xref: /openbmc/linux/kernel/events/core.c (revision 0c7beb2d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *	    -ESRCH  - when the process isn't running
100  *	    -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	do {
114 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 		if (!ret)
116 			ret = data.ret;
117 	} while (ret == -EAGAIN);
118 
119 	return ret;
120 }
121 
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:	the function to be called
125  * @info:	the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133 	struct remote_function_call data = {
134 		.p	= NULL,
135 		.func	= func,
136 		.info	= info,
137 		.ret	= -ENXIO, /* No such CPU */
138 	};
139 
140 	smp_call_function_single(cpu, remote_function, &data, 1);
141 
142 	return data.ret;
143 }
144 
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150 
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 			  struct perf_event_context *ctx)
153 {
154 	raw_spin_lock(&cpuctx->ctx.lock);
155 	if (ctx)
156 		raw_spin_lock(&ctx->lock);
157 }
158 
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 			    struct perf_event_context *ctx)
161 {
162 	if (ctx)
163 		raw_spin_unlock(&ctx->lock);
164 	raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166 
167 #define TASK_TOMBSTONE ((void *)-1L)
168 
169 static bool is_kernel_event(struct perf_event *event)
170 {
171 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173 
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192 
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 			struct perf_event_context *, void *);
195 
196 struct event_function_struct {
197 	struct perf_event *event;
198 	event_f func;
199 	void *data;
200 };
201 
202 static int event_function(void *info)
203 {
204 	struct event_function_struct *efs = info;
205 	struct perf_event *event = efs->event;
206 	struct perf_event_context *ctx = event->ctx;
207 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 	int ret = 0;
210 
211 	lockdep_assert_irqs_disabled();
212 
213 	perf_ctx_lock(cpuctx, task_ctx);
214 	/*
215 	 * Since we do the IPI call without holding ctx->lock things can have
216 	 * changed, double check we hit the task we set out to hit.
217 	 */
218 	if (ctx->task) {
219 		if (ctx->task != current) {
220 			ret = -ESRCH;
221 			goto unlock;
222 		}
223 
224 		/*
225 		 * We only use event_function_call() on established contexts,
226 		 * and event_function() is only ever called when active (or
227 		 * rather, we'll have bailed in task_function_call() or the
228 		 * above ctx->task != current test), therefore we must have
229 		 * ctx->is_active here.
230 		 */
231 		WARN_ON_ONCE(!ctx->is_active);
232 		/*
233 		 * And since we have ctx->is_active, cpuctx->task_ctx must
234 		 * match.
235 		 */
236 		WARN_ON_ONCE(task_ctx != ctx);
237 	} else {
238 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
239 	}
240 
241 	efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 	perf_ctx_unlock(cpuctx, task_ctx);
244 
245 	return ret;
246 }
247 
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250 	struct perf_event_context *ctx = event->ctx;
251 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 	struct event_function_struct efs = {
253 		.event = event,
254 		.func = func,
255 		.data = data,
256 	};
257 
258 	if (!event->parent) {
259 		/*
260 		 * If this is a !child event, we must hold ctx::mutex to
261 		 * stabilize the the event->ctx relation. See
262 		 * perf_event_ctx_lock().
263 		 */
264 		lockdep_assert_held(&ctx->mutex);
265 	}
266 
267 	if (!task) {
268 		cpu_function_call(event->cpu, event_function, &efs);
269 		return;
270 	}
271 
272 	if (task == TASK_TOMBSTONE)
273 		return;
274 
275 again:
276 	if (!task_function_call(task, event_function, &efs))
277 		return;
278 
279 	raw_spin_lock_irq(&ctx->lock);
280 	/*
281 	 * Reload the task pointer, it might have been changed by
282 	 * a concurrent perf_event_context_sched_out().
283 	 */
284 	task = ctx->task;
285 	if (task == TASK_TOMBSTONE) {
286 		raw_spin_unlock_irq(&ctx->lock);
287 		return;
288 	}
289 	if (ctx->is_active) {
290 		raw_spin_unlock_irq(&ctx->lock);
291 		goto again;
292 	}
293 	func(event, NULL, ctx, data);
294 	raw_spin_unlock_irq(&ctx->lock);
295 }
296 
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303 	struct perf_event_context *ctx = event->ctx;
304 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 	struct task_struct *task = READ_ONCE(ctx->task);
306 	struct perf_event_context *task_ctx = NULL;
307 
308 	lockdep_assert_irqs_disabled();
309 
310 	if (task) {
311 		if (task == TASK_TOMBSTONE)
312 			return;
313 
314 		task_ctx = ctx;
315 	}
316 
317 	perf_ctx_lock(cpuctx, task_ctx);
318 
319 	task = ctx->task;
320 	if (task == TASK_TOMBSTONE)
321 		goto unlock;
322 
323 	if (task) {
324 		/*
325 		 * We must be either inactive or active and the right task,
326 		 * otherwise we're screwed, since we cannot IPI to somewhere
327 		 * else.
328 		 */
329 		if (ctx->is_active) {
330 			if (WARN_ON_ONCE(task != current))
331 				goto unlock;
332 
333 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 				goto unlock;
335 		}
336 	} else {
337 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 	}
339 
340 	func(event, cpuctx, ctx, data);
341 unlock:
342 	perf_ctx_unlock(cpuctx, task_ctx);
343 }
344 
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 		       PERF_FLAG_FD_OUTPUT  |\
347 		       PERF_FLAG_PID_CGROUP |\
348 		       PERF_FLAG_FD_CLOEXEC)
349 
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 	(PERF_SAMPLE_BRANCH_KERNEL |\
355 	 PERF_SAMPLE_BRANCH_HV)
356 
357 enum event_type_t {
358 	EVENT_FLEXIBLE = 0x1,
359 	EVENT_PINNED = 0x2,
360 	EVENT_TIME = 0x4,
361 	/* see ctx_resched() for details */
362 	EVENT_CPU = 0x8,
363 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365 
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370 
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376 
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380 
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389 
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394 
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403 
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406 
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE		100000
411 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
413 
414 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
415 
416 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
418 
419 static int perf_sample_allowed_ns __read_mostly =
420 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421 
422 static void update_perf_cpu_limits(void)
423 {
424 	u64 tmp = perf_sample_period_ns;
425 
426 	tmp *= sysctl_perf_cpu_time_max_percent;
427 	tmp = div_u64(tmp, 100);
428 	if (!tmp)
429 		tmp = 1;
430 
431 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433 
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435 
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 		void __user *buffer, size_t *lenp,
438 		loff_t *ppos)
439 {
440 	int ret;
441 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
442 	/*
443 	 * If throttling is disabled don't allow the write:
444 	 */
445 	if (write && (perf_cpu == 100 || perf_cpu == 0))
446 		return -EINVAL;
447 
448 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 	if (ret || !write)
450 		return ret;
451 
452 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 	update_perf_cpu_limits();
455 
456 	return 0;
457 }
458 
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460 
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 				void __user *buffer, size_t *lenp,
463 				loff_t *ppos)
464 {
465 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466 
467 	if (ret || !write)
468 		return ret;
469 
470 	if (sysctl_perf_cpu_time_max_percent == 100 ||
471 	    sysctl_perf_cpu_time_max_percent == 0) {
472 		printk(KERN_WARNING
473 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 		WRITE_ONCE(perf_sample_allowed_ns, 0);
475 	} else {
476 		update_perf_cpu_limits();
477 	}
478 
479 	return 0;
480 }
481 
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490 
491 static u64 __report_avg;
492 static u64 __report_allowed;
493 
494 static void perf_duration_warn(struct irq_work *w)
495 {
496 	printk_ratelimited(KERN_INFO
497 		"perf: interrupt took too long (%lld > %lld), lowering "
498 		"kernel.perf_event_max_sample_rate to %d\n",
499 		__report_avg, __report_allowed,
500 		sysctl_perf_event_sample_rate);
501 }
502 
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504 
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 	u64 running_len;
509 	u64 avg_len;
510 	u32 max;
511 
512 	if (max_len == 0)
513 		return;
514 
515 	/* Decay the counter by 1 average sample. */
516 	running_len = __this_cpu_read(running_sample_length);
517 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 	running_len += sample_len_ns;
519 	__this_cpu_write(running_sample_length, running_len);
520 
521 	/*
522 	 * Note: this will be biased artifically low until we have
523 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 	 * from having to maintain a count.
525 	 */
526 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 	if (avg_len <= max_len)
528 		return;
529 
530 	__report_avg = avg_len;
531 	__report_allowed = max_len;
532 
533 	/*
534 	 * Compute a throttle threshold 25% below the current duration.
535 	 */
536 	avg_len += avg_len / 4;
537 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 	if (avg_len < max)
539 		max /= (u32)avg_len;
540 	else
541 		max = 1;
542 
543 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 	WRITE_ONCE(max_samples_per_tick, max);
545 
546 	sysctl_perf_event_sample_rate = max * HZ;
547 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548 
549 	if (!irq_work_queue(&perf_duration_work)) {
550 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 			     "kernel.perf_event_max_sample_rate to %d\n",
552 			     __report_avg, __report_allowed,
553 			     sysctl_perf_event_sample_rate);
554 	}
555 }
556 
557 static atomic64_t perf_event_id;
558 
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 			      enum event_type_t event_type);
561 
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 			     enum event_type_t event_type,
564 			     struct task_struct *task);
565 
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568 
569 void __weak perf_event_print_debug(void)	{ }
570 
571 extern __weak const char *perf_pmu_name(void)
572 {
573 	return "pmu";
574 }
575 
576 static inline u64 perf_clock(void)
577 {
578 	return local_clock();
579 }
580 
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583 	return event->clock();
584 }
585 
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607 
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611 	struct perf_event *leader = event->group_leader;
612 
613 	if (leader->state <= PERF_EVENT_STATE_OFF)
614 		return leader->state;
615 
616 	return event->state;
617 }
618 
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622 	enum perf_event_state state = __perf_effective_state(event);
623 	u64 delta = now - event->tstamp;
624 
625 	*enabled = event->total_time_enabled;
626 	if (state >= PERF_EVENT_STATE_INACTIVE)
627 		*enabled += delta;
628 
629 	*running = event->total_time_running;
630 	if (state >= PERF_EVENT_STATE_ACTIVE)
631 		*running += delta;
632 }
633 
634 static void perf_event_update_time(struct perf_event *event)
635 {
636 	u64 now = perf_event_time(event);
637 
638 	__perf_update_times(event, now, &event->total_time_enabled,
639 					&event->total_time_running);
640 	event->tstamp = now;
641 }
642 
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645 	struct perf_event *sibling;
646 
647 	for_each_sibling_event(sibling, leader)
648 		perf_event_update_time(sibling);
649 }
650 
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654 	if (event->state == state)
655 		return;
656 
657 	perf_event_update_time(event);
658 	/*
659 	 * If a group leader gets enabled/disabled all its siblings
660 	 * are affected too.
661 	 */
662 	if ((event->state < 0) ^ (state < 0))
663 		perf_event_update_sibling_time(event);
664 
665 	WRITE_ONCE(event->state, state);
666 }
667 
668 #ifdef CONFIG_CGROUP_PERF
669 
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673 	struct perf_event_context *ctx = event->ctx;
674 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675 
676 	/* @event doesn't care about cgroup */
677 	if (!event->cgrp)
678 		return true;
679 
680 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
681 	if (!cpuctx->cgrp)
682 		return false;
683 
684 	/*
685 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
686 	 * also enabled for all its descendant cgroups.  If @cpuctx's
687 	 * cgroup is a descendant of @event's (the test covers identity
688 	 * case), it's a match.
689 	 */
690 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 				    event->cgrp->css.cgroup);
692 }
693 
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696 	css_put(&event->cgrp->css);
697 	event->cgrp = NULL;
698 }
699 
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702 	return event->cgrp != NULL;
703 }
704 
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707 	struct perf_cgroup_info *t;
708 
709 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 	return t->time;
711 }
712 
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715 	struct perf_cgroup_info *info;
716 	u64 now;
717 
718 	now = perf_clock();
719 
720 	info = this_cpu_ptr(cgrp->info);
721 
722 	info->time += now - info->timestamp;
723 	info->timestamp = now;
724 }
725 
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728 	struct perf_cgroup *cgrp = cpuctx->cgrp;
729 	struct cgroup_subsys_state *css;
730 
731 	if (cgrp) {
732 		for (css = &cgrp->css; css; css = css->parent) {
733 			cgrp = container_of(css, struct perf_cgroup, css);
734 			__update_cgrp_time(cgrp);
735 		}
736 	}
737 }
738 
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741 	struct perf_cgroup *cgrp;
742 
743 	/*
744 	 * ensure we access cgroup data only when needed and
745 	 * when we know the cgroup is pinned (css_get)
746 	 */
747 	if (!is_cgroup_event(event))
748 		return;
749 
750 	cgrp = perf_cgroup_from_task(current, event->ctx);
751 	/*
752 	 * Do not update time when cgroup is not active
753 	 */
754 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 		__update_cgrp_time(event->cgrp);
756 }
757 
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 			  struct perf_event_context *ctx)
761 {
762 	struct perf_cgroup *cgrp;
763 	struct perf_cgroup_info *info;
764 	struct cgroup_subsys_state *css;
765 
766 	/*
767 	 * ctx->lock held by caller
768 	 * ensure we do not access cgroup data
769 	 * unless we have the cgroup pinned (css_get)
770 	 */
771 	if (!task || !ctx->nr_cgroups)
772 		return;
773 
774 	cgrp = perf_cgroup_from_task(task, ctx);
775 
776 	for (css = &cgrp->css; css; css = css->parent) {
777 		cgrp = container_of(css, struct perf_cgroup, css);
778 		info = this_cpu_ptr(cgrp->info);
779 		info->timestamp = ctx->timestamp;
780 	}
781 }
782 
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784 
785 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
787 
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796 	struct perf_cpu_context *cpuctx;
797 	struct list_head *list;
798 	unsigned long flags;
799 
800 	/*
801 	 * Disable interrupts and preemption to avoid this CPU's
802 	 * cgrp_cpuctx_entry to change under us.
803 	 */
804 	local_irq_save(flags);
805 
806 	list = this_cpu_ptr(&cgrp_cpuctx_list);
807 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809 
810 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 		perf_pmu_disable(cpuctx->ctx.pmu);
812 
813 		if (mode & PERF_CGROUP_SWOUT) {
814 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 			/*
816 			 * must not be done before ctxswout due
817 			 * to event_filter_match() in event_sched_out()
818 			 */
819 			cpuctx->cgrp = NULL;
820 		}
821 
822 		if (mode & PERF_CGROUP_SWIN) {
823 			WARN_ON_ONCE(cpuctx->cgrp);
824 			/*
825 			 * set cgrp before ctxsw in to allow
826 			 * event_filter_match() to not have to pass
827 			 * task around
828 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 			 * because cgorup events are only per-cpu
830 			 */
831 			cpuctx->cgrp = perf_cgroup_from_task(task,
832 							     &cpuctx->ctx);
833 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834 		}
835 		perf_pmu_enable(cpuctx->ctx.pmu);
836 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837 	}
838 
839 	local_irq_restore(flags);
840 }
841 
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 					 struct task_struct *next)
844 {
845 	struct perf_cgroup *cgrp1;
846 	struct perf_cgroup *cgrp2 = NULL;
847 
848 	rcu_read_lock();
849 	/*
850 	 * we come here when we know perf_cgroup_events > 0
851 	 * we do not need to pass the ctx here because we know
852 	 * we are holding the rcu lock
853 	 */
854 	cgrp1 = perf_cgroup_from_task(task, NULL);
855 	cgrp2 = perf_cgroup_from_task(next, NULL);
856 
857 	/*
858 	 * only schedule out current cgroup events if we know
859 	 * that we are switching to a different cgroup. Otherwise,
860 	 * do no touch the cgroup events.
861 	 */
862 	if (cgrp1 != cgrp2)
863 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864 
865 	rcu_read_unlock();
866 }
867 
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 					struct task_struct *task)
870 {
871 	struct perf_cgroup *cgrp1;
872 	struct perf_cgroup *cgrp2 = NULL;
873 
874 	rcu_read_lock();
875 	/*
876 	 * we come here when we know perf_cgroup_events > 0
877 	 * we do not need to pass the ctx here because we know
878 	 * we are holding the rcu lock
879 	 */
880 	cgrp1 = perf_cgroup_from_task(task, NULL);
881 	cgrp2 = perf_cgroup_from_task(prev, NULL);
882 
883 	/*
884 	 * only need to schedule in cgroup events if we are changing
885 	 * cgroup during ctxsw. Cgroup events were not scheduled
886 	 * out of ctxsw out if that was not the case.
887 	 */
888 	if (cgrp1 != cgrp2)
889 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890 
891 	rcu_read_unlock();
892 }
893 
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 				      struct perf_event_attr *attr,
896 				      struct perf_event *group_leader)
897 {
898 	struct perf_cgroup *cgrp;
899 	struct cgroup_subsys_state *css;
900 	struct fd f = fdget(fd);
901 	int ret = 0;
902 
903 	if (!f.file)
904 		return -EBADF;
905 
906 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 					 &perf_event_cgrp_subsys);
908 	if (IS_ERR(css)) {
909 		ret = PTR_ERR(css);
910 		goto out;
911 	}
912 
913 	cgrp = container_of(css, struct perf_cgroup, css);
914 	event->cgrp = cgrp;
915 
916 	/*
917 	 * all events in a group must monitor
918 	 * the same cgroup because a task belongs
919 	 * to only one perf cgroup at a time
920 	 */
921 	if (group_leader && group_leader->cgrp != cgrp) {
922 		perf_detach_cgroup(event);
923 		ret = -EINVAL;
924 	}
925 out:
926 	fdput(f);
927 	return ret;
928 }
929 
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933 	struct perf_cgroup_info *t;
934 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 	event->shadow_ctx_time = now - t->timestamp;
936 }
937 
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944 			 struct perf_event_context *ctx, bool add)
945 {
946 	struct perf_cpu_context *cpuctx;
947 	struct list_head *cpuctx_entry;
948 
949 	if (!is_cgroup_event(event))
950 		return;
951 
952 	/*
953 	 * Because cgroup events are always per-cpu events,
954 	 * this will always be called from the right CPU.
955 	 */
956 	cpuctx = __get_cpu_context(ctx);
957 
958 	/*
959 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 	 * matching the event's cgroup, we must do this for every new event,
961 	 * because if the first would mismatch, the second would not try again
962 	 * and we would leave cpuctx->cgrp unset.
963 	 */
964 	if (add && !cpuctx->cgrp) {
965 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966 
967 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 			cpuctx->cgrp = cgrp;
969 	}
970 
971 	if (add && ctx->nr_cgroups++)
972 		return;
973 	else if (!add && --ctx->nr_cgroups)
974 		return;
975 
976 	/* no cgroup running */
977 	if (!add)
978 		cpuctx->cgrp = NULL;
979 
980 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 	if (add)
982 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 	else
984 		list_del(cpuctx_entry);
985 }
986 
987 #else /* !CONFIG_CGROUP_PERF */
988 
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992 	return true;
993 }
994 
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997 
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000 	return 0;
1001 }
1002 
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006 
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010 
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 					 struct task_struct *next)
1013 {
1014 }
1015 
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 					struct task_struct *task)
1018 {
1019 }
1020 
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 				      struct perf_event_attr *attr,
1023 				      struct perf_event *group_leader)
1024 {
1025 	return -EINVAL;
1026 }
1027 
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030 			  struct perf_event_context *ctx)
1031 {
1032 }
1033 
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038 
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043 
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046 	return 0;
1047 }
1048 
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051 			 struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054 
1055 #endif
1056 
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067 	struct perf_cpu_context *cpuctx;
1068 	bool rotations;
1069 
1070 	lockdep_assert_irqs_disabled();
1071 
1072 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073 	rotations = perf_rotate_context(cpuctx);
1074 
1075 	raw_spin_lock(&cpuctx->hrtimer_lock);
1076 	if (rotations)
1077 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078 	else
1079 		cpuctx->hrtimer_active = 0;
1080 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1081 
1082 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084 
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087 	struct hrtimer *timer = &cpuctx->hrtimer;
1088 	struct pmu *pmu = cpuctx->ctx.pmu;
1089 	u64 interval;
1090 
1091 	/* no multiplexing needed for SW PMU */
1092 	if (pmu->task_ctx_nr == perf_sw_context)
1093 		return;
1094 
1095 	/*
1096 	 * check default is sane, if not set then force to
1097 	 * default interval (1/tick)
1098 	 */
1099 	interval = pmu->hrtimer_interval_ms;
1100 	if (interval < 1)
1101 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102 
1103 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104 
1105 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107 	timer->function = perf_mux_hrtimer_handler;
1108 }
1109 
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112 	struct hrtimer *timer = &cpuctx->hrtimer;
1113 	struct pmu *pmu = cpuctx->ctx.pmu;
1114 	unsigned long flags;
1115 
1116 	/* not for SW PMU */
1117 	if (pmu->task_ctx_nr == perf_sw_context)
1118 		return 0;
1119 
1120 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 	if (!cpuctx->hrtimer_active) {
1122 		cpuctx->hrtimer_active = 1;
1123 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 	}
1126 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127 
1128 	return 0;
1129 }
1130 
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 	if (!(*count)++)
1135 		pmu->pmu_disable(pmu);
1136 }
1137 
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 	if (!--(*count))
1142 		pmu->pmu_enable(pmu);
1143 }
1144 
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146 
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156 
1157 	lockdep_assert_irqs_disabled();
1158 
1159 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1160 
1161 	list_add(&ctx->active_ctx_list, head);
1162 }
1163 
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166 	lockdep_assert_irqs_disabled();
1167 
1168 	WARN_ON(list_empty(&ctx->active_ctx_list));
1169 
1170 	list_del_init(&ctx->active_ctx_list);
1171 }
1172 
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175 	refcount_inc(&ctx->refcount);
1176 }
1177 
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180 	struct perf_event_context *ctx;
1181 
1182 	ctx = container_of(head, struct perf_event_context, rcu_head);
1183 	kfree(ctx->task_ctx_data);
1184 	kfree(ctx);
1185 }
1186 
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189 	if (refcount_dec_and_test(&ctx->refcount)) {
1190 		if (ctx->parent_ctx)
1191 			put_ctx(ctx->parent_ctx);
1192 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193 			put_task_struct(ctx->task);
1194 		call_rcu(&ctx->rcu_head, free_ctx);
1195 	}
1196 }
1197 
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()	[ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()			[ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()		[ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event()	[ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *	task_struct::perf_event_mutex
1253  *	  perf_event_context::mutex
1254  *	    perf_event::child_mutex;
1255  *	      perf_event_context::lock
1256  *	    perf_event::mmap_mutex
1257  *	    mmap_sem
1258  *	      perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *	  cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267 	struct perf_event_context *ctx;
1268 
1269 again:
1270 	rcu_read_lock();
1271 	ctx = READ_ONCE(event->ctx);
1272 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1273 		rcu_read_unlock();
1274 		goto again;
1275 	}
1276 	rcu_read_unlock();
1277 
1278 	mutex_lock_nested(&ctx->mutex, nesting);
1279 	if (event->ctx != ctx) {
1280 		mutex_unlock(&ctx->mutex);
1281 		put_ctx(ctx);
1282 		goto again;
1283 	}
1284 
1285 	return ctx;
1286 }
1287 
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291 	return perf_event_ctx_lock_nested(event, 0);
1292 }
1293 
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295 				  struct perf_event_context *ctx)
1296 {
1297 	mutex_unlock(&ctx->mutex);
1298 	put_ctx(ctx);
1299 }
1300 
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310 
1311 	lockdep_assert_held(&ctx->lock);
1312 
1313 	if (parent_ctx)
1314 		ctx->parent_ctx = NULL;
1315 	ctx->generation++;
1316 
1317 	return parent_ctx;
1318 }
1319 
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 				enum pid_type type)
1322 {
1323 	u32 nr;
1324 	/*
1325 	 * only top level events have the pid namespace they were created in
1326 	 */
1327 	if (event->parent)
1328 		event = event->parent;
1329 
1330 	nr = __task_pid_nr_ns(p, type, event->ns);
1331 	/* avoid -1 if it is idle thread or runs in another ns */
1332 	if (!nr && !pid_alive(p))
1333 		nr = -1;
1334 	return nr;
1335 }
1336 
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341 
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346 
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353 	u64 id = event->id;
1354 
1355 	if (event->parent)
1356 		id = event->parent->id;
1357 
1358 	return id;
1359 }
1360 
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370 	struct perf_event_context *ctx;
1371 
1372 retry:
1373 	/*
1374 	 * One of the few rules of preemptible RCU is that one cannot do
1375 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376 	 * part of the read side critical section was irqs-enabled -- see
1377 	 * rcu_read_unlock_special().
1378 	 *
1379 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1380 	 * side critical section has interrupts disabled.
1381 	 */
1382 	local_irq_save(*flags);
1383 	rcu_read_lock();
1384 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385 	if (ctx) {
1386 		/*
1387 		 * If this context is a clone of another, it might
1388 		 * get swapped for another underneath us by
1389 		 * perf_event_task_sched_out, though the
1390 		 * rcu_read_lock() protects us from any context
1391 		 * getting freed.  Lock the context and check if it
1392 		 * got swapped before we could get the lock, and retry
1393 		 * if so.  If we locked the right context, then it
1394 		 * can't get swapped on us any more.
1395 		 */
1396 		raw_spin_lock(&ctx->lock);
1397 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398 			raw_spin_unlock(&ctx->lock);
1399 			rcu_read_unlock();
1400 			local_irq_restore(*flags);
1401 			goto retry;
1402 		}
1403 
1404 		if (ctx->task == TASK_TOMBSTONE ||
1405 		    !refcount_inc_not_zero(&ctx->refcount)) {
1406 			raw_spin_unlock(&ctx->lock);
1407 			ctx = NULL;
1408 		} else {
1409 			WARN_ON_ONCE(ctx->task != task);
1410 		}
1411 	}
1412 	rcu_read_unlock();
1413 	if (!ctx)
1414 		local_irq_restore(*flags);
1415 	return ctx;
1416 }
1417 
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426 	struct perf_event_context *ctx;
1427 	unsigned long flags;
1428 
1429 	ctx = perf_lock_task_context(task, ctxn, &flags);
1430 	if (ctx) {
1431 		++ctx->pin_count;
1432 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433 	}
1434 	return ctx;
1435 }
1436 
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439 	unsigned long flags;
1440 
1441 	raw_spin_lock_irqsave(&ctx->lock, flags);
1442 	--ctx->pin_count;
1443 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445 
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451 	u64 now = perf_clock();
1452 
1453 	ctx->time += now - ctx->timestamp;
1454 	ctx->timestamp = now;
1455 }
1456 
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459 	struct perf_event_context *ctx = event->ctx;
1460 
1461 	if (is_cgroup_event(event))
1462 		return perf_cgroup_event_time(event);
1463 
1464 	return ctx ? ctx->time : 0;
1465 }
1466 
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469 	struct perf_event_context *ctx = event->ctx;
1470 	enum event_type_t event_type;
1471 
1472 	lockdep_assert_held(&ctx->lock);
1473 
1474 	/*
1475 	 * It's 'group type', really, because if our group leader is
1476 	 * pinned, so are we.
1477 	 */
1478 	if (event->group_leader != event)
1479 		event = event->group_leader;
1480 
1481 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 	if (!ctx->task)
1483 		event_type |= EVENT_CPU;
1484 
1485 	return event_type;
1486 }
1487 
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493 	RB_CLEAR_NODE(&event->group_node);
1494 	event->group_index = 0;
1495 }
1496 
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504 	if (event->attr.pinned)
1505 		return &ctx->pinned_groups;
1506 	else
1507 		return &ctx->flexible_groups;
1508 }
1509 
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515 	groups->tree = RB_ROOT;
1516 	groups->index = 0;
1517 }
1518 
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528 	if (left->cpu < right->cpu)
1529 		return true;
1530 	if (left->cpu > right->cpu)
1531 		return false;
1532 
1533 	if (left->group_index < right->group_index)
1534 		return true;
1535 	if (left->group_index > right->group_index)
1536 		return false;
1537 
1538 	return false;
1539 }
1540 
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548 			 struct perf_event *event)
1549 {
1550 	struct perf_event *node_event;
1551 	struct rb_node *parent;
1552 	struct rb_node **node;
1553 
1554 	event->group_index = ++groups->index;
1555 
1556 	node = &groups->tree.rb_node;
1557 	parent = *node;
1558 
1559 	while (*node) {
1560 		parent = *node;
1561 		node_event = container_of(*node, struct perf_event, group_node);
1562 
1563 		if (perf_event_groups_less(event, node_event))
1564 			node = &parent->rb_left;
1565 		else
1566 			node = &parent->rb_right;
1567 	}
1568 
1569 	rb_link_node(&event->group_node, parent, node);
1570 	rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572 
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579 	struct perf_event_groups *groups;
1580 
1581 	groups = get_event_groups(event, ctx);
1582 	perf_event_groups_insert(groups, event);
1583 }
1584 
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590 			 struct perf_event *event)
1591 {
1592 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 		     RB_EMPTY_ROOT(&groups->tree));
1594 
1595 	rb_erase(&event->group_node, &groups->tree);
1596 	init_event_group(event);
1597 }
1598 
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605 	struct perf_event_groups *groups;
1606 
1607 	groups = get_event_groups(event, ctx);
1608 	perf_event_groups_delete(groups, event);
1609 }
1610 
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617 	struct perf_event *node_event = NULL, *match = NULL;
1618 	struct rb_node *node = groups->tree.rb_node;
1619 
1620 	while (node) {
1621 		node_event = container_of(node, struct perf_event, group_node);
1622 
1623 		if (cpu < node_event->cpu) {
1624 			node = node->rb_left;
1625 		} else if (cpu > node_event->cpu) {
1626 			node = node->rb_right;
1627 		} else {
1628 			match = node_event;
1629 			node = node->rb_left;
1630 		}
1631 	}
1632 
1633 	return match;
1634 }
1635 
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642 	struct perf_event *next;
1643 
1644 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 	if (next && next->cpu == event->cpu)
1646 		return next;
1647 
1648 	return NULL;
1649 }
1650 
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)			\
1655 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1656 				typeof(*event), group_node); event;	\
1657 		event = rb_entry_safe(rb_next(&event->group_node),	\
1658 				typeof(*event), group_node))
1659 
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667 	lockdep_assert_held(&ctx->lock);
1668 
1669 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 	event->attach_state |= PERF_ATTACH_CONTEXT;
1671 
1672 	event->tstamp = perf_event_time(event);
1673 
1674 	/*
1675 	 * If we're a stand alone event or group leader, we go to the context
1676 	 * list, group events are kept attached to the group so that
1677 	 * perf_group_detach can, at all times, locate all siblings.
1678 	 */
1679 	if (event->group_leader == event) {
1680 		event->group_caps = event->event_caps;
1681 		add_event_to_groups(event, ctx);
1682 	}
1683 
1684 	list_update_cgroup_event(event, ctx, true);
1685 
1686 	list_add_rcu(&event->event_entry, &ctx->event_list);
1687 	ctx->nr_events++;
1688 	if (event->attr.inherit_stat)
1689 		ctx->nr_stat++;
1690 
1691 	ctx->generation++;
1692 }
1693 
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 					      PERF_EVENT_STATE_INACTIVE;
1701 }
1702 
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705 	int entry = sizeof(u64); /* value */
1706 	int size = 0;
1707 	int nr = 1;
1708 
1709 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 		size += sizeof(u64);
1711 
1712 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 		size += sizeof(u64);
1714 
1715 	if (event->attr.read_format & PERF_FORMAT_ID)
1716 		entry += sizeof(u64);
1717 
1718 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719 		nr += nr_siblings;
1720 		size += sizeof(u64);
1721 	}
1722 
1723 	size += entry * nr;
1724 	event->read_size = size;
1725 }
1726 
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729 	struct perf_sample_data *data;
1730 	u16 size = 0;
1731 
1732 	if (sample_type & PERF_SAMPLE_IP)
1733 		size += sizeof(data->ip);
1734 
1735 	if (sample_type & PERF_SAMPLE_ADDR)
1736 		size += sizeof(data->addr);
1737 
1738 	if (sample_type & PERF_SAMPLE_PERIOD)
1739 		size += sizeof(data->period);
1740 
1741 	if (sample_type & PERF_SAMPLE_WEIGHT)
1742 		size += sizeof(data->weight);
1743 
1744 	if (sample_type & PERF_SAMPLE_READ)
1745 		size += event->read_size;
1746 
1747 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 		size += sizeof(data->data_src.val);
1749 
1750 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 		size += sizeof(data->txn);
1752 
1753 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 		size += sizeof(data->phys_addr);
1755 
1756 	event->header_size = size;
1757 }
1758 
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765 	__perf_event_read_size(event,
1766 			       event->group_leader->nr_siblings);
1767 	__perf_event_header_size(event, event->attr.sample_type);
1768 }
1769 
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772 	struct perf_sample_data *data;
1773 	u64 sample_type = event->attr.sample_type;
1774 	u16 size = 0;
1775 
1776 	if (sample_type & PERF_SAMPLE_TID)
1777 		size += sizeof(data->tid_entry);
1778 
1779 	if (sample_type & PERF_SAMPLE_TIME)
1780 		size += sizeof(data->time);
1781 
1782 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 		size += sizeof(data->id);
1784 
1785 	if (sample_type & PERF_SAMPLE_ID)
1786 		size += sizeof(data->id);
1787 
1788 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 		size += sizeof(data->stream_id);
1790 
1791 	if (sample_type & PERF_SAMPLE_CPU)
1792 		size += sizeof(data->cpu_entry);
1793 
1794 	event->id_header_size = size;
1795 }
1796 
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799 	/*
1800 	 * The values computed here will be over-written when we actually
1801 	 * attach the event.
1802 	 */
1803 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 	perf_event__id_header_size(event);
1806 
1807 	/*
1808 	 * Sum the lot; should not exceed the 64k limit we have on records.
1809 	 * Conservative limit to allow for callchains and other variable fields.
1810 	 */
1811 	if (event->read_size + event->header_size +
1812 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 		return false;
1814 
1815 	return true;
1816 }
1817 
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820 	struct perf_event *group_leader = event->group_leader, *pos;
1821 
1822 	lockdep_assert_held(&event->ctx->lock);
1823 
1824 	/*
1825 	 * We can have double attach due to group movement in perf_event_open.
1826 	 */
1827 	if (event->attach_state & PERF_ATTACH_GROUP)
1828 		return;
1829 
1830 	event->attach_state |= PERF_ATTACH_GROUP;
1831 
1832 	if (group_leader == event)
1833 		return;
1834 
1835 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836 
1837 	group_leader->group_caps &= event->event_caps;
1838 
1839 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840 	group_leader->nr_siblings++;
1841 
1842 	perf_event__header_size(group_leader);
1843 
1844 	for_each_sibling_event(pos, group_leader)
1845 		perf_event__header_size(pos);
1846 }
1847 
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855 	WARN_ON_ONCE(event->ctx != ctx);
1856 	lockdep_assert_held(&ctx->lock);
1857 
1858 	/*
1859 	 * We can have double detach due to exit/hot-unplug + close.
1860 	 */
1861 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862 		return;
1863 
1864 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865 
1866 	list_update_cgroup_event(event, ctx, false);
1867 
1868 	ctx->nr_events--;
1869 	if (event->attr.inherit_stat)
1870 		ctx->nr_stat--;
1871 
1872 	list_del_rcu(&event->event_entry);
1873 
1874 	if (event->group_leader == event)
1875 		del_event_from_groups(event, ctx);
1876 
1877 	/*
1878 	 * If event was in error state, then keep it
1879 	 * that way, otherwise bogus counts will be
1880 	 * returned on read(). The only way to get out
1881 	 * of error state is by explicit re-enabling
1882 	 * of the event
1883 	 */
1884 	if (event->state > PERF_EVENT_STATE_OFF)
1885 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886 
1887 	ctx->generation++;
1888 }
1889 
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892 	struct perf_event *sibling, *tmp;
1893 	struct perf_event_context *ctx = event->ctx;
1894 
1895 	lockdep_assert_held(&ctx->lock);
1896 
1897 	/*
1898 	 * We can have double detach due to exit/hot-unplug + close.
1899 	 */
1900 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 		return;
1902 
1903 	event->attach_state &= ~PERF_ATTACH_GROUP;
1904 
1905 	/*
1906 	 * If this is a sibling, remove it from its group.
1907 	 */
1908 	if (event->group_leader != event) {
1909 		list_del_init(&event->sibling_list);
1910 		event->group_leader->nr_siblings--;
1911 		goto out;
1912 	}
1913 
1914 	/*
1915 	 * If this was a group event with sibling events then
1916 	 * upgrade the siblings to singleton events by adding them
1917 	 * to whatever list we are on.
1918 	 */
1919 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920 
1921 		sibling->group_leader = sibling;
1922 		list_del_init(&sibling->sibling_list);
1923 
1924 		/* Inherit group flags from the previous leader */
1925 		sibling->group_caps = event->group_caps;
1926 
1927 		if (!RB_EMPTY_NODE(&event->group_node)) {
1928 			add_event_to_groups(sibling, event->ctx);
1929 
1930 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 				struct list_head *list = sibling->attr.pinned ?
1932 					&ctx->pinned_active : &ctx->flexible_active;
1933 
1934 				list_add_tail(&sibling->active_list, list);
1935 			}
1936 		}
1937 
1938 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1939 	}
1940 
1941 out:
1942 	perf_event__header_size(event->group_leader);
1943 
1944 	for_each_sibling_event(tmp, event->group_leader)
1945 		perf_event__header_size(tmp);
1946 }
1947 
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950 	return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952 
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955 	struct pmu *pmu = event->pmu;
1956 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958 
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967 	struct perf_event *sibling;
1968 
1969 	if (!__pmu_filter_match(event))
1970 		return 0;
1971 
1972 	for_each_sibling_event(sibling, event) {
1973 		if (!__pmu_filter_match(sibling))
1974 			return 0;
1975 	}
1976 
1977 	return 1;
1978 }
1979 
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 	       perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986 
1987 static void
1988 event_sched_out(struct perf_event *event,
1989 		  struct perf_cpu_context *cpuctx,
1990 		  struct perf_event_context *ctx)
1991 {
1992 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993 
1994 	WARN_ON_ONCE(event->ctx != ctx);
1995 	lockdep_assert_held(&ctx->lock);
1996 
1997 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1998 		return;
1999 
2000 	/*
2001 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 	 * we can schedule events _OUT_ individually through things like
2003 	 * __perf_remove_from_context().
2004 	 */
2005 	list_del_init(&event->active_list);
2006 
2007 	perf_pmu_disable(event->pmu);
2008 
2009 	event->pmu->del(event, 0);
2010 	event->oncpu = -1;
2011 
2012 	if (READ_ONCE(event->pending_disable) >= 0) {
2013 		WRITE_ONCE(event->pending_disable, -1);
2014 		state = PERF_EVENT_STATE_OFF;
2015 	}
2016 	perf_event_set_state(event, state);
2017 
2018 	if (!is_software_event(event))
2019 		cpuctx->active_oncpu--;
2020 	if (!--ctx->nr_active)
2021 		perf_event_ctx_deactivate(ctx);
2022 	if (event->attr.freq && event->attr.sample_freq)
2023 		ctx->nr_freq--;
2024 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2025 		cpuctx->exclusive = 0;
2026 
2027 	perf_pmu_enable(event->pmu);
2028 }
2029 
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032 		struct perf_cpu_context *cpuctx,
2033 		struct perf_event_context *ctx)
2034 {
2035 	struct perf_event *event;
2036 
2037 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 		return;
2039 
2040 	perf_pmu_disable(ctx->pmu);
2041 
2042 	event_sched_out(group_event, cpuctx, ctx);
2043 
2044 	/*
2045 	 * Schedule out siblings (if any):
2046 	 */
2047 	for_each_sibling_event(event, group_event)
2048 		event_sched_out(event, cpuctx, ctx);
2049 
2050 	perf_pmu_enable(ctx->pmu);
2051 
2052 	if (group_event->attr.exclusive)
2053 		cpuctx->exclusive = 0;
2054 }
2055 
2056 #define DETACH_GROUP	0x01UL
2057 
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066 			   struct perf_cpu_context *cpuctx,
2067 			   struct perf_event_context *ctx,
2068 			   void *info)
2069 {
2070 	unsigned long flags = (unsigned long)info;
2071 
2072 	if (ctx->is_active & EVENT_TIME) {
2073 		update_context_time(ctx);
2074 		update_cgrp_time_from_cpuctx(cpuctx);
2075 	}
2076 
2077 	event_sched_out(event, cpuctx, ctx);
2078 	if (flags & DETACH_GROUP)
2079 		perf_group_detach(event);
2080 	list_del_event(event, ctx);
2081 
2082 	if (!ctx->nr_events && ctx->is_active) {
2083 		ctx->is_active = 0;
2084 		if (ctx->task) {
2085 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 			cpuctx->task_ctx = NULL;
2087 		}
2088 	}
2089 }
2090 
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103 	struct perf_event_context *ctx = event->ctx;
2104 
2105 	lockdep_assert_held(&ctx->mutex);
2106 
2107 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2108 
2109 	/*
2110 	 * The above event_function_call() can NO-OP when it hits
2111 	 * TASK_TOMBSTONE. In that case we must already have been detached
2112 	 * from the context (by perf_event_exit_event()) but the grouping
2113 	 * might still be in-tact.
2114 	 */
2115 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 	if ((flags & DETACH_GROUP) &&
2117 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2118 		/*
2119 		 * Since in that case we cannot possibly be scheduled, simply
2120 		 * detach now.
2121 		 */
2122 		raw_spin_lock_irq(&ctx->lock);
2123 		perf_group_detach(event);
2124 		raw_spin_unlock_irq(&ctx->lock);
2125 	}
2126 }
2127 
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132 				 struct perf_cpu_context *cpuctx,
2133 				 struct perf_event_context *ctx,
2134 				 void *info)
2135 {
2136 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 		return;
2138 
2139 	if (ctx->is_active & EVENT_TIME) {
2140 		update_context_time(ctx);
2141 		update_cgrp_time_from_event(event);
2142 	}
2143 
2144 	if (event == event->group_leader)
2145 		group_sched_out(event, cpuctx, ctx);
2146 	else
2147 		event_sched_out(event, cpuctx, ctx);
2148 
2149 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151 
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168 	struct perf_event_context *ctx = event->ctx;
2169 
2170 	raw_spin_lock_irq(&ctx->lock);
2171 	if (event->state <= PERF_EVENT_STATE_OFF) {
2172 		raw_spin_unlock_irq(&ctx->lock);
2173 		return;
2174 	}
2175 	raw_spin_unlock_irq(&ctx->lock);
2176 
2177 	event_function_call(event, __perf_event_disable, NULL);
2178 }
2179 
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182 	event_function_local(event, __perf_event_disable, NULL);
2183 }
2184 
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191 	struct perf_event_context *ctx;
2192 
2193 	ctx = perf_event_ctx_lock(event);
2194 	_perf_event_disable(event);
2195 	perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198 
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2202 	/* can fail, see perf_pending_event_disable() */
2203 	irq_work_queue(&event->pending);
2204 }
2205 
2206 static void perf_set_shadow_time(struct perf_event *event,
2207 				 struct perf_event_context *ctx)
2208 {
2209 	/*
2210 	 * use the correct time source for the time snapshot
2211 	 *
2212 	 * We could get by without this by leveraging the
2213 	 * fact that to get to this function, the caller
2214 	 * has most likely already called update_context_time()
2215 	 * and update_cgrp_time_xx() and thus both timestamp
2216 	 * are identical (or very close). Given that tstamp is,
2217 	 * already adjusted for cgroup, we could say that:
2218 	 *    tstamp - ctx->timestamp
2219 	 * is equivalent to
2220 	 *    tstamp - cgrp->timestamp.
2221 	 *
2222 	 * Then, in perf_output_read(), the calculation would
2223 	 * work with no changes because:
2224 	 * - event is guaranteed scheduled in
2225 	 * - no scheduled out in between
2226 	 * - thus the timestamp would be the same
2227 	 *
2228 	 * But this is a bit hairy.
2229 	 *
2230 	 * So instead, we have an explicit cgroup call to remain
2231 	 * within the time time source all along. We believe it
2232 	 * is cleaner and simpler to understand.
2233 	 */
2234 	if (is_cgroup_event(event))
2235 		perf_cgroup_set_shadow_time(event, event->tstamp);
2236 	else
2237 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239 
2240 #define MAX_INTERRUPTS (~0ULL)
2241 
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244 
2245 static int
2246 event_sched_in(struct perf_event *event,
2247 		 struct perf_cpu_context *cpuctx,
2248 		 struct perf_event_context *ctx)
2249 {
2250 	int ret = 0;
2251 
2252 	lockdep_assert_held(&ctx->lock);
2253 
2254 	if (event->state <= PERF_EVENT_STATE_OFF)
2255 		return 0;
2256 
2257 	WRITE_ONCE(event->oncpu, smp_processor_id());
2258 	/*
2259 	 * Order event::oncpu write to happen before the ACTIVE state is
2260 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2261 	 * ->oncpu if it sees ACTIVE.
2262 	 */
2263 	smp_wmb();
2264 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265 
2266 	/*
2267 	 * Unthrottle events, since we scheduled we might have missed several
2268 	 * ticks already, also for a heavily scheduling task there is little
2269 	 * guarantee it'll get a tick in a timely manner.
2270 	 */
2271 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272 		perf_log_throttle(event, 1);
2273 		event->hw.interrupts = 0;
2274 	}
2275 
2276 	perf_pmu_disable(event->pmu);
2277 
2278 	perf_set_shadow_time(event, ctx);
2279 
2280 	perf_log_itrace_start(event);
2281 
2282 	if (event->pmu->add(event, PERF_EF_START)) {
2283 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284 		event->oncpu = -1;
2285 		ret = -EAGAIN;
2286 		goto out;
2287 	}
2288 
2289 	if (!is_software_event(event))
2290 		cpuctx->active_oncpu++;
2291 	if (!ctx->nr_active++)
2292 		perf_event_ctx_activate(ctx);
2293 	if (event->attr.freq && event->attr.sample_freq)
2294 		ctx->nr_freq++;
2295 
2296 	if (event->attr.exclusive)
2297 		cpuctx->exclusive = 1;
2298 
2299 out:
2300 	perf_pmu_enable(event->pmu);
2301 
2302 	return ret;
2303 }
2304 
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307 	       struct perf_cpu_context *cpuctx,
2308 	       struct perf_event_context *ctx)
2309 {
2310 	struct perf_event *event, *partial_group = NULL;
2311 	struct pmu *pmu = ctx->pmu;
2312 
2313 	if (group_event->state == PERF_EVENT_STATE_OFF)
2314 		return 0;
2315 
2316 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317 
2318 	if (event_sched_in(group_event, cpuctx, ctx)) {
2319 		pmu->cancel_txn(pmu);
2320 		perf_mux_hrtimer_restart(cpuctx);
2321 		return -EAGAIN;
2322 	}
2323 
2324 	/*
2325 	 * Schedule in siblings as one group (if any):
2326 	 */
2327 	for_each_sibling_event(event, group_event) {
2328 		if (event_sched_in(event, cpuctx, ctx)) {
2329 			partial_group = event;
2330 			goto group_error;
2331 		}
2332 	}
2333 
2334 	if (!pmu->commit_txn(pmu))
2335 		return 0;
2336 
2337 group_error:
2338 	/*
2339 	 * Groups can be scheduled in as one unit only, so undo any
2340 	 * partial group before returning:
2341 	 * The events up to the failed event are scheduled out normally.
2342 	 */
2343 	for_each_sibling_event(event, group_event) {
2344 		if (event == partial_group)
2345 			break;
2346 
2347 		event_sched_out(event, cpuctx, ctx);
2348 	}
2349 	event_sched_out(group_event, cpuctx, ctx);
2350 
2351 	pmu->cancel_txn(pmu);
2352 
2353 	perf_mux_hrtimer_restart(cpuctx);
2354 
2355 	return -EAGAIN;
2356 }
2357 
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362 			   struct perf_cpu_context *cpuctx,
2363 			   int can_add_hw)
2364 {
2365 	/*
2366 	 * Groups consisting entirely of software events can always go on.
2367 	 */
2368 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369 		return 1;
2370 	/*
2371 	 * If an exclusive group is already on, no other hardware
2372 	 * events can go on.
2373 	 */
2374 	if (cpuctx->exclusive)
2375 		return 0;
2376 	/*
2377 	 * If this group is exclusive and there are already
2378 	 * events on the CPU, it can't go on.
2379 	 */
2380 	if (event->attr.exclusive && cpuctx->active_oncpu)
2381 		return 0;
2382 	/*
2383 	 * Otherwise, try to add it if all previous groups were able
2384 	 * to go on.
2385 	 */
2386 	return can_add_hw;
2387 }
2388 
2389 static void add_event_to_ctx(struct perf_event *event,
2390 			       struct perf_event_context *ctx)
2391 {
2392 	list_add_event(event, ctx);
2393 	perf_group_attach(event);
2394 }
2395 
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397 			  struct perf_cpu_context *cpuctx,
2398 			  enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401 	     struct perf_cpu_context *cpuctx,
2402 	     enum event_type_t event_type,
2403 	     struct task_struct *task);
2404 
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406 			       struct perf_event_context *ctx,
2407 			       enum event_type_t event_type)
2408 {
2409 	if (!cpuctx->task_ctx)
2410 		return;
2411 
2412 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413 		return;
2414 
2415 	ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417 
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419 				struct perf_event_context *ctx,
2420 				struct task_struct *task)
2421 {
2422 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426 	if (ctx)
2427 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429 
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446 			struct perf_event_context *task_ctx,
2447 			enum event_type_t event_type)
2448 {
2449 	enum event_type_t ctx_event_type;
2450 	bool cpu_event = !!(event_type & EVENT_CPU);
2451 
2452 	/*
2453 	 * If pinned groups are involved, flexible groups also need to be
2454 	 * scheduled out.
2455 	 */
2456 	if (event_type & EVENT_PINNED)
2457 		event_type |= EVENT_FLEXIBLE;
2458 
2459 	ctx_event_type = event_type & EVENT_ALL;
2460 
2461 	perf_pmu_disable(cpuctx->ctx.pmu);
2462 	if (task_ctx)
2463 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464 
2465 	/*
2466 	 * Decide which cpu ctx groups to schedule out based on the types
2467 	 * of events that caused rescheduling:
2468 	 *  - EVENT_CPU: schedule out corresponding groups;
2469 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470 	 *  - otherwise, do nothing more.
2471 	 */
2472 	if (cpu_event)
2473 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474 	else if (ctx_event_type & EVENT_PINNED)
2475 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476 
2477 	perf_event_sched_in(cpuctx, task_ctx, current);
2478 	perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480 
2481 /*
2482  * Cross CPU call to install and enable a performance event
2483  *
2484  * Very similar to remote_function() + event_function() but cannot assume that
2485  * things like ctx->is_active and cpuctx->task_ctx are set.
2486  */
2487 static int  __perf_install_in_context(void *info)
2488 {
2489 	struct perf_event *event = info;
2490 	struct perf_event_context *ctx = event->ctx;
2491 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2492 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2493 	bool reprogram = true;
2494 	int ret = 0;
2495 
2496 	raw_spin_lock(&cpuctx->ctx.lock);
2497 	if (ctx->task) {
2498 		raw_spin_lock(&ctx->lock);
2499 		task_ctx = ctx;
2500 
2501 		reprogram = (ctx->task == current);
2502 
2503 		/*
2504 		 * If the task is running, it must be running on this CPU,
2505 		 * otherwise we cannot reprogram things.
2506 		 *
2507 		 * If its not running, we don't care, ctx->lock will
2508 		 * serialize against it becoming runnable.
2509 		 */
2510 		if (task_curr(ctx->task) && !reprogram) {
2511 			ret = -ESRCH;
2512 			goto unlock;
2513 		}
2514 
2515 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2516 	} else if (task_ctx) {
2517 		raw_spin_lock(&task_ctx->lock);
2518 	}
2519 
2520 #ifdef CONFIG_CGROUP_PERF
2521 	if (is_cgroup_event(event)) {
2522 		/*
2523 		 * If the current cgroup doesn't match the event's
2524 		 * cgroup, we should not try to schedule it.
2525 		 */
2526 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2527 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2528 					event->cgrp->css.cgroup);
2529 	}
2530 #endif
2531 
2532 	if (reprogram) {
2533 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2534 		add_event_to_ctx(event, ctx);
2535 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2536 	} else {
2537 		add_event_to_ctx(event, ctx);
2538 	}
2539 
2540 unlock:
2541 	perf_ctx_unlock(cpuctx, task_ctx);
2542 
2543 	return ret;
2544 }
2545 
2546 /*
2547  * Attach a performance event to a context.
2548  *
2549  * Very similar to event_function_call, see comment there.
2550  */
2551 static void
2552 perf_install_in_context(struct perf_event_context *ctx,
2553 			struct perf_event *event,
2554 			int cpu)
2555 {
2556 	struct task_struct *task = READ_ONCE(ctx->task);
2557 
2558 	lockdep_assert_held(&ctx->mutex);
2559 
2560 	if (event->cpu != -1)
2561 		event->cpu = cpu;
2562 
2563 	/*
2564 	 * Ensures that if we can observe event->ctx, both the event and ctx
2565 	 * will be 'complete'. See perf_iterate_sb_cpu().
2566 	 */
2567 	smp_store_release(&event->ctx, ctx);
2568 
2569 	if (!task) {
2570 		cpu_function_call(cpu, __perf_install_in_context, event);
2571 		return;
2572 	}
2573 
2574 	/*
2575 	 * Should not happen, we validate the ctx is still alive before calling.
2576 	 */
2577 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2578 		return;
2579 
2580 	/*
2581 	 * Installing events is tricky because we cannot rely on ctx->is_active
2582 	 * to be set in case this is the nr_events 0 -> 1 transition.
2583 	 *
2584 	 * Instead we use task_curr(), which tells us if the task is running.
2585 	 * However, since we use task_curr() outside of rq::lock, we can race
2586 	 * against the actual state. This means the result can be wrong.
2587 	 *
2588 	 * If we get a false positive, we retry, this is harmless.
2589 	 *
2590 	 * If we get a false negative, things are complicated. If we are after
2591 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2592 	 * value must be correct. If we're before, it doesn't matter since
2593 	 * perf_event_context_sched_in() will program the counter.
2594 	 *
2595 	 * However, this hinges on the remote context switch having observed
2596 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2597 	 * ctx::lock in perf_event_context_sched_in().
2598 	 *
2599 	 * We do this by task_function_call(), if the IPI fails to hit the task
2600 	 * we know any future context switch of task must see the
2601 	 * perf_event_ctpx[] store.
2602 	 */
2603 
2604 	/*
2605 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2606 	 * task_cpu() load, such that if the IPI then does not find the task
2607 	 * running, a future context switch of that task must observe the
2608 	 * store.
2609 	 */
2610 	smp_mb();
2611 again:
2612 	if (!task_function_call(task, __perf_install_in_context, event))
2613 		return;
2614 
2615 	raw_spin_lock_irq(&ctx->lock);
2616 	task = ctx->task;
2617 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2618 		/*
2619 		 * Cannot happen because we already checked above (which also
2620 		 * cannot happen), and we hold ctx->mutex, which serializes us
2621 		 * against perf_event_exit_task_context().
2622 		 */
2623 		raw_spin_unlock_irq(&ctx->lock);
2624 		return;
2625 	}
2626 	/*
2627 	 * If the task is not running, ctx->lock will avoid it becoming so,
2628 	 * thus we can safely install the event.
2629 	 */
2630 	if (task_curr(task)) {
2631 		raw_spin_unlock_irq(&ctx->lock);
2632 		goto again;
2633 	}
2634 	add_event_to_ctx(event, ctx);
2635 	raw_spin_unlock_irq(&ctx->lock);
2636 }
2637 
2638 /*
2639  * Cross CPU call to enable a performance event
2640  */
2641 static void __perf_event_enable(struct perf_event *event,
2642 				struct perf_cpu_context *cpuctx,
2643 				struct perf_event_context *ctx,
2644 				void *info)
2645 {
2646 	struct perf_event *leader = event->group_leader;
2647 	struct perf_event_context *task_ctx;
2648 
2649 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2650 	    event->state <= PERF_EVENT_STATE_ERROR)
2651 		return;
2652 
2653 	if (ctx->is_active)
2654 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2655 
2656 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2657 
2658 	if (!ctx->is_active)
2659 		return;
2660 
2661 	if (!event_filter_match(event)) {
2662 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2663 		return;
2664 	}
2665 
2666 	/*
2667 	 * If the event is in a group and isn't the group leader,
2668 	 * then don't put it on unless the group is on.
2669 	 */
2670 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2671 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2672 		return;
2673 	}
2674 
2675 	task_ctx = cpuctx->task_ctx;
2676 	if (ctx->task)
2677 		WARN_ON_ONCE(task_ctx != ctx);
2678 
2679 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2680 }
2681 
2682 /*
2683  * Enable an event.
2684  *
2685  * If event->ctx is a cloned context, callers must make sure that
2686  * every task struct that event->ctx->task could possibly point to
2687  * remains valid.  This condition is satisfied when called through
2688  * perf_event_for_each_child or perf_event_for_each as described
2689  * for perf_event_disable.
2690  */
2691 static void _perf_event_enable(struct perf_event *event)
2692 {
2693 	struct perf_event_context *ctx = event->ctx;
2694 
2695 	raw_spin_lock_irq(&ctx->lock);
2696 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2697 	    event->state <  PERF_EVENT_STATE_ERROR) {
2698 		raw_spin_unlock_irq(&ctx->lock);
2699 		return;
2700 	}
2701 
2702 	/*
2703 	 * If the event is in error state, clear that first.
2704 	 *
2705 	 * That way, if we see the event in error state below, we know that it
2706 	 * has gone back into error state, as distinct from the task having
2707 	 * been scheduled away before the cross-call arrived.
2708 	 */
2709 	if (event->state == PERF_EVENT_STATE_ERROR)
2710 		event->state = PERF_EVENT_STATE_OFF;
2711 	raw_spin_unlock_irq(&ctx->lock);
2712 
2713 	event_function_call(event, __perf_event_enable, NULL);
2714 }
2715 
2716 /*
2717  * See perf_event_disable();
2718  */
2719 void perf_event_enable(struct perf_event *event)
2720 {
2721 	struct perf_event_context *ctx;
2722 
2723 	ctx = perf_event_ctx_lock(event);
2724 	_perf_event_enable(event);
2725 	perf_event_ctx_unlock(event, ctx);
2726 }
2727 EXPORT_SYMBOL_GPL(perf_event_enable);
2728 
2729 struct stop_event_data {
2730 	struct perf_event	*event;
2731 	unsigned int		restart;
2732 };
2733 
2734 static int __perf_event_stop(void *info)
2735 {
2736 	struct stop_event_data *sd = info;
2737 	struct perf_event *event = sd->event;
2738 
2739 	/* if it's already INACTIVE, do nothing */
2740 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2741 		return 0;
2742 
2743 	/* matches smp_wmb() in event_sched_in() */
2744 	smp_rmb();
2745 
2746 	/*
2747 	 * There is a window with interrupts enabled before we get here,
2748 	 * so we need to check again lest we try to stop another CPU's event.
2749 	 */
2750 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2751 		return -EAGAIN;
2752 
2753 	event->pmu->stop(event, PERF_EF_UPDATE);
2754 
2755 	/*
2756 	 * May race with the actual stop (through perf_pmu_output_stop()),
2757 	 * but it is only used for events with AUX ring buffer, and such
2758 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2759 	 * see comments in perf_aux_output_begin().
2760 	 *
2761 	 * Since this is happening on an event-local CPU, no trace is lost
2762 	 * while restarting.
2763 	 */
2764 	if (sd->restart)
2765 		event->pmu->start(event, 0);
2766 
2767 	return 0;
2768 }
2769 
2770 static int perf_event_stop(struct perf_event *event, int restart)
2771 {
2772 	struct stop_event_data sd = {
2773 		.event		= event,
2774 		.restart	= restart,
2775 	};
2776 	int ret = 0;
2777 
2778 	do {
2779 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2780 			return 0;
2781 
2782 		/* matches smp_wmb() in event_sched_in() */
2783 		smp_rmb();
2784 
2785 		/*
2786 		 * We only want to restart ACTIVE events, so if the event goes
2787 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2788 		 * fall through with ret==-ENXIO.
2789 		 */
2790 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2791 					__perf_event_stop, &sd);
2792 	} while (ret == -EAGAIN);
2793 
2794 	return ret;
2795 }
2796 
2797 /*
2798  * In order to contain the amount of racy and tricky in the address filter
2799  * configuration management, it is a two part process:
2800  *
2801  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2802  *      we update the addresses of corresponding vmas in
2803  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2804  * (p2) when an event is scheduled in (pmu::add), it calls
2805  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2806  *      if the generation has changed since the previous call.
2807  *
2808  * If (p1) happens while the event is active, we restart it to force (p2).
2809  *
2810  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2811  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2812  *     ioctl;
2813  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2814  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2815  *     for reading;
2816  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2817  *     of exec.
2818  */
2819 void perf_event_addr_filters_sync(struct perf_event *event)
2820 {
2821 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2822 
2823 	if (!has_addr_filter(event))
2824 		return;
2825 
2826 	raw_spin_lock(&ifh->lock);
2827 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2828 		event->pmu->addr_filters_sync(event);
2829 		event->hw.addr_filters_gen = event->addr_filters_gen;
2830 	}
2831 	raw_spin_unlock(&ifh->lock);
2832 }
2833 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2834 
2835 static int _perf_event_refresh(struct perf_event *event, int refresh)
2836 {
2837 	/*
2838 	 * not supported on inherited events
2839 	 */
2840 	if (event->attr.inherit || !is_sampling_event(event))
2841 		return -EINVAL;
2842 
2843 	atomic_add(refresh, &event->event_limit);
2844 	_perf_event_enable(event);
2845 
2846 	return 0;
2847 }
2848 
2849 /*
2850  * See perf_event_disable()
2851  */
2852 int perf_event_refresh(struct perf_event *event, int refresh)
2853 {
2854 	struct perf_event_context *ctx;
2855 	int ret;
2856 
2857 	ctx = perf_event_ctx_lock(event);
2858 	ret = _perf_event_refresh(event, refresh);
2859 	perf_event_ctx_unlock(event, ctx);
2860 
2861 	return ret;
2862 }
2863 EXPORT_SYMBOL_GPL(perf_event_refresh);
2864 
2865 static int perf_event_modify_breakpoint(struct perf_event *bp,
2866 					 struct perf_event_attr *attr)
2867 {
2868 	int err;
2869 
2870 	_perf_event_disable(bp);
2871 
2872 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2873 
2874 	if (!bp->attr.disabled)
2875 		_perf_event_enable(bp);
2876 
2877 	return err;
2878 }
2879 
2880 static int perf_event_modify_attr(struct perf_event *event,
2881 				  struct perf_event_attr *attr)
2882 {
2883 	if (event->attr.type != attr->type)
2884 		return -EINVAL;
2885 
2886 	switch (event->attr.type) {
2887 	case PERF_TYPE_BREAKPOINT:
2888 		return perf_event_modify_breakpoint(event, attr);
2889 	default:
2890 		/* Place holder for future additions. */
2891 		return -EOPNOTSUPP;
2892 	}
2893 }
2894 
2895 static void ctx_sched_out(struct perf_event_context *ctx,
2896 			  struct perf_cpu_context *cpuctx,
2897 			  enum event_type_t event_type)
2898 {
2899 	struct perf_event *event, *tmp;
2900 	int is_active = ctx->is_active;
2901 
2902 	lockdep_assert_held(&ctx->lock);
2903 
2904 	if (likely(!ctx->nr_events)) {
2905 		/*
2906 		 * See __perf_remove_from_context().
2907 		 */
2908 		WARN_ON_ONCE(ctx->is_active);
2909 		if (ctx->task)
2910 			WARN_ON_ONCE(cpuctx->task_ctx);
2911 		return;
2912 	}
2913 
2914 	ctx->is_active &= ~event_type;
2915 	if (!(ctx->is_active & EVENT_ALL))
2916 		ctx->is_active = 0;
2917 
2918 	if (ctx->task) {
2919 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2920 		if (!ctx->is_active)
2921 			cpuctx->task_ctx = NULL;
2922 	}
2923 
2924 	/*
2925 	 * Always update time if it was set; not only when it changes.
2926 	 * Otherwise we can 'forget' to update time for any but the last
2927 	 * context we sched out. For example:
2928 	 *
2929 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2930 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2931 	 *
2932 	 * would only update time for the pinned events.
2933 	 */
2934 	if (is_active & EVENT_TIME) {
2935 		/* update (and stop) ctx time */
2936 		update_context_time(ctx);
2937 		update_cgrp_time_from_cpuctx(cpuctx);
2938 	}
2939 
2940 	is_active ^= ctx->is_active; /* changed bits */
2941 
2942 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2943 		return;
2944 
2945 	perf_pmu_disable(ctx->pmu);
2946 	if (is_active & EVENT_PINNED) {
2947 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2948 			group_sched_out(event, cpuctx, ctx);
2949 	}
2950 
2951 	if (is_active & EVENT_FLEXIBLE) {
2952 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2953 			group_sched_out(event, cpuctx, ctx);
2954 	}
2955 	perf_pmu_enable(ctx->pmu);
2956 }
2957 
2958 /*
2959  * Test whether two contexts are equivalent, i.e. whether they have both been
2960  * cloned from the same version of the same context.
2961  *
2962  * Equivalence is measured using a generation number in the context that is
2963  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2964  * and list_del_event().
2965  */
2966 static int context_equiv(struct perf_event_context *ctx1,
2967 			 struct perf_event_context *ctx2)
2968 {
2969 	lockdep_assert_held(&ctx1->lock);
2970 	lockdep_assert_held(&ctx2->lock);
2971 
2972 	/* Pinning disables the swap optimization */
2973 	if (ctx1->pin_count || ctx2->pin_count)
2974 		return 0;
2975 
2976 	/* If ctx1 is the parent of ctx2 */
2977 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2978 		return 1;
2979 
2980 	/* If ctx2 is the parent of ctx1 */
2981 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2982 		return 1;
2983 
2984 	/*
2985 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2986 	 * hierarchy, see perf_event_init_context().
2987 	 */
2988 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2989 			ctx1->parent_gen == ctx2->parent_gen)
2990 		return 1;
2991 
2992 	/* Unmatched */
2993 	return 0;
2994 }
2995 
2996 static void __perf_event_sync_stat(struct perf_event *event,
2997 				     struct perf_event *next_event)
2998 {
2999 	u64 value;
3000 
3001 	if (!event->attr.inherit_stat)
3002 		return;
3003 
3004 	/*
3005 	 * Update the event value, we cannot use perf_event_read()
3006 	 * because we're in the middle of a context switch and have IRQs
3007 	 * disabled, which upsets smp_call_function_single(), however
3008 	 * we know the event must be on the current CPU, therefore we
3009 	 * don't need to use it.
3010 	 */
3011 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3012 		event->pmu->read(event);
3013 
3014 	perf_event_update_time(event);
3015 
3016 	/*
3017 	 * In order to keep per-task stats reliable we need to flip the event
3018 	 * values when we flip the contexts.
3019 	 */
3020 	value = local64_read(&next_event->count);
3021 	value = local64_xchg(&event->count, value);
3022 	local64_set(&next_event->count, value);
3023 
3024 	swap(event->total_time_enabled, next_event->total_time_enabled);
3025 	swap(event->total_time_running, next_event->total_time_running);
3026 
3027 	/*
3028 	 * Since we swizzled the values, update the user visible data too.
3029 	 */
3030 	perf_event_update_userpage(event);
3031 	perf_event_update_userpage(next_event);
3032 }
3033 
3034 static void perf_event_sync_stat(struct perf_event_context *ctx,
3035 				   struct perf_event_context *next_ctx)
3036 {
3037 	struct perf_event *event, *next_event;
3038 
3039 	if (!ctx->nr_stat)
3040 		return;
3041 
3042 	update_context_time(ctx);
3043 
3044 	event = list_first_entry(&ctx->event_list,
3045 				   struct perf_event, event_entry);
3046 
3047 	next_event = list_first_entry(&next_ctx->event_list,
3048 					struct perf_event, event_entry);
3049 
3050 	while (&event->event_entry != &ctx->event_list &&
3051 	       &next_event->event_entry != &next_ctx->event_list) {
3052 
3053 		__perf_event_sync_stat(event, next_event);
3054 
3055 		event = list_next_entry(event, event_entry);
3056 		next_event = list_next_entry(next_event, event_entry);
3057 	}
3058 }
3059 
3060 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3061 					 struct task_struct *next)
3062 {
3063 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3064 	struct perf_event_context *next_ctx;
3065 	struct perf_event_context *parent, *next_parent;
3066 	struct perf_cpu_context *cpuctx;
3067 	int do_switch = 1;
3068 
3069 	if (likely(!ctx))
3070 		return;
3071 
3072 	cpuctx = __get_cpu_context(ctx);
3073 	if (!cpuctx->task_ctx)
3074 		return;
3075 
3076 	rcu_read_lock();
3077 	next_ctx = next->perf_event_ctxp[ctxn];
3078 	if (!next_ctx)
3079 		goto unlock;
3080 
3081 	parent = rcu_dereference(ctx->parent_ctx);
3082 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3083 
3084 	/* If neither context have a parent context; they cannot be clones. */
3085 	if (!parent && !next_parent)
3086 		goto unlock;
3087 
3088 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3089 		/*
3090 		 * Looks like the two contexts are clones, so we might be
3091 		 * able to optimize the context switch.  We lock both
3092 		 * contexts and check that they are clones under the
3093 		 * lock (including re-checking that neither has been
3094 		 * uncloned in the meantime).  It doesn't matter which
3095 		 * order we take the locks because no other cpu could
3096 		 * be trying to lock both of these tasks.
3097 		 */
3098 		raw_spin_lock(&ctx->lock);
3099 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3100 		if (context_equiv(ctx, next_ctx)) {
3101 			WRITE_ONCE(ctx->task, next);
3102 			WRITE_ONCE(next_ctx->task, task);
3103 
3104 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3105 
3106 			/*
3107 			 * RCU_INIT_POINTER here is safe because we've not
3108 			 * modified the ctx and the above modification of
3109 			 * ctx->task and ctx->task_ctx_data are immaterial
3110 			 * since those values are always verified under
3111 			 * ctx->lock which we're now holding.
3112 			 */
3113 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3114 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3115 
3116 			do_switch = 0;
3117 
3118 			perf_event_sync_stat(ctx, next_ctx);
3119 		}
3120 		raw_spin_unlock(&next_ctx->lock);
3121 		raw_spin_unlock(&ctx->lock);
3122 	}
3123 unlock:
3124 	rcu_read_unlock();
3125 
3126 	if (do_switch) {
3127 		raw_spin_lock(&ctx->lock);
3128 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3129 		raw_spin_unlock(&ctx->lock);
3130 	}
3131 }
3132 
3133 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3134 
3135 void perf_sched_cb_dec(struct pmu *pmu)
3136 {
3137 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3138 
3139 	this_cpu_dec(perf_sched_cb_usages);
3140 
3141 	if (!--cpuctx->sched_cb_usage)
3142 		list_del(&cpuctx->sched_cb_entry);
3143 }
3144 
3145 
3146 void perf_sched_cb_inc(struct pmu *pmu)
3147 {
3148 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3149 
3150 	if (!cpuctx->sched_cb_usage++)
3151 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3152 
3153 	this_cpu_inc(perf_sched_cb_usages);
3154 }
3155 
3156 /*
3157  * This function provides the context switch callback to the lower code
3158  * layer. It is invoked ONLY when the context switch callback is enabled.
3159  *
3160  * This callback is relevant even to per-cpu events; for example multi event
3161  * PEBS requires this to provide PID/TID information. This requires we flush
3162  * all queued PEBS records before we context switch to a new task.
3163  */
3164 static void perf_pmu_sched_task(struct task_struct *prev,
3165 				struct task_struct *next,
3166 				bool sched_in)
3167 {
3168 	struct perf_cpu_context *cpuctx;
3169 	struct pmu *pmu;
3170 
3171 	if (prev == next)
3172 		return;
3173 
3174 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3175 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3176 
3177 		if (WARN_ON_ONCE(!pmu->sched_task))
3178 			continue;
3179 
3180 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3181 		perf_pmu_disable(pmu);
3182 
3183 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3184 
3185 		perf_pmu_enable(pmu);
3186 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3187 	}
3188 }
3189 
3190 static void perf_event_switch(struct task_struct *task,
3191 			      struct task_struct *next_prev, bool sched_in);
3192 
3193 #define for_each_task_context_nr(ctxn)					\
3194 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3195 
3196 /*
3197  * Called from scheduler to remove the events of the current task,
3198  * with interrupts disabled.
3199  *
3200  * We stop each event and update the event value in event->count.
3201  *
3202  * This does not protect us against NMI, but disable()
3203  * sets the disabled bit in the control field of event _before_
3204  * accessing the event control register. If a NMI hits, then it will
3205  * not restart the event.
3206  */
3207 void __perf_event_task_sched_out(struct task_struct *task,
3208 				 struct task_struct *next)
3209 {
3210 	int ctxn;
3211 
3212 	if (__this_cpu_read(perf_sched_cb_usages))
3213 		perf_pmu_sched_task(task, next, false);
3214 
3215 	if (atomic_read(&nr_switch_events))
3216 		perf_event_switch(task, next, false);
3217 
3218 	for_each_task_context_nr(ctxn)
3219 		perf_event_context_sched_out(task, ctxn, next);
3220 
3221 	/*
3222 	 * if cgroup events exist on this CPU, then we need
3223 	 * to check if we have to switch out PMU state.
3224 	 * cgroup event are system-wide mode only
3225 	 */
3226 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3227 		perf_cgroup_sched_out(task, next);
3228 }
3229 
3230 /*
3231  * Called with IRQs disabled
3232  */
3233 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3234 			      enum event_type_t event_type)
3235 {
3236 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3237 }
3238 
3239 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3240 			      int (*func)(struct perf_event *, void *), void *data)
3241 {
3242 	struct perf_event **evt, *evt1, *evt2;
3243 	int ret;
3244 
3245 	evt1 = perf_event_groups_first(groups, -1);
3246 	evt2 = perf_event_groups_first(groups, cpu);
3247 
3248 	while (evt1 || evt2) {
3249 		if (evt1 && evt2) {
3250 			if (evt1->group_index < evt2->group_index)
3251 				evt = &evt1;
3252 			else
3253 				evt = &evt2;
3254 		} else if (evt1) {
3255 			evt = &evt1;
3256 		} else {
3257 			evt = &evt2;
3258 		}
3259 
3260 		ret = func(*evt, data);
3261 		if (ret)
3262 			return ret;
3263 
3264 		*evt = perf_event_groups_next(*evt);
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 struct sched_in_data {
3271 	struct perf_event_context *ctx;
3272 	struct perf_cpu_context *cpuctx;
3273 	int can_add_hw;
3274 };
3275 
3276 static int pinned_sched_in(struct perf_event *event, void *data)
3277 {
3278 	struct sched_in_data *sid = data;
3279 
3280 	if (event->state <= PERF_EVENT_STATE_OFF)
3281 		return 0;
3282 
3283 	if (!event_filter_match(event))
3284 		return 0;
3285 
3286 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3287 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3288 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3289 	}
3290 
3291 	/*
3292 	 * If this pinned group hasn't been scheduled,
3293 	 * put it in error state.
3294 	 */
3295 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3296 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3297 
3298 	return 0;
3299 }
3300 
3301 static int flexible_sched_in(struct perf_event *event, void *data)
3302 {
3303 	struct sched_in_data *sid = data;
3304 
3305 	if (event->state <= PERF_EVENT_STATE_OFF)
3306 		return 0;
3307 
3308 	if (!event_filter_match(event))
3309 		return 0;
3310 
3311 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3312 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3313 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3314 		else
3315 			sid->can_add_hw = 0;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 static void
3322 ctx_pinned_sched_in(struct perf_event_context *ctx,
3323 		    struct perf_cpu_context *cpuctx)
3324 {
3325 	struct sched_in_data sid = {
3326 		.ctx = ctx,
3327 		.cpuctx = cpuctx,
3328 		.can_add_hw = 1,
3329 	};
3330 
3331 	visit_groups_merge(&ctx->pinned_groups,
3332 			   smp_processor_id(),
3333 			   pinned_sched_in, &sid);
3334 }
3335 
3336 static void
3337 ctx_flexible_sched_in(struct perf_event_context *ctx,
3338 		      struct perf_cpu_context *cpuctx)
3339 {
3340 	struct sched_in_data sid = {
3341 		.ctx = ctx,
3342 		.cpuctx = cpuctx,
3343 		.can_add_hw = 1,
3344 	};
3345 
3346 	visit_groups_merge(&ctx->flexible_groups,
3347 			   smp_processor_id(),
3348 			   flexible_sched_in, &sid);
3349 }
3350 
3351 static void
3352 ctx_sched_in(struct perf_event_context *ctx,
3353 	     struct perf_cpu_context *cpuctx,
3354 	     enum event_type_t event_type,
3355 	     struct task_struct *task)
3356 {
3357 	int is_active = ctx->is_active;
3358 	u64 now;
3359 
3360 	lockdep_assert_held(&ctx->lock);
3361 
3362 	if (likely(!ctx->nr_events))
3363 		return;
3364 
3365 	ctx->is_active |= (event_type | EVENT_TIME);
3366 	if (ctx->task) {
3367 		if (!is_active)
3368 			cpuctx->task_ctx = ctx;
3369 		else
3370 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3371 	}
3372 
3373 	is_active ^= ctx->is_active; /* changed bits */
3374 
3375 	if (is_active & EVENT_TIME) {
3376 		/* start ctx time */
3377 		now = perf_clock();
3378 		ctx->timestamp = now;
3379 		perf_cgroup_set_timestamp(task, ctx);
3380 	}
3381 
3382 	/*
3383 	 * First go through the list and put on any pinned groups
3384 	 * in order to give them the best chance of going on.
3385 	 */
3386 	if (is_active & EVENT_PINNED)
3387 		ctx_pinned_sched_in(ctx, cpuctx);
3388 
3389 	/* Then walk through the lower prio flexible groups */
3390 	if (is_active & EVENT_FLEXIBLE)
3391 		ctx_flexible_sched_in(ctx, cpuctx);
3392 }
3393 
3394 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3395 			     enum event_type_t event_type,
3396 			     struct task_struct *task)
3397 {
3398 	struct perf_event_context *ctx = &cpuctx->ctx;
3399 
3400 	ctx_sched_in(ctx, cpuctx, event_type, task);
3401 }
3402 
3403 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3404 					struct task_struct *task)
3405 {
3406 	struct perf_cpu_context *cpuctx;
3407 
3408 	cpuctx = __get_cpu_context(ctx);
3409 	if (cpuctx->task_ctx == ctx)
3410 		return;
3411 
3412 	perf_ctx_lock(cpuctx, ctx);
3413 	/*
3414 	 * We must check ctx->nr_events while holding ctx->lock, such
3415 	 * that we serialize against perf_install_in_context().
3416 	 */
3417 	if (!ctx->nr_events)
3418 		goto unlock;
3419 
3420 	perf_pmu_disable(ctx->pmu);
3421 	/*
3422 	 * We want to keep the following priority order:
3423 	 * cpu pinned (that don't need to move), task pinned,
3424 	 * cpu flexible, task flexible.
3425 	 *
3426 	 * However, if task's ctx is not carrying any pinned
3427 	 * events, no need to flip the cpuctx's events around.
3428 	 */
3429 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3430 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3431 	perf_event_sched_in(cpuctx, ctx, task);
3432 	perf_pmu_enable(ctx->pmu);
3433 
3434 unlock:
3435 	perf_ctx_unlock(cpuctx, ctx);
3436 }
3437 
3438 /*
3439  * Called from scheduler to add the events of the current task
3440  * with interrupts disabled.
3441  *
3442  * We restore the event value and then enable it.
3443  *
3444  * This does not protect us against NMI, but enable()
3445  * sets the enabled bit in the control field of event _before_
3446  * accessing the event control register. If a NMI hits, then it will
3447  * keep the event running.
3448  */
3449 void __perf_event_task_sched_in(struct task_struct *prev,
3450 				struct task_struct *task)
3451 {
3452 	struct perf_event_context *ctx;
3453 	int ctxn;
3454 
3455 	/*
3456 	 * If cgroup events exist on this CPU, then we need to check if we have
3457 	 * to switch in PMU state; cgroup event are system-wide mode only.
3458 	 *
3459 	 * Since cgroup events are CPU events, we must schedule these in before
3460 	 * we schedule in the task events.
3461 	 */
3462 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3463 		perf_cgroup_sched_in(prev, task);
3464 
3465 	for_each_task_context_nr(ctxn) {
3466 		ctx = task->perf_event_ctxp[ctxn];
3467 		if (likely(!ctx))
3468 			continue;
3469 
3470 		perf_event_context_sched_in(ctx, task);
3471 	}
3472 
3473 	if (atomic_read(&nr_switch_events))
3474 		perf_event_switch(task, prev, true);
3475 
3476 	if (__this_cpu_read(perf_sched_cb_usages))
3477 		perf_pmu_sched_task(prev, task, true);
3478 }
3479 
3480 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3481 {
3482 	u64 frequency = event->attr.sample_freq;
3483 	u64 sec = NSEC_PER_SEC;
3484 	u64 divisor, dividend;
3485 
3486 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3487 
3488 	count_fls = fls64(count);
3489 	nsec_fls = fls64(nsec);
3490 	frequency_fls = fls64(frequency);
3491 	sec_fls = 30;
3492 
3493 	/*
3494 	 * We got @count in @nsec, with a target of sample_freq HZ
3495 	 * the target period becomes:
3496 	 *
3497 	 *             @count * 10^9
3498 	 * period = -------------------
3499 	 *          @nsec * sample_freq
3500 	 *
3501 	 */
3502 
3503 	/*
3504 	 * Reduce accuracy by one bit such that @a and @b converge
3505 	 * to a similar magnitude.
3506 	 */
3507 #define REDUCE_FLS(a, b)		\
3508 do {					\
3509 	if (a##_fls > b##_fls) {	\
3510 		a >>= 1;		\
3511 		a##_fls--;		\
3512 	} else {			\
3513 		b >>= 1;		\
3514 		b##_fls--;		\
3515 	}				\
3516 } while (0)
3517 
3518 	/*
3519 	 * Reduce accuracy until either term fits in a u64, then proceed with
3520 	 * the other, so that finally we can do a u64/u64 division.
3521 	 */
3522 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3523 		REDUCE_FLS(nsec, frequency);
3524 		REDUCE_FLS(sec, count);
3525 	}
3526 
3527 	if (count_fls + sec_fls > 64) {
3528 		divisor = nsec * frequency;
3529 
3530 		while (count_fls + sec_fls > 64) {
3531 			REDUCE_FLS(count, sec);
3532 			divisor >>= 1;
3533 		}
3534 
3535 		dividend = count * sec;
3536 	} else {
3537 		dividend = count * sec;
3538 
3539 		while (nsec_fls + frequency_fls > 64) {
3540 			REDUCE_FLS(nsec, frequency);
3541 			dividend >>= 1;
3542 		}
3543 
3544 		divisor = nsec * frequency;
3545 	}
3546 
3547 	if (!divisor)
3548 		return dividend;
3549 
3550 	return div64_u64(dividend, divisor);
3551 }
3552 
3553 static DEFINE_PER_CPU(int, perf_throttled_count);
3554 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3555 
3556 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3557 {
3558 	struct hw_perf_event *hwc = &event->hw;
3559 	s64 period, sample_period;
3560 	s64 delta;
3561 
3562 	period = perf_calculate_period(event, nsec, count);
3563 
3564 	delta = (s64)(period - hwc->sample_period);
3565 	delta = (delta + 7) / 8; /* low pass filter */
3566 
3567 	sample_period = hwc->sample_period + delta;
3568 
3569 	if (!sample_period)
3570 		sample_period = 1;
3571 
3572 	hwc->sample_period = sample_period;
3573 
3574 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3575 		if (disable)
3576 			event->pmu->stop(event, PERF_EF_UPDATE);
3577 
3578 		local64_set(&hwc->period_left, 0);
3579 
3580 		if (disable)
3581 			event->pmu->start(event, PERF_EF_RELOAD);
3582 	}
3583 }
3584 
3585 /*
3586  * combine freq adjustment with unthrottling to avoid two passes over the
3587  * events. At the same time, make sure, having freq events does not change
3588  * the rate of unthrottling as that would introduce bias.
3589  */
3590 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3591 					   int needs_unthr)
3592 {
3593 	struct perf_event *event;
3594 	struct hw_perf_event *hwc;
3595 	u64 now, period = TICK_NSEC;
3596 	s64 delta;
3597 
3598 	/*
3599 	 * only need to iterate over all events iff:
3600 	 * - context have events in frequency mode (needs freq adjust)
3601 	 * - there are events to unthrottle on this cpu
3602 	 */
3603 	if (!(ctx->nr_freq || needs_unthr))
3604 		return;
3605 
3606 	raw_spin_lock(&ctx->lock);
3607 	perf_pmu_disable(ctx->pmu);
3608 
3609 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3610 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3611 			continue;
3612 
3613 		if (!event_filter_match(event))
3614 			continue;
3615 
3616 		perf_pmu_disable(event->pmu);
3617 
3618 		hwc = &event->hw;
3619 
3620 		if (hwc->interrupts == MAX_INTERRUPTS) {
3621 			hwc->interrupts = 0;
3622 			perf_log_throttle(event, 1);
3623 			event->pmu->start(event, 0);
3624 		}
3625 
3626 		if (!event->attr.freq || !event->attr.sample_freq)
3627 			goto next;
3628 
3629 		/*
3630 		 * stop the event and update event->count
3631 		 */
3632 		event->pmu->stop(event, PERF_EF_UPDATE);
3633 
3634 		now = local64_read(&event->count);
3635 		delta = now - hwc->freq_count_stamp;
3636 		hwc->freq_count_stamp = now;
3637 
3638 		/*
3639 		 * restart the event
3640 		 * reload only if value has changed
3641 		 * we have stopped the event so tell that
3642 		 * to perf_adjust_period() to avoid stopping it
3643 		 * twice.
3644 		 */
3645 		if (delta > 0)
3646 			perf_adjust_period(event, period, delta, false);
3647 
3648 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3649 	next:
3650 		perf_pmu_enable(event->pmu);
3651 	}
3652 
3653 	perf_pmu_enable(ctx->pmu);
3654 	raw_spin_unlock(&ctx->lock);
3655 }
3656 
3657 /*
3658  * Move @event to the tail of the @ctx's elegible events.
3659  */
3660 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3661 {
3662 	/*
3663 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3664 	 * disabled by the inheritance code.
3665 	 */
3666 	if (ctx->rotate_disable)
3667 		return;
3668 
3669 	perf_event_groups_delete(&ctx->flexible_groups, event);
3670 	perf_event_groups_insert(&ctx->flexible_groups, event);
3671 }
3672 
3673 static inline struct perf_event *
3674 ctx_first_active(struct perf_event_context *ctx)
3675 {
3676 	return list_first_entry_or_null(&ctx->flexible_active,
3677 					struct perf_event, active_list);
3678 }
3679 
3680 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3681 {
3682 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3683 	bool cpu_rotate = false, task_rotate = false;
3684 	struct perf_event_context *ctx = NULL;
3685 
3686 	/*
3687 	 * Since we run this from IRQ context, nobody can install new
3688 	 * events, thus the event count values are stable.
3689 	 */
3690 
3691 	if (cpuctx->ctx.nr_events) {
3692 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3693 			cpu_rotate = true;
3694 	}
3695 
3696 	ctx = cpuctx->task_ctx;
3697 	if (ctx && ctx->nr_events) {
3698 		if (ctx->nr_events != ctx->nr_active)
3699 			task_rotate = true;
3700 	}
3701 
3702 	if (!(cpu_rotate || task_rotate))
3703 		return false;
3704 
3705 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3706 	perf_pmu_disable(cpuctx->ctx.pmu);
3707 
3708 	if (task_rotate)
3709 		task_event = ctx_first_active(ctx);
3710 	if (cpu_rotate)
3711 		cpu_event = ctx_first_active(&cpuctx->ctx);
3712 
3713 	/*
3714 	 * As per the order given at ctx_resched() first 'pop' task flexible
3715 	 * and then, if needed CPU flexible.
3716 	 */
3717 	if (task_event || (ctx && cpu_event))
3718 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3719 	if (cpu_event)
3720 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3721 
3722 	if (task_event)
3723 		rotate_ctx(ctx, task_event);
3724 	if (cpu_event)
3725 		rotate_ctx(&cpuctx->ctx, cpu_event);
3726 
3727 	perf_event_sched_in(cpuctx, ctx, current);
3728 
3729 	perf_pmu_enable(cpuctx->ctx.pmu);
3730 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3731 
3732 	return true;
3733 }
3734 
3735 void perf_event_task_tick(void)
3736 {
3737 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3738 	struct perf_event_context *ctx, *tmp;
3739 	int throttled;
3740 
3741 	lockdep_assert_irqs_disabled();
3742 
3743 	__this_cpu_inc(perf_throttled_seq);
3744 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3745 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3746 
3747 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3748 		perf_adjust_freq_unthr_context(ctx, throttled);
3749 }
3750 
3751 static int event_enable_on_exec(struct perf_event *event,
3752 				struct perf_event_context *ctx)
3753 {
3754 	if (!event->attr.enable_on_exec)
3755 		return 0;
3756 
3757 	event->attr.enable_on_exec = 0;
3758 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3759 		return 0;
3760 
3761 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3762 
3763 	return 1;
3764 }
3765 
3766 /*
3767  * Enable all of a task's events that have been marked enable-on-exec.
3768  * This expects task == current.
3769  */
3770 static void perf_event_enable_on_exec(int ctxn)
3771 {
3772 	struct perf_event_context *ctx, *clone_ctx = NULL;
3773 	enum event_type_t event_type = 0;
3774 	struct perf_cpu_context *cpuctx;
3775 	struct perf_event *event;
3776 	unsigned long flags;
3777 	int enabled = 0;
3778 
3779 	local_irq_save(flags);
3780 	ctx = current->perf_event_ctxp[ctxn];
3781 	if (!ctx || !ctx->nr_events)
3782 		goto out;
3783 
3784 	cpuctx = __get_cpu_context(ctx);
3785 	perf_ctx_lock(cpuctx, ctx);
3786 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3787 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3788 		enabled |= event_enable_on_exec(event, ctx);
3789 		event_type |= get_event_type(event);
3790 	}
3791 
3792 	/*
3793 	 * Unclone and reschedule this context if we enabled any event.
3794 	 */
3795 	if (enabled) {
3796 		clone_ctx = unclone_ctx(ctx);
3797 		ctx_resched(cpuctx, ctx, event_type);
3798 	} else {
3799 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3800 	}
3801 	perf_ctx_unlock(cpuctx, ctx);
3802 
3803 out:
3804 	local_irq_restore(flags);
3805 
3806 	if (clone_ctx)
3807 		put_ctx(clone_ctx);
3808 }
3809 
3810 struct perf_read_data {
3811 	struct perf_event *event;
3812 	bool group;
3813 	int ret;
3814 };
3815 
3816 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3817 {
3818 	u16 local_pkg, event_pkg;
3819 
3820 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3821 		int local_cpu = smp_processor_id();
3822 
3823 		event_pkg = topology_physical_package_id(event_cpu);
3824 		local_pkg = topology_physical_package_id(local_cpu);
3825 
3826 		if (event_pkg == local_pkg)
3827 			return local_cpu;
3828 	}
3829 
3830 	return event_cpu;
3831 }
3832 
3833 /*
3834  * Cross CPU call to read the hardware event
3835  */
3836 static void __perf_event_read(void *info)
3837 {
3838 	struct perf_read_data *data = info;
3839 	struct perf_event *sub, *event = data->event;
3840 	struct perf_event_context *ctx = event->ctx;
3841 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3842 	struct pmu *pmu = event->pmu;
3843 
3844 	/*
3845 	 * If this is a task context, we need to check whether it is
3846 	 * the current task context of this cpu.  If not it has been
3847 	 * scheduled out before the smp call arrived.  In that case
3848 	 * event->count would have been updated to a recent sample
3849 	 * when the event was scheduled out.
3850 	 */
3851 	if (ctx->task && cpuctx->task_ctx != ctx)
3852 		return;
3853 
3854 	raw_spin_lock(&ctx->lock);
3855 	if (ctx->is_active & EVENT_TIME) {
3856 		update_context_time(ctx);
3857 		update_cgrp_time_from_event(event);
3858 	}
3859 
3860 	perf_event_update_time(event);
3861 	if (data->group)
3862 		perf_event_update_sibling_time(event);
3863 
3864 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3865 		goto unlock;
3866 
3867 	if (!data->group) {
3868 		pmu->read(event);
3869 		data->ret = 0;
3870 		goto unlock;
3871 	}
3872 
3873 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3874 
3875 	pmu->read(event);
3876 
3877 	for_each_sibling_event(sub, event) {
3878 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3879 			/*
3880 			 * Use sibling's PMU rather than @event's since
3881 			 * sibling could be on different (eg: software) PMU.
3882 			 */
3883 			sub->pmu->read(sub);
3884 		}
3885 	}
3886 
3887 	data->ret = pmu->commit_txn(pmu);
3888 
3889 unlock:
3890 	raw_spin_unlock(&ctx->lock);
3891 }
3892 
3893 static inline u64 perf_event_count(struct perf_event *event)
3894 {
3895 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3896 }
3897 
3898 /*
3899  * NMI-safe method to read a local event, that is an event that
3900  * is:
3901  *   - either for the current task, or for this CPU
3902  *   - does not have inherit set, for inherited task events
3903  *     will not be local and we cannot read them atomically
3904  *   - must not have a pmu::count method
3905  */
3906 int perf_event_read_local(struct perf_event *event, u64 *value,
3907 			  u64 *enabled, u64 *running)
3908 {
3909 	unsigned long flags;
3910 	int ret = 0;
3911 
3912 	/*
3913 	 * Disabling interrupts avoids all counter scheduling (context
3914 	 * switches, timer based rotation and IPIs).
3915 	 */
3916 	local_irq_save(flags);
3917 
3918 	/*
3919 	 * It must not be an event with inherit set, we cannot read
3920 	 * all child counters from atomic context.
3921 	 */
3922 	if (event->attr.inherit) {
3923 		ret = -EOPNOTSUPP;
3924 		goto out;
3925 	}
3926 
3927 	/* If this is a per-task event, it must be for current */
3928 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3929 	    event->hw.target != current) {
3930 		ret = -EINVAL;
3931 		goto out;
3932 	}
3933 
3934 	/* If this is a per-CPU event, it must be for this CPU */
3935 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3936 	    event->cpu != smp_processor_id()) {
3937 		ret = -EINVAL;
3938 		goto out;
3939 	}
3940 
3941 	/* If this is a pinned event it must be running on this CPU */
3942 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3943 		ret = -EBUSY;
3944 		goto out;
3945 	}
3946 
3947 	/*
3948 	 * If the event is currently on this CPU, its either a per-task event,
3949 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3950 	 * oncpu == -1).
3951 	 */
3952 	if (event->oncpu == smp_processor_id())
3953 		event->pmu->read(event);
3954 
3955 	*value = local64_read(&event->count);
3956 	if (enabled || running) {
3957 		u64 now = event->shadow_ctx_time + perf_clock();
3958 		u64 __enabled, __running;
3959 
3960 		__perf_update_times(event, now, &__enabled, &__running);
3961 		if (enabled)
3962 			*enabled = __enabled;
3963 		if (running)
3964 			*running = __running;
3965 	}
3966 out:
3967 	local_irq_restore(flags);
3968 
3969 	return ret;
3970 }
3971 
3972 static int perf_event_read(struct perf_event *event, bool group)
3973 {
3974 	enum perf_event_state state = READ_ONCE(event->state);
3975 	int event_cpu, ret = 0;
3976 
3977 	/*
3978 	 * If event is enabled and currently active on a CPU, update the
3979 	 * value in the event structure:
3980 	 */
3981 again:
3982 	if (state == PERF_EVENT_STATE_ACTIVE) {
3983 		struct perf_read_data data;
3984 
3985 		/*
3986 		 * Orders the ->state and ->oncpu loads such that if we see
3987 		 * ACTIVE we must also see the right ->oncpu.
3988 		 *
3989 		 * Matches the smp_wmb() from event_sched_in().
3990 		 */
3991 		smp_rmb();
3992 
3993 		event_cpu = READ_ONCE(event->oncpu);
3994 		if ((unsigned)event_cpu >= nr_cpu_ids)
3995 			return 0;
3996 
3997 		data = (struct perf_read_data){
3998 			.event = event,
3999 			.group = group,
4000 			.ret = 0,
4001 		};
4002 
4003 		preempt_disable();
4004 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4005 
4006 		/*
4007 		 * Purposely ignore the smp_call_function_single() return
4008 		 * value.
4009 		 *
4010 		 * If event_cpu isn't a valid CPU it means the event got
4011 		 * scheduled out and that will have updated the event count.
4012 		 *
4013 		 * Therefore, either way, we'll have an up-to-date event count
4014 		 * after this.
4015 		 */
4016 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4017 		preempt_enable();
4018 		ret = data.ret;
4019 
4020 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4021 		struct perf_event_context *ctx = event->ctx;
4022 		unsigned long flags;
4023 
4024 		raw_spin_lock_irqsave(&ctx->lock, flags);
4025 		state = event->state;
4026 		if (state != PERF_EVENT_STATE_INACTIVE) {
4027 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4028 			goto again;
4029 		}
4030 
4031 		/*
4032 		 * May read while context is not active (e.g., thread is
4033 		 * blocked), in that case we cannot update context time
4034 		 */
4035 		if (ctx->is_active & EVENT_TIME) {
4036 			update_context_time(ctx);
4037 			update_cgrp_time_from_event(event);
4038 		}
4039 
4040 		perf_event_update_time(event);
4041 		if (group)
4042 			perf_event_update_sibling_time(event);
4043 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4044 	}
4045 
4046 	return ret;
4047 }
4048 
4049 /*
4050  * Initialize the perf_event context in a task_struct:
4051  */
4052 static void __perf_event_init_context(struct perf_event_context *ctx)
4053 {
4054 	raw_spin_lock_init(&ctx->lock);
4055 	mutex_init(&ctx->mutex);
4056 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4057 	perf_event_groups_init(&ctx->pinned_groups);
4058 	perf_event_groups_init(&ctx->flexible_groups);
4059 	INIT_LIST_HEAD(&ctx->event_list);
4060 	INIT_LIST_HEAD(&ctx->pinned_active);
4061 	INIT_LIST_HEAD(&ctx->flexible_active);
4062 	refcount_set(&ctx->refcount, 1);
4063 }
4064 
4065 static struct perf_event_context *
4066 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4067 {
4068 	struct perf_event_context *ctx;
4069 
4070 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4071 	if (!ctx)
4072 		return NULL;
4073 
4074 	__perf_event_init_context(ctx);
4075 	if (task) {
4076 		ctx->task = task;
4077 		get_task_struct(task);
4078 	}
4079 	ctx->pmu = pmu;
4080 
4081 	return ctx;
4082 }
4083 
4084 static struct task_struct *
4085 find_lively_task_by_vpid(pid_t vpid)
4086 {
4087 	struct task_struct *task;
4088 
4089 	rcu_read_lock();
4090 	if (!vpid)
4091 		task = current;
4092 	else
4093 		task = find_task_by_vpid(vpid);
4094 	if (task)
4095 		get_task_struct(task);
4096 	rcu_read_unlock();
4097 
4098 	if (!task)
4099 		return ERR_PTR(-ESRCH);
4100 
4101 	return task;
4102 }
4103 
4104 /*
4105  * Returns a matching context with refcount and pincount.
4106  */
4107 static struct perf_event_context *
4108 find_get_context(struct pmu *pmu, struct task_struct *task,
4109 		struct perf_event *event)
4110 {
4111 	struct perf_event_context *ctx, *clone_ctx = NULL;
4112 	struct perf_cpu_context *cpuctx;
4113 	void *task_ctx_data = NULL;
4114 	unsigned long flags;
4115 	int ctxn, err;
4116 	int cpu = event->cpu;
4117 
4118 	if (!task) {
4119 		/* Must be root to operate on a CPU event: */
4120 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4121 			return ERR_PTR(-EACCES);
4122 
4123 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4124 		ctx = &cpuctx->ctx;
4125 		get_ctx(ctx);
4126 		++ctx->pin_count;
4127 
4128 		return ctx;
4129 	}
4130 
4131 	err = -EINVAL;
4132 	ctxn = pmu->task_ctx_nr;
4133 	if (ctxn < 0)
4134 		goto errout;
4135 
4136 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4137 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4138 		if (!task_ctx_data) {
4139 			err = -ENOMEM;
4140 			goto errout;
4141 		}
4142 	}
4143 
4144 retry:
4145 	ctx = perf_lock_task_context(task, ctxn, &flags);
4146 	if (ctx) {
4147 		clone_ctx = unclone_ctx(ctx);
4148 		++ctx->pin_count;
4149 
4150 		if (task_ctx_data && !ctx->task_ctx_data) {
4151 			ctx->task_ctx_data = task_ctx_data;
4152 			task_ctx_data = NULL;
4153 		}
4154 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4155 
4156 		if (clone_ctx)
4157 			put_ctx(clone_ctx);
4158 	} else {
4159 		ctx = alloc_perf_context(pmu, task);
4160 		err = -ENOMEM;
4161 		if (!ctx)
4162 			goto errout;
4163 
4164 		if (task_ctx_data) {
4165 			ctx->task_ctx_data = task_ctx_data;
4166 			task_ctx_data = NULL;
4167 		}
4168 
4169 		err = 0;
4170 		mutex_lock(&task->perf_event_mutex);
4171 		/*
4172 		 * If it has already passed perf_event_exit_task().
4173 		 * we must see PF_EXITING, it takes this mutex too.
4174 		 */
4175 		if (task->flags & PF_EXITING)
4176 			err = -ESRCH;
4177 		else if (task->perf_event_ctxp[ctxn])
4178 			err = -EAGAIN;
4179 		else {
4180 			get_ctx(ctx);
4181 			++ctx->pin_count;
4182 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4183 		}
4184 		mutex_unlock(&task->perf_event_mutex);
4185 
4186 		if (unlikely(err)) {
4187 			put_ctx(ctx);
4188 
4189 			if (err == -EAGAIN)
4190 				goto retry;
4191 			goto errout;
4192 		}
4193 	}
4194 
4195 	kfree(task_ctx_data);
4196 	return ctx;
4197 
4198 errout:
4199 	kfree(task_ctx_data);
4200 	return ERR_PTR(err);
4201 }
4202 
4203 static void perf_event_free_filter(struct perf_event *event);
4204 static void perf_event_free_bpf_prog(struct perf_event *event);
4205 
4206 static void free_event_rcu(struct rcu_head *head)
4207 {
4208 	struct perf_event *event;
4209 
4210 	event = container_of(head, struct perf_event, rcu_head);
4211 	if (event->ns)
4212 		put_pid_ns(event->ns);
4213 	perf_event_free_filter(event);
4214 	kfree(event);
4215 }
4216 
4217 static void ring_buffer_attach(struct perf_event *event,
4218 			       struct ring_buffer *rb);
4219 
4220 static void detach_sb_event(struct perf_event *event)
4221 {
4222 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4223 
4224 	raw_spin_lock(&pel->lock);
4225 	list_del_rcu(&event->sb_list);
4226 	raw_spin_unlock(&pel->lock);
4227 }
4228 
4229 static bool is_sb_event(struct perf_event *event)
4230 {
4231 	struct perf_event_attr *attr = &event->attr;
4232 
4233 	if (event->parent)
4234 		return false;
4235 
4236 	if (event->attach_state & PERF_ATTACH_TASK)
4237 		return false;
4238 
4239 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4240 	    attr->comm || attr->comm_exec ||
4241 	    attr->task || attr->ksymbol ||
4242 	    attr->context_switch ||
4243 	    attr->bpf_event)
4244 		return true;
4245 	return false;
4246 }
4247 
4248 static void unaccount_pmu_sb_event(struct perf_event *event)
4249 {
4250 	if (is_sb_event(event))
4251 		detach_sb_event(event);
4252 }
4253 
4254 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4255 {
4256 	if (event->parent)
4257 		return;
4258 
4259 	if (is_cgroup_event(event))
4260 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4261 }
4262 
4263 #ifdef CONFIG_NO_HZ_FULL
4264 static DEFINE_SPINLOCK(nr_freq_lock);
4265 #endif
4266 
4267 static void unaccount_freq_event_nohz(void)
4268 {
4269 #ifdef CONFIG_NO_HZ_FULL
4270 	spin_lock(&nr_freq_lock);
4271 	if (atomic_dec_and_test(&nr_freq_events))
4272 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4273 	spin_unlock(&nr_freq_lock);
4274 #endif
4275 }
4276 
4277 static void unaccount_freq_event(void)
4278 {
4279 	if (tick_nohz_full_enabled())
4280 		unaccount_freq_event_nohz();
4281 	else
4282 		atomic_dec(&nr_freq_events);
4283 }
4284 
4285 static void unaccount_event(struct perf_event *event)
4286 {
4287 	bool dec = false;
4288 
4289 	if (event->parent)
4290 		return;
4291 
4292 	if (event->attach_state & PERF_ATTACH_TASK)
4293 		dec = true;
4294 	if (event->attr.mmap || event->attr.mmap_data)
4295 		atomic_dec(&nr_mmap_events);
4296 	if (event->attr.comm)
4297 		atomic_dec(&nr_comm_events);
4298 	if (event->attr.namespaces)
4299 		atomic_dec(&nr_namespaces_events);
4300 	if (event->attr.task)
4301 		atomic_dec(&nr_task_events);
4302 	if (event->attr.freq)
4303 		unaccount_freq_event();
4304 	if (event->attr.context_switch) {
4305 		dec = true;
4306 		atomic_dec(&nr_switch_events);
4307 	}
4308 	if (is_cgroup_event(event))
4309 		dec = true;
4310 	if (has_branch_stack(event))
4311 		dec = true;
4312 	if (event->attr.ksymbol)
4313 		atomic_dec(&nr_ksymbol_events);
4314 	if (event->attr.bpf_event)
4315 		atomic_dec(&nr_bpf_events);
4316 
4317 	if (dec) {
4318 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4319 			schedule_delayed_work(&perf_sched_work, HZ);
4320 	}
4321 
4322 	unaccount_event_cpu(event, event->cpu);
4323 
4324 	unaccount_pmu_sb_event(event);
4325 }
4326 
4327 static void perf_sched_delayed(struct work_struct *work)
4328 {
4329 	mutex_lock(&perf_sched_mutex);
4330 	if (atomic_dec_and_test(&perf_sched_count))
4331 		static_branch_disable(&perf_sched_events);
4332 	mutex_unlock(&perf_sched_mutex);
4333 }
4334 
4335 /*
4336  * The following implement mutual exclusion of events on "exclusive" pmus
4337  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4338  * at a time, so we disallow creating events that might conflict, namely:
4339  *
4340  *  1) cpu-wide events in the presence of per-task events,
4341  *  2) per-task events in the presence of cpu-wide events,
4342  *  3) two matching events on the same context.
4343  *
4344  * The former two cases are handled in the allocation path (perf_event_alloc(),
4345  * _free_event()), the latter -- before the first perf_install_in_context().
4346  */
4347 static int exclusive_event_init(struct perf_event *event)
4348 {
4349 	struct pmu *pmu = event->pmu;
4350 
4351 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4352 		return 0;
4353 
4354 	/*
4355 	 * Prevent co-existence of per-task and cpu-wide events on the
4356 	 * same exclusive pmu.
4357 	 *
4358 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4359 	 * events on this "exclusive" pmu, positive means there are
4360 	 * per-task events.
4361 	 *
4362 	 * Since this is called in perf_event_alloc() path, event::ctx
4363 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4364 	 * to mean "per-task event", because unlike other attach states it
4365 	 * never gets cleared.
4366 	 */
4367 	if (event->attach_state & PERF_ATTACH_TASK) {
4368 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4369 			return -EBUSY;
4370 	} else {
4371 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4372 			return -EBUSY;
4373 	}
4374 
4375 	return 0;
4376 }
4377 
4378 static void exclusive_event_destroy(struct perf_event *event)
4379 {
4380 	struct pmu *pmu = event->pmu;
4381 
4382 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4383 		return;
4384 
4385 	/* see comment in exclusive_event_init() */
4386 	if (event->attach_state & PERF_ATTACH_TASK)
4387 		atomic_dec(&pmu->exclusive_cnt);
4388 	else
4389 		atomic_inc(&pmu->exclusive_cnt);
4390 }
4391 
4392 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4393 {
4394 	if ((e1->pmu == e2->pmu) &&
4395 	    (e1->cpu == e2->cpu ||
4396 	     e1->cpu == -1 ||
4397 	     e2->cpu == -1))
4398 		return true;
4399 	return false;
4400 }
4401 
4402 /* Called under the same ctx::mutex as perf_install_in_context() */
4403 static bool exclusive_event_installable(struct perf_event *event,
4404 					struct perf_event_context *ctx)
4405 {
4406 	struct perf_event *iter_event;
4407 	struct pmu *pmu = event->pmu;
4408 
4409 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4410 		return true;
4411 
4412 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4413 		if (exclusive_event_match(iter_event, event))
4414 			return false;
4415 	}
4416 
4417 	return true;
4418 }
4419 
4420 static void perf_addr_filters_splice(struct perf_event *event,
4421 				       struct list_head *head);
4422 
4423 static void _free_event(struct perf_event *event)
4424 {
4425 	irq_work_sync(&event->pending);
4426 
4427 	unaccount_event(event);
4428 
4429 	if (event->rb) {
4430 		/*
4431 		 * Can happen when we close an event with re-directed output.
4432 		 *
4433 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4434 		 * over us; possibly making our ring_buffer_put() the last.
4435 		 */
4436 		mutex_lock(&event->mmap_mutex);
4437 		ring_buffer_attach(event, NULL);
4438 		mutex_unlock(&event->mmap_mutex);
4439 	}
4440 
4441 	if (is_cgroup_event(event))
4442 		perf_detach_cgroup(event);
4443 
4444 	if (!event->parent) {
4445 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4446 			put_callchain_buffers();
4447 	}
4448 
4449 	perf_event_free_bpf_prog(event);
4450 	perf_addr_filters_splice(event, NULL);
4451 	kfree(event->addr_filter_ranges);
4452 
4453 	if (event->destroy)
4454 		event->destroy(event);
4455 
4456 	if (event->ctx)
4457 		put_ctx(event->ctx);
4458 
4459 	if (event->hw.target)
4460 		put_task_struct(event->hw.target);
4461 
4462 	exclusive_event_destroy(event);
4463 	module_put(event->pmu->module);
4464 
4465 	call_rcu(&event->rcu_head, free_event_rcu);
4466 }
4467 
4468 /*
4469  * Used to free events which have a known refcount of 1, such as in error paths
4470  * where the event isn't exposed yet and inherited events.
4471  */
4472 static void free_event(struct perf_event *event)
4473 {
4474 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4475 				"unexpected event refcount: %ld; ptr=%p\n",
4476 				atomic_long_read(&event->refcount), event)) {
4477 		/* leak to avoid use-after-free */
4478 		return;
4479 	}
4480 
4481 	_free_event(event);
4482 }
4483 
4484 /*
4485  * Remove user event from the owner task.
4486  */
4487 static void perf_remove_from_owner(struct perf_event *event)
4488 {
4489 	struct task_struct *owner;
4490 
4491 	rcu_read_lock();
4492 	/*
4493 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4494 	 * observe !owner it means the list deletion is complete and we can
4495 	 * indeed free this event, otherwise we need to serialize on
4496 	 * owner->perf_event_mutex.
4497 	 */
4498 	owner = READ_ONCE(event->owner);
4499 	if (owner) {
4500 		/*
4501 		 * Since delayed_put_task_struct() also drops the last
4502 		 * task reference we can safely take a new reference
4503 		 * while holding the rcu_read_lock().
4504 		 */
4505 		get_task_struct(owner);
4506 	}
4507 	rcu_read_unlock();
4508 
4509 	if (owner) {
4510 		/*
4511 		 * If we're here through perf_event_exit_task() we're already
4512 		 * holding ctx->mutex which would be an inversion wrt. the
4513 		 * normal lock order.
4514 		 *
4515 		 * However we can safely take this lock because its the child
4516 		 * ctx->mutex.
4517 		 */
4518 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4519 
4520 		/*
4521 		 * We have to re-check the event->owner field, if it is cleared
4522 		 * we raced with perf_event_exit_task(), acquiring the mutex
4523 		 * ensured they're done, and we can proceed with freeing the
4524 		 * event.
4525 		 */
4526 		if (event->owner) {
4527 			list_del_init(&event->owner_entry);
4528 			smp_store_release(&event->owner, NULL);
4529 		}
4530 		mutex_unlock(&owner->perf_event_mutex);
4531 		put_task_struct(owner);
4532 	}
4533 }
4534 
4535 static void put_event(struct perf_event *event)
4536 {
4537 	if (!atomic_long_dec_and_test(&event->refcount))
4538 		return;
4539 
4540 	_free_event(event);
4541 }
4542 
4543 /*
4544  * Kill an event dead; while event:refcount will preserve the event
4545  * object, it will not preserve its functionality. Once the last 'user'
4546  * gives up the object, we'll destroy the thing.
4547  */
4548 int perf_event_release_kernel(struct perf_event *event)
4549 {
4550 	struct perf_event_context *ctx = event->ctx;
4551 	struct perf_event *child, *tmp;
4552 	LIST_HEAD(free_list);
4553 
4554 	/*
4555 	 * If we got here through err_file: fput(event_file); we will not have
4556 	 * attached to a context yet.
4557 	 */
4558 	if (!ctx) {
4559 		WARN_ON_ONCE(event->attach_state &
4560 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4561 		goto no_ctx;
4562 	}
4563 
4564 	if (!is_kernel_event(event))
4565 		perf_remove_from_owner(event);
4566 
4567 	ctx = perf_event_ctx_lock(event);
4568 	WARN_ON_ONCE(ctx->parent_ctx);
4569 	perf_remove_from_context(event, DETACH_GROUP);
4570 
4571 	raw_spin_lock_irq(&ctx->lock);
4572 	/*
4573 	 * Mark this event as STATE_DEAD, there is no external reference to it
4574 	 * anymore.
4575 	 *
4576 	 * Anybody acquiring event->child_mutex after the below loop _must_
4577 	 * also see this, most importantly inherit_event() which will avoid
4578 	 * placing more children on the list.
4579 	 *
4580 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4581 	 * child events.
4582 	 */
4583 	event->state = PERF_EVENT_STATE_DEAD;
4584 	raw_spin_unlock_irq(&ctx->lock);
4585 
4586 	perf_event_ctx_unlock(event, ctx);
4587 
4588 again:
4589 	mutex_lock(&event->child_mutex);
4590 	list_for_each_entry(child, &event->child_list, child_list) {
4591 
4592 		/*
4593 		 * Cannot change, child events are not migrated, see the
4594 		 * comment with perf_event_ctx_lock_nested().
4595 		 */
4596 		ctx = READ_ONCE(child->ctx);
4597 		/*
4598 		 * Since child_mutex nests inside ctx::mutex, we must jump
4599 		 * through hoops. We start by grabbing a reference on the ctx.
4600 		 *
4601 		 * Since the event cannot get freed while we hold the
4602 		 * child_mutex, the context must also exist and have a !0
4603 		 * reference count.
4604 		 */
4605 		get_ctx(ctx);
4606 
4607 		/*
4608 		 * Now that we have a ctx ref, we can drop child_mutex, and
4609 		 * acquire ctx::mutex without fear of it going away. Then we
4610 		 * can re-acquire child_mutex.
4611 		 */
4612 		mutex_unlock(&event->child_mutex);
4613 		mutex_lock(&ctx->mutex);
4614 		mutex_lock(&event->child_mutex);
4615 
4616 		/*
4617 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4618 		 * state, if child is still the first entry, it didn't get freed
4619 		 * and we can continue doing so.
4620 		 */
4621 		tmp = list_first_entry_or_null(&event->child_list,
4622 					       struct perf_event, child_list);
4623 		if (tmp == child) {
4624 			perf_remove_from_context(child, DETACH_GROUP);
4625 			list_move(&child->child_list, &free_list);
4626 			/*
4627 			 * This matches the refcount bump in inherit_event();
4628 			 * this can't be the last reference.
4629 			 */
4630 			put_event(event);
4631 		}
4632 
4633 		mutex_unlock(&event->child_mutex);
4634 		mutex_unlock(&ctx->mutex);
4635 		put_ctx(ctx);
4636 		goto again;
4637 	}
4638 	mutex_unlock(&event->child_mutex);
4639 
4640 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4641 		list_del(&child->child_list);
4642 		free_event(child);
4643 	}
4644 
4645 no_ctx:
4646 	put_event(event); /* Must be the 'last' reference */
4647 	return 0;
4648 }
4649 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4650 
4651 /*
4652  * Called when the last reference to the file is gone.
4653  */
4654 static int perf_release(struct inode *inode, struct file *file)
4655 {
4656 	perf_event_release_kernel(file->private_data);
4657 	return 0;
4658 }
4659 
4660 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4661 {
4662 	struct perf_event *child;
4663 	u64 total = 0;
4664 
4665 	*enabled = 0;
4666 	*running = 0;
4667 
4668 	mutex_lock(&event->child_mutex);
4669 
4670 	(void)perf_event_read(event, false);
4671 	total += perf_event_count(event);
4672 
4673 	*enabled += event->total_time_enabled +
4674 			atomic64_read(&event->child_total_time_enabled);
4675 	*running += event->total_time_running +
4676 			atomic64_read(&event->child_total_time_running);
4677 
4678 	list_for_each_entry(child, &event->child_list, child_list) {
4679 		(void)perf_event_read(child, false);
4680 		total += perf_event_count(child);
4681 		*enabled += child->total_time_enabled;
4682 		*running += child->total_time_running;
4683 	}
4684 	mutex_unlock(&event->child_mutex);
4685 
4686 	return total;
4687 }
4688 
4689 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4690 {
4691 	struct perf_event_context *ctx;
4692 	u64 count;
4693 
4694 	ctx = perf_event_ctx_lock(event);
4695 	count = __perf_event_read_value(event, enabled, running);
4696 	perf_event_ctx_unlock(event, ctx);
4697 
4698 	return count;
4699 }
4700 EXPORT_SYMBOL_GPL(perf_event_read_value);
4701 
4702 static int __perf_read_group_add(struct perf_event *leader,
4703 					u64 read_format, u64 *values)
4704 {
4705 	struct perf_event_context *ctx = leader->ctx;
4706 	struct perf_event *sub;
4707 	unsigned long flags;
4708 	int n = 1; /* skip @nr */
4709 	int ret;
4710 
4711 	ret = perf_event_read(leader, true);
4712 	if (ret)
4713 		return ret;
4714 
4715 	raw_spin_lock_irqsave(&ctx->lock, flags);
4716 
4717 	/*
4718 	 * Since we co-schedule groups, {enabled,running} times of siblings
4719 	 * will be identical to those of the leader, so we only publish one
4720 	 * set.
4721 	 */
4722 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4723 		values[n++] += leader->total_time_enabled +
4724 			atomic64_read(&leader->child_total_time_enabled);
4725 	}
4726 
4727 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4728 		values[n++] += leader->total_time_running +
4729 			atomic64_read(&leader->child_total_time_running);
4730 	}
4731 
4732 	/*
4733 	 * Write {count,id} tuples for every sibling.
4734 	 */
4735 	values[n++] += perf_event_count(leader);
4736 	if (read_format & PERF_FORMAT_ID)
4737 		values[n++] = primary_event_id(leader);
4738 
4739 	for_each_sibling_event(sub, leader) {
4740 		values[n++] += perf_event_count(sub);
4741 		if (read_format & PERF_FORMAT_ID)
4742 			values[n++] = primary_event_id(sub);
4743 	}
4744 
4745 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4746 	return 0;
4747 }
4748 
4749 static int perf_read_group(struct perf_event *event,
4750 				   u64 read_format, char __user *buf)
4751 {
4752 	struct perf_event *leader = event->group_leader, *child;
4753 	struct perf_event_context *ctx = leader->ctx;
4754 	int ret;
4755 	u64 *values;
4756 
4757 	lockdep_assert_held(&ctx->mutex);
4758 
4759 	values = kzalloc(event->read_size, GFP_KERNEL);
4760 	if (!values)
4761 		return -ENOMEM;
4762 
4763 	values[0] = 1 + leader->nr_siblings;
4764 
4765 	/*
4766 	 * By locking the child_mutex of the leader we effectively
4767 	 * lock the child list of all siblings.. XXX explain how.
4768 	 */
4769 	mutex_lock(&leader->child_mutex);
4770 
4771 	ret = __perf_read_group_add(leader, read_format, values);
4772 	if (ret)
4773 		goto unlock;
4774 
4775 	list_for_each_entry(child, &leader->child_list, child_list) {
4776 		ret = __perf_read_group_add(child, read_format, values);
4777 		if (ret)
4778 			goto unlock;
4779 	}
4780 
4781 	mutex_unlock(&leader->child_mutex);
4782 
4783 	ret = event->read_size;
4784 	if (copy_to_user(buf, values, event->read_size))
4785 		ret = -EFAULT;
4786 	goto out;
4787 
4788 unlock:
4789 	mutex_unlock(&leader->child_mutex);
4790 out:
4791 	kfree(values);
4792 	return ret;
4793 }
4794 
4795 static int perf_read_one(struct perf_event *event,
4796 				 u64 read_format, char __user *buf)
4797 {
4798 	u64 enabled, running;
4799 	u64 values[4];
4800 	int n = 0;
4801 
4802 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4803 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4804 		values[n++] = enabled;
4805 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4806 		values[n++] = running;
4807 	if (read_format & PERF_FORMAT_ID)
4808 		values[n++] = primary_event_id(event);
4809 
4810 	if (copy_to_user(buf, values, n * sizeof(u64)))
4811 		return -EFAULT;
4812 
4813 	return n * sizeof(u64);
4814 }
4815 
4816 static bool is_event_hup(struct perf_event *event)
4817 {
4818 	bool no_children;
4819 
4820 	if (event->state > PERF_EVENT_STATE_EXIT)
4821 		return false;
4822 
4823 	mutex_lock(&event->child_mutex);
4824 	no_children = list_empty(&event->child_list);
4825 	mutex_unlock(&event->child_mutex);
4826 	return no_children;
4827 }
4828 
4829 /*
4830  * Read the performance event - simple non blocking version for now
4831  */
4832 static ssize_t
4833 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4834 {
4835 	u64 read_format = event->attr.read_format;
4836 	int ret;
4837 
4838 	/*
4839 	 * Return end-of-file for a read on an event that is in
4840 	 * error state (i.e. because it was pinned but it couldn't be
4841 	 * scheduled on to the CPU at some point).
4842 	 */
4843 	if (event->state == PERF_EVENT_STATE_ERROR)
4844 		return 0;
4845 
4846 	if (count < event->read_size)
4847 		return -ENOSPC;
4848 
4849 	WARN_ON_ONCE(event->ctx->parent_ctx);
4850 	if (read_format & PERF_FORMAT_GROUP)
4851 		ret = perf_read_group(event, read_format, buf);
4852 	else
4853 		ret = perf_read_one(event, read_format, buf);
4854 
4855 	return ret;
4856 }
4857 
4858 static ssize_t
4859 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4860 {
4861 	struct perf_event *event = file->private_data;
4862 	struct perf_event_context *ctx;
4863 	int ret;
4864 
4865 	ctx = perf_event_ctx_lock(event);
4866 	ret = __perf_read(event, buf, count);
4867 	perf_event_ctx_unlock(event, ctx);
4868 
4869 	return ret;
4870 }
4871 
4872 static __poll_t perf_poll(struct file *file, poll_table *wait)
4873 {
4874 	struct perf_event *event = file->private_data;
4875 	struct ring_buffer *rb;
4876 	__poll_t events = EPOLLHUP;
4877 
4878 	poll_wait(file, &event->waitq, wait);
4879 
4880 	if (is_event_hup(event))
4881 		return events;
4882 
4883 	/*
4884 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4885 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4886 	 */
4887 	mutex_lock(&event->mmap_mutex);
4888 	rb = event->rb;
4889 	if (rb)
4890 		events = atomic_xchg(&rb->poll, 0);
4891 	mutex_unlock(&event->mmap_mutex);
4892 	return events;
4893 }
4894 
4895 static void _perf_event_reset(struct perf_event *event)
4896 {
4897 	(void)perf_event_read(event, false);
4898 	local64_set(&event->count, 0);
4899 	perf_event_update_userpage(event);
4900 }
4901 
4902 /*
4903  * Holding the top-level event's child_mutex means that any
4904  * descendant process that has inherited this event will block
4905  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4906  * task existence requirements of perf_event_enable/disable.
4907  */
4908 static void perf_event_for_each_child(struct perf_event *event,
4909 					void (*func)(struct perf_event *))
4910 {
4911 	struct perf_event *child;
4912 
4913 	WARN_ON_ONCE(event->ctx->parent_ctx);
4914 
4915 	mutex_lock(&event->child_mutex);
4916 	func(event);
4917 	list_for_each_entry(child, &event->child_list, child_list)
4918 		func(child);
4919 	mutex_unlock(&event->child_mutex);
4920 }
4921 
4922 static void perf_event_for_each(struct perf_event *event,
4923 				  void (*func)(struct perf_event *))
4924 {
4925 	struct perf_event_context *ctx = event->ctx;
4926 	struct perf_event *sibling;
4927 
4928 	lockdep_assert_held(&ctx->mutex);
4929 
4930 	event = event->group_leader;
4931 
4932 	perf_event_for_each_child(event, func);
4933 	for_each_sibling_event(sibling, event)
4934 		perf_event_for_each_child(sibling, func);
4935 }
4936 
4937 static void __perf_event_period(struct perf_event *event,
4938 				struct perf_cpu_context *cpuctx,
4939 				struct perf_event_context *ctx,
4940 				void *info)
4941 {
4942 	u64 value = *((u64 *)info);
4943 	bool active;
4944 
4945 	if (event->attr.freq) {
4946 		event->attr.sample_freq = value;
4947 	} else {
4948 		event->attr.sample_period = value;
4949 		event->hw.sample_period = value;
4950 	}
4951 
4952 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4953 	if (active) {
4954 		perf_pmu_disable(ctx->pmu);
4955 		/*
4956 		 * We could be throttled; unthrottle now to avoid the tick
4957 		 * trying to unthrottle while we already re-started the event.
4958 		 */
4959 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4960 			event->hw.interrupts = 0;
4961 			perf_log_throttle(event, 1);
4962 		}
4963 		event->pmu->stop(event, PERF_EF_UPDATE);
4964 	}
4965 
4966 	local64_set(&event->hw.period_left, 0);
4967 
4968 	if (active) {
4969 		event->pmu->start(event, PERF_EF_RELOAD);
4970 		perf_pmu_enable(ctx->pmu);
4971 	}
4972 }
4973 
4974 static int perf_event_check_period(struct perf_event *event, u64 value)
4975 {
4976 	return event->pmu->check_period(event, value);
4977 }
4978 
4979 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4980 {
4981 	u64 value;
4982 
4983 	if (!is_sampling_event(event))
4984 		return -EINVAL;
4985 
4986 	if (copy_from_user(&value, arg, sizeof(value)))
4987 		return -EFAULT;
4988 
4989 	if (!value)
4990 		return -EINVAL;
4991 
4992 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4993 		return -EINVAL;
4994 
4995 	if (perf_event_check_period(event, value))
4996 		return -EINVAL;
4997 
4998 	event_function_call(event, __perf_event_period, &value);
4999 
5000 	return 0;
5001 }
5002 
5003 static const struct file_operations perf_fops;
5004 
5005 static inline int perf_fget_light(int fd, struct fd *p)
5006 {
5007 	struct fd f = fdget(fd);
5008 	if (!f.file)
5009 		return -EBADF;
5010 
5011 	if (f.file->f_op != &perf_fops) {
5012 		fdput(f);
5013 		return -EBADF;
5014 	}
5015 	*p = f;
5016 	return 0;
5017 }
5018 
5019 static int perf_event_set_output(struct perf_event *event,
5020 				 struct perf_event *output_event);
5021 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5022 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5023 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5024 			  struct perf_event_attr *attr);
5025 
5026 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5027 {
5028 	void (*func)(struct perf_event *);
5029 	u32 flags = arg;
5030 
5031 	switch (cmd) {
5032 	case PERF_EVENT_IOC_ENABLE:
5033 		func = _perf_event_enable;
5034 		break;
5035 	case PERF_EVENT_IOC_DISABLE:
5036 		func = _perf_event_disable;
5037 		break;
5038 	case PERF_EVENT_IOC_RESET:
5039 		func = _perf_event_reset;
5040 		break;
5041 
5042 	case PERF_EVENT_IOC_REFRESH:
5043 		return _perf_event_refresh(event, arg);
5044 
5045 	case PERF_EVENT_IOC_PERIOD:
5046 		return perf_event_period(event, (u64 __user *)arg);
5047 
5048 	case PERF_EVENT_IOC_ID:
5049 	{
5050 		u64 id = primary_event_id(event);
5051 
5052 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5053 			return -EFAULT;
5054 		return 0;
5055 	}
5056 
5057 	case PERF_EVENT_IOC_SET_OUTPUT:
5058 	{
5059 		int ret;
5060 		if (arg != -1) {
5061 			struct perf_event *output_event;
5062 			struct fd output;
5063 			ret = perf_fget_light(arg, &output);
5064 			if (ret)
5065 				return ret;
5066 			output_event = output.file->private_data;
5067 			ret = perf_event_set_output(event, output_event);
5068 			fdput(output);
5069 		} else {
5070 			ret = perf_event_set_output(event, NULL);
5071 		}
5072 		return ret;
5073 	}
5074 
5075 	case PERF_EVENT_IOC_SET_FILTER:
5076 		return perf_event_set_filter(event, (void __user *)arg);
5077 
5078 	case PERF_EVENT_IOC_SET_BPF:
5079 		return perf_event_set_bpf_prog(event, arg);
5080 
5081 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5082 		struct ring_buffer *rb;
5083 
5084 		rcu_read_lock();
5085 		rb = rcu_dereference(event->rb);
5086 		if (!rb || !rb->nr_pages) {
5087 			rcu_read_unlock();
5088 			return -EINVAL;
5089 		}
5090 		rb_toggle_paused(rb, !!arg);
5091 		rcu_read_unlock();
5092 		return 0;
5093 	}
5094 
5095 	case PERF_EVENT_IOC_QUERY_BPF:
5096 		return perf_event_query_prog_array(event, (void __user *)arg);
5097 
5098 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5099 		struct perf_event_attr new_attr;
5100 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5101 					 &new_attr);
5102 
5103 		if (err)
5104 			return err;
5105 
5106 		return perf_event_modify_attr(event,  &new_attr);
5107 	}
5108 	default:
5109 		return -ENOTTY;
5110 	}
5111 
5112 	if (flags & PERF_IOC_FLAG_GROUP)
5113 		perf_event_for_each(event, func);
5114 	else
5115 		perf_event_for_each_child(event, func);
5116 
5117 	return 0;
5118 }
5119 
5120 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5121 {
5122 	struct perf_event *event = file->private_data;
5123 	struct perf_event_context *ctx;
5124 	long ret;
5125 
5126 	ctx = perf_event_ctx_lock(event);
5127 	ret = _perf_ioctl(event, cmd, arg);
5128 	perf_event_ctx_unlock(event, ctx);
5129 
5130 	return ret;
5131 }
5132 
5133 #ifdef CONFIG_COMPAT
5134 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5135 				unsigned long arg)
5136 {
5137 	switch (_IOC_NR(cmd)) {
5138 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5139 	case _IOC_NR(PERF_EVENT_IOC_ID):
5140 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5141 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5142 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5143 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5144 			cmd &= ~IOCSIZE_MASK;
5145 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5146 		}
5147 		break;
5148 	}
5149 	return perf_ioctl(file, cmd, arg);
5150 }
5151 #else
5152 # define perf_compat_ioctl NULL
5153 #endif
5154 
5155 int perf_event_task_enable(void)
5156 {
5157 	struct perf_event_context *ctx;
5158 	struct perf_event *event;
5159 
5160 	mutex_lock(&current->perf_event_mutex);
5161 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5162 		ctx = perf_event_ctx_lock(event);
5163 		perf_event_for_each_child(event, _perf_event_enable);
5164 		perf_event_ctx_unlock(event, ctx);
5165 	}
5166 	mutex_unlock(&current->perf_event_mutex);
5167 
5168 	return 0;
5169 }
5170 
5171 int perf_event_task_disable(void)
5172 {
5173 	struct perf_event_context *ctx;
5174 	struct perf_event *event;
5175 
5176 	mutex_lock(&current->perf_event_mutex);
5177 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5178 		ctx = perf_event_ctx_lock(event);
5179 		perf_event_for_each_child(event, _perf_event_disable);
5180 		perf_event_ctx_unlock(event, ctx);
5181 	}
5182 	mutex_unlock(&current->perf_event_mutex);
5183 
5184 	return 0;
5185 }
5186 
5187 static int perf_event_index(struct perf_event *event)
5188 {
5189 	if (event->hw.state & PERF_HES_STOPPED)
5190 		return 0;
5191 
5192 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5193 		return 0;
5194 
5195 	return event->pmu->event_idx(event);
5196 }
5197 
5198 static void calc_timer_values(struct perf_event *event,
5199 				u64 *now,
5200 				u64 *enabled,
5201 				u64 *running)
5202 {
5203 	u64 ctx_time;
5204 
5205 	*now = perf_clock();
5206 	ctx_time = event->shadow_ctx_time + *now;
5207 	__perf_update_times(event, ctx_time, enabled, running);
5208 }
5209 
5210 static void perf_event_init_userpage(struct perf_event *event)
5211 {
5212 	struct perf_event_mmap_page *userpg;
5213 	struct ring_buffer *rb;
5214 
5215 	rcu_read_lock();
5216 	rb = rcu_dereference(event->rb);
5217 	if (!rb)
5218 		goto unlock;
5219 
5220 	userpg = rb->user_page;
5221 
5222 	/* Allow new userspace to detect that bit 0 is deprecated */
5223 	userpg->cap_bit0_is_deprecated = 1;
5224 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5225 	userpg->data_offset = PAGE_SIZE;
5226 	userpg->data_size = perf_data_size(rb);
5227 
5228 unlock:
5229 	rcu_read_unlock();
5230 }
5231 
5232 void __weak arch_perf_update_userpage(
5233 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5234 {
5235 }
5236 
5237 /*
5238  * Callers need to ensure there can be no nesting of this function, otherwise
5239  * the seqlock logic goes bad. We can not serialize this because the arch
5240  * code calls this from NMI context.
5241  */
5242 void perf_event_update_userpage(struct perf_event *event)
5243 {
5244 	struct perf_event_mmap_page *userpg;
5245 	struct ring_buffer *rb;
5246 	u64 enabled, running, now;
5247 
5248 	rcu_read_lock();
5249 	rb = rcu_dereference(event->rb);
5250 	if (!rb)
5251 		goto unlock;
5252 
5253 	/*
5254 	 * compute total_time_enabled, total_time_running
5255 	 * based on snapshot values taken when the event
5256 	 * was last scheduled in.
5257 	 *
5258 	 * we cannot simply called update_context_time()
5259 	 * because of locking issue as we can be called in
5260 	 * NMI context
5261 	 */
5262 	calc_timer_values(event, &now, &enabled, &running);
5263 
5264 	userpg = rb->user_page;
5265 	/*
5266 	 * Disable preemption to guarantee consistent time stamps are stored to
5267 	 * the user page.
5268 	 */
5269 	preempt_disable();
5270 	++userpg->lock;
5271 	barrier();
5272 	userpg->index = perf_event_index(event);
5273 	userpg->offset = perf_event_count(event);
5274 	if (userpg->index)
5275 		userpg->offset -= local64_read(&event->hw.prev_count);
5276 
5277 	userpg->time_enabled = enabled +
5278 			atomic64_read(&event->child_total_time_enabled);
5279 
5280 	userpg->time_running = running +
5281 			atomic64_read(&event->child_total_time_running);
5282 
5283 	arch_perf_update_userpage(event, userpg, now);
5284 
5285 	barrier();
5286 	++userpg->lock;
5287 	preempt_enable();
5288 unlock:
5289 	rcu_read_unlock();
5290 }
5291 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5292 
5293 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5294 {
5295 	struct perf_event *event = vmf->vma->vm_file->private_data;
5296 	struct ring_buffer *rb;
5297 	vm_fault_t ret = VM_FAULT_SIGBUS;
5298 
5299 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5300 		if (vmf->pgoff == 0)
5301 			ret = 0;
5302 		return ret;
5303 	}
5304 
5305 	rcu_read_lock();
5306 	rb = rcu_dereference(event->rb);
5307 	if (!rb)
5308 		goto unlock;
5309 
5310 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5311 		goto unlock;
5312 
5313 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5314 	if (!vmf->page)
5315 		goto unlock;
5316 
5317 	get_page(vmf->page);
5318 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5319 	vmf->page->index   = vmf->pgoff;
5320 
5321 	ret = 0;
5322 unlock:
5323 	rcu_read_unlock();
5324 
5325 	return ret;
5326 }
5327 
5328 static void ring_buffer_attach(struct perf_event *event,
5329 			       struct ring_buffer *rb)
5330 {
5331 	struct ring_buffer *old_rb = NULL;
5332 	unsigned long flags;
5333 
5334 	if (event->rb) {
5335 		/*
5336 		 * Should be impossible, we set this when removing
5337 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5338 		 */
5339 		WARN_ON_ONCE(event->rcu_pending);
5340 
5341 		old_rb = event->rb;
5342 		spin_lock_irqsave(&old_rb->event_lock, flags);
5343 		list_del_rcu(&event->rb_entry);
5344 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5345 
5346 		event->rcu_batches = get_state_synchronize_rcu();
5347 		event->rcu_pending = 1;
5348 	}
5349 
5350 	if (rb) {
5351 		if (event->rcu_pending) {
5352 			cond_synchronize_rcu(event->rcu_batches);
5353 			event->rcu_pending = 0;
5354 		}
5355 
5356 		spin_lock_irqsave(&rb->event_lock, flags);
5357 		list_add_rcu(&event->rb_entry, &rb->event_list);
5358 		spin_unlock_irqrestore(&rb->event_lock, flags);
5359 	}
5360 
5361 	/*
5362 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5363 	 * before swizzling the event::rb pointer; if it's getting
5364 	 * unmapped, its aux_mmap_count will be 0 and it won't
5365 	 * restart. See the comment in __perf_pmu_output_stop().
5366 	 *
5367 	 * Data will inevitably be lost when set_output is done in
5368 	 * mid-air, but then again, whoever does it like this is
5369 	 * not in for the data anyway.
5370 	 */
5371 	if (has_aux(event))
5372 		perf_event_stop(event, 0);
5373 
5374 	rcu_assign_pointer(event->rb, rb);
5375 
5376 	if (old_rb) {
5377 		ring_buffer_put(old_rb);
5378 		/*
5379 		 * Since we detached before setting the new rb, so that we
5380 		 * could attach the new rb, we could have missed a wakeup.
5381 		 * Provide it now.
5382 		 */
5383 		wake_up_all(&event->waitq);
5384 	}
5385 }
5386 
5387 static void ring_buffer_wakeup(struct perf_event *event)
5388 {
5389 	struct ring_buffer *rb;
5390 
5391 	rcu_read_lock();
5392 	rb = rcu_dereference(event->rb);
5393 	if (rb) {
5394 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5395 			wake_up_all(&event->waitq);
5396 	}
5397 	rcu_read_unlock();
5398 }
5399 
5400 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5401 {
5402 	struct ring_buffer *rb;
5403 
5404 	rcu_read_lock();
5405 	rb = rcu_dereference(event->rb);
5406 	if (rb) {
5407 		if (!refcount_inc_not_zero(&rb->refcount))
5408 			rb = NULL;
5409 	}
5410 	rcu_read_unlock();
5411 
5412 	return rb;
5413 }
5414 
5415 void ring_buffer_put(struct ring_buffer *rb)
5416 {
5417 	if (!refcount_dec_and_test(&rb->refcount))
5418 		return;
5419 
5420 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5421 
5422 	call_rcu(&rb->rcu_head, rb_free_rcu);
5423 }
5424 
5425 static void perf_mmap_open(struct vm_area_struct *vma)
5426 {
5427 	struct perf_event *event = vma->vm_file->private_data;
5428 
5429 	atomic_inc(&event->mmap_count);
5430 	atomic_inc(&event->rb->mmap_count);
5431 
5432 	if (vma->vm_pgoff)
5433 		atomic_inc(&event->rb->aux_mmap_count);
5434 
5435 	if (event->pmu->event_mapped)
5436 		event->pmu->event_mapped(event, vma->vm_mm);
5437 }
5438 
5439 static void perf_pmu_output_stop(struct perf_event *event);
5440 
5441 /*
5442  * A buffer can be mmap()ed multiple times; either directly through the same
5443  * event, or through other events by use of perf_event_set_output().
5444  *
5445  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5446  * the buffer here, where we still have a VM context. This means we need
5447  * to detach all events redirecting to us.
5448  */
5449 static void perf_mmap_close(struct vm_area_struct *vma)
5450 {
5451 	struct perf_event *event = vma->vm_file->private_data;
5452 
5453 	struct ring_buffer *rb = ring_buffer_get(event);
5454 	struct user_struct *mmap_user = rb->mmap_user;
5455 	int mmap_locked = rb->mmap_locked;
5456 	unsigned long size = perf_data_size(rb);
5457 
5458 	if (event->pmu->event_unmapped)
5459 		event->pmu->event_unmapped(event, vma->vm_mm);
5460 
5461 	/*
5462 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5463 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5464 	 * serialize with perf_mmap here.
5465 	 */
5466 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5467 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5468 		/*
5469 		 * Stop all AUX events that are writing to this buffer,
5470 		 * so that we can free its AUX pages and corresponding PMU
5471 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5472 		 * they won't start any more (see perf_aux_output_begin()).
5473 		 */
5474 		perf_pmu_output_stop(event);
5475 
5476 		/* now it's safe to free the pages */
5477 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5478 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5479 
5480 		/* this has to be the last one */
5481 		rb_free_aux(rb);
5482 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5483 
5484 		mutex_unlock(&event->mmap_mutex);
5485 	}
5486 
5487 	atomic_dec(&rb->mmap_count);
5488 
5489 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5490 		goto out_put;
5491 
5492 	ring_buffer_attach(event, NULL);
5493 	mutex_unlock(&event->mmap_mutex);
5494 
5495 	/* If there's still other mmap()s of this buffer, we're done. */
5496 	if (atomic_read(&rb->mmap_count))
5497 		goto out_put;
5498 
5499 	/*
5500 	 * No other mmap()s, detach from all other events that might redirect
5501 	 * into the now unreachable buffer. Somewhat complicated by the
5502 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5503 	 */
5504 again:
5505 	rcu_read_lock();
5506 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5507 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5508 			/*
5509 			 * This event is en-route to free_event() which will
5510 			 * detach it and remove it from the list.
5511 			 */
5512 			continue;
5513 		}
5514 		rcu_read_unlock();
5515 
5516 		mutex_lock(&event->mmap_mutex);
5517 		/*
5518 		 * Check we didn't race with perf_event_set_output() which can
5519 		 * swizzle the rb from under us while we were waiting to
5520 		 * acquire mmap_mutex.
5521 		 *
5522 		 * If we find a different rb; ignore this event, a next
5523 		 * iteration will no longer find it on the list. We have to
5524 		 * still restart the iteration to make sure we're not now
5525 		 * iterating the wrong list.
5526 		 */
5527 		if (event->rb == rb)
5528 			ring_buffer_attach(event, NULL);
5529 
5530 		mutex_unlock(&event->mmap_mutex);
5531 		put_event(event);
5532 
5533 		/*
5534 		 * Restart the iteration; either we're on the wrong list or
5535 		 * destroyed its integrity by doing a deletion.
5536 		 */
5537 		goto again;
5538 	}
5539 	rcu_read_unlock();
5540 
5541 	/*
5542 	 * It could be there's still a few 0-ref events on the list; they'll
5543 	 * get cleaned up by free_event() -- they'll also still have their
5544 	 * ref on the rb and will free it whenever they are done with it.
5545 	 *
5546 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5547 	 * undo the VM accounting.
5548 	 */
5549 
5550 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5551 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5552 	free_uid(mmap_user);
5553 
5554 out_put:
5555 	ring_buffer_put(rb); /* could be last */
5556 }
5557 
5558 static const struct vm_operations_struct perf_mmap_vmops = {
5559 	.open		= perf_mmap_open,
5560 	.close		= perf_mmap_close, /* non mergeable */
5561 	.fault		= perf_mmap_fault,
5562 	.page_mkwrite	= perf_mmap_fault,
5563 };
5564 
5565 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5566 {
5567 	struct perf_event *event = file->private_data;
5568 	unsigned long user_locked, user_lock_limit;
5569 	struct user_struct *user = current_user();
5570 	unsigned long locked, lock_limit;
5571 	struct ring_buffer *rb = NULL;
5572 	unsigned long vma_size;
5573 	unsigned long nr_pages;
5574 	long user_extra = 0, extra = 0;
5575 	int ret = 0, flags = 0;
5576 
5577 	/*
5578 	 * Don't allow mmap() of inherited per-task counters. This would
5579 	 * create a performance issue due to all children writing to the
5580 	 * same rb.
5581 	 */
5582 	if (event->cpu == -1 && event->attr.inherit)
5583 		return -EINVAL;
5584 
5585 	if (!(vma->vm_flags & VM_SHARED))
5586 		return -EINVAL;
5587 
5588 	vma_size = vma->vm_end - vma->vm_start;
5589 
5590 	if (vma->vm_pgoff == 0) {
5591 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5592 	} else {
5593 		/*
5594 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5595 		 * mapped, all subsequent mappings should have the same size
5596 		 * and offset. Must be above the normal perf buffer.
5597 		 */
5598 		u64 aux_offset, aux_size;
5599 
5600 		if (!event->rb)
5601 			return -EINVAL;
5602 
5603 		nr_pages = vma_size / PAGE_SIZE;
5604 
5605 		mutex_lock(&event->mmap_mutex);
5606 		ret = -EINVAL;
5607 
5608 		rb = event->rb;
5609 		if (!rb)
5610 			goto aux_unlock;
5611 
5612 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5613 		aux_size = READ_ONCE(rb->user_page->aux_size);
5614 
5615 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5616 			goto aux_unlock;
5617 
5618 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5619 			goto aux_unlock;
5620 
5621 		/* already mapped with a different offset */
5622 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5623 			goto aux_unlock;
5624 
5625 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5626 			goto aux_unlock;
5627 
5628 		/* already mapped with a different size */
5629 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5630 			goto aux_unlock;
5631 
5632 		if (!is_power_of_2(nr_pages))
5633 			goto aux_unlock;
5634 
5635 		if (!atomic_inc_not_zero(&rb->mmap_count))
5636 			goto aux_unlock;
5637 
5638 		if (rb_has_aux(rb)) {
5639 			atomic_inc(&rb->aux_mmap_count);
5640 			ret = 0;
5641 			goto unlock;
5642 		}
5643 
5644 		atomic_set(&rb->aux_mmap_count, 1);
5645 		user_extra = nr_pages;
5646 
5647 		goto accounting;
5648 	}
5649 
5650 	/*
5651 	 * If we have rb pages ensure they're a power-of-two number, so we
5652 	 * can do bitmasks instead of modulo.
5653 	 */
5654 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5655 		return -EINVAL;
5656 
5657 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5658 		return -EINVAL;
5659 
5660 	WARN_ON_ONCE(event->ctx->parent_ctx);
5661 again:
5662 	mutex_lock(&event->mmap_mutex);
5663 	if (event->rb) {
5664 		if (event->rb->nr_pages != nr_pages) {
5665 			ret = -EINVAL;
5666 			goto unlock;
5667 		}
5668 
5669 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5670 			/*
5671 			 * Raced against perf_mmap_close() through
5672 			 * perf_event_set_output(). Try again, hope for better
5673 			 * luck.
5674 			 */
5675 			mutex_unlock(&event->mmap_mutex);
5676 			goto again;
5677 		}
5678 
5679 		goto unlock;
5680 	}
5681 
5682 	user_extra = nr_pages + 1;
5683 
5684 accounting:
5685 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5686 
5687 	/*
5688 	 * Increase the limit linearly with more CPUs:
5689 	 */
5690 	user_lock_limit *= num_online_cpus();
5691 
5692 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5693 
5694 	if (user_locked > user_lock_limit)
5695 		extra = user_locked - user_lock_limit;
5696 
5697 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5698 	lock_limit >>= PAGE_SHIFT;
5699 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5700 
5701 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5702 		!capable(CAP_IPC_LOCK)) {
5703 		ret = -EPERM;
5704 		goto unlock;
5705 	}
5706 
5707 	WARN_ON(!rb && event->rb);
5708 
5709 	if (vma->vm_flags & VM_WRITE)
5710 		flags |= RING_BUFFER_WRITABLE;
5711 
5712 	if (!rb) {
5713 		rb = rb_alloc(nr_pages,
5714 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5715 			      event->cpu, flags);
5716 
5717 		if (!rb) {
5718 			ret = -ENOMEM;
5719 			goto unlock;
5720 		}
5721 
5722 		atomic_set(&rb->mmap_count, 1);
5723 		rb->mmap_user = get_current_user();
5724 		rb->mmap_locked = extra;
5725 
5726 		ring_buffer_attach(event, rb);
5727 
5728 		perf_event_init_userpage(event);
5729 		perf_event_update_userpage(event);
5730 	} else {
5731 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5732 				   event->attr.aux_watermark, flags);
5733 		if (!ret)
5734 			rb->aux_mmap_locked = extra;
5735 	}
5736 
5737 unlock:
5738 	if (!ret) {
5739 		atomic_long_add(user_extra, &user->locked_vm);
5740 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5741 
5742 		atomic_inc(&event->mmap_count);
5743 	} else if (rb) {
5744 		atomic_dec(&rb->mmap_count);
5745 	}
5746 aux_unlock:
5747 	mutex_unlock(&event->mmap_mutex);
5748 
5749 	/*
5750 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5751 	 * vma.
5752 	 */
5753 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5754 	vma->vm_ops = &perf_mmap_vmops;
5755 
5756 	if (event->pmu->event_mapped)
5757 		event->pmu->event_mapped(event, vma->vm_mm);
5758 
5759 	return ret;
5760 }
5761 
5762 static int perf_fasync(int fd, struct file *filp, int on)
5763 {
5764 	struct inode *inode = file_inode(filp);
5765 	struct perf_event *event = filp->private_data;
5766 	int retval;
5767 
5768 	inode_lock(inode);
5769 	retval = fasync_helper(fd, filp, on, &event->fasync);
5770 	inode_unlock(inode);
5771 
5772 	if (retval < 0)
5773 		return retval;
5774 
5775 	return 0;
5776 }
5777 
5778 static const struct file_operations perf_fops = {
5779 	.llseek			= no_llseek,
5780 	.release		= perf_release,
5781 	.read			= perf_read,
5782 	.poll			= perf_poll,
5783 	.unlocked_ioctl		= perf_ioctl,
5784 	.compat_ioctl		= perf_compat_ioctl,
5785 	.mmap			= perf_mmap,
5786 	.fasync			= perf_fasync,
5787 };
5788 
5789 /*
5790  * Perf event wakeup
5791  *
5792  * If there's data, ensure we set the poll() state and publish everything
5793  * to user-space before waking everybody up.
5794  */
5795 
5796 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5797 {
5798 	/* only the parent has fasync state */
5799 	if (event->parent)
5800 		event = event->parent;
5801 	return &event->fasync;
5802 }
5803 
5804 void perf_event_wakeup(struct perf_event *event)
5805 {
5806 	ring_buffer_wakeup(event);
5807 
5808 	if (event->pending_kill) {
5809 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5810 		event->pending_kill = 0;
5811 	}
5812 }
5813 
5814 static void perf_pending_event_disable(struct perf_event *event)
5815 {
5816 	int cpu = READ_ONCE(event->pending_disable);
5817 
5818 	if (cpu < 0)
5819 		return;
5820 
5821 	if (cpu == smp_processor_id()) {
5822 		WRITE_ONCE(event->pending_disable, -1);
5823 		perf_event_disable_local(event);
5824 		return;
5825 	}
5826 
5827 	/*
5828 	 *  CPU-A			CPU-B
5829 	 *
5830 	 *  perf_event_disable_inatomic()
5831 	 *    @pending_disable = CPU-A;
5832 	 *    irq_work_queue();
5833 	 *
5834 	 *  sched-out
5835 	 *    @pending_disable = -1;
5836 	 *
5837 	 *				sched-in
5838 	 *				perf_event_disable_inatomic()
5839 	 *				  @pending_disable = CPU-B;
5840 	 *				  irq_work_queue(); // FAILS
5841 	 *
5842 	 *  irq_work_run()
5843 	 *    perf_pending_event()
5844 	 *
5845 	 * But the event runs on CPU-B and wants disabling there.
5846 	 */
5847 	irq_work_queue_on(&event->pending, cpu);
5848 }
5849 
5850 static void perf_pending_event(struct irq_work *entry)
5851 {
5852 	struct perf_event *event = container_of(entry, struct perf_event, pending);
5853 	int rctx;
5854 
5855 	rctx = perf_swevent_get_recursion_context();
5856 	/*
5857 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5858 	 * and we won't recurse 'further'.
5859 	 */
5860 
5861 	perf_pending_event_disable(event);
5862 
5863 	if (event->pending_wakeup) {
5864 		event->pending_wakeup = 0;
5865 		perf_event_wakeup(event);
5866 	}
5867 
5868 	if (rctx >= 0)
5869 		perf_swevent_put_recursion_context(rctx);
5870 }
5871 
5872 /*
5873  * We assume there is only KVM supporting the callbacks.
5874  * Later on, we might change it to a list if there is
5875  * another virtualization implementation supporting the callbacks.
5876  */
5877 struct perf_guest_info_callbacks *perf_guest_cbs;
5878 
5879 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5880 {
5881 	perf_guest_cbs = cbs;
5882 	return 0;
5883 }
5884 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5885 
5886 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5887 {
5888 	perf_guest_cbs = NULL;
5889 	return 0;
5890 }
5891 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5892 
5893 static void
5894 perf_output_sample_regs(struct perf_output_handle *handle,
5895 			struct pt_regs *regs, u64 mask)
5896 {
5897 	int bit;
5898 	DECLARE_BITMAP(_mask, 64);
5899 
5900 	bitmap_from_u64(_mask, mask);
5901 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5902 		u64 val;
5903 
5904 		val = perf_reg_value(regs, bit);
5905 		perf_output_put(handle, val);
5906 	}
5907 }
5908 
5909 static void perf_sample_regs_user(struct perf_regs *regs_user,
5910 				  struct pt_regs *regs,
5911 				  struct pt_regs *regs_user_copy)
5912 {
5913 	if (user_mode(regs)) {
5914 		regs_user->abi = perf_reg_abi(current);
5915 		regs_user->regs = regs;
5916 	} else if (current->mm) {
5917 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5918 	} else {
5919 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5920 		regs_user->regs = NULL;
5921 	}
5922 }
5923 
5924 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5925 				  struct pt_regs *regs)
5926 {
5927 	regs_intr->regs = regs;
5928 	regs_intr->abi  = perf_reg_abi(current);
5929 }
5930 
5931 
5932 /*
5933  * Get remaining task size from user stack pointer.
5934  *
5935  * It'd be better to take stack vma map and limit this more
5936  * precisly, but there's no way to get it safely under interrupt,
5937  * so using TASK_SIZE as limit.
5938  */
5939 static u64 perf_ustack_task_size(struct pt_regs *regs)
5940 {
5941 	unsigned long addr = perf_user_stack_pointer(regs);
5942 
5943 	if (!addr || addr >= TASK_SIZE)
5944 		return 0;
5945 
5946 	return TASK_SIZE - addr;
5947 }
5948 
5949 static u16
5950 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5951 			struct pt_regs *regs)
5952 {
5953 	u64 task_size;
5954 
5955 	/* No regs, no stack pointer, no dump. */
5956 	if (!regs)
5957 		return 0;
5958 
5959 	/*
5960 	 * Check if we fit in with the requested stack size into the:
5961 	 * - TASK_SIZE
5962 	 *   If we don't, we limit the size to the TASK_SIZE.
5963 	 *
5964 	 * - remaining sample size
5965 	 *   If we don't, we customize the stack size to
5966 	 *   fit in to the remaining sample size.
5967 	 */
5968 
5969 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5970 	stack_size = min(stack_size, (u16) task_size);
5971 
5972 	/* Current header size plus static size and dynamic size. */
5973 	header_size += 2 * sizeof(u64);
5974 
5975 	/* Do we fit in with the current stack dump size? */
5976 	if ((u16) (header_size + stack_size) < header_size) {
5977 		/*
5978 		 * If we overflow the maximum size for the sample,
5979 		 * we customize the stack dump size to fit in.
5980 		 */
5981 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5982 		stack_size = round_up(stack_size, sizeof(u64));
5983 	}
5984 
5985 	return stack_size;
5986 }
5987 
5988 static void
5989 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5990 			  struct pt_regs *regs)
5991 {
5992 	/* Case of a kernel thread, nothing to dump */
5993 	if (!regs) {
5994 		u64 size = 0;
5995 		perf_output_put(handle, size);
5996 	} else {
5997 		unsigned long sp;
5998 		unsigned int rem;
5999 		u64 dyn_size;
6000 		mm_segment_t fs;
6001 
6002 		/*
6003 		 * We dump:
6004 		 * static size
6005 		 *   - the size requested by user or the best one we can fit
6006 		 *     in to the sample max size
6007 		 * data
6008 		 *   - user stack dump data
6009 		 * dynamic size
6010 		 *   - the actual dumped size
6011 		 */
6012 
6013 		/* Static size. */
6014 		perf_output_put(handle, dump_size);
6015 
6016 		/* Data. */
6017 		sp = perf_user_stack_pointer(regs);
6018 		fs = get_fs();
6019 		set_fs(USER_DS);
6020 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6021 		set_fs(fs);
6022 		dyn_size = dump_size - rem;
6023 
6024 		perf_output_skip(handle, rem);
6025 
6026 		/* Dynamic size. */
6027 		perf_output_put(handle, dyn_size);
6028 	}
6029 }
6030 
6031 static void __perf_event_header__init_id(struct perf_event_header *header,
6032 					 struct perf_sample_data *data,
6033 					 struct perf_event *event)
6034 {
6035 	u64 sample_type = event->attr.sample_type;
6036 
6037 	data->type = sample_type;
6038 	header->size += event->id_header_size;
6039 
6040 	if (sample_type & PERF_SAMPLE_TID) {
6041 		/* namespace issues */
6042 		data->tid_entry.pid = perf_event_pid(event, current);
6043 		data->tid_entry.tid = perf_event_tid(event, current);
6044 	}
6045 
6046 	if (sample_type & PERF_SAMPLE_TIME)
6047 		data->time = perf_event_clock(event);
6048 
6049 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6050 		data->id = primary_event_id(event);
6051 
6052 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6053 		data->stream_id = event->id;
6054 
6055 	if (sample_type & PERF_SAMPLE_CPU) {
6056 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6057 		data->cpu_entry.reserved = 0;
6058 	}
6059 }
6060 
6061 void perf_event_header__init_id(struct perf_event_header *header,
6062 				struct perf_sample_data *data,
6063 				struct perf_event *event)
6064 {
6065 	if (event->attr.sample_id_all)
6066 		__perf_event_header__init_id(header, data, event);
6067 }
6068 
6069 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6070 					   struct perf_sample_data *data)
6071 {
6072 	u64 sample_type = data->type;
6073 
6074 	if (sample_type & PERF_SAMPLE_TID)
6075 		perf_output_put(handle, data->tid_entry);
6076 
6077 	if (sample_type & PERF_SAMPLE_TIME)
6078 		perf_output_put(handle, data->time);
6079 
6080 	if (sample_type & PERF_SAMPLE_ID)
6081 		perf_output_put(handle, data->id);
6082 
6083 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6084 		perf_output_put(handle, data->stream_id);
6085 
6086 	if (sample_type & PERF_SAMPLE_CPU)
6087 		perf_output_put(handle, data->cpu_entry);
6088 
6089 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6090 		perf_output_put(handle, data->id);
6091 }
6092 
6093 void perf_event__output_id_sample(struct perf_event *event,
6094 				  struct perf_output_handle *handle,
6095 				  struct perf_sample_data *sample)
6096 {
6097 	if (event->attr.sample_id_all)
6098 		__perf_event__output_id_sample(handle, sample);
6099 }
6100 
6101 static void perf_output_read_one(struct perf_output_handle *handle,
6102 				 struct perf_event *event,
6103 				 u64 enabled, u64 running)
6104 {
6105 	u64 read_format = event->attr.read_format;
6106 	u64 values[4];
6107 	int n = 0;
6108 
6109 	values[n++] = perf_event_count(event);
6110 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6111 		values[n++] = enabled +
6112 			atomic64_read(&event->child_total_time_enabled);
6113 	}
6114 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6115 		values[n++] = running +
6116 			atomic64_read(&event->child_total_time_running);
6117 	}
6118 	if (read_format & PERF_FORMAT_ID)
6119 		values[n++] = primary_event_id(event);
6120 
6121 	__output_copy(handle, values, n * sizeof(u64));
6122 }
6123 
6124 static void perf_output_read_group(struct perf_output_handle *handle,
6125 			    struct perf_event *event,
6126 			    u64 enabled, u64 running)
6127 {
6128 	struct perf_event *leader = event->group_leader, *sub;
6129 	u64 read_format = event->attr.read_format;
6130 	u64 values[5];
6131 	int n = 0;
6132 
6133 	values[n++] = 1 + leader->nr_siblings;
6134 
6135 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6136 		values[n++] = enabled;
6137 
6138 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6139 		values[n++] = running;
6140 
6141 	if ((leader != event) &&
6142 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6143 		leader->pmu->read(leader);
6144 
6145 	values[n++] = perf_event_count(leader);
6146 	if (read_format & PERF_FORMAT_ID)
6147 		values[n++] = primary_event_id(leader);
6148 
6149 	__output_copy(handle, values, n * sizeof(u64));
6150 
6151 	for_each_sibling_event(sub, leader) {
6152 		n = 0;
6153 
6154 		if ((sub != event) &&
6155 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6156 			sub->pmu->read(sub);
6157 
6158 		values[n++] = perf_event_count(sub);
6159 		if (read_format & PERF_FORMAT_ID)
6160 			values[n++] = primary_event_id(sub);
6161 
6162 		__output_copy(handle, values, n * sizeof(u64));
6163 	}
6164 }
6165 
6166 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6167 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6168 
6169 /*
6170  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6171  *
6172  * The problem is that its both hard and excessively expensive to iterate the
6173  * child list, not to mention that its impossible to IPI the children running
6174  * on another CPU, from interrupt/NMI context.
6175  */
6176 static void perf_output_read(struct perf_output_handle *handle,
6177 			     struct perf_event *event)
6178 {
6179 	u64 enabled = 0, running = 0, now;
6180 	u64 read_format = event->attr.read_format;
6181 
6182 	/*
6183 	 * compute total_time_enabled, total_time_running
6184 	 * based on snapshot values taken when the event
6185 	 * was last scheduled in.
6186 	 *
6187 	 * we cannot simply called update_context_time()
6188 	 * because of locking issue as we are called in
6189 	 * NMI context
6190 	 */
6191 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6192 		calc_timer_values(event, &now, &enabled, &running);
6193 
6194 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6195 		perf_output_read_group(handle, event, enabled, running);
6196 	else
6197 		perf_output_read_one(handle, event, enabled, running);
6198 }
6199 
6200 void perf_output_sample(struct perf_output_handle *handle,
6201 			struct perf_event_header *header,
6202 			struct perf_sample_data *data,
6203 			struct perf_event *event)
6204 {
6205 	u64 sample_type = data->type;
6206 
6207 	perf_output_put(handle, *header);
6208 
6209 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6210 		perf_output_put(handle, data->id);
6211 
6212 	if (sample_type & PERF_SAMPLE_IP)
6213 		perf_output_put(handle, data->ip);
6214 
6215 	if (sample_type & PERF_SAMPLE_TID)
6216 		perf_output_put(handle, data->tid_entry);
6217 
6218 	if (sample_type & PERF_SAMPLE_TIME)
6219 		perf_output_put(handle, data->time);
6220 
6221 	if (sample_type & PERF_SAMPLE_ADDR)
6222 		perf_output_put(handle, data->addr);
6223 
6224 	if (sample_type & PERF_SAMPLE_ID)
6225 		perf_output_put(handle, data->id);
6226 
6227 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6228 		perf_output_put(handle, data->stream_id);
6229 
6230 	if (sample_type & PERF_SAMPLE_CPU)
6231 		perf_output_put(handle, data->cpu_entry);
6232 
6233 	if (sample_type & PERF_SAMPLE_PERIOD)
6234 		perf_output_put(handle, data->period);
6235 
6236 	if (sample_type & PERF_SAMPLE_READ)
6237 		perf_output_read(handle, event);
6238 
6239 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6240 		int size = 1;
6241 
6242 		size += data->callchain->nr;
6243 		size *= sizeof(u64);
6244 		__output_copy(handle, data->callchain, size);
6245 	}
6246 
6247 	if (sample_type & PERF_SAMPLE_RAW) {
6248 		struct perf_raw_record *raw = data->raw;
6249 
6250 		if (raw) {
6251 			struct perf_raw_frag *frag = &raw->frag;
6252 
6253 			perf_output_put(handle, raw->size);
6254 			do {
6255 				if (frag->copy) {
6256 					__output_custom(handle, frag->copy,
6257 							frag->data, frag->size);
6258 				} else {
6259 					__output_copy(handle, frag->data,
6260 						      frag->size);
6261 				}
6262 				if (perf_raw_frag_last(frag))
6263 					break;
6264 				frag = frag->next;
6265 			} while (1);
6266 			if (frag->pad)
6267 				__output_skip(handle, NULL, frag->pad);
6268 		} else {
6269 			struct {
6270 				u32	size;
6271 				u32	data;
6272 			} raw = {
6273 				.size = sizeof(u32),
6274 				.data = 0,
6275 			};
6276 			perf_output_put(handle, raw);
6277 		}
6278 	}
6279 
6280 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6281 		if (data->br_stack) {
6282 			size_t size;
6283 
6284 			size = data->br_stack->nr
6285 			     * sizeof(struct perf_branch_entry);
6286 
6287 			perf_output_put(handle, data->br_stack->nr);
6288 			perf_output_copy(handle, data->br_stack->entries, size);
6289 		} else {
6290 			/*
6291 			 * we always store at least the value of nr
6292 			 */
6293 			u64 nr = 0;
6294 			perf_output_put(handle, nr);
6295 		}
6296 	}
6297 
6298 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6299 		u64 abi = data->regs_user.abi;
6300 
6301 		/*
6302 		 * If there are no regs to dump, notice it through
6303 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6304 		 */
6305 		perf_output_put(handle, abi);
6306 
6307 		if (abi) {
6308 			u64 mask = event->attr.sample_regs_user;
6309 			perf_output_sample_regs(handle,
6310 						data->regs_user.regs,
6311 						mask);
6312 		}
6313 	}
6314 
6315 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6316 		perf_output_sample_ustack(handle,
6317 					  data->stack_user_size,
6318 					  data->regs_user.regs);
6319 	}
6320 
6321 	if (sample_type & PERF_SAMPLE_WEIGHT)
6322 		perf_output_put(handle, data->weight);
6323 
6324 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6325 		perf_output_put(handle, data->data_src.val);
6326 
6327 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6328 		perf_output_put(handle, data->txn);
6329 
6330 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6331 		u64 abi = data->regs_intr.abi;
6332 		/*
6333 		 * If there are no regs to dump, notice it through
6334 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6335 		 */
6336 		perf_output_put(handle, abi);
6337 
6338 		if (abi) {
6339 			u64 mask = event->attr.sample_regs_intr;
6340 
6341 			perf_output_sample_regs(handle,
6342 						data->regs_intr.regs,
6343 						mask);
6344 		}
6345 	}
6346 
6347 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6348 		perf_output_put(handle, data->phys_addr);
6349 
6350 	if (!event->attr.watermark) {
6351 		int wakeup_events = event->attr.wakeup_events;
6352 
6353 		if (wakeup_events) {
6354 			struct ring_buffer *rb = handle->rb;
6355 			int events = local_inc_return(&rb->events);
6356 
6357 			if (events >= wakeup_events) {
6358 				local_sub(wakeup_events, &rb->events);
6359 				local_inc(&rb->wakeup);
6360 			}
6361 		}
6362 	}
6363 }
6364 
6365 static u64 perf_virt_to_phys(u64 virt)
6366 {
6367 	u64 phys_addr = 0;
6368 	struct page *p = NULL;
6369 
6370 	if (!virt)
6371 		return 0;
6372 
6373 	if (virt >= TASK_SIZE) {
6374 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6375 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6376 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6377 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6378 	} else {
6379 		/*
6380 		 * Walking the pages tables for user address.
6381 		 * Interrupts are disabled, so it prevents any tear down
6382 		 * of the page tables.
6383 		 * Try IRQ-safe __get_user_pages_fast first.
6384 		 * If failed, leave phys_addr as 0.
6385 		 */
6386 		if ((current->mm != NULL) &&
6387 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6388 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6389 
6390 		if (p)
6391 			put_page(p);
6392 	}
6393 
6394 	return phys_addr;
6395 }
6396 
6397 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6398 
6399 struct perf_callchain_entry *
6400 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6401 {
6402 	bool kernel = !event->attr.exclude_callchain_kernel;
6403 	bool user   = !event->attr.exclude_callchain_user;
6404 	/* Disallow cross-task user callchains. */
6405 	bool crosstask = event->ctx->task && event->ctx->task != current;
6406 	const u32 max_stack = event->attr.sample_max_stack;
6407 	struct perf_callchain_entry *callchain;
6408 
6409 	if (!kernel && !user)
6410 		return &__empty_callchain;
6411 
6412 	callchain = get_perf_callchain(regs, 0, kernel, user,
6413 				       max_stack, crosstask, true);
6414 	return callchain ?: &__empty_callchain;
6415 }
6416 
6417 void perf_prepare_sample(struct perf_event_header *header,
6418 			 struct perf_sample_data *data,
6419 			 struct perf_event *event,
6420 			 struct pt_regs *regs)
6421 {
6422 	u64 sample_type = event->attr.sample_type;
6423 
6424 	header->type = PERF_RECORD_SAMPLE;
6425 	header->size = sizeof(*header) + event->header_size;
6426 
6427 	header->misc = 0;
6428 	header->misc |= perf_misc_flags(regs);
6429 
6430 	__perf_event_header__init_id(header, data, event);
6431 
6432 	if (sample_type & PERF_SAMPLE_IP)
6433 		data->ip = perf_instruction_pointer(regs);
6434 
6435 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6436 		int size = 1;
6437 
6438 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6439 			data->callchain = perf_callchain(event, regs);
6440 
6441 		size += data->callchain->nr;
6442 
6443 		header->size += size * sizeof(u64);
6444 	}
6445 
6446 	if (sample_type & PERF_SAMPLE_RAW) {
6447 		struct perf_raw_record *raw = data->raw;
6448 		int size;
6449 
6450 		if (raw) {
6451 			struct perf_raw_frag *frag = &raw->frag;
6452 			u32 sum = 0;
6453 
6454 			do {
6455 				sum += frag->size;
6456 				if (perf_raw_frag_last(frag))
6457 					break;
6458 				frag = frag->next;
6459 			} while (1);
6460 
6461 			size = round_up(sum + sizeof(u32), sizeof(u64));
6462 			raw->size = size - sizeof(u32);
6463 			frag->pad = raw->size - sum;
6464 		} else {
6465 			size = sizeof(u64);
6466 		}
6467 
6468 		header->size += size;
6469 	}
6470 
6471 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6472 		int size = sizeof(u64); /* nr */
6473 		if (data->br_stack) {
6474 			size += data->br_stack->nr
6475 			      * sizeof(struct perf_branch_entry);
6476 		}
6477 		header->size += size;
6478 	}
6479 
6480 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6481 		perf_sample_regs_user(&data->regs_user, regs,
6482 				      &data->regs_user_copy);
6483 
6484 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6485 		/* regs dump ABI info */
6486 		int size = sizeof(u64);
6487 
6488 		if (data->regs_user.regs) {
6489 			u64 mask = event->attr.sample_regs_user;
6490 			size += hweight64(mask) * sizeof(u64);
6491 		}
6492 
6493 		header->size += size;
6494 	}
6495 
6496 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6497 		/*
6498 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6499 		 * processed as the last one or have additional check added
6500 		 * in case new sample type is added, because we could eat
6501 		 * up the rest of the sample size.
6502 		 */
6503 		u16 stack_size = event->attr.sample_stack_user;
6504 		u16 size = sizeof(u64);
6505 
6506 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6507 						     data->regs_user.regs);
6508 
6509 		/*
6510 		 * If there is something to dump, add space for the dump
6511 		 * itself and for the field that tells the dynamic size,
6512 		 * which is how many have been actually dumped.
6513 		 */
6514 		if (stack_size)
6515 			size += sizeof(u64) + stack_size;
6516 
6517 		data->stack_user_size = stack_size;
6518 		header->size += size;
6519 	}
6520 
6521 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6522 		/* regs dump ABI info */
6523 		int size = sizeof(u64);
6524 
6525 		perf_sample_regs_intr(&data->regs_intr, regs);
6526 
6527 		if (data->regs_intr.regs) {
6528 			u64 mask = event->attr.sample_regs_intr;
6529 
6530 			size += hweight64(mask) * sizeof(u64);
6531 		}
6532 
6533 		header->size += size;
6534 	}
6535 
6536 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6537 		data->phys_addr = perf_virt_to_phys(data->addr);
6538 }
6539 
6540 static __always_inline int
6541 __perf_event_output(struct perf_event *event,
6542 		    struct perf_sample_data *data,
6543 		    struct pt_regs *regs,
6544 		    int (*output_begin)(struct perf_output_handle *,
6545 					struct perf_event *,
6546 					unsigned int))
6547 {
6548 	struct perf_output_handle handle;
6549 	struct perf_event_header header;
6550 	int err;
6551 
6552 	/* protect the callchain buffers */
6553 	rcu_read_lock();
6554 
6555 	perf_prepare_sample(&header, data, event, regs);
6556 
6557 	err = output_begin(&handle, event, header.size);
6558 	if (err)
6559 		goto exit;
6560 
6561 	perf_output_sample(&handle, &header, data, event);
6562 
6563 	perf_output_end(&handle);
6564 
6565 exit:
6566 	rcu_read_unlock();
6567 	return err;
6568 }
6569 
6570 void
6571 perf_event_output_forward(struct perf_event *event,
6572 			 struct perf_sample_data *data,
6573 			 struct pt_regs *regs)
6574 {
6575 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6576 }
6577 
6578 void
6579 perf_event_output_backward(struct perf_event *event,
6580 			   struct perf_sample_data *data,
6581 			   struct pt_regs *regs)
6582 {
6583 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6584 }
6585 
6586 int
6587 perf_event_output(struct perf_event *event,
6588 		  struct perf_sample_data *data,
6589 		  struct pt_regs *regs)
6590 {
6591 	return __perf_event_output(event, data, regs, perf_output_begin);
6592 }
6593 
6594 /*
6595  * read event_id
6596  */
6597 
6598 struct perf_read_event {
6599 	struct perf_event_header	header;
6600 
6601 	u32				pid;
6602 	u32				tid;
6603 };
6604 
6605 static void
6606 perf_event_read_event(struct perf_event *event,
6607 			struct task_struct *task)
6608 {
6609 	struct perf_output_handle handle;
6610 	struct perf_sample_data sample;
6611 	struct perf_read_event read_event = {
6612 		.header = {
6613 			.type = PERF_RECORD_READ,
6614 			.misc = 0,
6615 			.size = sizeof(read_event) + event->read_size,
6616 		},
6617 		.pid = perf_event_pid(event, task),
6618 		.tid = perf_event_tid(event, task),
6619 	};
6620 	int ret;
6621 
6622 	perf_event_header__init_id(&read_event.header, &sample, event);
6623 	ret = perf_output_begin(&handle, event, read_event.header.size);
6624 	if (ret)
6625 		return;
6626 
6627 	perf_output_put(&handle, read_event);
6628 	perf_output_read(&handle, event);
6629 	perf_event__output_id_sample(event, &handle, &sample);
6630 
6631 	perf_output_end(&handle);
6632 }
6633 
6634 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6635 
6636 static void
6637 perf_iterate_ctx(struct perf_event_context *ctx,
6638 		   perf_iterate_f output,
6639 		   void *data, bool all)
6640 {
6641 	struct perf_event *event;
6642 
6643 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6644 		if (!all) {
6645 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6646 				continue;
6647 			if (!event_filter_match(event))
6648 				continue;
6649 		}
6650 
6651 		output(event, data);
6652 	}
6653 }
6654 
6655 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6656 {
6657 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6658 	struct perf_event *event;
6659 
6660 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6661 		/*
6662 		 * Skip events that are not fully formed yet; ensure that
6663 		 * if we observe event->ctx, both event and ctx will be
6664 		 * complete enough. See perf_install_in_context().
6665 		 */
6666 		if (!smp_load_acquire(&event->ctx))
6667 			continue;
6668 
6669 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6670 			continue;
6671 		if (!event_filter_match(event))
6672 			continue;
6673 		output(event, data);
6674 	}
6675 }
6676 
6677 /*
6678  * Iterate all events that need to receive side-band events.
6679  *
6680  * For new callers; ensure that account_pmu_sb_event() includes
6681  * your event, otherwise it might not get delivered.
6682  */
6683 static void
6684 perf_iterate_sb(perf_iterate_f output, void *data,
6685 	       struct perf_event_context *task_ctx)
6686 {
6687 	struct perf_event_context *ctx;
6688 	int ctxn;
6689 
6690 	rcu_read_lock();
6691 	preempt_disable();
6692 
6693 	/*
6694 	 * If we have task_ctx != NULL we only notify the task context itself.
6695 	 * The task_ctx is set only for EXIT events before releasing task
6696 	 * context.
6697 	 */
6698 	if (task_ctx) {
6699 		perf_iterate_ctx(task_ctx, output, data, false);
6700 		goto done;
6701 	}
6702 
6703 	perf_iterate_sb_cpu(output, data);
6704 
6705 	for_each_task_context_nr(ctxn) {
6706 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6707 		if (ctx)
6708 			perf_iterate_ctx(ctx, output, data, false);
6709 	}
6710 done:
6711 	preempt_enable();
6712 	rcu_read_unlock();
6713 }
6714 
6715 /*
6716  * Clear all file-based filters at exec, they'll have to be
6717  * re-instated when/if these objects are mmapped again.
6718  */
6719 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6720 {
6721 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6722 	struct perf_addr_filter *filter;
6723 	unsigned int restart = 0, count = 0;
6724 	unsigned long flags;
6725 
6726 	if (!has_addr_filter(event))
6727 		return;
6728 
6729 	raw_spin_lock_irqsave(&ifh->lock, flags);
6730 	list_for_each_entry(filter, &ifh->list, entry) {
6731 		if (filter->path.dentry) {
6732 			event->addr_filter_ranges[count].start = 0;
6733 			event->addr_filter_ranges[count].size = 0;
6734 			restart++;
6735 		}
6736 
6737 		count++;
6738 	}
6739 
6740 	if (restart)
6741 		event->addr_filters_gen++;
6742 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6743 
6744 	if (restart)
6745 		perf_event_stop(event, 1);
6746 }
6747 
6748 void perf_event_exec(void)
6749 {
6750 	struct perf_event_context *ctx;
6751 	int ctxn;
6752 
6753 	rcu_read_lock();
6754 	for_each_task_context_nr(ctxn) {
6755 		ctx = current->perf_event_ctxp[ctxn];
6756 		if (!ctx)
6757 			continue;
6758 
6759 		perf_event_enable_on_exec(ctxn);
6760 
6761 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6762 				   true);
6763 	}
6764 	rcu_read_unlock();
6765 }
6766 
6767 struct remote_output {
6768 	struct ring_buffer	*rb;
6769 	int			err;
6770 };
6771 
6772 static void __perf_event_output_stop(struct perf_event *event, void *data)
6773 {
6774 	struct perf_event *parent = event->parent;
6775 	struct remote_output *ro = data;
6776 	struct ring_buffer *rb = ro->rb;
6777 	struct stop_event_data sd = {
6778 		.event	= event,
6779 	};
6780 
6781 	if (!has_aux(event))
6782 		return;
6783 
6784 	if (!parent)
6785 		parent = event;
6786 
6787 	/*
6788 	 * In case of inheritance, it will be the parent that links to the
6789 	 * ring-buffer, but it will be the child that's actually using it.
6790 	 *
6791 	 * We are using event::rb to determine if the event should be stopped,
6792 	 * however this may race with ring_buffer_attach() (through set_output),
6793 	 * which will make us skip the event that actually needs to be stopped.
6794 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6795 	 * its rb pointer.
6796 	 */
6797 	if (rcu_dereference(parent->rb) == rb)
6798 		ro->err = __perf_event_stop(&sd);
6799 }
6800 
6801 static int __perf_pmu_output_stop(void *info)
6802 {
6803 	struct perf_event *event = info;
6804 	struct pmu *pmu = event->pmu;
6805 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6806 	struct remote_output ro = {
6807 		.rb	= event->rb,
6808 	};
6809 
6810 	rcu_read_lock();
6811 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6812 	if (cpuctx->task_ctx)
6813 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6814 				   &ro, false);
6815 	rcu_read_unlock();
6816 
6817 	return ro.err;
6818 }
6819 
6820 static void perf_pmu_output_stop(struct perf_event *event)
6821 {
6822 	struct perf_event *iter;
6823 	int err, cpu;
6824 
6825 restart:
6826 	rcu_read_lock();
6827 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6828 		/*
6829 		 * For per-CPU events, we need to make sure that neither they
6830 		 * nor their children are running; for cpu==-1 events it's
6831 		 * sufficient to stop the event itself if it's active, since
6832 		 * it can't have children.
6833 		 */
6834 		cpu = iter->cpu;
6835 		if (cpu == -1)
6836 			cpu = READ_ONCE(iter->oncpu);
6837 
6838 		if (cpu == -1)
6839 			continue;
6840 
6841 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6842 		if (err == -EAGAIN) {
6843 			rcu_read_unlock();
6844 			goto restart;
6845 		}
6846 	}
6847 	rcu_read_unlock();
6848 }
6849 
6850 /*
6851  * task tracking -- fork/exit
6852  *
6853  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6854  */
6855 
6856 struct perf_task_event {
6857 	struct task_struct		*task;
6858 	struct perf_event_context	*task_ctx;
6859 
6860 	struct {
6861 		struct perf_event_header	header;
6862 
6863 		u32				pid;
6864 		u32				ppid;
6865 		u32				tid;
6866 		u32				ptid;
6867 		u64				time;
6868 	} event_id;
6869 };
6870 
6871 static int perf_event_task_match(struct perf_event *event)
6872 {
6873 	return event->attr.comm  || event->attr.mmap ||
6874 	       event->attr.mmap2 || event->attr.mmap_data ||
6875 	       event->attr.task;
6876 }
6877 
6878 static void perf_event_task_output(struct perf_event *event,
6879 				   void *data)
6880 {
6881 	struct perf_task_event *task_event = data;
6882 	struct perf_output_handle handle;
6883 	struct perf_sample_data	sample;
6884 	struct task_struct *task = task_event->task;
6885 	int ret, size = task_event->event_id.header.size;
6886 
6887 	if (!perf_event_task_match(event))
6888 		return;
6889 
6890 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6891 
6892 	ret = perf_output_begin(&handle, event,
6893 				task_event->event_id.header.size);
6894 	if (ret)
6895 		goto out;
6896 
6897 	task_event->event_id.pid = perf_event_pid(event, task);
6898 	task_event->event_id.ppid = perf_event_pid(event, current);
6899 
6900 	task_event->event_id.tid = perf_event_tid(event, task);
6901 	task_event->event_id.ptid = perf_event_tid(event, current);
6902 
6903 	task_event->event_id.time = perf_event_clock(event);
6904 
6905 	perf_output_put(&handle, task_event->event_id);
6906 
6907 	perf_event__output_id_sample(event, &handle, &sample);
6908 
6909 	perf_output_end(&handle);
6910 out:
6911 	task_event->event_id.header.size = size;
6912 }
6913 
6914 static void perf_event_task(struct task_struct *task,
6915 			      struct perf_event_context *task_ctx,
6916 			      int new)
6917 {
6918 	struct perf_task_event task_event;
6919 
6920 	if (!atomic_read(&nr_comm_events) &&
6921 	    !atomic_read(&nr_mmap_events) &&
6922 	    !atomic_read(&nr_task_events))
6923 		return;
6924 
6925 	task_event = (struct perf_task_event){
6926 		.task	  = task,
6927 		.task_ctx = task_ctx,
6928 		.event_id    = {
6929 			.header = {
6930 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6931 				.misc = 0,
6932 				.size = sizeof(task_event.event_id),
6933 			},
6934 			/* .pid  */
6935 			/* .ppid */
6936 			/* .tid  */
6937 			/* .ptid */
6938 			/* .time */
6939 		},
6940 	};
6941 
6942 	perf_iterate_sb(perf_event_task_output,
6943 		       &task_event,
6944 		       task_ctx);
6945 }
6946 
6947 void perf_event_fork(struct task_struct *task)
6948 {
6949 	perf_event_task(task, NULL, 1);
6950 	perf_event_namespaces(task);
6951 }
6952 
6953 /*
6954  * comm tracking
6955  */
6956 
6957 struct perf_comm_event {
6958 	struct task_struct	*task;
6959 	char			*comm;
6960 	int			comm_size;
6961 
6962 	struct {
6963 		struct perf_event_header	header;
6964 
6965 		u32				pid;
6966 		u32				tid;
6967 	} event_id;
6968 };
6969 
6970 static int perf_event_comm_match(struct perf_event *event)
6971 {
6972 	return event->attr.comm;
6973 }
6974 
6975 static void perf_event_comm_output(struct perf_event *event,
6976 				   void *data)
6977 {
6978 	struct perf_comm_event *comm_event = data;
6979 	struct perf_output_handle handle;
6980 	struct perf_sample_data sample;
6981 	int size = comm_event->event_id.header.size;
6982 	int ret;
6983 
6984 	if (!perf_event_comm_match(event))
6985 		return;
6986 
6987 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6988 	ret = perf_output_begin(&handle, event,
6989 				comm_event->event_id.header.size);
6990 
6991 	if (ret)
6992 		goto out;
6993 
6994 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6995 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6996 
6997 	perf_output_put(&handle, comm_event->event_id);
6998 	__output_copy(&handle, comm_event->comm,
6999 				   comm_event->comm_size);
7000 
7001 	perf_event__output_id_sample(event, &handle, &sample);
7002 
7003 	perf_output_end(&handle);
7004 out:
7005 	comm_event->event_id.header.size = size;
7006 }
7007 
7008 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7009 {
7010 	char comm[TASK_COMM_LEN];
7011 	unsigned int size;
7012 
7013 	memset(comm, 0, sizeof(comm));
7014 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7015 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7016 
7017 	comm_event->comm = comm;
7018 	comm_event->comm_size = size;
7019 
7020 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7021 
7022 	perf_iterate_sb(perf_event_comm_output,
7023 		       comm_event,
7024 		       NULL);
7025 }
7026 
7027 void perf_event_comm(struct task_struct *task, bool exec)
7028 {
7029 	struct perf_comm_event comm_event;
7030 
7031 	if (!atomic_read(&nr_comm_events))
7032 		return;
7033 
7034 	comm_event = (struct perf_comm_event){
7035 		.task	= task,
7036 		/* .comm      */
7037 		/* .comm_size */
7038 		.event_id  = {
7039 			.header = {
7040 				.type = PERF_RECORD_COMM,
7041 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7042 				/* .size */
7043 			},
7044 			/* .pid */
7045 			/* .tid */
7046 		},
7047 	};
7048 
7049 	perf_event_comm_event(&comm_event);
7050 }
7051 
7052 /*
7053  * namespaces tracking
7054  */
7055 
7056 struct perf_namespaces_event {
7057 	struct task_struct		*task;
7058 
7059 	struct {
7060 		struct perf_event_header	header;
7061 
7062 		u32				pid;
7063 		u32				tid;
7064 		u64				nr_namespaces;
7065 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7066 	} event_id;
7067 };
7068 
7069 static int perf_event_namespaces_match(struct perf_event *event)
7070 {
7071 	return event->attr.namespaces;
7072 }
7073 
7074 static void perf_event_namespaces_output(struct perf_event *event,
7075 					 void *data)
7076 {
7077 	struct perf_namespaces_event *namespaces_event = data;
7078 	struct perf_output_handle handle;
7079 	struct perf_sample_data sample;
7080 	u16 header_size = namespaces_event->event_id.header.size;
7081 	int ret;
7082 
7083 	if (!perf_event_namespaces_match(event))
7084 		return;
7085 
7086 	perf_event_header__init_id(&namespaces_event->event_id.header,
7087 				   &sample, event);
7088 	ret = perf_output_begin(&handle, event,
7089 				namespaces_event->event_id.header.size);
7090 	if (ret)
7091 		goto out;
7092 
7093 	namespaces_event->event_id.pid = perf_event_pid(event,
7094 							namespaces_event->task);
7095 	namespaces_event->event_id.tid = perf_event_tid(event,
7096 							namespaces_event->task);
7097 
7098 	perf_output_put(&handle, namespaces_event->event_id);
7099 
7100 	perf_event__output_id_sample(event, &handle, &sample);
7101 
7102 	perf_output_end(&handle);
7103 out:
7104 	namespaces_event->event_id.header.size = header_size;
7105 }
7106 
7107 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7108 				   struct task_struct *task,
7109 				   const struct proc_ns_operations *ns_ops)
7110 {
7111 	struct path ns_path;
7112 	struct inode *ns_inode;
7113 	void *error;
7114 
7115 	error = ns_get_path(&ns_path, task, ns_ops);
7116 	if (!error) {
7117 		ns_inode = ns_path.dentry->d_inode;
7118 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7119 		ns_link_info->ino = ns_inode->i_ino;
7120 		path_put(&ns_path);
7121 	}
7122 }
7123 
7124 void perf_event_namespaces(struct task_struct *task)
7125 {
7126 	struct perf_namespaces_event namespaces_event;
7127 	struct perf_ns_link_info *ns_link_info;
7128 
7129 	if (!atomic_read(&nr_namespaces_events))
7130 		return;
7131 
7132 	namespaces_event = (struct perf_namespaces_event){
7133 		.task	= task,
7134 		.event_id  = {
7135 			.header = {
7136 				.type = PERF_RECORD_NAMESPACES,
7137 				.misc = 0,
7138 				.size = sizeof(namespaces_event.event_id),
7139 			},
7140 			/* .pid */
7141 			/* .tid */
7142 			.nr_namespaces = NR_NAMESPACES,
7143 			/* .link_info[NR_NAMESPACES] */
7144 		},
7145 	};
7146 
7147 	ns_link_info = namespaces_event.event_id.link_info;
7148 
7149 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7150 			       task, &mntns_operations);
7151 
7152 #ifdef CONFIG_USER_NS
7153 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7154 			       task, &userns_operations);
7155 #endif
7156 #ifdef CONFIG_NET_NS
7157 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7158 			       task, &netns_operations);
7159 #endif
7160 #ifdef CONFIG_UTS_NS
7161 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7162 			       task, &utsns_operations);
7163 #endif
7164 #ifdef CONFIG_IPC_NS
7165 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7166 			       task, &ipcns_operations);
7167 #endif
7168 #ifdef CONFIG_PID_NS
7169 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7170 			       task, &pidns_operations);
7171 #endif
7172 #ifdef CONFIG_CGROUPS
7173 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7174 			       task, &cgroupns_operations);
7175 #endif
7176 
7177 	perf_iterate_sb(perf_event_namespaces_output,
7178 			&namespaces_event,
7179 			NULL);
7180 }
7181 
7182 /*
7183  * mmap tracking
7184  */
7185 
7186 struct perf_mmap_event {
7187 	struct vm_area_struct	*vma;
7188 
7189 	const char		*file_name;
7190 	int			file_size;
7191 	int			maj, min;
7192 	u64			ino;
7193 	u64			ino_generation;
7194 	u32			prot, flags;
7195 
7196 	struct {
7197 		struct perf_event_header	header;
7198 
7199 		u32				pid;
7200 		u32				tid;
7201 		u64				start;
7202 		u64				len;
7203 		u64				pgoff;
7204 	} event_id;
7205 };
7206 
7207 static int perf_event_mmap_match(struct perf_event *event,
7208 				 void *data)
7209 {
7210 	struct perf_mmap_event *mmap_event = data;
7211 	struct vm_area_struct *vma = mmap_event->vma;
7212 	int executable = vma->vm_flags & VM_EXEC;
7213 
7214 	return (!executable && event->attr.mmap_data) ||
7215 	       (executable && (event->attr.mmap || event->attr.mmap2));
7216 }
7217 
7218 static void perf_event_mmap_output(struct perf_event *event,
7219 				   void *data)
7220 {
7221 	struct perf_mmap_event *mmap_event = data;
7222 	struct perf_output_handle handle;
7223 	struct perf_sample_data sample;
7224 	int size = mmap_event->event_id.header.size;
7225 	u32 type = mmap_event->event_id.header.type;
7226 	int ret;
7227 
7228 	if (!perf_event_mmap_match(event, data))
7229 		return;
7230 
7231 	if (event->attr.mmap2) {
7232 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7233 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7234 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7235 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7236 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7237 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7238 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7239 	}
7240 
7241 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7242 	ret = perf_output_begin(&handle, event,
7243 				mmap_event->event_id.header.size);
7244 	if (ret)
7245 		goto out;
7246 
7247 	mmap_event->event_id.pid = perf_event_pid(event, current);
7248 	mmap_event->event_id.tid = perf_event_tid(event, current);
7249 
7250 	perf_output_put(&handle, mmap_event->event_id);
7251 
7252 	if (event->attr.mmap2) {
7253 		perf_output_put(&handle, mmap_event->maj);
7254 		perf_output_put(&handle, mmap_event->min);
7255 		perf_output_put(&handle, mmap_event->ino);
7256 		perf_output_put(&handle, mmap_event->ino_generation);
7257 		perf_output_put(&handle, mmap_event->prot);
7258 		perf_output_put(&handle, mmap_event->flags);
7259 	}
7260 
7261 	__output_copy(&handle, mmap_event->file_name,
7262 				   mmap_event->file_size);
7263 
7264 	perf_event__output_id_sample(event, &handle, &sample);
7265 
7266 	perf_output_end(&handle);
7267 out:
7268 	mmap_event->event_id.header.size = size;
7269 	mmap_event->event_id.header.type = type;
7270 }
7271 
7272 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7273 {
7274 	struct vm_area_struct *vma = mmap_event->vma;
7275 	struct file *file = vma->vm_file;
7276 	int maj = 0, min = 0;
7277 	u64 ino = 0, gen = 0;
7278 	u32 prot = 0, flags = 0;
7279 	unsigned int size;
7280 	char tmp[16];
7281 	char *buf = NULL;
7282 	char *name;
7283 
7284 	if (vma->vm_flags & VM_READ)
7285 		prot |= PROT_READ;
7286 	if (vma->vm_flags & VM_WRITE)
7287 		prot |= PROT_WRITE;
7288 	if (vma->vm_flags & VM_EXEC)
7289 		prot |= PROT_EXEC;
7290 
7291 	if (vma->vm_flags & VM_MAYSHARE)
7292 		flags = MAP_SHARED;
7293 	else
7294 		flags = MAP_PRIVATE;
7295 
7296 	if (vma->vm_flags & VM_DENYWRITE)
7297 		flags |= MAP_DENYWRITE;
7298 	if (vma->vm_flags & VM_MAYEXEC)
7299 		flags |= MAP_EXECUTABLE;
7300 	if (vma->vm_flags & VM_LOCKED)
7301 		flags |= MAP_LOCKED;
7302 	if (vma->vm_flags & VM_HUGETLB)
7303 		flags |= MAP_HUGETLB;
7304 
7305 	if (file) {
7306 		struct inode *inode;
7307 		dev_t dev;
7308 
7309 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7310 		if (!buf) {
7311 			name = "//enomem";
7312 			goto cpy_name;
7313 		}
7314 		/*
7315 		 * d_path() works from the end of the rb backwards, so we
7316 		 * need to add enough zero bytes after the string to handle
7317 		 * the 64bit alignment we do later.
7318 		 */
7319 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7320 		if (IS_ERR(name)) {
7321 			name = "//toolong";
7322 			goto cpy_name;
7323 		}
7324 		inode = file_inode(vma->vm_file);
7325 		dev = inode->i_sb->s_dev;
7326 		ino = inode->i_ino;
7327 		gen = inode->i_generation;
7328 		maj = MAJOR(dev);
7329 		min = MINOR(dev);
7330 
7331 		goto got_name;
7332 	} else {
7333 		if (vma->vm_ops && vma->vm_ops->name) {
7334 			name = (char *) vma->vm_ops->name(vma);
7335 			if (name)
7336 				goto cpy_name;
7337 		}
7338 
7339 		name = (char *)arch_vma_name(vma);
7340 		if (name)
7341 			goto cpy_name;
7342 
7343 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7344 				vma->vm_end >= vma->vm_mm->brk) {
7345 			name = "[heap]";
7346 			goto cpy_name;
7347 		}
7348 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7349 				vma->vm_end >= vma->vm_mm->start_stack) {
7350 			name = "[stack]";
7351 			goto cpy_name;
7352 		}
7353 
7354 		name = "//anon";
7355 		goto cpy_name;
7356 	}
7357 
7358 cpy_name:
7359 	strlcpy(tmp, name, sizeof(tmp));
7360 	name = tmp;
7361 got_name:
7362 	/*
7363 	 * Since our buffer works in 8 byte units we need to align our string
7364 	 * size to a multiple of 8. However, we must guarantee the tail end is
7365 	 * zero'd out to avoid leaking random bits to userspace.
7366 	 */
7367 	size = strlen(name)+1;
7368 	while (!IS_ALIGNED(size, sizeof(u64)))
7369 		name[size++] = '\0';
7370 
7371 	mmap_event->file_name = name;
7372 	mmap_event->file_size = size;
7373 	mmap_event->maj = maj;
7374 	mmap_event->min = min;
7375 	mmap_event->ino = ino;
7376 	mmap_event->ino_generation = gen;
7377 	mmap_event->prot = prot;
7378 	mmap_event->flags = flags;
7379 
7380 	if (!(vma->vm_flags & VM_EXEC))
7381 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7382 
7383 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7384 
7385 	perf_iterate_sb(perf_event_mmap_output,
7386 		       mmap_event,
7387 		       NULL);
7388 
7389 	kfree(buf);
7390 }
7391 
7392 /*
7393  * Check whether inode and address range match filter criteria.
7394  */
7395 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7396 				     struct file *file, unsigned long offset,
7397 				     unsigned long size)
7398 {
7399 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7400 	if (!filter->path.dentry)
7401 		return false;
7402 
7403 	if (d_inode(filter->path.dentry) != file_inode(file))
7404 		return false;
7405 
7406 	if (filter->offset > offset + size)
7407 		return false;
7408 
7409 	if (filter->offset + filter->size < offset)
7410 		return false;
7411 
7412 	return true;
7413 }
7414 
7415 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7416 					struct vm_area_struct *vma,
7417 					struct perf_addr_filter_range *fr)
7418 {
7419 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7420 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7421 	struct file *file = vma->vm_file;
7422 
7423 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7424 		return false;
7425 
7426 	if (filter->offset < off) {
7427 		fr->start = vma->vm_start;
7428 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7429 	} else {
7430 		fr->start = vma->vm_start + filter->offset - off;
7431 		fr->size = min(vma->vm_end - fr->start, filter->size);
7432 	}
7433 
7434 	return true;
7435 }
7436 
7437 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7438 {
7439 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7440 	struct vm_area_struct *vma = data;
7441 	struct perf_addr_filter *filter;
7442 	unsigned int restart = 0, count = 0;
7443 	unsigned long flags;
7444 
7445 	if (!has_addr_filter(event))
7446 		return;
7447 
7448 	if (!vma->vm_file)
7449 		return;
7450 
7451 	raw_spin_lock_irqsave(&ifh->lock, flags);
7452 	list_for_each_entry(filter, &ifh->list, entry) {
7453 		if (perf_addr_filter_vma_adjust(filter, vma,
7454 						&event->addr_filter_ranges[count]))
7455 			restart++;
7456 
7457 		count++;
7458 	}
7459 
7460 	if (restart)
7461 		event->addr_filters_gen++;
7462 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7463 
7464 	if (restart)
7465 		perf_event_stop(event, 1);
7466 }
7467 
7468 /*
7469  * Adjust all task's events' filters to the new vma
7470  */
7471 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7472 {
7473 	struct perf_event_context *ctx;
7474 	int ctxn;
7475 
7476 	/*
7477 	 * Data tracing isn't supported yet and as such there is no need
7478 	 * to keep track of anything that isn't related to executable code:
7479 	 */
7480 	if (!(vma->vm_flags & VM_EXEC))
7481 		return;
7482 
7483 	rcu_read_lock();
7484 	for_each_task_context_nr(ctxn) {
7485 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7486 		if (!ctx)
7487 			continue;
7488 
7489 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7490 	}
7491 	rcu_read_unlock();
7492 }
7493 
7494 void perf_event_mmap(struct vm_area_struct *vma)
7495 {
7496 	struct perf_mmap_event mmap_event;
7497 
7498 	if (!atomic_read(&nr_mmap_events))
7499 		return;
7500 
7501 	mmap_event = (struct perf_mmap_event){
7502 		.vma	= vma,
7503 		/* .file_name */
7504 		/* .file_size */
7505 		.event_id  = {
7506 			.header = {
7507 				.type = PERF_RECORD_MMAP,
7508 				.misc = PERF_RECORD_MISC_USER,
7509 				/* .size */
7510 			},
7511 			/* .pid */
7512 			/* .tid */
7513 			.start  = vma->vm_start,
7514 			.len    = vma->vm_end - vma->vm_start,
7515 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7516 		},
7517 		/* .maj (attr_mmap2 only) */
7518 		/* .min (attr_mmap2 only) */
7519 		/* .ino (attr_mmap2 only) */
7520 		/* .ino_generation (attr_mmap2 only) */
7521 		/* .prot (attr_mmap2 only) */
7522 		/* .flags (attr_mmap2 only) */
7523 	};
7524 
7525 	perf_addr_filters_adjust(vma);
7526 	perf_event_mmap_event(&mmap_event);
7527 }
7528 
7529 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7530 			  unsigned long size, u64 flags)
7531 {
7532 	struct perf_output_handle handle;
7533 	struct perf_sample_data sample;
7534 	struct perf_aux_event {
7535 		struct perf_event_header	header;
7536 		u64				offset;
7537 		u64				size;
7538 		u64				flags;
7539 	} rec = {
7540 		.header = {
7541 			.type = PERF_RECORD_AUX,
7542 			.misc = 0,
7543 			.size = sizeof(rec),
7544 		},
7545 		.offset		= head,
7546 		.size		= size,
7547 		.flags		= flags,
7548 	};
7549 	int ret;
7550 
7551 	perf_event_header__init_id(&rec.header, &sample, event);
7552 	ret = perf_output_begin(&handle, event, rec.header.size);
7553 
7554 	if (ret)
7555 		return;
7556 
7557 	perf_output_put(&handle, rec);
7558 	perf_event__output_id_sample(event, &handle, &sample);
7559 
7560 	perf_output_end(&handle);
7561 }
7562 
7563 /*
7564  * Lost/dropped samples logging
7565  */
7566 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7567 {
7568 	struct perf_output_handle handle;
7569 	struct perf_sample_data sample;
7570 	int ret;
7571 
7572 	struct {
7573 		struct perf_event_header	header;
7574 		u64				lost;
7575 	} lost_samples_event = {
7576 		.header = {
7577 			.type = PERF_RECORD_LOST_SAMPLES,
7578 			.misc = 0,
7579 			.size = sizeof(lost_samples_event),
7580 		},
7581 		.lost		= lost,
7582 	};
7583 
7584 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7585 
7586 	ret = perf_output_begin(&handle, event,
7587 				lost_samples_event.header.size);
7588 	if (ret)
7589 		return;
7590 
7591 	perf_output_put(&handle, lost_samples_event);
7592 	perf_event__output_id_sample(event, &handle, &sample);
7593 	perf_output_end(&handle);
7594 }
7595 
7596 /*
7597  * context_switch tracking
7598  */
7599 
7600 struct perf_switch_event {
7601 	struct task_struct	*task;
7602 	struct task_struct	*next_prev;
7603 
7604 	struct {
7605 		struct perf_event_header	header;
7606 		u32				next_prev_pid;
7607 		u32				next_prev_tid;
7608 	} event_id;
7609 };
7610 
7611 static int perf_event_switch_match(struct perf_event *event)
7612 {
7613 	return event->attr.context_switch;
7614 }
7615 
7616 static void perf_event_switch_output(struct perf_event *event, void *data)
7617 {
7618 	struct perf_switch_event *se = data;
7619 	struct perf_output_handle handle;
7620 	struct perf_sample_data sample;
7621 	int ret;
7622 
7623 	if (!perf_event_switch_match(event))
7624 		return;
7625 
7626 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7627 	if (event->ctx->task) {
7628 		se->event_id.header.type = PERF_RECORD_SWITCH;
7629 		se->event_id.header.size = sizeof(se->event_id.header);
7630 	} else {
7631 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7632 		se->event_id.header.size = sizeof(se->event_id);
7633 		se->event_id.next_prev_pid =
7634 					perf_event_pid(event, se->next_prev);
7635 		se->event_id.next_prev_tid =
7636 					perf_event_tid(event, se->next_prev);
7637 	}
7638 
7639 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7640 
7641 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7642 	if (ret)
7643 		return;
7644 
7645 	if (event->ctx->task)
7646 		perf_output_put(&handle, se->event_id.header);
7647 	else
7648 		perf_output_put(&handle, se->event_id);
7649 
7650 	perf_event__output_id_sample(event, &handle, &sample);
7651 
7652 	perf_output_end(&handle);
7653 }
7654 
7655 static void perf_event_switch(struct task_struct *task,
7656 			      struct task_struct *next_prev, bool sched_in)
7657 {
7658 	struct perf_switch_event switch_event;
7659 
7660 	/* N.B. caller checks nr_switch_events != 0 */
7661 
7662 	switch_event = (struct perf_switch_event){
7663 		.task		= task,
7664 		.next_prev	= next_prev,
7665 		.event_id	= {
7666 			.header = {
7667 				/* .type */
7668 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7669 				/* .size */
7670 			},
7671 			/* .next_prev_pid */
7672 			/* .next_prev_tid */
7673 		},
7674 	};
7675 
7676 	if (!sched_in && task->state == TASK_RUNNING)
7677 		switch_event.event_id.header.misc |=
7678 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7679 
7680 	perf_iterate_sb(perf_event_switch_output,
7681 		       &switch_event,
7682 		       NULL);
7683 }
7684 
7685 /*
7686  * IRQ throttle logging
7687  */
7688 
7689 static void perf_log_throttle(struct perf_event *event, int enable)
7690 {
7691 	struct perf_output_handle handle;
7692 	struct perf_sample_data sample;
7693 	int ret;
7694 
7695 	struct {
7696 		struct perf_event_header	header;
7697 		u64				time;
7698 		u64				id;
7699 		u64				stream_id;
7700 	} throttle_event = {
7701 		.header = {
7702 			.type = PERF_RECORD_THROTTLE,
7703 			.misc = 0,
7704 			.size = sizeof(throttle_event),
7705 		},
7706 		.time		= perf_event_clock(event),
7707 		.id		= primary_event_id(event),
7708 		.stream_id	= event->id,
7709 	};
7710 
7711 	if (enable)
7712 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7713 
7714 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7715 
7716 	ret = perf_output_begin(&handle, event,
7717 				throttle_event.header.size);
7718 	if (ret)
7719 		return;
7720 
7721 	perf_output_put(&handle, throttle_event);
7722 	perf_event__output_id_sample(event, &handle, &sample);
7723 	perf_output_end(&handle);
7724 }
7725 
7726 /*
7727  * ksymbol register/unregister tracking
7728  */
7729 
7730 struct perf_ksymbol_event {
7731 	const char	*name;
7732 	int		name_len;
7733 	struct {
7734 		struct perf_event_header        header;
7735 		u64				addr;
7736 		u32				len;
7737 		u16				ksym_type;
7738 		u16				flags;
7739 	} event_id;
7740 };
7741 
7742 static int perf_event_ksymbol_match(struct perf_event *event)
7743 {
7744 	return event->attr.ksymbol;
7745 }
7746 
7747 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7748 {
7749 	struct perf_ksymbol_event *ksymbol_event = data;
7750 	struct perf_output_handle handle;
7751 	struct perf_sample_data sample;
7752 	int ret;
7753 
7754 	if (!perf_event_ksymbol_match(event))
7755 		return;
7756 
7757 	perf_event_header__init_id(&ksymbol_event->event_id.header,
7758 				   &sample, event);
7759 	ret = perf_output_begin(&handle, event,
7760 				ksymbol_event->event_id.header.size);
7761 	if (ret)
7762 		return;
7763 
7764 	perf_output_put(&handle, ksymbol_event->event_id);
7765 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7766 	perf_event__output_id_sample(event, &handle, &sample);
7767 
7768 	perf_output_end(&handle);
7769 }
7770 
7771 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7772 			const char *sym)
7773 {
7774 	struct perf_ksymbol_event ksymbol_event;
7775 	char name[KSYM_NAME_LEN];
7776 	u16 flags = 0;
7777 	int name_len;
7778 
7779 	if (!atomic_read(&nr_ksymbol_events))
7780 		return;
7781 
7782 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7783 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7784 		goto err;
7785 
7786 	strlcpy(name, sym, KSYM_NAME_LEN);
7787 	name_len = strlen(name) + 1;
7788 	while (!IS_ALIGNED(name_len, sizeof(u64)))
7789 		name[name_len++] = '\0';
7790 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7791 
7792 	if (unregister)
7793 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7794 
7795 	ksymbol_event = (struct perf_ksymbol_event){
7796 		.name = name,
7797 		.name_len = name_len,
7798 		.event_id = {
7799 			.header = {
7800 				.type = PERF_RECORD_KSYMBOL,
7801 				.size = sizeof(ksymbol_event.event_id) +
7802 					name_len,
7803 			},
7804 			.addr = addr,
7805 			.len = len,
7806 			.ksym_type = ksym_type,
7807 			.flags = flags,
7808 		},
7809 	};
7810 
7811 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7812 	return;
7813 err:
7814 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7815 }
7816 
7817 /*
7818  * bpf program load/unload tracking
7819  */
7820 
7821 struct perf_bpf_event {
7822 	struct bpf_prog	*prog;
7823 	struct {
7824 		struct perf_event_header        header;
7825 		u16				type;
7826 		u16				flags;
7827 		u32				id;
7828 		u8				tag[BPF_TAG_SIZE];
7829 	} event_id;
7830 };
7831 
7832 static int perf_event_bpf_match(struct perf_event *event)
7833 {
7834 	return event->attr.bpf_event;
7835 }
7836 
7837 static void perf_event_bpf_output(struct perf_event *event, void *data)
7838 {
7839 	struct perf_bpf_event *bpf_event = data;
7840 	struct perf_output_handle handle;
7841 	struct perf_sample_data sample;
7842 	int ret;
7843 
7844 	if (!perf_event_bpf_match(event))
7845 		return;
7846 
7847 	perf_event_header__init_id(&bpf_event->event_id.header,
7848 				   &sample, event);
7849 	ret = perf_output_begin(&handle, event,
7850 				bpf_event->event_id.header.size);
7851 	if (ret)
7852 		return;
7853 
7854 	perf_output_put(&handle, bpf_event->event_id);
7855 	perf_event__output_id_sample(event, &handle, &sample);
7856 
7857 	perf_output_end(&handle);
7858 }
7859 
7860 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7861 					 enum perf_bpf_event_type type)
7862 {
7863 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7864 	char sym[KSYM_NAME_LEN];
7865 	int i;
7866 
7867 	if (prog->aux->func_cnt == 0) {
7868 		bpf_get_prog_name(prog, sym);
7869 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7870 				   (u64)(unsigned long)prog->bpf_func,
7871 				   prog->jited_len, unregister, sym);
7872 	} else {
7873 		for (i = 0; i < prog->aux->func_cnt; i++) {
7874 			struct bpf_prog *subprog = prog->aux->func[i];
7875 
7876 			bpf_get_prog_name(subprog, sym);
7877 			perf_event_ksymbol(
7878 				PERF_RECORD_KSYMBOL_TYPE_BPF,
7879 				(u64)(unsigned long)subprog->bpf_func,
7880 				subprog->jited_len, unregister, sym);
7881 		}
7882 	}
7883 }
7884 
7885 void perf_event_bpf_event(struct bpf_prog *prog,
7886 			  enum perf_bpf_event_type type,
7887 			  u16 flags)
7888 {
7889 	struct perf_bpf_event bpf_event;
7890 
7891 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
7892 	    type >= PERF_BPF_EVENT_MAX)
7893 		return;
7894 
7895 	switch (type) {
7896 	case PERF_BPF_EVENT_PROG_LOAD:
7897 	case PERF_BPF_EVENT_PROG_UNLOAD:
7898 		if (atomic_read(&nr_ksymbol_events))
7899 			perf_event_bpf_emit_ksymbols(prog, type);
7900 		break;
7901 	default:
7902 		break;
7903 	}
7904 
7905 	if (!atomic_read(&nr_bpf_events))
7906 		return;
7907 
7908 	bpf_event = (struct perf_bpf_event){
7909 		.prog = prog,
7910 		.event_id = {
7911 			.header = {
7912 				.type = PERF_RECORD_BPF_EVENT,
7913 				.size = sizeof(bpf_event.event_id),
7914 			},
7915 			.type = type,
7916 			.flags = flags,
7917 			.id = prog->aux->id,
7918 		},
7919 	};
7920 
7921 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7922 
7923 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7924 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7925 }
7926 
7927 void perf_event_itrace_started(struct perf_event *event)
7928 {
7929 	event->attach_state |= PERF_ATTACH_ITRACE;
7930 }
7931 
7932 static void perf_log_itrace_start(struct perf_event *event)
7933 {
7934 	struct perf_output_handle handle;
7935 	struct perf_sample_data sample;
7936 	struct perf_aux_event {
7937 		struct perf_event_header        header;
7938 		u32				pid;
7939 		u32				tid;
7940 	} rec;
7941 	int ret;
7942 
7943 	if (event->parent)
7944 		event = event->parent;
7945 
7946 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7947 	    event->attach_state & PERF_ATTACH_ITRACE)
7948 		return;
7949 
7950 	rec.header.type	= PERF_RECORD_ITRACE_START;
7951 	rec.header.misc	= 0;
7952 	rec.header.size	= sizeof(rec);
7953 	rec.pid	= perf_event_pid(event, current);
7954 	rec.tid	= perf_event_tid(event, current);
7955 
7956 	perf_event_header__init_id(&rec.header, &sample, event);
7957 	ret = perf_output_begin(&handle, event, rec.header.size);
7958 
7959 	if (ret)
7960 		return;
7961 
7962 	perf_output_put(&handle, rec);
7963 	perf_event__output_id_sample(event, &handle, &sample);
7964 
7965 	perf_output_end(&handle);
7966 }
7967 
7968 static int
7969 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7970 {
7971 	struct hw_perf_event *hwc = &event->hw;
7972 	int ret = 0;
7973 	u64 seq;
7974 
7975 	seq = __this_cpu_read(perf_throttled_seq);
7976 	if (seq != hwc->interrupts_seq) {
7977 		hwc->interrupts_seq = seq;
7978 		hwc->interrupts = 1;
7979 	} else {
7980 		hwc->interrupts++;
7981 		if (unlikely(throttle
7982 			     && hwc->interrupts >= max_samples_per_tick)) {
7983 			__this_cpu_inc(perf_throttled_count);
7984 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7985 			hwc->interrupts = MAX_INTERRUPTS;
7986 			perf_log_throttle(event, 0);
7987 			ret = 1;
7988 		}
7989 	}
7990 
7991 	if (event->attr.freq) {
7992 		u64 now = perf_clock();
7993 		s64 delta = now - hwc->freq_time_stamp;
7994 
7995 		hwc->freq_time_stamp = now;
7996 
7997 		if (delta > 0 && delta < 2*TICK_NSEC)
7998 			perf_adjust_period(event, delta, hwc->last_period, true);
7999 	}
8000 
8001 	return ret;
8002 }
8003 
8004 int perf_event_account_interrupt(struct perf_event *event)
8005 {
8006 	return __perf_event_account_interrupt(event, 1);
8007 }
8008 
8009 /*
8010  * Generic event overflow handling, sampling.
8011  */
8012 
8013 static int __perf_event_overflow(struct perf_event *event,
8014 				   int throttle, struct perf_sample_data *data,
8015 				   struct pt_regs *regs)
8016 {
8017 	int events = atomic_read(&event->event_limit);
8018 	int ret = 0;
8019 
8020 	/*
8021 	 * Non-sampling counters might still use the PMI to fold short
8022 	 * hardware counters, ignore those.
8023 	 */
8024 	if (unlikely(!is_sampling_event(event)))
8025 		return 0;
8026 
8027 	ret = __perf_event_account_interrupt(event, throttle);
8028 
8029 	/*
8030 	 * XXX event_limit might not quite work as expected on inherited
8031 	 * events
8032 	 */
8033 
8034 	event->pending_kill = POLL_IN;
8035 	if (events && atomic_dec_and_test(&event->event_limit)) {
8036 		ret = 1;
8037 		event->pending_kill = POLL_HUP;
8038 
8039 		perf_event_disable_inatomic(event);
8040 	}
8041 
8042 	READ_ONCE(event->overflow_handler)(event, data, regs);
8043 
8044 	if (*perf_event_fasync(event) && event->pending_kill) {
8045 		event->pending_wakeup = 1;
8046 		irq_work_queue(&event->pending);
8047 	}
8048 
8049 	return ret;
8050 }
8051 
8052 int perf_event_overflow(struct perf_event *event,
8053 			  struct perf_sample_data *data,
8054 			  struct pt_regs *regs)
8055 {
8056 	return __perf_event_overflow(event, 1, data, regs);
8057 }
8058 
8059 /*
8060  * Generic software event infrastructure
8061  */
8062 
8063 struct swevent_htable {
8064 	struct swevent_hlist		*swevent_hlist;
8065 	struct mutex			hlist_mutex;
8066 	int				hlist_refcount;
8067 
8068 	/* Recursion avoidance in each contexts */
8069 	int				recursion[PERF_NR_CONTEXTS];
8070 };
8071 
8072 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8073 
8074 /*
8075  * We directly increment event->count and keep a second value in
8076  * event->hw.period_left to count intervals. This period event
8077  * is kept in the range [-sample_period, 0] so that we can use the
8078  * sign as trigger.
8079  */
8080 
8081 u64 perf_swevent_set_period(struct perf_event *event)
8082 {
8083 	struct hw_perf_event *hwc = &event->hw;
8084 	u64 period = hwc->last_period;
8085 	u64 nr, offset;
8086 	s64 old, val;
8087 
8088 	hwc->last_period = hwc->sample_period;
8089 
8090 again:
8091 	old = val = local64_read(&hwc->period_left);
8092 	if (val < 0)
8093 		return 0;
8094 
8095 	nr = div64_u64(period + val, period);
8096 	offset = nr * period;
8097 	val -= offset;
8098 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8099 		goto again;
8100 
8101 	return nr;
8102 }
8103 
8104 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8105 				    struct perf_sample_data *data,
8106 				    struct pt_regs *regs)
8107 {
8108 	struct hw_perf_event *hwc = &event->hw;
8109 	int throttle = 0;
8110 
8111 	if (!overflow)
8112 		overflow = perf_swevent_set_period(event);
8113 
8114 	if (hwc->interrupts == MAX_INTERRUPTS)
8115 		return;
8116 
8117 	for (; overflow; overflow--) {
8118 		if (__perf_event_overflow(event, throttle,
8119 					    data, regs)) {
8120 			/*
8121 			 * We inhibit the overflow from happening when
8122 			 * hwc->interrupts == MAX_INTERRUPTS.
8123 			 */
8124 			break;
8125 		}
8126 		throttle = 1;
8127 	}
8128 }
8129 
8130 static void perf_swevent_event(struct perf_event *event, u64 nr,
8131 			       struct perf_sample_data *data,
8132 			       struct pt_regs *regs)
8133 {
8134 	struct hw_perf_event *hwc = &event->hw;
8135 
8136 	local64_add(nr, &event->count);
8137 
8138 	if (!regs)
8139 		return;
8140 
8141 	if (!is_sampling_event(event))
8142 		return;
8143 
8144 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8145 		data->period = nr;
8146 		return perf_swevent_overflow(event, 1, data, regs);
8147 	} else
8148 		data->period = event->hw.last_period;
8149 
8150 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8151 		return perf_swevent_overflow(event, 1, data, regs);
8152 
8153 	if (local64_add_negative(nr, &hwc->period_left))
8154 		return;
8155 
8156 	perf_swevent_overflow(event, 0, data, regs);
8157 }
8158 
8159 static int perf_exclude_event(struct perf_event *event,
8160 			      struct pt_regs *regs)
8161 {
8162 	if (event->hw.state & PERF_HES_STOPPED)
8163 		return 1;
8164 
8165 	if (regs) {
8166 		if (event->attr.exclude_user && user_mode(regs))
8167 			return 1;
8168 
8169 		if (event->attr.exclude_kernel && !user_mode(regs))
8170 			return 1;
8171 	}
8172 
8173 	return 0;
8174 }
8175 
8176 static int perf_swevent_match(struct perf_event *event,
8177 				enum perf_type_id type,
8178 				u32 event_id,
8179 				struct perf_sample_data *data,
8180 				struct pt_regs *regs)
8181 {
8182 	if (event->attr.type != type)
8183 		return 0;
8184 
8185 	if (event->attr.config != event_id)
8186 		return 0;
8187 
8188 	if (perf_exclude_event(event, regs))
8189 		return 0;
8190 
8191 	return 1;
8192 }
8193 
8194 static inline u64 swevent_hash(u64 type, u32 event_id)
8195 {
8196 	u64 val = event_id | (type << 32);
8197 
8198 	return hash_64(val, SWEVENT_HLIST_BITS);
8199 }
8200 
8201 static inline struct hlist_head *
8202 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8203 {
8204 	u64 hash = swevent_hash(type, event_id);
8205 
8206 	return &hlist->heads[hash];
8207 }
8208 
8209 /* For the read side: events when they trigger */
8210 static inline struct hlist_head *
8211 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8212 {
8213 	struct swevent_hlist *hlist;
8214 
8215 	hlist = rcu_dereference(swhash->swevent_hlist);
8216 	if (!hlist)
8217 		return NULL;
8218 
8219 	return __find_swevent_head(hlist, type, event_id);
8220 }
8221 
8222 /* For the event head insertion and removal in the hlist */
8223 static inline struct hlist_head *
8224 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8225 {
8226 	struct swevent_hlist *hlist;
8227 	u32 event_id = event->attr.config;
8228 	u64 type = event->attr.type;
8229 
8230 	/*
8231 	 * Event scheduling is always serialized against hlist allocation
8232 	 * and release. Which makes the protected version suitable here.
8233 	 * The context lock guarantees that.
8234 	 */
8235 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8236 					  lockdep_is_held(&event->ctx->lock));
8237 	if (!hlist)
8238 		return NULL;
8239 
8240 	return __find_swevent_head(hlist, type, event_id);
8241 }
8242 
8243 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8244 				    u64 nr,
8245 				    struct perf_sample_data *data,
8246 				    struct pt_regs *regs)
8247 {
8248 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8249 	struct perf_event *event;
8250 	struct hlist_head *head;
8251 
8252 	rcu_read_lock();
8253 	head = find_swevent_head_rcu(swhash, type, event_id);
8254 	if (!head)
8255 		goto end;
8256 
8257 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8258 		if (perf_swevent_match(event, type, event_id, data, regs))
8259 			perf_swevent_event(event, nr, data, regs);
8260 	}
8261 end:
8262 	rcu_read_unlock();
8263 }
8264 
8265 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8266 
8267 int perf_swevent_get_recursion_context(void)
8268 {
8269 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8270 
8271 	return get_recursion_context(swhash->recursion);
8272 }
8273 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8274 
8275 void perf_swevent_put_recursion_context(int rctx)
8276 {
8277 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8278 
8279 	put_recursion_context(swhash->recursion, rctx);
8280 }
8281 
8282 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8283 {
8284 	struct perf_sample_data data;
8285 
8286 	if (WARN_ON_ONCE(!regs))
8287 		return;
8288 
8289 	perf_sample_data_init(&data, addr, 0);
8290 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8291 }
8292 
8293 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8294 {
8295 	int rctx;
8296 
8297 	preempt_disable_notrace();
8298 	rctx = perf_swevent_get_recursion_context();
8299 	if (unlikely(rctx < 0))
8300 		goto fail;
8301 
8302 	___perf_sw_event(event_id, nr, regs, addr);
8303 
8304 	perf_swevent_put_recursion_context(rctx);
8305 fail:
8306 	preempt_enable_notrace();
8307 }
8308 
8309 static void perf_swevent_read(struct perf_event *event)
8310 {
8311 }
8312 
8313 static int perf_swevent_add(struct perf_event *event, int flags)
8314 {
8315 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8316 	struct hw_perf_event *hwc = &event->hw;
8317 	struct hlist_head *head;
8318 
8319 	if (is_sampling_event(event)) {
8320 		hwc->last_period = hwc->sample_period;
8321 		perf_swevent_set_period(event);
8322 	}
8323 
8324 	hwc->state = !(flags & PERF_EF_START);
8325 
8326 	head = find_swevent_head(swhash, event);
8327 	if (WARN_ON_ONCE(!head))
8328 		return -EINVAL;
8329 
8330 	hlist_add_head_rcu(&event->hlist_entry, head);
8331 	perf_event_update_userpage(event);
8332 
8333 	return 0;
8334 }
8335 
8336 static void perf_swevent_del(struct perf_event *event, int flags)
8337 {
8338 	hlist_del_rcu(&event->hlist_entry);
8339 }
8340 
8341 static void perf_swevent_start(struct perf_event *event, int flags)
8342 {
8343 	event->hw.state = 0;
8344 }
8345 
8346 static void perf_swevent_stop(struct perf_event *event, int flags)
8347 {
8348 	event->hw.state = PERF_HES_STOPPED;
8349 }
8350 
8351 /* Deref the hlist from the update side */
8352 static inline struct swevent_hlist *
8353 swevent_hlist_deref(struct swevent_htable *swhash)
8354 {
8355 	return rcu_dereference_protected(swhash->swevent_hlist,
8356 					 lockdep_is_held(&swhash->hlist_mutex));
8357 }
8358 
8359 static void swevent_hlist_release(struct swevent_htable *swhash)
8360 {
8361 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8362 
8363 	if (!hlist)
8364 		return;
8365 
8366 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8367 	kfree_rcu(hlist, rcu_head);
8368 }
8369 
8370 static void swevent_hlist_put_cpu(int cpu)
8371 {
8372 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8373 
8374 	mutex_lock(&swhash->hlist_mutex);
8375 
8376 	if (!--swhash->hlist_refcount)
8377 		swevent_hlist_release(swhash);
8378 
8379 	mutex_unlock(&swhash->hlist_mutex);
8380 }
8381 
8382 static void swevent_hlist_put(void)
8383 {
8384 	int cpu;
8385 
8386 	for_each_possible_cpu(cpu)
8387 		swevent_hlist_put_cpu(cpu);
8388 }
8389 
8390 static int swevent_hlist_get_cpu(int cpu)
8391 {
8392 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8393 	int err = 0;
8394 
8395 	mutex_lock(&swhash->hlist_mutex);
8396 	if (!swevent_hlist_deref(swhash) &&
8397 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8398 		struct swevent_hlist *hlist;
8399 
8400 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8401 		if (!hlist) {
8402 			err = -ENOMEM;
8403 			goto exit;
8404 		}
8405 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8406 	}
8407 	swhash->hlist_refcount++;
8408 exit:
8409 	mutex_unlock(&swhash->hlist_mutex);
8410 
8411 	return err;
8412 }
8413 
8414 static int swevent_hlist_get(void)
8415 {
8416 	int err, cpu, failed_cpu;
8417 
8418 	mutex_lock(&pmus_lock);
8419 	for_each_possible_cpu(cpu) {
8420 		err = swevent_hlist_get_cpu(cpu);
8421 		if (err) {
8422 			failed_cpu = cpu;
8423 			goto fail;
8424 		}
8425 	}
8426 	mutex_unlock(&pmus_lock);
8427 	return 0;
8428 fail:
8429 	for_each_possible_cpu(cpu) {
8430 		if (cpu == failed_cpu)
8431 			break;
8432 		swevent_hlist_put_cpu(cpu);
8433 	}
8434 	mutex_unlock(&pmus_lock);
8435 	return err;
8436 }
8437 
8438 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8439 
8440 static void sw_perf_event_destroy(struct perf_event *event)
8441 {
8442 	u64 event_id = event->attr.config;
8443 
8444 	WARN_ON(event->parent);
8445 
8446 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8447 	swevent_hlist_put();
8448 }
8449 
8450 static int perf_swevent_init(struct perf_event *event)
8451 {
8452 	u64 event_id = event->attr.config;
8453 
8454 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8455 		return -ENOENT;
8456 
8457 	/*
8458 	 * no branch sampling for software events
8459 	 */
8460 	if (has_branch_stack(event))
8461 		return -EOPNOTSUPP;
8462 
8463 	switch (event_id) {
8464 	case PERF_COUNT_SW_CPU_CLOCK:
8465 	case PERF_COUNT_SW_TASK_CLOCK:
8466 		return -ENOENT;
8467 
8468 	default:
8469 		break;
8470 	}
8471 
8472 	if (event_id >= PERF_COUNT_SW_MAX)
8473 		return -ENOENT;
8474 
8475 	if (!event->parent) {
8476 		int err;
8477 
8478 		err = swevent_hlist_get();
8479 		if (err)
8480 			return err;
8481 
8482 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8483 		event->destroy = sw_perf_event_destroy;
8484 	}
8485 
8486 	return 0;
8487 }
8488 
8489 static struct pmu perf_swevent = {
8490 	.task_ctx_nr	= perf_sw_context,
8491 
8492 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8493 
8494 	.event_init	= perf_swevent_init,
8495 	.add		= perf_swevent_add,
8496 	.del		= perf_swevent_del,
8497 	.start		= perf_swevent_start,
8498 	.stop		= perf_swevent_stop,
8499 	.read		= perf_swevent_read,
8500 };
8501 
8502 #ifdef CONFIG_EVENT_TRACING
8503 
8504 static int perf_tp_filter_match(struct perf_event *event,
8505 				struct perf_sample_data *data)
8506 {
8507 	void *record = data->raw->frag.data;
8508 
8509 	/* only top level events have filters set */
8510 	if (event->parent)
8511 		event = event->parent;
8512 
8513 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8514 		return 1;
8515 	return 0;
8516 }
8517 
8518 static int perf_tp_event_match(struct perf_event *event,
8519 				struct perf_sample_data *data,
8520 				struct pt_regs *regs)
8521 {
8522 	if (event->hw.state & PERF_HES_STOPPED)
8523 		return 0;
8524 	/*
8525 	 * All tracepoints are from kernel-space.
8526 	 */
8527 	if (event->attr.exclude_kernel)
8528 		return 0;
8529 
8530 	if (!perf_tp_filter_match(event, data))
8531 		return 0;
8532 
8533 	return 1;
8534 }
8535 
8536 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8537 			       struct trace_event_call *call, u64 count,
8538 			       struct pt_regs *regs, struct hlist_head *head,
8539 			       struct task_struct *task)
8540 {
8541 	if (bpf_prog_array_valid(call)) {
8542 		*(struct pt_regs **)raw_data = regs;
8543 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8544 			perf_swevent_put_recursion_context(rctx);
8545 			return;
8546 		}
8547 	}
8548 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8549 		      rctx, task);
8550 }
8551 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8552 
8553 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8554 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8555 		   struct task_struct *task)
8556 {
8557 	struct perf_sample_data data;
8558 	struct perf_event *event;
8559 
8560 	struct perf_raw_record raw = {
8561 		.frag = {
8562 			.size = entry_size,
8563 			.data = record,
8564 		},
8565 	};
8566 
8567 	perf_sample_data_init(&data, 0, 0);
8568 	data.raw = &raw;
8569 
8570 	perf_trace_buf_update(record, event_type);
8571 
8572 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8573 		if (perf_tp_event_match(event, &data, regs))
8574 			perf_swevent_event(event, count, &data, regs);
8575 	}
8576 
8577 	/*
8578 	 * If we got specified a target task, also iterate its context and
8579 	 * deliver this event there too.
8580 	 */
8581 	if (task && task != current) {
8582 		struct perf_event_context *ctx;
8583 		struct trace_entry *entry = record;
8584 
8585 		rcu_read_lock();
8586 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8587 		if (!ctx)
8588 			goto unlock;
8589 
8590 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8591 			if (event->cpu != smp_processor_id())
8592 				continue;
8593 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8594 				continue;
8595 			if (event->attr.config != entry->type)
8596 				continue;
8597 			if (perf_tp_event_match(event, &data, regs))
8598 				perf_swevent_event(event, count, &data, regs);
8599 		}
8600 unlock:
8601 		rcu_read_unlock();
8602 	}
8603 
8604 	perf_swevent_put_recursion_context(rctx);
8605 }
8606 EXPORT_SYMBOL_GPL(perf_tp_event);
8607 
8608 static void tp_perf_event_destroy(struct perf_event *event)
8609 {
8610 	perf_trace_destroy(event);
8611 }
8612 
8613 static int perf_tp_event_init(struct perf_event *event)
8614 {
8615 	int err;
8616 
8617 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8618 		return -ENOENT;
8619 
8620 	/*
8621 	 * no branch sampling for tracepoint events
8622 	 */
8623 	if (has_branch_stack(event))
8624 		return -EOPNOTSUPP;
8625 
8626 	err = perf_trace_init(event);
8627 	if (err)
8628 		return err;
8629 
8630 	event->destroy = tp_perf_event_destroy;
8631 
8632 	return 0;
8633 }
8634 
8635 static struct pmu perf_tracepoint = {
8636 	.task_ctx_nr	= perf_sw_context,
8637 
8638 	.event_init	= perf_tp_event_init,
8639 	.add		= perf_trace_add,
8640 	.del		= perf_trace_del,
8641 	.start		= perf_swevent_start,
8642 	.stop		= perf_swevent_stop,
8643 	.read		= perf_swevent_read,
8644 };
8645 
8646 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8647 /*
8648  * Flags in config, used by dynamic PMU kprobe and uprobe
8649  * The flags should match following PMU_FORMAT_ATTR().
8650  *
8651  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8652  *                               if not set, create kprobe/uprobe
8653  *
8654  * The following values specify a reference counter (or semaphore in the
8655  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8656  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8657  *
8658  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8659  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8660  */
8661 enum perf_probe_config {
8662 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8663 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8664 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8665 };
8666 
8667 PMU_FORMAT_ATTR(retprobe, "config:0");
8668 #endif
8669 
8670 #ifdef CONFIG_KPROBE_EVENTS
8671 static struct attribute *kprobe_attrs[] = {
8672 	&format_attr_retprobe.attr,
8673 	NULL,
8674 };
8675 
8676 static struct attribute_group kprobe_format_group = {
8677 	.name = "format",
8678 	.attrs = kprobe_attrs,
8679 };
8680 
8681 static const struct attribute_group *kprobe_attr_groups[] = {
8682 	&kprobe_format_group,
8683 	NULL,
8684 };
8685 
8686 static int perf_kprobe_event_init(struct perf_event *event);
8687 static struct pmu perf_kprobe = {
8688 	.task_ctx_nr	= perf_sw_context,
8689 	.event_init	= perf_kprobe_event_init,
8690 	.add		= perf_trace_add,
8691 	.del		= perf_trace_del,
8692 	.start		= perf_swevent_start,
8693 	.stop		= perf_swevent_stop,
8694 	.read		= perf_swevent_read,
8695 	.attr_groups	= kprobe_attr_groups,
8696 };
8697 
8698 static int perf_kprobe_event_init(struct perf_event *event)
8699 {
8700 	int err;
8701 	bool is_retprobe;
8702 
8703 	if (event->attr.type != perf_kprobe.type)
8704 		return -ENOENT;
8705 
8706 	if (!capable(CAP_SYS_ADMIN))
8707 		return -EACCES;
8708 
8709 	/*
8710 	 * no branch sampling for probe events
8711 	 */
8712 	if (has_branch_stack(event))
8713 		return -EOPNOTSUPP;
8714 
8715 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8716 	err = perf_kprobe_init(event, is_retprobe);
8717 	if (err)
8718 		return err;
8719 
8720 	event->destroy = perf_kprobe_destroy;
8721 
8722 	return 0;
8723 }
8724 #endif /* CONFIG_KPROBE_EVENTS */
8725 
8726 #ifdef CONFIG_UPROBE_EVENTS
8727 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8728 
8729 static struct attribute *uprobe_attrs[] = {
8730 	&format_attr_retprobe.attr,
8731 	&format_attr_ref_ctr_offset.attr,
8732 	NULL,
8733 };
8734 
8735 static struct attribute_group uprobe_format_group = {
8736 	.name = "format",
8737 	.attrs = uprobe_attrs,
8738 };
8739 
8740 static const struct attribute_group *uprobe_attr_groups[] = {
8741 	&uprobe_format_group,
8742 	NULL,
8743 };
8744 
8745 static int perf_uprobe_event_init(struct perf_event *event);
8746 static struct pmu perf_uprobe = {
8747 	.task_ctx_nr	= perf_sw_context,
8748 	.event_init	= perf_uprobe_event_init,
8749 	.add		= perf_trace_add,
8750 	.del		= perf_trace_del,
8751 	.start		= perf_swevent_start,
8752 	.stop		= perf_swevent_stop,
8753 	.read		= perf_swevent_read,
8754 	.attr_groups	= uprobe_attr_groups,
8755 };
8756 
8757 static int perf_uprobe_event_init(struct perf_event *event)
8758 {
8759 	int err;
8760 	unsigned long ref_ctr_offset;
8761 	bool is_retprobe;
8762 
8763 	if (event->attr.type != perf_uprobe.type)
8764 		return -ENOENT;
8765 
8766 	if (!capable(CAP_SYS_ADMIN))
8767 		return -EACCES;
8768 
8769 	/*
8770 	 * no branch sampling for probe events
8771 	 */
8772 	if (has_branch_stack(event))
8773 		return -EOPNOTSUPP;
8774 
8775 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8776 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8777 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8778 	if (err)
8779 		return err;
8780 
8781 	event->destroy = perf_uprobe_destroy;
8782 
8783 	return 0;
8784 }
8785 #endif /* CONFIG_UPROBE_EVENTS */
8786 
8787 static inline void perf_tp_register(void)
8788 {
8789 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8790 #ifdef CONFIG_KPROBE_EVENTS
8791 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8792 #endif
8793 #ifdef CONFIG_UPROBE_EVENTS
8794 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8795 #endif
8796 }
8797 
8798 static void perf_event_free_filter(struct perf_event *event)
8799 {
8800 	ftrace_profile_free_filter(event);
8801 }
8802 
8803 #ifdef CONFIG_BPF_SYSCALL
8804 static void bpf_overflow_handler(struct perf_event *event,
8805 				 struct perf_sample_data *data,
8806 				 struct pt_regs *regs)
8807 {
8808 	struct bpf_perf_event_data_kern ctx = {
8809 		.data = data,
8810 		.event = event,
8811 	};
8812 	int ret = 0;
8813 
8814 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8815 	preempt_disable();
8816 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8817 		goto out;
8818 	rcu_read_lock();
8819 	ret = BPF_PROG_RUN(event->prog, &ctx);
8820 	rcu_read_unlock();
8821 out:
8822 	__this_cpu_dec(bpf_prog_active);
8823 	preempt_enable();
8824 	if (!ret)
8825 		return;
8826 
8827 	event->orig_overflow_handler(event, data, regs);
8828 }
8829 
8830 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8831 {
8832 	struct bpf_prog *prog;
8833 
8834 	if (event->overflow_handler_context)
8835 		/* hw breakpoint or kernel counter */
8836 		return -EINVAL;
8837 
8838 	if (event->prog)
8839 		return -EEXIST;
8840 
8841 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8842 	if (IS_ERR(prog))
8843 		return PTR_ERR(prog);
8844 
8845 	event->prog = prog;
8846 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8847 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8848 	return 0;
8849 }
8850 
8851 static void perf_event_free_bpf_handler(struct perf_event *event)
8852 {
8853 	struct bpf_prog *prog = event->prog;
8854 
8855 	if (!prog)
8856 		return;
8857 
8858 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8859 	event->prog = NULL;
8860 	bpf_prog_put(prog);
8861 }
8862 #else
8863 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8864 {
8865 	return -EOPNOTSUPP;
8866 }
8867 static void perf_event_free_bpf_handler(struct perf_event *event)
8868 {
8869 }
8870 #endif
8871 
8872 /*
8873  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8874  * with perf_event_open()
8875  */
8876 static inline bool perf_event_is_tracing(struct perf_event *event)
8877 {
8878 	if (event->pmu == &perf_tracepoint)
8879 		return true;
8880 #ifdef CONFIG_KPROBE_EVENTS
8881 	if (event->pmu == &perf_kprobe)
8882 		return true;
8883 #endif
8884 #ifdef CONFIG_UPROBE_EVENTS
8885 	if (event->pmu == &perf_uprobe)
8886 		return true;
8887 #endif
8888 	return false;
8889 }
8890 
8891 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8892 {
8893 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8894 	struct bpf_prog *prog;
8895 	int ret;
8896 
8897 	if (!perf_event_is_tracing(event))
8898 		return perf_event_set_bpf_handler(event, prog_fd);
8899 
8900 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8901 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8902 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8903 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8904 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8905 		return -EINVAL;
8906 
8907 	prog = bpf_prog_get(prog_fd);
8908 	if (IS_ERR(prog))
8909 		return PTR_ERR(prog);
8910 
8911 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8912 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8913 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8914 		/* valid fd, but invalid bpf program type */
8915 		bpf_prog_put(prog);
8916 		return -EINVAL;
8917 	}
8918 
8919 	/* Kprobe override only works for kprobes, not uprobes. */
8920 	if (prog->kprobe_override &&
8921 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8922 		bpf_prog_put(prog);
8923 		return -EINVAL;
8924 	}
8925 
8926 	if (is_tracepoint || is_syscall_tp) {
8927 		int off = trace_event_get_offsets(event->tp_event);
8928 
8929 		if (prog->aux->max_ctx_offset > off) {
8930 			bpf_prog_put(prog);
8931 			return -EACCES;
8932 		}
8933 	}
8934 
8935 	ret = perf_event_attach_bpf_prog(event, prog);
8936 	if (ret)
8937 		bpf_prog_put(prog);
8938 	return ret;
8939 }
8940 
8941 static void perf_event_free_bpf_prog(struct perf_event *event)
8942 {
8943 	if (!perf_event_is_tracing(event)) {
8944 		perf_event_free_bpf_handler(event);
8945 		return;
8946 	}
8947 	perf_event_detach_bpf_prog(event);
8948 }
8949 
8950 #else
8951 
8952 static inline void perf_tp_register(void)
8953 {
8954 }
8955 
8956 static void perf_event_free_filter(struct perf_event *event)
8957 {
8958 }
8959 
8960 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8961 {
8962 	return -ENOENT;
8963 }
8964 
8965 static void perf_event_free_bpf_prog(struct perf_event *event)
8966 {
8967 }
8968 #endif /* CONFIG_EVENT_TRACING */
8969 
8970 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8971 void perf_bp_event(struct perf_event *bp, void *data)
8972 {
8973 	struct perf_sample_data sample;
8974 	struct pt_regs *regs = data;
8975 
8976 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8977 
8978 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8979 		perf_swevent_event(bp, 1, &sample, regs);
8980 }
8981 #endif
8982 
8983 /*
8984  * Allocate a new address filter
8985  */
8986 static struct perf_addr_filter *
8987 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8988 {
8989 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8990 	struct perf_addr_filter *filter;
8991 
8992 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8993 	if (!filter)
8994 		return NULL;
8995 
8996 	INIT_LIST_HEAD(&filter->entry);
8997 	list_add_tail(&filter->entry, filters);
8998 
8999 	return filter;
9000 }
9001 
9002 static void free_filters_list(struct list_head *filters)
9003 {
9004 	struct perf_addr_filter *filter, *iter;
9005 
9006 	list_for_each_entry_safe(filter, iter, filters, entry) {
9007 		path_put(&filter->path);
9008 		list_del(&filter->entry);
9009 		kfree(filter);
9010 	}
9011 }
9012 
9013 /*
9014  * Free existing address filters and optionally install new ones
9015  */
9016 static void perf_addr_filters_splice(struct perf_event *event,
9017 				     struct list_head *head)
9018 {
9019 	unsigned long flags;
9020 	LIST_HEAD(list);
9021 
9022 	if (!has_addr_filter(event))
9023 		return;
9024 
9025 	/* don't bother with children, they don't have their own filters */
9026 	if (event->parent)
9027 		return;
9028 
9029 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9030 
9031 	list_splice_init(&event->addr_filters.list, &list);
9032 	if (head)
9033 		list_splice(head, &event->addr_filters.list);
9034 
9035 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9036 
9037 	free_filters_list(&list);
9038 }
9039 
9040 /*
9041  * Scan through mm's vmas and see if one of them matches the
9042  * @filter; if so, adjust filter's address range.
9043  * Called with mm::mmap_sem down for reading.
9044  */
9045 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9046 				   struct mm_struct *mm,
9047 				   struct perf_addr_filter_range *fr)
9048 {
9049 	struct vm_area_struct *vma;
9050 
9051 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9052 		if (!vma->vm_file)
9053 			continue;
9054 
9055 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9056 			return;
9057 	}
9058 }
9059 
9060 /*
9061  * Update event's address range filters based on the
9062  * task's existing mappings, if any.
9063  */
9064 static void perf_event_addr_filters_apply(struct perf_event *event)
9065 {
9066 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9067 	struct task_struct *task = READ_ONCE(event->ctx->task);
9068 	struct perf_addr_filter *filter;
9069 	struct mm_struct *mm = NULL;
9070 	unsigned int count = 0;
9071 	unsigned long flags;
9072 
9073 	/*
9074 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9075 	 * will stop on the parent's child_mutex that our caller is also holding
9076 	 */
9077 	if (task == TASK_TOMBSTONE)
9078 		return;
9079 
9080 	if (!ifh->nr_file_filters)
9081 		return;
9082 
9083 	mm = get_task_mm(event->ctx->task);
9084 	if (!mm)
9085 		goto restart;
9086 
9087 	down_read(&mm->mmap_sem);
9088 
9089 	raw_spin_lock_irqsave(&ifh->lock, flags);
9090 	list_for_each_entry(filter, &ifh->list, entry) {
9091 		event->addr_filter_ranges[count].start = 0;
9092 		event->addr_filter_ranges[count].size = 0;
9093 
9094 		/*
9095 		 * Adjust base offset if the filter is associated to a binary
9096 		 * that needs to be mapped:
9097 		 */
9098 		if (filter->path.dentry)
9099 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9100 
9101 		count++;
9102 	}
9103 
9104 	event->addr_filters_gen++;
9105 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9106 
9107 	up_read(&mm->mmap_sem);
9108 
9109 	mmput(mm);
9110 
9111 restart:
9112 	perf_event_stop(event, 1);
9113 }
9114 
9115 /*
9116  * Address range filtering: limiting the data to certain
9117  * instruction address ranges. Filters are ioctl()ed to us from
9118  * userspace as ascii strings.
9119  *
9120  * Filter string format:
9121  *
9122  * ACTION RANGE_SPEC
9123  * where ACTION is one of the
9124  *  * "filter": limit the trace to this region
9125  *  * "start": start tracing from this address
9126  *  * "stop": stop tracing at this address/region;
9127  * RANGE_SPEC is
9128  *  * for kernel addresses: <start address>[/<size>]
9129  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9130  *
9131  * if <size> is not specified or is zero, the range is treated as a single
9132  * address; not valid for ACTION=="filter".
9133  */
9134 enum {
9135 	IF_ACT_NONE = -1,
9136 	IF_ACT_FILTER,
9137 	IF_ACT_START,
9138 	IF_ACT_STOP,
9139 	IF_SRC_FILE,
9140 	IF_SRC_KERNEL,
9141 	IF_SRC_FILEADDR,
9142 	IF_SRC_KERNELADDR,
9143 };
9144 
9145 enum {
9146 	IF_STATE_ACTION = 0,
9147 	IF_STATE_SOURCE,
9148 	IF_STATE_END,
9149 };
9150 
9151 static const match_table_t if_tokens = {
9152 	{ IF_ACT_FILTER,	"filter" },
9153 	{ IF_ACT_START,		"start" },
9154 	{ IF_ACT_STOP,		"stop" },
9155 	{ IF_SRC_FILE,		"%u/%u@%s" },
9156 	{ IF_SRC_KERNEL,	"%u/%u" },
9157 	{ IF_SRC_FILEADDR,	"%u@%s" },
9158 	{ IF_SRC_KERNELADDR,	"%u" },
9159 	{ IF_ACT_NONE,		NULL },
9160 };
9161 
9162 /*
9163  * Address filter string parser
9164  */
9165 static int
9166 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9167 			     struct list_head *filters)
9168 {
9169 	struct perf_addr_filter *filter = NULL;
9170 	char *start, *orig, *filename = NULL;
9171 	substring_t args[MAX_OPT_ARGS];
9172 	int state = IF_STATE_ACTION, token;
9173 	unsigned int kernel = 0;
9174 	int ret = -EINVAL;
9175 
9176 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9177 	if (!fstr)
9178 		return -ENOMEM;
9179 
9180 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9181 		static const enum perf_addr_filter_action_t actions[] = {
9182 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9183 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9184 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9185 		};
9186 		ret = -EINVAL;
9187 
9188 		if (!*start)
9189 			continue;
9190 
9191 		/* filter definition begins */
9192 		if (state == IF_STATE_ACTION) {
9193 			filter = perf_addr_filter_new(event, filters);
9194 			if (!filter)
9195 				goto fail;
9196 		}
9197 
9198 		token = match_token(start, if_tokens, args);
9199 		switch (token) {
9200 		case IF_ACT_FILTER:
9201 		case IF_ACT_START:
9202 		case IF_ACT_STOP:
9203 			if (state != IF_STATE_ACTION)
9204 				goto fail;
9205 
9206 			filter->action = actions[token];
9207 			state = IF_STATE_SOURCE;
9208 			break;
9209 
9210 		case IF_SRC_KERNELADDR:
9211 		case IF_SRC_KERNEL:
9212 			kernel = 1;
9213 			/* fall through */
9214 
9215 		case IF_SRC_FILEADDR:
9216 		case IF_SRC_FILE:
9217 			if (state != IF_STATE_SOURCE)
9218 				goto fail;
9219 
9220 			*args[0].to = 0;
9221 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9222 			if (ret)
9223 				goto fail;
9224 
9225 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9226 				*args[1].to = 0;
9227 				ret = kstrtoul(args[1].from, 0, &filter->size);
9228 				if (ret)
9229 					goto fail;
9230 			}
9231 
9232 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9233 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9234 
9235 				filename = match_strdup(&args[fpos]);
9236 				if (!filename) {
9237 					ret = -ENOMEM;
9238 					goto fail;
9239 				}
9240 			}
9241 
9242 			state = IF_STATE_END;
9243 			break;
9244 
9245 		default:
9246 			goto fail;
9247 		}
9248 
9249 		/*
9250 		 * Filter definition is fully parsed, validate and install it.
9251 		 * Make sure that it doesn't contradict itself or the event's
9252 		 * attribute.
9253 		 */
9254 		if (state == IF_STATE_END) {
9255 			ret = -EINVAL;
9256 			if (kernel && event->attr.exclude_kernel)
9257 				goto fail;
9258 
9259 			/*
9260 			 * ACTION "filter" must have a non-zero length region
9261 			 * specified.
9262 			 */
9263 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9264 			    !filter->size)
9265 				goto fail;
9266 
9267 			if (!kernel) {
9268 				if (!filename)
9269 					goto fail;
9270 
9271 				/*
9272 				 * For now, we only support file-based filters
9273 				 * in per-task events; doing so for CPU-wide
9274 				 * events requires additional context switching
9275 				 * trickery, since same object code will be
9276 				 * mapped at different virtual addresses in
9277 				 * different processes.
9278 				 */
9279 				ret = -EOPNOTSUPP;
9280 				if (!event->ctx->task)
9281 					goto fail_free_name;
9282 
9283 				/* look up the path and grab its inode */
9284 				ret = kern_path(filename, LOOKUP_FOLLOW,
9285 						&filter->path);
9286 				if (ret)
9287 					goto fail_free_name;
9288 
9289 				kfree(filename);
9290 				filename = NULL;
9291 
9292 				ret = -EINVAL;
9293 				if (!filter->path.dentry ||
9294 				    !S_ISREG(d_inode(filter->path.dentry)
9295 					     ->i_mode))
9296 					goto fail;
9297 
9298 				event->addr_filters.nr_file_filters++;
9299 			}
9300 
9301 			/* ready to consume more filters */
9302 			state = IF_STATE_ACTION;
9303 			filter = NULL;
9304 		}
9305 	}
9306 
9307 	if (state != IF_STATE_ACTION)
9308 		goto fail;
9309 
9310 	kfree(orig);
9311 
9312 	return 0;
9313 
9314 fail_free_name:
9315 	kfree(filename);
9316 fail:
9317 	free_filters_list(filters);
9318 	kfree(orig);
9319 
9320 	return ret;
9321 }
9322 
9323 static int
9324 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9325 {
9326 	LIST_HEAD(filters);
9327 	int ret;
9328 
9329 	/*
9330 	 * Since this is called in perf_ioctl() path, we're already holding
9331 	 * ctx::mutex.
9332 	 */
9333 	lockdep_assert_held(&event->ctx->mutex);
9334 
9335 	if (WARN_ON_ONCE(event->parent))
9336 		return -EINVAL;
9337 
9338 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9339 	if (ret)
9340 		goto fail_clear_files;
9341 
9342 	ret = event->pmu->addr_filters_validate(&filters);
9343 	if (ret)
9344 		goto fail_free_filters;
9345 
9346 	/* remove existing filters, if any */
9347 	perf_addr_filters_splice(event, &filters);
9348 
9349 	/* install new filters */
9350 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9351 
9352 	return ret;
9353 
9354 fail_free_filters:
9355 	free_filters_list(&filters);
9356 
9357 fail_clear_files:
9358 	event->addr_filters.nr_file_filters = 0;
9359 
9360 	return ret;
9361 }
9362 
9363 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9364 {
9365 	int ret = -EINVAL;
9366 	char *filter_str;
9367 
9368 	filter_str = strndup_user(arg, PAGE_SIZE);
9369 	if (IS_ERR(filter_str))
9370 		return PTR_ERR(filter_str);
9371 
9372 #ifdef CONFIG_EVENT_TRACING
9373 	if (perf_event_is_tracing(event)) {
9374 		struct perf_event_context *ctx = event->ctx;
9375 
9376 		/*
9377 		 * Beware, here be dragons!!
9378 		 *
9379 		 * the tracepoint muck will deadlock against ctx->mutex, but
9380 		 * the tracepoint stuff does not actually need it. So
9381 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9382 		 * already have a reference on ctx.
9383 		 *
9384 		 * This can result in event getting moved to a different ctx,
9385 		 * but that does not affect the tracepoint state.
9386 		 */
9387 		mutex_unlock(&ctx->mutex);
9388 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9389 		mutex_lock(&ctx->mutex);
9390 	} else
9391 #endif
9392 	if (has_addr_filter(event))
9393 		ret = perf_event_set_addr_filter(event, filter_str);
9394 
9395 	kfree(filter_str);
9396 	return ret;
9397 }
9398 
9399 /*
9400  * hrtimer based swevent callback
9401  */
9402 
9403 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9404 {
9405 	enum hrtimer_restart ret = HRTIMER_RESTART;
9406 	struct perf_sample_data data;
9407 	struct pt_regs *regs;
9408 	struct perf_event *event;
9409 	u64 period;
9410 
9411 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9412 
9413 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9414 		return HRTIMER_NORESTART;
9415 
9416 	event->pmu->read(event);
9417 
9418 	perf_sample_data_init(&data, 0, event->hw.last_period);
9419 	regs = get_irq_regs();
9420 
9421 	if (regs && !perf_exclude_event(event, regs)) {
9422 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9423 			if (__perf_event_overflow(event, 1, &data, regs))
9424 				ret = HRTIMER_NORESTART;
9425 	}
9426 
9427 	period = max_t(u64, 10000, event->hw.sample_period);
9428 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9429 
9430 	return ret;
9431 }
9432 
9433 static void perf_swevent_start_hrtimer(struct perf_event *event)
9434 {
9435 	struct hw_perf_event *hwc = &event->hw;
9436 	s64 period;
9437 
9438 	if (!is_sampling_event(event))
9439 		return;
9440 
9441 	period = local64_read(&hwc->period_left);
9442 	if (period) {
9443 		if (period < 0)
9444 			period = 10000;
9445 
9446 		local64_set(&hwc->period_left, 0);
9447 	} else {
9448 		period = max_t(u64, 10000, hwc->sample_period);
9449 	}
9450 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9451 		      HRTIMER_MODE_REL_PINNED);
9452 }
9453 
9454 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9455 {
9456 	struct hw_perf_event *hwc = &event->hw;
9457 
9458 	if (is_sampling_event(event)) {
9459 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9460 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9461 
9462 		hrtimer_cancel(&hwc->hrtimer);
9463 	}
9464 }
9465 
9466 static void perf_swevent_init_hrtimer(struct perf_event *event)
9467 {
9468 	struct hw_perf_event *hwc = &event->hw;
9469 
9470 	if (!is_sampling_event(event))
9471 		return;
9472 
9473 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9474 	hwc->hrtimer.function = perf_swevent_hrtimer;
9475 
9476 	/*
9477 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9478 	 * mapping and avoid the whole period adjust feedback stuff.
9479 	 */
9480 	if (event->attr.freq) {
9481 		long freq = event->attr.sample_freq;
9482 
9483 		event->attr.sample_period = NSEC_PER_SEC / freq;
9484 		hwc->sample_period = event->attr.sample_period;
9485 		local64_set(&hwc->period_left, hwc->sample_period);
9486 		hwc->last_period = hwc->sample_period;
9487 		event->attr.freq = 0;
9488 	}
9489 }
9490 
9491 /*
9492  * Software event: cpu wall time clock
9493  */
9494 
9495 static void cpu_clock_event_update(struct perf_event *event)
9496 {
9497 	s64 prev;
9498 	u64 now;
9499 
9500 	now = local_clock();
9501 	prev = local64_xchg(&event->hw.prev_count, now);
9502 	local64_add(now - prev, &event->count);
9503 }
9504 
9505 static void cpu_clock_event_start(struct perf_event *event, int flags)
9506 {
9507 	local64_set(&event->hw.prev_count, local_clock());
9508 	perf_swevent_start_hrtimer(event);
9509 }
9510 
9511 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9512 {
9513 	perf_swevent_cancel_hrtimer(event);
9514 	cpu_clock_event_update(event);
9515 }
9516 
9517 static int cpu_clock_event_add(struct perf_event *event, int flags)
9518 {
9519 	if (flags & PERF_EF_START)
9520 		cpu_clock_event_start(event, flags);
9521 	perf_event_update_userpage(event);
9522 
9523 	return 0;
9524 }
9525 
9526 static void cpu_clock_event_del(struct perf_event *event, int flags)
9527 {
9528 	cpu_clock_event_stop(event, flags);
9529 }
9530 
9531 static void cpu_clock_event_read(struct perf_event *event)
9532 {
9533 	cpu_clock_event_update(event);
9534 }
9535 
9536 static int cpu_clock_event_init(struct perf_event *event)
9537 {
9538 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9539 		return -ENOENT;
9540 
9541 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9542 		return -ENOENT;
9543 
9544 	/*
9545 	 * no branch sampling for software events
9546 	 */
9547 	if (has_branch_stack(event))
9548 		return -EOPNOTSUPP;
9549 
9550 	perf_swevent_init_hrtimer(event);
9551 
9552 	return 0;
9553 }
9554 
9555 static struct pmu perf_cpu_clock = {
9556 	.task_ctx_nr	= perf_sw_context,
9557 
9558 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9559 
9560 	.event_init	= cpu_clock_event_init,
9561 	.add		= cpu_clock_event_add,
9562 	.del		= cpu_clock_event_del,
9563 	.start		= cpu_clock_event_start,
9564 	.stop		= cpu_clock_event_stop,
9565 	.read		= cpu_clock_event_read,
9566 };
9567 
9568 /*
9569  * Software event: task time clock
9570  */
9571 
9572 static void task_clock_event_update(struct perf_event *event, u64 now)
9573 {
9574 	u64 prev;
9575 	s64 delta;
9576 
9577 	prev = local64_xchg(&event->hw.prev_count, now);
9578 	delta = now - prev;
9579 	local64_add(delta, &event->count);
9580 }
9581 
9582 static void task_clock_event_start(struct perf_event *event, int flags)
9583 {
9584 	local64_set(&event->hw.prev_count, event->ctx->time);
9585 	perf_swevent_start_hrtimer(event);
9586 }
9587 
9588 static void task_clock_event_stop(struct perf_event *event, int flags)
9589 {
9590 	perf_swevent_cancel_hrtimer(event);
9591 	task_clock_event_update(event, event->ctx->time);
9592 }
9593 
9594 static int task_clock_event_add(struct perf_event *event, int flags)
9595 {
9596 	if (flags & PERF_EF_START)
9597 		task_clock_event_start(event, flags);
9598 	perf_event_update_userpage(event);
9599 
9600 	return 0;
9601 }
9602 
9603 static void task_clock_event_del(struct perf_event *event, int flags)
9604 {
9605 	task_clock_event_stop(event, PERF_EF_UPDATE);
9606 }
9607 
9608 static void task_clock_event_read(struct perf_event *event)
9609 {
9610 	u64 now = perf_clock();
9611 	u64 delta = now - event->ctx->timestamp;
9612 	u64 time = event->ctx->time + delta;
9613 
9614 	task_clock_event_update(event, time);
9615 }
9616 
9617 static int task_clock_event_init(struct perf_event *event)
9618 {
9619 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9620 		return -ENOENT;
9621 
9622 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9623 		return -ENOENT;
9624 
9625 	/*
9626 	 * no branch sampling for software events
9627 	 */
9628 	if (has_branch_stack(event))
9629 		return -EOPNOTSUPP;
9630 
9631 	perf_swevent_init_hrtimer(event);
9632 
9633 	return 0;
9634 }
9635 
9636 static struct pmu perf_task_clock = {
9637 	.task_ctx_nr	= perf_sw_context,
9638 
9639 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9640 
9641 	.event_init	= task_clock_event_init,
9642 	.add		= task_clock_event_add,
9643 	.del		= task_clock_event_del,
9644 	.start		= task_clock_event_start,
9645 	.stop		= task_clock_event_stop,
9646 	.read		= task_clock_event_read,
9647 };
9648 
9649 static void perf_pmu_nop_void(struct pmu *pmu)
9650 {
9651 }
9652 
9653 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9654 {
9655 }
9656 
9657 static int perf_pmu_nop_int(struct pmu *pmu)
9658 {
9659 	return 0;
9660 }
9661 
9662 static int perf_event_nop_int(struct perf_event *event, u64 value)
9663 {
9664 	return 0;
9665 }
9666 
9667 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9668 
9669 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9670 {
9671 	__this_cpu_write(nop_txn_flags, flags);
9672 
9673 	if (flags & ~PERF_PMU_TXN_ADD)
9674 		return;
9675 
9676 	perf_pmu_disable(pmu);
9677 }
9678 
9679 static int perf_pmu_commit_txn(struct pmu *pmu)
9680 {
9681 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9682 
9683 	__this_cpu_write(nop_txn_flags, 0);
9684 
9685 	if (flags & ~PERF_PMU_TXN_ADD)
9686 		return 0;
9687 
9688 	perf_pmu_enable(pmu);
9689 	return 0;
9690 }
9691 
9692 static void perf_pmu_cancel_txn(struct pmu *pmu)
9693 {
9694 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9695 
9696 	__this_cpu_write(nop_txn_flags, 0);
9697 
9698 	if (flags & ~PERF_PMU_TXN_ADD)
9699 		return;
9700 
9701 	perf_pmu_enable(pmu);
9702 }
9703 
9704 static int perf_event_idx_default(struct perf_event *event)
9705 {
9706 	return 0;
9707 }
9708 
9709 /*
9710  * Ensures all contexts with the same task_ctx_nr have the same
9711  * pmu_cpu_context too.
9712  */
9713 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9714 {
9715 	struct pmu *pmu;
9716 
9717 	if (ctxn < 0)
9718 		return NULL;
9719 
9720 	list_for_each_entry(pmu, &pmus, entry) {
9721 		if (pmu->task_ctx_nr == ctxn)
9722 			return pmu->pmu_cpu_context;
9723 	}
9724 
9725 	return NULL;
9726 }
9727 
9728 static void free_pmu_context(struct pmu *pmu)
9729 {
9730 	/*
9731 	 * Static contexts such as perf_sw_context have a global lifetime
9732 	 * and may be shared between different PMUs. Avoid freeing them
9733 	 * when a single PMU is going away.
9734 	 */
9735 	if (pmu->task_ctx_nr > perf_invalid_context)
9736 		return;
9737 
9738 	free_percpu(pmu->pmu_cpu_context);
9739 }
9740 
9741 /*
9742  * Let userspace know that this PMU supports address range filtering:
9743  */
9744 static ssize_t nr_addr_filters_show(struct device *dev,
9745 				    struct device_attribute *attr,
9746 				    char *page)
9747 {
9748 	struct pmu *pmu = dev_get_drvdata(dev);
9749 
9750 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9751 }
9752 DEVICE_ATTR_RO(nr_addr_filters);
9753 
9754 static struct idr pmu_idr;
9755 
9756 static ssize_t
9757 type_show(struct device *dev, struct device_attribute *attr, char *page)
9758 {
9759 	struct pmu *pmu = dev_get_drvdata(dev);
9760 
9761 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9762 }
9763 static DEVICE_ATTR_RO(type);
9764 
9765 static ssize_t
9766 perf_event_mux_interval_ms_show(struct device *dev,
9767 				struct device_attribute *attr,
9768 				char *page)
9769 {
9770 	struct pmu *pmu = dev_get_drvdata(dev);
9771 
9772 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9773 }
9774 
9775 static DEFINE_MUTEX(mux_interval_mutex);
9776 
9777 static ssize_t
9778 perf_event_mux_interval_ms_store(struct device *dev,
9779 				 struct device_attribute *attr,
9780 				 const char *buf, size_t count)
9781 {
9782 	struct pmu *pmu = dev_get_drvdata(dev);
9783 	int timer, cpu, ret;
9784 
9785 	ret = kstrtoint(buf, 0, &timer);
9786 	if (ret)
9787 		return ret;
9788 
9789 	if (timer < 1)
9790 		return -EINVAL;
9791 
9792 	/* same value, noting to do */
9793 	if (timer == pmu->hrtimer_interval_ms)
9794 		return count;
9795 
9796 	mutex_lock(&mux_interval_mutex);
9797 	pmu->hrtimer_interval_ms = timer;
9798 
9799 	/* update all cpuctx for this PMU */
9800 	cpus_read_lock();
9801 	for_each_online_cpu(cpu) {
9802 		struct perf_cpu_context *cpuctx;
9803 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9804 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9805 
9806 		cpu_function_call(cpu,
9807 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9808 	}
9809 	cpus_read_unlock();
9810 	mutex_unlock(&mux_interval_mutex);
9811 
9812 	return count;
9813 }
9814 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9815 
9816 static struct attribute *pmu_dev_attrs[] = {
9817 	&dev_attr_type.attr,
9818 	&dev_attr_perf_event_mux_interval_ms.attr,
9819 	NULL,
9820 };
9821 ATTRIBUTE_GROUPS(pmu_dev);
9822 
9823 static int pmu_bus_running;
9824 static struct bus_type pmu_bus = {
9825 	.name		= "event_source",
9826 	.dev_groups	= pmu_dev_groups,
9827 };
9828 
9829 static void pmu_dev_release(struct device *dev)
9830 {
9831 	kfree(dev);
9832 }
9833 
9834 static int pmu_dev_alloc(struct pmu *pmu)
9835 {
9836 	int ret = -ENOMEM;
9837 
9838 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9839 	if (!pmu->dev)
9840 		goto out;
9841 
9842 	pmu->dev->groups = pmu->attr_groups;
9843 	device_initialize(pmu->dev);
9844 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9845 	if (ret)
9846 		goto free_dev;
9847 
9848 	dev_set_drvdata(pmu->dev, pmu);
9849 	pmu->dev->bus = &pmu_bus;
9850 	pmu->dev->release = pmu_dev_release;
9851 	ret = device_add(pmu->dev);
9852 	if (ret)
9853 		goto free_dev;
9854 
9855 	/* For PMUs with address filters, throw in an extra attribute: */
9856 	if (pmu->nr_addr_filters)
9857 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9858 
9859 	if (ret)
9860 		goto del_dev;
9861 
9862 out:
9863 	return ret;
9864 
9865 del_dev:
9866 	device_del(pmu->dev);
9867 
9868 free_dev:
9869 	put_device(pmu->dev);
9870 	goto out;
9871 }
9872 
9873 static struct lock_class_key cpuctx_mutex;
9874 static struct lock_class_key cpuctx_lock;
9875 
9876 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9877 {
9878 	int cpu, ret;
9879 
9880 	mutex_lock(&pmus_lock);
9881 	ret = -ENOMEM;
9882 	pmu->pmu_disable_count = alloc_percpu(int);
9883 	if (!pmu->pmu_disable_count)
9884 		goto unlock;
9885 
9886 	pmu->type = -1;
9887 	if (!name)
9888 		goto skip_type;
9889 	pmu->name = name;
9890 
9891 	if (type < 0) {
9892 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9893 		if (type < 0) {
9894 			ret = type;
9895 			goto free_pdc;
9896 		}
9897 	}
9898 	pmu->type = type;
9899 
9900 	if (pmu_bus_running) {
9901 		ret = pmu_dev_alloc(pmu);
9902 		if (ret)
9903 			goto free_idr;
9904 	}
9905 
9906 skip_type:
9907 	if (pmu->task_ctx_nr == perf_hw_context) {
9908 		static int hw_context_taken = 0;
9909 
9910 		/*
9911 		 * Other than systems with heterogeneous CPUs, it never makes
9912 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9913 		 * uncore must use perf_invalid_context.
9914 		 */
9915 		if (WARN_ON_ONCE(hw_context_taken &&
9916 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9917 			pmu->task_ctx_nr = perf_invalid_context;
9918 
9919 		hw_context_taken = 1;
9920 	}
9921 
9922 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9923 	if (pmu->pmu_cpu_context)
9924 		goto got_cpu_context;
9925 
9926 	ret = -ENOMEM;
9927 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9928 	if (!pmu->pmu_cpu_context)
9929 		goto free_dev;
9930 
9931 	for_each_possible_cpu(cpu) {
9932 		struct perf_cpu_context *cpuctx;
9933 
9934 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9935 		__perf_event_init_context(&cpuctx->ctx);
9936 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9937 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9938 		cpuctx->ctx.pmu = pmu;
9939 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9940 
9941 		__perf_mux_hrtimer_init(cpuctx, cpu);
9942 	}
9943 
9944 got_cpu_context:
9945 	if (!pmu->start_txn) {
9946 		if (pmu->pmu_enable) {
9947 			/*
9948 			 * If we have pmu_enable/pmu_disable calls, install
9949 			 * transaction stubs that use that to try and batch
9950 			 * hardware accesses.
9951 			 */
9952 			pmu->start_txn  = perf_pmu_start_txn;
9953 			pmu->commit_txn = perf_pmu_commit_txn;
9954 			pmu->cancel_txn = perf_pmu_cancel_txn;
9955 		} else {
9956 			pmu->start_txn  = perf_pmu_nop_txn;
9957 			pmu->commit_txn = perf_pmu_nop_int;
9958 			pmu->cancel_txn = perf_pmu_nop_void;
9959 		}
9960 	}
9961 
9962 	if (!pmu->pmu_enable) {
9963 		pmu->pmu_enable  = perf_pmu_nop_void;
9964 		pmu->pmu_disable = perf_pmu_nop_void;
9965 	}
9966 
9967 	if (!pmu->check_period)
9968 		pmu->check_period = perf_event_nop_int;
9969 
9970 	if (!pmu->event_idx)
9971 		pmu->event_idx = perf_event_idx_default;
9972 
9973 	list_add_rcu(&pmu->entry, &pmus);
9974 	atomic_set(&pmu->exclusive_cnt, 0);
9975 	ret = 0;
9976 unlock:
9977 	mutex_unlock(&pmus_lock);
9978 
9979 	return ret;
9980 
9981 free_dev:
9982 	device_del(pmu->dev);
9983 	put_device(pmu->dev);
9984 
9985 free_idr:
9986 	if (pmu->type >= PERF_TYPE_MAX)
9987 		idr_remove(&pmu_idr, pmu->type);
9988 
9989 free_pdc:
9990 	free_percpu(pmu->pmu_disable_count);
9991 	goto unlock;
9992 }
9993 EXPORT_SYMBOL_GPL(perf_pmu_register);
9994 
9995 void perf_pmu_unregister(struct pmu *pmu)
9996 {
9997 	mutex_lock(&pmus_lock);
9998 	list_del_rcu(&pmu->entry);
9999 
10000 	/*
10001 	 * We dereference the pmu list under both SRCU and regular RCU, so
10002 	 * synchronize against both of those.
10003 	 */
10004 	synchronize_srcu(&pmus_srcu);
10005 	synchronize_rcu();
10006 
10007 	free_percpu(pmu->pmu_disable_count);
10008 	if (pmu->type >= PERF_TYPE_MAX)
10009 		idr_remove(&pmu_idr, pmu->type);
10010 	if (pmu_bus_running) {
10011 		if (pmu->nr_addr_filters)
10012 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10013 		device_del(pmu->dev);
10014 		put_device(pmu->dev);
10015 	}
10016 	free_pmu_context(pmu);
10017 	mutex_unlock(&pmus_lock);
10018 }
10019 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10020 
10021 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10022 {
10023 	struct perf_event_context *ctx = NULL;
10024 	int ret;
10025 
10026 	if (!try_module_get(pmu->module))
10027 		return -ENODEV;
10028 
10029 	/*
10030 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10031 	 * for example, validate if the group fits on the PMU. Therefore,
10032 	 * if this is a sibling event, acquire the ctx->mutex to protect
10033 	 * the sibling_list.
10034 	 */
10035 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10036 		/*
10037 		 * This ctx->mutex can nest when we're called through
10038 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10039 		 */
10040 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10041 						 SINGLE_DEPTH_NESTING);
10042 		BUG_ON(!ctx);
10043 	}
10044 
10045 	event->pmu = pmu;
10046 	ret = pmu->event_init(event);
10047 
10048 	if (ctx)
10049 		perf_event_ctx_unlock(event->group_leader, ctx);
10050 
10051 	if (!ret) {
10052 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10053 				event_has_any_exclude_flag(event)) {
10054 			if (event->destroy)
10055 				event->destroy(event);
10056 			ret = -EINVAL;
10057 		}
10058 	}
10059 
10060 	if (ret)
10061 		module_put(pmu->module);
10062 
10063 	return ret;
10064 }
10065 
10066 static struct pmu *perf_init_event(struct perf_event *event)
10067 {
10068 	struct pmu *pmu;
10069 	int idx;
10070 	int ret;
10071 
10072 	idx = srcu_read_lock(&pmus_srcu);
10073 
10074 	/* Try parent's PMU first: */
10075 	if (event->parent && event->parent->pmu) {
10076 		pmu = event->parent->pmu;
10077 		ret = perf_try_init_event(pmu, event);
10078 		if (!ret)
10079 			goto unlock;
10080 	}
10081 
10082 	rcu_read_lock();
10083 	pmu = idr_find(&pmu_idr, event->attr.type);
10084 	rcu_read_unlock();
10085 	if (pmu) {
10086 		ret = perf_try_init_event(pmu, event);
10087 		if (ret)
10088 			pmu = ERR_PTR(ret);
10089 		goto unlock;
10090 	}
10091 
10092 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10093 		ret = perf_try_init_event(pmu, event);
10094 		if (!ret)
10095 			goto unlock;
10096 
10097 		if (ret != -ENOENT) {
10098 			pmu = ERR_PTR(ret);
10099 			goto unlock;
10100 		}
10101 	}
10102 	pmu = ERR_PTR(-ENOENT);
10103 unlock:
10104 	srcu_read_unlock(&pmus_srcu, idx);
10105 
10106 	return pmu;
10107 }
10108 
10109 static void attach_sb_event(struct perf_event *event)
10110 {
10111 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10112 
10113 	raw_spin_lock(&pel->lock);
10114 	list_add_rcu(&event->sb_list, &pel->list);
10115 	raw_spin_unlock(&pel->lock);
10116 }
10117 
10118 /*
10119  * We keep a list of all !task (and therefore per-cpu) events
10120  * that need to receive side-band records.
10121  *
10122  * This avoids having to scan all the various PMU per-cpu contexts
10123  * looking for them.
10124  */
10125 static void account_pmu_sb_event(struct perf_event *event)
10126 {
10127 	if (is_sb_event(event))
10128 		attach_sb_event(event);
10129 }
10130 
10131 static void account_event_cpu(struct perf_event *event, int cpu)
10132 {
10133 	if (event->parent)
10134 		return;
10135 
10136 	if (is_cgroup_event(event))
10137 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10138 }
10139 
10140 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10141 static void account_freq_event_nohz(void)
10142 {
10143 #ifdef CONFIG_NO_HZ_FULL
10144 	/* Lock so we don't race with concurrent unaccount */
10145 	spin_lock(&nr_freq_lock);
10146 	if (atomic_inc_return(&nr_freq_events) == 1)
10147 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10148 	spin_unlock(&nr_freq_lock);
10149 #endif
10150 }
10151 
10152 static void account_freq_event(void)
10153 {
10154 	if (tick_nohz_full_enabled())
10155 		account_freq_event_nohz();
10156 	else
10157 		atomic_inc(&nr_freq_events);
10158 }
10159 
10160 
10161 static void account_event(struct perf_event *event)
10162 {
10163 	bool inc = false;
10164 
10165 	if (event->parent)
10166 		return;
10167 
10168 	if (event->attach_state & PERF_ATTACH_TASK)
10169 		inc = true;
10170 	if (event->attr.mmap || event->attr.mmap_data)
10171 		atomic_inc(&nr_mmap_events);
10172 	if (event->attr.comm)
10173 		atomic_inc(&nr_comm_events);
10174 	if (event->attr.namespaces)
10175 		atomic_inc(&nr_namespaces_events);
10176 	if (event->attr.task)
10177 		atomic_inc(&nr_task_events);
10178 	if (event->attr.freq)
10179 		account_freq_event();
10180 	if (event->attr.context_switch) {
10181 		atomic_inc(&nr_switch_events);
10182 		inc = true;
10183 	}
10184 	if (has_branch_stack(event))
10185 		inc = true;
10186 	if (is_cgroup_event(event))
10187 		inc = true;
10188 	if (event->attr.ksymbol)
10189 		atomic_inc(&nr_ksymbol_events);
10190 	if (event->attr.bpf_event)
10191 		atomic_inc(&nr_bpf_events);
10192 
10193 	if (inc) {
10194 		/*
10195 		 * We need the mutex here because static_branch_enable()
10196 		 * must complete *before* the perf_sched_count increment
10197 		 * becomes visible.
10198 		 */
10199 		if (atomic_inc_not_zero(&perf_sched_count))
10200 			goto enabled;
10201 
10202 		mutex_lock(&perf_sched_mutex);
10203 		if (!atomic_read(&perf_sched_count)) {
10204 			static_branch_enable(&perf_sched_events);
10205 			/*
10206 			 * Guarantee that all CPUs observe they key change and
10207 			 * call the perf scheduling hooks before proceeding to
10208 			 * install events that need them.
10209 			 */
10210 			synchronize_rcu();
10211 		}
10212 		/*
10213 		 * Now that we have waited for the sync_sched(), allow further
10214 		 * increments to by-pass the mutex.
10215 		 */
10216 		atomic_inc(&perf_sched_count);
10217 		mutex_unlock(&perf_sched_mutex);
10218 	}
10219 enabled:
10220 
10221 	account_event_cpu(event, event->cpu);
10222 
10223 	account_pmu_sb_event(event);
10224 }
10225 
10226 /*
10227  * Allocate and initialize an event structure
10228  */
10229 static struct perf_event *
10230 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10231 		 struct task_struct *task,
10232 		 struct perf_event *group_leader,
10233 		 struct perf_event *parent_event,
10234 		 perf_overflow_handler_t overflow_handler,
10235 		 void *context, int cgroup_fd)
10236 {
10237 	struct pmu *pmu;
10238 	struct perf_event *event;
10239 	struct hw_perf_event *hwc;
10240 	long err = -EINVAL;
10241 
10242 	if ((unsigned)cpu >= nr_cpu_ids) {
10243 		if (!task || cpu != -1)
10244 			return ERR_PTR(-EINVAL);
10245 	}
10246 
10247 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10248 	if (!event)
10249 		return ERR_PTR(-ENOMEM);
10250 
10251 	/*
10252 	 * Single events are their own group leaders, with an
10253 	 * empty sibling list:
10254 	 */
10255 	if (!group_leader)
10256 		group_leader = event;
10257 
10258 	mutex_init(&event->child_mutex);
10259 	INIT_LIST_HEAD(&event->child_list);
10260 
10261 	INIT_LIST_HEAD(&event->event_entry);
10262 	INIT_LIST_HEAD(&event->sibling_list);
10263 	INIT_LIST_HEAD(&event->active_list);
10264 	init_event_group(event);
10265 	INIT_LIST_HEAD(&event->rb_entry);
10266 	INIT_LIST_HEAD(&event->active_entry);
10267 	INIT_LIST_HEAD(&event->addr_filters.list);
10268 	INIT_HLIST_NODE(&event->hlist_entry);
10269 
10270 
10271 	init_waitqueue_head(&event->waitq);
10272 	event->pending_disable = -1;
10273 	init_irq_work(&event->pending, perf_pending_event);
10274 
10275 	mutex_init(&event->mmap_mutex);
10276 	raw_spin_lock_init(&event->addr_filters.lock);
10277 
10278 	atomic_long_set(&event->refcount, 1);
10279 	event->cpu		= cpu;
10280 	event->attr		= *attr;
10281 	event->group_leader	= group_leader;
10282 	event->pmu		= NULL;
10283 	event->oncpu		= -1;
10284 
10285 	event->parent		= parent_event;
10286 
10287 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10288 	event->id		= atomic64_inc_return(&perf_event_id);
10289 
10290 	event->state		= PERF_EVENT_STATE_INACTIVE;
10291 
10292 	if (task) {
10293 		event->attach_state = PERF_ATTACH_TASK;
10294 		/*
10295 		 * XXX pmu::event_init needs to know what task to account to
10296 		 * and we cannot use the ctx information because we need the
10297 		 * pmu before we get a ctx.
10298 		 */
10299 		get_task_struct(task);
10300 		event->hw.target = task;
10301 	}
10302 
10303 	event->clock = &local_clock;
10304 	if (parent_event)
10305 		event->clock = parent_event->clock;
10306 
10307 	if (!overflow_handler && parent_event) {
10308 		overflow_handler = parent_event->overflow_handler;
10309 		context = parent_event->overflow_handler_context;
10310 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10311 		if (overflow_handler == bpf_overflow_handler) {
10312 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10313 
10314 			if (IS_ERR(prog)) {
10315 				err = PTR_ERR(prog);
10316 				goto err_ns;
10317 			}
10318 			event->prog = prog;
10319 			event->orig_overflow_handler =
10320 				parent_event->orig_overflow_handler;
10321 		}
10322 #endif
10323 	}
10324 
10325 	if (overflow_handler) {
10326 		event->overflow_handler	= overflow_handler;
10327 		event->overflow_handler_context = context;
10328 	} else if (is_write_backward(event)){
10329 		event->overflow_handler = perf_event_output_backward;
10330 		event->overflow_handler_context = NULL;
10331 	} else {
10332 		event->overflow_handler = perf_event_output_forward;
10333 		event->overflow_handler_context = NULL;
10334 	}
10335 
10336 	perf_event__state_init(event);
10337 
10338 	pmu = NULL;
10339 
10340 	hwc = &event->hw;
10341 	hwc->sample_period = attr->sample_period;
10342 	if (attr->freq && attr->sample_freq)
10343 		hwc->sample_period = 1;
10344 	hwc->last_period = hwc->sample_period;
10345 
10346 	local64_set(&hwc->period_left, hwc->sample_period);
10347 
10348 	/*
10349 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10350 	 * See perf_output_read().
10351 	 */
10352 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10353 		goto err_ns;
10354 
10355 	if (!has_branch_stack(event))
10356 		event->attr.branch_sample_type = 0;
10357 
10358 	if (cgroup_fd != -1) {
10359 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10360 		if (err)
10361 			goto err_ns;
10362 	}
10363 
10364 	pmu = perf_init_event(event);
10365 	if (IS_ERR(pmu)) {
10366 		err = PTR_ERR(pmu);
10367 		goto err_ns;
10368 	}
10369 
10370 	err = exclusive_event_init(event);
10371 	if (err)
10372 		goto err_pmu;
10373 
10374 	if (has_addr_filter(event)) {
10375 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10376 						    sizeof(struct perf_addr_filter_range),
10377 						    GFP_KERNEL);
10378 		if (!event->addr_filter_ranges) {
10379 			err = -ENOMEM;
10380 			goto err_per_task;
10381 		}
10382 
10383 		/*
10384 		 * Clone the parent's vma offsets: they are valid until exec()
10385 		 * even if the mm is not shared with the parent.
10386 		 */
10387 		if (event->parent) {
10388 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10389 
10390 			raw_spin_lock_irq(&ifh->lock);
10391 			memcpy(event->addr_filter_ranges,
10392 			       event->parent->addr_filter_ranges,
10393 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10394 			raw_spin_unlock_irq(&ifh->lock);
10395 		}
10396 
10397 		/* force hw sync on the address filters */
10398 		event->addr_filters_gen = 1;
10399 	}
10400 
10401 	if (!event->parent) {
10402 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10403 			err = get_callchain_buffers(attr->sample_max_stack);
10404 			if (err)
10405 				goto err_addr_filters;
10406 		}
10407 	}
10408 
10409 	/* symmetric to unaccount_event() in _free_event() */
10410 	account_event(event);
10411 
10412 	return event;
10413 
10414 err_addr_filters:
10415 	kfree(event->addr_filter_ranges);
10416 
10417 err_per_task:
10418 	exclusive_event_destroy(event);
10419 
10420 err_pmu:
10421 	if (event->destroy)
10422 		event->destroy(event);
10423 	module_put(pmu->module);
10424 err_ns:
10425 	if (is_cgroup_event(event))
10426 		perf_detach_cgroup(event);
10427 	if (event->ns)
10428 		put_pid_ns(event->ns);
10429 	if (event->hw.target)
10430 		put_task_struct(event->hw.target);
10431 	kfree(event);
10432 
10433 	return ERR_PTR(err);
10434 }
10435 
10436 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10437 			  struct perf_event_attr *attr)
10438 {
10439 	u32 size;
10440 	int ret;
10441 
10442 	if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10443 		return -EFAULT;
10444 
10445 	/*
10446 	 * zero the full structure, so that a short copy will be nice.
10447 	 */
10448 	memset(attr, 0, sizeof(*attr));
10449 
10450 	ret = get_user(size, &uattr->size);
10451 	if (ret)
10452 		return ret;
10453 
10454 	if (size > PAGE_SIZE)	/* silly large */
10455 		goto err_size;
10456 
10457 	if (!size)		/* abi compat */
10458 		size = PERF_ATTR_SIZE_VER0;
10459 
10460 	if (size < PERF_ATTR_SIZE_VER0)
10461 		goto err_size;
10462 
10463 	/*
10464 	 * If we're handed a bigger struct than we know of,
10465 	 * ensure all the unknown bits are 0 - i.e. new
10466 	 * user-space does not rely on any kernel feature
10467 	 * extensions we dont know about yet.
10468 	 */
10469 	if (size > sizeof(*attr)) {
10470 		unsigned char __user *addr;
10471 		unsigned char __user *end;
10472 		unsigned char val;
10473 
10474 		addr = (void __user *)uattr + sizeof(*attr);
10475 		end  = (void __user *)uattr + size;
10476 
10477 		for (; addr < end; addr++) {
10478 			ret = get_user(val, addr);
10479 			if (ret)
10480 				return ret;
10481 			if (val)
10482 				goto err_size;
10483 		}
10484 		size = sizeof(*attr);
10485 	}
10486 
10487 	ret = copy_from_user(attr, uattr, size);
10488 	if (ret)
10489 		return -EFAULT;
10490 
10491 	attr->size = size;
10492 
10493 	if (attr->__reserved_1)
10494 		return -EINVAL;
10495 
10496 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10497 		return -EINVAL;
10498 
10499 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10500 		return -EINVAL;
10501 
10502 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10503 		u64 mask = attr->branch_sample_type;
10504 
10505 		/* only using defined bits */
10506 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10507 			return -EINVAL;
10508 
10509 		/* at least one branch bit must be set */
10510 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10511 			return -EINVAL;
10512 
10513 		/* propagate priv level, when not set for branch */
10514 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10515 
10516 			/* exclude_kernel checked on syscall entry */
10517 			if (!attr->exclude_kernel)
10518 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10519 
10520 			if (!attr->exclude_user)
10521 				mask |= PERF_SAMPLE_BRANCH_USER;
10522 
10523 			if (!attr->exclude_hv)
10524 				mask |= PERF_SAMPLE_BRANCH_HV;
10525 			/*
10526 			 * adjust user setting (for HW filter setup)
10527 			 */
10528 			attr->branch_sample_type = mask;
10529 		}
10530 		/* privileged levels capture (kernel, hv): check permissions */
10531 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10532 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10533 			return -EACCES;
10534 	}
10535 
10536 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10537 		ret = perf_reg_validate(attr->sample_regs_user);
10538 		if (ret)
10539 			return ret;
10540 	}
10541 
10542 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10543 		if (!arch_perf_have_user_stack_dump())
10544 			return -ENOSYS;
10545 
10546 		/*
10547 		 * We have __u32 type for the size, but so far
10548 		 * we can only use __u16 as maximum due to the
10549 		 * __u16 sample size limit.
10550 		 */
10551 		if (attr->sample_stack_user >= USHRT_MAX)
10552 			return -EINVAL;
10553 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10554 			return -EINVAL;
10555 	}
10556 
10557 	if (!attr->sample_max_stack)
10558 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10559 
10560 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10561 		ret = perf_reg_validate(attr->sample_regs_intr);
10562 out:
10563 	return ret;
10564 
10565 err_size:
10566 	put_user(sizeof(*attr), &uattr->size);
10567 	ret = -E2BIG;
10568 	goto out;
10569 }
10570 
10571 static int
10572 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10573 {
10574 	struct ring_buffer *rb = NULL;
10575 	int ret = -EINVAL;
10576 
10577 	if (!output_event)
10578 		goto set;
10579 
10580 	/* don't allow circular references */
10581 	if (event == output_event)
10582 		goto out;
10583 
10584 	/*
10585 	 * Don't allow cross-cpu buffers
10586 	 */
10587 	if (output_event->cpu != event->cpu)
10588 		goto out;
10589 
10590 	/*
10591 	 * If its not a per-cpu rb, it must be the same task.
10592 	 */
10593 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10594 		goto out;
10595 
10596 	/*
10597 	 * Mixing clocks in the same buffer is trouble you don't need.
10598 	 */
10599 	if (output_event->clock != event->clock)
10600 		goto out;
10601 
10602 	/*
10603 	 * Either writing ring buffer from beginning or from end.
10604 	 * Mixing is not allowed.
10605 	 */
10606 	if (is_write_backward(output_event) != is_write_backward(event))
10607 		goto out;
10608 
10609 	/*
10610 	 * If both events generate aux data, they must be on the same PMU
10611 	 */
10612 	if (has_aux(event) && has_aux(output_event) &&
10613 	    event->pmu != output_event->pmu)
10614 		goto out;
10615 
10616 set:
10617 	mutex_lock(&event->mmap_mutex);
10618 	/* Can't redirect output if we've got an active mmap() */
10619 	if (atomic_read(&event->mmap_count))
10620 		goto unlock;
10621 
10622 	if (output_event) {
10623 		/* get the rb we want to redirect to */
10624 		rb = ring_buffer_get(output_event);
10625 		if (!rb)
10626 			goto unlock;
10627 	}
10628 
10629 	ring_buffer_attach(event, rb);
10630 
10631 	ret = 0;
10632 unlock:
10633 	mutex_unlock(&event->mmap_mutex);
10634 
10635 out:
10636 	return ret;
10637 }
10638 
10639 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10640 {
10641 	if (b < a)
10642 		swap(a, b);
10643 
10644 	mutex_lock(a);
10645 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10646 }
10647 
10648 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10649 {
10650 	bool nmi_safe = false;
10651 
10652 	switch (clk_id) {
10653 	case CLOCK_MONOTONIC:
10654 		event->clock = &ktime_get_mono_fast_ns;
10655 		nmi_safe = true;
10656 		break;
10657 
10658 	case CLOCK_MONOTONIC_RAW:
10659 		event->clock = &ktime_get_raw_fast_ns;
10660 		nmi_safe = true;
10661 		break;
10662 
10663 	case CLOCK_REALTIME:
10664 		event->clock = &ktime_get_real_ns;
10665 		break;
10666 
10667 	case CLOCK_BOOTTIME:
10668 		event->clock = &ktime_get_boot_ns;
10669 		break;
10670 
10671 	case CLOCK_TAI:
10672 		event->clock = &ktime_get_tai_ns;
10673 		break;
10674 
10675 	default:
10676 		return -EINVAL;
10677 	}
10678 
10679 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10680 		return -EINVAL;
10681 
10682 	return 0;
10683 }
10684 
10685 /*
10686  * Variation on perf_event_ctx_lock_nested(), except we take two context
10687  * mutexes.
10688  */
10689 static struct perf_event_context *
10690 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10691 			     struct perf_event_context *ctx)
10692 {
10693 	struct perf_event_context *gctx;
10694 
10695 again:
10696 	rcu_read_lock();
10697 	gctx = READ_ONCE(group_leader->ctx);
10698 	if (!refcount_inc_not_zero(&gctx->refcount)) {
10699 		rcu_read_unlock();
10700 		goto again;
10701 	}
10702 	rcu_read_unlock();
10703 
10704 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10705 
10706 	if (group_leader->ctx != gctx) {
10707 		mutex_unlock(&ctx->mutex);
10708 		mutex_unlock(&gctx->mutex);
10709 		put_ctx(gctx);
10710 		goto again;
10711 	}
10712 
10713 	return gctx;
10714 }
10715 
10716 /**
10717  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10718  *
10719  * @attr_uptr:	event_id type attributes for monitoring/sampling
10720  * @pid:		target pid
10721  * @cpu:		target cpu
10722  * @group_fd:		group leader event fd
10723  */
10724 SYSCALL_DEFINE5(perf_event_open,
10725 		struct perf_event_attr __user *, attr_uptr,
10726 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10727 {
10728 	struct perf_event *group_leader = NULL, *output_event = NULL;
10729 	struct perf_event *event, *sibling;
10730 	struct perf_event_attr attr;
10731 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10732 	struct file *event_file = NULL;
10733 	struct fd group = {NULL, 0};
10734 	struct task_struct *task = NULL;
10735 	struct pmu *pmu;
10736 	int event_fd;
10737 	int move_group = 0;
10738 	int err;
10739 	int f_flags = O_RDWR;
10740 	int cgroup_fd = -1;
10741 
10742 	/* for future expandability... */
10743 	if (flags & ~PERF_FLAG_ALL)
10744 		return -EINVAL;
10745 
10746 	err = perf_copy_attr(attr_uptr, &attr);
10747 	if (err)
10748 		return err;
10749 
10750 	if (!attr.exclude_kernel) {
10751 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10752 			return -EACCES;
10753 	}
10754 
10755 	if (attr.namespaces) {
10756 		if (!capable(CAP_SYS_ADMIN))
10757 			return -EACCES;
10758 	}
10759 
10760 	if (attr.freq) {
10761 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10762 			return -EINVAL;
10763 	} else {
10764 		if (attr.sample_period & (1ULL << 63))
10765 			return -EINVAL;
10766 	}
10767 
10768 	/* Only privileged users can get physical addresses */
10769 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10770 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10771 		return -EACCES;
10772 
10773 	/*
10774 	 * In cgroup mode, the pid argument is used to pass the fd
10775 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10776 	 * designates the cpu on which to monitor threads from that
10777 	 * cgroup.
10778 	 */
10779 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10780 		return -EINVAL;
10781 
10782 	if (flags & PERF_FLAG_FD_CLOEXEC)
10783 		f_flags |= O_CLOEXEC;
10784 
10785 	event_fd = get_unused_fd_flags(f_flags);
10786 	if (event_fd < 0)
10787 		return event_fd;
10788 
10789 	if (group_fd != -1) {
10790 		err = perf_fget_light(group_fd, &group);
10791 		if (err)
10792 			goto err_fd;
10793 		group_leader = group.file->private_data;
10794 		if (flags & PERF_FLAG_FD_OUTPUT)
10795 			output_event = group_leader;
10796 		if (flags & PERF_FLAG_FD_NO_GROUP)
10797 			group_leader = NULL;
10798 	}
10799 
10800 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10801 		task = find_lively_task_by_vpid(pid);
10802 		if (IS_ERR(task)) {
10803 			err = PTR_ERR(task);
10804 			goto err_group_fd;
10805 		}
10806 	}
10807 
10808 	if (task && group_leader &&
10809 	    group_leader->attr.inherit != attr.inherit) {
10810 		err = -EINVAL;
10811 		goto err_task;
10812 	}
10813 
10814 	if (task) {
10815 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10816 		if (err)
10817 			goto err_task;
10818 
10819 		/*
10820 		 * Reuse ptrace permission checks for now.
10821 		 *
10822 		 * We must hold cred_guard_mutex across this and any potential
10823 		 * perf_install_in_context() call for this new event to
10824 		 * serialize against exec() altering our credentials (and the
10825 		 * perf_event_exit_task() that could imply).
10826 		 */
10827 		err = -EACCES;
10828 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10829 			goto err_cred;
10830 	}
10831 
10832 	if (flags & PERF_FLAG_PID_CGROUP)
10833 		cgroup_fd = pid;
10834 
10835 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10836 				 NULL, NULL, cgroup_fd);
10837 	if (IS_ERR(event)) {
10838 		err = PTR_ERR(event);
10839 		goto err_cred;
10840 	}
10841 
10842 	if (is_sampling_event(event)) {
10843 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10844 			err = -EOPNOTSUPP;
10845 			goto err_alloc;
10846 		}
10847 	}
10848 
10849 	/*
10850 	 * Special case software events and allow them to be part of
10851 	 * any hardware group.
10852 	 */
10853 	pmu = event->pmu;
10854 
10855 	if (attr.use_clockid) {
10856 		err = perf_event_set_clock(event, attr.clockid);
10857 		if (err)
10858 			goto err_alloc;
10859 	}
10860 
10861 	if (pmu->task_ctx_nr == perf_sw_context)
10862 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10863 
10864 	if (group_leader) {
10865 		if (is_software_event(event) &&
10866 		    !in_software_context(group_leader)) {
10867 			/*
10868 			 * If the event is a sw event, but the group_leader
10869 			 * is on hw context.
10870 			 *
10871 			 * Allow the addition of software events to hw
10872 			 * groups, this is safe because software events
10873 			 * never fail to schedule.
10874 			 */
10875 			pmu = group_leader->ctx->pmu;
10876 		} else if (!is_software_event(event) &&
10877 			   is_software_event(group_leader) &&
10878 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10879 			/*
10880 			 * In case the group is a pure software group, and we
10881 			 * try to add a hardware event, move the whole group to
10882 			 * the hardware context.
10883 			 */
10884 			move_group = 1;
10885 		}
10886 	}
10887 
10888 	/*
10889 	 * Get the target context (task or percpu):
10890 	 */
10891 	ctx = find_get_context(pmu, task, event);
10892 	if (IS_ERR(ctx)) {
10893 		err = PTR_ERR(ctx);
10894 		goto err_alloc;
10895 	}
10896 
10897 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10898 		err = -EBUSY;
10899 		goto err_context;
10900 	}
10901 
10902 	/*
10903 	 * Look up the group leader (we will attach this event to it):
10904 	 */
10905 	if (group_leader) {
10906 		err = -EINVAL;
10907 
10908 		/*
10909 		 * Do not allow a recursive hierarchy (this new sibling
10910 		 * becoming part of another group-sibling):
10911 		 */
10912 		if (group_leader->group_leader != group_leader)
10913 			goto err_context;
10914 
10915 		/* All events in a group should have the same clock */
10916 		if (group_leader->clock != event->clock)
10917 			goto err_context;
10918 
10919 		/*
10920 		 * Make sure we're both events for the same CPU;
10921 		 * grouping events for different CPUs is broken; since
10922 		 * you can never concurrently schedule them anyhow.
10923 		 */
10924 		if (group_leader->cpu != event->cpu)
10925 			goto err_context;
10926 
10927 		/*
10928 		 * Make sure we're both on the same task, or both
10929 		 * per-CPU events.
10930 		 */
10931 		if (group_leader->ctx->task != ctx->task)
10932 			goto err_context;
10933 
10934 		/*
10935 		 * Do not allow to attach to a group in a different task
10936 		 * or CPU context. If we're moving SW events, we'll fix
10937 		 * this up later, so allow that.
10938 		 */
10939 		if (!move_group && group_leader->ctx != ctx)
10940 			goto err_context;
10941 
10942 		/*
10943 		 * Only a group leader can be exclusive or pinned
10944 		 */
10945 		if (attr.exclusive || attr.pinned)
10946 			goto err_context;
10947 	}
10948 
10949 	if (output_event) {
10950 		err = perf_event_set_output(event, output_event);
10951 		if (err)
10952 			goto err_context;
10953 	}
10954 
10955 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10956 					f_flags);
10957 	if (IS_ERR(event_file)) {
10958 		err = PTR_ERR(event_file);
10959 		event_file = NULL;
10960 		goto err_context;
10961 	}
10962 
10963 	if (move_group) {
10964 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10965 
10966 		if (gctx->task == TASK_TOMBSTONE) {
10967 			err = -ESRCH;
10968 			goto err_locked;
10969 		}
10970 
10971 		/*
10972 		 * Check if we raced against another sys_perf_event_open() call
10973 		 * moving the software group underneath us.
10974 		 */
10975 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10976 			/*
10977 			 * If someone moved the group out from under us, check
10978 			 * if this new event wound up on the same ctx, if so
10979 			 * its the regular !move_group case, otherwise fail.
10980 			 */
10981 			if (gctx != ctx) {
10982 				err = -EINVAL;
10983 				goto err_locked;
10984 			} else {
10985 				perf_event_ctx_unlock(group_leader, gctx);
10986 				move_group = 0;
10987 			}
10988 		}
10989 	} else {
10990 		mutex_lock(&ctx->mutex);
10991 	}
10992 
10993 	if (ctx->task == TASK_TOMBSTONE) {
10994 		err = -ESRCH;
10995 		goto err_locked;
10996 	}
10997 
10998 	if (!perf_event_validate_size(event)) {
10999 		err = -E2BIG;
11000 		goto err_locked;
11001 	}
11002 
11003 	if (!task) {
11004 		/*
11005 		 * Check if the @cpu we're creating an event for is online.
11006 		 *
11007 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11008 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11009 		 */
11010 		struct perf_cpu_context *cpuctx =
11011 			container_of(ctx, struct perf_cpu_context, ctx);
11012 
11013 		if (!cpuctx->online) {
11014 			err = -ENODEV;
11015 			goto err_locked;
11016 		}
11017 	}
11018 
11019 
11020 	/*
11021 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11022 	 * because we need to serialize with concurrent event creation.
11023 	 */
11024 	if (!exclusive_event_installable(event, ctx)) {
11025 		/* exclusive and group stuff are assumed mutually exclusive */
11026 		WARN_ON_ONCE(move_group);
11027 
11028 		err = -EBUSY;
11029 		goto err_locked;
11030 	}
11031 
11032 	WARN_ON_ONCE(ctx->parent_ctx);
11033 
11034 	/*
11035 	 * This is the point on no return; we cannot fail hereafter. This is
11036 	 * where we start modifying current state.
11037 	 */
11038 
11039 	if (move_group) {
11040 		/*
11041 		 * See perf_event_ctx_lock() for comments on the details
11042 		 * of swizzling perf_event::ctx.
11043 		 */
11044 		perf_remove_from_context(group_leader, 0);
11045 		put_ctx(gctx);
11046 
11047 		for_each_sibling_event(sibling, group_leader) {
11048 			perf_remove_from_context(sibling, 0);
11049 			put_ctx(gctx);
11050 		}
11051 
11052 		/*
11053 		 * Wait for everybody to stop referencing the events through
11054 		 * the old lists, before installing it on new lists.
11055 		 */
11056 		synchronize_rcu();
11057 
11058 		/*
11059 		 * Install the group siblings before the group leader.
11060 		 *
11061 		 * Because a group leader will try and install the entire group
11062 		 * (through the sibling list, which is still in-tact), we can
11063 		 * end up with siblings installed in the wrong context.
11064 		 *
11065 		 * By installing siblings first we NO-OP because they're not
11066 		 * reachable through the group lists.
11067 		 */
11068 		for_each_sibling_event(sibling, group_leader) {
11069 			perf_event__state_init(sibling);
11070 			perf_install_in_context(ctx, sibling, sibling->cpu);
11071 			get_ctx(ctx);
11072 		}
11073 
11074 		/*
11075 		 * Removing from the context ends up with disabled
11076 		 * event. What we want here is event in the initial
11077 		 * startup state, ready to be add into new context.
11078 		 */
11079 		perf_event__state_init(group_leader);
11080 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11081 		get_ctx(ctx);
11082 	}
11083 
11084 	/*
11085 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11086 	 * that we're serialized against further additions and before
11087 	 * perf_install_in_context() which is the point the event is active and
11088 	 * can use these values.
11089 	 */
11090 	perf_event__header_size(event);
11091 	perf_event__id_header_size(event);
11092 
11093 	event->owner = current;
11094 
11095 	perf_install_in_context(ctx, event, event->cpu);
11096 	perf_unpin_context(ctx);
11097 
11098 	if (move_group)
11099 		perf_event_ctx_unlock(group_leader, gctx);
11100 	mutex_unlock(&ctx->mutex);
11101 
11102 	if (task) {
11103 		mutex_unlock(&task->signal->cred_guard_mutex);
11104 		put_task_struct(task);
11105 	}
11106 
11107 	mutex_lock(&current->perf_event_mutex);
11108 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11109 	mutex_unlock(&current->perf_event_mutex);
11110 
11111 	/*
11112 	 * Drop the reference on the group_event after placing the
11113 	 * new event on the sibling_list. This ensures destruction
11114 	 * of the group leader will find the pointer to itself in
11115 	 * perf_group_detach().
11116 	 */
11117 	fdput(group);
11118 	fd_install(event_fd, event_file);
11119 	return event_fd;
11120 
11121 err_locked:
11122 	if (move_group)
11123 		perf_event_ctx_unlock(group_leader, gctx);
11124 	mutex_unlock(&ctx->mutex);
11125 /* err_file: */
11126 	fput(event_file);
11127 err_context:
11128 	perf_unpin_context(ctx);
11129 	put_ctx(ctx);
11130 err_alloc:
11131 	/*
11132 	 * If event_file is set, the fput() above will have called ->release()
11133 	 * and that will take care of freeing the event.
11134 	 */
11135 	if (!event_file)
11136 		free_event(event);
11137 err_cred:
11138 	if (task)
11139 		mutex_unlock(&task->signal->cred_guard_mutex);
11140 err_task:
11141 	if (task)
11142 		put_task_struct(task);
11143 err_group_fd:
11144 	fdput(group);
11145 err_fd:
11146 	put_unused_fd(event_fd);
11147 	return err;
11148 }
11149 
11150 /**
11151  * perf_event_create_kernel_counter
11152  *
11153  * @attr: attributes of the counter to create
11154  * @cpu: cpu in which the counter is bound
11155  * @task: task to profile (NULL for percpu)
11156  */
11157 struct perf_event *
11158 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11159 				 struct task_struct *task,
11160 				 perf_overflow_handler_t overflow_handler,
11161 				 void *context)
11162 {
11163 	struct perf_event_context *ctx;
11164 	struct perf_event *event;
11165 	int err;
11166 
11167 	/*
11168 	 * Get the target context (task or percpu):
11169 	 */
11170 
11171 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11172 				 overflow_handler, context, -1);
11173 	if (IS_ERR(event)) {
11174 		err = PTR_ERR(event);
11175 		goto err;
11176 	}
11177 
11178 	/* Mark owner so we could distinguish it from user events. */
11179 	event->owner = TASK_TOMBSTONE;
11180 
11181 	ctx = find_get_context(event->pmu, task, event);
11182 	if (IS_ERR(ctx)) {
11183 		err = PTR_ERR(ctx);
11184 		goto err_free;
11185 	}
11186 
11187 	WARN_ON_ONCE(ctx->parent_ctx);
11188 	mutex_lock(&ctx->mutex);
11189 	if (ctx->task == TASK_TOMBSTONE) {
11190 		err = -ESRCH;
11191 		goto err_unlock;
11192 	}
11193 
11194 	if (!task) {
11195 		/*
11196 		 * Check if the @cpu we're creating an event for is online.
11197 		 *
11198 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11199 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11200 		 */
11201 		struct perf_cpu_context *cpuctx =
11202 			container_of(ctx, struct perf_cpu_context, ctx);
11203 		if (!cpuctx->online) {
11204 			err = -ENODEV;
11205 			goto err_unlock;
11206 		}
11207 	}
11208 
11209 	if (!exclusive_event_installable(event, ctx)) {
11210 		err = -EBUSY;
11211 		goto err_unlock;
11212 	}
11213 
11214 	perf_install_in_context(ctx, event, cpu);
11215 	perf_unpin_context(ctx);
11216 	mutex_unlock(&ctx->mutex);
11217 
11218 	return event;
11219 
11220 err_unlock:
11221 	mutex_unlock(&ctx->mutex);
11222 	perf_unpin_context(ctx);
11223 	put_ctx(ctx);
11224 err_free:
11225 	free_event(event);
11226 err:
11227 	return ERR_PTR(err);
11228 }
11229 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11230 
11231 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11232 {
11233 	struct perf_event_context *src_ctx;
11234 	struct perf_event_context *dst_ctx;
11235 	struct perf_event *event, *tmp;
11236 	LIST_HEAD(events);
11237 
11238 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11239 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11240 
11241 	/*
11242 	 * See perf_event_ctx_lock() for comments on the details
11243 	 * of swizzling perf_event::ctx.
11244 	 */
11245 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11246 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11247 				 event_entry) {
11248 		perf_remove_from_context(event, 0);
11249 		unaccount_event_cpu(event, src_cpu);
11250 		put_ctx(src_ctx);
11251 		list_add(&event->migrate_entry, &events);
11252 	}
11253 
11254 	/*
11255 	 * Wait for the events to quiesce before re-instating them.
11256 	 */
11257 	synchronize_rcu();
11258 
11259 	/*
11260 	 * Re-instate events in 2 passes.
11261 	 *
11262 	 * Skip over group leaders and only install siblings on this first
11263 	 * pass, siblings will not get enabled without a leader, however a
11264 	 * leader will enable its siblings, even if those are still on the old
11265 	 * context.
11266 	 */
11267 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11268 		if (event->group_leader == event)
11269 			continue;
11270 
11271 		list_del(&event->migrate_entry);
11272 		if (event->state >= PERF_EVENT_STATE_OFF)
11273 			event->state = PERF_EVENT_STATE_INACTIVE;
11274 		account_event_cpu(event, dst_cpu);
11275 		perf_install_in_context(dst_ctx, event, dst_cpu);
11276 		get_ctx(dst_ctx);
11277 	}
11278 
11279 	/*
11280 	 * Once all the siblings are setup properly, install the group leaders
11281 	 * to make it go.
11282 	 */
11283 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11284 		list_del(&event->migrate_entry);
11285 		if (event->state >= PERF_EVENT_STATE_OFF)
11286 			event->state = PERF_EVENT_STATE_INACTIVE;
11287 		account_event_cpu(event, dst_cpu);
11288 		perf_install_in_context(dst_ctx, event, dst_cpu);
11289 		get_ctx(dst_ctx);
11290 	}
11291 	mutex_unlock(&dst_ctx->mutex);
11292 	mutex_unlock(&src_ctx->mutex);
11293 }
11294 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11295 
11296 static void sync_child_event(struct perf_event *child_event,
11297 			       struct task_struct *child)
11298 {
11299 	struct perf_event *parent_event = child_event->parent;
11300 	u64 child_val;
11301 
11302 	if (child_event->attr.inherit_stat)
11303 		perf_event_read_event(child_event, child);
11304 
11305 	child_val = perf_event_count(child_event);
11306 
11307 	/*
11308 	 * Add back the child's count to the parent's count:
11309 	 */
11310 	atomic64_add(child_val, &parent_event->child_count);
11311 	atomic64_add(child_event->total_time_enabled,
11312 		     &parent_event->child_total_time_enabled);
11313 	atomic64_add(child_event->total_time_running,
11314 		     &parent_event->child_total_time_running);
11315 }
11316 
11317 static void
11318 perf_event_exit_event(struct perf_event *child_event,
11319 		      struct perf_event_context *child_ctx,
11320 		      struct task_struct *child)
11321 {
11322 	struct perf_event *parent_event = child_event->parent;
11323 
11324 	/*
11325 	 * Do not destroy the 'original' grouping; because of the context
11326 	 * switch optimization the original events could've ended up in a
11327 	 * random child task.
11328 	 *
11329 	 * If we were to destroy the original group, all group related
11330 	 * operations would cease to function properly after this random
11331 	 * child dies.
11332 	 *
11333 	 * Do destroy all inherited groups, we don't care about those
11334 	 * and being thorough is better.
11335 	 */
11336 	raw_spin_lock_irq(&child_ctx->lock);
11337 	WARN_ON_ONCE(child_ctx->is_active);
11338 
11339 	if (parent_event)
11340 		perf_group_detach(child_event);
11341 	list_del_event(child_event, child_ctx);
11342 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11343 	raw_spin_unlock_irq(&child_ctx->lock);
11344 
11345 	/*
11346 	 * Parent events are governed by their filedesc, retain them.
11347 	 */
11348 	if (!parent_event) {
11349 		perf_event_wakeup(child_event);
11350 		return;
11351 	}
11352 	/*
11353 	 * Child events can be cleaned up.
11354 	 */
11355 
11356 	sync_child_event(child_event, child);
11357 
11358 	/*
11359 	 * Remove this event from the parent's list
11360 	 */
11361 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11362 	mutex_lock(&parent_event->child_mutex);
11363 	list_del_init(&child_event->child_list);
11364 	mutex_unlock(&parent_event->child_mutex);
11365 
11366 	/*
11367 	 * Kick perf_poll() for is_event_hup().
11368 	 */
11369 	perf_event_wakeup(parent_event);
11370 	free_event(child_event);
11371 	put_event(parent_event);
11372 }
11373 
11374 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11375 {
11376 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11377 	struct perf_event *child_event, *next;
11378 
11379 	WARN_ON_ONCE(child != current);
11380 
11381 	child_ctx = perf_pin_task_context(child, ctxn);
11382 	if (!child_ctx)
11383 		return;
11384 
11385 	/*
11386 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11387 	 * ctx::mutex over the entire thing. This serializes against almost
11388 	 * everything that wants to access the ctx.
11389 	 *
11390 	 * The exception is sys_perf_event_open() /
11391 	 * perf_event_create_kernel_count() which does find_get_context()
11392 	 * without ctx::mutex (it cannot because of the move_group double mutex
11393 	 * lock thing). See the comments in perf_install_in_context().
11394 	 */
11395 	mutex_lock(&child_ctx->mutex);
11396 
11397 	/*
11398 	 * In a single ctx::lock section, de-schedule the events and detach the
11399 	 * context from the task such that we cannot ever get it scheduled back
11400 	 * in.
11401 	 */
11402 	raw_spin_lock_irq(&child_ctx->lock);
11403 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11404 
11405 	/*
11406 	 * Now that the context is inactive, destroy the task <-> ctx relation
11407 	 * and mark the context dead.
11408 	 */
11409 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11410 	put_ctx(child_ctx); /* cannot be last */
11411 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11412 	put_task_struct(current); /* cannot be last */
11413 
11414 	clone_ctx = unclone_ctx(child_ctx);
11415 	raw_spin_unlock_irq(&child_ctx->lock);
11416 
11417 	if (clone_ctx)
11418 		put_ctx(clone_ctx);
11419 
11420 	/*
11421 	 * Report the task dead after unscheduling the events so that we
11422 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11423 	 * get a few PERF_RECORD_READ events.
11424 	 */
11425 	perf_event_task(child, child_ctx, 0);
11426 
11427 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11428 		perf_event_exit_event(child_event, child_ctx, child);
11429 
11430 	mutex_unlock(&child_ctx->mutex);
11431 
11432 	put_ctx(child_ctx);
11433 }
11434 
11435 /*
11436  * When a child task exits, feed back event values to parent events.
11437  *
11438  * Can be called with cred_guard_mutex held when called from
11439  * install_exec_creds().
11440  */
11441 void perf_event_exit_task(struct task_struct *child)
11442 {
11443 	struct perf_event *event, *tmp;
11444 	int ctxn;
11445 
11446 	mutex_lock(&child->perf_event_mutex);
11447 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11448 				 owner_entry) {
11449 		list_del_init(&event->owner_entry);
11450 
11451 		/*
11452 		 * Ensure the list deletion is visible before we clear
11453 		 * the owner, closes a race against perf_release() where
11454 		 * we need to serialize on the owner->perf_event_mutex.
11455 		 */
11456 		smp_store_release(&event->owner, NULL);
11457 	}
11458 	mutex_unlock(&child->perf_event_mutex);
11459 
11460 	for_each_task_context_nr(ctxn)
11461 		perf_event_exit_task_context(child, ctxn);
11462 
11463 	/*
11464 	 * The perf_event_exit_task_context calls perf_event_task
11465 	 * with child's task_ctx, which generates EXIT events for
11466 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11467 	 * At this point we need to send EXIT events to cpu contexts.
11468 	 */
11469 	perf_event_task(child, NULL, 0);
11470 }
11471 
11472 static void perf_free_event(struct perf_event *event,
11473 			    struct perf_event_context *ctx)
11474 {
11475 	struct perf_event *parent = event->parent;
11476 
11477 	if (WARN_ON_ONCE(!parent))
11478 		return;
11479 
11480 	mutex_lock(&parent->child_mutex);
11481 	list_del_init(&event->child_list);
11482 	mutex_unlock(&parent->child_mutex);
11483 
11484 	put_event(parent);
11485 
11486 	raw_spin_lock_irq(&ctx->lock);
11487 	perf_group_detach(event);
11488 	list_del_event(event, ctx);
11489 	raw_spin_unlock_irq(&ctx->lock);
11490 	free_event(event);
11491 }
11492 
11493 /*
11494  * Free an unexposed, unused context as created by inheritance by
11495  * perf_event_init_task below, used by fork() in case of fail.
11496  *
11497  * Not all locks are strictly required, but take them anyway to be nice and
11498  * help out with the lockdep assertions.
11499  */
11500 void perf_event_free_task(struct task_struct *task)
11501 {
11502 	struct perf_event_context *ctx;
11503 	struct perf_event *event, *tmp;
11504 	int ctxn;
11505 
11506 	for_each_task_context_nr(ctxn) {
11507 		ctx = task->perf_event_ctxp[ctxn];
11508 		if (!ctx)
11509 			continue;
11510 
11511 		mutex_lock(&ctx->mutex);
11512 		raw_spin_lock_irq(&ctx->lock);
11513 		/*
11514 		 * Destroy the task <-> ctx relation and mark the context dead.
11515 		 *
11516 		 * This is important because even though the task hasn't been
11517 		 * exposed yet the context has been (through child_list).
11518 		 */
11519 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11520 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11521 		put_task_struct(task); /* cannot be last */
11522 		raw_spin_unlock_irq(&ctx->lock);
11523 
11524 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11525 			perf_free_event(event, ctx);
11526 
11527 		mutex_unlock(&ctx->mutex);
11528 		put_ctx(ctx);
11529 	}
11530 }
11531 
11532 void perf_event_delayed_put(struct task_struct *task)
11533 {
11534 	int ctxn;
11535 
11536 	for_each_task_context_nr(ctxn)
11537 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11538 }
11539 
11540 struct file *perf_event_get(unsigned int fd)
11541 {
11542 	struct file *file;
11543 
11544 	file = fget_raw(fd);
11545 	if (!file)
11546 		return ERR_PTR(-EBADF);
11547 
11548 	if (file->f_op != &perf_fops) {
11549 		fput(file);
11550 		return ERR_PTR(-EBADF);
11551 	}
11552 
11553 	return file;
11554 }
11555 
11556 const struct perf_event *perf_get_event(struct file *file)
11557 {
11558 	if (file->f_op != &perf_fops)
11559 		return ERR_PTR(-EINVAL);
11560 
11561 	return file->private_data;
11562 }
11563 
11564 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11565 {
11566 	if (!event)
11567 		return ERR_PTR(-EINVAL);
11568 
11569 	return &event->attr;
11570 }
11571 
11572 /*
11573  * Inherit an event from parent task to child task.
11574  *
11575  * Returns:
11576  *  - valid pointer on success
11577  *  - NULL for orphaned events
11578  *  - IS_ERR() on error
11579  */
11580 static struct perf_event *
11581 inherit_event(struct perf_event *parent_event,
11582 	      struct task_struct *parent,
11583 	      struct perf_event_context *parent_ctx,
11584 	      struct task_struct *child,
11585 	      struct perf_event *group_leader,
11586 	      struct perf_event_context *child_ctx)
11587 {
11588 	enum perf_event_state parent_state = parent_event->state;
11589 	struct perf_event *child_event;
11590 	unsigned long flags;
11591 
11592 	/*
11593 	 * Instead of creating recursive hierarchies of events,
11594 	 * we link inherited events back to the original parent,
11595 	 * which has a filp for sure, which we use as the reference
11596 	 * count:
11597 	 */
11598 	if (parent_event->parent)
11599 		parent_event = parent_event->parent;
11600 
11601 	child_event = perf_event_alloc(&parent_event->attr,
11602 					   parent_event->cpu,
11603 					   child,
11604 					   group_leader, parent_event,
11605 					   NULL, NULL, -1);
11606 	if (IS_ERR(child_event))
11607 		return child_event;
11608 
11609 
11610 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11611 	    !child_ctx->task_ctx_data) {
11612 		struct pmu *pmu = child_event->pmu;
11613 
11614 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11615 						   GFP_KERNEL);
11616 		if (!child_ctx->task_ctx_data) {
11617 			free_event(child_event);
11618 			return NULL;
11619 		}
11620 	}
11621 
11622 	/*
11623 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11624 	 * must be under the same lock in order to serialize against
11625 	 * perf_event_release_kernel(), such that either we must observe
11626 	 * is_orphaned_event() or they will observe us on the child_list.
11627 	 */
11628 	mutex_lock(&parent_event->child_mutex);
11629 	if (is_orphaned_event(parent_event) ||
11630 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11631 		mutex_unlock(&parent_event->child_mutex);
11632 		/* task_ctx_data is freed with child_ctx */
11633 		free_event(child_event);
11634 		return NULL;
11635 	}
11636 
11637 	get_ctx(child_ctx);
11638 
11639 	/*
11640 	 * Make the child state follow the state of the parent event,
11641 	 * not its attr.disabled bit.  We hold the parent's mutex,
11642 	 * so we won't race with perf_event_{en, dis}able_family.
11643 	 */
11644 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11645 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11646 	else
11647 		child_event->state = PERF_EVENT_STATE_OFF;
11648 
11649 	if (parent_event->attr.freq) {
11650 		u64 sample_period = parent_event->hw.sample_period;
11651 		struct hw_perf_event *hwc = &child_event->hw;
11652 
11653 		hwc->sample_period = sample_period;
11654 		hwc->last_period   = sample_period;
11655 
11656 		local64_set(&hwc->period_left, sample_period);
11657 	}
11658 
11659 	child_event->ctx = child_ctx;
11660 	child_event->overflow_handler = parent_event->overflow_handler;
11661 	child_event->overflow_handler_context
11662 		= parent_event->overflow_handler_context;
11663 
11664 	/*
11665 	 * Precalculate sample_data sizes
11666 	 */
11667 	perf_event__header_size(child_event);
11668 	perf_event__id_header_size(child_event);
11669 
11670 	/*
11671 	 * Link it up in the child's context:
11672 	 */
11673 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11674 	add_event_to_ctx(child_event, child_ctx);
11675 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11676 
11677 	/*
11678 	 * Link this into the parent event's child list
11679 	 */
11680 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11681 	mutex_unlock(&parent_event->child_mutex);
11682 
11683 	return child_event;
11684 }
11685 
11686 /*
11687  * Inherits an event group.
11688  *
11689  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11690  * This matches with perf_event_release_kernel() removing all child events.
11691  *
11692  * Returns:
11693  *  - 0 on success
11694  *  - <0 on error
11695  */
11696 static int inherit_group(struct perf_event *parent_event,
11697 	      struct task_struct *parent,
11698 	      struct perf_event_context *parent_ctx,
11699 	      struct task_struct *child,
11700 	      struct perf_event_context *child_ctx)
11701 {
11702 	struct perf_event *leader;
11703 	struct perf_event *sub;
11704 	struct perf_event *child_ctr;
11705 
11706 	leader = inherit_event(parent_event, parent, parent_ctx,
11707 				 child, NULL, child_ctx);
11708 	if (IS_ERR(leader))
11709 		return PTR_ERR(leader);
11710 	/*
11711 	 * @leader can be NULL here because of is_orphaned_event(). In this
11712 	 * case inherit_event() will create individual events, similar to what
11713 	 * perf_group_detach() would do anyway.
11714 	 */
11715 	for_each_sibling_event(sub, parent_event) {
11716 		child_ctr = inherit_event(sub, parent, parent_ctx,
11717 					    child, leader, child_ctx);
11718 		if (IS_ERR(child_ctr))
11719 			return PTR_ERR(child_ctr);
11720 	}
11721 	return 0;
11722 }
11723 
11724 /*
11725  * Creates the child task context and tries to inherit the event-group.
11726  *
11727  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11728  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11729  * consistent with perf_event_release_kernel() removing all child events.
11730  *
11731  * Returns:
11732  *  - 0 on success
11733  *  - <0 on error
11734  */
11735 static int
11736 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11737 		   struct perf_event_context *parent_ctx,
11738 		   struct task_struct *child, int ctxn,
11739 		   int *inherited_all)
11740 {
11741 	int ret;
11742 	struct perf_event_context *child_ctx;
11743 
11744 	if (!event->attr.inherit) {
11745 		*inherited_all = 0;
11746 		return 0;
11747 	}
11748 
11749 	child_ctx = child->perf_event_ctxp[ctxn];
11750 	if (!child_ctx) {
11751 		/*
11752 		 * This is executed from the parent task context, so
11753 		 * inherit events that have been marked for cloning.
11754 		 * First allocate and initialize a context for the
11755 		 * child.
11756 		 */
11757 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11758 		if (!child_ctx)
11759 			return -ENOMEM;
11760 
11761 		child->perf_event_ctxp[ctxn] = child_ctx;
11762 	}
11763 
11764 	ret = inherit_group(event, parent, parent_ctx,
11765 			    child, child_ctx);
11766 
11767 	if (ret)
11768 		*inherited_all = 0;
11769 
11770 	return ret;
11771 }
11772 
11773 /*
11774  * Initialize the perf_event context in task_struct
11775  */
11776 static int perf_event_init_context(struct task_struct *child, int ctxn)
11777 {
11778 	struct perf_event_context *child_ctx, *parent_ctx;
11779 	struct perf_event_context *cloned_ctx;
11780 	struct perf_event *event;
11781 	struct task_struct *parent = current;
11782 	int inherited_all = 1;
11783 	unsigned long flags;
11784 	int ret = 0;
11785 
11786 	if (likely(!parent->perf_event_ctxp[ctxn]))
11787 		return 0;
11788 
11789 	/*
11790 	 * If the parent's context is a clone, pin it so it won't get
11791 	 * swapped under us.
11792 	 */
11793 	parent_ctx = perf_pin_task_context(parent, ctxn);
11794 	if (!parent_ctx)
11795 		return 0;
11796 
11797 	/*
11798 	 * No need to check if parent_ctx != NULL here; since we saw
11799 	 * it non-NULL earlier, the only reason for it to become NULL
11800 	 * is if we exit, and since we're currently in the middle of
11801 	 * a fork we can't be exiting at the same time.
11802 	 */
11803 
11804 	/*
11805 	 * Lock the parent list. No need to lock the child - not PID
11806 	 * hashed yet and not running, so nobody can access it.
11807 	 */
11808 	mutex_lock(&parent_ctx->mutex);
11809 
11810 	/*
11811 	 * We dont have to disable NMIs - we are only looking at
11812 	 * the list, not manipulating it:
11813 	 */
11814 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11815 		ret = inherit_task_group(event, parent, parent_ctx,
11816 					 child, ctxn, &inherited_all);
11817 		if (ret)
11818 			goto out_unlock;
11819 	}
11820 
11821 	/*
11822 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11823 	 * to allocations, but we need to prevent rotation because
11824 	 * rotate_ctx() will change the list from interrupt context.
11825 	 */
11826 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11827 	parent_ctx->rotate_disable = 1;
11828 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11829 
11830 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11831 		ret = inherit_task_group(event, parent, parent_ctx,
11832 					 child, ctxn, &inherited_all);
11833 		if (ret)
11834 			goto out_unlock;
11835 	}
11836 
11837 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11838 	parent_ctx->rotate_disable = 0;
11839 
11840 	child_ctx = child->perf_event_ctxp[ctxn];
11841 
11842 	if (child_ctx && inherited_all) {
11843 		/*
11844 		 * Mark the child context as a clone of the parent
11845 		 * context, or of whatever the parent is a clone of.
11846 		 *
11847 		 * Note that if the parent is a clone, the holding of
11848 		 * parent_ctx->lock avoids it from being uncloned.
11849 		 */
11850 		cloned_ctx = parent_ctx->parent_ctx;
11851 		if (cloned_ctx) {
11852 			child_ctx->parent_ctx = cloned_ctx;
11853 			child_ctx->parent_gen = parent_ctx->parent_gen;
11854 		} else {
11855 			child_ctx->parent_ctx = parent_ctx;
11856 			child_ctx->parent_gen = parent_ctx->generation;
11857 		}
11858 		get_ctx(child_ctx->parent_ctx);
11859 	}
11860 
11861 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11862 out_unlock:
11863 	mutex_unlock(&parent_ctx->mutex);
11864 
11865 	perf_unpin_context(parent_ctx);
11866 	put_ctx(parent_ctx);
11867 
11868 	return ret;
11869 }
11870 
11871 /*
11872  * Initialize the perf_event context in task_struct
11873  */
11874 int perf_event_init_task(struct task_struct *child)
11875 {
11876 	int ctxn, ret;
11877 
11878 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11879 	mutex_init(&child->perf_event_mutex);
11880 	INIT_LIST_HEAD(&child->perf_event_list);
11881 
11882 	for_each_task_context_nr(ctxn) {
11883 		ret = perf_event_init_context(child, ctxn);
11884 		if (ret) {
11885 			perf_event_free_task(child);
11886 			return ret;
11887 		}
11888 	}
11889 
11890 	return 0;
11891 }
11892 
11893 static void __init perf_event_init_all_cpus(void)
11894 {
11895 	struct swevent_htable *swhash;
11896 	int cpu;
11897 
11898 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11899 
11900 	for_each_possible_cpu(cpu) {
11901 		swhash = &per_cpu(swevent_htable, cpu);
11902 		mutex_init(&swhash->hlist_mutex);
11903 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11904 
11905 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11906 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11907 
11908 #ifdef CONFIG_CGROUP_PERF
11909 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11910 #endif
11911 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11912 	}
11913 }
11914 
11915 void perf_swevent_init_cpu(unsigned int cpu)
11916 {
11917 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11918 
11919 	mutex_lock(&swhash->hlist_mutex);
11920 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11921 		struct swevent_hlist *hlist;
11922 
11923 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11924 		WARN_ON(!hlist);
11925 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11926 	}
11927 	mutex_unlock(&swhash->hlist_mutex);
11928 }
11929 
11930 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11931 static void __perf_event_exit_context(void *__info)
11932 {
11933 	struct perf_event_context *ctx = __info;
11934 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11935 	struct perf_event *event;
11936 
11937 	raw_spin_lock(&ctx->lock);
11938 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11939 	list_for_each_entry(event, &ctx->event_list, event_entry)
11940 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11941 	raw_spin_unlock(&ctx->lock);
11942 }
11943 
11944 static void perf_event_exit_cpu_context(int cpu)
11945 {
11946 	struct perf_cpu_context *cpuctx;
11947 	struct perf_event_context *ctx;
11948 	struct pmu *pmu;
11949 
11950 	mutex_lock(&pmus_lock);
11951 	list_for_each_entry(pmu, &pmus, entry) {
11952 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11953 		ctx = &cpuctx->ctx;
11954 
11955 		mutex_lock(&ctx->mutex);
11956 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11957 		cpuctx->online = 0;
11958 		mutex_unlock(&ctx->mutex);
11959 	}
11960 	cpumask_clear_cpu(cpu, perf_online_mask);
11961 	mutex_unlock(&pmus_lock);
11962 }
11963 #else
11964 
11965 static void perf_event_exit_cpu_context(int cpu) { }
11966 
11967 #endif
11968 
11969 int perf_event_init_cpu(unsigned int cpu)
11970 {
11971 	struct perf_cpu_context *cpuctx;
11972 	struct perf_event_context *ctx;
11973 	struct pmu *pmu;
11974 
11975 	perf_swevent_init_cpu(cpu);
11976 
11977 	mutex_lock(&pmus_lock);
11978 	cpumask_set_cpu(cpu, perf_online_mask);
11979 	list_for_each_entry(pmu, &pmus, entry) {
11980 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11981 		ctx = &cpuctx->ctx;
11982 
11983 		mutex_lock(&ctx->mutex);
11984 		cpuctx->online = 1;
11985 		mutex_unlock(&ctx->mutex);
11986 	}
11987 	mutex_unlock(&pmus_lock);
11988 
11989 	return 0;
11990 }
11991 
11992 int perf_event_exit_cpu(unsigned int cpu)
11993 {
11994 	perf_event_exit_cpu_context(cpu);
11995 	return 0;
11996 }
11997 
11998 static int
11999 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12000 {
12001 	int cpu;
12002 
12003 	for_each_online_cpu(cpu)
12004 		perf_event_exit_cpu(cpu);
12005 
12006 	return NOTIFY_OK;
12007 }
12008 
12009 /*
12010  * Run the perf reboot notifier at the very last possible moment so that
12011  * the generic watchdog code runs as long as possible.
12012  */
12013 static struct notifier_block perf_reboot_notifier = {
12014 	.notifier_call = perf_reboot,
12015 	.priority = INT_MIN,
12016 };
12017 
12018 void __init perf_event_init(void)
12019 {
12020 	int ret;
12021 
12022 	idr_init(&pmu_idr);
12023 
12024 	perf_event_init_all_cpus();
12025 	init_srcu_struct(&pmus_srcu);
12026 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12027 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12028 	perf_pmu_register(&perf_task_clock, NULL, -1);
12029 	perf_tp_register();
12030 	perf_event_init_cpu(smp_processor_id());
12031 	register_reboot_notifier(&perf_reboot_notifier);
12032 
12033 	ret = init_hw_breakpoint();
12034 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12035 
12036 	/*
12037 	 * Build time assertion that we keep the data_head at the intended
12038 	 * location.  IOW, validation we got the __reserved[] size right.
12039 	 */
12040 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12041 		     != 1024);
12042 }
12043 
12044 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12045 			      char *page)
12046 {
12047 	struct perf_pmu_events_attr *pmu_attr =
12048 		container_of(attr, struct perf_pmu_events_attr, attr);
12049 
12050 	if (pmu_attr->event_str)
12051 		return sprintf(page, "%s\n", pmu_attr->event_str);
12052 
12053 	return 0;
12054 }
12055 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12056 
12057 static int __init perf_event_sysfs_init(void)
12058 {
12059 	struct pmu *pmu;
12060 	int ret;
12061 
12062 	mutex_lock(&pmus_lock);
12063 
12064 	ret = bus_register(&pmu_bus);
12065 	if (ret)
12066 		goto unlock;
12067 
12068 	list_for_each_entry(pmu, &pmus, entry) {
12069 		if (!pmu->name || pmu->type < 0)
12070 			continue;
12071 
12072 		ret = pmu_dev_alloc(pmu);
12073 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12074 	}
12075 	pmu_bus_running = 1;
12076 	ret = 0;
12077 
12078 unlock:
12079 	mutex_unlock(&pmus_lock);
12080 
12081 	return ret;
12082 }
12083 device_initcall(perf_event_sysfs_init);
12084 
12085 #ifdef CONFIG_CGROUP_PERF
12086 static struct cgroup_subsys_state *
12087 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12088 {
12089 	struct perf_cgroup *jc;
12090 
12091 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12092 	if (!jc)
12093 		return ERR_PTR(-ENOMEM);
12094 
12095 	jc->info = alloc_percpu(struct perf_cgroup_info);
12096 	if (!jc->info) {
12097 		kfree(jc);
12098 		return ERR_PTR(-ENOMEM);
12099 	}
12100 
12101 	return &jc->css;
12102 }
12103 
12104 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12105 {
12106 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12107 
12108 	free_percpu(jc->info);
12109 	kfree(jc);
12110 }
12111 
12112 static int __perf_cgroup_move(void *info)
12113 {
12114 	struct task_struct *task = info;
12115 	rcu_read_lock();
12116 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12117 	rcu_read_unlock();
12118 	return 0;
12119 }
12120 
12121 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12122 {
12123 	struct task_struct *task;
12124 	struct cgroup_subsys_state *css;
12125 
12126 	cgroup_taskset_for_each(task, css, tset)
12127 		task_function_call(task, __perf_cgroup_move, task);
12128 }
12129 
12130 struct cgroup_subsys perf_event_cgrp_subsys = {
12131 	.css_alloc	= perf_cgroup_css_alloc,
12132 	.css_free	= perf_cgroup_css_free,
12133 	.attach		= perf_cgroup_attach,
12134 	/*
12135 	 * Implicitly enable on dfl hierarchy so that perf events can
12136 	 * always be filtered by cgroup2 path as long as perf_event
12137 	 * controller is not mounted on a legacy hierarchy.
12138 	 */
12139 	.implicit_on_dfl = true,
12140 	.threaded	= true,
12141 };
12142 #endif /* CONFIG_CGROUP_PERF */
12143