1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (READ_ONCE(event->pending_disable) >= 0) { 2013 WRITE_ONCE(event->pending_disable, -1); 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 WRITE_ONCE(event->pending_disable, smp_processor_id()); 2202 /* can fail, see perf_pending_event_disable() */ 2203 irq_work_queue(&event->pending); 2204 } 2205 2206 static void perf_set_shadow_time(struct perf_event *event, 2207 struct perf_event_context *ctx) 2208 { 2209 /* 2210 * use the correct time source for the time snapshot 2211 * 2212 * We could get by without this by leveraging the 2213 * fact that to get to this function, the caller 2214 * has most likely already called update_context_time() 2215 * and update_cgrp_time_xx() and thus both timestamp 2216 * are identical (or very close). Given that tstamp is, 2217 * already adjusted for cgroup, we could say that: 2218 * tstamp - ctx->timestamp 2219 * is equivalent to 2220 * tstamp - cgrp->timestamp. 2221 * 2222 * Then, in perf_output_read(), the calculation would 2223 * work with no changes because: 2224 * - event is guaranteed scheduled in 2225 * - no scheduled out in between 2226 * - thus the timestamp would be the same 2227 * 2228 * But this is a bit hairy. 2229 * 2230 * So instead, we have an explicit cgroup call to remain 2231 * within the time time source all along. We believe it 2232 * is cleaner and simpler to understand. 2233 */ 2234 if (is_cgroup_event(event)) 2235 perf_cgroup_set_shadow_time(event, event->tstamp); 2236 else 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2238 } 2239 2240 #define MAX_INTERRUPTS (~0ULL) 2241 2242 static void perf_log_throttle(struct perf_event *event, int enable); 2243 static void perf_log_itrace_start(struct perf_event *event); 2244 2245 static int 2246 event_sched_in(struct perf_event *event, 2247 struct perf_cpu_context *cpuctx, 2248 struct perf_event_context *ctx) 2249 { 2250 int ret = 0; 2251 2252 lockdep_assert_held(&ctx->lock); 2253 2254 if (event->state <= PERF_EVENT_STATE_OFF) 2255 return 0; 2256 2257 WRITE_ONCE(event->oncpu, smp_processor_id()); 2258 /* 2259 * Order event::oncpu write to happen before the ACTIVE state is 2260 * visible. This allows perf_event_{stop,read}() to observe the correct 2261 * ->oncpu if it sees ACTIVE. 2262 */ 2263 smp_wmb(); 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2265 2266 /* 2267 * Unthrottle events, since we scheduled we might have missed several 2268 * ticks already, also for a heavily scheduling task there is little 2269 * guarantee it'll get a tick in a timely manner. 2270 */ 2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2272 perf_log_throttle(event, 1); 2273 event->hw.interrupts = 0; 2274 } 2275 2276 perf_pmu_disable(event->pmu); 2277 2278 perf_set_shadow_time(event, ctx); 2279 2280 perf_log_itrace_start(event); 2281 2282 if (event->pmu->add(event, PERF_EF_START)) { 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2284 event->oncpu = -1; 2285 ret = -EAGAIN; 2286 goto out; 2287 } 2288 2289 if (!is_software_event(event)) 2290 cpuctx->active_oncpu++; 2291 if (!ctx->nr_active++) 2292 perf_event_ctx_activate(ctx); 2293 if (event->attr.freq && event->attr.sample_freq) 2294 ctx->nr_freq++; 2295 2296 if (event->attr.exclusive) 2297 cpuctx->exclusive = 1; 2298 2299 out: 2300 perf_pmu_enable(event->pmu); 2301 2302 return ret; 2303 } 2304 2305 static int 2306 group_sched_in(struct perf_event *group_event, 2307 struct perf_cpu_context *cpuctx, 2308 struct perf_event_context *ctx) 2309 { 2310 struct perf_event *event, *partial_group = NULL; 2311 struct pmu *pmu = ctx->pmu; 2312 2313 if (group_event->state == PERF_EVENT_STATE_OFF) 2314 return 0; 2315 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2317 2318 if (event_sched_in(group_event, cpuctx, ctx)) { 2319 pmu->cancel_txn(pmu); 2320 perf_mux_hrtimer_restart(cpuctx); 2321 return -EAGAIN; 2322 } 2323 2324 /* 2325 * Schedule in siblings as one group (if any): 2326 */ 2327 for_each_sibling_event(event, group_event) { 2328 if (event_sched_in(event, cpuctx, ctx)) { 2329 partial_group = event; 2330 goto group_error; 2331 } 2332 } 2333 2334 if (!pmu->commit_txn(pmu)) 2335 return 0; 2336 2337 group_error: 2338 /* 2339 * Groups can be scheduled in as one unit only, so undo any 2340 * partial group before returning: 2341 * The events up to the failed event are scheduled out normally. 2342 */ 2343 for_each_sibling_event(event, group_event) { 2344 if (event == partial_group) 2345 break; 2346 2347 event_sched_out(event, cpuctx, ctx); 2348 } 2349 event_sched_out(group_event, cpuctx, ctx); 2350 2351 pmu->cancel_txn(pmu); 2352 2353 perf_mux_hrtimer_restart(cpuctx); 2354 2355 return -EAGAIN; 2356 } 2357 2358 /* 2359 * Work out whether we can put this event group on the CPU now. 2360 */ 2361 static int group_can_go_on(struct perf_event *event, 2362 struct perf_cpu_context *cpuctx, 2363 int can_add_hw) 2364 { 2365 /* 2366 * Groups consisting entirely of software events can always go on. 2367 */ 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2369 return 1; 2370 /* 2371 * If an exclusive group is already on, no other hardware 2372 * events can go on. 2373 */ 2374 if (cpuctx->exclusive) 2375 return 0; 2376 /* 2377 * If this group is exclusive and there are already 2378 * events on the CPU, it can't go on. 2379 */ 2380 if (event->attr.exclusive && cpuctx->active_oncpu) 2381 return 0; 2382 /* 2383 * Otherwise, try to add it if all previous groups were able 2384 * to go on. 2385 */ 2386 return can_add_hw; 2387 } 2388 2389 static void add_event_to_ctx(struct perf_event *event, 2390 struct perf_event_context *ctx) 2391 { 2392 list_add_event(event, ctx); 2393 perf_group_attach(event); 2394 } 2395 2396 static void ctx_sched_out(struct perf_event_context *ctx, 2397 struct perf_cpu_context *cpuctx, 2398 enum event_type_t event_type); 2399 static void 2400 ctx_sched_in(struct perf_event_context *ctx, 2401 struct perf_cpu_context *cpuctx, 2402 enum event_type_t event_type, 2403 struct task_struct *task); 2404 2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2406 struct perf_event_context *ctx, 2407 enum event_type_t event_type) 2408 { 2409 if (!cpuctx->task_ctx) 2410 return; 2411 2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2413 return; 2414 2415 ctx_sched_out(ctx, cpuctx, event_type); 2416 } 2417 2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2419 struct perf_event_context *ctx, 2420 struct task_struct *task) 2421 { 2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2423 if (ctx) 2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2426 if (ctx) 2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2428 } 2429 2430 /* 2431 * We want to maintain the following priority of scheduling: 2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2433 * - task pinned (EVENT_PINNED) 2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2435 * - task flexible (EVENT_FLEXIBLE). 2436 * 2437 * In order to avoid unscheduling and scheduling back in everything every 2438 * time an event is added, only do it for the groups of equal priority and 2439 * below. 2440 * 2441 * This can be called after a batch operation on task events, in which case 2442 * event_type is a bit mask of the types of events involved. For CPU events, 2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2444 */ 2445 static void ctx_resched(struct perf_cpu_context *cpuctx, 2446 struct perf_event_context *task_ctx, 2447 enum event_type_t event_type) 2448 { 2449 enum event_type_t ctx_event_type; 2450 bool cpu_event = !!(event_type & EVENT_CPU); 2451 2452 /* 2453 * If pinned groups are involved, flexible groups also need to be 2454 * scheduled out. 2455 */ 2456 if (event_type & EVENT_PINNED) 2457 event_type |= EVENT_FLEXIBLE; 2458 2459 ctx_event_type = event_type & EVENT_ALL; 2460 2461 perf_pmu_disable(cpuctx->ctx.pmu); 2462 if (task_ctx) 2463 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2464 2465 /* 2466 * Decide which cpu ctx groups to schedule out based on the types 2467 * of events that caused rescheduling: 2468 * - EVENT_CPU: schedule out corresponding groups; 2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2470 * - otherwise, do nothing more. 2471 */ 2472 if (cpu_event) 2473 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2474 else if (ctx_event_type & EVENT_PINNED) 2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2476 2477 perf_event_sched_in(cpuctx, task_ctx, current); 2478 perf_pmu_enable(cpuctx->ctx.pmu); 2479 } 2480 2481 /* 2482 * Cross CPU call to install and enable a performance event 2483 * 2484 * Very similar to remote_function() + event_function() but cannot assume that 2485 * things like ctx->is_active and cpuctx->task_ctx are set. 2486 */ 2487 static int __perf_install_in_context(void *info) 2488 { 2489 struct perf_event *event = info; 2490 struct perf_event_context *ctx = event->ctx; 2491 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2492 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2493 bool reprogram = true; 2494 int ret = 0; 2495 2496 raw_spin_lock(&cpuctx->ctx.lock); 2497 if (ctx->task) { 2498 raw_spin_lock(&ctx->lock); 2499 task_ctx = ctx; 2500 2501 reprogram = (ctx->task == current); 2502 2503 /* 2504 * If the task is running, it must be running on this CPU, 2505 * otherwise we cannot reprogram things. 2506 * 2507 * If its not running, we don't care, ctx->lock will 2508 * serialize against it becoming runnable. 2509 */ 2510 if (task_curr(ctx->task) && !reprogram) { 2511 ret = -ESRCH; 2512 goto unlock; 2513 } 2514 2515 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2516 } else if (task_ctx) { 2517 raw_spin_lock(&task_ctx->lock); 2518 } 2519 2520 #ifdef CONFIG_CGROUP_PERF 2521 if (is_cgroup_event(event)) { 2522 /* 2523 * If the current cgroup doesn't match the event's 2524 * cgroup, we should not try to schedule it. 2525 */ 2526 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2527 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2528 event->cgrp->css.cgroup); 2529 } 2530 #endif 2531 2532 if (reprogram) { 2533 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2534 add_event_to_ctx(event, ctx); 2535 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2536 } else { 2537 add_event_to_ctx(event, ctx); 2538 } 2539 2540 unlock: 2541 perf_ctx_unlock(cpuctx, task_ctx); 2542 2543 return ret; 2544 } 2545 2546 /* 2547 * Attach a performance event to a context. 2548 * 2549 * Very similar to event_function_call, see comment there. 2550 */ 2551 static void 2552 perf_install_in_context(struct perf_event_context *ctx, 2553 struct perf_event *event, 2554 int cpu) 2555 { 2556 struct task_struct *task = READ_ONCE(ctx->task); 2557 2558 lockdep_assert_held(&ctx->mutex); 2559 2560 if (event->cpu != -1) 2561 event->cpu = cpu; 2562 2563 /* 2564 * Ensures that if we can observe event->ctx, both the event and ctx 2565 * will be 'complete'. See perf_iterate_sb_cpu(). 2566 */ 2567 smp_store_release(&event->ctx, ctx); 2568 2569 if (!task) { 2570 cpu_function_call(cpu, __perf_install_in_context, event); 2571 return; 2572 } 2573 2574 /* 2575 * Should not happen, we validate the ctx is still alive before calling. 2576 */ 2577 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2578 return; 2579 2580 /* 2581 * Installing events is tricky because we cannot rely on ctx->is_active 2582 * to be set in case this is the nr_events 0 -> 1 transition. 2583 * 2584 * Instead we use task_curr(), which tells us if the task is running. 2585 * However, since we use task_curr() outside of rq::lock, we can race 2586 * against the actual state. This means the result can be wrong. 2587 * 2588 * If we get a false positive, we retry, this is harmless. 2589 * 2590 * If we get a false negative, things are complicated. If we are after 2591 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2592 * value must be correct. If we're before, it doesn't matter since 2593 * perf_event_context_sched_in() will program the counter. 2594 * 2595 * However, this hinges on the remote context switch having observed 2596 * our task->perf_event_ctxp[] store, such that it will in fact take 2597 * ctx::lock in perf_event_context_sched_in(). 2598 * 2599 * We do this by task_function_call(), if the IPI fails to hit the task 2600 * we know any future context switch of task must see the 2601 * perf_event_ctpx[] store. 2602 */ 2603 2604 /* 2605 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2606 * task_cpu() load, such that if the IPI then does not find the task 2607 * running, a future context switch of that task must observe the 2608 * store. 2609 */ 2610 smp_mb(); 2611 again: 2612 if (!task_function_call(task, __perf_install_in_context, event)) 2613 return; 2614 2615 raw_spin_lock_irq(&ctx->lock); 2616 task = ctx->task; 2617 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2618 /* 2619 * Cannot happen because we already checked above (which also 2620 * cannot happen), and we hold ctx->mutex, which serializes us 2621 * against perf_event_exit_task_context(). 2622 */ 2623 raw_spin_unlock_irq(&ctx->lock); 2624 return; 2625 } 2626 /* 2627 * If the task is not running, ctx->lock will avoid it becoming so, 2628 * thus we can safely install the event. 2629 */ 2630 if (task_curr(task)) { 2631 raw_spin_unlock_irq(&ctx->lock); 2632 goto again; 2633 } 2634 add_event_to_ctx(event, ctx); 2635 raw_spin_unlock_irq(&ctx->lock); 2636 } 2637 2638 /* 2639 * Cross CPU call to enable a performance event 2640 */ 2641 static void __perf_event_enable(struct perf_event *event, 2642 struct perf_cpu_context *cpuctx, 2643 struct perf_event_context *ctx, 2644 void *info) 2645 { 2646 struct perf_event *leader = event->group_leader; 2647 struct perf_event_context *task_ctx; 2648 2649 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2650 event->state <= PERF_EVENT_STATE_ERROR) 2651 return; 2652 2653 if (ctx->is_active) 2654 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2655 2656 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2657 2658 if (!ctx->is_active) 2659 return; 2660 2661 if (!event_filter_match(event)) { 2662 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2663 return; 2664 } 2665 2666 /* 2667 * If the event is in a group and isn't the group leader, 2668 * then don't put it on unless the group is on. 2669 */ 2670 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2671 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2672 return; 2673 } 2674 2675 task_ctx = cpuctx->task_ctx; 2676 if (ctx->task) 2677 WARN_ON_ONCE(task_ctx != ctx); 2678 2679 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2680 } 2681 2682 /* 2683 * Enable an event. 2684 * 2685 * If event->ctx is a cloned context, callers must make sure that 2686 * every task struct that event->ctx->task could possibly point to 2687 * remains valid. This condition is satisfied when called through 2688 * perf_event_for_each_child or perf_event_for_each as described 2689 * for perf_event_disable. 2690 */ 2691 static void _perf_event_enable(struct perf_event *event) 2692 { 2693 struct perf_event_context *ctx = event->ctx; 2694 2695 raw_spin_lock_irq(&ctx->lock); 2696 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2697 event->state < PERF_EVENT_STATE_ERROR) { 2698 raw_spin_unlock_irq(&ctx->lock); 2699 return; 2700 } 2701 2702 /* 2703 * If the event is in error state, clear that first. 2704 * 2705 * That way, if we see the event in error state below, we know that it 2706 * has gone back into error state, as distinct from the task having 2707 * been scheduled away before the cross-call arrived. 2708 */ 2709 if (event->state == PERF_EVENT_STATE_ERROR) 2710 event->state = PERF_EVENT_STATE_OFF; 2711 raw_spin_unlock_irq(&ctx->lock); 2712 2713 event_function_call(event, __perf_event_enable, NULL); 2714 } 2715 2716 /* 2717 * See perf_event_disable(); 2718 */ 2719 void perf_event_enable(struct perf_event *event) 2720 { 2721 struct perf_event_context *ctx; 2722 2723 ctx = perf_event_ctx_lock(event); 2724 _perf_event_enable(event); 2725 perf_event_ctx_unlock(event, ctx); 2726 } 2727 EXPORT_SYMBOL_GPL(perf_event_enable); 2728 2729 struct stop_event_data { 2730 struct perf_event *event; 2731 unsigned int restart; 2732 }; 2733 2734 static int __perf_event_stop(void *info) 2735 { 2736 struct stop_event_data *sd = info; 2737 struct perf_event *event = sd->event; 2738 2739 /* if it's already INACTIVE, do nothing */ 2740 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2741 return 0; 2742 2743 /* matches smp_wmb() in event_sched_in() */ 2744 smp_rmb(); 2745 2746 /* 2747 * There is a window with interrupts enabled before we get here, 2748 * so we need to check again lest we try to stop another CPU's event. 2749 */ 2750 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2751 return -EAGAIN; 2752 2753 event->pmu->stop(event, PERF_EF_UPDATE); 2754 2755 /* 2756 * May race with the actual stop (through perf_pmu_output_stop()), 2757 * but it is only used for events with AUX ring buffer, and such 2758 * events will refuse to restart because of rb::aux_mmap_count==0, 2759 * see comments in perf_aux_output_begin(). 2760 * 2761 * Since this is happening on an event-local CPU, no trace is lost 2762 * while restarting. 2763 */ 2764 if (sd->restart) 2765 event->pmu->start(event, 0); 2766 2767 return 0; 2768 } 2769 2770 static int perf_event_stop(struct perf_event *event, int restart) 2771 { 2772 struct stop_event_data sd = { 2773 .event = event, 2774 .restart = restart, 2775 }; 2776 int ret = 0; 2777 2778 do { 2779 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2780 return 0; 2781 2782 /* matches smp_wmb() in event_sched_in() */ 2783 smp_rmb(); 2784 2785 /* 2786 * We only want to restart ACTIVE events, so if the event goes 2787 * inactive here (event->oncpu==-1), there's nothing more to do; 2788 * fall through with ret==-ENXIO. 2789 */ 2790 ret = cpu_function_call(READ_ONCE(event->oncpu), 2791 __perf_event_stop, &sd); 2792 } while (ret == -EAGAIN); 2793 2794 return ret; 2795 } 2796 2797 /* 2798 * In order to contain the amount of racy and tricky in the address filter 2799 * configuration management, it is a two part process: 2800 * 2801 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2802 * we update the addresses of corresponding vmas in 2803 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2804 * (p2) when an event is scheduled in (pmu::add), it calls 2805 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2806 * if the generation has changed since the previous call. 2807 * 2808 * If (p1) happens while the event is active, we restart it to force (p2). 2809 * 2810 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2811 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2812 * ioctl; 2813 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2814 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2815 * for reading; 2816 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2817 * of exec. 2818 */ 2819 void perf_event_addr_filters_sync(struct perf_event *event) 2820 { 2821 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2822 2823 if (!has_addr_filter(event)) 2824 return; 2825 2826 raw_spin_lock(&ifh->lock); 2827 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2828 event->pmu->addr_filters_sync(event); 2829 event->hw.addr_filters_gen = event->addr_filters_gen; 2830 } 2831 raw_spin_unlock(&ifh->lock); 2832 } 2833 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2834 2835 static int _perf_event_refresh(struct perf_event *event, int refresh) 2836 { 2837 /* 2838 * not supported on inherited events 2839 */ 2840 if (event->attr.inherit || !is_sampling_event(event)) 2841 return -EINVAL; 2842 2843 atomic_add(refresh, &event->event_limit); 2844 _perf_event_enable(event); 2845 2846 return 0; 2847 } 2848 2849 /* 2850 * See perf_event_disable() 2851 */ 2852 int perf_event_refresh(struct perf_event *event, int refresh) 2853 { 2854 struct perf_event_context *ctx; 2855 int ret; 2856 2857 ctx = perf_event_ctx_lock(event); 2858 ret = _perf_event_refresh(event, refresh); 2859 perf_event_ctx_unlock(event, ctx); 2860 2861 return ret; 2862 } 2863 EXPORT_SYMBOL_GPL(perf_event_refresh); 2864 2865 static int perf_event_modify_breakpoint(struct perf_event *bp, 2866 struct perf_event_attr *attr) 2867 { 2868 int err; 2869 2870 _perf_event_disable(bp); 2871 2872 err = modify_user_hw_breakpoint_check(bp, attr, true); 2873 2874 if (!bp->attr.disabled) 2875 _perf_event_enable(bp); 2876 2877 return err; 2878 } 2879 2880 static int perf_event_modify_attr(struct perf_event *event, 2881 struct perf_event_attr *attr) 2882 { 2883 if (event->attr.type != attr->type) 2884 return -EINVAL; 2885 2886 switch (event->attr.type) { 2887 case PERF_TYPE_BREAKPOINT: 2888 return perf_event_modify_breakpoint(event, attr); 2889 default: 2890 /* Place holder for future additions. */ 2891 return -EOPNOTSUPP; 2892 } 2893 } 2894 2895 static void ctx_sched_out(struct perf_event_context *ctx, 2896 struct perf_cpu_context *cpuctx, 2897 enum event_type_t event_type) 2898 { 2899 struct perf_event *event, *tmp; 2900 int is_active = ctx->is_active; 2901 2902 lockdep_assert_held(&ctx->lock); 2903 2904 if (likely(!ctx->nr_events)) { 2905 /* 2906 * See __perf_remove_from_context(). 2907 */ 2908 WARN_ON_ONCE(ctx->is_active); 2909 if (ctx->task) 2910 WARN_ON_ONCE(cpuctx->task_ctx); 2911 return; 2912 } 2913 2914 ctx->is_active &= ~event_type; 2915 if (!(ctx->is_active & EVENT_ALL)) 2916 ctx->is_active = 0; 2917 2918 if (ctx->task) { 2919 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2920 if (!ctx->is_active) 2921 cpuctx->task_ctx = NULL; 2922 } 2923 2924 /* 2925 * Always update time if it was set; not only when it changes. 2926 * Otherwise we can 'forget' to update time for any but the last 2927 * context we sched out. For example: 2928 * 2929 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2930 * ctx_sched_out(.event_type = EVENT_PINNED) 2931 * 2932 * would only update time for the pinned events. 2933 */ 2934 if (is_active & EVENT_TIME) { 2935 /* update (and stop) ctx time */ 2936 update_context_time(ctx); 2937 update_cgrp_time_from_cpuctx(cpuctx); 2938 } 2939 2940 is_active ^= ctx->is_active; /* changed bits */ 2941 2942 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2943 return; 2944 2945 perf_pmu_disable(ctx->pmu); 2946 if (is_active & EVENT_PINNED) { 2947 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2948 group_sched_out(event, cpuctx, ctx); 2949 } 2950 2951 if (is_active & EVENT_FLEXIBLE) { 2952 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2953 group_sched_out(event, cpuctx, ctx); 2954 } 2955 perf_pmu_enable(ctx->pmu); 2956 } 2957 2958 /* 2959 * Test whether two contexts are equivalent, i.e. whether they have both been 2960 * cloned from the same version of the same context. 2961 * 2962 * Equivalence is measured using a generation number in the context that is 2963 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2964 * and list_del_event(). 2965 */ 2966 static int context_equiv(struct perf_event_context *ctx1, 2967 struct perf_event_context *ctx2) 2968 { 2969 lockdep_assert_held(&ctx1->lock); 2970 lockdep_assert_held(&ctx2->lock); 2971 2972 /* Pinning disables the swap optimization */ 2973 if (ctx1->pin_count || ctx2->pin_count) 2974 return 0; 2975 2976 /* If ctx1 is the parent of ctx2 */ 2977 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2978 return 1; 2979 2980 /* If ctx2 is the parent of ctx1 */ 2981 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2982 return 1; 2983 2984 /* 2985 * If ctx1 and ctx2 have the same parent; we flatten the parent 2986 * hierarchy, see perf_event_init_context(). 2987 */ 2988 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2989 ctx1->parent_gen == ctx2->parent_gen) 2990 return 1; 2991 2992 /* Unmatched */ 2993 return 0; 2994 } 2995 2996 static void __perf_event_sync_stat(struct perf_event *event, 2997 struct perf_event *next_event) 2998 { 2999 u64 value; 3000 3001 if (!event->attr.inherit_stat) 3002 return; 3003 3004 /* 3005 * Update the event value, we cannot use perf_event_read() 3006 * because we're in the middle of a context switch and have IRQs 3007 * disabled, which upsets smp_call_function_single(), however 3008 * we know the event must be on the current CPU, therefore we 3009 * don't need to use it. 3010 */ 3011 if (event->state == PERF_EVENT_STATE_ACTIVE) 3012 event->pmu->read(event); 3013 3014 perf_event_update_time(event); 3015 3016 /* 3017 * In order to keep per-task stats reliable we need to flip the event 3018 * values when we flip the contexts. 3019 */ 3020 value = local64_read(&next_event->count); 3021 value = local64_xchg(&event->count, value); 3022 local64_set(&next_event->count, value); 3023 3024 swap(event->total_time_enabled, next_event->total_time_enabled); 3025 swap(event->total_time_running, next_event->total_time_running); 3026 3027 /* 3028 * Since we swizzled the values, update the user visible data too. 3029 */ 3030 perf_event_update_userpage(event); 3031 perf_event_update_userpage(next_event); 3032 } 3033 3034 static void perf_event_sync_stat(struct perf_event_context *ctx, 3035 struct perf_event_context *next_ctx) 3036 { 3037 struct perf_event *event, *next_event; 3038 3039 if (!ctx->nr_stat) 3040 return; 3041 3042 update_context_time(ctx); 3043 3044 event = list_first_entry(&ctx->event_list, 3045 struct perf_event, event_entry); 3046 3047 next_event = list_first_entry(&next_ctx->event_list, 3048 struct perf_event, event_entry); 3049 3050 while (&event->event_entry != &ctx->event_list && 3051 &next_event->event_entry != &next_ctx->event_list) { 3052 3053 __perf_event_sync_stat(event, next_event); 3054 3055 event = list_next_entry(event, event_entry); 3056 next_event = list_next_entry(next_event, event_entry); 3057 } 3058 } 3059 3060 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3061 struct task_struct *next) 3062 { 3063 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3064 struct perf_event_context *next_ctx; 3065 struct perf_event_context *parent, *next_parent; 3066 struct perf_cpu_context *cpuctx; 3067 int do_switch = 1; 3068 3069 if (likely(!ctx)) 3070 return; 3071 3072 cpuctx = __get_cpu_context(ctx); 3073 if (!cpuctx->task_ctx) 3074 return; 3075 3076 rcu_read_lock(); 3077 next_ctx = next->perf_event_ctxp[ctxn]; 3078 if (!next_ctx) 3079 goto unlock; 3080 3081 parent = rcu_dereference(ctx->parent_ctx); 3082 next_parent = rcu_dereference(next_ctx->parent_ctx); 3083 3084 /* If neither context have a parent context; they cannot be clones. */ 3085 if (!parent && !next_parent) 3086 goto unlock; 3087 3088 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3089 /* 3090 * Looks like the two contexts are clones, so we might be 3091 * able to optimize the context switch. We lock both 3092 * contexts and check that they are clones under the 3093 * lock (including re-checking that neither has been 3094 * uncloned in the meantime). It doesn't matter which 3095 * order we take the locks because no other cpu could 3096 * be trying to lock both of these tasks. 3097 */ 3098 raw_spin_lock(&ctx->lock); 3099 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3100 if (context_equiv(ctx, next_ctx)) { 3101 WRITE_ONCE(ctx->task, next); 3102 WRITE_ONCE(next_ctx->task, task); 3103 3104 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3105 3106 /* 3107 * RCU_INIT_POINTER here is safe because we've not 3108 * modified the ctx and the above modification of 3109 * ctx->task and ctx->task_ctx_data are immaterial 3110 * since those values are always verified under 3111 * ctx->lock which we're now holding. 3112 */ 3113 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3114 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3115 3116 do_switch = 0; 3117 3118 perf_event_sync_stat(ctx, next_ctx); 3119 } 3120 raw_spin_unlock(&next_ctx->lock); 3121 raw_spin_unlock(&ctx->lock); 3122 } 3123 unlock: 3124 rcu_read_unlock(); 3125 3126 if (do_switch) { 3127 raw_spin_lock(&ctx->lock); 3128 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3129 raw_spin_unlock(&ctx->lock); 3130 } 3131 } 3132 3133 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3134 3135 void perf_sched_cb_dec(struct pmu *pmu) 3136 { 3137 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3138 3139 this_cpu_dec(perf_sched_cb_usages); 3140 3141 if (!--cpuctx->sched_cb_usage) 3142 list_del(&cpuctx->sched_cb_entry); 3143 } 3144 3145 3146 void perf_sched_cb_inc(struct pmu *pmu) 3147 { 3148 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3149 3150 if (!cpuctx->sched_cb_usage++) 3151 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3152 3153 this_cpu_inc(perf_sched_cb_usages); 3154 } 3155 3156 /* 3157 * This function provides the context switch callback to the lower code 3158 * layer. It is invoked ONLY when the context switch callback is enabled. 3159 * 3160 * This callback is relevant even to per-cpu events; for example multi event 3161 * PEBS requires this to provide PID/TID information. This requires we flush 3162 * all queued PEBS records before we context switch to a new task. 3163 */ 3164 static void perf_pmu_sched_task(struct task_struct *prev, 3165 struct task_struct *next, 3166 bool sched_in) 3167 { 3168 struct perf_cpu_context *cpuctx; 3169 struct pmu *pmu; 3170 3171 if (prev == next) 3172 return; 3173 3174 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3175 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3176 3177 if (WARN_ON_ONCE(!pmu->sched_task)) 3178 continue; 3179 3180 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3181 perf_pmu_disable(pmu); 3182 3183 pmu->sched_task(cpuctx->task_ctx, sched_in); 3184 3185 perf_pmu_enable(pmu); 3186 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3187 } 3188 } 3189 3190 static void perf_event_switch(struct task_struct *task, 3191 struct task_struct *next_prev, bool sched_in); 3192 3193 #define for_each_task_context_nr(ctxn) \ 3194 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3195 3196 /* 3197 * Called from scheduler to remove the events of the current task, 3198 * with interrupts disabled. 3199 * 3200 * We stop each event and update the event value in event->count. 3201 * 3202 * This does not protect us against NMI, but disable() 3203 * sets the disabled bit in the control field of event _before_ 3204 * accessing the event control register. If a NMI hits, then it will 3205 * not restart the event. 3206 */ 3207 void __perf_event_task_sched_out(struct task_struct *task, 3208 struct task_struct *next) 3209 { 3210 int ctxn; 3211 3212 if (__this_cpu_read(perf_sched_cb_usages)) 3213 perf_pmu_sched_task(task, next, false); 3214 3215 if (atomic_read(&nr_switch_events)) 3216 perf_event_switch(task, next, false); 3217 3218 for_each_task_context_nr(ctxn) 3219 perf_event_context_sched_out(task, ctxn, next); 3220 3221 /* 3222 * if cgroup events exist on this CPU, then we need 3223 * to check if we have to switch out PMU state. 3224 * cgroup event are system-wide mode only 3225 */ 3226 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3227 perf_cgroup_sched_out(task, next); 3228 } 3229 3230 /* 3231 * Called with IRQs disabled 3232 */ 3233 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3234 enum event_type_t event_type) 3235 { 3236 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3237 } 3238 3239 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3240 int (*func)(struct perf_event *, void *), void *data) 3241 { 3242 struct perf_event **evt, *evt1, *evt2; 3243 int ret; 3244 3245 evt1 = perf_event_groups_first(groups, -1); 3246 evt2 = perf_event_groups_first(groups, cpu); 3247 3248 while (evt1 || evt2) { 3249 if (evt1 && evt2) { 3250 if (evt1->group_index < evt2->group_index) 3251 evt = &evt1; 3252 else 3253 evt = &evt2; 3254 } else if (evt1) { 3255 evt = &evt1; 3256 } else { 3257 evt = &evt2; 3258 } 3259 3260 ret = func(*evt, data); 3261 if (ret) 3262 return ret; 3263 3264 *evt = perf_event_groups_next(*evt); 3265 } 3266 3267 return 0; 3268 } 3269 3270 struct sched_in_data { 3271 struct perf_event_context *ctx; 3272 struct perf_cpu_context *cpuctx; 3273 int can_add_hw; 3274 }; 3275 3276 static int pinned_sched_in(struct perf_event *event, void *data) 3277 { 3278 struct sched_in_data *sid = data; 3279 3280 if (event->state <= PERF_EVENT_STATE_OFF) 3281 return 0; 3282 3283 if (!event_filter_match(event)) 3284 return 0; 3285 3286 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3287 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3288 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3289 } 3290 3291 /* 3292 * If this pinned group hasn't been scheduled, 3293 * put it in error state. 3294 */ 3295 if (event->state == PERF_EVENT_STATE_INACTIVE) 3296 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3297 3298 return 0; 3299 } 3300 3301 static int flexible_sched_in(struct perf_event *event, void *data) 3302 { 3303 struct sched_in_data *sid = data; 3304 3305 if (event->state <= PERF_EVENT_STATE_OFF) 3306 return 0; 3307 3308 if (!event_filter_match(event)) 3309 return 0; 3310 3311 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3312 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3313 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3314 else 3315 sid->can_add_hw = 0; 3316 } 3317 3318 return 0; 3319 } 3320 3321 static void 3322 ctx_pinned_sched_in(struct perf_event_context *ctx, 3323 struct perf_cpu_context *cpuctx) 3324 { 3325 struct sched_in_data sid = { 3326 .ctx = ctx, 3327 .cpuctx = cpuctx, 3328 .can_add_hw = 1, 3329 }; 3330 3331 visit_groups_merge(&ctx->pinned_groups, 3332 smp_processor_id(), 3333 pinned_sched_in, &sid); 3334 } 3335 3336 static void 3337 ctx_flexible_sched_in(struct perf_event_context *ctx, 3338 struct perf_cpu_context *cpuctx) 3339 { 3340 struct sched_in_data sid = { 3341 .ctx = ctx, 3342 .cpuctx = cpuctx, 3343 .can_add_hw = 1, 3344 }; 3345 3346 visit_groups_merge(&ctx->flexible_groups, 3347 smp_processor_id(), 3348 flexible_sched_in, &sid); 3349 } 3350 3351 static void 3352 ctx_sched_in(struct perf_event_context *ctx, 3353 struct perf_cpu_context *cpuctx, 3354 enum event_type_t event_type, 3355 struct task_struct *task) 3356 { 3357 int is_active = ctx->is_active; 3358 u64 now; 3359 3360 lockdep_assert_held(&ctx->lock); 3361 3362 if (likely(!ctx->nr_events)) 3363 return; 3364 3365 ctx->is_active |= (event_type | EVENT_TIME); 3366 if (ctx->task) { 3367 if (!is_active) 3368 cpuctx->task_ctx = ctx; 3369 else 3370 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3371 } 3372 3373 is_active ^= ctx->is_active; /* changed bits */ 3374 3375 if (is_active & EVENT_TIME) { 3376 /* start ctx time */ 3377 now = perf_clock(); 3378 ctx->timestamp = now; 3379 perf_cgroup_set_timestamp(task, ctx); 3380 } 3381 3382 /* 3383 * First go through the list and put on any pinned groups 3384 * in order to give them the best chance of going on. 3385 */ 3386 if (is_active & EVENT_PINNED) 3387 ctx_pinned_sched_in(ctx, cpuctx); 3388 3389 /* Then walk through the lower prio flexible groups */ 3390 if (is_active & EVENT_FLEXIBLE) 3391 ctx_flexible_sched_in(ctx, cpuctx); 3392 } 3393 3394 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3395 enum event_type_t event_type, 3396 struct task_struct *task) 3397 { 3398 struct perf_event_context *ctx = &cpuctx->ctx; 3399 3400 ctx_sched_in(ctx, cpuctx, event_type, task); 3401 } 3402 3403 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3404 struct task_struct *task) 3405 { 3406 struct perf_cpu_context *cpuctx; 3407 3408 cpuctx = __get_cpu_context(ctx); 3409 if (cpuctx->task_ctx == ctx) 3410 return; 3411 3412 perf_ctx_lock(cpuctx, ctx); 3413 /* 3414 * We must check ctx->nr_events while holding ctx->lock, such 3415 * that we serialize against perf_install_in_context(). 3416 */ 3417 if (!ctx->nr_events) 3418 goto unlock; 3419 3420 perf_pmu_disable(ctx->pmu); 3421 /* 3422 * We want to keep the following priority order: 3423 * cpu pinned (that don't need to move), task pinned, 3424 * cpu flexible, task flexible. 3425 * 3426 * However, if task's ctx is not carrying any pinned 3427 * events, no need to flip the cpuctx's events around. 3428 */ 3429 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3430 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3431 perf_event_sched_in(cpuctx, ctx, task); 3432 perf_pmu_enable(ctx->pmu); 3433 3434 unlock: 3435 perf_ctx_unlock(cpuctx, ctx); 3436 } 3437 3438 /* 3439 * Called from scheduler to add the events of the current task 3440 * with interrupts disabled. 3441 * 3442 * We restore the event value and then enable it. 3443 * 3444 * This does not protect us against NMI, but enable() 3445 * sets the enabled bit in the control field of event _before_ 3446 * accessing the event control register. If a NMI hits, then it will 3447 * keep the event running. 3448 */ 3449 void __perf_event_task_sched_in(struct task_struct *prev, 3450 struct task_struct *task) 3451 { 3452 struct perf_event_context *ctx; 3453 int ctxn; 3454 3455 /* 3456 * If cgroup events exist on this CPU, then we need to check if we have 3457 * to switch in PMU state; cgroup event are system-wide mode only. 3458 * 3459 * Since cgroup events are CPU events, we must schedule these in before 3460 * we schedule in the task events. 3461 */ 3462 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3463 perf_cgroup_sched_in(prev, task); 3464 3465 for_each_task_context_nr(ctxn) { 3466 ctx = task->perf_event_ctxp[ctxn]; 3467 if (likely(!ctx)) 3468 continue; 3469 3470 perf_event_context_sched_in(ctx, task); 3471 } 3472 3473 if (atomic_read(&nr_switch_events)) 3474 perf_event_switch(task, prev, true); 3475 3476 if (__this_cpu_read(perf_sched_cb_usages)) 3477 perf_pmu_sched_task(prev, task, true); 3478 } 3479 3480 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3481 { 3482 u64 frequency = event->attr.sample_freq; 3483 u64 sec = NSEC_PER_SEC; 3484 u64 divisor, dividend; 3485 3486 int count_fls, nsec_fls, frequency_fls, sec_fls; 3487 3488 count_fls = fls64(count); 3489 nsec_fls = fls64(nsec); 3490 frequency_fls = fls64(frequency); 3491 sec_fls = 30; 3492 3493 /* 3494 * We got @count in @nsec, with a target of sample_freq HZ 3495 * the target period becomes: 3496 * 3497 * @count * 10^9 3498 * period = ------------------- 3499 * @nsec * sample_freq 3500 * 3501 */ 3502 3503 /* 3504 * Reduce accuracy by one bit such that @a and @b converge 3505 * to a similar magnitude. 3506 */ 3507 #define REDUCE_FLS(a, b) \ 3508 do { \ 3509 if (a##_fls > b##_fls) { \ 3510 a >>= 1; \ 3511 a##_fls--; \ 3512 } else { \ 3513 b >>= 1; \ 3514 b##_fls--; \ 3515 } \ 3516 } while (0) 3517 3518 /* 3519 * Reduce accuracy until either term fits in a u64, then proceed with 3520 * the other, so that finally we can do a u64/u64 division. 3521 */ 3522 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3523 REDUCE_FLS(nsec, frequency); 3524 REDUCE_FLS(sec, count); 3525 } 3526 3527 if (count_fls + sec_fls > 64) { 3528 divisor = nsec * frequency; 3529 3530 while (count_fls + sec_fls > 64) { 3531 REDUCE_FLS(count, sec); 3532 divisor >>= 1; 3533 } 3534 3535 dividend = count * sec; 3536 } else { 3537 dividend = count * sec; 3538 3539 while (nsec_fls + frequency_fls > 64) { 3540 REDUCE_FLS(nsec, frequency); 3541 dividend >>= 1; 3542 } 3543 3544 divisor = nsec * frequency; 3545 } 3546 3547 if (!divisor) 3548 return dividend; 3549 3550 return div64_u64(dividend, divisor); 3551 } 3552 3553 static DEFINE_PER_CPU(int, perf_throttled_count); 3554 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3555 3556 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3557 { 3558 struct hw_perf_event *hwc = &event->hw; 3559 s64 period, sample_period; 3560 s64 delta; 3561 3562 period = perf_calculate_period(event, nsec, count); 3563 3564 delta = (s64)(period - hwc->sample_period); 3565 delta = (delta + 7) / 8; /* low pass filter */ 3566 3567 sample_period = hwc->sample_period + delta; 3568 3569 if (!sample_period) 3570 sample_period = 1; 3571 3572 hwc->sample_period = sample_period; 3573 3574 if (local64_read(&hwc->period_left) > 8*sample_period) { 3575 if (disable) 3576 event->pmu->stop(event, PERF_EF_UPDATE); 3577 3578 local64_set(&hwc->period_left, 0); 3579 3580 if (disable) 3581 event->pmu->start(event, PERF_EF_RELOAD); 3582 } 3583 } 3584 3585 /* 3586 * combine freq adjustment with unthrottling to avoid two passes over the 3587 * events. At the same time, make sure, having freq events does not change 3588 * the rate of unthrottling as that would introduce bias. 3589 */ 3590 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3591 int needs_unthr) 3592 { 3593 struct perf_event *event; 3594 struct hw_perf_event *hwc; 3595 u64 now, period = TICK_NSEC; 3596 s64 delta; 3597 3598 /* 3599 * only need to iterate over all events iff: 3600 * - context have events in frequency mode (needs freq adjust) 3601 * - there are events to unthrottle on this cpu 3602 */ 3603 if (!(ctx->nr_freq || needs_unthr)) 3604 return; 3605 3606 raw_spin_lock(&ctx->lock); 3607 perf_pmu_disable(ctx->pmu); 3608 3609 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3610 if (event->state != PERF_EVENT_STATE_ACTIVE) 3611 continue; 3612 3613 if (!event_filter_match(event)) 3614 continue; 3615 3616 perf_pmu_disable(event->pmu); 3617 3618 hwc = &event->hw; 3619 3620 if (hwc->interrupts == MAX_INTERRUPTS) { 3621 hwc->interrupts = 0; 3622 perf_log_throttle(event, 1); 3623 event->pmu->start(event, 0); 3624 } 3625 3626 if (!event->attr.freq || !event->attr.sample_freq) 3627 goto next; 3628 3629 /* 3630 * stop the event and update event->count 3631 */ 3632 event->pmu->stop(event, PERF_EF_UPDATE); 3633 3634 now = local64_read(&event->count); 3635 delta = now - hwc->freq_count_stamp; 3636 hwc->freq_count_stamp = now; 3637 3638 /* 3639 * restart the event 3640 * reload only if value has changed 3641 * we have stopped the event so tell that 3642 * to perf_adjust_period() to avoid stopping it 3643 * twice. 3644 */ 3645 if (delta > 0) 3646 perf_adjust_period(event, period, delta, false); 3647 3648 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3649 next: 3650 perf_pmu_enable(event->pmu); 3651 } 3652 3653 perf_pmu_enable(ctx->pmu); 3654 raw_spin_unlock(&ctx->lock); 3655 } 3656 3657 /* 3658 * Move @event to the tail of the @ctx's elegible events. 3659 */ 3660 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3661 { 3662 /* 3663 * Rotate the first entry last of non-pinned groups. Rotation might be 3664 * disabled by the inheritance code. 3665 */ 3666 if (ctx->rotate_disable) 3667 return; 3668 3669 perf_event_groups_delete(&ctx->flexible_groups, event); 3670 perf_event_groups_insert(&ctx->flexible_groups, event); 3671 } 3672 3673 static inline struct perf_event * 3674 ctx_first_active(struct perf_event_context *ctx) 3675 { 3676 return list_first_entry_or_null(&ctx->flexible_active, 3677 struct perf_event, active_list); 3678 } 3679 3680 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3681 { 3682 struct perf_event *cpu_event = NULL, *task_event = NULL; 3683 bool cpu_rotate = false, task_rotate = false; 3684 struct perf_event_context *ctx = NULL; 3685 3686 /* 3687 * Since we run this from IRQ context, nobody can install new 3688 * events, thus the event count values are stable. 3689 */ 3690 3691 if (cpuctx->ctx.nr_events) { 3692 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3693 cpu_rotate = true; 3694 } 3695 3696 ctx = cpuctx->task_ctx; 3697 if (ctx && ctx->nr_events) { 3698 if (ctx->nr_events != ctx->nr_active) 3699 task_rotate = true; 3700 } 3701 3702 if (!(cpu_rotate || task_rotate)) 3703 return false; 3704 3705 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3706 perf_pmu_disable(cpuctx->ctx.pmu); 3707 3708 if (task_rotate) 3709 task_event = ctx_first_active(ctx); 3710 if (cpu_rotate) 3711 cpu_event = ctx_first_active(&cpuctx->ctx); 3712 3713 /* 3714 * As per the order given at ctx_resched() first 'pop' task flexible 3715 * and then, if needed CPU flexible. 3716 */ 3717 if (task_event || (ctx && cpu_event)) 3718 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3719 if (cpu_event) 3720 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3721 3722 if (task_event) 3723 rotate_ctx(ctx, task_event); 3724 if (cpu_event) 3725 rotate_ctx(&cpuctx->ctx, cpu_event); 3726 3727 perf_event_sched_in(cpuctx, ctx, current); 3728 3729 perf_pmu_enable(cpuctx->ctx.pmu); 3730 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3731 3732 return true; 3733 } 3734 3735 void perf_event_task_tick(void) 3736 { 3737 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3738 struct perf_event_context *ctx, *tmp; 3739 int throttled; 3740 3741 lockdep_assert_irqs_disabled(); 3742 3743 __this_cpu_inc(perf_throttled_seq); 3744 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3745 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3746 3747 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3748 perf_adjust_freq_unthr_context(ctx, throttled); 3749 } 3750 3751 static int event_enable_on_exec(struct perf_event *event, 3752 struct perf_event_context *ctx) 3753 { 3754 if (!event->attr.enable_on_exec) 3755 return 0; 3756 3757 event->attr.enable_on_exec = 0; 3758 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3759 return 0; 3760 3761 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3762 3763 return 1; 3764 } 3765 3766 /* 3767 * Enable all of a task's events that have been marked enable-on-exec. 3768 * This expects task == current. 3769 */ 3770 static void perf_event_enable_on_exec(int ctxn) 3771 { 3772 struct perf_event_context *ctx, *clone_ctx = NULL; 3773 enum event_type_t event_type = 0; 3774 struct perf_cpu_context *cpuctx; 3775 struct perf_event *event; 3776 unsigned long flags; 3777 int enabled = 0; 3778 3779 local_irq_save(flags); 3780 ctx = current->perf_event_ctxp[ctxn]; 3781 if (!ctx || !ctx->nr_events) 3782 goto out; 3783 3784 cpuctx = __get_cpu_context(ctx); 3785 perf_ctx_lock(cpuctx, ctx); 3786 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3787 list_for_each_entry(event, &ctx->event_list, event_entry) { 3788 enabled |= event_enable_on_exec(event, ctx); 3789 event_type |= get_event_type(event); 3790 } 3791 3792 /* 3793 * Unclone and reschedule this context if we enabled any event. 3794 */ 3795 if (enabled) { 3796 clone_ctx = unclone_ctx(ctx); 3797 ctx_resched(cpuctx, ctx, event_type); 3798 } else { 3799 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3800 } 3801 perf_ctx_unlock(cpuctx, ctx); 3802 3803 out: 3804 local_irq_restore(flags); 3805 3806 if (clone_ctx) 3807 put_ctx(clone_ctx); 3808 } 3809 3810 struct perf_read_data { 3811 struct perf_event *event; 3812 bool group; 3813 int ret; 3814 }; 3815 3816 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3817 { 3818 u16 local_pkg, event_pkg; 3819 3820 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3821 int local_cpu = smp_processor_id(); 3822 3823 event_pkg = topology_physical_package_id(event_cpu); 3824 local_pkg = topology_physical_package_id(local_cpu); 3825 3826 if (event_pkg == local_pkg) 3827 return local_cpu; 3828 } 3829 3830 return event_cpu; 3831 } 3832 3833 /* 3834 * Cross CPU call to read the hardware event 3835 */ 3836 static void __perf_event_read(void *info) 3837 { 3838 struct perf_read_data *data = info; 3839 struct perf_event *sub, *event = data->event; 3840 struct perf_event_context *ctx = event->ctx; 3841 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3842 struct pmu *pmu = event->pmu; 3843 3844 /* 3845 * If this is a task context, we need to check whether it is 3846 * the current task context of this cpu. If not it has been 3847 * scheduled out before the smp call arrived. In that case 3848 * event->count would have been updated to a recent sample 3849 * when the event was scheduled out. 3850 */ 3851 if (ctx->task && cpuctx->task_ctx != ctx) 3852 return; 3853 3854 raw_spin_lock(&ctx->lock); 3855 if (ctx->is_active & EVENT_TIME) { 3856 update_context_time(ctx); 3857 update_cgrp_time_from_event(event); 3858 } 3859 3860 perf_event_update_time(event); 3861 if (data->group) 3862 perf_event_update_sibling_time(event); 3863 3864 if (event->state != PERF_EVENT_STATE_ACTIVE) 3865 goto unlock; 3866 3867 if (!data->group) { 3868 pmu->read(event); 3869 data->ret = 0; 3870 goto unlock; 3871 } 3872 3873 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3874 3875 pmu->read(event); 3876 3877 for_each_sibling_event(sub, event) { 3878 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3879 /* 3880 * Use sibling's PMU rather than @event's since 3881 * sibling could be on different (eg: software) PMU. 3882 */ 3883 sub->pmu->read(sub); 3884 } 3885 } 3886 3887 data->ret = pmu->commit_txn(pmu); 3888 3889 unlock: 3890 raw_spin_unlock(&ctx->lock); 3891 } 3892 3893 static inline u64 perf_event_count(struct perf_event *event) 3894 { 3895 return local64_read(&event->count) + atomic64_read(&event->child_count); 3896 } 3897 3898 /* 3899 * NMI-safe method to read a local event, that is an event that 3900 * is: 3901 * - either for the current task, or for this CPU 3902 * - does not have inherit set, for inherited task events 3903 * will not be local and we cannot read them atomically 3904 * - must not have a pmu::count method 3905 */ 3906 int perf_event_read_local(struct perf_event *event, u64 *value, 3907 u64 *enabled, u64 *running) 3908 { 3909 unsigned long flags; 3910 int ret = 0; 3911 3912 /* 3913 * Disabling interrupts avoids all counter scheduling (context 3914 * switches, timer based rotation and IPIs). 3915 */ 3916 local_irq_save(flags); 3917 3918 /* 3919 * It must not be an event with inherit set, we cannot read 3920 * all child counters from atomic context. 3921 */ 3922 if (event->attr.inherit) { 3923 ret = -EOPNOTSUPP; 3924 goto out; 3925 } 3926 3927 /* If this is a per-task event, it must be for current */ 3928 if ((event->attach_state & PERF_ATTACH_TASK) && 3929 event->hw.target != current) { 3930 ret = -EINVAL; 3931 goto out; 3932 } 3933 3934 /* If this is a per-CPU event, it must be for this CPU */ 3935 if (!(event->attach_state & PERF_ATTACH_TASK) && 3936 event->cpu != smp_processor_id()) { 3937 ret = -EINVAL; 3938 goto out; 3939 } 3940 3941 /* If this is a pinned event it must be running on this CPU */ 3942 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3943 ret = -EBUSY; 3944 goto out; 3945 } 3946 3947 /* 3948 * If the event is currently on this CPU, its either a per-task event, 3949 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3950 * oncpu == -1). 3951 */ 3952 if (event->oncpu == smp_processor_id()) 3953 event->pmu->read(event); 3954 3955 *value = local64_read(&event->count); 3956 if (enabled || running) { 3957 u64 now = event->shadow_ctx_time + perf_clock(); 3958 u64 __enabled, __running; 3959 3960 __perf_update_times(event, now, &__enabled, &__running); 3961 if (enabled) 3962 *enabled = __enabled; 3963 if (running) 3964 *running = __running; 3965 } 3966 out: 3967 local_irq_restore(flags); 3968 3969 return ret; 3970 } 3971 3972 static int perf_event_read(struct perf_event *event, bool group) 3973 { 3974 enum perf_event_state state = READ_ONCE(event->state); 3975 int event_cpu, ret = 0; 3976 3977 /* 3978 * If event is enabled and currently active on a CPU, update the 3979 * value in the event structure: 3980 */ 3981 again: 3982 if (state == PERF_EVENT_STATE_ACTIVE) { 3983 struct perf_read_data data; 3984 3985 /* 3986 * Orders the ->state and ->oncpu loads such that if we see 3987 * ACTIVE we must also see the right ->oncpu. 3988 * 3989 * Matches the smp_wmb() from event_sched_in(). 3990 */ 3991 smp_rmb(); 3992 3993 event_cpu = READ_ONCE(event->oncpu); 3994 if ((unsigned)event_cpu >= nr_cpu_ids) 3995 return 0; 3996 3997 data = (struct perf_read_data){ 3998 .event = event, 3999 .group = group, 4000 .ret = 0, 4001 }; 4002 4003 preempt_disable(); 4004 event_cpu = __perf_event_read_cpu(event, event_cpu); 4005 4006 /* 4007 * Purposely ignore the smp_call_function_single() return 4008 * value. 4009 * 4010 * If event_cpu isn't a valid CPU it means the event got 4011 * scheduled out and that will have updated the event count. 4012 * 4013 * Therefore, either way, we'll have an up-to-date event count 4014 * after this. 4015 */ 4016 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4017 preempt_enable(); 4018 ret = data.ret; 4019 4020 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4021 struct perf_event_context *ctx = event->ctx; 4022 unsigned long flags; 4023 4024 raw_spin_lock_irqsave(&ctx->lock, flags); 4025 state = event->state; 4026 if (state != PERF_EVENT_STATE_INACTIVE) { 4027 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4028 goto again; 4029 } 4030 4031 /* 4032 * May read while context is not active (e.g., thread is 4033 * blocked), in that case we cannot update context time 4034 */ 4035 if (ctx->is_active & EVENT_TIME) { 4036 update_context_time(ctx); 4037 update_cgrp_time_from_event(event); 4038 } 4039 4040 perf_event_update_time(event); 4041 if (group) 4042 perf_event_update_sibling_time(event); 4043 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4044 } 4045 4046 return ret; 4047 } 4048 4049 /* 4050 * Initialize the perf_event context in a task_struct: 4051 */ 4052 static void __perf_event_init_context(struct perf_event_context *ctx) 4053 { 4054 raw_spin_lock_init(&ctx->lock); 4055 mutex_init(&ctx->mutex); 4056 INIT_LIST_HEAD(&ctx->active_ctx_list); 4057 perf_event_groups_init(&ctx->pinned_groups); 4058 perf_event_groups_init(&ctx->flexible_groups); 4059 INIT_LIST_HEAD(&ctx->event_list); 4060 INIT_LIST_HEAD(&ctx->pinned_active); 4061 INIT_LIST_HEAD(&ctx->flexible_active); 4062 refcount_set(&ctx->refcount, 1); 4063 } 4064 4065 static struct perf_event_context * 4066 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4067 { 4068 struct perf_event_context *ctx; 4069 4070 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4071 if (!ctx) 4072 return NULL; 4073 4074 __perf_event_init_context(ctx); 4075 if (task) { 4076 ctx->task = task; 4077 get_task_struct(task); 4078 } 4079 ctx->pmu = pmu; 4080 4081 return ctx; 4082 } 4083 4084 static struct task_struct * 4085 find_lively_task_by_vpid(pid_t vpid) 4086 { 4087 struct task_struct *task; 4088 4089 rcu_read_lock(); 4090 if (!vpid) 4091 task = current; 4092 else 4093 task = find_task_by_vpid(vpid); 4094 if (task) 4095 get_task_struct(task); 4096 rcu_read_unlock(); 4097 4098 if (!task) 4099 return ERR_PTR(-ESRCH); 4100 4101 return task; 4102 } 4103 4104 /* 4105 * Returns a matching context with refcount and pincount. 4106 */ 4107 static struct perf_event_context * 4108 find_get_context(struct pmu *pmu, struct task_struct *task, 4109 struct perf_event *event) 4110 { 4111 struct perf_event_context *ctx, *clone_ctx = NULL; 4112 struct perf_cpu_context *cpuctx; 4113 void *task_ctx_data = NULL; 4114 unsigned long flags; 4115 int ctxn, err; 4116 int cpu = event->cpu; 4117 4118 if (!task) { 4119 /* Must be root to operate on a CPU event: */ 4120 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4121 return ERR_PTR(-EACCES); 4122 4123 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4124 ctx = &cpuctx->ctx; 4125 get_ctx(ctx); 4126 ++ctx->pin_count; 4127 4128 return ctx; 4129 } 4130 4131 err = -EINVAL; 4132 ctxn = pmu->task_ctx_nr; 4133 if (ctxn < 0) 4134 goto errout; 4135 4136 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4137 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4138 if (!task_ctx_data) { 4139 err = -ENOMEM; 4140 goto errout; 4141 } 4142 } 4143 4144 retry: 4145 ctx = perf_lock_task_context(task, ctxn, &flags); 4146 if (ctx) { 4147 clone_ctx = unclone_ctx(ctx); 4148 ++ctx->pin_count; 4149 4150 if (task_ctx_data && !ctx->task_ctx_data) { 4151 ctx->task_ctx_data = task_ctx_data; 4152 task_ctx_data = NULL; 4153 } 4154 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4155 4156 if (clone_ctx) 4157 put_ctx(clone_ctx); 4158 } else { 4159 ctx = alloc_perf_context(pmu, task); 4160 err = -ENOMEM; 4161 if (!ctx) 4162 goto errout; 4163 4164 if (task_ctx_data) { 4165 ctx->task_ctx_data = task_ctx_data; 4166 task_ctx_data = NULL; 4167 } 4168 4169 err = 0; 4170 mutex_lock(&task->perf_event_mutex); 4171 /* 4172 * If it has already passed perf_event_exit_task(). 4173 * we must see PF_EXITING, it takes this mutex too. 4174 */ 4175 if (task->flags & PF_EXITING) 4176 err = -ESRCH; 4177 else if (task->perf_event_ctxp[ctxn]) 4178 err = -EAGAIN; 4179 else { 4180 get_ctx(ctx); 4181 ++ctx->pin_count; 4182 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4183 } 4184 mutex_unlock(&task->perf_event_mutex); 4185 4186 if (unlikely(err)) { 4187 put_ctx(ctx); 4188 4189 if (err == -EAGAIN) 4190 goto retry; 4191 goto errout; 4192 } 4193 } 4194 4195 kfree(task_ctx_data); 4196 return ctx; 4197 4198 errout: 4199 kfree(task_ctx_data); 4200 return ERR_PTR(err); 4201 } 4202 4203 static void perf_event_free_filter(struct perf_event *event); 4204 static void perf_event_free_bpf_prog(struct perf_event *event); 4205 4206 static void free_event_rcu(struct rcu_head *head) 4207 { 4208 struct perf_event *event; 4209 4210 event = container_of(head, struct perf_event, rcu_head); 4211 if (event->ns) 4212 put_pid_ns(event->ns); 4213 perf_event_free_filter(event); 4214 kfree(event); 4215 } 4216 4217 static void ring_buffer_attach(struct perf_event *event, 4218 struct ring_buffer *rb); 4219 4220 static void detach_sb_event(struct perf_event *event) 4221 { 4222 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4223 4224 raw_spin_lock(&pel->lock); 4225 list_del_rcu(&event->sb_list); 4226 raw_spin_unlock(&pel->lock); 4227 } 4228 4229 static bool is_sb_event(struct perf_event *event) 4230 { 4231 struct perf_event_attr *attr = &event->attr; 4232 4233 if (event->parent) 4234 return false; 4235 4236 if (event->attach_state & PERF_ATTACH_TASK) 4237 return false; 4238 4239 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4240 attr->comm || attr->comm_exec || 4241 attr->task || attr->ksymbol || 4242 attr->context_switch || 4243 attr->bpf_event) 4244 return true; 4245 return false; 4246 } 4247 4248 static void unaccount_pmu_sb_event(struct perf_event *event) 4249 { 4250 if (is_sb_event(event)) 4251 detach_sb_event(event); 4252 } 4253 4254 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4255 { 4256 if (event->parent) 4257 return; 4258 4259 if (is_cgroup_event(event)) 4260 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4261 } 4262 4263 #ifdef CONFIG_NO_HZ_FULL 4264 static DEFINE_SPINLOCK(nr_freq_lock); 4265 #endif 4266 4267 static void unaccount_freq_event_nohz(void) 4268 { 4269 #ifdef CONFIG_NO_HZ_FULL 4270 spin_lock(&nr_freq_lock); 4271 if (atomic_dec_and_test(&nr_freq_events)) 4272 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4273 spin_unlock(&nr_freq_lock); 4274 #endif 4275 } 4276 4277 static void unaccount_freq_event(void) 4278 { 4279 if (tick_nohz_full_enabled()) 4280 unaccount_freq_event_nohz(); 4281 else 4282 atomic_dec(&nr_freq_events); 4283 } 4284 4285 static void unaccount_event(struct perf_event *event) 4286 { 4287 bool dec = false; 4288 4289 if (event->parent) 4290 return; 4291 4292 if (event->attach_state & PERF_ATTACH_TASK) 4293 dec = true; 4294 if (event->attr.mmap || event->attr.mmap_data) 4295 atomic_dec(&nr_mmap_events); 4296 if (event->attr.comm) 4297 atomic_dec(&nr_comm_events); 4298 if (event->attr.namespaces) 4299 atomic_dec(&nr_namespaces_events); 4300 if (event->attr.task) 4301 atomic_dec(&nr_task_events); 4302 if (event->attr.freq) 4303 unaccount_freq_event(); 4304 if (event->attr.context_switch) { 4305 dec = true; 4306 atomic_dec(&nr_switch_events); 4307 } 4308 if (is_cgroup_event(event)) 4309 dec = true; 4310 if (has_branch_stack(event)) 4311 dec = true; 4312 if (event->attr.ksymbol) 4313 atomic_dec(&nr_ksymbol_events); 4314 if (event->attr.bpf_event) 4315 atomic_dec(&nr_bpf_events); 4316 4317 if (dec) { 4318 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4319 schedule_delayed_work(&perf_sched_work, HZ); 4320 } 4321 4322 unaccount_event_cpu(event, event->cpu); 4323 4324 unaccount_pmu_sb_event(event); 4325 } 4326 4327 static void perf_sched_delayed(struct work_struct *work) 4328 { 4329 mutex_lock(&perf_sched_mutex); 4330 if (atomic_dec_and_test(&perf_sched_count)) 4331 static_branch_disable(&perf_sched_events); 4332 mutex_unlock(&perf_sched_mutex); 4333 } 4334 4335 /* 4336 * The following implement mutual exclusion of events on "exclusive" pmus 4337 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4338 * at a time, so we disallow creating events that might conflict, namely: 4339 * 4340 * 1) cpu-wide events in the presence of per-task events, 4341 * 2) per-task events in the presence of cpu-wide events, 4342 * 3) two matching events on the same context. 4343 * 4344 * The former two cases are handled in the allocation path (perf_event_alloc(), 4345 * _free_event()), the latter -- before the first perf_install_in_context(). 4346 */ 4347 static int exclusive_event_init(struct perf_event *event) 4348 { 4349 struct pmu *pmu = event->pmu; 4350 4351 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4352 return 0; 4353 4354 /* 4355 * Prevent co-existence of per-task and cpu-wide events on the 4356 * same exclusive pmu. 4357 * 4358 * Negative pmu::exclusive_cnt means there are cpu-wide 4359 * events on this "exclusive" pmu, positive means there are 4360 * per-task events. 4361 * 4362 * Since this is called in perf_event_alloc() path, event::ctx 4363 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4364 * to mean "per-task event", because unlike other attach states it 4365 * never gets cleared. 4366 */ 4367 if (event->attach_state & PERF_ATTACH_TASK) { 4368 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4369 return -EBUSY; 4370 } else { 4371 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4372 return -EBUSY; 4373 } 4374 4375 return 0; 4376 } 4377 4378 static void exclusive_event_destroy(struct perf_event *event) 4379 { 4380 struct pmu *pmu = event->pmu; 4381 4382 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4383 return; 4384 4385 /* see comment in exclusive_event_init() */ 4386 if (event->attach_state & PERF_ATTACH_TASK) 4387 atomic_dec(&pmu->exclusive_cnt); 4388 else 4389 atomic_inc(&pmu->exclusive_cnt); 4390 } 4391 4392 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4393 { 4394 if ((e1->pmu == e2->pmu) && 4395 (e1->cpu == e2->cpu || 4396 e1->cpu == -1 || 4397 e2->cpu == -1)) 4398 return true; 4399 return false; 4400 } 4401 4402 /* Called under the same ctx::mutex as perf_install_in_context() */ 4403 static bool exclusive_event_installable(struct perf_event *event, 4404 struct perf_event_context *ctx) 4405 { 4406 struct perf_event *iter_event; 4407 struct pmu *pmu = event->pmu; 4408 4409 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4410 return true; 4411 4412 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4413 if (exclusive_event_match(iter_event, event)) 4414 return false; 4415 } 4416 4417 return true; 4418 } 4419 4420 static void perf_addr_filters_splice(struct perf_event *event, 4421 struct list_head *head); 4422 4423 static void _free_event(struct perf_event *event) 4424 { 4425 irq_work_sync(&event->pending); 4426 4427 unaccount_event(event); 4428 4429 if (event->rb) { 4430 /* 4431 * Can happen when we close an event with re-directed output. 4432 * 4433 * Since we have a 0 refcount, perf_mmap_close() will skip 4434 * over us; possibly making our ring_buffer_put() the last. 4435 */ 4436 mutex_lock(&event->mmap_mutex); 4437 ring_buffer_attach(event, NULL); 4438 mutex_unlock(&event->mmap_mutex); 4439 } 4440 4441 if (is_cgroup_event(event)) 4442 perf_detach_cgroup(event); 4443 4444 if (!event->parent) { 4445 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4446 put_callchain_buffers(); 4447 } 4448 4449 perf_event_free_bpf_prog(event); 4450 perf_addr_filters_splice(event, NULL); 4451 kfree(event->addr_filter_ranges); 4452 4453 if (event->destroy) 4454 event->destroy(event); 4455 4456 if (event->ctx) 4457 put_ctx(event->ctx); 4458 4459 if (event->hw.target) 4460 put_task_struct(event->hw.target); 4461 4462 exclusive_event_destroy(event); 4463 module_put(event->pmu->module); 4464 4465 call_rcu(&event->rcu_head, free_event_rcu); 4466 } 4467 4468 /* 4469 * Used to free events which have a known refcount of 1, such as in error paths 4470 * where the event isn't exposed yet and inherited events. 4471 */ 4472 static void free_event(struct perf_event *event) 4473 { 4474 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4475 "unexpected event refcount: %ld; ptr=%p\n", 4476 atomic_long_read(&event->refcount), event)) { 4477 /* leak to avoid use-after-free */ 4478 return; 4479 } 4480 4481 _free_event(event); 4482 } 4483 4484 /* 4485 * Remove user event from the owner task. 4486 */ 4487 static void perf_remove_from_owner(struct perf_event *event) 4488 { 4489 struct task_struct *owner; 4490 4491 rcu_read_lock(); 4492 /* 4493 * Matches the smp_store_release() in perf_event_exit_task(). If we 4494 * observe !owner it means the list deletion is complete and we can 4495 * indeed free this event, otherwise we need to serialize on 4496 * owner->perf_event_mutex. 4497 */ 4498 owner = READ_ONCE(event->owner); 4499 if (owner) { 4500 /* 4501 * Since delayed_put_task_struct() also drops the last 4502 * task reference we can safely take a new reference 4503 * while holding the rcu_read_lock(). 4504 */ 4505 get_task_struct(owner); 4506 } 4507 rcu_read_unlock(); 4508 4509 if (owner) { 4510 /* 4511 * If we're here through perf_event_exit_task() we're already 4512 * holding ctx->mutex which would be an inversion wrt. the 4513 * normal lock order. 4514 * 4515 * However we can safely take this lock because its the child 4516 * ctx->mutex. 4517 */ 4518 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4519 4520 /* 4521 * We have to re-check the event->owner field, if it is cleared 4522 * we raced with perf_event_exit_task(), acquiring the mutex 4523 * ensured they're done, and we can proceed with freeing the 4524 * event. 4525 */ 4526 if (event->owner) { 4527 list_del_init(&event->owner_entry); 4528 smp_store_release(&event->owner, NULL); 4529 } 4530 mutex_unlock(&owner->perf_event_mutex); 4531 put_task_struct(owner); 4532 } 4533 } 4534 4535 static void put_event(struct perf_event *event) 4536 { 4537 if (!atomic_long_dec_and_test(&event->refcount)) 4538 return; 4539 4540 _free_event(event); 4541 } 4542 4543 /* 4544 * Kill an event dead; while event:refcount will preserve the event 4545 * object, it will not preserve its functionality. Once the last 'user' 4546 * gives up the object, we'll destroy the thing. 4547 */ 4548 int perf_event_release_kernel(struct perf_event *event) 4549 { 4550 struct perf_event_context *ctx = event->ctx; 4551 struct perf_event *child, *tmp; 4552 LIST_HEAD(free_list); 4553 4554 /* 4555 * If we got here through err_file: fput(event_file); we will not have 4556 * attached to a context yet. 4557 */ 4558 if (!ctx) { 4559 WARN_ON_ONCE(event->attach_state & 4560 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4561 goto no_ctx; 4562 } 4563 4564 if (!is_kernel_event(event)) 4565 perf_remove_from_owner(event); 4566 4567 ctx = perf_event_ctx_lock(event); 4568 WARN_ON_ONCE(ctx->parent_ctx); 4569 perf_remove_from_context(event, DETACH_GROUP); 4570 4571 raw_spin_lock_irq(&ctx->lock); 4572 /* 4573 * Mark this event as STATE_DEAD, there is no external reference to it 4574 * anymore. 4575 * 4576 * Anybody acquiring event->child_mutex after the below loop _must_ 4577 * also see this, most importantly inherit_event() which will avoid 4578 * placing more children on the list. 4579 * 4580 * Thus this guarantees that we will in fact observe and kill _ALL_ 4581 * child events. 4582 */ 4583 event->state = PERF_EVENT_STATE_DEAD; 4584 raw_spin_unlock_irq(&ctx->lock); 4585 4586 perf_event_ctx_unlock(event, ctx); 4587 4588 again: 4589 mutex_lock(&event->child_mutex); 4590 list_for_each_entry(child, &event->child_list, child_list) { 4591 4592 /* 4593 * Cannot change, child events are not migrated, see the 4594 * comment with perf_event_ctx_lock_nested(). 4595 */ 4596 ctx = READ_ONCE(child->ctx); 4597 /* 4598 * Since child_mutex nests inside ctx::mutex, we must jump 4599 * through hoops. We start by grabbing a reference on the ctx. 4600 * 4601 * Since the event cannot get freed while we hold the 4602 * child_mutex, the context must also exist and have a !0 4603 * reference count. 4604 */ 4605 get_ctx(ctx); 4606 4607 /* 4608 * Now that we have a ctx ref, we can drop child_mutex, and 4609 * acquire ctx::mutex without fear of it going away. Then we 4610 * can re-acquire child_mutex. 4611 */ 4612 mutex_unlock(&event->child_mutex); 4613 mutex_lock(&ctx->mutex); 4614 mutex_lock(&event->child_mutex); 4615 4616 /* 4617 * Now that we hold ctx::mutex and child_mutex, revalidate our 4618 * state, if child is still the first entry, it didn't get freed 4619 * and we can continue doing so. 4620 */ 4621 tmp = list_first_entry_or_null(&event->child_list, 4622 struct perf_event, child_list); 4623 if (tmp == child) { 4624 perf_remove_from_context(child, DETACH_GROUP); 4625 list_move(&child->child_list, &free_list); 4626 /* 4627 * This matches the refcount bump in inherit_event(); 4628 * this can't be the last reference. 4629 */ 4630 put_event(event); 4631 } 4632 4633 mutex_unlock(&event->child_mutex); 4634 mutex_unlock(&ctx->mutex); 4635 put_ctx(ctx); 4636 goto again; 4637 } 4638 mutex_unlock(&event->child_mutex); 4639 4640 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4641 list_del(&child->child_list); 4642 free_event(child); 4643 } 4644 4645 no_ctx: 4646 put_event(event); /* Must be the 'last' reference */ 4647 return 0; 4648 } 4649 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4650 4651 /* 4652 * Called when the last reference to the file is gone. 4653 */ 4654 static int perf_release(struct inode *inode, struct file *file) 4655 { 4656 perf_event_release_kernel(file->private_data); 4657 return 0; 4658 } 4659 4660 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4661 { 4662 struct perf_event *child; 4663 u64 total = 0; 4664 4665 *enabled = 0; 4666 *running = 0; 4667 4668 mutex_lock(&event->child_mutex); 4669 4670 (void)perf_event_read(event, false); 4671 total += perf_event_count(event); 4672 4673 *enabled += event->total_time_enabled + 4674 atomic64_read(&event->child_total_time_enabled); 4675 *running += event->total_time_running + 4676 atomic64_read(&event->child_total_time_running); 4677 4678 list_for_each_entry(child, &event->child_list, child_list) { 4679 (void)perf_event_read(child, false); 4680 total += perf_event_count(child); 4681 *enabled += child->total_time_enabled; 4682 *running += child->total_time_running; 4683 } 4684 mutex_unlock(&event->child_mutex); 4685 4686 return total; 4687 } 4688 4689 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4690 { 4691 struct perf_event_context *ctx; 4692 u64 count; 4693 4694 ctx = perf_event_ctx_lock(event); 4695 count = __perf_event_read_value(event, enabled, running); 4696 perf_event_ctx_unlock(event, ctx); 4697 4698 return count; 4699 } 4700 EXPORT_SYMBOL_GPL(perf_event_read_value); 4701 4702 static int __perf_read_group_add(struct perf_event *leader, 4703 u64 read_format, u64 *values) 4704 { 4705 struct perf_event_context *ctx = leader->ctx; 4706 struct perf_event *sub; 4707 unsigned long flags; 4708 int n = 1; /* skip @nr */ 4709 int ret; 4710 4711 ret = perf_event_read(leader, true); 4712 if (ret) 4713 return ret; 4714 4715 raw_spin_lock_irqsave(&ctx->lock, flags); 4716 4717 /* 4718 * Since we co-schedule groups, {enabled,running} times of siblings 4719 * will be identical to those of the leader, so we only publish one 4720 * set. 4721 */ 4722 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4723 values[n++] += leader->total_time_enabled + 4724 atomic64_read(&leader->child_total_time_enabled); 4725 } 4726 4727 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4728 values[n++] += leader->total_time_running + 4729 atomic64_read(&leader->child_total_time_running); 4730 } 4731 4732 /* 4733 * Write {count,id} tuples for every sibling. 4734 */ 4735 values[n++] += perf_event_count(leader); 4736 if (read_format & PERF_FORMAT_ID) 4737 values[n++] = primary_event_id(leader); 4738 4739 for_each_sibling_event(sub, leader) { 4740 values[n++] += perf_event_count(sub); 4741 if (read_format & PERF_FORMAT_ID) 4742 values[n++] = primary_event_id(sub); 4743 } 4744 4745 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4746 return 0; 4747 } 4748 4749 static int perf_read_group(struct perf_event *event, 4750 u64 read_format, char __user *buf) 4751 { 4752 struct perf_event *leader = event->group_leader, *child; 4753 struct perf_event_context *ctx = leader->ctx; 4754 int ret; 4755 u64 *values; 4756 4757 lockdep_assert_held(&ctx->mutex); 4758 4759 values = kzalloc(event->read_size, GFP_KERNEL); 4760 if (!values) 4761 return -ENOMEM; 4762 4763 values[0] = 1 + leader->nr_siblings; 4764 4765 /* 4766 * By locking the child_mutex of the leader we effectively 4767 * lock the child list of all siblings.. XXX explain how. 4768 */ 4769 mutex_lock(&leader->child_mutex); 4770 4771 ret = __perf_read_group_add(leader, read_format, values); 4772 if (ret) 4773 goto unlock; 4774 4775 list_for_each_entry(child, &leader->child_list, child_list) { 4776 ret = __perf_read_group_add(child, read_format, values); 4777 if (ret) 4778 goto unlock; 4779 } 4780 4781 mutex_unlock(&leader->child_mutex); 4782 4783 ret = event->read_size; 4784 if (copy_to_user(buf, values, event->read_size)) 4785 ret = -EFAULT; 4786 goto out; 4787 4788 unlock: 4789 mutex_unlock(&leader->child_mutex); 4790 out: 4791 kfree(values); 4792 return ret; 4793 } 4794 4795 static int perf_read_one(struct perf_event *event, 4796 u64 read_format, char __user *buf) 4797 { 4798 u64 enabled, running; 4799 u64 values[4]; 4800 int n = 0; 4801 4802 values[n++] = __perf_event_read_value(event, &enabled, &running); 4803 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4804 values[n++] = enabled; 4805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4806 values[n++] = running; 4807 if (read_format & PERF_FORMAT_ID) 4808 values[n++] = primary_event_id(event); 4809 4810 if (copy_to_user(buf, values, n * sizeof(u64))) 4811 return -EFAULT; 4812 4813 return n * sizeof(u64); 4814 } 4815 4816 static bool is_event_hup(struct perf_event *event) 4817 { 4818 bool no_children; 4819 4820 if (event->state > PERF_EVENT_STATE_EXIT) 4821 return false; 4822 4823 mutex_lock(&event->child_mutex); 4824 no_children = list_empty(&event->child_list); 4825 mutex_unlock(&event->child_mutex); 4826 return no_children; 4827 } 4828 4829 /* 4830 * Read the performance event - simple non blocking version for now 4831 */ 4832 static ssize_t 4833 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4834 { 4835 u64 read_format = event->attr.read_format; 4836 int ret; 4837 4838 /* 4839 * Return end-of-file for a read on an event that is in 4840 * error state (i.e. because it was pinned but it couldn't be 4841 * scheduled on to the CPU at some point). 4842 */ 4843 if (event->state == PERF_EVENT_STATE_ERROR) 4844 return 0; 4845 4846 if (count < event->read_size) 4847 return -ENOSPC; 4848 4849 WARN_ON_ONCE(event->ctx->parent_ctx); 4850 if (read_format & PERF_FORMAT_GROUP) 4851 ret = perf_read_group(event, read_format, buf); 4852 else 4853 ret = perf_read_one(event, read_format, buf); 4854 4855 return ret; 4856 } 4857 4858 static ssize_t 4859 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4860 { 4861 struct perf_event *event = file->private_data; 4862 struct perf_event_context *ctx; 4863 int ret; 4864 4865 ctx = perf_event_ctx_lock(event); 4866 ret = __perf_read(event, buf, count); 4867 perf_event_ctx_unlock(event, ctx); 4868 4869 return ret; 4870 } 4871 4872 static __poll_t perf_poll(struct file *file, poll_table *wait) 4873 { 4874 struct perf_event *event = file->private_data; 4875 struct ring_buffer *rb; 4876 __poll_t events = EPOLLHUP; 4877 4878 poll_wait(file, &event->waitq, wait); 4879 4880 if (is_event_hup(event)) 4881 return events; 4882 4883 /* 4884 * Pin the event->rb by taking event->mmap_mutex; otherwise 4885 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4886 */ 4887 mutex_lock(&event->mmap_mutex); 4888 rb = event->rb; 4889 if (rb) 4890 events = atomic_xchg(&rb->poll, 0); 4891 mutex_unlock(&event->mmap_mutex); 4892 return events; 4893 } 4894 4895 static void _perf_event_reset(struct perf_event *event) 4896 { 4897 (void)perf_event_read(event, false); 4898 local64_set(&event->count, 0); 4899 perf_event_update_userpage(event); 4900 } 4901 4902 /* 4903 * Holding the top-level event's child_mutex means that any 4904 * descendant process that has inherited this event will block 4905 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4906 * task existence requirements of perf_event_enable/disable. 4907 */ 4908 static void perf_event_for_each_child(struct perf_event *event, 4909 void (*func)(struct perf_event *)) 4910 { 4911 struct perf_event *child; 4912 4913 WARN_ON_ONCE(event->ctx->parent_ctx); 4914 4915 mutex_lock(&event->child_mutex); 4916 func(event); 4917 list_for_each_entry(child, &event->child_list, child_list) 4918 func(child); 4919 mutex_unlock(&event->child_mutex); 4920 } 4921 4922 static void perf_event_for_each(struct perf_event *event, 4923 void (*func)(struct perf_event *)) 4924 { 4925 struct perf_event_context *ctx = event->ctx; 4926 struct perf_event *sibling; 4927 4928 lockdep_assert_held(&ctx->mutex); 4929 4930 event = event->group_leader; 4931 4932 perf_event_for_each_child(event, func); 4933 for_each_sibling_event(sibling, event) 4934 perf_event_for_each_child(sibling, func); 4935 } 4936 4937 static void __perf_event_period(struct perf_event *event, 4938 struct perf_cpu_context *cpuctx, 4939 struct perf_event_context *ctx, 4940 void *info) 4941 { 4942 u64 value = *((u64 *)info); 4943 bool active; 4944 4945 if (event->attr.freq) { 4946 event->attr.sample_freq = value; 4947 } else { 4948 event->attr.sample_period = value; 4949 event->hw.sample_period = value; 4950 } 4951 4952 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4953 if (active) { 4954 perf_pmu_disable(ctx->pmu); 4955 /* 4956 * We could be throttled; unthrottle now to avoid the tick 4957 * trying to unthrottle while we already re-started the event. 4958 */ 4959 if (event->hw.interrupts == MAX_INTERRUPTS) { 4960 event->hw.interrupts = 0; 4961 perf_log_throttle(event, 1); 4962 } 4963 event->pmu->stop(event, PERF_EF_UPDATE); 4964 } 4965 4966 local64_set(&event->hw.period_left, 0); 4967 4968 if (active) { 4969 event->pmu->start(event, PERF_EF_RELOAD); 4970 perf_pmu_enable(ctx->pmu); 4971 } 4972 } 4973 4974 static int perf_event_check_period(struct perf_event *event, u64 value) 4975 { 4976 return event->pmu->check_period(event, value); 4977 } 4978 4979 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4980 { 4981 u64 value; 4982 4983 if (!is_sampling_event(event)) 4984 return -EINVAL; 4985 4986 if (copy_from_user(&value, arg, sizeof(value))) 4987 return -EFAULT; 4988 4989 if (!value) 4990 return -EINVAL; 4991 4992 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4993 return -EINVAL; 4994 4995 if (perf_event_check_period(event, value)) 4996 return -EINVAL; 4997 4998 event_function_call(event, __perf_event_period, &value); 4999 5000 return 0; 5001 } 5002 5003 static const struct file_operations perf_fops; 5004 5005 static inline int perf_fget_light(int fd, struct fd *p) 5006 { 5007 struct fd f = fdget(fd); 5008 if (!f.file) 5009 return -EBADF; 5010 5011 if (f.file->f_op != &perf_fops) { 5012 fdput(f); 5013 return -EBADF; 5014 } 5015 *p = f; 5016 return 0; 5017 } 5018 5019 static int perf_event_set_output(struct perf_event *event, 5020 struct perf_event *output_event); 5021 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5022 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5023 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5024 struct perf_event_attr *attr); 5025 5026 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5027 { 5028 void (*func)(struct perf_event *); 5029 u32 flags = arg; 5030 5031 switch (cmd) { 5032 case PERF_EVENT_IOC_ENABLE: 5033 func = _perf_event_enable; 5034 break; 5035 case PERF_EVENT_IOC_DISABLE: 5036 func = _perf_event_disable; 5037 break; 5038 case PERF_EVENT_IOC_RESET: 5039 func = _perf_event_reset; 5040 break; 5041 5042 case PERF_EVENT_IOC_REFRESH: 5043 return _perf_event_refresh(event, arg); 5044 5045 case PERF_EVENT_IOC_PERIOD: 5046 return perf_event_period(event, (u64 __user *)arg); 5047 5048 case PERF_EVENT_IOC_ID: 5049 { 5050 u64 id = primary_event_id(event); 5051 5052 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5053 return -EFAULT; 5054 return 0; 5055 } 5056 5057 case PERF_EVENT_IOC_SET_OUTPUT: 5058 { 5059 int ret; 5060 if (arg != -1) { 5061 struct perf_event *output_event; 5062 struct fd output; 5063 ret = perf_fget_light(arg, &output); 5064 if (ret) 5065 return ret; 5066 output_event = output.file->private_data; 5067 ret = perf_event_set_output(event, output_event); 5068 fdput(output); 5069 } else { 5070 ret = perf_event_set_output(event, NULL); 5071 } 5072 return ret; 5073 } 5074 5075 case PERF_EVENT_IOC_SET_FILTER: 5076 return perf_event_set_filter(event, (void __user *)arg); 5077 5078 case PERF_EVENT_IOC_SET_BPF: 5079 return perf_event_set_bpf_prog(event, arg); 5080 5081 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5082 struct ring_buffer *rb; 5083 5084 rcu_read_lock(); 5085 rb = rcu_dereference(event->rb); 5086 if (!rb || !rb->nr_pages) { 5087 rcu_read_unlock(); 5088 return -EINVAL; 5089 } 5090 rb_toggle_paused(rb, !!arg); 5091 rcu_read_unlock(); 5092 return 0; 5093 } 5094 5095 case PERF_EVENT_IOC_QUERY_BPF: 5096 return perf_event_query_prog_array(event, (void __user *)arg); 5097 5098 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5099 struct perf_event_attr new_attr; 5100 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5101 &new_attr); 5102 5103 if (err) 5104 return err; 5105 5106 return perf_event_modify_attr(event, &new_attr); 5107 } 5108 default: 5109 return -ENOTTY; 5110 } 5111 5112 if (flags & PERF_IOC_FLAG_GROUP) 5113 perf_event_for_each(event, func); 5114 else 5115 perf_event_for_each_child(event, func); 5116 5117 return 0; 5118 } 5119 5120 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5121 { 5122 struct perf_event *event = file->private_data; 5123 struct perf_event_context *ctx; 5124 long ret; 5125 5126 ctx = perf_event_ctx_lock(event); 5127 ret = _perf_ioctl(event, cmd, arg); 5128 perf_event_ctx_unlock(event, ctx); 5129 5130 return ret; 5131 } 5132 5133 #ifdef CONFIG_COMPAT 5134 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5135 unsigned long arg) 5136 { 5137 switch (_IOC_NR(cmd)) { 5138 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5139 case _IOC_NR(PERF_EVENT_IOC_ID): 5140 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5141 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5142 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5143 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5144 cmd &= ~IOCSIZE_MASK; 5145 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5146 } 5147 break; 5148 } 5149 return perf_ioctl(file, cmd, arg); 5150 } 5151 #else 5152 # define perf_compat_ioctl NULL 5153 #endif 5154 5155 int perf_event_task_enable(void) 5156 { 5157 struct perf_event_context *ctx; 5158 struct perf_event *event; 5159 5160 mutex_lock(¤t->perf_event_mutex); 5161 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5162 ctx = perf_event_ctx_lock(event); 5163 perf_event_for_each_child(event, _perf_event_enable); 5164 perf_event_ctx_unlock(event, ctx); 5165 } 5166 mutex_unlock(¤t->perf_event_mutex); 5167 5168 return 0; 5169 } 5170 5171 int perf_event_task_disable(void) 5172 { 5173 struct perf_event_context *ctx; 5174 struct perf_event *event; 5175 5176 mutex_lock(¤t->perf_event_mutex); 5177 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5178 ctx = perf_event_ctx_lock(event); 5179 perf_event_for_each_child(event, _perf_event_disable); 5180 perf_event_ctx_unlock(event, ctx); 5181 } 5182 mutex_unlock(¤t->perf_event_mutex); 5183 5184 return 0; 5185 } 5186 5187 static int perf_event_index(struct perf_event *event) 5188 { 5189 if (event->hw.state & PERF_HES_STOPPED) 5190 return 0; 5191 5192 if (event->state != PERF_EVENT_STATE_ACTIVE) 5193 return 0; 5194 5195 return event->pmu->event_idx(event); 5196 } 5197 5198 static void calc_timer_values(struct perf_event *event, 5199 u64 *now, 5200 u64 *enabled, 5201 u64 *running) 5202 { 5203 u64 ctx_time; 5204 5205 *now = perf_clock(); 5206 ctx_time = event->shadow_ctx_time + *now; 5207 __perf_update_times(event, ctx_time, enabled, running); 5208 } 5209 5210 static void perf_event_init_userpage(struct perf_event *event) 5211 { 5212 struct perf_event_mmap_page *userpg; 5213 struct ring_buffer *rb; 5214 5215 rcu_read_lock(); 5216 rb = rcu_dereference(event->rb); 5217 if (!rb) 5218 goto unlock; 5219 5220 userpg = rb->user_page; 5221 5222 /* Allow new userspace to detect that bit 0 is deprecated */ 5223 userpg->cap_bit0_is_deprecated = 1; 5224 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5225 userpg->data_offset = PAGE_SIZE; 5226 userpg->data_size = perf_data_size(rb); 5227 5228 unlock: 5229 rcu_read_unlock(); 5230 } 5231 5232 void __weak arch_perf_update_userpage( 5233 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5234 { 5235 } 5236 5237 /* 5238 * Callers need to ensure there can be no nesting of this function, otherwise 5239 * the seqlock logic goes bad. We can not serialize this because the arch 5240 * code calls this from NMI context. 5241 */ 5242 void perf_event_update_userpage(struct perf_event *event) 5243 { 5244 struct perf_event_mmap_page *userpg; 5245 struct ring_buffer *rb; 5246 u64 enabled, running, now; 5247 5248 rcu_read_lock(); 5249 rb = rcu_dereference(event->rb); 5250 if (!rb) 5251 goto unlock; 5252 5253 /* 5254 * compute total_time_enabled, total_time_running 5255 * based on snapshot values taken when the event 5256 * was last scheduled in. 5257 * 5258 * we cannot simply called update_context_time() 5259 * because of locking issue as we can be called in 5260 * NMI context 5261 */ 5262 calc_timer_values(event, &now, &enabled, &running); 5263 5264 userpg = rb->user_page; 5265 /* 5266 * Disable preemption to guarantee consistent time stamps are stored to 5267 * the user page. 5268 */ 5269 preempt_disable(); 5270 ++userpg->lock; 5271 barrier(); 5272 userpg->index = perf_event_index(event); 5273 userpg->offset = perf_event_count(event); 5274 if (userpg->index) 5275 userpg->offset -= local64_read(&event->hw.prev_count); 5276 5277 userpg->time_enabled = enabled + 5278 atomic64_read(&event->child_total_time_enabled); 5279 5280 userpg->time_running = running + 5281 atomic64_read(&event->child_total_time_running); 5282 5283 arch_perf_update_userpage(event, userpg, now); 5284 5285 barrier(); 5286 ++userpg->lock; 5287 preempt_enable(); 5288 unlock: 5289 rcu_read_unlock(); 5290 } 5291 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5292 5293 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5294 { 5295 struct perf_event *event = vmf->vma->vm_file->private_data; 5296 struct ring_buffer *rb; 5297 vm_fault_t ret = VM_FAULT_SIGBUS; 5298 5299 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5300 if (vmf->pgoff == 0) 5301 ret = 0; 5302 return ret; 5303 } 5304 5305 rcu_read_lock(); 5306 rb = rcu_dereference(event->rb); 5307 if (!rb) 5308 goto unlock; 5309 5310 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5311 goto unlock; 5312 5313 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5314 if (!vmf->page) 5315 goto unlock; 5316 5317 get_page(vmf->page); 5318 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5319 vmf->page->index = vmf->pgoff; 5320 5321 ret = 0; 5322 unlock: 5323 rcu_read_unlock(); 5324 5325 return ret; 5326 } 5327 5328 static void ring_buffer_attach(struct perf_event *event, 5329 struct ring_buffer *rb) 5330 { 5331 struct ring_buffer *old_rb = NULL; 5332 unsigned long flags; 5333 5334 if (event->rb) { 5335 /* 5336 * Should be impossible, we set this when removing 5337 * event->rb_entry and wait/clear when adding event->rb_entry. 5338 */ 5339 WARN_ON_ONCE(event->rcu_pending); 5340 5341 old_rb = event->rb; 5342 spin_lock_irqsave(&old_rb->event_lock, flags); 5343 list_del_rcu(&event->rb_entry); 5344 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5345 5346 event->rcu_batches = get_state_synchronize_rcu(); 5347 event->rcu_pending = 1; 5348 } 5349 5350 if (rb) { 5351 if (event->rcu_pending) { 5352 cond_synchronize_rcu(event->rcu_batches); 5353 event->rcu_pending = 0; 5354 } 5355 5356 spin_lock_irqsave(&rb->event_lock, flags); 5357 list_add_rcu(&event->rb_entry, &rb->event_list); 5358 spin_unlock_irqrestore(&rb->event_lock, flags); 5359 } 5360 5361 /* 5362 * Avoid racing with perf_mmap_close(AUX): stop the event 5363 * before swizzling the event::rb pointer; if it's getting 5364 * unmapped, its aux_mmap_count will be 0 and it won't 5365 * restart. See the comment in __perf_pmu_output_stop(). 5366 * 5367 * Data will inevitably be lost when set_output is done in 5368 * mid-air, but then again, whoever does it like this is 5369 * not in for the data anyway. 5370 */ 5371 if (has_aux(event)) 5372 perf_event_stop(event, 0); 5373 5374 rcu_assign_pointer(event->rb, rb); 5375 5376 if (old_rb) { 5377 ring_buffer_put(old_rb); 5378 /* 5379 * Since we detached before setting the new rb, so that we 5380 * could attach the new rb, we could have missed a wakeup. 5381 * Provide it now. 5382 */ 5383 wake_up_all(&event->waitq); 5384 } 5385 } 5386 5387 static void ring_buffer_wakeup(struct perf_event *event) 5388 { 5389 struct ring_buffer *rb; 5390 5391 rcu_read_lock(); 5392 rb = rcu_dereference(event->rb); 5393 if (rb) { 5394 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5395 wake_up_all(&event->waitq); 5396 } 5397 rcu_read_unlock(); 5398 } 5399 5400 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5401 { 5402 struct ring_buffer *rb; 5403 5404 rcu_read_lock(); 5405 rb = rcu_dereference(event->rb); 5406 if (rb) { 5407 if (!refcount_inc_not_zero(&rb->refcount)) 5408 rb = NULL; 5409 } 5410 rcu_read_unlock(); 5411 5412 return rb; 5413 } 5414 5415 void ring_buffer_put(struct ring_buffer *rb) 5416 { 5417 if (!refcount_dec_and_test(&rb->refcount)) 5418 return; 5419 5420 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5421 5422 call_rcu(&rb->rcu_head, rb_free_rcu); 5423 } 5424 5425 static void perf_mmap_open(struct vm_area_struct *vma) 5426 { 5427 struct perf_event *event = vma->vm_file->private_data; 5428 5429 atomic_inc(&event->mmap_count); 5430 atomic_inc(&event->rb->mmap_count); 5431 5432 if (vma->vm_pgoff) 5433 atomic_inc(&event->rb->aux_mmap_count); 5434 5435 if (event->pmu->event_mapped) 5436 event->pmu->event_mapped(event, vma->vm_mm); 5437 } 5438 5439 static void perf_pmu_output_stop(struct perf_event *event); 5440 5441 /* 5442 * A buffer can be mmap()ed multiple times; either directly through the same 5443 * event, or through other events by use of perf_event_set_output(). 5444 * 5445 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5446 * the buffer here, where we still have a VM context. This means we need 5447 * to detach all events redirecting to us. 5448 */ 5449 static void perf_mmap_close(struct vm_area_struct *vma) 5450 { 5451 struct perf_event *event = vma->vm_file->private_data; 5452 5453 struct ring_buffer *rb = ring_buffer_get(event); 5454 struct user_struct *mmap_user = rb->mmap_user; 5455 int mmap_locked = rb->mmap_locked; 5456 unsigned long size = perf_data_size(rb); 5457 5458 if (event->pmu->event_unmapped) 5459 event->pmu->event_unmapped(event, vma->vm_mm); 5460 5461 /* 5462 * rb->aux_mmap_count will always drop before rb->mmap_count and 5463 * event->mmap_count, so it is ok to use event->mmap_mutex to 5464 * serialize with perf_mmap here. 5465 */ 5466 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5467 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5468 /* 5469 * Stop all AUX events that are writing to this buffer, 5470 * so that we can free its AUX pages and corresponding PMU 5471 * data. Note that after rb::aux_mmap_count dropped to zero, 5472 * they won't start any more (see perf_aux_output_begin()). 5473 */ 5474 perf_pmu_output_stop(event); 5475 5476 /* now it's safe to free the pages */ 5477 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5478 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5479 5480 /* this has to be the last one */ 5481 rb_free_aux(rb); 5482 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5483 5484 mutex_unlock(&event->mmap_mutex); 5485 } 5486 5487 atomic_dec(&rb->mmap_count); 5488 5489 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5490 goto out_put; 5491 5492 ring_buffer_attach(event, NULL); 5493 mutex_unlock(&event->mmap_mutex); 5494 5495 /* If there's still other mmap()s of this buffer, we're done. */ 5496 if (atomic_read(&rb->mmap_count)) 5497 goto out_put; 5498 5499 /* 5500 * No other mmap()s, detach from all other events that might redirect 5501 * into the now unreachable buffer. Somewhat complicated by the 5502 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5503 */ 5504 again: 5505 rcu_read_lock(); 5506 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5507 if (!atomic_long_inc_not_zero(&event->refcount)) { 5508 /* 5509 * This event is en-route to free_event() which will 5510 * detach it and remove it from the list. 5511 */ 5512 continue; 5513 } 5514 rcu_read_unlock(); 5515 5516 mutex_lock(&event->mmap_mutex); 5517 /* 5518 * Check we didn't race with perf_event_set_output() which can 5519 * swizzle the rb from under us while we were waiting to 5520 * acquire mmap_mutex. 5521 * 5522 * If we find a different rb; ignore this event, a next 5523 * iteration will no longer find it on the list. We have to 5524 * still restart the iteration to make sure we're not now 5525 * iterating the wrong list. 5526 */ 5527 if (event->rb == rb) 5528 ring_buffer_attach(event, NULL); 5529 5530 mutex_unlock(&event->mmap_mutex); 5531 put_event(event); 5532 5533 /* 5534 * Restart the iteration; either we're on the wrong list or 5535 * destroyed its integrity by doing a deletion. 5536 */ 5537 goto again; 5538 } 5539 rcu_read_unlock(); 5540 5541 /* 5542 * It could be there's still a few 0-ref events on the list; they'll 5543 * get cleaned up by free_event() -- they'll also still have their 5544 * ref on the rb and will free it whenever they are done with it. 5545 * 5546 * Aside from that, this buffer is 'fully' detached and unmapped, 5547 * undo the VM accounting. 5548 */ 5549 5550 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5551 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5552 free_uid(mmap_user); 5553 5554 out_put: 5555 ring_buffer_put(rb); /* could be last */ 5556 } 5557 5558 static const struct vm_operations_struct perf_mmap_vmops = { 5559 .open = perf_mmap_open, 5560 .close = perf_mmap_close, /* non mergeable */ 5561 .fault = perf_mmap_fault, 5562 .page_mkwrite = perf_mmap_fault, 5563 }; 5564 5565 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5566 { 5567 struct perf_event *event = file->private_data; 5568 unsigned long user_locked, user_lock_limit; 5569 struct user_struct *user = current_user(); 5570 unsigned long locked, lock_limit; 5571 struct ring_buffer *rb = NULL; 5572 unsigned long vma_size; 5573 unsigned long nr_pages; 5574 long user_extra = 0, extra = 0; 5575 int ret = 0, flags = 0; 5576 5577 /* 5578 * Don't allow mmap() of inherited per-task counters. This would 5579 * create a performance issue due to all children writing to the 5580 * same rb. 5581 */ 5582 if (event->cpu == -1 && event->attr.inherit) 5583 return -EINVAL; 5584 5585 if (!(vma->vm_flags & VM_SHARED)) 5586 return -EINVAL; 5587 5588 vma_size = vma->vm_end - vma->vm_start; 5589 5590 if (vma->vm_pgoff == 0) { 5591 nr_pages = (vma_size / PAGE_SIZE) - 1; 5592 } else { 5593 /* 5594 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5595 * mapped, all subsequent mappings should have the same size 5596 * and offset. Must be above the normal perf buffer. 5597 */ 5598 u64 aux_offset, aux_size; 5599 5600 if (!event->rb) 5601 return -EINVAL; 5602 5603 nr_pages = vma_size / PAGE_SIZE; 5604 5605 mutex_lock(&event->mmap_mutex); 5606 ret = -EINVAL; 5607 5608 rb = event->rb; 5609 if (!rb) 5610 goto aux_unlock; 5611 5612 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5613 aux_size = READ_ONCE(rb->user_page->aux_size); 5614 5615 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5616 goto aux_unlock; 5617 5618 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5619 goto aux_unlock; 5620 5621 /* already mapped with a different offset */ 5622 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5623 goto aux_unlock; 5624 5625 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5626 goto aux_unlock; 5627 5628 /* already mapped with a different size */ 5629 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5630 goto aux_unlock; 5631 5632 if (!is_power_of_2(nr_pages)) 5633 goto aux_unlock; 5634 5635 if (!atomic_inc_not_zero(&rb->mmap_count)) 5636 goto aux_unlock; 5637 5638 if (rb_has_aux(rb)) { 5639 atomic_inc(&rb->aux_mmap_count); 5640 ret = 0; 5641 goto unlock; 5642 } 5643 5644 atomic_set(&rb->aux_mmap_count, 1); 5645 user_extra = nr_pages; 5646 5647 goto accounting; 5648 } 5649 5650 /* 5651 * If we have rb pages ensure they're a power-of-two number, so we 5652 * can do bitmasks instead of modulo. 5653 */ 5654 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5655 return -EINVAL; 5656 5657 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5658 return -EINVAL; 5659 5660 WARN_ON_ONCE(event->ctx->parent_ctx); 5661 again: 5662 mutex_lock(&event->mmap_mutex); 5663 if (event->rb) { 5664 if (event->rb->nr_pages != nr_pages) { 5665 ret = -EINVAL; 5666 goto unlock; 5667 } 5668 5669 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5670 /* 5671 * Raced against perf_mmap_close() through 5672 * perf_event_set_output(). Try again, hope for better 5673 * luck. 5674 */ 5675 mutex_unlock(&event->mmap_mutex); 5676 goto again; 5677 } 5678 5679 goto unlock; 5680 } 5681 5682 user_extra = nr_pages + 1; 5683 5684 accounting: 5685 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5686 5687 /* 5688 * Increase the limit linearly with more CPUs: 5689 */ 5690 user_lock_limit *= num_online_cpus(); 5691 5692 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5693 5694 if (user_locked > user_lock_limit) 5695 extra = user_locked - user_lock_limit; 5696 5697 lock_limit = rlimit(RLIMIT_MEMLOCK); 5698 lock_limit >>= PAGE_SHIFT; 5699 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5700 5701 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5702 !capable(CAP_IPC_LOCK)) { 5703 ret = -EPERM; 5704 goto unlock; 5705 } 5706 5707 WARN_ON(!rb && event->rb); 5708 5709 if (vma->vm_flags & VM_WRITE) 5710 flags |= RING_BUFFER_WRITABLE; 5711 5712 if (!rb) { 5713 rb = rb_alloc(nr_pages, 5714 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5715 event->cpu, flags); 5716 5717 if (!rb) { 5718 ret = -ENOMEM; 5719 goto unlock; 5720 } 5721 5722 atomic_set(&rb->mmap_count, 1); 5723 rb->mmap_user = get_current_user(); 5724 rb->mmap_locked = extra; 5725 5726 ring_buffer_attach(event, rb); 5727 5728 perf_event_init_userpage(event); 5729 perf_event_update_userpage(event); 5730 } else { 5731 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5732 event->attr.aux_watermark, flags); 5733 if (!ret) 5734 rb->aux_mmap_locked = extra; 5735 } 5736 5737 unlock: 5738 if (!ret) { 5739 atomic_long_add(user_extra, &user->locked_vm); 5740 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5741 5742 atomic_inc(&event->mmap_count); 5743 } else if (rb) { 5744 atomic_dec(&rb->mmap_count); 5745 } 5746 aux_unlock: 5747 mutex_unlock(&event->mmap_mutex); 5748 5749 /* 5750 * Since pinned accounting is per vm we cannot allow fork() to copy our 5751 * vma. 5752 */ 5753 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5754 vma->vm_ops = &perf_mmap_vmops; 5755 5756 if (event->pmu->event_mapped) 5757 event->pmu->event_mapped(event, vma->vm_mm); 5758 5759 return ret; 5760 } 5761 5762 static int perf_fasync(int fd, struct file *filp, int on) 5763 { 5764 struct inode *inode = file_inode(filp); 5765 struct perf_event *event = filp->private_data; 5766 int retval; 5767 5768 inode_lock(inode); 5769 retval = fasync_helper(fd, filp, on, &event->fasync); 5770 inode_unlock(inode); 5771 5772 if (retval < 0) 5773 return retval; 5774 5775 return 0; 5776 } 5777 5778 static const struct file_operations perf_fops = { 5779 .llseek = no_llseek, 5780 .release = perf_release, 5781 .read = perf_read, 5782 .poll = perf_poll, 5783 .unlocked_ioctl = perf_ioctl, 5784 .compat_ioctl = perf_compat_ioctl, 5785 .mmap = perf_mmap, 5786 .fasync = perf_fasync, 5787 }; 5788 5789 /* 5790 * Perf event wakeup 5791 * 5792 * If there's data, ensure we set the poll() state and publish everything 5793 * to user-space before waking everybody up. 5794 */ 5795 5796 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5797 { 5798 /* only the parent has fasync state */ 5799 if (event->parent) 5800 event = event->parent; 5801 return &event->fasync; 5802 } 5803 5804 void perf_event_wakeup(struct perf_event *event) 5805 { 5806 ring_buffer_wakeup(event); 5807 5808 if (event->pending_kill) { 5809 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5810 event->pending_kill = 0; 5811 } 5812 } 5813 5814 static void perf_pending_event_disable(struct perf_event *event) 5815 { 5816 int cpu = READ_ONCE(event->pending_disable); 5817 5818 if (cpu < 0) 5819 return; 5820 5821 if (cpu == smp_processor_id()) { 5822 WRITE_ONCE(event->pending_disable, -1); 5823 perf_event_disable_local(event); 5824 return; 5825 } 5826 5827 /* 5828 * CPU-A CPU-B 5829 * 5830 * perf_event_disable_inatomic() 5831 * @pending_disable = CPU-A; 5832 * irq_work_queue(); 5833 * 5834 * sched-out 5835 * @pending_disable = -1; 5836 * 5837 * sched-in 5838 * perf_event_disable_inatomic() 5839 * @pending_disable = CPU-B; 5840 * irq_work_queue(); // FAILS 5841 * 5842 * irq_work_run() 5843 * perf_pending_event() 5844 * 5845 * But the event runs on CPU-B and wants disabling there. 5846 */ 5847 irq_work_queue_on(&event->pending, cpu); 5848 } 5849 5850 static void perf_pending_event(struct irq_work *entry) 5851 { 5852 struct perf_event *event = container_of(entry, struct perf_event, pending); 5853 int rctx; 5854 5855 rctx = perf_swevent_get_recursion_context(); 5856 /* 5857 * If we 'fail' here, that's OK, it means recursion is already disabled 5858 * and we won't recurse 'further'. 5859 */ 5860 5861 perf_pending_event_disable(event); 5862 5863 if (event->pending_wakeup) { 5864 event->pending_wakeup = 0; 5865 perf_event_wakeup(event); 5866 } 5867 5868 if (rctx >= 0) 5869 perf_swevent_put_recursion_context(rctx); 5870 } 5871 5872 /* 5873 * We assume there is only KVM supporting the callbacks. 5874 * Later on, we might change it to a list if there is 5875 * another virtualization implementation supporting the callbacks. 5876 */ 5877 struct perf_guest_info_callbacks *perf_guest_cbs; 5878 5879 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5880 { 5881 perf_guest_cbs = cbs; 5882 return 0; 5883 } 5884 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5885 5886 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5887 { 5888 perf_guest_cbs = NULL; 5889 return 0; 5890 } 5891 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5892 5893 static void 5894 perf_output_sample_regs(struct perf_output_handle *handle, 5895 struct pt_regs *regs, u64 mask) 5896 { 5897 int bit; 5898 DECLARE_BITMAP(_mask, 64); 5899 5900 bitmap_from_u64(_mask, mask); 5901 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5902 u64 val; 5903 5904 val = perf_reg_value(regs, bit); 5905 perf_output_put(handle, val); 5906 } 5907 } 5908 5909 static void perf_sample_regs_user(struct perf_regs *regs_user, 5910 struct pt_regs *regs, 5911 struct pt_regs *regs_user_copy) 5912 { 5913 if (user_mode(regs)) { 5914 regs_user->abi = perf_reg_abi(current); 5915 regs_user->regs = regs; 5916 } else if (current->mm) { 5917 perf_get_regs_user(regs_user, regs, regs_user_copy); 5918 } else { 5919 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5920 regs_user->regs = NULL; 5921 } 5922 } 5923 5924 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5925 struct pt_regs *regs) 5926 { 5927 regs_intr->regs = regs; 5928 regs_intr->abi = perf_reg_abi(current); 5929 } 5930 5931 5932 /* 5933 * Get remaining task size from user stack pointer. 5934 * 5935 * It'd be better to take stack vma map and limit this more 5936 * precisly, but there's no way to get it safely under interrupt, 5937 * so using TASK_SIZE as limit. 5938 */ 5939 static u64 perf_ustack_task_size(struct pt_regs *regs) 5940 { 5941 unsigned long addr = perf_user_stack_pointer(regs); 5942 5943 if (!addr || addr >= TASK_SIZE) 5944 return 0; 5945 5946 return TASK_SIZE - addr; 5947 } 5948 5949 static u16 5950 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5951 struct pt_regs *regs) 5952 { 5953 u64 task_size; 5954 5955 /* No regs, no stack pointer, no dump. */ 5956 if (!regs) 5957 return 0; 5958 5959 /* 5960 * Check if we fit in with the requested stack size into the: 5961 * - TASK_SIZE 5962 * If we don't, we limit the size to the TASK_SIZE. 5963 * 5964 * - remaining sample size 5965 * If we don't, we customize the stack size to 5966 * fit in to the remaining sample size. 5967 */ 5968 5969 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5970 stack_size = min(stack_size, (u16) task_size); 5971 5972 /* Current header size plus static size and dynamic size. */ 5973 header_size += 2 * sizeof(u64); 5974 5975 /* Do we fit in with the current stack dump size? */ 5976 if ((u16) (header_size + stack_size) < header_size) { 5977 /* 5978 * If we overflow the maximum size for the sample, 5979 * we customize the stack dump size to fit in. 5980 */ 5981 stack_size = USHRT_MAX - header_size - sizeof(u64); 5982 stack_size = round_up(stack_size, sizeof(u64)); 5983 } 5984 5985 return stack_size; 5986 } 5987 5988 static void 5989 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5990 struct pt_regs *regs) 5991 { 5992 /* Case of a kernel thread, nothing to dump */ 5993 if (!regs) { 5994 u64 size = 0; 5995 perf_output_put(handle, size); 5996 } else { 5997 unsigned long sp; 5998 unsigned int rem; 5999 u64 dyn_size; 6000 mm_segment_t fs; 6001 6002 /* 6003 * We dump: 6004 * static size 6005 * - the size requested by user or the best one we can fit 6006 * in to the sample max size 6007 * data 6008 * - user stack dump data 6009 * dynamic size 6010 * - the actual dumped size 6011 */ 6012 6013 /* Static size. */ 6014 perf_output_put(handle, dump_size); 6015 6016 /* Data. */ 6017 sp = perf_user_stack_pointer(regs); 6018 fs = get_fs(); 6019 set_fs(USER_DS); 6020 rem = __output_copy_user(handle, (void *) sp, dump_size); 6021 set_fs(fs); 6022 dyn_size = dump_size - rem; 6023 6024 perf_output_skip(handle, rem); 6025 6026 /* Dynamic size. */ 6027 perf_output_put(handle, dyn_size); 6028 } 6029 } 6030 6031 static void __perf_event_header__init_id(struct perf_event_header *header, 6032 struct perf_sample_data *data, 6033 struct perf_event *event) 6034 { 6035 u64 sample_type = event->attr.sample_type; 6036 6037 data->type = sample_type; 6038 header->size += event->id_header_size; 6039 6040 if (sample_type & PERF_SAMPLE_TID) { 6041 /* namespace issues */ 6042 data->tid_entry.pid = perf_event_pid(event, current); 6043 data->tid_entry.tid = perf_event_tid(event, current); 6044 } 6045 6046 if (sample_type & PERF_SAMPLE_TIME) 6047 data->time = perf_event_clock(event); 6048 6049 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6050 data->id = primary_event_id(event); 6051 6052 if (sample_type & PERF_SAMPLE_STREAM_ID) 6053 data->stream_id = event->id; 6054 6055 if (sample_type & PERF_SAMPLE_CPU) { 6056 data->cpu_entry.cpu = raw_smp_processor_id(); 6057 data->cpu_entry.reserved = 0; 6058 } 6059 } 6060 6061 void perf_event_header__init_id(struct perf_event_header *header, 6062 struct perf_sample_data *data, 6063 struct perf_event *event) 6064 { 6065 if (event->attr.sample_id_all) 6066 __perf_event_header__init_id(header, data, event); 6067 } 6068 6069 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6070 struct perf_sample_data *data) 6071 { 6072 u64 sample_type = data->type; 6073 6074 if (sample_type & PERF_SAMPLE_TID) 6075 perf_output_put(handle, data->tid_entry); 6076 6077 if (sample_type & PERF_SAMPLE_TIME) 6078 perf_output_put(handle, data->time); 6079 6080 if (sample_type & PERF_SAMPLE_ID) 6081 perf_output_put(handle, data->id); 6082 6083 if (sample_type & PERF_SAMPLE_STREAM_ID) 6084 perf_output_put(handle, data->stream_id); 6085 6086 if (sample_type & PERF_SAMPLE_CPU) 6087 perf_output_put(handle, data->cpu_entry); 6088 6089 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6090 perf_output_put(handle, data->id); 6091 } 6092 6093 void perf_event__output_id_sample(struct perf_event *event, 6094 struct perf_output_handle *handle, 6095 struct perf_sample_data *sample) 6096 { 6097 if (event->attr.sample_id_all) 6098 __perf_event__output_id_sample(handle, sample); 6099 } 6100 6101 static void perf_output_read_one(struct perf_output_handle *handle, 6102 struct perf_event *event, 6103 u64 enabled, u64 running) 6104 { 6105 u64 read_format = event->attr.read_format; 6106 u64 values[4]; 6107 int n = 0; 6108 6109 values[n++] = perf_event_count(event); 6110 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6111 values[n++] = enabled + 6112 atomic64_read(&event->child_total_time_enabled); 6113 } 6114 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6115 values[n++] = running + 6116 atomic64_read(&event->child_total_time_running); 6117 } 6118 if (read_format & PERF_FORMAT_ID) 6119 values[n++] = primary_event_id(event); 6120 6121 __output_copy(handle, values, n * sizeof(u64)); 6122 } 6123 6124 static void perf_output_read_group(struct perf_output_handle *handle, 6125 struct perf_event *event, 6126 u64 enabled, u64 running) 6127 { 6128 struct perf_event *leader = event->group_leader, *sub; 6129 u64 read_format = event->attr.read_format; 6130 u64 values[5]; 6131 int n = 0; 6132 6133 values[n++] = 1 + leader->nr_siblings; 6134 6135 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6136 values[n++] = enabled; 6137 6138 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6139 values[n++] = running; 6140 6141 if ((leader != event) && 6142 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6143 leader->pmu->read(leader); 6144 6145 values[n++] = perf_event_count(leader); 6146 if (read_format & PERF_FORMAT_ID) 6147 values[n++] = primary_event_id(leader); 6148 6149 __output_copy(handle, values, n * sizeof(u64)); 6150 6151 for_each_sibling_event(sub, leader) { 6152 n = 0; 6153 6154 if ((sub != event) && 6155 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6156 sub->pmu->read(sub); 6157 6158 values[n++] = perf_event_count(sub); 6159 if (read_format & PERF_FORMAT_ID) 6160 values[n++] = primary_event_id(sub); 6161 6162 __output_copy(handle, values, n * sizeof(u64)); 6163 } 6164 } 6165 6166 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6167 PERF_FORMAT_TOTAL_TIME_RUNNING) 6168 6169 /* 6170 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6171 * 6172 * The problem is that its both hard and excessively expensive to iterate the 6173 * child list, not to mention that its impossible to IPI the children running 6174 * on another CPU, from interrupt/NMI context. 6175 */ 6176 static void perf_output_read(struct perf_output_handle *handle, 6177 struct perf_event *event) 6178 { 6179 u64 enabled = 0, running = 0, now; 6180 u64 read_format = event->attr.read_format; 6181 6182 /* 6183 * compute total_time_enabled, total_time_running 6184 * based on snapshot values taken when the event 6185 * was last scheduled in. 6186 * 6187 * we cannot simply called update_context_time() 6188 * because of locking issue as we are called in 6189 * NMI context 6190 */ 6191 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6192 calc_timer_values(event, &now, &enabled, &running); 6193 6194 if (event->attr.read_format & PERF_FORMAT_GROUP) 6195 perf_output_read_group(handle, event, enabled, running); 6196 else 6197 perf_output_read_one(handle, event, enabled, running); 6198 } 6199 6200 void perf_output_sample(struct perf_output_handle *handle, 6201 struct perf_event_header *header, 6202 struct perf_sample_data *data, 6203 struct perf_event *event) 6204 { 6205 u64 sample_type = data->type; 6206 6207 perf_output_put(handle, *header); 6208 6209 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6210 perf_output_put(handle, data->id); 6211 6212 if (sample_type & PERF_SAMPLE_IP) 6213 perf_output_put(handle, data->ip); 6214 6215 if (sample_type & PERF_SAMPLE_TID) 6216 perf_output_put(handle, data->tid_entry); 6217 6218 if (sample_type & PERF_SAMPLE_TIME) 6219 perf_output_put(handle, data->time); 6220 6221 if (sample_type & PERF_SAMPLE_ADDR) 6222 perf_output_put(handle, data->addr); 6223 6224 if (sample_type & PERF_SAMPLE_ID) 6225 perf_output_put(handle, data->id); 6226 6227 if (sample_type & PERF_SAMPLE_STREAM_ID) 6228 perf_output_put(handle, data->stream_id); 6229 6230 if (sample_type & PERF_SAMPLE_CPU) 6231 perf_output_put(handle, data->cpu_entry); 6232 6233 if (sample_type & PERF_SAMPLE_PERIOD) 6234 perf_output_put(handle, data->period); 6235 6236 if (sample_type & PERF_SAMPLE_READ) 6237 perf_output_read(handle, event); 6238 6239 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6240 int size = 1; 6241 6242 size += data->callchain->nr; 6243 size *= sizeof(u64); 6244 __output_copy(handle, data->callchain, size); 6245 } 6246 6247 if (sample_type & PERF_SAMPLE_RAW) { 6248 struct perf_raw_record *raw = data->raw; 6249 6250 if (raw) { 6251 struct perf_raw_frag *frag = &raw->frag; 6252 6253 perf_output_put(handle, raw->size); 6254 do { 6255 if (frag->copy) { 6256 __output_custom(handle, frag->copy, 6257 frag->data, frag->size); 6258 } else { 6259 __output_copy(handle, frag->data, 6260 frag->size); 6261 } 6262 if (perf_raw_frag_last(frag)) 6263 break; 6264 frag = frag->next; 6265 } while (1); 6266 if (frag->pad) 6267 __output_skip(handle, NULL, frag->pad); 6268 } else { 6269 struct { 6270 u32 size; 6271 u32 data; 6272 } raw = { 6273 .size = sizeof(u32), 6274 .data = 0, 6275 }; 6276 perf_output_put(handle, raw); 6277 } 6278 } 6279 6280 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6281 if (data->br_stack) { 6282 size_t size; 6283 6284 size = data->br_stack->nr 6285 * sizeof(struct perf_branch_entry); 6286 6287 perf_output_put(handle, data->br_stack->nr); 6288 perf_output_copy(handle, data->br_stack->entries, size); 6289 } else { 6290 /* 6291 * we always store at least the value of nr 6292 */ 6293 u64 nr = 0; 6294 perf_output_put(handle, nr); 6295 } 6296 } 6297 6298 if (sample_type & PERF_SAMPLE_REGS_USER) { 6299 u64 abi = data->regs_user.abi; 6300 6301 /* 6302 * If there are no regs to dump, notice it through 6303 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6304 */ 6305 perf_output_put(handle, abi); 6306 6307 if (abi) { 6308 u64 mask = event->attr.sample_regs_user; 6309 perf_output_sample_regs(handle, 6310 data->regs_user.regs, 6311 mask); 6312 } 6313 } 6314 6315 if (sample_type & PERF_SAMPLE_STACK_USER) { 6316 perf_output_sample_ustack(handle, 6317 data->stack_user_size, 6318 data->regs_user.regs); 6319 } 6320 6321 if (sample_type & PERF_SAMPLE_WEIGHT) 6322 perf_output_put(handle, data->weight); 6323 6324 if (sample_type & PERF_SAMPLE_DATA_SRC) 6325 perf_output_put(handle, data->data_src.val); 6326 6327 if (sample_type & PERF_SAMPLE_TRANSACTION) 6328 perf_output_put(handle, data->txn); 6329 6330 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6331 u64 abi = data->regs_intr.abi; 6332 /* 6333 * If there are no regs to dump, notice it through 6334 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6335 */ 6336 perf_output_put(handle, abi); 6337 6338 if (abi) { 6339 u64 mask = event->attr.sample_regs_intr; 6340 6341 perf_output_sample_regs(handle, 6342 data->regs_intr.regs, 6343 mask); 6344 } 6345 } 6346 6347 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6348 perf_output_put(handle, data->phys_addr); 6349 6350 if (!event->attr.watermark) { 6351 int wakeup_events = event->attr.wakeup_events; 6352 6353 if (wakeup_events) { 6354 struct ring_buffer *rb = handle->rb; 6355 int events = local_inc_return(&rb->events); 6356 6357 if (events >= wakeup_events) { 6358 local_sub(wakeup_events, &rb->events); 6359 local_inc(&rb->wakeup); 6360 } 6361 } 6362 } 6363 } 6364 6365 static u64 perf_virt_to_phys(u64 virt) 6366 { 6367 u64 phys_addr = 0; 6368 struct page *p = NULL; 6369 6370 if (!virt) 6371 return 0; 6372 6373 if (virt >= TASK_SIZE) { 6374 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6375 if (virt_addr_valid((void *)(uintptr_t)virt) && 6376 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6377 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6378 } else { 6379 /* 6380 * Walking the pages tables for user address. 6381 * Interrupts are disabled, so it prevents any tear down 6382 * of the page tables. 6383 * Try IRQ-safe __get_user_pages_fast first. 6384 * If failed, leave phys_addr as 0. 6385 */ 6386 if ((current->mm != NULL) && 6387 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6388 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6389 6390 if (p) 6391 put_page(p); 6392 } 6393 6394 return phys_addr; 6395 } 6396 6397 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6398 6399 struct perf_callchain_entry * 6400 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6401 { 6402 bool kernel = !event->attr.exclude_callchain_kernel; 6403 bool user = !event->attr.exclude_callchain_user; 6404 /* Disallow cross-task user callchains. */ 6405 bool crosstask = event->ctx->task && event->ctx->task != current; 6406 const u32 max_stack = event->attr.sample_max_stack; 6407 struct perf_callchain_entry *callchain; 6408 6409 if (!kernel && !user) 6410 return &__empty_callchain; 6411 6412 callchain = get_perf_callchain(regs, 0, kernel, user, 6413 max_stack, crosstask, true); 6414 return callchain ?: &__empty_callchain; 6415 } 6416 6417 void perf_prepare_sample(struct perf_event_header *header, 6418 struct perf_sample_data *data, 6419 struct perf_event *event, 6420 struct pt_regs *regs) 6421 { 6422 u64 sample_type = event->attr.sample_type; 6423 6424 header->type = PERF_RECORD_SAMPLE; 6425 header->size = sizeof(*header) + event->header_size; 6426 6427 header->misc = 0; 6428 header->misc |= perf_misc_flags(regs); 6429 6430 __perf_event_header__init_id(header, data, event); 6431 6432 if (sample_type & PERF_SAMPLE_IP) 6433 data->ip = perf_instruction_pointer(regs); 6434 6435 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6436 int size = 1; 6437 6438 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6439 data->callchain = perf_callchain(event, regs); 6440 6441 size += data->callchain->nr; 6442 6443 header->size += size * sizeof(u64); 6444 } 6445 6446 if (sample_type & PERF_SAMPLE_RAW) { 6447 struct perf_raw_record *raw = data->raw; 6448 int size; 6449 6450 if (raw) { 6451 struct perf_raw_frag *frag = &raw->frag; 6452 u32 sum = 0; 6453 6454 do { 6455 sum += frag->size; 6456 if (perf_raw_frag_last(frag)) 6457 break; 6458 frag = frag->next; 6459 } while (1); 6460 6461 size = round_up(sum + sizeof(u32), sizeof(u64)); 6462 raw->size = size - sizeof(u32); 6463 frag->pad = raw->size - sum; 6464 } else { 6465 size = sizeof(u64); 6466 } 6467 6468 header->size += size; 6469 } 6470 6471 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6472 int size = sizeof(u64); /* nr */ 6473 if (data->br_stack) { 6474 size += data->br_stack->nr 6475 * sizeof(struct perf_branch_entry); 6476 } 6477 header->size += size; 6478 } 6479 6480 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6481 perf_sample_regs_user(&data->regs_user, regs, 6482 &data->regs_user_copy); 6483 6484 if (sample_type & PERF_SAMPLE_REGS_USER) { 6485 /* regs dump ABI info */ 6486 int size = sizeof(u64); 6487 6488 if (data->regs_user.regs) { 6489 u64 mask = event->attr.sample_regs_user; 6490 size += hweight64(mask) * sizeof(u64); 6491 } 6492 6493 header->size += size; 6494 } 6495 6496 if (sample_type & PERF_SAMPLE_STACK_USER) { 6497 /* 6498 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6499 * processed as the last one or have additional check added 6500 * in case new sample type is added, because we could eat 6501 * up the rest of the sample size. 6502 */ 6503 u16 stack_size = event->attr.sample_stack_user; 6504 u16 size = sizeof(u64); 6505 6506 stack_size = perf_sample_ustack_size(stack_size, header->size, 6507 data->regs_user.regs); 6508 6509 /* 6510 * If there is something to dump, add space for the dump 6511 * itself and for the field that tells the dynamic size, 6512 * which is how many have been actually dumped. 6513 */ 6514 if (stack_size) 6515 size += sizeof(u64) + stack_size; 6516 6517 data->stack_user_size = stack_size; 6518 header->size += size; 6519 } 6520 6521 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6522 /* regs dump ABI info */ 6523 int size = sizeof(u64); 6524 6525 perf_sample_regs_intr(&data->regs_intr, regs); 6526 6527 if (data->regs_intr.regs) { 6528 u64 mask = event->attr.sample_regs_intr; 6529 6530 size += hweight64(mask) * sizeof(u64); 6531 } 6532 6533 header->size += size; 6534 } 6535 6536 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6537 data->phys_addr = perf_virt_to_phys(data->addr); 6538 } 6539 6540 static __always_inline int 6541 __perf_event_output(struct perf_event *event, 6542 struct perf_sample_data *data, 6543 struct pt_regs *regs, 6544 int (*output_begin)(struct perf_output_handle *, 6545 struct perf_event *, 6546 unsigned int)) 6547 { 6548 struct perf_output_handle handle; 6549 struct perf_event_header header; 6550 int err; 6551 6552 /* protect the callchain buffers */ 6553 rcu_read_lock(); 6554 6555 perf_prepare_sample(&header, data, event, regs); 6556 6557 err = output_begin(&handle, event, header.size); 6558 if (err) 6559 goto exit; 6560 6561 perf_output_sample(&handle, &header, data, event); 6562 6563 perf_output_end(&handle); 6564 6565 exit: 6566 rcu_read_unlock(); 6567 return err; 6568 } 6569 6570 void 6571 perf_event_output_forward(struct perf_event *event, 6572 struct perf_sample_data *data, 6573 struct pt_regs *regs) 6574 { 6575 __perf_event_output(event, data, regs, perf_output_begin_forward); 6576 } 6577 6578 void 6579 perf_event_output_backward(struct perf_event *event, 6580 struct perf_sample_data *data, 6581 struct pt_regs *regs) 6582 { 6583 __perf_event_output(event, data, regs, perf_output_begin_backward); 6584 } 6585 6586 int 6587 perf_event_output(struct perf_event *event, 6588 struct perf_sample_data *data, 6589 struct pt_regs *regs) 6590 { 6591 return __perf_event_output(event, data, regs, perf_output_begin); 6592 } 6593 6594 /* 6595 * read event_id 6596 */ 6597 6598 struct perf_read_event { 6599 struct perf_event_header header; 6600 6601 u32 pid; 6602 u32 tid; 6603 }; 6604 6605 static void 6606 perf_event_read_event(struct perf_event *event, 6607 struct task_struct *task) 6608 { 6609 struct perf_output_handle handle; 6610 struct perf_sample_data sample; 6611 struct perf_read_event read_event = { 6612 .header = { 6613 .type = PERF_RECORD_READ, 6614 .misc = 0, 6615 .size = sizeof(read_event) + event->read_size, 6616 }, 6617 .pid = perf_event_pid(event, task), 6618 .tid = perf_event_tid(event, task), 6619 }; 6620 int ret; 6621 6622 perf_event_header__init_id(&read_event.header, &sample, event); 6623 ret = perf_output_begin(&handle, event, read_event.header.size); 6624 if (ret) 6625 return; 6626 6627 perf_output_put(&handle, read_event); 6628 perf_output_read(&handle, event); 6629 perf_event__output_id_sample(event, &handle, &sample); 6630 6631 perf_output_end(&handle); 6632 } 6633 6634 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6635 6636 static void 6637 perf_iterate_ctx(struct perf_event_context *ctx, 6638 perf_iterate_f output, 6639 void *data, bool all) 6640 { 6641 struct perf_event *event; 6642 6643 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6644 if (!all) { 6645 if (event->state < PERF_EVENT_STATE_INACTIVE) 6646 continue; 6647 if (!event_filter_match(event)) 6648 continue; 6649 } 6650 6651 output(event, data); 6652 } 6653 } 6654 6655 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6656 { 6657 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6658 struct perf_event *event; 6659 6660 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6661 /* 6662 * Skip events that are not fully formed yet; ensure that 6663 * if we observe event->ctx, both event and ctx will be 6664 * complete enough. See perf_install_in_context(). 6665 */ 6666 if (!smp_load_acquire(&event->ctx)) 6667 continue; 6668 6669 if (event->state < PERF_EVENT_STATE_INACTIVE) 6670 continue; 6671 if (!event_filter_match(event)) 6672 continue; 6673 output(event, data); 6674 } 6675 } 6676 6677 /* 6678 * Iterate all events that need to receive side-band events. 6679 * 6680 * For new callers; ensure that account_pmu_sb_event() includes 6681 * your event, otherwise it might not get delivered. 6682 */ 6683 static void 6684 perf_iterate_sb(perf_iterate_f output, void *data, 6685 struct perf_event_context *task_ctx) 6686 { 6687 struct perf_event_context *ctx; 6688 int ctxn; 6689 6690 rcu_read_lock(); 6691 preempt_disable(); 6692 6693 /* 6694 * If we have task_ctx != NULL we only notify the task context itself. 6695 * The task_ctx is set only for EXIT events before releasing task 6696 * context. 6697 */ 6698 if (task_ctx) { 6699 perf_iterate_ctx(task_ctx, output, data, false); 6700 goto done; 6701 } 6702 6703 perf_iterate_sb_cpu(output, data); 6704 6705 for_each_task_context_nr(ctxn) { 6706 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6707 if (ctx) 6708 perf_iterate_ctx(ctx, output, data, false); 6709 } 6710 done: 6711 preempt_enable(); 6712 rcu_read_unlock(); 6713 } 6714 6715 /* 6716 * Clear all file-based filters at exec, they'll have to be 6717 * re-instated when/if these objects are mmapped again. 6718 */ 6719 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6720 { 6721 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6722 struct perf_addr_filter *filter; 6723 unsigned int restart = 0, count = 0; 6724 unsigned long flags; 6725 6726 if (!has_addr_filter(event)) 6727 return; 6728 6729 raw_spin_lock_irqsave(&ifh->lock, flags); 6730 list_for_each_entry(filter, &ifh->list, entry) { 6731 if (filter->path.dentry) { 6732 event->addr_filter_ranges[count].start = 0; 6733 event->addr_filter_ranges[count].size = 0; 6734 restart++; 6735 } 6736 6737 count++; 6738 } 6739 6740 if (restart) 6741 event->addr_filters_gen++; 6742 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6743 6744 if (restart) 6745 perf_event_stop(event, 1); 6746 } 6747 6748 void perf_event_exec(void) 6749 { 6750 struct perf_event_context *ctx; 6751 int ctxn; 6752 6753 rcu_read_lock(); 6754 for_each_task_context_nr(ctxn) { 6755 ctx = current->perf_event_ctxp[ctxn]; 6756 if (!ctx) 6757 continue; 6758 6759 perf_event_enable_on_exec(ctxn); 6760 6761 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6762 true); 6763 } 6764 rcu_read_unlock(); 6765 } 6766 6767 struct remote_output { 6768 struct ring_buffer *rb; 6769 int err; 6770 }; 6771 6772 static void __perf_event_output_stop(struct perf_event *event, void *data) 6773 { 6774 struct perf_event *parent = event->parent; 6775 struct remote_output *ro = data; 6776 struct ring_buffer *rb = ro->rb; 6777 struct stop_event_data sd = { 6778 .event = event, 6779 }; 6780 6781 if (!has_aux(event)) 6782 return; 6783 6784 if (!parent) 6785 parent = event; 6786 6787 /* 6788 * In case of inheritance, it will be the parent that links to the 6789 * ring-buffer, but it will be the child that's actually using it. 6790 * 6791 * We are using event::rb to determine if the event should be stopped, 6792 * however this may race with ring_buffer_attach() (through set_output), 6793 * which will make us skip the event that actually needs to be stopped. 6794 * So ring_buffer_attach() has to stop an aux event before re-assigning 6795 * its rb pointer. 6796 */ 6797 if (rcu_dereference(parent->rb) == rb) 6798 ro->err = __perf_event_stop(&sd); 6799 } 6800 6801 static int __perf_pmu_output_stop(void *info) 6802 { 6803 struct perf_event *event = info; 6804 struct pmu *pmu = event->pmu; 6805 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6806 struct remote_output ro = { 6807 .rb = event->rb, 6808 }; 6809 6810 rcu_read_lock(); 6811 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6812 if (cpuctx->task_ctx) 6813 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6814 &ro, false); 6815 rcu_read_unlock(); 6816 6817 return ro.err; 6818 } 6819 6820 static void perf_pmu_output_stop(struct perf_event *event) 6821 { 6822 struct perf_event *iter; 6823 int err, cpu; 6824 6825 restart: 6826 rcu_read_lock(); 6827 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6828 /* 6829 * For per-CPU events, we need to make sure that neither they 6830 * nor their children are running; for cpu==-1 events it's 6831 * sufficient to stop the event itself if it's active, since 6832 * it can't have children. 6833 */ 6834 cpu = iter->cpu; 6835 if (cpu == -1) 6836 cpu = READ_ONCE(iter->oncpu); 6837 6838 if (cpu == -1) 6839 continue; 6840 6841 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6842 if (err == -EAGAIN) { 6843 rcu_read_unlock(); 6844 goto restart; 6845 } 6846 } 6847 rcu_read_unlock(); 6848 } 6849 6850 /* 6851 * task tracking -- fork/exit 6852 * 6853 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6854 */ 6855 6856 struct perf_task_event { 6857 struct task_struct *task; 6858 struct perf_event_context *task_ctx; 6859 6860 struct { 6861 struct perf_event_header header; 6862 6863 u32 pid; 6864 u32 ppid; 6865 u32 tid; 6866 u32 ptid; 6867 u64 time; 6868 } event_id; 6869 }; 6870 6871 static int perf_event_task_match(struct perf_event *event) 6872 { 6873 return event->attr.comm || event->attr.mmap || 6874 event->attr.mmap2 || event->attr.mmap_data || 6875 event->attr.task; 6876 } 6877 6878 static void perf_event_task_output(struct perf_event *event, 6879 void *data) 6880 { 6881 struct perf_task_event *task_event = data; 6882 struct perf_output_handle handle; 6883 struct perf_sample_data sample; 6884 struct task_struct *task = task_event->task; 6885 int ret, size = task_event->event_id.header.size; 6886 6887 if (!perf_event_task_match(event)) 6888 return; 6889 6890 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6891 6892 ret = perf_output_begin(&handle, event, 6893 task_event->event_id.header.size); 6894 if (ret) 6895 goto out; 6896 6897 task_event->event_id.pid = perf_event_pid(event, task); 6898 task_event->event_id.ppid = perf_event_pid(event, current); 6899 6900 task_event->event_id.tid = perf_event_tid(event, task); 6901 task_event->event_id.ptid = perf_event_tid(event, current); 6902 6903 task_event->event_id.time = perf_event_clock(event); 6904 6905 perf_output_put(&handle, task_event->event_id); 6906 6907 perf_event__output_id_sample(event, &handle, &sample); 6908 6909 perf_output_end(&handle); 6910 out: 6911 task_event->event_id.header.size = size; 6912 } 6913 6914 static void perf_event_task(struct task_struct *task, 6915 struct perf_event_context *task_ctx, 6916 int new) 6917 { 6918 struct perf_task_event task_event; 6919 6920 if (!atomic_read(&nr_comm_events) && 6921 !atomic_read(&nr_mmap_events) && 6922 !atomic_read(&nr_task_events)) 6923 return; 6924 6925 task_event = (struct perf_task_event){ 6926 .task = task, 6927 .task_ctx = task_ctx, 6928 .event_id = { 6929 .header = { 6930 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6931 .misc = 0, 6932 .size = sizeof(task_event.event_id), 6933 }, 6934 /* .pid */ 6935 /* .ppid */ 6936 /* .tid */ 6937 /* .ptid */ 6938 /* .time */ 6939 }, 6940 }; 6941 6942 perf_iterate_sb(perf_event_task_output, 6943 &task_event, 6944 task_ctx); 6945 } 6946 6947 void perf_event_fork(struct task_struct *task) 6948 { 6949 perf_event_task(task, NULL, 1); 6950 perf_event_namespaces(task); 6951 } 6952 6953 /* 6954 * comm tracking 6955 */ 6956 6957 struct perf_comm_event { 6958 struct task_struct *task; 6959 char *comm; 6960 int comm_size; 6961 6962 struct { 6963 struct perf_event_header header; 6964 6965 u32 pid; 6966 u32 tid; 6967 } event_id; 6968 }; 6969 6970 static int perf_event_comm_match(struct perf_event *event) 6971 { 6972 return event->attr.comm; 6973 } 6974 6975 static void perf_event_comm_output(struct perf_event *event, 6976 void *data) 6977 { 6978 struct perf_comm_event *comm_event = data; 6979 struct perf_output_handle handle; 6980 struct perf_sample_data sample; 6981 int size = comm_event->event_id.header.size; 6982 int ret; 6983 6984 if (!perf_event_comm_match(event)) 6985 return; 6986 6987 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6988 ret = perf_output_begin(&handle, event, 6989 comm_event->event_id.header.size); 6990 6991 if (ret) 6992 goto out; 6993 6994 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6995 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6996 6997 perf_output_put(&handle, comm_event->event_id); 6998 __output_copy(&handle, comm_event->comm, 6999 comm_event->comm_size); 7000 7001 perf_event__output_id_sample(event, &handle, &sample); 7002 7003 perf_output_end(&handle); 7004 out: 7005 comm_event->event_id.header.size = size; 7006 } 7007 7008 static void perf_event_comm_event(struct perf_comm_event *comm_event) 7009 { 7010 char comm[TASK_COMM_LEN]; 7011 unsigned int size; 7012 7013 memset(comm, 0, sizeof(comm)); 7014 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 7015 size = ALIGN(strlen(comm)+1, sizeof(u64)); 7016 7017 comm_event->comm = comm; 7018 comm_event->comm_size = size; 7019 7020 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 7021 7022 perf_iterate_sb(perf_event_comm_output, 7023 comm_event, 7024 NULL); 7025 } 7026 7027 void perf_event_comm(struct task_struct *task, bool exec) 7028 { 7029 struct perf_comm_event comm_event; 7030 7031 if (!atomic_read(&nr_comm_events)) 7032 return; 7033 7034 comm_event = (struct perf_comm_event){ 7035 .task = task, 7036 /* .comm */ 7037 /* .comm_size */ 7038 .event_id = { 7039 .header = { 7040 .type = PERF_RECORD_COMM, 7041 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7042 /* .size */ 7043 }, 7044 /* .pid */ 7045 /* .tid */ 7046 }, 7047 }; 7048 7049 perf_event_comm_event(&comm_event); 7050 } 7051 7052 /* 7053 * namespaces tracking 7054 */ 7055 7056 struct perf_namespaces_event { 7057 struct task_struct *task; 7058 7059 struct { 7060 struct perf_event_header header; 7061 7062 u32 pid; 7063 u32 tid; 7064 u64 nr_namespaces; 7065 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7066 } event_id; 7067 }; 7068 7069 static int perf_event_namespaces_match(struct perf_event *event) 7070 { 7071 return event->attr.namespaces; 7072 } 7073 7074 static void perf_event_namespaces_output(struct perf_event *event, 7075 void *data) 7076 { 7077 struct perf_namespaces_event *namespaces_event = data; 7078 struct perf_output_handle handle; 7079 struct perf_sample_data sample; 7080 u16 header_size = namespaces_event->event_id.header.size; 7081 int ret; 7082 7083 if (!perf_event_namespaces_match(event)) 7084 return; 7085 7086 perf_event_header__init_id(&namespaces_event->event_id.header, 7087 &sample, event); 7088 ret = perf_output_begin(&handle, event, 7089 namespaces_event->event_id.header.size); 7090 if (ret) 7091 goto out; 7092 7093 namespaces_event->event_id.pid = perf_event_pid(event, 7094 namespaces_event->task); 7095 namespaces_event->event_id.tid = perf_event_tid(event, 7096 namespaces_event->task); 7097 7098 perf_output_put(&handle, namespaces_event->event_id); 7099 7100 perf_event__output_id_sample(event, &handle, &sample); 7101 7102 perf_output_end(&handle); 7103 out: 7104 namespaces_event->event_id.header.size = header_size; 7105 } 7106 7107 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7108 struct task_struct *task, 7109 const struct proc_ns_operations *ns_ops) 7110 { 7111 struct path ns_path; 7112 struct inode *ns_inode; 7113 void *error; 7114 7115 error = ns_get_path(&ns_path, task, ns_ops); 7116 if (!error) { 7117 ns_inode = ns_path.dentry->d_inode; 7118 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7119 ns_link_info->ino = ns_inode->i_ino; 7120 path_put(&ns_path); 7121 } 7122 } 7123 7124 void perf_event_namespaces(struct task_struct *task) 7125 { 7126 struct perf_namespaces_event namespaces_event; 7127 struct perf_ns_link_info *ns_link_info; 7128 7129 if (!atomic_read(&nr_namespaces_events)) 7130 return; 7131 7132 namespaces_event = (struct perf_namespaces_event){ 7133 .task = task, 7134 .event_id = { 7135 .header = { 7136 .type = PERF_RECORD_NAMESPACES, 7137 .misc = 0, 7138 .size = sizeof(namespaces_event.event_id), 7139 }, 7140 /* .pid */ 7141 /* .tid */ 7142 .nr_namespaces = NR_NAMESPACES, 7143 /* .link_info[NR_NAMESPACES] */ 7144 }, 7145 }; 7146 7147 ns_link_info = namespaces_event.event_id.link_info; 7148 7149 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7150 task, &mntns_operations); 7151 7152 #ifdef CONFIG_USER_NS 7153 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7154 task, &userns_operations); 7155 #endif 7156 #ifdef CONFIG_NET_NS 7157 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7158 task, &netns_operations); 7159 #endif 7160 #ifdef CONFIG_UTS_NS 7161 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7162 task, &utsns_operations); 7163 #endif 7164 #ifdef CONFIG_IPC_NS 7165 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7166 task, &ipcns_operations); 7167 #endif 7168 #ifdef CONFIG_PID_NS 7169 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7170 task, &pidns_operations); 7171 #endif 7172 #ifdef CONFIG_CGROUPS 7173 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7174 task, &cgroupns_operations); 7175 #endif 7176 7177 perf_iterate_sb(perf_event_namespaces_output, 7178 &namespaces_event, 7179 NULL); 7180 } 7181 7182 /* 7183 * mmap tracking 7184 */ 7185 7186 struct perf_mmap_event { 7187 struct vm_area_struct *vma; 7188 7189 const char *file_name; 7190 int file_size; 7191 int maj, min; 7192 u64 ino; 7193 u64 ino_generation; 7194 u32 prot, flags; 7195 7196 struct { 7197 struct perf_event_header header; 7198 7199 u32 pid; 7200 u32 tid; 7201 u64 start; 7202 u64 len; 7203 u64 pgoff; 7204 } event_id; 7205 }; 7206 7207 static int perf_event_mmap_match(struct perf_event *event, 7208 void *data) 7209 { 7210 struct perf_mmap_event *mmap_event = data; 7211 struct vm_area_struct *vma = mmap_event->vma; 7212 int executable = vma->vm_flags & VM_EXEC; 7213 7214 return (!executable && event->attr.mmap_data) || 7215 (executable && (event->attr.mmap || event->attr.mmap2)); 7216 } 7217 7218 static void perf_event_mmap_output(struct perf_event *event, 7219 void *data) 7220 { 7221 struct perf_mmap_event *mmap_event = data; 7222 struct perf_output_handle handle; 7223 struct perf_sample_data sample; 7224 int size = mmap_event->event_id.header.size; 7225 u32 type = mmap_event->event_id.header.type; 7226 int ret; 7227 7228 if (!perf_event_mmap_match(event, data)) 7229 return; 7230 7231 if (event->attr.mmap2) { 7232 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7233 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7234 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7235 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7236 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7237 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7238 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7239 } 7240 7241 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7242 ret = perf_output_begin(&handle, event, 7243 mmap_event->event_id.header.size); 7244 if (ret) 7245 goto out; 7246 7247 mmap_event->event_id.pid = perf_event_pid(event, current); 7248 mmap_event->event_id.tid = perf_event_tid(event, current); 7249 7250 perf_output_put(&handle, mmap_event->event_id); 7251 7252 if (event->attr.mmap2) { 7253 perf_output_put(&handle, mmap_event->maj); 7254 perf_output_put(&handle, mmap_event->min); 7255 perf_output_put(&handle, mmap_event->ino); 7256 perf_output_put(&handle, mmap_event->ino_generation); 7257 perf_output_put(&handle, mmap_event->prot); 7258 perf_output_put(&handle, mmap_event->flags); 7259 } 7260 7261 __output_copy(&handle, mmap_event->file_name, 7262 mmap_event->file_size); 7263 7264 perf_event__output_id_sample(event, &handle, &sample); 7265 7266 perf_output_end(&handle); 7267 out: 7268 mmap_event->event_id.header.size = size; 7269 mmap_event->event_id.header.type = type; 7270 } 7271 7272 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7273 { 7274 struct vm_area_struct *vma = mmap_event->vma; 7275 struct file *file = vma->vm_file; 7276 int maj = 0, min = 0; 7277 u64 ino = 0, gen = 0; 7278 u32 prot = 0, flags = 0; 7279 unsigned int size; 7280 char tmp[16]; 7281 char *buf = NULL; 7282 char *name; 7283 7284 if (vma->vm_flags & VM_READ) 7285 prot |= PROT_READ; 7286 if (vma->vm_flags & VM_WRITE) 7287 prot |= PROT_WRITE; 7288 if (vma->vm_flags & VM_EXEC) 7289 prot |= PROT_EXEC; 7290 7291 if (vma->vm_flags & VM_MAYSHARE) 7292 flags = MAP_SHARED; 7293 else 7294 flags = MAP_PRIVATE; 7295 7296 if (vma->vm_flags & VM_DENYWRITE) 7297 flags |= MAP_DENYWRITE; 7298 if (vma->vm_flags & VM_MAYEXEC) 7299 flags |= MAP_EXECUTABLE; 7300 if (vma->vm_flags & VM_LOCKED) 7301 flags |= MAP_LOCKED; 7302 if (vma->vm_flags & VM_HUGETLB) 7303 flags |= MAP_HUGETLB; 7304 7305 if (file) { 7306 struct inode *inode; 7307 dev_t dev; 7308 7309 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7310 if (!buf) { 7311 name = "//enomem"; 7312 goto cpy_name; 7313 } 7314 /* 7315 * d_path() works from the end of the rb backwards, so we 7316 * need to add enough zero bytes after the string to handle 7317 * the 64bit alignment we do later. 7318 */ 7319 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7320 if (IS_ERR(name)) { 7321 name = "//toolong"; 7322 goto cpy_name; 7323 } 7324 inode = file_inode(vma->vm_file); 7325 dev = inode->i_sb->s_dev; 7326 ino = inode->i_ino; 7327 gen = inode->i_generation; 7328 maj = MAJOR(dev); 7329 min = MINOR(dev); 7330 7331 goto got_name; 7332 } else { 7333 if (vma->vm_ops && vma->vm_ops->name) { 7334 name = (char *) vma->vm_ops->name(vma); 7335 if (name) 7336 goto cpy_name; 7337 } 7338 7339 name = (char *)arch_vma_name(vma); 7340 if (name) 7341 goto cpy_name; 7342 7343 if (vma->vm_start <= vma->vm_mm->start_brk && 7344 vma->vm_end >= vma->vm_mm->brk) { 7345 name = "[heap]"; 7346 goto cpy_name; 7347 } 7348 if (vma->vm_start <= vma->vm_mm->start_stack && 7349 vma->vm_end >= vma->vm_mm->start_stack) { 7350 name = "[stack]"; 7351 goto cpy_name; 7352 } 7353 7354 name = "//anon"; 7355 goto cpy_name; 7356 } 7357 7358 cpy_name: 7359 strlcpy(tmp, name, sizeof(tmp)); 7360 name = tmp; 7361 got_name: 7362 /* 7363 * Since our buffer works in 8 byte units we need to align our string 7364 * size to a multiple of 8. However, we must guarantee the tail end is 7365 * zero'd out to avoid leaking random bits to userspace. 7366 */ 7367 size = strlen(name)+1; 7368 while (!IS_ALIGNED(size, sizeof(u64))) 7369 name[size++] = '\0'; 7370 7371 mmap_event->file_name = name; 7372 mmap_event->file_size = size; 7373 mmap_event->maj = maj; 7374 mmap_event->min = min; 7375 mmap_event->ino = ino; 7376 mmap_event->ino_generation = gen; 7377 mmap_event->prot = prot; 7378 mmap_event->flags = flags; 7379 7380 if (!(vma->vm_flags & VM_EXEC)) 7381 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7382 7383 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7384 7385 perf_iterate_sb(perf_event_mmap_output, 7386 mmap_event, 7387 NULL); 7388 7389 kfree(buf); 7390 } 7391 7392 /* 7393 * Check whether inode and address range match filter criteria. 7394 */ 7395 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7396 struct file *file, unsigned long offset, 7397 unsigned long size) 7398 { 7399 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7400 if (!filter->path.dentry) 7401 return false; 7402 7403 if (d_inode(filter->path.dentry) != file_inode(file)) 7404 return false; 7405 7406 if (filter->offset > offset + size) 7407 return false; 7408 7409 if (filter->offset + filter->size < offset) 7410 return false; 7411 7412 return true; 7413 } 7414 7415 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7416 struct vm_area_struct *vma, 7417 struct perf_addr_filter_range *fr) 7418 { 7419 unsigned long vma_size = vma->vm_end - vma->vm_start; 7420 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7421 struct file *file = vma->vm_file; 7422 7423 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7424 return false; 7425 7426 if (filter->offset < off) { 7427 fr->start = vma->vm_start; 7428 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7429 } else { 7430 fr->start = vma->vm_start + filter->offset - off; 7431 fr->size = min(vma->vm_end - fr->start, filter->size); 7432 } 7433 7434 return true; 7435 } 7436 7437 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7438 { 7439 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7440 struct vm_area_struct *vma = data; 7441 struct perf_addr_filter *filter; 7442 unsigned int restart = 0, count = 0; 7443 unsigned long flags; 7444 7445 if (!has_addr_filter(event)) 7446 return; 7447 7448 if (!vma->vm_file) 7449 return; 7450 7451 raw_spin_lock_irqsave(&ifh->lock, flags); 7452 list_for_each_entry(filter, &ifh->list, entry) { 7453 if (perf_addr_filter_vma_adjust(filter, vma, 7454 &event->addr_filter_ranges[count])) 7455 restart++; 7456 7457 count++; 7458 } 7459 7460 if (restart) 7461 event->addr_filters_gen++; 7462 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7463 7464 if (restart) 7465 perf_event_stop(event, 1); 7466 } 7467 7468 /* 7469 * Adjust all task's events' filters to the new vma 7470 */ 7471 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7472 { 7473 struct perf_event_context *ctx; 7474 int ctxn; 7475 7476 /* 7477 * Data tracing isn't supported yet and as such there is no need 7478 * to keep track of anything that isn't related to executable code: 7479 */ 7480 if (!(vma->vm_flags & VM_EXEC)) 7481 return; 7482 7483 rcu_read_lock(); 7484 for_each_task_context_nr(ctxn) { 7485 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7486 if (!ctx) 7487 continue; 7488 7489 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7490 } 7491 rcu_read_unlock(); 7492 } 7493 7494 void perf_event_mmap(struct vm_area_struct *vma) 7495 { 7496 struct perf_mmap_event mmap_event; 7497 7498 if (!atomic_read(&nr_mmap_events)) 7499 return; 7500 7501 mmap_event = (struct perf_mmap_event){ 7502 .vma = vma, 7503 /* .file_name */ 7504 /* .file_size */ 7505 .event_id = { 7506 .header = { 7507 .type = PERF_RECORD_MMAP, 7508 .misc = PERF_RECORD_MISC_USER, 7509 /* .size */ 7510 }, 7511 /* .pid */ 7512 /* .tid */ 7513 .start = vma->vm_start, 7514 .len = vma->vm_end - vma->vm_start, 7515 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7516 }, 7517 /* .maj (attr_mmap2 only) */ 7518 /* .min (attr_mmap2 only) */ 7519 /* .ino (attr_mmap2 only) */ 7520 /* .ino_generation (attr_mmap2 only) */ 7521 /* .prot (attr_mmap2 only) */ 7522 /* .flags (attr_mmap2 only) */ 7523 }; 7524 7525 perf_addr_filters_adjust(vma); 7526 perf_event_mmap_event(&mmap_event); 7527 } 7528 7529 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7530 unsigned long size, u64 flags) 7531 { 7532 struct perf_output_handle handle; 7533 struct perf_sample_data sample; 7534 struct perf_aux_event { 7535 struct perf_event_header header; 7536 u64 offset; 7537 u64 size; 7538 u64 flags; 7539 } rec = { 7540 .header = { 7541 .type = PERF_RECORD_AUX, 7542 .misc = 0, 7543 .size = sizeof(rec), 7544 }, 7545 .offset = head, 7546 .size = size, 7547 .flags = flags, 7548 }; 7549 int ret; 7550 7551 perf_event_header__init_id(&rec.header, &sample, event); 7552 ret = perf_output_begin(&handle, event, rec.header.size); 7553 7554 if (ret) 7555 return; 7556 7557 perf_output_put(&handle, rec); 7558 perf_event__output_id_sample(event, &handle, &sample); 7559 7560 perf_output_end(&handle); 7561 } 7562 7563 /* 7564 * Lost/dropped samples logging 7565 */ 7566 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7567 { 7568 struct perf_output_handle handle; 7569 struct perf_sample_data sample; 7570 int ret; 7571 7572 struct { 7573 struct perf_event_header header; 7574 u64 lost; 7575 } lost_samples_event = { 7576 .header = { 7577 .type = PERF_RECORD_LOST_SAMPLES, 7578 .misc = 0, 7579 .size = sizeof(lost_samples_event), 7580 }, 7581 .lost = lost, 7582 }; 7583 7584 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7585 7586 ret = perf_output_begin(&handle, event, 7587 lost_samples_event.header.size); 7588 if (ret) 7589 return; 7590 7591 perf_output_put(&handle, lost_samples_event); 7592 perf_event__output_id_sample(event, &handle, &sample); 7593 perf_output_end(&handle); 7594 } 7595 7596 /* 7597 * context_switch tracking 7598 */ 7599 7600 struct perf_switch_event { 7601 struct task_struct *task; 7602 struct task_struct *next_prev; 7603 7604 struct { 7605 struct perf_event_header header; 7606 u32 next_prev_pid; 7607 u32 next_prev_tid; 7608 } event_id; 7609 }; 7610 7611 static int perf_event_switch_match(struct perf_event *event) 7612 { 7613 return event->attr.context_switch; 7614 } 7615 7616 static void perf_event_switch_output(struct perf_event *event, void *data) 7617 { 7618 struct perf_switch_event *se = data; 7619 struct perf_output_handle handle; 7620 struct perf_sample_data sample; 7621 int ret; 7622 7623 if (!perf_event_switch_match(event)) 7624 return; 7625 7626 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7627 if (event->ctx->task) { 7628 se->event_id.header.type = PERF_RECORD_SWITCH; 7629 se->event_id.header.size = sizeof(se->event_id.header); 7630 } else { 7631 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7632 se->event_id.header.size = sizeof(se->event_id); 7633 se->event_id.next_prev_pid = 7634 perf_event_pid(event, se->next_prev); 7635 se->event_id.next_prev_tid = 7636 perf_event_tid(event, se->next_prev); 7637 } 7638 7639 perf_event_header__init_id(&se->event_id.header, &sample, event); 7640 7641 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7642 if (ret) 7643 return; 7644 7645 if (event->ctx->task) 7646 perf_output_put(&handle, se->event_id.header); 7647 else 7648 perf_output_put(&handle, se->event_id); 7649 7650 perf_event__output_id_sample(event, &handle, &sample); 7651 7652 perf_output_end(&handle); 7653 } 7654 7655 static void perf_event_switch(struct task_struct *task, 7656 struct task_struct *next_prev, bool sched_in) 7657 { 7658 struct perf_switch_event switch_event; 7659 7660 /* N.B. caller checks nr_switch_events != 0 */ 7661 7662 switch_event = (struct perf_switch_event){ 7663 .task = task, 7664 .next_prev = next_prev, 7665 .event_id = { 7666 .header = { 7667 /* .type */ 7668 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7669 /* .size */ 7670 }, 7671 /* .next_prev_pid */ 7672 /* .next_prev_tid */ 7673 }, 7674 }; 7675 7676 if (!sched_in && task->state == TASK_RUNNING) 7677 switch_event.event_id.header.misc |= 7678 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7679 7680 perf_iterate_sb(perf_event_switch_output, 7681 &switch_event, 7682 NULL); 7683 } 7684 7685 /* 7686 * IRQ throttle logging 7687 */ 7688 7689 static void perf_log_throttle(struct perf_event *event, int enable) 7690 { 7691 struct perf_output_handle handle; 7692 struct perf_sample_data sample; 7693 int ret; 7694 7695 struct { 7696 struct perf_event_header header; 7697 u64 time; 7698 u64 id; 7699 u64 stream_id; 7700 } throttle_event = { 7701 .header = { 7702 .type = PERF_RECORD_THROTTLE, 7703 .misc = 0, 7704 .size = sizeof(throttle_event), 7705 }, 7706 .time = perf_event_clock(event), 7707 .id = primary_event_id(event), 7708 .stream_id = event->id, 7709 }; 7710 7711 if (enable) 7712 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7713 7714 perf_event_header__init_id(&throttle_event.header, &sample, event); 7715 7716 ret = perf_output_begin(&handle, event, 7717 throttle_event.header.size); 7718 if (ret) 7719 return; 7720 7721 perf_output_put(&handle, throttle_event); 7722 perf_event__output_id_sample(event, &handle, &sample); 7723 perf_output_end(&handle); 7724 } 7725 7726 /* 7727 * ksymbol register/unregister tracking 7728 */ 7729 7730 struct perf_ksymbol_event { 7731 const char *name; 7732 int name_len; 7733 struct { 7734 struct perf_event_header header; 7735 u64 addr; 7736 u32 len; 7737 u16 ksym_type; 7738 u16 flags; 7739 } event_id; 7740 }; 7741 7742 static int perf_event_ksymbol_match(struct perf_event *event) 7743 { 7744 return event->attr.ksymbol; 7745 } 7746 7747 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7748 { 7749 struct perf_ksymbol_event *ksymbol_event = data; 7750 struct perf_output_handle handle; 7751 struct perf_sample_data sample; 7752 int ret; 7753 7754 if (!perf_event_ksymbol_match(event)) 7755 return; 7756 7757 perf_event_header__init_id(&ksymbol_event->event_id.header, 7758 &sample, event); 7759 ret = perf_output_begin(&handle, event, 7760 ksymbol_event->event_id.header.size); 7761 if (ret) 7762 return; 7763 7764 perf_output_put(&handle, ksymbol_event->event_id); 7765 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7766 perf_event__output_id_sample(event, &handle, &sample); 7767 7768 perf_output_end(&handle); 7769 } 7770 7771 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7772 const char *sym) 7773 { 7774 struct perf_ksymbol_event ksymbol_event; 7775 char name[KSYM_NAME_LEN]; 7776 u16 flags = 0; 7777 int name_len; 7778 7779 if (!atomic_read(&nr_ksymbol_events)) 7780 return; 7781 7782 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7783 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7784 goto err; 7785 7786 strlcpy(name, sym, KSYM_NAME_LEN); 7787 name_len = strlen(name) + 1; 7788 while (!IS_ALIGNED(name_len, sizeof(u64))) 7789 name[name_len++] = '\0'; 7790 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7791 7792 if (unregister) 7793 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7794 7795 ksymbol_event = (struct perf_ksymbol_event){ 7796 .name = name, 7797 .name_len = name_len, 7798 .event_id = { 7799 .header = { 7800 .type = PERF_RECORD_KSYMBOL, 7801 .size = sizeof(ksymbol_event.event_id) + 7802 name_len, 7803 }, 7804 .addr = addr, 7805 .len = len, 7806 .ksym_type = ksym_type, 7807 .flags = flags, 7808 }, 7809 }; 7810 7811 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7812 return; 7813 err: 7814 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7815 } 7816 7817 /* 7818 * bpf program load/unload tracking 7819 */ 7820 7821 struct perf_bpf_event { 7822 struct bpf_prog *prog; 7823 struct { 7824 struct perf_event_header header; 7825 u16 type; 7826 u16 flags; 7827 u32 id; 7828 u8 tag[BPF_TAG_SIZE]; 7829 } event_id; 7830 }; 7831 7832 static int perf_event_bpf_match(struct perf_event *event) 7833 { 7834 return event->attr.bpf_event; 7835 } 7836 7837 static void perf_event_bpf_output(struct perf_event *event, void *data) 7838 { 7839 struct perf_bpf_event *bpf_event = data; 7840 struct perf_output_handle handle; 7841 struct perf_sample_data sample; 7842 int ret; 7843 7844 if (!perf_event_bpf_match(event)) 7845 return; 7846 7847 perf_event_header__init_id(&bpf_event->event_id.header, 7848 &sample, event); 7849 ret = perf_output_begin(&handle, event, 7850 bpf_event->event_id.header.size); 7851 if (ret) 7852 return; 7853 7854 perf_output_put(&handle, bpf_event->event_id); 7855 perf_event__output_id_sample(event, &handle, &sample); 7856 7857 perf_output_end(&handle); 7858 } 7859 7860 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7861 enum perf_bpf_event_type type) 7862 { 7863 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7864 char sym[KSYM_NAME_LEN]; 7865 int i; 7866 7867 if (prog->aux->func_cnt == 0) { 7868 bpf_get_prog_name(prog, sym); 7869 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7870 (u64)(unsigned long)prog->bpf_func, 7871 prog->jited_len, unregister, sym); 7872 } else { 7873 for (i = 0; i < prog->aux->func_cnt; i++) { 7874 struct bpf_prog *subprog = prog->aux->func[i]; 7875 7876 bpf_get_prog_name(subprog, sym); 7877 perf_event_ksymbol( 7878 PERF_RECORD_KSYMBOL_TYPE_BPF, 7879 (u64)(unsigned long)subprog->bpf_func, 7880 subprog->jited_len, unregister, sym); 7881 } 7882 } 7883 } 7884 7885 void perf_event_bpf_event(struct bpf_prog *prog, 7886 enum perf_bpf_event_type type, 7887 u16 flags) 7888 { 7889 struct perf_bpf_event bpf_event; 7890 7891 if (type <= PERF_BPF_EVENT_UNKNOWN || 7892 type >= PERF_BPF_EVENT_MAX) 7893 return; 7894 7895 switch (type) { 7896 case PERF_BPF_EVENT_PROG_LOAD: 7897 case PERF_BPF_EVENT_PROG_UNLOAD: 7898 if (atomic_read(&nr_ksymbol_events)) 7899 perf_event_bpf_emit_ksymbols(prog, type); 7900 break; 7901 default: 7902 break; 7903 } 7904 7905 if (!atomic_read(&nr_bpf_events)) 7906 return; 7907 7908 bpf_event = (struct perf_bpf_event){ 7909 .prog = prog, 7910 .event_id = { 7911 .header = { 7912 .type = PERF_RECORD_BPF_EVENT, 7913 .size = sizeof(bpf_event.event_id), 7914 }, 7915 .type = type, 7916 .flags = flags, 7917 .id = prog->aux->id, 7918 }, 7919 }; 7920 7921 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7922 7923 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7924 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7925 } 7926 7927 void perf_event_itrace_started(struct perf_event *event) 7928 { 7929 event->attach_state |= PERF_ATTACH_ITRACE; 7930 } 7931 7932 static void perf_log_itrace_start(struct perf_event *event) 7933 { 7934 struct perf_output_handle handle; 7935 struct perf_sample_data sample; 7936 struct perf_aux_event { 7937 struct perf_event_header header; 7938 u32 pid; 7939 u32 tid; 7940 } rec; 7941 int ret; 7942 7943 if (event->parent) 7944 event = event->parent; 7945 7946 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7947 event->attach_state & PERF_ATTACH_ITRACE) 7948 return; 7949 7950 rec.header.type = PERF_RECORD_ITRACE_START; 7951 rec.header.misc = 0; 7952 rec.header.size = sizeof(rec); 7953 rec.pid = perf_event_pid(event, current); 7954 rec.tid = perf_event_tid(event, current); 7955 7956 perf_event_header__init_id(&rec.header, &sample, event); 7957 ret = perf_output_begin(&handle, event, rec.header.size); 7958 7959 if (ret) 7960 return; 7961 7962 perf_output_put(&handle, rec); 7963 perf_event__output_id_sample(event, &handle, &sample); 7964 7965 perf_output_end(&handle); 7966 } 7967 7968 static int 7969 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7970 { 7971 struct hw_perf_event *hwc = &event->hw; 7972 int ret = 0; 7973 u64 seq; 7974 7975 seq = __this_cpu_read(perf_throttled_seq); 7976 if (seq != hwc->interrupts_seq) { 7977 hwc->interrupts_seq = seq; 7978 hwc->interrupts = 1; 7979 } else { 7980 hwc->interrupts++; 7981 if (unlikely(throttle 7982 && hwc->interrupts >= max_samples_per_tick)) { 7983 __this_cpu_inc(perf_throttled_count); 7984 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7985 hwc->interrupts = MAX_INTERRUPTS; 7986 perf_log_throttle(event, 0); 7987 ret = 1; 7988 } 7989 } 7990 7991 if (event->attr.freq) { 7992 u64 now = perf_clock(); 7993 s64 delta = now - hwc->freq_time_stamp; 7994 7995 hwc->freq_time_stamp = now; 7996 7997 if (delta > 0 && delta < 2*TICK_NSEC) 7998 perf_adjust_period(event, delta, hwc->last_period, true); 7999 } 8000 8001 return ret; 8002 } 8003 8004 int perf_event_account_interrupt(struct perf_event *event) 8005 { 8006 return __perf_event_account_interrupt(event, 1); 8007 } 8008 8009 /* 8010 * Generic event overflow handling, sampling. 8011 */ 8012 8013 static int __perf_event_overflow(struct perf_event *event, 8014 int throttle, struct perf_sample_data *data, 8015 struct pt_regs *regs) 8016 { 8017 int events = atomic_read(&event->event_limit); 8018 int ret = 0; 8019 8020 /* 8021 * Non-sampling counters might still use the PMI to fold short 8022 * hardware counters, ignore those. 8023 */ 8024 if (unlikely(!is_sampling_event(event))) 8025 return 0; 8026 8027 ret = __perf_event_account_interrupt(event, throttle); 8028 8029 /* 8030 * XXX event_limit might not quite work as expected on inherited 8031 * events 8032 */ 8033 8034 event->pending_kill = POLL_IN; 8035 if (events && atomic_dec_and_test(&event->event_limit)) { 8036 ret = 1; 8037 event->pending_kill = POLL_HUP; 8038 8039 perf_event_disable_inatomic(event); 8040 } 8041 8042 READ_ONCE(event->overflow_handler)(event, data, regs); 8043 8044 if (*perf_event_fasync(event) && event->pending_kill) { 8045 event->pending_wakeup = 1; 8046 irq_work_queue(&event->pending); 8047 } 8048 8049 return ret; 8050 } 8051 8052 int perf_event_overflow(struct perf_event *event, 8053 struct perf_sample_data *data, 8054 struct pt_regs *regs) 8055 { 8056 return __perf_event_overflow(event, 1, data, regs); 8057 } 8058 8059 /* 8060 * Generic software event infrastructure 8061 */ 8062 8063 struct swevent_htable { 8064 struct swevent_hlist *swevent_hlist; 8065 struct mutex hlist_mutex; 8066 int hlist_refcount; 8067 8068 /* Recursion avoidance in each contexts */ 8069 int recursion[PERF_NR_CONTEXTS]; 8070 }; 8071 8072 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8073 8074 /* 8075 * We directly increment event->count and keep a second value in 8076 * event->hw.period_left to count intervals. This period event 8077 * is kept in the range [-sample_period, 0] so that we can use the 8078 * sign as trigger. 8079 */ 8080 8081 u64 perf_swevent_set_period(struct perf_event *event) 8082 { 8083 struct hw_perf_event *hwc = &event->hw; 8084 u64 period = hwc->last_period; 8085 u64 nr, offset; 8086 s64 old, val; 8087 8088 hwc->last_period = hwc->sample_period; 8089 8090 again: 8091 old = val = local64_read(&hwc->period_left); 8092 if (val < 0) 8093 return 0; 8094 8095 nr = div64_u64(period + val, period); 8096 offset = nr * period; 8097 val -= offset; 8098 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8099 goto again; 8100 8101 return nr; 8102 } 8103 8104 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8105 struct perf_sample_data *data, 8106 struct pt_regs *regs) 8107 { 8108 struct hw_perf_event *hwc = &event->hw; 8109 int throttle = 0; 8110 8111 if (!overflow) 8112 overflow = perf_swevent_set_period(event); 8113 8114 if (hwc->interrupts == MAX_INTERRUPTS) 8115 return; 8116 8117 for (; overflow; overflow--) { 8118 if (__perf_event_overflow(event, throttle, 8119 data, regs)) { 8120 /* 8121 * We inhibit the overflow from happening when 8122 * hwc->interrupts == MAX_INTERRUPTS. 8123 */ 8124 break; 8125 } 8126 throttle = 1; 8127 } 8128 } 8129 8130 static void perf_swevent_event(struct perf_event *event, u64 nr, 8131 struct perf_sample_data *data, 8132 struct pt_regs *regs) 8133 { 8134 struct hw_perf_event *hwc = &event->hw; 8135 8136 local64_add(nr, &event->count); 8137 8138 if (!regs) 8139 return; 8140 8141 if (!is_sampling_event(event)) 8142 return; 8143 8144 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8145 data->period = nr; 8146 return perf_swevent_overflow(event, 1, data, regs); 8147 } else 8148 data->period = event->hw.last_period; 8149 8150 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8151 return perf_swevent_overflow(event, 1, data, regs); 8152 8153 if (local64_add_negative(nr, &hwc->period_left)) 8154 return; 8155 8156 perf_swevent_overflow(event, 0, data, regs); 8157 } 8158 8159 static int perf_exclude_event(struct perf_event *event, 8160 struct pt_regs *regs) 8161 { 8162 if (event->hw.state & PERF_HES_STOPPED) 8163 return 1; 8164 8165 if (regs) { 8166 if (event->attr.exclude_user && user_mode(regs)) 8167 return 1; 8168 8169 if (event->attr.exclude_kernel && !user_mode(regs)) 8170 return 1; 8171 } 8172 8173 return 0; 8174 } 8175 8176 static int perf_swevent_match(struct perf_event *event, 8177 enum perf_type_id type, 8178 u32 event_id, 8179 struct perf_sample_data *data, 8180 struct pt_regs *regs) 8181 { 8182 if (event->attr.type != type) 8183 return 0; 8184 8185 if (event->attr.config != event_id) 8186 return 0; 8187 8188 if (perf_exclude_event(event, regs)) 8189 return 0; 8190 8191 return 1; 8192 } 8193 8194 static inline u64 swevent_hash(u64 type, u32 event_id) 8195 { 8196 u64 val = event_id | (type << 32); 8197 8198 return hash_64(val, SWEVENT_HLIST_BITS); 8199 } 8200 8201 static inline struct hlist_head * 8202 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8203 { 8204 u64 hash = swevent_hash(type, event_id); 8205 8206 return &hlist->heads[hash]; 8207 } 8208 8209 /* For the read side: events when they trigger */ 8210 static inline struct hlist_head * 8211 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8212 { 8213 struct swevent_hlist *hlist; 8214 8215 hlist = rcu_dereference(swhash->swevent_hlist); 8216 if (!hlist) 8217 return NULL; 8218 8219 return __find_swevent_head(hlist, type, event_id); 8220 } 8221 8222 /* For the event head insertion and removal in the hlist */ 8223 static inline struct hlist_head * 8224 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8225 { 8226 struct swevent_hlist *hlist; 8227 u32 event_id = event->attr.config; 8228 u64 type = event->attr.type; 8229 8230 /* 8231 * Event scheduling is always serialized against hlist allocation 8232 * and release. Which makes the protected version suitable here. 8233 * The context lock guarantees that. 8234 */ 8235 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8236 lockdep_is_held(&event->ctx->lock)); 8237 if (!hlist) 8238 return NULL; 8239 8240 return __find_swevent_head(hlist, type, event_id); 8241 } 8242 8243 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8244 u64 nr, 8245 struct perf_sample_data *data, 8246 struct pt_regs *regs) 8247 { 8248 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8249 struct perf_event *event; 8250 struct hlist_head *head; 8251 8252 rcu_read_lock(); 8253 head = find_swevent_head_rcu(swhash, type, event_id); 8254 if (!head) 8255 goto end; 8256 8257 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8258 if (perf_swevent_match(event, type, event_id, data, regs)) 8259 perf_swevent_event(event, nr, data, regs); 8260 } 8261 end: 8262 rcu_read_unlock(); 8263 } 8264 8265 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8266 8267 int perf_swevent_get_recursion_context(void) 8268 { 8269 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8270 8271 return get_recursion_context(swhash->recursion); 8272 } 8273 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8274 8275 void perf_swevent_put_recursion_context(int rctx) 8276 { 8277 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8278 8279 put_recursion_context(swhash->recursion, rctx); 8280 } 8281 8282 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8283 { 8284 struct perf_sample_data data; 8285 8286 if (WARN_ON_ONCE(!regs)) 8287 return; 8288 8289 perf_sample_data_init(&data, addr, 0); 8290 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8291 } 8292 8293 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8294 { 8295 int rctx; 8296 8297 preempt_disable_notrace(); 8298 rctx = perf_swevent_get_recursion_context(); 8299 if (unlikely(rctx < 0)) 8300 goto fail; 8301 8302 ___perf_sw_event(event_id, nr, regs, addr); 8303 8304 perf_swevent_put_recursion_context(rctx); 8305 fail: 8306 preempt_enable_notrace(); 8307 } 8308 8309 static void perf_swevent_read(struct perf_event *event) 8310 { 8311 } 8312 8313 static int perf_swevent_add(struct perf_event *event, int flags) 8314 { 8315 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8316 struct hw_perf_event *hwc = &event->hw; 8317 struct hlist_head *head; 8318 8319 if (is_sampling_event(event)) { 8320 hwc->last_period = hwc->sample_period; 8321 perf_swevent_set_period(event); 8322 } 8323 8324 hwc->state = !(flags & PERF_EF_START); 8325 8326 head = find_swevent_head(swhash, event); 8327 if (WARN_ON_ONCE(!head)) 8328 return -EINVAL; 8329 8330 hlist_add_head_rcu(&event->hlist_entry, head); 8331 perf_event_update_userpage(event); 8332 8333 return 0; 8334 } 8335 8336 static void perf_swevent_del(struct perf_event *event, int flags) 8337 { 8338 hlist_del_rcu(&event->hlist_entry); 8339 } 8340 8341 static void perf_swevent_start(struct perf_event *event, int flags) 8342 { 8343 event->hw.state = 0; 8344 } 8345 8346 static void perf_swevent_stop(struct perf_event *event, int flags) 8347 { 8348 event->hw.state = PERF_HES_STOPPED; 8349 } 8350 8351 /* Deref the hlist from the update side */ 8352 static inline struct swevent_hlist * 8353 swevent_hlist_deref(struct swevent_htable *swhash) 8354 { 8355 return rcu_dereference_protected(swhash->swevent_hlist, 8356 lockdep_is_held(&swhash->hlist_mutex)); 8357 } 8358 8359 static void swevent_hlist_release(struct swevent_htable *swhash) 8360 { 8361 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8362 8363 if (!hlist) 8364 return; 8365 8366 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8367 kfree_rcu(hlist, rcu_head); 8368 } 8369 8370 static void swevent_hlist_put_cpu(int cpu) 8371 { 8372 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8373 8374 mutex_lock(&swhash->hlist_mutex); 8375 8376 if (!--swhash->hlist_refcount) 8377 swevent_hlist_release(swhash); 8378 8379 mutex_unlock(&swhash->hlist_mutex); 8380 } 8381 8382 static void swevent_hlist_put(void) 8383 { 8384 int cpu; 8385 8386 for_each_possible_cpu(cpu) 8387 swevent_hlist_put_cpu(cpu); 8388 } 8389 8390 static int swevent_hlist_get_cpu(int cpu) 8391 { 8392 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8393 int err = 0; 8394 8395 mutex_lock(&swhash->hlist_mutex); 8396 if (!swevent_hlist_deref(swhash) && 8397 cpumask_test_cpu(cpu, perf_online_mask)) { 8398 struct swevent_hlist *hlist; 8399 8400 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8401 if (!hlist) { 8402 err = -ENOMEM; 8403 goto exit; 8404 } 8405 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8406 } 8407 swhash->hlist_refcount++; 8408 exit: 8409 mutex_unlock(&swhash->hlist_mutex); 8410 8411 return err; 8412 } 8413 8414 static int swevent_hlist_get(void) 8415 { 8416 int err, cpu, failed_cpu; 8417 8418 mutex_lock(&pmus_lock); 8419 for_each_possible_cpu(cpu) { 8420 err = swevent_hlist_get_cpu(cpu); 8421 if (err) { 8422 failed_cpu = cpu; 8423 goto fail; 8424 } 8425 } 8426 mutex_unlock(&pmus_lock); 8427 return 0; 8428 fail: 8429 for_each_possible_cpu(cpu) { 8430 if (cpu == failed_cpu) 8431 break; 8432 swevent_hlist_put_cpu(cpu); 8433 } 8434 mutex_unlock(&pmus_lock); 8435 return err; 8436 } 8437 8438 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8439 8440 static void sw_perf_event_destroy(struct perf_event *event) 8441 { 8442 u64 event_id = event->attr.config; 8443 8444 WARN_ON(event->parent); 8445 8446 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8447 swevent_hlist_put(); 8448 } 8449 8450 static int perf_swevent_init(struct perf_event *event) 8451 { 8452 u64 event_id = event->attr.config; 8453 8454 if (event->attr.type != PERF_TYPE_SOFTWARE) 8455 return -ENOENT; 8456 8457 /* 8458 * no branch sampling for software events 8459 */ 8460 if (has_branch_stack(event)) 8461 return -EOPNOTSUPP; 8462 8463 switch (event_id) { 8464 case PERF_COUNT_SW_CPU_CLOCK: 8465 case PERF_COUNT_SW_TASK_CLOCK: 8466 return -ENOENT; 8467 8468 default: 8469 break; 8470 } 8471 8472 if (event_id >= PERF_COUNT_SW_MAX) 8473 return -ENOENT; 8474 8475 if (!event->parent) { 8476 int err; 8477 8478 err = swevent_hlist_get(); 8479 if (err) 8480 return err; 8481 8482 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8483 event->destroy = sw_perf_event_destroy; 8484 } 8485 8486 return 0; 8487 } 8488 8489 static struct pmu perf_swevent = { 8490 .task_ctx_nr = perf_sw_context, 8491 8492 .capabilities = PERF_PMU_CAP_NO_NMI, 8493 8494 .event_init = perf_swevent_init, 8495 .add = perf_swevent_add, 8496 .del = perf_swevent_del, 8497 .start = perf_swevent_start, 8498 .stop = perf_swevent_stop, 8499 .read = perf_swevent_read, 8500 }; 8501 8502 #ifdef CONFIG_EVENT_TRACING 8503 8504 static int perf_tp_filter_match(struct perf_event *event, 8505 struct perf_sample_data *data) 8506 { 8507 void *record = data->raw->frag.data; 8508 8509 /* only top level events have filters set */ 8510 if (event->parent) 8511 event = event->parent; 8512 8513 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8514 return 1; 8515 return 0; 8516 } 8517 8518 static int perf_tp_event_match(struct perf_event *event, 8519 struct perf_sample_data *data, 8520 struct pt_regs *regs) 8521 { 8522 if (event->hw.state & PERF_HES_STOPPED) 8523 return 0; 8524 /* 8525 * All tracepoints are from kernel-space. 8526 */ 8527 if (event->attr.exclude_kernel) 8528 return 0; 8529 8530 if (!perf_tp_filter_match(event, data)) 8531 return 0; 8532 8533 return 1; 8534 } 8535 8536 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8537 struct trace_event_call *call, u64 count, 8538 struct pt_regs *regs, struct hlist_head *head, 8539 struct task_struct *task) 8540 { 8541 if (bpf_prog_array_valid(call)) { 8542 *(struct pt_regs **)raw_data = regs; 8543 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8544 perf_swevent_put_recursion_context(rctx); 8545 return; 8546 } 8547 } 8548 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8549 rctx, task); 8550 } 8551 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8552 8553 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8554 struct pt_regs *regs, struct hlist_head *head, int rctx, 8555 struct task_struct *task) 8556 { 8557 struct perf_sample_data data; 8558 struct perf_event *event; 8559 8560 struct perf_raw_record raw = { 8561 .frag = { 8562 .size = entry_size, 8563 .data = record, 8564 }, 8565 }; 8566 8567 perf_sample_data_init(&data, 0, 0); 8568 data.raw = &raw; 8569 8570 perf_trace_buf_update(record, event_type); 8571 8572 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8573 if (perf_tp_event_match(event, &data, regs)) 8574 perf_swevent_event(event, count, &data, regs); 8575 } 8576 8577 /* 8578 * If we got specified a target task, also iterate its context and 8579 * deliver this event there too. 8580 */ 8581 if (task && task != current) { 8582 struct perf_event_context *ctx; 8583 struct trace_entry *entry = record; 8584 8585 rcu_read_lock(); 8586 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8587 if (!ctx) 8588 goto unlock; 8589 8590 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8591 if (event->cpu != smp_processor_id()) 8592 continue; 8593 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8594 continue; 8595 if (event->attr.config != entry->type) 8596 continue; 8597 if (perf_tp_event_match(event, &data, regs)) 8598 perf_swevent_event(event, count, &data, regs); 8599 } 8600 unlock: 8601 rcu_read_unlock(); 8602 } 8603 8604 perf_swevent_put_recursion_context(rctx); 8605 } 8606 EXPORT_SYMBOL_GPL(perf_tp_event); 8607 8608 static void tp_perf_event_destroy(struct perf_event *event) 8609 { 8610 perf_trace_destroy(event); 8611 } 8612 8613 static int perf_tp_event_init(struct perf_event *event) 8614 { 8615 int err; 8616 8617 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8618 return -ENOENT; 8619 8620 /* 8621 * no branch sampling for tracepoint events 8622 */ 8623 if (has_branch_stack(event)) 8624 return -EOPNOTSUPP; 8625 8626 err = perf_trace_init(event); 8627 if (err) 8628 return err; 8629 8630 event->destroy = tp_perf_event_destroy; 8631 8632 return 0; 8633 } 8634 8635 static struct pmu perf_tracepoint = { 8636 .task_ctx_nr = perf_sw_context, 8637 8638 .event_init = perf_tp_event_init, 8639 .add = perf_trace_add, 8640 .del = perf_trace_del, 8641 .start = perf_swevent_start, 8642 .stop = perf_swevent_stop, 8643 .read = perf_swevent_read, 8644 }; 8645 8646 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8647 /* 8648 * Flags in config, used by dynamic PMU kprobe and uprobe 8649 * The flags should match following PMU_FORMAT_ATTR(). 8650 * 8651 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8652 * if not set, create kprobe/uprobe 8653 * 8654 * The following values specify a reference counter (or semaphore in the 8655 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8656 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8657 * 8658 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8659 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8660 */ 8661 enum perf_probe_config { 8662 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8663 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8664 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8665 }; 8666 8667 PMU_FORMAT_ATTR(retprobe, "config:0"); 8668 #endif 8669 8670 #ifdef CONFIG_KPROBE_EVENTS 8671 static struct attribute *kprobe_attrs[] = { 8672 &format_attr_retprobe.attr, 8673 NULL, 8674 }; 8675 8676 static struct attribute_group kprobe_format_group = { 8677 .name = "format", 8678 .attrs = kprobe_attrs, 8679 }; 8680 8681 static const struct attribute_group *kprobe_attr_groups[] = { 8682 &kprobe_format_group, 8683 NULL, 8684 }; 8685 8686 static int perf_kprobe_event_init(struct perf_event *event); 8687 static struct pmu perf_kprobe = { 8688 .task_ctx_nr = perf_sw_context, 8689 .event_init = perf_kprobe_event_init, 8690 .add = perf_trace_add, 8691 .del = perf_trace_del, 8692 .start = perf_swevent_start, 8693 .stop = perf_swevent_stop, 8694 .read = perf_swevent_read, 8695 .attr_groups = kprobe_attr_groups, 8696 }; 8697 8698 static int perf_kprobe_event_init(struct perf_event *event) 8699 { 8700 int err; 8701 bool is_retprobe; 8702 8703 if (event->attr.type != perf_kprobe.type) 8704 return -ENOENT; 8705 8706 if (!capable(CAP_SYS_ADMIN)) 8707 return -EACCES; 8708 8709 /* 8710 * no branch sampling for probe events 8711 */ 8712 if (has_branch_stack(event)) 8713 return -EOPNOTSUPP; 8714 8715 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8716 err = perf_kprobe_init(event, is_retprobe); 8717 if (err) 8718 return err; 8719 8720 event->destroy = perf_kprobe_destroy; 8721 8722 return 0; 8723 } 8724 #endif /* CONFIG_KPROBE_EVENTS */ 8725 8726 #ifdef CONFIG_UPROBE_EVENTS 8727 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8728 8729 static struct attribute *uprobe_attrs[] = { 8730 &format_attr_retprobe.attr, 8731 &format_attr_ref_ctr_offset.attr, 8732 NULL, 8733 }; 8734 8735 static struct attribute_group uprobe_format_group = { 8736 .name = "format", 8737 .attrs = uprobe_attrs, 8738 }; 8739 8740 static const struct attribute_group *uprobe_attr_groups[] = { 8741 &uprobe_format_group, 8742 NULL, 8743 }; 8744 8745 static int perf_uprobe_event_init(struct perf_event *event); 8746 static struct pmu perf_uprobe = { 8747 .task_ctx_nr = perf_sw_context, 8748 .event_init = perf_uprobe_event_init, 8749 .add = perf_trace_add, 8750 .del = perf_trace_del, 8751 .start = perf_swevent_start, 8752 .stop = perf_swevent_stop, 8753 .read = perf_swevent_read, 8754 .attr_groups = uprobe_attr_groups, 8755 }; 8756 8757 static int perf_uprobe_event_init(struct perf_event *event) 8758 { 8759 int err; 8760 unsigned long ref_ctr_offset; 8761 bool is_retprobe; 8762 8763 if (event->attr.type != perf_uprobe.type) 8764 return -ENOENT; 8765 8766 if (!capable(CAP_SYS_ADMIN)) 8767 return -EACCES; 8768 8769 /* 8770 * no branch sampling for probe events 8771 */ 8772 if (has_branch_stack(event)) 8773 return -EOPNOTSUPP; 8774 8775 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8776 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8777 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8778 if (err) 8779 return err; 8780 8781 event->destroy = perf_uprobe_destroy; 8782 8783 return 0; 8784 } 8785 #endif /* CONFIG_UPROBE_EVENTS */ 8786 8787 static inline void perf_tp_register(void) 8788 { 8789 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8790 #ifdef CONFIG_KPROBE_EVENTS 8791 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8792 #endif 8793 #ifdef CONFIG_UPROBE_EVENTS 8794 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8795 #endif 8796 } 8797 8798 static void perf_event_free_filter(struct perf_event *event) 8799 { 8800 ftrace_profile_free_filter(event); 8801 } 8802 8803 #ifdef CONFIG_BPF_SYSCALL 8804 static void bpf_overflow_handler(struct perf_event *event, 8805 struct perf_sample_data *data, 8806 struct pt_regs *regs) 8807 { 8808 struct bpf_perf_event_data_kern ctx = { 8809 .data = data, 8810 .event = event, 8811 }; 8812 int ret = 0; 8813 8814 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8815 preempt_disable(); 8816 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8817 goto out; 8818 rcu_read_lock(); 8819 ret = BPF_PROG_RUN(event->prog, &ctx); 8820 rcu_read_unlock(); 8821 out: 8822 __this_cpu_dec(bpf_prog_active); 8823 preempt_enable(); 8824 if (!ret) 8825 return; 8826 8827 event->orig_overflow_handler(event, data, regs); 8828 } 8829 8830 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8831 { 8832 struct bpf_prog *prog; 8833 8834 if (event->overflow_handler_context) 8835 /* hw breakpoint or kernel counter */ 8836 return -EINVAL; 8837 8838 if (event->prog) 8839 return -EEXIST; 8840 8841 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8842 if (IS_ERR(prog)) 8843 return PTR_ERR(prog); 8844 8845 event->prog = prog; 8846 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8847 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8848 return 0; 8849 } 8850 8851 static void perf_event_free_bpf_handler(struct perf_event *event) 8852 { 8853 struct bpf_prog *prog = event->prog; 8854 8855 if (!prog) 8856 return; 8857 8858 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8859 event->prog = NULL; 8860 bpf_prog_put(prog); 8861 } 8862 #else 8863 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8864 { 8865 return -EOPNOTSUPP; 8866 } 8867 static void perf_event_free_bpf_handler(struct perf_event *event) 8868 { 8869 } 8870 #endif 8871 8872 /* 8873 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8874 * with perf_event_open() 8875 */ 8876 static inline bool perf_event_is_tracing(struct perf_event *event) 8877 { 8878 if (event->pmu == &perf_tracepoint) 8879 return true; 8880 #ifdef CONFIG_KPROBE_EVENTS 8881 if (event->pmu == &perf_kprobe) 8882 return true; 8883 #endif 8884 #ifdef CONFIG_UPROBE_EVENTS 8885 if (event->pmu == &perf_uprobe) 8886 return true; 8887 #endif 8888 return false; 8889 } 8890 8891 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8892 { 8893 bool is_kprobe, is_tracepoint, is_syscall_tp; 8894 struct bpf_prog *prog; 8895 int ret; 8896 8897 if (!perf_event_is_tracing(event)) 8898 return perf_event_set_bpf_handler(event, prog_fd); 8899 8900 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8901 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8902 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8903 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8904 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8905 return -EINVAL; 8906 8907 prog = bpf_prog_get(prog_fd); 8908 if (IS_ERR(prog)) 8909 return PTR_ERR(prog); 8910 8911 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8912 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8913 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8914 /* valid fd, but invalid bpf program type */ 8915 bpf_prog_put(prog); 8916 return -EINVAL; 8917 } 8918 8919 /* Kprobe override only works for kprobes, not uprobes. */ 8920 if (prog->kprobe_override && 8921 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8922 bpf_prog_put(prog); 8923 return -EINVAL; 8924 } 8925 8926 if (is_tracepoint || is_syscall_tp) { 8927 int off = trace_event_get_offsets(event->tp_event); 8928 8929 if (prog->aux->max_ctx_offset > off) { 8930 bpf_prog_put(prog); 8931 return -EACCES; 8932 } 8933 } 8934 8935 ret = perf_event_attach_bpf_prog(event, prog); 8936 if (ret) 8937 bpf_prog_put(prog); 8938 return ret; 8939 } 8940 8941 static void perf_event_free_bpf_prog(struct perf_event *event) 8942 { 8943 if (!perf_event_is_tracing(event)) { 8944 perf_event_free_bpf_handler(event); 8945 return; 8946 } 8947 perf_event_detach_bpf_prog(event); 8948 } 8949 8950 #else 8951 8952 static inline void perf_tp_register(void) 8953 { 8954 } 8955 8956 static void perf_event_free_filter(struct perf_event *event) 8957 { 8958 } 8959 8960 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8961 { 8962 return -ENOENT; 8963 } 8964 8965 static void perf_event_free_bpf_prog(struct perf_event *event) 8966 { 8967 } 8968 #endif /* CONFIG_EVENT_TRACING */ 8969 8970 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8971 void perf_bp_event(struct perf_event *bp, void *data) 8972 { 8973 struct perf_sample_data sample; 8974 struct pt_regs *regs = data; 8975 8976 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8977 8978 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8979 perf_swevent_event(bp, 1, &sample, regs); 8980 } 8981 #endif 8982 8983 /* 8984 * Allocate a new address filter 8985 */ 8986 static struct perf_addr_filter * 8987 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8988 { 8989 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8990 struct perf_addr_filter *filter; 8991 8992 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8993 if (!filter) 8994 return NULL; 8995 8996 INIT_LIST_HEAD(&filter->entry); 8997 list_add_tail(&filter->entry, filters); 8998 8999 return filter; 9000 } 9001 9002 static void free_filters_list(struct list_head *filters) 9003 { 9004 struct perf_addr_filter *filter, *iter; 9005 9006 list_for_each_entry_safe(filter, iter, filters, entry) { 9007 path_put(&filter->path); 9008 list_del(&filter->entry); 9009 kfree(filter); 9010 } 9011 } 9012 9013 /* 9014 * Free existing address filters and optionally install new ones 9015 */ 9016 static void perf_addr_filters_splice(struct perf_event *event, 9017 struct list_head *head) 9018 { 9019 unsigned long flags; 9020 LIST_HEAD(list); 9021 9022 if (!has_addr_filter(event)) 9023 return; 9024 9025 /* don't bother with children, they don't have their own filters */ 9026 if (event->parent) 9027 return; 9028 9029 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 9030 9031 list_splice_init(&event->addr_filters.list, &list); 9032 if (head) 9033 list_splice(head, &event->addr_filters.list); 9034 9035 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9036 9037 free_filters_list(&list); 9038 } 9039 9040 /* 9041 * Scan through mm's vmas and see if one of them matches the 9042 * @filter; if so, adjust filter's address range. 9043 * Called with mm::mmap_sem down for reading. 9044 */ 9045 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9046 struct mm_struct *mm, 9047 struct perf_addr_filter_range *fr) 9048 { 9049 struct vm_area_struct *vma; 9050 9051 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9052 if (!vma->vm_file) 9053 continue; 9054 9055 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9056 return; 9057 } 9058 } 9059 9060 /* 9061 * Update event's address range filters based on the 9062 * task's existing mappings, if any. 9063 */ 9064 static void perf_event_addr_filters_apply(struct perf_event *event) 9065 { 9066 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9067 struct task_struct *task = READ_ONCE(event->ctx->task); 9068 struct perf_addr_filter *filter; 9069 struct mm_struct *mm = NULL; 9070 unsigned int count = 0; 9071 unsigned long flags; 9072 9073 /* 9074 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9075 * will stop on the parent's child_mutex that our caller is also holding 9076 */ 9077 if (task == TASK_TOMBSTONE) 9078 return; 9079 9080 if (!ifh->nr_file_filters) 9081 return; 9082 9083 mm = get_task_mm(event->ctx->task); 9084 if (!mm) 9085 goto restart; 9086 9087 down_read(&mm->mmap_sem); 9088 9089 raw_spin_lock_irqsave(&ifh->lock, flags); 9090 list_for_each_entry(filter, &ifh->list, entry) { 9091 event->addr_filter_ranges[count].start = 0; 9092 event->addr_filter_ranges[count].size = 0; 9093 9094 /* 9095 * Adjust base offset if the filter is associated to a binary 9096 * that needs to be mapped: 9097 */ 9098 if (filter->path.dentry) 9099 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9100 9101 count++; 9102 } 9103 9104 event->addr_filters_gen++; 9105 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9106 9107 up_read(&mm->mmap_sem); 9108 9109 mmput(mm); 9110 9111 restart: 9112 perf_event_stop(event, 1); 9113 } 9114 9115 /* 9116 * Address range filtering: limiting the data to certain 9117 * instruction address ranges. Filters are ioctl()ed to us from 9118 * userspace as ascii strings. 9119 * 9120 * Filter string format: 9121 * 9122 * ACTION RANGE_SPEC 9123 * where ACTION is one of the 9124 * * "filter": limit the trace to this region 9125 * * "start": start tracing from this address 9126 * * "stop": stop tracing at this address/region; 9127 * RANGE_SPEC is 9128 * * for kernel addresses: <start address>[/<size>] 9129 * * for object files: <start address>[/<size>]@</path/to/object/file> 9130 * 9131 * if <size> is not specified or is zero, the range is treated as a single 9132 * address; not valid for ACTION=="filter". 9133 */ 9134 enum { 9135 IF_ACT_NONE = -1, 9136 IF_ACT_FILTER, 9137 IF_ACT_START, 9138 IF_ACT_STOP, 9139 IF_SRC_FILE, 9140 IF_SRC_KERNEL, 9141 IF_SRC_FILEADDR, 9142 IF_SRC_KERNELADDR, 9143 }; 9144 9145 enum { 9146 IF_STATE_ACTION = 0, 9147 IF_STATE_SOURCE, 9148 IF_STATE_END, 9149 }; 9150 9151 static const match_table_t if_tokens = { 9152 { IF_ACT_FILTER, "filter" }, 9153 { IF_ACT_START, "start" }, 9154 { IF_ACT_STOP, "stop" }, 9155 { IF_SRC_FILE, "%u/%u@%s" }, 9156 { IF_SRC_KERNEL, "%u/%u" }, 9157 { IF_SRC_FILEADDR, "%u@%s" }, 9158 { IF_SRC_KERNELADDR, "%u" }, 9159 { IF_ACT_NONE, NULL }, 9160 }; 9161 9162 /* 9163 * Address filter string parser 9164 */ 9165 static int 9166 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9167 struct list_head *filters) 9168 { 9169 struct perf_addr_filter *filter = NULL; 9170 char *start, *orig, *filename = NULL; 9171 substring_t args[MAX_OPT_ARGS]; 9172 int state = IF_STATE_ACTION, token; 9173 unsigned int kernel = 0; 9174 int ret = -EINVAL; 9175 9176 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9177 if (!fstr) 9178 return -ENOMEM; 9179 9180 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9181 static const enum perf_addr_filter_action_t actions[] = { 9182 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9183 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9184 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9185 }; 9186 ret = -EINVAL; 9187 9188 if (!*start) 9189 continue; 9190 9191 /* filter definition begins */ 9192 if (state == IF_STATE_ACTION) { 9193 filter = perf_addr_filter_new(event, filters); 9194 if (!filter) 9195 goto fail; 9196 } 9197 9198 token = match_token(start, if_tokens, args); 9199 switch (token) { 9200 case IF_ACT_FILTER: 9201 case IF_ACT_START: 9202 case IF_ACT_STOP: 9203 if (state != IF_STATE_ACTION) 9204 goto fail; 9205 9206 filter->action = actions[token]; 9207 state = IF_STATE_SOURCE; 9208 break; 9209 9210 case IF_SRC_KERNELADDR: 9211 case IF_SRC_KERNEL: 9212 kernel = 1; 9213 /* fall through */ 9214 9215 case IF_SRC_FILEADDR: 9216 case IF_SRC_FILE: 9217 if (state != IF_STATE_SOURCE) 9218 goto fail; 9219 9220 *args[0].to = 0; 9221 ret = kstrtoul(args[0].from, 0, &filter->offset); 9222 if (ret) 9223 goto fail; 9224 9225 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9226 *args[1].to = 0; 9227 ret = kstrtoul(args[1].from, 0, &filter->size); 9228 if (ret) 9229 goto fail; 9230 } 9231 9232 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9233 int fpos = token == IF_SRC_FILE ? 2 : 1; 9234 9235 filename = match_strdup(&args[fpos]); 9236 if (!filename) { 9237 ret = -ENOMEM; 9238 goto fail; 9239 } 9240 } 9241 9242 state = IF_STATE_END; 9243 break; 9244 9245 default: 9246 goto fail; 9247 } 9248 9249 /* 9250 * Filter definition is fully parsed, validate and install it. 9251 * Make sure that it doesn't contradict itself or the event's 9252 * attribute. 9253 */ 9254 if (state == IF_STATE_END) { 9255 ret = -EINVAL; 9256 if (kernel && event->attr.exclude_kernel) 9257 goto fail; 9258 9259 /* 9260 * ACTION "filter" must have a non-zero length region 9261 * specified. 9262 */ 9263 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9264 !filter->size) 9265 goto fail; 9266 9267 if (!kernel) { 9268 if (!filename) 9269 goto fail; 9270 9271 /* 9272 * For now, we only support file-based filters 9273 * in per-task events; doing so for CPU-wide 9274 * events requires additional context switching 9275 * trickery, since same object code will be 9276 * mapped at different virtual addresses in 9277 * different processes. 9278 */ 9279 ret = -EOPNOTSUPP; 9280 if (!event->ctx->task) 9281 goto fail_free_name; 9282 9283 /* look up the path and grab its inode */ 9284 ret = kern_path(filename, LOOKUP_FOLLOW, 9285 &filter->path); 9286 if (ret) 9287 goto fail_free_name; 9288 9289 kfree(filename); 9290 filename = NULL; 9291 9292 ret = -EINVAL; 9293 if (!filter->path.dentry || 9294 !S_ISREG(d_inode(filter->path.dentry) 9295 ->i_mode)) 9296 goto fail; 9297 9298 event->addr_filters.nr_file_filters++; 9299 } 9300 9301 /* ready to consume more filters */ 9302 state = IF_STATE_ACTION; 9303 filter = NULL; 9304 } 9305 } 9306 9307 if (state != IF_STATE_ACTION) 9308 goto fail; 9309 9310 kfree(orig); 9311 9312 return 0; 9313 9314 fail_free_name: 9315 kfree(filename); 9316 fail: 9317 free_filters_list(filters); 9318 kfree(orig); 9319 9320 return ret; 9321 } 9322 9323 static int 9324 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9325 { 9326 LIST_HEAD(filters); 9327 int ret; 9328 9329 /* 9330 * Since this is called in perf_ioctl() path, we're already holding 9331 * ctx::mutex. 9332 */ 9333 lockdep_assert_held(&event->ctx->mutex); 9334 9335 if (WARN_ON_ONCE(event->parent)) 9336 return -EINVAL; 9337 9338 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9339 if (ret) 9340 goto fail_clear_files; 9341 9342 ret = event->pmu->addr_filters_validate(&filters); 9343 if (ret) 9344 goto fail_free_filters; 9345 9346 /* remove existing filters, if any */ 9347 perf_addr_filters_splice(event, &filters); 9348 9349 /* install new filters */ 9350 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9351 9352 return ret; 9353 9354 fail_free_filters: 9355 free_filters_list(&filters); 9356 9357 fail_clear_files: 9358 event->addr_filters.nr_file_filters = 0; 9359 9360 return ret; 9361 } 9362 9363 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9364 { 9365 int ret = -EINVAL; 9366 char *filter_str; 9367 9368 filter_str = strndup_user(arg, PAGE_SIZE); 9369 if (IS_ERR(filter_str)) 9370 return PTR_ERR(filter_str); 9371 9372 #ifdef CONFIG_EVENT_TRACING 9373 if (perf_event_is_tracing(event)) { 9374 struct perf_event_context *ctx = event->ctx; 9375 9376 /* 9377 * Beware, here be dragons!! 9378 * 9379 * the tracepoint muck will deadlock against ctx->mutex, but 9380 * the tracepoint stuff does not actually need it. So 9381 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9382 * already have a reference on ctx. 9383 * 9384 * This can result in event getting moved to a different ctx, 9385 * but that does not affect the tracepoint state. 9386 */ 9387 mutex_unlock(&ctx->mutex); 9388 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9389 mutex_lock(&ctx->mutex); 9390 } else 9391 #endif 9392 if (has_addr_filter(event)) 9393 ret = perf_event_set_addr_filter(event, filter_str); 9394 9395 kfree(filter_str); 9396 return ret; 9397 } 9398 9399 /* 9400 * hrtimer based swevent callback 9401 */ 9402 9403 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9404 { 9405 enum hrtimer_restart ret = HRTIMER_RESTART; 9406 struct perf_sample_data data; 9407 struct pt_regs *regs; 9408 struct perf_event *event; 9409 u64 period; 9410 9411 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9412 9413 if (event->state != PERF_EVENT_STATE_ACTIVE) 9414 return HRTIMER_NORESTART; 9415 9416 event->pmu->read(event); 9417 9418 perf_sample_data_init(&data, 0, event->hw.last_period); 9419 regs = get_irq_regs(); 9420 9421 if (regs && !perf_exclude_event(event, regs)) { 9422 if (!(event->attr.exclude_idle && is_idle_task(current))) 9423 if (__perf_event_overflow(event, 1, &data, regs)) 9424 ret = HRTIMER_NORESTART; 9425 } 9426 9427 period = max_t(u64, 10000, event->hw.sample_period); 9428 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9429 9430 return ret; 9431 } 9432 9433 static void perf_swevent_start_hrtimer(struct perf_event *event) 9434 { 9435 struct hw_perf_event *hwc = &event->hw; 9436 s64 period; 9437 9438 if (!is_sampling_event(event)) 9439 return; 9440 9441 period = local64_read(&hwc->period_left); 9442 if (period) { 9443 if (period < 0) 9444 period = 10000; 9445 9446 local64_set(&hwc->period_left, 0); 9447 } else { 9448 period = max_t(u64, 10000, hwc->sample_period); 9449 } 9450 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9451 HRTIMER_MODE_REL_PINNED); 9452 } 9453 9454 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9455 { 9456 struct hw_perf_event *hwc = &event->hw; 9457 9458 if (is_sampling_event(event)) { 9459 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9460 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9461 9462 hrtimer_cancel(&hwc->hrtimer); 9463 } 9464 } 9465 9466 static void perf_swevent_init_hrtimer(struct perf_event *event) 9467 { 9468 struct hw_perf_event *hwc = &event->hw; 9469 9470 if (!is_sampling_event(event)) 9471 return; 9472 9473 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9474 hwc->hrtimer.function = perf_swevent_hrtimer; 9475 9476 /* 9477 * Since hrtimers have a fixed rate, we can do a static freq->period 9478 * mapping and avoid the whole period adjust feedback stuff. 9479 */ 9480 if (event->attr.freq) { 9481 long freq = event->attr.sample_freq; 9482 9483 event->attr.sample_period = NSEC_PER_SEC / freq; 9484 hwc->sample_period = event->attr.sample_period; 9485 local64_set(&hwc->period_left, hwc->sample_period); 9486 hwc->last_period = hwc->sample_period; 9487 event->attr.freq = 0; 9488 } 9489 } 9490 9491 /* 9492 * Software event: cpu wall time clock 9493 */ 9494 9495 static void cpu_clock_event_update(struct perf_event *event) 9496 { 9497 s64 prev; 9498 u64 now; 9499 9500 now = local_clock(); 9501 prev = local64_xchg(&event->hw.prev_count, now); 9502 local64_add(now - prev, &event->count); 9503 } 9504 9505 static void cpu_clock_event_start(struct perf_event *event, int flags) 9506 { 9507 local64_set(&event->hw.prev_count, local_clock()); 9508 perf_swevent_start_hrtimer(event); 9509 } 9510 9511 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9512 { 9513 perf_swevent_cancel_hrtimer(event); 9514 cpu_clock_event_update(event); 9515 } 9516 9517 static int cpu_clock_event_add(struct perf_event *event, int flags) 9518 { 9519 if (flags & PERF_EF_START) 9520 cpu_clock_event_start(event, flags); 9521 perf_event_update_userpage(event); 9522 9523 return 0; 9524 } 9525 9526 static void cpu_clock_event_del(struct perf_event *event, int flags) 9527 { 9528 cpu_clock_event_stop(event, flags); 9529 } 9530 9531 static void cpu_clock_event_read(struct perf_event *event) 9532 { 9533 cpu_clock_event_update(event); 9534 } 9535 9536 static int cpu_clock_event_init(struct perf_event *event) 9537 { 9538 if (event->attr.type != PERF_TYPE_SOFTWARE) 9539 return -ENOENT; 9540 9541 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9542 return -ENOENT; 9543 9544 /* 9545 * no branch sampling for software events 9546 */ 9547 if (has_branch_stack(event)) 9548 return -EOPNOTSUPP; 9549 9550 perf_swevent_init_hrtimer(event); 9551 9552 return 0; 9553 } 9554 9555 static struct pmu perf_cpu_clock = { 9556 .task_ctx_nr = perf_sw_context, 9557 9558 .capabilities = PERF_PMU_CAP_NO_NMI, 9559 9560 .event_init = cpu_clock_event_init, 9561 .add = cpu_clock_event_add, 9562 .del = cpu_clock_event_del, 9563 .start = cpu_clock_event_start, 9564 .stop = cpu_clock_event_stop, 9565 .read = cpu_clock_event_read, 9566 }; 9567 9568 /* 9569 * Software event: task time clock 9570 */ 9571 9572 static void task_clock_event_update(struct perf_event *event, u64 now) 9573 { 9574 u64 prev; 9575 s64 delta; 9576 9577 prev = local64_xchg(&event->hw.prev_count, now); 9578 delta = now - prev; 9579 local64_add(delta, &event->count); 9580 } 9581 9582 static void task_clock_event_start(struct perf_event *event, int flags) 9583 { 9584 local64_set(&event->hw.prev_count, event->ctx->time); 9585 perf_swevent_start_hrtimer(event); 9586 } 9587 9588 static void task_clock_event_stop(struct perf_event *event, int flags) 9589 { 9590 perf_swevent_cancel_hrtimer(event); 9591 task_clock_event_update(event, event->ctx->time); 9592 } 9593 9594 static int task_clock_event_add(struct perf_event *event, int flags) 9595 { 9596 if (flags & PERF_EF_START) 9597 task_clock_event_start(event, flags); 9598 perf_event_update_userpage(event); 9599 9600 return 0; 9601 } 9602 9603 static void task_clock_event_del(struct perf_event *event, int flags) 9604 { 9605 task_clock_event_stop(event, PERF_EF_UPDATE); 9606 } 9607 9608 static void task_clock_event_read(struct perf_event *event) 9609 { 9610 u64 now = perf_clock(); 9611 u64 delta = now - event->ctx->timestamp; 9612 u64 time = event->ctx->time + delta; 9613 9614 task_clock_event_update(event, time); 9615 } 9616 9617 static int task_clock_event_init(struct perf_event *event) 9618 { 9619 if (event->attr.type != PERF_TYPE_SOFTWARE) 9620 return -ENOENT; 9621 9622 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9623 return -ENOENT; 9624 9625 /* 9626 * no branch sampling for software events 9627 */ 9628 if (has_branch_stack(event)) 9629 return -EOPNOTSUPP; 9630 9631 perf_swevent_init_hrtimer(event); 9632 9633 return 0; 9634 } 9635 9636 static struct pmu perf_task_clock = { 9637 .task_ctx_nr = perf_sw_context, 9638 9639 .capabilities = PERF_PMU_CAP_NO_NMI, 9640 9641 .event_init = task_clock_event_init, 9642 .add = task_clock_event_add, 9643 .del = task_clock_event_del, 9644 .start = task_clock_event_start, 9645 .stop = task_clock_event_stop, 9646 .read = task_clock_event_read, 9647 }; 9648 9649 static void perf_pmu_nop_void(struct pmu *pmu) 9650 { 9651 } 9652 9653 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9654 { 9655 } 9656 9657 static int perf_pmu_nop_int(struct pmu *pmu) 9658 { 9659 return 0; 9660 } 9661 9662 static int perf_event_nop_int(struct perf_event *event, u64 value) 9663 { 9664 return 0; 9665 } 9666 9667 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9668 9669 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9670 { 9671 __this_cpu_write(nop_txn_flags, flags); 9672 9673 if (flags & ~PERF_PMU_TXN_ADD) 9674 return; 9675 9676 perf_pmu_disable(pmu); 9677 } 9678 9679 static int perf_pmu_commit_txn(struct pmu *pmu) 9680 { 9681 unsigned int flags = __this_cpu_read(nop_txn_flags); 9682 9683 __this_cpu_write(nop_txn_flags, 0); 9684 9685 if (flags & ~PERF_PMU_TXN_ADD) 9686 return 0; 9687 9688 perf_pmu_enable(pmu); 9689 return 0; 9690 } 9691 9692 static void perf_pmu_cancel_txn(struct pmu *pmu) 9693 { 9694 unsigned int flags = __this_cpu_read(nop_txn_flags); 9695 9696 __this_cpu_write(nop_txn_flags, 0); 9697 9698 if (flags & ~PERF_PMU_TXN_ADD) 9699 return; 9700 9701 perf_pmu_enable(pmu); 9702 } 9703 9704 static int perf_event_idx_default(struct perf_event *event) 9705 { 9706 return 0; 9707 } 9708 9709 /* 9710 * Ensures all contexts with the same task_ctx_nr have the same 9711 * pmu_cpu_context too. 9712 */ 9713 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9714 { 9715 struct pmu *pmu; 9716 9717 if (ctxn < 0) 9718 return NULL; 9719 9720 list_for_each_entry(pmu, &pmus, entry) { 9721 if (pmu->task_ctx_nr == ctxn) 9722 return pmu->pmu_cpu_context; 9723 } 9724 9725 return NULL; 9726 } 9727 9728 static void free_pmu_context(struct pmu *pmu) 9729 { 9730 /* 9731 * Static contexts such as perf_sw_context have a global lifetime 9732 * and may be shared between different PMUs. Avoid freeing them 9733 * when a single PMU is going away. 9734 */ 9735 if (pmu->task_ctx_nr > perf_invalid_context) 9736 return; 9737 9738 free_percpu(pmu->pmu_cpu_context); 9739 } 9740 9741 /* 9742 * Let userspace know that this PMU supports address range filtering: 9743 */ 9744 static ssize_t nr_addr_filters_show(struct device *dev, 9745 struct device_attribute *attr, 9746 char *page) 9747 { 9748 struct pmu *pmu = dev_get_drvdata(dev); 9749 9750 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9751 } 9752 DEVICE_ATTR_RO(nr_addr_filters); 9753 9754 static struct idr pmu_idr; 9755 9756 static ssize_t 9757 type_show(struct device *dev, struct device_attribute *attr, char *page) 9758 { 9759 struct pmu *pmu = dev_get_drvdata(dev); 9760 9761 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9762 } 9763 static DEVICE_ATTR_RO(type); 9764 9765 static ssize_t 9766 perf_event_mux_interval_ms_show(struct device *dev, 9767 struct device_attribute *attr, 9768 char *page) 9769 { 9770 struct pmu *pmu = dev_get_drvdata(dev); 9771 9772 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9773 } 9774 9775 static DEFINE_MUTEX(mux_interval_mutex); 9776 9777 static ssize_t 9778 perf_event_mux_interval_ms_store(struct device *dev, 9779 struct device_attribute *attr, 9780 const char *buf, size_t count) 9781 { 9782 struct pmu *pmu = dev_get_drvdata(dev); 9783 int timer, cpu, ret; 9784 9785 ret = kstrtoint(buf, 0, &timer); 9786 if (ret) 9787 return ret; 9788 9789 if (timer < 1) 9790 return -EINVAL; 9791 9792 /* same value, noting to do */ 9793 if (timer == pmu->hrtimer_interval_ms) 9794 return count; 9795 9796 mutex_lock(&mux_interval_mutex); 9797 pmu->hrtimer_interval_ms = timer; 9798 9799 /* update all cpuctx for this PMU */ 9800 cpus_read_lock(); 9801 for_each_online_cpu(cpu) { 9802 struct perf_cpu_context *cpuctx; 9803 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9804 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9805 9806 cpu_function_call(cpu, 9807 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9808 } 9809 cpus_read_unlock(); 9810 mutex_unlock(&mux_interval_mutex); 9811 9812 return count; 9813 } 9814 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9815 9816 static struct attribute *pmu_dev_attrs[] = { 9817 &dev_attr_type.attr, 9818 &dev_attr_perf_event_mux_interval_ms.attr, 9819 NULL, 9820 }; 9821 ATTRIBUTE_GROUPS(pmu_dev); 9822 9823 static int pmu_bus_running; 9824 static struct bus_type pmu_bus = { 9825 .name = "event_source", 9826 .dev_groups = pmu_dev_groups, 9827 }; 9828 9829 static void pmu_dev_release(struct device *dev) 9830 { 9831 kfree(dev); 9832 } 9833 9834 static int pmu_dev_alloc(struct pmu *pmu) 9835 { 9836 int ret = -ENOMEM; 9837 9838 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9839 if (!pmu->dev) 9840 goto out; 9841 9842 pmu->dev->groups = pmu->attr_groups; 9843 device_initialize(pmu->dev); 9844 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9845 if (ret) 9846 goto free_dev; 9847 9848 dev_set_drvdata(pmu->dev, pmu); 9849 pmu->dev->bus = &pmu_bus; 9850 pmu->dev->release = pmu_dev_release; 9851 ret = device_add(pmu->dev); 9852 if (ret) 9853 goto free_dev; 9854 9855 /* For PMUs with address filters, throw in an extra attribute: */ 9856 if (pmu->nr_addr_filters) 9857 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9858 9859 if (ret) 9860 goto del_dev; 9861 9862 out: 9863 return ret; 9864 9865 del_dev: 9866 device_del(pmu->dev); 9867 9868 free_dev: 9869 put_device(pmu->dev); 9870 goto out; 9871 } 9872 9873 static struct lock_class_key cpuctx_mutex; 9874 static struct lock_class_key cpuctx_lock; 9875 9876 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9877 { 9878 int cpu, ret; 9879 9880 mutex_lock(&pmus_lock); 9881 ret = -ENOMEM; 9882 pmu->pmu_disable_count = alloc_percpu(int); 9883 if (!pmu->pmu_disable_count) 9884 goto unlock; 9885 9886 pmu->type = -1; 9887 if (!name) 9888 goto skip_type; 9889 pmu->name = name; 9890 9891 if (type < 0) { 9892 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9893 if (type < 0) { 9894 ret = type; 9895 goto free_pdc; 9896 } 9897 } 9898 pmu->type = type; 9899 9900 if (pmu_bus_running) { 9901 ret = pmu_dev_alloc(pmu); 9902 if (ret) 9903 goto free_idr; 9904 } 9905 9906 skip_type: 9907 if (pmu->task_ctx_nr == perf_hw_context) { 9908 static int hw_context_taken = 0; 9909 9910 /* 9911 * Other than systems with heterogeneous CPUs, it never makes 9912 * sense for two PMUs to share perf_hw_context. PMUs which are 9913 * uncore must use perf_invalid_context. 9914 */ 9915 if (WARN_ON_ONCE(hw_context_taken && 9916 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9917 pmu->task_ctx_nr = perf_invalid_context; 9918 9919 hw_context_taken = 1; 9920 } 9921 9922 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9923 if (pmu->pmu_cpu_context) 9924 goto got_cpu_context; 9925 9926 ret = -ENOMEM; 9927 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9928 if (!pmu->pmu_cpu_context) 9929 goto free_dev; 9930 9931 for_each_possible_cpu(cpu) { 9932 struct perf_cpu_context *cpuctx; 9933 9934 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9935 __perf_event_init_context(&cpuctx->ctx); 9936 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9937 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9938 cpuctx->ctx.pmu = pmu; 9939 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9940 9941 __perf_mux_hrtimer_init(cpuctx, cpu); 9942 } 9943 9944 got_cpu_context: 9945 if (!pmu->start_txn) { 9946 if (pmu->pmu_enable) { 9947 /* 9948 * If we have pmu_enable/pmu_disable calls, install 9949 * transaction stubs that use that to try and batch 9950 * hardware accesses. 9951 */ 9952 pmu->start_txn = perf_pmu_start_txn; 9953 pmu->commit_txn = perf_pmu_commit_txn; 9954 pmu->cancel_txn = perf_pmu_cancel_txn; 9955 } else { 9956 pmu->start_txn = perf_pmu_nop_txn; 9957 pmu->commit_txn = perf_pmu_nop_int; 9958 pmu->cancel_txn = perf_pmu_nop_void; 9959 } 9960 } 9961 9962 if (!pmu->pmu_enable) { 9963 pmu->pmu_enable = perf_pmu_nop_void; 9964 pmu->pmu_disable = perf_pmu_nop_void; 9965 } 9966 9967 if (!pmu->check_period) 9968 pmu->check_period = perf_event_nop_int; 9969 9970 if (!pmu->event_idx) 9971 pmu->event_idx = perf_event_idx_default; 9972 9973 list_add_rcu(&pmu->entry, &pmus); 9974 atomic_set(&pmu->exclusive_cnt, 0); 9975 ret = 0; 9976 unlock: 9977 mutex_unlock(&pmus_lock); 9978 9979 return ret; 9980 9981 free_dev: 9982 device_del(pmu->dev); 9983 put_device(pmu->dev); 9984 9985 free_idr: 9986 if (pmu->type >= PERF_TYPE_MAX) 9987 idr_remove(&pmu_idr, pmu->type); 9988 9989 free_pdc: 9990 free_percpu(pmu->pmu_disable_count); 9991 goto unlock; 9992 } 9993 EXPORT_SYMBOL_GPL(perf_pmu_register); 9994 9995 void perf_pmu_unregister(struct pmu *pmu) 9996 { 9997 mutex_lock(&pmus_lock); 9998 list_del_rcu(&pmu->entry); 9999 10000 /* 10001 * We dereference the pmu list under both SRCU and regular RCU, so 10002 * synchronize against both of those. 10003 */ 10004 synchronize_srcu(&pmus_srcu); 10005 synchronize_rcu(); 10006 10007 free_percpu(pmu->pmu_disable_count); 10008 if (pmu->type >= PERF_TYPE_MAX) 10009 idr_remove(&pmu_idr, pmu->type); 10010 if (pmu_bus_running) { 10011 if (pmu->nr_addr_filters) 10012 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 10013 device_del(pmu->dev); 10014 put_device(pmu->dev); 10015 } 10016 free_pmu_context(pmu); 10017 mutex_unlock(&pmus_lock); 10018 } 10019 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 10020 10021 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 10022 { 10023 struct perf_event_context *ctx = NULL; 10024 int ret; 10025 10026 if (!try_module_get(pmu->module)) 10027 return -ENODEV; 10028 10029 /* 10030 * A number of pmu->event_init() methods iterate the sibling_list to, 10031 * for example, validate if the group fits on the PMU. Therefore, 10032 * if this is a sibling event, acquire the ctx->mutex to protect 10033 * the sibling_list. 10034 */ 10035 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10036 /* 10037 * This ctx->mutex can nest when we're called through 10038 * inheritance. See the perf_event_ctx_lock_nested() comment. 10039 */ 10040 ctx = perf_event_ctx_lock_nested(event->group_leader, 10041 SINGLE_DEPTH_NESTING); 10042 BUG_ON(!ctx); 10043 } 10044 10045 event->pmu = pmu; 10046 ret = pmu->event_init(event); 10047 10048 if (ctx) 10049 perf_event_ctx_unlock(event->group_leader, ctx); 10050 10051 if (!ret) { 10052 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10053 event_has_any_exclude_flag(event)) { 10054 if (event->destroy) 10055 event->destroy(event); 10056 ret = -EINVAL; 10057 } 10058 } 10059 10060 if (ret) 10061 module_put(pmu->module); 10062 10063 return ret; 10064 } 10065 10066 static struct pmu *perf_init_event(struct perf_event *event) 10067 { 10068 struct pmu *pmu; 10069 int idx; 10070 int ret; 10071 10072 idx = srcu_read_lock(&pmus_srcu); 10073 10074 /* Try parent's PMU first: */ 10075 if (event->parent && event->parent->pmu) { 10076 pmu = event->parent->pmu; 10077 ret = perf_try_init_event(pmu, event); 10078 if (!ret) 10079 goto unlock; 10080 } 10081 10082 rcu_read_lock(); 10083 pmu = idr_find(&pmu_idr, event->attr.type); 10084 rcu_read_unlock(); 10085 if (pmu) { 10086 ret = perf_try_init_event(pmu, event); 10087 if (ret) 10088 pmu = ERR_PTR(ret); 10089 goto unlock; 10090 } 10091 10092 list_for_each_entry_rcu(pmu, &pmus, entry) { 10093 ret = perf_try_init_event(pmu, event); 10094 if (!ret) 10095 goto unlock; 10096 10097 if (ret != -ENOENT) { 10098 pmu = ERR_PTR(ret); 10099 goto unlock; 10100 } 10101 } 10102 pmu = ERR_PTR(-ENOENT); 10103 unlock: 10104 srcu_read_unlock(&pmus_srcu, idx); 10105 10106 return pmu; 10107 } 10108 10109 static void attach_sb_event(struct perf_event *event) 10110 { 10111 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10112 10113 raw_spin_lock(&pel->lock); 10114 list_add_rcu(&event->sb_list, &pel->list); 10115 raw_spin_unlock(&pel->lock); 10116 } 10117 10118 /* 10119 * We keep a list of all !task (and therefore per-cpu) events 10120 * that need to receive side-band records. 10121 * 10122 * This avoids having to scan all the various PMU per-cpu contexts 10123 * looking for them. 10124 */ 10125 static void account_pmu_sb_event(struct perf_event *event) 10126 { 10127 if (is_sb_event(event)) 10128 attach_sb_event(event); 10129 } 10130 10131 static void account_event_cpu(struct perf_event *event, int cpu) 10132 { 10133 if (event->parent) 10134 return; 10135 10136 if (is_cgroup_event(event)) 10137 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10138 } 10139 10140 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10141 static void account_freq_event_nohz(void) 10142 { 10143 #ifdef CONFIG_NO_HZ_FULL 10144 /* Lock so we don't race with concurrent unaccount */ 10145 spin_lock(&nr_freq_lock); 10146 if (atomic_inc_return(&nr_freq_events) == 1) 10147 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10148 spin_unlock(&nr_freq_lock); 10149 #endif 10150 } 10151 10152 static void account_freq_event(void) 10153 { 10154 if (tick_nohz_full_enabled()) 10155 account_freq_event_nohz(); 10156 else 10157 atomic_inc(&nr_freq_events); 10158 } 10159 10160 10161 static void account_event(struct perf_event *event) 10162 { 10163 bool inc = false; 10164 10165 if (event->parent) 10166 return; 10167 10168 if (event->attach_state & PERF_ATTACH_TASK) 10169 inc = true; 10170 if (event->attr.mmap || event->attr.mmap_data) 10171 atomic_inc(&nr_mmap_events); 10172 if (event->attr.comm) 10173 atomic_inc(&nr_comm_events); 10174 if (event->attr.namespaces) 10175 atomic_inc(&nr_namespaces_events); 10176 if (event->attr.task) 10177 atomic_inc(&nr_task_events); 10178 if (event->attr.freq) 10179 account_freq_event(); 10180 if (event->attr.context_switch) { 10181 atomic_inc(&nr_switch_events); 10182 inc = true; 10183 } 10184 if (has_branch_stack(event)) 10185 inc = true; 10186 if (is_cgroup_event(event)) 10187 inc = true; 10188 if (event->attr.ksymbol) 10189 atomic_inc(&nr_ksymbol_events); 10190 if (event->attr.bpf_event) 10191 atomic_inc(&nr_bpf_events); 10192 10193 if (inc) { 10194 /* 10195 * We need the mutex here because static_branch_enable() 10196 * must complete *before* the perf_sched_count increment 10197 * becomes visible. 10198 */ 10199 if (atomic_inc_not_zero(&perf_sched_count)) 10200 goto enabled; 10201 10202 mutex_lock(&perf_sched_mutex); 10203 if (!atomic_read(&perf_sched_count)) { 10204 static_branch_enable(&perf_sched_events); 10205 /* 10206 * Guarantee that all CPUs observe they key change and 10207 * call the perf scheduling hooks before proceeding to 10208 * install events that need them. 10209 */ 10210 synchronize_rcu(); 10211 } 10212 /* 10213 * Now that we have waited for the sync_sched(), allow further 10214 * increments to by-pass the mutex. 10215 */ 10216 atomic_inc(&perf_sched_count); 10217 mutex_unlock(&perf_sched_mutex); 10218 } 10219 enabled: 10220 10221 account_event_cpu(event, event->cpu); 10222 10223 account_pmu_sb_event(event); 10224 } 10225 10226 /* 10227 * Allocate and initialize an event structure 10228 */ 10229 static struct perf_event * 10230 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10231 struct task_struct *task, 10232 struct perf_event *group_leader, 10233 struct perf_event *parent_event, 10234 perf_overflow_handler_t overflow_handler, 10235 void *context, int cgroup_fd) 10236 { 10237 struct pmu *pmu; 10238 struct perf_event *event; 10239 struct hw_perf_event *hwc; 10240 long err = -EINVAL; 10241 10242 if ((unsigned)cpu >= nr_cpu_ids) { 10243 if (!task || cpu != -1) 10244 return ERR_PTR(-EINVAL); 10245 } 10246 10247 event = kzalloc(sizeof(*event), GFP_KERNEL); 10248 if (!event) 10249 return ERR_PTR(-ENOMEM); 10250 10251 /* 10252 * Single events are their own group leaders, with an 10253 * empty sibling list: 10254 */ 10255 if (!group_leader) 10256 group_leader = event; 10257 10258 mutex_init(&event->child_mutex); 10259 INIT_LIST_HEAD(&event->child_list); 10260 10261 INIT_LIST_HEAD(&event->event_entry); 10262 INIT_LIST_HEAD(&event->sibling_list); 10263 INIT_LIST_HEAD(&event->active_list); 10264 init_event_group(event); 10265 INIT_LIST_HEAD(&event->rb_entry); 10266 INIT_LIST_HEAD(&event->active_entry); 10267 INIT_LIST_HEAD(&event->addr_filters.list); 10268 INIT_HLIST_NODE(&event->hlist_entry); 10269 10270 10271 init_waitqueue_head(&event->waitq); 10272 event->pending_disable = -1; 10273 init_irq_work(&event->pending, perf_pending_event); 10274 10275 mutex_init(&event->mmap_mutex); 10276 raw_spin_lock_init(&event->addr_filters.lock); 10277 10278 atomic_long_set(&event->refcount, 1); 10279 event->cpu = cpu; 10280 event->attr = *attr; 10281 event->group_leader = group_leader; 10282 event->pmu = NULL; 10283 event->oncpu = -1; 10284 10285 event->parent = parent_event; 10286 10287 event->ns = get_pid_ns(task_active_pid_ns(current)); 10288 event->id = atomic64_inc_return(&perf_event_id); 10289 10290 event->state = PERF_EVENT_STATE_INACTIVE; 10291 10292 if (task) { 10293 event->attach_state = PERF_ATTACH_TASK; 10294 /* 10295 * XXX pmu::event_init needs to know what task to account to 10296 * and we cannot use the ctx information because we need the 10297 * pmu before we get a ctx. 10298 */ 10299 get_task_struct(task); 10300 event->hw.target = task; 10301 } 10302 10303 event->clock = &local_clock; 10304 if (parent_event) 10305 event->clock = parent_event->clock; 10306 10307 if (!overflow_handler && parent_event) { 10308 overflow_handler = parent_event->overflow_handler; 10309 context = parent_event->overflow_handler_context; 10310 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10311 if (overflow_handler == bpf_overflow_handler) { 10312 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10313 10314 if (IS_ERR(prog)) { 10315 err = PTR_ERR(prog); 10316 goto err_ns; 10317 } 10318 event->prog = prog; 10319 event->orig_overflow_handler = 10320 parent_event->orig_overflow_handler; 10321 } 10322 #endif 10323 } 10324 10325 if (overflow_handler) { 10326 event->overflow_handler = overflow_handler; 10327 event->overflow_handler_context = context; 10328 } else if (is_write_backward(event)){ 10329 event->overflow_handler = perf_event_output_backward; 10330 event->overflow_handler_context = NULL; 10331 } else { 10332 event->overflow_handler = perf_event_output_forward; 10333 event->overflow_handler_context = NULL; 10334 } 10335 10336 perf_event__state_init(event); 10337 10338 pmu = NULL; 10339 10340 hwc = &event->hw; 10341 hwc->sample_period = attr->sample_period; 10342 if (attr->freq && attr->sample_freq) 10343 hwc->sample_period = 1; 10344 hwc->last_period = hwc->sample_period; 10345 10346 local64_set(&hwc->period_left, hwc->sample_period); 10347 10348 /* 10349 * We currently do not support PERF_SAMPLE_READ on inherited events. 10350 * See perf_output_read(). 10351 */ 10352 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10353 goto err_ns; 10354 10355 if (!has_branch_stack(event)) 10356 event->attr.branch_sample_type = 0; 10357 10358 if (cgroup_fd != -1) { 10359 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10360 if (err) 10361 goto err_ns; 10362 } 10363 10364 pmu = perf_init_event(event); 10365 if (IS_ERR(pmu)) { 10366 err = PTR_ERR(pmu); 10367 goto err_ns; 10368 } 10369 10370 err = exclusive_event_init(event); 10371 if (err) 10372 goto err_pmu; 10373 10374 if (has_addr_filter(event)) { 10375 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10376 sizeof(struct perf_addr_filter_range), 10377 GFP_KERNEL); 10378 if (!event->addr_filter_ranges) { 10379 err = -ENOMEM; 10380 goto err_per_task; 10381 } 10382 10383 /* 10384 * Clone the parent's vma offsets: they are valid until exec() 10385 * even if the mm is not shared with the parent. 10386 */ 10387 if (event->parent) { 10388 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10389 10390 raw_spin_lock_irq(&ifh->lock); 10391 memcpy(event->addr_filter_ranges, 10392 event->parent->addr_filter_ranges, 10393 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10394 raw_spin_unlock_irq(&ifh->lock); 10395 } 10396 10397 /* force hw sync on the address filters */ 10398 event->addr_filters_gen = 1; 10399 } 10400 10401 if (!event->parent) { 10402 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10403 err = get_callchain_buffers(attr->sample_max_stack); 10404 if (err) 10405 goto err_addr_filters; 10406 } 10407 } 10408 10409 /* symmetric to unaccount_event() in _free_event() */ 10410 account_event(event); 10411 10412 return event; 10413 10414 err_addr_filters: 10415 kfree(event->addr_filter_ranges); 10416 10417 err_per_task: 10418 exclusive_event_destroy(event); 10419 10420 err_pmu: 10421 if (event->destroy) 10422 event->destroy(event); 10423 module_put(pmu->module); 10424 err_ns: 10425 if (is_cgroup_event(event)) 10426 perf_detach_cgroup(event); 10427 if (event->ns) 10428 put_pid_ns(event->ns); 10429 if (event->hw.target) 10430 put_task_struct(event->hw.target); 10431 kfree(event); 10432 10433 return ERR_PTR(err); 10434 } 10435 10436 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10437 struct perf_event_attr *attr) 10438 { 10439 u32 size; 10440 int ret; 10441 10442 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10443 return -EFAULT; 10444 10445 /* 10446 * zero the full structure, so that a short copy will be nice. 10447 */ 10448 memset(attr, 0, sizeof(*attr)); 10449 10450 ret = get_user(size, &uattr->size); 10451 if (ret) 10452 return ret; 10453 10454 if (size > PAGE_SIZE) /* silly large */ 10455 goto err_size; 10456 10457 if (!size) /* abi compat */ 10458 size = PERF_ATTR_SIZE_VER0; 10459 10460 if (size < PERF_ATTR_SIZE_VER0) 10461 goto err_size; 10462 10463 /* 10464 * If we're handed a bigger struct than we know of, 10465 * ensure all the unknown bits are 0 - i.e. new 10466 * user-space does not rely on any kernel feature 10467 * extensions we dont know about yet. 10468 */ 10469 if (size > sizeof(*attr)) { 10470 unsigned char __user *addr; 10471 unsigned char __user *end; 10472 unsigned char val; 10473 10474 addr = (void __user *)uattr + sizeof(*attr); 10475 end = (void __user *)uattr + size; 10476 10477 for (; addr < end; addr++) { 10478 ret = get_user(val, addr); 10479 if (ret) 10480 return ret; 10481 if (val) 10482 goto err_size; 10483 } 10484 size = sizeof(*attr); 10485 } 10486 10487 ret = copy_from_user(attr, uattr, size); 10488 if (ret) 10489 return -EFAULT; 10490 10491 attr->size = size; 10492 10493 if (attr->__reserved_1) 10494 return -EINVAL; 10495 10496 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10497 return -EINVAL; 10498 10499 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10500 return -EINVAL; 10501 10502 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10503 u64 mask = attr->branch_sample_type; 10504 10505 /* only using defined bits */ 10506 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10507 return -EINVAL; 10508 10509 /* at least one branch bit must be set */ 10510 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10511 return -EINVAL; 10512 10513 /* propagate priv level, when not set for branch */ 10514 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10515 10516 /* exclude_kernel checked on syscall entry */ 10517 if (!attr->exclude_kernel) 10518 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10519 10520 if (!attr->exclude_user) 10521 mask |= PERF_SAMPLE_BRANCH_USER; 10522 10523 if (!attr->exclude_hv) 10524 mask |= PERF_SAMPLE_BRANCH_HV; 10525 /* 10526 * adjust user setting (for HW filter setup) 10527 */ 10528 attr->branch_sample_type = mask; 10529 } 10530 /* privileged levels capture (kernel, hv): check permissions */ 10531 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10532 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10533 return -EACCES; 10534 } 10535 10536 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10537 ret = perf_reg_validate(attr->sample_regs_user); 10538 if (ret) 10539 return ret; 10540 } 10541 10542 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10543 if (!arch_perf_have_user_stack_dump()) 10544 return -ENOSYS; 10545 10546 /* 10547 * We have __u32 type for the size, but so far 10548 * we can only use __u16 as maximum due to the 10549 * __u16 sample size limit. 10550 */ 10551 if (attr->sample_stack_user >= USHRT_MAX) 10552 return -EINVAL; 10553 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10554 return -EINVAL; 10555 } 10556 10557 if (!attr->sample_max_stack) 10558 attr->sample_max_stack = sysctl_perf_event_max_stack; 10559 10560 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10561 ret = perf_reg_validate(attr->sample_regs_intr); 10562 out: 10563 return ret; 10564 10565 err_size: 10566 put_user(sizeof(*attr), &uattr->size); 10567 ret = -E2BIG; 10568 goto out; 10569 } 10570 10571 static int 10572 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10573 { 10574 struct ring_buffer *rb = NULL; 10575 int ret = -EINVAL; 10576 10577 if (!output_event) 10578 goto set; 10579 10580 /* don't allow circular references */ 10581 if (event == output_event) 10582 goto out; 10583 10584 /* 10585 * Don't allow cross-cpu buffers 10586 */ 10587 if (output_event->cpu != event->cpu) 10588 goto out; 10589 10590 /* 10591 * If its not a per-cpu rb, it must be the same task. 10592 */ 10593 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10594 goto out; 10595 10596 /* 10597 * Mixing clocks in the same buffer is trouble you don't need. 10598 */ 10599 if (output_event->clock != event->clock) 10600 goto out; 10601 10602 /* 10603 * Either writing ring buffer from beginning or from end. 10604 * Mixing is not allowed. 10605 */ 10606 if (is_write_backward(output_event) != is_write_backward(event)) 10607 goto out; 10608 10609 /* 10610 * If both events generate aux data, they must be on the same PMU 10611 */ 10612 if (has_aux(event) && has_aux(output_event) && 10613 event->pmu != output_event->pmu) 10614 goto out; 10615 10616 set: 10617 mutex_lock(&event->mmap_mutex); 10618 /* Can't redirect output if we've got an active mmap() */ 10619 if (atomic_read(&event->mmap_count)) 10620 goto unlock; 10621 10622 if (output_event) { 10623 /* get the rb we want to redirect to */ 10624 rb = ring_buffer_get(output_event); 10625 if (!rb) 10626 goto unlock; 10627 } 10628 10629 ring_buffer_attach(event, rb); 10630 10631 ret = 0; 10632 unlock: 10633 mutex_unlock(&event->mmap_mutex); 10634 10635 out: 10636 return ret; 10637 } 10638 10639 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10640 { 10641 if (b < a) 10642 swap(a, b); 10643 10644 mutex_lock(a); 10645 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10646 } 10647 10648 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10649 { 10650 bool nmi_safe = false; 10651 10652 switch (clk_id) { 10653 case CLOCK_MONOTONIC: 10654 event->clock = &ktime_get_mono_fast_ns; 10655 nmi_safe = true; 10656 break; 10657 10658 case CLOCK_MONOTONIC_RAW: 10659 event->clock = &ktime_get_raw_fast_ns; 10660 nmi_safe = true; 10661 break; 10662 10663 case CLOCK_REALTIME: 10664 event->clock = &ktime_get_real_ns; 10665 break; 10666 10667 case CLOCK_BOOTTIME: 10668 event->clock = &ktime_get_boot_ns; 10669 break; 10670 10671 case CLOCK_TAI: 10672 event->clock = &ktime_get_tai_ns; 10673 break; 10674 10675 default: 10676 return -EINVAL; 10677 } 10678 10679 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10680 return -EINVAL; 10681 10682 return 0; 10683 } 10684 10685 /* 10686 * Variation on perf_event_ctx_lock_nested(), except we take two context 10687 * mutexes. 10688 */ 10689 static struct perf_event_context * 10690 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10691 struct perf_event_context *ctx) 10692 { 10693 struct perf_event_context *gctx; 10694 10695 again: 10696 rcu_read_lock(); 10697 gctx = READ_ONCE(group_leader->ctx); 10698 if (!refcount_inc_not_zero(&gctx->refcount)) { 10699 rcu_read_unlock(); 10700 goto again; 10701 } 10702 rcu_read_unlock(); 10703 10704 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10705 10706 if (group_leader->ctx != gctx) { 10707 mutex_unlock(&ctx->mutex); 10708 mutex_unlock(&gctx->mutex); 10709 put_ctx(gctx); 10710 goto again; 10711 } 10712 10713 return gctx; 10714 } 10715 10716 /** 10717 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10718 * 10719 * @attr_uptr: event_id type attributes for monitoring/sampling 10720 * @pid: target pid 10721 * @cpu: target cpu 10722 * @group_fd: group leader event fd 10723 */ 10724 SYSCALL_DEFINE5(perf_event_open, 10725 struct perf_event_attr __user *, attr_uptr, 10726 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10727 { 10728 struct perf_event *group_leader = NULL, *output_event = NULL; 10729 struct perf_event *event, *sibling; 10730 struct perf_event_attr attr; 10731 struct perf_event_context *ctx, *uninitialized_var(gctx); 10732 struct file *event_file = NULL; 10733 struct fd group = {NULL, 0}; 10734 struct task_struct *task = NULL; 10735 struct pmu *pmu; 10736 int event_fd; 10737 int move_group = 0; 10738 int err; 10739 int f_flags = O_RDWR; 10740 int cgroup_fd = -1; 10741 10742 /* for future expandability... */ 10743 if (flags & ~PERF_FLAG_ALL) 10744 return -EINVAL; 10745 10746 err = perf_copy_attr(attr_uptr, &attr); 10747 if (err) 10748 return err; 10749 10750 if (!attr.exclude_kernel) { 10751 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10752 return -EACCES; 10753 } 10754 10755 if (attr.namespaces) { 10756 if (!capable(CAP_SYS_ADMIN)) 10757 return -EACCES; 10758 } 10759 10760 if (attr.freq) { 10761 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10762 return -EINVAL; 10763 } else { 10764 if (attr.sample_period & (1ULL << 63)) 10765 return -EINVAL; 10766 } 10767 10768 /* Only privileged users can get physical addresses */ 10769 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10770 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10771 return -EACCES; 10772 10773 /* 10774 * In cgroup mode, the pid argument is used to pass the fd 10775 * opened to the cgroup directory in cgroupfs. The cpu argument 10776 * designates the cpu on which to monitor threads from that 10777 * cgroup. 10778 */ 10779 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10780 return -EINVAL; 10781 10782 if (flags & PERF_FLAG_FD_CLOEXEC) 10783 f_flags |= O_CLOEXEC; 10784 10785 event_fd = get_unused_fd_flags(f_flags); 10786 if (event_fd < 0) 10787 return event_fd; 10788 10789 if (group_fd != -1) { 10790 err = perf_fget_light(group_fd, &group); 10791 if (err) 10792 goto err_fd; 10793 group_leader = group.file->private_data; 10794 if (flags & PERF_FLAG_FD_OUTPUT) 10795 output_event = group_leader; 10796 if (flags & PERF_FLAG_FD_NO_GROUP) 10797 group_leader = NULL; 10798 } 10799 10800 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10801 task = find_lively_task_by_vpid(pid); 10802 if (IS_ERR(task)) { 10803 err = PTR_ERR(task); 10804 goto err_group_fd; 10805 } 10806 } 10807 10808 if (task && group_leader && 10809 group_leader->attr.inherit != attr.inherit) { 10810 err = -EINVAL; 10811 goto err_task; 10812 } 10813 10814 if (task) { 10815 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10816 if (err) 10817 goto err_task; 10818 10819 /* 10820 * Reuse ptrace permission checks for now. 10821 * 10822 * We must hold cred_guard_mutex across this and any potential 10823 * perf_install_in_context() call for this new event to 10824 * serialize against exec() altering our credentials (and the 10825 * perf_event_exit_task() that could imply). 10826 */ 10827 err = -EACCES; 10828 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10829 goto err_cred; 10830 } 10831 10832 if (flags & PERF_FLAG_PID_CGROUP) 10833 cgroup_fd = pid; 10834 10835 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10836 NULL, NULL, cgroup_fd); 10837 if (IS_ERR(event)) { 10838 err = PTR_ERR(event); 10839 goto err_cred; 10840 } 10841 10842 if (is_sampling_event(event)) { 10843 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10844 err = -EOPNOTSUPP; 10845 goto err_alloc; 10846 } 10847 } 10848 10849 /* 10850 * Special case software events and allow them to be part of 10851 * any hardware group. 10852 */ 10853 pmu = event->pmu; 10854 10855 if (attr.use_clockid) { 10856 err = perf_event_set_clock(event, attr.clockid); 10857 if (err) 10858 goto err_alloc; 10859 } 10860 10861 if (pmu->task_ctx_nr == perf_sw_context) 10862 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10863 10864 if (group_leader) { 10865 if (is_software_event(event) && 10866 !in_software_context(group_leader)) { 10867 /* 10868 * If the event is a sw event, but the group_leader 10869 * is on hw context. 10870 * 10871 * Allow the addition of software events to hw 10872 * groups, this is safe because software events 10873 * never fail to schedule. 10874 */ 10875 pmu = group_leader->ctx->pmu; 10876 } else if (!is_software_event(event) && 10877 is_software_event(group_leader) && 10878 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10879 /* 10880 * In case the group is a pure software group, and we 10881 * try to add a hardware event, move the whole group to 10882 * the hardware context. 10883 */ 10884 move_group = 1; 10885 } 10886 } 10887 10888 /* 10889 * Get the target context (task or percpu): 10890 */ 10891 ctx = find_get_context(pmu, task, event); 10892 if (IS_ERR(ctx)) { 10893 err = PTR_ERR(ctx); 10894 goto err_alloc; 10895 } 10896 10897 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10898 err = -EBUSY; 10899 goto err_context; 10900 } 10901 10902 /* 10903 * Look up the group leader (we will attach this event to it): 10904 */ 10905 if (group_leader) { 10906 err = -EINVAL; 10907 10908 /* 10909 * Do not allow a recursive hierarchy (this new sibling 10910 * becoming part of another group-sibling): 10911 */ 10912 if (group_leader->group_leader != group_leader) 10913 goto err_context; 10914 10915 /* All events in a group should have the same clock */ 10916 if (group_leader->clock != event->clock) 10917 goto err_context; 10918 10919 /* 10920 * Make sure we're both events for the same CPU; 10921 * grouping events for different CPUs is broken; since 10922 * you can never concurrently schedule them anyhow. 10923 */ 10924 if (group_leader->cpu != event->cpu) 10925 goto err_context; 10926 10927 /* 10928 * Make sure we're both on the same task, or both 10929 * per-CPU events. 10930 */ 10931 if (group_leader->ctx->task != ctx->task) 10932 goto err_context; 10933 10934 /* 10935 * Do not allow to attach to a group in a different task 10936 * or CPU context. If we're moving SW events, we'll fix 10937 * this up later, so allow that. 10938 */ 10939 if (!move_group && group_leader->ctx != ctx) 10940 goto err_context; 10941 10942 /* 10943 * Only a group leader can be exclusive or pinned 10944 */ 10945 if (attr.exclusive || attr.pinned) 10946 goto err_context; 10947 } 10948 10949 if (output_event) { 10950 err = perf_event_set_output(event, output_event); 10951 if (err) 10952 goto err_context; 10953 } 10954 10955 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10956 f_flags); 10957 if (IS_ERR(event_file)) { 10958 err = PTR_ERR(event_file); 10959 event_file = NULL; 10960 goto err_context; 10961 } 10962 10963 if (move_group) { 10964 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10965 10966 if (gctx->task == TASK_TOMBSTONE) { 10967 err = -ESRCH; 10968 goto err_locked; 10969 } 10970 10971 /* 10972 * Check if we raced against another sys_perf_event_open() call 10973 * moving the software group underneath us. 10974 */ 10975 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10976 /* 10977 * If someone moved the group out from under us, check 10978 * if this new event wound up on the same ctx, if so 10979 * its the regular !move_group case, otherwise fail. 10980 */ 10981 if (gctx != ctx) { 10982 err = -EINVAL; 10983 goto err_locked; 10984 } else { 10985 perf_event_ctx_unlock(group_leader, gctx); 10986 move_group = 0; 10987 } 10988 } 10989 } else { 10990 mutex_lock(&ctx->mutex); 10991 } 10992 10993 if (ctx->task == TASK_TOMBSTONE) { 10994 err = -ESRCH; 10995 goto err_locked; 10996 } 10997 10998 if (!perf_event_validate_size(event)) { 10999 err = -E2BIG; 11000 goto err_locked; 11001 } 11002 11003 if (!task) { 11004 /* 11005 * Check if the @cpu we're creating an event for is online. 11006 * 11007 * We use the perf_cpu_context::ctx::mutex to serialize against 11008 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11009 */ 11010 struct perf_cpu_context *cpuctx = 11011 container_of(ctx, struct perf_cpu_context, ctx); 11012 11013 if (!cpuctx->online) { 11014 err = -ENODEV; 11015 goto err_locked; 11016 } 11017 } 11018 11019 11020 /* 11021 * Must be under the same ctx::mutex as perf_install_in_context(), 11022 * because we need to serialize with concurrent event creation. 11023 */ 11024 if (!exclusive_event_installable(event, ctx)) { 11025 /* exclusive and group stuff are assumed mutually exclusive */ 11026 WARN_ON_ONCE(move_group); 11027 11028 err = -EBUSY; 11029 goto err_locked; 11030 } 11031 11032 WARN_ON_ONCE(ctx->parent_ctx); 11033 11034 /* 11035 * This is the point on no return; we cannot fail hereafter. This is 11036 * where we start modifying current state. 11037 */ 11038 11039 if (move_group) { 11040 /* 11041 * See perf_event_ctx_lock() for comments on the details 11042 * of swizzling perf_event::ctx. 11043 */ 11044 perf_remove_from_context(group_leader, 0); 11045 put_ctx(gctx); 11046 11047 for_each_sibling_event(sibling, group_leader) { 11048 perf_remove_from_context(sibling, 0); 11049 put_ctx(gctx); 11050 } 11051 11052 /* 11053 * Wait for everybody to stop referencing the events through 11054 * the old lists, before installing it on new lists. 11055 */ 11056 synchronize_rcu(); 11057 11058 /* 11059 * Install the group siblings before the group leader. 11060 * 11061 * Because a group leader will try and install the entire group 11062 * (through the sibling list, which is still in-tact), we can 11063 * end up with siblings installed in the wrong context. 11064 * 11065 * By installing siblings first we NO-OP because they're not 11066 * reachable through the group lists. 11067 */ 11068 for_each_sibling_event(sibling, group_leader) { 11069 perf_event__state_init(sibling); 11070 perf_install_in_context(ctx, sibling, sibling->cpu); 11071 get_ctx(ctx); 11072 } 11073 11074 /* 11075 * Removing from the context ends up with disabled 11076 * event. What we want here is event in the initial 11077 * startup state, ready to be add into new context. 11078 */ 11079 perf_event__state_init(group_leader); 11080 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11081 get_ctx(ctx); 11082 } 11083 11084 /* 11085 * Precalculate sample_data sizes; do while holding ctx::mutex such 11086 * that we're serialized against further additions and before 11087 * perf_install_in_context() which is the point the event is active and 11088 * can use these values. 11089 */ 11090 perf_event__header_size(event); 11091 perf_event__id_header_size(event); 11092 11093 event->owner = current; 11094 11095 perf_install_in_context(ctx, event, event->cpu); 11096 perf_unpin_context(ctx); 11097 11098 if (move_group) 11099 perf_event_ctx_unlock(group_leader, gctx); 11100 mutex_unlock(&ctx->mutex); 11101 11102 if (task) { 11103 mutex_unlock(&task->signal->cred_guard_mutex); 11104 put_task_struct(task); 11105 } 11106 11107 mutex_lock(¤t->perf_event_mutex); 11108 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11109 mutex_unlock(¤t->perf_event_mutex); 11110 11111 /* 11112 * Drop the reference on the group_event after placing the 11113 * new event on the sibling_list. This ensures destruction 11114 * of the group leader will find the pointer to itself in 11115 * perf_group_detach(). 11116 */ 11117 fdput(group); 11118 fd_install(event_fd, event_file); 11119 return event_fd; 11120 11121 err_locked: 11122 if (move_group) 11123 perf_event_ctx_unlock(group_leader, gctx); 11124 mutex_unlock(&ctx->mutex); 11125 /* err_file: */ 11126 fput(event_file); 11127 err_context: 11128 perf_unpin_context(ctx); 11129 put_ctx(ctx); 11130 err_alloc: 11131 /* 11132 * If event_file is set, the fput() above will have called ->release() 11133 * and that will take care of freeing the event. 11134 */ 11135 if (!event_file) 11136 free_event(event); 11137 err_cred: 11138 if (task) 11139 mutex_unlock(&task->signal->cred_guard_mutex); 11140 err_task: 11141 if (task) 11142 put_task_struct(task); 11143 err_group_fd: 11144 fdput(group); 11145 err_fd: 11146 put_unused_fd(event_fd); 11147 return err; 11148 } 11149 11150 /** 11151 * perf_event_create_kernel_counter 11152 * 11153 * @attr: attributes of the counter to create 11154 * @cpu: cpu in which the counter is bound 11155 * @task: task to profile (NULL for percpu) 11156 */ 11157 struct perf_event * 11158 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11159 struct task_struct *task, 11160 perf_overflow_handler_t overflow_handler, 11161 void *context) 11162 { 11163 struct perf_event_context *ctx; 11164 struct perf_event *event; 11165 int err; 11166 11167 /* 11168 * Get the target context (task or percpu): 11169 */ 11170 11171 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11172 overflow_handler, context, -1); 11173 if (IS_ERR(event)) { 11174 err = PTR_ERR(event); 11175 goto err; 11176 } 11177 11178 /* Mark owner so we could distinguish it from user events. */ 11179 event->owner = TASK_TOMBSTONE; 11180 11181 ctx = find_get_context(event->pmu, task, event); 11182 if (IS_ERR(ctx)) { 11183 err = PTR_ERR(ctx); 11184 goto err_free; 11185 } 11186 11187 WARN_ON_ONCE(ctx->parent_ctx); 11188 mutex_lock(&ctx->mutex); 11189 if (ctx->task == TASK_TOMBSTONE) { 11190 err = -ESRCH; 11191 goto err_unlock; 11192 } 11193 11194 if (!task) { 11195 /* 11196 * Check if the @cpu we're creating an event for is online. 11197 * 11198 * We use the perf_cpu_context::ctx::mutex to serialize against 11199 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11200 */ 11201 struct perf_cpu_context *cpuctx = 11202 container_of(ctx, struct perf_cpu_context, ctx); 11203 if (!cpuctx->online) { 11204 err = -ENODEV; 11205 goto err_unlock; 11206 } 11207 } 11208 11209 if (!exclusive_event_installable(event, ctx)) { 11210 err = -EBUSY; 11211 goto err_unlock; 11212 } 11213 11214 perf_install_in_context(ctx, event, cpu); 11215 perf_unpin_context(ctx); 11216 mutex_unlock(&ctx->mutex); 11217 11218 return event; 11219 11220 err_unlock: 11221 mutex_unlock(&ctx->mutex); 11222 perf_unpin_context(ctx); 11223 put_ctx(ctx); 11224 err_free: 11225 free_event(event); 11226 err: 11227 return ERR_PTR(err); 11228 } 11229 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11230 11231 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11232 { 11233 struct perf_event_context *src_ctx; 11234 struct perf_event_context *dst_ctx; 11235 struct perf_event *event, *tmp; 11236 LIST_HEAD(events); 11237 11238 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11239 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11240 11241 /* 11242 * See perf_event_ctx_lock() for comments on the details 11243 * of swizzling perf_event::ctx. 11244 */ 11245 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11246 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11247 event_entry) { 11248 perf_remove_from_context(event, 0); 11249 unaccount_event_cpu(event, src_cpu); 11250 put_ctx(src_ctx); 11251 list_add(&event->migrate_entry, &events); 11252 } 11253 11254 /* 11255 * Wait for the events to quiesce before re-instating them. 11256 */ 11257 synchronize_rcu(); 11258 11259 /* 11260 * Re-instate events in 2 passes. 11261 * 11262 * Skip over group leaders and only install siblings on this first 11263 * pass, siblings will not get enabled without a leader, however a 11264 * leader will enable its siblings, even if those are still on the old 11265 * context. 11266 */ 11267 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11268 if (event->group_leader == event) 11269 continue; 11270 11271 list_del(&event->migrate_entry); 11272 if (event->state >= PERF_EVENT_STATE_OFF) 11273 event->state = PERF_EVENT_STATE_INACTIVE; 11274 account_event_cpu(event, dst_cpu); 11275 perf_install_in_context(dst_ctx, event, dst_cpu); 11276 get_ctx(dst_ctx); 11277 } 11278 11279 /* 11280 * Once all the siblings are setup properly, install the group leaders 11281 * to make it go. 11282 */ 11283 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11284 list_del(&event->migrate_entry); 11285 if (event->state >= PERF_EVENT_STATE_OFF) 11286 event->state = PERF_EVENT_STATE_INACTIVE; 11287 account_event_cpu(event, dst_cpu); 11288 perf_install_in_context(dst_ctx, event, dst_cpu); 11289 get_ctx(dst_ctx); 11290 } 11291 mutex_unlock(&dst_ctx->mutex); 11292 mutex_unlock(&src_ctx->mutex); 11293 } 11294 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11295 11296 static void sync_child_event(struct perf_event *child_event, 11297 struct task_struct *child) 11298 { 11299 struct perf_event *parent_event = child_event->parent; 11300 u64 child_val; 11301 11302 if (child_event->attr.inherit_stat) 11303 perf_event_read_event(child_event, child); 11304 11305 child_val = perf_event_count(child_event); 11306 11307 /* 11308 * Add back the child's count to the parent's count: 11309 */ 11310 atomic64_add(child_val, &parent_event->child_count); 11311 atomic64_add(child_event->total_time_enabled, 11312 &parent_event->child_total_time_enabled); 11313 atomic64_add(child_event->total_time_running, 11314 &parent_event->child_total_time_running); 11315 } 11316 11317 static void 11318 perf_event_exit_event(struct perf_event *child_event, 11319 struct perf_event_context *child_ctx, 11320 struct task_struct *child) 11321 { 11322 struct perf_event *parent_event = child_event->parent; 11323 11324 /* 11325 * Do not destroy the 'original' grouping; because of the context 11326 * switch optimization the original events could've ended up in a 11327 * random child task. 11328 * 11329 * If we were to destroy the original group, all group related 11330 * operations would cease to function properly after this random 11331 * child dies. 11332 * 11333 * Do destroy all inherited groups, we don't care about those 11334 * and being thorough is better. 11335 */ 11336 raw_spin_lock_irq(&child_ctx->lock); 11337 WARN_ON_ONCE(child_ctx->is_active); 11338 11339 if (parent_event) 11340 perf_group_detach(child_event); 11341 list_del_event(child_event, child_ctx); 11342 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11343 raw_spin_unlock_irq(&child_ctx->lock); 11344 11345 /* 11346 * Parent events are governed by their filedesc, retain them. 11347 */ 11348 if (!parent_event) { 11349 perf_event_wakeup(child_event); 11350 return; 11351 } 11352 /* 11353 * Child events can be cleaned up. 11354 */ 11355 11356 sync_child_event(child_event, child); 11357 11358 /* 11359 * Remove this event from the parent's list 11360 */ 11361 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11362 mutex_lock(&parent_event->child_mutex); 11363 list_del_init(&child_event->child_list); 11364 mutex_unlock(&parent_event->child_mutex); 11365 11366 /* 11367 * Kick perf_poll() for is_event_hup(). 11368 */ 11369 perf_event_wakeup(parent_event); 11370 free_event(child_event); 11371 put_event(parent_event); 11372 } 11373 11374 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11375 { 11376 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11377 struct perf_event *child_event, *next; 11378 11379 WARN_ON_ONCE(child != current); 11380 11381 child_ctx = perf_pin_task_context(child, ctxn); 11382 if (!child_ctx) 11383 return; 11384 11385 /* 11386 * In order to reduce the amount of tricky in ctx tear-down, we hold 11387 * ctx::mutex over the entire thing. This serializes against almost 11388 * everything that wants to access the ctx. 11389 * 11390 * The exception is sys_perf_event_open() / 11391 * perf_event_create_kernel_count() which does find_get_context() 11392 * without ctx::mutex (it cannot because of the move_group double mutex 11393 * lock thing). See the comments in perf_install_in_context(). 11394 */ 11395 mutex_lock(&child_ctx->mutex); 11396 11397 /* 11398 * In a single ctx::lock section, de-schedule the events and detach the 11399 * context from the task such that we cannot ever get it scheduled back 11400 * in. 11401 */ 11402 raw_spin_lock_irq(&child_ctx->lock); 11403 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11404 11405 /* 11406 * Now that the context is inactive, destroy the task <-> ctx relation 11407 * and mark the context dead. 11408 */ 11409 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11410 put_ctx(child_ctx); /* cannot be last */ 11411 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11412 put_task_struct(current); /* cannot be last */ 11413 11414 clone_ctx = unclone_ctx(child_ctx); 11415 raw_spin_unlock_irq(&child_ctx->lock); 11416 11417 if (clone_ctx) 11418 put_ctx(clone_ctx); 11419 11420 /* 11421 * Report the task dead after unscheduling the events so that we 11422 * won't get any samples after PERF_RECORD_EXIT. We can however still 11423 * get a few PERF_RECORD_READ events. 11424 */ 11425 perf_event_task(child, child_ctx, 0); 11426 11427 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11428 perf_event_exit_event(child_event, child_ctx, child); 11429 11430 mutex_unlock(&child_ctx->mutex); 11431 11432 put_ctx(child_ctx); 11433 } 11434 11435 /* 11436 * When a child task exits, feed back event values to parent events. 11437 * 11438 * Can be called with cred_guard_mutex held when called from 11439 * install_exec_creds(). 11440 */ 11441 void perf_event_exit_task(struct task_struct *child) 11442 { 11443 struct perf_event *event, *tmp; 11444 int ctxn; 11445 11446 mutex_lock(&child->perf_event_mutex); 11447 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11448 owner_entry) { 11449 list_del_init(&event->owner_entry); 11450 11451 /* 11452 * Ensure the list deletion is visible before we clear 11453 * the owner, closes a race against perf_release() where 11454 * we need to serialize on the owner->perf_event_mutex. 11455 */ 11456 smp_store_release(&event->owner, NULL); 11457 } 11458 mutex_unlock(&child->perf_event_mutex); 11459 11460 for_each_task_context_nr(ctxn) 11461 perf_event_exit_task_context(child, ctxn); 11462 11463 /* 11464 * The perf_event_exit_task_context calls perf_event_task 11465 * with child's task_ctx, which generates EXIT events for 11466 * child contexts and sets child->perf_event_ctxp[] to NULL. 11467 * At this point we need to send EXIT events to cpu contexts. 11468 */ 11469 perf_event_task(child, NULL, 0); 11470 } 11471 11472 static void perf_free_event(struct perf_event *event, 11473 struct perf_event_context *ctx) 11474 { 11475 struct perf_event *parent = event->parent; 11476 11477 if (WARN_ON_ONCE(!parent)) 11478 return; 11479 11480 mutex_lock(&parent->child_mutex); 11481 list_del_init(&event->child_list); 11482 mutex_unlock(&parent->child_mutex); 11483 11484 put_event(parent); 11485 11486 raw_spin_lock_irq(&ctx->lock); 11487 perf_group_detach(event); 11488 list_del_event(event, ctx); 11489 raw_spin_unlock_irq(&ctx->lock); 11490 free_event(event); 11491 } 11492 11493 /* 11494 * Free an unexposed, unused context as created by inheritance by 11495 * perf_event_init_task below, used by fork() in case of fail. 11496 * 11497 * Not all locks are strictly required, but take them anyway to be nice and 11498 * help out with the lockdep assertions. 11499 */ 11500 void perf_event_free_task(struct task_struct *task) 11501 { 11502 struct perf_event_context *ctx; 11503 struct perf_event *event, *tmp; 11504 int ctxn; 11505 11506 for_each_task_context_nr(ctxn) { 11507 ctx = task->perf_event_ctxp[ctxn]; 11508 if (!ctx) 11509 continue; 11510 11511 mutex_lock(&ctx->mutex); 11512 raw_spin_lock_irq(&ctx->lock); 11513 /* 11514 * Destroy the task <-> ctx relation and mark the context dead. 11515 * 11516 * This is important because even though the task hasn't been 11517 * exposed yet the context has been (through child_list). 11518 */ 11519 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11520 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11521 put_task_struct(task); /* cannot be last */ 11522 raw_spin_unlock_irq(&ctx->lock); 11523 11524 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11525 perf_free_event(event, ctx); 11526 11527 mutex_unlock(&ctx->mutex); 11528 put_ctx(ctx); 11529 } 11530 } 11531 11532 void perf_event_delayed_put(struct task_struct *task) 11533 { 11534 int ctxn; 11535 11536 for_each_task_context_nr(ctxn) 11537 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11538 } 11539 11540 struct file *perf_event_get(unsigned int fd) 11541 { 11542 struct file *file; 11543 11544 file = fget_raw(fd); 11545 if (!file) 11546 return ERR_PTR(-EBADF); 11547 11548 if (file->f_op != &perf_fops) { 11549 fput(file); 11550 return ERR_PTR(-EBADF); 11551 } 11552 11553 return file; 11554 } 11555 11556 const struct perf_event *perf_get_event(struct file *file) 11557 { 11558 if (file->f_op != &perf_fops) 11559 return ERR_PTR(-EINVAL); 11560 11561 return file->private_data; 11562 } 11563 11564 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11565 { 11566 if (!event) 11567 return ERR_PTR(-EINVAL); 11568 11569 return &event->attr; 11570 } 11571 11572 /* 11573 * Inherit an event from parent task to child task. 11574 * 11575 * Returns: 11576 * - valid pointer on success 11577 * - NULL for orphaned events 11578 * - IS_ERR() on error 11579 */ 11580 static struct perf_event * 11581 inherit_event(struct perf_event *parent_event, 11582 struct task_struct *parent, 11583 struct perf_event_context *parent_ctx, 11584 struct task_struct *child, 11585 struct perf_event *group_leader, 11586 struct perf_event_context *child_ctx) 11587 { 11588 enum perf_event_state parent_state = parent_event->state; 11589 struct perf_event *child_event; 11590 unsigned long flags; 11591 11592 /* 11593 * Instead of creating recursive hierarchies of events, 11594 * we link inherited events back to the original parent, 11595 * which has a filp for sure, which we use as the reference 11596 * count: 11597 */ 11598 if (parent_event->parent) 11599 parent_event = parent_event->parent; 11600 11601 child_event = perf_event_alloc(&parent_event->attr, 11602 parent_event->cpu, 11603 child, 11604 group_leader, parent_event, 11605 NULL, NULL, -1); 11606 if (IS_ERR(child_event)) 11607 return child_event; 11608 11609 11610 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11611 !child_ctx->task_ctx_data) { 11612 struct pmu *pmu = child_event->pmu; 11613 11614 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11615 GFP_KERNEL); 11616 if (!child_ctx->task_ctx_data) { 11617 free_event(child_event); 11618 return NULL; 11619 } 11620 } 11621 11622 /* 11623 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11624 * must be under the same lock in order to serialize against 11625 * perf_event_release_kernel(), such that either we must observe 11626 * is_orphaned_event() or they will observe us on the child_list. 11627 */ 11628 mutex_lock(&parent_event->child_mutex); 11629 if (is_orphaned_event(parent_event) || 11630 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11631 mutex_unlock(&parent_event->child_mutex); 11632 /* task_ctx_data is freed with child_ctx */ 11633 free_event(child_event); 11634 return NULL; 11635 } 11636 11637 get_ctx(child_ctx); 11638 11639 /* 11640 * Make the child state follow the state of the parent event, 11641 * not its attr.disabled bit. We hold the parent's mutex, 11642 * so we won't race with perf_event_{en, dis}able_family. 11643 */ 11644 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11645 child_event->state = PERF_EVENT_STATE_INACTIVE; 11646 else 11647 child_event->state = PERF_EVENT_STATE_OFF; 11648 11649 if (parent_event->attr.freq) { 11650 u64 sample_period = parent_event->hw.sample_period; 11651 struct hw_perf_event *hwc = &child_event->hw; 11652 11653 hwc->sample_period = sample_period; 11654 hwc->last_period = sample_period; 11655 11656 local64_set(&hwc->period_left, sample_period); 11657 } 11658 11659 child_event->ctx = child_ctx; 11660 child_event->overflow_handler = parent_event->overflow_handler; 11661 child_event->overflow_handler_context 11662 = parent_event->overflow_handler_context; 11663 11664 /* 11665 * Precalculate sample_data sizes 11666 */ 11667 perf_event__header_size(child_event); 11668 perf_event__id_header_size(child_event); 11669 11670 /* 11671 * Link it up in the child's context: 11672 */ 11673 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11674 add_event_to_ctx(child_event, child_ctx); 11675 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11676 11677 /* 11678 * Link this into the parent event's child list 11679 */ 11680 list_add_tail(&child_event->child_list, &parent_event->child_list); 11681 mutex_unlock(&parent_event->child_mutex); 11682 11683 return child_event; 11684 } 11685 11686 /* 11687 * Inherits an event group. 11688 * 11689 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11690 * This matches with perf_event_release_kernel() removing all child events. 11691 * 11692 * Returns: 11693 * - 0 on success 11694 * - <0 on error 11695 */ 11696 static int inherit_group(struct perf_event *parent_event, 11697 struct task_struct *parent, 11698 struct perf_event_context *parent_ctx, 11699 struct task_struct *child, 11700 struct perf_event_context *child_ctx) 11701 { 11702 struct perf_event *leader; 11703 struct perf_event *sub; 11704 struct perf_event *child_ctr; 11705 11706 leader = inherit_event(parent_event, parent, parent_ctx, 11707 child, NULL, child_ctx); 11708 if (IS_ERR(leader)) 11709 return PTR_ERR(leader); 11710 /* 11711 * @leader can be NULL here because of is_orphaned_event(). In this 11712 * case inherit_event() will create individual events, similar to what 11713 * perf_group_detach() would do anyway. 11714 */ 11715 for_each_sibling_event(sub, parent_event) { 11716 child_ctr = inherit_event(sub, parent, parent_ctx, 11717 child, leader, child_ctx); 11718 if (IS_ERR(child_ctr)) 11719 return PTR_ERR(child_ctr); 11720 } 11721 return 0; 11722 } 11723 11724 /* 11725 * Creates the child task context and tries to inherit the event-group. 11726 * 11727 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11728 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11729 * consistent with perf_event_release_kernel() removing all child events. 11730 * 11731 * Returns: 11732 * - 0 on success 11733 * - <0 on error 11734 */ 11735 static int 11736 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11737 struct perf_event_context *parent_ctx, 11738 struct task_struct *child, int ctxn, 11739 int *inherited_all) 11740 { 11741 int ret; 11742 struct perf_event_context *child_ctx; 11743 11744 if (!event->attr.inherit) { 11745 *inherited_all = 0; 11746 return 0; 11747 } 11748 11749 child_ctx = child->perf_event_ctxp[ctxn]; 11750 if (!child_ctx) { 11751 /* 11752 * This is executed from the parent task context, so 11753 * inherit events that have been marked for cloning. 11754 * First allocate and initialize a context for the 11755 * child. 11756 */ 11757 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11758 if (!child_ctx) 11759 return -ENOMEM; 11760 11761 child->perf_event_ctxp[ctxn] = child_ctx; 11762 } 11763 11764 ret = inherit_group(event, parent, parent_ctx, 11765 child, child_ctx); 11766 11767 if (ret) 11768 *inherited_all = 0; 11769 11770 return ret; 11771 } 11772 11773 /* 11774 * Initialize the perf_event context in task_struct 11775 */ 11776 static int perf_event_init_context(struct task_struct *child, int ctxn) 11777 { 11778 struct perf_event_context *child_ctx, *parent_ctx; 11779 struct perf_event_context *cloned_ctx; 11780 struct perf_event *event; 11781 struct task_struct *parent = current; 11782 int inherited_all = 1; 11783 unsigned long flags; 11784 int ret = 0; 11785 11786 if (likely(!parent->perf_event_ctxp[ctxn])) 11787 return 0; 11788 11789 /* 11790 * If the parent's context is a clone, pin it so it won't get 11791 * swapped under us. 11792 */ 11793 parent_ctx = perf_pin_task_context(parent, ctxn); 11794 if (!parent_ctx) 11795 return 0; 11796 11797 /* 11798 * No need to check if parent_ctx != NULL here; since we saw 11799 * it non-NULL earlier, the only reason for it to become NULL 11800 * is if we exit, and since we're currently in the middle of 11801 * a fork we can't be exiting at the same time. 11802 */ 11803 11804 /* 11805 * Lock the parent list. No need to lock the child - not PID 11806 * hashed yet and not running, so nobody can access it. 11807 */ 11808 mutex_lock(&parent_ctx->mutex); 11809 11810 /* 11811 * We dont have to disable NMIs - we are only looking at 11812 * the list, not manipulating it: 11813 */ 11814 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11815 ret = inherit_task_group(event, parent, parent_ctx, 11816 child, ctxn, &inherited_all); 11817 if (ret) 11818 goto out_unlock; 11819 } 11820 11821 /* 11822 * We can't hold ctx->lock when iterating the ->flexible_group list due 11823 * to allocations, but we need to prevent rotation because 11824 * rotate_ctx() will change the list from interrupt context. 11825 */ 11826 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11827 parent_ctx->rotate_disable = 1; 11828 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11829 11830 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11831 ret = inherit_task_group(event, parent, parent_ctx, 11832 child, ctxn, &inherited_all); 11833 if (ret) 11834 goto out_unlock; 11835 } 11836 11837 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11838 parent_ctx->rotate_disable = 0; 11839 11840 child_ctx = child->perf_event_ctxp[ctxn]; 11841 11842 if (child_ctx && inherited_all) { 11843 /* 11844 * Mark the child context as a clone of the parent 11845 * context, or of whatever the parent is a clone of. 11846 * 11847 * Note that if the parent is a clone, the holding of 11848 * parent_ctx->lock avoids it from being uncloned. 11849 */ 11850 cloned_ctx = parent_ctx->parent_ctx; 11851 if (cloned_ctx) { 11852 child_ctx->parent_ctx = cloned_ctx; 11853 child_ctx->parent_gen = parent_ctx->parent_gen; 11854 } else { 11855 child_ctx->parent_ctx = parent_ctx; 11856 child_ctx->parent_gen = parent_ctx->generation; 11857 } 11858 get_ctx(child_ctx->parent_ctx); 11859 } 11860 11861 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11862 out_unlock: 11863 mutex_unlock(&parent_ctx->mutex); 11864 11865 perf_unpin_context(parent_ctx); 11866 put_ctx(parent_ctx); 11867 11868 return ret; 11869 } 11870 11871 /* 11872 * Initialize the perf_event context in task_struct 11873 */ 11874 int perf_event_init_task(struct task_struct *child) 11875 { 11876 int ctxn, ret; 11877 11878 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11879 mutex_init(&child->perf_event_mutex); 11880 INIT_LIST_HEAD(&child->perf_event_list); 11881 11882 for_each_task_context_nr(ctxn) { 11883 ret = perf_event_init_context(child, ctxn); 11884 if (ret) { 11885 perf_event_free_task(child); 11886 return ret; 11887 } 11888 } 11889 11890 return 0; 11891 } 11892 11893 static void __init perf_event_init_all_cpus(void) 11894 { 11895 struct swevent_htable *swhash; 11896 int cpu; 11897 11898 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11899 11900 for_each_possible_cpu(cpu) { 11901 swhash = &per_cpu(swevent_htable, cpu); 11902 mutex_init(&swhash->hlist_mutex); 11903 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11904 11905 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11906 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11907 11908 #ifdef CONFIG_CGROUP_PERF 11909 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11910 #endif 11911 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11912 } 11913 } 11914 11915 void perf_swevent_init_cpu(unsigned int cpu) 11916 { 11917 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11918 11919 mutex_lock(&swhash->hlist_mutex); 11920 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11921 struct swevent_hlist *hlist; 11922 11923 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11924 WARN_ON(!hlist); 11925 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11926 } 11927 mutex_unlock(&swhash->hlist_mutex); 11928 } 11929 11930 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11931 static void __perf_event_exit_context(void *__info) 11932 { 11933 struct perf_event_context *ctx = __info; 11934 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11935 struct perf_event *event; 11936 11937 raw_spin_lock(&ctx->lock); 11938 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11939 list_for_each_entry(event, &ctx->event_list, event_entry) 11940 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11941 raw_spin_unlock(&ctx->lock); 11942 } 11943 11944 static void perf_event_exit_cpu_context(int cpu) 11945 { 11946 struct perf_cpu_context *cpuctx; 11947 struct perf_event_context *ctx; 11948 struct pmu *pmu; 11949 11950 mutex_lock(&pmus_lock); 11951 list_for_each_entry(pmu, &pmus, entry) { 11952 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11953 ctx = &cpuctx->ctx; 11954 11955 mutex_lock(&ctx->mutex); 11956 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11957 cpuctx->online = 0; 11958 mutex_unlock(&ctx->mutex); 11959 } 11960 cpumask_clear_cpu(cpu, perf_online_mask); 11961 mutex_unlock(&pmus_lock); 11962 } 11963 #else 11964 11965 static void perf_event_exit_cpu_context(int cpu) { } 11966 11967 #endif 11968 11969 int perf_event_init_cpu(unsigned int cpu) 11970 { 11971 struct perf_cpu_context *cpuctx; 11972 struct perf_event_context *ctx; 11973 struct pmu *pmu; 11974 11975 perf_swevent_init_cpu(cpu); 11976 11977 mutex_lock(&pmus_lock); 11978 cpumask_set_cpu(cpu, perf_online_mask); 11979 list_for_each_entry(pmu, &pmus, entry) { 11980 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11981 ctx = &cpuctx->ctx; 11982 11983 mutex_lock(&ctx->mutex); 11984 cpuctx->online = 1; 11985 mutex_unlock(&ctx->mutex); 11986 } 11987 mutex_unlock(&pmus_lock); 11988 11989 return 0; 11990 } 11991 11992 int perf_event_exit_cpu(unsigned int cpu) 11993 { 11994 perf_event_exit_cpu_context(cpu); 11995 return 0; 11996 } 11997 11998 static int 11999 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 12000 { 12001 int cpu; 12002 12003 for_each_online_cpu(cpu) 12004 perf_event_exit_cpu(cpu); 12005 12006 return NOTIFY_OK; 12007 } 12008 12009 /* 12010 * Run the perf reboot notifier at the very last possible moment so that 12011 * the generic watchdog code runs as long as possible. 12012 */ 12013 static struct notifier_block perf_reboot_notifier = { 12014 .notifier_call = perf_reboot, 12015 .priority = INT_MIN, 12016 }; 12017 12018 void __init perf_event_init(void) 12019 { 12020 int ret; 12021 12022 idr_init(&pmu_idr); 12023 12024 perf_event_init_all_cpus(); 12025 init_srcu_struct(&pmus_srcu); 12026 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 12027 perf_pmu_register(&perf_cpu_clock, NULL, -1); 12028 perf_pmu_register(&perf_task_clock, NULL, -1); 12029 perf_tp_register(); 12030 perf_event_init_cpu(smp_processor_id()); 12031 register_reboot_notifier(&perf_reboot_notifier); 12032 12033 ret = init_hw_breakpoint(); 12034 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12035 12036 /* 12037 * Build time assertion that we keep the data_head at the intended 12038 * location. IOW, validation we got the __reserved[] size right. 12039 */ 12040 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12041 != 1024); 12042 } 12043 12044 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12045 char *page) 12046 { 12047 struct perf_pmu_events_attr *pmu_attr = 12048 container_of(attr, struct perf_pmu_events_attr, attr); 12049 12050 if (pmu_attr->event_str) 12051 return sprintf(page, "%s\n", pmu_attr->event_str); 12052 12053 return 0; 12054 } 12055 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12056 12057 static int __init perf_event_sysfs_init(void) 12058 { 12059 struct pmu *pmu; 12060 int ret; 12061 12062 mutex_lock(&pmus_lock); 12063 12064 ret = bus_register(&pmu_bus); 12065 if (ret) 12066 goto unlock; 12067 12068 list_for_each_entry(pmu, &pmus, entry) { 12069 if (!pmu->name || pmu->type < 0) 12070 continue; 12071 12072 ret = pmu_dev_alloc(pmu); 12073 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12074 } 12075 pmu_bus_running = 1; 12076 ret = 0; 12077 12078 unlock: 12079 mutex_unlock(&pmus_lock); 12080 12081 return ret; 12082 } 12083 device_initcall(perf_event_sysfs_init); 12084 12085 #ifdef CONFIG_CGROUP_PERF 12086 static struct cgroup_subsys_state * 12087 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12088 { 12089 struct perf_cgroup *jc; 12090 12091 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12092 if (!jc) 12093 return ERR_PTR(-ENOMEM); 12094 12095 jc->info = alloc_percpu(struct perf_cgroup_info); 12096 if (!jc->info) { 12097 kfree(jc); 12098 return ERR_PTR(-ENOMEM); 12099 } 12100 12101 return &jc->css; 12102 } 12103 12104 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12105 { 12106 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12107 12108 free_percpu(jc->info); 12109 kfree(jc); 12110 } 12111 12112 static int __perf_cgroup_move(void *info) 12113 { 12114 struct task_struct *task = info; 12115 rcu_read_lock(); 12116 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12117 rcu_read_unlock(); 12118 return 0; 12119 } 12120 12121 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12122 { 12123 struct task_struct *task; 12124 struct cgroup_subsys_state *css; 12125 12126 cgroup_taskset_for_each(task, css, tset) 12127 task_function_call(task, __perf_cgroup_move, task); 12128 } 12129 12130 struct cgroup_subsys perf_event_cgrp_subsys = { 12131 .css_alloc = perf_cgroup_css_alloc, 12132 .css_free = perf_cgroup_css_free, 12133 .attach = perf_cgroup_attach, 12134 /* 12135 * Implicitly enable on dfl hierarchy so that perf events can 12136 * always be filtered by cgroup2 path as long as perf_event 12137 * controller is not mounted on a legacy hierarchy. 12138 */ 12139 .implicit_on_dfl = true, 12140 .threaded = true, 12141 }; 12142 #endif /* CONFIG_CGROUP_PERF */ 12143