xref: /openbmc/linux/kernel/events/core.c (revision 10c1d542)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	list_for_each_entry(sibling, &leader->sibling_list, group_entry)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
728 	if (cgrp_out)
729 		__update_cgrp_time(cgrp_out);
730 }
731 
732 static inline void update_cgrp_time_from_event(struct perf_event *event)
733 {
734 	struct perf_cgroup *cgrp;
735 
736 	/*
737 	 * ensure we access cgroup data only when needed and
738 	 * when we know the cgroup is pinned (css_get)
739 	 */
740 	if (!is_cgroup_event(event))
741 		return;
742 
743 	cgrp = perf_cgroup_from_task(current, event->ctx);
744 	/*
745 	 * Do not update time when cgroup is not active
746 	 */
747        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
748 		__update_cgrp_time(event->cgrp);
749 }
750 
751 static inline void
752 perf_cgroup_set_timestamp(struct task_struct *task,
753 			  struct perf_event_context *ctx)
754 {
755 	struct perf_cgroup *cgrp;
756 	struct perf_cgroup_info *info;
757 
758 	/*
759 	 * ctx->lock held by caller
760 	 * ensure we do not access cgroup data
761 	 * unless we have the cgroup pinned (css_get)
762 	 */
763 	if (!task || !ctx->nr_cgroups)
764 		return;
765 
766 	cgrp = perf_cgroup_from_task(task, ctx);
767 	info = this_cpu_ptr(cgrp->info);
768 	info->timestamp = ctx->timestamp;
769 }
770 
771 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
772 
773 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
774 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
775 
776 /*
777  * reschedule events based on the cgroup constraint of task.
778  *
779  * mode SWOUT : schedule out everything
780  * mode SWIN : schedule in based on cgroup for next
781  */
782 static void perf_cgroup_switch(struct task_struct *task, int mode)
783 {
784 	struct perf_cpu_context *cpuctx;
785 	struct list_head *list;
786 	unsigned long flags;
787 
788 	/*
789 	 * Disable interrupts and preemption to avoid this CPU's
790 	 * cgrp_cpuctx_entry to change under us.
791 	 */
792 	local_irq_save(flags);
793 
794 	list = this_cpu_ptr(&cgrp_cpuctx_list);
795 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
796 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
797 
798 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
799 		perf_pmu_disable(cpuctx->ctx.pmu);
800 
801 		if (mode & PERF_CGROUP_SWOUT) {
802 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
803 			/*
804 			 * must not be done before ctxswout due
805 			 * to event_filter_match() in event_sched_out()
806 			 */
807 			cpuctx->cgrp = NULL;
808 		}
809 
810 		if (mode & PERF_CGROUP_SWIN) {
811 			WARN_ON_ONCE(cpuctx->cgrp);
812 			/*
813 			 * set cgrp before ctxsw in to allow
814 			 * event_filter_match() to not have to pass
815 			 * task around
816 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
817 			 * because cgorup events are only per-cpu
818 			 */
819 			cpuctx->cgrp = perf_cgroup_from_task(task,
820 							     &cpuctx->ctx);
821 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
822 		}
823 		perf_pmu_enable(cpuctx->ctx.pmu);
824 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static inline void perf_cgroup_sched_out(struct task_struct *task,
831 					 struct task_struct *next)
832 {
833 	struct perf_cgroup *cgrp1;
834 	struct perf_cgroup *cgrp2 = NULL;
835 
836 	rcu_read_lock();
837 	/*
838 	 * we come here when we know perf_cgroup_events > 0
839 	 * we do not need to pass the ctx here because we know
840 	 * we are holding the rcu lock
841 	 */
842 	cgrp1 = perf_cgroup_from_task(task, NULL);
843 	cgrp2 = perf_cgroup_from_task(next, NULL);
844 
845 	/*
846 	 * only schedule out current cgroup events if we know
847 	 * that we are switching to a different cgroup. Otherwise,
848 	 * do no touch the cgroup events.
849 	 */
850 	if (cgrp1 != cgrp2)
851 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
852 
853 	rcu_read_unlock();
854 }
855 
856 static inline void perf_cgroup_sched_in(struct task_struct *prev,
857 					struct task_struct *task)
858 {
859 	struct perf_cgroup *cgrp1;
860 	struct perf_cgroup *cgrp2 = NULL;
861 
862 	rcu_read_lock();
863 	/*
864 	 * we come here when we know perf_cgroup_events > 0
865 	 * we do not need to pass the ctx here because we know
866 	 * we are holding the rcu lock
867 	 */
868 	cgrp1 = perf_cgroup_from_task(task, NULL);
869 	cgrp2 = perf_cgroup_from_task(prev, NULL);
870 
871 	/*
872 	 * only need to schedule in cgroup events if we are changing
873 	 * cgroup during ctxsw. Cgroup events were not scheduled
874 	 * out of ctxsw out if that was not the case.
875 	 */
876 	if (cgrp1 != cgrp2)
877 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
878 
879 	rcu_read_unlock();
880 }
881 
882 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
883 				      struct perf_event_attr *attr,
884 				      struct perf_event *group_leader)
885 {
886 	struct perf_cgroup *cgrp;
887 	struct cgroup_subsys_state *css;
888 	struct fd f = fdget(fd);
889 	int ret = 0;
890 
891 	if (!f.file)
892 		return -EBADF;
893 
894 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
895 					 &perf_event_cgrp_subsys);
896 	if (IS_ERR(css)) {
897 		ret = PTR_ERR(css);
898 		goto out;
899 	}
900 
901 	cgrp = container_of(css, struct perf_cgroup, css);
902 	event->cgrp = cgrp;
903 
904 	/*
905 	 * all events in a group must monitor
906 	 * the same cgroup because a task belongs
907 	 * to only one perf cgroup at a time
908 	 */
909 	if (group_leader && group_leader->cgrp != cgrp) {
910 		perf_detach_cgroup(event);
911 		ret = -EINVAL;
912 	}
913 out:
914 	fdput(f);
915 	return ret;
916 }
917 
918 static inline void
919 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
920 {
921 	struct perf_cgroup_info *t;
922 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
923 	event->shadow_ctx_time = now - t->timestamp;
924 }
925 
926 /*
927  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
928  * cleared when last cgroup event is removed.
929  */
930 static inline void
931 list_update_cgroup_event(struct perf_event *event,
932 			 struct perf_event_context *ctx, bool add)
933 {
934 	struct perf_cpu_context *cpuctx;
935 	struct list_head *cpuctx_entry;
936 
937 	if (!is_cgroup_event(event))
938 		return;
939 
940 	if (add && ctx->nr_cgroups++)
941 		return;
942 	else if (!add && --ctx->nr_cgroups)
943 		return;
944 	/*
945 	 * Because cgroup events are always per-cpu events,
946 	 * this will always be called from the right CPU.
947 	 */
948 	cpuctx = __get_cpu_context(ctx);
949 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
950 	/* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
951 	if (add) {
952 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
953 
954 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
955 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
956 			cpuctx->cgrp = cgrp;
957 	} else {
958 		list_del(cpuctx_entry);
959 		cpuctx->cgrp = NULL;
960 	}
961 }
962 
963 #else /* !CONFIG_CGROUP_PERF */
964 
965 static inline bool
966 perf_cgroup_match(struct perf_event *event)
967 {
968 	return true;
969 }
970 
971 static inline void perf_detach_cgroup(struct perf_event *event)
972 {}
973 
974 static inline int is_cgroup_event(struct perf_event *event)
975 {
976 	return 0;
977 }
978 
979 static inline void update_cgrp_time_from_event(struct perf_event *event)
980 {
981 }
982 
983 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
984 {
985 }
986 
987 static inline void perf_cgroup_sched_out(struct task_struct *task,
988 					 struct task_struct *next)
989 {
990 }
991 
992 static inline void perf_cgroup_sched_in(struct task_struct *prev,
993 					struct task_struct *task)
994 {
995 }
996 
997 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
998 				      struct perf_event_attr *attr,
999 				      struct perf_event *group_leader)
1000 {
1001 	return -EINVAL;
1002 }
1003 
1004 static inline void
1005 perf_cgroup_set_timestamp(struct task_struct *task,
1006 			  struct perf_event_context *ctx)
1007 {
1008 }
1009 
1010 void
1011 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void
1016 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1017 {
1018 }
1019 
1020 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1021 {
1022 	return 0;
1023 }
1024 
1025 static inline void
1026 list_update_cgroup_event(struct perf_event *event,
1027 			 struct perf_event_context *ctx, bool add)
1028 {
1029 }
1030 
1031 #endif
1032 
1033 /*
1034  * set default to be dependent on timer tick just
1035  * like original code
1036  */
1037 #define PERF_CPU_HRTIMER (1000 / HZ)
1038 /*
1039  * function must be called with interrupts disabled
1040  */
1041 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1042 {
1043 	struct perf_cpu_context *cpuctx;
1044 	int rotations = 0;
1045 
1046 	lockdep_assert_irqs_disabled();
1047 
1048 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1049 	rotations = perf_rotate_context(cpuctx);
1050 
1051 	raw_spin_lock(&cpuctx->hrtimer_lock);
1052 	if (rotations)
1053 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1054 	else
1055 		cpuctx->hrtimer_active = 0;
1056 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1057 
1058 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1059 }
1060 
1061 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1062 {
1063 	struct hrtimer *timer = &cpuctx->hrtimer;
1064 	struct pmu *pmu = cpuctx->ctx.pmu;
1065 	u64 interval;
1066 
1067 	/* no multiplexing needed for SW PMU */
1068 	if (pmu->task_ctx_nr == perf_sw_context)
1069 		return;
1070 
1071 	/*
1072 	 * check default is sane, if not set then force to
1073 	 * default interval (1/tick)
1074 	 */
1075 	interval = pmu->hrtimer_interval_ms;
1076 	if (interval < 1)
1077 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1078 
1079 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1080 
1081 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1082 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1083 	timer->function = perf_mux_hrtimer_handler;
1084 }
1085 
1086 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1087 {
1088 	struct hrtimer *timer = &cpuctx->hrtimer;
1089 	struct pmu *pmu = cpuctx->ctx.pmu;
1090 	unsigned long flags;
1091 
1092 	/* not for SW PMU */
1093 	if (pmu->task_ctx_nr == perf_sw_context)
1094 		return 0;
1095 
1096 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1097 	if (!cpuctx->hrtimer_active) {
1098 		cpuctx->hrtimer_active = 1;
1099 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1100 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1101 	}
1102 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1103 
1104 	return 0;
1105 }
1106 
1107 void perf_pmu_disable(struct pmu *pmu)
1108 {
1109 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1110 	if (!(*count)++)
1111 		pmu->pmu_disable(pmu);
1112 }
1113 
1114 void perf_pmu_enable(struct pmu *pmu)
1115 {
1116 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1117 	if (!--(*count))
1118 		pmu->pmu_enable(pmu);
1119 }
1120 
1121 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1122 
1123 /*
1124  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1125  * perf_event_task_tick() are fully serialized because they're strictly cpu
1126  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1127  * disabled, while perf_event_task_tick is called from IRQ context.
1128  */
1129 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1130 {
1131 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1132 
1133 	lockdep_assert_irqs_disabled();
1134 
1135 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1136 
1137 	list_add(&ctx->active_ctx_list, head);
1138 }
1139 
1140 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1141 {
1142 	lockdep_assert_irqs_disabled();
1143 
1144 	WARN_ON(list_empty(&ctx->active_ctx_list));
1145 
1146 	list_del_init(&ctx->active_ctx_list);
1147 }
1148 
1149 static void get_ctx(struct perf_event_context *ctx)
1150 {
1151 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1152 }
1153 
1154 static void free_ctx(struct rcu_head *head)
1155 {
1156 	struct perf_event_context *ctx;
1157 
1158 	ctx = container_of(head, struct perf_event_context, rcu_head);
1159 	kfree(ctx->task_ctx_data);
1160 	kfree(ctx);
1161 }
1162 
1163 static void put_ctx(struct perf_event_context *ctx)
1164 {
1165 	if (atomic_dec_and_test(&ctx->refcount)) {
1166 		if (ctx->parent_ctx)
1167 			put_ctx(ctx->parent_ctx);
1168 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1169 			put_task_struct(ctx->task);
1170 		call_rcu(&ctx->rcu_head, free_ctx);
1171 	}
1172 }
1173 
1174 /*
1175  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1176  * perf_pmu_migrate_context() we need some magic.
1177  *
1178  * Those places that change perf_event::ctx will hold both
1179  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1180  *
1181  * Lock ordering is by mutex address. There are two other sites where
1182  * perf_event_context::mutex nests and those are:
1183  *
1184  *  - perf_event_exit_task_context()	[ child , 0 ]
1185  *      perf_event_exit_event()
1186  *        put_event()			[ parent, 1 ]
1187  *
1188  *  - perf_event_init_context()		[ parent, 0 ]
1189  *      inherit_task_group()
1190  *        inherit_group()
1191  *          inherit_event()
1192  *            perf_event_alloc()
1193  *              perf_init_event()
1194  *                perf_try_init_event()	[ child , 1 ]
1195  *
1196  * While it appears there is an obvious deadlock here -- the parent and child
1197  * nesting levels are inverted between the two. This is in fact safe because
1198  * life-time rules separate them. That is an exiting task cannot fork, and a
1199  * spawning task cannot (yet) exit.
1200  *
1201  * But remember that that these are parent<->child context relations, and
1202  * migration does not affect children, therefore these two orderings should not
1203  * interact.
1204  *
1205  * The change in perf_event::ctx does not affect children (as claimed above)
1206  * because the sys_perf_event_open() case will install a new event and break
1207  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1208  * concerned with cpuctx and that doesn't have children.
1209  *
1210  * The places that change perf_event::ctx will issue:
1211  *
1212  *   perf_remove_from_context();
1213  *   synchronize_rcu();
1214  *   perf_install_in_context();
1215  *
1216  * to affect the change. The remove_from_context() + synchronize_rcu() should
1217  * quiesce the event, after which we can install it in the new location. This
1218  * means that only external vectors (perf_fops, prctl) can perturb the event
1219  * while in transit. Therefore all such accessors should also acquire
1220  * perf_event_context::mutex to serialize against this.
1221  *
1222  * However; because event->ctx can change while we're waiting to acquire
1223  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1224  * function.
1225  *
1226  * Lock order:
1227  *    cred_guard_mutex
1228  *	task_struct::perf_event_mutex
1229  *	  perf_event_context::mutex
1230  *	    perf_event::child_mutex;
1231  *	      perf_event_context::lock
1232  *	    perf_event::mmap_mutex
1233  *	    mmap_sem
1234  *
1235  *    cpu_hotplug_lock
1236  *      pmus_lock
1237  *	  cpuctx->mutex / perf_event_context::mutex
1238  */
1239 static struct perf_event_context *
1240 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1241 {
1242 	struct perf_event_context *ctx;
1243 
1244 again:
1245 	rcu_read_lock();
1246 	ctx = READ_ONCE(event->ctx);
1247 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1248 		rcu_read_unlock();
1249 		goto again;
1250 	}
1251 	rcu_read_unlock();
1252 
1253 	mutex_lock_nested(&ctx->mutex, nesting);
1254 	if (event->ctx != ctx) {
1255 		mutex_unlock(&ctx->mutex);
1256 		put_ctx(ctx);
1257 		goto again;
1258 	}
1259 
1260 	return ctx;
1261 }
1262 
1263 static inline struct perf_event_context *
1264 perf_event_ctx_lock(struct perf_event *event)
1265 {
1266 	return perf_event_ctx_lock_nested(event, 0);
1267 }
1268 
1269 static void perf_event_ctx_unlock(struct perf_event *event,
1270 				  struct perf_event_context *ctx)
1271 {
1272 	mutex_unlock(&ctx->mutex);
1273 	put_ctx(ctx);
1274 }
1275 
1276 /*
1277  * This must be done under the ctx->lock, such as to serialize against
1278  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1279  * calling scheduler related locks and ctx->lock nests inside those.
1280  */
1281 static __must_check struct perf_event_context *
1282 unclone_ctx(struct perf_event_context *ctx)
1283 {
1284 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1285 
1286 	lockdep_assert_held(&ctx->lock);
1287 
1288 	if (parent_ctx)
1289 		ctx->parent_ctx = NULL;
1290 	ctx->generation++;
1291 
1292 	return parent_ctx;
1293 }
1294 
1295 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1296 				enum pid_type type)
1297 {
1298 	u32 nr;
1299 	/*
1300 	 * only top level events have the pid namespace they were created in
1301 	 */
1302 	if (event->parent)
1303 		event = event->parent;
1304 
1305 	nr = __task_pid_nr_ns(p, type, event->ns);
1306 	/* avoid -1 if it is idle thread or runs in another ns */
1307 	if (!nr && !pid_alive(p))
1308 		nr = -1;
1309 	return nr;
1310 }
1311 
1312 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1313 {
1314 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1315 }
1316 
1317 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1318 {
1319 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1320 }
1321 
1322 /*
1323  * If we inherit events we want to return the parent event id
1324  * to userspace.
1325  */
1326 static u64 primary_event_id(struct perf_event *event)
1327 {
1328 	u64 id = event->id;
1329 
1330 	if (event->parent)
1331 		id = event->parent->id;
1332 
1333 	return id;
1334 }
1335 
1336 /*
1337  * Get the perf_event_context for a task and lock it.
1338  *
1339  * This has to cope with with the fact that until it is locked,
1340  * the context could get moved to another task.
1341  */
1342 static struct perf_event_context *
1343 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1344 {
1345 	struct perf_event_context *ctx;
1346 
1347 retry:
1348 	/*
1349 	 * One of the few rules of preemptible RCU is that one cannot do
1350 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1351 	 * part of the read side critical section was irqs-enabled -- see
1352 	 * rcu_read_unlock_special().
1353 	 *
1354 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1355 	 * side critical section has interrupts disabled.
1356 	 */
1357 	local_irq_save(*flags);
1358 	rcu_read_lock();
1359 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1360 	if (ctx) {
1361 		/*
1362 		 * If this context is a clone of another, it might
1363 		 * get swapped for another underneath us by
1364 		 * perf_event_task_sched_out, though the
1365 		 * rcu_read_lock() protects us from any context
1366 		 * getting freed.  Lock the context and check if it
1367 		 * got swapped before we could get the lock, and retry
1368 		 * if so.  If we locked the right context, then it
1369 		 * can't get swapped on us any more.
1370 		 */
1371 		raw_spin_lock(&ctx->lock);
1372 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1373 			raw_spin_unlock(&ctx->lock);
1374 			rcu_read_unlock();
1375 			local_irq_restore(*flags);
1376 			goto retry;
1377 		}
1378 
1379 		if (ctx->task == TASK_TOMBSTONE ||
1380 		    !atomic_inc_not_zero(&ctx->refcount)) {
1381 			raw_spin_unlock(&ctx->lock);
1382 			ctx = NULL;
1383 		} else {
1384 			WARN_ON_ONCE(ctx->task != task);
1385 		}
1386 	}
1387 	rcu_read_unlock();
1388 	if (!ctx)
1389 		local_irq_restore(*flags);
1390 	return ctx;
1391 }
1392 
1393 /*
1394  * Get the context for a task and increment its pin_count so it
1395  * can't get swapped to another task.  This also increments its
1396  * reference count so that the context can't get freed.
1397  */
1398 static struct perf_event_context *
1399 perf_pin_task_context(struct task_struct *task, int ctxn)
1400 {
1401 	struct perf_event_context *ctx;
1402 	unsigned long flags;
1403 
1404 	ctx = perf_lock_task_context(task, ctxn, &flags);
1405 	if (ctx) {
1406 		++ctx->pin_count;
1407 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1408 	}
1409 	return ctx;
1410 }
1411 
1412 static void perf_unpin_context(struct perf_event_context *ctx)
1413 {
1414 	unsigned long flags;
1415 
1416 	raw_spin_lock_irqsave(&ctx->lock, flags);
1417 	--ctx->pin_count;
1418 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1419 }
1420 
1421 /*
1422  * Update the record of the current time in a context.
1423  */
1424 static void update_context_time(struct perf_event_context *ctx)
1425 {
1426 	u64 now = perf_clock();
1427 
1428 	ctx->time += now - ctx->timestamp;
1429 	ctx->timestamp = now;
1430 }
1431 
1432 static u64 perf_event_time(struct perf_event *event)
1433 {
1434 	struct perf_event_context *ctx = event->ctx;
1435 
1436 	if (is_cgroup_event(event))
1437 		return perf_cgroup_event_time(event);
1438 
1439 	return ctx ? ctx->time : 0;
1440 }
1441 
1442 static enum event_type_t get_event_type(struct perf_event *event)
1443 {
1444 	struct perf_event_context *ctx = event->ctx;
1445 	enum event_type_t event_type;
1446 
1447 	lockdep_assert_held(&ctx->lock);
1448 
1449 	/*
1450 	 * It's 'group type', really, because if our group leader is
1451 	 * pinned, so are we.
1452 	 */
1453 	if (event->group_leader != event)
1454 		event = event->group_leader;
1455 
1456 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1457 	if (!ctx->task)
1458 		event_type |= EVENT_CPU;
1459 
1460 	return event_type;
1461 }
1462 
1463 static struct list_head *
1464 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1465 {
1466 	if (event->attr.pinned)
1467 		return &ctx->pinned_groups;
1468 	else
1469 		return &ctx->flexible_groups;
1470 }
1471 
1472 /*
1473  * Add a event from the lists for its context.
1474  * Must be called with ctx->mutex and ctx->lock held.
1475  */
1476 static void
1477 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1478 {
1479 	lockdep_assert_held(&ctx->lock);
1480 
1481 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1482 	event->attach_state |= PERF_ATTACH_CONTEXT;
1483 
1484 	event->tstamp = perf_event_time(event);
1485 
1486 	/*
1487 	 * If we're a stand alone event or group leader, we go to the context
1488 	 * list, group events are kept attached to the group so that
1489 	 * perf_group_detach can, at all times, locate all siblings.
1490 	 */
1491 	if (event->group_leader == event) {
1492 		struct list_head *list;
1493 
1494 		event->group_caps = event->event_caps;
1495 
1496 		list = ctx_group_list(event, ctx);
1497 		list_add_tail(&event->group_entry, list);
1498 	}
1499 
1500 	list_update_cgroup_event(event, ctx, true);
1501 
1502 	list_add_rcu(&event->event_entry, &ctx->event_list);
1503 	ctx->nr_events++;
1504 	if (event->attr.inherit_stat)
1505 		ctx->nr_stat++;
1506 
1507 	ctx->generation++;
1508 }
1509 
1510 /*
1511  * Initialize event state based on the perf_event_attr::disabled.
1512  */
1513 static inline void perf_event__state_init(struct perf_event *event)
1514 {
1515 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1516 					      PERF_EVENT_STATE_INACTIVE;
1517 }
1518 
1519 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1520 {
1521 	int entry = sizeof(u64); /* value */
1522 	int size = 0;
1523 	int nr = 1;
1524 
1525 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1526 		size += sizeof(u64);
1527 
1528 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1529 		size += sizeof(u64);
1530 
1531 	if (event->attr.read_format & PERF_FORMAT_ID)
1532 		entry += sizeof(u64);
1533 
1534 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1535 		nr += nr_siblings;
1536 		size += sizeof(u64);
1537 	}
1538 
1539 	size += entry * nr;
1540 	event->read_size = size;
1541 }
1542 
1543 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1544 {
1545 	struct perf_sample_data *data;
1546 	u16 size = 0;
1547 
1548 	if (sample_type & PERF_SAMPLE_IP)
1549 		size += sizeof(data->ip);
1550 
1551 	if (sample_type & PERF_SAMPLE_ADDR)
1552 		size += sizeof(data->addr);
1553 
1554 	if (sample_type & PERF_SAMPLE_PERIOD)
1555 		size += sizeof(data->period);
1556 
1557 	if (sample_type & PERF_SAMPLE_WEIGHT)
1558 		size += sizeof(data->weight);
1559 
1560 	if (sample_type & PERF_SAMPLE_READ)
1561 		size += event->read_size;
1562 
1563 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1564 		size += sizeof(data->data_src.val);
1565 
1566 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1567 		size += sizeof(data->txn);
1568 
1569 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1570 		size += sizeof(data->phys_addr);
1571 
1572 	event->header_size = size;
1573 }
1574 
1575 /*
1576  * Called at perf_event creation and when events are attached/detached from a
1577  * group.
1578  */
1579 static void perf_event__header_size(struct perf_event *event)
1580 {
1581 	__perf_event_read_size(event,
1582 			       event->group_leader->nr_siblings);
1583 	__perf_event_header_size(event, event->attr.sample_type);
1584 }
1585 
1586 static void perf_event__id_header_size(struct perf_event *event)
1587 {
1588 	struct perf_sample_data *data;
1589 	u64 sample_type = event->attr.sample_type;
1590 	u16 size = 0;
1591 
1592 	if (sample_type & PERF_SAMPLE_TID)
1593 		size += sizeof(data->tid_entry);
1594 
1595 	if (sample_type & PERF_SAMPLE_TIME)
1596 		size += sizeof(data->time);
1597 
1598 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1599 		size += sizeof(data->id);
1600 
1601 	if (sample_type & PERF_SAMPLE_ID)
1602 		size += sizeof(data->id);
1603 
1604 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1605 		size += sizeof(data->stream_id);
1606 
1607 	if (sample_type & PERF_SAMPLE_CPU)
1608 		size += sizeof(data->cpu_entry);
1609 
1610 	event->id_header_size = size;
1611 }
1612 
1613 static bool perf_event_validate_size(struct perf_event *event)
1614 {
1615 	/*
1616 	 * The values computed here will be over-written when we actually
1617 	 * attach the event.
1618 	 */
1619 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1620 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1621 	perf_event__id_header_size(event);
1622 
1623 	/*
1624 	 * Sum the lot; should not exceed the 64k limit we have on records.
1625 	 * Conservative limit to allow for callchains and other variable fields.
1626 	 */
1627 	if (event->read_size + event->header_size +
1628 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1629 		return false;
1630 
1631 	return true;
1632 }
1633 
1634 static void perf_group_attach(struct perf_event *event)
1635 {
1636 	struct perf_event *group_leader = event->group_leader, *pos;
1637 
1638 	lockdep_assert_held(&event->ctx->lock);
1639 
1640 	/*
1641 	 * We can have double attach due to group movement in perf_event_open.
1642 	 */
1643 	if (event->attach_state & PERF_ATTACH_GROUP)
1644 		return;
1645 
1646 	event->attach_state |= PERF_ATTACH_GROUP;
1647 
1648 	if (group_leader == event)
1649 		return;
1650 
1651 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1652 
1653 	group_leader->group_caps &= event->event_caps;
1654 
1655 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1656 	group_leader->nr_siblings++;
1657 
1658 	perf_event__header_size(group_leader);
1659 
1660 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1661 		perf_event__header_size(pos);
1662 }
1663 
1664 /*
1665  * Remove a event from the lists for its context.
1666  * Must be called with ctx->mutex and ctx->lock held.
1667  */
1668 static void
1669 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1670 {
1671 	WARN_ON_ONCE(event->ctx != ctx);
1672 	lockdep_assert_held(&ctx->lock);
1673 
1674 	/*
1675 	 * We can have double detach due to exit/hot-unplug + close.
1676 	 */
1677 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1678 		return;
1679 
1680 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1681 
1682 	list_update_cgroup_event(event, ctx, false);
1683 
1684 	ctx->nr_events--;
1685 	if (event->attr.inherit_stat)
1686 		ctx->nr_stat--;
1687 
1688 	list_del_rcu(&event->event_entry);
1689 
1690 	if (event->group_leader == event)
1691 		list_del_init(&event->group_entry);
1692 
1693 	/*
1694 	 * If event was in error state, then keep it
1695 	 * that way, otherwise bogus counts will be
1696 	 * returned on read(). The only way to get out
1697 	 * of error state is by explicit re-enabling
1698 	 * of the event
1699 	 */
1700 	if (event->state > PERF_EVENT_STATE_OFF)
1701 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1702 
1703 	ctx->generation++;
1704 }
1705 
1706 static void perf_group_detach(struct perf_event *event)
1707 {
1708 	struct perf_event *sibling, *tmp;
1709 	struct list_head *list = NULL;
1710 
1711 	lockdep_assert_held(&event->ctx->lock);
1712 
1713 	/*
1714 	 * We can have double detach due to exit/hot-unplug + close.
1715 	 */
1716 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1717 		return;
1718 
1719 	event->attach_state &= ~PERF_ATTACH_GROUP;
1720 
1721 	/*
1722 	 * If this is a sibling, remove it from its group.
1723 	 */
1724 	if (event->group_leader != event) {
1725 		list_del_init(&event->group_entry);
1726 		event->group_leader->nr_siblings--;
1727 		goto out;
1728 	}
1729 
1730 	if (!list_empty(&event->group_entry))
1731 		list = &event->group_entry;
1732 
1733 	/*
1734 	 * If this was a group event with sibling events then
1735 	 * upgrade the siblings to singleton events by adding them
1736 	 * to whatever list we are on.
1737 	 */
1738 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1739 		if (list)
1740 			list_move_tail(&sibling->group_entry, list);
1741 		sibling->group_leader = sibling;
1742 
1743 		/* Inherit group flags from the previous leader */
1744 		sibling->group_caps = event->group_caps;
1745 
1746 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1747 	}
1748 
1749 out:
1750 	perf_event__header_size(event->group_leader);
1751 
1752 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1753 		perf_event__header_size(tmp);
1754 }
1755 
1756 static bool is_orphaned_event(struct perf_event *event)
1757 {
1758 	return event->state == PERF_EVENT_STATE_DEAD;
1759 }
1760 
1761 static inline int __pmu_filter_match(struct perf_event *event)
1762 {
1763 	struct pmu *pmu = event->pmu;
1764 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1765 }
1766 
1767 /*
1768  * Check whether we should attempt to schedule an event group based on
1769  * PMU-specific filtering. An event group can consist of HW and SW events,
1770  * potentially with a SW leader, so we must check all the filters, to
1771  * determine whether a group is schedulable:
1772  */
1773 static inline int pmu_filter_match(struct perf_event *event)
1774 {
1775 	struct perf_event *child;
1776 
1777 	if (!__pmu_filter_match(event))
1778 		return 0;
1779 
1780 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1781 		if (!__pmu_filter_match(child))
1782 			return 0;
1783 	}
1784 
1785 	return 1;
1786 }
1787 
1788 static inline int
1789 event_filter_match(struct perf_event *event)
1790 {
1791 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1792 	       perf_cgroup_match(event) && pmu_filter_match(event);
1793 }
1794 
1795 static void
1796 event_sched_out(struct perf_event *event,
1797 		  struct perf_cpu_context *cpuctx,
1798 		  struct perf_event_context *ctx)
1799 {
1800 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1801 
1802 	WARN_ON_ONCE(event->ctx != ctx);
1803 	lockdep_assert_held(&ctx->lock);
1804 
1805 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1806 		return;
1807 
1808 	perf_pmu_disable(event->pmu);
1809 
1810 	event->pmu->del(event, 0);
1811 	event->oncpu = -1;
1812 
1813 	if (event->pending_disable) {
1814 		event->pending_disable = 0;
1815 		state = PERF_EVENT_STATE_OFF;
1816 	}
1817 	perf_event_set_state(event, state);
1818 
1819 	if (!is_software_event(event))
1820 		cpuctx->active_oncpu--;
1821 	if (!--ctx->nr_active)
1822 		perf_event_ctx_deactivate(ctx);
1823 	if (event->attr.freq && event->attr.sample_freq)
1824 		ctx->nr_freq--;
1825 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1826 		cpuctx->exclusive = 0;
1827 
1828 	perf_pmu_enable(event->pmu);
1829 }
1830 
1831 static void
1832 group_sched_out(struct perf_event *group_event,
1833 		struct perf_cpu_context *cpuctx,
1834 		struct perf_event_context *ctx)
1835 {
1836 	struct perf_event *event;
1837 
1838 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
1839 		return;
1840 
1841 	perf_pmu_disable(ctx->pmu);
1842 
1843 	event_sched_out(group_event, cpuctx, ctx);
1844 
1845 	/*
1846 	 * Schedule out siblings (if any):
1847 	 */
1848 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1849 		event_sched_out(event, cpuctx, ctx);
1850 
1851 	perf_pmu_enable(ctx->pmu);
1852 
1853 	if (group_event->attr.exclusive)
1854 		cpuctx->exclusive = 0;
1855 }
1856 
1857 #define DETACH_GROUP	0x01UL
1858 
1859 /*
1860  * Cross CPU call to remove a performance event
1861  *
1862  * We disable the event on the hardware level first. After that we
1863  * remove it from the context list.
1864  */
1865 static void
1866 __perf_remove_from_context(struct perf_event *event,
1867 			   struct perf_cpu_context *cpuctx,
1868 			   struct perf_event_context *ctx,
1869 			   void *info)
1870 {
1871 	unsigned long flags = (unsigned long)info;
1872 
1873 	if (ctx->is_active & EVENT_TIME) {
1874 		update_context_time(ctx);
1875 		update_cgrp_time_from_cpuctx(cpuctx);
1876 	}
1877 
1878 	event_sched_out(event, cpuctx, ctx);
1879 	if (flags & DETACH_GROUP)
1880 		perf_group_detach(event);
1881 	list_del_event(event, ctx);
1882 
1883 	if (!ctx->nr_events && ctx->is_active) {
1884 		ctx->is_active = 0;
1885 		if (ctx->task) {
1886 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1887 			cpuctx->task_ctx = NULL;
1888 		}
1889 	}
1890 }
1891 
1892 /*
1893  * Remove the event from a task's (or a CPU's) list of events.
1894  *
1895  * If event->ctx is a cloned context, callers must make sure that
1896  * every task struct that event->ctx->task could possibly point to
1897  * remains valid.  This is OK when called from perf_release since
1898  * that only calls us on the top-level context, which can't be a clone.
1899  * When called from perf_event_exit_task, it's OK because the
1900  * context has been detached from its task.
1901  */
1902 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1903 {
1904 	struct perf_event_context *ctx = event->ctx;
1905 
1906 	lockdep_assert_held(&ctx->mutex);
1907 
1908 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1909 
1910 	/*
1911 	 * The above event_function_call() can NO-OP when it hits
1912 	 * TASK_TOMBSTONE. In that case we must already have been detached
1913 	 * from the context (by perf_event_exit_event()) but the grouping
1914 	 * might still be in-tact.
1915 	 */
1916 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1917 	if ((flags & DETACH_GROUP) &&
1918 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1919 		/*
1920 		 * Since in that case we cannot possibly be scheduled, simply
1921 		 * detach now.
1922 		 */
1923 		raw_spin_lock_irq(&ctx->lock);
1924 		perf_group_detach(event);
1925 		raw_spin_unlock_irq(&ctx->lock);
1926 	}
1927 }
1928 
1929 /*
1930  * Cross CPU call to disable a performance event
1931  */
1932 static void __perf_event_disable(struct perf_event *event,
1933 				 struct perf_cpu_context *cpuctx,
1934 				 struct perf_event_context *ctx,
1935 				 void *info)
1936 {
1937 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1938 		return;
1939 
1940 	if (ctx->is_active & EVENT_TIME) {
1941 		update_context_time(ctx);
1942 		update_cgrp_time_from_event(event);
1943 	}
1944 
1945 	if (event == event->group_leader)
1946 		group_sched_out(event, cpuctx, ctx);
1947 	else
1948 		event_sched_out(event, cpuctx, ctx);
1949 
1950 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1951 }
1952 
1953 /*
1954  * Disable a event.
1955  *
1956  * If event->ctx is a cloned context, callers must make sure that
1957  * every task struct that event->ctx->task could possibly point to
1958  * remains valid.  This condition is satisifed when called through
1959  * perf_event_for_each_child or perf_event_for_each because they
1960  * hold the top-level event's child_mutex, so any descendant that
1961  * goes to exit will block in perf_event_exit_event().
1962  *
1963  * When called from perf_pending_event it's OK because event->ctx
1964  * is the current context on this CPU and preemption is disabled,
1965  * hence we can't get into perf_event_task_sched_out for this context.
1966  */
1967 static void _perf_event_disable(struct perf_event *event)
1968 {
1969 	struct perf_event_context *ctx = event->ctx;
1970 
1971 	raw_spin_lock_irq(&ctx->lock);
1972 	if (event->state <= PERF_EVENT_STATE_OFF) {
1973 		raw_spin_unlock_irq(&ctx->lock);
1974 		return;
1975 	}
1976 	raw_spin_unlock_irq(&ctx->lock);
1977 
1978 	event_function_call(event, __perf_event_disable, NULL);
1979 }
1980 
1981 void perf_event_disable_local(struct perf_event *event)
1982 {
1983 	event_function_local(event, __perf_event_disable, NULL);
1984 }
1985 
1986 /*
1987  * Strictly speaking kernel users cannot create groups and therefore this
1988  * interface does not need the perf_event_ctx_lock() magic.
1989  */
1990 void perf_event_disable(struct perf_event *event)
1991 {
1992 	struct perf_event_context *ctx;
1993 
1994 	ctx = perf_event_ctx_lock(event);
1995 	_perf_event_disable(event);
1996 	perf_event_ctx_unlock(event, ctx);
1997 }
1998 EXPORT_SYMBOL_GPL(perf_event_disable);
1999 
2000 void perf_event_disable_inatomic(struct perf_event *event)
2001 {
2002 	event->pending_disable = 1;
2003 	irq_work_queue(&event->pending);
2004 }
2005 
2006 static void perf_set_shadow_time(struct perf_event *event,
2007 				 struct perf_event_context *ctx)
2008 {
2009 	/*
2010 	 * use the correct time source for the time snapshot
2011 	 *
2012 	 * We could get by without this by leveraging the
2013 	 * fact that to get to this function, the caller
2014 	 * has most likely already called update_context_time()
2015 	 * and update_cgrp_time_xx() and thus both timestamp
2016 	 * are identical (or very close). Given that tstamp is,
2017 	 * already adjusted for cgroup, we could say that:
2018 	 *    tstamp - ctx->timestamp
2019 	 * is equivalent to
2020 	 *    tstamp - cgrp->timestamp.
2021 	 *
2022 	 * Then, in perf_output_read(), the calculation would
2023 	 * work with no changes because:
2024 	 * - event is guaranteed scheduled in
2025 	 * - no scheduled out in between
2026 	 * - thus the timestamp would be the same
2027 	 *
2028 	 * But this is a bit hairy.
2029 	 *
2030 	 * So instead, we have an explicit cgroup call to remain
2031 	 * within the time time source all along. We believe it
2032 	 * is cleaner and simpler to understand.
2033 	 */
2034 	if (is_cgroup_event(event))
2035 		perf_cgroup_set_shadow_time(event, event->tstamp);
2036 	else
2037 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2038 }
2039 
2040 #define MAX_INTERRUPTS (~0ULL)
2041 
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044 
2045 static int
2046 event_sched_in(struct perf_event *event,
2047 		 struct perf_cpu_context *cpuctx,
2048 		 struct perf_event_context *ctx)
2049 {
2050 	int ret = 0;
2051 
2052 	lockdep_assert_held(&ctx->lock);
2053 
2054 	if (event->state <= PERF_EVENT_STATE_OFF)
2055 		return 0;
2056 
2057 	WRITE_ONCE(event->oncpu, smp_processor_id());
2058 	/*
2059 	 * Order event::oncpu write to happen before the ACTIVE state is
2060 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2061 	 * ->oncpu if it sees ACTIVE.
2062 	 */
2063 	smp_wmb();
2064 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2065 
2066 	/*
2067 	 * Unthrottle events, since we scheduled we might have missed several
2068 	 * ticks already, also for a heavily scheduling task there is little
2069 	 * guarantee it'll get a tick in a timely manner.
2070 	 */
2071 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 		perf_log_throttle(event, 1);
2073 		event->hw.interrupts = 0;
2074 	}
2075 
2076 	perf_pmu_disable(event->pmu);
2077 
2078 	perf_set_shadow_time(event, ctx);
2079 
2080 	perf_log_itrace_start(event);
2081 
2082 	if (event->pmu->add(event, PERF_EF_START)) {
2083 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2084 		event->oncpu = -1;
2085 		ret = -EAGAIN;
2086 		goto out;
2087 	}
2088 
2089 	if (!is_software_event(event))
2090 		cpuctx->active_oncpu++;
2091 	if (!ctx->nr_active++)
2092 		perf_event_ctx_activate(ctx);
2093 	if (event->attr.freq && event->attr.sample_freq)
2094 		ctx->nr_freq++;
2095 
2096 	if (event->attr.exclusive)
2097 		cpuctx->exclusive = 1;
2098 
2099 out:
2100 	perf_pmu_enable(event->pmu);
2101 
2102 	return ret;
2103 }
2104 
2105 static int
2106 group_sched_in(struct perf_event *group_event,
2107 	       struct perf_cpu_context *cpuctx,
2108 	       struct perf_event_context *ctx)
2109 {
2110 	struct perf_event *event, *partial_group = NULL;
2111 	struct pmu *pmu = ctx->pmu;
2112 
2113 	if (group_event->state == PERF_EVENT_STATE_OFF)
2114 		return 0;
2115 
2116 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2117 
2118 	if (event_sched_in(group_event, cpuctx, ctx)) {
2119 		pmu->cancel_txn(pmu);
2120 		perf_mux_hrtimer_restart(cpuctx);
2121 		return -EAGAIN;
2122 	}
2123 
2124 	/*
2125 	 * Schedule in siblings as one group (if any):
2126 	 */
2127 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2128 		if (event_sched_in(event, cpuctx, ctx)) {
2129 			partial_group = event;
2130 			goto group_error;
2131 		}
2132 	}
2133 
2134 	if (!pmu->commit_txn(pmu))
2135 		return 0;
2136 
2137 group_error:
2138 	/*
2139 	 * Groups can be scheduled in as one unit only, so undo any
2140 	 * partial group before returning:
2141 	 * The events up to the failed event are scheduled out normally.
2142 	 */
2143 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2144 		if (event == partial_group)
2145 			break;
2146 
2147 		event_sched_out(event, cpuctx, ctx);
2148 	}
2149 	event_sched_out(group_event, cpuctx, ctx);
2150 
2151 	pmu->cancel_txn(pmu);
2152 
2153 	perf_mux_hrtimer_restart(cpuctx);
2154 
2155 	return -EAGAIN;
2156 }
2157 
2158 /*
2159  * Work out whether we can put this event group on the CPU now.
2160  */
2161 static int group_can_go_on(struct perf_event *event,
2162 			   struct perf_cpu_context *cpuctx,
2163 			   int can_add_hw)
2164 {
2165 	/*
2166 	 * Groups consisting entirely of software events can always go on.
2167 	 */
2168 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2169 		return 1;
2170 	/*
2171 	 * If an exclusive group is already on, no other hardware
2172 	 * events can go on.
2173 	 */
2174 	if (cpuctx->exclusive)
2175 		return 0;
2176 	/*
2177 	 * If this group is exclusive and there are already
2178 	 * events on the CPU, it can't go on.
2179 	 */
2180 	if (event->attr.exclusive && cpuctx->active_oncpu)
2181 		return 0;
2182 	/*
2183 	 * Otherwise, try to add it if all previous groups were able
2184 	 * to go on.
2185 	 */
2186 	return can_add_hw;
2187 }
2188 
2189 static void add_event_to_ctx(struct perf_event *event,
2190 			       struct perf_event_context *ctx)
2191 {
2192 	list_add_event(event, ctx);
2193 	perf_group_attach(event);
2194 }
2195 
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197 			  struct perf_cpu_context *cpuctx,
2198 			  enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201 	     struct perf_cpu_context *cpuctx,
2202 	     enum event_type_t event_type,
2203 	     struct task_struct *task);
2204 
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 			       struct perf_event_context *ctx,
2207 			       enum event_type_t event_type)
2208 {
2209 	if (!cpuctx->task_ctx)
2210 		return;
2211 
2212 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2213 		return;
2214 
2215 	ctx_sched_out(ctx, cpuctx, event_type);
2216 }
2217 
2218 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2219 				struct perf_event_context *ctx,
2220 				struct task_struct *task)
2221 {
2222 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2223 	if (ctx)
2224 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2225 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2226 	if (ctx)
2227 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2228 }
2229 
2230 /*
2231  * We want to maintain the following priority of scheduling:
2232  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2233  *  - task pinned (EVENT_PINNED)
2234  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2235  *  - task flexible (EVENT_FLEXIBLE).
2236  *
2237  * In order to avoid unscheduling and scheduling back in everything every
2238  * time an event is added, only do it for the groups of equal priority and
2239  * below.
2240  *
2241  * This can be called after a batch operation on task events, in which case
2242  * event_type is a bit mask of the types of events involved. For CPU events,
2243  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2244  */
2245 static void ctx_resched(struct perf_cpu_context *cpuctx,
2246 			struct perf_event_context *task_ctx,
2247 			enum event_type_t event_type)
2248 {
2249 	enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2250 	bool cpu_event = !!(event_type & EVENT_CPU);
2251 
2252 	/*
2253 	 * If pinned groups are involved, flexible groups also need to be
2254 	 * scheduled out.
2255 	 */
2256 	if (event_type & EVENT_PINNED)
2257 		event_type |= EVENT_FLEXIBLE;
2258 
2259 	perf_pmu_disable(cpuctx->ctx.pmu);
2260 	if (task_ctx)
2261 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2262 
2263 	/*
2264 	 * Decide which cpu ctx groups to schedule out based on the types
2265 	 * of events that caused rescheduling:
2266 	 *  - EVENT_CPU: schedule out corresponding groups;
2267 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2268 	 *  - otherwise, do nothing more.
2269 	 */
2270 	if (cpu_event)
2271 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2272 	else if (ctx_event_type & EVENT_PINNED)
2273 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2274 
2275 	perf_event_sched_in(cpuctx, task_ctx, current);
2276 	perf_pmu_enable(cpuctx->ctx.pmu);
2277 }
2278 
2279 /*
2280  * Cross CPU call to install and enable a performance event
2281  *
2282  * Very similar to remote_function() + event_function() but cannot assume that
2283  * things like ctx->is_active and cpuctx->task_ctx are set.
2284  */
2285 static int  __perf_install_in_context(void *info)
2286 {
2287 	struct perf_event *event = info;
2288 	struct perf_event_context *ctx = event->ctx;
2289 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2290 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2291 	bool reprogram = true;
2292 	int ret = 0;
2293 
2294 	raw_spin_lock(&cpuctx->ctx.lock);
2295 	if (ctx->task) {
2296 		raw_spin_lock(&ctx->lock);
2297 		task_ctx = ctx;
2298 
2299 		reprogram = (ctx->task == current);
2300 
2301 		/*
2302 		 * If the task is running, it must be running on this CPU,
2303 		 * otherwise we cannot reprogram things.
2304 		 *
2305 		 * If its not running, we don't care, ctx->lock will
2306 		 * serialize against it becoming runnable.
2307 		 */
2308 		if (task_curr(ctx->task) && !reprogram) {
2309 			ret = -ESRCH;
2310 			goto unlock;
2311 		}
2312 
2313 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2314 	} else if (task_ctx) {
2315 		raw_spin_lock(&task_ctx->lock);
2316 	}
2317 
2318 	if (reprogram) {
2319 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2320 		add_event_to_ctx(event, ctx);
2321 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2322 	} else {
2323 		add_event_to_ctx(event, ctx);
2324 	}
2325 
2326 unlock:
2327 	perf_ctx_unlock(cpuctx, task_ctx);
2328 
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Attach a performance event to a context.
2334  *
2335  * Very similar to event_function_call, see comment there.
2336  */
2337 static void
2338 perf_install_in_context(struct perf_event_context *ctx,
2339 			struct perf_event *event,
2340 			int cpu)
2341 {
2342 	struct task_struct *task = READ_ONCE(ctx->task);
2343 
2344 	lockdep_assert_held(&ctx->mutex);
2345 
2346 	if (event->cpu != -1)
2347 		event->cpu = cpu;
2348 
2349 	/*
2350 	 * Ensures that if we can observe event->ctx, both the event and ctx
2351 	 * will be 'complete'. See perf_iterate_sb_cpu().
2352 	 */
2353 	smp_store_release(&event->ctx, ctx);
2354 
2355 	if (!task) {
2356 		cpu_function_call(cpu, __perf_install_in_context, event);
2357 		return;
2358 	}
2359 
2360 	/*
2361 	 * Should not happen, we validate the ctx is still alive before calling.
2362 	 */
2363 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2364 		return;
2365 
2366 	/*
2367 	 * Installing events is tricky because we cannot rely on ctx->is_active
2368 	 * to be set in case this is the nr_events 0 -> 1 transition.
2369 	 *
2370 	 * Instead we use task_curr(), which tells us if the task is running.
2371 	 * However, since we use task_curr() outside of rq::lock, we can race
2372 	 * against the actual state. This means the result can be wrong.
2373 	 *
2374 	 * If we get a false positive, we retry, this is harmless.
2375 	 *
2376 	 * If we get a false negative, things are complicated. If we are after
2377 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2378 	 * value must be correct. If we're before, it doesn't matter since
2379 	 * perf_event_context_sched_in() will program the counter.
2380 	 *
2381 	 * However, this hinges on the remote context switch having observed
2382 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2383 	 * ctx::lock in perf_event_context_sched_in().
2384 	 *
2385 	 * We do this by task_function_call(), if the IPI fails to hit the task
2386 	 * we know any future context switch of task must see the
2387 	 * perf_event_ctpx[] store.
2388 	 */
2389 
2390 	/*
2391 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2392 	 * task_cpu() load, such that if the IPI then does not find the task
2393 	 * running, a future context switch of that task must observe the
2394 	 * store.
2395 	 */
2396 	smp_mb();
2397 again:
2398 	if (!task_function_call(task, __perf_install_in_context, event))
2399 		return;
2400 
2401 	raw_spin_lock_irq(&ctx->lock);
2402 	task = ctx->task;
2403 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2404 		/*
2405 		 * Cannot happen because we already checked above (which also
2406 		 * cannot happen), and we hold ctx->mutex, which serializes us
2407 		 * against perf_event_exit_task_context().
2408 		 */
2409 		raw_spin_unlock_irq(&ctx->lock);
2410 		return;
2411 	}
2412 	/*
2413 	 * If the task is not running, ctx->lock will avoid it becoming so,
2414 	 * thus we can safely install the event.
2415 	 */
2416 	if (task_curr(task)) {
2417 		raw_spin_unlock_irq(&ctx->lock);
2418 		goto again;
2419 	}
2420 	add_event_to_ctx(event, ctx);
2421 	raw_spin_unlock_irq(&ctx->lock);
2422 }
2423 
2424 /*
2425  * Cross CPU call to enable a performance event
2426  */
2427 static void __perf_event_enable(struct perf_event *event,
2428 				struct perf_cpu_context *cpuctx,
2429 				struct perf_event_context *ctx,
2430 				void *info)
2431 {
2432 	struct perf_event *leader = event->group_leader;
2433 	struct perf_event_context *task_ctx;
2434 
2435 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2436 	    event->state <= PERF_EVENT_STATE_ERROR)
2437 		return;
2438 
2439 	if (ctx->is_active)
2440 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2441 
2442 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2443 
2444 	if (!ctx->is_active)
2445 		return;
2446 
2447 	if (!event_filter_match(event)) {
2448 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2449 		return;
2450 	}
2451 
2452 	/*
2453 	 * If the event is in a group and isn't the group leader,
2454 	 * then don't put it on unless the group is on.
2455 	 */
2456 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2457 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2458 		return;
2459 	}
2460 
2461 	task_ctx = cpuctx->task_ctx;
2462 	if (ctx->task)
2463 		WARN_ON_ONCE(task_ctx != ctx);
2464 
2465 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2466 }
2467 
2468 /*
2469  * Enable a event.
2470  *
2471  * If event->ctx is a cloned context, callers must make sure that
2472  * every task struct that event->ctx->task could possibly point to
2473  * remains valid.  This condition is satisfied when called through
2474  * perf_event_for_each_child or perf_event_for_each as described
2475  * for perf_event_disable.
2476  */
2477 static void _perf_event_enable(struct perf_event *event)
2478 {
2479 	struct perf_event_context *ctx = event->ctx;
2480 
2481 	raw_spin_lock_irq(&ctx->lock);
2482 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2483 	    event->state <  PERF_EVENT_STATE_ERROR) {
2484 		raw_spin_unlock_irq(&ctx->lock);
2485 		return;
2486 	}
2487 
2488 	/*
2489 	 * If the event is in error state, clear that first.
2490 	 *
2491 	 * That way, if we see the event in error state below, we know that it
2492 	 * has gone back into error state, as distinct from the task having
2493 	 * been scheduled away before the cross-call arrived.
2494 	 */
2495 	if (event->state == PERF_EVENT_STATE_ERROR)
2496 		event->state = PERF_EVENT_STATE_OFF;
2497 	raw_spin_unlock_irq(&ctx->lock);
2498 
2499 	event_function_call(event, __perf_event_enable, NULL);
2500 }
2501 
2502 /*
2503  * See perf_event_disable();
2504  */
2505 void perf_event_enable(struct perf_event *event)
2506 {
2507 	struct perf_event_context *ctx;
2508 
2509 	ctx = perf_event_ctx_lock(event);
2510 	_perf_event_enable(event);
2511 	perf_event_ctx_unlock(event, ctx);
2512 }
2513 EXPORT_SYMBOL_GPL(perf_event_enable);
2514 
2515 struct stop_event_data {
2516 	struct perf_event	*event;
2517 	unsigned int		restart;
2518 };
2519 
2520 static int __perf_event_stop(void *info)
2521 {
2522 	struct stop_event_data *sd = info;
2523 	struct perf_event *event = sd->event;
2524 
2525 	/* if it's already INACTIVE, do nothing */
2526 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2527 		return 0;
2528 
2529 	/* matches smp_wmb() in event_sched_in() */
2530 	smp_rmb();
2531 
2532 	/*
2533 	 * There is a window with interrupts enabled before we get here,
2534 	 * so we need to check again lest we try to stop another CPU's event.
2535 	 */
2536 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2537 		return -EAGAIN;
2538 
2539 	event->pmu->stop(event, PERF_EF_UPDATE);
2540 
2541 	/*
2542 	 * May race with the actual stop (through perf_pmu_output_stop()),
2543 	 * but it is only used for events with AUX ring buffer, and such
2544 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2545 	 * see comments in perf_aux_output_begin().
2546 	 *
2547 	 * Since this is happening on a event-local CPU, no trace is lost
2548 	 * while restarting.
2549 	 */
2550 	if (sd->restart)
2551 		event->pmu->start(event, 0);
2552 
2553 	return 0;
2554 }
2555 
2556 static int perf_event_stop(struct perf_event *event, int restart)
2557 {
2558 	struct stop_event_data sd = {
2559 		.event		= event,
2560 		.restart	= restart,
2561 	};
2562 	int ret = 0;
2563 
2564 	do {
2565 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2566 			return 0;
2567 
2568 		/* matches smp_wmb() in event_sched_in() */
2569 		smp_rmb();
2570 
2571 		/*
2572 		 * We only want to restart ACTIVE events, so if the event goes
2573 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2574 		 * fall through with ret==-ENXIO.
2575 		 */
2576 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2577 					__perf_event_stop, &sd);
2578 	} while (ret == -EAGAIN);
2579 
2580 	return ret;
2581 }
2582 
2583 /*
2584  * In order to contain the amount of racy and tricky in the address filter
2585  * configuration management, it is a two part process:
2586  *
2587  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2588  *      we update the addresses of corresponding vmas in
2589  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2590  * (p2) when an event is scheduled in (pmu::add), it calls
2591  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2592  *      if the generation has changed since the previous call.
2593  *
2594  * If (p1) happens while the event is active, we restart it to force (p2).
2595  *
2596  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2597  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2598  *     ioctl;
2599  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2600  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2601  *     for reading;
2602  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2603  *     of exec.
2604  */
2605 void perf_event_addr_filters_sync(struct perf_event *event)
2606 {
2607 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2608 
2609 	if (!has_addr_filter(event))
2610 		return;
2611 
2612 	raw_spin_lock(&ifh->lock);
2613 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2614 		event->pmu->addr_filters_sync(event);
2615 		event->hw.addr_filters_gen = event->addr_filters_gen;
2616 	}
2617 	raw_spin_unlock(&ifh->lock);
2618 }
2619 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2620 
2621 static int _perf_event_refresh(struct perf_event *event, int refresh)
2622 {
2623 	/*
2624 	 * not supported on inherited events
2625 	 */
2626 	if (event->attr.inherit || !is_sampling_event(event))
2627 		return -EINVAL;
2628 
2629 	atomic_add(refresh, &event->event_limit);
2630 	_perf_event_enable(event);
2631 
2632 	return 0;
2633 }
2634 
2635 /*
2636  * See perf_event_disable()
2637  */
2638 int perf_event_refresh(struct perf_event *event, int refresh)
2639 {
2640 	struct perf_event_context *ctx;
2641 	int ret;
2642 
2643 	ctx = perf_event_ctx_lock(event);
2644 	ret = _perf_event_refresh(event, refresh);
2645 	perf_event_ctx_unlock(event, ctx);
2646 
2647 	return ret;
2648 }
2649 EXPORT_SYMBOL_GPL(perf_event_refresh);
2650 
2651 static void ctx_sched_out(struct perf_event_context *ctx,
2652 			  struct perf_cpu_context *cpuctx,
2653 			  enum event_type_t event_type)
2654 {
2655 	int is_active = ctx->is_active;
2656 	struct perf_event *event;
2657 
2658 	lockdep_assert_held(&ctx->lock);
2659 
2660 	if (likely(!ctx->nr_events)) {
2661 		/*
2662 		 * See __perf_remove_from_context().
2663 		 */
2664 		WARN_ON_ONCE(ctx->is_active);
2665 		if (ctx->task)
2666 			WARN_ON_ONCE(cpuctx->task_ctx);
2667 		return;
2668 	}
2669 
2670 	ctx->is_active &= ~event_type;
2671 	if (!(ctx->is_active & EVENT_ALL))
2672 		ctx->is_active = 0;
2673 
2674 	if (ctx->task) {
2675 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2676 		if (!ctx->is_active)
2677 			cpuctx->task_ctx = NULL;
2678 	}
2679 
2680 	/*
2681 	 * Always update time if it was set; not only when it changes.
2682 	 * Otherwise we can 'forget' to update time for any but the last
2683 	 * context we sched out. For example:
2684 	 *
2685 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2686 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2687 	 *
2688 	 * would only update time for the pinned events.
2689 	 */
2690 	if (is_active & EVENT_TIME) {
2691 		/* update (and stop) ctx time */
2692 		update_context_time(ctx);
2693 		update_cgrp_time_from_cpuctx(cpuctx);
2694 	}
2695 
2696 	is_active ^= ctx->is_active; /* changed bits */
2697 
2698 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2699 		return;
2700 
2701 	perf_pmu_disable(ctx->pmu);
2702 	if (is_active & EVENT_PINNED) {
2703 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2704 			group_sched_out(event, cpuctx, ctx);
2705 	}
2706 
2707 	if (is_active & EVENT_FLEXIBLE) {
2708 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2709 			group_sched_out(event, cpuctx, ctx);
2710 	}
2711 	perf_pmu_enable(ctx->pmu);
2712 }
2713 
2714 /*
2715  * Test whether two contexts are equivalent, i.e. whether they have both been
2716  * cloned from the same version of the same context.
2717  *
2718  * Equivalence is measured using a generation number in the context that is
2719  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2720  * and list_del_event().
2721  */
2722 static int context_equiv(struct perf_event_context *ctx1,
2723 			 struct perf_event_context *ctx2)
2724 {
2725 	lockdep_assert_held(&ctx1->lock);
2726 	lockdep_assert_held(&ctx2->lock);
2727 
2728 	/* Pinning disables the swap optimization */
2729 	if (ctx1->pin_count || ctx2->pin_count)
2730 		return 0;
2731 
2732 	/* If ctx1 is the parent of ctx2 */
2733 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2734 		return 1;
2735 
2736 	/* If ctx2 is the parent of ctx1 */
2737 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2738 		return 1;
2739 
2740 	/*
2741 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2742 	 * hierarchy, see perf_event_init_context().
2743 	 */
2744 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2745 			ctx1->parent_gen == ctx2->parent_gen)
2746 		return 1;
2747 
2748 	/* Unmatched */
2749 	return 0;
2750 }
2751 
2752 static void __perf_event_sync_stat(struct perf_event *event,
2753 				     struct perf_event *next_event)
2754 {
2755 	u64 value;
2756 
2757 	if (!event->attr.inherit_stat)
2758 		return;
2759 
2760 	/*
2761 	 * Update the event value, we cannot use perf_event_read()
2762 	 * because we're in the middle of a context switch and have IRQs
2763 	 * disabled, which upsets smp_call_function_single(), however
2764 	 * we know the event must be on the current CPU, therefore we
2765 	 * don't need to use it.
2766 	 */
2767 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2768 		event->pmu->read(event);
2769 
2770 	perf_event_update_time(event);
2771 
2772 	/*
2773 	 * In order to keep per-task stats reliable we need to flip the event
2774 	 * values when we flip the contexts.
2775 	 */
2776 	value = local64_read(&next_event->count);
2777 	value = local64_xchg(&event->count, value);
2778 	local64_set(&next_event->count, value);
2779 
2780 	swap(event->total_time_enabled, next_event->total_time_enabled);
2781 	swap(event->total_time_running, next_event->total_time_running);
2782 
2783 	/*
2784 	 * Since we swizzled the values, update the user visible data too.
2785 	 */
2786 	perf_event_update_userpage(event);
2787 	perf_event_update_userpage(next_event);
2788 }
2789 
2790 static void perf_event_sync_stat(struct perf_event_context *ctx,
2791 				   struct perf_event_context *next_ctx)
2792 {
2793 	struct perf_event *event, *next_event;
2794 
2795 	if (!ctx->nr_stat)
2796 		return;
2797 
2798 	update_context_time(ctx);
2799 
2800 	event = list_first_entry(&ctx->event_list,
2801 				   struct perf_event, event_entry);
2802 
2803 	next_event = list_first_entry(&next_ctx->event_list,
2804 					struct perf_event, event_entry);
2805 
2806 	while (&event->event_entry != &ctx->event_list &&
2807 	       &next_event->event_entry != &next_ctx->event_list) {
2808 
2809 		__perf_event_sync_stat(event, next_event);
2810 
2811 		event = list_next_entry(event, event_entry);
2812 		next_event = list_next_entry(next_event, event_entry);
2813 	}
2814 }
2815 
2816 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2817 					 struct task_struct *next)
2818 {
2819 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2820 	struct perf_event_context *next_ctx;
2821 	struct perf_event_context *parent, *next_parent;
2822 	struct perf_cpu_context *cpuctx;
2823 	int do_switch = 1;
2824 
2825 	if (likely(!ctx))
2826 		return;
2827 
2828 	cpuctx = __get_cpu_context(ctx);
2829 	if (!cpuctx->task_ctx)
2830 		return;
2831 
2832 	rcu_read_lock();
2833 	next_ctx = next->perf_event_ctxp[ctxn];
2834 	if (!next_ctx)
2835 		goto unlock;
2836 
2837 	parent = rcu_dereference(ctx->parent_ctx);
2838 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2839 
2840 	/* If neither context have a parent context; they cannot be clones. */
2841 	if (!parent && !next_parent)
2842 		goto unlock;
2843 
2844 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2845 		/*
2846 		 * Looks like the two contexts are clones, so we might be
2847 		 * able to optimize the context switch.  We lock both
2848 		 * contexts and check that they are clones under the
2849 		 * lock (including re-checking that neither has been
2850 		 * uncloned in the meantime).  It doesn't matter which
2851 		 * order we take the locks because no other cpu could
2852 		 * be trying to lock both of these tasks.
2853 		 */
2854 		raw_spin_lock(&ctx->lock);
2855 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2856 		if (context_equiv(ctx, next_ctx)) {
2857 			WRITE_ONCE(ctx->task, next);
2858 			WRITE_ONCE(next_ctx->task, task);
2859 
2860 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2861 
2862 			/*
2863 			 * RCU_INIT_POINTER here is safe because we've not
2864 			 * modified the ctx and the above modification of
2865 			 * ctx->task and ctx->task_ctx_data are immaterial
2866 			 * since those values are always verified under
2867 			 * ctx->lock which we're now holding.
2868 			 */
2869 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2870 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2871 
2872 			do_switch = 0;
2873 
2874 			perf_event_sync_stat(ctx, next_ctx);
2875 		}
2876 		raw_spin_unlock(&next_ctx->lock);
2877 		raw_spin_unlock(&ctx->lock);
2878 	}
2879 unlock:
2880 	rcu_read_unlock();
2881 
2882 	if (do_switch) {
2883 		raw_spin_lock(&ctx->lock);
2884 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2885 		raw_spin_unlock(&ctx->lock);
2886 	}
2887 }
2888 
2889 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2890 
2891 void perf_sched_cb_dec(struct pmu *pmu)
2892 {
2893 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2894 
2895 	this_cpu_dec(perf_sched_cb_usages);
2896 
2897 	if (!--cpuctx->sched_cb_usage)
2898 		list_del(&cpuctx->sched_cb_entry);
2899 }
2900 
2901 
2902 void perf_sched_cb_inc(struct pmu *pmu)
2903 {
2904 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2905 
2906 	if (!cpuctx->sched_cb_usage++)
2907 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2908 
2909 	this_cpu_inc(perf_sched_cb_usages);
2910 }
2911 
2912 /*
2913  * This function provides the context switch callback to the lower code
2914  * layer. It is invoked ONLY when the context switch callback is enabled.
2915  *
2916  * This callback is relevant even to per-cpu events; for example multi event
2917  * PEBS requires this to provide PID/TID information. This requires we flush
2918  * all queued PEBS records before we context switch to a new task.
2919  */
2920 static void perf_pmu_sched_task(struct task_struct *prev,
2921 				struct task_struct *next,
2922 				bool sched_in)
2923 {
2924 	struct perf_cpu_context *cpuctx;
2925 	struct pmu *pmu;
2926 
2927 	if (prev == next)
2928 		return;
2929 
2930 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2931 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2932 
2933 		if (WARN_ON_ONCE(!pmu->sched_task))
2934 			continue;
2935 
2936 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2937 		perf_pmu_disable(pmu);
2938 
2939 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2940 
2941 		perf_pmu_enable(pmu);
2942 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2943 	}
2944 }
2945 
2946 static void perf_event_switch(struct task_struct *task,
2947 			      struct task_struct *next_prev, bool sched_in);
2948 
2949 #define for_each_task_context_nr(ctxn)					\
2950 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2951 
2952 /*
2953  * Called from scheduler to remove the events of the current task,
2954  * with interrupts disabled.
2955  *
2956  * We stop each event and update the event value in event->count.
2957  *
2958  * This does not protect us against NMI, but disable()
2959  * sets the disabled bit in the control field of event _before_
2960  * accessing the event control register. If a NMI hits, then it will
2961  * not restart the event.
2962  */
2963 void __perf_event_task_sched_out(struct task_struct *task,
2964 				 struct task_struct *next)
2965 {
2966 	int ctxn;
2967 
2968 	if (__this_cpu_read(perf_sched_cb_usages))
2969 		perf_pmu_sched_task(task, next, false);
2970 
2971 	if (atomic_read(&nr_switch_events))
2972 		perf_event_switch(task, next, false);
2973 
2974 	for_each_task_context_nr(ctxn)
2975 		perf_event_context_sched_out(task, ctxn, next);
2976 
2977 	/*
2978 	 * if cgroup events exist on this CPU, then we need
2979 	 * to check if we have to switch out PMU state.
2980 	 * cgroup event are system-wide mode only
2981 	 */
2982 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2983 		perf_cgroup_sched_out(task, next);
2984 }
2985 
2986 /*
2987  * Called with IRQs disabled
2988  */
2989 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2990 			      enum event_type_t event_type)
2991 {
2992 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2993 }
2994 
2995 static void
2996 ctx_pinned_sched_in(struct perf_event_context *ctx,
2997 		    struct perf_cpu_context *cpuctx)
2998 {
2999 	struct perf_event *event;
3000 
3001 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3002 		if (event->state <= PERF_EVENT_STATE_OFF)
3003 			continue;
3004 		if (!event_filter_match(event))
3005 			continue;
3006 
3007 		if (group_can_go_on(event, cpuctx, 1))
3008 			group_sched_in(event, cpuctx, ctx);
3009 
3010 		/*
3011 		 * If this pinned group hasn't been scheduled,
3012 		 * put it in error state.
3013 		 */
3014 		if (event->state == PERF_EVENT_STATE_INACTIVE)
3015 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3016 	}
3017 }
3018 
3019 static void
3020 ctx_flexible_sched_in(struct perf_event_context *ctx,
3021 		      struct perf_cpu_context *cpuctx)
3022 {
3023 	struct perf_event *event;
3024 	int can_add_hw = 1;
3025 
3026 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3027 		/* Ignore events in OFF or ERROR state */
3028 		if (event->state <= PERF_EVENT_STATE_OFF)
3029 			continue;
3030 		/*
3031 		 * Listen to the 'cpu' scheduling filter constraint
3032 		 * of events:
3033 		 */
3034 		if (!event_filter_match(event))
3035 			continue;
3036 
3037 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3038 			if (group_sched_in(event, cpuctx, ctx))
3039 				can_add_hw = 0;
3040 		}
3041 	}
3042 }
3043 
3044 static void
3045 ctx_sched_in(struct perf_event_context *ctx,
3046 	     struct perf_cpu_context *cpuctx,
3047 	     enum event_type_t event_type,
3048 	     struct task_struct *task)
3049 {
3050 	int is_active = ctx->is_active;
3051 	u64 now;
3052 
3053 	lockdep_assert_held(&ctx->lock);
3054 
3055 	if (likely(!ctx->nr_events))
3056 		return;
3057 
3058 	ctx->is_active |= (event_type | EVENT_TIME);
3059 	if (ctx->task) {
3060 		if (!is_active)
3061 			cpuctx->task_ctx = ctx;
3062 		else
3063 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3064 	}
3065 
3066 	is_active ^= ctx->is_active; /* changed bits */
3067 
3068 	if (is_active & EVENT_TIME) {
3069 		/* start ctx time */
3070 		now = perf_clock();
3071 		ctx->timestamp = now;
3072 		perf_cgroup_set_timestamp(task, ctx);
3073 	}
3074 
3075 	/*
3076 	 * First go through the list and put on any pinned groups
3077 	 * in order to give them the best chance of going on.
3078 	 */
3079 	if (is_active & EVENT_PINNED)
3080 		ctx_pinned_sched_in(ctx, cpuctx);
3081 
3082 	/* Then walk through the lower prio flexible groups */
3083 	if (is_active & EVENT_FLEXIBLE)
3084 		ctx_flexible_sched_in(ctx, cpuctx);
3085 }
3086 
3087 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3088 			     enum event_type_t event_type,
3089 			     struct task_struct *task)
3090 {
3091 	struct perf_event_context *ctx = &cpuctx->ctx;
3092 
3093 	ctx_sched_in(ctx, cpuctx, event_type, task);
3094 }
3095 
3096 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3097 					struct task_struct *task)
3098 {
3099 	struct perf_cpu_context *cpuctx;
3100 
3101 	cpuctx = __get_cpu_context(ctx);
3102 	if (cpuctx->task_ctx == ctx)
3103 		return;
3104 
3105 	perf_ctx_lock(cpuctx, ctx);
3106 	/*
3107 	 * We must check ctx->nr_events while holding ctx->lock, such
3108 	 * that we serialize against perf_install_in_context().
3109 	 */
3110 	if (!ctx->nr_events)
3111 		goto unlock;
3112 
3113 	perf_pmu_disable(ctx->pmu);
3114 	/*
3115 	 * We want to keep the following priority order:
3116 	 * cpu pinned (that don't need to move), task pinned,
3117 	 * cpu flexible, task flexible.
3118 	 *
3119 	 * However, if task's ctx is not carrying any pinned
3120 	 * events, no need to flip the cpuctx's events around.
3121 	 */
3122 	if (!list_empty(&ctx->pinned_groups))
3123 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3124 	perf_event_sched_in(cpuctx, ctx, task);
3125 	perf_pmu_enable(ctx->pmu);
3126 
3127 unlock:
3128 	perf_ctx_unlock(cpuctx, ctx);
3129 }
3130 
3131 /*
3132  * Called from scheduler to add the events of the current task
3133  * with interrupts disabled.
3134  *
3135  * We restore the event value and then enable it.
3136  *
3137  * This does not protect us against NMI, but enable()
3138  * sets the enabled bit in the control field of event _before_
3139  * accessing the event control register. If a NMI hits, then it will
3140  * keep the event running.
3141  */
3142 void __perf_event_task_sched_in(struct task_struct *prev,
3143 				struct task_struct *task)
3144 {
3145 	struct perf_event_context *ctx;
3146 	int ctxn;
3147 
3148 	/*
3149 	 * If cgroup events exist on this CPU, then we need to check if we have
3150 	 * to switch in PMU state; cgroup event are system-wide mode only.
3151 	 *
3152 	 * Since cgroup events are CPU events, we must schedule these in before
3153 	 * we schedule in the task events.
3154 	 */
3155 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3156 		perf_cgroup_sched_in(prev, task);
3157 
3158 	for_each_task_context_nr(ctxn) {
3159 		ctx = task->perf_event_ctxp[ctxn];
3160 		if (likely(!ctx))
3161 			continue;
3162 
3163 		perf_event_context_sched_in(ctx, task);
3164 	}
3165 
3166 	if (atomic_read(&nr_switch_events))
3167 		perf_event_switch(task, prev, true);
3168 
3169 	if (__this_cpu_read(perf_sched_cb_usages))
3170 		perf_pmu_sched_task(prev, task, true);
3171 }
3172 
3173 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3174 {
3175 	u64 frequency = event->attr.sample_freq;
3176 	u64 sec = NSEC_PER_SEC;
3177 	u64 divisor, dividend;
3178 
3179 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3180 
3181 	count_fls = fls64(count);
3182 	nsec_fls = fls64(nsec);
3183 	frequency_fls = fls64(frequency);
3184 	sec_fls = 30;
3185 
3186 	/*
3187 	 * We got @count in @nsec, with a target of sample_freq HZ
3188 	 * the target period becomes:
3189 	 *
3190 	 *             @count * 10^9
3191 	 * period = -------------------
3192 	 *          @nsec * sample_freq
3193 	 *
3194 	 */
3195 
3196 	/*
3197 	 * Reduce accuracy by one bit such that @a and @b converge
3198 	 * to a similar magnitude.
3199 	 */
3200 #define REDUCE_FLS(a, b)		\
3201 do {					\
3202 	if (a##_fls > b##_fls) {	\
3203 		a >>= 1;		\
3204 		a##_fls--;		\
3205 	} else {			\
3206 		b >>= 1;		\
3207 		b##_fls--;		\
3208 	}				\
3209 } while (0)
3210 
3211 	/*
3212 	 * Reduce accuracy until either term fits in a u64, then proceed with
3213 	 * the other, so that finally we can do a u64/u64 division.
3214 	 */
3215 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3216 		REDUCE_FLS(nsec, frequency);
3217 		REDUCE_FLS(sec, count);
3218 	}
3219 
3220 	if (count_fls + sec_fls > 64) {
3221 		divisor = nsec * frequency;
3222 
3223 		while (count_fls + sec_fls > 64) {
3224 			REDUCE_FLS(count, sec);
3225 			divisor >>= 1;
3226 		}
3227 
3228 		dividend = count * sec;
3229 	} else {
3230 		dividend = count * sec;
3231 
3232 		while (nsec_fls + frequency_fls > 64) {
3233 			REDUCE_FLS(nsec, frequency);
3234 			dividend >>= 1;
3235 		}
3236 
3237 		divisor = nsec * frequency;
3238 	}
3239 
3240 	if (!divisor)
3241 		return dividend;
3242 
3243 	return div64_u64(dividend, divisor);
3244 }
3245 
3246 static DEFINE_PER_CPU(int, perf_throttled_count);
3247 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3248 
3249 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3250 {
3251 	struct hw_perf_event *hwc = &event->hw;
3252 	s64 period, sample_period;
3253 	s64 delta;
3254 
3255 	period = perf_calculate_period(event, nsec, count);
3256 
3257 	delta = (s64)(period - hwc->sample_period);
3258 	delta = (delta + 7) / 8; /* low pass filter */
3259 
3260 	sample_period = hwc->sample_period + delta;
3261 
3262 	if (!sample_period)
3263 		sample_period = 1;
3264 
3265 	hwc->sample_period = sample_period;
3266 
3267 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3268 		if (disable)
3269 			event->pmu->stop(event, PERF_EF_UPDATE);
3270 
3271 		local64_set(&hwc->period_left, 0);
3272 
3273 		if (disable)
3274 			event->pmu->start(event, PERF_EF_RELOAD);
3275 	}
3276 }
3277 
3278 /*
3279  * combine freq adjustment with unthrottling to avoid two passes over the
3280  * events. At the same time, make sure, having freq events does not change
3281  * the rate of unthrottling as that would introduce bias.
3282  */
3283 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3284 					   int needs_unthr)
3285 {
3286 	struct perf_event *event;
3287 	struct hw_perf_event *hwc;
3288 	u64 now, period = TICK_NSEC;
3289 	s64 delta;
3290 
3291 	/*
3292 	 * only need to iterate over all events iff:
3293 	 * - context have events in frequency mode (needs freq adjust)
3294 	 * - there are events to unthrottle on this cpu
3295 	 */
3296 	if (!(ctx->nr_freq || needs_unthr))
3297 		return;
3298 
3299 	raw_spin_lock(&ctx->lock);
3300 	perf_pmu_disable(ctx->pmu);
3301 
3302 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3303 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3304 			continue;
3305 
3306 		if (!event_filter_match(event))
3307 			continue;
3308 
3309 		perf_pmu_disable(event->pmu);
3310 
3311 		hwc = &event->hw;
3312 
3313 		if (hwc->interrupts == MAX_INTERRUPTS) {
3314 			hwc->interrupts = 0;
3315 			perf_log_throttle(event, 1);
3316 			event->pmu->start(event, 0);
3317 		}
3318 
3319 		if (!event->attr.freq || !event->attr.sample_freq)
3320 			goto next;
3321 
3322 		/*
3323 		 * stop the event and update event->count
3324 		 */
3325 		event->pmu->stop(event, PERF_EF_UPDATE);
3326 
3327 		now = local64_read(&event->count);
3328 		delta = now - hwc->freq_count_stamp;
3329 		hwc->freq_count_stamp = now;
3330 
3331 		/*
3332 		 * restart the event
3333 		 * reload only if value has changed
3334 		 * we have stopped the event so tell that
3335 		 * to perf_adjust_period() to avoid stopping it
3336 		 * twice.
3337 		 */
3338 		if (delta > 0)
3339 			perf_adjust_period(event, period, delta, false);
3340 
3341 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3342 	next:
3343 		perf_pmu_enable(event->pmu);
3344 	}
3345 
3346 	perf_pmu_enable(ctx->pmu);
3347 	raw_spin_unlock(&ctx->lock);
3348 }
3349 
3350 /*
3351  * Round-robin a context's events:
3352  */
3353 static void rotate_ctx(struct perf_event_context *ctx)
3354 {
3355 	/*
3356 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3357 	 * disabled by the inheritance code.
3358 	 */
3359 	if (!ctx->rotate_disable)
3360 		list_rotate_left(&ctx->flexible_groups);
3361 }
3362 
3363 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3364 {
3365 	struct perf_event_context *ctx = NULL;
3366 	int rotate = 0;
3367 
3368 	if (cpuctx->ctx.nr_events) {
3369 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3370 			rotate = 1;
3371 	}
3372 
3373 	ctx = cpuctx->task_ctx;
3374 	if (ctx && ctx->nr_events) {
3375 		if (ctx->nr_events != ctx->nr_active)
3376 			rotate = 1;
3377 	}
3378 
3379 	if (!rotate)
3380 		goto done;
3381 
3382 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3383 	perf_pmu_disable(cpuctx->ctx.pmu);
3384 
3385 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3386 	if (ctx)
3387 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3388 
3389 	rotate_ctx(&cpuctx->ctx);
3390 	if (ctx)
3391 		rotate_ctx(ctx);
3392 
3393 	perf_event_sched_in(cpuctx, ctx, current);
3394 
3395 	perf_pmu_enable(cpuctx->ctx.pmu);
3396 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3397 done:
3398 
3399 	return rotate;
3400 }
3401 
3402 void perf_event_task_tick(void)
3403 {
3404 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3405 	struct perf_event_context *ctx, *tmp;
3406 	int throttled;
3407 
3408 	lockdep_assert_irqs_disabled();
3409 
3410 	__this_cpu_inc(perf_throttled_seq);
3411 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3412 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3413 
3414 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3415 		perf_adjust_freq_unthr_context(ctx, throttled);
3416 }
3417 
3418 static int event_enable_on_exec(struct perf_event *event,
3419 				struct perf_event_context *ctx)
3420 {
3421 	if (!event->attr.enable_on_exec)
3422 		return 0;
3423 
3424 	event->attr.enable_on_exec = 0;
3425 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3426 		return 0;
3427 
3428 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3429 
3430 	return 1;
3431 }
3432 
3433 /*
3434  * Enable all of a task's events that have been marked enable-on-exec.
3435  * This expects task == current.
3436  */
3437 static void perf_event_enable_on_exec(int ctxn)
3438 {
3439 	struct perf_event_context *ctx, *clone_ctx = NULL;
3440 	enum event_type_t event_type = 0;
3441 	struct perf_cpu_context *cpuctx;
3442 	struct perf_event *event;
3443 	unsigned long flags;
3444 	int enabled = 0;
3445 
3446 	local_irq_save(flags);
3447 	ctx = current->perf_event_ctxp[ctxn];
3448 	if (!ctx || !ctx->nr_events)
3449 		goto out;
3450 
3451 	cpuctx = __get_cpu_context(ctx);
3452 	perf_ctx_lock(cpuctx, ctx);
3453 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3454 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3455 		enabled |= event_enable_on_exec(event, ctx);
3456 		event_type |= get_event_type(event);
3457 	}
3458 
3459 	/*
3460 	 * Unclone and reschedule this context if we enabled any event.
3461 	 */
3462 	if (enabled) {
3463 		clone_ctx = unclone_ctx(ctx);
3464 		ctx_resched(cpuctx, ctx, event_type);
3465 	} else {
3466 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3467 	}
3468 	perf_ctx_unlock(cpuctx, ctx);
3469 
3470 out:
3471 	local_irq_restore(flags);
3472 
3473 	if (clone_ctx)
3474 		put_ctx(clone_ctx);
3475 }
3476 
3477 struct perf_read_data {
3478 	struct perf_event *event;
3479 	bool group;
3480 	int ret;
3481 };
3482 
3483 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3484 {
3485 	u16 local_pkg, event_pkg;
3486 
3487 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3488 		int local_cpu = smp_processor_id();
3489 
3490 		event_pkg = topology_physical_package_id(event_cpu);
3491 		local_pkg = topology_physical_package_id(local_cpu);
3492 
3493 		if (event_pkg == local_pkg)
3494 			return local_cpu;
3495 	}
3496 
3497 	return event_cpu;
3498 }
3499 
3500 /*
3501  * Cross CPU call to read the hardware event
3502  */
3503 static void __perf_event_read(void *info)
3504 {
3505 	struct perf_read_data *data = info;
3506 	struct perf_event *sub, *event = data->event;
3507 	struct perf_event_context *ctx = event->ctx;
3508 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3509 	struct pmu *pmu = event->pmu;
3510 
3511 	/*
3512 	 * If this is a task context, we need to check whether it is
3513 	 * the current task context of this cpu.  If not it has been
3514 	 * scheduled out before the smp call arrived.  In that case
3515 	 * event->count would have been updated to a recent sample
3516 	 * when the event was scheduled out.
3517 	 */
3518 	if (ctx->task && cpuctx->task_ctx != ctx)
3519 		return;
3520 
3521 	raw_spin_lock(&ctx->lock);
3522 	if (ctx->is_active & EVENT_TIME) {
3523 		update_context_time(ctx);
3524 		update_cgrp_time_from_event(event);
3525 	}
3526 
3527 	perf_event_update_time(event);
3528 	if (data->group)
3529 		perf_event_update_sibling_time(event);
3530 
3531 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3532 		goto unlock;
3533 
3534 	if (!data->group) {
3535 		pmu->read(event);
3536 		data->ret = 0;
3537 		goto unlock;
3538 	}
3539 
3540 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3541 
3542 	pmu->read(event);
3543 
3544 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3545 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3546 			/*
3547 			 * Use sibling's PMU rather than @event's since
3548 			 * sibling could be on different (eg: software) PMU.
3549 			 */
3550 			sub->pmu->read(sub);
3551 		}
3552 	}
3553 
3554 	data->ret = pmu->commit_txn(pmu);
3555 
3556 unlock:
3557 	raw_spin_unlock(&ctx->lock);
3558 }
3559 
3560 static inline u64 perf_event_count(struct perf_event *event)
3561 {
3562 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3563 }
3564 
3565 /*
3566  * NMI-safe method to read a local event, that is an event that
3567  * is:
3568  *   - either for the current task, or for this CPU
3569  *   - does not have inherit set, for inherited task events
3570  *     will not be local and we cannot read them atomically
3571  *   - must not have a pmu::count method
3572  */
3573 int perf_event_read_local(struct perf_event *event, u64 *value,
3574 			  u64 *enabled, u64 *running)
3575 {
3576 	unsigned long flags;
3577 	int ret = 0;
3578 
3579 	/*
3580 	 * Disabling interrupts avoids all counter scheduling (context
3581 	 * switches, timer based rotation and IPIs).
3582 	 */
3583 	local_irq_save(flags);
3584 
3585 	/*
3586 	 * It must not be an event with inherit set, we cannot read
3587 	 * all child counters from atomic context.
3588 	 */
3589 	if (event->attr.inherit) {
3590 		ret = -EOPNOTSUPP;
3591 		goto out;
3592 	}
3593 
3594 	/* If this is a per-task event, it must be for current */
3595 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3596 	    event->hw.target != current) {
3597 		ret = -EINVAL;
3598 		goto out;
3599 	}
3600 
3601 	/* If this is a per-CPU event, it must be for this CPU */
3602 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3603 	    event->cpu != smp_processor_id()) {
3604 		ret = -EINVAL;
3605 		goto out;
3606 	}
3607 
3608 	/*
3609 	 * If the event is currently on this CPU, its either a per-task event,
3610 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3611 	 * oncpu == -1).
3612 	 */
3613 	if (event->oncpu == smp_processor_id())
3614 		event->pmu->read(event);
3615 
3616 	*value = local64_read(&event->count);
3617 	if (enabled || running) {
3618 		u64 now = event->shadow_ctx_time + perf_clock();
3619 		u64 __enabled, __running;
3620 
3621 		__perf_update_times(event, now, &__enabled, &__running);
3622 		if (enabled)
3623 			*enabled = __enabled;
3624 		if (running)
3625 			*running = __running;
3626 	}
3627 out:
3628 	local_irq_restore(flags);
3629 
3630 	return ret;
3631 }
3632 
3633 static int perf_event_read(struct perf_event *event, bool group)
3634 {
3635 	enum perf_event_state state = READ_ONCE(event->state);
3636 	int event_cpu, ret = 0;
3637 
3638 	/*
3639 	 * If event is enabled and currently active on a CPU, update the
3640 	 * value in the event structure:
3641 	 */
3642 again:
3643 	if (state == PERF_EVENT_STATE_ACTIVE) {
3644 		struct perf_read_data data;
3645 
3646 		/*
3647 		 * Orders the ->state and ->oncpu loads such that if we see
3648 		 * ACTIVE we must also see the right ->oncpu.
3649 		 *
3650 		 * Matches the smp_wmb() from event_sched_in().
3651 		 */
3652 		smp_rmb();
3653 
3654 		event_cpu = READ_ONCE(event->oncpu);
3655 		if ((unsigned)event_cpu >= nr_cpu_ids)
3656 			return 0;
3657 
3658 		data = (struct perf_read_data){
3659 			.event = event,
3660 			.group = group,
3661 			.ret = 0,
3662 		};
3663 
3664 		preempt_disable();
3665 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3666 
3667 		/*
3668 		 * Purposely ignore the smp_call_function_single() return
3669 		 * value.
3670 		 *
3671 		 * If event_cpu isn't a valid CPU it means the event got
3672 		 * scheduled out and that will have updated the event count.
3673 		 *
3674 		 * Therefore, either way, we'll have an up-to-date event count
3675 		 * after this.
3676 		 */
3677 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3678 		preempt_enable();
3679 		ret = data.ret;
3680 
3681 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
3682 		struct perf_event_context *ctx = event->ctx;
3683 		unsigned long flags;
3684 
3685 		raw_spin_lock_irqsave(&ctx->lock, flags);
3686 		state = event->state;
3687 		if (state != PERF_EVENT_STATE_INACTIVE) {
3688 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
3689 			goto again;
3690 		}
3691 
3692 		/*
3693 		 * May read while context is not active (e.g., thread is
3694 		 * blocked), in that case we cannot update context time
3695 		 */
3696 		if (ctx->is_active & EVENT_TIME) {
3697 			update_context_time(ctx);
3698 			update_cgrp_time_from_event(event);
3699 		}
3700 
3701 		perf_event_update_time(event);
3702 		if (group)
3703 			perf_event_update_sibling_time(event);
3704 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3705 	}
3706 
3707 	return ret;
3708 }
3709 
3710 /*
3711  * Initialize the perf_event context in a task_struct:
3712  */
3713 static void __perf_event_init_context(struct perf_event_context *ctx)
3714 {
3715 	raw_spin_lock_init(&ctx->lock);
3716 	mutex_init(&ctx->mutex);
3717 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3718 	INIT_LIST_HEAD(&ctx->pinned_groups);
3719 	INIT_LIST_HEAD(&ctx->flexible_groups);
3720 	INIT_LIST_HEAD(&ctx->event_list);
3721 	atomic_set(&ctx->refcount, 1);
3722 }
3723 
3724 static struct perf_event_context *
3725 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3726 {
3727 	struct perf_event_context *ctx;
3728 
3729 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3730 	if (!ctx)
3731 		return NULL;
3732 
3733 	__perf_event_init_context(ctx);
3734 	if (task) {
3735 		ctx->task = task;
3736 		get_task_struct(task);
3737 	}
3738 	ctx->pmu = pmu;
3739 
3740 	return ctx;
3741 }
3742 
3743 static struct task_struct *
3744 find_lively_task_by_vpid(pid_t vpid)
3745 {
3746 	struct task_struct *task;
3747 
3748 	rcu_read_lock();
3749 	if (!vpid)
3750 		task = current;
3751 	else
3752 		task = find_task_by_vpid(vpid);
3753 	if (task)
3754 		get_task_struct(task);
3755 	rcu_read_unlock();
3756 
3757 	if (!task)
3758 		return ERR_PTR(-ESRCH);
3759 
3760 	return task;
3761 }
3762 
3763 /*
3764  * Returns a matching context with refcount and pincount.
3765  */
3766 static struct perf_event_context *
3767 find_get_context(struct pmu *pmu, struct task_struct *task,
3768 		struct perf_event *event)
3769 {
3770 	struct perf_event_context *ctx, *clone_ctx = NULL;
3771 	struct perf_cpu_context *cpuctx;
3772 	void *task_ctx_data = NULL;
3773 	unsigned long flags;
3774 	int ctxn, err;
3775 	int cpu = event->cpu;
3776 
3777 	if (!task) {
3778 		/* Must be root to operate on a CPU event: */
3779 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3780 			return ERR_PTR(-EACCES);
3781 
3782 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3783 		ctx = &cpuctx->ctx;
3784 		get_ctx(ctx);
3785 		++ctx->pin_count;
3786 
3787 		return ctx;
3788 	}
3789 
3790 	err = -EINVAL;
3791 	ctxn = pmu->task_ctx_nr;
3792 	if (ctxn < 0)
3793 		goto errout;
3794 
3795 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3796 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3797 		if (!task_ctx_data) {
3798 			err = -ENOMEM;
3799 			goto errout;
3800 		}
3801 	}
3802 
3803 retry:
3804 	ctx = perf_lock_task_context(task, ctxn, &flags);
3805 	if (ctx) {
3806 		clone_ctx = unclone_ctx(ctx);
3807 		++ctx->pin_count;
3808 
3809 		if (task_ctx_data && !ctx->task_ctx_data) {
3810 			ctx->task_ctx_data = task_ctx_data;
3811 			task_ctx_data = NULL;
3812 		}
3813 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3814 
3815 		if (clone_ctx)
3816 			put_ctx(clone_ctx);
3817 	} else {
3818 		ctx = alloc_perf_context(pmu, task);
3819 		err = -ENOMEM;
3820 		if (!ctx)
3821 			goto errout;
3822 
3823 		if (task_ctx_data) {
3824 			ctx->task_ctx_data = task_ctx_data;
3825 			task_ctx_data = NULL;
3826 		}
3827 
3828 		err = 0;
3829 		mutex_lock(&task->perf_event_mutex);
3830 		/*
3831 		 * If it has already passed perf_event_exit_task().
3832 		 * we must see PF_EXITING, it takes this mutex too.
3833 		 */
3834 		if (task->flags & PF_EXITING)
3835 			err = -ESRCH;
3836 		else if (task->perf_event_ctxp[ctxn])
3837 			err = -EAGAIN;
3838 		else {
3839 			get_ctx(ctx);
3840 			++ctx->pin_count;
3841 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3842 		}
3843 		mutex_unlock(&task->perf_event_mutex);
3844 
3845 		if (unlikely(err)) {
3846 			put_ctx(ctx);
3847 
3848 			if (err == -EAGAIN)
3849 				goto retry;
3850 			goto errout;
3851 		}
3852 	}
3853 
3854 	kfree(task_ctx_data);
3855 	return ctx;
3856 
3857 errout:
3858 	kfree(task_ctx_data);
3859 	return ERR_PTR(err);
3860 }
3861 
3862 static void perf_event_free_filter(struct perf_event *event);
3863 static void perf_event_free_bpf_prog(struct perf_event *event);
3864 
3865 static void free_event_rcu(struct rcu_head *head)
3866 {
3867 	struct perf_event *event;
3868 
3869 	event = container_of(head, struct perf_event, rcu_head);
3870 	if (event->ns)
3871 		put_pid_ns(event->ns);
3872 	perf_event_free_filter(event);
3873 	kfree(event);
3874 }
3875 
3876 static void ring_buffer_attach(struct perf_event *event,
3877 			       struct ring_buffer *rb);
3878 
3879 static void detach_sb_event(struct perf_event *event)
3880 {
3881 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3882 
3883 	raw_spin_lock(&pel->lock);
3884 	list_del_rcu(&event->sb_list);
3885 	raw_spin_unlock(&pel->lock);
3886 }
3887 
3888 static bool is_sb_event(struct perf_event *event)
3889 {
3890 	struct perf_event_attr *attr = &event->attr;
3891 
3892 	if (event->parent)
3893 		return false;
3894 
3895 	if (event->attach_state & PERF_ATTACH_TASK)
3896 		return false;
3897 
3898 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3899 	    attr->comm || attr->comm_exec ||
3900 	    attr->task ||
3901 	    attr->context_switch)
3902 		return true;
3903 	return false;
3904 }
3905 
3906 static void unaccount_pmu_sb_event(struct perf_event *event)
3907 {
3908 	if (is_sb_event(event))
3909 		detach_sb_event(event);
3910 }
3911 
3912 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3913 {
3914 	if (event->parent)
3915 		return;
3916 
3917 	if (is_cgroup_event(event))
3918 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3919 }
3920 
3921 #ifdef CONFIG_NO_HZ_FULL
3922 static DEFINE_SPINLOCK(nr_freq_lock);
3923 #endif
3924 
3925 static void unaccount_freq_event_nohz(void)
3926 {
3927 #ifdef CONFIG_NO_HZ_FULL
3928 	spin_lock(&nr_freq_lock);
3929 	if (atomic_dec_and_test(&nr_freq_events))
3930 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3931 	spin_unlock(&nr_freq_lock);
3932 #endif
3933 }
3934 
3935 static void unaccount_freq_event(void)
3936 {
3937 	if (tick_nohz_full_enabled())
3938 		unaccount_freq_event_nohz();
3939 	else
3940 		atomic_dec(&nr_freq_events);
3941 }
3942 
3943 static void unaccount_event(struct perf_event *event)
3944 {
3945 	bool dec = false;
3946 
3947 	if (event->parent)
3948 		return;
3949 
3950 	if (event->attach_state & PERF_ATTACH_TASK)
3951 		dec = true;
3952 	if (event->attr.mmap || event->attr.mmap_data)
3953 		atomic_dec(&nr_mmap_events);
3954 	if (event->attr.comm)
3955 		atomic_dec(&nr_comm_events);
3956 	if (event->attr.namespaces)
3957 		atomic_dec(&nr_namespaces_events);
3958 	if (event->attr.task)
3959 		atomic_dec(&nr_task_events);
3960 	if (event->attr.freq)
3961 		unaccount_freq_event();
3962 	if (event->attr.context_switch) {
3963 		dec = true;
3964 		atomic_dec(&nr_switch_events);
3965 	}
3966 	if (is_cgroup_event(event))
3967 		dec = true;
3968 	if (has_branch_stack(event))
3969 		dec = true;
3970 
3971 	if (dec) {
3972 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3973 			schedule_delayed_work(&perf_sched_work, HZ);
3974 	}
3975 
3976 	unaccount_event_cpu(event, event->cpu);
3977 
3978 	unaccount_pmu_sb_event(event);
3979 }
3980 
3981 static void perf_sched_delayed(struct work_struct *work)
3982 {
3983 	mutex_lock(&perf_sched_mutex);
3984 	if (atomic_dec_and_test(&perf_sched_count))
3985 		static_branch_disable(&perf_sched_events);
3986 	mutex_unlock(&perf_sched_mutex);
3987 }
3988 
3989 /*
3990  * The following implement mutual exclusion of events on "exclusive" pmus
3991  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3992  * at a time, so we disallow creating events that might conflict, namely:
3993  *
3994  *  1) cpu-wide events in the presence of per-task events,
3995  *  2) per-task events in the presence of cpu-wide events,
3996  *  3) two matching events on the same context.
3997  *
3998  * The former two cases are handled in the allocation path (perf_event_alloc(),
3999  * _free_event()), the latter -- before the first perf_install_in_context().
4000  */
4001 static int exclusive_event_init(struct perf_event *event)
4002 {
4003 	struct pmu *pmu = event->pmu;
4004 
4005 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4006 		return 0;
4007 
4008 	/*
4009 	 * Prevent co-existence of per-task and cpu-wide events on the
4010 	 * same exclusive pmu.
4011 	 *
4012 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4013 	 * events on this "exclusive" pmu, positive means there are
4014 	 * per-task events.
4015 	 *
4016 	 * Since this is called in perf_event_alloc() path, event::ctx
4017 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4018 	 * to mean "per-task event", because unlike other attach states it
4019 	 * never gets cleared.
4020 	 */
4021 	if (event->attach_state & PERF_ATTACH_TASK) {
4022 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4023 			return -EBUSY;
4024 	} else {
4025 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4026 			return -EBUSY;
4027 	}
4028 
4029 	return 0;
4030 }
4031 
4032 static void exclusive_event_destroy(struct perf_event *event)
4033 {
4034 	struct pmu *pmu = event->pmu;
4035 
4036 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4037 		return;
4038 
4039 	/* see comment in exclusive_event_init() */
4040 	if (event->attach_state & PERF_ATTACH_TASK)
4041 		atomic_dec(&pmu->exclusive_cnt);
4042 	else
4043 		atomic_inc(&pmu->exclusive_cnt);
4044 }
4045 
4046 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4047 {
4048 	if ((e1->pmu == e2->pmu) &&
4049 	    (e1->cpu == e2->cpu ||
4050 	     e1->cpu == -1 ||
4051 	     e2->cpu == -1))
4052 		return true;
4053 	return false;
4054 }
4055 
4056 /* Called under the same ctx::mutex as perf_install_in_context() */
4057 static bool exclusive_event_installable(struct perf_event *event,
4058 					struct perf_event_context *ctx)
4059 {
4060 	struct perf_event *iter_event;
4061 	struct pmu *pmu = event->pmu;
4062 
4063 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064 		return true;
4065 
4066 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4067 		if (exclusive_event_match(iter_event, event))
4068 			return false;
4069 	}
4070 
4071 	return true;
4072 }
4073 
4074 static void perf_addr_filters_splice(struct perf_event *event,
4075 				       struct list_head *head);
4076 
4077 static void _free_event(struct perf_event *event)
4078 {
4079 	irq_work_sync(&event->pending);
4080 
4081 	unaccount_event(event);
4082 
4083 	if (event->rb) {
4084 		/*
4085 		 * Can happen when we close an event with re-directed output.
4086 		 *
4087 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4088 		 * over us; possibly making our ring_buffer_put() the last.
4089 		 */
4090 		mutex_lock(&event->mmap_mutex);
4091 		ring_buffer_attach(event, NULL);
4092 		mutex_unlock(&event->mmap_mutex);
4093 	}
4094 
4095 	if (is_cgroup_event(event))
4096 		perf_detach_cgroup(event);
4097 
4098 	if (!event->parent) {
4099 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4100 			put_callchain_buffers();
4101 	}
4102 
4103 	perf_event_free_bpf_prog(event);
4104 	perf_addr_filters_splice(event, NULL);
4105 	kfree(event->addr_filters_offs);
4106 
4107 	if (event->destroy)
4108 		event->destroy(event);
4109 
4110 	if (event->ctx)
4111 		put_ctx(event->ctx);
4112 
4113 	exclusive_event_destroy(event);
4114 	module_put(event->pmu->module);
4115 
4116 	call_rcu(&event->rcu_head, free_event_rcu);
4117 }
4118 
4119 /*
4120  * Used to free events which have a known refcount of 1, such as in error paths
4121  * where the event isn't exposed yet and inherited events.
4122  */
4123 static void free_event(struct perf_event *event)
4124 {
4125 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4126 				"unexpected event refcount: %ld; ptr=%p\n",
4127 				atomic_long_read(&event->refcount), event)) {
4128 		/* leak to avoid use-after-free */
4129 		return;
4130 	}
4131 
4132 	_free_event(event);
4133 }
4134 
4135 /*
4136  * Remove user event from the owner task.
4137  */
4138 static void perf_remove_from_owner(struct perf_event *event)
4139 {
4140 	struct task_struct *owner;
4141 
4142 	rcu_read_lock();
4143 	/*
4144 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4145 	 * observe !owner it means the list deletion is complete and we can
4146 	 * indeed free this event, otherwise we need to serialize on
4147 	 * owner->perf_event_mutex.
4148 	 */
4149 	owner = READ_ONCE(event->owner);
4150 	if (owner) {
4151 		/*
4152 		 * Since delayed_put_task_struct() also drops the last
4153 		 * task reference we can safely take a new reference
4154 		 * while holding the rcu_read_lock().
4155 		 */
4156 		get_task_struct(owner);
4157 	}
4158 	rcu_read_unlock();
4159 
4160 	if (owner) {
4161 		/*
4162 		 * If we're here through perf_event_exit_task() we're already
4163 		 * holding ctx->mutex which would be an inversion wrt. the
4164 		 * normal lock order.
4165 		 *
4166 		 * However we can safely take this lock because its the child
4167 		 * ctx->mutex.
4168 		 */
4169 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4170 
4171 		/*
4172 		 * We have to re-check the event->owner field, if it is cleared
4173 		 * we raced with perf_event_exit_task(), acquiring the mutex
4174 		 * ensured they're done, and we can proceed with freeing the
4175 		 * event.
4176 		 */
4177 		if (event->owner) {
4178 			list_del_init(&event->owner_entry);
4179 			smp_store_release(&event->owner, NULL);
4180 		}
4181 		mutex_unlock(&owner->perf_event_mutex);
4182 		put_task_struct(owner);
4183 	}
4184 }
4185 
4186 static void put_event(struct perf_event *event)
4187 {
4188 	if (!atomic_long_dec_and_test(&event->refcount))
4189 		return;
4190 
4191 	_free_event(event);
4192 }
4193 
4194 /*
4195  * Kill an event dead; while event:refcount will preserve the event
4196  * object, it will not preserve its functionality. Once the last 'user'
4197  * gives up the object, we'll destroy the thing.
4198  */
4199 int perf_event_release_kernel(struct perf_event *event)
4200 {
4201 	struct perf_event_context *ctx = event->ctx;
4202 	struct perf_event *child, *tmp;
4203 	LIST_HEAD(free_list);
4204 
4205 	/*
4206 	 * If we got here through err_file: fput(event_file); we will not have
4207 	 * attached to a context yet.
4208 	 */
4209 	if (!ctx) {
4210 		WARN_ON_ONCE(event->attach_state &
4211 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4212 		goto no_ctx;
4213 	}
4214 
4215 	if (!is_kernel_event(event))
4216 		perf_remove_from_owner(event);
4217 
4218 	ctx = perf_event_ctx_lock(event);
4219 	WARN_ON_ONCE(ctx->parent_ctx);
4220 	perf_remove_from_context(event, DETACH_GROUP);
4221 
4222 	raw_spin_lock_irq(&ctx->lock);
4223 	/*
4224 	 * Mark this event as STATE_DEAD, there is no external reference to it
4225 	 * anymore.
4226 	 *
4227 	 * Anybody acquiring event->child_mutex after the below loop _must_
4228 	 * also see this, most importantly inherit_event() which will avoid
4229 	 * placing more children on the list.
4230 	 *
4231 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4232 	 * child events.
4233 	 */
4234 	event->state = PERF_EVENT_STATE_DEAD;
4235 	raw_spin_unlock_irq(&ctx->lock);
4236 
4237 	perf_event_ctx_unlock(event, ctx);
4238 
4239 again:
4240 	mutex_lock(&event->child_mutex);
4241 	list_for_each_entry(child, &event->child_list, child_list) {
4242 
4243 		/*
4244 		 * Cannot change, child events are not migrated, see the
4245 		 * comment with perf_event_ctx_lock_nested().
4246 		 */
4247 		ctx = READ_ONCE(child->ctx);
4248 		/*
4249 		 * Since child_mutex nests inside ctx::mutex, we must jump
4250 		 * through hoops. We start by grabbing a reference on the ctx.
4251 		 *
4252 		 * Since the event cannot get freed while we hold the
4253 		 * child_mutex, the context must also exist and have a !0
4254 		 * reference count.
4255 		 */
4256 		get_ctx(ctx);
4257 
4258 		/*
4259 		 * Now that we have a ctx ref, we can drop child_mutex, and
4260 		 * acquire ctx::mutex without fear of it going away. Then we
4261 		 * can re-acquire child_mutex.
4262 		 */
4263 		mutex_unlock(&event->child_mutex);
4264 		mutex_lock(&ctx->mutex);
4265 		mutex_lock(&event->child_mutex);
4266 
4267 		/*
4268 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4269 		 * state, if child is still the first entry, it didn't get freed
4270 		 * and we can continue doing so.
4271 		 */
4272 		tmp = list_first_entry_or_null(&event->child_list,
4273 					       struct perf_event, child_list);
4274 		if (tmp == child) {
4275 			perf_remove_from_context(child, DETACH_GROUP);
4276 			list_move(&child->child_list, &free_list);
4277 			/*
4278 			 * This matches the refcount bump in inherit_event();
4279 			 * this can't be the last reference.
4280 			 */
4281 			put_event(event);
4282 		}
4283 
4284 		mutex_unlock(&event->child_mutex);
4285 		mutex_unlock(&ctx->mutex);
4286 		put_ctx(ctx);
4287 		goto again;
4288 	}
4289 	mutex_unlock(&event->child_mutex);
4290 
4291 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4292 		list_del(&child->child_list);
4293 		free_event(child);
4294 	}
4295 
4296 no_ctx:
4297 	put_event(event); /* Must be the 'last' reference */
4298 	return 0;
4299 }
4300 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4301 
4302 /*
4303  * Called when the last reference to the file is gone.
4304  */
4305 static int perf_release(struct inode *inode, struct file *file)
4306 {
4307 	perf_event_release_kernel(file->private_data);
4308 	return 0;
4309 }
4310 
4311 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4312 {
4313 	struct perf_event *child;
4314 	u64 total = 0;
4315 
4316 	*enabled = 0;
4317 	*running = 0;
4318 
4319 	mutex_lock(&event->child_mutex);
4320 
4321 	(void)perf_event_read(event, false);
4322 	total += perf_event_count(event);
4323 
4324 	*enabled += event->total_time_enabled +
4325 			atomic64_read(&event->child_total_time_enabled);
4326 	*running += event->total_time_running +
4327 			atomic64_read(&event->child_total_time_running);
4328 
4329 	list_for_each_entry(child, &event->child_list, child_list) {
4330 		(void)perf_event_read(child, false);
4331 		total += perf_event_count(child);
4332 		*enabled += child->total_time_enabled;
4333 		*running += child->total_time_running;
4334 	}
4335 	mutex_unlock(&event->child_mutex);
4336 
4337 	return total;
4338 }
4339 
4340 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4341 {
4342 	struct perf_event_context *ctx;
4343 	u64 count;
4344 
4345 	ctx = perf_event_ctx_lock(event);
4346 	count = __perf_event_read_value(event, enabled, running);
4347 	perf_event_ctx_unlock(event, ctx);
4348 
4349 	return count;
4350 }
4351 EXPORT_SYMBOL_GPL(perf_event_read_value);
4352 
4353 static int __perf_read_group_add(struct perf_event *leader,
4354 					u64 read_format, u64 *values)
4355 {
4356 	struct perf_event_context *ctx = leader->ctx;
4357 	struct perf_event *sub;
4358 	unsigned long flags;
4359 	int n = 1; /* skip @nr */
4360 	int ret;
4361 
4362 	ret = perf_event_read(leader, true);
4363 	if (ret)
4364 		return ret;
4365 
4366 	raw_spin_lock_irqsave(&ctx->lock, flags);
4367 
4368 	/*
4369 	 * Since we co-schedule groups, {enabled,running} times of siblings
4370 	 * will be identical to those of the leader, so we only publish one
4371 	 * set.
4372 	 */
4373 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4374 		values[n++] += leader->total_time_enabled +
4375 			atomic64_read(&leader->child_total_time_enabled);
4376 	}
4377 
4378 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4379 		values[n++] += leader->total_time_running +
4380 			atomic64_read(&leader->child_total_time_running);
4381 	}
4382 
4383 	/*
4384 	 * Write {count,id} tuples for every sibling.
4385 	 */
4386 	values[n++] += perf_event_count(leader);
4387 	if (read_format & PERF_FORMAT_ID)
4388 		values[n++] = primary_event_id(leader);
4389 
4390 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4391 		values[n++] += perf_event_count(sub);
4392 		if (read_format & PERF_FORMAT_ID)
4393 			values[n++] = primary_event_id(sub);
4394 	}
4395 
4396 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4397 	return 0;
4398 }
4399 
4400 static int perf_read_group(struct perf_event *event,
4401 				   u64 read_format, char __user *buf)
4402 {
4403 	struct perf_event *leader = event->group_leader, *child;
4404 	struct perf_event_context *ctx = leader->ctx;
4405 	int ret;
4406 	u64 *values;
4407 
4408 	lockdep_assert_held(&ctx->mutex);
4409 
4410 	values = kzalloc(event->read_size, GFP_KERNEL);
4411 	if (!values)
4412 		return -ENOMEM;
4413 
4414 	values[0] = 1 + leader->nr_siblings;
4415 
4416 	/*
4417 	 * By locking the child_mutex of the leader we effectively
4418 	 * lock the child list of all siblings.. XXX explain how.
4419 	 */
4420 	mutex_lock(&leader->child_mutex);
4421 
4422 	ret = __perf_read_group_add(leader, read_format, values);
4423 	if (ret)
4424 		goto unlock;
4425 
4426 	list_for_each_entry(child, &leader->child_list, child_list) {
4427 		ret = __perf_read_group_add(child, read_format, values);
4428 		if (ret)
4429 			goto unlock;
4430 	}
4431 
4432 	mutex_unlock(&leader->child_mutex);
4433 
4434 	ret = event->read_size;
4435 	if (copy_to_user(buf, values, event->read_size))
4436 		ret = -EFAULT;
4437 	goto out;
4438 
4439 unlock:
4440 	mutex_unlock(&leader->child_mutex);
4441 out:
4442 	kfree(values);
4443 	return ret;
4444 }
4445 
4446 static int perf_read_one(struct perf_event *event,
4447 				 u64 read_format, char __user *buf)
4448 {
4449 	u64 enabled, running;
4450 	u64 values[4];
4451 	int n = 0;
4452 
4453 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4454 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4455 		values[n++] = enabled;
4456 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4457 		values[n++] = running;
4458 	if (read_format & PERF_FORMAT_ID)
4459 		values[n++] = primary_event_id(event);
4460 
4461 	if (copy_to_user(buf, values, n * sizeof(u64)))
4462 		return -EFAULT;
4463 
4464 	return n * sizeof(u64);
4465 }
4466 
4467 static bool is_event_hup(struct perf_event *event)
4468 {
4469 	bool no_children;
4470 
4471 	if (event->state > PERF_EVENT_STATE_EXIT)
4472 		return false;
4473 
4474 	mutex_lock(&event->child_mutex);
4475 	no_children = list_empty(&event->child_list);
4476 	mutex_unlock(&event->child_mutex);
4477 	return no_children;
4478 }
4479 
4480 /*
4481  * Read the performance event - simple non blocking version for now
4482  */
4483 static ssize_t
4484 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4485 {
4486 	u64 read_format = event->attr.read_format;
4487 	int ret;
4488 
4489 	/*
4490 	 * Return end-of-file for a read on a event that is in
4491 	 * error state (i.e. because it was pinned but it couldn't be
4492 	 * scheduled on to the CPU at some point).
4493 	 */
4494 	if (event->state == PERF_EVENT_STATE_ERROR)
4495 		return 0;
4496 
4497 	if (count < event->read_size)
4498 		return -ENOSPC;
4499 
4500 	WARN_ON_ONCE(event->ctx->parent_ctx);
4501 	if (read_format & PERF_FORMAT_GROUP)
4502 		ret = perf_read_group(event, read_format, buf);
4503 	else
4504 		ret = perf_read_one(event, read_format, buf);
4505 
4506 	return ret;
4507 }
4508 
4509 static ssize_t
4510 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4511 {
4512 	struct perf_event *event = file->private_data;
4513 	struct perf_event_context *ctx;
4514 	int ret;
4515 
4516 	ctx = perf_event_ctx_lock(event);
4517 	ret = __perf_read(event, buf, count);
4518 	perf_event_ctx_unlock(event, ctx);
4519 
4520 	return ret;
4521 }
4522 
4523 static __poll_t perf_poll(struct file *file, poll_table *wait)
4524 {
4525 	struct perf_event *event = file->private_data;
4526 	struct ring_buffer *rb;
4527 	__poll_t events = EPOLLHUP;
4528 
4529 	poll_wait(file, &event->waitq, wait);
4530 
4531 	if (is_event_hup(event))
4532 		return events;
4533 
4534 	/*
4535 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4536 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4537 	 */
4538 	mutex_lock(&event->mmap_mutex);
4539 	rb = event->rb;
4540 	if (rb)
4541 		events = atomic_xchg(&rb->poll, 0);
4542 	mutex_unlock(&event->mmap_mutex);
4543 	return events;
4544 }
4545 
4546 static void _perf_event_reset(struct perf_event *event)
4547 {
4548 	(void)perf_event_read(event, false);
4549 	local64_set(&event->count, 0);
4550 	perf_event_update_userpage(event);
4551 }
4552 
4553 /*
4554  * Holding the top-level event's child_mutex means that any
4555  * descendant process that has inherited this event will block
4556  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4557  * task existence requirements of perf_event_enable/disable.
4558  */
4559 static void perf_event_for_each_child(struct perf_event *event,
4560 					void (*func)(struct perf_event *))
4561 {
4562 	struct perf_event *child;
4563 
4564 	WARN_ON_ONCE(event->ctx->parent_ctx);
4565 
4566 	mutex_lock(&event->child_mutex);
4567 	func(event);
4568 	list_for_each_entry(child, &event->child_list, child_list)
4569 		func(child);
4570 	mutex_unlock(&event->child_mutex);
4571 }
4572 
4573 static void perf_event_for_each(struct perf_event *event,
4574 				  void (*func)(struct perf_event *))
4575 {
4576 	struct perf_event_context *ctx = event->ctx;
4577 	struct perf_event *sibling;
4578 
4579 	lockdep_assert_held(&ctx->mutex);
4580 
4581 	event = event->group_leader;
4582 
4583 	perf_event_for_each_child(event, func);
4584 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4585 		perf_event_for_each_child(sibling, func);
4586 }
4587 
4588 static void __perf_event_period(struct perf_event *event,
4589 				struct perf_cpu_context *cpuctx,
4590 				struct perf_event_context *ctx,
4591 				void *info)
4592 {
4593 	u64 value = *((u64 *)info);
4594 	bool active;
4595 
4596 	if (event->attr.freq) {
4597 		event->attr.sample_freq = value;
4598 	} else {
4599 		event->attr.sample_period = value;
4600 		event->hw.sample_period = value;
4601 	}
4602 
4603 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4604 	if (active) {
4605 		perf_pmu_disable(ctx->pmu);
4606 		/*
4607 		 * We could be throttled; unthrottle now to avoid the tick
4608 		 * trying to unthrottle while we already re-started the event.
4609 		 */
4610 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4611 			event->hw.interrupts = 0;
4612 			perf_log_throttle(event, 1);
4613 		}
4614 		event->pmu->stop(event, PERF_EF_UPDATE);
4615 	}
4616 
4617 	local64_set(&event->hw.period_left, 0);
4618 
4619 	if (active) {
4620 		event->pmu->start(event, PERF_EF_RELOAD);
4621 		perf_pmu_enable(ctx->pmu);
4622 	}
4623 }
4624 
4625 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4626 {
4627 	u64 value;
4628 
4629 	if (!is_sampling_event(event))
4630 		return -EINVAL;
4631 
4632 	if (copy_from_user(&value, arg, sizeof(value)))
4633 		return -EFAULT;
4634 
4635 	if (!value)
4636 		return -EINVAL;
4637 
4638 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4639 		return -EINVAL;
4640 
4641 	event_function_call(event, __perf_event_period, &value);
4642 
4643 	return 0;
4644 }
4645 
4646 static const struct file_operations perf_fops;
4647 
4648 static inline int perf_fget_light(int fd, struct fd *p)
4649 {
4650 	struct fd f = fdget(fd);
4651 	if (!f.file)
4652 		return -EBADF;
4653 
4654 	if (f.file->f_op != &perf_fops) {
4655 		fdput(f);
4656 		return -EBADF;
4657 	}
4658 	*p = f;
4659 	return 0;
4660 }
4661 
4662 static int perf_event_set_output(struct perf_event *event,
4663 				 struct perf_event *output_event);
4664 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4665 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4666 
4667 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4668 {
4669 	void (*func)(struct perf_event *);
4670 	u32 flags = arg;
4671 
4672 	switch (cmd) {
4673 	case PERF_EVENT_IOC_ENABLE:
4674 		func = _perf_event_enable;
4675 		break;
4676 	case PERF_EVENT_IOC_DISABLE:
4677 		func = _perf_event_disable;
4678 		break;
4679 	case PERF_EVENT_IOC_RESET:
4680 		func = _perf_event_reset;
4681 		break;
4682 
4683 	case PERF_EVENT_IOC_REFRESH:
4684 		return _perf_event_refresh(event, arg);
4685 
4686 	case PERF_EVENT_IOC_PERIOD:
4687 		return perf_event_period(event, (u64 __user *)arg);
4688 
4689 	case PERF_EVENT_IOC_ID:
4690 	{
4691 		u64 id = primary_event_id(event);
4692 
4693 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4694 			return -EFAULT;
4695 		return 0;
4696 	}
4697 
4698 	case PERF_EVENT_IOC_SET_OUTPUT:
4699 	{
4700 		int ret;
4701 		if (arg != -1) {
4702 			struct perf_event *output_event;
4703 			struct fd output;
4704 			ret = perf_fget_light(arg, &output);
4705 			if (ret)
4706 				return ret;
4707 			output_event = output.file->private_data;
4708 			ret = perf_event_set_output(event, output_event);
4709 			fdput(output);
4710 		} else {
4711 			ret = perf_event_set_output(event, NULL);
4712 		}
4713 		return ret;
4714 	}
4715 
4716 	case PERF_EVENT_IOC_SET_FILTER:
4717 		return perf_event_set_filter(event, (void __user *)arg);
4718 
4719 	case PERF_EVENT_IOC_SET_BPF:
4720 		return perf_event_set_bpf_prog(event, arg);
4721 
4722 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4723 		struct ring_buffer *rb;
4724 
4725 		rcu_read_lock();
4726 		rb = rcu_dereference(event->rb);
4727 		if (!rb || !rb->nr_pages) {
4728 			rcu_read_unlock();
4729 			return -EINVAL;
4730 		}
4731 		rb_toggle_paused(rb, !!arg);
4732 		rcu_read_unlock();
4733 		return 0;
4734 	}
4735 
4736 	case PERF_EVENT_IOC_QUERY_BPF:
4737 		return perf_event_query_prog_array(event, (void __user *)arg);
4738 	default:
4739 		return -ENOTTY;
4740 	}
4741 
4742 	if (flags & PERF_IOC_FLAG_GROUP)
4743 		perf_event_for_each(event, func);
4744 	else
4745 		perf_event_for_each_child(event, func);
4746 
4747 	return 0;
4748 }
4749 
4750 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4751 {
4752 	struct perf_event *event = file->private_data;
4753 	struct perf_event_context *ctx;
4754 	long ret;
4755 
4756 	ctx = perf_event_ctx_lock(event);
4757 	ret = _perf_ioctl(event, cmd, arg);
4758 	perf_event_ctx_unlock(event, ctx);
4759 
4760 	return ret;
4761 }
4762 
4763 #ifdef CONFIG_COMPAT
4764 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4765 				unsigned long arg)
4766 {
4767 	switch (_IOC_NR(cmd)) {
4768 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4769 	case _IOC_NR(PERF_EVENT_IOC_ID):
4770 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4771 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4772 			cmd &= ~IOCSIZE_MASK;
4773 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4774 		}
4775 		break;
4776 	}
4777 	return perf_ioctl(file, cmd, arg);
4778 }
4779 #else
4780 # define perf_compat_ioctl NULL
4781 #endif
4782 
4783 int perf_event_task_enable(void)
4784 {
4785 	struct perf_event_context *ctx;
4786 	struct perf_event *event;
4787 
4788 	mutex_lock(&current->perf_event_mutex);
4789 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4790 		ctx = perf_event_ctx_lock(event);
4791 		perf_event_for_each_child(event, _perf_event_enable);
4792 		perf_event_ctx_unlock(event, ctx);
4793 	}
4794 	mutex_unlock(&current->perf_event_mutex);
4795 
4796 	return 0;
4797 }
4798 
4799 int perf_event_task_disable(void)
4800 {
4801 	struct perf_event_context *ctx;
4802 	struct perf_event *event;
4803 
4804 	mutex_lock(&current->perf_event_mutex);
4805 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 		ctx = perf_event_ctx_lock(event);
4807 		perf_event_for_each_child(event, _perf_event_disable);
4808 		perf_event_ctx_unlock(event, ctx);
4809 	}
4810 	mutex_unlock(&current->perf_event_mutex);
4811 
4812 	return 0;
4813 }
4814 
4815 static int perf_event_index(struct perf_event *event)
4816 {
4817 	if (event->hw.state & PERF_HES_STOPPED)
4818 		return 0;
4819 
4820 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4821 		return 0;
4822 
4823 	return event->pmu->event_idx(event);
4824 }
4825 
4826 static void calc_timer_values(struct perf_event *event,
4827 				u64 *now,
4828 				u64 *enabled,
4829 				u64 *running)
4830 {
4831 	u64 ctx_time;
4832 
4833 	*now = perf_clock();
4834 	ctx_time = event->shadow_ctx_time + *now;
4835 	__perf_update_times(event, ctx_time, enabled, running);
4836 }
4837 
4838 static void perf_event_init_userpage(struct perf_event *event)
4839 {
4840 	struct perf_event_mmap_page *userpg;
4841 	struct ring_buffer *rb;
4842 
4843 	rcu_read_lock();
4844 	rb = rcu_dereference(event->rb);
4845 	if (!rb)
4846 		goto unlock;
4847 
4848 	userpg = rb->user_page;
4849 
4850 	/* Allow new userspace to detect that bit 0 is deprecated */
4851 	userpg->cap_bit0_is_deprecated = 1;
4852 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4853 	userpg->data_offset = PAGE_SIZE;
4854 	userpg->data_size = perf_data_size(rb);
4855 
4856 unlock:
4857 	rcu_read_unlock();
4858 }
4859 
4860 void __weak arch_perf_update_userpage(
4861 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4862 {
4863 }
4864 
4865 /*
4866  * Callers need to ensure there can be no nesting of this function, otherwise
4867  * the seqlock logic goes bad. We can not serialize this because the arch
4868  * code calls this from NMI context.
4869  */
4870 void perf_event_update_userpage(struct perf_event *event)
4871 {
4872 	struct perf_event_mmap_page *userpg;
4873 	struct ring_buffer *rb;
4874 	u64 enabled, running, now;
4875 
4876 	rcu_read_lock();
4877 	rb = rcu_dereference(event->rb);
4878 	if (!rb)
4879 		goto unlock;
4880 
4881 	/*
4882 	 * compute total_time_enabled, total_time_running
4883 	 * based on snapshot values taken when the event
4884 	 * was last scheduled in.
4885 	 *
4886 	 * we cannot simply called update_context_time()
4887 	 * because of locking issue as we can be called in
4888 	 * NMI context
4889 	 */
4890 	calc_timer_values(event, &now, &enabled, &running);
4891 
4892 	userpg = rb->user_page;
4893 	/*
4894 	 * Disable preemption so as to not let the corresponding user-space
4895 	 * spin too long if we get preempted.
4896 	 */
4897 	preempt_disable();
4898 	++userpg->lock;
4899 	barrier();
4900 	userpg->index = perf_event_index(event);
4901 	userpg->offset = perf_event_count(event);
4902 	if (userpg->index)
4903 		userpg->offset -= local64_read(&event->hw.prev_count);
4904 
4905 	userpg->time_enabled = enabled +
4906 			atomic64_read(&event->child_total_time_enabled);
4907 
4908 	userpg->time_running = running +
4909 			atomic64_read(&event->child_total_time_running);
4910 
4911 	arch_perf_update_userpage(event, userpg, now);
4912 
4913 	barrier();
4914 	++userpg->lock;
4915 	preempt_enable();
4916 unlock:
4917 	rcu_read_unlock();
4918 }
4919 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
4920 
4921 static int perf_mmap_fault(struct vm_fault *vmf)
4922 {
4923 	struct perf_event *event = vmf->vma->vm_file->private_data;
4924 	struct ring_buffer *rb;
4925 	int ret = VM_FAULT_SIGBUS;
4926 
4927 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4928 		if (vmf->pgoff == 0)
4929 			ret = 0;
4930 		return ret;
4931 	}
4932 
4933 	rcu_read_lock();
4934 	rb = rcu_dereference(event->rb);
4935 	if (!rb)
4936 		goto unlock;
4937 
4938 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4939 		goto unlock;
4940 
4941 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4942 	if (!vmf->page)
4943 		goto unlock;
4944 
4945 	get_page(vmf->page);
4946 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4947 	vmf->page->index   = vmf->pgoff;
4948 
4949 	ret = 0;
4950 unlock:
4951 	rcu_read_unlock();
4952 
4953 	return ret;
4954 }
4955 
4956 static void ring_buffer_attach(struct perf_event *event,
4957 			       struct ring_buffer *rb)
4958 {
4959 	struct ring_buffer *old_rb = NULL;
4960 	unsigned long flags;
4961 
4962 	if (event->rb) {
4963 		/*
4964 		 * Should be impossible, we set this when removing
4965 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4966 		 */
4967 		WARN_ON_ONCE(event->rcu_pending);
4968 
4969 		old_rb = event->rb;
4970 		spin_lock_irqsave(&old_rb->event_lock, flags);
4971 		list_del_rcu(&event->rb_entry);
4972 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4973 
4974 		event->rcu_batches = get_state_synchronize_rcu();
4975 		event->rcu_pending = 1;
4976 	}
4977 
4978 	if (rb) {
4979 		if (event->rcu_pending) {
4980 			cond_synchronize_rcu(event->rcu_batches);
4981 			event->rcu_pending = 0;
4982 		}
4983 
4984 		spin_lock_irqsave(&rb->event_lock, flags);
4985 		list_add_rcu(&event->rb_entry, &rb->event_list);
4986 		spin_unlock_irqrestore(&rb->event_lock, flags);
4987 	}
4988 
4989 	/*
4990 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4991 	 * before swizzling the event::rb pointer; if it's getting
4992 	 * unmapped, its aux_mmap_count will be 0 and it won't
4993 	 * restart. See the comment in __perf_pmu_output_stop().
4994 	 *
4995 	 * Data will inevitably be lost when set_output is done in
4996 	 * mid-air, but then again, whoever does it like this is
4997 	 * not in for the data anyway.
4998 	 */
4999 	if (has_aux(event))
5000 		perf_event_stop(event, 0);
5001 
5002 	rcu_assign_pointer(event->rb, rb);
5003 
5004 	if (old_rb) {
5005 		ring_buffer_put(old_rb);
5006 		/*
5007 		 * Since we detached before setting the new rb, so that we
5008 		 * could attach the new rb, we could have missed a wakeup.
5009 		 * Provide it now.
5010 		 */
5011 		wake_up_all(&event->waitq);
5012 	}
5013 }
5014 
5015 static void ring_buffer_wakeup(struct perf_event *event)
5016 {
5017 	struct ring_buffer *rb;
5018 
5019 	rcu_read_lock();
5020 	rb = rcu_dereference(event->rb);
5021 	if (rb) {
5022 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5023 			wake_up_all(&event->waitq);
5024 	}
5025 	rcu_read_unlock();
5026 }
5027 
5028 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5029 {
5030 	struct ring_buffer *rb;
5031 
5032 	rcu_read_lock();
5033 	rb = rcu_dereference(event->rb);
5034 	if (rb) {
5035 		if (!atomic_inc_not_zero(&rb->refcount))
5036 			rb = NULL;
5037 	}
5038 	rcu_read_unlock();
5039 
5040 	return rb;
5041 }
5042 
5043 void ring_buffer_put(struct ring_buffer *rb)
5044 {
5045 	if (!atomic_dec_and_test(&rb->refcount))
5046 		return;
5047 
5048 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5049 
5050 	call_rcu(&rb->rcu_head, rb_free_rcu);
5051 }
5052 
5053 static void perf_mmap_open(struct vm_area_struct *vma)
5054 {
5055 	struct perf_event *event = vma->vm_file->private_data;
5056 
5057 	atomic_inc(&event->mmap_count);
5058 	atomic_inc(&event->rb->mmap_count);
5059 
5060 	if (vma->vm_pgoff)
5061 		atomic_inc(&event->rb->aux_mmap_count);
5062 
5063 	if (event->pmu->event_mapped)
5064 		event->pmu->event_mapped(event, vma->vm_mm);
5065 }
5066 
5067 static void perf_pmu_output_stop(struct perf_event *event);
5068 
5069 /*
5070  * A buffer can be mmap()ed multiple times; either directly through the same
5071  * event, or through other events by use of perf_event_set_output().
5072  *
5073  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5074  * the buffer here, where we still have a VM context. This means we need
5075  * to detach all events redirecting to us.
5076  */
5077 static void perf_mmap_close(struct vm_area_struct *vma)
5078 {
5079 	struct perf_event *event = vma->vm_file->private_data;
5080 
5081 	struct ring_buffer *rb = ring_buffer_get(event);
5082 	struct user_struct *mmap_user = rb->mmap_user;
5083 	int mmap_locked = rb->mmap_locked;
5084 	unsigned long size = perf_data_size(rb);
5085 
5086 	if (event->pmu->event_unmapped)
5087 		event->pmu->event_unmapped(event, vma->vm_mm);
5088 
5089 	/*
5090 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5091 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5092 	 * serialize with perf_mmap here.
5093 	 */
5094 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5095 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5096 		/*
5097 		 * Stop all AUX events that are writing to this buffer,
5098 		 * so that we can free its AUX pages and corresponding PMU
5099 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5100 		 * they won't start any more (see perf_aux_output_begin()).
5101 		 */
5102 		perf_pmu_output_stop(event);
5103 
5104 		/* now it's safe to free the pages */
5105 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5106 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5107 
5108 		/* this has to be the last one */
5109 		rb_free_aux(rb);
5110 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5111 
5112 		mutex_unlock(&event->mmap_mutex);
5113 	}
5114 
5115 	atomic_dec(&rb->mmap_count);
5116 
5117 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5118 		goto out_put;
5119 
5120 	ring_buffer_attach(event, NULL);
5121 	mutex_unlock(&event->mmap_mutex);
5122 
5123 	/* If there's still other mmap()s of this buffer, we're done. */
5124 	if (atomic_read(&rb->mmap_count))
5125 		goto out_put;
5126 
5127 	/*
5128 	 * No other mmap()s, detach from all other events that might redirect
5129 	 * into the now unreachable buffer. Somewhat complicated by the
5130 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5131 	 */
5132 again:
5133 	rcu_read_lock();
5134 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5135 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5136 			/*
5137 			 * This event is en-route to free_event() which will
5138 			 * detach it and remove it from the list.
5139 			 */
5140 			continue;
5141 		}
5142 		rcu_read_unlock();
5143 
5144 		mutex_lock(&event->mmap_mutex);
5145 		/*
5146 		 * Check we didn't race with perf_event_set_output() which can
5147 		 * swizzle the rb from under us while we were waiting to
5148 		 * acquire mmap_mutex.
5149 		 *
5150 		 * If we find a different rb; ignore this event, a next
5151 		 * iteration will no longer find it on the list. We have to
5152 		 * still restart the iteration to make sure we're not now
5153 		 * iterating the wrong list.
5154 		 */
5155 		if (event->rb == rb)
5156 			ring_buffer_attach(event, NULL);
5157 
5158 		mutex_unlock(&event->mmap_mutex);
5159 		put_event(event);
5160 
5161 		/*
5162 		 * Restart the iteration; either we're on the wrong list or
5163 		 * destroyed its integrity by doing a deletion.
5164 		 */
5165 		goto again;
5166 	}
5167 	rcu_read_unlock();
5168 
5169 	/*
5170 	 * It could be there's still a few 0-ref events on the list; they'll
5171 	 * get cleaned up by free_event() -- they'll also still have their
5172 	 * ref on the rb and will free it whenever they are done with it.
5173 	 *
5174 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5175 	 * undo the VM accounting.
5176 	 */
5177 
5178 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5179 	vma->vm_mm->pinned_vm -= mmap_locked;
5180 	free_uid(mmap_user);
5181 
5182 out_put:
5183 	ring_buffer_put(rb); /* could be last */
5184 }
5185 
5186 static const struct vm_operations_struct perf_mmap_vmops = {
5187 	.open		= perf_mmap_open,
5188 	.close		= perf_mmap_close, /* non mergable */
5189 	.fault		= perf_mmap_fault,
5190 	.page_mkwrite	= perf_mmap_fault,
5191 };
5192 
5193 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5194 {
5195 	struct perf_event *event = file->private_data;
5196 	unsigned long user_locked, user_lock_limit;
5197 	struct user_struct *user = current_user();
5198 	unsigned long locked, lock_limit;
5199 	struct ring_buffer *rb = NULL;
5200 	unsigned long vma_size;
5201 	unsigned long nr_pages;
5202 	long user_extra = 0, extra = 0;
5203 	int ret = 0, flags = 0;
5204 
5205 	/*
5206 	 * Don't allow mmap() of inherited per-task counters. This would
5207 	 * create a performance issue due to all children writing to the
5208 	 * same rb.
5209 	 */
5210 	if (event->cpu == -1 && event->attr.inherit)
5211 		return -EINVAL;
5212 
5213 	if (!(vma->vm_flags & VM_SHARED))
5214 		return -EINVAL;
5215 
5216 	vma_size = vma->vm_end - vma->vm_start;
5217 
5218 	if (vma->vm_pgoff == 0) {
5219 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5220 	} else {
5221 		/*
5222 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5223 		 * mapped, all subsequent mappings should have the same size
5224 		 * and offset. Must be above the normal perf buffer.
5225 		 */
5226 		u64 aux_offset, aux_size;
5227 
5228 		if (!event->rb)
5229 			return -EINVAL;
5230 
5231 		nr_pages = vma_size / PAGE_SIZE;
5232 
5233 		mutex_lock(&event->mmap_mutex);
5234 		ret = -EINVAL;
5235 
5236 		rb = event->rb;
5237 		if (!rb)
5238 			goto aux_unlock;
5239 
5240 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5241 		aux_size = READ_ONCE(rb->user_page->aux_size);
5242 
5243 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5244 			goto aux_unlock;
5245 
5246 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5247 			goto aux_unlock;
5248 
5249 		/* already mapped with a different offset */
5250 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5251 			goto aux_unlock;
5252 
5253 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5254 			goto aux_unlock;
5255 
5256 		/* already mapped with a different size */
5257 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5258 			goto aux_unlock;
5259 
5260 		if (!is_power_of_2(nr_pages))
5261 			goto aux_unlock;
5262 
5263 		if (!atomic_inc_not_zero(&rb->mmap_count))
5264 			goto aux_unlock;
5265 
5266 		if (rb_has_aux(rb)) {
5267 			atomic_inc(&rb->aux_mmap_count);
5268 			ret = 0;
5269 			goto unlock;
5270 		}
5271 
5272 		atomic_set(&rb->aux_mmap_count, 1);
5273 		user_extra = nr_pages;
5274 
5275 		goto accounting;
5276 	}
5277 
5278 	/*
5279 	 * If we have rb pages ensure they're a power-of-two number, so we
5280 	 * can do bitmasks instead of modulo.
5281 	 */
5282 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5283 		return -EINVAL;
5284 
5285 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5286 		return -EINVAL;
5287 
5288 	WARN_ON_ONCE(event->ctx->parent_ctx);
5289 again:
5290 	mutex_lock(&event->mmap_mutex);
5291 	if (event->rb) {
5292 		if (event->rb->nr_pages != nr_pages) {
5293 			ret = -EINVAL;
5294 			goto unlock;
5295 		}
5296 
5297 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5298 			/*
5299 			 * Raced against perf_mmap_close() through
5300 			 * perf_event_set_output(). Try again, hope for better
5301 			 * luck.
5302 			 */
5303 			mutex_unlock(&event->mmap_mutex);
5304 			goto again;
5305 		}
5306 
5307 		goto unlock;
5308 	}
5309 
5310 	user_extra = nr_pages + 1;
5311 
5312 accounting:
5313 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5314 
5315 	/*
5316 	 * Increase the limit linearly with more CPUs:
5317 	 */
5318 	user_lock_limit *= num_online_cpus();
5319 
5320 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5321 
5322 	if (user_locked > user_lock_limit)
5323 		extra = user_locked - user_lock_limit;
5324 
5325 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5326 	lock_limit >>= PAGE_SHIFT;
5327 	locked = vma->vm_mm->pinned_vm + extra;
5328 
5329 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5330 		!capable(CAP_IPC_LOCK)) {
5331 		ret = -EPERM;
5332 		goto unlock;
5333 	}
5334 
5335 	WARN_ON(!rb && event->rb);
5336 
5337 	if (vma->vm_flags & VM_WRITE)
5338 		flags |= RING_BUFFER_WRITABLE;
5339 
5340 	if (!rb) {
5341 		rb = rb_alloc(nr_pages,
5342 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5343 			      event->cpu, flags);
5344 
5345 		if (!rb) {
5346 			ret = -ENOMEM;
5347 			goto unlock;
5348 		}
5349 
5350 		atomic_set(&rb->mmap_count, 1);
5351 		rb->mmap_user = get_current_user();
5352 		rb->mmap_locked = extra;
5353 
5354 		ring_buffer_attach(event, rb);
5355 
5356 		perf_event_init_userpage(event);
5357 		perf_event_update_userpage(event);
5358 	} else {
5359 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5360 				   event->attr.aux_watermark, flags);
5361 		if (!ret)
5362 			rb->aux_mmap_locked = extra;
5363 	}
5364 
5365 unlock:
5366 	if (!ret) {
5367 		atomic_long_add(user_extra, &user->locked_vm);
5368 		vma->vm_mm->pinned_vm += extra;
5369 
5370 		atomic_inc(&event->mmap_count);
5371 	} else if (rb) {
5372 		atomic_dec(&rb->mmap_count);
5373 	}
5374 aux_unlock:
5375 	mutex_unlock(&event->mmap_mutex);
5376 
5377 	/*
5378 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5379 	 * vma.
5380 	 */
5381 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5382 	vma->vm_ops = &perf_mmap_vmops;
5383 
5384 	if (event->pmu->event_mapped)
5385 		event->pmu->event_mapped(event, vma->vm_mm);
5386 
5387 	return ret;
5388 }
5389 
5390 static int perf_fasync(int fd, struct file *filp, int on)
5391 {
5392 	struct inode *inode = file_inode(filp);
5393 	struct perf_event *event = filp->private_data;
5394 	int retval;
5395 
5396 	inode_lock(inode);
5397 	retval = fasync_helper(fd, filp, on, &event->fasync);
5398 	inode_unlock(inode);
5399 
5400 	if (retval < 0)
5401 		return retval;
5402 
5403 	return 0;
5404 }
5405 
5406 static const struct file_operations perf_fops = {
5407 	.llseek			= no_llseek,
5408 	.release		= perf_release,
5409 	.read			= perf_read,
5410 	.poll			= perf_poll,
5411 	.unlocked_ioctl		= perf_ioctl,
5412 	.compat_ioctl		= perf_compat_ioctl,
5413 	.mmap			= perf_mmap,
5414 	.fasync			= perf_fasync,
5415 };
5416 
5417 /*
5418  * Perf event wakeup
5419  *
5420  * If there's data, ensure we set the poll() state and publish everything
5421  * to user-space before waking everybody up.
5422  */
5423 
5424 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5425 {
5426 	/* only the parent has fasync state */
5427 	if (event->parent)
5428 		event = event->parent;
5429 	return &event->fasync;
5430 }
5431 
5432 void perf_event_wakeup(struct perf_event *event)
5433 {
5434 	ring_buffer_wakeup(event);
5435 
5436 	if (event->pending_kill) {
5437 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5438 		event->pending_kill = 0;
5439 	}
5440 }
5441 
5442 static void perf_pending_event(struct irq_work *entry)
5443 {
5444 	struct perf_event *event = container_of(entry,
5445 			struct perf_event, pending);
5446 	int rctx;
5447 
5448 	rctx = perf_swevent_get_recursion_context();
5449 	/*
5450 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5451 	 * and we won't recurse 'further'.
5452 	 */
5453 
5454 	if (event->pending_disable) {
5455 		event->pending_disable = 0;
5456 		perf_event_disable_local(event);
5457 	}
5458 
5459 	if (event->pending_wakeup) {
5460 		event->pending_wakeup = 0;
5461 		perf_event_wakeup(event);
5462 	}
5463 
5464 	if (rctx >= 0)
5465 		perf_swevent_put_recursion_context(rctx);
5466 }
5467 
5468 /*
5469  * We assume there is only KVM supporting the callbacks.
5470  * Later on, we might change it to a list if there is
5471  * another virtualization implementation supporting the callbacks.
5472  */
5473 struct perf_guest_info_callbacks *perf_guest_cbs;
5474 
5475 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5476 {
5477 	perf_guest_cbs = cbs;
5478 	return 0;
5479 }
5480 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5481 
5482 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5483 {
5484 	perf_guest_cbs = NULL;
5485 	return 0;
5486 }
5487 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5488 
5489 static void
5490 perf_output_sample_regs(struct perf_output_handle *handle,
5491 			struct pt_regs *regs, u64 mask)
5492 {
5493 	int bit;
5494 	DECLARE_BITMAP(_mask, 64);
5495 
5496 	bitmap_from_u64(_mask, mask);
5497 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5498 		u64 val;
5499 
5500 		val = perf_reg_value(regs, bit);
5501 		perf_output_put(handle, val);
5502 	}
5503 }
5504 
5505 static void perf_sample_regs_user(struct perf_regs *regs_user,
5506 				  struct pt_regs *regs,
5507 				  struct pt_regs *regs_user_copy)
5508 {
5509 	if (user_mode(regs)) {
5510 		regs_user->abi = perf_reg_abi(current);
5511 		regs_user->regs = regs;
5512 	} else if (current->mm) {
5513 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5514 	} else {
5515 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5516 		regs_user->regs = NULL;
5517 	}
5518 }
5519 
5520 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5521 				  struct pt_regs *regs)
5522 {
5523 	regs_intr->regs = regs;
5524 	regs_intr->abi  = perf_reg_abi(current);
5525 }
5526 
5527 
5528 /*
5529  * Get remaining task size from user stack pointer.
5530  *
5531  * It'd be better to take stack vma map and limit this more
5532  * precisly, but there's no way to get it safely under interrupt,
5533  * so using TASK_SIZE as limit.
5534  */
5535 static u64 perf_ustack_task_size(struct pt_regs *regs)
5536 {
5537 	unsigned long addr = perf_user_stack_pointer(regs);
5538 
5539 	if (!addr || addr >= TASK_SIZE)
5540 		return 0;
5541 
5542 	return TASK_SIZE - addr;
5543 }
5544 
5545 static u16
5546 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5547 			struct pt_regs *regs)
5548 {
5549 	u64 task_size;
5550 
5551 	/* No regs, no stack pointer, no dump. */
5552 	if (!regs)
5553 		return 0;
5554 
5555 	/*
5556 	 * Check if we fit in with the requested stack size into the:
5557 	 * - TASK_SIZE
5558 	 *   If we don't, we limit the size to the TASK_SIZE.
5559 	 *
5560 	 * - remaining sample size
5561 	 *   If we don't, we customize the stack size to
5562 	 *   fit in to the remaining sample size.
5563 	 */
5564 
5565 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5566 	stack_size = min(stack_size, (u16) task_size);
5567 
5568 	/* Current header size plus static size and dynamic size. */
5569 	header_size += 2 * sizeof(u64);
5570 
5571 	/* Do we fit in with the current stack dump size? */
5572 	if ((u16) (header_size + stack_size) < header_size) {
5573 		/*
5574 		 * If we overflow the maximum size for the sample,
5575 		 * we customize the stack dump size to fit in.
5576 		 */
5577 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5578 		stack_size = round_up(stack_size, sizeof(u64));
5579 	}
5580 
5581 	return stack_size;
5582 }
5583 
5584 static void
5585 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5586 			  struct pt_regs *regs)
5587 {
5588 	/* Case of a kernel thread, nothing to dump */
5589 	if (!regs) {
5590 		u64 size = 0;
5591 		perf_output_put(handle, size);
5592 	} else {
5593 		unsigned long sp;
5594 		unsigned int rem;
5595 		u64 dyn_size;
5596 
5597 		/*
5598 		 * We dump:
5599 		 * static size
5600 		 *   - the size requested by user or the best one we can fit
5601 		 *     in to the sample max size
5602 		 * data
5603 		 *   - user stack dump data
5604 		 * dynamic size
5605 		 *   - the actual dumped size
5606 		 */
5607 
5608 		/* Static size. */
5609 		perf_output_put(handle, dump_size);
5610 
5611 		/* Data. */
5612 		sp = perf_user_stack_pointer(regs);
5613 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5614 		dyn_size = dump_size - rem;
5615 
5616 		perf_output_skip(handle, rem);
5617 
5618 		/* Dynamic size. */
5619 		perf_output_put(handle, dyn_size);
5620 	}
5621 }
5622 
5623 static void __perf_event_header__init_id(struct perf_event_header *header,
5624 					 struct perf_sample_data *data,
5625 					 struct perf_event *event)
5626 {
5627 	u64 sample_type = event->attr.sample_type;
5628 
5629 	data->type = sample_type;
5630 	header->size += event->id_header_size;
5631 
5632 	if (sample_type & PERF_SAMPLE_TID) {
5633 		/* namespace issues */
5634 		data->tid_entry.pid = perf_event_pid(event, current);
5635 		data->tid_entry.tid = perf_event_tid(event, current);
5636 	}
5637 
5638 	if (sample_type & PERF_SAMPLE_TIME)
5639 		data->time = perf_event_clock(event);
5640 
5641 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5642 		data->id = primary_event_id(event);
5643 
5644 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5645 		data->stream_id = event->id;
5646 
5647 	if (sample_type & PERF_SAMPLE_CPU) {
5648 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5649 		data->cpu_entry.reserved = 0;
5650 	}
5651 }
5652 
5653 void perf_event_header__init_id(struct perf_event_header *header,
5654 				struct perf_sample_data *data,
5655 				struct perf_event *event)
5656 {
5657 	if (event->attr.sample_id_all)
5658 		__perf_event_header__init_id(header, data, event);
5659 }
5660 
5661 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5662 					   struct perf_sample_data *data)
5663 {
5664 	u64 sample_type = data->type;
5665 
5666 	if (sample_type & PERF_SAMPLE_TID)
5667 		perf_output_put(handle, data->tid_entry);
5668 
5669 	if (sample_type & PERF_SAMPLE_TIME)
5670 		perf_output_put(handle, data->time);
5671 
5672 	if (sample_type & PERF_SAMPLE_ID)
5673 		perf_output_put(handle, data->id);
5674 
5675 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5676 		perf_output_put(handle, data->stream_id);
5677 
5678 	if (sample_type & PERF_SAMPLE_CPU)
5679 		perf_output_put(handle, data->cpu_entry);
5680 
5681 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5682 		perf_output_put(handle, data->id);
5683 }
5684 
5685 void perf_event__output_id_sample(struct perf_event *event,
5686 				  struct perf_output_handle *handle,
5687 				  struct perf_sample_data *sample)
5688 {
5689 	if (event->attr.sample_id_all)
5690 		__perf_event__output_id_sample(handle, sample);
5691 }
5692 
5693 static void perf_output_read_one(struct perf_output_handle *handle,
5694 				 struct perf_event *event,
5695 				 u64 enabled, u64 running)
5696 {
5697 	u64 read_format = event->attr.read_format;
5698 	u64 values[4];
5699 	int n = 0;
5700 
5701 	values[n++] = perf_event_count(event);
5702 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5703 		values[n++] = enabled +
5704 			atomic64_read(&event->child_total_time_enabled);
5705 	}
5706 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5707 		values[n++] = running +
5708 			atomic64_read(&event->child_total_time_running);
5709 	}
5710 	if (read_format & PERF_FORMAT_ID)
5711 		values[n++] = primary_event_id(event);
5712 
5713 	__output_copy(handle, values, n * sizeof(u64));
5714 }
5715 
5716 static void perf_output_read_group(struct perf_output_handle *handle,
5717 			    struct perf_event *event,
5718 			    u64 enabled, u64 running)
5719 {
5720 	struct perf_event *leader = event->group_leader, *sub;
5721 	u64 read_format = event->attr.read_format;
5722 	u64 values[5];
5723 	int n = 0;
5724 
5725 	values[n++] = 1 + leader->nr_siblings;
5726 
5727 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5728 		values[n++] = enabled;
5729 
5730 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5731 		values[n++] = running;
5732 
5733 	if (leader != event)
5734 		leader->pmu->read(leader);
5735 
5736 	values[n++] = perf_event_count(leader);
5737 	if (read_format & PERF_FORMAT_ID)
5738 		values[n++] = primary_event_id(leader);
5739 
5740 	__output_copy(handle, values, n * sizeof(u64));
5741 
5742 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5743 		n = 0;
5744 
5745 		if ((sub != event) &&
5746 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5747 			sub->pmu->read(sub);
5748 
5749 		values[n++] = perf_event_count(sub);
5750 		if (read_format & PERF_FORMAT_ID)
5751 			values[n++] = primary_event_id(sub);
5752 
5753 		__output_copy(handle, values, n * sizeof(u64));
5754 	}
5755 }
5756 
5757 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5758 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5759 
5760 /*
5761  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5762  *
5763  * The problem is that its both hard and excessively expensive to iterate the
5764  * child list, not to mention that its impossible to IPI the children running
5765  * on another CPU, from interrupt/NMI context.
5766  */
5767 static void perf_output_read(struct perf_output_handle *handle,
5768 			     struct perf_event *event)
5769 {
5770 	u64 enabled = 0, running = 0, now;
5771 	u64 read_format = event->attr.read_format;
5772 
5773 	/*
5774 	 * compute total_time_enabled, total_time_running
5775 	 * based on snapshot values taken when the event
5776 	 * was last scheduled in.
5777 	 *
5778 	 * we cannot simply called update_context_time()
5779 	 * because of locking issue as we are called in
5780 	 * NMI context
5781 	 */
5782 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5783 		calc_timer_values(event, &now, &enabled, &running);
5784 
5785 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5786 		perf_output_read_group(handle, event, enabled, running);
5787 	else
5788 		perf_output_read_one(handle, event, enabled, running);
5789 }
5790 
5791 void perf_output_sample(struct perf_output_handle *handle,
5792 			struct perf_event_header *header,
5793 			struct perf_sample_data *data,
5794 			struct perf_event *event)
5795 {
5796 	u64 sample_type = data->type;
5797 
5798 	perf_output_put(handle, *header);
5799 
5800 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5801 		perf_output_put(handle, data->id);
5802 
5803 	if (sample_type & PERF_SAMPLE_IP)
5804 		perf_output_put(handle, data->ip);
5805 
5806 	if (sample_type & PERF_SAMPLE_TID)
5807 		perf_output_put(handle, data->tid_entry);
5808 
5809 	if (sample_type & PERF_SAMPLE_TIME)
5810 		perf_output_put(handle, data->time);
5811 
5812 	if (sample_type & PERF_SAMPLE_ADDR)
5813 		perf_output_put(handle, data->addr);
5814 
5815 	if (sample_type & PERF_SAMPLE_ID)
5816 		perf_output_put(handle, data->id);
5817 
5818 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5819 		perf_output_put(handle, data->stream_id);
5820 
5821 	if (sample_type & PERF_SAMPLE_CPU)
5822 		perf_output_put(handle, data->cpu_entry);
5823 
5824 	if (sample_type & PERF_SAMPLE_PERIOD)
5825 		perf_output_put(handle, data->period);
5826 
5827 	if (sample_type & PERF_SAMPLE_READ)
5828 		perf_output_read(handle, event);
5829 
5830 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5831 		int size = 1;
5832 
5833 		size += data->callchain->nr;
5834 		size *= sizeof(u64);
5835 		__output_copy(handle, data->callchain, size);
5836 	}
5837 
5838 	if (sample_type & PERF_SAMPLE_RAW) {
5839 		struct perf_raw_record *raw = data->raw;
5840 
5841 		if (raw) {
5842 			struct perf_raw_frag *frag = &raw->frag;
5843 
5844 			perf_output_put(handle, raw->size);
5845 			do {
5846 				if (frag->copy) {
5847 					__output_custom(handle, frag->copy,
5848 							frag->data, frag->size);
5849 				} else {
5850 					__output_copy(handle, frag->data,
5851 						      frag->size);
5852 				}
5853 				if (perf_raw_frag_last(frag))
5854 					break;
5855 				frag = frag->next;
5856 			} while (1);
5857 			if (frag->pad)
5858 				__output_skip(handle, NULL, frag->pad);
5859 		} else {
5860 			struct {
5861 				u32	size;
5862 				u32	data;
5863 			} raw = {
5864 				.size = sizeof(u32),
5865 				.data = 0,
5866 			};
5867 			perf_output_put(handle, raw);
5868 		}
5869 	}
5870 
5871 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5872 		if (data->br_stack) {
5873 			size_t size;
5874 
5875 			size = data->br_stack->nr
5876 			     * sizeof(struct perf_branch_entry);
5877 
5878 			perf_output_put(handle, data->br_stack->nr);
5879 			perf_output_copy(handle, data->br_stack->entries, size);
5880 		} else {
5881 			/*
5882 			 * we always store at least the value of nr
5883 			 */
5884 			u64 nr = 0;
5885 			perf_output_put(handle, nr);
5886 		}
5887 	}
5888 
5889 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5890 		u64 abi = data->regs_user.abi;
5891 
5892 		/*
5893 		 * If there are no regs to dump, notice it through
5894 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5895 		 */
5896 		perf_output_put(handle, abi);
5897 
5898 		if (abi) {
5899 			u64 mask = event->attr.sample_regs_user;
5900 			perf_output_sample_regs(handle,
5901 						data->regs_user.regs,
5902 						mask);
5903 		}
5904 	}
5905 
5906 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5907 		perf_output_sample_ustack(handle,
5908 					  data->stack_user_size,
5909 					  data->regs_user.regs);
5910 	}
5911 
5912 	if (sample_type & PERF_SAMPLE_WEIGHT)
5913 		perf_output_put(handle, data->weight);
5914 
5915 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5916 		perf_output_put(handle, data->data_src.val);
5917 
5918 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5919 		perf_output_put(handle, data->txn);
5920 
5921 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5922 		u64 abi = data->regs_intr.abi;
5923 		/*
5924 		 * If there are no regs to dump, notice it through
5925 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5926 		 */
5927 		perf_output_put(handle, abi);
5928 
5929 		if (abi) {
5930 			u64 mask = event->attr.sample_regs_intr;
5931 
5932 			perf_output_sample_regs(handle,
5933 						data->regs_intr.regs,
5934 						mask);
5935 		}
5936 	}
5937 
5938 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
5939 		perf_output_put(handle, data->phys_addr);
5940 
5941 	if (!event->attr.watermark) {
5942 		int wakeup_events = event->attr.wakeup_events;
5943 
5944 		if (wakeup_events) {
5945 			struct ring_buffer *rb = handle->rb;
5946 			int events = local_inc_return(&rb->events);
5947 
5948 			if (events >= wakeup_events) {
5949 				local_sub(wakeup_events, &rb->events);
5950 				local_inc(&rb->wakeup);
5951 			}
5952 		}
5953 	}
5954 }
5955 
5956 static u64 perf_virt_to_phys(u64 virt)
5957 {
5958 	u64 phys_addr = 0;
5959 	struct page *p = NULL;
5960 
5961 	if (!virt)
5962 		return 0;
5963 
5964 	if (virt >= TASK_SIZE) {
5965 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
5966 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
5967 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
5968 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
5969 	} else {
5970 		/*
5971 		 * Walking the pages tables for user address.
5972 		 * Interrupts are disabled, so it prevents any tear down
5973 		 * of the page tables.
5974 		 * Try IRQ-safe __get_user_pages_fast first.
5975 		 * If failed, leave phys_addr as 0.
5976 		 */
5977 		if ((current->mm != NULL) &&
5978 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
5979 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
5980 
5981 		if (p)
5982 			put_page(p);
5983 	}
5984 
5985 	return phys_addr;
5986 }
5987 
5988 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
5989 
5990 static struct perf_callchain_entry *
5991 perf_callchain(struct perf_event *event, struct pt_regs *regs)
5992 {
5993 	bool kernel = !event->attr.exclude_callchain_kernel;
5994 	bool user   = !event->attr.exclude_callchain_user;
5995 	/* Disallow cross-task user callchains. */
5996 	bool crosstask = event->ctx->task && event->ctx->task != current;
5997 	const u32 max_stack = event->attr.sample_max_stack;
5998 	struct perf_callchain_entry *callchain;
5999 
6000 	if (!kernel && !user)
6001 		return &__empty_callchain;
6002 
6003 	callchain = get_perf_callchain(regs, 0, kernel, user,
6004 				       max_stack, crosstask, true);
6005 	return callchain ?: &__empty_callchain;
6006 }
6007 
6008 void perf_prepare_sample(struct perf_event_header *header,
6009 			 struct perf_sample_data *data,
6010 			 struct perf_event *event,
6011 			 struct pt_regs *regs)
6012 {
6013 	u64 sample_type = event->attr.sample_type;
6014 
6015 	header->type = PERF_RECORD_SAMPLE;
6016 	header->size = sizeof(*header) + event->header_size;
6017 
6018 	header->misc = 0;
6019 	header->misc |= perf_misc_flags(regs);
6020 
6021 	__perf_event_header__init_id(header, data, event);
6022 
6023 	if (sample_type & PERF_SAMPLE_IP)
6024 		data->ip = perf_instruction_pointer(regs);
6025 
6026 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6027 		int size = 1;
6028 
6029 		data->callchain = perf_callchain(event, regs);
6030 		size += data->callchain->nr;
6031 
6032 		header->size += size * sizeof(u64);
6033 	}
6034 
6035 	if (sample_type & PERF_SAMPLE_RAW) {
6036 		struct perf_raw_record *raw = data->raw;
6037 		int size;
6038 
6039 		if (raw) {
6040 			struct perf_raw_frag *frag = &raw->frag;
6041 			u32 sum = 0;
6042 
6043 			do {
6044 				sum += frag->size;
6045 				if (perf_raw_frag_last(frag))
6046 					break;
6047 				frag = frag->next;
6048 			} while (1);
6049 
6050 			size = round_up(sum + sizeof(u32), sizeof(u64));
6051 			raw->size = size - sizeof(u32);
6052 			frag->pad = raw->size - sum;
6053 		} else {
6054 			size = sizeof(u64);
6055 		}
6056 
6057 		header->size += size;
6058 	}
6059 
6060 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6061 		int size = sizeof(u64); /* nr */
6062 		if (data->br_stack) {
6063 			size += data->br_stack->nr
6064 			      * sizeof(struct perf_branch_entry);
6065 		}
6066 		header->size += size;
6067 	}
6068 
6069 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6070 		perf_sample_regs_user(&data->regs_user, regs,
6071 				      &data->regs_user_copy);
6072 
6073 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6074 		/* regs dump ABI info */
6075 		int size = sizeof(u64);
6076 
6077 		if (data->regs_user.regs) {
6078 			u64 mask = event->attr.sample_regs_user;
6079 			size += hweight64(mask) * sizeof(u64);
6080 		}
6081 
6082 		header->size += size;
6083 	}
6084 
6085 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6086 		/*
6087 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6088 		 * processed as the last one or have additional check added
6089 		 * in case new sample type is added, because we could eat
6090 		 * up the rest of the sample size.
6091 		 */
6092 		u16 stack_size = event->attr.sample_stack_user;
6093 		u16 size = sizeof(u64);
6094 
6095 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6096 						     data->regs_user.regs);
6097 
6098 		/*
6099 		 * If there is something to dump, add space for the dump
6100 		 * itself and for the field that tells the dynamic size,
6101 		 * which is how many have been actually dumped.
6102 		 */
6103 		if (stack_size)
6104 			size += sizeof(u64) + stack_size;
6105 
6106 		data->stack_user_size = stack_size;
6107 		header->size += size;
6108 	}
6109 
6110 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6111 		/* regs dump ABI info */
6112 		int size = sizeof(u64);
6113 
6114 		perf_sample_regs_intr(&data->regs_intr, regs);
6115 
6116 		if (data->regs_intr.regs) {
6117 			u64 mask = event->attr.sample_regs_intr;
6118 
6119 			size += hweight64(mask) * sizeof(u64);
6120 		}
6121 
6122 		header->size += size;
6123 	}
6124 
6125 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6126 		data->phys_addr = perf_virt_to_phys(data->addr);
6127 }
6128 
6129 static void __always_inline
6130 __perf_event_output(struct perf_event *event,
6131 		    struct perf_sample_data *data,
6132 		    struct pt_regs *regs,
6133 		    int (*output_begin)(struct perf_output_handle *,
6134 					struct perf_event *,
6135 					unsigned int))
6136 {
6137 	struct perf_output_handle handle;
6138 	struct perf_event_header header;
6139 
6140 	/* protect the callchain buffers */
6141 	rcu_read_lock();
6142 
6143 	perf_prepare_sample(&header, data, event, regs);
6144 
6145 	if (output_begin(&handle, event, header.size))
6146 		goto exit;
6147 
6148 	perf_output_sample(&handle, &header, data, event);
6149 
6150 	perf_output_end(&handle);
6151 
6152 exit:
6153 	rcu_read_unlock();
6154 }
6155 
6156 void
6157 perf_event_output_forward(struct perf_event *event,
6158 			 struct perf_sample_data *data,
6159 			 struct pt_regs *regs)
6160 {
6161 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6162 }
6163 
6164 void
6165 perf_event_output_backward(struct perf_event *event,
6166 			   struct perf_sample_data *data,
6167 			   struct pt_regs *regs)
6168 {
6169 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6170 }
6171 
6172 void
6173 perf_event_output(struct perf_event *event,
6174 		  struct perf_sample_data *data,
6175 		  struct pt_regs *regs)
6176 {
6177 	__perf_event_output(event, data, regs, perf_output_begin);
6178 }
6179 
6180 /*
6181  * read event_id
6182  */
6183 
6184 struct perf_read_event {
6185 	struct perf_event_header	header;
6186 
6187 	u32				pid;
6188 	u32				tid;
6189 };
6190 
6191 static void
6192 perf_event_read_event(struct perf_event *event,
6193 			struct task_struct *task)
6194 {
6195 	struct perf_output_handle handle;
6196 	struct perf_sample_data sample;
6197 	struct perf_read_event read_event = {
6198 		.header = {
6199 			.type = PERF_RECORD_READ,
6200 			.misc = 0,
6201 			.size = sizeof(read_event) + event->read_size,
6202 		},
6203 		.pid = perf_event_pid(event, task),
6204 		.tid = perf_event_tid(event, task),
6205 	};
6206 	int ret;
6207 
6208 	perf_event_header__init_id(&read_event.header, &sample, event);
6209 	ret = perf_output_begin(&handle, event, read_event.header.size);
6210 	if (ret)
6211 		return;
6212 
6213 	perf_output_put(&handle, read_event);
6214 	perf_output_read(&handle, event);
6215 	perf_event__output_id_sample(event, &handle, &sample);
6216 
6217 	perf_output_end(&handle);
6218 }
6219 
6220 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6221 
6222 static void
6223 perf_iterate_ctx(struct perf_event_context *ctx,
6224 		   perf_iterate_f output,
6225 		   void *data, bool all)
6226 {
6227 	struct perf_event *event;
6228 
6229 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6230 		if (!all) {
6231 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6232 				continue;
6233 			if (!event_filter_match(event))
6234 				continue;
6235 		}
6236 
6237 		output(event, data);
6238 	}
6239 }
6240 
6241 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6242 {
6243 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6244 	struct perf_event *event;
6245 
6246 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6247 		/*
6248 		 * Skip events that are not fully formed yet; ensure that
6249 		 * if we observe event->ctx, both event and ctx will be
6250 		 * complete enough. See perf_install_in_context().
6251 		 */
6252 		if (!smp_load_acquire(&event->ctx))
6253 			continue;
6254 
6255 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6256 			continue;
6257 		if (!event_filter_match(event))
6258 			continue;
6259 		output(event, data);
6260 	}
6261 }
6262 
6263 /*
6264  * Iterate all events that need to receive side-band events.
6265  *
6266  * For new callers; ensure that account_pmu_sb_event() includes
6267  * your event, otherwise it might not get delivered.
6268  */
6269 static void
6270 perf_iterate_sb(perf_iterate_f output, void *data,
6271 	       struct perf_event_context *task_ctx)
6272 {
6273 	struct perf_event_context *ctx;
6274 	int ctxn;
6275 
6276 	rcu_read_lock();
6277 	preempt_disable();
6278 
6279 	/*
6280 	 * If we have task_ctx != NULL we only notify the task context itself.
6281 	 * The task_ctx is set only for EXIT events before releasing task
6282 	 * context.
6283 	 */
6284 	if (task_ctx) {
6285 		perf_iterate_ctx(task_ctx, output, data, false);
6286 		goto done;
6287 	}
6288 
6289 	perf_iterate_sb_cpu(output, data);
6290 
6291 	for_each_task_context_nr(ctxn) {
6292 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6293 		if (ctx)
6294 			perf_iterate_ctx(ctx, output, data, false);
6295 	}
6296 done:
6297 	preempt_enable();
6298 	rcu_read_unlock();
6299 }
6300 
6301 /*
6302  * Clear all file-based filters at exec, they'll have to be
6303  * re-instated when/if these objects are mmapped again.
6304  */
6305 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6306 {
6307 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6308 	struct perf_addr_filter *filter;
6309 	unsigned int restart = 0, count = 0;
6310 	unsigned long flags;
6311 
6312 	if (!has_addr_filter(event))
6313 		return;
6314 
6315 	raw_spin_lock_irqsave(&ifh->lock, flags);
6316 	list_for_each_entry(filter, &ifh->list, entry) {
6317 		if (filter->inode) {
6318 			event->addr_filters_offs[count] = 0;
6319 			restart++;
6320 		}
6321 
6322 		count++;
6323 	}
6324 
6325 	if (restart)
6326 		event->addr_filters_gen++;
6327 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6328 
6329 	if (restart)
6330 		perf_event_stop(event, 1);
6331 }
6332 
6333 void perf_event_exec(void)
6334 {
6335 	struct perf_event_context *ctx;
6336 	int ctxn;
6337 
6338 	rcu_read_lock();
6339 	for_each_task_context_nr(ctxn) {
6340 		ctx = current->perf_event_ctxp[ctxn];
6341 		if (!ctx)
6342 			continue;
6343 
6344 		perf_event_enable_on_exec(ctxn);
6345 
6346 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6347 				   true);
6348 	}
6349 	rcu_read_unlock();
6350 }
6351 
6352 struct remote_output {
6353 	struct ring_buffer	*rb;
6354 	int			err;
6355 };
6356 
6357 static void __perf_event_output_stop(struct perf_event *event, void *data)
6358 {
6359 	struct perf_event *parent = event->parent;
6360 	struct remote_output *ro = data;
6361 	struct ring_buffer *rb = ro->rb;
6362 	struct stop_event_data sd = {
6363 		.event	= event,
6364 	};
6365 
6366 	if (!has_aux(event))
6367 		return;
6368 
6369 	if (!parent)
6370 		parent = event;
6371 
6372 	/*
6373 	 * In case of inheritance, it will be the parent that links to the
6374 	 * ring-buffer, but it will be the child that's actually using it.
6375 	 *
6376 	 * We are using event::rb to determine if the event should be stopped,
6377 	 * however this may race with ring_buffer_attach() (through set_output),
6378 	 * which will make us skip the event that actually needs to be stopped.
6379 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6380 	 * its rb pointer.
6381 	 */
6382 	if (rcu_dereference(parent->rb) == rb)
6383 		ro->err = __perf_event_stop(&sd);
6384 }
6385 
6386 static int __perf_pmu_output_stop(void *info)
6387 {
6388 	struct perf_event *event = info;
6389 	struct pmu *pmu = event->pmu;
6390 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6391 	struct remote_output ro = {
6392 		.rb	= event->rb,
6393 	};
6394 
6395 	rcu_read_lock();
6396 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6397 	if (cpuctx->task_ctx)
6398 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6399 				   &ro, false);
6400 	rcu_read_unlock();
6401 
6402 	return ro.err;
6403 }
6404 
6405 static void perf_pmu_output_stop(struct perf_event *event)
6406 {
6407 	struct perf_event *iter;
6408 	int err, cpu;
6409 
6410 restart:
6411 	rcu_read_lock();
6412 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6413 		/*
6414 		 * For per-CPU events, we need to make sure that neither they
6415 		 * nor their children are running; for cpu==-1 events it's
6416 		 * sufficient to stop the event itself if it's active, since
6417 		 * it can't have children.
6418 		 */
6419 		cpu = iter->cpu;
6420 		if (cpu == -1)
6421 			cpu = READ_ONCE(iter->oncpu);
6422 
6423 		if (cpu == -1)
6424 			continue;
6425 
6426 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6427 		if (err == -EAGAIN) {
6428 			rcu_read_unlock();
6429 			goto restart;
6430 		}
6431 	}
6432 	rcu_read_unlock();
6433 }
6434 
6435 /*
6436  * task tracking -- fork/exit
6437  *
6438  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6439  */
6440 
6441 struct perf_task_event {
6442 	struct task_struct		*task;
6443 	struct perf_event_context	*task_ctx;
6444 
6445 	struct {
6446 		struct perf_event_header	header;
6447 
6448 		u32				pid;
6449 		u32				ppid;
6450 		u32				tid;
6451 		u32				ptid;
6452 		u64				time;
6453 	} event_id;
6454 };
6455 
6456 static int perf_event_task_match(struct perf_event *event)
6457 {
6458 	return event->attr.comm  || event->attr.mmap ||
6459 	       event->attr.mmap2 || event->attr.mmap_data ||
6460 	       event->attr.task;
6461 }
6462 
6463 static void perf_event_task_output(struct perf_event *event,
6464 				   void *data)
6465 {
6466 	struct perf_task_event *task_event = data;
6467 	struct perf_output_handle handle;
6468 	struct perf_sample_data	sample;
6469 	struct task_struct *task = task_event->task;
6470 	int ret, size = task_event->event_id.header.size;
6471 
6472 	if (!perf_event_task_match(event))
6473 		return;
6474 
6475 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6476 
6477 	ret = perf_output_begin(&handle, event,
6478 				task_event->event_id.header.size);
6479 	if (ret)
6480 		goto out;
6481 
6482 	task_event->event_id.pid = perf_event_pid(event, task);
6483 	task_event->event_id.ppid = perf_event_pid(event, current);
6484 
6485 	task_event->event_id.tid = perf_event_tid(event, task);
6486 	task_event->event_id.ptid = perf_event_tid(event, current);
6487 
6488 	task_event->event_id.time = perf_event_clock(event);
6489 
6490 	perf_output_put(&handle, task_event->event_id);
6491 
6492 	perf_event__output_id_sample(event, &handle, &sample);
6493 
6494 	perf_output_end(&handle);
6495 out:
6496 	task_event->event_id.header.size = size;
6497 }
6498 
6499 static void perf_event_task(struct task_struct *task,
6500 			      struct perf_event_context *task_ctx,
6501 			      int new)
6502 {
6503 	struct perf_task_event task_event;
6504 
6505 	if (!atomic_read(&nr_comm_events) &&
6506 	    !atomic_read(&nr_mmap_events) &&
6507 	    !atomic_read(&nr_task_events))
6508 		return;
6509 
6510 	task_event = (struct perf_task_event){
6511 		.task	  = task,
6512 		.task_ctx = task_ctx,
6513 		.event_id    = {
6514 			.header = {
6515 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6516 				.misc = 0,
6517 				.size = sizeof(task_event.event_id),
6518 			},
6519 			/* .pid  */
6520 			/* .ppid */
6521 			/* .tid  */
6522 			/* .ptid */
6523 			/* .time */
6524 		},
6525 	};
6526 
6527 	perf_iterate_sb(perf_event_task_output,
6528 		       &task_event,
6529 		       task_ctx);
6530 }
6531 
6532 void perf_event_fork(struct task_struct *task)
6533 {
6534 	perf_event_task(task, NULL, 1);
6535 	perf_event_namespaces(task);
6536 }
6537 
6538 /*
6539  * comm tracking
6540  */
6541 
6542 struct perf_comm_event {
6543 	struct task_struct	*task;
6544 	char			*comm;
6545 	int			comm_size;
6546 
6547 	struct {
6548 		struct perf_event_header	header;
6549 
6550 		u32				pid;
6551 		u32				tid;
6552 	} event_id;
6553 };
6554 
6555 static int perf_event_comm_match(struct perf_event *event)
6556 {
6557 	return event->attr.comm;
6558 }
6559 
6560 static void perf_event_comm_output(struct perf_event *event,
6561 				   void *data)
6562 {
6563 	struct perf_comm_event *comm_event = data;
6564 	struct perf_output_handle handle;
6565 	struct perf_sample_data sample;
6566 	int size = comm_event->event_id.header.size;
6567 	int ret;
6568 
6569 	if (!perf_event_comm_match(event))
6570 		return;
6571 
6572 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6573 	ret = perf_output_begin(&handle, event,
6574 				comm_event->event_id.header.size);
6575 
6576 	if (ret)
6577 		goto out;
6578 
6579 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6580 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6581 
6582 	perf_output_put(&handle, comm_event->event_id);
6583 	__output_copy(&handle, comm_event->comm,
6584 				   comm_event->comm_size);
6585 
6586 	perf_event__output_id_sample(event, &handle, &sample);
6587 
6588 	perf_output_end(&handle);
6589 out:
6590 	comm_event->event_id.header.size = size;
6591 }
6592 
6593 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6594 {
6595 	char comm[TASK_COMM_LEN];
6596 	unsigned int size;
6597 
6598 	memset(comm, 0, sizeof(comm));
6599 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6600 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6601 
6602 	comm_event->comm = comm;
6603 	comm_event->comm_size = size;
6604 
6605 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6606 
6607 	perf_iterate_sb(perf_event_comm_output,
6608 		       comm_event,
6609 		       NULL);
6610 }
6611 
6612 void perf_event_comm(struct task_struct *task, bool exec)
6613 {
6614 	struct perf_comm_event comm_event;
6615 
6616 	if (!atomic_read(&nr_comm_events))
6617 		return;
6618 
6619 	comm_event = (struct perf_comm_event){
6620 		.task	= task,
6621 		/* .comm      */
6622 		/* .comm_size */
6623 		.event_id  = {
6624 			.header = {
6625 				.type = PERF_RECORD_COMM,
6626 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6627 				/* .size */
6628 			},
6629 			/* .pid */
6630 			/* .tid */
6631 		},
6632 	};
6633 
6634 	perf_event_comm_event(&comm_event);
6635 }
6636 
6637 /*
6638  * namespaces tracking
6639  */
6640 
6641 struct perf_namespaces_event {
6642 	struct task_struct		*task;
6643 
6644 	struct {
6645 		struct perf_event_header	header;
6646 
6647 		u32				pid;
6648 		u32				tid;
6649 		u64				nr_namespaces;
6650 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6651 	} event_id;
6652 };
6653 
6654 static int perf_event_namespaces_match(struct perf_event *event)
6655 {
6656 	return event->attr.namespaces;
6657 }
6658 
6659 static void perf_event_namespaces_output(struct perf_event *event,
6660 					 void *data)
6661 {
6662 	struct perf_namespaces_event *namespaces_event = data;
6663 	struct perf_output_handle handle;
6664 	struct perf_sample_data sample;
6665 	u16 header_size = namespaces_event->event_id.header.size;
6666 	int ret;
6667 
6668 	if (!perf_event_namespaces_match(event))
6669 		return;
6670 
6671 	perf_event_header__init_id(&namespaces_event->event_id.header,
6672 				   &sample, event);
6673 	ret = perf_output_begin(&handle, event,
6674 				namespaces_event->event_id.header.size);
6675 	if (ret)
6676 		goto out;
6677 
6678 	namespaces_event->event_id.pid = perf_event_pid(event,
6679 							namespaces_event->task);
6680 	namespaces_event->event_id.tid = perf_event_tid(event,
6681 							namespaces_event->task);
6682 
6683 	perf_output_put(&handle, namespaces_event->event_id);
6684 
6685 	perf_event__output_id_sample(event, &handle, &sample);
6686 
6687 	perf_output_end(&handle);
6688 out:
6689 	namespaces_event->event_id.header.size = header_size;
6690 }
6691 
6692 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6693 				   struct task_struct *task,
6694 				   const struct proc_ns_operations *ns_ops)
6695 {
6696 	struct path ns_path;
6697 	struct inode *ns_inode;
6698 	void *error;
6699 
6700 	error = ns_get_path(&ns_path, task, ns_ops);
6701 	if (!error) {
6702 		ns_inode = ns_path.dentry->d_inode;
6703 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6704 		ns_link_info->ino = ns_inode->i_ino;
6705 		path_put(&ns_path);
6706 	}
6707 }
6708 
6709 void perf_event_namespaces(struct task_struct *task)
6710 {
6711 	struct perf_namespaces_event namespaces_event;
6712 	struct perf_ns_link_info *ns_link_info;
6713 
6714 	if (!atomic_read(&nr_namespaces_events))
6715 		return;
6716 
6717 	namespaces_event = (struct perf_namespaces_event){
6718 		.task	= task,
6719 		.event_id  = {
6720 			.header = {
6721 				.type = PERF_RECORD_NAMESPACES,
6722 				.misc = 0,
6723 				.size = sizeof(namespaces_event.event_id),
6724 			},
6725 			/* .pid */
6726 			/* .tid */
6727 			.nr_namespaces = NR_NAMESPACES,
6728 			/* .link_info[NR_NAMESPACES] */
6729 		},
6730 	};
6731 
6732 	ns_link_info = namespaces_event.event_id.link_info;
6733 
6734 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6735 			       task, &mntns_operations);
6736 
6737 #ifdef CONFIG_USER_NS
6738 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6739 			       task, &userns_operations);
6740 #endif
6741 #ifdef CONFIG_NET_NS
6742 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6743 			       task, &netns_operations);
6744 #endif
6745 #ifdef CONFIG_UTS_NS
6746 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6747 			       task, &utsns_operations);
6748 #endif
6749 #ifdef CONFIG_IPC_NS
6750 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6751 			       task, &ipcns_operations);
6752 #endif
6753 #ifdef CONFIG_PID_NS
6754 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6755 			       task, &pidns_operations);
6756 #endif
6757 #ifdef CONFIG_CGROUPS
6758 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6759 			       task, &cgroupns_operations);
6760 #endif
6761 
6762 	perf_iterate_sb(perf_event_namespaces_output,
6763 			&namespaces_event,
6764 			NULL);
6765 }
6766 
6767 /*
6768  * mmap tracking
6769  */
6770 
6771 struct perf_mmap_event {
6772 	struct vm_area_struct	*vma;
6773 
6774 	const char		*file_name;
6775 	int			file_size;
6776 	int			maj, min;
6777 	u64			ino;
6778 	u64			ino_generation;
6779 	u32			prot, flags;
6780 
6781 	struct {
6782 		struct perf_event_header	header;
6783 
6784 		u32				pid;
6785 		u32				tid;
6786 		u64				start;
6787 		u64				len;
6788 		u64				pgoff;
6789 	} event_id;
6790 };
6791 
6792 static int perf_event_mmap_match(struct perf_event *event,
6793 				 void *data)
6794 {
6795 	struct perf_mmap_event *mmap_event = data;
6796 	struct vm_area_struct *vma = mmap_event->vma;
6797 	int executable = vma->vm_flags & VM_EXEC;
6798 
6799 	return (!executable && event->attr.mmap_data) ||
6800 	       (executable && (event->attr.mmap || event->attr.mmap2));
6801 }
6802 
6803 static void perf_event_mmap_output(struct perf_event *event,
6804 				   void *data)
6805 {
6806 	struct perf_mmap_event *mmap_event = data;
6807 	struct perf_output_handle handle;
6808 	struct perf_sample_data sample;
6809 	int size = mmap_event->event_id.header.size;
6810 	int ret;
6811 
6812 	if (!perf_event_mmap_match(event, data))
6813 		return;
6814 
6815 	if (event->attr.mmap2) {
6816 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6817 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6818 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6819 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6820 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6821 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6822 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6823 	}
6824 
6825 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6826 	ret = perf_output_begin(&handle, event,
6827 				mmap_event->event_id.header.size);
6828 	if (ret)
6829 		goto out;
6830 
6831 	mmap_event->event_id.pid = perf_event_pid(event, current);
6832 	mmap_event->event_id.tid = perf_event_tid(event, current);
6833 
6834 	perf_output_put(&handle, mmap_event->event_id);
6835 
6836 	if (event->attr.mmap2) {
6837 		perf_output_put(&handle, mmap_event->maj);
6838 		perf_output_put(&handle, mmap_event->min);
6839 		perf_output_put(&handle, mmap_event->ino);
6840 		perf_output_put(&handle, mmap_event->ino_generation);
6841 		perf_output_put(&handle, mmap_event->prot);
6842 		perf_output_put(&handle, mmap_event->flags);
6843 	}
6844 
6845 	__output_copy(&handle, mmap_event->file_name,
6846 				   mmap_event->file_size);
6847 
6848 	perf_event__output_id_sample(event, &handle, &sample);
6849 
6850 	perf_output_end(&handle);
6851 out:
6852 	mmap_event->event_id.header.size = size;
6853 }
6854 
6855 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6856 {
6857 	struct vm_area_struct *vma = mmap_event->vma;
6858 	struct file *file = vma->vm_file;
6859 	int maj = 0, min = 0;
6860 	u64 ino = 0, gen = 0;
6861 	u32 prot = 0, flags = 0;
6862 	unsigned int size;
6863 	char tmp[16];
6864 	char *buf = NULL;
6865 	char *name;
6866 
6867 	if (vma->vm_flags & VM_READ)
6868 		prot |= PROT_READ;
6869 	if (vma->vm_flags & VM_WRITE)
6870 		prot |= PROT_WRITE;
6871 	if (vma->vm_flags & VM_EXEC)
6872 		prot |= PROT_EXEC;
6873 
6874 	if (vma->vm_flags & VM_MAYSHARE)
6875 		flags = MAP_SHARED;
6876 	else
6877 		flags = MAP_PRIVATE;
6878 
6879 	if (vma->vm_flags & VM_DENYWRITE)
6880 		flags |= MAP_DENYWRITE;
6881 	if (vma->vm_flags & VM_MAYEXEC)
6882 		flags |= MAP_EXECUTABLE;
6883 	if (vma->vm_flags & VM_LOCKED)
6884 		flags |= MAP_LOCKED;
6885 	if (vma->vm_flags & VM_HUGETLB)
6886 		flags |= MAP_HUGETLB;
6887 
6888 	if (file) {
6889 		struct inode *inode;
6890 		dev_t dev;
6891 
6892 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6893 		if (!buf) {
6894 			name = "//enomem";
6895 			goto cpy_name;
6896 		}
6897 		/*
6898 		 * d_path() works from the end of the rb backwards, so we
6899 		 * need to add enough zero bytes after the string to handle
6900 		 * the 64bit alignment we do later.
6901 		 */
6902 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6903 		if (IS_ERR(name)) {
6904 			name = "//toolong";
6905 			goto cpy_name;
6906 		}
6907 		inode = file_inode(vma->vm_file);
6908 		dev = inode->i_sb->s_dev;
6909 		ino = inode->i_ino;
6910 		gen = inode->i_generation;
6911 		maj = MAJOR(dev);
6912 		min = MINOR(dev);
6913 
6914 		goto got_name;
6915 	} else {
6916 		if (vma->vm_ops && vma->vm_ops->name) {
6917 			name = (char *) vma->vm_ops->name(vma);
6918 			if (name)
6919 				goto cpy_name;
6920 		}
6921 
6922 		name = (char *)arch_vma_name(vma);
6923 		if (name)
6924 			goto cpy_name;
6925 
6926 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6927 				vma->vm_end >= vma->vm_mm->brk) {
6928 			name = "[heap]";
6929 			goto cpy_name;
6930 		}
6931 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6932 				vma->vm_end >= vma->vm_mm->start_stack) {
6933 			name = "[stack]";
6934 			goto cpy_name;
6935 		}
6936 
6937 		name = "//anon";
6938 		goto cpy_name;
6939 	}
6940 
6941 cpy_name:
6942 	strlcpy(tmp, name, sizeof(tmp));
6943 	name = tmp;
6944 got_name:
6945 	/*
6946 	 * Since our buffer works in 8 byte units we need to align our string
6947 	 * size to a multiple of 8. However, we must guarantee the tail end is
6948 	 * zero'd out to avoid leaking random bits to userspace.
6949 	 */
6950 	size = strlen(name)+1;
6951 	while (!IS_ALIGNED(size, sizeof(u64)))
6952 		name[size++] = '\0';
6953 
6954 	mmap_event->file_name = name;
6955 	mmap_event->file_size = size;
6956 	mmap_event->maj = maj;
6957 	mmap_event->min = min;
6958 	mmap_event->ino = ino;
6959 	mmap_event->ino_generation = gen;
6960 	mmap_event->prot = prot;
6961 	mmap_event->flags = flags;
6962 
6963 	if (!(vma->vm_flags & VM_EXEC))
6964 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6965 
6966 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6967 
6968 	perf_iterate_sb(perf_event_mmap_output,
6969 		       mmap_event,
6970 		       NULL);
6971 
6972 	kfree(buf);
6973 }
6974 
6975 /*
6976  * Check whether inode and address range match filter criteria.
6977  */
6978 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6979 				     struct file *file, unsigned long offset,
6980 				     unsigned long size)
6981 {
6982 	if (filter->inode != file_inode(file))
6983 		return false;
6984 
6985 	if (filter->offset > offset + size)
6986 		return false;
6987 
6988 	if (filter->offset + filter->size < offset)
6989 		return false;
6990 
6991 	return true;
6992 }
6993 
6994 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6995 {
6996 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6997 	struct vm_area_struct *vma = data;
6998 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6999 	struct file *file = vma->vm_file;
7000 	struct perf_addr_filter *filter;
7001 	unsigned int restart = 0, count = 0;
7002 
7003 	if (!has_addr_filter(event))
7004 		return;
7005 
7006 	if (!file)
7007 		return;
7008 
7009 	raw_spin_lock_irqsave(&ifh->lock, flags);
7010 	list_for_each_entry(filter, &ifh->list, entry) {
7011 		if (perf_addr_filter_match(filter, file, off,
7012 					     vma->vm_end - vma->vm_start)) {
7013 			event->addr_filters_offs[count] = vma->vm_start;
7014 			restart++;
7015 		}
7016 
7017 		count++;
7018 	}
7019 
7020 	if (restart)
7021 		event->addr_filters_gen++;
7022 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7023 
7024 	if (restart)
7025 		perf_event_stop(event, 1);
7026 }
7027 
7028 /*
7029  * Adjust all task's events' filters to the new vma
7030  */
7031 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7032 {
7033 	struct perf_event_context *ctx;
7034 	int ctxn;
7035 
7036 	/*
7037 	 * Data tracing isn't supported yet and as such there is no need
7038 	 * to keep track of anything that isn't related to executable code:
7039 	 */
7040 	if (!(vma->vm_flags & VM_EXEC))
7041 		return;
7042 
7043 	rcu_read_lock();
7044 	for_each_task_context_nr(ctxn) {
7045 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7046 		if (!ctx)
7047 			continue;
7048 
7049 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7050 	}
7051 	rcu_read_unlock();
7052 }
7053 
7054 void perf_event_mmap(struct vm_area_struct *vma)
7055 {
7056 	struct perf_mmap_event mmap_event;
7057 
7058 	if (!atomic_read(&nr_mmap_events))
7059 		return;
7060 
7061 	mmap_event = (struct perf_mmap_event){
7062 		.vma	= vma,
7063 		/* .file_name */
7064 		/* .file_size */
7065 		.event_id  = {
7066 			.header = {
7067 				.type = PERF_RECORD_MMAP,
7068 				.misc = PERF_RECORD_MISC_USER,
7069 				/* .size */
7070 			},
7071 			/* .pid */
7072 			/* .tid */
7073 			.start  = vma->vm_start,
7074 			.len    = vma->vm_end - vma->vm_start,
7075 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7076 		},
7077 		/* .maj (attr_mmap2 only) */
7078 		/* .min (attr_mmap2 only) */
7079 		/* .ino (attr_mmap2 only) */
7080 		/* .ino_generation (attr_mmap2 only) */
7081 		/* .prot (attr_mmap2 only) */
7082 		/* .flags (attr_mmap2 only) */
7083 	};
7084 
7085 	perf_addr_filters_adjust(vma);
7086 	perf_event_mmap_event(&mmap_event);
7087 }
7088 
7089 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7090 			  unsigned long size, u64 flags)
7091 {
7092 	struct perf_output_handle handle;
7093 	struct perf_sample_data sample;
7094 	struct perf_aux_event {
7095 		struct perf_event_header	header;
7096 		u64				offset;
7097 		u64				size;
7098 		u64				flags;
7099 	} rec = {
7100 		.header = {
7101 			.type = PERF_RECORD_AUX,
7102 			.misc = 0,
7103 			.size = sizeof(rec),
7104 		},
7105 		.offset		= head,
7106 		.size		= size,
7107 		.flags		= flags,
7108 	};
7109 	int ret;
7110 
7111 	perf_event_header__init_id(&rec.header, &sample, event);
7112 	ret = perf_output_begin(&handle, event, rec.header.size);
7113 
7114 	if (ret)
7115 		return;
7116 
7117 	perf_output_put(&handle, rec);
7118 	perf_event__output_id_sample(event, &handle, &sample);
7119 
7120 	perf_output_end(&handle);
7121 }
7122 
7123 /*
7124  * Lost/dropped samples logging
7125  */
7126 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7127 {
7128 	struct perf_output_handle handle;
7129 	struct perf_sample_data sample;
7130 	int ret;
7131 
7132 	struct {
7133 		struct perf_event_header	header;
7134 		u64				lost;
7135 	} lost_samples_event = {
7136 		.header = {
7137 			.type = PERF_RECORD_LOST_SAMPLES,
7138 			.misc = 0,
7139 			.size = sizeof(lost_samples_event),
7140 		},
7141 		.lost		= lost,
7142 	};
7143 
7144 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7145 
7146 	ret = perf_output_begin(&handle, event,
7147 				lost_samples_event.header.size);
7148 	if (ret)
7149 		return;
7150 
7151 	perf_output_put(&handle, lost_samples_event);
7152 	perf_event__output_id_sample(event, &handle, &sample);
7153 	perf_output_end(&handle);
7154 }
7155 
7156 /*
7157  * context_switch tracking
7158  */
7159 
7160 struct perf_switch_event {
7161 	struct task_struct	*task;
7162 	struct task_struct	*next_prev;
7163 
7164 	struct {
7165 		struct perf_event_header	header;
7166 		u32				next_prev_pid;
7167 		u32				next_prev_tid;
7168 	} event_id;
7169 };
7170 
7171 static int perf_event_switch_match(struct perf_event *event)
7172 {
7173 	return event->attr.context_switch;
7174 }
7175 
7176 static void perf_event_switch_output(struct perf_event *event, void *data)
7177 {
7178 	struct perf_switch_event *se = data;
7179 	struct perf_output_handle handle;
7180 	struct perf_sample_data sample;
7181 	int ret;
7182 
7183 	if (!perf_event_switch_match(event))
7184 		return;
7185 
7186 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7187 	if (event->ctx->task) {
7188 		se->event_id.header.type = PERF_RECORD_SWITCH;
7189 		se->event_id.header.size = sizeof(se->event_id.header);
7190 	} else {
7191 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7192 		se->event_id.header.size = sizeof(se->event_id);
7193 		se->event_id.next_prev_pid =
7194 					perf_event_pid(event, se->next_prev);
7195 		se->event_id.next_prev_tid =
7196 					perf_event_tid(event, se->next_prev);
7197 	}
7198 
7199 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7200 
7201 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7202 	if (ret)
7203 		return;
7204 
7205 	if (event->ctx->task)
7206 		perf_output_put(&handle, se->event_id.header);
7207 	else
7208 		perf_output_put(&handle, se->event_id);
7209 
7210 	perf_event__output_id_sample(event, &handle, &sample);
7211 
7212 	perf_output_end(&handle);
7213 }
7214 
7215 static void perf_event_switch(struct task_struct *task,
7216 			      struct task_struct *next_prev, bool sched_in)
7217 {
7218 	struct perf_switch_event switch_event;
7219 
7220 	/* N.B. caller checks nr_switch_events != 0 */
7221 
7222 	switch_event = (struct perf_switch_event){
7223 		.task		= task,
7224 		.next_prev	= next_prev,
7225 		.event_id	= {
7226 			.header = {
7227 				/* .type */
7228 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7229 				/* .size */
7230 			},
7231 			/* .next_prev_pid */
7232 			/* .next_prev_tid */
7233 		},
7234 	};
7235 
7236 	perf_iterate_sb(perf_event_switch_output,
7237 		       &switch_event,
7238 		       NULL);
7239 }
7240 
7241 /*
7242  * IRQ throttle logging
7243  */
7244 
7245 static void perf_log_throttle(struct perf_event *event, int enable)
7246 {
7247 	struct perf_output_handle handle;
7248 	struct perf_sample_data sample;
7249 	int ret;
7250 
7251 	struct {
7252 		struct perf_event_header	header;
7253 		u64				time;
7254 		u64				id;
7255 		u64				stream_id;
7256 	} throttle_event = {
7257 		.header = {
7258 			.type = PERF_RECORD_THROTTLE,
7259 			.misc = 0,
7260 			.size = sizeof(throttle_event),
7261 		},
7262 		.time		= perf_event_clock(event),
7263 		.id		= primary_event_id(event),
7264 		.stream_id	= event->id,
7265 	};
7266 
7267 	if (enable)
7268 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7269 
7270 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7271 
7272 	ret = perf_output_begin(&handle, event,
7273 				throttle_event.header.size);
7274 	if (ret)
7275 		return;
7276 
7277 	perf_output_put(&handle, throttle_event);
7278 	perf_event__output_id_sample(event, &handle, &sample);
7279 	perf_output_end(&handle);
7280 }
7281 
7282 void perf_event_itrace_started(struct perf_event *event)
7283 {
7284 	event->attach_state |= PERF_ATTACH_ITRACE;
7285 }
7286 
7287 static void perf_log_itrace_start(struct perf_event *event)
7288 {
7289 	struct perf_output_handle handle;
7290 	struct perf_sample_data sample;
7291 	struct perf_aux_event {
7292 		struct perf_event_header        header;
7293 		u32				pid;
7294 		u32				tid;
7295 	} rec;
7296 	int ret;
7297 
7298 	if (event->parent)
7299 		event = event->parent;
7300 
7301 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7302 	    event->attach_state & PERF_ATTACH_ITRACE)
7303 		return;
7304 
7305 	rec.header.type	= PERF_RECORD_ITRACE_START;
7306 	rec.header.misc	= 0;
7307 	rec.header.size	= sizeof(rec);
7308 	rec.pid	= perf_event_pid(event, current);
7309 	rec.tid	= perf_event_tid(event, current);
7310 
7311 	perf_event_header__init_id(&rec.header, &sample, event);
7312 	ret = perf_output_begin(&handle, event, rec.header.size);
7313 
7314 	if (ret)
7315 		return;
7316 
7317 	perf_output_put(&handle, rec);
7318 	perf_event__output_id_sample(event, &handle, &sample);
7319 
7320 	perf_output_end(&handle);
7321 }
7322 
7323 static int
7324 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7325 {
7326 	struct hw_perf_event *hwc = &event->hw;
7327 	int ret = 0;
7328 	u64 seq;
7329 
7330 	seq = __this_cpu_read(perf_throttled_seq);
7331 	if (seq != hwc->interrupts_seq) {
7332 		hwc->interrupts_seq = seq;
7333 		hwc->interrupts = 1;
7334 	} else {
7335 		hwc->interrupts++;
7336 		if (unlikely(throttle
7337 			     && hwc->interrupts >= max_samples_per_tick)) {
7338 			__this_cpu_inc(perf_throttled_count);
7339 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7340 			hwc->interrupts = MAX_INTERRUPTS;
7341 			perf_log_throttle(event, 0);
7342 			ret = 1;
7343 		}
7344 	}
7345 
7346 	if (event->attr.freq) {
7347 		u64 now = perf_clock();
7348 		s64 delta = now - hwc->freq_time_stamp;
7349 
7350 		hwc->freq_time_stamp = now;
7351 
7352 		if (delta > 0 && delta < 2*TICK_NSEC)
7353 			perf_adjust_period(event, delta, hwc->last_period, true);
7354 	}
7355 
7356 	return ret;
7357 }
7358 
7359 int perf_event_account_interrupt(struct perf_event *event)
7360 {
7361 	return __perf_event_account_interrupt(event, 1);
7362 }
7363 
7364 /*
7365  * Generic event overflow handling, sampling.
7366  */
7367 
7368 static int __perf_event_overflow(struct perf_event *event,
7369 				   int throttle, struct perf_sample_data *data,
7370 				   struct pt_regs *regs)
7371 {
7372 	int events = atomic_read(&event->event_limit);
7373 	int ret = 0;
7374 
7375 	/*
7376 	 * Non-sampling counters might still use the PMI to fold short
7377 	 * hardware counters, ignore those.
7378 	 */
7379 	if (unlikely(!is_sampling_event(event)))
7380 		return 0;
7381 
7382 	ret = __perf_event_account_interrupt(event, throttle);
7383 
7384 	/*
7385 	 * XXX event_limit might not quite work as expected on inherited
7386 	 * events
7387 	 */
7388 
7389 	event->pending_kill = POLL_IN;
7390 	if (events && atomic_dec_and_test(&event->event_limit)) {
7391 		ret = 1;
7392 		event->pending_kill = POLL_HUP;
7393 
7394 		perf_event_disable_inatomic(event);
7395 	}
7396 
7397 	READ_ONCE(event->overflow_handler)(event, data, regs);
7398 
7399 	if (*perf_event_fasync(event) && event->pending_kill) {
7400 		event->pending_wakeup = 1;
7401 		irq_work_queue(&event->pending);
7402 	}
7403 
7404 	return ret;
7405 }
7406 
7407 int perf_event_overflow(struct perf_event *event,
7408 			  struct perf_sample_data *data,
7409 			  struct pt_regs *regs)
7410 {
7411 	return __perf_event_overflow(event, 1, data, regs);
7412 }
7413 
7414 /*
7415  * Generic software event infrastructure
7416  */
7417 
7418 struct swevent_htable {
7419 	struct swevent_hlist		*swevent_hlist;
7420 	struct mutex			hlist_mutex;
7421 	int				hlist_refcount;
7422 
7423 	/* Recursion avoidance in each contexts */
7424 	int				recursion[PERF_NR_CONTEXTS];
7425 };
7426 
7427 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7428 
7429 /*
7430  * We directly increment event->count and keep a second value in
7431  * event->hw.period_left to count intervals. This period event
7432  * is kept in the range [-sample_period, 0] so that we can use the
7433  * sign as trigger.
7434  */
7435 
7436 u64 perf_swevent_set_period(struct perf_event *event)
7437 {
7438 	struct hw_perf_event *hwc = &event->hw;
7439 	u64 period = hwc->last_period;
7440 	u64 nr, offset;
7441 	s64 old, val;
7442 
7443 	hwc->last_period = hwc->sample_period;
7444 
7445 again:
7446 	old = val = local64_read(&hwc->period_left);
7447 	if (val < 0)
7448 		return 0;
7449 
7450 	nr = div64_u64(period + val, period);
7451 	offset = nr * period;
7452 	val -= offset;
7453 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7454 		goto again;
7455 
7456 	return nr;
7457 }
7458 
7459 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7460 				    struct perf_sample_data *data,
7461 				    struct pt_regs *regs)
7462 {
7463 	struct hw_perf_event *hwc = &event->hw;
7464 	int throttle = 0;
7465 
7466 	if (!overflow)
7467 		overflow = perf_swevent_set_period(event);
7468 
7469 	if (hwc->interrupts == MAX_INTERRUPTS)
7470 		return;
7471 
7472 	for (; overflow; overflow--) {
7473 		if (__perf_event_overflow(event, throttle,
7474 					    data, regs)) {
7475 			/*
7476 			 * We inhibit the overflow from happening when
7477 			 * hwc->interrupts == MAX_INTERRUPTS.
7478 			 */
7479 			break;
7480 		}
7481 		throttle = 1;
7482 	}
7483 }
7484 
7485 static void perf_swevent_event(struct perf_event *event, u64 nr,
7486 			       struct perf_sample_data *data,
7487 			       struct pt_regs *regs)
7488 {
7489 	struct hw_perf_event *hwc = &event->hw;
7490 
7491 	local64_add(nr, &event->count);
7492 
7493 	if (!regs)
7494 		return;
7495 
7496 	if (!is_sampling_event(event))
7497 		return;
7498 
7499 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7500 		data->period = nr;
7501 		return perf_swevent_overflow(event, 1, data, regs);
7502 	} else
7503 		data->period = event->hw.last_period;
7504 
7505 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7506 		return perf_swevent_overflow(event, 1, data, regs);
7507 
7508 	if (local64_add_negative(nr, &hwc->period_left))
7509 		return;
7510 
7511 	perf_swevent_overflow(event, 0, data, regs);
7512 }
7513 
7514 static int perf_exclude_event(struct perf_event *event,
7515 			      struct pt_regs *regs)
7516 {
7517 	if (event->hw.state & PERF_HES_STOPPED)
7518 		return 1;
7519 
7520 	if (regs) {
7521 		if (event->attr.exclude_user && user_mode(regs))
7522 			return 1;
7523 
7524 		if (event->attr.exclude_kernel && !user_mode(regs))
7525 			return 1;
7526 	}
7527 
7528 	return 0;
7529 }
7530 
7531 static int perf_swevent_match(struct perf_event *event,
7532 				enum perf_type_id type,
7533 				u32 event_id,
7534 				struct perf_sample_data *data,
7535 				struct pt_regs *regs)
7536 {
7537 	if (event->attr.type != type)
7538 		return 0;
7539 
7540 	if (event->attr.config != event_id)
7541 		return 0;
7542 
7543 	if (perf_exclude_event(event, regs))
7544 		return 0;
7545 
7546 	return 1;
7547 }
7548 
7549 static inline u64 swevent_hash(u64 type, u32 event_id)
7550 {
7551 	u64 val = event_id | (type << 32);
7552 
7553 	return hash_64(val, SWEVENT_HLIST_BITS);
7554 }
7555 
7556 static inline struct hlist_head *
7557 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7558 {
7559 	u64 hash = swevent_hash(type, event_id);
7560 
7561 	return &hlist->heads[hash];
7562 }
7563 
7564 /* For the read side: events when they trigger */
7565 static inline struct hlist_head *
7566 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7567 {
7568 	struct swevent_hlist *hlist;
7569 
7570 	hlist = rcu_dereference(swhash->swevent_hlist);
7571 	if (!hlist)
7572 		return NULL;
7573 
7574 	return __find_swevent_head(hlist, type, event_id);
7575 }
7576 
7577 /* For the event head insertion and removal in the hlist */
7578 static inline struct hlist_head *
7579 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7580 {
7581 	struct swevent_hlist *hlist;
7582 	u32 event_id = event->attr.config;
7583 	u64 type = event->attr.type;
7584 
7585 	/*
7586 	 * Event scheduling is always serialized against hlist allocation
7587 	 * and release. Which makes the protected version suitable here.
7588 	 * The context lock guarantees that.
7589 	 */
7590 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7591 					  lockdep_is_held(&event->ctx->lock));
7592 	if (!hlist)
7593 		return NULL;
7594 
7595 	return __find_swevent_head(hlist, type, event_id);
7596 }
7597 
7598 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7599 				    u64 nr,
7600 				    struct perf_sample_data *data,
7601 				    struct pt_regs *regs)
7602 {
7603 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7604 	struct perf_event *event;
7605 	struct hlist_head *head;
7606 
7607 	rcu_read_lock();
7608 	head = find_swevent_head_rcu(swhash, type, event_id);
7609 	if (!head)
7610 		goto end;
7611 
7612 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7613 		if (perf_swevent_match(event, type, event_id, data, regs))
7614 			perf_swevent_event(event, nr, data, regs);
7615 	}
7616 end:
7617 	rcu_read_unlock();
7618 }
7619 
7620 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7621 
7622 int perf_swevent_get_recursion_context(void)
7623 {
7624 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7625 
7626 	return get_recursion_context(swhash->recursion);
7627 }
7628 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7629 
7630 void perf_swevent_put_recursion_context(int rctx)
7631 {
7632 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7633 
7634 	put_recursion_context(swhash->recursion, rctx);
7635 }
7636 
7637 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7638 {
7639 	struct perf_sample_data data;
7640 
7641 	if (WARN_ON_ONCE(!regs))
7642 		return;
7643 
7644 	perf_sample_data_init(&data, addr, 0);
7645 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7646 }
7647 
7648 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7649 {
7650 	int rctx;
7651 
7652 	preempt_disable_notrace();
7653 	rctx = perf_swevent_get_recursion_context();
7654 	if (unlikely(rctx < 0))
7655 		goto fail;
7656 
7657 	___perf_sw_event(event_id, nr, regs, addr);
7658 
7659 	perf_swevent_put_recursion_context(rctx);
7660 fail:
7661 	preempt_enable_notrace();
7662 }
7663 
7664 static void perf_swevent_read(struct perf_event *event)
7665 {
7666 }
7667 
7668 static int perf_swevent_add(struct perf_event *event, int flags)
7669 {
7670 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7671 	struct hw_perf_event *hwc = &event->hw;
7672 	struct hlist_head *head;
7673 
7674 	if (is_sampling_event(event)) {
7675 		hwc->last_period = hwc->sample_period;
7676 		perf_swevent_set_period(event);
7677 	}
7678 
7679 	hwc->state = !(flags & PERF_EF_START);
7680 
7681 	head = find_swevent_head(swhash, event);
7682 	if (WARN_ON_ONCE(!head))
7683 		return -EINVAL;
7684 
7685 	hlist_add_head_rcu(&event->hlist_entry, head);
7686 	perf_event_update_userpage(event);
7687 
7688 	return 0;
7689 }
7690 
7691 static void perf_swevent_del(struct perf_event *event, int flags)
7692 {
7693 	hlist_del_rcu(&event->hlist_entry);
7694 }
7695 
7696 static void perf_swevent_start(struct perf_event *event, int flags)
7697 {
7698 	event->hw.state = 0;
7699 }
7700 
7701 static void perf_swevent_stop(struct perf_event *event, int flags)
7702 {
7703 	event->hw.state = PERF_HES_STOPPED;
7704 }
7705 
7706 /* Deref the hlist from the update side */
7707 static inline struct swevent_hlist *
7708 swevent_hlist_deref(struct swevent_htable *swhash)
7709 {
7710 	return rcu_dereference_protected(swhash->swevent_hlist,
7711 					 lockdep_is_held(&swhash->hlist_mutex));
7712 }
7713 
7714 static void swevent_hlist_release(struct swevent_htable *swhash)
7715 {
7716 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7717 
7718 	if (!hlist)
7719 		return;
7720 
7721 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7722 	kfree_rcu(hlist, rcu_head);
7723 }
7724 
7725 static void swevent_hlist_put_cpu(int cpu)
7726 {
7727 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7728 
7729 	mutex_lock(&swhash->hlist_mutex);
7730 
7731 	if (!--swhash->hlist_refcount)
7732 		swevent_hlist_release(swhash);
7733 
7734 	mutex_unlock(&swhash->hlist_mutex);
7735 }
7736 
7737 static void swevent_hlist_put(void)
7738 {
7739 	int cpu;
7740 
7741 	for_each_possible_cpu(cpu)
7742 		swevent_hlist_put_cpu(cpu);
7743 }
7744 
7745 static int swevent_hlist_get_cpu(int cpu)
7746 {
7747 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7748 	int err = 0;
7749 
7750 	mutex_lock(&swhash->hlist_mutex);
7751 	if (!swevent_hlist_deref(swhash) &&
7752 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7753 		struct swevent_hlist *hlist;
7754 
7755 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7756 		if (!hlist) {
7757 			err = -ENOMEM;
7758 			goto exit;
7759 		}
7760 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7761 	}
7762 	swhash->hlist_refcount++;
7763 exit:
7764 	mutex_unlock(&swhash->hlist_mutex);
7765 
7766 	return err;
7767 }
7768 
7769 static int swevent_hlist_get(void)
7770 {
7771 	int err, cpu, failed_cpu;
7772 
7773 	mutex_lock(&pmus_lock);
7774 	for_each_possible_cpu(cpu) {
7775 		err = swevent_hlist_get_cpu(cpu);
7776 		if (err) {
7777 			failed_cpu = cpu;
7778 			goto fail;
7779 		}
7780 	}
7781 	mutex_unlock(&pmus_lock);
7782 	return 0;
7783 fail:
7784 	for_each_possible_cpu(cpu) {
7785 		if (cpu == failed_cpu)
7786 			break;
7787 		swevent_hlist_put_cpu(cpu);
7788 	}
7789 	mutex_unlock(&pmus_lock);
7790 	return err;
7791 }
7792 
7793 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7794 
7795 static void sw_perf_event_destroy(struct perf_event *event)
7796 {
7797 	u64 event_id = event->attr.config;
7798 
7799 	WARN_ON(event->parent);
7800 
7801 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7802 	swevent_hlist_put();
7803 }
7804 
7805 static int perf_swevent_init(struct perf_event *event)
7806 {
7807 	u64 event_id = event->attr.config;
7808 
7809 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7810 		return -ENOENT;
7811 
7812 	/*
7813 	 * no branch sampling for software events
7814 	 */
7815 	if (has_branch_stack(event))
7816 		return -EOPNOTSUPP;
7817 
7818 	switch (event_id) {
7819 	case PERF_COUNT_SW_CPU_CLOCK:
7820 	case PERF_COUNT_SW_TASK_CLOCK:
7821 		return -ENOENT;
7822 
7823 	default:
7824 		break;
7825 	}
7826 
7827 	if (event_id >= PERF_COUNT_SW_MAX)
7828 		return -ENOENT;
7829 
7830 	if (!event->parent) {
7831 		int err;
7832 
7833 		err = swevent_hlist_get();
7834 		if (err)
7835 			return err;
7836 
7837 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7838 		event->destroy = sw_perf_event_destroy;
7839 	}
7840 
7841 	return 0;
7842 }
7843 
7844 static struct pmu perf_swevent = {
7845 	.task_ctx_nr	= perf_sw_context,
7846 
7847 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7848 
7849 	.event_init	= perf_swevent_init,
7850 	.add		= perf_swevent_add,
7851 	.del		= perf_swevent_del,
7852 	.start		= perf_swevent_start,
7853 	.stop		= perf_swevent_stop,
7854 	.read		= perf_swevent_read,
7855 };
7856 
7857 #ifdef CONFIG_EVENT_TRACING
7858 
7859 static int perf_tp_filter_match(struct perf_event *event,
7860 				struct perf_sample_data *data)
7861 {
7862 	void *record = data->raw->frag.data;
7863 
7864 	/* only top level events have filters set */
7865 	if (event->parent)
7866 		event = event->parent;
7867 
7868 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7869 		return 1;
7870 	return 0;
7871 }
7872 
7873 static int perf_tp_event_match(struct perf_event *event,
7874 				struct perf_sample_data *data,
7875 				struct pt_regs *regs)
7876 {
7877 	if (event->hw.state & PERF_HES_STOPPED)
7878 		return 0;
7879 	/*
7880 	 * All tracepoints are from kernel-space.
7881 	 */
7882 	if (event->attr.exclude_kernel)
7883 		return 0;
7884 
7885 	if (!perf_tp_filter_match(event, data))
7886 		return 0;
7887 
7888 	return 1;
7889 }
7890 
7891 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7892 			       struct trace_event_call *call, u64 count,
7893 			       struct pt_regs *regs, struct hlist_head *head,
7894 			       struct task_struct *task)
7895 {
7896 	if (bpf_prog_array_valid(call)) {
7897 		*(struct pt_regs **)raw_data = regs;
7898 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
7899 			perf_swevent_put_recursion_context(rctx);
7900 			return;
7901 		}
7902 	}
7903 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7904 		      rctx, task);
7905 }
7906 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7907 
7908 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7909 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7910 		   struct task_struct *task)
7911 {
7912 	struct perf_sample_data data;
7913 	struct perf_event *event;
7914 
7915 	struct perf_raw_record raw = {
7916 		.frag = {
7917 			.size = entry_size,
7918 			.data = record,
7919 		},
7920 	};
7921 
7922 	perf_sample_data_init(&data, 0, 0);
7923 	data.raw = &raw;
7924 
7925 	perf_trace_buf_update(record, event_type);
7926 
7927 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7928 		if (perf_tp_event_match(event, &data, regs))
7929 			perf_swevent_event(event, count, &data, regs);
7930 	}
7931 
7932 	/*
7933 	 * If we got specified a target task, also iterate its context and
7934 	 * deliver this event there too.
7935 	 */
7936 	if (task && task != current) {
7937 		struct perf_event_context *ctx;
7938 		struct trace_entry *entry = record;
7939 
7940 		rcu_read_lock();
7941 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7942 		if (!ctx)
7943 			goto unlock;
7944 
7945 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7946 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7947 				continue;
7948 			if (event->attr.config != entry->type)
7949 				continue;
7950 			if (perf_tp_event_match(event, &data, regs))
7951 				perf_swevent_event(event, count, &data, regs);
7952 		}
7953 unlock:
7954 		rcu_read_unlock();
7955 	}
7956 
7957 	perf_swevent_put_recursion_context(rctx);
7958 }
7959 EXPORT_SYMBOL_GPL(perf_tp_event);
7960 
7961 static void tp_perf_event_destroy(struct perf_event *event)
7962 {
7963 	perf_trace_destroy(event);
7964 }
7965 
7966 static int perf_tp_event_init(struct perf_event *event)
7967 {
7968 	int err;
7969 
7970 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7971 		return -ENOENT;
7972 
7973 	/*
7974 	 * no branch sampling for tracepoint events
7975 	 */
7976 	if (has_branch_stack(event))
7977 		return -EOPNOTSUPP;
7978 
7979 	err = perf_trace_init(event);
7980 	if (err)
7981 		return err;
7982 
7983 	event->destroy = tp_perf_event_destroy;
7984 
7985 	return 0;
7986 }
7987 
7988 static struct pmu perf_tracepoint = {
7989 	.task_ctx_nr	= perf_sw_context,
7990 
7991 	.event_init	= perf_tp_event_init,
7992 	.add		= perf_trace_add,
7993 	.del		= perf_trace_del,
7994 	.start		= perf_swevent_start,
7995 	.stop		= perf_swevent_stop,
7996 	.read		= perf_swevent_read,
7997 };
7998 
7999 static inline void perf_tp_register(void)
8000 {
8001 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8002 }
8003 
8004 static void perf_event_free_filter(struct perf_event *event)
8005 {
8006 	ftrace_profile_free_filter(event);
8007 }
8008 
8009 #ifdef CONFIG_BPF_SYSCALL
8010 static void bpf_overflow_handler(struct perf_event *event,
8011 				 struct perf_sample_data *data,
8012 				 struct pt_regs *regs)
8013 {
8014 	struct bpf_perf_event_data_kern ctx = {
8015 		.data = data,
8016 		.event = event,
8017 	};
8018 	int ret = 0;
8019 
8020 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8021 	preempt_disable();
8022 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8023 		goto out;
8024 	rcu_read_lock();
8025 	ret = BPF_PROG_RUN(event->prog, &ctx);
8026 	rcu_read_unlock();
8027 out:
8028 	__this_cpu_dec(bpf_prog_active);
8029 	preempt_enable();
8030 	if (!ret)
8031 		return;
8032 
8033 	event->orig_overflow_handler(event, data, regs);
8034 }
8035 
8036 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8037 {
8038 	struct bpf_prog *prog;
8039 
8040 	if (event->overflow_handler_context)
8041 		/* hw breakpoint or kernel counter */
8042 		return -EINVAL;
8043 
8044 	if (event->prog)
8045 		return -EEXIST;
8046 
8047 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8048 	if (IS_ERR(prog))
8049 		return PTR_ERR(prog);
8050 
8051 	event->prog = prog;
8052 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8053 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8054 	return 0;
8055 }
8056 
8057 static void perf_event_free_bpf_handler(struct perf_event *event)
8058 {
8059 	struct bpf_prog *prog = event->prog;
8060 
8061 	if (!prog)
8062 		return;
8063 
8064 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8065 	event->prog = NULL;
8066 	bpf_prog_put(prog);
8067 }
8068 #else
8069 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8070 {
8071 	return -EOPNOTSUPP;
8072 }
8073 static void perf_event_free_bpf_handler(struct perf_event *event)
8074 {
8075 }
8076 #endif
8077 
8078 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8079 {
8080 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8081 	struct bpf_prog *prog;
8082 	int ret;
8083 
8084 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8085 		return perf_event_set_bpf_handler(event, prog_fd);
8086 
8087 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8088 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8089 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8090 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8091 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8092 		return -EINVAL;
8093 
8094 	prog = bpf_prog_get(prog_fd);
8095 	if (IS_ERR(prog))
8096 		return PTR_ERR(prog);
8097 
8098 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8099 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8100 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8101 		/* valid fd, but invalid bpf program type */
8102 		bpf_prog_put(prog);
8103 		return -EINVAL;
8104 	}
8105 
8106 	/* Kprobe override only works for kprobes, not uprobes. */
8107 	if (prog->kprobe_override &&
8108 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8109 		bpf_prog_put(prog);
8110 		return -EINVAL;
8111 	}
8112 
8113 	if (is_tracepoint || is_syscall_tp) {
8114 		int off = trace_event_get_offsets(event->tp_event);
8115 
8116 		if (prog->aux->max_ctx_offset > off) {
8117 			bpf_prog_put(prog);
8118 			return -EACCES;
8119 		}
8120 	}
8121 
8122 	ret = perf_event_attach_bpf_prog(event, prog);
8123 	if (ret)
8124 		bpf_prog_put(prog);
8125 	return ret;
8126 }
8127 
8128 static void perf_event_free_bpf_prog(struct perf_event *event)
8129 {
8130 	if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8131 		perf_event_free_bpf_handler(event);
8132 		return;
8133 	}
8134 	perf_event_detach_bpf_prog(event);
8135 }
8136 
8137 #else
8138 
8139 static inline void perf_tp_register(void)
8140 {
8141 }
8142 
8143 static void perf_event_free_filter(struct perf_event *event)
8144 {
8145 }
8146 
8147 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8148 {
8149 	return -ENOENT;
8150 }
8151 
8152 static void perf_event_free_bpf_prog(struct perf_event *event)
8153 {
8154 }
8155 #endif /* CONFIG_EVENT_TRACING */
8156 
8157 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8158 void perf_bp_event(struct perf_event *bp, void *data)
8159 {
8160 	struct perf_sample_data sample;
8161 	struct pt_regs *regs = data;
8162 
8163 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8164 
8165 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8166 		perf_swevent_event(bp, 1, &sample, regs);
8167 }
8168 #endif
8169 
8170 /*
8171  * Allocate a new address filter
8172  */
8173 static struct perf_addr_filter *
8174 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8175 {
8176 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8177 	struct perf_addr_filter *filter;
8178 
8179 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8180 	if (!filter)
8181 		return NULL;
8182 
8183 	INIT_LIST_HEAD(&filter->entry);
8184 	list_add_tail(&filter->entry, filters);
8185 
8186 	return filter;
8187 }
8188 
8189 static void free_filters_list(struct list_head *filters)
8190 {
8191 	struct perf_addr_filter *filter, *iter;
8192 
8193 	list_for_each_entry_safe(filter, iter, filters, entry) {
8194 		if (filter->inode)
8195 			iput(filter->inode);
8196 		list_del(&filter->entry);
8197 		kfree(filter);
8198 	}
8199 }
8200 
8201 /*
8202  * Free existing address filters and optionally install new ones
8203  */
8204 static void perf_addr_filters_splice(struct perf_event *event,
8205 				     struct list_head *head)
8206 {
8207 	unsigned long flags;
8208 	LIST_HEAD(list);
8209 
8210 	if (!has_addr_filter(event))
8211 		return;
8212 
8213 	/* don't bother with children, they don't have their own filters */
8214 	if (event->parent)
8215 		return;
8216 
8217 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8218 
8219 	list_splice_init(&event->addr_filters.list, &list);
8220 	if (head)
8221 		list_splice(head, &event->addr_filters.list);
8222 
8223 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8224 
8225 	free_filters_list(&list);
8226 }
8227 
8228 /*
8229  * Scan through mm's vmas and see if one of them matches the
8230  * @filter; if so, adjust filter's address range.
8231  * Called with mm::mmap_sem down for reading.
8232  */
8233 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8234 					    struct mm_struct *mm)
8235 {
8236 	struct vm_area_struct *vma;
8237 
8238 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8239 		struct file *file = vma->vm_file;
8240 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8241 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8242 
8243 		if (!file)
8244 			continue;
8245 
8246 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8247 			continue;
8248 
8249 		return vma->vm_start;
8250 	}
8251 
8252 	return 0;
8253 }
8254 
8255 /*
8256  * Update event's address range filters based on the
8257  * task's existing mappings, if any.
8258  */
8259 static void perf_event_addr_filters_apply(struct perf_event *event)
8260 {
8261 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8262 	struct task_struct *task = READ_ONCE(event->ctx->task);
8263 	struct perf_addr_filter *filter;
8264 	struct mm_struct *mm = NULL;
8265 	unsigned int count = 0;
8266 	unsigned long flags;
8267 
8268 	/*
8269 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8270 	 * will stop on the parent's child_mutex that our caller is also holding
8271 	 */
8272 	if (task == TASK_TOMBSTONE)
8273 		return;
8274 
8275 	if (!ifh->nr_file_filters)
8276 		return;
8277 
8278 	mm = get_task_mm(event->ctx->task);
8279 	if (!mm)
8280 		goto restart;
8281 
8282 	down_read(&mm->mmap_sem);
8283 
8284 	raw_spin_lock_irqsave(&ifh->lock, flags);
8285 	list_for_each_entry(filter, &ifh->list, entry) {
8286 		event->addr_filters_offs[count] = 0;
8287 
8288 		/*
8289 		 * Adjust base offset if the filter is associated to a binary
8290 		 * that needs to be mapped:
8291 		 */
8292 		if (filter->inode)
8293 			event->addr_filters_offs[count] =
8294 				perf_addr_filter_apply(filter, mm);
8295 
8296 		count++;
8297 	}
8298 
8299 	event->addr_filters_gen++;
8300 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8301 
8302 	up_read(&mm->mmap_sem);
8303 
8304 	mmput(mm);
8305 
8306 restart:
8307 	perf_event_stop(event, 1);
8308 }
8309 
8310 /*
8311  * Address range filtering: limiting the data to certain
8312  * instruction address ranges. Filters are ioctl()ed to us from
8313  * userspace as ascii strings.
8314  *
8315  * Filter string format:
8316  *
8317  * ACTION RANGE_SPEC
8318  * where ACTION is one of the
8319  *  * "filter": limit the trace to this region
8320  *  * "start": start tracing from this address
8321  *  * "stop": stop tracing at this address/region;
8322  * RANGE_SPEC is
8323  *  * for kernel addresses: <start address>[/<size>]
8324  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8325  *
8326  * if <size> is not specified, the range is treated as a single address.
8327  */
8328 enum {
8329 	IF_ACT_NONE = -1,
8330 	IF_ACT_FILTER,
8331 	IF_ACT_START,
8332 	IF_ACT_STOP,
8333 	IF_SRC_FILE,
8334 	IF_SRC_KERNEL,
8335 	IF_SRC_FILEADDR,
8336 	IF_SRC_KERNELADDR,
8337 };
8338 
8339 enum {
8340 	IF_STATE_ACTION = 0,
8341 	IF_STATE_SOURCE,
8342 	IF_STATE_END,
8343 };
8344 
8345 static const match_table_t if_tokens = {
8346 	{ IF_ACT_FILTER,	"filter" },
8347 	{ IF_ACT_START,		"start" },
8348 	{ IF_ACT_STOP,		"stop" },
8349 	{ IF_SRC_FILE,		"%u/%u@%s" },
8350 	{ IF_SRC_KERNEL,	"%u/%u" },
8351 	{ IF_SRC_FILEADDR,	"%u@%s" },
8352 	{ IF_SRC_KERNELADDR,	"%u" },
8353 	{ IF_ACT_NONE,		NULL },
8354 };
8355 
8356 /*
8357  * Address filter string parser
8358  */
8359 static int
8360 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8361 			     struct list_head *filters)
8362 {
8363 	struct perf_addr_filter *filter = NULL;
8364 	char *start, *orig, *filename = NULL;
8365 	struct path path;
8366 	substring_t args[MAX_OPT_ARGS];
8367 	int state = IF_STATE_ACTION, token;
8368 	unsigned int kernel = 0;
8369 	int ret = -EINVAL;
8370 
8371 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8372 	if (!fstr)
8373 		return -ENOMEM;
8374 
8375 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8376 		ret = -EINVAL;
8377 
8378 		if (!*start)
8379 			continue;
8380 
8381 		/* filter definition begins */
8382 		if (state == IF_STATE_ACTION) {
8383 			filter = perf_addr_filter_new(event, filters);
8384 			if (!filter)
8385 				goto fail;
8386 		}
8387 
8388 		token = match_token(start, if_tokens, args);
8389 		switch (token) {
8390 		case IF_ACT_FILTER:
8391 		case IF_ACT_START:
8392 			filter->filter = 1;
8393 
8394 		case IF_ACT_STOP:
8395 			if (state != IF_STATE_ACTION)
8396 				goto fail;
8397 
8398 			state = IF_STATE_SOURCE;
8399 			break;
8400 
8401 		case IF_SRC_KERNELADDR:
8402 		case IF_SRC_KERNEL:
8403 			kernel = 1;
8404 
8405 		case IF_SRC_FILEADDR:
8406 		case IF_SRC_FILE:
8407 			if (state != IF_STATE_SOURCE)
8408 				goto fail;
8409 
8410 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8411 				filter->range = 1;
8412 
8413 			*args[0].to = 0;
8414 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8415 			if (ret)
8416 				goto fail;
8417 
8418 			if (filter->range) {
8419 				*args[1].to = 0;
8420 				ret = kstrtoul(args[1].from, 0, &filter->size);
8421 				if (ret)
8422 					goto fail;
8423 			}
8424 
8425 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8426 				int fpos = filter->range ? 2 : 1;
8427 
8428 				filename = match_strdup(&args[fpos]);
8429 				if (!filename) {
8430 					ret = -ENOMEM;
8431 					goto fail;
8432 				}
8433 			}
8434 
8435 			state = IF_STATE_END;
8436 			break;
8437 
8438 		default:
8439 			goto fail;
8440 		}
8441 
8442 		/*
8443 		 * Filter definition is fully parsed, validate and install it.
8444 		 * Make sure that it doesn't contradict itself or the event's
8445 		 * attribute.
8446 		 */
8447 		if (state == IF_STATE_END) {
8448 			ret = -EINVAL;
8449 			if (kernel && event->attr.exclude_kernel)
8450 				goto fail;
8451 
8452 			if (!kernel) {
8453 				if (!filename)
8454 					goto fail;
8455 
8456 				/*
8457 				 * For now, we only support file-based filters
8458 				 * in per-task events; doing so for CPU-wide
8459 				 * events requires additional context switching
8460 				 * trickery, since same object code will be
8461 				 * mapped at different virtual addresses in
8462 				 * different processes.
8463 				 */
8464 				ret = -EOPNOTSUPP;
8465 				if (!event->ctx->task)
8466 					goto fail_free_name;
8467 
8468 				/* look up the path and grab its inode */
8469 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8470 				if (ret)
8471 					goto fail_free_name;
8472 
8473 				filter->inode = igrab(d_inode(path.dentry));
8474 				path_put(&path);
8475 				kfree(filename);
8476 				filename = NULL;
8477 
8478 				ret = -EINVAL;
8479 				if (!filter->inode ||
8480 				    !S_ISREG(filter->inode->i_mode))
8481 					/* free_filters_list() will iput() */
8482 					goto fail;
8483 
8484 				event->addr_filters.nr_file_filters++;
8485 			}
8486 
8487 			/* ready to consume more filters */
8488 			state = IF_STATE_ACTION;
8489 			filter = NULL;
8490 		}
8491 	}
8492 
8493 	if (state != IF_STATE_ACTION)
8494 		goto fail;
8495 
8496 	kfree(orig);
8497 
8498 	return 0;
8499 
8500 fail_free_name:
8501 	kfree(filename);
8502 fail:
8503 	free_filters_list(filters);
8504 	kfree(orig);
8505 
8506 	return ret;
8507 }
8508 
8509 static int
8510 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8511 {
8512 	LIST_HEAD(filters);
8513 	int ret;
8514 
8515 	/*
8516 	 * Since this is called in perf_ioctl() path, we're already holding
8517 	 * ctx::mutex.
8518 	 */
8519 	lockdep_assert_held(&event->ctx->mutex);
8520 
8521 	if (WARN_ON_ONCE(event->parent))
8522 		return -EINVAL;
8523 
8524 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8525 	if (ret)
8526 		goto fail_clear_files;
8527 
8528 	ret = event->pmu->addr_filters_validate(&filters);
8529 	if (ret)
8530 		goto fail_free_filters;
8531 
8532 	/* remove existing filters, if any */
8533 	perf_addr_filters_splice(event, &filters);
8534 
8535 	/* install new filters */
8536 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8537 
8538 	return ret;
8539 
8540 fail_free_filters:
8541 	free_filters_list(&filters);
8542 
8543 fail_clear_files:
8544 	event->addr_filters.nr_file_filters = 0;
8545 
8546 	return ret;
8547 }
8548 
8549 static int
8550 perf_tracepoint_set_filter(struct perf_event *event, char *filter_str)
8551 {
8552 	struct perf_event_context *ctx = event->ctx;
8553 	int ret;
8554 
8555 	/*
8556 	 * Beware, here be dragons!!
8557 	 *
8558 	 * the tracepoint muck will deadlock against ctx->mutex, but the tracepoint
8559 	 * stuff does not actually need it. So temporarily drop ctx->mutex. As per
8560 	 * perf_event_ctx_lock() we already have a reference on ctx.
8561 	 *
8562 	 * This can result in event getting moved to a different ctx, but that
8563 	 * does not affect the tracepoint state.
8564 	 */
8565 	mutex_unlock(&ctx->mutex);
8566 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
8567 	mutex_lock(&ctx->mutex);
8568 
8569 	return ret;
8570 }
8571 
8572 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8573 {
8574 	char *filter_str;
8575 	int ret = -EINVAL;
8576 
8577 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8578 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8579 	    !has_addr_filter(event))
8580 		return -EINVAL;
8581 
8582 	filter_str = strndup_user(arg, PAGE_SIZE);
8583 	if (IS_ERR(filter_str))
8584 		return PTR_ERR(filter_str);
8585 
8586 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8587 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8588 		ret = perf_tracepoint_set_filter(event, filter_str);
8589 	else if (has_addr_filter(event))
8590 		ret = perf_event_set_addr_filter(event, filter_str);
8591 
8592 	kfree(filter_str);
8593 	return ret;
8594 }
8595 
8596 /*
8597  * hrtimer based swevent callback
8598  */
8599 
8600 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8601 {
8602 	enum hrtimer_restart ret = HRTIMER_RESTART;
8603 	struct perf_sample_data data;
8604 	struct pt_regs *regs;
8605 	struct perf_event *event;
8606 	u64 period;
8607 
8608 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8609 
8610 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8611 		return HRTIMER_NORESTART;
8612 
8613 	event->pmu->read(event);
8614 
8615 	perf_sample_data_init(&data, 0, event->hw.last_period);
8616 	regs = get_irq_regs();
8617 
8618 	if (regs && !perf_exclude_event(event, regs)) {
8619 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8620 			if (__perf_event_overflow(event, 1, &data, regs))
8621 				ret = HRTIMER_NORESTART;
8622 	}
8623 
8624 	period = max_t(u64, 10000, event->hw.sample_period);
8625 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8626 
8627 	return ret;
8628 }
8629 
8630 static void perf_swevent_start_hrtimer(struct perf_event *event)
8631 {
8632 	struct hw_perf_event *hwc = &event->hw;
8633 	s64 period;
8634 
8635 	if (!is_sampling_event(event))
8636 		return;
8637 
8638 	period = local64_read(&hwc->period_left);
8639 	if (period) {
8640 		if (period < 0)
8641 			period = 10000;
8642 
8643 		local64_set(&hwc->period_left, 0);
8644 	} else {
8645 		period = max_t(u64, 10000, hwc->sample_period);
8646 	}
8647 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8648 		      HRTIMER_MODE_REL_PINNED);
8649 }
8650 
8651 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8652 {
8653 	struct hw_perf_event *hwc = &event->hw;
8654 
8655 	if (is_sampling_event(event)) {
8656 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8657 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8658 
8659 		hrtimer_cancel(&hwc->hrtimer);
8660 	}
8661 }
8662 
8663 static void perf_swevent_init_hrtimer(struct perf_event *event)
8664 {
8665 	struct hw_perf_event *hwc = &event->hw;
8666 
8667 	if (!is_sampling_event(event))
8668 		return;
8669 
8670 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8671 	hwc->hrtimer.function = perf_swevent_hrtimer;
8672 
8673 	/*
8674 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8675 	 * mapping and avoid the whole period adjust feedback stuff.
8676 	 */
8677 	if (event->attr.freq) {
8678 		long freq = event->attr.sample_freq;
8679 
8680 		event->attr.sample_period = NSEC_PER_SEC / freq;
8681 		hwc->sample_period = event->attr.sample_period;
8682 		local64_set(&hwc->period_left, hwc->sample_period);
8683 		hwc->last_period = hwc->sample_period;
8684 		event->attr.freq = 0;
8685 	}
8686 }
8687 
8688 /*
8689  * Software event: cpu wall time clock
8690  */
8691 
8692 static void cpu_clock_event_update(struct perf_event *event)
8693 {
8694 	s64 prev;
8695 	u64 now;
8696 
8697 	now = local_clock();
8698 	prev = local64_xchg(&event->hw.prev_count, now);
8699 	local64_add(now - prev, &event->count);
8700 }
8701 
8702 static void cpu_clock_event_start(struct perf_event *event, int flags)
8703 {
8704 	local64_set(&event->hw.prev_count, local_clock());
8705 	perf_swevent_start_hrtimer(event);
8706 }
8707 
8708 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8709 {
8710 	perf_swevent_cancel_hrtimer(event);
8711 	cpu_clock_event_update(event);
8712 }
8713 
8714 static int cpu_clock_event_add(struct perf_event *event, int flags)
8715 {
8716 	if (flags & PERF_EF_START)
8717 		cpu_clock_event_start(event, flags);
8718 	perf_event_update_userpage(event);
8719 
8720 	return 0;
8721 }
8722 
8723 static void cpu_clock_event_del(struct perf_event *event, int flags)
8724 {
8725 	cpu_clock_event_stop(event, flags);
8726 }
8727 
8728 static void cpu_clock_event_read(struct perf_event *event)
8729 {
8730 	cpu_clock_event_update(event);
8731 }
8732 
8733 static int cpu_clock_event_init(struct perf_event *event)
8734 {
8735 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8736 		return -ENOENT;
8737 
8738 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8739 		return -ENOENT;
8740 
8741 	/*
8742 	 * no branch sampling for software events
8743 	 */
8744 	if (has_branch_stack(event))
8745 		return -EOPNOTSUPP;
8746 
8747 	perf_swevent_init_hrtimer(event);
8748 
8749 	return 0;
8750 }
8751 
8752 static struct pmu perf_cpu_clock = {
8753 	.task_ctx_nr	= perf_sw_context,
8754 
8755 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8756 
8757 	.event_init	= cpu_clock_event_init,
8758 	.add		= cpu_clock_event_add,
8759 	.del		= cpu_clock_event_del,
8760 	.start		= cpu_clock_event_start,
8761 	.stop		= cpu_clock_event_stop,
8762 	.read		= cpu_clock_event_read,
8763 };
8764 
8765 /*
8766  * Software event: task time clock
8767  */
8768 
8769 static void task_clock_event_update(struct perf_event *event, u64 now)
8770 {
8771 	u64 prev;
8772 	s64 delta;
8773 
8774 	prev = local64_xchg(&event->hw.prev_count, now);
8775 	delta = now - prev;
8776 	local64_add(delta, &event->count);
8777 }
8778 
8779 static void task_clock_event_start(struct perf_event *event, int flags)
8780 {
8781 	local64_set(&event->hw.prev_count, event->ctx->time);
8782 	perf_swevent_start_hrtimer(event);
8783 }
8784 
8785 static void task_clock_event_stop(struct perf_event *event, int flags)
8786 {
8787 	perf_swevent_cancel_hrtimer(event);
8788 	task_clock_event_update(event, event->ctx->time);
8789 }
8790 
8791 static int task_clock_event_add(struct perf_event *event, int flags)
8792 {
8793 	if (flags & PERF_EF_START)
8794 		task_clock_event_start(event, flags);
8795 	perf_event_update_userpage(event);
8796 
8797 	return 0;
8798 }
8799 
8800 static void task_clock_event_del(struct perf_event *event, int flags)
8801 {
8802 	task_clock_event_stop(event, PERF_EF_UPDATE);
8803 }
8804 
8805 static void task_clock_event_read(struct perf_event *event)
8806 {
8807 	u64 now = perf_clock();
8808 	u64 delta = now - event->ctx->timestamp;
8809 	u64 time = event->ctx->time + delta;
8810 
8811 	task_clock_event_update(event, time);
8812 }
8813 
8814 static int task_clock_event_init(struct perf_event *event)
8815 {
8816 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8817 		return -ENOENT;
8818 
8819 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8820 		return -ENOENT;
8821 
8822 	/*
8823 	 * no branch sampling for software events
8824 	 */
8825 	if (has_branch_stack(event))
8826 		return -EOPNOTSUPP;
8827 
8828 	perf_swevent_init_hrtimer(event);
8829 
8830 	return 0;
8831 }
8832 
8833 static struct pmu perf_task_clock = {
8834 	.task_ctx_nr	= perf_sw_context,
8835 
8836 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8837 
8838 	.event_init	= task_clock_event_init,
8839 	.add		= task_clock_event_add,
8840 	.del		= task_clock_event_del,
8841 	.start		= task_clock_event_start,
8842 	.stop		= task_clock_event_stop,
8843 	.read		= task_clock_event_read,
8844 };
8845 
8846 static void perf_pmu_nop_void(struct pmu *pmu)
8847 {
8848 }
8849 
8850 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8851 {
8852 }
8853 
8854 static int perf_pmu_nop_int(struct pmu *pmu)
8855 {
8856 	return 0;
8857 }
8858 
8859 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8860 
8861 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8862 {
8863 	__this_cpu_write(nop_txn_flags, flags);
8864 
8865 	if (flags & ~PERF_PMU_TXN_ADD)
8866 		return;
8867 
8868 	perf_pmu_disable(pmu);
8869 }
8870 
8871 static int perf_pmu_commit_txn(struct pmu *pmu)
8872 {
8873 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8874 
8875 	__this_cpu_write(nop_txn_flags, 0);
8876 
8877 	if (flags & ~PERF_PMU_TXN_ADD)
8878 		return 0;
8879 
8880 	perf_pmu_enable(pmu);
8881 	return 0;
8882 }
8883 
8884 static void perf_pmu_cancel_txn(struct pmu *pmu)
8885 {
8886 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8887 
8888 	__this_cpu_write(nop_txn_flags, 0);
8889 
8890 	if (flags & ~PERF_PMU_TXN_ADD)
8891 		return;
8892 
8893 	perf_pmu_enable(pmu);
8894 }
8895 
8896 static int perf_event_idx_default(struct perf_event *event)
8897 {
8898 	return 0;
8899 }
8900 
8901 /*
8902  * Ensures all contexts with the same task_ctx_nr have the same
8903  * pmu_cpu_context too.
8904  */
8905 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8906 {
8907 	struct pmu *pmu;
8908 
8909 	if (ctxn < 0)
8910 		return NULL;
8911 
8912 	list_for_each_entry(pmu, &pmus, entry) {
8913 		if (pmu->task_ctx_nr == ctxn)
8914 			return pmu->pmu_cpu_context;
8915 	}
8916 
8917 	return NULL;
8918 }
8919 
8920 static void free_pmu_context(struct pmu *pmu)
8921 {
8922 	/*
8923 	 * Static contexts such as perf_sw_context have a global lifetime
8924 	 * and may be shared between different PMUs. Avoid freeing them
8925 	 * when a single PMU is going away.
8926 	 */
8927 	if (pmu->task_ctx_nr > perf_invalid_context)
8928 		return;
8929 
8930 	mutex_lock(&pmus_lock);
8931 	free_percpu(pmu->pmu_cpu_context);
8932 	mutex_unlock(&pmus_lock);
8933 }
8934 
8935 /*
8936  * Let userspace know that this PMU supports address range filtering:
8937  */
8938 static ssize_t nr_addr_filters_show(struct device *dev,
8939 				    struct device_attribute *attr,
8940 				    char *page)
8941 {
8942 	struct pmu *pmu = dev_get_drvdata(dev);
8943 
8944 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8945 }
8946 DEVICE_ATTR_RO(nr_addr_filters);
8947 
8948 static struct idr pmu_idr;
8949 
8950 static ssize_t
8951 type_show(struct device *dev, struct device_attribute *attr, char *page)
8952 {
8953 	struct pmu *pmu = dev_get_drvdata(dev);
8954 
8955 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8956 }
8957 static DEVICE_ATTR_RO(type);
8958 
8959 static ssize_t
8960 perf_event_mux_interval_ms_show(struct device *dev,
8961 				struct device_attribute *attr,
8962 				char *page)
8963 {
8964 	struct pmu *pmu = dev_get_drvdata(dev);
8965 
8966 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8967 }
8968 
8969 static DEFINE_MUTEX(mux_interval_mutex);
8970 
8971 static ssize_t
8972 perf_event_mux_interval_ms_store(struct device *dev,
8973 				 struct device_attribute *attr,
8974 				 const char *buf, size_t count)
8975 {
8976 	struct pmu *pmu = dev_get_drvdata(dev);
8977 	int timer, cpu, ret;
8978 
8979 	ret = kstrtoint(buf, 0, &timer);
8980 	if (ret)
8981 		return ret;
8982 
8983 	if (timer < 1)
8984 		return -EINVAL;
8985 
8986 	/* same value, noting to do */
8987 	if (timer == pmu->hrtimer_interval_ms)
8988 		return count;
8989 
8990 	mutex_lock(&mux_interval_mutex);
8991 	pmu->hrtimer_interval_ms = timer;
8992 
8993 	/* update all cpuctx for this PMU */
8994 	cpus_read_lock();
8995 	for_each_online_cpu(cpu) {
8996 		struct perf_cpu_context *cpuctx;
8997 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8998 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8999 
9000 		cpu_function_call(cpu,
9001 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9002 	}
9003 	cpus_read_unlock();
9004 	mutex_unlock(&mux_interval_mutex);
9005 
9006 	return count;
9007 }
9008 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9009 
9010 static struct attribute *pmu_dev_attrs[] = {
9011 	&dev_attr_type.attr,
9012 	&dev_attr_perf_event_mux_interval_ms.attr,
9013 	NULL,
9014 };
9015 ATTRIBUTE_GROUPS(pmu_dev);
9016 
9017 static int pmu_bus_running;
9018 static struct bus_type pmu_bus = {
9019 	.name		= "event_source",
9020 	.dev_groups	= pmu_dev_groups,
9021 };
9022 
9023 static void pmu_dev_release(struct device *dev)
9024 {
9025 	kfree(dev);
9026 }
9027 
9028 static int pmu_dev_alloc(struct pmu *pmu)
9029 {
9030 	int ret = -ENOMEM;
9031 
9032 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9033 	if (!pmu->dev)
9034 		goto out;
9035 
9036 	pmu->dev->groups = pmu->attr_groups;
9037 	device_initialize(pmu->dev);
9038 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9039 	if (ret)
9040 		goto free_dev;
9041 
9042 	dev_set_drvdata(pmu->dev, pmu);
9043 	pmu->dev->bus = &pmu_bus;
9044 	pmu->dev->release = pmu_dev_release;
9045 	ret = device_add(pmu->dev);
9046 	if (ret)
9047 		goto free_dev;
9048 
9049 	/* For PMUs with address filters, throw in an extra attribute: */
9050 	if (pmu->nr_addr_filters)
9051 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9052 
9053 	if (ret)
9054 		goto del_dev;
9055 
9056 out:
9057 	return ret;
9058 
9059 del_dev:
9060 	device_del(pmu->dev);
9061 
9062 free_dev:
9063 	put_device(pmu->dev);
9064 	goto out;
9065 }
9066 
9067 static struct lock_class_key cpuctx_mutex;
9068 static struct lock_class_key cpuctx_lock;
9069 
9070 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9071 {
9072 	int cpu, ret;
9073 
9074 	mutex_lock(&pmus_lock);
9075 	ret = -ENOMEM;
9076 	pmu->pmu_disable_count = alloc_percpu(int);
9077 	if (!pmu->pmu_disable_count)
9078 		goto unlock;
9079 
9080 	pmu->type = -1;
9081 	if (!name)
9082 		goto skip_type;
9083 	pmu->name = name;
9084 
9085 	if (type < 0) {
9086 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9087 		if (type < 0) {
9088 			ret = type;
9089 			goto free_pdc;
9090 		}
9091 	}
9092 	pmu->type = type;
9093 
9094 	if (pmu_bus_running) {
9095 		ret = pmu_dev_alloc(pmu);
9096 		if (ret)
9097 			goto free_idr;
9098 	}
9099 
9100 skip_type:
9101 	if (pmu->task_ctx_nr == perf_hw_context) {
9102 		static int hw_context_taken = 0;
9103 
9104 		/*
9105 		 * Other than systems with heterogeneous CPUs, it never makes
9106 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9107 		 * uncore must use perf_invalid_context.
9108 		 */
9109 		if (WARN_ON_ONCE(hw_context_taken &&
9110 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9111 			pmu->task_ctx_nr = perf_invalid_context;
9112 
9113 		hw_context_taken = 1;
9114 	}
9115 
9116 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9117 	if (pmu->pmu_cpu_context)
9118 		goto got_cpu_context;
9119 
9120 	ret = -ENOMEM;
9121 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9122 	if (!pmu->pmu_cpu_context)
9123 		goto free_dev;
9124 
9125 	for_each_possible_cpu(cpu) {
9126 		struct perf_cpu_context *cpuctx;
9127 
9128 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9129 		__perf_event_init_context(&cpuctx->ctx);
9130 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9131 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9132 		cpuctx->ctx.pmu = pmu;
9133 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9134 
9135 		__perf_mux_hrtimer_init(cpuctx, cpu);
9136 	}
9137 
9138 got_cpu_context:
9139 	if (!pmu->start_txn) {
9140 		if (pmu->pmu_enable) {
9141 			/*
9142 			 * If we have pmu_enable/pmu_disable calls, install
9143 			 * transaction stubs that use that to try and batch
9144 			 * hardware accesses.
9145 			 */
9146 			pmu->start_txn  = perf_pmu_start_txn;
9147 			pmu->commit_txn = perf_pmu_commit_txn;
9148 			pmu->cancel_txn = perf_pmu_cancel_txn;
9149 		} else {
9150 			pmu->start_txn  = perf_pmu_nop_txn;
9151 			pmu->commit_txn = perf_pmu_nop_int;
9152 			pmu->cancel_txn = perf_pmu_nop_void;
9153 		}
9154 	}
9155 
9156 	if (!pmu->pmu_enable) {
9157 		pmu->pmu_enable  = perf_pmu_nop_void;
9158 		pmu->pmu_disable = perf_pmu_nop_void;
9159 	}
9160 
9161 	if (!pmu->event_idx)
9162 		pmu->event_idx = perf_event_idx_default;
9163 
9164 	list_add_rcu(&pmu->entry, &pmus);
9165 	atomic_set(&pmu->exclusive_cnt, 0);
9166 	ret = 0;
9167 unlock:
9168 	mutex_unlock(&pmus_lock);
9169 
9170 	return ret;
9171 
9172 free_dev:
9173 	device_del(pmu->dev);
9174 	put_device(pmu->dev);
9175 
9176 free_idr:
9177 	if (pmu->type >= PERF_TYPE_MAX)
9178 		idr_remove(&pmu_idr, pmu->type);
9179 
9180 free_pdc:
9181 	free_percpu(pmu->pmu_disable_count);
9182 	goto unlock;
9183 }
9184 EXPORT_SYMBOL_GPL(perf_pmu_register);
9185 
9186 void perf_pmu_unregister(struct pmu *pmu)
9187 {
9188 	int remove_device;
9189 
9190 	mutex_lock(&pmus_lock);
9191 	remove_device = pmu_bus_running;
9192 	list_del_rcu(&pmu->entry);
9193 	mutex_unlock(&pmus_lock);
9194 
9195 	/*
9196 	 * We dereference the pmu list under both SRCU and regular RCU, so
9197 	 * synchronize against both of those.
9198 	 */
9199 	synchronize_srcu(&pmus_srcu);
9200 	synchronize_rcu();
9201 
9202 	free_percpu(pmu->pmu_disable_count);
9203 	if (pmu->type >= PERF_TYPE_MAX)
9204 		idr_remove(&pmu_idr, pmu->type);
9205 	if (remove_device) {
9206 		if (pmu->nr_addr_filters)
9207 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9208 		device_del(pmu->dev);
9209 		put_device(pmu->dev);
9210 	}
9211 	free_pmu_context(pmu);
9212 }
9213 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9214 
9215 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9216 {
9217 	struct perf_event_context *ctx = NULL;
9218 	int ret;
9219 
9220 	if (!try_module_get(pmu->module))
9221 		return -ENODEV;
9222 
9223 	/*
9224 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9225 	 * for example, validate if the group fits on the PMU. Therefore,
9226 	 * if this is a sibling event, acquire the ctx->mutex to protect
9227 	 * the sibling_list.
9228 	 */
9229 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9230 		/*
9231 		 * This ctx->mutex can nest when we're called through
9232 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9233 		 */
9234 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9235 						 SINGLE_DEPTH_NESTING);
9236 		BUG_ON(!ctx);
9237 	}
9238 
9239 	event->pmu = pmu;
9240 	ret = pmu->event_init(event);
9241 
9242 	if (ctx)
9243 		perf_event_ctx_unlock(event->group_leader, ctx);
9244 
9245 	if (ret)
9246 		module_put(pmu->module);
9247 
9248 	return ret;
9249 }
9250 
9251 static struct pmu *perf_init_event(struct perf_event *event)
9252 {
9253 	struct pmu *pmu;
9254 	int idx;
9255 	int ret;
9256 
9257 	idx = srcu_read_lock(&pmus_srcu);
9258 
9259 	/* Try parent's PMU first: */
9260 	if (event->parent && event->parent->pmu) {
9261 		pmu = event->parent->pmu;
9262 		ret = perf_try_init_event(pmu, event);
9263 		if (!ret)
9264 			goto unlock;
9265 	}
9266 
9267 	rcu_read_lock();
9268 	pmu = idr_find(&pmu_idr, event->attr.type);
9269 	rcu_read_unlock();
9270 	if (pmu) {
9271 		ret = perf_try_init_event(pmu, event);
9272 		if (ret)
9273 			pmu = ERR_PTR(ret);
9274 		goto unlock;
9275 	}
9276 
9277 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9278 		ret = perf_try_init_event(pmu, event);
9279 		if (!ret)
9280 			goto unlock;
9281 
9282 		if (ret != -ENOENT) {
9283 			pmu = ERR_PTR(ret);
9284 			goto unlock;
9285 		}
9286 	}
9287 	pmu = ERR_PTR(-ENOENT);
9288 unlock:
9289 	srcu_read_unlock(&pmus_srcu, idx);
9290 
9291 	return pmu;
9292 }
9293 
9294 static void attach_sb_event(struct perf_event *event)
9295 {
9296 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9297 
9298 	raw_spin_lock(&pel->lock);
9299 	list_add_rcu(&event->sb_list, &pel->list);
9300 	raw_spin_unlock(&pel->lock);
9301 }
9302 
9303 /*
9304  * We keep a list of all !task (and therefore per-cpu) events
9305  * that need to receive side-band records.
9306  *
9307  * This avoids having to scan all the various PMU per-cpu contexts
9308  * looking for them.
9309  */
9310 static void account_pmu_sb_event(struct perf_event *event)
9311 {
9312 	if (is_sb_event(event))
9313 		attach_sb_event(event);
9314 }
9315 
9316 static void account_event_cpu(struct perf_event *event, int cpu)
9317 {
9318 	if (event->parent)
9319 		return;
9320 
9321 	if (is_cgroup_event(event))
9322 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9323 }
9324 
9325 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9326 static void account_freq_event_nohz(void)
9327 {
9328 #ifdef CONFIG_NO_HZ_FULL
9329 	/* Lock so we don't race with concurrent unaccount */
9330 	spin_lock(&nr_freq_lock);
9331 	if (atomic_inc_return(&nr_freq_events) == 1)
9332 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9333 	spin_unlock(&nr_freq_lock);
9334 #endif
9335 }
9336 
9337 static void account_freq_event(void)
9338 {
9339 	if (tick_nohz_full_enabled())
9340 		account_freq_event_nohz();
9341 	else
9342 		atomic_inc(&nr_freq_events);
9343 }
9344 
9345 
9346 static void account_event(struct perf_event *event)
9347 {
9348 	bool inc = false;
9349 
9350 	if (event->parent)
9351 		return;
9352 
9353 	if (event->attach_state & PERF_ATTACH_TASK)
9354 		inc = true;
9355 	if (event->attr.mmap || event->attr.mmap_data)
9356 		atomic_inc(&nr_mmap_events);
9357 	if (event->attr.comm)
9358 		atomic_inc(&nr_comm_events);
9359 	if (event->attr.namespaces)
9360 		atomic_inc(&nr_namespaces_events);
9361 	if (event->attr.task)
9362 		atomic_inc(&nr_task_events);
9363 	if (event->attr.freq)
9364 		account_freq_event();
9365 	if (event->attr.context_switch) {
9366 		atomic_inc(&nr_switch_events);
9367 		inc = true;
9368 	}
9369 	if (has_branch_stack(event))
9370 		inc = true;
9371 	if (is_cgroup_event(event))
9372 		inc = true;
9373 
9374 	if (inc) {
9375 		/*
9376 		 * We need the mutex here because static_branch_enable()
9377 		 * must complete *before* the perf_sched_count increment
9378 		 * becomes visible.
9379 		 */
9380 		if (atomic_inc_not_zero(&perf_sched_count))
9381 			goto enabled;
9382 
9383 		mutex_lock(&perf_sched_mutex);
9384 		if (!atomic_read(&perf_sched_count)) {
9385 			static_branch_enable(&perf_sched_events);
9386 			/*
9387 			 * Guarantee that all CPUs observe they key change and
9388 			 * call the perf scheduling hooks before proceeding to
9389 			 * install events that need them.
9390 			 */
9391 			synchronize_sched();
9392 		}
9393 		/*
9394 		 * Now that we have waited for the sync_sched(), allow further
9395 		 * increments to by-pass the mutex.
9396 		 */
9397 		atomic_inc(&perf_sched_count);
9398 		mutex_unlock(&perf_sched_mutex);
9399 	}
9400 enabled:
9401 
9402 	account_event_cpu(event, event->cpu);
9403 
9404 	account_pmu_sb_event(event);
9405 }
9406 
9407 /*
9408  * Allocate and initialize a event structure
9409  */
9410 static struct perf_event *
9411 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9412 		 struct task_struct *task,
9413 		 struct perf_event *group_leader,
9414 		 struct perf_event *parent_event,
9415 		 perf_overflow_handler_t overflow_handler,
9416 		 void *context, int cgroup_fd)
9417 {
9418 	struct pmu *pmu;
9419 	struct perf_event *event;
9420 	struct hw_perf_event *hwc;
9421 	long err = -EINVAL;
9422 
9423 	if ((unsigned)cpu >= nr_cpu_ids) {
9424 		if (!task || cpu != -1)
9425 			return ERR_PTR(-EINVAL);
9426 	}
9427 
9428 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9429 	if (!event)
9430 		return ERR_PTR(-ENOMEM);
9431 
9432 	/*
9433 	 * Single events are their own group leaders, with an
9434 	 * empty sibling list:
9435 	 */
9436 	if (!group_leader)
9437 		group_leader = event;
9438 
9439 	mutex_init(&event->child_mutex);
9440 	INIT_LIST_HEAD(&event->child_list);
9441 
9442 	INIT_LIST_HEAD(&event->group_entry);
9443 	INIT_LIST_HEAD(&event->event_entry);
9444 	INIT_LIST_HEAD(&event->sibling_list);
9445 	INIT_LIST_HEAD(&event->rb_entry);
9446 	INIT_LIST_HEAD(&event->active_entry);
9447 	INIT_LIST_HEAD(&event->addr_filters.list);
9448 	INIT_HLIST_NODE(&event->hlist_entry);
9449 
9450 
9451 	init_waitqueue_head(&event->waitq);
9452 	init_irq_work(&event->pending, perf_pending_event);
9453 
9454 	mutex_init(&event->mmap_mutex);
9455 	raw_spin_lock_init(&event->addr_filters.lock);
9456 
9457 	atomic_long_set(&event->refcount, 1);
9458 	event->cpu		= cpu;
9459 	event->attr		= *attr;
9460 	event->group_leader	= group_leader;
9461 	event->pmu		= NULL;
9462 	event->oncpu		= -1;
9463 
9464 	event->parent		= parent_event;
9465 
9466 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9467 	event->id		= atomic64_inc_return(&perf_event_id);
9468 
9469 	event->state		= PERF_EVENT_STATE_INACTIVE;
9470 
9471 	if (task) {
9472 		event->attach_state = PERF_ATTACH_TASK;
9473 		/*
9474 		 * XXX pmu::event_init needs to know what task to account to
9475 		 * and we cannot use the ctx information because we need the
9476 		 * pmu before we get a ctx.
9477 		 */
9478 		event->hw.target = task;
9479 	}
9480 
9481 	event->clock = &local_clock;
9482 	if (parent_event)
9483 		event->clock = parent_event->clock;
9484 
9485 	if (!overflow_handler && parent_event) {
9486 		overflow_handler = parent_event->overflow_handler;
9487 		context = parent_event->overflow_handler_context;
9488 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9489 		if (overflow_handler == bpf_overflow_handler) {
9490 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9491 
9492 			if (IS_ERR(prog)) {
9493 				err = PTR_ERR(prog);
9494 				goto err_ns;
9495 			}
9496 			event->prog = prog;
9497 			event->orig_overflow_handler =
9498 				parent_event->orig_overflow_handler;
9499 		}
9500 #endif
9501 	}
9502 
9503 	if (overflow_handler) {
9504 		event->overflow_handler	= overflow_handler;
9505 		event->overflow_handler_context = context;
9506 	} else if (is_write_backward(event)){
9507 		event->overflow_handler = perf_event_output_backward;
9508 		event->overflow_handler_context = NULL;
9509 	} else {
9510 		event->overflow_handler = perf_event_output_forward;
9511 		event->overflow_handler_context = NULL;
9512 	}
9513 
9514 	perf_event__state_init(event);
9515 
9516 	pmu = NULL;
9517 
9518 	hwc = &event->hw;
9519 	hwc->sample_period = attr->sample_period;
9520 	if (attr->freq && attr->sample_freq)
9521 		hwc->sample_period = 1;
9522 	hwc->last_period = hwc->sample_period;
9523 
9524 	local64_set(&hwc->period_left, hwc->sample_period);
9525 
9526 	/*
9527 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9528 	 * See perf_output_read().
9529 	 */
9530 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9531 		goto err_ns;
9532 
9533 	if (!has_branch_stack(event))
9534 		event->attr.branch_sample_type = 0;
9535 
9536 	if (cgroup_fd != -1) {
9537 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9538 		if (err)
9539 			goto err_ns;
9540 	}
9541 
9542 	pmu = perf_init_event(event);
9543 	if (IS_ERR(pmu)) {
9544 		err = PTR_ERR(pmu);
9545 		goto err_ns;
9546 	}
9547 
9548 	err = exclusive_event_init(event);
9549 	if (err)
9550 		goto err_pmu;
9551 
9552 	if (has_addr_filter(event)) {
9553 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9554 						   sizeof(unsigned long),
9555 						   GFP_KERNEL);
9556 		if (!event->addr_filters_offs) {
9557 			err = -ENOMEM;
9558 			goto err_per_task;
9559 		}
9560 
9561 		/* force hw sync on the address filters */
9562 		event->addr_filters_gen = 1;
9563 	}
9564 
9565 	if (!event->parent) {
9566 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9567 			err = get_callchain_buffers(attr->sample_max_stack);
9568 			if (err)
9569 				goto err_addr_filters;
9570 		}
9571 	}
9572 
9573 	/* symmetric to unaccount_event() in _free_event() */
9574 	account_event(event);
9575 
9576 	return event;
9577 
9578 err_addr_filters:
9579 	kfree(event->addr_filters_offs);
9580 
9581 err_per_task:
9582 	exclusive_event_destroy(event);
9583 
9584 err_pmu:
9585 	if (event->destroy)
9586 		event->destroy(event);
9587 	module_put(pmu->module);
9588 err_ns:
9589 	if (is_cgroup_event(event))
9590 		perf_detach_cgroup(event);
9591 	if (event->ns)
9592 		put_pid_ns(event->ns);
9593 	kfree(event);
9594 
9595 	return ERR_PTR(err);
9596 }
9597 
9598 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9599 			  struct perf_event_attr *attr)
9600 {
9601 	u32 size;
9602 	int ret;
9603 
9604 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9605 		return -EFAULT;
9606 
9607 	/*
9608 	 * zero the full structure, so that a short copy will be nice.
9609 	 */
9610 	memset(attr, 0, sizeof(*attr));
9611 
9612 	ret = get_user(size, &uattr->size);
9613 	if (ret)
9614 		return ret;
9615 
9616 	if (size > PAGE_SIZE)	/* silly large */
9617 		goto err_size;
9618 
9619 	if (!size)		/* abi compat */
9620 		size = PERF_ATTR_SIZE_VER0;
9621 
9622 	if (size < PERF_ATTR_SIZE_VER0)
9623 		goto err_size;
9624 
9625 	/*
9626 	 * If we're handed a bigger struct than we know of,
9627 	 * ensure all the unknown bits are 0 - i.e. new
9628 	 * user-space does not rely on any kernel feature
9629 	 * extensions we dont know about yet.
9630 	 */
9631 	if (size > sizeof(*attr)) {
9632 		unsigned char __user *addr;
9633 		unsigned char __user *end;
9634 		unsigned char val;
9635 
9636 		addr = (void __user *)uattr + sizeof(*attr);
9637 		end  = (void __user *)uattr + size;
9638 
9639 		for (; addr < end; addr++) {
9640 			ret = get_user(val, addr);
9641 			if (ret)
9642 				return ret;
9643 			if (val)
9644 				goto err_size;
9645 		}
9646 		size = sizeof(*attr);
9647 	}
9648 
9649 	ret = copy_from_user(attr, uattr, size);
9650 	if (ret)
9651 		return -EFAULT;
9652 
9653 	attr->size = size;
9654 
9655 	if (attr->__reserved_1)
9656 		return -EINVAL;
9657 
9658 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9659 		return -EINVAL;
9660 
9661 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9662 		return -EINVAL;
9663 
9664 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9665 		u64 mask = attr->branch_sample_type;
9666 
9667 		/* only using defined bits */
9668 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9669 			return -EINVAL;
9670 
9671 		/* at least one branch bit must be set */
9672 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9673 			return -EINVAL;
9674 
9675 		/* propagate priv level, when not set for branch */
9676 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9677 
9678 			/* exclude_kernel checked on syscall entry */
9679 			if (!attr->exclude_kernel)
9680 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9681 
9682 			if (!attr->exclude_user)
9683 				mask |= PERF_SAMPLE_BRANCH_USER;
9684 
9685 			if (!attr->exclude_hv)
9686 				mask |= PERF_SAMPLE_BRANCH_HV;
9687 			/*
9688 			 * adjust user setting (for HW filter setup)
9689 			 */
9690 			attr->branch_sample_type = mask;
9691 		}
9692 		/* privileged levels capture (kernel, hv): check permissions */
9693 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9694 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9695 			return -EACCES;
9696 	}
9697 
9698 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9699 		ret = perf_reg_validate(attr->sample_regs_user);
9700 		if (ret)
9701 			return ret;
9702 	}
9703 
9704 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9705 		if (!arch_perf_have_user_stack_dump())
9706 			return -ENOSYS;
9707 
9708 		/*
9709 		 * We have __u32 type for the size, but so far
9710 		 * we can only use __u16 as maximum due to the
9711 		 * __u16 sample size limit.
9712 		 */
9713 		if (attr->sample_stack_user >= USHRT_MAX)
9714 			ret = -EINVAL;
9715 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9716 			ret = -EINVAL;
9717 	}
9718 
9719 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9720 		ret = perf_reg_validate(attr->sample_regs_intr);
9721 out:
9722 	return ret;
9723 
9724 err_size:
9725 	put_user(sizeof(*attr), &uattr->size);
9726 	ret = -E2BIG;
9727 	goto out;
9728 }
9729 
9730 static int
9731 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9732 {
9733 	struct ring_buffer *rb = NULL;
9734 	int ret = -EINVAL;
9735 
9736 	if (!output_event)
9737 		goto set;
9738 
9739 	/* don't allow circular references */
9740 	if (event == output_event)
9741 		goto out;
9742 
9743 	/*
9744 	 * Don't allow cross-cpu buffers
9745 	 */
9746 	if (output_event->cpu != event->cpu)
9747 		goto out;
9748 
9749 	/*
9750 	 * If its not a per-cpu rb, it must be the same task.
9751 	 */
9752 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9753 		goto out;
9754 
9755 	/*
9756 	 * Mixing clocks in the same buffer is trouble you don't need.
9757 	 */
9758 	if (output_event->clock != event->clock)
9759 		goto out;
9760 
9761 	/*
9762 	 * Either writing ring buffer from beginning or from end.
9763 	 * Mixing is not allowed.
9764 	 */
9765 	if (is_write_backward(output_event) != is_write_backward(event))
9766 		goto out;
9767 
9768 	/*
9769 	 * If both events generate aux data, they must be on the same PMU
9770 	 */
9771 	if (has_aux(event) && has_aux(output_event) &&
9772 	    event->pmu != output_event->pmu)
9773 		goto out;
9774 
9775 set:
9776 	mutex_lock(&event->mmap_mutex);
9777 	/* Can't redirect output if we've got an active mmap() */
9778 	if (atomic_read(&event->mmap_count))
9779 		goto unlock;
9780 
9781 	if (output_event) {
9782 		/* get the rb we want to redirect to */
9783 		rb = ring_buffer_get(output_event);
9784 		if (!rb)
9785 			goto unlock;
9786 	}
9787 
9788 	ring_buffer_attach(event, rb);
9789 
9790 	ret = 0;
9791 unlock:
9792 	mutex_unlock(&event->mmap_mutex);
9793 
9794 out:
9795 	return ret;
9796 }
9797 
9798 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9799 {
9800 	if (b < a)
9801 		swap(a, b);
9802 
9803 	mutex_lock(a);
9804 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9805 }
9806 
9807 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9808 {
9809 	bool nmi_safe = false;
9810 
9811 	switch (clk_id) {
9812 	case CLOCK_MONOTONIC:
9813 		event->clock = &ktime_get_mono_fast_ns;
9814 		nmi_safe = true;
9815 		break;
9816 
9817 	case CLOCK_MONOTONIC_RAW:
9818 		event->clock = &ktime_get_raw_fast_ns;
9819 		nmi_safe = true;
9820 		break;
9821 
9822 	case CLOCK_REALTIME:
9823 		event->clock = &ktime_get_real_ns;
9824 		break;
9825 
9826 	case CLOCK_BOOTTIME:
9827 		event->clock = &ktime_get_boot_ns;
9828 		break;
9829 
9830 	case CLOCK_TAI:
9831 		event->clock = &ktime_get_tai_ns;
9832 		break;
9833 
9834 	default:
9835 		return -EINVAL;
9836 	}
9837 
9838 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9839 		return -EINVAL;
9840 
9841 	return 0;
9842 }
9843 
9844 /*
9845  * Variation on perf_event_ctx_lock_nested(), except we take two context
9846  * mutexes.
9847  */
9848 static struct perf_event_context *
9849 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9850 			     struct perf_event_context *ctx)
9851 {
9852 	struct perf_event_context *gctx;
9853 
9854 again:
9855 	rcu_read_lock();
9856 	gctx = READ_ONCE(group_leader->ctx);
9857 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9858 		rcu_read_unlock();
9859 		goto again;
9860 	}
9861 	rcu_read_unlock();
9862 
9863 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9864 
9865 	if (group_leader->ctx != gctx) {
9866 		mutex_unlock(&ctx->mutex);
9867 		mutex_unlock(&gctx->mutex);
9868 		put_ctx(gctx);
9869 		goto again;
9870 	}
9871 
9872 	return gctx;
9873 }
9874 
9875 /**
9876  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9877  *
9878  * @attr_uptr:	event_id type attributes for monitoring/sampling
9879  * @pid:		target pid
9880  * @cpu:		target cpu
9881  * @group_fd:		group leader event fd
9882  */
9883 SYSCALL_DEFINE5(perf_event_open,
9884 		struct perf_event_attr __user *, attr_uptr,
9885 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9886 {
9887 	struct perf_event *group_leader = NULL, *output_event = NULL;
9888 	struct perf_event *event, *sibling;
9889 	struct perf_event_attr attr;
9890 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9891 	struct file *event_file = NULL;
9892 	struct fd group = {NULL, 0};
9893 	struct task_struct *task = NULL;
9894 	struct pmu *pmu;
9895 	int event_fd;
9896 	int move_group = 0;
9897 	int err;
9898 	int f_flags = O_RDWR;
9899 	int cgroup_fd = -1;
9900 
9901 	/* for future expandability... */
9902 	if (flags & ~PERF_FLAG_ALL)
9903 		return -EINVAL;
9904 
9905 	err = perf_copy_attr(attr_uptr, &attr);
9906 	if (err)
9907 		return err;
9908 
9909 	if (!attr.exclude_kernel) {
9910 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9911 			return -EACCES;
9912 	}
9913 
9914 	if (attr.namespaces) {
9915 		if (!capable(CAP_SYS_ADMIN))
9916 			return -EACCES;
9917 	}
9918 
9919 	if (attr.freq) {
9920 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9921 			return -EINVAL;
9922 	} else {
9923 		if (attr.sample_period & (1ULL << 63))
9924 			return -EINVAL;
9925 	}
9926 
9927 	/* Only privileged users can get physical addresses */
9928 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9929 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9930 		return -EACCES;
9931 
9932 	if (!attr.sample_max_stack)
9933 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9934 
9935 	/*
9936 	 * In cgroup mode, the pid argument is used to pass the fd
9937 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9938 	 * designates the cpu on which to monitor threads from that
9939 	 * cgroup.
9940 	 */
9941 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9942 		return -EINVAL;
9943 
9944 	if (flags & PERF_FLAG_FD_CLOEXEC)
9945 		f_flags |= O_CLOEXEC;
9946 
9947 	event_fd = get_unused_fd_flags(f_flags);
9948 	if (event_fd < 0)
9949 		return event_fd;
9950 
9951 	if (group_fd != -1) {
9952 		err = perf_fget_light(group_fd, &group);
9953 		if (err)
9954 			goto err_fd;
9955 		group_leader = group.file->private_data;
9956 		if (flags & PERF_FLAG_FD_OUTPUT)
9957 			output_event = group_leader;
9958 		if (flags & PERF_FLAG_FD_NO_GROUP)
9959 			group_leader = NULL;
9960 	}
9961 
9962 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9963 		task = find_lively_task_by_vpid(pid);
9964 		if (IS_ERR(task)) {
9965 			err = PTR_ERR(task);
9966 			goto err_group_fd;
9967 		}
9968 	}
9969 
9970 	if (task && group_leader &&
9971 	    group_leader->attr.inherit != attr.inherit) {
9972 		err = -EINVAL;
9973 		goto err_task;
9974 	}
9975 
9976 	if (task) {
9977 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9978 		if (err)
9979 			goto err_task;
9980 
9981 		/*
9982 		 * Reuse ptrace permission checks for now.
9983 		 *
9984 		 * We must hold cred_guard_mutex across this and any potential
9985 		 * perf_install_in_context() call for this new event to
9986 		 * serialize against exec() altering our credentials (and the
9987 		 * perf_event_exit_task() that could imply).
9988 		 */
9989 		err = -EACCES;
9990 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9991 			goto err_cred;
9992 	}
9993 
9994 	if (flags & PERF_FLAG_PID_CGROUP)
9995 		cgroup_fd = pid;
9996 
9997 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9998 				 NULL, NULL, cgroup_fd);
9999 	if (IS_ERR(event)) {
10000 		err = PTR_ERR(event);
10001 		goto err_cred;
10002 	}
10003 
10004 	if (is_sampling_event(event)) {
10005 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10006 			err = -EOPNOTSUPP;
10007 			goto err_alloc;
10008 		}
10009 	}
10010 
10011 	/*
10012 	 * Special case software events and allow them to be part of
10013 	 * any hardware group.
10014 	 */
10015 	pmu = event->pmu;
10016 
10017 	if (attr.use_clockid) {
10018 		err = perf_event_set_clock(event, attr.clockid);
10019 		if (err)
10020 			goto err_alloc;
10021 	}
10022 
10023 	if (pmu->task_ctx_nr == perf_sw_context)
10024 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10025 
10026 	if (group_leader &&
10027 	    (is_software_event(event) != is_software_event(group_leader))) {
10028 		if (is_software_event(event)) {
10029 			/*
10030 			 * If event and group_leader are not both a software
10031 			 * event, and event is, then group leader is not.
10032 			 *
10033 			 * Allow the addition of software events to !software
10034 			 * groups, this is safe because software events never
10035 			 * fail to schedule.
10036 			 */
10037 			pmu = group_leader->pmu;
10038 		} else if (is_software_event(group_leader) &&
10039 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10040 			/*
10041 			 * In case the group is a pure software group, and we
10042 			 * try to add a hardware event, move the whole group to
10043 			 * the hardware context.
10044 			 */
10045 			move_group = 1;
10046 		}
10047 	}
10048 
10049 	/*
10050 	 * Get the target context (task or percpu):
10051 	 */
10052 	ctx = find_get_context(pmu, task, event);
10053 	if (IS_ERR(ctx)) {
10054 		err = PTR_ERR(ctx);
10055 		goto err_alloc;
10056 	}
10057 
10058 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10059 		err = -EBUSY;
10060 		goto err_context;
10061 	}
10062 
10063 	/*
10064 	 * Look up the group leader (we will attach this event to it):
10065 	 */
10066 	if (group_leader) {
10067 		err = -EINVAL;
10068 
10069 		/*
10070 		 * Do not allow a recursive hierarchy (this new sibling
10071 		 * becoming part of another group-sibling):
10072 		 */
10073 		if (group_leader->group_leader != group_leader)
10074 			goto err_context;
10075 
10076 		/* All events in a group should have the same clock */
10077 		if (group_leader->clock != event->clock)
10078 			goto err_context;
10079 
10080 		/*
10081 		 * Make sure we're both events for the same CPU;
10082 		 * grouping events for different CPUs is broken; since
10083 		 * you can never concurrently schedule them anyhow.
10084 		 */
10085 		if (group_leader->cpu != event->cpu)
10086 			goto err_context;
10087 
10088 		/*
10089 		 * Make sure we're both on the same task, or both
10090 		 * per-CPU events.
10091 		 */
10092 		if (group_leader->ctx->task != ctx->task)
10093 			goto err_context;
10094 
10095 		/*
10096 		 * Do not allow to attach to a group in a different task
10097 		 * or CPU context. If we're moving SW events, we'll fix
10098 		 * this up later, so allow that.
10099 		 */
10100 		if (!move_group && group_leader->ctx != ctx)
10101 			goto err_context;
10102 
10103 		/*
10104 		 * Only a group leader can be exclusive or pinned
10105 		 */
10106 		if (attr.exclusive || attr.pinned)
10107 			goto err_context;
10108 	}
10109 
10110 	if (output_event) {
10111 		err = perf_event_set_output(event, output_event);
10112 		if (err)
10113 			goto err_context;
10114 	}
10115 
10116 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10117 					f_flags);
10118 	if (IS_ERR(event_file)) {
10119 		err = PTR_ERR(event_file);
10120 		event_file = NULL;
10121 		goto err_context;
10122 	}
10123 
10124 	if (move_group) {
10125 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10126 
10127 		if (gctx->task == TASK_TOMBSTONE) {
10128 			err = -ESRCH;
10129 			goto err_locked;
10130 		}
10131 
10132 		/*
10133 		 * Check if we raced against another sys_perf_event_open() call
10134 		 * moving the software group underneath us.
10135 		 */
10136 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10137 			/*
10138 			 * If someone moved the group out from under us, check
10139 			 * if this new event wound up on the same ctx, if so
10140 			 * its the regular !move_group case, otherwise fail.
10141 			 */
10142 			if (gctx != ctx) {
10143 				err = -EINVAL;
10144 				goto err_locked;
10145 			} else {
10146 				perf_event_ctx_unlock(group_leader, gctx);
10147 				move_group = 0;
10148 			}
10149 		}
10150 	} else {
10151 		mutex_lock(&ctx->mutex);
10152 	}
10153 
10154 	if (ctx->task == TASK_TOMBSTONE) {
10155 		err = -ESRCH;
10156 		goto err_locked;
10157 	}
10158 
10159 	if (!perf_event_validate_size(event)) {
10160 		err = -E2BIG;
10161 		goto err_locked;
10162 	}
10163 
10164 	if (!task) {
10165 		/*
10166 		 * Check if the @cpu we're creating an event for is online.
10167 		 *
10168 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10169 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10170 		 */
10171 		struct perf_cpu_context *cpuctx =
10172 			container_of(ctx, struct perf_cpu_context, ctx);
10173 
10174 		if (!cpuctx->online) {
10175 			err = -ENODEV;
10176 			goto err_locked;
10177 		}
10178 	}
10179 
10180 
10181 	/*
10182 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10183 	 * because we need to serialize with concurrent event creation.
10184 	 */
10185 	if (!exclusive_event_installable(event, ctx)) {
10186 		/* exclusive and group stuff are assumed mutually exclusive */
10187 		WARN_ON_ONCE(move_group);
10188 
10189 		err = -EBUSY;
10190 		goto err_locked;
10191 	}
10192 
10193 	WARN_ON_ONCE(ctx->parent_ctx);
10194 
10195 	/*
10196 	 * This is the point on no return; we cannot fail hereafter. This is
10197 	 * where we start modifying current state.
10198 	 */
10199 
10200 	if (move_group) {
10201 		/*
10202 		 * See perf_event_ctx_lock() for comments on the details
10203 		 * of swizzling perf_event::ctx.
10204 		 */
10205 		perf_remove_from_context(group_leader, 0);
10206 		put_ctx(gctx);
10207 
10208 		list_for_each_entry(sibling, &group_leader->sibling_list,
10209 				    group_entry) {
10210 			perf_remove_from_context(sibling, 0);
10211 			put_ctx(gctx);
10212 		}
10213 
10214 		/*
10215 		 * Wait for everybody to stop referencing the events through
10216 		 * the old lists, before installing it on new lists.
10217 		 */
10218 		synchronize_rcu();
10219 
10220 		/*
10221 		 * Install the group siblings before the group leader.
10222 		 *
10223 		 * Because a group leader will try and install the entire group
10224 		 * (through the sibling list, which is still in-tact), we can
10225 		 * end up with siblings installed in the wrong context.
10226 		 *
10227 		 * By installing siblings first we NO-OP because they're not
10228 		 * reachable through the group lists.
10229 		 */
10230 		list_for_each_entry(sibling, &group_leader->sibling_list,
10231 				    group_entry) {
10232 			perf_event__state_init(sibling);
10233 			perf_install_in_context(ctx, sibling, sibling->cpu);
10234 			get_ctx(ctx);
10235 		}
10236 
10237 		/*
10238 		 * Removing from the context ends up with disabled
10239 		 * event. What we want here is event in the initial
10240 		 * startup state, ready to be add into new context.
10241 		 */
10242 		perf_event__state_init(group_leader);
10243 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10244 		get_ctx(ctx);
10245 	}
10246 
10247 	/*
10248 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10249 	 * that we're serialized against further additions and before
10250 	 * perf_install_in_context() which is the point the event is active and
10251 	 * can use these values.
10252 	 */
10253 	perf_event__header_size(event);
10254 	perf_event__id_header_size(event);
10255 
10256 	event->owner = current;
10257 
10258 	perf_install_in_context(ctx, event, event->cpu);
10259 	perf_unpin_context(ctx);
10260 
10261 	if (move_group)
10262 		perf_event_ctx_unlock(group_leader, gctx);
10263 	mutex_unlock(&ctx->mutex);
10264 
10265 	if (task) {
10266 		mutex_unlock(&task->signal->cred_guard_mutex);
10267 		put_task_struct(task);
10268 	}
10269 
10270 	mutex_lock(&current->perf_event_mutex);
10271 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10272 	mutex_unlock(&current->perf_event_mutex);
10273 
10274 	/*
10275 	 * Drop the reference on the group_event after placing the
10276 	 * new event on the sibling_list. This ensures destruction
10277 	 * of the group leader will find the pointer to itself in
10278 	 * perf_group_detach().
10279 	 */
10280 	fdput(group);
10281 	fd_install(event_fd, event_file);
10282 	return event_fd;
10283 
10284 err_locked:
10285 	if (move_group)
10286 		perf_event_ctx_unlock(group_leader, gctx);
10287 	mutex_unlock(&ctx->mutex);
10288 /* err_file: */
10289 	fput(event_file);
10290 err_context:
10291 	perf_unpin_context(ctx);
10292 	put_ctx(ctx);
10293 err_alloc:
10294 	/*
10295 	 * If event_file is set, the fput() above will have called ->release()
10296 	 * and that will take care of freeing the event.
10297 	 */
10298 	if (!event_file)
10299 		free_event(event);
10300 err_cred:
10301 	if (task)
10302 		mutex_unlock(&task->signal->cred_guard_mutex);
10303 err_task:
10304 	if (task)
10305 		put_task_struct(task);
10306 err_group_fd:
10307 	fdput(group);
10308 err_fd:
10309 	put_unused_fd(event_fd);
10310 	return err;
10311 }
10312 
10313 /**
10314  * perf_event_create_kernel_counter
10315  *
10316  * @attr: attributes of the counter to create
10317  * @cpu: cpu in which the counter is bound
10318  * @task: task to profile (NULL for percpu)
10319  */
10320 struct perf_event *
10321 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10322 				 struct task_struct *task,
10323 				 perf_overflow_handler_t overflow_handler,
10324 				 void *context)
10325 {
10326 	struct perf_event_context *ctx;
10327 	struct perf_event *event;
10328 	int err;
10329 
10330 	/*
10331 	 * Get the target context (task or percpu):
10332 	 */
10333 
10334 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10335 				 overflow_handler, context, -1);
10336 	if (IS_ERR(event)) {
10337 		err = PTR_ERR(event);
10338 		goto err;
10339 	}
10340 
10341 	/* Mark owner so we could distinguish it from user events. */
10342 	event->owner = TASK_TOMBSTONE;
10343 
10344 	ctx = find_get_context(event->pmu, task, event);
10345 	if (IS_ERR(ctx)) {
10346 		err = PTR_ERR(ctx);
10347 		goto err_free;
10348 	}
10349 
10350 	WARN_ON_ONCE(ctx->parent_ctx);
10351 	mutex_lock(&ctx->mutex);
10352 	if (ctx->task == TASK_TOMBSTONE) {
10353 		err = -ESRCH;
10354 		goto err_unlock;
10355 	}
10356 
10357 	if (!task) {
10358 		/*
10359 		 * Check if the @cpu we're creating an event for is online.
10360 		 *
10361 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10362 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10363 		 */
10364 		struct perf_cpu_context *cpuctx =
10365 			container_of(ctx, struct perf_cpu_context, ctx);
10366 		if (!cpuctx->online) {
10367 			err = -ENODEV;
10368 			goto err_unlock;
10369 		}
10370 	}
10371 
10372 	if (!exclusive_event_installable(event, ctx)) {
10373 		err = -EBUSY;
10374 		goto err_unlock;
10375 	}
10376 
10377 	perf_install_in_context(ctx, event, cpu);
10378 	perf_unpin_context(ctx);
10379 	mutex_unlock(&ctx->mutex);
10380 
10381 	return event;
10382 
10383 err_unlock:
10384 	mutex_unlock(&ctx->mutex);
10385 	perf_unpin_context(ctx);
10386 	put_ctx(ctx);
10387 err_free:
10388 	free_event(event);
10389 err:
10390 	return ERR_PTR(err);
10391 }
10392 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10393 
10394 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10395 {
10396 	struct perf_event_context *src_ctx;
10397 	struct perf_event_context *dst_ctx;
10398 	struct perf_event *event, *tmp;
10399 	LIST_HEAD(events);
10400 
10401 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10402 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10403 
10404 	/*
10405 	 * See perf_event_ctx_lock() for comments on the details
10406 	 * of swizzling perf_event::ctx.
10407 	 */
10408 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10409 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10410 				 event_entry) {
10411 		perf_remove_from_context(event, 0);
10412 		unaccount_event_cpu(event, src_cpu);
10413 		put_ctx(src_ctx);
10414 		list_add(&event->migrate_entry, &events);
10415 	}
10416 
10417 	/*
10418 	 * Wait for the events to quiesce before re-instating them.
10419 	 */
10420 	synchronize_rcu();
10421 
10422 	/*
10423 	 * Re-instate events in 2 passes.
10424 	 *
10425 	 * Skip over group leaders and only install siblings on this first
10426 	 * pass, siblings will not get enabled without a leader, however a
10427 	 * leader will enable its siblings, even if those are still on the old
10428 	 * context.
10429 	 */
10430 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10431 		if (event->group_leader == event)
10432 			continue;
10433 
10434 		list_del(&event->migrate_entry);
10435 		if (event->state >= PERF_EVENT_STATE_OFF)
10436 			event->state = PERF_EVENT_STATE_INACTIVE;
10437 		account_event_cpu(event, dst_cpu);
10438 		perf_install_in_context(dst_ctx, event, dst_cpu);
10439 		get_ctx(dst_ctx);
10440 	}
10441 
10442 	/*
10443 	 * Once all the siblings are setup properly, install the group leaders
10444 	 * to make it go.
10445 	 */
10446 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10447 		list_del(&event->migrate_entry);
10448 		if (event->state >= PERF_EVENT_STATE_OFF)
10449 			event->state = PERF_EVENT_STATE_INACTIVE;
10450 		account_event_cpu(event, dst_cpu);
10451 		perf_install_in_context(dst_ctx, event, dst_cpu);
10452 		get_ctx(dst_ctx);
10453 	}
10454 	mutex_unlock(&dst_ctx->mutex);
10455 	mutex_unlock(&src_ctx->mutex);
10456 }
10457 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10458 
10459 static void sync_child_event(struct perf_event *child_event,
10460 			       struct task_struct *child)
10461 {
10462 	struct perf_event *parent_event = child_event->parent;
10463 	u64 child_val;
10464 
10465 	if (child_event->attr.inherit_stat)
10466 		perf_event_read_event(child_event, child);
10467 
10468 	child_val = perf_event_count(child_event);
10469 
10470 	/*
10471 	 * Add back the child's count to the parent's count:
10472 	 */
10473 	atomic64_add(child_val, &parent_event->child_count);
10474 	atomic64_add(child_event->total_time_enabled,
10475 		     &parent_event->child_total_time_enabled);
10476 	atomic64_add(child_event->total_time_running,
10477 		     &parent_event->child_total_time_running);
10478 }
10479 
10480 static void
10481 perf_event_exit_event(struct perf_event *child_event,
10482 		      struct perf_event_context *child_ctx,
10483 		      struct task_struct *child)
10484 {
10485 	struct perf_event *parent_event = child_event->parent;
10486 
10487 	/*
10488 	 * Do not destroy the 'original' grouping; because of the context
10489 	 * switch optimization the original events could've ended up in a
10490 	 * random child task.
10491 	 *
10492 	 * If we were to destroy the original group, all group related
10493 	 * operations would cease to function properly after this random
10494 	 * child dies.
10495 	 *
10496 	 * Do destroy all inherited groups, we don't care about those
10497 	 * and being thorough is better.
10498 	 */
10499 	raw_spin_lock_irq(&child_ctx->lock);
10500 	WARN_ON_ONCE(child_ctx->is_active);
10501 
10502 	if (parent_event)
10503 		perf_group_detach(child_event);
10504 	list_del_event(child_event, child_ctx);
10505 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10506 	raw_spin_unlock_irq(&child_ctx->lock);
10507 
10508 	/*
10509 	 * Parent events are governed by their filedesc, retain them.
10510 	 */
10511 	if (!parent_event) {
10512 		perf_event_wakeup(child_event);
10513 		return;
10514 	}
10515 	/*
10516 	 * Child events can be cleaned up.
10517 	 */
10518 
10519 	sync_child_event(child_event, child);
10520 
10521 	/*
10522 	 * Remove this event from the parent's list
10523 	 */
10524 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10525 	mutex_lock(&parent_event->child_mutex);
10526 	list_del_init(&child_event->child_list);
10527 	mutex_unlock(&parent_event->child_mutex);
10528 
10529 	/*
10530 	 * Kick perf_poll() for is_event_hup().
10531 	 */
10532 	perf_event_wakeup(parent_event);
10533 	free_event(child_event);
10534 	put_event(parent_event);
10535 }
10536 
10537 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10538 {
10539 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10540 	struct perf_event *child_event, *next;
10541 
10542 	WARN_ON_ONCE(child != current);
10543 
10544 	child_ctx = perf_pin_task_context(child, ctxn);
10545 	if (!child_ctx)
10546 		return;
10547 
10548 	/*
10549 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10550 	 * ctx::mutex over the entire thing. This serializes against almost
10551 	 * everything that wants to access the ctx.
10552 	 *
10553 	 * The exception is sys_perf_event_open() /
10554 	 * perf_event_create_kernel_count() which does find_get_context()
10555 	 * without ctx::mutex (it cannot because of the move_group double mutex
10556 	 * lock thing). See the comments in perf_install_in_context().
10557 	 */
10558 	mutex_lock(&child_ctx->mutex);
10559 
10560 	/*
10561 	 * In a single ctx::lock section, de-schedule the events and detach the
10562 	 * context from the task such that we cannot ever get it scheduled back
10563 	 * in.
10564 	 */
10565 	raw_spin_lock_irq(&child_ctx->lock);
10566 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10567 
10568 	/*
10569 	 * Now that the context is inactive, destroy the task <-> ctx relation
10570 	 * and mark the context dead.
10571 	 */
10572 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10573 	put_ctx(child_ctx); /* cannot be last */
10574 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10575 	put_task_struct(current); /* cannot be last */
10576 
10577 	clone_ctx = unclone_ctx(child_ctx);
10578 	raw_spin_unlock_irq(&child_ctx->lock);
10579 
10580 	if (clone_ctx)
10581 		put_ctx(clone_ctx);
10582 
10583 	/*
10584 	 * Report the task dead after unscheduling the events so that we
10585 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10586 	 * get a few PERF_RECORD_READ events.
10587 	 */
10588 	perf_event_task(child, child_ctx, 0);
10589 
10590 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10591 		perf_event_exit_event(child_event, child_ctx, child);
10592 
10593 	mutex_unlock(&child_ctx->mutex);
10594 
10595 	put_ctx(child_ctx);
10596 }
10597 
10598 /*
10599  * When a child task exits, feed back event values to parent events.
10600  *
10601  * Can be called with cred_guard_mutex held when called from
10602  * install_exec_creds().
10603  */
10604 void perf_event_exit_task(struct task_struct *child)
10605 {
10606 	struct perf_event *event, *tmp;
10607 	int ctxn;
10608 
10609 	mutex_lock(&child->perf_event_mutex);
10610 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10611 				 owner_entry) {
10612 		list_del_init(&event->owner_entry);
10613 
10614 		/*
10615 		 * Ensure the list deletion is visible before we clear
10616 		 * the owner, closes a race against perf_release() where
10617 		 * we need to serialize on the owner->perf_event_mutex.
10618 		 */
10619 		smp_store_release(&event->owner, NULL);
10620 	}
10621 	mutex_unlock(&child->perf_event_mutex);
10622 
10623 	for_each_task_context_nr(ctxn)
10624 		perf_event_exit_task_context(child, ctxn);
10625 
10626 	/*
10627 	 * The perf_event_exit_task_context calls perf_event_task
10628 	 * with child's task_ctx, which generates EXIT events for
10629 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10630 	 * At this point we need to send EXIT events to cpu contexts.
10631 	 */
10632 	perf_event_task(child, NULL, 0);
10633 }
10634 
10635 static void perf_free_event(struct perf_event *event,
10636 			    struct perf_event_context *ctx)
10637 {
10638 	struct perf_event *parent = event->parent;
10639 
10640 	if (WARN_ON_ONCE(!parent))
10641 		return;
10642 
10643 	mutex_lock(&parent->child_mutex);
10644 	list_del_init(&event->child_list);
10645 	mutex_unlock(&parent->child_mutex);
10646 
10647 	put_event(parent);
10648 
10649 	raw_spin_lock_irq(&ctx->lock);
10650 	perf_group_detach(event);
10651 	list_del_event(event, ctx);
10652 	raw_spin_unlock_irq(&ctx->lock);
10653 	free_event(event);
10654 }
10655 
10656 /*
10657  * Free an unexposed, unused context as created by inheritance by
10658  * perf_event_init_task below, used by fork() in case of fail.
10659  *
10660  * Not all locks are strictly required, but take them anyway to be nice and
10661  * help out with the lockdep assertions.
10662  */
10663 void perf_event_free_task(struct task_struct *task)
10664 {
10665 	struct perf_event_context *ctx;
10666 	struct perf_event *event, *tmp;
10667 	int ctxn;
10668 
10669 	for_each_task_context_nr(ctxn) {
10670 		ctx = task->perf_event_ctxp[ctxn];
10671 		if (!ctx)
10672 			continue;
10673 
10674 		mutex_lock(&ctx->mutex);
10675 		raw_spin_lock_irq(&ctx->lock);
10676 		/*
10677 		 * Destroy the task <-> ctx relation and mark the context dead.
10678 		 *
10679 		 * This is important because even though the task hasn't been
10680 		 * exposed yet the context has been (through child_list).
10681 		 */
10682 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10683 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10684 		put_task_struct(task); /* cannot be last */
10685 		raw_spin_unlock_irq(&ctx->lock);
10686 
10687 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10688 			perf_free_event(event, ctx);
10689 
10690 		mutex_unlock(&ctx->mutex);
10691 		put_ctx(ctx);
10692 	}
10693 }
10694 
10695 void perf_event_delayed_put(struct task_struct *task)
10696 {
10697 	int ctxn;
10698 
10699 	for_each_task_context_nr(ctxn)
10700 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10701 }
10702 
10703 struct file *perf_event_get(unsigned int fd)
10704 {
10705 	struct file *file;
10706 
10707 	file = fget_raw(fd);
10708 	if (!file)
10709 		return ERR_PTR(-EBADF);
10710 
10711 	if (file->f_op != &perf_fops) {
10712 		fput(file);
10713 		return ERR_PTR(-EBADF);
10714 	}
10715 
10716 	return file;
10717 }
10718 
10719 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10720 {
10721 	if (!event)
10722 		return ERR_PTR(-EINVAL);
10723 
10724 	return &event->attr;
10725 }
10726 
10727 /*
10728  * Inherit a event from parent task to child task.
10729  *
10730  * Returns:
10731  *  - valid pointer on success
10732  *  - NULL for orphaned events
10733  *  - IS_ERR() on error
10734  */
10735 static struct perf_event *
10736 inherit_event(struct perf_event *parent_event,
10737 	      struct task_struct *parent,
10738 	      struct perf_event_context *parent_ctx,
10739 	      struct task_struct *child,
10740 	      struct perf_event *group_leader,
10741 	      struct perf_event_context *child_ctx)
10742 {
10743 	enum perf_event_state parent_state = parent_event->state;
10744 	struct perf_event *child_event;
10745 	unsigned long flags;
10746 
10747 	/*
10748 	 * Instead of creating recursive hierarchies of events,
10749 	 * we link inherited events back to the original parent,
10750 	 * which has a filp for sure, which we use as the reference
10751 	 * count:
10752 	 */
10753 	if (parent_event->parent)
10754 		parent_event = parent_event->parent;
10755 
10756 	child_event = perf_event_alloc(&parent_event->attr,
10757 					   parent_event->cpu,
10758 					   child,
10759 					   group_leader, parent_event,
10760 					   NULL, NULL, -1);
10761 	if (IS_ERR(child_event))
10762 		return child_event;
10763 
10764 
10765 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
10766 	    !child_ctx->task_ctx_data) {
10767 		struct pmu *pmu = child_event->pmu;
10768 
10769 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
10770 						   GFP_KERNEL);
10771 		if (!child_ctx->task_ctx_data) {
10772 			free_event(child_event);
10773 			return NULL;
10774 		}
10775 	}
10776 
10777 	/*
10778 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10779 	 * must be under the same lock in order to serialize against
10780 	 * perf_event_release_kernel(), such that either we must observe
10781 	 * is_orphaned_event() or they will observe us on the child_list.
10782 	 */
10783 	mutex_lock(&parent_event->child_mutex);
10784 	if (is_orphaned_event(parent_event) ||
10785 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10786 		mutex_unlock(&parent_event->child_mutex);
10787 		/* task_ctx_data is freed with child_ctx */
10788 		free_event(child_event);
10789 		return NULL;
10790 	}
10791 
10792 	get_ctx(child_ctx);
10793 
10794 	/*
10795 	 * Make the child state follow the state of the parent event,
10796 	 * not its attr.disabled bit.  We hold the parent's mutex,
10797 	 * so we won't race with perf_event_{en, dis}able_family.
10798 	 */
10799 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10800 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10801 	else
10802 		child_event->state = PERF_EVENT_STATE_OFF;
10803 
10804 	if (parent_event->attr.freq) {
10805 		u64 sample_period = parent_event->hw.sample_period;
10806 		struct hw_perf_event *hwc = &child_event->hw;
10807 
10808 		hwc->sample_period = sample_period;
10809 		hwc->last_period   = sample_period;
10810 
10811 		local64_set(&hwc->period_left, sample_period);
10812 	}
10813 
10814 	child_event->ctx = child_ctx;
10815 	child_event->overflow_handler = parent_event->overflow_handler;
10816 	child_event->overflow_handler_context
10817 		= parent_event->overflow_handler_context;
10818 
10819 	/*
10820 	 * Precalculate sample_data sizes
10821 	 */
10822 	perf_event__header_size(child_event);
10823 	perf_event__id_header_size(child_event);
10824 
10825 	/*
10826 	 * Link it up in the child's context:
10827 	 */
10828 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10829 	add_event_to_ctx(child_event, child_ctx);
10830 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10831 
10832 	/*
10833 	 * Link this into the parent event's child list
10834 	 */
10835 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10836 	mutex_unlock(&parent_event->child_mutex);
10837 
10838 	return child_event;
10839 }
10840 
10841 /*
10842  * Inherits an event group.
10843  *
10844  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10845  * This matches with perf_event_release_kernel() removing all child events.
10846  *
10847  * Returns:
10848  *  - 0 on success
10849  *  - <0 on error
10850  */
10851 static int inherit_group(struct perf_event *parent_event,
10852 	      struct task_struct *parent,
10853 	      struct perf_event_context *parent_ctx,
10854 	      struct task_struct *child,
10855 	      struct perf_event_context *child_ctx)
10856 {
10857 	struct perf_event *leader;
10858 	struct perf_event *sub;
10859 	struct perf_event *child_ctr;
10860 
10861 	leader = inherit_event(parent_event, parent, parent_ctx,
10862 				 child, NULL, child_ctx);
10863 	if (IS_ERR(leader))
10864 		return PTR_ERR(leader);
10865 	/*
10866 	 * @leader can be NULL here because of is_orphaned_event(). In this
10867 	 * case inherit_event() will create individual events, similar to what
10868 	 * perf_group_detach() would do anyway.
10869 	 */
10870 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10871 		child_ctr = inherit_event(sub, parent, parent_ctx,
10872 					    child, leader, child_ctx);
10873 		if (IS_ERR(child_ctr))
10874 			return PTR_ERR(child_ctr);
10875 	}
10876 	return 0;
10877 }
10878 
10879 /*
10880  * Creates the child task context and tries to inherit the event-group.
10881  *
10882  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10883  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10884  * consistent with perf_event_release_kernel() removing all child events.
10885  *
10886  * Returns:
10887  *  - 0 on success
10888  *  - <0 on error
10889  */
10890 static int
10891 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10892 		   struct perf_event_context *parent_ctx,
10893 		   struct task_struct *child, int ctxn,
10894 		   int *inherited_all)
10895 {
10896 	int ret;
10897 	struct perf_event_context *child_ctx;
10898 
10899 	if (!event->attr.inherit) {
10900 		*inherited_all = 0;
10901 		return 0;
10902 	}
10903 
10904 	child_ctx = child->perf_event_ctxp[ctxn];
10905 	if (!child_ctx) {
10906 		/*
10907 		 * This is executed from the parent task context, so
10908 		 * inherit events that have been marked for cloning.
10909 		 * First allocate and initialize a context for the
10910 		 * child.
10911 		 */
10912 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10913 		if (!child_ctx)
10914 			return -ENOMEM;
10915 
10916 		child->perf_event_ctxp[ctxn] = child_ctx;
10917 	}
10918 
10919 	ret = inherit_group(event, parent, parent_ctx,
10920 			    child, child_ctx);
10921 
10922 	if (ret)
10923 		*inherited_all = 0;
10924 
10925 	return ret;
10926 }
10927 
10928 /*
10929  * Initialize the perf_event context in task_struct
10930  */
10931 static int perf_event_init_context(struct task_struct *child, int ctxn)
10932 {
10933 	struct perf_event_context *child_ctx, *parent_ctx;
10934 	struct perf_event_context *cloned_ctx;
10935 	struct perf_event *event;
10936 	struct task_struct *parent = current;
10937 	int inherited_all = 1;
10938 	unsigned long flags;
10939 	int ret = 0;
10940 
10941 	if (likely(!parent->perf_event_ctxp[ctxn]))
10942 		return 0;
10943 
10944 	/*
10945 	 * If the parent's context is a clone, pin it so it won't get
10946 	 * swapped under us.
10947 	 */
10948 	parent_ctx = perf_pin_task_context(parent, ctxn);
10949 	if (!parent_ctx)
10950 		return 0;
10951 
10952 	/*
10953 	 * No need to check if parent_ctx != NULL here; since we saw
10954 	 * it non-NULL earlier, the only reason for it to become NULL
10955 	 * is if we exit, and since we're currently in the middle of
10956 	 * a fork we can't be exiting at the same time.
10957 	 */
10958 
10959 	/*
10960 	 * Lock the parent list. No need to lock the child - not PID
10961 	 * hashed yet and not running, so nobody can access it.
10962 	 */
10963 	mutex_lock(&parent_ctx->mutex);
10964 
10965 	/*
10966 	 * We dont have to disable NMIs - we are only looking at
10967 	 * the list, not manipulating it:
10968 	 */
10969 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10970 		ret = inherit_task_group(event, parent, parent_ctx,
10971 					 child, ctxn, &inherited_all);
10972 		if (ret)
10973 			goto out_unlock;
10974 	}
10975 
10976 	/*
10977 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10978 	 * to allocations, but we need to prevent rotation because
10979 	 * rotate_ctx() will change the list from interrupt context.
10980 	 */
10981 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10982 	parent_ctx->rotate_disable = 1;
10983 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10984 
10985 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10986 		ret = inherit_task_group(event, parent, parent_ctx,
10987 					 child, ctxn, &inherited_all);
10988 		if (ret)
10989 			goto out_unlock;
10990 	}
10991 
10992 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10993 	parent_ctx->rotate_disable = 0;
10994 
10995 	child_ctx = child->perf_event_ctxp[ctxn];
10996 
10997 	if (child_ctx && inherited_all) {
10998 		/*
10999 		 * Mark the child context as a clone of the parent
11000 		 * context, or of whatever the parent is a clone of.
11001 		 *
11002 		 * Note that if the parent is a clone, the holding of
11003 		 * parent_ctx->lock avoids it from being uncloned.
11004 		 */
11005 		cloned_ctx = parent_ctx->parent_ctx;
11006 		if (cloned_ctx) {
11007 			child_ctx->parent_ctx = cloned_ctx;
11008 			child_ctx->parent_gen = parent_ctx->parent_gen;
11009 		} else {
11010 			child_ctx->parent_ctx = parent_ctx;
11011 			child_ctx->parent_gen = parent_ctx->generation;
11012 		}
11013 		get_ctx(child_ctx->parent_ctx);
11014 	}
11015 
11016 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11017 out_unlock:
11018 	mutex_unlock(&parent_ctx->mutex);
11019 
11020 	perf_unpin_context(parent_ctx);
11021 	put_ctx(parent_ctx);
11022 
11023 	return ret;
11024 }
11025 
11026 /*
11027  * Initialize the perf_event context in task_struct
11028  */
11029 int perf_event_init_task(struct task_struct *child)
11030 {
11031 	int ctxn, ret;
11032 
11033 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11034 	mutex_init(&child->perf_event_mutex);
11035 	INIT_LIST_HEAD(&child->perf_event_list);
11036 
11037 	for_each_task_context_nr(ctxn) {
11038 		ret = perf_event_init_context(child, ctxn);
11039 		if (ret) {
11040 			perf_event_free_task(child);
11041 			return ret;
11042 		}
11043 	}
11044 
11045 	return 0;
11046 }
11047 
11048 static void __init perf_event_init_all_cpus(void)
11049 {
11050 	struct swevent_htable *swhash;
11051 	int cpu;
11052 
11053 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11054 
11055 	for_each_possible_cpu(cpu) {
11056 		swhash = &per_cpu(swevent_htable, cpu);
11057 		mutex_init(&swhash->hlist_mutex);
11058 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11059 
11060 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11061 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11062 
11063 #ifdef CONFIG_CGROUP_PERF
11064 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11065 #endif
11066 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11067 	}
11068 }
11069 
11070 void perf_swevent_init_cpu(unsigned int cpu)
11071 {
11072 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11073 
11074 	mutex_lock(&swhash->hlist_mutex);
11075 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11076 		struct swevent_hlist *hlist;
11077 
11078 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11079 		WARN_ON(!hlist);
11080 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11081 	}
11082 	mutex_unlock(&swhash->hlist_mutex);
11083 }
11084 
11085 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11086 static void __perf_event_exit_context(void *__info)
11087 {
11088 	struct perf_event_context *ctx = __info;
11089 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11090 	struct perf_event *event;
11091 
11092 	raw_spin_lock(&ctx->lock);
11093 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11094 	list_for_each_entry(event, &ctx->event_list, event_entry)
11095 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11096 	raw_spin_unlock(&ctx->lock);
11097 }
11098 
11099 static void perf_event_exit_cpu_context(int cpu)
11100 {
11101 	struct perf_cpu_context *cpuctx;
11102 	struct perf_event_context *ctx;
11103 	struct pmu *pmu;
11104 
11105 	mutex_lock(&pmus_lock);
11106 	list_for_each_entry(pmu, &pmus, entry) {
11107 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11108 		ctx = &cpuctx->ctx;
11109 
11110 		mutex_lock(&ctx->mutex);
11111 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11112 		cpuctx->online = 0;
11113 		mutex_unlock(&ctx->mutex);
11114 	}
11115 	cpumask_clear_cpu(cpu, perf_online_mask);
11116 	mutex_unlock(&pmus_lock);
11117 }
11118 #else
11119 
11120 static void perf_event_exit_cpu_context(int cpu) { }
11121 
11122 #endif
11123 
11124 int perf_event_init_cpu(unsigned int cpu)
11125 {
11126 	struct perf_cpu_context *cpuctx;
11127 	struct perf_event_context *ctx;
11128 	struct pmu *pmu;
11129 
11130 	perf_swevent_init_cpu(cpu);
11131 
11132 	mutex_lock(&pmus_lock);
11133 	cpumask_set_cpu(cpu, perf_online_mask);
11134 	list_for_each_entry(pmu, &pmus, entry) {
11135 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11136 		ctx = &cpuctx->ctx;
11137 
11138 		mutex_lock(&ctx->mutex);
11139 		cpuctx->online = 1;
11140 		mutex_unlock(&ctx->mutex);
11141 	}
11142 	mutex_unlock(&pmus_lock);
11143 
11144 	return 0;
11145 }
11146 
11147 int perf_event_exit_cpu(unsigned int cpu)
11148 {
11149 	perf_event_exit_cpu_context(cpu);
11150 	return 0;
11151 }
11152 
11153 static int
11154 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11155 {
11156 	int cpu;
11157 
11158 	for_each_online_cpu(cpu)
11159 		perf_event_exit_cpu(cpu);
11160 
11161 	return NOTIFY_OK;
11162 }
11163 
11164 /*
11165  * Run the perf reboot notifier at the very last possible moment so that
11166  * the generic watchdog code runs as long as possible.
11167  */
11168 static struct notifier_block perf_reboot_notifier = {
11169 	.notifier_call = perf_reboot,
11170 	.priority = INT_MIN,
11171 };
11172 
11173 void __init perf_event_init(void)
11174 {
11175 	int ret;
11176 
11177 	idr_init(&pmu_idr);
11178 
11179 	perf_event_init_all_cpus();
11180 	init_srcu_struct(&pmus_srcu);
11181 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11182 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11183 	perf_pmu_register(&perf_task_clock, NULL, -1);
11184 	perf_tp_register();
11185 	perf_event_init_cpu(smp_processor_id());
11186 	register_reboot_notifier(&perf_reboot_notifier);
11187 
11188 	ret = init_hw_breakpoint();
11189 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11190 
11191 	/*
11192 	 * Build time assertion that we keep the data_head at the intended
11193 	 * location.  IOW, validation we got the __reserved[] size right.
11194 	 */
11195 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11196 		     != 1024);
11197 }
11198 
11199 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11200 			      char *page)
11201 {
11202 	struct perf_pmu_events_attr *pmu_attr =
11203 		container_of(attr, struct perf_pmu_events_attr, attr);
11204 
11205 	if (pmu_attr->event_str)
11206 		return sprintf(page, "%s\n", pmu_attr->event_str);
11207 
11208 	return 0;
11209 }
11210 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11211 
11212 static int __init perf_event_sysfs_init(void)
11213 {
11214 	struct pmu *pmu;
11215 	int ret;
11216 
11217 	mutex_lock(&pmus_lock);
11218 
11219 	ret = bus_register(&pmu_bus);
11220 	if (ret)
11221 		goto unlock;
11222 
11223 	list_for_each_entry(pmu, &pmus, entry) {
11224 		if (!pmu->name || pmu->type < 0)
11225 			continue;
11226 
11227 		ret = pmu_dev_alloc(pmu);
11228 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11229 	}
11230 	pmu_bus_running = 1;
11231 	ret = 0;
11232 
11233 unlock:
11234 	mutex_unlock(&pmus_lock);
11235 
11236 	return ret;
11237 }
11238 device_initcall(perf_event_sysfs_init);
11239 
11240 #ifdef CONFIG_CGROUP_PERF
11241 static struct cgroup_subsys_state *
11242 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11243 {
11244 	struct perf_cgroup *jc;
11245 
11246 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11247 	if (!jc)
11248 		return ERR_PTR(-ENOMEM);
11249 
11250 	jc->info = alloc_percpu(struct perf_cgroup_info);
11251 	if (!jc->info) {
11252 		kfree(jc);
11253 		return ERR_PTR(-ENOMEM);
11254 	}
11255 
11256 	return &jc->css;
11257 }
11258 
11259 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11260 {
11261 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11262 
11263 	free_percpu(jc->info);
11264 	kfree(jc);
11265 }
11266 
11267 static int __perf_cgroup_move(void *info)
11268 {
11269 	struct task_struct *task = info;
11270 	rcu_read_lock();
11271 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11272 	rcu_read_unlock();
11273 	return 0;
11274 }
11275 
11276 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11277 {
11278 	struct task_struct *task;
11279 	struct cgroup_subsys_state *css;
11280 
11281 	cgroup_taskset_for_each(task, css, tset)
11282 		task_function_call(task, __perf_cgroup_move, task);
11283 }
11284 
11285 struct cgroup_subsys perf_event_cgrp_subsys = {
11286 	.css_alloc	= perf_cgroup_css_alloc,
11287 	.css_free	= perf_cgroup_css_free,
11288 	.attach		= perf_cgroup_attach,
11289 	/*
11290 	 * Implicitly enable on dfl hierarchy so that perf events can
11291 	 * always be filtered by cgroup2 path as long as perf_event
11292 	 * controller is not mounted on a legacy hierarchy.
11293 	 */
11294 	.implicit_on_dfl = true,
11295 	.threaded	= true,
11296 };
11297 #endif /* CONFIG_CGROUP_PERF */
11298