mutex); 10267 put_task_struct(task); 10268 } 10269 10270 mutex_lock(¤t->perf_event_mutex); 10271 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 10272 mutex_unlock(¤t->perf_event_mutex); 10273 10274 /* 10275 * Drop the reference on the group_event after placing the 10276 * new event on the sibling_list. This ensures destruction 10277 * of the group leader will find the pointer to itself in 10278 * perf_group_detach(). 10279 */ 10280 fdput(group); 10281 fd_install(event_fd, event_file); 10282 return event_fd; 10283 10284 err_locked: 10285 if (move_group) 10286 perf_event_ctx_unlock(group_leader, gctx); 10287 mutex_unlock(&ctx->mutex); 10288 /* err_file: */ 10289 fput(event_file); 10290 err_context: 10291 perf_unpin_context(ctx); 10292 put_ctx(ctx); 10293 err_alloc: 10294 /* 10295 * If event_file is set, the fput() above will have called ->release() 10296 * and that will take care of freeing the event. 10297 */ 10298 if (!event_file) 10299 free_event(event); 10300 err_cred: 10301 if (task) 10302 mutex_unlock(&task->signal->cred_guard_mutex); 10303 err_task: 10304 if (task) 10305 put_task_struct(task); 10306 err_group_fd: 10307 fdput(group); 10308 err_fd: 10309 put_unused_fd(event_fd); 10310 return err; 10311 } 10312 10313 /** 10314 * perf_event_create_kernel_counter 10315 * 10316 * @attr: attributes of the counter to create 10317 * @cpu: cpu in which the counter is bound 10318 * @task: task to profile (NULL for percpu) 10319 */ 10320 struct perf_event * 10321 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 10322 struct task_struct *task, 10323 perf_overflow_handler_t overflow_handler, 10324 void *context) 10325 { 10326 struct perf_event_context *ctx; 10327 struct perf_event *event; 10328 int err; 10329 10330 /* 10331 * Get the target context (task or percpu): 10332 */ 10333 10334 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 10335 overflow_handler, context, -1); 10336 if (IS_ERR(event)) { 10337 err = PTR_ERR(event); 10338 goto err; 10339 } 10340 10341 /* Mark owner so we could distinguish it from user events. */ 10342 event->owner = TASK_TOMBSTONE; 10343 10344 ctx = find_get_context(event->pmu, task, event); 10345 if (IS_ERR(ctx)) { 10346 err = PTR_ERR(ctx); 10347 goto err_free; 10348 } 10349 10350 WARN_ON_ONCE(ctx->parent_ctx); 10351 mutex_lock(&ctx->mutex); 10352 if (ctx->task == TASK_TOMBSTONE) { 10353 err = -ESRCH; 10354 goto err_unlock; 10355 } 10356 10357 if (!task) { 10358 /* 10359 * Check if the @cpu we're creating an event for is online. 10360 * 10361 * We use the perf_cpu_context::ctx::mutex to serialize against 10362 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10363 */ 10364 struct perf_cpu_context *cpuctx = 10365 container_of(ctx, struct perf_cpu_context, ctx); 10366 if (!cpuctx->online) { 10367 err = -ENODEV; 10368 goto err_unlock; 10369 } 10370 } 10371 10372 if (!exclusive_event_installable(event, ctx)) { 10373 err = -EBUSY; 10374 goto err_unlock; 10375 } 10376 10377 perf_install_in_context(ctx, event, cpu); 10378 perf_unpin_context(ctx); 10379 mutex_unlock(&ctx->mutex); 10380 10381 return event; 10382 10383 err_unlock: 10384 mutex_unlock(&ctx->mutex); 10385 perf_unpin_context(ctx); 10386 put_ctx(ctx); 10387 err_free: 10388 free_event(event); 10389 err: 10390 return ERR_PTR(err); 10391 } 10392 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 10393 10394 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 10395 { 10396 struct perf_event_context *src_ctx; 10397 struct perf_event_context *dst_ctx; 10398 struct perf_event *event, *tmp; 10399 LIST_HEAD(events); 10400 10401 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 10402 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 10403 10404 /* 10405 * See perf_event_ctx_lock() for comments on the details 10406 * of swizzling perf_event::ctx. 10407 */ 10408 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 10409 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 10410 event_entry) { 10411 perf_remove_from_context(event, 0); 10412 unaccount_event_cpu(event, src_cpu); 10413 put_ctx(src_ctx); 10414 list_add(&event->migrate_entry, &events); 10415 } 10416 10417 /* 10418 * Wait for the events to quiesce before re-instating them. 10419 */ 10420 synchronize_rcu(); 10421 10422 /* 10423 * Re-instate events in 2 passes. 10424 * 10425 * Skip over group leaders and only install siblings on this first 10426 * pass, siblings will not get enabled without a leader, however a 10427 * leader will enable its siblings, even if those are still on the old 10428 * context. 10429 */ 10430 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10431 if (event->group_leader == event) 10432 continue; 10433 10434 list_del(&event->migrate_entry); 10435 if (event->state >= PERF_EVENT_STATE_OFF) 10436 event->state = PERF_EVENT_STATE_INACTIVE; 10437 account_event_cpu(event, dst_cpu); 10438 perf_install_in_context(dst_ctx, event, dst_cpu); 10439 get_ctx(dst_ctx); 10440 } 10441 10442 /* 10443 * Once all the siblings are setup properly, install the group leaders 10444 * to make it go. 10445 */ 10446 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 10447 list_del(&event->migrate_entry); 10448 if (event->state >= PERF_EVENT_STATE_OFF) 10449 event->state = PERF_EVENT_STATE_INACTIVE; 10450 account_event_cpu(event, dst_cpu); 10451 perf_install_in_context(dst_ctx, event, dst_cpu); 10452 get_ctx(dst_ctx); 10453 } 10454 mutex_unlock(&dst_ctx->mutex); 10455 mutex_unlock(&src_ctx->mutex); 10456 } 10457 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 10458 10459 static void sync_child_event(struct perf_event *child_event, 10460 struct task_struct *child) 10461 { 10462 struct perf_event *parent_event = child_event->parent; 10463 u64 child_val; 10464 10465 if (child_event->attr.inherit_stat) 10466 perf_event_read_event(child_event, child); 10467 10468 child_val = perf_event_count(child_event); 10469 10470 /* 10471 * Add back the child's count to the parent's count: 10472 */ 10473 atomic64_add(child_val, &parent_event->child_count); 10474 atomic64_add(child_event->total_time_enabled, 10475 &parent_event->child_total_time_enabled); 10476 atomic64_add(child_event->total_time_running, 10477 &parent_event->child_total_time_running); 10478 } 10479 10480 static void 10481 perf_event_exit_event(struct perf_event *child_event, 10482 struct perf_event_context *child_ctx, 10483 struct task_struct *child) 10484 { 10485 struct perf_event *parent_event = child_event->parent; 10486 10487 /* 10488 * Do not destroy the 'original' grouping; because of the context 10489 * switch optimization the original events could've ended up in a 10490 * random child task. 10491 * 10492 * If we were to destroy the original group, all group related 10493 * operations would cease to function properly after this random 10494 * child dies. 10495 * 10496 * Do destroy all inherited groups, we don't care about those 10497 * and being thorough is better. 10498 */ 10499 raw_spin_lock_irq(&child_ctx->lock); 10500 WARN_ON_ONCE(child_ctx->is_active); 10501 10502 if (parent_event) 10503 perf_group_detach(child_event); 10504 list_del_event(child_event, child_ctx); 10505 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 10506 raw_spin_unlock_irq(&child_ctx->lock); 10507 10508 /* 10509 * Parent events are governed by their filedesc, retain them. 10510 */ 10511 if (!parent_event) { 10512 perf_event_wakeup(child_event); 10513 return; 10514 } 10515 /* 10516 * Child events can be cleaned up. 10517 */ 10518 10519 sync_child_event(child_event, child); 10520 10521 /* 10522 * Remove this event from the parent's list 10523 */ 10524 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 10525 mutex_lock(&parent_event->child_mutex); 10526 list_del_init(&child_event->child_list); 10527 mutex_unlock(&parent_event->child_mutex); 10528 10529 /* 10530 * Kick perf_poll() for is_event_hup(). 10531 */ 10532 perf_event_wakeup(parent_event); 10533 free_event(child_event); 10534 put_event(parent_event); 10535 } 10536 10537 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 10538 { 10539 struct perf_event_context *child_ctx, *clone_ctx = NULL; 10540 struct perf_event *child_event, *next; 10541 10542 WARN_ON_ONCE(child != current); 10543 10544 child_ctx = perf_pin_task_context(child, ctxn); 10545 if (!child_ctx) 10546 return; 10547 10548 /* 10549 * In order to reduce the amount of tricky in ctx tear-down, we hold 10550 * ctx::mutex over the entire thing. This serializes against almost 10551 * everything that wants to access the ctx. 10552 * 10553 * The exception is sys_perf_event_open() / 10554 * perf_event_create_kernel_count() which does find_get_context() 10555 * without ctx::mutex (it cannot because of the move_group double mutex 10556 * lock thing). See the comments in perf_install_in_context(). 10557 */ 10558 mutex_lock(&child_ctx->mutex); 10559 10560 /* 10561 * In a single ctx::lock section, de-schedule the events and detach the 10562 * context from the task such that we cannot ever get it scheduled back 10563 * in. 10564 */ 10565 raw_spin_lock_irq(&child_ctx->lock); 10566 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 10567 10568 /* 10569 * Now that the context is inactive, destroy the task <-> ctx relation 10570 * and mark the context dead. 10571 */ 10572 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 10573 put_ctx(child_ctx); /* cannot be last */ 10574 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 10575 put_task_struct(current); /* cannot be last */ 10576 10577 clone_ctx = unclone_ctx(child_ctx); 10578 raw_spin_unlock_irq(&child_ctx->lock); 10579 10580 if (clone_ctx) 10581 put_ctx(clone_ctx); 10582 10583 /* 10584 * Report the task dead after unscheduling the events so that we 10585 * won't get any samples after PERF_RECORD_EXIT. We can however still 10586 * get a few PERF_RECORD_READ events. 10587 */ 10588 perf_event_task(child, child_ctx, 0); 10589 10590 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 10591 perf_event_exit_event(child_event, child_ctx, child); 10592 10593 mutex_unlock(&child_ctx->mutex); 10594 10595 put_ctx(child_ctx); 10596 } 10597 10598 /* 10599 * When a child task exits, feed back event values to parent events. 10600 * 10601 * Can be called with cred_guard_mutex held when called from 10602 * install_exec_creds(). 10603 */ 10604 void perf_event_exit_task(struct task_struct *child) 10605 { 10606 struct perf_event *event, *tmp; 10607 int ctxn; 10608 10609 mutex_lock(&child->perf_event_mutex); 10610 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 10611 owner_entry) { 10612 list_del_init(&event->owner_entry); 10613 10614 /* 10615 * Ensure the list deletion is visible before we clear 10616 * the owner, closes a race against perf_release() where 10617 * we need to serialize on the owner->perf_event_mutex. 10618 */ 10619 smp_store_release(&event->owner, NULL); 10620 } 10621 mutex_unlock(&child->perf_event_mutex); 10622 10623 for_each_task_context_nr(ctxn) 10624 perf_event_exit_task_context(child, ctxn); 10625 10626 /* 10627 * The perf_event_exit_task_context calls perf_event_task 10628 * with child's task_ctx, which generates EXIT events for 10629 * child contexts and sets child->perf_event_ctxp[] to NULL. 10630 * At this point we need to send EXIT events to cpu contexts. 10631 */ 10632 perf_event_task(child, NULL, 0); 10633 } 10634 10635 static void perf_free_event(struct perf_event *event, 10636 struct perf_event_context *ctx) 10637 { 10638 struct perf_event *parent = event->parent; 10639 10640 if (WARN_ON_ONCE(!parent)) 10641 return; 10642 10643 mutex_lock(&parent->child_mutex); 10644 list_del_init(&event->child_list); 10645 mutex_unlock(&parent->child_mutex); 10646 10647 put_event(parent); 10648 10649 raw_spin_lock_irq(&ctx->lock); 10650 perf_group_detach(event); 10651 list_del_event(event, ctx); 10652 raw_spin_unlock_irq(&ctx->lock); 10653 free_event(event); 10654 } 10655 10656 /* 10657 * Free an unexposed, unused context as created by inheritance by 10658 * perf_event_init_task below, used by fork() in case of fail. 10659 * 10660 * Not all locks are strictly required, but take them anyway to be nice and 10661 * help out with the lockdep assertions. 10662 */ 10663 void perf_event_free_task(struct task_struct *task) 10664 { 10665 struct perf_event_context *ctx; 10666 struct perf_event *event, *tmp; 10667 int ctxn; 10668 10669 for_each_task_context_nr(ctxn) { 10670 ctx = task->perf_event_ctxp[ctxn]; 10671 if (!ctx) 10672 continue; 10673 10674 mutex_lock(&ctx->mutex); 10675 raw_spin_lock_irq(&ctx->lock); 10676 /* 10677 * Destroy the task <-> ctx relation and mark the context dead. 10678 * 10679 * This is important because even though the task hasn't been 10680 * exposed yet the context has been (through child_list). 10681 */ 10682 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 10683 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 10684 put_task_struct(task); /* cannot be last */ 10685 raw_spin_unlock_irq(&ctx->lock); 10686 10687 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 10688 perf_free_event(event, ctx); 10689 10690 mutex_unlock(&ctx->mutex); 10691 put_ctx(ctx); 10692 } 10693 } 10694 10695 void perf_event_delayed_put(struct task_struct *task) 10696 { 10697 int ctxn; 10698 10699 for_each_task_context_nr(ctxn) 10700 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 10701 } 10702 10703 struct file *perf_event_get(unsigned int fd) 10704 { 10705 struct file *file; 10706 10707 file = fget_raw(fd); 10708 if (!file) 10709 return ERR_PTR(-EBADF); 10710 10711 if (file->f_op != &perf_fops) { 10712 fput(file); 10713 return ERR_PTR(-EBADF); 10714 } 10715 10716 return file; 10717 } 10718 10719 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 10720 { 10721 if (!event) 10722 return ERR_PTR(-EINVAL); 10723 10724 return &event->attr; 10725 } 10726 10727 /* 10728 * Inherit a event from parent task to child task. 10729 * 10730 * Returns: 10731 * - valid pointer on success 10732 * - NULL for orphaned events 10733 * - IS_ERR() on error 10734 */ 10735 static struct perf_event * 10736 inherit_event(struct perf_event *parent_event, 10737 struct task_struct *parent, 10738 struct perf_event_context *parent_ctx, 10739 struct task_struct *child, 10740 struct perf_event *group_leader, 10741 struct perf_event_context *child_ctx) 10742 { 10743 enum perf_event_state parent_state = parent_event->state; 10744 struct perf_event *child_event; 10745 unsigned long flags; 10746 10747 /* 10748 * Instead of creating recursive hierarchies of events, 10749 * we link inherited events back to the original parent, 10750 * which has a filp for sure, which we use as the reference 10751 * count: 10752 */ 10753 if (parent_event->parent) 10754 parent_event = parent_event->parent; 10755 10756 child_event = perf_event_alloc(&parent_event->attr, 10757 parent_event->cpu, 10758 child, 10759 group_leader, parent_event, 10760 NULL, NULL, -1); 10761 if (IS_ERR(child_event)) 10762 return child_event; 10763 10764 10765 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 10766 !child_ctx->task_ctx_data) { 10767 struct pmu *pmu = child_event->pmu; 10768 10769 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 10770 GFP_KERNEL); 10771 if (!child_ctx->task_ctx_data) { 10772 free_event(child_event); 10773 return NULL; 10774 } 10775 } 10776 10777 /* 10778 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 10779 * must be under the same lock in order to serialize against 10780 * perf_event_release_kernel(), such that either we must observe 10781 * is_orphaned_event() or they will observe us on the child_list. 10782 */ 10783 mutex_lock(&parent_event->child_mutex); 10784 if (is_orphaned_event(parent_event) || 10785 !atomic_long_inc_not_zero(&parent_event->refcount)) { 10786 mutex_unlock(&parent_event->child_mutex); 10787 /* task_ctx_data is freed with child_ctx */ 10788 free_event(child_event); 10789 return NULL; 10790 } 10791 10792 get_ctx(child_ctx); 10793 10794 /* 10795 * Make the child state follow the state of the parent event, 10796 * not its attr.disabled bit. We hold the parent's mutex, 10797 * so we won't race with perf_event_{en, dis}able_family. 10798 */ 10799 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 10800 child_event->state = PERF_EVENT_STATE_INACTIVE; 10801 else 10802 child_event->state = PERF_EVENT_STATE_OFF; 10803 10804 if (parent_event->attr.freq) { 10805 u64 sample_period = parent_event->hw.sample_period; 10806 struct hw_perf_event *hwc = &child_event->hw; 10807 10808 hwc->sample_period = sample_period; 10809 hwc->last_period = sample_period; 10810 10811 local64_set(&hwc->period_left, sample_period); 10812 } 10813 10814 child_event->ctx = child_ctx; 10815 child_event->overflow_handler = parent_event->overflow_handler; 10816 child_event->overflow_handler_context 10817 = parent_event->overflow_handler_context; 10818 10819 /* 10820 * Precalculate sample_data sizes 10821 */ 10822 perf_event__header_size(child_event); 10823 perf_event__id_header_size(child_event); 10824 10825 /* 10826 * Link it up in the child's context: 10827 */ 10828 raw_spin_lock_irqsave(&child_ctx->lock, flags); 10829 add_event_to_ctx(child_event, child_ctx); 10830 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 10831 10832 /* 10833 * Link this into the parent event's child list 10834 */ 10835 list_add_tail(&child_event->child_list, &parent_event->child_list); 10836 mutex_unlock(&parent_event->child_mutex); 10837 10838 return child_event; 10839 } 10840 10841 /* 10842 * Inherits an event group. 10843 * 10844 * This will quietly suppress orphaned events; !inherit_event() is not an error. 10845 * This matches with perf_event_release_kernel() removing all child events. 10846 * 10847 * Returns: 10848 * - 0 on success 10849 * - <0 on error 10850 */ 10851 static int inherit_group(struct perf_event *parent_event, 10852 struct task_struct *parent, 10853 struct perf_event_context *parent_ctx, 10854 struct task_struct *child, 10855 struct perf_event_context *child_ctx) 10856 { 10857 struct perf_event *leader; 10858 struct perf_event *sub; 10859 struct perf_event *child_ctr; 10860 10861 leader = inherit_event(parent_event, parent, parent_ctx, 10862 child, NULL, child_ctx); 10863 if (IS_ERR(leader)) 10864 return PTR_ERR(leader); 10865 /* 10866 * @leader can be NULL here because of is_orphaned_event(). In this 10867 * case inherit_event() will create individual events, similar to what 10868 * perf_group_detach() would do anyway. 10869 */ 10870 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 10871 child_ctr = inherit_event(sub, parent, parent_ctx, 10872 child, leader, child_ctx); 10873 if (IS_ERR(child_ctr)) 10874 return PTR_ERR(child_ctr); 10875 } 10876 return 0; 10877 } 10878 10879 /* 10880 * Creates the child task context and tries to inherit the event-group. 10881 * 10882 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 10883 * inherited_all set when we 'fail' to inherit an orphaned event; this is 10884 * consistent with perf_event_release_kernel() removing all child events. 10885 * 10886 * Returns: 10887 * - 0 on success 10888 * - <0 on error 10889 */ 10890 static int 10891 inherit_task_group(struct perf_event *event, struct task_struct *parent, 10892 struct perf_event_context *parent_ctx, 10893 struct task_struct *child, int ctxn, 10894 int *inherited_all) 10895 { 10896 int ret; 10897 struct perf_event_context *child_ctx; 10898 10899 if (!event->attr.inherit) { 10900 *inherited_all = 0; 10901 return 0; 10902 } 10903 10904 child_ctx = child->perf_event_ctxp[ctxn]; 10905 if (!child_ctx) { 10906 /* 10907 * This is executed from the parent task context, so 10908 * inherit events that have been marked for cloning. 10909 * First allocate and initialize a context for the 10910 * child. 10911 */ 10912 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 10913 if (!child_ctx) 10914 return -ENOMEM; 10915 10916 child->perf_event_ctxp[ctxn] = child_ctx; 10917 } 10918 10919 ret = inherit_group(event, parent, parent_ctx, 10920 child, child_ctx); 10921 10922 if (ret) 10923 *inherited_all = 0; 10924 10925 return ret; 10926 } 10927 10928 /* 10929 * Initialize the perf_event context in task_struct 10930 */ 10931 static int perf_event_init_context(struct task_struct *child, int ctxn) 10932 { 10933 struct perf_event_context *child_ctx, *parent_ctx; 10934 struct perf_event_context *cloned_ctx; 10935 struct perf_event *event; 10936 struct task_struct *parent = current; 10937 int inherited_all = 1; 10938 unsigned long flags; 10939 int ret = 0; 10940 10941 if (likely(!parent->perf_event_ctxp[ctxn])) 10942 return 0; 10943 10944 /* 10945 * If the parent's context is a clone, pin it so it won't get 10946 * swapped under us. 10947 */ 10948 parent_ctx = perf_pin_task_context(parent, ctxn); 10949 if (!parent_ctx) 10950 return 0; 10951 10952 /* 10953 * No need to check if parent_ctx != NULL here; since we saw 10954 * it non-NULL earlier, the only reason for it to become NULL 10955 * is if we exit, and since we're currently in the middle of 10956 * a fork we can't be exiting at the same time. 10957 */ 10958 10959 /* 10960 * Lock the parent list. No need to lock the child - not PID 10961 * hashed yet and not running, so nobody can access it. 10962 */ 10963 mutex_lock(&parent_ctx->mutex); 10964 10965 /* 10966 * We dont have to disable NMIs - we are only looking at 10967 * the list, not manipulating it: 10968 */ 10969 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 10970 ret = inherit_task_group(event, parent, parent_ctx, 10971 child, ctxn, &inherited_all); 10972 if (ret) 10973 goto out_unlock; 10974 } 10975 10976 /* 10977 * We can't hold ctx->lock when iterating the ->flexible_group list due 10978 * to allocations, but we need to prevent rotation because 10979 * rotate_ctx() will change the list from interrupt context. 10980 */ 10981 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10982 parent_ctx->rotate_disable = 1; 10983 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 10984 10985 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 10986 ret = inherit_task_group(event, parent, parent_ctx, 10987 child, ctxn, &inherited_all); 10988 if (ret) 10989 goto out_unlock; 10990 } 10991 10992 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 10993 parent_ctx->rotate_disable = 0; 10994 10995 child_ctx = child->perf_event_ctxp[ctxn]; 10996 10997 if (child_ctx && inherited_all) { 10998 /* 10999 * Mark the child context as a clone of the parent 11000 * context, or of whatever the parent is a clone of. 11001 * 11002 * Note that if the parent is a clone, the holding of 11003 * parent_ctx->lock avoids it from being uncloned. 11004 */ 11005 cloned_ctx = parent_ctx->parent_ctx; 11006 if (cloned_ctx) { 11007 child_ctx->parent_ctx = cloned_ctx; 11008 child_ctx->parent_gen = parent_ctx->parent_gen; 11009 } else { 11010 child_ctx->parent_ctx = parent_ctx; 11011 child_ctx->parent_gen = parent_ctx->generation; 11012 } 11013 get_ctx(child_ctx->parent_ctx); 11014 } 11015 11016 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11017 out_unlock: 11018 mutex_unlock(&parent_ctx->mutex); 11019 11020 perf_unpin_context(parent_ctx); 11021 put_ctx(parent_ctx); 11022 11023 return ret; 11024 } 11025 11026 /* 11027 * Initialize the perf_event context in task_struct 11028 */ 11029 int perf_event_init_task(struct task_struct *child) 11030 { 11031 int ctxn, ret; 11032 11033 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11034 mutex_init(&child->perf_event_mutex); 11035 INIT_LIST_HEAD(&child->perf_event_list); 11036 11037 for_each_task_context_nr(ctxn) { 11038 ret = perf_event_init_context(child, ctxn); 11039 if (ret) { 11040 perf_event_free_task(child); 11041 return ret; 11042 } 11043 } 11044 11045 return 0; 11046 } 11047 11048 static void __init perf_event_init_all_cpus(void) 11049 { 11050 struct swevent_htable *swhash; 11051 int cpu; 11052 11053 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11054 11055 for_each_possible_cpu(cpu) { 11056 swhash = &per_cpu(swevent_htable, cpu); 11057 mutex_init(&swhash->hlist_mutex); 11058 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11059 11060 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11061 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11062 11063 #ifdef CONFIG_CGROUP_PERF 11064 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11065 #endif 11066 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11067 } 11068 } 11069 11070 void perf_swevent_init_cpu(unsigned int cpu) 11071 { 11072 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11073 11074 mutex_lock(&swhash->hlist_mutex); 11075 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11076 struct swevent_hlist *hlist; 11077 11078 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11079 WARN_ON(!hlist); 11080 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11081 } 11082 mutex_unlock(&swhash->hlist_mutex); 11083 } 11084 11085 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11086 static void __perf_event_exit_context(void *__info) 11087 { 11088 struct perf_event_context *ctx = __info; 11089 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11090 struct perf_event *event; 11091 11092 raw_spin_lock(&ctx->lock); 11093 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11094 list_for_each_entry(event, &ctx->event_list, event_entry) 11095 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11096 raw_spin_unlock(&ctx->lock); 11097 } 11098 11099 static void perf_event_exit_cpu_context(int cpu) 11100 { 11101 struct perf_cpu_context *cpuctx; 11102 struct perf_event_context *ctx; 11103 struct pmu *pmu; 11104 11105 mutex_lock(&pmus_lock); 11106 list_for_each_entry(pmu, &pmus, entry) { 11107 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11108 ctx = &cpuctx->ctx; 11109 11110 mutex_lock(&ctx->mutex); 11111 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11112 cpuctx->online = 0; 11113 mutex_unlock(&ctx->mutex); 11114 } 11115 cpumask_clear_cpu(cpu, perf_online_mask); 11116 mutex_unlock(&pmus_lock); 11117 } 11118 #else 11119 11120 static void perf_event_exit_cpu_context(int cpu) { } 11121 11122 #endif 11123 11124 int perf_event_init_cpu(unsigned int cpu) 11125 { 11126 struct perf_cpu_context *cpuctx; 11127 struct perf_event_context *ctx; 11128 struct pmu *pmu; 11129 11130 perf_swevent_init_cpu(cpu); 11131 11132 mutex_lock(&pmus_lock); 11133 cpumask_set_cpu(cpu, perf_online_mask); 11134 list_for_each_entry(pmu, &pmus, entry) { 11135 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11136 ctx = &cpuctx->ctx; 11137 11138 mutex_lock(&ctx->mutex); 11139 cpuctx->online = 1; 11140 mutex_unlock(&ctx->mutex); 11141 } 11142 mutex_unlock(&pmus_lock); 11143 11144 return 0; 11145 } 11146 11147 int perf_event_exit_cpu(unsigned int cpu) 11148 { 11149 perf_event_exit_cpu_context(cpu); 11150 return 0; 11151 } 11152 11153 static int 11154 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11155 { 11156 int cpu; 11157 11158 for_each_online_cpu(cpu) 11159 perf_event_exit_cpu(cpu); 11160 11161 return NOTIFY_OK; 11162 } 11163 11164 /* 11165 * Run the perf reboot notifier at the very last possible moment so that 11166 * the generic watchdog code runs as long as possible. 11167 */ 11168 static struct notifier_block perf_reboot_notifier = { 11169 .notifier_call = perf_reboot, 11170 .priority = INT_MIN, 11171 }; 11172 11173 void __init perf_event_init(void) 11174 { 11175 int ret; 11176 11177 idr_init(&pmu_idr); 11178 11179 perf_event_init_all_cpus(); 11180 init_srcu_struct(&pmus_srcu); 11181 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11182 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11183 perf_pmu_register(&perf_task_clock, NULL, -1); 11184 perf_tp_register(); 11185 perf_event_init_cpu(smp_processor_id()); 11186 register_reboot_notifier(&perf_reboot_notifier); 11187 11188 ret = init_hw_breakpoint(); 11189 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 11190 11191 /* 11192 * Build time assertion that we keep the data_head at the intended 11193 * location. IOW, validation we got the __reserved[] size right. 11194 */ 11195 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 11196 != 1024); 11197 } 11198 11199 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 11200 char *page) 11201 { 11202 struct perf_pmu_events_attr *pmu_attr = 11203 container_of(attr, struct perf_pmu_events_attr, attr); 11204 11205 if (pmu_attr->event_str) 11206 return sprintf(page, "%s\n", pmu_attr->event_str); 11207 11208 return 0; 11209 } 11210 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 11211 11212 static int __init perf_event_sysfs_init(void) 11213 { 11214 struct pmu *pmu; 11215 int ret; 11216 11217 mutex_lock(&pmus_lock); 11218 11219 ret = bus_register(&pmu_bus); 11220 if (ret) 11221 goto unlock; 11222 11223 list_for_each_entry(pmu, &pmus, entry) { 11224 if (!pmu->name || pmu->type < 0) 11225 continue; 11226 11227 ret = pmu_dev_alloc(pmu); 11228 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 11229 } 11230 pmu_bus_running = 1; 11231 ret = 0; 11232 11233 unlock: 11234 mutex_unlock(&pmus_lock); 11235 11236 return ret; 11237 } 11238 device_initcall(perf_event_sysfs_init); 11239 11240 #ifdef CONFIG_CGROUP_PERF 11241 static struct cgroup_subsys_state * 11242 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 11243 { 11244 struct perf_cgroup *jc; 11245 11246 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 11247 if (!jc) 11248 return ERR_PTR(-ENOMEM); 11249 11250 jc->info = alloc_percpu(struct perf_cgroup_info); 11251 if (!jc->info) { 11252 kfree(jc); 11253 return ERR_PTR(-ENOMEM); 11254 } 11255 11256 return &jc->css; 11257 } 11258 11259 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 11260 { 11261 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 11262 11263 free_percpu(jc->info); 11264 kfree(jc); 11265 } 11266 11267 static int __perf_cgroup_move(void *info) 11268 { 11269 struct task_struct *task = info; 11270 rcu_read_lock(); 11271 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 11272 rcu_read_unlock(); 11273 return 0; 11274 } 11275 11276 static void perf_cgroup_attach(struct cgroup_taskset *tset) 11277 { 11278 struct task_struct *task; 11279 struct cgroup_subsys_state *css; 11280 11281 cgroup_taskset_for_each(task, css, tset) 11282 task_function_call(task, __perf_cgroup_move, task); 11283 } 11284 11285 struct cgroup_subsys perf_event_cgrp_subsys = { 11286 .css_alloc = perf_cgroup_css_alloc, 11287 .css_free = perf_cgroup_css_free, 11288 .attach = perf_cgroup_attach, 11289 /* 11290 * Implicitly enable on dfl hierarchy so that perf events can 11291 * always be filtered by cgroup2 path as long as perf_event 11292 * controller is not mounted on a legacy hierarchy. 11293 */ 11294 .implicit_on_dfl = true, 11295 .threaded = true, 11296 }; 11297 #endif /* CONFIG_CGROUP_PERF */ 11298