xref: /openbmc/linux/kernel/events/core.c (revision 0a73d21e)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	lockdep_assert_irqs_disabled();
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	lockdep_assert_irqs_disabled();
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402 
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405 
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE		100000
410 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
412 
413 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
414 
415 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
417 
418 static int perf_sample_allowed_ns __read_mostly =
419 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420 
421 static void update_perf_cpu_limits(void)
422 {
423 	u64 tmp = perf_sample_period_ns;
424 
425 	tmp *= sysctl_perf_cpu_time_max_percent;
426 	tmp = div_u64(tmp, 100);
427 	if (!tmp)
428 		tmp = 1;
429 
430 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432 
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434 
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 		void __user *buffer, size_t *lenp,
437 		loff_t *ppos)
438 {
439 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440 
441 	if (ret || !write)
442 		return ret;
443 
444 	/*
445 	 * If throttling is disabled don't allow the write:
446 	 */
447 	if (sysctl_perf_cpu_time_max_percent == 100 ||
448 	    sysctl_perf_cpu_time_max_percent == 0)
449 		return -EINVAL;
450 
451 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 	update_perf_cpu_limits();
454 
455 	return 0;
456 }
457 
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459 
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 				void __user *buffer, size_t *lenp,
462 				loff_t *ppos)
463 {
464 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 
466 	if (ret || !write)
467 		return ret;
468 
469 	if (sysctl_perf_cpu_time_max_percent == 100 ||
470 	    sysctl_perf_cpu_time_max_percent == 0) {
471 		printk(KERN_WARNING
472 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 		WRITE_ONCE(perf_sample_allowed_ns, 0);
474 	} else {
475 		update_perf_cpu_limits();
476 	}
477 
478 	return 0;
479 }
480 
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489 
490 static u64 __report_avg;
491 static u64 __report_allowed;
492 
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 	printk_ratelimited(KERN_INFO
496 		"perf: interrupt took too long (%lld > %lld), lowering "
497 		"kernel.perf_event_max_sample_rate to %d\n",
498 		__report_avg, __report_allowed,
499 		sysctl_perf_event_sample_rate);
500 }
501 
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503 
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 	u64 running_len;
508 	u64 avg_len;
509 	u32 max;
510 
511 	if (max_len == 0)
512 		return;
513 
514 	/* Decay the counter by 1 average sample. */
515 	running_len = __this_cpu_read(running_sample_length);
516 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 	running_len += sample_len_ns;
518 	__this_cpu_write(running_sample_length, running_len);
519 
520 	/*
521 	 * Note: this will be biased artifically low until we have
522 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 	 * from having to maintain a count.
524 	 */
525 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 	if (avg_len <= max_len)
527 		return;
528 
529 	__report_avg = avg_len;
530 	__report_allowed = max_len;
531 
532 	/*
533 	 * Compute a throttle threshold 25% below the current duration.
534 	 */
535 	avg_len += avg_len / 4;
536 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 	if (avg_len < max)
538 		max /= (u32)avg_len;
539 	else
540 		max = 1;
541 
542 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 	WRITE_ONCE(max_samples_per_tick, max);
544 
545 	sysctl_perf_event_sample_rate = max * HZ;
546 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547 
548 	if (!irq_work_queue(&perf_duration_work)) {
549 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 			     "kernel.perf_event_max_sample_rate to %d\n",
551 			     __report_avg, __report_allowed,
552 			     sysctl_perf_event_sample_rate);
553 	}
554 }
555 
556 static atomic64_t perf_event_id;
557 
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 			      enum event_type_t event_type);
560 
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 			     enum event_type_t event_type,
563 			     struct task_struct *task);
564 
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567 
568 void __weak perf_event_print_debug(void)	{ }
569 
570 extern __weak const char *perf_pmu_name(void)
571 {
572 	return "pmu";
573 }
574 
575 static inline u64 perf_clock(void)
576 {
577 	return local_clock();
578 }
579 
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 	return event->clock();
583 }
584 
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606 
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610 	struct perf_event *leader = event->group_leader;
611 
612 	if (leader->state <= PERF_EVENT_STATE_OFF)
613 		return leader->state;
614 
615 	return event->state;
616 }
617 
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621 	enum perf_event_state state = __perf_effective_state(event);
622 	u64 delta = now - event->tstamp;
623 
624 	*enabled = event->total_time_enabled;
625 	if (state >= PERF_EVENT_STATE_INACTIVE)
626 		*enabled += delta;
627 
628 	*running = event->total_time_running;
629 	if (state >= PERF_EVENT_STATE_ACTIVE)
630 		*running += delta;
631 }
632 
633 static void perf_event_update_time(struct perf_event *event)
634 {
635 	u64 now = perf_event_time(event);
636 
637 	__perf_update_times(event, now, &event->total_time_enabled,
638 					&event->total_time_running);
639 	event->tstamp = now;
640 }
641 
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644 	struct perf_event *sibling;
645 
646 	for_each_sibling_event(sibling, leader)
647 		perf_event_update_time(sibling);
648 }
649 
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653 	if (event->state == state)
654 		return;
655 
656 	perf_event_update_time(event);
657 	/*
658 	 * If a group leader gets enabled/disabled all its siblings
659 	 * are affected too.
660 	 */
661 	if ((event->state < 0) ^ (state < 0))
662 		perf_event_update_sibling_time(event);
663 
664 	WRITE_ONCE(event->state, state);
665 }
666 
667 #ifdef CONFIG_CGROUP_PERF
668 
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672 	struct perf_event_context *ctx = event->ctx;
673 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674 
675 	/* @event doesn't care about cgroup */
676 	if (!event->cgrp)
677 		return true;
678 
679 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
680 	if (!cpuctx->cgrp)
681 		return false;
682 
683 	/*
684 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
685 	 * also enabled for all its descendant cgroups.  If @cpuctx's
686 	 * cgroup is a descendant of @event's (the test covers identity
687 	 * case), it's a match.
688 	 */
689 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 				    event->cgrp->css.cgroup);
691 }
692 
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695 	css_put(&event->cgrp->css);
696 	event->cgrp = NULL;
697 }
698 
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701 	return event->cgrp != NULL;
702 }
703 
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706 	struct perf_cgroup_info *t;
707 
708 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 	return t->time;
710 }
711 
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714 	struct perf_cgroup_info *info;
715 	u64 now;
716 
717 	now = perf_clock();
718 
719 	info = this_cpu_ptr(cgrp->info);
720 
721 	info->time += now - info->timestamp;
722 	info->timestamp = now;
723 }
724 
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727 	struct perf_cgroup *cgrp = cpuctx->cgrp;
728 	struct cgroup_subsys_state *css;
729 
730 	if (cgrp) {
731 		for (css = &cgrp->css; css; css = css->parent) {
732 			cgrp = container_of(css, struct perf_cgroup, css);
733 			__update_cgrp_time(cgrp);
734 		}
735 	}
736 }
737 
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740 	struct perf_cgroup *cgrp;
741 
742 	/*
743 	 * ensure we access cgroup data only when needed and
744 	 * when we know the cgroup is pinned (css_get)
745 	 */
746 	if (!is_cgroup_event(event))
747 		return;
748 
749 	cgrp = perf_cgroup_from_task(current, event->ctx);
750 	/*
751 	 * Do not update time when cgroup is not active
752 	 */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754 		__update_cgrp_time(event->cgrp);
755 }
756 
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759 			  struct perf_event_context *ctx)
760 {
761 	struct perf_cgroup *cgrp;
762 	struct perf_cgroup_info *info;
763 	struct cgroup_subsys_state *css;
764 
765 	/*
766 	 * ctx->lock held by caller
767 	 * ensure we do not access cgroup data
768 	 * unless we have the cgroup pinned (css_get)
769 	 */
770 	if (!task || !ctx->nr_cgroups)
771 		return;
772 
773 	cgrp = perf_cgroup_from_task(task, ctx);
774 
775 	for (css = &cgrp->css; css; css = css->parent) {
776 		cgrp = container_of(css, struct perf_cgroup, css);
777 		info = this_cpu_ptr(cgrp->info);
778 		info->timestamp = ctx->timestamp;
779 	}
780 }
781 
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783 
784 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
786 
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795 	struct perf_cpu_context *cpuctx;
796 	struct list_head *list;
797 	unsigned long flags;
798 
799 	/*
800 	 * Disable interrupts and preemption to avoid this CPU's
801 	 * cgrp_cpuctx_entry to change under us.
802 	 */
803 	local_irq_save(flags);
804 
805 	list = this_cpu_ptr(&cgrp_cpuctx_list);
806 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808 
809 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 		perf_pmu_disable(cpuctx->ctx.pmu);
811 
812 		if (mode & PERF_CGROUP_SWOUT) {
813 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 			/*
815 			 * must not be done before ctxswout due
816 			 * to event_filter_match() in event_sched_out()
817 			 */
818 			cpuctx->cgrp = NULL;
819 		}
820 
821 		if (mode & PERF_CGROUP_SWIN) {
822 			WARN_ON_ONCE(cpuctx->cgrp);
823 			/*
824 			 * set cgrp before ctxsw in to allow
825 			 * event_filter_match() to not have to pass
826 			 * task around
827 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 			 * because cgorup events are only per-cpu
829 			 */
830 			cpuctx->cgrp = perf_cgroup_from_task(task,
831 							     &cpuctx->ctx);
832 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833 		}
834 		perf_pmu_enable(cpuctx->ctx.pmu);
835 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836 	}
837 
838 	local_irq_restore(flags);
839 }
840 
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842 					 struct task_struct *next)
843 {
844 	struct perf_cgroup *cgrp1;
845 	struct perf_cgroup *cgrp2 = NULL;
846 
847 	rcu_read_lock();
848 	/*
849 	 * we come here when we know perf_cgroup_events > 0
850 	 * we do not need to pass the ctx here because we know
851 	 * we are holding the rcu lock
852 	 */
853 	cgrp1 = perf_cgroup_from_task(task, NULL);
854 	cgrp2 = perf_cgroup_from_task(next, NULL);
855 
856 	/*
857 	 * only schedule out current cgroup events if we know
858 	 * that we are switching to a different cgroup. Otherwise,
859 	 * do no touch the cgroup events.
860 	 */
861 	if (cgrp1 != cgrp2)
862 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863 
864 	rcu_read_unlock();
865 }
866 
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 					struct task_struct *task)
869 {
870 	struct perf_cgroup *cgrp1;
871 	struct perf_cgroup *cgrp2 = NULL;
872 
873 	rcu_read_lock();
874 	/*
875 	 * we come here when we know perf_cgroup_events > 0
876 	 * we do not need to pass the ctx here because we know
877 	 * we are holding the rcu lock
878 	 */
879 	cgrp1 = perf_cgroup_from_task(task, NULL);
880 	cgrp2 = perf_cgroup_from_task(prev, NULL);
881 
882 	/*
883 	 * only need to schedule in cgroup events if we are changing
884 	 * cgroup during ctxsw. Cgroup events were not scheduled
885 	 * out of ctxsw out if that was not the case.
886 	 */
887 	if (cgrp1 != cgrp2)
888 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889 
890 	rcu_read_unlock();
891 }
892 
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 				      struct perf_event_attr *attr,
895 				      struct perf_event *group_leader)
896 {
897 	struct perf_cgroup *cgrp;
898 	struct cgroup_subsys_state *css;
899 	struct fd f = fdget(fd);
900 	int ret = 0;
901 
902 	if (!f.file)
903 		return -EBADF;
904 
905 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
906 					 &perf_event_cgrp_subsys);
907 	if (IS_ERR(css)) {
908 		ret = PTR_ERR(css);
909 		goto out;
910 	}
911 
912 	cgrp = container_of(css, struct perf_cgroup, css);
913 	event->cgrp = cgrp;
914 
915 	/*
916 	 * all events in a group must monitor
917 	 * the same cgroup because a task belongs
918 	 * to only one perf cgroup at a time
919 	 */
920 	if (group_leader && group_leader->cgrp != cgrp) {
921 		perf_detach_cgroup(event);
922 		ret = -EINVAL;
923 	}
924 out:
925 	fdput(f);
926 	return ret;
927 }
928 
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932 	struct perf_cgroup_info *t;
933 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 	event->shadow_ctx_time = now - t->timestamp;
935 }
936 
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943 			 struct perf_event_context *ctx, bool add)
944 {
945 	struct perf_cpu_context *cpuctx;
946 	struct list_head *cpuctx_entry;
947 
948 	if (!is_cgroup_event(event))
949 		return;
950 
951 	/*
952 	 * Because cgroup events are always per-cpu events,
953 	 * this will always be called from the right CPU.
954 	 */
955 	cpuctx = __get_cpu_context(ctx);
956 
957 	/*
958 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 	 * matching the event's cgroup, we must do this for every new event,
960 	 * because if the first would mismatch, the second would not try again
961 	 * and we would leave cpuctx->cgrp unset.
962 	 */
963 	if (add && !cpuctx->cgrp) {
964 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965 
966 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 			cpuctx->cgrp = cgrp;
968 	}
969 
970 	if (add && ctx->nr_cgroups++)
971 		return;
972 	else if (!add && --ctx->nr_cgroups)
973 		return;
974 
975 	/* no cgroup running */
976 	if (!add)
977 		cpuctx->cgrp = NULL;
978 
979 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 	if (add)
981 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 	else
983 		list_del(cpuctx_entry);
984 }
985 
986 #else /* !CONFIG_CGROUP_PERF */
987 
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991 	return true;
992 }
993 
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996 
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999 	return 0;
1000 }
1001 
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005 
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009 
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 					 struct task_struct *next)
1012 {
1013 }
1014 
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 					struct task_struct *task)
1017 {
1018 }
1019 
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 				      struct perf_event_attr *attr,
1022 				      struct perf_event *group_leader)
1023 {
1024 	return -EINVAL;
1025 }
1026 
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029 			  struct perf_event_context *ctx)
1030 {
1031 }
1032 
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037 
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042 
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045 	return 0;
1046 }
1047 
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050 			 struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053 
1054 #endif
1055 
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066 	struct perf_cpu_context *cpuctx;
1067 	bool rotations;
1068 
1069 	lockdep_assert_irqs_disabled();
1070 
1071 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072 	rotations = perf_rotate_context(cpuctx);
1073 
1074 	raw_spin_lock(&cpuctx->hrtimer_lock);
1075 	if (rotations)
1076 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077 	else
1078 		cpuctx->hrtimer_active = 0;
1079 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1080 
1081 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083 
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086 	struct hrtimer *timer = &cpuctx->hrtimer;
1087 	struct pmu *pmu = cpuctx->ctx.pmu;
1088 	u64 interval;
1089 
1090 	/* no multiplexing needed for SW PMU */
1091 	if (pmu->task_ctx_nr == perf_sw_context)
1092 		return;
1093 
1094 	/*
1095 	 * check default is sane, if not set then force to
1096 	 * default interval (1/tick)
1097 	 */
1098 	interval = pmu->hrtimer_interval_ms;
1099 	if (interval < 1)
1100 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101 
1102 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103 
1104 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106 	timer->function = perf_mux_hrtimer_handler;
1107 }
1108 
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111 	struct hrtimer *timer = &cpuctx->hrtimer;
1112 	struct pmu *pmu = cpuctx->ctx.pmu;
1113 	unsigned long flags;
1114 
1115 	/* not for SW PMU */
1116 	if (pmu->task_ctx_nr == perf_sw_context)
1117 		return 0;
1118 
1119 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 	if (!cpuctx->hrtimer_active) {
1121 		cpuctx->hrtimer_active = 1;
1122 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 	}
1125 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 	if (!(*count)++)
1134 		pmu->pmu_disable(pmu);
1135 }
1136 
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 	if (!--(*count))
1141 		pmu->pmu_enable(pmu);
1142 }
1143 
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145 
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155 
1156 	lockdep_assert_irqs_disabled();
1157 
1158 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1159 
1160 	list_add(&ctx->active_ctx_list, head);
1161 }
1162 
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165 	lockdep_assert_irqs_disabled();
1166 
1167 	WARN_ON(list_empty(&ctx->active_ctx_list));
1168 
1169 	list_del_init(&ctx->active_ctx_list);
1170 }
1171 
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176 
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179 	struct perf_event_context *ctx;
1180 
1181 	ctx = container_of(head, struct perf_event_context, rcu_head);
1182 	kfree(ctx->task_ctx_data);
1183 	kfree(ctx);
1184 }
1185 
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188 	if (atomic_dec_and_test(&ctx->refcount)) {
1189 		if (ctx->parent_ctx)
1190 			put_ctx(ctx->parent_ctx);
1191 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192 			put_task_struct(ctx->task);
1193 		call_rcu(&ctx->rcu_head, free_ctx);
1194 	}
1195 }
1196 
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()	[ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()			[ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()		[ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event()	[ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *	task_struct::perf_event_mutex
1252  *	  perf_event_context::mutex
1253  *	    perf_event::child_mutex;
1254  *	      perf_event_context::lock
1255  *	    perf_event::mmap_mutex
1256  *	    mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *	  cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265 	struct perf_event_context *ctx;
1266 
1267 again:
1268 	rcu_read_lock();
1269 	ctx = READ_ONCE(event->ctx);
1270 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 		rcu_read_unlock();
1272 		goto again;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	mutex_lock_nested(&ctx->mutex, nesting);
1277 	if (event->ctx != ctx) {
1278 		mutex_unlock(&ctx->mutex);
1279 		put_ctx(ctx);
1280 		goto again;
1281 	}
1282 
1283 	return ctx;
1284 }
1285 
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289 	return perf_event_ctx_lock_nested(event, 0);
1290 }
1291 
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293 				  struct perf_event_context *ctx)
1294 {
1295 	mutex_unlock(&ctx->mutex);
1296 	put_ctx(ctx);
1297 }
1298 
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308 
1309 	lockdep_assert_held(&ctx->lock);
1310 
1311 	if (parent_ctx)
1312 		ctx->parent_ctx = NULL;
1313 	ctx->generation++;
1314 
1315 	return parent_ctx;
1316 }
1317 
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 				enum pid_type type)
1320 {
1321 	u32 nr;
1322 	/*
1323 	 * only top level events have the pid namespace they were created in
1324 	 */
1325 	if (event->parent)
1326 		event = event->parent;
1327 
1328 	nr = __task_pid_nr_ns(p, type, event->ns);
1329 	/* avoid -1 if it is idle thread or runs in another ns */
1330 	if (!nr && !pid_alive(p))
1331 		nr = -1;
1332 	return nr;
1333 }
1334 
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338 }
1339 
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344 
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351 	u64 id = event->id;
1352 
1353 	if (event->parent)
1354 		id = event->parent->id;
1355 
1356 	return id;
1357 }
1358 
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368 	struct perf_event_context *ctx;
1369 
1370 retry:
1371 	/*
1372 	 * One of the few rules of preemptible RCU is that one cannot do
1373 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 	 * part of the read side critical section was irqs-enabled -- see
1375 	 * rcu_read_unlock_special().
1376 	 *
1377 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 	 * side critical section has interrupts disabled.
1379 	 */
1380 	local_irq_save(*flags);
1381 	rcu_read_lock();
1382 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383 	if (ctx) {
1384 		/*
1385 		 * If this context is a clone of another, it might
1386 		 * get swapped for another underneath us by
1387 		 * perf_event_task_sched_out, though the
1388 		 * rcu_read_lock() protects us from any context
1389 		 * getting freed.  Lock the context and check if it
1390 		 * got swapped before we could get the lock, and retry
1391 		 * if so.  If we locked the right context, then it
1392 		 * can't get swapped on us any more.
1393 		 */
1394 		raw_spin_lock(&ctx->lock);
1395 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396 			raw_spin_unlock(&ctx->lock);
1397 			rcu_read_unlock();
1398 			local_irq_restore(*flags);
1399 			goto retry;
1400 		}
1401 
1402 		if (ctx->task == TASK_TOMBSTONE ||
1403 		    !atomic_inc_not_zero(&ctx->refcount)) {
1404 			raw_spin_unlock(&ctx->lock);
1405 			ctx = NULL;
1406 		} else {
1407 			WARN_ON_ONCE(ctx->task != task);
1408 		}
1409 	}
1410 	rcu_read_unlock();
1411 	if (!ctx)
1412 		local_irq_restore(*flags);
1413 	return ctx;
1414 }
1415 
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424 	struct perf_event_context *ctx;
1425 	unsigned long flags;
1426 
1427 	ctx = perf_lock_task_context(task, ctxn, &flags);
1428 	if (ctx) {
1429 		++ctx->pin_count;
1430 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431 	}
1432 	return ctx;
1433 }
1434 
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437 	unsigned long flags;
1438 
1439 	raw_spin_lock_irqsave(&ctx->lock, flags);
1440 	--ctx->pin_count;
1441 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443 
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449 	u64 now = perf_clock();
1450 
1451 	ctx->time += now - ctx->timestamp;
1452 	ctx->timestamp = now;
1453 }
1454 
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457 	struct perf_event_context *ctx = event->ctx;
1458 
1459 	if (is_cgroup_event(event))
1460 		return perf_cgroup_event_time(event);
1461 
1462 	return ctx ? ctx->time : 0;
1463 }
1464 
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467 	struct perf_event_context *ctx = event->ctx;
1468 	enum event_type_t event_type;
1469 
1470 	lockdep_assert_held(&ctx->lock);
1471 
1472 	/*
1473 	 * It's 'group type', really, because if our group leader is
1474 	 * pinned, so are we.
1475 	 */
1476 	if (event->group_leader != event)
1477 		event = event->group_leader;
1478 
1479 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 	if (!ctx->task)
1481 		event_type |= EVENT_CPU;
1482 
1483 	return event_type;
1484 }
1485 
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491 	RB_CLEAR_NODE(&event->group_node);
1492 	event->group_index = 0;
1493 }
1494 
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502 	if (event->attr.pinned)
1503 		return &ctx->pinned_groups;
1504 	else
1505 		return &ctx->flexible_groups;
1506 }
1507 
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513 	groups->tree = RB_ROOT;
1514 	groups->index = 0;
1515 }
1516 
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526 	if (left->cpu < right->cpu)
1527 		return true;
1528 	if (left->cpu > right->cpu)
1529 		return false;
1530 
1531 	if (left->group_index < right->group_index)
1532 		return true;
1533 	if (left->group_index > right->group_index)
1534 		return false;
1535 
1536 	return false;
1537 }
1538 
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546 			 struct perf_event *event)
1547 {
1548 	struct perf_event *node_event;
1549 	struct rb_node *parent;
1550 	struct rb_node **node;
1551 
1552 	event->group_index = ++groups->index;
1553 
1554 	node = &groups->tree.rb_node;
1555 	parent = *node;
1556 
1557 	while (*node) {
1558 		parent = *node;
1559 		node_event = container_of(*node, struct perf_event, group_node);
1560 
1561 		if (perf_event_groups_less(event, node_event))
1562 			node = &parent->rb_left;
1563 		else
1564 			node = &parent->rb_right;
1565 	}
1566 
1567 	rb_link_node(&event->group_node, parent, node);
1568 	rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570 
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577 	struct perf_event_groups *groups;
1578 
1579 	groups = get_event_groups(event, ctx);
1580 	perf_event_groups_insert(groups, event);
1581 }
1582 
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588 			 struct perf_event *event)
1589 {
1590 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 		     RB_EMPTY_ROOT(&groups->tree));
1592 
1593 	rb_erase(&event->group_node, &groups->tree);
1594 	init_event_group(event);
1595 }
1596 
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603 	struct perf_event_groups *groups;
1604 
1605 	groups = get_event_groups(event, ctx);
1606 	perf_event_groups_delete(groups, event);
1607 }
1608 
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615 	struct perf_event *node_event = NULL, *match = NULL;
1616 	struct rb_node *node = groups->tree.rb_node;
1617 
1618 	while (node) {
1619 		node_event = container_of(node, struct perf_event, group_node);
1620 
1621 		if (cpu < node_event->cpu) {
1622 			node = node->rb_left;
1623 		} else if (cpu > node_event->cpu) {
1624 			node = node->rb_right;
1625 		} else {
1626 			match = node_event;
1627 			node = node->rb_left;
1628 		}
1629 	}
1630 
1631 	return match;
1632 }
1633 
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640 	struct perf_event *next;
1641 
1642 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 	if (next && next->cpu == event->cpu)
1644 		return next;
1645 
1646 	return NULL;
1647 }
1648 
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)			\
1653 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1654 				typeof(*event), group_node); event;	\
1655 		event = rb_entry_safe(rb_next(&event->group_node),	\
1656 				typeof(*event), group_node))
1657 
1658 /*
1659  * Add a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 	event->attach_state |= PERF_ATTACH_CONTEXT;
1669 
1670 	event->tstamp = perf_event_time(event);
1671 
1672 	/*
1673 	 * If we're a stand alone event or group leader, we go to the context
1674 	 * list, group events are kept attached to the group so that
1675 	 * perf_group_detach can, at all times, locate all siblings.
1676 	 */
1677 	if (event->group_leader == event) {
1678 		event->group_caps = event->event_caps;
1679 		add_event_to_groups(event, ctx);
1680 	}
1681 
1682 	list_update_cgroup_event(event, ctx, true);
1683 
1684 	list_add_rcu(&event->event_entry, &ctx->event_list);
1685 	ctx->nr_events++;
1686 	if (event->attr.inherit_stat)
1687 		ctx->nr_stat++;
1688 
1689 	ctx->generation++;
1690 }
1691 
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 					      PERF_EVENT_STATE_INACTIVE;
1699 }
1700 
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703 	int entry = sizeof(u64); /* value */
1704 	int size = 0;
1705 	int nr = 1;
1706 
1707 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 		size += sizeof(u64);
1709 
1710 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 		size += sizeof(u64);
1712 
1713 	if (event->attr.read_format & PERF_FORMAT_ID)
1714 		entry += sizeof(u64);
1715 
1716 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717 		nr += nr_siblings;
1718 		size += sizeof(u64);
1719 	}
1720 
1721 	size += entry * nr;
1722 	event->read_size = size;
1723 }
1724 
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727 	struct perf_sample_data *data;
1728 	u16 size = 0;
1729 
1730 	if (sample_type & PERF_SAMPLE_IP)
1731 		size += sizeof(data->ip);
1732 
1733 	if (sample_type & PERF_SAMPLE_ADDR)
1734 		size += sizeof(data->addr);
1735 
1736 	if (sample_type & PERF_SAMPLE_PERIOD)
1737 		size += sizeof(data->period);
1738 
1739 	if (sample_type & PERF_SAMPLE_WEIGHT)
1740 		size += sizeof(data->weight);
1741 
1742 	if (sample_type & PERF_SAMPLE_READ)
1743 		size += event->read_size;
1744 
1745 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 		size += sizeof(data->data_src.val);
1747 
1748 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 		size += sizeof(data->txn);
1750 
1751 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 		size += sizeof(data->phys_addr);
1753 
1754 	event->header_size = size;
1755 }
1756 
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763 	__perf_event_read_size(event,
1764 			       event->group_leader->nr_siblings);
1765 	__perf_event_header_size(event, event->attr.sample_type);
1766 }
1767 
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770 	struct perf_sample_data *data;
1771 	u64 sample_type = event->attr.sample_type;
1772 	u16 size = 0;
1773 
1774 	if (sample_type & PERF_SAMPLE_TID)
1775 		size += sizeof(data->tid_entry);
1776 
1777 	if (sample_type & PERF_SAMPLE_TIME)
1778 		size += sizeof(data->time);
1779 
1780 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 		size += sizeof(data->id);
1782 
1783 	if (sample_type & PERF_SAMPLE_ID)
1784 		size += sizeof(data->id);
1785 
1786 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 		size += sizeof(data->stream_id);
1788 
1789 	if (sample_type & PERF_SAMPLE_CPU)
1790 		size += sizeof(data->cpu_entry);
1791 
1792 	event->id_header_size = size;
1793 }
1794 
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797 	/*
1798 	 * The values computed here will be over-written when we actually
1799 	 * attach the event.
1800 	 */
1801 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 	perf_event__id_header_size(event);
1804 
1805 	/*
1806 	 * Sum the lot; should not exceed the 64k limit we have on records.
1807 	 * Conservative limit to allow for callchains and other variable fields.
1808 	 */
1809 	if (event->read_size + event->header_size +
1810 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 		return false;
1812 
1813 	return true;
1814 }
1815 
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818 	struct perf_event *group_leader = event->group_leader, *pos;
1819 
1820 	lockdep_assert_held(&event->ctx->lock);
1821 
1822 	/*
1823 	 * We can have double attach due to group movement in perf_event_open.
1824 	 */
1825 	if (event->attach_state & PERF_ATTACH_GROUP)
1826 		return;
1827 
1828 	event->attach_state |= PERF_ATTACH_GROUP;
1829 
1830 	if (group_leader == event)
1831 		return;
1832 
1833 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834 
1835 	group_leader->group_caps &= event->event_caps;
1836 
1837 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838 	group_leader->nr_siblings++;
1839 
1840 	perf_event__header_size(group_leader);
1841 
1842 	for_each_sibling_event(pos, group_leader)
1843 		perf_event__header_size(pos);
1844 }
1845 
1846 /*
1847  * Remove a event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853 	WARN_ON_ONCE(event->ctx != ctx);
1854 	lockdep_assert_held(&ctx->lock);
1855 
1856 	/*
1857 	 * We can have double detach due to exit/hot-unplug + close.
1858 	 */
1859 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860 		return;
1861 
1862 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863 
1864 	list_update_cgroup_event(event, ctx, false);
1865 
1866 	ctx->nr_events--;
1867 	if (event->attr.inherit_stat)
1868 		ctx->nr_stat--;
1869 
1870 	list_del_rcu(&event->event_entry);
1871 
1872 	if (event->group_leader == event)
1873 		del_event_from_groups(event, ctx);
1874 
1875 	/*
1876 	 * If event was in error state, then keep it
1877 	 * that way, otherwise bogus counts will be
1878 	 * returned on read(). The only way to get out
1879 	 * of error state is by explicit re-enabling
1880 	 * of the event
1881 	 */
1882 	if (event->state > PERF_EVENT_STATE_OFF)
1883 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884 
1885 	ctx->generation++;
1886 }
1887 
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890 	struct perf_event *sibling, *tmp;
1891 	struct perf_event_context *ctx = event->ctx;
1892 
1893 	lockdep_assert_held(&ctx->lock);
1894 
1895 	/*
1896 	 * We can have double detach due to exit/hot-unplug + close.
1897 	 */
1898 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 		return;
1900 
1901 	event->attach_state &= ~PERF_ATTACH_GROUP;
1902 
1903 	/*
1904 	 * If this is a sibling, remove it from its group.
1905 	 */
1906 	if (event->group_leader != event) {
1907 		list_del_init(&event->sibling_list);
1908 		event->group_leader->nr_siblings--;
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * If this was a group event with sibling events then
1914 	 * upgrade the siblings to singleton events by adding them
1915 	 * to whatever list we are on.
1916 	 */
1917 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918 
1919 		sibling->group_leader = sibling;
1920 		list_del_init(&sibling->sibling_list);
1921 
1922 		/* Inherit group flags from the previous leader */
1923 		sibling->group_caps = event->group_caps;
1924 
1925 		if (!RB_EMPTY_NODE(&event->group_node)) {
1926 			add_event_to_groups(sibling, event->ctx);
1927 
1928 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 				struct list_head *list = sibling->attr.pinned ?
1930 					&ctx->pinned_active : &ctx->flexible_active;
1931 
1932 				list_add_tail(&sibling->active_list, list);
1933 			}
1934 		}
1935 
1936 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1937 	}
1938 
1939 out:
1940 	perf_event__header_size(event->group_leader);
1941 
1942 	for_each_sibling_event(tmp, event->group_leader)
1943 		perf_event__header_size(tmp);
1944 }
1945 
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948 	return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950 
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953 	struct pmu *pmu = event->pmu;
1954 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956 
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965 	struct perf_event *sibling;
1966 
1967 	if (!__pmu_filter_match(event))
1968 		return 0;
1969 
1970 	for_each_sibling_event(sibling, event) {
1971 		if (!__pmu_filter_match(sibling))
1972 			return 0;
1973 	}
1974 
1975 	return 1;
1976 }
1977 
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 	       perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984 
1985 static void
1986 event_sched_out(struct perf_event *event,
1987 		  struct perf_cpu_context *cpuctx,
1988 		  struct perf_event_context *ctx)
1989 {
1990 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991 
1992 	WARN_ON_ONCE(event->ctx != ctx);
1993 	lockdep_assert_held(&ctx->lock);
1994 
1995 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1996 		return;
1997 
1998 	/*
1999 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 	 * we can schedule events _OUT_ individually through things like
2001 	 * __perf_remove_from_context().
2002 	 */
2003 	list_del_init(&event->active_list);
2004 
2005 	perf_pmu_disable(event->pmu);
2006 
2007 	event->pmu->del(event, 0);
2008 	event->oncpu = -1;
2009 
2010 	if (event->pending_disable) {
2011 		event->pending_disable = 0;
2012 		state = PERF_EVENT_STATE_OFF;
2013 	}
2014 	perf_event_set_state(event, state);
2015 
2016 	if (!is_software_event(event))
2017 		cpuctx->active_oncpu--;
2018 	if (!--ctx->nr_active)
2019 		perf_event_ctx_deactivate(ctx);
2020 	if (event->attr.freq && event->attr.sample_freq)
2021 		ctx->nr_freq--;
2022 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2023 		cpuctx->exclusive = 0;
2024 
2025 	perf_pmu_enable(event->pmu);
2026 }
2027 
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030 		struct perf_cpu_context *cpuctx,
2031 		struct perf_event_context *ctx)
2032 {
2033 	struct perf_event *event;
2034 
2035 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 		return;
2037 
2038 	perf_pmu_disable(ctx->pmu);
2039 
2040 	event_sched_out(group_event, cpuctx, ctx);
2041 
2042 	/*
2043 	 * Schedule out siblings (if any):
2044 	 */
2045 	for_each_sibling_event(event, group_event)
2046 		event_sched_out(event, cpuctx, ctx);
2047 
2048 	perf_pmu_enable(ctx->pmu);
2049 
2050 	if (group_event->attr.exclusive)
2051 		cpuctx->exclusive = 0;
2052 }
2053 
2054 #define DETACH_GROUP	0x01UL
2055 
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064 			   struct perf_cpu_context *cpuctx,
2065 			   struct perf_event_context *ctx,
2066 			   void *info)
2067 {
2068 	unsigned long flags = (unsigned long)info;
2069 
2070 	if (ctx->is_active & EVENT_TIME) {
2071 		update_context_time(ctx);
2072 		update_cgrp_time_from_cpuctx(cpuctx);
2073 	}
2074 
2075 	event_sched_out(event, cpuctx, ctx);
2076 	if (flags & DETACH_GROUP)
2077 		perf_group_detach(event);
2078 	list_del_event(event, ctx);
2079 
2080 	if (!ctx->nr_events && ctx->is_active) {
2081 		ctx->is_active = 0;
2082 		if (ctx->task) {
2083 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 			cpuctx->task_ctx = NULL;
2085 		}
2086 	}
2087 }
2088 
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101 	struct perf_event_context *ctx = event->ctx;
2102 
2103 	lockdep_assert_held(&ctx->mutex);
2104 
2105 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2106 
2107 	/*
2108 	 * The above event_function_call() can NO-OP when it hits
2109 	 * TASK_TOMBSTONE. In that case we must already have been detached
2110 	 * from the context (by perf_event_exit_event()) but the grouping
2111 	 * might still be in-tact.
2112 	 */
2113 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 	if ((flags & DETACH_GROUP) &&
2115 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2116 		/*
2117 		 * Since in that case we cannot possibly be scheduled, simply
2118 		 * detach now.
2119 		 */
2120 		raw_spin_lock_irq(&ctx->lock);
2121 		perf_group_detach(event);
2122 		raw_spin_unlock_irq(&ctx->lock);
2123 	}
2124 }
2125 
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130 				 struct perf_cpu_context *cpuctx,
2131 				 struct perf_event_context *ctx,
2132 				 void *info)
2133 {
2134 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 		return;
2136 
2137 	if (ctx->is_active & EVENT_TIME) {
2138 		update_context_time(ctx);
2139 		update_cgrp_time_from_event(event);
2140 	}
2141 
2142 	if (event == event->group_leader)
2143 		group_sched_out(event, cpuctx, ctx);
2144 	else
2145 		event_sched_out(event, cpuctx, ctx);
2146 
2147 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149 
2150 /*
2151  * Disable a event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166 	struct perf_event_context *ctx = event->ctx;
2167 
2168 	raw_spin_lock_irq(&ctx->lock);
2169 	if (event->state <= PERF_EVENT_STATE_OFF) {
2170 		raw_spin_unlock_irq(&ctx->lock);
2171 		return;
2172 	}
2173 	raw_spin_unlock_irq(&ctx->lock);
2174 
2175 	event_function_call(event, __perf_event_disable, NULL);
2176 }
2177 
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180 	event_function_local(event, __perf_event_disable, NULL);
2181 }
2182 
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189 	struct perf_event_context *ctx;
2190 
2191 	ctx = perf_event_ctx_lock(event);
2192 	_perf_event_disable(event);
2193 	perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196 
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199 	event->pending_disable = 1;
2200 	irq_work_queue(&event->pending);
2201 }
2202 
2203 static void perf_set_shadow_time(struct perf_event *event,
2204 				 struct perf_event_context *ctx)
2205 {
2206 	/*
2207 	 * use the correct time source for the time snapshot
2208 	 *
2209 	 * We could get by without this by leveraging the
2210 	 * fact that to get to this function, the caller
2211 	 * has most likely already called update_context_time()
2212 	 * and update_cgrp_time_xx() and thus both timestamp
2213 	 * are identical (or very close). Given that tstamp is,
2214 	 * already adjusted for cgroup, we could say that:
2215 	 *    tstamp - ctx->timestamp
2216 	 * is equivalent to
2217 	 *    tstamp - cgrp->timestamp.
2218 	 *
2219 	 * Then, in perf_output_read(), the calculation would
2220 	 * work with no changes because:
2221 	 * - event is guaranteed scheduled in
2222 	 * - no scheduled out in between
2223 	 * - thus the timestamp would be the same
2224 	 *
2225 	 * But this is a bit hairy.
2226 	 *
2227 	 * So instead, we have an explicit cgroup call to remain
2228 	 * within the time time source all along. We believe it
2229 	 * is cleaner and simpler to understand.
2230 	 */
2231 	if (is_cgroup_event(event))
2232 		perf_cgroup_set_shadow_time(event, event->tstamp);
2233 	else
2234 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236 
2237 #define MAX_INTERRUPTS (~0ULL)
2238 
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241 
2242 static int
2243 event_sched_in(struct perf_event *event,
2244 		 struct perf_cpu_context *cpuctx,
2245 		 struct perf_event_context *ctx)
2246 {
2247 	int ret = 0;
2248 
2249 	lockdep_assert_held(&ctx->lock);
2250 
2251 	if (event->state <= PERF_EVENT_STATE_OFF)
2252 		return 0;
2253 
2254 	WRITE_ONCE(event->oncpu, smp_processor_id());
2255 	/*
2256 	 * Order event::oncpu write to happen before the ACTIVE state is
2257 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 	 * ->oncpu if it sees ACTIVE.
2259 	 */
2260 	smp_wmb();
2261 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262 
2263 	/*
2264 	 * Unthrottle events, since we scheduled we might have missed several
2265 	 * ticks already, also for a heavily scheduling task there is little
2266 	 * guarantee it'll get a tick in a timely manner.
2267 	 */
2268 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 		perf_log_throttle(event, 1);
2270 		event->hw.interrupts = 0;
2271 	}
2272 
2273 	perf_pmu_disable(event->pmu);
2274 
2275 	perf_set_shadow_time(event, ctx);
2276 
2277 	perf_log_itrace_start(event);
2278 
2279 	if (event->pmu->add(event, PERF_EF_START)) {
2280 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281 		event->oncpu = -1;
2282 		ret = -EAGAIN;
2283 		goto out;
2284 	}
2285 
2286 	if (!is_software_event(event))
2287 		cpuctx->active_oncpu++;
2288 	if (!ctx->nr_active++)
2289 		perf_event_ctx_activate(ctx);
2290 	if (event->attr.freq && event->attr.sample_freq)
2291 		ctx->nr_freq++;
2292 
2293 	if (event->attr.exclusive)
2294 		cpuctx->exclusive = 1;
2295 
2296 out:
2297 	perf_pmu_enable(event->pmu);
2298 
2299 	return ret;
2300 }
2301 
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304 	       struct perf_cpu_context *cpuctx,
2305 	       struct perf_event_context *ctx)
2306 {
2307 	struct perf_event *event, *partial_group = NULL;
2308 	struct pmu *pmu = ctx->pmu;
2309 
2310 	if (group_event->state == PERF_EVENT_STATE_OFF)
2311 		return 0;
2312 
2313 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314 
2315 	if (event_sched_in(group_event, cpuctx, ctx)) {
2316 		pmu->cancel_txn(pmu);
2317 		perf_mux_hrtimer_restart(cpuctx);
2318 		return -EAGAIN;
2319 	}
2320 
2321 	/*
2322 	 * Schedule in siblings as one group (if any):
2323 	 */
2324 	for_each_sibling_event(event, group_event) {
2325 		if (event_sched_in(event, cpuctx, ctx)) {
2326 			partial_group = event;
2327 			goto group_error;
2328 		}
2329 	}
2330 
2331 	if (!pmu->commit_txn(pmu))
2332 		return 0;
2333 
2334 group_error:
2335 	/*
2336 	 * Groups can be scheduled in as one unit only, so undo any
2337 	 * partial group before returning:
2338 	 * The events up to the failed event are scheduled out normally.
2339 	 */
2340 	for_each_sibling_event(event, group_event) {
2341 		if (event == partial_group)
2342 			break;
2343 
2344 		event_sched_out(event, cpuctx, ctx);
2345 	}
2346 	event_sched_out(group_event, cpuctx, ctx);
2347 
2348 	pmu->cancel_txn(pmu);
2349 
2350 	perf_mux_hrtimer_restart(cpuctx);
2351 
2352 	return -EAGAIN;
2353 }
2354 
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359 			   struct perf_cpu_context *cpuctx,
2360 			   int can_add_hw)
2361 {
2362 	/*
2363 	 * Groups consisting entirely of software events can always go on.
2364 	 */
2365 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366 		return 1;
2367 	/*
2368 	 * If an exclusive group is already on, no other hardware
2369 	 * events can go on.
2370 	 */
2371 	if (cpuctx->exclusive)
2372 		return 0;
2373 	/*
2374 	 * If this group is exclusive and there are already
2375 	 * events on the CPU, it can't go on.
2376 	 */
2377 	if (event->attr.exclusive && cpuctx->active_oncpu)
2378 		return 0;
2379 	/*
2380 	 * Otherwise, try to add it if all previous groups were able
2381 	 * to go on.
2382 	 */
2383 	return can_add_hw;
2384 }
2385 
2386 static void add_event_to_ctx(struct perf_event *event,
2387 			       struct perf_event_context *ctx)
2388 {
2389 	list_add_event(event, ctx);
2390 	perf_group_attach(event);
2391 }
2392 
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394 			  struct perf_cpu_context *cpuctx,
2395 			  enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398 	     struct perf_cpu_context *cpuctx,
2399 	     enum event_type_t event_type,
2400 	     struct task_struct *task);
2401 
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403 			       struct perf_event_context *ctx,
2404 			       enum event_type_t event_type)
2405 {
2406 	if (!cpuctx->task_ctx)
2407 		return;
2408 
2409 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 		return;
2411 
2412 	ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414 
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 				struct perf_event_context *ctx,
2417 				struct task_struct *task)
2418 {
2419 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 	if (ctx)
2421 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 	if (ctx)
2424 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426 
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443 			struct perf_event_context *task_ctx,
2444 			enum event_type_t event_type)
2445 {
2446 	enum event_type_t ctx_event_type;
2447 	bool cpu_event = !!(event_type & EVENT_CPU);
2448 
2449 	/*
2450 	 * If pinned groups are involved, flexible groups also need to be
2451 	 * scheduled out.
2452 	 */
2453 	if (event_type & EVENT_PINNED)
2454 		event_type |= EVENT_FLEXIBLE;
2455 
2456 	ctx_event_type = event_type & EVENT_ALL;
2457 
2458 	perf_pmu_disable(cpuctx->ctx.pmu);
2459 	if (task_ctx)
2460 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461 
2462 	/*
2463 	 * Decide which cpu ctx groups to schedule out based on the types
2464 	 * of events that caused rescheduling:
2465 	 *  - EVENT_CPU: schedule out corresponding groups;
2466 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 	 *  - otherwise, do nothing more.
2468 	 */
2469 	if (cpu_event)
2470 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 	else if (ctx_event_type & EVENT_PINNED)
2472 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473 
2474 	perf_event_sched_in(cpuctx, task_ctx, current);
2475 	perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477 
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486 	struct perf_event *event = info;
2487 	struct perf_event_context *ctx = event->ctx;
2488 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490 	bool reprogram = true;
2491 	int ret = 0;
2492 
2493 	raw_spin_lock(&cpuctx->ctx.lock);
2494 	if (ctx->task) {
2495 		raw_spin_lock(&ctx->lock);
2496 		task_ctx = ctx;
2497 
2498 		reprogram = (ctx->task == current);
2499 
2500 		/*
2501 		 * If the task is running, it must be running on this CPU,
2502 		 * otherwise we cannot reprogram things.
2503 		 *
2504 		 * If its not running, we don't care, ctx->lock will
2505 		 * serialize against it becoming runnable.
2506 		 */
2507 		if (task_curr(ctx->task) && !reprogram) {
2508 			ret = -ESRCH;
2509 			goto unlock;
2510 		}
2511 
2512 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513 	} else if (task_ctx) {
2514 		raw_spin_lock(&task_ctx->lock);
2515 	}
2516 
2517 #ifdef CONFIG_CGROUP_PERF
2518 	if (is_cgroup_event(event)) {
2519 		/*
2520 		 * If the current cgroup doesn't match the event's
2521 		 * cgroup, we should not try to schedule it.
2522 		 */
2523 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 					event->cgrp->css.cgroup);
2526 	}
2527 #endif
2528 
2529 	if (reprogram) {
2530 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 		add_event_to_ctx(event, ctx);
2532 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533 	} else {
2534 		add_event_to_ctx(event, ctx);
2535 	}
2536 
2537 unlock:
2538 	perf_ctx_unlock(cpuctx, task_ctx);
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550 			struct perf_event *event,
2551 			int cpu)
2552 {
2553 	struct task_struct *task = READ_ONCE(ctx->task);
2554 
2555 	lockdep_assert_held(&ctx->mutex);
2556 
2557 	if (event->cpu != -1)
2558 		event->cpu = cpu;
2559 
2560 	/*
2561 	 * Ensures that if we can observe event->ctx, both the event and ctx
2562 	 * will be 'complete'. See perf_iterate_sb_cpu().
2563 	 */
2564 	smp_store_release(&event->ctx, ctx);
2565 
2566 	if (!task) {
2567 		cpu_function_call(cpu, __perf_install_in_context, event);
2568 		return;
2569 	}
2570 
2571 	/*
2572 	 * Should not happen, we validate the ctx is still alive before calling.
2573 	 */
2574 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 		return;
2576 
2577 	/*
2578 	 * Installing events is tricky because we cannot rely on ctx->is_active
2579 	 * to be set in case this is the nr_events 0 -> 1 transition.
2580 	 *
2581 	 * Instead we use task_curr(), which tells us if the task is running.
2582 	 * However, since we use task_curr() outside of rq::lock, we can race
2583 	 * against the actual state. This means the result can be wrong.
2584 	 *
2585 	 * If we get a false positive, we retry, this is harmless.
2586 	 *
2587 	 * If we get a false negative, things are complicated. If we are after
2588 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 	 * value must be correct. If we're before, it doesn't matter since
2590 	 * perf_event_context_sched_in() will program the counter.
2591 	 *
2592 	 * However, this hinges on the remote context switch having observed
2593 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 	 * ctx::lock in perf_event_context_sched_in().
2595 	 *
2596 	 * We do this by task_function_call(), if the IPI fails to hit the task
2597 	 * we know any future context switch of task must see the
2598 	 * perf_event_ctpx[] store.
2599 	 */
2600 
2601 	/*
2602 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 	 * task_cpu() load, such that if the IPI then does not find the task
2604 	 * running, a future context switch of that task must observe the
2605 	 * store.
2606 	 */
2607 	smp_mb();
2608 again:
2609 	if (!task_function_call(task, __perf_install_in_context, event))
2610 		return;
2611 
2612 	raw_spin_lock_irq(&ctx->lock);
2613 	task = ctx->task;
2614 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615 		/*
2616 		 * Cannot happen because we already checked above (which also
2617 		 * cannot happen), and we hold ctx->mutex, which serializes us
2618 		 * against perf_event_exit_task_context().
2619 		 */
2620 		raw_spin_unlock_irq(&ctx->lock);
2621 		return;
2622 	}
2623 	/*
2624 	 * If the task is not running, ctx->lock will avoid it becoming so,
2625 	 * thus we can safely install the event.
2626 	 */
2627 	if (task_curr(task)) {
2628 		raw_spin_unlock_irq(&ctx->lock);
2629 		goto again;
2630 	}
2631 	add_event_to_ctx(event, ctx);
2632 	raw_spin_unlock_irq(&ctx->lock);
2633 }
2634 
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639 				struct perf_cpu_context *cpuctx,
2640 				struct perf_event_context *ctx,
2641 				void *info)
2642 {
2643 	struct perf_event *leader = event->group_leader;
2644 	struct perf_event_context *task_ctx;
2645 
2646 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 	    event->state <= PERF_EVENT_STATE_ERROR)
2648 		return;
2649 
2650 	if (ctx->is_active)
2651 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652 
2653 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654 
2655 	if (!ctx->is_active)
2656 		return;
2657 
2658 	if (!event_filter_match(event)) {
2659 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * If the event is in a group and isn't the group leader,
2665 	 * then don't put it on unless the group is on.
2666 	 */
2667 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669 		return;
2670 	}
2671 
2672 	task_ctx = cpuctx->task_ctx;
2673 	if (ctx->task)
2674 		WARN_ON_ONCE(task_ctx != ctx);
2675 
2676 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678 
2679 /*
2680  * Enable a event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690 	struct perf_event_context *ctx = event->ctx;
2691 
2692 	raw_spin_lock_irq(&ctx->lock);
2693 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 	    event->state <  PERF_EVENT_STATE_ERROR) {
2695 		raw_spin_unlock_irq(&ctx->lock);
2696 		return;
2697 	}
2698 
2699 	/*
2700 	 * If the event is in error state, clear that first.
2701 	 *
2702 	 * That way, if we see the event in error state below, we know that it
2703 	 * has gone back into error state, as distinct from the task having
2704 	 * been scheduled away before the cross-call arrived.
2705 	 */
2706 	if (event->state == PERF_EVENT_STATE_ERROR)
2707 		event->state = PERF_EVENT_STATE_OFF;
2708 	raw_spin_unlock_irq(&ctx->lock);
2709 
2710 	event_function_call(event, __perf_event_enable, NULL);
2711 }
2712 
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718 	struct perf_event_context *ctx;
2719 
2720 	ctx = perf_event_ctx_lock(event);
2721 	_perf_event_enable(event);
2722 	perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725 
2726 struct stop_event_data {
2727 	struct perf_event	*event;
2728 	unsigned int		restart;
2729 };
2730 
2731 static int __perf_event_stop(void *info)
2732 {
2733 	struct stop_event_data *sd = info;
2734 	struct perf_event *event = sd->event;
2735 
2736 	/* if it's already INACTIVE, do nothing */
2737 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 		return 0;
2739 
2740 	/* matches smp_wmb() in event_sched_in() */
2741 	smp_rmb();
2742 
2743 	/*
2744 	 * There is a window with interrupts enabled before we get here,
2745 	 * so we need to check again lest we try to stop another CPU's event.
2746 	 */
2747 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 		return -EAGAIN;
2749 
2750 	event->pmu->stop(event, PERF_EF_UPDATE);
2751 
2752 	/*
2753 	 * May race with the actual stop (through perf_pmu_output_stop()),
2754 	 * but it is only used for events with AUX ring buffer, and such
2755 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 	 * see comments in perf_aux_output_begin().
2757 	 *
2758 	 * Since this is happening on a event-local CPU, no trace is lost
2759 	 * while restarting.
2760 	 */
2761 	if (sd->restart)
2762 		event->pmu->start(event, 0);
2763 
2764 	return 0;
2765 }
2766 
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769 	struct stop_event_data sd = {
2770 		.event		= event,
2771 		.restart	= restart,
2772 	};
2773 	int ret = 0;
2774 
2775 	do {
2776 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 			return 0;
2778 
2779 		/* matches smp_wmb() in event_sched_in() */
2780 		smp_rmb();
2781 
2782 		/*
2783 		 * We only want to restart ACTIVE events, so if the event goes
2784 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 		 * fall through with ret==-ENXIO.
2786 		 */
2787 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 					__perf_event_stop, &sd);
2789 	} while (ret == -EAGAIN);
2790 
2791 	return ret;
2792 }
2793 
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819 
2820 	if (!has_addr_filter(event))
2821 		return;
2822 
2823 	raw_spin_lock(&ifh->lock);
2824 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 		event->pmu->addr_filters_sync(event);
2826 		event->hw.addr_filters_gen = event->addr_filters_gen;
2827 	}
2828 	raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831 
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834 	/*
2835 	 * not supported on inherited events
2836 	 */
2837 	if (event->attr.inherit || !is_sampling_event(event))
2838 		return -EINVAL;
2839 
2840 	atomic_add(refresh, &event->event_limit);
2841 	_perf_event_enable(event);
2842 
2843 	return 0;
2844 }
2845 
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851 	struct perf_event_context *ctx;
2852 	int ret;
2853 
2854 	ctx = perf_event_ctx_lock(event);
2855 	ret = _perf_event_refresh(event, refresh);
2856 	perf_event_ctx_unlock(event, ctx);
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861 
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 					 struct perf_event_attr *attr)
2864 {
2865 	int err;
2866 
2867 	_perf_event_disable(bp);
2868 
2869 	err = modify_user_hw_breakpoint_check(bp, attr, true);
2870 	if (err) {
2871 		if (!bp->attr.disabled)
2872 			_perf_event_enable(bp);
2873 
2874 		return err;
2875 	}
2876 
2877 	if (!attr->disabled)
2878 		_perf_event_enable(bp);
2879 	return 0;
2880 }
2881 
2882 static int perf_event_modify_attr(struct perf_event *event,
2883 				  struct perf_event_attr *attr)
2884 {
2885 	if (event->attr.type != attr->type)
2886 		return -EINVAL;
2887 
2888 	switch (event->attr.type) {
2889 	case PERF_TYPE_BREAKPOINT:
2890 		return perf_event_modify_breakpoint(event, attr);
2891 	default:
2892 		/* Place holder for future additions. */
2893 		return -EOPNOTSUPP;
2894 	}
2895 }
2896 
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898 			  struct perf_cpu_context *cpuctx,
2899 			  enum event_type_t event_type)
2900 {
2901 	struct perf_event *event, *tmp;
2902 	int is_active = ctx->is_active;
2903 
2904 	lockdep_assert_held(&ctx->lock);
2905 
2906 	if (likely(!ctx->nr_events)) {
2907 		/*
2908 		 * See __perf_remove_from_context().
2909 		 */
2910 		WARN_ON_ONCE(ctx->is_active);
2911 		if (ctx->task)
2912 			WARN_ON_ONCE(cpuctx->task_ctx);
2913 		return;
2914 	}
2915 
2916 	ctx->is_active &= ~event_type;
2917 	if (!(ctx->is_active & EVENT_ALL))
2918 		ctx->is_active = 0;
2919 
2920 	if (ctx->task) {
2921 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922 		if (!ctx->is_active)
2923 			cpuctx->task_ctx = NULL;
2924 	}
2925 
2926 	/*
2927 	 * Always update time if it was set; not only when it changes.
2928 	 * Otherwise we can 'forget' to update time for any but the last
2929 	 * context we sched out. For example:
2930 	 *
2931 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2933 	 *
2934 	 * would only update time for the pinned events.
2935 	 */
2936 	if (is_active & EVENT_TIME) {
2937 		/* update (and stop) ctx time */
2938 		update_context_time(ctx);
2939 		update_cgrp_time_from_cpuctx(cpuctx);
2940 	}
2941 
2942 	is_active ^= ctx->is_active; /* changed bits */
2943 
2944 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945 		return;
2946 
2947 	perf_pmu_disable(ctx->pmu);
2948 	if (is_active & EVENT_PINNED) {
2949 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950 			group_sched_out(event, cpuctx, ctx);
2951 	}
2952 
2953 	if (is_active & EVENT_FLEXIBLE) {
2954 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955 			group_sched_out(event, cpuctx, ctx);
2956 	}
2957 	perf_pmu_enable(ctx->pmu);
2958 }
2959 
2960 /*
2961  * Test whether two contexts are equivalent, i.e. whether they have both been
2962  * cloned from the same version of the same context.
2963  *
2964  * Equivalence is measured using a generation number in the context that is
2965  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966  * and list_del_event().
2967  */
2968 static int context_equiv(struct perf_event_context *ctx1,
2969 			 struct perf_event_context *ctx2)
2970 {
2971 	lockdep_assert_held(&ctx1->lock);
2972 	lockdep_assert_held(&ctx2->lock);
2973 
2974 	/* Pinning disables the swap optimization */
2975 	if (ctx1->pin_count || ctx2->pin_count)
2976 		return 0;
2977 
2978 	/* If ctx1 is the parent of ctx2 */
2979 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980 		return 1;
2981 
2982 	/* If ctx2 is the parent of ctx1 */
2983 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984 		return 1;
2985 
2986 	/*
2987 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2988 	 * hierarchy, see perf_event_init_context().
2989 	 */
2990 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991 			ctx1->parent_gen == ctx2->parent_gen)
2992 		return 1;
2993 
2994 	/* Unmatched */
2995 	return 0;
2996 }
2997 
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999 				     struct perf_event *next_event)
3000 {
3001 	u64 value;
3002 
3003 	if (!event->attr.inherit_stat)
3004 		return;
3005 
3006 	/*
3007 	 * Update the event value, we cannot use perf_event_read()
3008 	 * because we're in the middle of a context switch and have IRQs
3009 	 * disabled, which upsets smp_call_function_single(), however
3010 	 * we know the event must be on the current CPU, therefore we
3011 	 * don't need to use it.
3012 	 */
3013 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3014 		event->pmu->read(event);
3015 
3016 	perf_event_update_time(event);
3017 
3018 	/*
3019 	 * In order to keep per-task stats reliable we need to flip the event
3020 	 * values when we flip the contexts.
3021 	 */
3022 	value = local64_read(&next_event->count);
3023 	value = local64_xchg(&event->count, value);
3024 	local64_set(&next_event->count, value);
3025 
3026 	swap(event->total_time_enabled, next_event->total_time_enabled);
3027 	swap(event->total_time_running, next_event->total_time_running);
3028 
3029 	/*
3030 	 * Since we swizzled the values, update the user visible data too.
3031 	 */
3032 	perf_event_update_userpage(event);
3033 	perf_event_update_userpage(next_event);
3034 }
3035 
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037 				   struct perf_event_context *next_ctx)
3038 {
3039 	struct perf_event *event, *next_event;
3040 
3041 	if (!ctx->nr_stat)
3042 		return;
3043 
3044 	update_context_time(ctx);
3045 
3046 	event = list_first_entry(&ctx->event_list,
3047 				   struct perf_event, event_entry);
3048 
3049 	next_event = list_first_entry(&next_ctx->event_list,
3050 					struct perf_event, event_entry);
3051 
3052 	while (&event->event_entry != &ctx->event_list &&
3053 	       &next_event->event_entry != &next_ctx->event_list) {
3054 
3055 		__perf_event_sync_stat(event, next_event);
3056 
3057 		event = list_next_entry(event, event_entry);
3058 		next_event = list_next_entry(next_event, event_entry);
3059 	}
3060 }
3061 
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063 					 struct task_struct *next)
3064 {
3065 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066 	struct perf_event_context *next_ctx;
3067 	struct perf_event_context *parent, *next_parent;
3068 	struct perf_cpu_context *cpuctx;
3069 	int do_switch = 1;
3070 
3071 	if (likely(!ctx))
3072 		return;
3073 
3074 	cpuctx = __get_cpu_context(ctx);
3075 	if (!cpuctx->task_ctx)
3076 		return;
3077 
3078 	rcu_read_lock();
3079 	next_ctx = next->perf_event_ctxp[ctxn];
3080 	if (!next_ctx)
3081 		goto unlock;
3082 
3083 	parent = rcu_dereference(ctx->parent_ctx);
3084 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3085 
3086 	/* If neither context have a parent context; they cannot be clones. */
3087 	if (!parent && !next_parent)
3088 		goto unlock;
3089 
3090 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091 		/*
3092 		 * Looks like the two contexts are clones, so we might be
3093 		 * able to optimize the context switch.  We lock both
3094 		 * contexts and check that they are clones under the
3095 		 * lock (including re-checking that neither has been
3096 		 * uncloned in the meantime).  It doesn't matter which
3097 		 * order we take the locks because no other cpu could
3098 		 * be trying to lock both of these tasks.
3099 		 */
3100 		raw_spin_lock(&ctx->lock);
3101 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102 		if (context_equiv(ctx, next_ctx)) {
3103 			WRITE_ONCE(ctx->task, next);
3104 			WRITE_ONCE(next_ctx->task, task);
3105 
3106 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107 
3108 			/*
3109 			 * RCU_INIT_POINTER here is safe because we've not
3110 			 * modified the ctx and the above modification of
3111 			 * ctx->task and ctx->task_ctx_data are immaterial
3112 			 * since those values are always verified under
3113 			 * ctx->lock which we're now holding.
3114 			 */
3115 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117 
3118 			do_switch = 0;
3119 
3120 			perf_event_sync_stat(ctx, next_ctx);
3121 		}
3122 		raw_spin_unlock(&next_ctx->lock);
3123 		raw_spin_unlock(&ctx->lock);
3124 	}
3125 unlock:
3126 	rcu_read_unlock();
3127 
3128 	if (do_switch) {
3129 		raw_spin_lock(&ctx->lock);
3130 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131 		raw_spin_unlock(&ctx->lock);
3132 	}
3133 }
3134 
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136 
3137 void perf_sched_cb_dec(struct pmu *pmu)
3138 {
3139 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140 
3141 	this_cpu_dec(perf_sched_cb_usages);
3142 
3143 	if (!--cpuctx->sched_cb_usage)
3144 		list_del(&cpuctx->sched_cb_entry);
3145 }
3146 
3147 
3148 void perf_sched_cb_inc(struct pmu *pmu)
3149 {
3150 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151 
3152 	if (!cpuctx->sched_cb_usage++)
3153 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154 
3155 	this_cpu_inc(perf_sched_cb_usages);
3156 }
3157 
3158 /*
3159  * This function provides the context switch callback to the lower code
3160  * layer. It is invoked ONLY when the context switch callback is enabled.
3161  *
3162  * This callback is relevant even to per-cpu events; for example multi event
3163  * PEBS requires this to provide PID/TID information. This requires we flush
3164  * all queued PEBS records before we context switch to a new task.
3165  */
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167 				struct task_struct *next,
3168 				bool sched_in)
3169 {
3170 	struct perf_cpu_context *cpuctx;
3171 	struct pmu *pmu;
3172 
3173 	if (prev == next)
3174 		return;
3175 
3176 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178 
3179 		if (WARN_ON_ONCE(!pmu->sched_task))
3180 			continue;
3181 
3182 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183 		perf_pmu_disable(pmu);
3184 
3185 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3186 
3187 		perf_pmu_enable(pmu);
3188 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189 	}
3190 }
3191 
3192 static void perf_event_switch(struct task_struct *task,
3193 			      struct task_struct *next_prev, bool sched_in);
3194 
3195 #define for_each_task_context_nr(ctxn)					\
3196 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197 
3198 /*
3199  * Called from scheduler to remove the events of the current task,
3200  * with interrupts disabled.
3201  *
3202  * We stop each event and update the event value in event->count.
3203  *
3204  * This does not protect us against NMI, but disable()
3205  * sets the disabled bit in the control field of event _before_
3206  * accessing the event control register. If a NMI hits, then it will
3207  * not restart the event.
3208  */
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210 				 struct task_struct *next)
3211 {
3212 	int ctxn;
3213 
3214 	if (__this_cpu_read(perf_sched_cb_usages))
3215 		perf_pmu_sched_task(task, next, false);
3216 
3217 	if (atomic_read(&nr_switch_events))
3218 		perf_event_switch(task, next, false);
3219 
3220 	for_each_task_context_nr(ctxn)
3221 		perf_event_context_sched_out(task, ctxn, next);
3222 
3223 	/*
3224 	 * if cgroup events exist on this CPU, then we need
3225 	 * to check if we have to switch out PMU state.
3226 	 * cgroup event are system-wide mode only
3227 	 */
3228 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229 		perf_cgroup_sched_out(task, next);
3230 }
3231 
3232 /*
3233  * Called with IRQs disabled
3234  */
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236 			      enum event_type_t event_type)
3237 {
3238 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 }
3240 
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242 			      int (*func)(struct perf_event *, void *), void *data)
3243 {
3244 	struct perf_event **evt, *evt1, *evt2;
3245 	int ret;
3246 
3247 	evt1 = perf_event_groups_first(groups, -1);
3248 	evt2 = perf_event_groups_first(groups, cpu);
3249 
3250 	while (evt1 || evt2) {
3251 		if (evt1 && evt2) {
3252 			if (evt1->group_index < evt2->group_index)
3253 				evt = &evt1;
3254 			else
3255 				evt = &evt2;
3256 		} else if (evt1) {
3257 			evt = &evt1;
3258 		} else {
3259 			evt = &evt2;
3260 		}
3261 
3262 		ret = func(*evt, data);
3263 		if (ret)
3264 			return ret;
3265 
3266 		*evt = perf_event_groups_next(*evt);
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 struct sched_in_data {
3273 	struct perf_event_context *ctx;
3274 	struct perf_cpu_context *cpuctx;
3275 	int can_add_hw;
3276 };
3277 
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3279 {
3280 	struct sched_in_data *sid = data;
3281 
3282 	if (event->state <= PERF_EVENT_STATE_OFF)
3283 		return 0;
3284 
3285 	if (!event_filter_match(event))
3286 		return 0;
3287 
3288 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291 	}
3292 
3293 	/*
3294 	 * If this pinned group hasn't been scheduled,
3295 	 * put it in error state.
3296 	 */
3297 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3298 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299 
3300 	return 0;
3301 }
3302 
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3304 {
3305 	struct sched_in_data *sid = data;
3306 
3307 	if (event->state <= PERF_EVENT_STATE_OFF)
3308 		return 0;
3309 
3310 	if (!event_filter_match(event))
3311 		return 0;
3312 
3313 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315 			list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316 		else
3317 			sid->can_add_hw = 0;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325 		    struct perf_cpu_context *cpuctx)
3326 {
3327 	struct sched_in_data sid = {
3328 		.ctx = ctx,
3329 		.cpuctx = cpuctx,
3330 		.can_add_hw = 1,
3331 	};
3332 
3333 	visit_groups_merge(&ctx->pinned_groups,
3334 			   smp_processor_id(),
3335 			   pinned_sched_in, &sid);
3336 }
3337 
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340 		      struct perf_cpu_context *cpuctx)
3341 {
3342 	struct sched_in_data sid = {
3343 		.ctx = ctx,
3344 		.cpuctx = cpuctx,
3345 		.can_add_hw = 1,
3346 	};
3347 
3348 	visit_groups_merge(&ctx->flexible_groups,
3349 			   smp_processor_id(),
3350 			   flexible_sched_in, &sid);
3351 }
3352 
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355 	     struct perf_cpu_context *cpuctx,
3356 	     enum event_type_t event_type,
3357 	     struct task_struct *task)
3358 {
3359 	int is_active = ctx->is_active;
3360 	u64 now;
3361 
3362 	lockdep_assert_held(&ctx->lock);
3363 
3364 	if (likely(!ctx->nr_events))
3365 		return;
3366 
3367 	ctx->is_active |= (event_type | EVENT_TIME);
3368 	if (ctx->task) {
3369 		if (!is_active)
3370 			cpuctx->task_ctx = ctx;
3371 		else
3372 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373 	}
3374 
3375 	is_active ^= ctx->is_active; /* changed bits */
3376 
3377 	if (is_active & EVENT_TIME) {
3378 		/* start ctx time */
3379 		now = perf_clock();
3380 		ctx->timestamp = now;
3381 		perf_cgroup_set_timestamp(task, ctx);
3382 	}
3383 
3384 	/*
3385 	 * First go through the list and put on any pinned groups
3386 	 * in order to give them the best chance of going on.
3387 	 */
3388 	if (is_active & EVENT_PINNED)
3389 		ctx_pinned_sched_in(ctx, cpuctx);
3390 
3391 	/* Then walk through the lower prio flexible groups */
3392 	if (is_active & EVENT_FLEXIBLE)
3393 		ctx_flexible_sched_in(ctx, cpuctx);
3394 }
3395 
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397 			     enum event_type_t event_type,
3398 			     struct task_struct *task)
3399 {
3400 	struct perf_event_context *ctx = &cpuctx->ctx;
3401 
3402 	ctx_sched_in(ctx, cpuctx, event_type, task);
3403 }
3404 
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406 					struct task_struct *task)
3407 {
3408 	struct perf_cpu_context *cpuctx;
3409 
3410 	cpuctx = __get_cpu_context(ctx);
3411 	if (cpuctx->task_ctx == ctx)
3412 		return;
3413 
3414 	perf_ctx_lock(cpuctx, ctx);
3415 	/*
3416 	 * We must check ctx->nr_events while holding ctx->lock, such
3417 	 * that we serialize against perf_install_in_context().
3418 	 */
3419 	if (!ctx->nr_events)
3420 		goto unlock;
3421 
3422 	perf_pmu_disable(ctx->pmu);
3423 	/*
3424 	 * We want to keep the following priority order:
3425 	 * cpu pinned (that don't need to move), task pinned,
3426 	 * cpu flexible, task flexible.
3427 	 *
3428 	 * However, if task's ctx is not carrying any pinned
3429 	 * events, no need to flip the cpuctx's events around.
3430 	 */
3431 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433 	perf_event_sched_in(cpuctx, ctx, task);
3434 	perf_pmu_enable(ctx->pmu);
3435 
3436 unlock:
3437 	perf_ctx_unlock(cpuctx, ctx);
3438 }
3439 
3440 /*
3441  * Called from scheduler to add the events of the current task
3442  * with interrupts disabled.
3443  *
3444  * We restore the event value and then enable it.
3445  *
3446  * This does not protect us against NMI, but enable()
3447  * sets the enabled bit in the control field of event _before_
3448  * accessing the event control register. If a NMI hits, then it will
3449  * keep the event running.
3450  */
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452 				struct task_struct *task)
3453 {
3454 	struct perf_event_context *ctx;
3455 	int ctxn;
3456 
3457 	/*
3458 	 * If cgroup events exist on this CPU, then we need to check if we have
3459 	 * to switch in PMU state; cgroup event are system-wide mode only.
3460 	 *
3461 	 * Since cgroup events are CPU events, we must schedule these in before
3462 	 * we schedule in the task events.
3463 	 */
3464 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465 		perf_cgroup_sched_in(prev, task);
3466 
3467 	for_each_task_context_nr(ctxn) {
3468 		ctx = task->perf_event_ctxp[ctxn];
3469 		if (likely(!ctx))
3470 			continue;
3471 
3472 		perf_event_context_sched_in(ctx, task);
3473 	}
3474 
3475 	if (atomic_read(&nr_switch_events))
3476 		perf_event_switch(task, prev, true);
3477 
3478 	if (__this_cpu_read(perf_sched_cb_usages))
3479 		perf_pmu_sched_task(prev, task, true);
3480 }
3481 
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483 {
3484 	u64 frequency = event->attr.sample_freq;
3485 	u64 sec = NSEC_PER_SEC;
3486 	u64 divisor, dividend;
3487 
3488 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3489 
3490 	count_fls = fls64(count);
3491 	nsec_fls = fls64(nsec);
3492 	frequency_fls = fls64(frequency);
3493 	sec_fls = 30;
3494 
3495 	/*
3496 	 * We got @count in @nsec, with a target of sample_freq HZ
3497 	 * the target period becomes:
3498 	 *
3499 	 *             @count * 10^9
3500 	 * period = -------------------
3501 	 *          @nsec * sample_freq
3502 	 *
3503 	 */
3504 
3505 	/*
3506 	 * Reduce accuracy by one bit such that @a and @b converge
3507 	 * to a similar magnitude.
3508 	 */
3509 #define REDUCE_FLS(a, b)		\
3510 do {					\
3511 	if (a##_fls > b##_fls) {	\
3512 		a >>= 1;		\
3513 		a##_fls--;		\
3514 	} else {			\
3515 		b >>= 1;		\
3516 		b##_fls--;		\
3517 	}				\
3518 } while (0)
3519 
3520 	/*
3521 	 * Reduce accuracy until either term fits in a u64, then proceed with
3522 	 * the other, so that finally we can do a u64/u64 division.
3523 	 */
3524 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525 		REDUCE_FLS(nsec, frequency);
3526 		REDUCE_FLS(sec, count);
3527 	}
3528 
3529 	if (count_fls + sec_fls > 64) {
3530 		divisor = nsec * frequency;
3531 
3532 		while (count_fls + sec_fls > 64) {
3533 			REDUCE_FLS(count, sec);
3534 			divisor >>= 1;
3535 		}
3536 
3537 		dividend = count * sec;
3538 	} else {
3539 		dividend = count * sec;
3540 
3541 		while (nsec_fls + frequency_fls > 64) {
3542 			REDUCE_FLS(nsec, frequency);
3543 			dividend >>= 1;
3544 		}
3545 
3546 		divisor = nsec * frequency;
3547 	}
3548 
3549 	if (!divisor)
3550 		return dividend;
3551 
3552 	return div64_u64(dividend, divisor);
3553 }
3554 
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557 
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559 {
3560 	struct hw_perf_event *hwc = &event->hw;
3561 	s64 period, sample_period;
3562 	s64 delta;
3563 
3564 	period = perf_calculate_period(event, nsec, count);
3565 
3566 	delta = (s64)(period - hwc->sample_period);
3567 	delta = (delta + 7) / 8; /* low pass filter */
3568 
3569 	sample_period = hwc->sample_period + delta;
3570 
3571 	if (!sample_period)
3572 		sample_period = 1;
3573 
3574 	hwc->sample_period = sample_period;
3575 
3576 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3577 		if (disable)
3578 			event->pmu->stop(event, PERF_EF_UPDATE);
3579 
3580 		local64_set(&hwc->period_left, 0);
3581 
3582 		if (disable)
3583 			event->pmu->start(event, PERF_EF_RELOAD);
3584 	}
3585 }
3586 
3587 /*
3588  * combine freq adjustment with unthrottling to avoid two passes over the
3589  * events. At the same time, make sure, having freq events does not change
3590  * the rate of unthrottling as that would introduce bias.
3591  */
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593 					   int needs_unthr)
3594 {
3595 	struct perf_event *event;
3596 	struct hw_perf_event *hwc;
3597 	u64 now, period = TICK_NSEC;
3598 	s64 delta;
3599 
3600 	/*
3601 	 * only need to iterate over all events iff:
3602 	 * - context have events in frequency mode (needs freq adjust)
3603 	 * - there are events to unthrottle on this cpu
3604 	 */
3605 	if (!(ctx->nr_freq || needs_unthr))
3606 		return;
3607 
3608 	raw_spin_lock(&ctx->lock);
3609 	perf_pmu_disable(ctx->pmu);
3610 
3611 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3613 			continue;
3614 
3615 		if (!event_filter_match(event))
3616 			continue;
3617 
3618 		perf_pmu_disable(event->pmu);
3619 
3620 		hwc = &event->hw;
3621 
3622 		if (hwc->interrupts == MAX_INTERRUPTS) {
3623 			hwc->interrupts = 0;
3624 			perf_log_throttle(event, 1);
3625 			event->pmu->start(event, 0);
3626 		}
3627 
3628 		if (!event->attr.freq || !event->attr.sample_freq)
3629 			goto next;
3630 
3631 		/*
3632 		 * stop the event and update event->count
3633 		 */
3634 		event->pmu->stop(event, PERF_EF_UPDATE);
3635 
3636 		now = local64_read(&event->count);
3637 		delta = now - hwc->freq_count_stamp;
3638 		hwc->freq_count_stamp = now;
3639 
3640 		/*
3641 		 * restart the event
3642 		 * reload only if value has changed
3643 		 * we have stopped the event so tell that
3644 		 * to perf_adjust_period() to avoid stopping it
3645 		 * twice.
3646 		 */
3647 		if (delta > 0)
3648 			perf_adjust_period(event, period, delta, false);
3649 
3650 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651 	next:
3652 		perf_pmu_enable(event->pmu);
3653 	}
3654 
3655 	perf_pmu_enable(ctx->pmu);
3656 	raw_spin_unlock(&ctx->lock);
3657 }
3658 
3659 /*
3660  * Move @event to the tail of the @ctx's elegible events.
3661  */
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663 {
3664 	/*
3665 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3666 	 * disabled by the inheritance code.
3667 	 */
3668 	if (ctx->rotate_disable)
3669 		return;
3670 
3671 	perf_event_groups_delete(&ctx->flexible_groups, event);
3672 	perf_event_groups_insert(&ctx->flexible_groups, event);
3673 }
3674 
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3677 {
3678 	return list_first_entry_or_null(&ctx->flexible_active,
3679 					struct perf_event, active_list);
3680 }
3681 
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683 {
3684 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3685 	bool cpu_rotate = false, task_rotate = false;
3686 	struct perf_event_context *ctx = NULL;
3687 
3688 	/*
3689 	 * Since we run this from IRQ context, nobody can install new
3690 	 * events, thus the event count values are stable.
3691 	 */
3692 
3693 	if (cpuctx->ctx.nr_events) {
3694 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695 			cpu_rotate = true;
3696 	}
3697 
3698 	ctx = cpuctx->task_ctx;
3699 	if (ctx && ctx->nr_events) {
3700 		if (ctx->nr_events != ctx->nr_active)
3701 			task_rotate = true;
3702 	}
3703 
3704 	if (!(cpu_rotate || task_rotate))
3705 		return false;
3706 
3707 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708 	perf_pmu_disable(cpuctx->ctx.pmu);
3709 
3710 	if (task_rotate)
3711 		task_event = ctx_first_active(ctx);
3712 	if (cpu_rotate)
3713 		cpu_event = ctx_first_active(&cpuctx->ctx);
3714 
3715 	/*
3716 	 * As per the order given at ctx_resched() first 'pop' task flexible
3717 	 * and then, if needed CPU flexible.
3718 	 */
3719 	if (task_event || (ctx && cpu_event))
3720 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721 	if (cpu_event)
3722 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723 
3724 	if (task_event)
3725 		rotate_ctx(ctx, task_event);
3726 	if (cpu_event)
3727 		rotate_ctx(&cpuctx->ctx, cpu_event);
3728 
3729 	perf_event_sched_in(cpuctx, ctx, current);
3730 
3731 	perf_pmu_enable(cpuctx->ctx.pmu);
3732 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733 
3734 	return true;
3735 }
3736 
3737 void perf_event_task_tick(void)
3738 {
3739 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740 	struct perf_event_context *ctx, *tmp;
3741 	int throttled;
3742 
3743 	lockdep_assert_irqs_disabled();
3744 
3745 	__this_cpu_inc(perf_throttled_seq);
3746 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748 
3749 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750 		perf_adjust_freq_unthr_context(ctx, throttled);
3751 }
3752 
3753 static int event_enable_on_exec(struct perf_event *event,
3754 				struct perf_event_context *ctx)
3755 {
3756 	if (!event->attr.enable_on_exec)
3757 		return 0;
3758 
3759 	event->attr.enable_on_exec = 0;
3760 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761 		return 0;
3762 
3763 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764 
3765 	return 1;
3766 }
3767 
3768 /*
3769  * Enable all of a task's events that have been marked enable-on-exec.
3770  * This expects task == current.
3771  */
3772 static void perf_event_enable_on_exec(int ctxn)
3773 {
3774 	struct perf_event_context *ctx, *clone_ctx = NULL;
3775 	enum event_type_t event_type = 0;
3776 	struct perf_cpu_context *cpuctx;
3777 	struct perf_event *event;
3778 	unsigned long flags;
3779 	int enabled = 0;
3780 
3781 	local_irq_save(flags);
3782 	ctx = current->perf_event_ctxp[ctxn];
3783 	if (!ctx || !ctx->nr_events)
3784 		goto out;
3785 
3786 	cpuctx = __get_cpu_context(ctx);
3787 	perf_ctx_lock(cpuctx, ctx);
3788 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3790 		enabled |= event_enable_on_exec(event, ctx);
3791 		event_type |= get_event_type(event);
3792 	}
3793 
3794 	/*
3795 	 * Unclone and reschedule this context if we enabled any event.
3796 	 */
3797 	if (enabled) {
3798 		clone_ctx = unclone_ctx(ctx);
3799 		ctx_resched(cpuctx, ctx, event_type);
3800 	} else {
3801 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802 	}
3803 	perf_ctx_unlock(cpuctx, ctx);
3804 
3805 out:
3806 	local_irq_restore(flags);
3807 
3808 	if (clone_ctx)
3809 		put_ctx(clone_ctx);
3810 }
3811 
3812 struct perf_read_data {
3813 	struct perf_event *event;
3814 	bool group;
3815 	int ret;
3816 };
3817 
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 {
3820 	u16 local_pkg, event_pkg;
3821 
3822 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823 		int local_cpu = smp_processor_id();
3824 
3825 		event_pkg = topology_physical_package_id(event_cpu);
3826 		local_pkg = topology_physical_package_id(local_cpu);
3827 
3828 		if (event_pkg == local_pkg)
3829 			return local_cpu;
3830 	}
3831 
3832 	return event_cpu;
3833 }
3834 
3835 /*
3836  * Cross CPU call to read the hardware event
3837  */
3838 static void __perf_event_read(void *info)
3839 {
3840 	struct perf_read_data *data = info;
3841 	struct perf_event *sub, *event = data->event;
3842 	struct perf_event_context *ctx = event->ctx;
3843 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844 	struct pmu *pmu = event->pmu;
3845 
3846 	/*
3847 	 * If this is a task context, we need to check whether it is
3848 	 * the current task context of this cpu.  If not it has been
3849 	 * scheduled out before the smp call arrived.  In that case
3850 	 * event->count would have been updated to a recent sample
3851 	 * when the event was scheduled out.
3852 	 */
3853 	if (ctx->task && cpuctx->task_ctx != ctx)
3854 		return;
3855 
3856 	raw_spin_lock(&ctx->lock);
3857 	if (ctx->is_active & EVENT_TIME) {
3858 		update_context_time(ctx);
3859 		update_cgrp_time_from_event(event);
3860 	}
3861 
3862 	perf_event_update_time(event);
3863 	if (data->group)
3864 		perf_event_update_sibling_time(event);
3865 
3866 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3867 		goto unlock;
3868 
3869 	if (!data->group) {
3870 		pmu->read(event);
3871 		data->ret = 0;
3872 		goto unlock;
3873 	}
3874 
3875 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876 
3877 	pmu->read(event);
3878 
3879 	for_each_sibling_event(sub, event) {
3880 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881 			/*
3882 			 * Use sibling's PMU rather than @event's since
3883 			 * sibling could be on different (eg: software) PMU.
3884 			 */
3885 			sub->pmu->read(sub);
3886 		}
3887 	}
3888 
3889 	data->ret = pmu->commit_txn(pmu);
3890 
3891 unlock:
3892 	raw_spin_unlock(&ctx->lock);
3893 }
3894 
3895 static inline u64 perf_event_count(struct perf_event *event)
3896 {
3897 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3898 }
3899 
3900 /*
3901  * NMI-safe method to read a local event, that is an event that
3902  * is:
3903  *   - either for the current task, or for this CPU
3904  *   - does not have inherit set, for inherited task events
3905  *     will not be local and we cannot read them atomically
3906  *   - must not have a pmu::count method
3907  */
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909 			  u64 *enabled, u64 *running)
3910 {
3911 	unsigned long flags;
3912 	int ret = 0;
3913 
3914 	/*
3915 	 * Disabling interrupts avoids all counter scheduling (context
3916 	 * switches, timer based rotation and IPIs).
3917 	 */
3918 	local_irq_save(flags);
3919 
3920 	/*
3921 	 * It must not be an event with inherit set, we cannot read
3922 	 * all child counters from atomic context.
3923 	 */
3924 	if (event->attr.inherit) {
3925 		ret = -EOPNOTSUPP;
3926 		goto out;
3927 	}
3928 
3929 	/* If this is a per-task event, it must be for current */
3930 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3931 	    event->hw.target != current) {
3932 		ret = -EINVAL;
3933 		goto out;
3934 	}
3935 
3936 	/* If this is a per-CPU event, it must be for this CPU */
3937 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938 	    event->cpu != smp_processor_id()) {
3939 		ret = -EINVAL;
3940 		goto out;
3941 	}
3942 
3943 	/*
3944 	 * If the event is currently on this CPU, its either a per-task event,
3945 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946 	 * oncpu == -1).
3947 	 */
3948 	if (event->oncpu == smp_processor_id())
3949 		event->pmu->read(event);
3950 
3951 	*value = local64_read(&event->count);
3952 	if (enabled || running) {
3953 		u64 now = event->shadow_ctx_time + perf_clock();
3954 		u64 __enabled, __running;
3955 
3956 		__perf_update_times(event, now, &__enabled, &__running);
3957 		if (enabled)
3958 			*enabled = __enabled;
3959 		if (running)
3960 			*running = __running;
3961 	}
3962 out:
3963 	local_irq_restore(flags);
3964 
3965 	return ret;
3966 }
3967 
3968 static int perf_event_read(struct perf_event *event, bool group)
3969 {
3970 	enum perf_event_state state = READ_ONCE(event->state);
3971 	int event_cpu, ret = 0;
3972 
3973 	/*
3974 	 * If event is enabled and currently active on a CPU, update the
3975 	 * value in the event structure:
3976 	 */
3977 again:
3978 	if (state == PERF_EVENT_STATE_ACTIVE) {
3979 		struct perf_read_data data;
3980 
3981 		/*
3982 		 * Orders the ->state and ->oncpu loads such that if we see
3983 		 * ACTIVE we must also see the right ->oncpu.
3984 		 *
3985 		 * Matches the smp_wmb() from event_sched_in().
3986 		 */
3987 		smp_rmb();
3988 
3989 		event_cpu = READ_ONCE(event->oncpu);
3990 		if ((unsigned)event_cpu >= nr_cpu_ids)
3991 			return 0;
3992 
3993 		data = (struct perf_read_data){
3994 			.event = event,
3995 			.group = group,
3996 			.ret = 0,
3997 		};
3998 
3999 		preempt_disable();
4000 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4001 
4002 		/*
4003 		 * Purposely ignore the smp_call_function_single() return
4004 		 * value.
4005 		 *
4006 		 * If event_cpu isn't a valid CPU it means the event got
4007 		 * scheduled out and that will have updated the event count.
4008 		 *
4009 		 * Therefore, either way, we'll have an up-to-date event count
4010 		 * after this.
4011 		 */
4012 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013 		preempt_enable();
4014 		ret = data.ret;
4015 
4016 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4017 		struct perf_event_context *ctx = event->ctx;
4018 		unsigned long flags;
4019 
4020 		raw_spin_lock_irqsave(&ctx->lock, flags);
4021 		state = event->state;
4022 		if (state != PERF_EVENT_STATE_INACTIVE) {
4023 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024 			goto again;
4025 		}
4026 
4027 		/*
4028 		 * May read while context is not active (e.g., thread is
4029 		 * blocked), in that case we cannot update context time
4030 		 */
4031 		if (ctx->is_active & EVENT_TIME) {
4032 			update_context_time(ctx);
4033 			update_cgrp_time_from_event(event);
4034 		}
4035 
4036 		perf_event_update_time(event);
4037 		if (group)
4038 			perf_event_update_sibling_time(event);
4039 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040 	}
4041 
4042 	return ret;
4043 }
4044 
4045 /*
4046  * Initialize the perf_event context in a task_struct:
4047  */
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4049 {
4050 	raw_spin_lock_init(&ctx->lock);
4051 	mutex_init(&ctx->mutex);
4052 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4053 	perf_event_groups_init(&ctx->pinned_groups);
4054 	perf_event_groups_init(&ctx->flexible_groups);
4055 	INIT_LIST_HEAD(&ctx->event_list);
4056 	INIT_LIST_HEAD(&ctx->pinned_active);
4057 	INIT_LIST_HEAD(&ctx->flexible_active);
4058 	atomic_set(&ctx->refcount, 1);
4059 }
4060 
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063 {
4064 	struct perf_event_context *ctx;
4065 
4066 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067 	if (!ctx)
4068 		return NULL;
4069 
4070 	__perf_event_init_context(ctx);
4071 	if (task) {
4072 		ctx->task = task;
4073 		get_task_struct(task);
4074 	}
4075 	ctx->pmu = pmu;
4076 
4077 	return ctx;
4078 }
4079 
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4082 {
4083 	struct task_struct *task;
4084 
4085 	rcu_read_lock();
4086 	if (!vpid)
4087 		task = current;
4088 	else
4089 		task = find_task_by_vpid(vpid);
4090 	if (task)
4091 		get_task_struct(task);
4092 	rcu_read_unlock();
4093 
4094 	if (!task)
4095 		return ERR_PTR(-ESRCH);
4096 
4097 	return task;
4098 }
4099 
4100 /*
4101  * Returns a matching context with refcount and pincount.
4102  */
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105 		struct perf_event *event)
4106 {
4107 	struct perf_event_context *ctx, *clone_ctx = NULL;
4108 	struct perf_cpu_context *cpuctx;
4109 	void *task_ctx_data = NULL;
4110 	unsigned long flags;
4111 	int ctxn, err;
4112 	int cpu = event->cpu;
4113 
4114 	if (!task) {
4115 		/* Must be root to operate on a CPU event: */
4116 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117 			return ERR_PTR(-EACCES);
4118 
4119 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120 		ctx = &cpuctx->ctx;
4121 		get_ctx(ctx);
4122 		++ctx->pin_count;
4123 
4124 		return ctx;
4125 	}
4126 
4127 	err = -EINVAL;
4128 	ctxn = pmu->task_ctx_nr;
4129 	if (ctxn < 0)
4130 		goto errout;
4131 
4132 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134 		if (!task_ctx_data) {
4135 			err = -ENOMEM;
4136 			goto errout;
4137 		}
4138 	}
4139 
4140 retry:
4141 	ctx = perf_lock_task_context(task, ctxn, &flags);
4142 	if (ctx) {
4143 		clone_ctx = unclone_ctx(ctx);
4144 		++ctx->pin_count;
4145 
4146 		if (task_ctx_data && !ctx->task_ctx_data) {
4147 			ctx->task_ctx_data = task_ctx_data;
4148 			task_ctx_data = NULL;
4149 		}
4150 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151 
4152 		if (clone_ctx)
4153 			put_ctx(clone_ctx);
4154 	} else {
4155 		ctx = alloc_perf_context(pmu, task);
4156 		err = -ENOMEM;
4157 		if (!ctx)
4158 			goto errout;
4159 
4160 		if (task_ctx_data) {
4161 			ctx->task_ctx_data = task_ctx_data;
4162 			task_ctx_data = NULL;
4163 		}
4164 
4165 		err = 0;
4166 		mutex_lock(&task->perf_event_mutex);
4167 		/*
4168 		 * If it has already passed perf_event_exit_task().
4169 		 * we must see PF_EXITING, it takes this mutex too.
4170 		 */
4171 		if (task->flags & PF_EXITING)
4172 			err = -ESRCH;
4173 		else if (task->perf_event_ctxp[ctxn])
4174 			err = -EAGAIN;
4175 		else {
4176 			get_ctx(ctx);
4177 			++ctx->pin_count;
4178 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179 		}
4180 		mutex_unlock(&task->perf_event_mutex);
4181 
4182 		if (unlikely(err)) {
4183 			put_ctx(ctx);
4184 
4185 			if (err == -EAGAIN)
4186 				goto retry;
4187 			goto errout;
4188 		}
4189 	}
4190 
4191 	kfree(task_ctx_data);
4192 	return ctx;
4193 
4194 errout:
4195 	kfree(task_ctx_data);
4196 	return ERR_PTR(err);
4197 }
4198 
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4201 
4202 static void free_event_rcu(struct rcu_head *head)
4203 {
4204 	struct perf_event *event;
4205 
4206 	event = container_of(head, struct perf_event, rcu_head);
4207 	if (event->ns)
4208 		put_pid_ns(event->ns);
4209 	perf_event_free_filter(event);
4210 	kfree(event);
4211 }
4212 
4213 static void ring_buffer_attach(struct perf_event *event,
4214 			       struct ring_buffer *rb);
4215 
4216 static void detach_sb_event(struct perf_event *event)
4217 {
4218 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219 
4220 	raw_spin_lock(&pel->lock);
4221 	list_del_rcu(&event->sb_list);
4222 	raw_spin_unlock(&pel->lock);
4223 }
4224 
4225 static bool is_sb_event(struct perf_event *event)
4226 {
4227 	struct perf_event_attr *attr = &event->attr;
4228 
4229 	if (event->parent)
4230 		return false;
4231 
4232 	if (event->attach_state & PERF_ATTACH_TASK)
4233 		return false;
4234 
4235 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236 	    attr->comm || attr->comm_exec ||
4237 	    attr->task ||
4238 	    attr->context_switch)
4239 		return true;
4240 	return false;
4241 }
4242 
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4244 {
4245 	if (is_sb_event(event))
4246 		detach_sb_event(event);
4247 }
4248 
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250 {
4251 	if (event->parent)
4252 		return;
4253 
4254 	if (is_cgroup_event(event))
4255 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256 }
4257 
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4261 
4262 static void unaccount_freq_event_nohz(void)
4263 {
4264 #ifdef CONFIG_NO_HZ_FULL
4265 	spin_lock(&nr_freq_lock);
4266 	if (atomic_dec_and_test(&nr_freq_events))
4267 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268 	spin_unlock(&nr_freq_lock);
4269 #endif
4270 }
4271 
4272 static void unaccount_freq_event(void)
4273 {
4274 	if (tick_nohz_full_enabled())
4275 		unaccount_freq_event_nohz();
4276 	else
4277 		atomic_dec(&nr_freq_events);
4278 }
4279 
4280 static void unaccount_event(struct perf_event *event)
4281 {
4282 	bool dec = false;
4283 
4284 	if (event->parent)
4285 		return;
4286 
4287 	if (event->attach_state & PERF_ATTACH_TASK)
4288 		dec = true;
4289 	if (event->attr.mmap || event->attr.mmap_data)
4290 		atomic_dec(&nr_mmap_events);
4291 	if (event->attr.comm)
4292 		atomic_dec(&nr_comm_events);
4293 	if (event->attr.namespaces)
4294 		atomic_dec(&nr_namespaces_events);
4295 	if (event->attr.task)
4296 		atomic_dec(&nr_task_events);
4297 	if (event->attr.freq)
4298 		unaccount_freq_event();
4299 	if (event->attr.context_switch) {
4300 		dec = true;
4301 		atomic_dec(&nr_switch_events);
4302 	}
4303 	if (is_cgroup_event(event))
4304 		dec = true;
4305 	if (has_branch_stack(event))
4306 		dec = true;
4307 
4308 	if (dec) {
4309 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310 			schedule_delayed_work(&perf_sched_work, HZ);
4311 	}
4312 
4313 	unaccount_event_cpu(event, event->cpu);
4314 
4315 	unaccount_pmu_sb_event(event);
4316 }
4317 
4318 static void perf_sched_delayed(struct work_struct *work)
4319 {
4320 	mutex_lock(&perf_sched_mutex);
4321 	if (atomic_dec_and_test(&perf_sched_count))
4322 		static_branch_disable(&perf_sched_events);
4323 	mutex_unlock(&perf_sched_mutex);
4324 }
4325 
4326 /*
4327  * The following implement mutual exclusion of events on "exclusive" pmus
4328  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329  * at a time, so we disallow creating events that might conflict, namely:
4330  *
4331  *  1) cpu-wide events in the presence of per-task events,
4332  *  2) per-task events in the presence of cpu-wide events,
4333  *  3) two matching events on the same context.
4334  *
4335  * The former two cases are handled in the allocation path (perf_event_alloc(),
4336  * _free_event()), the latter -- before the first perf_install_in_context().
4337  */
4338 static int exclusive_event_init(struct perf_event *event)
4339 {
4340 	struct pmu *pmu = event->pmu;
4341 
4342 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343 		return 0;
4344 
4345 	/*
4346 	 * Prevent co-existence of per-task and cpu-wide events on the
4347 	 * same exclusive pmu.
4348 	 *
4349 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4350 	 * events on this "exclusive" pmu, positive means there are
4351 	 * per-task events.
4352 	 *
4353 	 * Since this is called in perf_event_alloc() path, event::ctx
4354 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355 	 * to mean "per-task event", because unlike other attach states it
4356 	 * never gets cleared.
4357 	 */
4358 	if (event->attach_state & PERF_ATTACH_TASK) {
4359 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360 			return -EBUSY;
4361 	} else {
4362 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363 			return -EBUSY;
4364 	}
4365 
4366 	return 0;
4367 }
4368 
4369 static void exclusive_event_destroy(struct perf_event *event)
4370 {
4371 	struct pmu *pmu = event->pmu;
4372 
4373 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374 		return;
4375 
4376 	/* see comment in exclusive_event_init() */
4377 	if (event->attach_state & PERF_ATTACH_TASK)
4378 		atomic_dec(&pmu->exclusive_cnt);
4379 	else
4380 		atomic_inc(&pmu->exclusive_cnt);
4381 }
4382 
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384 {
4385 	if ((e1->pmu == e2->pmu) &&
4386 	    (e1->cpu == e2->cpu ||
4387 	     e1->cpu == -1 ||
4388 	     e2->cpu == -1))
4389 		return true;
4390 	return false;
4391 }
4392 
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395 					struct perf_event_context *ctx)
4396 {
4397 	struct perf_event *iter_event;
4398 	struct pmu *pmu = event->pmu;
4399 
4400 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401 		return true;
4402 
4403 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404 		if (exclusive_event_match(iter_event, event))
4405 			return false;
4406 	}
4407 
4408 	return true;
4409 }
4410 
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412 				       struct list_head *head);
4413 
4414 static void _free_event(struct perf_event *event)
4415 {
4416 	irq_work_sync(&event->pending);
4417 
4418 	unaccount_event(event);
4419 
4420 	if (event->rb) {
4421 		/*
4422 		 * Can happen when we close an event with re-directed output.
4423 		 *
4424 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4425 		 * over us; possibly making our ring_buffer_put() the last.
4426 		 */
4427 		mutex_lock(&event->mmap_mutex);
4428 		ring_buffer_attach(event, NULL);
4429 		mutex_unlock(&event->mmap_mutex);
4430 	}
4431 
4432 	if (is_cgroup_event(event))
4433 		perf_detach_cgroup(event);
4434 
4435 	if (!event->parent) {
4436 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437 			put_callchain_buffers();
4438 	}
4439 
4440 	perf_event_free_bpf_prog(event);
4441 	perf_addr_filters_splice(event, NULL);
4442 	kfree(event->addr_filters_offs);
4443 
4444 	if (event->destroy)
4445 		event->destroy(event);
4446 
4447 	if (event->ctx)
4448 		put_ctx(event->ctx);
4449 
4450 	exclusive_event_destroy(event);
4451 	module_put(event->pmu->module);
4452 
4453 	call_rcu(&event->rcu_head, free_event_rcu);
4454 }
4455 
4456 /*
4457  * Used to free events which have a known refcount of 1, such as in error paths
4458  * where the event isn't exposed yet and inherited events.
4459  */
4460 static void free_event(struct perf_event *event)
4461 {
4462 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4463 				"unexpected event refcount: %ld; ptr=%p\n",
4464 				atomic_long_read(&event->refcount), event)) {
4465 		/* leak to avoid use-after-free */
4466 		return;
4467 	}
4468 
4469 	_free_event(event);
4470 }
4471 
4472 /*
4473  * Remove user event from the owner task.
4474  */
4475 static void perf_remove_from_owner(struct perf_event *event)
4476 {
4477 	struct task_struct *owner;
4478 
4479 	rcu_read_lock();
4480 	/*
4481 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4482 	 * observe !owner it means the list deletion is complete and we can
4483 	 * indeed free this event, otherwise we need to serialize on
4484 	 * owner->perf_event_mutex.
4485 	 */
4486 	owner = READ_ONCE(event->owner);
4487 	if (owner) {
4488 		/*
4489 		 * Since delayed_put_task_struct() also drops the last
4490 		 * task reference we can safely take a new reference
4491 		 * while holding the rcu_read_lock().
4492 		 */
4493 		get_task_struct(owner);
4494 	}
4495 	rcu_read_unlock();
4496 
4497 	if (owner) {
4498 		/*
4499 		 * If we're here through perf_event_exit_task() we're already
4500 		 * holding ctx->mutex which would be an inversion wrt. the
4501 		 * normal lock order.
4502 		 *
4503 		 * However we can safely take this lock because its the child
4504 		 * ctx->mutex.
4505 		 */
4506 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4507 
4508 		/*
4509 		 * We have to re-check the event->owner field, if it is cleared
4510 		 * we raced with perf_event_exit_task(), acquiring the mutex
4511 		 * ensured they're done, and we can proceed with freeing the
4512 		 * event.
4513 		 */
4514 		if (event->owner) {
4515 			list_del_init(&event->owner_entry);
4516 			smp_store_release(&event->owner, NULL);
4517 		}
4518 		mutex_unlock(&owner->perf_event_mutex);
4519 		put_task_struct(owner);
4520 	}
4521 }
4522 
4523 static void put_event(struct perf_event *event)
4524 {
4525 	if (!atomic_long_dec_and_test(&event->refcount))
4526 		return;
4527 
4528 	_free_event(event);
4529 }
4530 
4531 /*
4532  * Kill an event dead; while event:refcount will preserve the event
4533  * object, it will not preserve its functionality. Once the last 'user'
4534  * gives up the object, we'll destroy the thing.
4535  */
4536 int perf_event_release_kernel(struct perf_event *event)
4537 {
4538 	struct perf_event_context *ctx = event->ctx;
4539 	struct perf_event *child, *tmp;
4540 	LIST_HEAD(free_list);
4541 
4542 	/*
4543 	 * If we got here through err_file: fput(event_file); we will not have
4544 	 * attached to a context yet.
4545 	 */
4546 	if (!ctx) {
4547 		WARN_ON_ONCE(event->attach_state &
4548 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4549 		goto no_ctx;
4550 	}
4551 
4552 	if (!is_kernel_event(event))
4553 		perf_remove_from_owner(event);
4554 
4555 	ctx = perf_event_ctx_lock(event);
4556 	WARN_ON_ONCE(ctx->parent_ctx);
4557 	perf_remove_from_context(event, DETACH_GROUP);
4558 
4559 	raw_spin_lock_irq(&ctx->lock);
4560 	/*
4561 	 * Mark this event as STATE_DEAD, there is no external reference to it
4562 	 * anymore.
4563 	 *
4564 	 * Anybody acquiring event->child_mutex after the below loop _must_
4565 	 * also see this, most importantly inherit_event() which will avoid
4566 	 * placing more children on the list.
4567 	 *
4568 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4569 	 * child events.
4570 	 */
4571 	event->state = PERF_EVENT_STATE_DEAD;
4572 	raw_spin_unlock_irq(&ctx->lock);
4573 
4574 	perf_event_ctx_unlock(event, ctx);
4575 
4576 again:
4577 	mutex_lock(&event->child_mutex);
4578 	list_for_each_entry(child, &event->child_list, child_list) {
4579 
4580 		/*
4581 		 * Cannot change, child events are not migrated, see the
4582 		 * comment with perf_event_ctx_lock_nested().
4583 		 */
4584 		ctx = READ_ONCE(child->ctx);
4585 		/*
4586 		 * Since child_mutex nests inside ctx::mutex, we must jump
4587 		 * through hoops. We start by grabbing a reference on the ctx.
4588 		 *
4589 		 * Since the event cannot get freed while we hold the
4590 		 * child_mutex, the context must also exist and have a !0
4591 		 * reference count.
4592 		 */
4593 		get_ctx(ctx);
4594 
4595 		/*
4596 		 * Now that we have a ctx ref, we can drop child_mutex, and
4597 		 * acquire ctx::mutex without fear of it going away. Then we
4598 		 * can re-acquire child_mutex.
4599 		 */
4600 		mutex_unlock(&event->child_mutex);
4601 		mutex_lock(&ctx->mutex);
4602 		mutex_lock(&event->child_mutex);
4603 
4604 		/*
4605 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4606 		 * state, if child is still the first entry, it didn't get freed
4607 		 * and we can continue doing so.
4608 		 */
4609 		tmp = list_first_entry_or_null(&event->child_list,
4610 					       struct perf_event, child_list);
4611 		if (tmp == child) {
4612 			perf_remove_from_context(child, DETACH_GROUP);
4613 			list_move(&child->child_list, &free_list);
4614 			/*
4615 			 * This matches the refcount bump in inherit_event();
4616 			 * this can't be the last reference.
4617 			 */
4618 			put_event(event);
4619 		}
4620 
4621 		mutex_unlock(&event->child_mutex);
4622 		mutex_unlock(&ctx->mutex);
4623 		put_ctx(ctx);
4624 		goto again;
4625 	}
4626 	mutex_unlock(&event->child_mutex);
4627 
4628 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4629 		list_del(&child->child_list);
4630 		free_event(child);
4631 	}
4632 
4633 no_ctx:
4634 	put_event(event); /* Must be the 'last' reference */
4635 	return 0;
4636 }
4637 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4638 
4639 /*
4640  * Called when the last reference to the file is gone.
4641  */
4642 static int perf_release(struct inode *inode, struct file *file)
4643 {
4644 	perf_event_release_kernel(file->private_data);
4645 	return 0;
4646 }
4647 
4648 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4649 {
4650 	struct perf_event *child;
4651 	u64 total = 0;
4652 
4653 	*enabled = 0;
4654 	*running = 0;
4655 
4656 	mutex_lock(&event->child_mutex);
4657 
4658 	(void)perf_event_read(event, false);
4659 	total += perf_event_count(event);
4660 
4661 	*enabled += event->total_time_enabled +
4662 			atomic64_read(&event->child_total_time_enabled);
4663 	*running += event->total_time_running +
4664 			atomic64_read(&event->child_total_time_running);
4665 
4666 	list_for_each_entry(child, &event->child_list, child_list) {
4667 		(void)perf_event_read(child, false);
4668 		total += perf_event_count(child);
4669 		*enabled += child->total_time_enabled;
4670 		*running += child->total_time_running;
4671 	}
4672 	mutex_unlock(&event->child_mutex);
4673 
4674 	return total;
4675 }
4676 
4677 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4678 {
4679 	struct perf_event_context *ctx;
4680 	u64 count;
4681 
4682 	ctx = perf_event_ctx_lock(event);
4683 	count = __perf_event_read_value(event, enabled, running);
4684 	perf_event_ctx_unlock(event, ctx);
4685 
4686 	return count;
4687 }
4688 EXPORT_SYMBOL_GPL(perf_event_read_value);
4689 
4690 static int __perf_read_group_add(struct perf_event *leader,
4691 					u64 read_format, u64 *values)
4692 {
4693 	struct perf_event_context *ctx = leader->ctx;
4694 	struct perf_event *sub;
4695 	unsigned long flags;
4696 	int n = 1; /* skip @nr */
4697 	int ret;
4698 
4699 	ret = perf_event_read(leader, true);
4700 	if (ret)
4701 		return ret;
4702 
4703 	raw_spin_lock_irqsave(&ctx->lock, flags);
4704 
4705 	/*
4706 	 * Since we co-schedule groups, {enabled,running} times of siblings
4707 	 * will be identical to those of the leader, so we only publish one
4708 	 * set.
4709 	 */
4710 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4711 		values[n++] += leader->total_time_enabled +
4712 			atomic64_read(&leader->child_total_time_enabled);
4713 	}
4714 
4715 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4716 		values[n++] += leader->total_time_running +
4717 			atomic64_read(&leader->child_total_time_running);
4718 	}
4719 
4720 	/*
4721 	 * Write {count,id} tuples for every sibling.
4722 	 */
4723 	values[n++] += perf_event_count(leader);
4724 	if (read_format & PERF_FORMAT_ID)
4725 		values[n++] = primary_event_id(leader);
4726 
4727 	for_each_sibling_event(sub, leader) {
4728 		values[n++] += perf_event_count(sub);
4729 		if (read_format & PERF_FORMAT_ID)
4730 			values[n++] = primary_event_id(sub);
4731 	}
4732 
4733 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4734 	return 0;
4735 }
4736 
4737 static int perf_read_group(struct perf_event *event,
4738 				   u64 read_format, char __user *buf)
4739 {
4740 	struct perf_event *leader = event->group_leader, *child;
4741 	struct perf_event_context *ctx = leader->ctx;
4742 	int ret;
4743 	u64 *values;
4744 
4745 	lockdep_assert_held(&ctx->mutex);
4746 
4747 	values = kzalloc(event->read_size, GFP_KERNEL);
4748 	if (!values)
4749 		return -ENOMEM;
4750 
4751 	values[0] = 1 + leader->nr_siblings;
4752 
4753 	/*
4754 	 * By locking the child_mutex of the leader we effectively
4755 	 * lock the child list of all siblings.. XXX explain how.
4756 	 */
4757 	mutex_lock(&leader->child_mutex);
4758 
4759 	ret = __perf_read_group_add(leader, read_format, values);
4760 	if (ret)
4761 		goto unlock;
4762 
4763 	list_for_each_entry(child, &leader->child_list, child_list) {
4764 		ret = __perf_read_group_add(child, read_format, values);
4765 		if (ret)
4766 			goto unlock;
4767 	}
4768 
4769 	mutex_unlock(&leader->child_mutex);
4770 
4771 	ret = event->read_size;
4772 	if (copy_to_user(buf, values, event->read_size))
4773 		ret = -EFAULT;
4774 	goto out;
4775 
4776 unlock:
4777 	mutex_unlock(&leader->child_mutex);
4778 out:
4779 	kfree(values);
4780 	return ret;
4781 }
4782 
4783 static int perf_read_one(struct perf_event *event,
4784 				 u64 read_format, char __user *buf)
4785 {
4786 	u64 enabled, running;
4787 	u64 values[4];
4788 	int n = 0;
4789 
4790 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4791 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4792 		values[n++] = enabled;
4793 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4794 		values[n++] = running;
4795 	if (read_format & PERF_FORMAT_ID)
4796 		values[n++] = primary_event_id(event);
4797 
4798 	if (copy_to_user(buf, values, n * sizeof(u64)))
4799 		return -EFAULT;
4800 
4801 	return n * sizeof(u64);
4802 }
4803 
4804 static bool is_event_hup(struct perf_event *event)
4805 {
4806 	bool no_children;
4807 
4808 	if (event->state > PERF_EVENT_STATE_EXIT)
4809 		return false;
4810 
4811 	mutex_lock(&event->child_mutex);
4812 	no_children = list_empty(&event->child_list);
4813 	mutex_unlock(&event->child_mutex);
4814 	return no_children;
4815 }
4816 
4817 /*
4818  * Read the performance event - simple non blocking version for now
4819  */
4820 static ssize_t
4821 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4822 {
4823 	u64 read_format = event->attr.read_format;
4824 	int ret;
4825 
4826 	/*
4827 	 * Return end-of-file for a read on a event that is in
4828 	 * error state (i.e. because it was pinned but it couldn't be
4829 	 * scheduled on to the CPU at some point).
4830 	 */
4831 	if (event->state == PERF_EVENT_STATE_ERROR)
4832 		return 0;
4833 
4834 	if (count < event->read_size)
4835 		return -ENOSPC;
4836 
4837 	WARN_ON_ONCE(event->ctx->parent_ctx);
4838 	if (read_format & PERF_FORMAT_GROUP)
4839 		ret = perf_read_group(event, read_format, buf);
4840 	else
4841 		ret = perf_read_one(event, read_format, buf);
4842 
4843 	return ret;
4844 }
4845 
4846 static ssize_t
4847 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4848 {
4849 	struct perf_event *event = file->private_data;
4850 	struct perf_event_context *ctx;
4851 	int ret;
4852 
4853 	ctx = perf_event_ctx_lock(event);
4854 	ret = __perf_read(event, buf, count);
4855 	perf_event_ctx_unlock(event, ctx);
4856 
4857 	return ret;
4858 }
4859 
4860 static __poll_t perf_poll(struct file *file, poll_table *wait)
4861 {
4862 	struct perf_event *event = file->private_data;
4863 	struct ring_buffer *rb;
4864 	__poll_t events = EPOLLHUP;
4865 
4866 	poll_wait(file, &event->waitq, wait);
4867 
4868 	if (is_event_hup(event))
4869 		return events;
4870 
4871 	/*
4872 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4873 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4874 	 */
4875 	mutex_lock(&event->mmap_mutex);
4876 	rb = event->rb;
4877 	if (rb)
4878 		events = atomic_xchg(&rb->poll, 0);
4879 	mutex_unlock(&event->mmap_mutex);
4880 	return events;
4881 }
4882 
4883 static void _perf_event_reset(struct perf_event *event)
4884 {
4885 	(void)perf_event_read(event, false);
4886 	local64_set(&event->count, 0);
4887 	perf_event_update_userpage(event);
4888 }
4889 
4890 /*
4891  * Holding the top-level event's child_mutex means that any
4892  * descendant process that has inherited this event will block
4893  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4894  * task existence requirements of perf_event_enable/disable.
4895  */
4896 static void perf_event_for_each_child(struct perf_event *event,
4897 					void (*func)(struct perf_event *))
4898 {
4899 	struct perf_event *child;
4900 
4901 	WARN_ON_ONCE(event->ctx->parent_ctx);
4902 
4903 	mutex_lock(&event->child_mutex);
4904 	func(event);
4905 	list_for_each_entry(child, &event->child_list, child_list)
4906 		func(child);
4907 	mutex_unlock(&event->child_mutex);
4908 }
4909 
4910 static void perf_event_for_each(struct perf_event *event,
4911 				  void (*func)(struct perf_event *))
4912 {
4913 	struct perf_event_context *ctx = event->ctx;
4914 	struct perf_event *sibling;
4915 
4916 	lockdep_assert_held(&ctx->mutex);
4917 
4918 	event = event->group_leader;
4919 
4920 	perf_event_for_each_child(event, func);
4921 	for_each_sibling_event(sibling, event)
4922 		perf_event_for_each_child(sibling, func);
4923 }
4924 
4925 static void __perf_event_period(struct perf_event *event,
4926 				struct perf_cpu_context *cpuctx,
4927 				struct perf_event_context *ctx,
4928 				void *info)
4929 {
4930 	u64 value = *((u64 *)info);
4931 	bool active;
4932 
4933 	if (event->attr.freq) {
4934 		event->attr.sample_freq = value;
4935 	} else {
4936 		event->attr.sample_period = value;
4937 		event->hw.sample_period = value;
4938 	}
4939 
4940 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4941 	if (active) {
4942 		perf_pmu_disable(ctx->pmu);
4943 		/*
4944 		 * We could be throttled; unthrottle now to avoid the tick
4945 		 * trying to unthrottle while we already re-started the event.
4946 		 */
4947 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4948 			event->hw.interrupts = 0;
4949 			perf_log_throttle(event, 1);
4950 		}
4951 		event->pmu->stop(event, PERF_EF_UPDATE);
4952 	}
4953 
4954 	local64_set(&event->hw.period_left, 0);
4955 
4956 	if (active) {
4957 		event->pmu->start(event, PERF_EF_RELOAD);
4958 		perf_pmu_enable(ctx->pmu);
4959 	}
4960 }
4961 
4962 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4963 {
4964 	u64 value;
4965 
4966 	if (!is_sampling_event(event))
4967 		return -EINVAL;
4968 
4969 	if (copy_from_user(&value, arg, sizeof(value)))
4970 		return -EFAULT;
4971 
4972 	if (!value)
4973 		return -EINVAL;
4974 
4975 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4976 		return -EINVAL;
4977 
4978 	event_function_call(event, __perf_event_period, &value);
4979 
4980 	return 0;
4981 }
4982 
4983 static const struct file_operations perf_fops;
4984 
4985 static inline int perf_fget_light(int fd, struct fd *p)
4986 {
4987 	struct fd f = fdget(fd);
4988 	if (!f.file)
4989 		return -EBADF;
4990 
4991 	if (f.file->f_op != &perf_fops) {
4992 		fdput(f);
4993 		return -EBADF;
4994 	}
4995 	*p = f;
4996 	return 0;
4997 }
4998 
4999 static int perf_event_set_output(struct perf_event *event,
5000 				 struct perf_event *output_event);
5001 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5002 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5003 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5004 			  struct perf_event_attr *attr);
5005 
5006 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5007 {
5008 	void (*func)(struct perf_event *);
5009 	u32 flags = arg;
5010 
5011 	switch (cmd) {
5012 	case PERF_EVENT_IOC_ENABLE:
5013 		func = _perf_event_enable;
5014 		break;
5015 	case PERF_EVENT_IOC_DISABLE:
5016 		func = _perf_event_disable;
5017 		break;
5018 	case PERF_EVENT_IOC_RESET:
5019 		func = _perf_event_reset;
5020 		break;
5021 
5022 	case PERF_EVENT_IOC_REFRESH:
5023 		return _perf_event_refresh(event, arg);
5024 
5025 	case PERF_EVENT_IOC_PERIOD:
5026 		return perf_event_period(event, (u64 __user *)arg);
5027 
5028 	case PERF_EVENT_IOC_ID:
5029 	{
5030 		u64 id = primary_event_id(event);
5031 
5032 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5033 			return -EFAULT;
5034 		return 0;
5035 	}
5036 
5037 	case PERF_EVENT_IOC_SET_OUTPUT:
5038 	{
5039 		int ret;
5040 		if (arg != -1) {
5041 			struct perf_event *output_event;
5042 			struct fd output;
5043 			ret = perf_fget_light(arg, &output);
5044 			if (ret)
5045 				return ret;
5046 			output_event = output.file->private_data;
5047 			ret = perf_event_set_output(event, output_event);
5048 			fdput(output);
5049 		} else {
5050 			ret = perf_event_set_output(event, NULL);
5051 		}
5052 		return ret;
5053 	}
5054 
5055 	case PERF_EVENT_IOC_SET_FILTER:
5056 		return perf_event_set_filter(event, (void __user *)arg);
5057 
5058 	case PERF_EVENT_IOC_SET_BPF:
5059 		return perf_event_set_bpf_prog(event, arg);
5060 
5061 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5062 		struct ring_buffer *rb;
5063 
5064 		rcu_read_lock();
5065 		rb = rcu_dereference(event->rb);
5066 		if (!rb || !rb->nr_pages) {
5067 			rcu_read_unlock();
5068 			return -EINVAL;
5069 		}
5070 		rb_toggle_paused(rb, !!arg);
5071 		rcu_read_unlock();
5072 		return 0;
5073 	}
5074 
5075 	case PERF_EVENT_IOC_QUERY_BPF:
5076 		return perf_event_query_prog_array(event, (void __user *)arg);
5077 
5078 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5079 		struct perf_event_attr new_attr;
5080 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5081 					 &new_attr);
5082 
5083 		if (err)
5084 			return err;
5085 
5086 		return perf_event_modify_attr(event,  &new_attr);
5087 	}
5088 	default:
5089 		return -ENOTTY;
5090 	}
5091 
5092 	if (flags & PERF_IOC_FLAG_GROUP)
5093 		perf_event_for_each(event, func);
5094 	else
5095 		perf_event_for_each_child(event, func);
5096 
5097 	return 0;
5098 }
5099 
5100 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5101 {
5102 	struct perf_event *event = file->private_data;
5103 	struct perf_event_context *ctx;
5104 	long ret;
5105 
5106 	ctx = perf_event_ctx_lock(event);
5107 	ret = _perf_ioctl(event, cmd, arg);
5108 	perf_event_ctx_unlock(event, ctx);
5109 
5110 	return ret;
5111 }
5112 
5113 #ifdef CONFIG_COMPAT
5114 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5115 				unsigned long arg)
5116 {
5117 	switch (_IOC_NR(cmd)) {
5118 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5119 	case _IOC_NR(PERF_EVENT_IOC_ID):
5120 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5121 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5122 			cmd &= ~IOCSIZE_MASK;
5123 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5124 		}
5125 		break;
5126 	}
5127 	return perf_ioctl(file, cmd, arg);
5128 }
5129 #else
5130 # define perf_compat_ioctl NULL
5131 #endif
5132 
5133 int perf_event_task_enable(void)
5134 {
5135 	struct perf_event_context *ctx;
5136 	struct perf_event *event;
5137 
5138 	mutex_lock(&current->perf_event_mutex);
5139 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5140 		ctx = perf_event_ctx_lock(event);
5141 		perf_event_for_each_child(event, _perf_event_enable);
5142 		perf_event_ctx_unlock(event, ctx);
5143 	}
5144 	mutex_unlock(&current->perf_event_mutex);
5145 
5146 	return 0;
5147 }
5148 
5149 int perf_event_task_disable(void)
5150 {
5151 	struct perf_event_context *ctx;
5152 	struct perf_event *event;
5153 
5154 	mutex_lock(&current->perf_event_mutex);
5155 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5156 		ctx = perf_event_ctx_lock(event);
5157 		perf_event_for_each_child(event, _perf_event_disable);
5158 		perf_event_ctx_unlock(event, ctx);
5159 	}
5160 	mutex_unlock(&current->perf_event_mutex);
5161 
5162 	return 0;
5163 }
5164 
5165 static int perf_event_index(struct perf_event *event)
5166 {
5167 	if (event->hw.state & PERF_HES_STOPPED)
5168 		return 0;
5169 
5170 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5171 		return 0;
5172 
5173 	return event->pmu->event_idx(event);
5174 }
5175 
5176 static void calc_timer_values(struct perf_event *event,
5177 				u64 *now,
5178 				u64 *enabled,
5179 				u64 *running)
5180 {
5181 	u64 ctx_time;
5182 
5183 	*now = perf_clock();
5184 	ctx_time = event->shadow_ctx_time + *now;
5185 	__perf_update_times(event, ctx_time, enabled, running);
5186 }
5187 
5188 static void perf_event_init_userpage(struct perf_event *event)
5189 {
5190 	struct perf_event_mmap_page *userpg;
5191 	struct ring_buffer *rb;
5192 
5193 	rcu_read_lock();
5194 	rb = rcu_dereference(event->rb);
5195 	if (!rb)
5196 		goto unlock;
5197 
5198 	userpg = rb->user_page;
5199 
5200 	/* Allow new userspace to detect that bit 0 is deprecated */
5201 	userpg->cap_bit0_is_deprecated = 1;
5202 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5203 	userpg->data_offset = PAGE_SIZE;
5204 	userpg->data_size = perf_data_size(rb);
5205 
5206 unlock:
5207 	rcu_read_unlock();
5208 }
5209 
5210 void __weak arch_perf_update_userpage(
5211 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5212 {
5213 }
5214 
5215 /*
5216  * Callers need to ensure there can be no nesting of this function, otherwise
5217  * the seqlock logic goes bad. We can not serialize this because the arch
5218  * code calls this from NMI context.
5219  */
5220 void perf_event_update_userpage(struct perf_event *event)
5221 {
5222 	struct perf_event_mmap_page *userpg;
5223 	struct ring_buffer *rb;
5224 	u64 enabled, running, now;
5225 
5226 	rcu_read_lock();
5227 	rb = rcu_dereference(event->rb);
5228 	if (!rb)
5229 		goto unlock;
5230 
5231 	/*
5232 	 * compute total_time_enabled, total_time_running
5233 	 * based on snapshot values taken when the event
5234 	 * was last scheduled in.
5235 	 *
5236 	 * we cannot simply called update_context_time()
5237 	 * because of locking issue as we can be called in
5238 	 * NMI context
5239 	 */
5240 	calc_timer_values(event, &now, &enabled, &running);
5241 
5242 	userpg = rb->user_page;
5243 	/*
5244 	 * Disable preemption so as to not let the corresponding user-space
5245 	 * spin too long if we get preempted.
5246 	 */
5247 	preempt_disable();
5248 	++userpg->lock;
5249 	barrier();
5250 	userpg->index = perf_event_index(event);
5251 	userpg->offset = perf_event_count(event);
5252 	if (userpg->index)
5253 		userpg->offset -= local64_read(&event->hw.prev_count);
5254 
5255 	userpg->time_enabled = enabled +
5256 			atomic64_read(&event->child_total_time_enabled);
5257 
5258 	userpg->time_running = running +
5259 			atomic64_read(&event->child_total_time_running);
5260 
5261 	arch_perf_update_userpage(event, userpg, now);
5262 
5263 	barrier();
5264 	++userpg->lock;
5265 	preempt_enable();
5266 unlock:
5267 	rcu_read_unlock();
5268 }
5269 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5270 
5271 static int perf_mmap_fault(struct vm_fault *vmf)
5272 {
5273 	struct perf_event *event = vmf->vma->vm_file->private_data;
5274 	struct ring_buffer *rb;
5275 	int ret = VM_FAULT_SIGBUS;
5276 
5277 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5278 		if (vmf->pgoff == 0)
5279 			ret = 0;
5280 		return ret;
5281 	}
5282 
5283 	rcu_read_lock();
5284 	rb = rcu_dereference(event->rb);
5285 	if (!rb)
5286 		goto unlock;
5287 
5288 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5289 		goto unlock;
5290 
5291 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5292 	if (!vmf->page)
5293 		goto unlock;
5294 
5295 	get_page(vmf->page);
5296 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5297 	vmf->page->index   = vmf->pgoff;
5298 
5299 	ret = 0;
5300 unlock:
5301 	rcu_read_unlock();
5302 
5303 	return ret;
5304 }
5305 
5306 static void ring_buffer_attach(struct perf_event *event,
5307 			       struct ring_buffer *rb)
5308 {
5309 	struct ring_buffer *old_rb = NULL;
5310 	unsigned long flags;
5311 
5312 	if (event->rb) {
5313 		/*
5314 		 * Should be impossible, we set this when removing
5315 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5316 		 */
5317 		WARN_ON_ONCE(event->rcu_pending);
5318 
5319 		old_rb = event->rb;
5320 		spin_lock_irqsave(&old_rb->event_lock, flags);
5321 		list_del_rcu(&event->rb_entry);
5322 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5323 
5324 		event->rcu_batches = get_state_synchronize_rcu();
5325 		event->rcu_pending = 1;
5326 	}
5327 
5328 	if (rb) {
5329 		if (event->rcu_pending) {
5330 			cond_synchronize_rcu(event->rcu_batches);
5331 			event->rcu_pending = 0;
5332 		}
5333 
5334 		spin_lock_irqsave(&rb->event_lock, flags);
5335 		list_add_rcu(&event->rb_entry, &rb->event_list);
5336 		spin_unlock_irqrestore(&rb->event_lock, flags);
5337 	}
5338 
5339 	/*
5340 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5341 	 * before swizzling the event::rb pointer; if it's getting
5342 	 * unmapped, its aux_mmap_count will be 0 and it won't
5343 	 * restart. See the comment in __perf_pmu_output_stop().
5344 	 *
5345 	 * Data will inevitably be lost when set_output is done in
5346 	 * mid-air, but then again, whoever does it like this is
5347 	 * not in for the data anyway.
5348 	 */
5349 	if (has_aux(event))
5350 		perf_event_stop(event, 0);
5351 
5352 	rcu_assign_pointer(event->rb, rb);
5353 
5354 	if (old_rb) {
5355 		ring_buffer_put(old_rb);
5356 		/*
5357 		 * Since we detached before setting the new rb, so that we
5358 		 * could attach the new rb, we could have missed a wakeup.
5359 		 * Provide it now.
5360 		 */
5361 		wake_up_all(&event->waitq);
5362 	}
5363 }
5364 
5365 static void ring_buffer_wakeup(struct perf_event *event)
5366 {
5367 	struct ring_buffer *rb;
5368 
5369 	rcu_read_lock();
5370 	rb = rcu_dereference(event->rb);
5371 	if (rb) {
5372 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5373 			wake_up_all(&event->waitq);
5374 	}
5375 	rcu_read_unlock();
5376 }
5377 
5378 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5379 {
5380 	struct ring_buffer *rb;
5381 
5382 	rcu_read_lock();
5383 	rb = rcu_dereference(event->rb);
5384 	if (rb) {
5385 		if (!atomic_inc_not_zero(&rb->refcount))
5386 			rb = NULL;
5387 	}
5388 	rcu_read_unlock();
5389 
5390 	return rb;
5391 }
5392 
5393 void ring_buffer_put(struct ring_buffer *rb)
5394 {
5395 	if (!atomic_dec_and_test(&rb->refcount))
5396 		return;
5397 
5398 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5399 
5400 	call_rcu(&rb->rcu_head, rb_free_rcu);
5401 }
5402 
5403 static void perf_mmap_open(struct vm_area_struct *vma)
5404 {
5405 	struct perf_event *event = vma->vm_file->private_data;
5406 
5407 	atomic_inc(&event->mmap_count);
5408 	atomic_inc(&event->rb->mmap_count);
5409 
5410 	if (vma->vm_pgoff)
5411 		atomic_inc(&event->rb->aux_mmap_count);
5412 
5413 	if (event->pmu->event_mapped)
5414 		event->pmu->event_mapped(event, vma->vm_mm);
5415 }
5416 
5417 static void perf_pmu_output_stop(struct perf_event *event);
5418 
5419 /*
5420  * A buffer can be mmap()ed multiple times; either directly through the same
5421  * event, or through other events by use of perf_event_set_output().
5422  *
5423  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5424  * the buffer here, where we still have a VM context. This means we need
5425  * to detach all events redirecting to us.
5426  */
5427 static void perf_mmap_close(struct vm_area_struct *vma)
5428 {
5429 	struct perf_event *event = vma->vm_file->private_data;
5430 
5431 	struct ring_buffer *rb = ring_buffer_get(event);
5432 	struct user_struct *mmap_user = rb->mmap_user;
5433 	int mmap_locked = rb->mmap_locked;
5434 	unsigned long size = perf_data_size(rb);
5435 
5436 	if (event->pmu->event_unmapped)
5437 		event->pmu->event_unmapped(event, vma->vm_mm);
5438 
5439 	/*
5440 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5441 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5442 	 * serialize with perf_mmap here.
5443 	 */
5444 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5445 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5446 		/*
5447 		 * Stop all AUX events that are writing to this buffer,
5448 		 * so that we can free its AUX pages and corresponding PMU
5449 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5450 		 * they won't start any more (see perf_aux_output_begin()).
5451 		 */
5452 		perf_pmu_output_stop(event);
5453 
5454 		/* now it's safe to free the pages */
5455 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5456 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5457 
5458 		/* this has to be the last one */
5459 		rb_free_aux(rb);
5460 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5461 
5462 		mutex_unlock(&event->mmap_mutex);
5463 	}
5464 
5465 	atomic_dec(&rb->mmap_count);
5466 
5467 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5468 		goto out_put;
5469 
5470 	ring_buffer_attach(event, NULL);
5471 	mutex_unlock(&event->mmap_mutex);
5472 
5473 	/* If there's still other mmap()s of this buffer, we're done. */
5474 	if (atomic_read(&rb->mmap_count))
5475 		goto out_put;
5476 
5477 	/*
5478 	 * No other mmap()s, detach from all other events that might redirect
5479 	 * into the now unreachable buffer. Somewhat complicated by the
5480 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5481 	 */
5482 again:
5483 	rcu_read_lock();
5484 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5485 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5486 			/*
5487 			 * This event is en-route to free_event() which will
5488 			 * detach it and remove it from the list.
5489 			 */
5490 			continue;
5491 		}
5492 		rcu_read_unlock();
5493 
5494 		mutex_lock(&event->mmap_mutex);
5495 		/*
5496 		 * Check we didn't race with perf_event_set_output() which can
5497 		 * swizzle the rb from under us while we were waiting to
5498 		 * acquire mmap_mutex.
5499 		 *
5500 		 * If we find a different rb; ignore this event, a next
5501 		 * iteration will no longer find it on the list. We have to
5502 		 * still restart the iteration to make sure we're not now
5503 		 * iterating the wrong list.
5504 		 */
5505 		if (event->rb == rb)
5506 			ring_buffer_attach(event, NULL);
5507 
5508 		mutex_unlock(&event->mmap_mutex);
5509 		put_event(event);
5510 
5511 		/*
5512 		 * Restart the iteration; either we're on the wrong list or
5513 		 * destroyed its integrity by doing a deletion.
5514 		 */
5515 		goto again;
5516 	}
5517 	rcu_read_unlock();
5518 
5519 	/*
5520 	 * It could be there's still a few 0-ref events on the list; they'll
5521 	 * get cleaned up by free_event() -- they'll also still have their
5522 	 * ref on the rb and will free it whenever they are done with it.
5523 	 *
5524 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5525 	 * undo the VM accounting.
5526 	 */
5527 
5528 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5529 	vma->vm_mm->pinned_vm -= mmap_locked;
5530 	free_uid(mmap_user);
5531 
5532 out_put:
5533 	ring_buffer_put(rb); /* could be last */
5534 }
5535 
5536 static const struct vm_operations_struct perf_mmap_vmops = {
5537 	.open		= perf_mmap_open,
5538 	.close		= perf_mmap_close, /* non mergable */
5539 	.fault		= perf_mmap_fault,
5540 	.page_mkwrite	= perf_mmap_fault,
5541 };
5542 
5543 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5544 {
5545 	struct perf_event *event = file->private_data;
5546 	unsigned long user_locked, user_lock_limit;
5547 	struct user_struct *user = current_user();
5548 	unsigned long locked, lock_limit;
5549 	struct ring_buffer *rb = NULL;
5550 	unsigned long vma_size;
5551 	unsigned long nr_pages;
5552 	long user_extra = 0, extra = 0;
5553 	int ret = 0, flags = 0;
5554 
5555 	/*
5556 	 * Don't allow mmap() of inherited per-task counters. This would
5557 	 * create a performance issue due to all children writing to the
5558 	 * same rb.
5559 	 */
5560 	if (event->cpu == -1 && event->attr.inherit)
5561 		return -EINVAL;
5562 
5563 	if (!(vma->vm_flags & VM_SHARED))
5564 		return -EINVAL;
5565 
5566 	vma_size = vma->vm_end - vma->vm_start;
5567 
5568 	if (vma->vm_pgoff == 0) {
5569 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5570 	} else {
5571 		/*
5572 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5573 		 * mapped, all subsequent mappings should have the same size
5574 		 * and offset. Must be above the normal perf buffer.
5575 		 */
5576 		u64 aux_offset, aux_size;
5577 
5578 		if (!event->rb)
5579 			return -EINVAL;
5580 
5581 		nr_pages = vma_size / PAGE_SIZE;
5582 
5583 		mutex_lock(&event->mmap_mutex);
5584 		ret = -EINVAL;
5585 
5586 		rb = event->rb;
5587 		if (!rb)
5588 			goto aux_unlock;
5589 
5590 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5591 		aux_size = READ_ONCE(rb->user_page->aux_size);
5592 
5593 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5594 			goto aux_unlock;
5595 
5596 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5597 			goto aux_unlock;
5598 
5599 		/* already mapped with a different offset */
5600 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5601 			goto aux_unlock;
5602 
5603 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5604 			goto aux_unlock;
5605 
5606 		/* already mapped with a different size */
5607 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5608 			goto aux_unlock;
5609 
5610 		if (!is_power_of_2(nr_pages))
5611 			goto aux_unlock;
5612 
5613 		if (!atomic_inc_not_zero(&rb->mmap_count))
5614 			goto aux_unlock;
5615 
5616 		if (rb_has_aux(rb)) {
5617 			atomic_inc(&rb->aux_mmap_count);
5618 			ret = 0;
5619 			goto unlock;
5620 		}
5621 
5622 		atomic_set(&rb->aux_mmap_count, 1);
5623 		user_extra = nr_pages;
5624 
5625 		goto accounting;
5626 	}
5627 
5628 	/*
5629 	 * If we have rb pages ensure they're a power-of-two number, so we
5630 	 * can do bitmasks instead of modulo.
5631 	 */
5632 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5633 		return -EINVAL;
5634 
5635 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5636 		return -EINVAL;
5637 
5638 	WARN_ON_ONCE(event->ctx->parent_ctx);
5639 again:
5640 	mutex_lock(&event->mmap_mutex);
5641 	if (event->rb) {
5642 		if (event->rb->nr_pages != nr_pages) {
5643 			ret = -EINVAL;
5644 			goto unlock;
5645 		}
5646 
5647 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5648 			/*
5649 			 * Raced against perf_mmap_close() through
5650 			 * perf_event_set_output(). Try again, hope for better
5651 			 * luck.
5652 			 */
5653 			mutex_unlock(&event->mmap_mutex);
5654 			goto again;
5655 		}
5656 
5657 		goto unlock;
5658 	}
5659 
5660 	user_extra = nr_pages + 1;
5661 
5662 accounting:
5663 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5664 
5665 	/*
5666 	 * Increase the limit linearly with more CPUs:
5667 	 */
5668 	user_lock_limit *= num_online_cpus();
5669 
5670 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5671 
5672 	if (user_locked > user_lock_limit)
5673 		extra = user_locked - user_lock_limit;
5674 
5675 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5676 	lock_limit >>= PAGE_SHIFT;
5677 	locked = vma->vm_mm->pinned_vm + extra;
5678 
5679 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5680 		!capable(CAP_IPC_LOCK)) {
5681 		ret = -EPERM;
5682 		goto unlock;
5683 	}
5684 
5685 	WARN_ON(!rb && event->rb);
5686 
5687 	if (vma->vm_flags & VM_WRITE)
5688 		flags |= RING_BUFFER_WRITABLE;
5689 
5690 	if (!rb) {
5691 		rb = rb_alloc(nr_pages,
5692 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5693 			      event->cpu, flags);
5694 
5695 		if (!rb) {
5696 			ret = -ENOMEM;
5697 			goto unlock;
5698 		}
5699 
5700 		atomic_set(&rb->mmap_count, 1);
5701 		rb->mmap_user = get_current_user();
5702 		rb->mmap_locked = extra;
5703 
5704 		ring_buffer_attach(event, rb);
5705 
5706 		perf_event_init_userpage(event);
5707 		perf_event_update_userpage(event);
5708 	} else {
5709 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5710 				   event->attr.aux_watermark, flags);
5711 		if (!ret)
5712 			rb->aux_mmap_locked = extra;
5713 	}
5714 
5715 unlock:
5716 	if (!ret) {
5717 		atomic_long_add(user_extra, &user->locked_vm);
5718 		vma->vm_mm->pinned_vm += extra;
5719 
5720 		atomic_inc(&event->mmap_count);
5721 	} else if (rb) {
5722 		atomic_dec(&rb->mmap_count);
5723 	}
5724 aux_unlock:
5725 	mutex_unlock(&event->mmap_mutex);
5726 
5727 	/*
5728 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5729 	 * vma.
5730 	 */
5731 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5732 	vma->vm_ops = &perf_mmap_vmops;
5733 
5734 	if (event->pmu->event_mapped)
5735 		event->pmu->event_mapped(event, vma->vm_mm);
5736 
5737 	return ret;
5738 }
5739 
5740 static int perf_fasync(int fd, struct file *filp, int on)
5741 {
5742 	struct inode *inode = file_inode(filp);
5743 	struct perf_event *event = filp->private_data;
5744 	int retval;
5745 
5746 	inode_lock(inode);
5747 	retval = fasync_helper(fd, filp, on, &event->fasync);
5748 	inode_unlock(inode);
5749 
5750 	if (retval < 0)
5751 		return retval;
5752 
5753 	return 0;
5754 }
5755 
5756 static const struct file_operations perf_fops = {
5757 	.llseek			= no_llseek,
5758 	.release		= perf_release,
5759 	.read			= perf_read,
5760 	.poll			= perf_poll,
5761 	.unlocked_ioctl		= perf_ioctl,
5762 	.compat_ioctl		= perf_compat_ioctl,
5763 	.mmap			= perf_mmap,
5764 	.fasync			= perf_fasync,
5765 };
5766 
5767 /*
5768  * Perf event wakeup
5769  *
5770  * If there's data, ensure we set the poll() state and publish everything
5771  * to user-space before waking everybody up.
5772  */
5773 
5774 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5775 {
5776 	/* only the parent has fasync state */
5777 	if (event->parent)
5778 		event = event->parent;
5779 	return &event->fasync;
5780 }
5781 
5782 void perf_event_wakeup(struct perf_event *event)
5783 {
5784 	ring_buffer_wakeup(event);
5785 
5786 	if (event->pending_kill) {
5787 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5788 		event->pending_kill = 0;
5789 	}
5790 }
5791 
5792 static void perf_pending_event(struct irq_work *entry)
5793 {
5794 	struct perf_event *event = container_of(entry,
5795 			struct perf_event, pending);
5796 	int rctx;
5797 
5798 	rctx = perf_swevent_get_recursion_context();
5799 	/*
5800 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5801 	 * and we won't recurse 'further'.
5802 	 */
5803 
5804 	if (event->pending_disable) {
5805 		event->pending_disable = 0;
5806 		perf_event_disable_local(event);
5807 	}
5808 
5809 	if (event->pending_wakeup) {
5810 		event->pending_wakeup = 0;
5811 		perf_event_wakeup(event);
5812 	}
5813 
5814 	if (rctx >= 0)
5815 		perf_swevent_put_recursion_context(rctx);
5816 }
5817 
5818 /*
5819  * We assume there is only KVM supporting the callbacks.
5820  * Later on, we might change it to a list if there is
5821  * another virtualization implementation supporting the callbacks.
5822  */
5823 struct perf_guest_info_callbacks *perf_guest_cbs;
5824 
5825 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5826 {
5827 	perf_guest_cbs = cbs;
5828 	return 0;
5829 }
5830 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5831 
5832 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5833 {
5834 	perf_guest_cbs = NULL;
5835 	return 0;
5836 }
5837 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5838 
5839 static void
5840 perf_output_sample_regs(struct perf_output_handle *handle,
5841 			struct pt_regs *regs, u64 mask)
5842 {
5843 	int bit;
5844 	DECLARE_BITMAP(_mask, 64);
5845 
5846 	bitmap_from_u64(_mask, mask);
5847 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5848 		u64 val;
5849 
5850 		val = perf_reg_value(regs, bit);
5851 		perf_output_put(handle, val);
5852 	}
5853 }
5854 
5855 static void perf_sample_regs_user(struct perf_regs *regs_user,
5856 				  struct pt_regs *regs,
5857 				  struct pt_regs *regs_user_copy)
5858 {
5859 	if (user_mode(regs)) {
5860 		regs_user->abi = perf_reg_abi(current);
5861 		regs_user->regs = regs;
5862 	} else if (current->mm) {
5863 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5864 	} else {
5865 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5866 		regs_user->regs = NULL;
5867 	}
5868 }
5869 
5870 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5871 				  struct pt_regs *regs)
5872 {
5873 	regs_intr->regs = regs;
5874 	regs_intr->abi  = perf_reg_abi(current);
5875 }
5876 
5877 
5878 /*
5879  * Get remaining task size from user stack pointer.
5880  *
5881  * It'd be better to take stack vma map and limit this more
5882  * precisly, but there's no way to get it safely under interrupt,
5883  * so using TASK_SIZE as limit.
5884  */
5885 static u64 perf_ustack_task_size(struct pt_regs *regs)
5886 {
5887 	unsigned long addr = perf_user_stack_pointer(regs);
5888 
5889 	if (!addr || addr >= TASK_SIZE)
5890 		return 0;
5891 
5892 	return TASK_SIZE - addr;
5893 }
5894 
5895 static u16
5896 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5897 			struct pt_regs *regs)
5898 {
5899 	u64 task_size;
5900 
5901 	/* No regs, no stack pointer, no dump. */
5902 	if (!regs)
5903 		return 0;
5904 
5905 	/*
5906 	 * Check if we fit in with the requested stack size into the:
5907 	 * - TASK_SIZE
5908 	 *   If we don't, we limit the size to the TASK_SIZE.
5909 	 *
5910 	 * - remaining sample size
5911 	 *   If we don't, we customize the stack size to
5912 	 *   fit in to the remaining sample size.
5913 	 */
5914 
5915 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5916 	stack_size = min(stack_size, (u16) task_size);
5917 
5918 	/* Current header size plus static size and dynamic size. */
5919 	header_size += 2 * sizeof(u64);
5920 
5921 	/* Do we fit in with the current stack dump size? */
5922 	if ((u16) (header_size + stack_size) < header_size) {
5923 		/*
5924 		 * If we overflow the maximum size for the sample,
5925 		 * we customize the stack dump size to fit in.
5926 		 */
5927 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5928 		stack_size = round_up(stack_size, sizeof(u64));
5929 	}
5930 
5931 	return stack_size;
5932 }
5933 
5934 static void
5935 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5936 			  struct pt_regs *regs)
5937 {
5938 	/* Case of a kernel thread, nothing to dump */
5939 	if (!regs) {
5940 		u64 size = 0;
5941 		perf_output_put(handle, size);
5942 	} else {
5943 		unsigned long sp;
5944 		unsigned int rem;
5945 		u64 dyn_size;
5946 
5947 		/*
5948 		 * We dump:
5949 		 * static size
5950 		 *   - the size requested by user or the best one we can fit
5951 		 *     in to the sample max size
5952 		 * data
5953 		 *   - user stack dump data
5954 		 * dynamic size
5955 		 *   - the actual dumped size
5956 		 */
5957 
5958 		/* Static size. */
5959 		perf_output_put(handle, dump_size);
5960 
5961 		/* Data. */
5962 		sp = perf_user_stack_pointer(regs);
5963 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5964 		dyn_size = dump_size - rem;
5965 
5966 		perf_output_skip(handle, rem);
5967 
5968 		/* Dynamic size. */
5969 		perf_output_put(handle, dyn_size);
5970 	}
5971 }
5972 
5973 static void __perf_event_header__init_id(struct perf_event_header *header,
5974 					 struct perf_sample_data *data,
5975 					 struct perf_event *event)
5976 {
5977 	u64 sample_type = event->attr.sample_type;
5978 
5979 	data->type = sample_type;
5980 	header->size += event->id_header_size;
5981 
5982 	if (sample_type & PERF_SAMPLE_TID) {
5983 		/* namespace issues */
5984 		data->tid_entry.pid = perf_event_pid(event, current);
5985 		data->tid_entry.tid = perf_event_tid(event, current);
5986 	}
5987 
5988 	if (sample_type & PERF_SAMPLE_TIME)
5989 		data->time = perf_event_clock(event);
5990 
5991 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5992 		data->id = primary_event_id(event);
5993 
5994 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5995 		data->stream_id = event->id;
5996 
5997 	if (sample_type & PERF_SAMPLE_CPU) {
5998 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5999 		data->cpu_entry.reserved = 0;
6000 	}
6001 }
6002 
6003 void perf_event_header__init_id(struct perf_event_header *header,
6004 				struct perf_sample_data *data,
6005 				struct perf_event *event)
6006 {
6007 	if (event->attr.sample_id_all)
6008 		__perf_event_header__init_id(header, data, event);
6009 }
6010 
6011 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6012 					   struct perf_sample_data *data)
6013 {
6014 	u64 sample_type = data->type;
6015 
6016 	if (sample_type & PERF_SAMPLE_TID)
6017 		perf_output_put(handle, data->tid_entry);
6018 
6019 	if (sample_type & PERF_SAMPLE_TIME)
6020 		perf_output_put(handle, data->time);
6021 
6022 	if (sample_type & PERF_SAMPLE_ID)
6023 		perf_output_put(handle, data->id);
6024 
6025 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6026 		perf_output_put(handle, data->stream_id);
6027 
6028 	if (sample_type & PERF_SAMPLE_CPU)
6029 		perf_output_put(handle, data->cpu_entry);
6030 
6031 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6032 		perf_output_put(handle, data->id);
6033 }
6034 
6035 void perf_event__output_id_sample(struct perf_event *event,
6036 				  struct perf_output_handle *handle,
6037 				  struct perf_sample_data *sample)
6038 {
6039 	if (event->attr.sample_id_all)
6040 		__perf_event__output_id_sample(handle, sample);
6041 }
6042 
6043 static void perf_output_read_one(struct perf_output_handle *handle,
6044 				 struct perf_event *event,
6045 				 u64 enabled, u64 running)
6046 {
6047 	u64 read_format = event->attr.read_format;
6048 	u64 values[4];
6049 	int n = 0;
6050 
6051 	values[n++] = perf_event_count(event);
6052 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6053 		values[n++] = enabled +
6054 			atomic64_read(&event->child_total_time_enabled);
6055 	}
6056 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6057 		values[n++] = running +
6058 			atomic64_read(&event->child_total_time_running);
6059 	}
6060 	if (read_format & PERF_FORMAT_ID)
6061 		values[n++] = primary_event_id(event);
6062 
6063 	__output_copy(handle, values, n * sizeof(u64));
6064 }
6065 
6066 static void perf_output_read_group(struct perf_output_handle *handle,
6067 			    struct perf_event *event,
6068 			    u64 enabled, u64 running)
6069 {
6070 	struct perf_event *leader = event->group_leader, *sub;
6071 	u64 read_format = event->attr.read_format;
6072 	u64 values[5];
6073 	int n = 0;
6074 
6075 	values[n++] = 1 + leader->nr_siblings;
6076 
6077 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6078 		values[n++] = enabled;
6079 
6080 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6081 		values[n++] = running;
6082 
6083 	if ((leader != event) &&
6084 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6085 		leader->pmu->read(leader);
6086 
6087 	values[n++] = perf_event_count(leader);
6088 	if (read_format & PERF_FORMAT_ID)
6089 		values[n++] = primary_event_id(leader);
6090 
6091 	__output_copy(handle, values, n * sizeof(u64));
6092 
6093 	for_each_sibling_event(sub, leader) {
6094 		n = 0;
6095 
6096 		if ((sub != event) &&
6097 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6098 			sub->pmu->read(sub);
6099 
6100 		values[n++] = perf_event_count(sub);
6101 		if (read_format & PERF_FORMAT_ID)
6102 			values[n++] = primary_event_id(sub);
6103 
6104 		__output_copy(handle, values, n * sizeof(u64));
6105 	}
6106 }
6107 
6108 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6109 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6110 
6111 /*
6112  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6113  *
6114  * The problem is that its both hard and excessively expensive to iterate the
6115  * child list, not to mention that its impossible to IPI the children running
6116  * on another CPU, from interrupt/NMI context.
6117  */
6118 static void perf_output_read(struct perf_output_handle *handle,
6119 			     struct perf_event *event)
6120 {
6121 	u64 enabled = 0, running = 0, now;
6122 	u64 read_format = event->attr.read_format;
6123 
6124 	/*
6125 	 * compute total_time_enabled, total_time_running
6126 	 * based on snapshot values taken when the event
6127 	 * was last scheduled in.
6128 	 *
6129 	 * we cannot simply called update_context_time()
6130 	 * because of locking issue as we are called in
6131 	 * NMI context
6132 	 */
6133 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6134 		calc_timer_values(event, &now, &enabled, &running);
6135 
6136 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6137 		perf_output_read_group(handle, event, enabled, running);
6138 	else
6139 		perf_output_read_one(handle, event, enabled, running);
6140 }
6141 
6142 void perf_output_sample(struct perf_output_handle *handle,
6143 			struct perf_event_header *header,
6144 			struct perf_sample_data *data,
6145 			struct perf_event *event)
6146 {
6147 	u64 sample_type = data->type;
6148 
6149 	perf_output_put(handle, *header);
6150 
6151 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6152 		perf_output_put(handle, data->id);
6153 
6154 	if (sample_type & PERF_SAMPLE_IP)
6155 		perf_output_put(handle, data->ip);
6156 
6157 	if (sample_type & PERF_SAMPLE_TID)
6158 		perf_output_put(handle, data->tid_entry);
6159 
6160 	if (sample_type & PERF_SAMPLE_TIME)
6161 		perf_output_put(handle, data->time);
6162 
6163 	if (sample_type & PERF_SAMPLE_ADDR)
6164 		perf_output_put(handle, data->addr);
6165 
6166 	if (sample_type & PERF_SAMPLE_ID)
6167 		perf_output_put(handle, data->id);
6168 
6169 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6170 		perf_output_put(handle, data->stream_id);
6171 
6172 	if (sample_type & PERF_SAMPLE_CPU)
6173 		perf_output_put(handle, data->cpu_entry);
6174 
6175 	if (sample_type & PERF_SAMPLE_PERIOD)
6176 		perf_output_put(handle, data->period);
6177 
6178 	if (sample_type & PERF_SAMPLE_READ)
6179 		perf_output_read(handle, event);
6180 
6181 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6182 		int size = 1;
6183 
6184 		size += data->callchain->nr;
6185 		size *= sizeof(u64);
6186 		__output_copy(handle, data->callchain, size);
6187 	}
6188 
6189 	if (sample_type & PERF_SAMPLE_RAW) {
6190 		struct perf_raw_record *raw = data->raw;
6191 
6192 		if (raw) {
6193 			struct perf_raw_frag *frag = &raw->frag;
6194 
6195 			perf_output_put(handle, raw->size);
6196 			do {
6197 				if (frag->copy) {
6198 					__output_custom(handle, frag->copy,
6199 							frag->data, frag->size);
6200 				} else {
6201 					__output_copy(handle, frag->data,
6202 						      frag->size);
6203 				}
6204 				if (perf_raw_frag_last(frag))
6205 					break;
6206 				frag = frag->next;
6207 			} while (1);
6208 			if (frag->pad)
6209 				__output_skip(handle, NULL, frag->pad);
6210 		} else {
6211 			struct {
6212 				u32	size;
6213 				u32	data;
6214 			} raw = {
6215 				.size = sizeof(u32),
6216 				.data = 0,
6217 			};
6218 			perf_output_put(handle, raw);
6219 		}
6220 	}
6221 
6222 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6223 		if (data->br_stack) {
6224 			size_t size;
6225 
6226 			size = data->br_stack->nr
6227 			     * sizeof(struct perf_branch_entry);
6228 
6229 			perf_output_put(handle, data->br_stack->nr);
6230 			perf_output_copy(handle, data->br_stack->entries, size);
6231 		} else {
6232 			/*
6233 			 * we always store at least the value of nr
6234 			 */
6235 			u64 nr = 0;
6236 			perf_output_put(handle, nr);
6237 		}
6238 	}
6239 
6240 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6241 		u64 abi = data->regs_user.abi;
6242 
6243 		/*
6244 		 * If there are no regs to dump, notice it through
6245 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6246 		 */
6247 		perf_output_put(handle, abi);
6248 
6249 		if (abi) {
6250 			u64 mask = event->attr.sample_regs_user;
6251 			perf_output_sample_regs(handle,
6252 						data->regs_user.regs,
6253 						mask);
6254 		}
6255 	}
6256 
6257 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6258 		perf_output_sample_ustack(handle,
6259 					  data->stack_user_size,
6260 					  data->regs_user.regs);
6261 	}
6262 
6263 	if (sample_type & PERF_SAMPLE_WEIGHT)
6264 		perf_output_put(handle, data->weight);
6265 
6266 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6267 		perf_output_put(handle, data->data_src.val);
6268 
6269 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6270 		perf_output_put(handle, data->txn);
6271 
6272 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6273 		u64 abi = data->regs_intr.abi;
6274 		/*
6275 		 * If there are no regs to dump, notice it through
6276 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6277 		 */
6278 		perf_output_put(handle, abi);
6279 
6280 		if (abi) {
6281 			u64 mask = event->attr.sample_regs_intr;
6282 
6283 			perf_output_sample_regs(handle,
6284 						data->regs_intr.regs,
6285 						mask);
6286 		}
6287 	}
6288 
6289 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6290 		perf_output_put(handle, data->phys_addr);
6291 
6292 	if (!event->attr.watermark) {
6293 		int wakeup_events = event->attr.wakeup_events;
6294 
6295 		if (wakeup_events) {
6296 			struct ring_buffer *rb = handle->rb;
6297 			int events = local_inc_return(&rb->events);
6298 
6299 			if (events >= wakeup_events) {
6300 				local_sub(wakeup_events, &rb->events);
6301 				local_inc(&rb->wakeup);
6302 			}
6303 		}
6304 	}
6305 }
6306 
6307 static u64 perf_virt_to_phys(u64 virt)
6308 {
6309 	u64 phys_addr = 0;
6310 	struct page *p = NULL;
6311 
6312 	if (!virt)
6313 		return 0;
6314 
6315 	if (virt >= TASK_SIZE) {
6316 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6317 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6318 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6319 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6320 	} else {
6321 		/*
6322 		 * Walking the pages tables for user address.
6323 		 * Interrupts are disabled, so it prevents any tear down
6324 		 * of the page tables.
6325 		 * Try IRQ-safe __get_user_pages_fast first.
6326 		 * If failed, leave phys_addr as 0.
6327 		 */
6328 		if ((current->mm != NULL) &&
6329 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6330 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6331 
6332 		if (p)
6333 			put_page(p);
6334 	}
6335 
6336 	return phys_addr;
6337 }
6338 
6339 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6340 
6341 static struct perf_callchain_entry *
6342 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6343 {
6344 	bool kernel = !event->attr.exclude_callchain_kernel;
6345 	bool user   = !event->attr.exclude_callchain_user;
6346 	/* Disallow cross-task user callchains. */
6347 	bool crosstask = event->ctx->task && event->ctx->task != current;
6348 	const u32 max_stack = event->attr.sample_max_stack;
6349 	struct perf_callchain_entry *callchain;
6350 
6351 	if (!kernel && !user)
6352 		return &__empty_callchain;
6353 
6354 	callchain = get_perf_callchain(regs, 0, kernel, user,
6355 				       max_stack, crosstask, true);
6356 	return callchain ?: &__empty_callchain;
6357 }
6358 
6359 void perf_prepare_sample(struct perf_event_header *header,
6360 			 struct perf_sample_data *data,
6361 			 struct perf_event *event,
6362 			 struct pt_regs *regs)
6363 {
6364 	u64 sample_type = event->attr.sample_type;
6365 
6366 	header->type = PERF_RECORD_SAMPLE;
6367 	header->size = sizeof(*header) + event->header_size;
6368 
6369 	header->misc = 0;
6370 	header->misc |= perf_misc_flags(regs);
6371 
6372 	__perf_event_header__init_id(header, data, event);
6373 
6374 	if (sample_type & PERF_SAMPLE_IP)
6375 		data->ip = perf_instruction_pointer(regs);
6376 
6377 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6378 		int size = 1;
6379 
6380 		data->callchain = perf_callchain(event, regs);
6381 		size += data->callchain->nr;
6382 
6383 		header->size += size * sizeof(u64);
6384 	}
6385 
6386 	if (sample_type & PERF_SAMPLE_RAW) {
6387 		struct perf_raw_record *raw = data->raw;
6388 		int size;
6389 
6390 		if (raw) {
6391 			struct perf_raw_frag *frag = &raw->frag;
6392 			u32 sum = 0;
6393 
6394 			do {
6395 				sum += frag->size;
6396 				if (perf_raw_frag_last(frag))
6397 					break;
6398 				frag = frag->next;
6399 			} while (1);
6400 
6401 			size = round_up(sum + sizeof(u32), sizeof(u64));
6402 			raw->size = size - sizeof(u32);
6403 			frag->pad = raw->size - sum;
6404 		} else {
6405 			size = sizeof(u64);
6406 		}
6407 
6408 		header->size += size;
6409 	}
6410 
6411 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6412 		int size = sizeof(u64); /* nr */
6413 		if (data->br_stack) {
6414 			size += data->br_stack->nr
6415 			      * sizeof(struct perf_branch_entry);
6416 		}
6417 		header->size += size;
6418 	}
6419 
6420 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6421 		perf_sample_regs_user(&data->regs_user, regs,
6422 				      &data->regs_user_copy);
6423 
6424 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6425 		/* regs dump ABI info */
6426 		int size = sizeof(u64);
6427 
6428 		if (data->regs_user.regs) {
6429 			u64 mask = event->attr.sample_regs_user;
6430 			size += hweight64(mask) * sizeof(u64);
6431 		}
6432 
6433 		header->size += size;
6434 	}
6435 
6436 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6437 		/*
6438 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6439 		 * processed as the last one or have additional check added
6440 		 * in case new sample type is added, because we could eat
6441 		 * up the rest of the sample size.
6442 		 */
6443 		u16 stack_size = event->attr.sample_stack_user;
6444 		u16 size = sizeof(u64);
6445 
6446 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6447 						     data->regs_user.regs);
6448 
6449 		/*
6450 		 * If there is something to dump, add space for the dump
6451 		 * itself and for the field that tells the dynamic size,
6452 		 * which is how many have been actually dumped.
6453 		 */
6454 		if (stack_size)
6455 			size += sizeof(u64) + stack_size;
6456 
6457 		data->stack_user_size = stack_size;
6458 		header->size += size;
6459 	}
6460 
6461 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6462 		/* regs dump ABI info */
6463 		int size = sizeof(u64);
6464 
6465 		perf_sample_regs_intr(&data->regs_intr, regs);
6466 
6467 		if (data->regs_intr.regs) {
6468 			u64 mask = event->attr.sample_regs_intr;
6469 
6470 			size += hweight64(mask) * sizeof(u64);
6471 		}
6472 
6473 		header->size += size;
6474 	}
6475 
6476 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6477 		data->phys_addr = perf_virt_to_phys(data->addr);
6478 }
6479 
6480 static void __always_inline
6481 __perf_event_output(struct perf_event *event,
6482 		    struct perf_sample_data *data,
6483 		    struct pt_regs *regs,
6484 		    int (*output_begin)(struct perf_output_handle *,
6485 					struct perf_event *,
6486 					unsigned int))
6487 {
6488 	struct perf_output_handle handle;
6489 	struct perf_event_header header;
6490 
6491 	/* protect the callchain buffers */
6492 	rcu_read_lock();
6493 
6494 	perf_prepare_sample(&header, data, event, regs);
6495 
6496 	if (output_begin(&handle, event, header.size))
6497 		goto exit;
6498 
6499 	perf_output_sample(&handle, &header, data, event);
6500 
6501 	perf_output_end(&handle);
6502 
6503 exit:
6504 	rcu_read_unlock();
6505 }
6506 
6507 void
6508 perf_event_output_forward(struct perf_event *event,
6509 			 struct perf_sample_data *data,
6510 			 struct pt_regs *regs)
6511 {
6512 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6513 }
6514 
6515 void
6516 perf_event_output_backward(struct perf_event *event,
6517 			   struct perf_sample_data *data,
6518 			   struct pt_regs *regs)
6519 {
6520 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6521 }
6522 
6523 void
6524 perf_event_output(struct perf_event *event,
6525 		  struct perf_sample_data *data,
6526 		  struct pt_regs *regs)
6527 {
6528 	__perf_event_output(event, data, regs, perf_output_begin);
6529 }
6530 
6531 /*
6532  * read event_id
6533  */
6534 
6535 struct perf_read_event {
6536 	struct perf_event_header	header;
6537 
6538 	u32				pid;
6539 	u32				tid;
6540 };
6541 
6542 static void
6543 perf_event_read_event(struct perf_event *event,
6544 			struct task_struct *task)
6545 {
6546 	struct perf_output_handle handle;
6547 	struct perf_sample_data sample;
6548 	struct perf_read_event read_event = {
6549 		.header = {
6550 			.type = PERF_RECORD_READ,
6551 			.misc = 0,
6552 			.size = sizeof(read_event) + event->read_size,
6553 		},
6554 		.pid = perf_event_pid(event, task),
6555 		.tid = perf_event_tid(event, task),
6556 	};
6557 	int ret;
6558 
6559 	perf_event_header__init_id(&read_event.header, &sample, event);
6560 	ret = perf_output_begin(&handle, event, read_event.header.size);
6561 	if (ret)
6562 		return;
6563 
6564 	perf_output_put(&handle, read_event);
6565 	perf_output_read(&handle, event);
6566 	perf_event__output_id_sample(event, &handle, &sample);
6567 
6568 	perf_output_end(&handle);
6569 }
6570 
6571 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6572 
6573 static void
6574 perf_iterate_ctx(struct perf_event_context *ctx,
6575 		   perf_iterate_f output,
6576 		   void *data, bool all)
6577 {
6578 	struct perf_event *event;
6579 
6580 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6581 		if (!all) {
6582 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6583 				continue;
6584 			if (!event_filter_match(event))
6585 				continue;
6586 		}
6587 
6588 		output(event, data);
6589 	}
6590 }
6591 
6592 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6593 {
6594 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6595 	struct perf_event *event;
6596 
6597 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6598 		/*
6599 		 * Skip events that are not fully formed yet; ensure that
6600 		 * if we observe event->ctx, both event and ctx will be
6601 		 * complete enough. See perf_install_in_context().
6602 		 */
6603 		if (!smp_load_acquire(&event->ctx))
6604 			continue;
6605 
6606 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6607 			continue;
6608 		if (!event_filter_match(event))
6609 			continue;
6610 		output(event, data);
6611 	}
6612 }
6613 
6614 /*
6615  * Iterate all events that need to receive side-band events.
6616  *
6617  * For new callers; ensure that account_pmu_sb_event() includes
6618  * your event, otherwise it might not get delivered.
6619  */
6620 static void
6621 perf_iterate_sb(perf_iterate_f output, void *data,
6622 	       struct perf_event_context *task_ctx)
6623 {
6624 	struct perf_event_context *ctx;
6625 	int ctxn;
6626 
6627 	rcu_read_lock();
6628 	preempt_disable();
6629 
6630 	/*
6631 	 * If we have task_ctx != NULL we only notify the task context itself.
6632 	 * The task_ctx is set only for EXIT events before releasing task
6633 	 * context.
6634 	 */
6635 	if (task_ctx) {
6636 		perf_iterate_ctx(task_ctx, output, data, false);
6637 		goto done;
6638 	}
6639 
6640 	perf_iterate_sb_cpu(output, data);
6641 
6642 	for_each_task_context_nr(ctxn) {
6643 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6644 		if (ctx)
6645 			perf_iterate_ctx(ctx, output, data, false);
6646 	}
6647 done:
6648 	preempt_enable();
6649 	rcu_read_unlock();
6650 }
6651 
6652 /*
6653  * Clear all file-based filters at exec, they'll have to be
6654  * re-instated when/if these objects are mmapped again.
6655  */
6656 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6657 {
6658 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6659 	struct perf_addr_filter *filter;
6660 	unsigned int restart = 0, count = 0;
6661 	unsigned long flags;
6662 
6663 	if (!has_addr_filter(event))
6664 		return;
6665 
6666 	raw_spin_lock_irqsave(&ifh->lock, flags);
6667 	list_for_each_entry(filter, &ifh->list, entry) {
6668 		if (filter->inode) {
6669 			event->addr_filters_offs[count] = 0;
6670 			restart++;
6671 		}
6672 
6673 		count++;
6674 	}
6675 
6676 	if (restart)
6677 		event->addr_filters_gen++;
6678 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6679 
6680 	if (restart)
6681 		perf_event_stop(event, 1);
6682 }
6683 
6684 void perf_event_exec(void)
6685 {
6686 	struct perf_event_context *ctx;
6687 	int ctxn;
6688 
6689 	rcu_read_lock();
6690 	for_each_task_context_nr(ctxn) {
6691 		ctx = current->perf_event_ctxp[ctxn];
6692 		if (!ctx)
6693 			continue;
6694 
6695 		perf_event_enable_on_exec(ctxn);
6696 
6697 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6698 				   true);
6699 	}
6700 	rcu_read_unlock();
6701 }
6702 
6703 struct remote_output {
6704 	struct ring_buffer	*rb;
6705 	int			err;
6706 };
6707 
6708 static void __perf_event_output_stop(struct perf_event *event, void *data)
6709 {
6710 	struct perf_event *parent = event->parent;
6711 	struct remote_output *ro = data;
6712 	struct ring_buffer *rb = ro->rb;
6713 	struct stop_event_data sd = {
6714 		.event	= event,
6715 	};
6716 
6717 	if (!has_aux(event))
6718 		return;
6719 
6720 	if (!parent)
6721 		parent = event;
6722 
6723 	/*
6724 	 * In case of inheritance, it will be the parent that links to the
6725 	 * ring-buffer, but it will be the child that's actually using it.
6726 	 *
6727 	 * We are using event::rb to determine if the event should be stopped,
6728 	 * however this may race with ring_buffer_attach() (through set_output),
6729 	 * which will make us skip the event that actually needs to be stopped.
6730 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6731 	 * its rb pointer.
6732 	 */
6733 	if (rcu_dereference(parent->rb) == rb)
6734 		ro->err = __perf_event_stop(&sd);
6735 }
6736 
6737 static int __perf_pmu_output_stop(void *info)
6738 {
6739 	struct perf_event *event = info;
6740 	struct pmu *pmu = event->pmu;
6741 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6742 	struct remote_output ro = {
6743 		.rb	= event->rb,
6744 	};
6745 
6746 	rcu_read_lock();
6747 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6748 	if (cpuctx->task_ctx)
6749 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6750 				   &ro, false);
6751 	rcu_read_unlock();
6752 
6753 	return ro.err;
6754 }
6755 
6756 static void perf_pmu_output_stop(struct perf_event *event)
6757 {
6758 	struct perf_event *iter;
6759 	int err, cpu;
6760 
6761 restart:
6762 	rcu_read_lock();
6763 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6764 		/*
6765 		 * For per-CPU events, we need to make sure that neither they
6766 		 * nor their children are running; for cpu==-1 events it's
6767 		 * sufficient to stop the event itself if it's active, since
6768 		 * it can't have children.
6769 		 */
6770 		cpu = iter->cpu;
6771 		if (cpu == -1)
6772 			cpu = READ_ONCE(iter->oncpu);
6773 
6774 		if (cpu == -1)
6775 			continue;
6776 
6777 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6778 		if (err == -EAGAIN) {
6779 			rcu_read_unlock();
6780 			goto restart;
6781 		}
6782 	}
6783 	rcu_read_unlock();
6784 }
6785 
6786 /*
6787  * task tracking -- fork/exit
6788  *
6789  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6790  */
6791 
6792 struct perf_task_event {
6793 	struct task_struct		*task;
6794 	struct perf_event_context	*task_ctx;
6795 
6796 	struct {
6797 		struct perf_event_header	header;
6798 
6799 		u32				pid;
6800 		u32				ppid;
6801 		u32				tid;
6802 		u32				ptid;
6803 		u64				time;
6804 	} event_id;
6805 };
6806 
6807 static int perf_event_task_match(struct perf_event *event)
6808 {
6809 	return event->attr.comm  || event->attr.mmap ||
6810 	       event->attr.mmap2 || event->attr.mmap_data ||
6811 	       event->attr.task;
6812 }
6813 
6814 static void perf_event_task_output(struct perf_event *event,
6815 				   void *data)
6816 {
6817 	struct perf_task_event *task_event = data;
6818 	struct perf_output_handle handle;
6819 	struct perf_sample_data	sample;
6820 	struct task_struct *task = task_event->task;
6821 	int ret, size = task_event->event_id.header.size;
6822 
6823 	if (!perf_event_task_match(event))
6824 		return;
6825 
6826 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6827 
6828 	ret = perf_output_begin(&handle, event,
6829 				task_event->event_id.header.size);
6830 	if (ret)
6831 		goto out;
6832 
6833 	task_event->event_id.pid = perf_event_pid(event, task);
6834 	task_event->event_id.ppid = perf_event_pid(event, current);
6835 
6836 	task_event->event_id.tid = perf_event_tid(event, task);
6837 	task_event->event_id.ptid = perf_event_tid(event, current);
6838 
6839 	task_event->event_id.time = perf_event_clock(event);
6840 
6841 	perf_output_put(&handle, task_event->event_id);
6842 
6843 	perf_event__output_id_sample(event, &handle, &sample);
6844 
6845 	perf_output_end(&handle);
6846 out:
6847 	task_event->event_id.header.size = size;
6848 }
6849 
6850 static void perf_event_task(struct task_struct *task,
6851 			      struct perf_event_context *task_ctx,
6852 			      int new)
6853 {
6854 	struct perf_task_event task_event;
6855 
6856 	if (!atomic_read(&nr_comm_events) &&
6857 	    !atomic_read(&nr_mmap_events) &&
6858 	    !atomic_read(&nr_task_events))
6859 		return;
6860 
6861 	task_event = (struct perf_task_event){
6862 		.task	  = task,
6863 		.task_ctx = task_ctx,
6864 		.event_id    = {
6865 			.header = {
6866 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6867 				.misc = 0,
6868 				.size = sizeof(task_event.event_id),
6869 			},
6870 			/* .pid  */
6871 			/* .ppid */
6872 			/* .tid  */
6873 			/* .ptid */
6874 			/* .time */
6875 		},
6876 	};
6877 
6878 	perf_iterate_sb(perf_event_task_output,
6879 		       &task_event,
6880 		       task_ctx);
6881 }
6882 
6883 void perf_event_fork(struct task_struct *task)
6884 {
6885 	perf_event_task(task, NULL, 1);
6886 	perf_event_namespaces(task);
6887 }
6888 
6889 /*
6890  * comm tracking
6891  */
6892 
6893 struct perf_comm_event {
6894 	struct task_struct	*task;
6895 	char			*comm;
6896 	int			comm_size;
6897 
6898 	struct {
6899 		struct perf_event_header	header;
6900 
6901 		u32				pid;
6902 		u32				tid;
6903 	} event_id;
6904 };
6905 
6906 static int perf_event_comm_match(struct perf_event *event)
6907 {
6908 	return event->attr.comm;
6909 }
6910 
6911 static void perf_event_comm_output(struct perf_event *event,
6912 				   void *data)
6913 {
6914 	struct perf_comm_event *comm_event = data;
6915 	struct perf_output_handle handle;
6916 	struct perf_sample_data sample;
6917 	int size = comm_event->event_id.header.size;
6918 	int ret;
6919 
6920 	if (!perf_event_comm_match(event))
6921 		return;
6922 
6923 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6924 	ret = perf_output_begin(&handle, event,
6925 				comm_event->event_id.header.size);
6926 
6927 	if (ret)
6928 		goto out;
6929 
6930 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6931 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6932 
6933 	perf_output_put(&handle, comm_event->event_id);
6934 	__output_copy(&handle, comm_event->comm,
6935 				   comm_event->comm_size);
6936 
6937 	perf_event__output_id_sample(event, &handle, &sample);
6938 
6939 	perf_output_end(&handle);
6940 out:
6941 	comm_event->event_id.header.size = size;
6942 }
6943 
6944 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6945 {
6946 	char comm[TASK_COMM_LEN];
6947 	unsigned int size;
6948 
6949 	memset(comm, 0, sizeof(comm));
6950 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6951 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6952 
6953 	comm_event->comm = comm;
6954 	comm_event->comm_size = size;
6955 
6956 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6957 
6958 	perf_iterate_sb(perf_event_comm_output,
6959 		       comm_event,
6960 		       NULL);
6961 }
6962 
6963 void perf_event_comm(struct task_struct *task, bool exec)
6964 {
6965 	struct perf_comm_event comm_event;
6966 
6967 	if (!atomic_read(&nr_comm_events))
6968 		return;
6969 
6970 	comm_event = (struct perf_comm_event){
6971 		.task	= task,
6972 		/* .comm      */
6973 		/* .comm_size */
6974 		.event_id  = {
6975 			.header = {
6976 				.type = PERF_RECORD_COMM,
6977 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6978 				/* .size */
6979 			},
6980 			/* .pid */
6981 			/* .tid */
6982 		},
6983 	};
6984 
6985 	perf_event_comm_event(&comm_event);
6986 }
6987 
6988 /*
6989  * namespaces tracking
6990  */
6991 
6992 struct perf_namespaces_event {
6993 	struct task_struct		*task;
6994 
6995 	struct {
6996 		struct perf_event_header	header;
6997 
6998 		u32				pid;
6999 		u32				tid;
7000 		u64				nr_namespaces;
7001 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7002 	} event_id;
7003 };
7004 
7005 static int perf_event_namespaces_match(struct perf_event *event)
7006 {
7007 	return event->attr.namespaces;
7008 }
7009 
7010 static void perf_event_namespaces_output(struct perf_event *event,
7011 					 void *data)
7012 {
7013 	struct perf_namespaces_event *namespaces_event = data;
7014 	struct perf_output_handle handle;
7015 	struct perf_sample_data sample;
7016 	u16 header_size = namespaces_event->event_id.header.size;
7017 	int ret;
7018 
7019 	if (!perf_event_namespaces_match(event))
7020 		return;
7021 
7022 	perf_event_header__init_id(&namespaces_event->event_id.header,
7023 				   &sample, event);
7024 	ret = perf_output_begin(&handle, event,
7025 				namespaces_event->event_id.header.size);
7026 	if (ret)
7027 		goto out;
7028 
7029 	namespaces_event->event_id.pid = perf_event_pid(event,
7030 							namespaces_event->task);
7031 	namespaces_event->event_id.tid = perf_event_tid(event,
7032 							namespaces_event->task);
7033 
7034 	perf_output_put(&handle, namespaces_event->event_id);
7035 
7036 	perf_event__output_id_sample(event, &handle, &sample);
7037 
7038 	perf_output_end(&handle);
7039 out:
7040 	namespaces_event->event_id.header.size = header_size;
7041 }
7042 
7043 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7044 				   struct task_struct *task,
7045 				   const struct proc_ns_operations *ns_ops)
7046 {
7047 	struct path ns_path;
7048 	struct inode *ns_inode;
7049 	void *error;
7050 
7051 	error = ns_get_path(&ns_path, task, ns_ops);
7052 	if (!error) {
7053 		ns_inode = ns_path.dentry->d_inode;
7054 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7055 		ns_link_info->ino = ns_inode->i_ino;
7056 		path_put(&ns_path);
7057 	}
7058 }
7059 
7060 void perf_event_namespaces(struct task_struct *task)
7061 {
7062 	struct perf_namespaces_event namespaces_event;
7063 	struct perf_ns_link_info *ns_link_info;
7064 
7065 	if (!atomic_read(&nr_namespaces_events))
7066 		return;
7067 
7068 	namespaces_event = (struct perf_namespaces_event){
7069 		.task	= task,
7070 		.event_id  = {
7071 			.header = {
7072 				.type = PERF_RECORD_NAMESPACES,
7073 				.misc = 0,
7074 				.size = sizeof(namespaces_event.event_id),
7075 			},
7076 			/* .pid */
7077 			/* .tid */
7078 			.nr_namespaces = NR_NAMESPACES,
7079 			/* .link_info[NR_NAMESPACES] */
7080 		},
7081 	};
7082 
7083 	ns_link_info = namespaces_event.event_id.link_info;
7084 
7085 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7086 			       task, &mntns_operations);
7087 
7088 #ifdef CONFIG_USER_NS
7089 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7090 			       task, &userns_operations);
7091 #endif
7092 #ifdef CONFIG_NET_NS
7093 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7094 			       task, &netns_operations);
7095 #endif
7096 #ifdef CONFIG_UTS_NS
7097 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7098 			       task, &utsns_operations);
7099 #endif
7100 #ifdef CONFIG_IPC_NS
7101 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7102 			       task, &ipcns_operations);
7103 #endif
7104 #ifdef CONFIG_PID_NS
7105 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7106 			       task, &pidns_operations);
7107 #endif
7108 #ifdef CONFIG_CGROUPS
7109 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7110 			       task, &cgroupns_operations);
7111 #endif
7112 
7113 	perf_iterate_sb(perf_event_namespaces_output,
7114 			&namespaces_event,
7115 			NULL);
7116 }
7117 
7118 /*
7119  * mmap tracking
7120  */
7121 
7122 struct perf_mmap_event {
7123 	struct vm_area_struct	*vma;
7124 
7125 	const char		*file_name;
7126 	int			file_size;
7127 	int			maj, min;
7128 	u64			ino;
7129 	u64			ino_generation;
7130 	u32			prot, flags;
7131 
7132 	struct {
7133 		struct perf_event_header	header;
7134 
7135 		u32				pid;
7136 		u32				tid;
7137 		u64				start;
7138 		u64				len;
7139 		u64				pgoff;
7140 	} event_id;
7141 };
7142 
7143 static int perf_event_mmap_match(struct perf_event *event,
7144 				 void *data)
7145 {
7146 	struct perf_mmap_event *mmap_event = data;
7147 	struct vm_area_struct *vma = mmap_event->vma;
7148 	int executable = vma->vm_flags & VM_EXEC;
7149 
7150 	return (!executable && event->attr.mmap_data) ||
7151 	       (executable && (event->attr.mmap || event->attr.mmap2));
7152 }
7153 
7154 static void perf_event_mmap_output(struct perf_event *event,
7155 				   void *data)
7156 {
7157 	struct perf_mmap_event *mmap_event = data;
7158 	struct perf_output_handle handle;
7159 	struct perf_sample_data sample;
7160 	int size = mmap_event->event_id.header.size;
7161 	int ret;
7162 
7163 	if (!perf_event_mmap_match(event, data))
7164 		return;
7165 
7166 	if (event->attr.mmap2) {
7167 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7168 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7169 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7170 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7171 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7172 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7173 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7174 	}
7175 
7176 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7177 	ret = perf_output_begin(&handle, event,
7178 				mmap_event->event_id.header.size);
7179 	if (ret)
7180 		goto out;
7181 
7182 	mmap_event->event_id.pid = perf_event_pid(event, current);
7183 	mmap_event->event_id.tid = perf_event_tid(event, current);
7184 
7185 	perf_output_put(&handle, mmap_event->event_id);
7186 
7187 	if (event->attr.mmap2) {
7188 		perf_output_put(&handle, mmap_event->maj);
7189 		perf_output_put(&handle, mmap_event->min);
7190 		perf_output_put(&handle, mmap_event->ino);
7191 		perf_output_put(&handle, mmap_event->ino_generation);
7192 		perf_output_put(&handle, mmap_event->prot);
7193 		perf_output_put(&handle, mmap_event->flags);
7194 	}
7195 
7196 	__output_copy(&handle, mmap_event->file_name,
7197 				   mmap_event->file_size);
7198 
7199 	perf_event__output_id_sample(event, &handle, &sample);
7200 
7201 	perf_output_end(&handle);
7202 out:
7203 	mmap_event->event_id.header.size = size;
7204 }
7205 
7206 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7207 {
7208 	struct vm_area_struct *vma = mmap_event->vma;
7209 	struct file *file = vma->vm_file;
7210 	int maj = 0, min = 0;
7211 	u64 ino = 0, gen = 0;
7212 	u32 prot = 0, flags = 0;
7213 	unsigned int size;
7214 	char tmp[16];
7215 	char *buf = NULL;
7216 	char *name;
7217 
7218 	if (vma->vm_flags & VM_READ)
7219 		prot |= PROT_READ;
7220 	if (vma->vm_flags & VM_WRITE)
7221 		prot |= PROT_WRITE;
7222 	if (vma->vm_flags & VM_EXEC)
7223 		prot |= PROT_EXEC;
7224 
7225 	if (vma->vm_flags & VM_MAYSHARE)
7226 		flags = MAP_SHARED;
7227 	else
7228 		flags = MAP_PRIVATE;
7229 
7230 	if (vma->vm_flags & VM_DENYWRITE)
7231 		flags |= MAP_DENYWRITE;
7232 	if (vma->vm_flags & VM_MAYEXEC)
7233 		flags |= MAP_EXECUTABLE;
7234 	if (vma->vm_flags & VM_LOCKED)
7235 		flags |= MAP_LOCKED;
7236 	if (vma->vm_flags & VM_HUGETLB)
7237 		flags |= MAP_HUGETLB;
7238 
7239 	if (file) {
7240 		struct inode *inode;
7241 		dev_t dev;
7242 
7243 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7244 		if (!buf) {
7245 			name = "//enomem";
7246 			goto cpy_name;
7247 		}
7248 		/*
7249 		 * d_path() works from the end of the rb backwards, so we
7250 		 * need to add enough zero bytes after the string to handle
7251 		 * the 64bit alignment we do later.
7252 		 */
7253 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7254 		if (IS_ERR(name)) {
7255 			name = "//toolong";
7256 			goto cpy_name;
7257 		}
7258 		inode = file_inode(vma->vm_file);
7259 		dev = inode->i_sb->s_dev;
7260 		ino = inode->i_ino;
7261 		gen = inode->i_generation;
7262 		maj = MAJOR(dev);
7263 		min = MINOR(dev);
7264 
7265 		goto got_name;
7266 	} else {
7267 		if (vma->vm_ops && vma->vm_ops->name) {
7268 			name = (char *) vma->vm_ops->name(vma);
7269 			if (name)
7270 				goto cpy_name;
7271 		}
7272 
7273 		name = (char *)arch_vma_name(vma);
7274 		if (name)
7275 			goto cpy_name;
7276 
7277 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7278 				vma->vm_end >= vma->vm_mm->brk) {
7279 			name = "[heap]";
7280 			goto cpy_name;
7281 		}
7282 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7283 				vma->vm_end >= vma->vm_mm->start_stack) {
7284 			name = "[stack]";
7285 			goto cpy_name;
7286 		}
7287 
7288 		name = "//anon";
7289 		goto cpy_name;
7290 	}
7291 
7292 cpy_name:
7293 	strlcpy(tmp, name, sizeof(tmp));
7294 	name = tmp;
7295 got_name:
7296 	/*
7297 	 * Since our buffer works in 8 byte units we need to align our string
7298 	 * size to a multiple of 8. However, we must guarantee the tail end is
7299 	 * zero'd out to avoid leaking random bits to userspace.
7300 	 */
7301 	size = strlen(name)+1;
7302 	while (!IS_ALIGNED(size, sizeof(u64)))
7303 		name[size++] = '\0';
7304 
7305 	mmap_event->file_name = name;
7306 	mmap_event->file_size = size;
7307 	mmap_event->maj = maj;
7308 	mmap_event->min = min;
7309 	mmap_event->ino = ino;
7310 	mmap_event->ino_generation = gen;
7311 	mmap_event->prot = prot;
7312 	mmap_event->flags = flags;
7313 
7314 	if (!(vma->vm_flags & VM_EXEC))
7315 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7316 
7317 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7318 
7319 	perf_iterate_sb(perf_event_mmap_output,
7320 		       mmap_event,
7321 		       NULL);
7322 
7323 	kfree(buf);
7324 }
7325 
7326 /*
7327  * Check whether inode and address range match filter criteria.
7328  */
7329 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7330 				     struct file *file, unsigned long offset,
7331 				     unsigned long size)
7332 {
7333 	if (filter->inode != file_inode(file))
7334 		return false;
7335 
7336 	if (filter->offset > offset + size)
7337 		return false;
7338 
7339 	if (filter->offset + filter->size < offset)
7340 		return false;
7341 
7342 	return true;
7343 }
7344 
7345 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7346 {
7347 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7348 	struct vm_area_struct *vma = data;
7349 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7350 	struct file *file = vma->vm_file;
7351 	struct perf_addr_filter *filter;
7352 	unsigned int restart = 0, count = 0;
7353 
7354 	if (!has_addr_filter(event))
7355 		return;
7356 
7357 	if (!file)
7358 		return;
7359 
7360 	raw_spin_lock_irqsave(&ifh->lock, flags);
7361 	list_for_each_entry(filter, &ifh->list, entry) {
7362 		if (perf_addr_filter_match(filter, file, off,
7363 					     vma->vm_end - vma->vm_start)) {
7364 			event->addr_filters_offs[count] = vma->vm_start;
7365 			restart++;
7366 		}
7367 
7368 		count++;
7369 	}
7370 
7371 	if (restart)
7372 		event->addr_filters_gen++;
7373 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7374 
7375 	if (restart)
7376 		perf_event_stop(event, 1);
7377 }
7378 
7379 /*
7380  * Adjust all task's events' filters to the new vma
7381  */
7382 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7383 {
7384 	struct perf_event_context *ctx;
7385 	int ctxn;
7386 
7387 	/*
7388 	 * Data tracing isn't supported yet and as such there is no need
7389 	 * to keep track of anything that isn't related to executable code:
7390 	 */
7391 	if (!(vma->vm_flags & VM_EXEC))
7392 		return;
7393 
7394 	rcu_read_lock();
7395 	for_each_task_context_nr(ctxn) {
7396 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7397 		if (!ctx)
7398 			continue;
7399 
7400 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7401 	}
7402 	rcu_read_unlock();
7403 }
7404 
7405 void perf_event_mmap(struct vm_area_struct *vma)
7406 {
7407 	struct perf_mmap_event mmap_event;
7408 
7409 	if (!atomic_read(&nr_mmap_events))
7410 		return;
7411 
7412 	mmap_event = (struct perf_mmap_event){
7413 		.vma	= vma,
7414 		/* .file_name */
7415 		/* .file_size */
7416 		.event_id  = {
7417 			.header = {
7418 				.type = PERF_RECORD_MMAP,
7419 				.misc = PERF_RECORD_MISC_USER,
7420 				/* .size */
7421 			},
7422 			/* .pid */
7423 			/* .tid */
7424 			.start  = vma->vm_start,
7425 			.len    = vma->vm_end - vma->vm_start,
7426 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7427 		},
7428 		/* .maj (attr_mmap2 only) */
7429 		/* .min (attr_mmap2 only) */
7430 		/* .ino (attr_mmap2 only) */
7431 		/* .ino_generation (attr_mmap2 only) */
7432 		/* .prot (attr_mmap2 only) */
7433 		/* .flags (attr_mmap2 only) */
7434 	};
7435 
7436 	perf_addr_filters_adjust(vma);
7437 	perf_event_mmap_event(&mmap_event);
7438 }
7439 
7440 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7441 			  unsigned long size, u64 flags)
7442 {
7443 	struct perf_output_handle handle;
7444 	struct perf_sample_data sample;
7445 	struct perf_aux_event {
7446 		struct perf_event_header	header;
7447 		u64				offset;
7448 		u64				size;
7449 		u64				flags;
7450 	} rec = {
7451 		.header = {
7452 			.type = PERF_RECORD_AUX,
7453 			.misc = 0,
7454 			.size = sizeof(rec),
7455 		},
7456 		.offset		= head,
7457 		.size		= size,
7458 		.flags		= flags,
7459 	};
7460 	int ret;
7461 
7462 	perf_event_header__init_id(&rec.header, &sample, event);
7463 	ret = perf_output_begin(&handle, event, rec.header.size);
7464 
7465 	if (ret)
7466 		return;
7467 
7468 	perf_output_put(&handle, rec);
7469 	perf_event__output_id_sample(event, &handle, &sample);
7470 
7471 	perf_output_end(&handle);
7472 }
7473 
7474 /*
7475  * Lost/dropped samples logging
7476  */
7477 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7478 {
7479 	struct perf_output_handle handle;
7480 	struct perf_sample_data sample;
7481 	int ret;
7482 
7483 	struct {
7484 		struct perf_event_header	header;
7485 		u64				lost;
7486 	} lost_samples_event = {
7487 		.header = {
7488 			.type = PERF_RECORD_LOST_SAMPLES,
7489 			.misc = 0,
7490 			.size = sizeof(lost_samples_event),
7491 		},
7492 		.lost		= lost,
7493 	};
7494 
7495 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7496 
7497 	ret = perf_output_begin(&handle, event,
7498 				lost_samples_event.header.size);
7499 	if (ret)
7500 		return;
7501 
7502 	perf_output_put(&handle, lost_samples_event);
7503 	perf_event__output_id_sample(event, &handle, &sample);
7504 	perf_output_end(&handle);
7505 }
7506 
7507 /*
7508  * context_switch tracking
7509  */
7510 
7511 struct perf_switch_event {
7512 	struct task_struct	*task;
7513 	struct task_struct	*next_prev;
7514 
7515 	struct {
7516 		struct perf_event_header	header;
7517 		u32				next_prev_pid;
7518 		u32				next_prev_tid;
7519 	} event_id;
7520 };
7521 
7522 static int perf_event_switch_match(struct perf_event *event)
7523 {
7524 	return event->attr.context_switch;
7525 }
7526 
7527 static void perf_event_switch_output(struct perf_event *event, void *data)
7528 {
7529 	struct perf_switch_event *se = data;
7530 	struct perf_output_handle handle;
7531 	struct perf_sample_data sample;
7532 	int ret;
7533 
7534 	if (!perf_event_switch_match(event))
7535 		return;
7536 
7537 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7538 	if (event->ctx->task) {
7539 		se->event_id.header.type = PERF_RECORD_SWITCH;
7540 		se->event_id.header.size = sizeof(se->event_id.header);
7541 	} else {
7542 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7543 		se->event_id.header.size = sizeof(se->event_id);
7544 		se->event_id.next_prev_pid =
7545 					perf_event_pid(event, se->next_prev);
7546 		se->event_id.next_prev_tid =
7547 					perf_event_tid(event, se->next_prev);
7548 	}
7549 
7550 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7551 
7552 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7553 	if (ret)
7554 		return;
7555 
7556 	if (event->ctx->task)
7557 		perf_output_put(&handle, se->event_id.header);
7558 	else
7559 		perf_output_put(&handle, se->event_id);
7560 
7561 	perf_event__output_id_sample(event, &handle, &sample);
7562 
7563 	perf_output_end(&handle);
7564 }
7565 
7566 static void perf_event_switch(struct task_struct *task,
7567 			      struct task_struct *next_prev, bool sched_in)
7568 {
7569 	struct perf_switch_event switch_event;
7570 
7571 	/* N.B. caller checks nr_switch_events != 0 */
7572 
7573 	switch_event = (struct perf_switch_event){
7574 		.task		= task,
7575 		.next_prev	= next_prev,
7576 		.event_id	= {
7577 			.header = {
7578 				/* .type */
7579 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7580 				/* .size */
7581 			},
7582 			/* .next_prev_pid */
7583 			/* .next_prev_tid */
7584 		},
7585 	};
7586 
7587 	perf_iterate_sb(perf_event_switch_output,
7588 		       &switch_event,
7589 		       NULL);
7590 }
7591 
7592 /*
7593  * IRQ throttle logging
7594  */
7595 
7596 static void perf_log_throttle(struct perf_event *event, int enable)
7597 {
7598 	struct perf_output_handle handle;
7599 	struct perf_sample_data sample;
7600 	int ret;
7601 
7602 	struct {
7603 		struct perf_event_header	header;
7604 		u64				time;
7605 		u64				id;
7606 		u64				stream_id;
7607 	} throttle_event = {
7608 		.header = {
7609 			.type = PERF_RECORD_THROTTLE,
7610 			.misc = 0,
7611 			.size = sizeof(throttle_event),
7612 		},
7613 		.time		= perf_event_clock(event),
7614 		.id		= primary_event_id(event),
7615 		.stream_id	= event->id,
7616 	};
7617 
7618 	if (enable)
7619 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7620 
7621 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7622 
7623 	ret = perf_output_begin(&handle, event,
7624 				throttle_event.header.size);
7625 	if (ret)
7626 		return;
7627 
7628 	perf_output_put(&handle, throttle_event);
7629 	perf_event__output_id_sample(event, &handle, &sample);
7630 	perf_output_end(&handle);
7631 }
7632 
7633 void perf_event_itrace_started(struct perf_event *event)
7634 {
7635 	event->attach_state |= PERF_ATTACH_ITRACE;
7636 }
7637 
7638 static void perf_log_itrace_start(struct perf_event *event)
7639 {
7640 	struct perf_output_handle handle;
7641 	struct perf_sample_data sample;
7642 	struct perf_aux_event {
7643 		struct perf_event_header        header;
7644 		u32				pid;
7645 		u32				tid;
7646 	} rec;
7647 	int ret;
7648 
7649 	if (event->parent)
7650 		event = event->parent;
7651 
7652 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7653 	    event->attach_state & PERF_ATTACH_ITRACE)
7654 		return;
7655 
7656 	rec.header.type	= PERF_RECORD_ITRACE_START;
7657 	rec.header.misc	= 0;
7658 	rec.header.size	= sizeof(rec);
7659 	rec.pid	= perf_event_pid(event, current);
7660 	rec.tid	= perf_event_tid(event, current);
7661 
7662 	perf_event_header__init_id(&rec.header, &sample, event);
7663 	ret = perf_output_begin(&handle, event, rec.header.size);
7664 
7665 	if (ret)
7666 		return;
7667 
7668 	perf_output_put(&handle, rec);
7669 	perf_event__output_id_sample(event, &handle, &sample);
7670 
7671 	perf_output_end(&handle);
7672 }
7673 
7674 static int
7675 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7676 {
7677 	struct hw_perf_event *hwc = &event->hw;
7678 	int ret = 0;
7679 	u64 seq;
7680 
7681 	seq = __this_cpu_read(perf_throttled_seq);
7682 	if (seq != hwc->interrupts_seq) {
7683 		hwc->interrupts_seq = seq;
7684 		hwc->interrupts = 1;
7685 	} else {
7686 		hwc->interrupts++;
7687 		if (unlikely(throttle
7688 			     && hwc->interrupts >= max_samples_per_tick)) {
7689 			__this_cpu_inc(perf_throttled_count);
7690 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7691 			hwc->interrupts = MAX_INTERRUPTS;
7692 			perf_log_throttle(event, 0);
7693 			ret = 1;
7694 		}
7695 	}
7696 
7697 	if (event->attr.freq) {
7698 		u64 now = perf_clock();
7699 		s64 delta = now - hwc->freq_time_stamp;
7700 
7701 		hwc->freq_time_stamp = now;
7702 
7703 		if (delta > 0 && delta < 2*TICK_NSEC)
7704 			perf_adjust_period(event, delta, hwc->last_period, true);
7705 	}
7706 
7707 	return ret;
7708 }
7709 
7710 int perf_event_account_interrupt(struct perf_event *event)
7711 {
7712 	return __perf_event_account_interrupt(event, 1);
7713 }
7714 
7715 /*
7716  * Generic event overflow handling, sampling.
7717  */
7718 
7719 static int __perf_event_overflow(struct perf_event *event,
7720 				   int throttle, struct perf_sample_data *data,
7721 				   struct pt_regs *regs)
7722 {
7723 	int events = atomic_read(&event->event_limit);
7724 	int ret = 0;
7725 
7726 	/*
7727 	 * Non-sampling counters might still use the PMI to fold short
7728 	 * hardware counters, ignore those.
7729 	 */
7730 	if (unlikely(!is_sampling_event(event)))
7731 		return 0;
7732 
7733 	ret = __perf_event_account_interrupt(event, throttle);
7734 
7735 	/*
7736 	 * XXX event_limit might not quite work as expected on inherited
7737 	 * events
7738 	 */
7739 
7740 	event->pending_kill = POLL_IN;
7741 	if (events && atomic_dec_and_test(&event->event_limit)) {
7742 		ret = 1;
7743 		event->pending_kill = POLL_HUP;
7744 
7745 		perf_event_disable_inatomic(event);
7746 	}
7747 
7748 	READ_ONCE(event->overflow_handler)(event, data, regs);
7749 
7750 	if (*perf_event_fasync(event) && event->pending_kill) {
7751 		event->pending_wakeup = 1;
7752 		irq_work_queue(&event->pending);
7753 	}
7754 
7755 	return ret;
7756 }
7757 
7758 int perf_event_overflow(struct perf_event *event,
7759 			  struct perf_sample_data *data,
7760 			  struct pt_regs *regs)
7761 {
7762 	return __perf_event_overflow(event, 1, data, regs);
7763 }
7764 
7765 /*
7766  * Generic software event infrastructure
7767  */
7768 
7769 struct swevent_htable {
7770 	struct swevent_hlist		*swevent_hlist;
7771 	struct mutex			hlist_mutex;
7772 	int				hlist_refcount;
7773 
7774 	/* Recursion avoidance in each contexts */
7775 	int				recursion[PERF_NR_CONTEXTS];
7776 };
7777 
7778 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7779 
7780 /*
7781  * We directly increment event->count and keep a second value in
7782  * event->hw.period_left to count intervals. This period event
7783  * is kept in the range [-sample_period, 0] so that we can use the
7784  * sign as trigger.
7785  */
7786 
7787 u64 perf_swevent_set_period(struct perf_event *event)
7788 {
7789 	struct hw_perf_event *hwc = &event->hw;
7790 	u64 period = hwc->last_period;
7791 	u64 nr, offset;
7792 	s64 old, val;
7793 
7794 	hwc->last_period = hwc->sample_period;
7795 
7796 again:
7797 	old = val = local64_read(&hwc->period_left);
7798 	if (val < 0)
7799 		return 0;
7800 
7801 	nr = div64_u64(period + val, period);
7802 	offset = nr * period;
7803 	val -= offset;
7804 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7805 		goto again;
7806 
7807 	return nr;
7808 }
7809 
7810 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7811 				    struct perf_sample_data *data,
7812 				    struct pt_regs *regs)
7813 {
7814 	struct hw_perf_event *hwc = &event->hw;
7815 	int throttle = 0;
7816 
7817 	if (!overflow)
7818 		overflow = perf_swevent_set_period(event);
7819 
7820 	if (hwc->interrupts == MAX_INTERRUPTS)
7821 		return;
7822 
7823 	for (; overflow; overflow--) {
7824 		if (__perf_event_overflow(event, throttle,
7825 					    data, regs)) {
7826 			/*
7827 			 * We inhibit the overflow from happening when
7828 			 * hwc->interrupts == MAX_INTERRUPTS.
7829 			 */
7830 			break;
7831 		}
7832 		throttle = 1;
7833 	}
7834 }
7835 
7836 static void perf_swevent_event(struct perf_event *event, u64 nr,
7837 			       struct perf_sample_data *data,
7838 			       struct pt_regs *regs)
7839 {
7840 	struct hw_perf_event *hwc = &event->hw;
7841 
7842 	local64_add(nr, &event->count);
7843 
7844 	if (!regs)
7845 		return;
7846 
7847 	if (!is_sampling_event(event))
7848 		return;
7849 
7850 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7851 		data->period = nr;
7852 		return perf_swevent_overflow(event, 1, data, regs);
7853 	} else
7854 		data->period = event->hw.last_period;
7855 
7856 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7857 		return perf_swevent_overflow(event, 1, data, regs);
7858 
7859 	if (local64_add_negative(nr, &hwc->period_left))
7860 		return;
7861 
7862 	perf_swevent_overflow(event, 0, data, regs);
7863 }
7864 
7865 static int perf_exclude_event(struct perf_event *event,
7866 			      struct pt_regs *regs)
7867 {
7868 	if (event->hw.state & PERF_HES_STOPPED)
7869 		return 1;
7870 
7871 	if (regs) {
7872 		if (event->attr.exclude_user && user_mode(regs))
7873 			return 1;
7874 
7875 		if (event->attr.exclude_kernel && !user_mode(regs))
7876 			return 1;
7877 	}
7878 
7879 	return 0;
7880 }
7881 
7882 static int perf_swevent_match(struct perf_event *event,
7883 				enum perf_type_id type,
7884 				u32 event_id,
7885 				struct perf_sample_data *data,
7886 				struct pt_regs *regs)
7887 {
7888 	if (event->attr.type != type)
7889 		return 0;
7890 
7891 	if (event->attr.config != event_id)
7892 		return 0;
7893 
7894 	if (perf_exclude_event(event, regs))
7895 		return 0;
7896 
7897 	return 1;
7898 }
7899 
7900 static inline u64 swevent_hash(u64 type, u32 event_id)
7901 {
7902 	u64 val = event_id | (type << 32);
7903 
7904 	return hash_64(val, SWEVENT_HLIST_BITS);
7905 }
7906 
7907 static inline struct hlist_head *
7908 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7909 {
7910 	u64 hash = swevent_hash(type, event_id);
7911 
7912 	return &hlist->heads[hash];
7913 }
7914 
7915 /* For the read side: events when they trigger */
7916 static inline struct hlist_head *
7917 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7918 {
7919 	struct swevent_hlist *hlist;
7920 
7921 	hlist = rcu_dereference(swhash->swevent_hlist);
7922 	if (!hlist)
7923 		return NULL;
7924 
7925 	return __find_swevent_head(hlist, type, event_id);
7926 }
7927 
7928 /* For the event head insertion and removal in the hlist */
7929 static inline struct hlist_head *
7930 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7931 {
7932 	struct swevent_hlist *hlist;
7933 	u32 event_id = event->attr.config;
7934 	u64 type = event->attr.type;
7935 
7936 	/*
7937 	 * Event scheduling is always serialized against hlist allocation
7938 	 * and release. Which makes the protected version suitable here.
7939 	 * The context lock guarantees that.
7940 	 */
7941 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7942 					  lockdep_is_held(&event->ctx->lock));
7943 	if (!hlist)
7944 		return NULL;
7945 
7946 	return __find_swevent_head(hlist, type, event_id);
7947 }
7948 
7949 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7950 				    u64 nr,
7951 				    struct perf_sample_data *data,
7952 				    struct pt_regs *regs)
7953 {
7954 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7955 	struct perf_event *event;
7956 	struct hlist_head *head;
7957 
7958 	rcu_read_lock();
7959 	head = find_swevent_head_rcu(swhash, type, event_id);
7960 	if (!head)
7961 		goto end;
7962 
7963 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7964 		if (perf_swevent_match(event, type, event_id, data, regs))
7965 			perf_swevent_event(event, nr, data, regs);
7966 	}
7967 end:
7968 	rcu_read_unlock();
7969 }
7970 
7971 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7972 
7973 int perf_swevent_get_recursion_context(void)
7974 {
7975 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7976 
7977 	return get_recursion_context(swhash->recursion);
7978 }
7979 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7980 
7981 void perf_swevent_put_recursion_context(int rctx)
7982 {
7983 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7984 
7985 	put_recursion_context(swhash->recursion, rctx);
7986 }
7987 
7988 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7989 {
7990 	struct perf_sample_data data;
7991 
7992 	if (WARN_ON_ONCE(!regs))
7993 		return;
7994 
7995 	perf_sample_data_init(&data, addr, 0);
7996 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7997 }
7998 
7999 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8000 {
8001 	int rctx;
8002 
8003 	preempt_disable_notrace();
8004 	rctx = perf_swevent_get_recursion_context();
8005 	if (unlikely(rctx < 0))
8006 		goto fail;
8007 
8008 	___perf_sw_event(event_id, nr, regs, addr);
8009 
8010 	perf_swevent_put_recursion_context(rctx);
8011 fail:
8012 	preempt_enable_notrace();
8013 }
8014 
8015 static void perf_swevent_read(struct perf_event *event)
8016 {
8017 }
8018 
8019 static int perf_swevent_add(struct perf_event *event, int flags)
8020 {
8021 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8022 	struct hw_perf_event *hwc = &event->hw;
8023 	struct hlist_head *head;
8024 
8025 	if (is_sampling_event(event)) {
8026 		hwc->last_period = hwc->sample_period;
8027 		perf_swevent_set_period(event);
8028 	}
8029 
8030 	hwc->state = !(flags & PERF_EF_START);
8031 
8032 	head = find_swevent_head(swhash, event);
8033 	if (WARN_ON_ONCE(!head))
8034 		return -EINVAL;
8035 
8036 	hlist_add_head_rcu(&event->hlist_entry, head);
8037 	perf_event_update_userpage(event);
8038 
8039 	return 0;
8040 }
8041 
8042 static void perf_swevent_del(struct perf_event *event, int flags)
8043 {
8044 	hlist_del_rcu(&event->hlist_entry);
8045 }
8046 
8047 static void perf_swevent_start(struct perf_event *event, int flags)
8048 {
8049 	event->hw.state = 0;
8050 }
8051 
8052 static void perf_swevent_stop(struct perf_event *event, int flags)
8053 {
8054 	event->hw.state = PERF_HES_STOPPED;
8055 }
8056 
8057 /* Deref the hlist from the update side */
8058 static inline struct swevent_hlist *
8059 swevent_hlist_deref(struct swevent_htable *swhash)
8060 {
8061 	return rcu_dereference_protected(swhash->swevent_hlist,
8062 					 lockdep_is_held(&swhash->hlist_mutex));
8063 }
8064 
8065 static void swevent_hlist_release(struct swevent_htable *swhash)
8066 {
8067 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8068 
8069 	if (!hlist)
8070 		return;
8071 
8072 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8073 	kfree_rcu(hlist, rcu_head);
8074 }
8075 
8076 static void swevent_hlist_put_cpu(int cpu)
8077 {
8078 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8079 
8080 	mutex_lock(&swhash->hlist_mutex);
8081 
8082 	if (!--swhash->hlist_refcount)
8083 		swevent_hlist_release(swhash);
8084 
8085 	mutex_unlock(&swhash->hlist_mutex);
8086 }
8087 
8088 static void swevent_hlist_put(void)
8089 {
8090 	int cpu;
8091 
8092 	for_each_possible_cpu(cpu)
8093 		swevent_hlist_put_cpu(cpu);
8094 }
8095 
8096 static int swevent_hlist_get_cpu(int cpu)
8097 {
8098 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8099 	int err = 0;
8100 
8101 	mutex_lock(&swhash->hlist_mutex);
8102 	if (!swevent_hlist_deref(swhash) &&
8103 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8104 		struct swevent_hlist *hlist;
8105 
8106 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8107 		if (!hlist) {
8108 			err = -ENOMEM;
8109 			goto exit;
8110 		}
8111 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8112 	}
8113 	swhash->hlist_refcount++;
8114 exit:
8115 	mutex_unlock(&swhash->hlist_mutex);
8116 
8117 	return err;
8118 }
8119 
8120 static int swevent_hlist_get(void)
8121 {
8122 	int err, cpu, failed_cpu;
8123 
8124 	mutex_lock(&pmus_lock);
8125 	for_each_possible_cpu(cpu) {
8126 		err = swevent_hlist_get_cpu(cpu);
8127 		if (err) {
8128 			failed_cpu = cpu;
8129 			goto fail;
8130 		}
8131 	}
8132 	mutex_unlock(&pmus_lock);
8133 	return 0;
8134 fail:
8135 	for_each_possible_cpu(cpu) {
8136 		if (cpu == failed_cpu)
8137 			break;
8138 		swevent_hlist_put_cpu(cpu);
8139 	}
8140 	mutex_unlock(&pmus_lock);
8141 	return err;
8142 }
8143 
8144 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8145 
8146 static void sw_perf_event_destroy(struct perf_event *event)
8147 {
8148 	u64 event_id = event->attr.config;
8149 
8150 	WARN_ON(event->parent);
8151 
8152 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8153 	swevent_hlist_put();
8154 }
8155 
8156 static int perf_swevent_init(struct perf_event *event)
8157 {
8158 	u64 event_id = event->attr.config;
8159 
8160 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8161 		return -ENOENT;
8162 
8163 	/*
8164 	 * no branch sampling for software events
8165 	 */
8166 	if (has_branch_stack(event))
8167 		return -EOPNOTSUPP;
8168 
8169 	switch (event_id) {
8170 	case PERF_COUNT_SW_CPU_CLOCK:
8171 	case PERF_COUNT_SW_TASK_CLOCK:
8172 		return -ENOENT;
8173 
8174 	default:
8175 		break;
8176 	}
8177 
8178 	if (event_id >= PERF_COUNT_SW_MAX)
8179 		return -ENOENT;
8180 
8181 	if (!event->parent) {
8182 		int err;
8183 
8184 		err = swevent_hlist_get();
8185 		if (err)
8186 			return err;
8187 
8188 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8189 		event->destroy = sw_perf_event_destroy;
8190 	}
8191 
8192 	return 0;
8193 }
8194 
8195 static struct pmu perf_swevent = {
8196 	.task_ctx_nr	= perf_sw_context,
8197 
8198 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8199 
8200 	.event_init	= perf_swevent_init,
8201 	.add		= perf_swevent_add,
8202 	.del		= perf_swevent_del,
8203 	.start		= perf_swevent_start,
8204 	.stop		= perf_swevent_stop,
8205 	.read		= perf_swevent_read,
8206 };
8207 
8208 #ifdef CONFIG_EVENT_TRACING
8209 
8210 static int perf_tp_filter_match(struct perf_event *event,
8211 				struct perf_sample_data *data)
8212 {
8213 	void *record = data->raw->frag.data;
8214 
8215 	/* only top level events have filters set */
8216 	if (event->parent)
8217 		event = event->parent;
8218 
8219 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8220 		return 1;
8221 	return 0;
8222 }
8223 
8224 static int perf_tp_event_match(struct perf_event *event,
8225 				struct perf_sample_data *data,
8226 				struct pt_regs *regs)
8227 {
8228 	if (event->hw.state & PERF_HES_STOPPED)
8229 		return 0;
8230 	/*
8231 	 * All tracepoints are from kernel-space.
8232 	 */
8233 	if (event->attr.exclude_kernel)
8234 		return 0;
8235 
8236 	if (!perf_tp_filter_match(event, data))
8237 		return 0;
8238 
8239 	return 1;
8240 }
8241 
8242 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8243 			       struct trace_event_call *call, u64 count,
8244 			       struct pt_regs *regs, struct hlist_head *head,
8245 			       struct task_struct *task)
8246 {
8247 	if (bpf_prog_array_valid(call)) {
8248 		*(struct pt_regs **)raw_data = regs;
8249 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8250 			perf_swevent_put_recursion_context(rctx);
8251 			return;
8252 		}
8253 	}
8254 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8255 		      rctx, task);
8256 }
8257 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8258 
8259 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8260 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8261 		   struct task_struct *task)
8262 {
8263 	struct perf_sample_data data;
8264 	struct perf_event *event;
8265 
8266 	struct perf_raw_record raw = {
8267 		.frag = {
8268 			.size = entry_size,
8269 			.data = record,
8270 		},
8271 	};
8272 
8273 	perf_sample_data_init(&data, 0, 0);
8274 	data.raw = &raw;
8275 
8276 	perf_trace_buf_update(record, event_type);
8277 
8278 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8279 		if (perf_tp_event_match(event, &data, regs))
8280 			perf_swevent_event(event, count, &data, regs);
8281 	}
8282 
8283 	/*
8284 	 * If we got specified a target task, also iterate its context and
8285 	 * deliver this event there too.
8286 	 */
8287 	if (task && task != current) {
8288 		struct perf_event_context *ctx;
8289 		struct trace_entry *entry = record;
8290 
8291 		rcu_read_lock();
8292 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8293 		if (!ctx)
8294 			goto unlock;
8295 
8296 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8297 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8298 				continue;
8299 			if (event->attr.config != entry->type)
8300 				continue;
8301 			if (perf_tp_event_match(event, &data, regs))
8302 				perf_swevent_event(event, count, &data, regs);
8303 		}
8304 unlock:
8305 		rcu_read_unlock();
8306 	}
8307 
8308 	perf_swevent_put_recursion_context(rctx);
8309 }
8310 EXPORT_SYMBOL_GPL(perf_tp_event);
8311 
8312 static void tp_perf_event_destroy(struct perf_event *event)
8313 {
8314 	perf_trace_destroy(event);
8315 }
8316 
8317 static int perf_tp_event_init(struct perf_event *event)
8318 {
8319 	int err;
8320 
8321 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8322 		return -ENOENT;
8323 
8324 	/*
8325 	 * no branch sampling for tracepoint events
8326 	 */
8327 	if (has_branch_stack(event))
8328 		return -EOPNOTSUPP;
8329 
8330 	err = perf_trace_init(event);
8331 	if (err)
8332 		return err;
8333 
8334 	event->destroy = tp_perf_event_destroy;
8335 
8336 	return 0;
8337 }
8338 
8339 static struct pmu perf_tracepoint = {
8340 	.task_ctx_nr	= perf_sw_context,
8341 
8342 	.event_init	= perf_tp_event_init,
8343 	.add		= perf_trace_add,
8344 	.del		= perf_trace_del,
8345 	.start		= perf_swevent_start,
8346 	.stop		= perf_swevent_stop,
8347 	.read		= perf_swevent_read,
8348 };
8349 
8350 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8351 /*
8352  * Flags in config, used by dynamic PMU kprobe and uprobe
8353  * The flags should match following PMU_FORMAT_ATTR().
8354  *
8355  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8356  *                               if not set, create kprobe/uprobe
8357  */
8358 enum perf_probe_config {
8359 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8360 };
8361 
8362 PMU_FORMAT_ATTR(retprobe, "config:0");
8363 
8364 static struct attribute *probe_attrs[] = {
8365 	&format_attr_retprobe.attr,
8366 	NULL,
8367 };
8368 
8369 static struct attribute_group probe_format_group = {
8370 	.name = "format",
8371 	.attrs = probe_attrs,
8372 };
8373 
8374 static const struct attribute_group *probe_attr_groups[] = {
8375 	&probe_format_group,
8376 	NULL,
8377 };
8378 #endif
8379 
8380 #ifdef CONFIG_KPROBE_EVENTS
8381 static int perf_kprobe_event_init(struct perf_event *event);
8382 static struct pmu perf_kprobe = {
8383 	.task_ctx_nr	= perf_sw_context,
8384 	.event_init	= perf_kprobe_event_init,
8385 	.add		= perf_trace_add,
8386 	.del		= perf_trace_del,
8387 	.start		= perf_swevent_start,
8388 	.stop		= perf_swevent_stop,
8389 	.read		= perf_swevent_read,
8390 	.attr_groups	= probe_attr_groups,
8391 };
8392 
8393 static int perf_kprobe_event_init(struct perf_event *event)
8394 {
8395 	int err;
8396 	bool is_retprobe;
8397 
8398 	if (event->attr.type != perf_kprobe.type)
8399 		return -ENOENT;
8400 	/*
8401 	 * no branch sampling for probe events
8402 	 */
8403 	if (has_branch_stack(event))
8404 		return -EOPNOTSUPP;
8405 
8406 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8407 	err = perf_kprobe_init(event, is_retprobe);
8408 	if (err)
8409 		return err;
8410 
8411 	event->destroy = perf_kprobe_destroy;
8412 
8413 	return 0;
8414 }
8415 #endif /* CONFIG_KPROBE_EVENTS */
8416 
8417 #ifdef CONFIG_UPROBE_EVENTS
8418 static int perf_uprobe_event_init(struct perf_event *event);
8419 static struct pmu perf_uprobe = {
8420 	.task_ctx_nr	= perf_sw_context,
8421 	.event_init	= perf_uprobe_event_init,
8422 	.add		= perf_trace_add,
8423 	.del		= perf_trace_del,
8424 	.start		= perf_swevent_start,
8425 	.stop		= perf_swevent_stop,
8426 	.read		= perf_swevent_read,
8427 	.attr_groups	= probe_attr_groups,
8428 };
8429 
8430 static int perf_uprobe_event_init(struct perf_event *event)
8431 {
8432 	int err;
8433 	bool is_retprobe;
8434 
8435 	if (event->attr.type != perf_uprobe.type)
8436 		return -ENOENT;
8437 	/*
8438 	 * no branch sampling for probe events
8439 	 */
8440 	if (has_branch_stack(event))
8441 		return -EOPNOTSUPP;
8442 
8443 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8444 	err = perf_uprobe_init(event, is_retprobe);
8445 	if (err)
8446 		return err;
8447 
8448 	event->destroy = perf_uprobe_destroy;
8449 
8450 	return 0;
8451 }
8452 #endif /* CONFIG_UPROBE_EVENTS */
8453 
8454 static inline void perf_tp_register(void)
8455 {
8456 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8457 #ifdef CONFIG_KPROBE_EVENTS
8458 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
8459 #endif
8460 #ifdef CONFIG_UPROBE_EVENTS
8461 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
8462 #endif
8463 }
8464 
8465 static void perf_event_free_filter(struct perf_event *event)
8466 {
8467 	ftrace_profile_free_filter(event);
8468 }
8469 
8470 #ifdef CONFIG_BPF_SYSCALL
8471 static void bpf_overflow_handler(struct perf_event *event,
8472 				 struct perf_sample_data *data,
8473 				 struct pt_regs *regs)
8474 {
8475 	struct bpf_perf_event_data_kern ctx = {
8476 		.data = data,
8477 		.event = event,
8478 	};
8479 	int ret = 0;
8480 
8481 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8482 	preempt_disable();
8483 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8484 		goto out;
8485 	rcu_read_lock();
8486 	ret = BPF_PROG_RUN(event->prog, &ctx);
8487 	rcu_read_unlock();
8488 out:
8489 	__this_cpu_dec(bpf_prog_active);
8490 	preempt_enable();
8491 	if (!ret)
8492 		return;
8493 
8494 	event->orig_overflow_handler(event, data, regs);
8495 }
8496 
8497 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8498 {
8499 	struct bpf_prog *prog;
8500 
8501 	if (event->overflow_handler_context)
8502 		/* hw breakpoint or kernel counter */
8503 		return -EINVAL;
8504 
8505 	if (event->prog)
8506 		return -EEXIST;
8507 
8508 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8509 	if (IS_ERR(prog))
8510 		return PTR_ERR(prog);
8511 
8512 	event->prog = prog;
8513 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8514 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8515 	return 0;
8516 }
8517 
8518 static void perf_event_free_bpf_handler(struct perf_event *event)
8519 {
8520 	struct bpf_prog *prog = event->prog;
8521 
8522 	if (!prog)
8523 		return;
8524 
8525 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8526 	event->prog = NULL;
8527 	bpf_prog_put(prog);
8528 }
8529 #else
8530 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8531 {
8532 	return -EOPNOTSUPP;
8533 }
8534 static void perf_event_free_bpf_handler(struct perf_event *event)
8535 {
8536 }
8537 #endif
8538 
8539 /*
8540  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8541  * with perf_event_open()
8542  */
8543 static inline bool perf_event_is_tracing(struct perf_event *event)
8544 {
8545 	if (event->pmu == &perf_tracepoint)
8546 		return true;
8547 #ifdef CONFIG_KPROBE_EVENTS
8548 	if (event->pmu == &perf_kprobe)
8549 		return true;
8550 #endif
8551 #ifdef CONFIG_UPROBE_EVENTS
8552 	if (event->pmu == &perf_uprobe)
8553 		return true;
8554 #endif
8555 	return false;
8556 }
8557 
8558 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8559 {
8560 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8561 	struct bpf_prog *prog;
8562 	int ret;
8563 
8564 	if (!perf_event_is_tracing(event))
8565 		return perf_event_set_bpf_handler(event, prog_fd);
8566 
8567 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8568 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8569 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8570 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8571 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8572 		return -EINVAL;
8573 
8574 	prog = bpf_prog_get(prog_fd);
8575 	if (IS_ERR(prog))
8576 		return PTR_ERR(prog);
8577 
8578 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8579 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8580 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8581 		/* valid fd, but invalid bpf program type */
8582 		bpf_prog_put(prog);
8583 		return -EINVAL;
8584 	}
8585 
8586 	/* Kprobe override only works for kprobes, not uprobes. */
8587 	if (prog->kprobe_override &&
8588 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8589 		bpf_prog_put(prog);
8590 		return -EINVAL;
8591 	}
8592 
8593 	if (is_tracepoint || is_syscall_tp) {
8594 		int off = trace_event_get_offsets(event->tp_event);
8595 
8596 		if (prog->aux->max_ctx_offset > off) {
8597 			bpf_prog_put(prog);
8598 			return -EACCES;
8599 		}
8600 	}
8601 
8602 	ret = perf_event_attach_bpf_prog(event, prog);
8603 	if (ret)
8604 		bpf_prog_put(prog);
8605 	return ret;
8606 }
8607 
8608 static void perf_event_free_bpf_prog(struct perf_event *event)
8609 {
8610 	if (!perf_event_is_tracing(event)) {
8611 		perf_event_free_bpf_handler(event);
8612 		return;
8613 	}
8614 	perf_event_detach_bpf_prog(event);
8615 }
8616 
8617 #else
8618 
8619 static inline void perf_tp_register(void)
8620 {
8621 }
8622 
8623 static void perf_event_free_filter(struct perf_event *event)
8624 {
8625 }
8626 
8627 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8628 {
8629 	return -ENOENT;
8630 }
8631 
8632 static void perf_event_free_bpf_prog(struct perf_event *event)
8633 {
8634 }
8635 #endif /* CONFIG_EVENT_TRACING */
8636 
8637 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8638 void perf_bp_event(struct perf_event *bp, void *data)
8639 {
8640 	struct perf_sample_data sample;
8641 	struct pt_regs *regs = data;
8642 
8643 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8644 
8645 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8646 		perf_swevent_event(bp, 1, &sample, regs);
8647 }
8648 #endif
8649 
8650 /*
8651  * Allocate a new address filter
8652  */
8653 static struct perf_addr_filter *
8654 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8655 {
8656 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8657 	struct perf_addr_filter *filter;
8658 
8659 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8660 	if (!filter)
8661 		return NULL;
8662 
8663 	INIT_LIST_HEAD(&filter->entry);
8664 	list_add_tail(&filter->entry, filters);
8665 
8666 	return filter;
8667 }
8668 
8669 static void free_filters_list(struct list_head *filters)
8670 {
8671 	struct perf_addr_filter *filter, *iter;
8672 
8673 	list_for_each_entry_safe(filter, iter, filters, entry) {
8674 		if (filter->inode)
8675 			iput(filter->inode);
8676 		list_del(&filter->entry);
8677 		kfree(filter);
8678 	}
8679 }
8680 
8681 /*
8682  * Free existing address filters and optionally install new ones
8683  */
8684 static void perf_addr_filters_splice(struct perf_event *event,
8685 				     struct list_head *head)
8686 {
8687 	unsigned long flags;
8688 	LIST_HEAD(list);
8689 
8690 	if (!has_addr_filter(event))
8691 		return;
8692 
8693 	/* don't bother with children, they don't have their own filters */
8694 	if (event->parent)
8695 		return;
8696 
8697 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8698 
8699 	list_splice_init(&event->addr_filters.list, &list);
8700 	if (head)
8701 		list_splice(head, &event->addr_filters.list);
8702 
8703 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8704 
8705 	free_filters_list(&list);
8706 }
8707 
8708 /*
8709  * Scan through mm's vmas and see if one of them matches the
8710  * @filter; if so, adjust filter's address range.
8711  * Called with mm::mmap_sem down for reading.
8712  */
8713 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8714 					    struct mm_struct *mm)
8715 {
8716 	struct vm_area_struct *vma;
8717 
8718 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8719 		struct file *file = vma->vm_file;
8720 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8721 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8722 
8723 		if (!file)
8724 			continue;
8725 
8726 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8727 			continue;
8728 
8729 		return vma->vm_start;
8730 	}
8731 
8732 	return 0;
8733 }
8734 
8735 /*
8736  * Update event's address range filters based on the
8737  * task's existing mappings, if any.
8738  */
8739 static void perf_event_addr_filters_apply(struct perf_event *event)
8740 {
8741 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8742 	struct task_struct *task = READ_ONCE(event->ctx->task);
8743 	struct perf_addr_filter *filter;
8744 	struct mm_struct *mm = NULL;
8745 	unsigned int count = 0;
8746 	unsigned long flags;
8747 
8748 	/*
8749 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8750 	 * will stop on the parent's child_mutex that our caller is also holding
8751 	 */
8752 	if (task == TASK_TOMBSTONE)
8753 		return;
8754 
8755 	if (!ifh->nr_file_filters)
8756 		return;
8757 
8758 	mm = get_task_mm(event->ctx->task);
8759 	if (!mm)
8760 		goto restart;
8761 
8762 	down_read(&mm->mmap_sem);
8763 
8764 	raw_spin_lock_irqsave(&ifh->lock, flags);
8765 	list_for_each_entry(filter, &ifh->list, entry) {
8766 		event->addr_filters_offs[count] = 0;
8767 
8768 		/*
8769 		 * Adjust base offset if the filter is associated to a binary
8770 		 * that needs to be mapped:
8771 		 */
8772 		if (filter->inode)
8773 			event->addr_filters_offs[count] =
8774 				perf_addr_filter_apply(filter, mm);
8775 
8776 		count++;
8777 	}
8778 
8779 	event->addr_filters_gen++;
8780 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8781 
8782 	up_read(&mm->mmap_sem);
8783 
8784 	mmput(mm);
8785 
8786 restart:
8787 	perf_event_stop(event, 1);
8788 }
8789 
8790 /*
8791  * Address range filtering: limiting the data to certain
8792  * instruction address ranges. Filters are ioctl()ed to us from
8793  * userspace as ascii strings.
8794  *
8795  * Filter string format:
8796  *
8797  * ACTION RANGE_SPEC
8798  * where ACTION is one of the
8799  *  * "filter": limit the trace to this region
8800  *  * "start": start tracing from this address
8801  *  * "stop": stop tracing at this address/region;
8802  * RANGE_SPEC is
8803  *  * for kernel addresses: <start address>[/<size>]
8804  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8805  *
8806  * if <size> is not specified, the range is treated as a single address.
8807  */
8808 enum {
8809 	IF_ACT_NONE = -1,
8810 	IF_ACT_FILTER,
8811 	IF_ACT_START,
8812 	IF_ACT_STOP,
8813 	IF_SRC_FILE,
8814 	IF_SRC_KERNEL,
8815 	IF_SRC_FILEADDR,
8816 	IF_SRC_KERNELADDR,
8817 };
8818 
8819 enum {
8820 	IF_STATE_ACTION = 0,
8821 	IF_STATE_SOURCE,
8822 	IF_STATE_END,
8823 };
8824 
8825 static const match_table_t if_tokens = {
8826 	{ IF_ACT_FILTER,	"filter" },
8827 	{ IF_ACT_START,		"start" },
8828 	{ IF_ACT_STOP,		"stop" },
8829 	{ IF_SRC_FILE,		"%u/%u@%s" },
8830 	{ IF_SRC_KERNEL,	"%u/%u" },
8831 	{ IF_SRC_FILEADDR,	"%u@%s" },
8832 	{ IF_SRC_KERNELADDR,	"%u" },
8833 	{ IF_ACT_NONE,		NULL },
8834 };
8835 
8836 /*
8837  * Address filter string parser
8838  */
8839 static int
8840 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8841 			     struct list_head *filters)
8842 {
8843 	struct perf_addr_filter *filter = NULL;
8844 	char *start, *orig, *filename = NULL;
8845 	struct path path;
8846 	substring_t args[MAX_OPT_ARGS];
8847 	int state = IF_STATE_ACTION, token;
8848 	unsigned int kernel = 0;
8849 	int ret = -EINVAL;
8850 
8851 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8852 	if (!fstr)
8853 		return -ENOMEM;
8854 
8855 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8856 		ret = -EINVAL;
8857 
8858 		if (!*start)
8859 			continue;
8860 
8861 		/* filter definition begins */
8862 		if (state == IF_STATE_ACTION) {
8863 			filter = perf_addr_filter_new(event, filters);
8864 			if (!filter)
8865 				goto fail;
8866 		}
8867 
8868 		token = match_token(start, if_tokens, args);
8869 		switch (token) {
8870 		case IF_ACT_FILTER:
8871 		case IF_ACT_START:
8872 			filter->filter = 1;
8873 
8874 		case IF_ACT_STOP:
8875 			if (state != IF_STATE_ACTION)
8876 				goto fail;
8877 
8878 			state = IF_STATE_SOURCE;
8879 			break;
8880 
8881 		case IF_SRC_KERNELADDR:
8882 		case IF_SRC_KERNEL:
8883 			kernel = 1;
8884 
8885 		case IF_SRC_FILEADDR:
8886 		case IF_SRC_FILE:
8887 			if (state != IF_STATE_SOURCE)
8888 				goto fail;
8889 
8890 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8891 				filter->range = 1;
8892 
8893 			*args[0].to = 0;
8894 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8895 			if (ret)
8896 				goto fail;
8897 
8898 			if (filter->range) {
8899 				*args[1].to = 0;
8900 				ret = kstrtoul(args[1].from, 0, &filter->size);
8901 				if (ret)
8902 					goto fail;
8903 			}
8904 
8905 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8906 				int fpos = filter->range ? 2 : 1;
8907 
8908 				filename = match_strdup(&args[fpos]);
8909 				if (!filename) {
8910 					ret = -ENOMEM;
8911 					goto fail;
8912 				}
8913 			}
8914 
8915 			state = IF_STATE_END;
8916 			break;
8917 
8918 		default:
8919 			goto fail;
8920 		}
8921 
8922 		/*
8923 		 * Filter definition is fully parsed, validate and install it.
8924 		 * Make sure that it doesn't contradict itself or the event's
8925 		 * attribute.
8926 		 */
8927 		if (state == IF_STATE_END) {
8928 			ret = -EINVAL;
8929 			if (kernel && event->attr.exclude_kernel)
8930 				goto fail;
8931 
8932 			if (!kernel) {
8933 				if (!filename)
8934 					goto fail;
8935 
8936 				/*
8937 				 * For now, we only support file-based filters
8938 				 * in per-task events; doing so for CPU-wide
8939 				 * events requires additional context switching
8940 				 * trickery, since same object code will be
8941 				 * mapped at different virtual addresses in
8942 				 * different processes.
8943 				 */
8944 				ret = -EOPNOTSUPP;
8945 				if (!event->ctx->task)
8946 					goto fail_free_name;
8947 
8948 				/* look up the path and grab its inode */
8949 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8950 				if (ret)
8951 					goto fail_free_name;
8952 
8953 				filter->inode = igrab(d_inode(path.dentry));
8954 				path_put(&path);
8955 				kfree(filename);
8956 				filename = NULL;
8957 
8958 				ret = -EINVAL;
8959 				if (!filter->inode ||
8960 				    !S_ISREG(filter->inode->i_mode))
8961 					/* free_filters_list() will iput() */
8962 					goto fail;
8963 
8964 				event->addr_filters.nr_file_filters++;
8965 			}
8966 
8967 			/* ready to consume more filters */
8968 			state = IF_STATE_ACTION;
8969 			filter = NULL;
8970 		}
8971 	}
8972 
8973 	if (state != IF_STATE_ACTION)
8974 		goto fail;
8975 
8976 	kfree(orig);
8977 
8978 	return 0;
8979 
8980 fail_free_name:
8981 	kfree(filename);
8982 fail:
8983 	free_filters_list(filters);
8984 	kfree(orig);
8985 
8986 	return ret;
8987 }
8988 
8989 static int
8990 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8991 {
8992 	LIST_HEAD(filters);
8993 	int ret;
8994 
8995 	/*
8996 	 * Since this is called in perf_ioctl() path, we're already holding
8997 	 * ctx::mutex.
8998 	 */
8999 	lockdep_assert_held(&event->ctx->mutex);
9000 
9001 	if (WARN_ON_ONCE(event->parent))
9002 		return -EINVAL;
9003 
9004 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9005 	if (ret)
9006 		goto fail_clear_files;
9007 
9008 	ret = event->pmu->addr_filters_validate(&filters);
9009 	if (ret)
9010 		goto fail_free_filters;
9011 
9012 	/* remove existing filters, if any */
9013 	perf_addr_filters_splice(event, &filters);
9014 
9015 	/* install new filters */
9016 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9017 
9018 	return ret;
9019 
9020 fail_free_filters:
9021 	free_filters_list(&filters);
9022 
9023 fail_clear_files:
9024 	event->addr_filters.nr_file_filters = 0;
9025 
9026 	return ret;
9027 }
9028 
9029 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9030 {
9031 	int ret = -EINVAL;
9032 	char *filter_str;
9033 
9034 	filter_str = strndup_user(arg, PAGE_SIZE);
9035 	if (IS_ERR(filter_str))
9036 		return PTR_ERR(filter_str);
9037 
9038 #ifdef CONFIG_EVENT_TRACING
9039 	if (perf_event_is_tracing(event)) {
9040 		struct perf_event_context *ctx = event->ctx;
9041 
9042 		/*
9043 		 * Beware, here be dragons!!
9044 		 *
9045 		 * the tracepoint muck will deadlock against ctx->mutex, but
9046 		 * the tracepoint stuff does not actually need it. So
9047 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9048 		 * already have a reference on ctx.
9049 		 *
9050 		 * This can result in event getting moved to a different ctx,
9051 		 * but that does not affect the tracepoint state.
9052 		 */
9053 		mutex_unlock(&ctx->mutex);
9054 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9055 		mutex_lock(&ctx->mutex);
9056 	} else
9057 #endif
9058 	if (has_addr_filter(event))
9059 		ret = perf_event_set_addr_filter(event, filter_str);
9060 
9061 	kfree(filter_str);
9062 	return ret;
9063 }
9064 
9065 /*
9066  * hrtimer based swevent callback
9067  */
9068 
9069 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9070 {
9071 	enum hrtimer_restart ret = HRTIMER_RESTART;
9072 	struct perf_sample_data data;
9073 	struct pt_regs *regs;
9074 	struct perf_event *event;
9075 	u64 period;
9076 
9077 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9078 
9079 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9080 		return HRTIMER_NORESTART;
9081 
9082 	event->pmu->read(event);
9083 
9084 	perf_sample_data_init(&data, 0, event->hw.last_period);
9085 	regs = get_irq_regs();
9086 
9087 	if (regs && !perf_exclude_event(event, regs)) {
9088 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9089 			if (__perf_event_overflow(event, 1, &data, regs))
9090 				ret = HRTIMER_NORESTART;
9091 	}
9092 
9093 	period = max_t(u64, 10000, event->hw.sample_period);
9094 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9095 
9096 	return ret;
9097 }
9098 
9099 static void perf_swevent_start_hrtimer(struct perf_event *event)
9100 {
9101 	struct hw_perf_event *hwc = &event->hw;
9102 	s64 period;
9103 
9104 	if (!is_sampling_event(event))
9105 		return;
9106 
9107 	period = local64_read(&hwc->period_left);
9108 	if (period) {
9109 		if (period < 0)
9110 			period = 10000;
9111 
9112 		local64_set(&hwc->period_left, 0);
9113 	} else {
9114 		period = max_t(u64, 10000, hwc->sample_period);
9115 	}
9116 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9117 		      HRTIMER_MODE_REL_PINNED);
9118 }
9119 
9120 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9121 {
9122 	struct hw_perf_event *hwc = &event->hw;
9123 
9124 	if (is_sampling_event(event)) {
9125 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9126 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9127 
9128 		hrtimer_cancel(&hwc->hrtimer);
9129 	}
9130 }
9131 
9132 static void perf_swevent_init_hrtimer(struct perf_event *event)
9133 {
9134 	struct hw_perf_event *hwc = &event->hw;
9135 
9136 	if (!is_sampling_event(event))
9137 		return;
9138 
9139 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9140 	hwc->hrtimer.function = perf_swevent_hrtimer;
9141 
9142 	/*
9143 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9144 	 * mapping and avoid the whole period adjust feedback stuff.
9145 	 */
9146 	if (event->attr.freq) {
9147 		long freq = event->attr.sample_freq;
9148 
9149 		event->attr.sample_period = NSEC_PER_SEC / freq;
9150 		hwc->sample_period = event->attr.sample_period;
9151 		local64_set(&hwc->period_left, hwc->sample_period);
9152 		hwc->last_period = hwc->sample_period;
9153 		event->attr.freq = 0;
9154 	}
9155 }
9156 
9157 /*
9158  * Software event: cpu wall time clock
9159  */
9160 
9161 static void cpu_clock_event_update(struct perf_event *event)
9162 {
9163 	s64 prev;
9164 	u64 now;
9165 
9166 	now = local_clock();
9167 	prev = local64_xchg(&event->hw.prev_count, now);
9168 	local64_add(now - prev, &event->count);
9169 }
9170 
9171 static void cpu_clock_event_start(struct perf_event *event, int flags)
9172 {
9173 	local64_set(&event->hw.prev_count, local_clock());
9174 	perf_swevent_start_hrtimer(event);
9175 }
9176 
9177 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9178 {
9179 	perf_swevent_cancel_hrtimer(event);
9180 	cpu_clock_event_update(event);
9181 }
9182 
9183 static int cpu_clock_event_add(struct perf_event *event, int flags)
9184 {
9185 	if (flags & PERF_EF_START)
9186 		cpu_clock_event_start(event, flags);
9187 	perf_event_update_userpage(event);
9188 
9189 	return 0;
9190 }
9191 
9192 static void cpu_clock_event_del(struct perf_event *event, int flags)
9193 {
9194 	cpu_clock_event_stop(event, flags);
9195 }
9196 
9197 static void cpu_clock_event_read(struct perf_event *event)
9198 {
9199 	cpu_clock_event_update(event);
9200 }
9201 
9202 static int cpu_clock_event_init(struct perf_event *event)
9203 {
9204 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9205 		return -ENOENT;
9206 
9207 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9208 		return -ENOENT;
9209 
9210 	/*
9211 	 * no branch sampling for software events
9212 	 */
9213 	if (has_branch_stack(event))
9214 		return -EOPNOTSUPP;
9215 
9216 	perf_swevent_init_hrtimer(event);
9217 
9218 	return 0;
9219 }
9220 
9221 static struct pmu perf_cpu_clock = {
9222 	.task_ctx_nr	= perf_sw_context,
9223 
9224 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9225 
9226 	.event_init	= cpu_clock_event_init,
9227 	.add		= cpu_clock_event_add,
9228 	.del		= cpu_clock_event_del,
9229 	.start		= cpu_clock_event_start,
9230 	.stop		= cpu_clock_event_stop,
9231 	.read		= cpu_clock_event_read,
9232 };
9233 
9234 /*
9235  * Software event: task time clock
9236  */
9237 
9238 static void task_clock_event_update(struct perf_event *event, u64 now)
9239 {
9240 	u64 prev;
9241 	s64 delta;
9242 
9243 	prev = local64_xchg(&event->hw.prev_count, now);
9244 	delta = now - prev;
9245 	local64_add(delta, &event->count);
9246 }
9247 
9248 static void task_clock_event_start(struct perf_event *event, int flags)
9249 {
9250 	local64_set(&event->hw.prev_count, event->ctx->time);
9251 	perf_swevent_start_hrtimer(event);
9252 }
9253 
9254 static void task_clock_event_stop(struct perf_event *event, int flags)
9255 {
9256 	perf_swevent_cancel_hrtimer(event);
9257 	task_clock_event_update(event, event->ctx->time);
9258 }
9259 
9260 static int task_clock_event_add(struct perf_event *event, int flags)
9261 {
9262 	if (flags & PERF_EF_START)
9263 		task_clock_event_start(event, flags);
9264 	perf_event_update_userpage(event);
9265 
9266 	return 0;
9267 }
9268 
9269 static void task_clock_event_del(struct perf_event *event, int flags)
9270 {
9271 	task_clock_event_stop(event, PERF_EF_UPDATE);
9272 }
9273 
9274 static void task_clock_event_read(struct perf_event *event)
9275 {
9276 	u64 now = perf_clock();
9277 	u64 delta = now - event->ctx->timestamp;
9278 	u64 time = event->ctx->time + delta;
9279 
9280 	task_clock_event_update(event, time);
9281 }
9282 
9283 static int task_clock_event_init(struct perf_event *event)
9284 {
9285 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9286 		return -ENOENT;
9287 
9288 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9289 		return -ENOENT;
9290 
9291 	/*
9292 	 * no branch sampling for software events
9293 	 */
9294 	if (has_branch_stack(event))
9295 		return -EOPNOTSUPP;
9296 
9297 	perf_swevent_init_hrtimer(event);
9298 
9299 	return 0;
9300 }
9301 
9302 static struct pmu perf_task_clock = {
9303 	.task_ctx_nr	= perf_sw_context,
9304 
9305 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9306 
9307 	.event_init	= task_clock_event_init,
9308 	.add		= task_clock_event_add,
9309 	.del		= task_clock_event_del,
9310 	.start		= task_clock_event_start,
9311 	.stop		= task_clock_event_stop,
9312 	.read		= task_clock_event_read,
9313 };
9314 
9315 static void perf_pmu_nop_void(struct pmu *pmu)
9316 {
9317 }
9318 
9319 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9320 {
9321 }
9322 
9323 static int perf_pmu_nop_int(struct pmu *pmu)
9324 {
9325 	return 0;
9326 }
9327 
9328 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9329 
9330 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9331 {
9332 	__this_cpu_write(nop_txn_flags, flags);
9333 
9334 	if (flags & ~PERF_PMU_TXN_ADD)
9335 		return;
9336 
9337 	perf_pmu_disable(pmu);
9338 }
9339 
9340 static int perf_pmu_commit_txn(struct pmu *pmu)
9341 {
9342 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9343 
9344 	__this_cpu_write(nop_txn_flags, 0);
9345 
9346 	if (flags & ~PERF_PMU_TXN_ADD)
9347 		return 0;
9348 
9349 	perf_pmu_enable(pmu);
9350 	return 0;
9351 }
9352 
9353 static void perf_pmu_cancel_txn(struct pmu *pmu)
9354 {
9355 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9356 
9357 	__this_cpu_write(nop_txn_flags, 0);
9358 
9359 	if (flags & ~PERF_PMU_TXN_ADD)
9360 		return;
9361 
9362 	perf_pmu_enable(pmu);
9363 }
9364 
9365 static int perf_event_idx_default(struct perf_event *event)
9366 {
9367 	return 0;
9368 }
9369 
9370 /*
9371  * Ensures all contexts with the same task_ctx_nr have the same
9372  * pmu_cpu_context too.
9373  */
9374 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9375 {
9376 	struct pmu *pmu;
9377 
9378 	if (ctxn < 0)
9379 		return NULL;
9380 
9381 	list_for_each_entry(pmu, &pmus, entry) {
9382 		if (pmu->task_ctx_nr == ctxn)
9383 			return pmu->pmu_cpu_context;
9384 	}
9385 
9386 	return NULL;
9387 }
9388 
9389 static void free_pmu_context(struct pmu *pmu)
9390 {
9391 	/*
9392 	 * Static contexts such as perf_sw_context have a global lifetime
9393 	 * and may be shared between different PMUs. Avoid freeing them
9394 	 * when a single PMU is going away.
9395 	 */
9396 	if (pmu->task_ctx_nr > perf_invalid_context)
9397 		return;
9398 
9399 	mutex_lock(&pmus_lock);
9400 	free_percpu(pmu->pmu_cpu_context);
9401 	mutex_unlock(&pmus_lock);
9402 }
9403 
9404 /*
9405  * Let userspace know that this PMU supports address range filtering:
9406  */
9407 static ssize_t nr_addr_filters_show(struct device *dev,
9408 				    struct device_attribute *attr,
9409 				    char *page)
9410 {
9411 	struct pmu *pmu = dev_get_drvdata(dev);
9412 
9413 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9414 }
9415 DEVICE_ATTR_RO(nr_addr_filters);
9416 
9417 static struct idr pmu_idr;
9418 
9419 static ssize_t
9420 type_show(struct device *dev, struct device_attribute *attr, char *page)
9421 {
9422 	struct pmu *pmu = dev_get_drvdata(dev);
9423 
9424 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9425 }
9426 static DEVICE_ATTR_RO(type);
9427 
9428 static ssize_t
9429 perf_event_mux_interval_ms_show(struct device *dev,
9430 				struct device_attribute *attr,
9431 				char *page)
9432 {
9433 	struct pmu *pmu = dev_get_drvdata(dev);
9434 
9435 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9436 }
9437 
9438 static DEFINE_MUTEX(mux_interval_mutex);
9439 
9440 static ssize_t
9441 perf_event_mux_interval_ms_store(struct device *dev,
9442 				 struct device_attribute *attr,
9443 				 const char *buf, size_t count)
9444 {
9445 	struct pmu *pmu = dev_get_drvdata(dev);
9446 	int timer, cpu, ret;
9447 
9448 	ret = kstrtoint(buf, 0, &timer);
9449 	if (ret)
9450 		return ret;
9451 
9452 	if (timer < 1)
9453 		return -EINVAL;
9454 
9455 	/* same value, noting to do */
9456 	if (timer == pmu->hrtimer_interval_ms)
9457 		return count;
9458 
9459 	mutex_lock(&mux_interval_mutex);
9460 	pmu->hrtimer_interval_ms = timer;
9461 
9462 	/* update all cpuctx for this PMU */
9463 	cpus_read_lock();
9464 	for_each_online_cpu(cpu) {
9465 		struct perf_cpu_context *cpuctx;
9466 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9467 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9468 
9469 		cpu_function_call(cpu,
9470 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9471 	}
9472 	cpus_read_unlock();
9473 	mutex_unlock(&mux_interval_mutex);
9474 
9475 	return count;
9476 }
9477 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9478 
9479 static struct attribute *pmu_dev_attrs[] = {
9480 	&dev_attr_type.attr,
9481 	&dev_attr_perf_event_mux_interval_ms.attr,
9482 	NULL,
9483 };
9484 ATTRIBUTE_GROUPS(pmu_dev);
9485 
9486 static int pmu_bus_running;
9487 static struct bus_type pmu_bus = {
9488 	.name		= "event_source",
9489 	.dev_groups	= pmu_dev_groups,
9490 };
9491 
9492 static void pmu_dev_release(struct device *dev)
9493 {
9494 	kfree(dev);
9495 }
9496 
9497 static int pmu_dev_alloc(struct pmu *pmu)
9498 {
9499 	int ret = -ENOMEM;
9500 
9501 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9502 	if (!pmu->dev)
9503 		goto out;
9504 
9505 	pmu->dev->groups = pmu->attr_groups;
9506 	device_initialize(pmu->dev);
9507 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9508 	if (ret)
9509 		goto free_dev;
9510 
9511 	dev_set_drvdata(pmu->dev, pmu);
9512 	pmu->dev->bus = &pmu_bus;
9513 	pmu->dev->release = pmu_dev_release;
9514 	ret = device_add(pmu->dev);
9515 	if (ret)
9516 		goto free_dev;
9517 
9518 	/* For PMUs with address filters, throw in an extra attribute: */
9519 	if (pmu->nr_addr_filters)
9520 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9521 
9522 	if (ret)
9523 		goto del_dev;
9524 
9525 out:
9526 	return ret;
9527 
9528 del_dev:
9529 	device_del(pmu->dev);
9530 
9531 free_dev:
9532 	put_device(pmu->dev);
9533 	goto out;
9534 }
9535 
9536 static struct lock_class_key cpuctx_mutex;
9537 static struct lock_class_key cpuctx_lock;
9538 
9539 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9540 {
9541 	int cpu, ret;
9542 
9543 	mutex_lock(&pmus_lock);
9544 	ret = -ENOMEM;
9545 	pmu->pmu_disable_count = alloc_percpu(int);
9546 	if (!pmu->pmu_disable_count)
9547 		goto unlock;
9548 
9549 	pmu->type = -1;
9550 	if (!name)
9551 		goto skip_type;
9552 	pmu->name = name;
9553 
9554 	if (type < 0) {
9555 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9556 		if (type < 0) {
9557 			ret = type;
9558 			goto free_pdc;
9559 		}
9560 	}
9561 	pmu->type = type;
9562 
9563 	if (pmu_bus_running) {
9564 		ret = pmu_dev_alloc(pmu);
9565 		if (ret)
9566 			goto free_idr;
9567 	}
9568 
9569 skip_type:
9570 	if (pmu->task_ctx_nr == perf_hw_context) {
9571 		static int hw_context_taken = 0;
9572 
9573 		/*
9574 		 * Other than systems with heterogeneous CPUs, it never makes
9575 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9576 		 * uncore must use perf_invalid_context.
9577 		 */
9578 		if (WARN_ON_ONCE(hw_context_taken &&
9579 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9580 			pmu->task_ctx_nr = perf_invalid_context;
9581 
9582 		hw_context_taken = 1;
9583 	}
9584 
9585 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9586 	if (pmu->pmu_cpu_context)
9587 		goto got_cpu_context;
9588 
9589 	ret = -ENOMEM;
9590 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9591 	if (!pmu->pmu_cpu_context)
9592 		goto free_dev;
9593 
9594 	for_each_possible_cpu(cpu) {
9595 		struct perf_cpu_context *cpuctx;
9596 
9597 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9598 		__perf_event_init_context(&cpuctx->ctx);
9599 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9600 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9601 		cpuctx->ctx.pmu = pmu;
9602 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9603 
9604 		__perf_mux_hrtimer_init(cpuctx, cpu);
9605 	}
9606 
9607 got_cpu_context:
9608 	if (!pmu->start_txn) {
9609 		if (pmu->pmu_enable) {
9610 			/*
9611 			 * If we have pmu_enable/pmu_disable calls, install
9612 			 * transaction stubs that use that to try and batch
9613 			 * hardware accesses.
9614 			 */
9615 			pmu->start_txn  = perf_pmu_start_txn;
9616 			pmu->commit_txn = perf_pmu_commit_txn;
9617 			pmu->cancel_txn = perf_pmu_cancel_txn;
9618 		} else {
9619 			pmu->start_txn  = perf_pmu_nop_txn;
9620 			pmu->commit_txn = perf_pmu_nop_int;
9621 			pmu->cancel_txn = perf_pmu_nop_void;
9622 		}
9623 	}
9624 
9625 	if (!pmu->pmu_enable) {
9626 		pmu->pmu_enable  = perf_pmu_nop_void;
9627 		pmu->pmu_disable = perf_pmu_nop_void;
9628 	}
9629 
9630 	if (!pmu->event_idx)
9631 		pmu->event_idx = perf_event_idx_default;
9632 
9633 	list_add_rcu(&pmu->entry, &pmus);
9634 	atomic_set(&pmu->exclusive_cnt, 0);
9635 	ret = 0;
9636 unlock:
9637 	mutex_unlock(&pmus_lock);
9638 
9639 	return ret;
9640 
9641 free_dev:
9642 	device_del(pmu->dev);
9643 	put_device(pmu->dev);
9644 
9645 free_idr:
9646 	if (pmu->type >= PERF_TYPE_MAX)
9647 		idr_remove(&pmu_idr, pmu->type);
9648 
9649 free_pdc:
9650 	free_percpu(pmu->pmu_disable_count);
9651 	goto unlock;
9652 }
9653 EXPORT_SYMBOL_GPL(perf_pmu_register);
9654 
9655 void perf_pmu_unregister(struct pmu *pmu)
9656 {
9657 	int remove_device;
9658 
9659 	mutex_lock(&pmus_lock);
9660 	remove_device = pmu_bus_running;
9661 	list_del_rcu(&pmu->entry);
9662 	mutex_unlock(&pmus_lock);
9663 
9664 	/*
9665 	 * We dereference the pmu list under both SRCU and regular RCU, so
9666 	 * synchronize against both of those.
9667 	 */
9668 	synchronize_srcu(&pmus_srcu);
9669 	synchronize_rcu();
9670 
9671 	free_percpu(pmu->pmu_disable_count);
9672 	if (pmu->type >= PERF_TYPE_MAX)
9673 		idr_remove(&pmu_idr, pmu->type);
9674 	if (remove_device) {
9675 		if (pmu->nr_addr_filters)
9676 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9677 		device_del(pmu->dev);
9678 		put_device(pmu->dev);
9679 	}
9680 	free_pmu_context(pmu);
9681 }
9682 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9683 
9684 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9685 {
9686 	struct perf_event_context *ctx = NULL;
9687 	int ret;
9688 
9689 	if (!try_module_get(pmu->module))
9690 		return -ENODEV;
9691 
9692 	/*
9693 	 * A number of pmu->event_init() methods iterate the sibling_list to,
9694 	 * for example, validate if the group fits on the PMU. Therefore,
9695 	 * if this is a sibling event, acquire the ctx->mutex to protect
9696 	 * the sibling_list.
9697 	 */
9698 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9699 		/*
9700 		 * This ctx->mutex can nest when we're called through
9701 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9702 		 */
9703 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9704 						 SINGLE_DEPTH_NESTING);
9705 		BUG_ON(!ctx);
9706 	}
9707 
9708 	event->pmu = pmu;
9709 	ret = pmu->event_init(event);
9710 
9711 	if (ctx)
9712 		perf_event_ctx_unlock(event->group_leader, ctx);
9713 
9714 	if (ret)
9715 		module_put(pmu->module);
9716 
9717 	return ret;
9718 }
9719 
9720 static struct pmu *perf_init_event(struct perf_event *event)
9721 {
9722 	struct pmu *pmu;
9723 	int idx;
9724 	int ret;
9725 
9726 	idx = srcu_read_lock(&pmus_srcu);
9727 
9728 	/* Try parent's PMU first: */
9729 	if (event->parent && event->parent->pmu) {
9730 		pmu = event->parent->pmu;
9731 		ret = perf_try_init_event(pmu, event);
9732 		if (!ret)
9733 			goto unlock;
9734 	}
9735 
9736 	rcu_read_lock();
9737 	pmu = idr_find(&pmu_idr, event->attr.type);
9738 	rcu_read_unlock();
9739 	if (pmu) {
9740 		ret = perf_try_init_event(pmu, event);
9741 		if (ret)
9742 			pmu = ERR_PTR(ret);
9743 		goto unlock;
9744 	}
9745 
9746 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9747 		ret = perf_try_init_event(pmu, event);
9748 		if (!ret)
9749 			goto unlock;
9750 
9751 		if (ret != -ENOENT) {
9752 			pmu = ERR_PTR(ret);
9753 			goto unlock;
9754 		}
9755 	}
9756 	pmu = ERR_PTR(-ENOENT);
9757 unlock:
9758 	srcu_read_unlock(&pmus_srcu, idx);
9759 
9760 	return pmu;
9761 }
9762 
9763 static void attach_sb_event(struct perf_event *event)
9764 {
9765 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9766 
9767 	raw_spin_lock(&pel->lock);
9768 	list_add_rcu(&event->sb_list, &pel->list);
9769 	raw_spin_unlock(&pel->lock);
9770 }
9771 
9772 /*
9773  * We keep a list of all !task (and therefore per-cpu) events
9774  * that need to receive side-band records.
9775  *
9776  * This avoids having to scan all the various PMU per-cpu contexts
9777  * looking for them.
9778  */
9779 static void account_pmu_sb_event(struct perf_event *event)
9780 {
9781 	if (is_sb_event(event))
9782 		attach_sb_event(event);
9783 }
9784 
9785 static void account_event_cpu(struct perf_event *event, int cpu)
9786 {
9787 	if (event->parent)
9788 		return;
9789 
9790 	if (is_cgroup_event(event))
9791 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9792 }
9793 
9794 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9795 static void account_freq_event_nohz(void)
9796 {
9797 #ifdef CONFIG_NO_HZ_FULL
9798 	/* Lock so we don't race with concurrent unaccount */
9799 	spin_lock(&nr_freq_lock);
9800 	if (atomic_inc_return(&nr_freq_events) == 1)
9801 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9802 	spin_unlock(&nr_freq_lock);
9803 #endif
9804 }
9805 
9806 static void account_freq_event(void)
9807 {
9808 	if (tick_nohz_full_enabled())
9809 		account_freq_event_nohz();
9810 	else
9811 		atomic_inc(&nr_freq_events);
9812 }
9813 
9814 
9815 static void account_event(struct perf_event *event)
9816 {
9817 	bool inc = false;
9818 
9819 	if (event->parent)
9820 		return;
9821 
9822 	if (event->attach_state & PERF_ATTACH_TASK)
9823 		inc = true;
9824 	if (event->attr.mmap || event->attr.mmap_data)
9825 		atomic_inc(&nr_mmap_events);
9826 	if (event->attr.comm)
9827 		atomic_inc(&nr_comm_events);
9828 	if (event->attr.namespaces)
9829 		atomic_inc(&nr_namespaces_events);
9830 	if (event->attr.task)
9831 		atomic_inc(&nr_task_events);
9832 	if (event->attr.freq)
9833 		account_freq_event();
9834 	if (event->attr.context_switch) {
9835 		atomic_inc(&nr_switch_events);
9836 		inc = true;
9837 	}
9838 	if (has_branch_stack(event))
9839 		inc = true;
9840 	if (is_cgroup_event(event))
9841 		inc = true;
9842 
9843 	if (inc) {
9844 		/*
9845 		 * We need the mutex here because static_branch_enable()
9846 		 * must complete *before* the perf_sched_count increment
9847 		 * becomes visible.
9848 		 */
9849 		if (atomic_inc_not_zero(&perf_sched_count))
9850 			goto enabled;
9851 
9852 		mutex_lock(&perf_sched_mutex);
9853 		if (!atomic_read(&perf_sched_count)) {
9854 			static_branch_enable(&perf_sched_events);
9855 			/*
9856 			 * Guarantee that all CPUs observe they key change and
9857 			 * call the perf scheduling hooks before proceeding to
9858 			 * install events that need them.
9859 			 */
9860 			synchronize_sched();
9861 		}
9862 		/*
9863 		 * Now that we have waited for the sync_sched(), allow further
9864 		 * increments to by-pass the mutex.
9865 		 */
9866 		atomic_inc(&perf_sched_count);
9867 		mutex_unlock(&perf_sched_mutex);
9868 	}
9869 enabled:
9870 
9871 	account_event_cpu(event, event->cpu);
9872 
9873 	account_pmu_sb_event(event);
9874 }
9875 
9876 /*
9877  * Allocate and initialize a event structure
9878  */
9879 static struct perf_event *
9880 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9881 		 struct task_struct *task,
9882 		 struct perf_event *group_leader,
9883 		 struct perf_event *parent_event,
9884 		 perf_overflow_handler_t overflow_handler,
9885 		 void *context, int cgroup_fd)
9886 {
9887 	struct pmu *pmu;
9888 	struct perf_event *event;
9889 	struct hw_perf_event *hwc;
9890 	long err = -EINVAL;
9891 
9892 	if ((unsigned)cpu >= nr_cpu_ids) {
9893 		if (!task || cpu != -1)
9894 			return ERR_PTR(-EINVAL);
9895 	}
9896 
9897 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9898 	if (!event)
9899 		return ERR_PTR(-ENOMEM);
9900 
9901 	/*
9902 	 * Single events are their own group leaders, with an
9903 	 * empty sibling list:
9904 	 */
9905 	if (!group_leader)
9906 		group_leader = event;
9907 
9908 	mutex_init(&event->child_mutex);
9909 	INIT_LIST_HEAD(&event->child_list);
9910 
9911 	INIT_LIST_HEAD(&event->event_entry);
9912 	INIT_LIST_HEAD(&event->sibling_list);
9913 	INIT_LIST_HEAD(&event->active_list);
9914 	init_event_group(event);
9915 	INIT_LIST_HEAD(&event->rb_entry);
9916 	INIT_LIST_HEAD(&event->active_entry);
9917 	INIT_LIST_HEAD(&event->addr_filters.list);
9918 	INIT_HLIST_NODE(&event->hlist_entry);
9919 
9920 
9921 	init_waitqueue_head(&event->waitq);
9922 	init_irq_work(&event->pending, perf_pending_event);
9923 
9924 	mutex_init(&event->mmap_mutex);
9925 	raw_spin_lock_init(&event->addr_filters.lock);
9926 
9927 	atomic_long_set(&event->refcount, 1);
9928 	event->cpu		= cpu;
9929 	event->attr		= *attr;
9930 	event->group_leader	= group_leader;
9931 	event->pmu		= NULL;
9932 	event->oncpu		= -1;
9933 
9934 	event->parent		= parent_event;
9935 
9936 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9937 	event->id		= atomic64_inc_return(&perf_event_id);
9938 
9939 	event->state		= PERF_EVENT_STATE_INACTIVE;
9940 
9941 	if (task) {
9942 		event->attach_state = PERF_ATTACH_TASK;
9943 		/*
9944 		 * XXX pmu::event_init needs to know what task to account to
9945 		 * and we cannot use the ctx information because we need the
9946 		 * pmu before we get a ctx.
9947 		 */
9948 		event->hw.target = task;
9949 	}
9950 
9951 	event->clock = &local_clock;
9952 	if (parent_event)
9953 		event->clock = parent_event->clock;
9954 
9955 	if (!overflow_handler && parent_event) {
9956 		overflow_handler = parent_event->overflow_handler;
9957 		context = parent_event->overflow_handler_context;
9958 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9959 		if (overflow_handler == bpf_overflow_handler) {
9960 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9961 
9962 			if (IS_ERR(prog)) {
9963 				err = PTR_ERR(prog);
9964 				goto err_ns;
9965 			}
9966 			event->prog = prog;
9967 			event->orig_overflow_handler =
9968 				parent_event->orig_overflow_handler;
9969 		}
9970 #endif
9971 	}
9972 
9973 	if (overflow_handler) {
9974 		event->overflow_handler	= overflow_handler;
9975 		event->overflow_handler_context = context;
9976 	} else if (is_write_backward(event)){
9977 		event->overflow_handler = perf_event_output_backward;
9978 		event->overflow_handler_context = NULL;
9979 	} else {
9980 		event->overflow_handler = perf_event_output_forward;
9981 		event->overflow_handler_context = NULL;
9982 	}
9983 
9984 	perf_event__state_init(event);
9985 
9986 	pmu = NULL;
9987 
9988 	hwc = &event->hw;
9989 	hwc->sample_period = attr->sample_period;
9990 	if (attr->freq && attr->sample_freq)
9991 		hwc->sample_period = 1;
9992 	hwc->last_period = hwc->sample_period;
9993 
9994 	local64_set(&hwc->period_left, hwc->sample_period);
9995 
9996 	/*
9997 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9998 	 * See perf_output_read().
9999 	 */
10000 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10001 		goto err_ns;
10002 
10003 	if (!has_branch_stack(event))
10004 		event->attr.branch_sample_type = 0;
10005 
10006 	if (cgroup_fd != -1) {
10007 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10008 		if (err)
10009 			goto err_ns;
10010 	}
10011 
10012 	pmu = perf_init_event(event);
10013 	if (IS_ERR(pmu)) {
10014 		err = PTR_ERR(pmu);
10015 		goto err_ns;
10016 	}
10017 
10018 	err = exclusive_event_init(event);
10019 	if (err)
10020 		goto err_pmu;
10021 
10022 	if (has_addr_filter(event)) {
10023 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10024 						   sizeof(unsigned long),
10025 						   GFP_KERNEL);
10026 		if (!event->addr_filters_offs) {
10027 			err = -ENOMEM;
10028 			goto err_per_task;
10029 		}
10030 
10031 		/* force hw sync on the address filters */
10032 		event->addr_filters_gen = 1;
10033 	}
10034 
10035 	if (!event->parent) {
10036 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10037 			err = get_callchain_buffers(attr->sample_max_stack);
10038 			if (err)
10039 				goto err_addr_filters;
10040 		}
10041 	}
10042 
10043 	/* symmetric to unaccount_event() in _free_event() */
10044 	account_event(event);
10045 
10046 	return event;
10047 
10048 err_addr_filters:
10049 	kfree(event->addr_filters_offs);
10050 
10051 err_per_task:
10052 	exclusive_event_destroy(event);
10053 
10054 err_pmu:
10055 	if (event->destroy)
10056 		event->destroy(event);
10057 	module_put(pmu->module);
10058 err_ns:
10059 	if (is_cgroup_event(event))
10060 		perf_detach_cgroup(event);
10061 	if (event->ns)
10062 		put_pid_ns(event->ns);
10063 	kfree(event);
10064 
10065 	return ERR_PTR(err);
10066 }
10067 
10068 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10069 			  struct perf_event_attr *attr)
10070 {
10071 	u32 size;
10072 	int ret;
10073 
10074 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10075 		return -EFAULT;
10076 
10077 	/*
10078 	 * zero the full structure, so that a short copy will be nice.
10079 	 */
10080 	memset(attr, 0, sizeof(*attr));
10081 
10082 	ret = get_user(size, &uattr->size);
10083 	if (ret)
10084 		return ret;
10085 
10086 	if (size > PAGE_SIZE)	/* silly large */
10087 		goto err_size;
10088 
10089 	if (!size)		/* abi compat */
10090 		size = PERF_ATTR_SIZE_VER0;
10091 
10092 	if (size < PERF_ATTR_SIZE_VER0)
10093 		goto err_size;
10094 
10095 	/*
10096 	 * If we're handed a bigger struct than we know of,
10097 	 * ensure all the unknown bits are 0 - i.e. new
10098 	 * user-space does not rely on any kernel feature
10099 	 * extensions we dont know about yet.
10100 	 */
10101 	if (size > sizeof(*attr)) {
10102 		unsigned char __user *addr;
10103 		unsigned char __user *end;
10104 		unsigned char val;
10105 
10106 		addr = (void __user *)uattr + sizeof(*attr);
10107 		end  = (void __user *)uattr + size;
10108 
10109 		for (; addr < end; addr++) {
10110 			ret = get_user(val, addr);
10111 			if (ret)
10112 				return ret;
10113 			if (val)
10114 				goto err_size;
10115 		}
10116 		size = sizeof(*attr);
10117 	}
10118 
10119 	ret = copy_from_user(attr, uattr, size);
10120 	if (ret)
10121 		return -EFAULT;
10122 
10123 	attr->size = size;
10124 
10125 	if (attr->__reserved_1)
10126 		return -EINVAL;
10127 
10128 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10129 		return -EINVAL;
10130 
10131 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10132 		return -EINVAL;
10133 
10134 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10135 		u64 mask = attr->branch_sample_type;
10136 
10137 		/* only using defined bits */
10138 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10139 			return -EINVAL;
10140 
10141 		/* at least one branch bit must be set */
10142 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10143 			return -EINVAL;
10144 
10145 		/* propagate priv level, when not set for branch */
10146 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10147 
10148 			/* exclude_kernel checked on syscall entry */
10149 			if (!attr->exclude_kernel)
10150 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10151 
10152 			if (!attr->exclude_user)
10153 				mask |= PERF_SAMPLE_BRANCH_USER;
10154 
10155 			if (!attr->exclude_hv)
10156 				mask |= PERF_SAMPLE_BRANCH_HV;
10157 			/*
10158 			 * adjust user setting (for HW filter setup)
10159 			 */
10160 			attr->branch_sample_type = mask;
10161 		}
10162 		/* privileged levels capture (kernel, hv): check permissions */
10163 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10164 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10165 			return -EACCES;
10166 	}
10167 
10168 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10169 		ret = perf_reg_validate(attr->sample_regs_user);
10170 		if (ret)
10171 			return ret;
10172 	}
10173 
10174 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10175 		if (!arch_perf_have_user_stack_dump())
10176 			return -ENOSYS;
10177 
10178 		/*
10179 		 * We have __u32 type for the size, but so far
10180 		 * we can only use __u16 as maximum due to the
10181 		 * __u16 sample size limit.
10182 		 */
10183 		if (attr->sample_stack_user >= USHRT_MAX)
10184 			ret = -EINVAL;
10185 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10186 			ret = -EINVAL;
10187 	}
10188 
10189 	if (!attr->sample_max_stack)
10190 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10191 
10192 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10193 		ret = perf_reg_validate(attr->sample_regs_intr);
10194 out:
10195 	return ret;
10196 
10197 err_size:
10198 	put_user(sizeof(*attr), &uattr->size);
10199 	ret = -E2BIG;
10200 	goto out;
10201 }
10202 
10203 static int
10204 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10205 {
10206 	struct ring_buffer *rb = NULL;
10207 	int ret = -EINVAL;
10208 
10209 	if (!output_event)
10210 		goto set;
10211 
10212 	/* don't allow circular references */
10213 	if (event == output_event)
10214 		goto out;
10215 
10216 	/*
10217 	 * Don't allow cross-cpu buffers
10218 	 */
10219 	if (output_event->cpu != event->cpu)
10220 		goto out;
10221 
10222 	/*
10223 	 * If its not a per-cpu rb, it must be the same task.
10224 	 */
10225 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10226 		goto out;
10227 
10228 	/*
10229 	 * Mixing clocks in the same buffer is trouble you don't need.
10230 	 */
10231 	if (output_event->clock != event->clock)
10232 		goto out;
10233 
10234 	/*
10235 	 * Either writing ring buffer from beginning or from end.
10236 	 * Mixing is not allowed.
10237 	 */
10238 	if (is_write_backward(output_event) != is_write_backward(event))
10239 		goto out;
10240 
10241 	/*
10242 	 * If both events generate aux data, they must be on the same PMU
10243 	 */
10244 	if (has_aux(event) && has_aux(output_event) &&
10245 	    event->pmu != output_event->pmu)
10246 		goto out;
10247 
10248 set:
10249 	mutex_lock(&event->mmap_mutex);
10250 	/* Can't redirect output if we've got an active mmap() */
10251 	if (atomic_read(&event->mmap_count))
10252 		goto unlock;
10253 
10254 	if (output_event) {
10255 		/* get the rb we want to redirect to */
10256 		rb = ring_buffer_get(output_event);
10257 		if (!rb)
10258 			goto unlock;
10259 	}
10260 
10261 	ring_buffer_attach(event, rb);
10262 
10263 	ret = 0;
10264 unlock:
10265 	mutex_unlock(&event->mmap_mutex);
10266 
10267 out:
10268 	return ret;
10269 }
10270 
10271 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10272 {
10273 	if (b < a)
10274 		swap(a, b);
10275 
10276 	mutex_lock(a);
10277 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10278 }
10279 
10280 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10281 {
10282 	bool nmi_safe = false;
10283 
10284 	switch (clk_id) {
10285 	case CLOCK_MONOTONIC:
10286 		event->clock = &ktime_get_mono_fast_ns;
10287 		nmi_safe = true;
10288 		break;
10289 
10290 	case CLOCK_MONOTONIC_RAW:
10291 		event->clock = &ktime_get_raw_fast_ns;
10292 		nmi_safe = true;
10293 		break;
10294 
10295 	case CLOCK_REALTIME:
10296 		event->clock = &ktime_get_real_ns;
10297 		break;
10298 
10299 	case CLOCK_BOOTTIME:
10300 		event->clock = &ktime_get_boot_ns;
10301 		break;
10302 
10303 	case CLOCK_TAI:
10304 		event->clock = &ktime_get_tai_ns;
10305 		break;
10306 
10307 	default:
10308 		return -EINVAL;
10309 	}
10310 
10311 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10312 		return -EINVAL;
10313 
10314 	return 0;
10315 }
10316 
10317 /*
10318  * Variation on perf_event_ctx_lock_nested(), except we take two context
10319  * mutexes.
10320  */
10321 static struct perf_event_context *
10322 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10323 			     struct perf_event_context *ctx)
10324 {
10325 	struct perf_event_context *gctx;
10326 
10327 again:
10328 	rcu_read_lock();
10329 	gctx = READ_ONCE(group_leader->ctx);
10330 	if (!atomic_inc_not_zero(&gctx->refcount)) {
10331 		rcu_read_unlock();
10332 		goto again;
10333 	}
10334 	rcu_read_unlock();
10335 
10336 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
10337 
10338 	if (group_leader->ctx != gctx) {
10339 		mutex_unlock(&ctx->mutex);
10340 		mutex_unlock(&gctx->mutex);
10341 		put_ctx(gctx);
10342 		goto again;
10343 	}
10344 
10345 	return gctx;
10346 }
10347 
10348 /**
10349  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10350  *
10351  * @attr_uptr:	event_id type attributes for monitoring/sampling
10352  * @pid:		target pid
10353  * @cpu:		target cpu
10354  * @group_fd:		group leader event fd
10355  */
10356 SYSCALL_DEFINE5(perf_event_open,
10357 		struct perf_event_attr __user *, attr_uptr,
10358 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10359 {
10360 	struct perf_event *group_leader = NULL, *output_event = NULL;
10361 	struct perf_event *event, *sibling;
10362 	struct perf_event_attr attr;
10363 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10364 	struct file *event_file = NULL;
10365 	struct fd group = {NULL, 0};
10366 	struct task_struct *task = NULL;
10367 	struct pmu *pmu;
10368 	int event_fd;
10369 	int move_group = 0;
10370 	int err;
10371 	int f_flags = O_RDWR;
10372 	int cgroup_fd = -1;
10373 
10374 	/* for future expandability... */
10375 	if (flags & ~PERF_FLAG_ALL)
10376 		return -EINVAL;
10377 
10378 	err = perf_copy_attr(attr_uptr, &attr);
10379 	if (err)
10380 		return err;
10381 
10382 	if (!attr.exclude_kernel) {
10383 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10384 			return -EACCES;
10385 	}
10386 
10387 	if (attr.namespaces) {
10388 		if (!capable(CAP_SYS_ADMIN))
10389 			return -EACCES;
10390 	}
10391 
10392 	if (attr.freq) {
10393 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10394 			return -EINVAL;
10395 	} else {
10396 		if (attr.sample_period & (1ULL << 63))
10397 			return -EINVAL;
10398 	}
10399 
10400 	/* Only privileged users can get physical addresses */
10401 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10402 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10403 		return -EACCES;
10404 
10405 	/*
10406 	 * In cgroup mode, the pid argument is used to pass the fd
10407 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10408 	 * designates the cpu on which to monitor threads from that
10409 	 * cgroup.
10410 	 */
10411 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10412 		return -EINVAL;
10413 
10414 	if (flags & PERF_FLAG_FD_CLOEXEC)
10415 		f_flags |= O_CLOEXEC;
10416 
10417 	event_fd = get_unused_fd_flags(f_flags);
10418 	if (event_fd < 0)
10419 		return event_fd;
10420 
10421 	if (group_fd != -1) {
10422 		err = perf_fget_light(group_fd, &group);
10423 		if (err)
10424 			goto err_fd;
10425 		group_leader = group.file->private_data;
10426 		if (flags & PERF_FLAG_FD_OUTPUT)
10427 			output_event = group_leader;
10428 		if (flags & PERF_FLAG_FD_NO_GROUP)
10429 			group_leader = NULL;
10430 	}
10431 
10432 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10433 		task = find_lively_task_by_vpid(pid);
10434 		if (IS_ERR(task)) {
10435 			err = PTR_ERR(task);
10436 			goto err_group_fd;
10437 		}
10438 	}
10439 
10440 	if (task && group_leader &&
10441 	    group_leader->attr.inherit != attr.inherit) {
10442 		err = -EINVAL;
10443 		goto err_task;
10444 	}
10445 
10446 	if (task) {
10447 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10448 		if (err)
10449 			goto err_task;
10450 
10451 		/*
10452 		 * Reuse ptrace permission checks for now.
10453 		 *
10454 		 * We must hold cred_guard_mutex across this and any potential
10455 		 * perf_install_in_context() call for this new event to
10456 		 * serialize against exec() altering our credentials (and the
10457 		 * perf_event_exit_task() that could imply).
10458 		 */
10459 		err = -EACCES;
10460 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10461 			goto err_cred;
10462 	}
10463 
10464 	if (flags & PERF_FLAG_PID_CGROUP)
10465 		cgroup_fd = pid;
10466 
10467 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10468 				 NULL, NULL, cgroup_fd);
10469 	if (IS_ERR(event)) {
10470 		err = PTR_ERR(event);
10471 		goto err_cred;
10472 	}
10473 
10474 	if (is_sampling_event(event)) {
10475 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10476 			err = -EOPNOTSUPP;
10477 			goto err_alloc;
10478 		}
10479 	}
10480 
10481 	/*
10482 	 * Special case software events and allow them to be part of
10483 	 * any hardware group.
10484 	 */
10485 	pmu = event->pmu;
10486 
10487 	if (attr.use_clockid) {
10488 		err = perf_event_set_clock(event, attr.clockid);
10489 		if (err)
10490 			goto err_alloc;
10491 	}
10492 
10493 	if (pmu->task_ctx_nr == perf_sw_context)
10494 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10495 
10496 	if (group_leader &&
10497 	    (is_software_event(event) != is_software_event(group_leader))) {
10498 		if (is_software_event(event)) {
10499 			/*
10500 			 * If event and group_leader are not both a software
10501 			 * event, and event is, then group leader is not.
10502 			 *
10503 			 * Allow the addition of software events to !software
10504 			 * groups, this is safe because software events never
10505 			 * fail to schedule.
10506 			 */
10507 			pmu = group_leader->pmu;
10508 		} else if (is_software_event(group_leader) &&
10509 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10510 			/*
10511 			 * In case the group is a pure software group, and we
10512 			 * try to add a hardware event, move the whole group to
10513 			 * the hardware context.
10514 			 */
10515 			move_group = 1;
10516 		}
10517 	}
10518 
10519 	/*
10520 	 * Get the target context (task or percpu):
10521 	 */
10522 	ctx = find_get_context(pmu, task, event);
10523 	if (IS_ERR(ctx)) {
10524 		err = PTR_ERR(ctx);
10525 		goto err_alloc;
10526 	}
10527 
10528 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10529 		err = -EBUSY;
10530 		goto err_context;
10531 	}
10532 
10533 	/*
10534 	 * Look up the group leader (we will attach this event to it):
10535 	 */
10536 	if (group_leader) {
10537 		err = -EINVAL;
10538 
10539 		/*
10540 		 * Do not allow a recursive hierarchy (this new sibling
10541 		 * becoming part of another group-sibling):
10542 		 */
10543 		if (group_leader->group_leader != group_leader)
10544 			goto err_context;
10545 
10546 		/* All events in a group should have the same clock */
10547 		if (group_leader->clock != event->clock)
10548 			goto err_context;
10549 
10550 		/*
10551 		 * Make sure we're both events for the same CPU;
10552 		 * grouping events for different CPUs is broken; since
10553 		 * you can never concurrently schedule them anyhow.
10554 		 */
10555 		if (group_leader->cpu != event->cpu)
10556 			goto err_context;
10557 
10558 		/*
10559 		 * Make sure we're both on the same task, or both
10560 		 * per-CPU events.
10561 		 */
10562 		if (group_leader->ctx->task != ctx->task)
10563 			goto err_context;
10564 
10565 		/*
10566 		 * Do not allow to attach to a group in a different task
10567 		 * or CPU context. If we're moving SW events, we'll fix
10568 		 * this up later, so allow that.
10569 		 */
10570 		if (!move_group && group_leader->ctx != ctx)
10571 			goto err_context;
10572 
10573 		/*
10574 		 * Only a group leader can be exclusive or pinned
10575 		 */
10576 		if (attr.exclusive || attr.pinned)
10577 			goto err_context;
10578 	}
10579 
10580 	if (output_event) {
10581 		err = perf_event_set_output(event, output_event);
10582 		if (err)
10583 			goto err_context;
10584 	}
10585 
10586 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10587 					f_flags);
10588 	if (IS_ERR(event_file)) {
10589 		err = PTR_ERR(event_file);
10590 		event_file = NULL;
10591 		goto err_context;
10592 	}
10593 
10594 	if (move_group) {
10595 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10596 
10597 		if (gctx->task == TASK_TOMBSTONE) {
10598 			err = -ESRCH;
10599 			goto err_locked;
10600 		}
10601 
10602 		/*
10603 		 * Check if we raced against another sys_perf_event_open() call
10604 		 * moving the software group underneath us.
10605 		 */
10606 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10607 			/*
10608 			 * If someone moved the group out from under us, check
10609 			 * if this new event wound up on the same ctx, if so
10610 			 * its the regular !move_group case, otherwise fail.
10611 			 */
10612 			if (gctx != ctx) {
10613 				err = -EINVAL;
10614 				goto err_locked;
10615 			} else {
10616 				perf_event_ctx_unlock(group_leader, gctx);
10617 				move_group = 0;
10618 			}
10619 		}
10620 	} else {
10621 		mutex_lock(&ctx->mutex);
10622 	}
10623 
10624 	if (ctx->task == TASK_TOMBSTONE) {
10625 		err = -ESRCH;
10626 		goto err_locked;
10627 	}
10628 
10629 	if (!perf_event_validate_size(event)) {
10630 		err = -E2BIG;
10631 		goto err_locked;
10632 	}
10633 
10634 	if (!task) {
10635 		/*
10636 		 * Check if the @cpu we're creating an event for is online.
10637 		 *
10638 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10639 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10640 		 */
10641 		struct perf_cpu_context *cpuctx =
10642 			container_of(ctx, struct perf_cpu_context, ctx);
10643 
10644 		if (!cpuctx->online) {
10645 			err = -ENODEV;
10646 			goto err_locked;
10647 		}
10648 	}
10649 
10650 
10651 	/*
10652 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10653 	 * because we need to serialize with concurrent event creation.
10654 	 */
10655 	if (!exclusive_event_installable(event, ctx)) {
10656 		/* exclusive and group stuff are assumed mutually exclusive */
10657 		WARN_ON_ONCE(move_group);
10658 
10659 		err = -EBUSY;
10660 		goto err_locked;
10661 	}
10662 
10663 	WARN_ON_ONCE(ctx->parent_ctx);
10664 
10665 	/*
10666 	 * This is the point on no return; we cannot fail hereafter. This is
10667 	 * where we start modifying current state.
10668 	 */
10669 
10670 	if (move_group) {
10671 		/*
10672 		 * See perf_event_ctx_lock() for comments on the details
10673 		 * of swizzling perf_event::ctx.
10674 		 */
10675 		perf_remove_from_context(group_leader, 0);
10676 		put_ctx(gctx);
10677 
10678 		for_each_sibling_event(sibling, group_leader) {
10679 			perf_remove_from_context(sibling, 0);
10680 			put_ctx(gctx);
10681 		}
10682 
10683 		/*
10684 		 * Wait for everybody to stop referencing the events through
10685 		 * the old lists, before installing it on new lists.
10686 		 */
10687 		synchronize_rcu();
10688 
10689 		/*
10690 		 * Install the group siblings before the group leader.
10691 		 *
10692 		 * Because a group leader will try and install the entire group
10693 		 * (through the sibling list, which is still in-tact), we can
10694 		 * end up with siblings installed in the wrong context.
10695 		 *
10696 		 * By installing siblings first we NO-OP because they're not
10697 		 * reachable through the group lists.
10698 		 */
10699 		for_each_sibling_event(sibling, group_leader) {
10700 			perf_event__state_init(sibling);
10701 			perf_install_in_context(ctx, sibling, sibling->cpu);
10702 			get_ctx(ctx);
10703 		}
10704 
10705 		/*
10706 		 * Removing from the context ends up with disabled
10707 		 * event. What we want here is event in the initial
10708 		 * startup state, ready to be add into new context.
10709 		 */
10710 		perf_event__state_init(group_leader);
10711 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10712 		get_ctx(ctx);
10713 	}
10714 
10715 	/*
10716 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10717 	 * that we're serialized against further additions and before
10718 	 * perf_install_in_context() which is the point the event is active and
10719 	 * can use these values.
10720 	 */
10721 	perf_event__header_size(event);
10722 	perf_event__id_header_size(event);
10723 
10724 	event->owner = current;
10725 
10726 	perf_install_in_context(ctx, event, event->cpu);
10727 	perf_unpin_context(ctx);
10728 
10729 	if (move_group)
10730 		perf_event_ctx_unlock(group_leader, gctx);
10731 	mutex_unlock(&ctx->mutex);
10732 
10733 	if (task) {
10734 		mutex_unlock(&task->signal->cred_guard_mutex);
10735 		put_task_struct(task);
10736 	}
10737 
10738 	mutex_lock(&current->perf_event_mutex);
10739 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10740 	mutex_unlock(&current->perf_event_mutex);
10741 
10742 	/*
10743 	 * Drop the reference on the group_event after placing the
10744 	 * new event on the sibling_list. This ensures destruction
10745 	 * of the group leader will find the pointer to itself in
10746 	 * perf_group_detach().
10747 	 */
10748 	fdput(group);
10749 	fd_install(event_fd, event_file);
10750 	return event_fd;
10751 
10752 err_locked:
10753 	if (move_group)
10754 		perf_event_ctx_unlock(group_leader, gctx);
10755 	mutex_unlock(&ctx->mutex);
10756 /* err_file: */
10757 	fput(event_file);
10758 err_context:
10759 	perf_unpin_context(ctx);
10760 	put_ctx(ctx);
10761 err_alloc:
10762 	/*
10763 	 * If event_file is set, the fput() above will have called ->release()
10764 	 * and that will take care of freeing the event.
10765 	 */
10766 	if (!event_file)
10767 		free_event(event);
10768 err_cred:
10769 	if (task)
10770 		mutex_unlock(&task->signal->cred_guard_mutex);
10771 err_task:
10772 	if (task)
10773 		put_task_struct(task);
10774 err_group_fd:
10775 	fdput(group);
10776 err_fd:
10777 	put_unused_fd(event_fd);
10778 	return err;
10779 }
10780 
10781 /**
10782  * perf_event_create_kernel_counter
10783  *
10784  * @attr: attributes of the counter to create
10785  * @cpu: cpu in which the counter is bound
10786  * @task: task to profile (NULL for percpu)
10787  */
10788 struct perf_event *
10789 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10790 				 struct task_struct *task,
10791 				 perf_overflow_handler_t overflow_handler,
10792 				 void *context)
10793 {
10794 	struct perf_event_context *ctx;
10795 	struct perf_event *event;
10796 	int err;
10797 
10798 	/*
10799 	 * Get the target context (task or percpu):
10800 	 */
10801 
10802 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10803 				 overflow_handler, context, -1);
10804 	if (IS_ERR(event)) {
10805 		err = PTR_ERR(event);
10806 		goto err;
10807 	}
10808 
10809 	/* Mark owner so we could distinguish it from user events. */
10810 	event->owner = TASK_TOMBSTONE;
10811 
10812 	ctx = find_get_context(event->pmu, task, event);
10813 	if (IS_ERR(ctx)) {
10814 		err = PTR_ERR(ctx);
10815 		goto err_free;
10816 	}
10817 
10818 	WARN_ON_ONCE(ctx->parent_ctx);
10819 	mutex_lock(&ctx->mutex);
10820 	if (ctx->task == TASK_TOMBSTONE) {
10821 		err = -ESRCH;
10822 		goto err_unlock;
10823 	}
10824 
10825 	if (!task) {
10826 		/*
10827 		 * Check if the @cpu we're creating an event for is online.
10828 		 *
10829 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10830 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10831 		 */
10832 		struct perf_cpu_context *cpuctx =
10833 			container_of(ctx, struct perf_cpu_context, ctx);
10834 		if (!cpuctx->online) {
10835 			err = -ENODEV;
10836 			goto err_unlock;
10837 		}
10838 	}
10839 
10840 	if (!exclusive_event_installable(event, ctx)) {
10841 		err = -EBUSY;
10842 		goto err_unlock;
10843 	}
10844 
10845 	perf_install_in_context(ctx, event, cpu);
10846 	perf_unpin_context(ctx);
10847 	mutex_unlock(&ctx->mutex);
10848 
10849 	return event;
10850 
10851 err_unlock:
10852 	mutex_unlock(&ctx->mutex);
10853 	perf_unpin_context(ctx);
10854 	put_ctx(ctx);
10855 err_free:
10856 	free_event(event);
10857 err:
10858 	return ERR_PTR(err);
10859 }
10860 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10861 
10862 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10863 {
10864 	struct perf_event_context *src_ctx;
10865 	struct perf_event_context *dst_ctx;
10866 	struct perf_event *event, *tmp;
10867 	LIST_HEAD(events);
10868 
10869 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10870 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10871 
10872 	/*
10873 	 * See perf_event_ctx_lock() for comments on the details
10874 	 * of swizzling perf_event::ctx.
10875 	 */
10876 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10877 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10878 				 event_entry) {
10879 		perf_remove_from_context(event, 0);
10880 		unaccount_event_cpu(event, src_cpu);
10881 		put_ctx(src_ctx);
10882 		list_add(&event->migrate_entry, &events);
10883 	}
10884 
10885 	/*
10886 	 * Wait for the events to quiesce before re-instating them.
10887 	 */
10888 	synchronize_rcu();
10889 
10890 	/*
10891 	 * Re-instate events in 2 passes.
10892 	 *
10893 	 * Skip over group leaders and only install siblings on this first
10894 	 * pass, siblings will not get enabled without a leader, however a
10895 	 * leader will enable its siblings, even if those are still on the old
10896 	 * context.
10897 	 */
10898 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10899 		if (event->group_leader == event)
10900 			continue;
10901 
10902 		list_del(&event->migrate_entry);
10903 		if (event->state >= PERF_EVENT_STATE_OFF)
10904 			event->state = PERF_EVENT_STATE_INACTIVE;
10905 		account_event_cpu(event, dst_cpu);
10906 		perf_install_in_context(dst_ctx, event, dst_cpu);
10907 		get_ctx(dst_ctx);
10908 	}
10909 
10910 	/*
10911 	 * Once all the siblings are setup properly, install the group leaders
10912 	 * to make it go.
10913 	 */
10914 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10915 		list_del(&event->migrate_entry);
10916 		if (event->state >= PERF_EVENT_STATE_OFF)
10917 			event->state = PERF_EVENT_STATE_INACTIVE;
10918 		account_event_cpu(event, dst_cpu);
10919 		perf_install_in_context(dst_ctx, event, dst_cpu);
10920 		get_ctx(dst_ctx);
10921 	}
10922 	mutex_unlock(&dst_ctx->mutex);
10923 	mutex_unlock(&src_ctx->mutex);
10924 }
10925 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10926 
10927 static void sync_child_event(struct perf_event *child_event,
10928 			       struct task_struct *child)
10929 {
10930 	struct perf_event *parent_event = child_event->parent;
10931 	u64 child_val;
10932 
10933 	if (child_event->attr.inherit_stat)
10934 		perf_event_read_event(child_event, child);
10935 
10936 	child_val = perf_event_count(child_event);
10937 
10938 	/*
10939 	 * Add back the child's count to the parent's count:
10940 	 */
10941 	atomic64_add(child_val, &parent_event->child_count);
10942 	atomic64_add(child_event->total_time_enabled,
10943 		     &parent_event->child_total_time_enabled);
10944 	atomic64_add(child_event->total_time_running,
10945 		     &parent_event->child_total_time_running);
10946 }
10947 
10948 static void
10949 perf_event_exit_event(struct perf_event *child_event,
10950 		      struct perf_event_context *child_ctx,
10951 		      struct task_struct *child)
10952 {
10953 	struct perf_event *parent_event = child_event->parent;
10954 
10955 	/*
10956 	 * Do not destroy the 'original' grouping; because of the context
10957 	 * switch optimization the original events could've ended up in a
10958 	 * random child task.
10959 	 *
10960 	 * If we were to destroy the original group, all group related
10961 	 * operations would cease to function properly after this random
10962 	 * child dies.
10963 	 *
10964 	 * Do destroy all inherited groups, we don't care about those
10965 	 * and being thorough is better.
10966 	 */
10967 	raw_spin_lock_irq(&child_ctx->lock);
10968 	WARN_ON_ONCE(child_ctx->is_active);
10969 
10970 	if (parent_event)
10971 		perf_group_detach(child_event);
10972 	list_del_event(child_event, child_ctx);
10973 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10974 	raw_spin_unlock_irq(&child_ctx->lock);
10975 
10976 	/*
10977 	 * Parent events are governed by their filedesc, retain them.
10978 	 */
10979 	if (!parent_event) {
10980 		perf_event_wakeup(child_event);
10981 		return;
10982 	}
10983 	/*
10984 	 * Child events can be cleaned up.
10985 	 */
10986 
10987 	sync_child_event(child_event, child);
10988 
10989 	/*
10990 	 * Remove this event from the parent's list
10991 	 */
10992 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10993 	mutex_lock(&parent_event->child_mutex);
10994 	list_del_init(&child_event->child_list);
10995 	mutex_unlock(&parent_event->child_mutex);
10996 
10997 	/*
10998 	 * Kick perf_poll() for is_event_hup().
10999 	 */
11000 	perf_event_wakeup(parent_event);
11001 	free_event(child_event);
11002 	put_event(parent_event);
11003 }
11004 
11005 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11006 {
11007 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11008 	struct perf_event *child_event, *next;
11009 
11010 	WARN_ON_ONCE(child != current);
11011 
11012 	child_ctx = perf_pin_task_context(child, ctxn);
11013 	if (!child_ctx)
11014 		return;
11015 
11016 	/*
11017 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11018 	 * ctx::mutex over the entire thing. This serializes against almost
11019 	 * everything that wants to access the ctx.
11020 	 *
11021 	 * The exception is sys_perf_event_open() /
11022 	 * perf_event_create_kernel_count() which does find_get_context()
11023 	 * without ctx::mutex (it cannot because of the move_group double mutex
11024 	 * lock thing). See the comments in perf_install_in_context().
11025 	 */
11026 	mutex_lock(&child_ctx->mutex);
11027 
11028 	/*
11029 	 * In a single ctx::lock section, de-schedule the events and detach the
11030 	 * context from the task such that we cannot ever get it scheduled back
11031 	 * in.
11032 	 */
11033 	raw_spin_lock_irq(&child_ctx->lock);
11034 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11035 
11036 	/*
11037 	 * Now that the context is inactive, destroy the task <-> ctx relation
11038 	 * and mark the context dead.
11039 	 */
11040 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11041 	put_ctx(child_ctx); /* cannot be last */
11042 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11043 	put_task_struct(current); /* cannot be last */
11044 
11045 	clone_ctx = unclone_ctx(child_ctx);
11046 	raw_spin_unlock_irq(&child_ctx->lock);
11047 
11048 	if (clone_ctx)
11049 		put_ctx(clone_ctx);
11050 
11051 	/*
11052 	 * Report the task dead after unscheduling the events so that we
11053 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11054 	 * get a few PERF_RECORD_READ events.
11055 	 */
11056 	perf_event_task(child, child_ctx, 0);
11057 
11058 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11059 		perf_event_exit_event(child_event, child_ctx, child);
11060 
11061 	mutex_unlock(&child_ctx->mutex);
11062 
11063 	put_ctx(child_ctx);
11064 }
11065 
11066 /*
11067  * When a child task exits, feed back event values to parent events.
11068  *
11069  * Can be called with cred_guard_mutex held when called from
11070  * install_exec_creds().
11071  */
11072 void perf_event_exit_task(struct task_struct *child)
11073 {
11074 	struct perf_event *event, *tmp;
11075 	int ctxn;
11076 
11077 	mutex_lock(&child->perf_event_mutex);
11078 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11079 				 owner_entry) {
11080 		list_del_init(&event->owner_entry);
11081 
11082 		/*
11083 		 * Ensure the list deletion is visible before we clear
11084 		 * the owner, closes a race against perf_release() where
11085 		 * we need to serialize on the owner->perf_event_mutex.
11086 		 */
11087 		smp_store_release(&event->owner, NULL);
11088 	}
11089 	mutex_unlock(&child->perf_event_mutex);
11090 
11091 	for_each_task_context_nr(ctxn)
11092 		perf_event_exit_task_context(child, ctxn);
11093 
11094 	/*
11095 	 * The perf_event_exit_task_context calls perf_event_task
11096 	 * with child's task_ctx, which generates EXIT events for
11097 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11098 	 * At this point we need to send EXIT events to cpu contexts.
11099 	 */
11100 	perf_event_task(child, NULL, 0);
11101 }
11102 
11103 static void perf_free_event(struct perf_event *event,
11104 			    struct perf_event_context *ctx)
11105 {
11106 	struct perf_event *parent = event->parent;
11107 
11108 	if (WARN_ON_ONCE(!parent))
11109 		return;
11110 
11111 	mutex_lock(&parent->child_mutex);
11112 	list_del_init(&event->child_list);
11113 	mutex_unlock(&parent->child_mutex);
11114 
11115 	put_event(parent);
11116 
11117 	raw_spin_lock_irq(&ctx->lock);
11118 	perf_group_detach(event);
11119 	list_del_event(event, ctx);
11120 	raw_spin_unlock_irq(&ctx->lock);
11121 	free_event(event);
11122 }
11123 
11124 /*
11125  * Free an unexposed, unused context as created by inheritance by
11126  * perf_event_init_task below, used by fork() in case of fail.
11127  *
11128  * Not all locks are strictly required, but take them anyway to be nice and
11129  * help out with the lockdep assertions.
11130  */
11131 void perf_event_free_task(struct task_struct *task)
11132 {
11133 	struct perf_event_context *ctx;
11134 	struct perf_event *event, *tmp;
11135 	int ctxn;
11136 
11137 	for_each_task_context_nr(ctxn) {
11138 		ctx = task->perf_event_ctxp[ctxn];
11139 		if (!ctx)
11140 			continue;
11141 
11142 		mutex_lock(&ctx->mutex);
11143 		raw_spin_lock_irq(&ctx->lock);
11144 		/*
11145 		 * Destroy the task <-> ctx relation and mark the context dead.
11146 		 *
11147 		 * This is important because even though the task hasn't been
11148 		 * exposed yet the context has been (through child_list).
11149 		 */
11150 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11151 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11152 		put_task_struct(task); /* cannot be last */
11153 		raw_spin_unlock_irq(&ctx->lock);
11154 
11155 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11156 			perf_free_event(event, ctx);
11157 
11158 		mutex_unlock(&ctx->mutex);
11159 		put_ctx(ctx);
11160 	}
11161 }
11162 
11163 void perf_event_delayed_put(struct task_struct *task)
11164 {
11165 	int ctxn;
11166 
11167 	for_each_task_context_nr(ctxn)
11168 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11169 }
11170 
11171 struct file *perf_event_get(unsigned int fd)
11172 {
11173 	struct file *file;
11174 
11175 	file = fget_raw(fd);
11176 	if (!file)
11177 		return ERR_PTR(-EBADF);
11178 
11179 	if (file->f_op != &perf_fops) {
11180 		fput(file);
11181 		return ERR_PTR(-EBADF);
11182 	}
11183 
11184 	return file;
11185 }
11186 
11187 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11188 {
11189 	if (!event)
11190 		return ERR_PTR(-EINVAL);
11191 
11192 	return &event->attr;
11193 }
11194 
11195 /*
11196  * Inherit a event from parent task to child task.
11197  *
11198  * Returns:
11199  *  - valid pointer on success
11200  *  - NULL for orphaned events
11201  *  - IS_ERR() on error
11202  */
11203 static struct perf_event *
11204 inherit_event(struct perf_event *parent_event,
11205 	      struct task_struct *parent,
11206 	      struct perf_event_context *parent_ctx,
11207 	      struct task_struct *child,
11208 	      struct perf_event *group_leader,
11209 	      struct perf_event_context *child_ctx)
11210 {
11211 	enum perf_event_state parent_state = parent_event->state;
11212 	struct perf_event *child_event;
11213 	unsigned long flags;
11214 
11215 	/*
11216 	 * Instead of creating recursive hierarchies of events,
11217 	 * we link inherited events back to the original parent,
11218 	 * which has a filp for sure, which we use as the reference
11219 	 * count:
11220 	 */
11221 	if (parent_event->parent)
11222 		parent_event = parent_event->parent;
11223 
11224 	child_event = perf_event_alloc(&parent_event->attr,
11225 					   parent_event->cpu,
11226 					   child,
11227 					   group_leader, parent_event,
11228 					   NULL, NULL, -1);
11229 	if (IS_ERR(child_event))
11230 		return child_event;
11231 
11232 
11233 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11234 	    !child_ctx->task_ctx_data) {
11235 		struct pmu *pmu = child_event->pmu;
11236 
11237 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11238 						   GFP_KERNEL);
11239 		if (!child_ctx->task_ctx_data) {
11240 			free_event(child_event);
11241 			return NULL;
11242 		}
11243 	}
11244 
11245 	/*
11246 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11247 	 * must be under the same lock in order to serialize against
11248 	 * perf_event_release_kernel(), such that either we must observe
11249 	 * is_orphaned_event() or they will observe us on the child_list.
11250 	 */
11251 	mutex_lock(&parent_event->child_mutex);
11252 	if (is_orphaned_event(parent_event) ||
11253 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11254 		mutex_unlock(&parent_event->child_mutex);
11255 		/* task_ctx_data is freed with child_ctx */
11256 		free_event(child_event);
11257 		return NULL;
11258 	}
11259 
11260 	get_ctx(child_ctx);
11261 
11262 	/*
11263 	 * Make the child state follow the state of the parent event,
11264 	 * not its attr.disabled bit.  We hold the parent's mutex,
11265 	 * so we won't race with perf_event_{en, dis}able_family.
11266 	 */
11267 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11268 		child_event->state = PERF_EVENT_STATE_INACTIVE;
11269 	else
11270 		child_event->state = PERF_EVENT_STATE_OFF;
11271 
11272 	if (parent_event->attr.freq) {
11273 		u64 sample_period = parent_event->hw.sample_period;
11274 		struct hw_perf_event *hwc = &child_event->hw;
11275 
11276 		hwc->sample_period = sample_period;
11277 		hwc->last_period   = sample_period;
11278 
11279 		local64_set(&hwc->period_left, sample_period);
11280 	}
11281 
11282 	child_event->ctx = child_ctx;
11283 	child_event->overflow_handler = parent_event->overflow_handler;
11284 	child_event->overflow_handler_context
11285 		= parent_event->overflow_handler_context;
11286 
11287 	/*
11288 	 * Precalculate sample_data sizes
11289 	 */
11290 	perf_event__header_size(child_event);
11291 	perf_event__id_header_size(child_event);
11292 
11293 	/*
11294 	 * Link it up in the child's context:
11295 	 */
11296 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
11297 	add_event_to_ctx(child_event, child_ctx);
11298 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11299 
11300 	/*
11301 	 * Link this into the parent event's child list
11302 	 */
11303 	list_add_tail(&child_event->child_list, &parent_event->child_list);
11304 	mutex_unlock(&parent_event->child_mutex);
11305 
11306 	return child_event;
11307 }
11308 
11309 /*
11310  * Inherits an event group.
11311  *
11312  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11313  * This matches with perf_event_release_kernel() removing all child events.
11314  *
11315  * Returns:
11316  *  - 0 on success
11317  *  - <0 on error
11318  */
11319 static int inherit_group(struct perf_event *parent_event,
11320 	      struct task_struct *parent,
11321 	      struct perf_event_context *parent_ctx,
11322 	      struct task_struct *child,
11323 	      struct perf_event_context *child_ctx)
11324 {
11325 	struct perf_event *leader;
11326 	struct perf_event *sub;
11327 	struct perf_event *child_ctr;
11328 
11329 	leader = inherit_event(parent_event, parent, parent_ctx,
11330 				 child, NULL, child_ctx);
11331 	if (IS_ERR(leader))
11332 		return PTR_ERR(leader);
11333 	/*
11334 	 * @leader can be NULL here because of is_orphaned_event(). In this
11335 	 * case inherit_event() will create individual events, similar to what
11336 	 * perf_group_detach() would do anyway.
11337 	 */
11338 	for_each_sibling_event(sub, parent_event) {
11339 		child_ctr = inherit_event(sub, parent, parent_ctx,
11340 					    child, leader, child_ctx);
11341 		if (IS_ERR(child_ctr))
11342 			return PTR_ERR(child_ctr);
11343 	}
11344 	return 0;
11345 }
11346 
11347 /*
11348  * Creates the child task context and tries to inherit the event-group.
11349  *
11350  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11351  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11352  * consistent with perf_event_release_kernel() removing all child events.
11353  *
11354  * Returns:
11355  *  - 0 on success
11356  *  - <0 on error
11357  */
11358 static int
11359 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11360 		   struct perf_event_context *parent_ctx,
11361 		   struct task_struct *child, int ctxn,
11362 		   int *inherited_all)
11363 {
11364 	int ret;
11365 	struct perf_event_context *child_ctx;
11366 
11367 	if (!event->attr.inherit) {
11368 		*inherited_all = 0;
11369 		return 0;
11370 	}
11371 
11372 	child_ctx = child->perf_event_ctxp[ctxn];
11373 	if (!child_ctx) {
11374 		/*
11375 		 * This is executed from the parent task context, so
11376 		 * inherit events that have been marked for cloning.
11377 		 * First allocate and initialize a context for the
11378 		 * child.
11379 		 */
11380 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11381 		if (!child_ctx)
11382 			return -ENOMEM;
11383 
11384 		child->perf_event_ctxp[ctxn] = child_ctx;
11385 	}
11386 
11387 	ret = inherit_group(event, parent, parent_ctx,
11388 			    child, child_ctx);
11389 
11390 	if (ret)
11391 		*inherited_all = 0;
11392 
11393 	return ret;
11394 }
11395 
11396 /*
11397  * Initialize the perf_event context in task_struct
11398  */
11399 static int perf_event_init_context(struct task_struct *child, int ctxn)
11400 {
11401 	struct perf_event_context *child_ctx, *parent_ctx;
11402 	struct perf_event_context *cloned_ctx;
11403 	struct perf_event *event;
11404 	struct task_struct *parent = current;
11405 	int inherited_all = 1;
11406 	unsigned long flags;
11407 	int ret = 0;
11408 
11409 	if (likely(!parent->perf_event_ctxp[ctxn]))
11410 		return 0;
11411 
11412 	/*
11413 	 * If the parent's context is a clone, pin it so it won't get
11414 	 * swapped under us.
11415 	 */
11416 	parent_ctx = perf_pin_task_context(parent, ctxn);
11417 	if (!parent_ctx)
11418 		return 0;
11419 
11420 	/*
11421 	 * No need to check if parent_ctx != NULL here; since we saw
11422 	 * it non-NULL earlier, the only reason for it to become NULL
11423 	 * is if we exit, and since we're currently in the middle of
11424 	 * a fork we can't be exiting at the same time.
11425 	 */
11426 
11427 	/*
11428 	 * Lock the parent list. No need to lock the child - not PID
11429 	 * hashed yet and not running, so nobody can access it.
11430 	 */
11431 	mutex_lock(&parent_ctx->mutex);
11432 
11433 	/*
11434 	 * We dont have to disable NMIs - we are only looking at
11435 	 * the list, not manipulating it:
11436 	 */
11437 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11438 		ret = inherit_task_group(event, parent, parent_ctx,
11439 					 child, ctxn, &inherited_all);
11440 		if (ret)
11441 			goto out_unlock;
11442 	}
11443 
11444 	/*
11445 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11446 	 * to allocations, but we need to prevent rotation because
11447 	 * rotate_ctx() will change the list from interrupt context.
11448 	 */
11449 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11450 	parent_ctx->rotate_disable = 1;
11451 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11452 
11453 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11454 		ret = inherit_task_group(event, parent, parent_ctx,
11455 					 child, ctxn, &inherited_all);
11456 		if (ret)
11457 			goto out_unlock;
11458 	}
11459 
11460 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11461 	parent_ctx->rotate_disable = 0;
11462 
11463 	child_ctx = child->perf_event_ctxp[ctxn];
11464 
11465 	if (child_ctx && inherited_all) {
11466 		/*
11467 		 * Mark the child context as a clone of the parent
11468 		 * context, or of whatever the parent is a clone of.
11469 		 *
11470 		 * Note that if the parent is a clone, the holding of
11471 		 * parent_ctx->lock avoids it from being uncloned.
11472 		 */
11473 		cloned_ctx = parent_ctx->parent_ctx;
11474 		if (cloned_ctx) {
11475 			child_ctx->parent_ctx = cloned_ctx;
11476 			child_ctx->parent_gen = parent_ctx->parent_gen;
11477 		} else {
11478 			child_ctx->parent_ctx = parent_ctx;
11479 			child_ctx->parent_gen = parent_ctx->generation;
11480 		}
11481 		get_ctx(child_ctx->parent_ctx);
11482 	}
11483 
11484 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11485 out_unlock:
11486 	mutex_unlock(&parent_ctx->mutex);
11487 
11488 	perf_unpin_context(parent_ctx);
11489 	put_ctx(parent_ctx);
11490 
11491 	return ret;
11492 }
11493 
11494 /*
11495  * Initialize the perf_event context in task_struct
11496  */
11497 int perf_event_init_task(struct task_struct *child)
11498 {
11499 	int ctxn, ret;
11500 
11501 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11502 	mutex_init(&child->perf_event_mutex);
11503 	INIT_LIST_HEAD(&child->perf_event_list);
11504 
11505 	for_each_task_context_nr(ctxn) {
11506 		ret = perf_event_init_context(child, ctxn);
11507 		if (ret) {
11508 			perf_event_free_task(child);
11509 			return ret;
11510 		}
11511 	}
11512 
11513 	return 0;
11514 }
11515 
11516 static void __init perf_event_init_all_cpus(void)
11517 {
11518 	struct swevent_htable *swhash;
11519 	int cpu;
11520 
11521 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11522 
11523 	for_each_possible_cpu(cpu) {
11524 		swhash = &per_cpu(swevent_htable, cpu);
11525 		mutex_init(&swhash->hlist_mutex);
11526 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11527 
11528 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11529 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11530 
11531 #ifdef CONFIG_CGROUP_PERF
11532 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11533 #endif
11534 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11535 	}
11536 }
11537 
11538 void perf_swevent_init_cpu(unsigned int cpu)
11539 {
11540 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11541 
11542 	mutex_lock(&swhash->hlist_mutex);
11543 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11544 		struct swevent_hlist *hlist;
11545 
11546 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11547 		WARN_ON(!hlist);
11548 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11549 	}
11550 	mutex_unlock(&swhash->hlist_mutex);
11551 }
11552 
11553 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11554 static void __perf_event_exit_context(void *__info)
11555 {
11556 	struct perf_event_context *ctx = __info;
11557 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11558 	struct perf_event *event;
11559 
11560 	raw_spin_lock(&ctx->lock);
11561 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11562 	list_for_each_entry(event, &ctx->event_list, event_entry)
11563 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11564 	raw_spin_unlock(&ctx->lock);
11565 }
11566 
11567 static void perf_event_exit_cpu_context(int cpu)
11568 {
11569 	struct perf_cpu_context *cpuctx;
11570 	struct perf_event_context *ctx;
11571 	struct pmu *pmu;
11572 
11573 	mutex_lock(&pmus_lock);
11574 	list_for_each_entry(pmu, &pmus, entry) {
11575 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11576 		ctx = &cpuctx->ctx;
11577 
11578 		mutex_lock(&ctx->mutex);
11579 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11580 		cpuctx->online = 0;
11581 		mutex_unlock(&ctx->mutex);
11582 	}
11583 	cpumask_clear_cpu(cpu, perf_online_mask);
11584 	mutex_unlock(&pmus_lock);
11585 }
11586 #else
11587 
11588 static void perf_event_exit_cpu_context(int cpu) { }
11589 
11590 #endif
11591 
11592 int perf_event_init_cpu(unsigned int cpu)
11593 {
11594 	struct perf_cpu_context *cpuctx;
11595 	struct perf_event_context *ctx;
11596 	struct pmu *pmu;
11597 
11598 	perf_swevent_init_cpu(cpu);
11599 
11600 	mutex_lock(&pmus_lock);
11601 	cpumask_set_cpu(cpu, perf_online_mask);
11602 	list_for_each_entry(pmu, &pmus, entry) {
11603 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11604 		ctx = &cpuctx->ctx;
11605 
11606 		mutex_lock(&ctx->mutex);
11607 		cpuctx->online = 1;
11608 		mutex_unlock(&ctx->mutex);
11609 	}
11610 	mutex_unlock(&pmus_lock);
11611 
11612 	return 0;
11613 }
11614 
11615 int perf_event_exit_cpu(unsigned int cpu)
11616 {
11617 	perf_event_exit_cpu_context(cpu);
11618 	return 0;
11619 }
11620 
11621 static int
11622 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11623 {
11624 	int cpu;
11625 
11626 	for_each_online_cpu(cpu)
11627 		perf_event_exit_cpu(cpu);
11628 
11629 	return NOTIFY_OK;
11630 }
11631 
11632 /*
11633  * Run the perf reboot notifier at the very last possible moment so that
11634  * the generic watchdog code runs as long as possible.
11635  */
11636 static struct notifier_block perf_reboot_notifier = {
11637 	.notifier_call = perf_reboot,
11638 	.priority = INT_MIN,
11639 };
11640 
11641 void __init perf_event_init(void)
11642 {
11643 	int ret;
11644 
11645 	idr_init(&pmu_idr);
11646 
11647 	perf_event_init_all_cpus();
11648 	init_srcu_struct(&pmus_srcu);
11649 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11650 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11651 	perf_pmu_register(&perf_task_clock, NULL, -1);
11652 	perf_tp_register();
11653 	perf_event_init_cpu(smp_processor_id());
11654 	register_reboot_notifier(&perf_reboot_notifier);
11655 
11656 	ret = init_hw_breakpoint();
11657 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11658 
11659 	/*
11660 	 * Build time assertion that we keep the data_head at the intended
11661 	 * location.  IOW, validation we got the __reserved[] size right.
11662 	 */
11663 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11664 		     != 1024);
11665 }
11666 
11667 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11668 			      char *page)
11669 {
11670 	struct perf_pmu_events_attr *pmu_attr =
11671 		container_of(attr, struct perf_pmu_events_attr, attr);
11672 
11673 	if (pmu_attr->event_str)
11674 		return sprintf(page, "%s\n", pmu_attr->event_str);
11675 
11676 	return 0;
11677 }
11678 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11679 
11680 static int __init perf_event_sysfs_init(void)
11681 {
11682 	struct pmu *pmu;
11683 	int ret;
11684 
11685 	mutex_lock(&pmus_lock);
11686 
11687 	ret = bus_register(&pmu_bus);
11688 	if (ret)
11689 		goto unlock;
11690 
11691 	list_for_each_entry(pmu, &pmus, entry) {
11692 		if (!pmu->name || pmu->type < 0)
11693 			continue;
11694 
11695 		ret = pmu_dev_alloc(pmu);
11696 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11697 	}
11698 	pmu_bus_running = 1;
11699 	ret = 0;
11700 
11701 unlock:
11702 	mutex_unlock(&pmus_lock);
11703 
11704 	return ret;
11705 }
11706 device_initcall(perf_event_sysfs_init);
11707 
11708 #ifdef CONFIG_CGROUP_PERF
11709 static struct cgroup_subsys_state *
11710 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11711 {
11712 	struct perf_cgroup *jc;
11713 
11714 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11715 	if (!jc)
11716 		return ERR_PTR(-ENOMEM);
11717 
11718 	jc->info = alloc_percpu(struct perf_cgroup_info);
11719 	if (!jc->info) {
11720 		kfree(jc);
11721 		return ERR_PTR(-ENOMEM);
11722 	}
11723 
11724 	return &jc->css;
11725 }
11726 
11727 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11728 {
11729 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11730 
11731 	free_percpu(jc->info);
11732 	kfree(jc);
11733 }
11734 
11735 static int __perf_cgroup_move(void *info)
11736 {
11737 	struct task_struct *task = info;
11738 	rcu_read_lock();
11739 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11740 	rcu_read_unlock();
11741 	return 0;
11742 }
11743 
11744 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11745 {
11746 	struct task_struct *task;
11747 	struct cgroup_subsys_state *css;
11748 
11749 	cgroup_taskset_for_each(task, css, tset)
11750 		task_function_call(task, __perf_cgroup_move, task);
11751 }
11752 
11753 struct cgroup_subsys perf_event_cgrp_subsys = {
11754 	.css_alloc	= perf_cgroup_css_alloc,
11755 	.css_free	= perf_cgroup_css_free,
11756 	.attach		= perf_cgroup_attach,
11757 	/*
11758 	 * Implicitly enable on dfl hierarchy so that perf events can
11759 	 * always be filtered by cgroup2 path as long as perf_event
11760 	 * controller is not mounted on a legacy hierarchy.
11761 	 */
11762 	.implicit_on_dfl = true,
11763 	.threaded	= true,
11764 };
11765 #endif /* CONFIG_CGROUP_PERF */
11766