xref: /openbmc/linux/kernel/events/core.c (revision 05bcf503)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/mm_types.h>
40 
41 #include "internal.h"
42 
43 #include <asm/irq_regs.h>
44 
45 struct remote_function_call {
46 	struct task_struct	*p;
47 	int			(*func)(void *info);
48 	void			*info;
49 	int			ret;
50 };
51 
52 static void remote_function(void *data)
53 {
54 	struct remote_function_call *tfc = data;
55 	struct task_struct *p = tfc->p;
56 
57 	if (p) {
58 		tfc->ret = -EAGAIN;
59 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
60 			return;
61 	}
62 
63 	tfc->ret = tfc->func(tfc->info);
64 }
65 
66 /**
67  * task_function_call - call a function on the cpu on which a task runs
68  * @p:		the task to evaluate
69  * @func:	the function to be called
70  * @info:	the function call argument
71  *
72  * Calls the function @func when the task is currently running. This might
73  * be on the current CPU, which just calls the function directly
74  *
75  * returns: @func return value, or
76  *	    -ESRCH  - when the process isn't running
77  *	    -EAGAIN - when the process moved away
78  */
79 static int
80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
81 {
82 	struct remote_function_call data = {
83 		.p	= p,
84 		.func	= func,
85 		.info	= info,
86 		.ret	= -ESRCH, /* No such (running) process */
87 	};
88 
89 	if (task_curr(p))
90 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
91 
92 	return data.ret;
93 }
94 
95 /**
96  * cpu_function_call - call a function on the cpu
97  * @func:	the function to be called
98  * @info:	the function call argument
99  *
100  * Calls the function @func on the remote cpu.
101  *
102  * returns: @func return value or -ENXIO when the cpu is offline
103  */
104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= NULL,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -ENXIO, /* No such CPU */
111 	};
112 
113 	smp_call_function_single(cpu, remote_function, &data, 1);
114 
115 	return data.ret;
116 }
117 
118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
119 		       PERF_FLAG_FD_OUTPUT  |\
120 		       PERF_FLAG_PID_CGROUP)
121 
122 /*
123  * branch priv levels that need permission checks
124  */
125 #define PERF_SAMPLE_BRANCH_PERM_PLM \
126 	(PERF_SAMPLE_BRANCH_KERNEL |\
127 	 PERF_SAMPLE_BRANCH_HV)
128 
129 enum event_type_t {
130 	EVENT_FLEXIBLE = 0x1,
131 	EVENT_PINNED = 0x2,
132 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
133 };
134 
135 /*
136  * perf_sched_events : >0 events exist
137  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138  */
139 struct static_key_deferred perf_sched_events __read_mostly;
140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
142 
143 static atomic_t nr_mmap_events __read_mostly;
144 static atomic_t nr_comm_events __read_mostly;
145 static atomic_t nr_task_events __read_mostly;
146 
147 static LIST_HEAD(pmus);
148 static DEFINE_MUTEX(pmus_lock);
149 static struct srcu_struct pmus_srcu;
150 
151 /*
152  * perf event paranoia level:
153  *  -1 - not paranoid at all
154  *   0 - disallow raw tracepoint access for unpriv
155  *   1 - disallow cpu events for unpriv
156  *   2 - disallow kernel profiling for unpriv
157  */
158 int sysctl_perf_event_paranoid __read_mostly = 1;
159 
160 /* Minimum for 512 kiB + 1 user control page */
161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 
163 /*
164  * max perf event sample rate
165  */
166 #define DEFAULT_MAX_SAMPLE_RATE 100000
167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
168 static int max_samples_per_tick __read_mostly =
169 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
170 
171 int perf_proc_update_handler(struct ctl_table *table, int write,
172 		void __user *buffer, size_t *lenp,
173 		loff_t *ppos)
174 {
175 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
176 
177 	if (ret || !write)
178 		return ret;
179 
180 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
181 
182 	return 0;
183 }
184 
185 static atomic64_t perf_event_id;
186 
187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
188 			      enum event_type_t event_type);
189 
190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
191 			     enum event_type_t event_type,
192 			     struct task_struct *task);
193 
194 static void update_context_time(struct perf_event_context *ctx);
195 static u64 perf_event_time(struct perf_event *event);
196 
197 static void ring_buffer_attach(struct perf_event *event,
198 			       struct ring_buffer *rb);
199 
200 void __weak perf_event_print_debug(void)	{ }
201 
202 extern __weak const char *perf_pmu_name(void)
203 {
204 	return "pmu";
205 }
206 
207 static inline u64 perf_clock(void)
208 {
209 	return local_clock();
210 }
211 
212 static inline struct perf_cpu_context *
213 __get_cpu_context(struct perf_event_context *ctx)
214 {
215 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
216 }
217 
218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
219 			  struct perf_event_context *ctx)
220 {
221 	raw_spin_lock(&cpuctx->ctx.lock);
222 	if (ctx)
223 		raw_spin_lock(&ctx->lock);
224 }
225 
226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
227 			    struct perf_event_context *ctx)
228 {
229 	if (ctx)
230 		raw_spin_unlock(&ctx->lock);
231 	raw_spin_unlock(&cpuctx->ctx.lock);
232 }
233 
234 #ifdef CONFIG_CGROUP_PERF
235 
236 /*
237  * Must ensure cgroup is pinned (css_get) before calling
238  * this function. In other words, we cannot call this function
239  * if there is no cgroup event for the current CPU context.
240  */
241 static inline struct perf_cgroup *
242 perf_cgroup_from_task(struct task_struct *task)
243 {
244 	return container_of(task_subsys_state(task, perf_subsys_id),
245 			struct perf_cgroup, css);
246 }
247 
248 static inline bool
249 perf_cgroup_match(struct perf_event *event)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
253 
254 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
255 }
256 
257 static inline bool perf_tryget_cgroup(struct perf_event *event)
258 {
259 	return css_tryget(&event->cgrp->css);
260 }
261 
262 static inline void perf_put_cgroup(struct perf_event *event)
263 {
264 	css_put(&event->cgrp->css);
265 }
266 
267 static inline void perf_detach_cgroup(struct perf_event *event)
268 {
269 	perf_put_cgroup(event);
270 	event->cgrp = NULL;
271 }
272 
273 static inline int is_cgroup_event(struct perf_event *event)
274 {
275 	return event->cgrp != NULL;
276 }
277 
278 static inline u64 perf_cgroup_event_time(struct perf_event *event)
279 {
280 	struct perf_cgroup_info *t;
281 
282 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
283 	return t->time;
284 }
285 
286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
287 {
288 	struct perf_cgroup_info *info;
289 	u64 now;
290 
291 	now = perf_clock();
292 
293 	info = this_cpu_ptr(cgrp->info);
294 
295 	info->time += now - info->timestamp;
296 	info->timestamp = now;
297 }
298 
299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
300 {
301 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
302 	if (cgrp_out)
303 		__update_cgrp_time(cgrp_out);
304 }
305 
306 static inline void update_cgrp_time_from_event(struct perf_event *event)
307 {
308 	struct perf_cgroup *cgrp;
309 
310 	/*
311 	 * ensure we access cgroup data only when needed and
312 	 * when we know the cgroup is pinned (css_get)
313 	 */
314 	if (!is_cgroup_event(event))
315 		return;
316 
317 	cgrp = perf_cgroup_from_task(current);
318 	/*
319 	 * Do not update time when cgroup is not active
320 	 */
321 	if (cgrp == event->cgrp)
322 		__update_cgrp_time(event->cgrp);
323 }
324 
325 static inline void
326 perf_cgroup_set_timestamp(struct task_struct *task,
327 			  struct perf_event_context *ctx)
328 {
329 	struct perf_cgroup *cgrp;
330 	struct perf_cgroup_info *info;
331 
332 	/*
333 	 * ctx->lock held by caller
334 	 * ensure we do not access cgroup data
335 	 * unless we have the cgroup pinned (css_get)
336 	 */
337 	if (!task || !ctx->nr_cgroups)
338 		return;
339 
340 	cgrp = perf_cgroup_from_task(task);
341 	info = this_cpu_ptr(cgrp->info);
342 	info->timestamp = ctx->timestamp;
343 }
344 
345 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
346 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
347 
348 /*
349  * reschedule events based on the cgroup constraint of task.
350  *
351  * mode SWOUT : schedule out everything
352  * mode SWIN : schedule in based on cgroup for next
353  */
354 void perf_cgroup_switch(struct task_struct *task, int mode)
355 {
356 	struct perf_cpu_context *cpuctx;
357 	struct pmu *pmu;
358 	unsigned long flags;
359 
360 	/*
361 	 * disable interrupts to avoid geting nr_cgroup
362 	 * changes via __perf_event_disable(). Also
363 	 * avoids preemption.
364 	 */
365 	local_irq_save(flags);
366 
367 	/*
368 	 * we reschedule only in the presence of cgroup
369 	 * constrained events.
370 	 */
371 	rcu_read_lock();
372 
373 	list_for_each_entry_rcu(pmu, &pmus, entry) {
374 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
375 		if (cpuctx->unique_pmu != pmu)
376 			continue; /* ensure we process each cpuctx once */
377 
378 		/*
379 		 * perf_cgroup_events says at least one
380 		 * context on this CPU has cgroup events.
381 		 *
382 		 * ctx->nr_cgroups reports the number of cgroup
383 		 * events for a context.
384 		 */
385 		if (cpuctx->ctx.nr_cgroups > 0) {
386 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
387 			perf_pmu_disable(cpuctx->ctx.pmu);
388 
389 			if (mode & PERF_CGROUP_SWOUT) {
390 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
391 				/*
392 				 * must not be done before ctxswout due
393 				 * to event_filter_match() in event_sched_out()
394 				 */
395 				cpuctx->cgrp = NULL;
396 			}
397 
398 			if (mode & PERF_CGROUP_SWIN) {
399 				WARN_ON_ONCE(cpuctx->cgrp);
400 				/*
401 				 * set cgrp before ctxsw in to allow
402 				 * event_filter_match() to not have to pass
403 				 * task around
404 				 */
405 				cpuctx->cgrp = perf_cgroup_from_task(task);
406 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
407 			}
408 			perf_pmu_enable(cpuctx->ctx.pmu);
409 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
410 		}
411 	}
412 
413 	rcu_read_unlock();
414 
415 	local_irq_restore(flags);
416 }
417 
418 static inline void perf_cgroup_sched_out(struct task_struct *task,
419 					 struct task_struct *next)
420 {
421 	struct perf_cgroup *cgrp1;
422 	struct perf_cgroup *cgrp2 = NULL;
423 
424 	/*
425 	 * we come here when we know perf_cgroup_events > 0
426 	 */
427 	cgrp1 = perf_cgroup_from_task(task);
428 
429 	/*
430 	 * next is NULL when called from perf_event_enable_on_exec()
431 	 * that will systematically cause a cgroup_switch()
432 	 */
433 	if (next)
434 		cgrp2 = perf_cgroup_from_task(next);
435 
436 	/*
437 	 * only schedule out current cgroup events if we know
438 	 * that we are switching to a different cgroup. Otherwise,
439 	 * do no touch the cgroup events.
440 	 */
441 	if (cgrp1 != cgrp2)
442 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
443 }
444 
445 static inline void perf_cgroup_sched_in(struct task_struct *prev,
446 					struct task_struct *task)
447 {
448 	struct perf_cgroup *cgrp1;
449 	struct perf_cgroup *cgrp2 = NULL;
450 
451 	/*
452 	 * we come here when we know perf_cgroup_events > 0
453 	 */
454 	cgrp1 = perf_cgroup_from_task(task);
455 
456 	/* prev can never be NULL */
457 	cgrp2 = perf_cgroup_from_task(prev);
458 
459 	/*
460 	 * only need to schedule in cgroup events if we are changing
461 	 * cgroup during ctxsw. Cgroup events were not scheduled
462 	 * out of ctxsw out if that was not the case.
463 	 */
464 	if (cgrp1 != cgrp2)
465 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
466 }
467 
468 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
469 				      struct perf_event_attr *attr,
470 				      struct perf_event *group_leader)
471 {
472 	struct perf_cgroup *cgrp;
473 	struct cgroup_subsys_state *css;
474 	struct fd f = fdget(fd);
475 	int ret = 0;
476 
477 	if (!f.file)
478 		return -EBADF;
479 
480 	css = cgroup_css_from_dir(f.file, perf_subsys_id);
481 	if (IS_ERR(css)) {
482 		ret = PTR_ERR(css);
483 		goto out;
484 	}
485 
486 	cgrp = container_of(css, struct perf_cgroup, css);
487 	event->cgrp = cgrp;
488 
489 	/* must be done before we fput() the file */
490 	if (!perf_tryget_cgroup(event)) {
491 		event->cgrp = NULL;
492 		ret = -ENOENT;
493 		goto out;
494 	}
495 
496 	/*
497 	 * all events in a group must monitor
498 	 * the same cgroup because a task belongs
499 	 * to only one perf cgroup at a time
500 	 */
501 	if (group_leader && group_leader->cgrp != cgrp) {
502 		perf_detach_cgroup(event);
503 		ret = -EINVAL;
504 	}
505 out:
506 	fdput(f);
507 	return ret;
508 }
509 
510 static inline void
511 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
512 {
513 	struct perf_cgroup_info *t;
514 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
515 	event->shadow_ctx_time = now - t->timestamp;
516 }
517 
518 static inline void
519 perf_cgroup_defer_enabled(struct perf_event *event)
520 {
521 	/*
522 	 * when the current task's perf cgroup does not match
523 	 * the event's, we need to remember to call the
524 	 * perf_mark_enable() function the first time a task with
525 	 * a matching perf cgroup is scheduled in.
526 	 */
527 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
528 		event->cgrp_defer_enabled = 1;
529 }
530 
531 static inline void
532 perf_cgroup_mark_enabled(struct perf_event *event,
533 			 struct perf_event_context *ctx)
534 {
535 	struct perf_event *sub;
536 	u64 tstamp = perf_event_time(event);
537 
538 	if (!event->cgrp_defer_enabled)
539 		return;
540 
541 	event->cgrp_defer_enabled = 0;
542 
543 	event->tstamp_enabled = tstamp - event->total_time_enabled;
544 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
545 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
546 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
547 			sub->cgrp_defer_enabled = 0;
548 		}
549 	}
550 }
551 #else /* !CONFIG_CGROUP_PERF */
552 
553 static inline bool
554 perf_cgroup_match(struct perf_event *event)
555 {
556 	return true;
557 }
558 
559 static inline void perf_detach_cgroup(struct perf_event *event)
560 {}
561 
562 static inline int is_cgroup_event(struct perf_event *event)
563 {
564 	return 0;
565 }
566 
567 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
568 {
569 	return 0;
570 }
571 
572 static inline void update_cgrp_time_from_event(struct perf_event *event)
573 {
574 }
575 
576 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
577 {
578 }
579 
580 static inline void perf_cgroup_sched_out(struct task_struct *task,
581 					 struct task_struct *next)
582 {
583 }
584 
585 static inline void perf_cgroup_sched_in(struct task_struct *prev,
586 					struct task_struct *task)
587 {
588 }
589 
590 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
591 				      struct perf_event_attr *attr,
592 				      struct perf_event *group_leader)
593 {
594 	return -EINVAL;
595 }
596 
597 static inline void
598 perf_cgroup_set_timestamp(struct task_struct *task,
599 			  struct perf_event_context *ctx)
600 {
601 }
602 
603 void
604 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
605 {
606 }
607 
608 static inline void
609 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
610 {
611 }
612 
613 static inline u64 perf_cgroup_event_time(struct perf_event *event)
614 {
615 	return 0;
616 }
617 
618 static inline void
619 perf_cgroup_defer_enabled(struct perf_event *event)
620 {
621 }
622 
623 static inline void
624 perf_cgroup_mark_enabled(struct perf_event *event,
625 			 struct perf_event_context *ctx)
626 {
627 }
628 #endif
629 
630 void perf_pmu_disable(struct pmu *pmu)
631 {
632 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
633 	if (!(*count)++)
634 		pmu->pmu_disable(pmu);
635 }
636 
637 void perf_pmu_enable(struct pmu *pmu)
638 {
639 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
640 	if (!--(*count))
641 		pmu->pmu_enable(pmu);
642 }
643 
644 static DEFINE_PER_CPU(struct list_head, rotation_list);
645 
646 /*
647  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
648  * because they're strictly cpu affine and rotate_start is called with IRQs
649  * disabled, while rotate_context is called from IRQ context.
650  */
651 static void perf_pmu_rotate_start(struct pmu *pmu)
652 {
653 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
654 	struct list_head *head = &__get_cpu_var(rotation_list);
655 
656 	WARN_ON(!irqs_disabled());
657 
658 	if (list_empty(&cpuctx->rotation_list))
659 		list_add(&cpuctx->rotation_list, head);
660 }
661 
662 static void get_ctx(struct perf_event_context *ctx)
663 {
664 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
665 }
666 
667 static void put_ctx(struct perf_event_context *ctx)
668 {
669 	if (atomic_dec_and_test(&ctx->refcount)) {
670 		if (ctx->parent_ctx)
671 			put_ctx(ctx->parent_ctx);
672 		if (ctx->task)
673 			put_task_struct(ctx->task);
674 		kfree_rcu(ctx, rcu_head);
675 	}
676 }
677 
678 static void unclone_ctx(struct perf_event_context *ctx)
679 {
680 	if (ctx->parent_ctx) {
681 		put_ctx(ctx->parent_ctx);
682 		ctx->parent_ctx = NULL;
683 	}
684 }
685 
686 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
687 {
688 	/*
689 	 * only top level events have the pid namespace they were created in
690 	 */
691 	if (event->parent)
692 		event = event->parent;
693 
694 	return task_tgid_nr_ns(p, event->ns);
695 }
696 
697 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
698 {
699 	/*
700 	 * only top level events have the pid namespace they were created in
701 	 */
702 	if (event->parent)
703 		event = event->parent;
704 
705 	return task_pid_nr_ns(p, event->ns);
706 }
707 
708 /*
709  * If we inherit events we want to return the parent event id
710  * to userspace.
711  */
712 static u64 primary_event_id(struct perf_event *event)
713 {
714 	u64 id = event->id;
715 
716 	if (event->parent)
717 		id = event->parent->id;
718 
719 	return id;
720 }
721 
722 /*
723  * Get the perf_event_context for a task and lock it.
724  * This has to cope with with the fact that until it is locked,
725  * the context could get moved to another task.
726  */
727 static struct perf_event_context *
728 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
729 {
730 	struct perf_event_context *ctx;
731 
732 	rcu_read_lock();
733 retry:
734 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
735 	if (ctx) {
736 		/*
737 		 * If this context is a clone of another, it might
738 		 * get swapped for another underneath us by
739 		 * perf_event_task_sched_out, though the
740 		 * rcu_read_lock() protects us from any context
741 		 * getting freed.  Lock the context and check if it
742 		 * got swapped before we could get the lock, and retry
743 		 * if so.  If we locked the right context, then it
744 		 * can't get swapped on us any more.
745 		 */
746 		raw_spin_lock_irqsave(&ctx->lock, *flags);
747 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
748 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
749 			goto retry;
750 		}
751 
752 		if (!atomic_inc_not_zero(&ctx->refcount)) {
753 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
754 			ctx = NULL;
755 		}
756 	}
757 	rcu_read_unlock();
758 	return ctx;
759 }
760 
761 /*
762  * Get the context for a task and increment its pin_count so it
763  * can't get swapped to another task.  This also increments its
764  * reference count so that the context can't get freed.
765  */
766 static struct perf_event_context *
767 perf_pin_task_context(struct task_struct *task, int ctxn)
768 {
769 	struct perf_event_context *ctx;
770 	unsigned long flags;
771 
772 	ctx = perf_lock_task_context(task, ctxn, &flags);
773 	if (ctx) {
774 		++ctx->pin_count;
775 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
776 	}
777 	return ctx;
778 }
779 
780 static void perf_unpin_context(struct perf_event_context *ctx)
781 {
782 	unsigned long flags;
783 
784 	raw_spin_lock_irqsave(&ctx->lock, flags);
785 	--ctx->pin_count;
786 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
787 }
788 
789 /*
790  * Update the record of the current time in a context.
791  */
792 static void update_context_time(struct perf_event_context *ctx)
793 {
794 	u64 now = perf_clock();
795 
796 	ctx->time += now - ctx->timestamp;
797 	ctx->timestamp = now;
798 }
799 
800 static u64 perf_event_time(struct perf_event *event)
801 {
802 	struct perf_event_context *ctx = event->ctx;
803 
804 	if (is_cgroup_event(event))
805 		return perf_cgroup_event_time(event);
806 
807 	return ctx ? ctx->time : 0;
808 }
809 
810 /*
811  * Update the total_time_enabled and total_time_running fields for a event.
812  * The caller of this function needs to hold the ctx->lock.
813  */
814 static void update_event_times(struct perf_event *event)
815 {
816 	struct perf_event_context *ctx = event->ctx;
817 	u64 run_end;
818 
819 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
820 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
821 		return;
822 	/*
823 	 * in cgroup mode, time_enabled represents
824 	 * the time the event was enabled AND active
825 	 * tasks were in the monitored cgroup. This is
826 	 * independent of the activity of the context as
827 	 * there may be a mix of cgroup and non-cgroup events.
828 	 *
829 	 * That is why we treat cgroup events differently
830 	 * here.
831 	 */
832 	if (is_cgroup_event(event))
833 		run_end = perf_cgroup_event_time(event);
834 	else if (ctx->is_active)
835 		run_end = ctx->time;
836 	else
837 		run_end = event->tstamp_stopped;
838 
839 	event->total_time_enabled = run_end - event->tstamp_enabled;
840 
841 	if (event->state == PERF_EVENT_STATE_INACTIVE)
842 		run_end = event->tstamp_stopped;
843 	else
844 		run_end = perf_event_time(event);
845 
846 	event->total_time_running = run_end - event->tstamp_running;
847 
848 }
849 
850 /*
851  * Update total_time_enabled and total_time_running for all events in a group.
852  */
853 static void update_group_times(struct perf_event *leader)
854 {
855 	struct perf_event *event;
856 
857 	update_event_times(leader);
858 	list_for_each_entry(event, &leader->sibling_list, group_entry)
859 		update_event_times(event);
860 }
861 
862 static struct list_head *
863 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
864 {
865 	if (event->attr.pinned)
866 		return &ctx->pinned_groups;
867 	else
868 		return &ctx->flexible_groups;
869 }
870 
871 /*
872  * Add a event from the lists for its context.
873  * Must be called with ctx->mutex and ctx->lock held.
874  */
875 static void
876 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
877 {
878 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
879 	event->attach_state |= PERF_ATTACH_CONTEXT;
880 
881 	/*
882 	 * If we're a stand alone event or group leader, we go to the context
883 	 * list, group events are kept attached to the group so that
884 	 * perf_group_detach can, at all times, locate all siblings.
885 	 */
886 	if (event->group_leader == event) {
887 		struct list_head *list;
888 
889 		if (is_software_event(event))
890 			event->group_flags |= PERF_GROUP_SOFTWARE;
891 
892 		list = ctx_group_list(event, ctx);
893 		list_add_tail(&event->group_entry, list);
894 	}
895 
896 	if (is_cgroup_event(event))
897 		ctx->nr_cgroups++;
898 
899 	if (has_branch_stack(event))
900 		ctx->nr_branch_stack++;
901 
902 	list_add_rcu(&event->event_entry, &ctx->event_list);
903 	if (!ctx->nr_events)
904 		perf_pmu_rotate_start(ctx->pmu);
905 	ctx->nr_events++;
906 	if (event->attr.inherit_stat)
907 		ctx->nr_stat++;
908 }
909 
910 /*
911  * Called at perf_event creation and when events are attached/detached from a
912  * group.
913  */
914 static void perf_event__read_size(struct perf_event *event)
915 {
916 	int entry = sizeof(u64); /* value */
917 	int size = 0;
918 	int nr = 1;
919 
920 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
921 		size += sizeof(u64);
922 
923 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
924 		size += sizeof(u64);
925 
926 	if (event->attr.read_format & PERF_FORMAT_ID)
927 		entry += sizeof(u64);
928 
929 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
930 		nr += event->group_leader->nr_siblings;
931 		size += sizeof(u64);
932 	}
933 
934 	size += entry * nr;
935 	event->read_size = size;
936 }
937 
938 static void perf_event__header_size(struct perf_event *event)
939 {
940 	struct perf_sample_data *data;
941 	u64 sample_type = event->attr.sample_type;
942 	u16 size = 0;
943 
944 	perf_event__read_size(event);
945 
946 	if (sample_type & PERF_SAMPLE_IP)
947 		size += sizeof(data->ip);
948 
949 	if (sample_type & PERF_SAMPLE_ADDR)
950 		size += sizeof(data->addr);
951 
952 	if (sample_type & PERF_SAMPLE_PERIOD)
953 		size += sizeof(data->period);
954 
955 	if (sample_type & PERF_SAMPLE_READ)
956 		size += event->read_size;
957 
958 	event->header_size = size;
959 }
960 
961 static void perf_event__id_header_size(struct perf_event *event)
962 {
963 	struct perf_sample_data *data;
964 	u64 sample_type = event->attr.sample_type;
965 	u16 size = 0;
966 
967 	if (sample_type & PERF_SAMPLE_TID)
968 		size += sizeof(data->tid_entry);
969 
970 	if (sample_type & PERF_SAMPLE_TIME)
971 		size += sizeof(data->time);
972 
973 	if (sample_type & PERF_SAMPLE_ID)
974 		size += sizeof(data->id);
975 
976 	if (sample_type & PERF_SAMPLE_STREAM_ID)
977 		size += sizeof(data->stream_id);
978 
979 	if (sample_type & PERF_SAMPLE_CPU)
980 		size += sizeof(data->cpu_entry);
981 
982 	event->id_header_size = size;
983 }
984 
985 static void perf_group_attach(struct perf_event *event)
986 {
987 	struct perf_event *group_leader = event->group_leader, *pos;
988 
989 	/*
990 	 * We can have double attach due to group movement in perf_event_open.
991 	 */
992 	if (event->attach_state & PERF_ATTACH_GROUP)
993 		return;
994 
995 	event->attach_state |= PERF_ATTACH_GROUP;
996 
997 	if (group_leader == event)
998 		return;
999 
1000 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1001 			!is_software_event(event))
1002 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1003 
1004 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1005 	group_leader->nr_siblings++;
1006 
1007 	perf_event__header_size(group_leader);
1008 
1009 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1010 		perf_event__header_size(pos);
1011 }
1012 
1013 /*
1014  * Remove a event from the lists for its context.
1015  * Must be called with ctx->mutex and ctx->lock held.
1016  */
1017 static void
1018 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1019 {
1020 	struct perf_cpu_context *cpuctx;
1021 	/*
1022 	 * We can have double detach due to exit/hot-unplug + close.
1023 	 */
1024 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1025 		return;
1026 
1027 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1028 
1029 	if (is_cgroup_event(event)) {
1030 		ctx->nr_cgroups--;
1031 		cpuctx = __get_cpu_context(ctx);
1032 		/*
1033 		 * if there are no more cgroup events
1034 		 * then cler cgrp to avoid stale pointer
1035 		 * in update_cgrp_time_from_cpuctx()
1036 		 */
1037 		if (!ctx->nr_cgroups)
1038 			cpuctx->cgrp = NULL;
1039 	}
1040 
1041 	if (has_branch_stack(event))
1042 		ctx->nr_branch_stack--;
1043 
1044 	ctx->nr_events--;
1045 	if (event->attr.inherit_stat)
1046 		ctx->nr_stat--;
1047 
1048 	list_del_rcu(&event->event_entry);
1049 
1050 	if (event->group_leader == event)
1051 		list_del_init(&event->group_entry);
1052 
1053 	update_group_times(event);
1054 
1055 	/*
1056 	 * If event was in error state, then keep it
1057 	 * that way, otherwise bogus counts will be
1058 	 * returned on read(). The only way to get out
1059 	 * of error state is by explicit re-enabling
1060 	 * of the event
1061 	 */
1062 	if (event->state > PERF_EVENT_STATE_OFF)
1063 		event->state = PERF_EVENT_STATE_OFF;
1064 }
1065 
1066 static void perf_group_detach(struct perf_event *event)
1067 {
1068 	struct perf_event *sibling, *tmp;
1069 	struct list_head *list = NULL;
1070 
1071 	/*
1072 	 * We can have double detach due to exit/hot-unplug + close.
1073 	 */
1074 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1075 		return;
1076 
1077 	event->attach_state &= ~PERF_ATTACH_GROUP;
1078 
1079 	/*
1080 	 * If this is a sibling, remove it from its group.
1081 	 */
1082 	if (event->group_leader != event) {
1083 		list_del_init(&event->group_entry);
1084 		event->group_leader->nr_siblings--;
1085 		goto out;
1086 	}
1087 
1088 	if (!list_empty(&event->group_entry))
1089 		list = &event->group_entry;
1090 
1091 	/*
1092 	 * If this was a group event with sibling events then
1093 	 * upgrade the siblings to singleton events by adding them
1094 	 * to whatever list we are on.
1095 	 */
1096 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1097 		if (list)
1098 			list_move_tail(&sibling->group_entry, list);
1099 		sibling->group_leader = sibling;
1100 
1101 		/* Inherit group flags from the previous leader */
1102 		sibling->group_flags = event->group_flags;
1103 	}
1104 
1105 out:
1106 	perf_event__header_size(event->group_leader);
1107 
1108 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1109 		perf_event__header_size(tmp);
1110 }
1111 
1112 static inline int
1113 event_filter_match(struct perf_event *event)
1114 {
1115 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1116 	    && perf_cgroup_match(event);
1117 }
1118 
1119 static void
1120 event_sched_out(struct perf_event *event,
1121 		  struct perf_cpu_context *cpuctx,
1122 		  struct perf_event_context *ctx)
1123 {
1124 	u64 tstamp = perf_event_time(event);
1125 	u64 delta;
1126 	/*
1127 	 * An event which could not be activated because of
1128 	 * filter mismatch still needs to have its timings
1129 	 * maintained, otherwise bogus information is return
1130 	 * via read() for time_enabled, time_running:
1131 	 */
1132 	if (event->state == PERF_EVENT_STATE_INACTIVE
1133 	    && !event_filter_match(event)) {
1134 		delta = tstamp - event->tstamp_stopped;
1135 		event->tstamp_running += delta;
1136 		event->tstamp_stopped = tstamp;
1137 	}
1138 
1139 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1140 		return;
1141 
1142 	event->state = PERF_EVENT_STATE_INACTIVE;
1143 	if (event->pending_disable) {
1144 		event->pending_disable = 0;
1145 		event->state = PERF_EVENT_STATE_OFF;
1146 	}
1147 	event->tstamp_stopped = tstamp;
1148 	event->pmu->del(event, 0);
1149 	event->oncpu = -1;
1150 
1151 	if (!is_software_event(event))
1152 		cpuctx->active_oncpu--;
1153 	ctx->nr_active--;
1154 	if (event->attr.freq && event->attr.sample_freq)
1155 		ctx->nr_freq--;
1156 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1157 		cpuctx->exclusive = 0;
1158 }
1159 
1160 static void
1161 group_sched_out(struct perf_event *group_event,
1162 		struct perf_cpu_context *cpuctx,
1163 		struct perf_event_context *ctx)
1164 {
1165 	struct perf_event *event;
1166 	int state = group_event->state;
1167 
1168 	event_sched_out(group_event, cpuctx, ctx);
1169 
1170 	/*
1171 	 * Schedule out siblings (if any):
1172 	 */
1173 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1174 		event_sched_out(event, cpuctx, ctx);
1175 
1176 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1177 		cpuctx->exclusive = 0;
1178 }
1179 
1180 /*
1181  * Cross CPU call to remove a performance event
1182  *
1183  * We disable the event on the hardware level first. After that we
1184  * remove it from the context list.
1185  */
1186 static int __perf_remove_from_context(void *info)
1187 {
1188 	struct perf_event *event = info;
1189 	struct perf_event_context *ctx = event->ctx;
1190 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1191 
1192 	raw_spin_lock(&ctx->lock);
1193 	event_sched_out(event, cpuctx, ctx);
1194 	list_del_event(event, ctx);
1195 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1196 		ctx->is_active = 0;
1197 		cpuctx->task_ctx = NULL;
1198 	}
1199 	raw_spin_unlock(&ctx->lock);
1200 
1201 	return 0;
1202 }
1203 
1204 
1205 /*
1206  * Remove the event from a task's (or a CPU's) list of events.
1207  *
1208  * CPU events are removed with a smp call. For task events we only
1209  * call when the task is on a CPU.
1210  *
1211  * If event->ctx is a cloned context, callers must make sure that
1212  * every task struct that event->ctx->task could possibly point to
1213  * remains valid.  This is OK when called from perf_release since
1214  * that only calls us on the top-level context, which can't be a clone.
1215  * When called from perf_event_exit_task, it's OK because the
1216  * context has been detached from its task.
1217  */
1218 static void perf_remove_from_context(struct perf_event *event)
1219 {
1220 	struct perf_event_context *ctx = event->ctx;
1221 	struct task_struct *task = ctx->task;
1222 
1223 	lockdep_assert_held(&ctx->mutex);
1224 
1225 	if (!task) {
1226 		/*
1227 		 * Per cpu events are removed via an smp call and
1228 		 * the removal is always successful.
1229 		 */
1230 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1231 		return;
1232 	}
1233 
1234 retry:
1235 	if (!task_function_call(task, __perf_remove_from_context, event))
1236 		return;
1237 
1238 	raw_spin_lock_irq(&ctx->lock);
1239 	/*
1240 	 * If we failed to find a running task, but find the context active now
1241 	 * that we've acquired the ctx->lock, retry.
1242 	 */
1243 	if (ctx->is_active) {
1244 		raw_spin_unlock_irq(&ctx->lock);
1245 		goto retry;
1246 	}
1247 
1248 	/*
1249 	 * Since the task isn't running, its safe to remove the event, us
1250 	 * holding the ctx->lock ensures the task won't get scheduled in.
1251 	 */
1252 	list_del_event(event, ctx);
1253 	raw_spin_unlock_irq(&ctx->lock);
1254 }
1255 
1256 /*
1257  * Cross CPU call to disable a performance event
1258  */
1259 int __perf_event_disable(void *info)
1260 {
1261 	struct perf_event *event = info;
1262 	struct perf_event_context *ctx = event->ctx;
1263 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1264 
1265 	/*
1266 	 * If this is a per-task event, need to check whether this
1267 	 * event's task is the current task on this cpu.
1268 	 *
1269 	 * Can trigger due to concurrent perf_event_context_sched_out()
1270 	 * flipping contexts around.
1271 	 */
1272 	if (ctx->task && cpuctx->task_ctx != ctx)
1273 		return -EINVAL;
1274 
1275 	raw_spin_lock(&ctx->lock);
1276 
1277 	/*
1278 	 * If the event is on, turn it off.
1279 	 * If it is in error state, leave it in error state.
1280 	 */
1281 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1282 		update_context_time(ctx);
1283 		update_cgrp_time_from_event(event);
1284 		update_group_times(event);
1285 		if (event == event->group_leader)
1286 			group_sched_out(event, cpuctx, ctx);
1287 		else
1288 			event_sched_out(event, cpuctx, ctx);
1289 		event->state = PERF_EVENT_STATE_OFF;
1290 	}
1291 
1292 	raw_spin_unlock(&ctx->lock);
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Disable a event.
1299  *
1300  * If event->ctx is a cloned context, callers must make sure that
1301  * every task struct that event->ctx->task could possibly point to
1302  * remains valid.  This condition is satisifed when called through
1303  * perf_event_for_each_child or perf_event_for_each because they
1304  * hold the top-level event's child_mutex, so any descendant that
1305  * goes to exit will block in sync_child_event.
1306  * When called from perf_pending_event it's OK because event->ctx
1307  * is the current context on this CPU and preemption is disabled,
1308  * hence we can't get into perf_event_task_sched_out for this context.
1309  */
1310 void perf_event_disable(struct perf_event *event)
1311 {
1312 	struct perf_event_context *ctx = event->ctx;
1313 	struct task_struct *task = ctx->task;
1314 
1315 	if (!task) {
1316 		/*
1317 		 * Disable the event on the cpu that it's on
1318 		 */
1319 		cpu_function_call(event->cpu, __perf_event_disable, event);
1320 		return;
1321 	}
1322 
1323 retry:
1324 	if (!task_function_call(task, __perf_event_disable, event))
1325 		return;
1326 
1327 	raw_spin_lock_irq(&ctx->lock);
1328 	/*
1329 	 * If the event is still active, we need to retry the cross-call.
1330 	 */
1331 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1332 		raw_spin_unlock_irq(&ctx->lock);
1333 		/*
1334 		 * Reload the task pointer, it might have been changed by
1335 		 * a concurrent perf_event_context_sched_out().
1336 		 */
1337 		task = ctx->task;
1338 		goto retry;
1339 	}
1340 
1341 	/*
1342 	 * Since we have the lock this context can't be scheduled
1343 	 * in, so we can change the state safely.
1344 	 */
1345 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1346 		update_group_times(event);
1347 		event->state = PERF_EVENT_STATE_OFF;
1348 	}
1349 	raw_spin_unlock_irq(&ctx->lock);
1350 }
1351 EXPORT_SYMBOL_GPL(perf_event_disable);
1352 
1353 static void perf_set_shadow_time(struct perf_event *event,
1354 				 struct perf_event_context *ctx,
1355 				 u64 tstamp)
1356 {
1357 	/*
1358 	 * use the correct time source for the time snapshot
1359 	 *
1360 	 * We could get by without this by leveraging the
1361 	 * fact that to get to this function, the caller
1362 	 * has most likely already called update_context_time()
1363 	 * and update_cgrp_time_xx() and thus both timestamp
1364 	 * are identical (or very close). Given that tstamp is,
1365 	 * already adjusted for cgroup, we could say that:
1366 	 *    tstamp - ctx->timestamp
1367 	 * is equivalent to
1368 	 *    tstamp - cgrp->timestamp.
1369 	 *
1370 	 * Then, in perf_output_read(), the calculation would
1371 	 * work with no changes because:
1372 	 * - event is guaranteed scheduled in
1373 	 * - no scheduled out in between
1374 	 * - thus the timestamp would be the same
1375 	 *
1376 	 * But this is a bit hairy.
1377 	 *
1378 	 * So instead, we have an explicit cgroup call to remain
1379 	 * within the time time source all along. We believe it
1380 	 * is cleaner and simpler to understand.
1381 	 */
1382 	if (is_cgroup_event(event))
1383 		perf_cgroup_set_shadow_time(event, tstamp);
1384 	else
1385 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1386 }
1387 
1388 #define MAX_INTERRUPTS (~0ULL)
1389 
1390 static void perf_log_throttle(struct perf_event *event, int enable);
1391 
1392 static int
1393 event_sched_in(struct perf_event *event,
1394 		 struct perf_cpu_context *cpuctx,
1395 		 struct perf_event_context *ctx)
1396 {
1397 	u64 tstamp = perf_event_time(event);
1398 
1399 	if (event->state <= PERF_EVENT_STATE_OFF)
1400 		return 0;
1401 
1402 	event->state = PERF_EVENT_STATE_ACTIVE;
1403 	event->oncpu = smp_processor_id();
1404 
1405 	/*
1406 	 * Unthrottle events, since we scheduled we might have missed several
1407 	 * ticks already, also for a heavily scheduling task there is little
1408 	 * guarantee it'll get a tick in a timely manner.
1409 	 */
1410 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1411 		perf_log_throttle(event, 1);
1412 		event->hw.interrupts = 0;
1413 	}
1414 
1415 	/*
1416 	 * The new state must be visible before we turn it on in the hardware:
1417 	 */
1418 	smp_wmb();
1419 
1420 	if (event->pmu->add(event, PERF_EF_START)) {
1421 		event->state = PERF_EVENT_STATE_INACTIVE;
1422 		event->oncpu = -1;
1423 		return -EAGAIN;
1424 	}
1425 
1426 	event->tstamp_running += tstamp - event->tstamp_stopped;
1427 
1428 	perf_set_shadow_time(event, ctx, tstamp);
1429 
1430 	if (!is_software_event(event))
1431 		cpuctx->active_oncpu++;
1432 	ctx->nr_active++;
1433 	if (event->attr.freq && event->attr.sample_freq)
1434 		ctx->nr_freq++;
1435 
1436 	if (event->attr.exclusive)
1437 		cpuctx->exclusive = 1;
1438 
1439 	return 0;
1440 }
1441 
1442 static int
1443 group_sched_in(struct perf_event *group_event,
1444 	       struct perf_cpu_context *cpuctx,
1445 	       struct perf_event_context *ctx)
1446 {
1447 	struct perf_event *event, *partial_group = NULL;
1448 	struct pmu *pmu = group_event->pmu;
1449 	u64 now = ctx->time;
1450 	bool simulate = false;
1451 
1452 	if (group_event->state == PERF_EVENT_STATE_OFF)
1453 		return 0;
1454 
1455 	pmu->start_txn(pmu);
1456 
1457 	if (event_sched_in(group_event, cpuctx, ctx)) {
1458 		pmu->cancel_txn(pmu);
1459 		return -EAGAIN;
1460 	}
1461 
1462 	/*
1463 	 * Schedule in siblings as one group (if any):
1464 	 */
1465 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1466 		if (event_sched_in(event, cpuctx, ctx)) {
1467 			partial_group = event;
1468 			goto group_error;
1469 		}
1470 	}
1471 
1472 	if (!pmu->commit_txn(pmu))
1473 		return 0;
1474 
1475 group_error:
1476 	/*
1477 	 * Groups can be scheduled in as one unit only, so undo any
1478 	 * partial group before returning:
1479 	 * The events up to the failed event are scheduled out normally,
1480 	 * tstamp_stopped will be updated.
1481 	 *
1482 	 * The failed events and the remaining siblings need to have
1483 	 * their timings updated as if they had gone thru event_sched_in()
1484 	 * and event_sched_out(). This is required to get consistent timings
1485 	 * across the group. This also takes care of the case where the group
1486 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1487 	 * the time the event was actually stopped, such that time delta
1488 	 * calculation in update_event_times() is correct.
1489 	 */
1490 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1491 		if (event == partial_group)
1492 			simulate = true;
1493 
1494 		if (simulate) {
1495 			event->tstamp_running += now - event->tstamp_stopped;
1496 			event->tstamp_stopped = now;
1497 		} else {
1498 			event_sched_out(event, cpuctx, ctx);
1499 		}
1500 	}
1501 	event_sched_out(group_event, cpuctx, ctx);
1502 
1503 	pmu->cancel_txn(pmu);
1504 
1505 	return -EAGAIN;
1506 }
1507 
1508 /*
1509  * Work out whether we can put this event group on the CPU now.
1510  */
1511 static int group_can_go_on(struct perf_event *event,
1512 			   struct perf_cpu_context *cpuctx,
1513 			   int can_add_hw)
1514 {
1515 	/*
1516 	 * Groups consisting entirely of software events can always go on.
1517 	 */
1518 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1519 		return 1;
1520 	/*
1521 	 * If an exclusive group is already on, no other hardware
1522 	 * events can go on.
1523 	 */
1524 	if (cpuctx->exclusive)
1525 		return 0;
1526 	/*
1527 	 * If this group is exclusive and there are already
1528 	 * events on the CPU, it can't go on.
1529 	 */
1530 	if (event->attr.exclusive && cpuctx->active_oncpu)
1531 		return 0;
1532 	/*
1533 	 * Otherwise, try to add it if all previous groups were able
1534 	 * to go on.
1535 	 */
1536 	return can_add_hw;
1537 }
1538 
1539 static void add_event_to_ctx(struct perf_event *event,
1540 			       struct perf_event_context *ctx)
1541 {
1542 	u64 tstamp = perf_event_time(event);
1543 
1544 	list_add_event(event, ctx);
1545 	perf_group_attach(event);
1546 	event->tstamp_enabled = tstamp;
1547 	event->tstamp_running = tstamp;
1548 	event->tstamp_stopped = tstamp;
1549 }
1550 
1551 static void task_ctx_sched_out(struct perf_event_context *ctx);
1552 static void
1553 ctx_sched_in(struct perf_event_context *ctx,
1554 	     struct perf_cpu_context *cpuctx,
1555 	     enum event_type_t event_type,
1556 	     struct task_struct *task);
1557 
1558 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1559 				struct perf_event_context *ctx,
1560 				struct task_struct *task)
1561 {
1562 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1563 	if (ctx)
1564 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1565 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1566 	if (ctx)
1567 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1568 }
1569 
1570 /*
1571  * Cross CPU call to install and enable a performance event
1572  *
1573  * Must be called with ctx->mutex held
1574  */
1575 static int  __perf_install_in_context(void *info)
1576 {
1577 	struct perf_event *event = info;
1578 	struct perf_event_context *ctx = event->ctx;
1579 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1580 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1581 	struct task_struct *task = current;
1582 
1583 	perf_ctx_lock(cpuctx, task_ctx);
1584 	perf_pmu_disable(cpuctx->ctx.pmu);
1585 
1586 	/*
1587 	 * If there was an active task_ctx schedule it out.
1588 	 */
1589 	if (task_ctx)
1590 		task_ctx_sched_out(task_ctx);
1591 
1592 	/*
1593 	 * If the context we're installing events in is not the
1594 	 * active task_ctx, flip them.
1595 	 */
1596 	if (ctx->task && task_ctx != ctx) {
1597 		if (task_ctx)
1598 			raw_spin_unlock(&task_ctx->lock);
1599 		raw_spin_lock(&ctx->lock);
1600 		task_ctx = ctx;
1601 	}
1602 
1603 	if (task_ctx) {
1604 		cpuctx->task_ctx = task_ctx;
1605 		task = task_ctx->task;
1606 	}
1607 
1608 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1609 
1610 	update_context_time(ctx);
1611 	/*
1612 	 * update cgrp time only if current cgrp
1613 	 * matches event->cgrp. Must be done before
1614 	 * calling add_event_to_ctx()
1615 	 */
1616 	update_cgrp_time_from_event(event);
1617 
1618 	add_event_to_ctx(event, ctx);
1619 
1620 	/*
1621 	 * Schedule everything back in
1622 	 */
1623 	perf_event_sched_in(cpuctx, task_ctx, task);
1624 
1625 	perf_pmu_enable(cpuctx->ctx.pmu);
1626 	perf_ctx_unlock(cpuctx, task_ctx);
1627 
1628 	return 0;
1629 }
1630 
1631 /*
1632  * Attach a performance event to a context
1633  *
1634  * First we add the event to the list with the hardware enable bit
1635  * in event->hw_config cleared.
1636  *
1637  * If the event is attached to a task which is on a CPU we use a smp
1638  * call to enable it in the task context. The task might have been
1639  * scheduled away, but we check this in the smp call again.
1640  */
1641 static void
1642 perf_install_in_context(struct perf_event_context *ctx,
1643 			struct perf_event *event,
1644 			int cpu)
1645 {
1646 	struct task_struct *task = ctx->task;
1647 
1648 	lockdep_assert_held(&ctx->mutex);
1649 
1650 	event->ctx = ctx;
1651 	if (event->cpu != -1)
1652 		event->cpu = cpu;
1653 
1654 	if (!task) {
1655 		/*
1656 		 * Per cpu events are installed via an smp call and
1657 		 * the install is always successful.
1658 		 */
1659 		cpu_function_call(cpu, __perf_install_in_context, event);
1660 		return;
1661 	}
1662 
1663 retry:
1664 	if (!task_function_call(task, __perf_install_in_context, event))
1665 		return;
1666 
1667 	raw_spin_lock_irq(&ctx->lock);
1668 	/*
1669 	 * If we failed to find a running task, but find the context active now
1670 	 * that we've acquired the ctx->lock, retry.
1671 	 */
1672 	if (ctx->is_active) {
1673 		raw_spin_unlock_irq(&ctx->lock);
1674 		goto retry;
1675 	}
1676 
1677 	/*
1678 	 * Since the task isn't running, its safe to add the event, us holding
1679 	 * the ctx->lock ensures the task won't get scheduled in.
1680 	 */
1681 	add_event_to_ctx(event, ctx);
1682 	raw_spin_unlock_irq(&ctx->lock);
1683 }
1684 
1685 /*
1686  * Put a event into inactive state and update time fields.
1687  * Enabling the leader of a group effectively enables all
1688  * the group members that aren't explicitly disabled, so we
1689  * have to update their ->tstamp_enabled also.
1690  * Note: this works for group members as well as group leaders
1691  * since the non-leader members' sibling_lists will be empty.
1692  */
1693 static void __perf_event_mark_enabled(struct perf_event *event)
1694 {
1695 	struct perf_event *sub;
1696 	u64 tstamp = perf_event_time(event);
1697 
1698 	event->state = PERF_EVENT_STATE_INACTIVE;
1699 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1700 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1701 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1702 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1703 	}
1704 }
1705 
1706 /*
1707  * Cross CPU call to enable a performance event
1708  */
1709 static int __perf_event_enable(void *info)
1710 {
1711 	struct perf_event *event = info;
1712 	struct perf_event_context *ctx = event->ctx;
1713 	struct perf_event *leader = event->group_leader;
1714 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1715 	int err;
1716 
1717 	if (WARN_ON_ONCE(!ctx->is_active))
1718 		return -EINVAL;
1719 
1720 	raw_spin_lock(&ctx->lock);
1721 	update_context_time(ctx);
1722 
1723 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1724 		goto unlock;
1725 
1726 	/*
1727 	 * set current task's cgroup time reference point
1728 	 */
1729 	perf_cgroup_set_timestamp(current, ctx);
1730 
1731 	__perf_event_mark_enabled(event);
1732 
1733 	if (!event_filter_match(event)) {
1734 		if (is_cgroup_event(event))
1735 			perf_cgroup_defer_enabled(event);
1736 		goto unlock;
1737 	}
1738 
1739 	/*
1740 	 * If the event is in a group and isn't the group leader,
1741 	 * then don't put it on unless the group is on.
1742 	 */
1743 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1744 		goto unlock;
1745 
1746 	if (!group_can_go_on(event, cpuctx, 1)) {
1747 		err = -EEXIST;
1748 	} else {
1749 		if (event == leader)
1750 			err = group_sched_in(event, cpuctx, ctx);
1751 		else
1752 			err = event_sched_in(event, cpuctx, ctx);
1753 	}
1754 
1755 	if (err) {
1756 		/*
1757 		 * If this event can't go on and it's part of a
1758 		 * group, then the whole group has to come off.
1759 		 */
1760 		if (leader != event)
1761 			group_sched_out(leader, cpuctx, ctx);
1762 		if (leader->attr.pinned) {
1763 			update_group_times(leader);
1764 			leader->state = PERF_EVENT_STATE_ERROR;
1765 		}
1766 	}
1767 
1768 unlock:
1769 	raw_spin_unlock(&ctx->lock);
1770 
1771 	return 0;
1772 }
1773 
1774 /*
1775  * Enable a event.
1776  *
1777  * If event->ctx is a cloned context, callers must make sure that
1778  * every task struct that event->ctx->task could possibly point to
1779  * remains valid.  This condition is satisfied when called through
1780  * perf_event_for_each_child or perf_event_for_each as described
1781  * for perf_event_disable.
1782  */
1783 void perf_event_enable(struct perf_event *event)
1784 {
1785 	struct perf_event_context *ctx = event->ctx;
1786 	struct task_struct *task = ctx->task;
1787 
1788 	if (!task) {
1789 		/*
1790 		 * Enable the event on the cpu that it's on
1791 		 */
1792 		cpu_function_call(event->cpu, __perf_event_enable, event);
1793 		return;
1794 	}
1795 
1796 	raw_spin_lock_irq(&ctx->lock);
1797 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1798 		goto out;
1799 
1800 	/*
1801 	 * If the event is in error state, clear that first.
1802 	 * That way, if we see the event in error state below, we
1803 	 * know that it has gone back into error state, as distinct
1804 	 * from the task having been scheduled away before the
1805 	 * cross-call arrived.
1806 	 */
1807 	if (event->state == PERF_EVENT_STATE_ERROR)
1808 		event->state = PERF_EVENT_STATE_OFF;
1809 
1810 retry:
1811 	if (!ctx->is_active) {
1812 		__perf_event_mark_enabled(event);
1813 		goto out;
1814 	}
1815 
1816 	raw_spin_unlock_irq(&ctx->lock);
1817 
1818 	if (!task_function_call(task, __perf_event_enable, event))
1819 		return;
1820 
1821 	raw_spin_lock_irq(&ctx->lock);
1822 
1823 	/*
1824 	 * If the context is active and the event is still off,
1825 	 * we need to retry the cross-call.
1826 	 */
1827 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1828 		/*
1829 		 * task could have been flipped by a concurrent
1830 		 * perf_event_context_sched_out()
1831 		 */
1832 		task = ctx->task;
1833 		goto retry;
1834 	}
1835 
1836 out:
1837 	raw_spin_unlock_irq(&ctx->lock);
1838 }
1839 EXPORT_SYMBOL_GPL(perf_event_enable);
1840 
1841 int perf_event_refresh(struct perf_event *event, int refresh)
1842 {
1843 	/*
1844 	 * not supported on inherited events
1845 	 */
1846 	if (event->attr.inherit || !is_sampling_event(event))
1847 		return -EINVAL;
1848 
1849 	atomic_add(refresh, &event->event_limit);
1850 	perf_event_enable(event);
1851 
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(perf_event_refresh);
1855 
1856 static void ctx_sched_out(struct perf_event_context *ctx,
1857 			  struct perf_cpu_context *cpuctx,
1858 			  enum event_type_t event_type)
1859 {
1860 	struct perf_event *event;
1861 	int is_active = ctx->is_active;
1862 
1863 	ctx->is_active &= ~event_type;
1864 	if (likely(!ctx->nr_events))
1865 		return;
1866 
1867 	update_context_time(ctx);
1868 	update_cgrp_time_from_cpuctx(cpuctx);
1869 	if (!ctx->nr_active)
1870 		return;
1871 
1872 	perf_pmu_disable(ctx->pmu);
1873 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1874 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1875 			group_sched_out(event, cpuctx, ctx);
1876 	}
1877 
1878 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1879 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1880 			group_sched_out(event, cpuctx, ctx);
1881 	}
1882 	perf_pmu_enable(ctx->pmu);
1883 }
1884 
1885 /*
1886  * Test whether two contexts are equivalent, i.e. whether they
1887  * have both been cloned from the same version of the same context
1888  * and they both have the same number of enabled events.
1889  * If the number of enabled events is the same, then the set
1890  * of enabled events should be the same, because these are both
1891  * inherited contexts, therefore we can't access individual events
1892  * in them directly with an fd; we can only enable/disable all
1893  * events via prctl, or enable/disable all events in a family
1894  * via ioctl, which will have the same effect on both contexts.
1895  */
1896 static int context_equiv(struct perf_event_context *ctx1,
1897 			 struct perf_event_context *ctx2)
1898 {
1899 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1900 		&& ctx1->parent_gen == ctx2->parent_gen
1901 		&& !ctx1->pin_count && !ctx2->pin_count;
1902 }
1903 
1904 static void __perf_event_sync_stat(struct perf_event *event,
1905 				     struct perf_event *next_event)
1906 {
1907 	u64 value;
1908 
1909 	if (!event->attr.inherit_stat)
1910 		return;
1911 
1912 	/*
1913 	 * Update the event value, we cannot use perf_event_read()
1914 	 * because we're in the middle of a context switch and have IRQs
1915 	 * disabled, which upsets smp_call_function_single(), however
1916 	 * we know the event must be on the current CPU, therefore we
1917 	 * don't need to use it.
1918 	 */
1919 	switch (event->state) {
1920 	case PERF_EVENT_STATE_ACTIVE:
1921 		event->pmu->read(event);
1922 		/* fall-through */
1923 
1924 	case PERF_EVENT_STATE_INACTIVE:
1925 		update_event_times(event);
1926 		break;
1927 
1928 	default:
1929 		break;
1930 	}
1931 
1932 	/*
1933 	 * In order to keep per-task stats reliable we need to flip the event
1934 	 * values when we flip the contexts.
1935 	 */
1936 	value = local64_read(&next_event->count);
1937 	value = local64_xchg(&event->count, value);
1938 	local64_set(&next_event->count, value);
1939 
1940 	swap(event->total_time_enabled, next_event->total_time_enabled);
1941 	swap(event->total_time_running, next_event->total_time_running);
1942 
1943 	/*
1944 	 * Since we swizzled the values, update the user visible data too.
1945 	 */
1946 	perf_event_update_userpage(event);
1947 	perf_event_update_userpage(next_event);
1948 }
1949 
1950 #define list_next_entry(pos, member) \
1951 	list_entry(pos->member.next, typeof(*pos), member)
1952 
1953 static void perf_event_sync_stat(struct perf_event_context *ctx,
1954 				   struct perf_event_context *next_ctx)
1955 {
1956 	struct perf_event *event, *next_event;
1957 
1958 	if (!ctx->nr_stat)
1959 		return;
1960 
1961 	update_context_time(ctx);
1962 
1963 	event = list_first_entry(&ctx->event_list,
1964 				   struct perf_event, event_entry);
1965 
1966 	next_event = list_first_entry(&next_ctx->event_list,
1967 					struct perf_event, event_entry);
1968 
1969 	while (&event->event_entry != &ctx->event_list &&
1970 	       &next_event->event_entry != &next_ctx->event_list) {
1971 
1972 		__perf_event_sync_stat(event, next_event);
1973 
1974 		event = list_next_entry(event, event_entry);
1975 		next_event = list_next_entry(next_event, event_entry);
1976 	}
1977 }
1978 
1979 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1980 					 struct task_struct *next)
1981 {
1982 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1983 	struct perf_event_context *next_ctx;
1984 	struct perf_event_context *parent;
1985 	struct perf_cpu_context *cpuctx;
1986 	int do_switch = 1;
1987 
1988 	if (likely(!ctx))
1989 		return;
1990 
1991 	cpuctx = __get_cpu_context(ctx);
1992 	if (!cpuctx->task_ctx)
1993 		return;
1994 
1995 	rcu_read_lock();
1996 	parent = rcu_dereference(ctx->parent_ctx);
1997 	next_ctx = next->perf_event_ctxp[ctxn];
1998 	if (parent && next_ctx &&
1999 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
2000 		/*
2001 		 * Looks like the two contexts are clones, so we might be
2002 		 * able to optimize the context switch.  We lock both
2003 		 * contexts and check that they are clones under the
2004 		 * lock (including re-checking that neither has been
2005 		 * uncloned in the meantime).  It doesn't matter which
2006 		 * order we take the locks because no other cpu could
2007 		 * be trying to lock both of these tasks.
2008 		 */
2009 		raw_spin_lock(&ctx->lock);
2010 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2011 		if (context_equiv(ctx, next_ctx)) {
2012 			/*
2013 			 * XXX do we need a memory barrier of sorts
2014 			 * wrt to rcu_dereference() of perf_event_ctxp
2015 			 */
2016 			task->perf_event_ctxp[ctxn] = next_ctx;
2017 			next->perf_event_ctxp[ctxn] = ctx;
2018 			ctx->task = next;
2019 			next_ctx->task = task;
2020 			do_switch = 0;
2021 
2022 			perf_event_sync_stat(ctx, next_ctx);
2023 		}
2024 		raw_spin_unlock(&next_ctx->lock);
2025 		raw_spin_unlock(&ctx->lock);
2026 	}
2027 	rcu_read_unlock();
2028 
2029 	if (do_switch) {
2030 		raw_spin_lock(&ctx->lock);
2031 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2032 		cpuctx->task_ctx = NULL;
2033 		raw_spin_unlock(&ctx->lock);
2034 	}
2035 }
2036 
2037 #define for_each_task_context_nr(ctxn)					\
2038 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2039 
2040 /*
2041  * Called from scheduler to remove the events of the current task,
2042  * with interrupts disabled.
2043  *
2044  * We stop each event and update the event value in event->count.
2045  *
2046  * This does not protect us against NMI, but disable()
2047  * sets the disabled bit in the control field of event _before_
2048  * accessing the event control register. If a NMI hits, then it will
2049  * not restart the event.
2050  */
2051 void __perf_event_task_sched_out(struct task_struct *task,
2052 				 struct task_struct *next)
2053 {
2054 	int ctxn;
2055 
2056 	for_each_task_context_nr(ctxn)
2057 		perf_event_context_sched_out(task, ctxn, next);
2058 
2059 	/*
2060 	 * if cgroup events exist on this CPU, then we need
2061 	 * to check if we have to switch out PMU state.
2062 	 * cgroup event are system-wide mode only
2063 	 */
2064 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2065 		perf_cgroup_sched_out(task, next);
2066 }
2067 
2068 static void task_ctx_sched_out(struct perf_event_context *ctx)
2069 {
2070 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2071 
2072 	if (!cpuctx->task_ctx)
2073 		return;
2074 
2075 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2076 		return;
2077 
2078 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2079 	cpuctx->task_ctx = NULL;
2080 }
2081 
2082 /*
2083  * Called with IRQs disabled
2084  */
2085 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2086 			      enum event_type_t event_type)
2087 {
2088 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2089 }
2090 
2091 static void
2092 ctx_pinned_sched_in(struct perf_event_context *ctx,
2093 		    struct perf_cpu_context *cpuctx)
2094 {
2095 	struct perf_event *event;
2096 
2097 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2098 		if (event->state <= PERF_EVENT_STATE_OFF)
2099 			continue;
2100 		if (!event_filter_match(event))
2101 			continue;
2102 
2103 		/* may need to reset tstamp_enabled */
2104 		if (is_cgroup_event(event))
2105 			perf_cgroup_mark_enabled(event, ctx);
2106 
2107 		if (group_can_go_on(event, cpuctx, 1))
2108 			group_sched_in(event, cpuctx, ctx);
2109 
2110 		/*
2111 		 * If this pinned group hasn't been scheduled,
2112 		 * put it in error state.
2113 		 */
2114 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2115 			update_group_times(event);
2116 			event->state = PERF_EVENT_STATE_ERROR;
2117 		}
2118 	}
2119 }
2120 
2121 static void
2122 ctx_flexible_sched_in(struct perf_event_context *ctx,
2123 		      struct perf_cpu_context *cpuctx)
2124 {
2125 	struct perf_event *event;
2126 	int can_add_hw = 1;
2127 
2128 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2129 		/* Ignore events in OFF or ERROR state */
2130 		if (event->state <= PERF_EVENT_STATE_OFF)
2131 			continue;
2132 		/*
2133 		 * Listen to the 'cpu' scheduling filter constraint
2134 		 * of events:
2135 		 */
2136 		if (!event_filter_match(event))
2137 			continue;
2138 
2139 		/* may need to reset tstamp_enabled */
2140 		if (is_cgroup_event(event))
2141 			perf_cgroup_mark_enabled(event, ctx);
2142 
2143 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2144 			if (group_sched_in(event, cpuctx, ctx))
2145 				can_add_hw = 0;
2146 		}
2147 	}
2148 }
2149 
2150 static void
2151 ctx_sched_in(struct perf_event_context *ctx,
2152 	     struct perf_cpu_context *cpuctx,
2153 	     enum event_type_t event_type,
2154 	     struct task_struct *task)
2155 {
2156 	u64 now;
2157 	int is_active = ctx->is_active;
2158 
2159 	ctx->is_active |= event_type;
2160 	if (likely(!ctx->nr_events))
2161 		return;
2162 
2163 	now = perf_clock();
2164 	ctx->timestamp = now;
2165 	perf_cgroup_set_timestamp(task, ctx);
2166 	/*
2167 	 * First go through the list and put on any pinned groups
2168 	 * in order to give them the best chance of going on.
2169 	 */
2170 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2171 		ctx_pinned_sched_in(ctx, cpuctx);
2172 
2173 	/* Then walk through the lower prio flexible groups */
2174 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2175 		ctx_flexible_sched_in(ctx, cpuctx);
2176 }
2177 
2178 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2179 			     enum event_type_t event_type,
2180 			     struct task_struct *task)
2181 {
2182 	struct perf_event_context *ctx = &cpuctx->ctx;
2183 
2184 	ctx_sched_in(ctx, cpuctx, event_type, task);
2185 }
2186 
2187 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2188 					struct task_struct *task)
2189 {
2190 	struct perf_cpu_context *cpuctx;
2191 
2192 	cpuctx = __get_cpu_context(ctx);
2193 	if (cpuctx->task_ctx == ctx)
2194 		return;
2195 
2196 	perf_ctx_lock(cpuctx, ctx);
2197 	perf_pmu_disable(ctx->pmu);
2198 	/*
2199 	 * We want to keep the following priority order:
2200 	 * cpu pinned (that don't need to move), task pinned,
2201 	 * cpu flexible, task flexible.
2202 	 */
2203 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2204 
2205 	if (ctx->nr_events)
2206 		cpuctx->task_ctx = ctx;
2207 
2208 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2209 
2210 	perf_pmu_enable(ctx->pmu);
2211 	perf_ctx_unlock(cpuctx, ctx);
2212 
2213 	/*
2214 	 * Since these rotations are per-cpu, we need to ensure the
2215 	 * cpu-context we got scheduled on is actually rotating.
2216 	 */
2217 	perf_pmu_rotate_start(ctx->pmu);
2218 }
2219 
2220 /*
2221  * When sampling the branck stack in system-wide, it may be necessary
2222  * to flush the stack on context switch. This happens when the branch
2223  * stack does not tag its entries with the pid of the current task.
2224  * Otherwise it becomes impossible to associate a branch entry with a
2225  * task. This ambiguity is more likely to appear when the branch stack
2226  * supports priv level filtering and the user sets it to monitor only
2227  * at the user level (which could be a useful measurement in system-wide
2228  * mode). In that case, the risk is high of having a branch stack with
2229  * branch from multiple tasks. Flushing may mean dropping the existing
2230  * entries or stashing them somewhere in the PMU specific code layer.
2231  *
2232  * This function provides the context switch callback to the lower code
2233  * layer. It is invoked ONLY when there is at least one system-wide context
2234  * with at least one active event using taken branch sampling.
2235  */
2236 static void perf_branch_stack_sched_in(struct task_struct *prev,
2237 				       struct task_struct *task)
2238 {
2239 	struct perf_cpu_context *cpuctx;
2240 	struct pmu *pmu;
2241 	unsigned long flags;
2242 
2243 	/* no need to flush branch stack if not changing task */
2244 	if (prev == task)
2245 		return;
2246 
2247 	local_irq_save(flags);
2248 
2249 	rcu_read_lock();
2250 
2251 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2252 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2253 
2254 		/*
2255 		 * check if the context has at least one
2256 		 * event using PERF_SAMPLE_BRANCH_STACK
2257 		 */
2258 		if (cpuctx->ctx.nr_branch_stack > 0
2259 		    && pmu->flush_branch_stack) {
2260 
2261 			pmu = cpuctx->ctx.pmu;
2262 
2263 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2264 
2265 			perf_pmu_disable(pmu);
2266 
2267 			pmu->flush_branch_stack();
2268 
2269 			perf_pmu_enable(pmu);
2270 
2271 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2272 		}
2273 	}
2274 
2275 	rcu_read_unlock();
2276 
2277 	local_irq_restore(flags);
2278 }
2279 
2280 /*
2281  * Called from scheduler to add the events of the current task
2282  * with interrupts disabled.
2283  *
2284  * We restore the event value and then enable it.
2285  *
2286  * This does not protect us against NMI, but enable()
2287  * sets the enabled bit in the control field of event _before_
2288  * accessing the event control register. If a NMI hits, then it will
2289  * keep the event running.
2290  */
2291 void __perf_event_task_sched_in(struct task_struct *prev,
2292 				struct task_struct *task)
2293 {
2294 	struct perf_event_context *ctx;
2295 	int ctxn;
2296 
2297 	for_each_task_context_nr(ctxn) {
2298 		ctx = task->perf_event_ctxp[ctxn];
2299 		if (likely(!ctx))
2300 			continue;
2301 
2302 		perf_event_context_sched_in(ctx, task);
2303 	}
2304 	/*
2305 	 * if cgroup events exist on this CPU, then we need
2306 	 * to check if we have to switch in PMU state.
2307 	 * cgroup event are system-wide mode only
2308 	 */
2309 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2310 		perf_cgroup_sched_in(prev, task);
2311 
2312 	/* check for system-wide branch_stack events */
2313 	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2314 		perf_branch_stack_sched_in(prev, task);
2315 }
2316 
2317 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2318 {
2319 	u64 frequency = event->attr.sample_freq;
2320 	u64 sec = NSEC_PER_SEC;
2321 	u64 divisor, dividend;
2322 
2323 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2324 
2325 	count_fls = fls64(count);
2326 	nsec_fls = fls64(nsec);
2327 	frequency_fls = fls64(frequency);
2328 	sec_fls = 30;
2329 
2330 	/*
2331 	 * We got @count in @nsec, with a target of sample_freq HZ
2332 	 * the target period becomes:
2333 	 *
2334 	 *             @count * 10^9
2335 	 * period = -------------------
2336 	 *          @nsec * sample_freq
2337 	 *
2338 	 */
2339 
2340 	/*
2341 	 * Reduce accuracy by one bit such that @a and @b converge
2342 	 * to a similar magnitude.
2343 	 */
2344 #define REDUCE_FLS(a, b)		\
2345 do {					\
2346 	if (a##_fls > b##_fls) {	\
2347 		a >>= 1;		\
2348 		a##_fls--;		\
2349 	} else {			\
2350 		b >>= 1;		\
2351 		b##_fls--;		\
2352 	}				\
2353 } while (0)
2354 
2355 	/*
2356 	 * Reduce accuracy until either term fits in a u64, then proceed with
2357 	 * the other, so that finally we can do a u64/u64 division.
2358 	 */
2359 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2360 		REDUCE_FLS(nsec, frequency);
2361 		REDUCE_FLS(sec, count);
2362 	}
2363 
2364 	if (count_fls + sec_fls > 64) {
2365 		divisor = nsec * frequency;
2366 
2367 		while (count_fls + sec_fls > 64) {
2368 			REDUCE_FLS(count, sec);
2369 			divisor >>= 1;
2370 		}
2371 
2372 		dividend = count * sec;
2373 	} else {
2374 		dividend = count * sec;
2375 
2376 		while (nsec_fls + frequency_fls > 64) {
2377 			REDUCE_FLS(nsec, frequency);
2378 			dividend >>= 1;
2379 		}
2380 
2381 		divisor = nsec * frequency;
2382 	}
2383 
2384 	if (!divisor)
2385 		return dividend;
2386 
2387 	return div64_u64(dividend, divisor);
2388 }
2389 
2390 static DEFINE_PER_CPU(int, perf_throttled_count);
2391 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2392 
2393 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2394 {
2395 	struct hw_perf_event *hwc = &event->hw;
2396 	s64 period, sample_period;
2397 	s64 delta;
2398 
2399 	period = perf_calculate_period(event, nsec, count);
2400 
2401 	delta = (s64)(period - hwc->sample_period);
2402 	delta = (delta + 7) / 8; /* low pass filter */
2403 
2404 	sample_period = hwc->sample_period + delta;
2405 
2406 	if (!sample_period)
2407 		sample_period = 1;
2408 
2409 	hwc->sample_period = sample_period;
2410 
2411 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2412 		if (disable)
2413 			event->pmu->stop(event, PERF_EF_UPDATE);
2414 
2415 		local64_set(&hwc->period_left, 0);
2416 
2417 		if (disable)
2418 			event->pmu->start(event, PERF_EF_RELOAD);
2419 	}
2420 }
2421 
2422 /*
2423  * combine freq adjustment with unthrottling to avoid two passes over the
2424  * events. At the same time, make sure, having freq events does not change
2425  * the rate of unthrottling as that would introduce bias.
2426  */
2427 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2428 					   int needs_unthr)
2429 {
2430 	struct perf_event *event;
2431 	struct hw_perf_event *hwc;
2432 	u64 now, period = TICK_NSEC;
2433 	s64 delta;
2434 
2435 	/*
2436 	 * only need to iterate over all events iff:
2437 	 * - context have events in frequency mode (needs freq adjust)
2438 	 * - there are events to unthrottle on this cpu
2439 	 */
2440 	if (!(ctx->nr_freq || needs_unthr))
2441 		return;
2442 
2443 	raw_spin_lock(&ctx->lock);
2444 	perf_pmu_disable(ctx->pmu);
2445 
2446 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2447 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2448 			continue;
2449 
2450 		if (!event_filter_match(event))
2451 			continue;
2452 
2453 		hwc = &event->hw;
2454 
2455 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2456 			hwc->interrupts = 0;
2457 			perf_log_throttle(event, 1);
2458 			event->pmu->start(event, 0);
2459 		}
2460 
2461 		if (!event->attr.freq || !event->attr.sample_freq)
2462 			continue;
2463 
2464 		/*
2465 		 * stop the event and update event->count
2466 		 */
2467 		event->pmu->stop(event, PERF_EF_UPDATE);
2468 
2469 		now = local64_read(&event->count);
2470 		delta = now - hwc->freq_count_stamp;
2471 		hwc->freq_count_stamp = now;
2472 
2473 		/*
2474 		 * restart the event
2475 		 * reload only if value has changed
2476 		 * we have stopped the event so tell that
2477 		 * to perf_adjust_period() to avoid stopping it
2478 		 * twice.
2479 		 */
2480 		if (delta > 0)
2481 			perf_adjust_period(event, period, delta, false);
2482 
2483 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2484 	}
2485 
2486 	perf_pmu_enable(ctx->pmu);
2487 	raw_spin_unlock(&ctx->lock);
2488 }
2489 
2490 /*
2491  * Round-robin a context's events:
2492  */
2493 static void rotate_ctx(struct perf_event_context *ctx)
2494 {
2495 	/*
2496 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2497 	 * disabled by the inheritance code.
2498 	 */
2499 	if (!ctx->rotate_disable)
2500 		list_rotate_left(&ctx->flexible_groups);
2501 }
2502 
2503 /*
2504  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2505  * because they're strictly cpu affine and rotate_start is called with IRQs
2506  * disabled, while rotate_context is called from IRQ context.
2507  */
2508 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2509 {
2510 	struct perf_event_context *ctx = NULL;
2511 	int rotate = 0, remove = 1;
2512 
2513 	if (cpuctx->ctx.nr_events) {
2514 		remove = 0;
2515 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2516 			rotate = 1;
2517 	}
2518 
2519 	ctx = cpuctx->task_ctx;
2520 	if (ctx && ctx->nr_events) {
2521 		remove = 0;
2522 		if (ctx->nr_events != ctx->nr_active)
2523 			rotate = 1;
2524 	}
2525 
2526 	if (!rotate)
2527 		goto done;
2528 
2529 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2530 	perf_pmu_disable(cpuctx->ctx.pmu);
2531 
2532 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2533 	if (ctx)
2534 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2535 
2536 	rotate_ctx(&cpuctx->ctx);
2537 	if (ctx)
2538 		rotate_ctx(ctx);
2539 
2540 	perf_event_sched_in(cpuctx, ctx, current);
2541 
2542 	perf_pmu_enable(cpuctx->ctx.pmu);
2543 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2544 done:
2545 	if (remove)
2546 		list_del_init(&cpuctx->rotation_list);
2547 }
2548 
2549 void perf_event_task_tick(void)
2550 {
2551 	struct list_head *head = &__get_cpu_var(rotation_list);
2552 	struct perf_cpu_context *cpuctx, *tmp;
2553 	struct perf_event_context *ctx;
2554 	int throttled;
2555 
2556 	WARN_ON(!irqs_disabled());
2557 
2558 	__this_cpu_inc(perf_throttled_seq);
2559 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2560 
2561 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2562 		ctx = &cpuctx->ctx;
2563 		perf_adjust_freq_unthr_context(ctx, throttled);
2564 
2565 		ctx = cpuctx->task_ctx;
2566 		if (ctx)
2567 			perf_adjust_freq_unthr_context(ctx, throttled);
2568 
2569 		if (cpuctx->jiffies_interval == 1 ||
2570 				!(jiffies % cpuctx->jiffies_interval))
2571 			perf_rotate_context(cpuctx);
2572 	}
2573 }
2574 
2575 static int event_enable_on_exec(struct perf_event *event,
2576 				struct perf_event_context *ctx)
2577 {
2578 	if (!event->attr.enable_on_exec)
2579 		return 0;
2580 
2581 	event->attr.enable_on_exec = 0;
2582 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2583 		return 0;
2584 
2585 	__perf_event_mark_enabled(event);
2586 
2587 	return 1;
2588 }
2589 
2590 /*
2591  * Enable all of a task's events that have been marked enable-on-exec.
2592  * This expects task == current.
2593  */
2594 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2595 {
2596 	struct perf_event *event;
2597 	unsigned long flags;
2598 	int enabled = 0;
2599 	int ret;
2600 
2601 	local_irq_save(flags);
2602 	if (!ctx || !ctx->nr_events)
2603 		goto out;
2604 
2605 	/*
2606 	 * We must ctxsw out cgroup events to avoid conflict
2607 	 * when invoking perf_task_event_sched_in() later on
2608 	 * in this function. Otherwise we end up trying to
2609 	 * ctxswin cgroup events which are already scheduled
2610 	 * in.
2611 	 */
2612 	perf_cgroup_sched_out(current, NULL);
2613 
2614 	raw_spin_lock(&ctx->lock);
2615 	task_ctx_sched_out(ctx);
2616 
2617 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2618 		ret = event_enable_on_exec(event, ctx);
2619 		if (ret)
2620 			enabled = 1;
2621 	}
2622 
2623 	/*
2624 	 * Unclone this context if we enabled any event.
2625 	 */
2626 	if (enabled)
2627 		unclone_ctx(ctx);
2628 
2629 	raw_spin_unlock(&ctx->lock);
2630 
2631 	/*
2632 	 * Also calls ctxswin for cgroup events, if any:
2633 	 */
2634 	perf_event_context_sched_in(ctx, ctx->task);
2635 out:
2636 	local_irq_restore(flags);
2637 }
2638 
2639 /*
2640  * Cross CPU call to read the hardware event
2641  */
2642 static void __perf_event_read(void *info)
2643 {
2644 	struct perf_event *event = info;
2645 	struct perf_event_context *ctx = event->ctx;
2646 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2647 
2648 	/*
2649 	 * If this is a task context, we need to check whether it is
2650 	 * the current task context of this cpu.  If not it has been
2651 	 * scheduled out before the smp call arrived.  In that case
2652 	 * event->count would have been updated to a recent sample
2653 	 * when the event was scheduled out.
2654 	 */
2655 	if (ctx->task && cpuctx->task_ctx != ctx)
2656 		return;
2657 
2658 	raw_spin_lock(&ctx->lock);
2659 	if (ctx->is_active) {
2660 		update_context_time(ctx);
2661 		update_cgrp_time_from_event(event);
2662 	}
2663 	update_event_times(event);
2664 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2665 		event->pmu->read(event);
2666 	raw_spin_unlock(&ctx->lock);
2667 }
2668 
2669 static inline u64 perf_event_count(struct perf_event *event)
2670 {
2671 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2672 }
2673 
2674 static u64 perf_event_read(struct perf_event *event)
2675 {
2676 	/*
2677 	 * If event is enabled and currently active on a CPU, update the
2678 	 * value in the event structure:
2679 	 */
2680 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2681 		smp_call_function_single(event->oncpu,
2682 					 __perf_event_read, event, 1);
2683 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2684 		struct perf_event_context *ctx = event->ctx;
2685 		unsigned long flags;
2686 
2687 		raw_spin_lock_irqsave(&ctx->lock, flags);
2688 		/*
2689 		 * may read while context is not active
2690 		 * (e.g., thread is blocked), in that case
2691 		 * we cannot update context time
2692 		 */
2693 		if (ctx->is_active) {
2694 			update_context_time(ctx);
2695 			update_cgrp_time_from_event(event);
2696 		}
2697 		update_event_times(event);
2698 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2699 	}
2700 
2701 	return perf_event_count(event);
2702 }
2703 
2704 /*
2705  * Initialize the perf_event context in a task_struct:
2706  */
2707 static void __perf_event_init_context(struct perf_event_context *ctx)
2708 {
2709 	raw_spin_lock_init(&ctx->lock);
2710 	mutex_init(&ctx->mutex);
2711 	INIT_LIST_HEAD(&ctx->pinned_groups);
2712 	INIT_LIST_HEAD(&ctx->flexible_groups);
2713 	INIT_LIST_HEAD(&ctx->event_list);
2714 	atomic_set(&ctx->refcount, 1);
2715 }
2716 
2717 static struct perf_event_context *
2718 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2719 {
2720 	struct perf_event_context *ctx;
2721 
2722 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2723 	if (!ctx)
2724 		return NULL;
2725 
2726 	__perf_event_init_context(ctx);
2727 	if (task) {
2728 		ctx->task = task;
2729 		get_task_struct(task);
2730 	}
2731 	ctx->pmu = pmu;
2732 
2733 	return ctx;
2734 }
2735 
2736 static struct task_struct *
2737 find_lively_task_by_vpid(pid_t vpid)
2738 {
2739 	struct task_struct *task;
2740 	int err;
2741 
2742 	rcu_read_lock();
2743 	if (!vpid)
2744 		task = current;
2745 	else
2746 		task = find_task_by_vpid(vpid);
2747 	if (task)
2748 		get_task_struct(task);
2749 	rcu_read_unlock();
2750 
2751 	if (!task)
2752 		return ERR_PTR(-ESRCH);
2753 
2754 	/* Reuse ptrace permission checks for now. */
2755 	err = -EACCES;
2756 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2757 		goto errout;
2758 
2759 	return task;
2760 errout:
2761 	put_task_struct(task);
2762 	return ERR_PTR(err);
2763 
2764 }
2765 
2766 /*
2767  * Returns a matching context with refcount and pincount.
2768  */
2769 static struct perf_event_context *
2770 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2771 {
2772 	struct perf_event_context *ctx;
2773 	struct perf_cpu_context *cpuctx;
2774 	unsigned long flags;
2775 	int ctxn, err;
2776 
2777 	if (!task) {
2778 		/* Must be root to operate on a CPU event: */
2779 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2780 			return ERR_PTR(-EACCES);
2781 
2782 		/*
2783 		 * We could be clever and allow to attach a event to an
2784 		 * offline CPU and activate it when the CPU comes up, but
2785 		 * that's for later.
2786 		 */
2787 		if (!cpu_online(cpu))
2788 			return ERR_PTR(-ENODEV);
2789 
2790 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2791 		ctx = &cpuctx->ctx;
2792 		get_ctx(ctx);
2793 		++ctx->pin_count;
2794 
2795 		return ctx;
2796 	}
2797 
2798 	err = -EINVAL;
2799 	ctxn = pmu->task_ctx_nr;
2800 	if (ctxn < 0)
2801 		goto errout;
2802 
2803 retry:
2804 	ctx = perf_lock_task_context(task, ctxn, &flags);
2805 	if (ctx) {
2806 		unclone_ctx(ctx);
2807 		++ctx->pin_count;
2808 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2809 	} else {
2810 		ctx = alloc_perf_context(pmu, task);
2811 		err = -ENOMEM;
2812 		if (!ctx)
2813 			goto errout;
2814 
2815 		err = 0;
2816 		mutex_lock(&task->perf_event_mutex);
2817 		/*
2818 		 * If it has already passed perf_event_exit_task().
2819 		 * we must see PF_EXITING, it takes this mutex too.
2820 		 */
2821 		if (task->flags & PF_EXITING)
2822 			err = -ESRCH;
2823 		else if (task->perf_event_ctxp[ctxn])
2824 			err = -EAGAIN;
2825 		else {
2826 			get_ctx(ctx);
2827 			++ctx->pin_count;
2828 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2829 		}
2830 		mutex_unlock(&task->perf_event_mutex);
2831 
2832 		if (unlikely(err)) {
2833 			put_ctx(ctx);
2834 
2835 			if (err == -EAGAIN)
2836 				goto retry;
2837 			goto errout;
2838 		}
2839 	}
2840 
2841 	return ctx;
2842 
2843 errout:
2844 	return ERR_PTR(err);
2845 }
2846 
2847 static void perf_event_free_filter(struct perf_event *event);
2848 
2849 static void free_event_rcu(struct rcu_head *head)
2850 {
2851 	struct perf_event *event;
2852 
2853 	event = container_of(head, struct perf_event, rcu_head);
2854 	if (event->ns)
2855 		put_pid_ns(event->ns);
2856 	perf_event_free_filter(event);
2857 	kfree(event);
2858 }
2859 
2860 static void ring_buffer_put(struct ring_buffer *rb);
2861 
2862 static void free_event(struct perf_event *event)
2863 {
2864 	irq_work_sync(&event->pending);
2865 
2866 	if (!event->parent) {
2867 		if (event->attach_state & PERF_ATTACH_TASK)
2868 			static_key_slow_dec_deferred(&perf_sched_events);
2869 		if (event->attr.mmap || event->attr.mmap_data)
2870 			atomic_dec(&nr_mmap_events);
2871 		if (event->attr.comm)
2872 			atomic_dec(&nr_comm_events);
2873 		if (event->attr.task)
2874 			atomic_dec(&nr_task_events);
2875 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2876 			put_callchain_buffers();
2877 		if (is_cgroup_event(event)) {
2878 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2879 			static_key_slow_dec_deferred(&perf_sched_events);
2880 		}
2881 
2882 		if (has_branch_stack(event)) {
2883 			static_key_slow_dec_deferred(&perf_sched_events);
2884 			/* is system-wide event */
2885 			if (!(event->attach_state & PERF_ATTACH_TASK))
2886 				atomic_dec(&per_cpu(perf_branch_stack_events,
2887 						    event->cpu));
2888 		}
2889 	}
2890 
2891 	if (event->rb) {
2892 		ring_buffer_put(event->rb);
2893 		event->rb = NULL;
2894 	}
2895 
2896 	if (is_cgroup_event(event))
2897 		perf_detach_cgroup(event);
2898 
2899 	if (event->destroy)
2900 		event->destroy(event);
2901 
2902 	if (event->ctx)
2903 		put_ctx(event->ctx);
2904 
2905 	call_rcu(&event->rcu_head, free_event_rcu);
2906 }
2907 
2908 int perf_event_release_kernel(struct perf_event *event)
2909 {
2910 	struct perf_event_context *ctx = event->ctx;
2911 
2912 	WARN_ON_ONCE(ctx->parent_ctx);
2913 	/*
2914 	 * There are two ways this annotation is useful:
2915 	 *
2916 	 *  1) there is a lock recursion from perf_event_exit_task
2917 	 *     see the comment there.
2918 	 *
2919 	 *  2) there is a lock-inversion with mmap_sem through
2920 	 *     perf_event_read_group(), which takes faults while
2921 	 *     holding ctx->mutex, however this is called after
2922 	 *     the last filedesc died, so there is no possibility
2923 	 *     to trigger the AB-BA case.
2924 	 */
2925 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2926 	raw_spin_lock_irq(&ctx->lock);
2927 	perf_group_detach(event);
2928 	raw_spin_unlock_irq(&ctx->lock);
2929 	perf_remove_from_context(event);
2930 	mutex_unlock(&ctx->mutex);
2931 
2932 	free_event(event);
2933 
2934 	return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2937 
2938 /*
2939  * Called when the last reference to the file is gone.
2940  */
2941 static void put_event(struct perf_event *event)
2942 {
2943 	struct task_struct *owner;
2944 
2945 	if (!atomic_long_dec_and_test(&event->refcount))
2946 		return;
2947 
2948 	rcu_read_lock();
2949 	owner = ACCESS_ONCE(event->owner);
2950 	/*
2951 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2952 	 * !owner it means the list deletion is complete and we can indeed
2953 	 * free this event, otherwise we need to serialize on
2954 	 * owner->perf_event_mutex.
2955 	 */
2956 	smp_read_barrier_depends();
2957 	if (owner) {
2958 		/*
2959 		 * Since delayed_put_task_struct() also drops the last
2960 		 * task reference we can safely take a new reference
2961 		 * while holding the rcu_read_lock().
2962 		 */
2963 		get_task_struct(owner);
2964 	}
2965 	rcu_read_unlock();
2966 
2967 	if (owner) {
2968 		mutex_lock(&owner->perf_event_mutex);
2969 		/*
2970 		 * We have to re-check the event->owner field, if it is cleared
2971 		 * we raced with perf_event_exit_task(), acquiring the mutex
2972 		 * ensured they're done, and we can proceed with freeing the
2973 		 * event.
2974 		 */
2975 		if (event->owner)
2976 			list_del_init(&event->owner_entry);
2977 		mutex_unlock(&owner->perf_event_mutex);
2978 		put_task_struct(owner);
2979 	}
2980 
2981 	perf_event_release_kernel(event);
2982 }
2983 
2984 static int perf_release(struct inode *inode, struct file *file)
2985 {
2986 	put_event(file->private_data);
2987 	return 0;
2988 }
2989 
2990 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2991 {
2992 	struct perf_event *child;
2993 	u64 total = 0;
2994 
2995 	*enabled = 0;
2996 	*running = 0;
2997 
2998 	mutex_lock(&event->child_mutex);
2999 	total += perf_event_read(event);
3000 	*enabled += event->total_time_enabled +
3001 			atomic64_read(&event->child_total_time_enabled);
3002 	*running += event->total_time_running +
3003 			atomic64_read(&event->child_total_time_running);
3004 
3005 	list_for_each_entry(child, &event->child_list, child_list) {
3006 		total += perf_event_read(child);
3007 		*enabled += child->total_time_enabled;
3008 		*running += child->total_time_running;
3009 	}
3010 	mutex_unlock(&event->child_mutex);
3011 
3012 	return total;
3013 }
3014 EXPORT_SYMBOL_GPL(perf_event_read_value);
3015 
3016 static int perf_event_read_group(struct perf_event *event,
3017 				   u64 read_format, char __user *buf)
3018 {
3019 	struct perf_event *leader = event->group_leader, *sub;
3020 	int n = 0, size = 0, ret = -EFAULT;
3021 	struct perf_event_context *ctx = leader->ctx;
3022 	u64 values[5];
3023 	u64 count, enabled, running;
3024 
3025 	mutex_lock(&ctx->mutex);
3026 	count = perf_event_read_value(leader, &enabled, &running);
3027 
3028 	values[n++] = 1 + leader->nr_siblings;
3029 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3030 		values[n++] = enabled;
3031 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3032 		values[n++] = running;
3033 	values[n++] = count;
3034 	if (read_format & PERF_FORMAT_ID)
3035 		values[n++] = primary_event_id(leader);
3036 
3037 	size = n * sizeof(u64);
3038 
3039 	if (copy_to_user(buf, values, size))
3040 		goto unlock;
3041 
3042 	ret = size;
3043 
3044 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3045 		n = 0;
3046 
3047 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3048 		if (read_format & PERF_FORMAT_ID)
3049 			values[n++] = primary_event_id(sub);
3050 
3051 		size = n * sizeof(u64);
3052 
3053 		if (copy_to_user(buf + ret, values, size)) {
3054 			ret = -EFAULT;
3055 			goto unlock;
3056 		}
3057 
3058 		ret += size;
3059 	}
3060 unlock:
3061 	mutex_unlock(&ctx->mutex);
3062 
3063 	return ret;
3064 }
3065 
3066 static int perf_event_read_one(struct perf_event *event,
3067 				 u64 read_format, char __user *buf)
3068 {
3069 	u64 enabled, running;
3070 	u64 values[4];
3071 	int n = 0;
3072 
3073 	values[n++] = perf_event_read_value(event, &enabled, &running);
3074 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3075 		values[n++] = enabled;
3076 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3077 		values[n++] = running;
3078 	if (read_format & PERF_FORMAT_ID)
3079 		values[n++] = primary_event_id(event);
3080 
3081 	if (copy_to_user(buf, values, n * sizeof(u64)))
3082 		return -EFAULT;
3083 
3084 	return n * sizeof(u64);
3085 }
3086 
3087 /*
3088  * Read the performance event - simple non blocking version for now
3089  */
3090 static ssize_t
3091 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3092 {
3093 	u64 read_format = event->attr.read_format;
3094 	int ret;
3095 
3096 	/*
3097 	 * Return end-of-file for a read on a event that is in
3098 	 * error state (i.e. because it was pinned but it couldn't be
3099 	 * scheduled on to the CPU at some point).
3100 	 */
3101 	if (event->state == PERF_EVENT_STATE_ERROR)
3102 		return 0;
3103 
3104 	if (count < event->read_size)
3105 		return -ENOSPC;
3106 
3107 	WARN_ON_ONCE(event->ctx->parent_ctx);
3108 	if (read_format & PERF_FORMAT_GROUP)
3109 		ret = perf_event_read_group(event, read_format, buf);
3110 	else
3111 		ret = perf_event_read_one(event, read_format, buf);
3112 
3113 	return ret;
3114 }
3115 
3116 static ssize_t
3117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3118 {
3119 	struct perf_event *event = file->private_data;
3120 
3121 	return perf_read_hw(event, buf, count);
3122 }
3123 
3124 static unsigned int perf_poll(struct file *file, poll_table *wait)
3125 {
3126 	struct perf_event *event = file->private_data;
3127 	struct ring_buffer *rb;
3128 	unsigned int events = POLL_HUP;
3129 
3130 	/*
3131 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3132 	 * grabs the rb reference but perf_event_set_output() overrides it.
3133 	 * Here is the timeline for two threads T1, T2:
3134 	 * t0: T1, rb = rcu_dereference(event->rb)
3135 	 * t1: T2, old_rb = event->rb
3136 	 * t2: T2, event->rb = new rb
3137 	 * t3: T2, ring_buffer_detach(old_rb)
3138 	 * t4: T1, ring_buffer_attach(rb1)
3139 	 * t5: T1, poll_wait(event->waitq)
3140 	 *
3141 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3142 	 * thereby ensuring that the assignment of the new ring buffer
3143 	 * and the detachment of the old buffer appear atomic to perf_poll()
3144 	 */
3145 	mutex_lock(&event->mmap_mutex);
3146 
3147 	rcu_read_lock();
3148 	rb = rcu_dereference(event->rb);
3149 	if (rb) {
3150 		ring_buffer_attach(event, rb);
3151 		events = atomic_xchg(&rb->poll, 0);
3152 	}
3153 	rcu_read_unlock();
3154 
3155 	mutex_unlock(&event->mmap_mutex);
3156 
3157 	poll_wait(file, &event->waitq, wait);
3158 
3159 	return events;
3160 }
3161 
3162 static void perf_event_reset(struct perf_event *event)
3163 {
3164 	(void)perf_event_read(event);
3165 	local64_set(&event->count, 0);
3166 	perf_event_update_userpage(event);
3167 }
3168 
3169 /*
3170  * Holding the top-level event's child_mutex means that any
3171  * descendant process that has inherited this event will block
3172  * in sync_child_event if it goes to exit, thus satisfying the
3173  * task existence requirements of perf_event_enable/disable.
3174  */
3175 static void perf_event_for_each_child(struct perf_event *event,
3176 					void (*func)(struct perf_event *))
3177 {
3178 	struct perf_event *child;
3179 
3180 	WARN_ON_ONCE(event->ctx->parent_ctx);
3181 	mutex_lock(&event->child_mutex);
3182 	func(event);
3183 	list_for_each_entry(child, &event->child_list, child_list)
3184 		func(child);
3185 	mutex_unlock(&event->child_mutex);
3186 }
3187 
3188 static void perf_event_for_each(struct perf_event *event,
3189 				  void (*func)(struct perf_event *))
3190 {
3191 	struct perf_event_context *ctx = event->ctx;
3192 	struct perf_event *sibling;
3193 
3194 	WARN_ON_ONCE(ctx->parent_ctx);
3195 	mutex_lock(&ctx->mutex);
3196 	event = event->group_leader;
3197 
3198 	perf_event_for_each_child(event, func);
3199 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3200 		perf_event_for_each_child(sibling, func);
3201 	mutex_unlock(&ctx->mutex);
3202 }
3203 
3204 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3205 {
3206 	struct perf_event_context *ctx = event->ctx;
3207 	int ret = 0;
3208 	u64 value;
3209 
3210 	if (!is_sampling_event(event))
3211 		return -EINVAL;
3212 
3213 	if (copy_from_user(&value, arg, sizeof(value)))
3214 		return -EFAULT;
3215 
3216 	if (!value)
3217 		return -EINVAL;
3218 
3219 	raw_spin_lock_irq(&ctx->lock);
3220 	if (event->attr.freq) {
3221 		if (value > sysctl_perf_event_sample_rate) {
3222 			ret = -EINVAL;
3223 			goto unlock;
3224 		}
3225 
3226 		event->attr.sample_freq = value;
3227 	} else {
3228 		event->attr.sample_period = value;
3229 		event->hw.sample_period = value;
3230 	}
3231 unlock:
3232 	raw_spin_unlock_irq(&ctx->lock);
3233 
3234 	return ret;
3235 }
3236 
3237 static const struct file_operations perf_fops;
3238 
3239 static inline int perf_fget_light(int fd, struct fd *p)
3240 {
3241 	struct fd f = fdget(fd);
3242 	if (!f.file)
3243 		return -EBADF;
3244 
3245 	if (f.file->f_op != &perf_fops) {
3246 		fdput(f);
3247 		return -EBADF;
3248 	}
3249 	*p = f;
3250 	return 0;
3251 }
3252 
3253 static int perf_event_set_output(struct perf_event *event,
3254 				 struct perf_event *output_event);
3255 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3256 
3257 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3258 {
3259 	struct perf_event *event = file->private_data;
3260 	void (*func)(struct perf_event *);
3261 	u32 flags = arg;
3262 
3263 	switch (cmd) {
3264 	case PERF_EVENT_IOC_ENABLE:
3265 		func = perf_event_enable;
3266 		break;
3267 	case PERF_EVENT_IOC_DISABLE:
3268 		func = perf_event_disable;
3269 		break;
3270 	case PERF_EVENT_IOC_RESET:
3271 		func = perf_event_reset;
3272 		break;
3273 
3274 	case PERF_EVENT_IOC_REFRESH:
3275 		return perf_event_refresh(event, arg);
3276 
3277 	case PERF_EVENT_IOC_PERIOD:
3278 		return perf_event_period(event, (u64 __user *)arg);
3279 
3280 	case PERF_EVENT_IOC_SET_OUTPUT:
3281 	{
3282 		int ret;
3283 		if (arg != -1) {
3284 			struct perf_event *output_event;
3285 			struct fd output;
3286 			ret = perf_fget_light(arg, &output);
3287 			if (ret)
3288 				return ret;
3289 			output_event = output.file->private_data;
3290 			ret = perf_event_set_output(event, output_event);
3291 			fdput(output);
3292 		} else {
3293 			ret = perf_event_set_output(event, NULL);
3294 		}
3295 		return ret;
3296 	}
3297 
3298 	case PERF_EVENT_IOC_SET_FILTER:
3299 		return perf_event_set_filter(event, (void __user *)arg);
3300 
3301 	default:
3302 		return -ENOTTY;
3303 	}
3304 
3305 	if (flags & PERF_IOC_FLAG_GROUP)
3306 		perf_event_for_each(event, func);
3307 	else
3308 		perf_event_for_each_child(event, func);
3309 
3310 	return 0;
3311 }
3312 
3313 int perf_event_task_enable(void)
3314 {
3315 	struct perf_event *event;
3316 
3317 	mutex_lock(&current->perf_event_mutex);
3318 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3319 		perf_event_for_each_child(event, perf_event_enable);
3320 	mutex_unlock(&current->perf_event_mutex);
3321 
3322 	return 0;
3323 }
3324 
3325 int perf_event_task_disable(void)
3326 {
3327 	struct perf_event *event;
3328 
3329 	mutex_lock(&current->perf_event_mutex);
3330 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3331 		perf_event_for_each_child(event, perf_event_disable);
3332 	mutex_unlock(&current->perf_event_mutex);
3333 
3334 	return 0;
3335 }
3336 
3337 static int perf_event_index(struct perf_event *event)
3338 {
3339 	if (event->hw.state & PERF_HES_STOPPED)
3340 		return 0;
3341 
3342 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3343 		return 0;
3344 
3345 	return event->pmu->event_idx(event);
3346 }
3347 
3348 static void calc_timer_values(struct perf_event *event,
3349 				u64 *now,
3350 				u64 *enabled,
3351 				u64 *running)
3352 {
3353 	u64 ctx_time;
3354 
3355 	*now = perf_clock();
3356 	ctx_time = event->shadow_ctx_time + *now;
3357 	*enabled = ctx_time - event->tstamp_enabled;
3358 	*running = ctx_time - event->tstamp_running;
3359 }
3360 
3361 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3362 {
3363 }
3364 
3365 /*
3366  * Callers need to ensure there can be no nesting of this function, otherwise
3367  * the seqlock logic goes bad. We can not serialize this because the arch
3368  * code calls this from NMI context.
3369  */
3370 void perf_event_update_userpage(struct perf_event *event)
3371 {
3372 	struct perf_event_mmap_page *userpg;
3373 	struct ring_buffer *rb;
3374 	u64 enabled, running, now;
3375 
3376 	rcu_read_lock();
3377 	/*
3378 	 * compute total_time_enabled, total_time_running
3379 	 * based on snapshot values taken when the event
3380 	 * was last scheduled in.
3381 	 *
3382 	 * we cannot simply called update_context_time()
3383 	 * because of locking issue as we can be called in
3384 	 * NMI context
3385 	 */
3386 	calc_timer_values(event, &now, &enabled, &running);
3387 	rb = rcu_dereference(event->rb);
3388 	if (!rb)
3389 		goto unlock;
3390 
3391 	userpg = rb->user_page;
3392 
3393 	/*
3394 	 * Disable preemption so as to not let the corresponding user-space
3395 	 * spin too long if we get preempted.
3396 	 */
3397 	preempt_disable();
3398 	++userpg->lock;
3399 	barrier();
3400 	userpg->index = perf_event_index(event);
3401 	userpg->offset = perf_event_count(event);
3402 	if (userpg->index)
3403 		userpg->offset -= local64_read(&event->hw.prev_count);
3404 
3405 	userpg->time_enabled = enabled +
3406 			atomic64_read(&event->child_total_time_enabled);
3407 
3408 	userpg->time_running = running +
3409 			atomic64_read(&event->child_total_time_running);
3410 
3411 	arch_perf_update_userpage(userpg, now);
3412 
3413 	barrier();
3414 	++userpg->lock;
3415 	preempt_enable();
3416 unlock:
3417 	rcu_read_unlock();
3418 }
3419 
3420 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3421 {
3422 	struct perf_event *event = vma->vm_file->private_data;
3423 	struct ring_buffer *rb;
3424 	int ret = VM_FAULT_SIGBUS;
3425 
3426 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3427 		if (vmf->pgoff == 0)
3428 			ret = 0;
3429 		return ret;
3430 	}
3431 
3432 	rcu_read_lock();
3433 	rb = rcu_dereference(event->rb);
3434 	if (!rb)
3435 		goto unlock;
3436 
3437 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3438 		goto unlock;
3439 
3440 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3441 	if (!vmf->page)
3442 		goto unlock;
3443 
3444 	get_page(vmf->page);
3445 	vmf->page->mapping = vma->vm_file->f_mapping;
3446 	vmf->page->index   = vmf->pgoff;
3447 
3448 	ret = 0;
3449 unlock:
3450 	rcu_read_unlock();
3451 
3452 	return ret;
3453 }
3454 
3455 static void ring_buffer_attach(struct perf_event *event,
3456 			       struct ring_buffer *rb)
3457 {
3458 	unsigned long flags;
3459 
3460 	if (!list_empty(&event->rb_entry))
3461 		return;
3462 
3463 	spin_lock_irqsave(&rb->event_lock, flags);
3464 	if (!list_empty(&event->rb_entry))
3465 		goto unlock;
3466 
3467 	list_add(&event->rb_entry, &rb->event_list);
3468 unlock:
3469 	spin_unlock_irqrestore(&rb->event_lock, flags);
3470 }
3471 
3472 static void ring_buffer_detach(struct perf_event *event,
3473 			       struct ring_buffer *rb)
3474 {
3475 	unsigned long flags;
3476 
3477 	if (list_empty(&event->rb_entry))
3478 		return;
3479 
3480 	spin_lock_irqsave(&rb->event_lock, flags);
3481 	list_del_init(&event->rb_entry);
3482 	wake_up_all(&event->waitq);
3483 	spin_unlock_irqrestore(&rb->event_lock, flags);
3484 }
3485 
3486 static void ring_buffer_wakeup(struct perf_event *event)
3487 {
3488 	struct ring_buffer *rb;
3489 
3490 	rcu_read_lock();
3491 	rb = rcu_dereference(event->rb);
3492 	if (!rb)
3493 		goto unlock;
3494 
3495 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3496 		wake_up_all(&event->waitq);
3497 
3498 unlock:
3499 	rcu_read_unlock();
3500 }
3501 
3502 static void rb_free_rcu(struct rcu_head *rcu_head)
3503 {
3504 	struct ring_buffer *rb;
3505 
3506 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3507 	rb_free(rb);
3508 }
3509 
3510 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3511 {
3512 	struct ring_buffer *rb;
3513 
3514 	rcu_read_lock();
3515 	rb = rcu_dereference(event->rb);
3516 	if (rb) {
3517 		if (!atomic_inc_not_zero(&rb->refcount))
3518 			rb = NULL;
3519 	}
3520 	rcu_read_unlock();
3521 
3522 	return rb;
3523 }
3524 
3525 static void ring_buffer_put(struct ring_buffer *rb)
3526 {
3527 	struct perf_event *event, *n;
3528 	unsigned long flags;
3529 
3530 	if (!atomic_dec_and_test(&rb->refcount))
3531 		return;
3532 
3533 	spin_lock_irqsave(&rb->event_lock, flags);
3534 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3535 		list_del_init(&event->rb_entry);
3536 		wake_up_all(&event->waitq);
3537 	}
3538 	spin_unlock_irqrestore(&rb->event_lock, flags);
3539 
3540 	call_rcu(&rb->rcu_head, rb_free_rcu);
3541 }
3542 
3543 static void perf_mmap_open(struct vm_area_struct *vma)
3544 {
3545 	struct perf_event *event = vma->vm_file->private_data;
3546 
3547 	atomic_inc(&event->mmap_count);
3548 }
3549 
3550 static void perf_mmap_close(struct vm_area_struct *vma)
3551 {
3552 	struct perf_event *event = vma->vm_file->private_data;
3553 
3554 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3555 		unsigned long size = perf_data_size(event->rb);
3556 		struct user_struct *user = event->mmap_user;
3557 		struct ring_buffer *rb = event->rb;
3558 
3559 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3560 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3561 		rcu_assign_pointer(event->rb, NULL);
3562 		ring_buffer_detach(event, rb);
3563 		mutex_unlock(&event->mmap_mutex);
3564 
3565 		ring_buffer_put(rb);
3566 		free_uid(user);
3567 	}
3568 }
3569 
3570 static const struct vm_operations_struct perf_mmap_vmops = {
3571 	.open		= perf_mmap_open,
3572 	.close		= perf_mmap_close,
3573 	.fault		= perf_mmap_fault,
3574 	.page_mkwrite	= perf_mmap_fault,
3575 };
3576 
3577 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3578 {
3579 	struct perf_event *event = file->private_data;
3580 	unsigned long user_locked, user_lock_limit;
3581 	struct user_struct *user = current_user();
3582 	unsigned long locked, lock_limit;
3583 	struct ring_buffer *rb;
3584 	unsigned long vma_size;
3585 	unsigned long nr_pages;
3586 	long user_extra, extra;
3587 	int ret = 0, flags = 0;
3588 
3589 	/*
3590 	 * Don't allow mmap() of inherited per-task counters. This would
3591 	 * create a performance issue due to all children writing to the
3592 	 * same rb.
3593 	 */
3594 	if (event->cpu == -1 && event->attr.inherit)
3595 		return -EINVAL;
3596 
3597 	if (!(vma->vm_flags & VM_SHARED))
3598 		return -EINVAL;
3599 
3600 	vma_size = vma->vm_end - vma->vm_start;
3601 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3602 
3603 	/*
3604 	 * If we have rb pages ensure they're a power-of-two number, so we
3605 	 * can do bitmasks instead of modulo.
3606 	 */
3607 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3608 		return -EINVAL;
3609 
3610 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3611 		return -EINVAL;
3612 
3613 	if (vma->vm_pgoff != 0)
3614 		return -EINVAL;
3615 
3616 	WARN_ON_ONCE(event->ctx->parent_ctx);
3617 	mutex_lock(&event->mmap_mutex);
3618 	if (event->rb) {
3619 		if (event->rb->nr_pages == nr_pages)
3620 			atomic_inc(&event->rb->refcount);
3621 		else
3622 			ret = -EINVAL;
3623 		goto unlock;
3624 	}
3625 
3626 	user_extra = nr_pages + 1;
3627 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3628 
3629 	/*
3630 	 * Increase the limit linearly with more CPUs:
3631 	 */
3632 	user_lock_limit *= num_online_cpus();
3633 
3634 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3635 
3636 	extra = 0;
3637 	if (user_locked > user_lock_limit)
3638 		extra = user_locked - user_lock_limit;
3639 
3640 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3641 	lock_limit >>= PAGE_SHIFT;
3642 	locked = vma->vm_mm->pinned_vm + extra;
3643 
3644 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3645 		!capable(CAP_IPC_LOCK)) {
3646 		ret = -EPERM;
3647 		goto unlock;
3648 	}
3649 
3650 	WARN_ON(event->rb);
3651 
3652 	if (vma->vm_flags & VM_WRITE)
3653 		flags |= RING_BUFFER_WRITABLE;
3654 
3655 	rb = rb_alloc(nr_pages,
3656 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3657 		event->cpu, flags);
3658 
3659 	if (!rb) {
3660 		ret = -ENOMEM;
3661 		goto unlock;
3662 	}
3663 	rcu_assign_pointer(event->rb, rb);
3664 
3665 	atomic_long_add(user_extra, &user->locked_vm);
3666 	event->mmap_locked = extra;
3667 	event->mmap_user = get_current_user();
3668 	vma->vm_mm->pinned_vm += event->mmap_locked;
3669 
3670 	perf_event_update_userpage(event);
3671 
3672 unlock:
3673 	if (!ret)
3674 		atomic_inc(&event->mmap_count);
3675 	mutex_unlock(&event->mmap_mutex);
3676 
3677 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3678 	vma->vm_ops = &perf_mmap_vmops;
3679 
3680 	return ret;
3681 }
3682 
3683 static int perf_fasync(int fd, struct file *filp, int on)
3684 {
3685 	struct inode *inode = filp->f_path.dentry->d_inode;
3686 	struct perf_event *event = filp->private_data;
3687 	int retval;
3688 
3689 	mutex_lock(&inode->i_mutex);
3690 	retval = fasync_helper(fd, filp, on, &event->fasync);
3691 	mutex_unlock(&inode->i_mutex);
3692 
3693 	if (retval < 0)
3694 		return retval;
3695 
3696 	return 0;
3697 }
3698 
3699 static const struct file_operations perf_fops = {
3700 	.llseek			= no_llseek,
3701 	.release		= perf_release,
3702 	.read			= perf_read,
3703 	.poll			= perf_poll,
3704 	.unlocked_ioctl		= perf_ioctl,
3705 	.compat_ioctl		= perf_ioctl,
3706 	.mmap			= perf_mmap,
3707 	.fasync			= perf_fasync,
3708 };
3709 
3710 /*
3711  * Perf event wakeup
3712  *
3713  * If there's data, ensure we set the poll() state and publish everything
3714  * to user-space before waking everybody up.
3715  */
3716 
3717 void perf_event_wakeup(struct perf_event *event)
3718 {
3719 	ring_buffer_wakeup(event);
3720 
3721 	if (event->pending_kill) {
3722 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3723 		event->pending_kill = 0;
3724 	}
3725 }
3726 
3727 static void perf_pending_event(struct irq_work *entry)
3728 {
3729 	struct perf_event *event = container_of(entry,
3730 			struct perf_event, pending);
3731 
3732 	if (event->pending_disable) {
3733 		event->pending_disable = 0;
3734 		__perf_event_disable(event);
3735 	}
3736 
3737 	if (event->pending_wakeup) {
3738 		event->pending_wakeup = 0;
3739 		perf_event_wakeup(event);
3740 	}
3741 }
3742 
3743 /*
3744  * We assume there is only KVM supporting the callbacks.
3745  * Later on, we might change it to a list if there is
3746  * another virtualization implementation supporting the callbacks.
3747  */
3748 struct perf_guest_info_callbacks *perf_guest_cbs;
3749 
3750 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3751 {
3752 	perf_guest_cbs = cbs;
3753 	return 0;
3754 }
3755 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3756 
3757 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3758 {
3759 	perf_guest_cbs = NULL;
3760 	return 0;
3761 }
3762 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3763 
3764 static void
3765 perf_output_sample_regs(struct perf_output_handle *handle,
3766 			struct pt_regs *regs, u64 mask)
3767 {
3768 	int bit;
3769 
3770 	for_each_set_bit(bit, (const unsigned long *) &mask,
3771 			 sizeof(mask) * BITS_PER_BYTE) {
3772 		u64 val;
3773 
3774 		val = perf_reg_value(regs, bit);
3775 		perf_output_put(handle, val);
3776 	}
3777 }
3778 
3779 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3780 				  struct pt_regs *regs)
3781 {
3782 	if (!user_mode(regs)) {
3783 		if (current->mm)
3784 			regs = task_pt_regs(current);
3785 		else
3786 			regs = NULL;
3787 	}
3788 
3789 	if (regs) {
3790 		regs_user->regs = regs;
3791 		regs_user->abi  = perf_reg_abi(current);
3792 	}
3793 }
3794 
3795 /*
3796  * Get remaining task size from user stack pointer.
3797  *
3798  * It'd be better to take stack vma map and limit this more
3799  * precisly, but there's no way to get it safely under interrupt,
3800  * so using TASK_SIZE as limit.
3801  */
3802 static u64 perf_ustack_task_size(struct pt_regs *regs)
3803 {
3804 	unsigned long addr = perf_user_stack_pointer(regs);
3805 
3806 	if (!addr || addr >= TASK_SIZE)
3807 		return 0;
3808 
3809 	return TASK_SIZE - addr;
3810 }
3811 
3812 static u16
3813 perf_sample_ustack_size(u16 stack_size, u16 header_size,
3814 			struct pt_regs *regs)
3815 {
3816 	u64 task_size;
3817 
3818 	/* No regs, no stack pointer, no dump. */
3819 	if (!regs)
3820 		return 0;
3821 
3822 	/*
3823 	 * Check if we fit in with the requested stack size into the:
3824 	 * - TASK_SIZE
3825 	 *   If we don't, we limit the size to the TASK_SIZE.
3826 	 *
3827 	 * - remaining sample size
3828 	 *   If we don't, we customize the stack size to
3829 	 *   fit in to the remaining sample size.
3830 	 */
3831 
3832 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3833 	stack_size = min(stack_size, (u16) task_size);
3834 
3835 	/* Current header size plus static size and dynamic size. */
3836 	header_size += 2 * sizeof(u64);
3837 
3838 	/* Do we fit in with the current stack dump size? */
3839 	if ((u16) (header_size + stack_size) < header_size) {
3840 		/*
3841 		 * If we overflow the maximum size for the sample,
3842 		 * we customize the stack dump size to fit in.
3843 		 */
3844 		stack_size = USHRT_MAX - header_size - sizeof(u64);
3845 		stack_size = round_up(stack_size, sizeof(u64));
3846 	}
3847 
3848 	return stack_size;
3849 }
3850 
3851 static void
3852 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3853 			  struct pt_regs *regs)
3854 {
3855 	/* Case of a kernel thread, nothing to dump */
3856 	if (!regs) {
3857 		u64 size = 0;
3858 		perf_output_put(handle, size);
3859 	} else {
3860 		unsigned long sp;
3861 		unsigned int rem;
3862 		u64 dyn_size;
3863 
3864 		/*
3865 		 * We dump:
3866 		 * static size
3867 		 *   - the size requested by user or the best one we can fit
3868 		 *     in to the sample max size
3869 		 * data
3870 		 *   - user stack dump data
3871 		 * dynamic size
3872 		 *   - the actual dumped size
3873 		 */
3874 
3875 		/* Static size. */
3876 		perf_output_put(handle, dump_size);
3877 
3878 		/* Data. */
3879 		sp = perf_user_stack_pointer(regs);
3880 		rem = __output_copy_user(handle, (void *) sp, dump_size);
3881 		dyn_size = dump_size - rem;
3882 
3883 		perf_output_skip(handle, rem);
3884 
3885 		/* Dynamic size. */
3886 		perf_output_put(handle, dyn_size);
3887 	}
3888 }
3889 
3890 static void __perf_event_header__init_id(struct perf_event_header *header,
3891 					 struct perf_sample_data *data,
3892 					 struct perf_event *event)
3893 {
3894 	u64 sample_type = event->attr.sample_type;
3895 
3896 	data->type = sample_type;
3897 	header->size += event->id_header_size;
3898 
3899 	if (sample_type & PERF_SAMPLE_TID) {
3900 		/* namespace issues */
3901 		data->tid_entry.pid = perf_event_pid(event, current);
3902 		data->tid_entry.tid = perf_event_tid(event, current);
3903 	}
3904 
3905 	if (sample_type & PERF_SAMPLE_TIME)
3906 		data->time = perf_clock();
3907 
3908 	if (sample_type & PERF_SAMPLE_ID)
3909 		data->id = primary_event_id(event);
3910 
3911 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3912 		data->stream_id = event->id;
3913 
3914 	if (sample_type & PERF_SAMPLE_CPU) {
3915 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3916 		data->cpu_entry.reserved = 0;
3917 	}
3918 }
3919 
3920 void perf_event_header__init_id(struct perf_event_header *header,
3921 				struct perf_sample_data *data,
3922 				struct perf_event *event)
3923 {
3924 	if (event->attr.sample_id_all)
3925 		__perf_event_header__init_id(header, data, event);
3926 }
3927 
3928 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3929 					   struct perf_sample_data *data)
3930 {
3931 	u64 sample_type = data->type;
3932 
3933 	if (sample_type & PERF_SAMPLE_TID)
3934 		perf_output_put(handle, data->tid_entry);
3935 
3936 	if (sample_type & PERF_SAMPLE_TIME)
3937 		perf_output_put(handle, data->time);
3938 
3939 	if (sample_type & PERF_SAMPLE_ID)
3940 		perf_output_put(handle, data->id);
3941 
3942 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3943 		perf_output_put(handle, data->stream_id);
3944 
3945 	if (sample_type & PERF_SAMPLE_CPU)
3946 		perf_output_put(handle, data->cpu_entry);
3947 }
3948 
3949 void perf_event__output_id_sample(struct perf_event *event,
3950 				  struct perf_output_handle *handle,
3951 				  struct perf_sample_data *sample)
3952 {
3953 	if (event->attr.sample_id_all)
3954 		__perf_event__output_id_sample(handle, sample);
3955 }
3956 
3957 static void perf_output_read_one(struct perf_output_handle *handle,
3958 				 struct perf_event *event,
3959 				 u64 enabled, u64 running)
3960 {
3961 	u64 read_format = event->attr.read_format;
3962 	u64 values[4];
3963 	int n = 0;
3964 
3965 	values[n++] = perf_event_count(event);
3966 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3967 		values[n++] = enabled +
3968 			atomic64_read(&event->child_total_time_enabled);
3969 	}
3970 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3971 		values[n++] = running +
3972 			atomic64_read(&event->child_total_time_running);
3973 	}
3974 	if (read_format & PERF_FORMAT_ID)
3975 		values[n++] = primary_event_id(event);
3976 
3977 	__output_copy(handle, values, n * sizeof(u64));
3978 }
3979 
3980 /*
3981  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3982  */
3983 static void perf_output_read_group(struct perf_output_handle *handle,
3984 			    struct perf_event *event,
3985 			    u64 enabled, u64 running)
3986 {
3987 	struct perf_event *leader = event->group_leader, *sub;
3988 	u64 read_format = event->attr.read_format;
3989 	u64 values[5];
3990 	int n = 0;
3991 
3992 	values[n++] = 1 + leader->nr_siblings;
3993 
3994 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3995 		values[n++] = enabled;
3996 
3997 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3998 		values[n++] = running;
3999 
4000 	if (leader != event)
4001 		leader->pmu->read(leader);
4002 
4003 	values[n++] = perf_event_count(leader);
4004 	if (read_format & PERF_FORMAT_ID)
4005 		values[n++] = primary_event_id(leader);
4006 
4007 	__output_copy(handle, values, n * sizeof(u64));
4008 
4009 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4010 		n = 0;
4011 
4012 		if (sub != event)
4013 			sub->pmu->read(sub);
4014 
4015 		values[n++] = perf_event_count(sub);
4016 		if (read_format & PERF_FORMAT_ID)
4017 			values[n++] = primary_event_id(sub);
4018 
4019 		__output_copy(handle, values, n * sizeof(u64));
4020 	}
4021 }
4022 
4023 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4024 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
4025 
4026 static void perf_output_read(struct perf_output_handle *handle,
4027 			     struct perf_event *event)
4028 {
4029 	u64 enabled = 0, running = 0, now;
4030 	u64 read_format = event->attr.read_format;
4031 
4032 	/*
4033 	 * compute total_time_enabled, total_time_running
4034 	 * based on snapshot values taken when the event
4035 	 * was last scheduled in.
4036 	 *
4037 	 * we cannot simply called update_context_time()
4038 	 * because of locking issue as we are called in
4039 	 * NMI context
4040 	 */
4041 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4042 		calc_timer_values(event, &now, &enabled, &running);
4043 
4044 	if (event->attr.read_format & PERF_FORMAT_GROUP)
4045 		perf_output_read_group(handle, event, enabled, running);
4046 	else
4047 		perf_output_read_one(handle, event, enabled, running);
4048 }
4049 
4050 void perf_output_sample(struct perf_output_handle *handle,
4051 			struct perf_event_header *header,
4052 			struct perf_sample_data *data,
4053 			struct perf_event *event)
4054 {
4055 	u64 sample_type = data->type;
4056 
4057 	perf_output_put(handle, *header);
4058 
4059 	if (sample_type & PERF_SAMPLE_IP)
4060 		perf_output_put(handle, data->ip);
4061 
4062 	if (sample_type & PERF_SAMPLE_TID)
4063 		perf_output_put(handle, data->tid_entry);
4064 
4065 	if (sample_type & PERF_SAMPLE_TIME)
4066 		perf_output_put(handle, data->time);
4067 
4068 	if (sample_type & PERF_SAMPLE_ADDR)
4069 		perf_output_put(handle, data->addr);
4070 
4071 	if (sample_type & PERF_SAMPLE_ID)
4072 		perf_output_put(handle, data->id);
4073 
4074 	if (sample_type & PERF_SAMPLE_STREAM_ID)
4075 		perf_output_put(handle, data->stream_id);
4076 
4077 	if (sample_type & PERF_SAMPLE_CPU)
4078 		perf_output_put(handle, data->cpu_entry);
4079 
4080 	if (sample_type & PERF_SAMPLE_PERIOD)
4081 		perf_output_put(handle, data->period);
4082 
4083 	if (sample_type & PERF_SAMPLE_READ)
4084 		perf_output_read(handle, event);
4085 
4086 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4087 		if (data->callchain) {
4088 			int size = 1;
4089 
4090 			if (data->callchain)
4091 				size += data->callchain->nr;
4092 
4093 			size *= sizeof(u64);
4094 
4095 			__output_copy(handle, data->callchain, size);
4096 		} else {
4097 			u64 nr = 0;
4098 			perf_output_put(handle, nr);
4099 		}
4100 	}
4101 
4102 	if (sample_type & PERF_SAMPLE_RAW) {
4103 		if (data->raw) {
4104 			perf_output_put(handle, data->raw->size);
4105 			__output_copy(handle, data->raw->data,
4106 					   data->raw->size);
4107 		} else {
4108 			struct {
4109 				u32	size;
4110 				u32	data;
4111 			} raw = {
4112 				.size = sizeof(u32),
4113 				.data = 0,
4114 			};
4115 			perf_output_put(handle, raw);
4116 		}
4117 	}
4118 
4119 	if (!event->attr.watermark) {
4120 		int wakeup_events = event->attr.wakeup_events;
4121 
4122 		if (wakeup_events) {
4123 			struct ring_buffer *rb = handle->rb;
4124 			int events = local_inc_return(&rb->events);
4125 
4126 			if (events >= wakeup_events) {
4127 				local_sub(wakeup_events, &rb->events);
4128 				local_inc(&rb->wakeup);
4129 			}
4130 		}
4131 	}
4132 
4133 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4134 		if (data->br_stack) {
4135 			size_t size;
4136 
4137 			size = data->br_stack->nr
4138 			     * sizeof(struct perf_branch_entry);
4139 
4140 			perf_output_put(handle, data->br_stack->nr);
4141 			perf_output_copy(handle, data->br_stack->entries, size);
4142 		} else {
4143 			/*
4144 			 * we always store at least the value of nr
4145 			 */
4146 			u64 nr = 0;
4147 			perf_output_put(handle, nr);
4148 		}
4149 	}
4150 
4151 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4152 		u64 abi = data->regs_user.abi;
4153 
4154 		/*
4155 		 * If there are no regs to dump, notice it through
4156 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4157 		 */
4158 		perf_output_put(handle, abi);
4159 
4160 		if (abi) {
4161 			u64 mask = event->attr.sample_regs_user;
4162 			perf_output_sample_regs(handle,
4163 						data->regs_user.regs,
4164 						mask);
4165 		}
4166 	}
4167 
4168 	if (sample_type & PERF_SAMPLE_STACK_USER)
4169 		perf_output_sample_ustack(handle,
4170 					  data->stack_user_size,
4171 					  data->regs_user.regs);
4172 }
4173 
4174 void perf_prepare_sample(struct perf_event_header *header,
4175 			 struct perf_sample_data *data,
4176 			 struct perf_event *event,
4177 			 struct pt_regs *regs)
4178 {
4179 	u64 sample_type = event->attr.sample_type;
4180 
4181 	header->type = PERF_RECORD_SAMPLE;
4182 	header->size = sizeof(*header) + event->header_size;
4183 
4184 	header->misc = 0;
4185 	header->misc |= perf_misc_flags(regs);
4186 
4187 	__perf_event_header__init_id(header, data, event);
4188 
4189 	if (sample_type & PERF_SAMPLE_IP)
4190 		data->ip = perf_instruction_pointer(regs);
4191 
4192 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4193 		int size = 1;
4194 
4195 		data->callchain = perf_callchain(event, regs);
4196 
4197 		if (data->callchain)
4198 			size += data->callchain->nr;
4199 
4200 		header->size += size * sizeof(u64);
4201 	}
4202 
4203 	if (sample_type & PERF_SAMPLE_RAW) {
4204 		int size = sizeof(u32);
4205 
4206 		if (data->raw)
4207 			size += data->raw->size;
4208 		else
4209 			size += sizeof(u32);
4210 
4211 		WARN_ON_ONCE(size & (sizeof(u64)-1));
4212 		header->size += size;
4213 	}
4214 
4215 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4216 		int size = sizeof(u64); /* nr */
4217 		if (data->br_stack) {
4218 			size += data->br_stack->nr
4219 			      * sizeof(struct perf_branch_entry);
4220 		}
4221 		header->size += size;
4222 	}
4223 
4224 	if (sample_type & PERF_SAMPLE_REGS_USER) {
4225 		/* regs dump ABI info */
4226 		int size = sizeof(u64);
4227 
4228 		perf_sample_regs_user(&data->regs_user, regs);
4229 
4230 		if (data->regs_user.regs) {
4231 			u64 mask = event->attr.sample_regs_user;
4232 			size += hweight64(mask) * sizeof(u64);
4233 		}
4234 
4235 		header->size += size;
4236 	}
4237 
4238 	if (sample_type & PERF_SAMPLE_STACK_USER) {
4239 		/*
4240 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4241 		 * processed as the last one or have additional check added
4242 		 * in case new sample type is added, because we could eat
4243 		 * up the rest of the sample size.
4244 		 */
4245 		struct perf_regs_user *uregs = &data->regs_user;
4246 		u16 stack_size = event->attr.sample_stack_user;
4247 		u16 size = sizeof(u64);
4248 
4249 		if (!uregs->abi)
4250 			perf_sample_regs_user(uregs, regs);
4251 
4252 		stack_size = perf_sample_ustack_size(stack_size, header->size,
4253 						     uregs->regs);
4254 
4255 		/*
4256 		 * If there is something to dump, add space for the dump
4257 		 * itself and for the field that tells the dynamic size,
4258 		 * which is how many have been actually dumped.
4259 		 */
4260 		if (stack_size)
4261 			size += sizeof(u64) + stack_size;
4262 
4263 		data->stack_user_size = stack_size;
4264 		header->size += size;
4265 	}
4266 }
4267 
4268 static void perf_event_output(struct perf_event *event,
4269 				struct perf_sample_data *data,
4270 				struct pt_regs *regs)
4271 {
4272 	struct perf_output_handle handle;
4273 	struct perf_event_header header;
4274 
4275 	/* protect the callchain buffers */
4276 	rcu_read_lock();
4277 
4278 	perf_prepare_sample(&header, data, event, regs);
4279 
4280 	if (perf_output_begin(&handle, event, header.size))
4281 		goto exit;
4282 
4283 	perf_output_sample(&handle, &header, data, event);
4284 
4285 	perf_output_end(&handle);
4286 
4287 exit:
4288 	rcu_read_unlock();
4289 }
4290 
4291 /*
4292  * read event_id
4293  */
4294 
4295 struct perf_read_event {
4296 	struct perf_event_header	header;
4297 
4298 	u32				pid;
4299 	u32				tid;
4300 };
4301 
4302 static void
4303 perf_event_read_event(struct perf_event *event,
4304 			struct task_struct *task)
4305 {
4306 	struct perf_output_handle handle;
4307 	struct perf_sample_data sample;
4308 	struct perf_read_event read_event = {
4309 		.header = {
4310 			.type = PERF_RECORD_READ,
4311 			.misc = 0,
4312 			.size = sizeof(read_event) + event->read_size,
4313 		},
4314 		.pid = perf_event_pid(event, task),
4315 		.tid = perf_event_tid(event, task),
4316 	};
4317 	int ret;
4318 
4319 	perf_event_header__init_id(&read_event.header, &sample, event);
4320 	ret = perf_output_begin(&handle, event, read_event.header.size);
4321 	if (ret)
4322 		return;
4323 
4324 	perf_output_put(&handle, read_event);
4325 	perf_output_read(&handle, event);
4326 	perf_event__output_id_sample(event, &handle, &sample);
4327 
4328 	perf_output_end(&handle);
4329 }
4330 
4331 /*
4332  * task tracking -- fork/exit
4333  *
4334  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4335  */
4336 
4337 struct perf_task_event {
4338 	struct task_struct		*task;
4339 	struct perf_event_context	*task_ctx;
4340 
4341 	struct {
4342 		struct perf_event_header	header;
4343 
4344 		u32				pid;
4345 		u32				ppid;
4346 		u32				tid;
4347 		u32				ptid;
4348 		u64				time;
4349 	} event_id;
4350 };
4351 
4352 static void perf_event_task_output(struct perf_event *event,
4353 				     struct perf_task_event *task_event)
4354 {
4355 	struct perf_output_handle handle;
4356 	struct perf_sample_data	sample;
4357 	struct task_struct *task = task_event->task;
4358 	int ret, size = task_event->event_id.header.size;
4359 
4360 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4361 
4362 	ret = perf_output_begin(&handle, event,
4363 				task_event->event_id.header.size);
4364 	if (ret)
4365 		goto out;
4366 
4367 	task_event->event_id.pid = perf_event_pid(event, task);
4368 	task_event->event_id.ppid = perf_event_pid(event, current);
4369 
4370 	task_event->event_id.tid = perf_event_tid(event, task);
4371 	task_event->event_id.ptid = perf_event_tid(event, current);
4372 
4373 	perf_output_put(&handle, task_event->event_id);
4374 
4375 	perf_event__output_id_sample(event, &handle, &sample);
4376 
4377 	perf_output_end(&handle);
4378 out:
4379 	task_event->event_id.header.size = size;
4380 }
4381 
4382 static int perf_event_task_match(struct perf_event *event)
4383 {
4384 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4385 		return 0;
4386 
4387 	if (!event_filter_match(event))
4388 		return 0;
4389 
4390 	if (event->attr.comm || event->attr.mmap ||
4391 	    event->attr.mmap_data || event->attr.task)
4392 		return 1;
4393 
4394 	return 0;
4395 }
4396 
4397 static void perf_event_task_ctx(struct perf_event_context *ctx,
4398 				  struct perf_task_event *task_event)
4399 {
4400 	struct perf_event *event;
4401 
4402 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4403 		if (perf_event_task_match(event))
4404 			perf_event_task_output(event, task_event);
4405 	}
4406 }
4407 
4408 static void perf_event_task_event(struct perf_task_event *task_event)
4409 {
4410 	struct perf_cpu_context *cpuctx;
4411 	struct perf_event_context *ctx;
4412 	struct pmu *pmu;
4413 	int ctxn;
4414 
4415 	rcu_read_lock();
4416 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4417 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4418 		if (cpuctx->unique_pmu != pmu)
4419 			goto next;
4420 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4421 
4422 		ctx = task_event->task_ctx;
4423 		if (!ctx) {
4424 			ctxn = pmu->task_ctx_nr;
4425 			if (ctxn < 0)
4426 				goto next;
4427 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4428 		}
4429 		if (ctx)
4430 			perf_event_task_ctx(ctx, task_event);
4431 next:
4432 		put_cpu_ptr(pmu->pmu_cpu_context);
4433 	}
4434 	rcu_read_unlock();
4435 }
4436 
4437 static void perf_event_task(struct task_struct *task,
4438 			      struct perf_event_context *task_ctx,
4439 			      int new)
4440 {
4441 	struct perf_task_event task_event;
4442 
4443 	if (!atomic_read(&nr_comm_events) &&
4444 	    !atomic_read(&nr_mmap_events) &&
4445 	    !atomic_read(&nr_task_events))
4446 		return;
4447 
4448 	task_event = (struct perf_task_event){
4449 		.task	  = task,
4450 		.task_ctx = task_ctx,
4451 		.event_id    = {
4452 			.header = {
4453 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4454 				.misc = 0,
4455 				.size = sizeof(task_event.event_id),
4456 			},
4457 			/* .pid  */
4458 			/* .ppid */
4459 			/* .tid  */
4460 			/* .ptid */
4461 			.time = perf_clock(),
4462 		},
4463 	};
4464 
4465 	perf_event_task_event(&task_event);
4466 }
4467 
4468 void perf_event_fork(struct task_struct *task)
4469 {
4470 	perf_event_task(task, NULL, 1);
4471 }
4472 
4473 /*
4474  * comm tracking
4475  */
4476 
4477 struct perf_comm_event {
4478 	struct task_struct	*task;
4479 	char			*comm;
4480 	int			comm_size;
4481 
4482 	struct {
4483 		struct perf_event_header	header;
4484 
4485 		u32				pid;
4486 		u32				tid;
4487 	} event_id;
4488 };
4489 
4490 static void perf_event_comm_output(struct perf_event *event,
4491 				     struct perf_comm_event *comm_event)
4492 {
4493 	struct perf_output_handle handle;
4494 	struct perf_sample_data sample;
4495 	int size = comm_event->event_id.header.size;
4496 	int ret;
4497 
4498 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4499 	ret = perf_output_begin(&handle, event,
4500 				comm_event->event_id.header.size);
4501 
4502 	if (ret)
4503 		goto out;
4504 
4505 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4506 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4507 
4508 	perf_output_put(&handle, comm_event->event_id);
4509 	__output_copy(&handle, comm_event->comm,
4510 				   comm_event->comm_size);
4511 
4512 	perf_event__output_id_sample(event, &handle, &sample);
4513 
4514 	perf_output_end(&handle);
4515 out:
4516 	comm_event->event_id.header.size = size;
4517 }
4518 
4519 static int perf_event_comm_match(struct perf_event *event)
4520 {
4521 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4522 		return 0;
4523 
4524 	if (!event_filter_match(event))
4525 		return 0;
4526 
4527 	if (event->attr.comm)
4528 		return 1;
4529 
4530 	return 0;
4531 }
4532 
4533 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4534 				  struct perf_comm_event *comm_event)
4535 {
4536 	struct perf_event *event;
4537 
4538 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4539 		if (perf_event_comm_match(event))
4540 			perf_event_comm_output(event, comm_event);
4541 	}
4542 }
4543 
4544 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4545 {
4546 	struct perf_cpu_context *cpuctx;
4547 	struct perf_event_context *ctx;
4548 	char comm[TASK_COMM_LEN];
4549 	unsigned int size;
4550 	struct pmu *pmu;
4551 	int ctxn;
4552 
4553 	memset(comm, 0, sizeof(comm));
4554 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4555 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4556 
4557 	comm_event->comm = comm;
4558 	comm_event->comm_size = size;
4559 
4560 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4561 	rcu_read_lock();
4562 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4563 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4564 		if (cpuctx->unique_pmu != pmu)
4565 			goto next;
4566 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4567 
4568 		ctxn = pmu->task_ctx_nr;
4569 		if (ctxn < 0)
4570 			goto next;
4571 
4572 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4573 		if (ctx)
4574 			perf_event_comm_ctx(ctx, comm_event);
4575 next:
4576 		put_cpu_ptr(pmu->pmu_cpu_context);
4577 	}
4578 	rcu_read_unlock();
4579 }
4580 
4581 void perf_event_comm(struct task_struct *task)
4582 {
4583 	struct perf_comm_event comm_event;
4584 	struct perf_event_context *ctx;
4585 	int ctxn;
4586 
4587 	for_each_task_context_nr(ctxn) {
4588 		ctx = task->perf_event_ctxp[ctxn];
4589 		if (!ctx)
4590 			continue;
4591 
4592 		perf_event_enable_on_exec(ctx);
4593 	}
4594 
4595 	if (!atomic_read(&nr_comm_events))
4596 		return;
4597 
4598 	comm_event = (struct perf_comm_event){
4599 		.task	= task,
4600 		/* .comm      */
4601 		/* .comm_size */
4602 		.event_id  = {
4603 			.header = {
4604 				.type = PERF_RECORD_COMM,
4605 				.misc = 0,
4606 				/* .size */
4607 			},
4608 			/* .pid */
4609 			/* .tid */
4610 		},
4611 	};
4612 
4613 	perf_event_comm_event(&comm_event);
4614 }
4615 
4616 /*
4617  * mmap tracking
4618  */
4619 
4620 struct perf_mmap_event {
4621 	struct vm_area_struct	*vma;
4622 
4623 	const char		*file_name;
4624 	int			file_size;
4625 
4626 	struct {
4627 		struct perf_event_header	header;
4628 
4629 		u32				pid;
4630 		u32				tid;
4631 		u64				start;
4632 		u64				len;
4633 		u64				pgoff;
4634 	} event_id;
4635 };
4636 
4637 static void perf_event_mmap_output(struct perf_event *event,
4638 				     struct perf_mmap_event *mmap_event)
4639 {
4640 	struct perf_output_handle handle;
4641 	struct perf_sample_data sample;
4642 	int size = mmap_event->event_id.header.size;
4643 	int ret;
4644 
4645 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4646 	ret = perf_output_begin(&handle, event,
4647 				mmap_event->event_id.header.size);
4648 	if (ret)
4649 		goto out;
4650 
4651 	mmap_event->event_id.pid = perf_event_pid(event, current);
4652 	mmap_event->event_id.tid = perf_event_tid(event, current);
4653 
4654 	perf_output_put(&handle, mmap_event->event_id);
4655 	__output_copy(&handle, mmap_event->file_name,
4656 				   mmap_event->file_size);
4657 
4658 	perf_event__output_id_sample(event, &handle, &sample);
4659 
4660 	perf_output_end(&handle);
4661 out:
4662 	mmap_event->event_id.header.size = size;
4663 }
4664 
4665 static int perf_event_mmap_match(struct perf_event *event,
4666 				   struct perf_mmap_event *mmap_event,
4667 				   int executable)
4668 {
4669 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4670 		return 0;
4671 
4672 	if (!event_filter_match(event))
4673 		return 0;
4674 
4675 	if ((!executable && event->attr.mmap_data) ||
4676 	    (executable && event->attr.mmap))
4677 		return 1;
4678 
4679 	return 0;
4680 }
4681 
4682 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4683 				  struct perf_mmap_event *mmap_event,
4684 				  int executable)
4685 {
4686 	struct perf_event *event;
4687 
4688 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4689 		if (perf_event_mmap_match(event, mmap_event, executable))
4690 			perf_event_mmap_output(event, mmap_event);
4691 	}
4692 }
4693 
4694 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4695 {
4696 	struct perf_cpu_context *cpuctx;
4697 	struct perf_event_context *ctx;
4698 	struct vm_area_struct *vma = mmap_event->vma;
4699 	struct file *file = vma->vm_file;
4700 	unsigned int size;
4701 	char tmp[16];
4702 	char *buf = NULL;
4703 	const char *name;
4704 	struct pmu *pmu;
4705 	int ctxn;
4706 
4707 	memset(tmp, 0, sizeof(tmp));
4708 
4709 	if (file) {
4710 		/*
4711 		 * d_path works from the end of the rb backwards, so we
4712 		 * need to add enough zero bytes after the string to handle
4713 		 * the 64bit alignment we do later.
4714 		 */
4715 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4716 		if (!buf) {
4717 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4718 			goto got_name;
4719 		}
4720 		name = d_path(&file->f_path, buf, PATH_MAX);
4721 		if (IS_ERR(name)) {
4722 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4723 			goto got_name;
4724 		}
4725 	} else {
4726 		if (arch_vma_name(mmap_event->vma)) {
4727 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4728 				       sizeof(tmp));
4729 			goto got_name;
4730 		}
4731 
4732 		if (!vma->vm_mm) {
4733 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4734 			goto got_name;
4735 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4736 				vma->vm_end >= vma->vm_mm->brk) {
4737 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4738 			goto got_name;
4739 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4740 				vma->vm_end >= vma->vm_mm->start_stack) {
4741 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4742 			goto got_name;
4743 		}
4744 
4745 		name = strncpy(tmp, "//anon", sizeof(tmp));
4746 		goto got_name;
4747 	}
4748 
4749 got_name:
4750 	size = ALIGN(strlen(name)+1, sizeof(u64));
4751 
4752 	mmap_event->file_name = name;
4753 	mmap_event->file_size = size;
4754 
4755 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4756 
4757 	rcu_read_lock();
4758 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4759 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4760 		if (cpuctx->unique_pmu != pmu)
4761 			goto next;
4762 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4763 					vma->vm_flags & VM_EXEC);
4764 
4765 		ctxn = pmu->task_ctx_nr;
4766 		if (ctxn < 0)
4767 			goto next;
4768 
4769 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4770 		if (ctx) {
4771 			perf_event_mmap_ctx(ctx, mmap_event,
4772 					vma->vm_flags & VM_EXEC);
4773 		}
4774 next:
4775 		put_cpu_ptr(pmu->pmu_cpu_context);
4776 	}
4777 	rcu_read_unlock();
4778 
4779 	kfree(buf);
4780 }
4781 
4782 void perf_event_mmap(struct vm_area_struct *vma)
4783 {
4784 	struct perf_mmap_event mmap_event;
4785 
4786 	if (!atomic_read(&nr_mmap_events))
4787 		return;
4788 
4789 	mmap_event = (struct perf_mmap_event){
4790 		.vma	= vma,
4791 		/* .file_name */
4792 		/* .file_size */
4793 		.event_id  = {
4794 			.header = {
4795 				.type = PERF_RECORD_MMAP,
4796 				.misc = PERF_RECORD_MISC_USER,
4797 				/* .size */
4798 			},
4799 			/* .pid */
4800 			/* .tid */
4801 			.start  = vma->vm_start,
4802 			.len    = vma->vm_end - vma->vm_start,
4803 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4804 		},
4805 	};
4806 
4807 	perf_event_mmap_event(&mmap_event);
4808 }
4809 
4810 /*
4811  * IRQ throttle logging
4812  */
4813 
4814 static void perf_log_throttle(struct perf_event *event, int enable)
4815 {
4816 	struct perf_output_handle handle;
4817 	struct perf_sample_data sample;
4818 	int ret;
4819 
4820 	struct {
4821 		struct perf_event_header	header;
4822 		u64				time;
4823 		u64				id;
4824 		u64				stream_id;
4825 	} throttle_event = {
4826 		.header = {
4827 			.type = PERF_RECORD_THROTTLE,
4828 			.misc = 0,
4829 			.size = sizeof(throttle_event),
4830 		},
4831 		.time		= perf_clock(),
4832 		.id		= primary_event_id(event),
4833 		.stream_id	= event->id,
4834 	};
4835 
4836 	if (enable)
4837 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4838 
4839 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4840 
4841 	ret = perf_output_begin(&handle, event,
4842 				throttle_event.header.size);
4843 	if (ret)
4844 		return;
4845 
4846 	perf_output_put(&handle, throttle_event);
4847 	perf_event__output_id_sample(event, &handle, &sample);
4848 	perf_output_end(&handle);
4849 }
4850 
4851 /*
4852  * Generic event overflow handling, sampling.
4853  */
4854 
4855 static int __perf_event_overflow(struct perf_event *event,
4856 				   int throttle, struct perf_sample_data *data,
4857 				   struct pt_regs *regs)
4858 {
4859 	int events = atomic_read(&event->event_limit);
4860 	struct hw_perf_event *hwc = &event->hw;
4861 	u64 seq;
4862 	int ret = 0;
4863 
4864 	/*
4865 	 * Non-sampling counters might still use the PMI to fold short
4866 	 * hardware counters, ignore those.
4867 	 */
4868 	if (unlikely(!is_sampling_event(event)))
4869 		return 0;
4870 
4871 	seq = __this_cpu_read(perf_throttled_seq);
4872 	if (seq != hwc->interrupts_seq) {
4873 		hwc->interrupts_seq = seq;
4874 		hwc->interrupts = 1;
4875 	} else {
4876 		hwc->interrupts++;
4877 		if (unlikely(throttle
4878 			     && hwc->interrupts >= max_samples_per_tick)) {
4879 			__this_cpu_inc(perf_throttled_count);
4880 			hwc->interrupts = MAX_INTERRUPTS;
4881 			perf_log_throttle(event, 0);
4882 			ret = 1;
4883 		}
4884 	}
4885 
4886 	if (event->attr.freq) {
4887 		u64 now = perf_clock();
4888 		s64 delta = now - hwc->freq_time_stamp;
4889 
4890 		hwc->freq_time_stamp = now;
4891 
4892 		if (delta > 0 && delta < 2*TICK_NSEC)
4893 			perf_adjust_period(event, delta, hwc->last_period, true);
4894 	}
4895 
4896 	/*
4897 	 * XXX event_limit might not quite work as expected on inherited
4898 	 * events
4899 	 */
4900 
4901 	event->pending_kill = POLL_IN;
4902 	if (events && atomic_dec_and_test(&event->event_limit)) {
4903 		ret = 1;
4904 		event->pending_kill = POLL_HUP;
4905 		event->pending_disable = 1;
4906 		irq_work_queue(&event->pending);
4907 	}
4908 
4909 	if (event->overflow_handler)
4910 		event->overflow_handler(event, data, regs);
4911 	else
4912 		perf_event_output(event, data, regs);
4913 
4914 	if (event->fasync && event->pending_kill) {
4915 		event->pending_wakeup = 1;
4916 		irq_work_queue(&event->pending);
4917 	}
4918 
4919 	return ret;
4920 }
4921 
4922 int perf_event_overflow(struct perf_event *event,
4923 			  struct perf_sample_data *data,
4924 			  struct pt_regs *regs)
4925 {
4926 	return __perf_event_overflow(event, 1, data, regs);
4927 }
4928 
4929 /*
4930  * Generic software event infrastructure
4931  */
4932 
4933 struct swevent_htable {
4934 	struct swevent_hlist		*swevent_hlist;
4935 	struct mutex			hlist_mutex;
4936 	int				hlist_refcount;
4937 
4938 	/* Recursion avoidance in each contexts */
4939 	int				recursion[PERF_NR_CONTEXTS];
4940 };
4941 
4942 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4943 
4944 /*
4945  * We directly increment event->count and keep a second value in
4946  * event->hw.period_left to count intervals. This period event
4947  * is kept in the range [-sample_period, 0] so that we can use the
4948  * sign as trigger.
4949  */
4950 
4951 static u64 perf_swevent_set_period(struct perf_event *event)
4952 {
4953 	struct hw_perf_event *hwc = &event->hw;
4954 	u64 period = hwc->last_period;
4955 	u64 nr, offset;
4956 	s64 old, val;
4957 
4958 	hwc->last_period = hwc->sample_period;
4959 
4960 again:
4961 	old = val = local64_read(&hwc->period_left);
4962 	if (val < 0)
4963 		return 0;
4964 
4965 	nr = div64_u64(period + val, period);
4966 	offset = nr * period;
4967 	val -= offset;
4968 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4969 		goto again;
4970 
4971 	return nr;
4972 }
4973 
4974 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4975 				    struct perf_sample_data *data,
4976 				    struct pt_regs *regs)
4977 {
4978 	struct hw_perf_event *hwc = &event->hw;
4979 	int throttle = 0;
4980 
4981 	if (!overflow)
4982 		overflow = perf_swevent_set_period(event);
4983 
4984 	if (hwc->interrupts == MAX_INTERRUPTS)
4985 		return;
4986 
4987 	for (; overflow; overflow--) {
4988 		if (__perf_event_overflow(event, throttle,
4989 					    data, regs)) {
4990 			/*
4991 			 * We inhibit the overflow from happening when
4992 			 * hwc->interrupts == MAX_INTERRUPTS.
4993 			 */
4994 			break;
4995 		}
4996 		throttle = 1;
4997 	}
4998 }
4999 
5000 static void perf_swevent_event(struct perf_event *event, u64 nr,
5001 			       struct perf_sample_data *data,
5002 			       struct pt_regs *regs)
5003 {
5004 	struct hw_perf_event *hwc = &event->hw;
5005 
5006 	local64_add(nr, &event->count);
5007 
5008 	if (!regs)
5009 		return;
5010 
5011 	if (!is_sampling_event(event))
5012 		return;
5013 
5014 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5015 		data->period = nr;
5016 		return perf_swevent_overflow(event, 1, data, regs);
5017 	} else
5018 		data->period = event->hw.last_period;
5019 
5020 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5021 		return perf_swevent_overflow(event, 1, data, regs);
5022 
5023 	if (local64_add_negative(nr, &hwc->period_left))
5024 		return;
5025 
5026 	perf_swevent_overflow(event, 0, data, regs);
5027 }
5028 
5029 static int perf_exclude_event(struct perf_event *event,
5030 			      struct pt_regs *regs)
5031 {
5032 	if (event->hw.state & PERF_HES_STOPPED)
5033 		return 1;
5034 
5035 	if (regs) {
5036 		if (event->attr.exclude_user && user_mode(regs))
5037 			return 1;
5038 
5039 		if (event->attr.exclude_kernel && !user_mode(regs))
5040 			return 1;
5041 	}
5042 
5043 	return 0;
5044 }
5045 
5046 static int perf_swevent_match(struct perf_event *event,
5047 				enum perf_type_id type,
5048 				u32 event_id,
5049 				struct perf_sample_data *data,
5050 				struct pt_regs *regs)
5051 {
5052 	if (event->attr.type != type)
5053 		return 0;
5054 
5055 	if (event->attr.config != event_id)
5056 		return 0;
5057 
5058 	if (perf_exclude_event(event, regs))
5059 		return 0;
5060 
5061 	return 1;
5062 }
5063 
5064 static inline u64 swevent_hash(u64 type, u32 event_id)
5065 {
5066 	u64 val = event_id | (type << 32);
5067 
5068 	return hash_64(val, SWEVENT_HLIST_BITS);
5069 }
5070 
5071 static inline struct hlist_head *
5072 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5073 {
5074 	u64 hash = swevent_hash(type, event_id);
5075 
5076 	return &hlist->heads[hash];
5077 }
5078 
5079 /* For the read side: events when they trigger */
5080 static inline struct hlist_head *
5081 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5082 {
5083 	struct swevent_hlist *hlist;
5084 
5085 	hlist = rcu_dereference(swhash->swevent_hlist);
5086 	if (!hlist)
5087 		return NULL;
5088 
5089 	return __find_swevent_head(hlist, type, event_id);
5090 }
5091 
5092 /* For the event head insertion and removal in the hlist */
5093 static inline struct hlist_head *
5094 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5095 {
5096 	struct swevent_hlist *hlist;
5097 	u32 event_id = event->attr.config;
5098 	u64 type = event->attr.type;
5099 
5100 	/*
5101 	 * Event scheduling is always serialized against hlist allocation
5102 	 * and release. Which makes the protected version suitable here.
5103 	 * The context lock guarantees that.
5104 	 */
5105 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5106 					  lockdep_is_held(&event->ctx->lock));
5107 	if (!hlist)
5108 		return NULL;
5109 
5110 	return __find_swevent_head(hlist, type, event_id);
5111 }
5112 
5113 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5114 				    u64 nr,
5115 				    struct perf_sample_data *data,
5116 				    struct pt_regs *regs)
5117 {
5118 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5119 	struct perf_event *event;
5120 	struct hlist_node *node;
5121 	struct hlist_head *head;
5122 
5123 	rcu_read_lock();
5124 	head = find_swevent_head_rcu(swhash, type, event_id);
5125 	if (!head)
5126 		goto end;
5127 
5128 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5129 		if (perf_swevent_match(event, type, event_id, data, regs))
5130 			perf_swevent_event(event, nr, data, regs);
5131 	}
5132 end:
5133 	rcu_read_unlock();
5134 }
5135 
5136 int perf_swevent_get_recursion_context(void)
5137 {
5138 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5139 
5140 	return get_recursion_context(swhash->recursion);
5141 }
5142 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5143 
5144 inline void perf_swevent_put_recursion_context(int rctx)
5145 {
5146 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5147 
5148 	put_recursion_context(swhash->recursion, rctx);
5149 }
5150 
5151 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5152 {
5153 	struct perf_sample_data data;
5154 	int rctx;
5155 
5156 	preempt_disable_notrace();
5157 	rctx = perf_swevent_get_recursion_context();
5158 	if (rctx < 0)
5159 		return;
5160 
5161 	perf_sample_data_init(&data, addr, 0);
5162 
5163 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5164 
5165 	perf_swevent_put_recursion_context(rctx);
5166 	preempt_enable_notrace();
5167 }
5168 
5169 static void perf_swevent_read(struct perf_event *event)
5170 {
5171 }
5172 
5173 static int perf_swevent_add(struct perf_event *event, int flags)
5174 {
5175 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5176 	struct hw_perf_event *hwc = &event->hw;
5177 	struct hlist_head *head;
5178 
5179 	if (is_sampling_event(event)) {
5180 		hwc->last_period = hwc->sample_period;
5181 		perf_swevent_set_period(event);
5182 	}
5183 
5184 	hwc->state = !(flags & PERF_EF_START);
5185 
5186 	head = find_swevent_head(swhash, event);
5187 	if (WARN_ON_ONCE(!head))
5188 		return -EINVAL;
5189 
5190 	hlist_add_head_rcu(&event->hlist_entry, head);
5191 
5192 	return 0;
5193 }
5194 
5195 static void perf_swevent_del(struct perf_event *event, int flags)
5196 {
5197 	hlist_del_rcu(&event->hlist_entry);
5198 }
5199 
5200 static void perf_swevent_start(struct perf_event *event, int flags)
5201 {
5202 	event->hw.state = 0;
5203 }
5204 
5205 static void perf_swevent_stop(struct perf_event *event, int flags)
5206 {
5207 	event->hw.state = PERF_HES_STOPPED;
5208 }
5209 
5210 /* Deref the hlist from the update side */
5211 static inline struct swevent_hlist *
5212 swevent_hlist_deref(struct swevent_htable *swhash)
5213 {
5214 	return rcu_dereference_protected(swhash->swevent_hlist,
5215 					 lockdep_is_held(&swhash->hlist_mutex));
5216 }
5217 
5218 static void swevent_hlist_release(struct swevent_htable *swhash)
5219 {
5220 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5221 
5222 	if (!hlist)
5223 		return;
5224 
5225 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5226 	kfree_rcu(hlist, rcu_head);
5227 }
5228 
5229 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5230 {
5231 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5232 
5233 	mutex_lock(&swhash->hlist_mutex);
5234 
5235 	if (!--swhash->hlist_refcount)
5236 		swevent_hlist_release(swhash);
5237 
5238 	mutex_unlock(&swhash->hlist_mutex);
5239 }
5240 
5241 static void swevent_hlist_put(struct perf_event *event)
5242 {
5243 	int cpu;
5244 
5245 	if (event->cpu != -1) {
5246 		swevent_hlist_put_cpu(event, event->cpu);
5247 		return;
5248 	}
5249 
5250 	for_each_possible_cpu(cpu)
5251 		swevent_hlist_put_cpu(event, cpu);
5252 }
5253 
5254 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5255 {
5256 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5257 	int err = 0;
5258 
5259 	mutex_lock(&swhash->hlist_mutex);
5260 
5261 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5262 		struct swevent_hlist *hlist;
5263 
5264 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5265 		if (!hlist) {
5266 			err = -ENOMEM;
5267 			goto exit;
5268 		}
5269 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5270 	}
5271 	swhash->hlist_refcount++;
5272 exit:
5273 	mutex_unlock(&swhash->hlist_mutex);
5274 
5275 	return err;
5276 }
5277 
5278 static int swevent_hlist_get(struct perf_event *event)
5279 {
5280 	int err;
5281 	int cpu, failed_cpu;
5282 
5283 	if (event->cpu != -1)
5284 		return swevent_hlist_get_cpu(event, event->cpu);
5285 
5286 	get_online_cpus();
5287 	for_each_possible_cpu(cpu) {
5288 		err = swevent_hlist_get_cpu(event, cpu);
5289 		if (err) {
5290 			failed_cpu = cpu;
5291 			goto fail;
5292 		}
5293 	}
5294 	put_online_cpus();
5295 
5296 	return 0;
5297 fail:
5298 	for_each_possible_cpu(cpu) {
5299 		if (cpu == failed_cpu)
5300 			break;
5301 		swevent_hlist_put_cpu(event, cpu);
5302 	}
5303 
5304 	put_online_cpus();
5305 	return err;
5306 }
5307 
5308 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5309 
5310 static void sw_perf_event_destroy(struct perf_event *event)
5311 {
5312 	u64 event_id = event->attr.config;
5313 
5314 	WARN_ON(event->parent);
5315 
5316 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5317 	swevent_hlist_put(event);
5318 }
5319 
5320 static int perf_swevent_init(struct perf_event *event)
5321 {
5322 	int event_id = event->attr.config;
5323 
5324 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5325 		return -ENOENT;
5326 
5327 	/*
5328 	 * no branch sampling for software events
5329 	 */
5330 	if (has_branch_stack(event))
5331 		return -EOPNOTSUPP;
5332 
5333 	switch (event_id) {
5334 	case PERF_COUNT_SW_CPU_CLOCK:
5335 	case PERF_COUNT_SW_TASK_CLOCK:
5336 		return -ENOENT;
5337 
5338 	default:
5339 		break;
5340 	}
5341 
5342 	if (event_id >= PERF_COUNT_SW_MAX)
5343 		return -ENOENT;
5344 
5345 	if (!event->parent) {
5346 		int err;
5347 
5348 		err = swevent_hlist_get(event);
5349 		if (err)
5350 			return err;
5351 
5352 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5353 		event->destroy = sw_perf_event_destroy;
5354 	}
5355 
5356 	return 0;
5357 }
5358 
5359 static int perf_swevent_event_idx(struct perf_event *event)
5360 {
5361 	return 0;
5362 }
5363 
5364 static struct pmu perf_swevent = {
5365 	.task_ctx_nr	= perf_sw_context,
5366 
5367 	.event_init	= perf_swevent_init,
5368 	.add		= perf_swevent_add,
5369 	.del		= perf_swevent_del,
5370 	.start		= perf_swevent_start,
5371 	.stop		= perf_swevent_stop,
5372 	.read		= perf_swevent_read,
5373 
5374 	.event_idx	= perf_swevent_event_idx,
5375 };
5376 
5377 #ifdef CONFIG_EVENT_TRACING
5378 
5379 static int perf_tp_filter_match(struct perf_event *event,
5380 				struct perf_sample_data *data)
5381 {
5382 	void *record = data->raw->data;
5383 
5384 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5385 		return 1;
5386 	return 0;
5387 }
5388 
5389 static int perf_tp_event_match(struct perf_event *event,
5390 				struct perf_sample_data *data,
5391 				struct pt_regs *regs)
5392 {
5393 	if (event->hw.state & PERF_HES_STOPPED)
5394 		return 0;
5395 	/*
5396 	 * All tracepoints are from kernel-space.
5397 	 */
5398 	if (event->attr.exclude_kernel)
5399 		return 0;
5400 
5401 	if (!perf_tp_filter_match(event, data))
5402 		return 0;
5403 
5404 	return 1;
5405 }
5406 
5407 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5408 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
5409 		   struct task_struct *task)
5410 {
5411 	struct perf_sample_data data;
5412 	struct perf_event *event;
5413 	struct hlist_node *node;
5414 
5415 	struct perf_raw_record raw = {
5416 		.size = entry_size,
5417 		.data = record,
5418 	};
5419 
5420 	perf_sample_data_init(&data, addr, 0);
5421 	data.raw = &raw;
5422 
5423 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5424 		if (perf_tp_event_match(event, &data, regs))
5425 			perf_swevent_event(event, count, &data, regs);
5426 	}
5427 
5428 	/*
5429 	 * If we got specified a target task, also iterate its context and
5430 	 * deliver this event there too.
5431 	 */
5432 	if (task && task != current) {
5433 		struct perf_event_context *ctx;
5434 		struct trace_entry *entry = record;
5435 
5436 		rcu_read_lock();
5437 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5438 		if (!ctx)
5439 			goto unlock;
5440 
5441 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5442 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
5443 				continue;
5444 			if (event->attr.config != entry->type)
5445 				continue;
5446 			if (perf_tp_event_match(event, &data, regs))
5447 				perf_swevent_event(event, count, &data, regs);
5448 		}
5449 unlock:
5450 		rcu_read_unlock();
5451 	}
5452 
5453 	perf_swevent_put_recursion_context(rctx);
5454 }
5455 EXPORT_SYMBOL_GPL(perf_tp_event);
5456 
5457 static void tp_perf_event_destroy(struct perf_event *event)
5458 {
5459 	perf_trace_destroy(event);
5460 }
5461 
5462 static int perf_tp_event_init(struct perf_event *event)
5463 {
5464 	int err;
5465 
5466 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5467 		return -ENOENT;
5468 
5469 	/*
5470 	 * no branch sampling for tracepoint events
5471 	 */
5472 	if (has_branch_stack(event))
5473 		return -EOPNOTSUPP;
5474 
5475 	err = perf_trace_init(event);
5476 	if (err)
5477 		return err;
5478 
5479 	event->destroy = tp_perf_event_destroy;
5480 
5481 	return 0;
5482 }
5483 
5484 static struct pmu perf_tracepoint = {
5485 	.task_ctx_nr	= perf_sw_context,
5486 
5487 	.event_init	= perf_tp_event_init,
5488 	.add		= perf_trace_add,
5489 	.del		= perf_trace_del,
5490 	.start		= perf_swevent_start,
5491 	.stop		= perf_swevent_stop,
5492 	.read		= perf_swevent_read,
5493 
5494 	.event_idx	= perf_swevent_event_idx,
5495 };
5496 
5497 static inline void perf_tp_register(void)
5498 {
5499 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5500 }
5501 
5502 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5503 {
5504 	char *filter_str;
5505 	int ret;
5506 
5507 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5508 		return -EINVAL;
5509 
5510 	filter_str = strndup_user(arg, PAGE_SIZE);
5511 	if (IS_ERR(filter_str))
5512 		return PTR_ERR(filter_str);
5513 
5514 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5515 
5516 	kfree(filter_str);
5517 	return ret;
5518 }
5519 
5520 static void perf_event_free_filter(struct perf_event *event)
5521 {
5522 	ftrace_profile_free_filter(event);
5523 }
5524 
5525 #else
5526 
5527 static inline void perf_tp_register(void)
5528 {
5529 }
5530 
5531 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5532 {
5533 	return -ENOENT;
5534 }
5535 
5536 static void perf_event_free_filter(struct perf_event *event)
5537 {
5538 }
5539 
5540 #endif /* CONFIG_EVENT_TRACING */
5541 
5542 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5543 void perf_bp_event(struct perf_event *bp, void *data)
5544 {
5545 	struct perf_sample_data sample;
5546 	struct pt_regs *regs = data;
5547 
5548 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5549 
5550 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5551 		perf_swevent_event(bp, 1, &sample, regs);
5552 }
5553 #endif
5554 
5555 /*
5556  * hrtimer based swevent callback
5557  */
5558 
5559 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5560 {
5561 	enum hrtimer_restart ret = HRTIMER_RESTART;
5562 	struct perf_sample_data data;
5563 	struct pt_regs *regs;
5564 	struct perf_event *event;
5565 	u64 period;
5566 
5567 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5568 
5569 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5570 		return HRTIMER_NORESTART;
5571 
5572 	event->pmu->read(event);
5573 
5574 	perf_sample_data_init(&data, 0, event->hw.last_period);
5575 	regs = get_irq_regs();
5576 
5577 	if (regs && !perf_exclude_event(event, regs)) {
5578 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5579 			if (__perf_event_overflow(event, 1, &data, regs))
5580 				ret = HRTIMER_NORESTART;
5581 	}
5582 
5583 	period = max_t(u64, 10000, event->hw.sample_period);
5584 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5585 
5586 	return ret;
5587 }
5588 
5589 static void perf_swevent_start_hrtimer(struct perf_event *event)
5590 {
5591 	struct hw_perf_event *hwc = &event->hw;
5592 	s64 period;
5593 
5594 	if (!is_sampling_event(event))
5595 		return;
5596 
5597 	period = local64_read(&hwc->period_left);
5598 	if (period) {
5599 		if (period < 0)
5600 			period = 10000;
5601 
5602 		local64_set(&hwc->period_left, 0);
5603 	} else {
5604 		period = max_t(u64, 10000, hwc->sample_period);
5605 	}
5606 	__hrtimer_start_range_ns(&hwc->hrtimer,
5607 				ns_to_ktime(period), 0,
5608 				HRTIMER_MODE_REL_PINNED, 0);
5609 }
5610 
5611 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5612 {
5613 	struct hw_perf_event *hwc = &event->hw;
5614 
5615 	if (is_sampling_event(event)) {
5616 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5617 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5618 
5619 		hrtimer_cancel(&hwc->hrtimer);
5620 	}
5621 }
5622 
5623 static void perf_swevent_init_hrtimer(struct perf_event *event)
5624 {
5625 	struct hw_perf_event *hwc = &event->hw;
5626 
5627 	if (!is_sampling_event(event))
5628 		return;
5629 
5630 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5631 	hwc->hrtimer.function = perf_swevent_hrtimer;
5632 
5633 	/*
5634 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5635 	 * mapping and avoid the whole period adjust feedback stuff.
5636 	 */
5637 	if (event->attr.freq) {
5638 		long freq = event->attr.sample_freq;
5639 
5640 		event->attr.sample_period = NSEC_PER_SEC / freq;
5641 		hwc->sample_period = event->attr.sample_period;
5642 		local64_set(&hwc->period_left, hwc->sample_period);
5643 		event->attr.freq = 0;
5644 	}
5645 }
5646 
5647 /*
5648  * Software event: cpu wall time clock
5649  */
5650 
5651 static void cpu_clock_event_update(struct perf_event *event)
5652 {
5653 	s64 prev;
5654 	u64 now;
5655 
5656 	now = local_clock();
5657 	prev = local64_xchg(&event->hw.prev_count, now);
5658 	local64_add(now - prev, &event->count);
5659 }
5660 
5661 static void cpu_clock_event_start(struct perf_event *event, int flags)
5662 {
5663 	local64_set(&event->hw.prev_count, local_clock());
5664 	perf_swevent_start_hrtimer(event);
5665 }
5666 
5667 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5668 {
5669 	perf_swevent_cancel_hrtimer(event);
5670 	cpu_clock_event_update(event);
5671 }
5672 
5673 static int cpu_clock_event_add(struct perf_event *event, int flags)
5674 {
5675 	if (flags & PERF_EF_START)
5676 		cpu_clock_event_start(event, flags);
5677 
5678 	return 0;
5679 }
5680 
5681 static void cpu_clock_event_del(struct perf_event *event, int flags)
5682 {
5683 	cpu_clock_event_stop(event, flags);
5684 }
5685 
5686 static void cpu_clock_event_read(struct perf_event *event)
5687 {
5688 	cpu_clock_event_update(event);
5689 }
5690 
5691 static int cpu_clock_event_init(struct perf_event *event)
5692 {
5693 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5694 		return -ENOENT;
5695 
5696 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5697 		return -ENOENT;
5698 
5699 	/*
5700 	 * no branch sampling for software events
5701 	 */
5702 	if (has_branch_stack(event))
5703 		return -EOPNOTSUPP;
5704 
5705 	perf_swevent_init_hrtimer(event);
5706 
5707 	return 0;
5708 }
5709 
5710 static struct pmu perf_cpu_clock = {
5711 	.task_ctx_nr	= perf_sw_context,
5712 
5713 	.event_init	= cpu_clock_event_init,
5714 	.add		= cpu_clock_event_add,
5715 	.del		= cpu_clock_event_del,
5716 	.start		= cpu_clock_event_start,
5717 	.stop		= cpu_clock_event_stop,
5718 	.read		= cpu_clock_event_read,
5719 
5720 	.event_idx	= perf_swevent_event_idx,
5721 };
5722 
5723 /*
5724  * Software event: task time clock
5725  */
5726 
5727 static void task_clock_event_update(struct perf_event *event, u64 now)
5728 {
5729 	u64 prev;
5730 	s64 delta;
5731 
5732 	prev = local64_xchg(&event->hw.prev_count, now);
5733 	delta = now - prev;
5734 	local64_add(delta, &event->count);
5735 }
5736 
5737 static void task_clock_event_start(struct perf_event *event, int flags)
5738 {
5739 	local64_set(&event->hw.prev_count, event->ctx->time);
5740 	perf_swevent_start_hrtimer(event);
5741 }
5742 
5743 static void task_clock_event_stop(struct perf_event *event, int flags)
5744 {
5745 	perf_swevent_cancel_hrtimer(event);
5746 	task_clock_event_update(event, event->ctx->time);
5747 }
5748 
5749 static int task_clock_event_add(struct perf_event *event, int flags)
5750 {
5751 	if (flags & PERF_EF_START)
5752 		task_clock_event_start(event, flags);
5753 
5754 	return 0;
5755 }
5756 
5757 static void task_clock_event_del(struct perf_event *event, int flags)
5758 {
5759 	task_clock_event_stop(event, PERF_EF_UPDATE);
5760 }
5761 
5762 static void task_clock_event_read(struct perf_event *event)
5763 {
5764 	u64 now = perf_clock();
5765 	u64 delta = now - event->ctx->timestamp;
5766 	u64 time = event->ctx->time + delta;
5767 
5768 	task_clock_event_update(event, time);
5769 }
5770 
5771 static int task_clock_event_init(struct perf_event *event)
5772 {
5773 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5774 		return -ENOENT;
5775 
5776 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5777 		return -ENOENT;
5778 
5779 	/*
5780 	 * no branch sampling for software events
5781 	 */
5782 	if (has_branch_stack(event))
5783 		return -EOPNOTSUPP;
5784 
5785 	perf_swevent_init_hrtimer(event);
5786 
5787 	return 0;
5788 }
5789 
5790 static struct pmu perf_task_clock = {
5791 	.task_ctx_nr	= perf_sw_context,
5792 
5793 	.event_init	= task_clock_event_init,
5794 	.add		= task_clock_event_add,
5795 	.del		= task_clock_event_del,
5796 	.start		= task_clock_event_start,
5797 	.stop		= task_clock_event_stop,
5798 	.read		= task_clock_event_read,
5799 
5800 	.event_idx	= perf_swevent_event_idx,
5801 };
5802 
5803 static void perf_pmu_nop_void(struct pmu *pmu)
5804 {
5805 }
5806 
5807 static int perf_pmu_nop_int(struct pmu *pmu)
5808 {
5809 	return 0;
5810 }
5811 
5812 static void perf_pmu_start_txn(struct pmu *pmu)
5813 {
5814 	perf_pmu_disable(pmu);
5815 }
5816 
5817 static int perf_pmu_commit_txn(struct pmu *pmu)
5818 {
5819 	perf_pmu_enable(pmu);
5820 	return 0;
5821 }
5822 
5823 static void perf_pmu_cancel_txn(struct pmu *pmu)
5824 {
5825 	perf_pmu_enable(pmu);
5826 }
5827 
5828 static int perf_event_idx_default(struct perf_event *event)
5829 {
5830 	return event->hw.idx + 1;
5831 }
5832 
5833 /*
5834  * Ensures all contexts with the same task_ctx_nr have the same
5835  * pmu_cpu_context too.
5836  */
5837 static void *find_pmu_context(int ctxn)
5838 {
5839 	struct pmu *pmu;
5840 
5841 	if (ctxn < 0)
5842 		return NULL;
5843 
5844 	list_for_each_entry(pmu, &pmus, entry) {
5845 		if (pmu->task_ctx_nr == ctxn)
5846 			return pmu->pmu_cpu_context;
5847 	}
5848 
5849 	return NULL;
5850 }
5851 
5852 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5853 {
5854 	int cpu;
5855 
5856 	for_each_possible_cpu(cpu) {
5857 		struct perf_cpu_context *cpuctx;
5858 
5859 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5860 
5861 		if (cpuctx->unique_pmu == old_pmu)
5862 			cpuctx->unique_pmu = pmu;
5863 	}
5864 }
5865 
5866 static void free_pmu_context(struct pmu *pmu)
5867 {
5868 	struct pmu *i;
5869 
5870 	mutex_lock(&pmus_lock);
5871 	/*
5872 	 * Like a real lame refcount.
5873 	 */
5874 	list_for_each_entry(i, &pmus, entry) {
5875 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5876 			update_pmu_context(i, pmu);
5877 			goto out;
5878 		}
5879 	}
5880 
5881 	free_percpu(pmu->pmu_cpu_context);
5882 out:
5883 	mutex_unlock(&pmus_lock);
5884 }
5885 static struct idr pmu_idr;
5886 
5887 static ssize_t
5888 type_show(struct device *dev, struct device_attribute *attr, char *page)
5889 {
5890 	struct pmu *pmu = dev_get_drvdata(dev);
5891 
5892 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5893 }
5894 
5895 static struct device_attribute pmu_dev_attrs[] = {
5896        __ATTR_RO(type),
5897        __ATTR_NULL,
5898 };
5899 
5900 static int pmu_bus_running;
5901 static struct bus_type pmu_bus = {
5902 	.name		= "event_source",
5903 	.dev_attrs	= pmu_dev_attrs,
5904 };
5905 
5906 static void pmu_dev_release(struct device *dev)
5907 {
5908 	kfree(dev);
5909 }
5910 
5911 static int pmu_dev_alloc(struct pmu *pmu)
5912 {
5913 	int ret = -ENOMEM;
5914 
5915 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5916 	if (!pmu->dev)
5917 		goto out;
5918 
5919 	pmu->dev->groups = pmu->attr_groups;
5920 	device_initialize(pmu->dev);
5921 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5922 	if (ret)
5923 		goto free_dev;
5924 
5925 	dev_set_drvdata(pmu->dev, pmu);
5926 	pmu->dev->bus = &pmu_bus;
5927 	pmu->dev->release = pmu_dev_release;
5928 	ret = device_add(pmu->dev);
5929 	if (ret)
5930 		goto free_dev;
5931 
5932 out:
5933 	return ret;
5934 
5935 free_dev:
5936 	put_device(pmu->dev);
5937 	goto out;
5938 }
5939 
5940 static struct lock_class_key cpuctx_mutex;
5941 static struct lock_class_key cpuctx_lock;
5942 
5943 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5944 {
5945 	int cpu, ret;
5946 
5947 	mutex_lock(&pmus_lock);
5948 	ret = -ENOMEM;
5949 	pmu->pmu_disable_count = alloc_percpu(int);
5950 	if (!pmu->pmu_disable_count)
5951 		goto unlock;
5952 
5953 	pmu->type = -1;
5954 	if (!name)
5955 		goto skip_type;
5956 	pmu->name = name;
5957 
5958 	if (type < 0) {
5959 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5960 		if (!err)
5961 			goto free_pdc;
5962 
5963 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5964 		if (err) {
5965 			ret = err;
5966 			goto free_pdc;
5967 		}
5968 	}
5969 	pmu->type = type;
5970 
5971 	if (pmu_bus_running) {
5972 		ret = pmu_dev_alloc(pmu);
5973 		if (ret)
5974 			goto free_idr;
5975 	}
5976 
5977 skip_type:
5978 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5979 	if (pmu->pmu_cpu_context)
5980 		goto got_cpu_context;
5981 
5982 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5983 	if (!pmu->pmu_cpu_context)
5984 		goto free_dev;
5985 
5986 	for_each_possible_cpu(cpu) {
5987 		struct perf_cpu_context *cpuctx;
5988 
5989 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5990 		__perf_event_init_context(&cpuctx->ctx);
5991 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5992 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5993 		cpuctx->ctx.type = cpu_context;
5994 		cpuctx->ctx.pmu = pmu;
5995 		cpuctx->jiffies_interval = 1;
5996 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5997 		cpuctx->unique_pmu = pmu;
5998 	}
5999 
6000 got_cpu_context:
6001 	if (!pmu->start_txn) {
6002 		if (pmu->pmu_enable) {
6003 			/*
6004 			 * If we have pmu_enable/pmu_disable calls, install
6005 			 * transaction stubs that use that to try and batch
6006 			 * hardware accesses.
6007 			 */
6008 			pmu->start_txn  = perf_pmu_start_txn;
6009 			pmu->commit_txn = perf_pmu_commit_txn;
6010 			pmu->cancel_txn = perf_pmu_cancel_txn;
6011 		} else {
6012 			pmu->start_txn  = perf_pmu_nop_void;
6013 			pmu->commit_txn = perf_pmu_nop_int;
6014 			pmu->cancel_txn = perf_pmu_nop_void;
6015 		}
6016 	}
6017 
6018 	if (!pmu->pmu_enable) {
6019 		pmu->pmu_enable  = perf_pmu_nop_void;
6020 		pmu->pmu_disable = perf_pmu_nop_void;
6021 	}
6022 
6023 	if (!pmu->event_idx)
6024 		pmu->event_idx = perf_event_idx_default;
6025 
6026 	list_add_rcu(&pmu->entry, &pmus);
6027 	ret = 0;
6028 unlock:
6029 	mutex_unlock(&pmus_lock);
6030 
6031 	return ret;
6032 
6033 free_dev:
6034 	device_del(pmu->dev);
6035 	put_device(pmu->dev);
6036 
6037 free_idr:
6038 	if (pmu->type >= PERF_TYPE_MAX)
6039 		idr_remove(&pmu_idr, pmu->type);
6040 
6041 free_pdc:
6042 	free_percpu(pmu->pmu_disable_count);
6043 	goto unlock;
6044 }
6045 
6046 void perf_pmu_unregister(struct pmu *pmu)
6047 {
6048 	mutex_lock(&pmus_lock);
6049 	list_del_rcu(&pmu->entry);
6050 	mutex_unlock(&pmus_lock);
6051 
6052 	/*
6053 	 * We dereference the pmu list under both SRCU and regular RCU, so
6054 	 * synchronize against both of those.
6055 	 */
6056 	synchronize_srcu(&pmus_srcu);
6057 	synchronize_rcu();
6058 
6059 	free_percpu(pmu->pmu_disable_count);
6060 	if (pmu->type >= PERF_TYPE_MAX)
6061 		idr_remove(&pmu_idr, pmu->type);
6062 	device_del(pmu->dev);
6063 	put_device(pmu->dev);
6064 	free_pmu_context(pmu);
6065 }
6066 
6067 struct pmu *perf_init_event(struct perf_event *event)
6068 {
6069 	struct pmu *pmu = NULL;
6070 	int idx;
6071 	int ret;
6072 
6073 	idx = srcu_read_lock(&pmus_srcu);
6074 
6075 	rcu_read_lock();
6076 	pmu = idr_find(&pmu_idr, event->attr.type);
6077 	rcu_read_unlock();
6078 	if (pmu) {
6079 		event->pmu = pmu;
6080 		ret = pmu->event_init(event);
6081 		if (ret)
6082 			pmu = ERR_PTR(ret);
6083 		goto unlock;
6084 	}
6085 
6086 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6087 		event->pmu = pmu;
6088 		ret = pmu->event_init(event);
6089 		if (!ret)
6090 			goto unlock;
6091 
6092 		if (ret != -ENOENT) {
6093 			pmu = ERR_PTR(ret);
6094 			goto unlock;
6095 		}
6096 	}
6097 	pmu = ERR_PTR(-ENOENT);
6098 unlock:
6099 	srcu_read_unlock(&pmus_srcu, idx);
6100 
6101 	return pmu;
6102 }
6103 
6104 /*
6105  * Allocate and initialize a event structure
6106  */
6107 static struct perf_event *
6108 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6109 		 struct task_struct *task,
6110 		 struct perf_event *group_leader,
6111 		 struct perf_event *parent_event,
6112 		 perf_overflow_handler_t overflow_handler,
6113 		 void *context)
6114 {
6115 	struct pmu *pmu;
6116 	struct perf_event *event;
6117 	struct hw_perf_event *hwc;
6118 	long err;
6119 
6120 	if ((unsigned)cpu >= nr_cpu_ids) {
6121 		if (!task || cpu != -1)
6122 			return ERR_PTR(-EINVAL);
6123 	}
6124 
6125 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6126 	if (!event)
6127 		return ERR_PTR(-ENOMEM);
6128 
6129 	/*
6130 	 * Single events are their own group leaders, with an
6131 	 * empty sibling list:
6132 	 */
6133 	if (!group_leader)
6134 		group_leader = event;
6135 
6136 	mutex_init(&event->child_mutex);
6137 	INIT_LIST_HEAD(&event->child_list);
6138 
6139 	INIT_LIST_HEAD(&event->group_entry);
6140 	INIT_LIST_HEAD(&event->event_entry);
6141 	INIT_LIST_HEAD(&event->sibling_list);
6142 	INIT_LIST_HEAD(&event->rb_entry);
6143 
6144 	init_waitqueue_head(&event->waitq);
6145 	init_irq_work(&event->pending, perf_pending_event);
6146 
6147 	mutex_init(&event->mmap_mutex);
6148 
6149 	atomic_long_set(&event->refcount, 1);
6150 	event->cpu		= cpu;
6151 	event->attr		= *attr;
6152 	event->group_leader	= group_leader;
6153 	event->pmu		= NULL;
6154 	event->oncpu		= -1;
6155 
6156 	event->parent		= parent_event;
6157 
6158 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
6159 	event->id		= atomic64_inc_return(&perf_event_id);
6160 
6161 	event->state		= PERF_EVENT_STATE_INACTIVE;
6162 
6163 	if (task) {
6164 		event->attach_state = PERF_ATTACH_TASK;
6165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6166 		/*
6167 		 * hw_breakpoint is a bit difficult here..
6168 		 */
6169 		if (attr->type == PERF_TYPE_BREAKPOINT)
6170 			event->hw.bp_target = task;
6171 #endif
6172 	}
6173 
6174 	if (!overflow_handler && parent_event) {
6175 		overflow_handler = parent_event->overflow_handler;
6176 		context = parent_event->overflow_handler_context;
6177 	}
6178 
6179 	event->overflow_handler	= overflow_handler;
6180 	event->overflow_handler_context = context;
6181 
6182 	if (attr->disabled)
6183 		event->state = PERF_EVENT_STATE_OFF;
6184 
6185 	pmu = NULL;
6186 
6187 	hwc = &event->hw;
6188 	hwc->sample_period = attr->sample_period;
6189 	if (attr->freq && attr->sample_freq)
6190 		hwc->sample_period = 1;
6191 	hwc->last_period = hwc->sample_period;
6192 
6193 	local64_set(&hwc->period_left, hwc->sample_period);
6194 
6195 	/*
6196 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6197 	 */
6198 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6199 		goto done;
6200 
6201 	pmu = perf_init_event(event);
6202 
6203 done:
6204 	err = 0;
6205 	if (!pmu)
6206 		err = -EINVAL;
6207 	else if (IS_ERR(pmu))
6208 		err = PTR_ERR(pmu);
6209 
6210 	if (err) {
6211 		if (event->ns)
6212 			put_pid_ns(event->ns);
6213 		kfree(event);
6214 		return ERR_PTR(err);
6215 	}
6216 
6217 	if (!event->parent) {
6218 		if (event->attach_state & PERF_ATTACH_TASK)
6219 			static_key_slow_inc(&perf_sched_events.key);
6220 		if (event->attr.mmap || event->attr.mmap_data)
6221 			atomic_inc(&nr_mmap_events);
6222 		if (event->attr.comm)
6223 			atomic_inc(&nr_comm_events);
6224 		if (event->attr.task)
6225 			atomic_inc(&nr_task_events);
6226 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6227 			err = get_callchain_buffers();
6228 			if (err) {
6229 				free_event(event);
6230 				return ERR_PTR(err);
6231 			}
6232 		}
6233 		if (has_branch_stack(event)) {
6234 			static_key_slow_inc(&perf_sched_events.key);
6235 			if (!(event->attach_state & PERF_ATTACH_TASK))
6236 				atomic_inc(&per_cpu(perf_branch_stack_events,
6237 						    event->cpu));
6238 		}
6239 	}
6240 
6241 	return event;
6242 }
6243 
6244 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6245 			  struct perf_event_attr *attr)
6246 {
6247 	u32 size;
6248 	int ret;
6249 
6250 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6251 		return -EFAULT;
6252 
6253 	/*
6254 	 * zero the full structure, so that a short copy will be nice.
6255 	 */
6256 	memset(attr, 0, sizeof(*attr));
6257 
6258 	ret = get_user(size, &uattr->size);
6259 	if (ret)
6260 		return ret;
6261 
6262 	if (size > PAGE_SIZE)	/* silly large */
6263 		goto err_size;
6264 
6265 	if (!size)		/* abi compat */
6266 		size = PERF_ATTR_SIZE_VER0;
6267 
6268 	if (size < PERF_ATTR_SIZE_VER0)
6269 		goto err_size;
6270 
6271 	/*
6272 	 * If we're handed a bigger struct than we know of,
6273 	 * ensure all the unknown bits are 0 - i.e. new
6274 	 * user-space does not rely on any kernel feature
6275 	 * extensions we dont know about yet.
6276 	 */
6277 	if (size > sizeof(*attr)) {
6278 		unsigned char __user *addr;
6279 		unsigned char __user *end;
6280 		unsigned char val;
6281 
6282 		addr = (void __user *)uattr + sizeof(*attr);
6283 		end  = (void __user *)uattr + size;
6284 
6285 		for (; addr < end; addr++) {
6286 			ret = get_user(val, addr);
6287 			if (ret)
6288 				return ret;
6289 			if (val)
6290 				goto err_size;
6291 		}
6292 		size = sizeof(*attr);
6293 	}
6294 
6295 	ret = copy_from_user(attr, uattr, size);
6296 	if (ret)
6297 		return -EFAULT;
6298 
6299 	if (attr->__reserved_1)
6300 		return -EINVAL;
6301 
6302 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6303 		return -EINVAL;
6304 
6305 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6306 		return -EINVAL;
6307 
6308 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6309 		u64 mask = attr->branch_sample_type;
6310 
6311 		/* only using defined bits */
6312 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6313 			return -EINVAL;
6314 
6315 		/* at least one branch bit must be set */
6316 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6317 			return -EINVAL;
6318 
6319 		/* kernel level capture: check permissions */
6320 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6321 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6322 			return -EACCES;
6323 
6324 		/* propagate priv level, when not set for branch */
6325 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6326 
6327 			/* exclude_kernel checked on syscall entry */
6328 			if (!attr->exclude_kernel)
6329 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
6330 
6331 			if (!attr->exclude_user)
6332 				mask |= PERF_SAMPLE_BRANCH_USER;
6333 
6334 			if (!attr->exclude_hv)
6335 				mask |= PERF_SAMPLE_BRANCH_HV;
6336 			/*
6337 			 * adjust user setting (for HW filter setup)
6338 			 */
6339 			attr->branch_sample_type = mask;
6340 		}
6341 	}
6342 
6343 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6344 		ret = perf_reg_validate(attr->sample_regs_user);
6345 		if (ret)
6346 			return ret;
6347 	}
6348 
6349 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6350 		if (!arch_perf_have_user_stack_dump())
6351 			return -ENOSYS;
6352 
6353 		/*
6354 		 * We have __u32 type for the size, but so far
6355 		 * we can only use __u16 as maximum due to the
6356 		 * __u16 sample size limit.
6357 		 */
6358 		if (attr->sample_stack_user >= USHRT_MAX)
6359 			ret = -EINVAL;
6360 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6361 			ret = -EINVAL;
6362 	}
6363 
6364 out:
6365 	return ret;
6366 
6367 err_size:
6368 	put_user(sizeof(*attr), &uattr->size);
6369 	ret = -E2BIG;
6370 	goto out;
6371 }
6372 
6373 static int
6374 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6375 {
6376 	struct ring_buffer *rb = NULL, *old_rb = NULL;
6377 	int ret = -EINVAL;
6378 
6379 	if (!output_event)
6380 		goto set;
6381 
6382 	/* don't allow circular references */
6383 	if (event == output_event)
6384 		goto out;
6385 
6386 	/*
6387 	 * Don't allow cross-cpu buffers
6388 	 */
6389 	if (output_event->cpu != event->cpu)
6390 		goto out;
6391 
6392 	/*
6393 	 * If its not a per-cpu rb, it must be the same task.
6394 	 */
6395 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6396 		goto out;
6397 
6398 set:
6399 	mutex_lock(&event->mmap_mutex);
6400 	/* Can't redirect output if we've got an active mmap() */
6401 	if (atomic_read(&event->mmap_count))
6402 		goto unlock;
6403 
6404 	if (output_event) {
6405 		/* get the rb we want to redirect to */
6406 		rb = ring_buffer_get(output_event);
6407 		if (!rb)
6408 			goto unlock;
6409 	}
6410 
6411 	old_rb = event->rb;
6412 	rcu_assign_pointer(event->rb, rb);
6413 	if (old_rb)
6414 		ring_buffer_detach(event, old_rb);
6415 	ret = 0;
6416 unlock:
6417 	mutex_unlock(&event->mmap_mutex);
6418 
6419 	if (old_rb)
6420 		ring_buffer_put(old_rb);
6421 out:
6422 	return ret;
6423 }
6424 
6425 /**
6426  * sys_perf_event_open - open a performance event, associate it to a task/cpu
6427  *
6428  * @attr_uptr:	event_id type attributes for monitoring/sampling
6429  * @pid:		target pid
6430  * @cpu:		target cpu
6431  * @group_fd:		group leader event fd
6432  */
6433 SYSCALL_DEFINE5(perf_event_open,
6434 		struct perf_event_attr __user *, attr_uptr,
6435 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6436 {
6437 	struct perf_event *group_leader = NULL, *output_event = NULL;
6438 	struct perf_event *event, *sibling;
6439 	struct perf_event_attr attr;
6440 	struct perf_event_context *ctx;
6441 	struct file *event_file = NULL;
6442 	struct fd group = {NULL, 0};
6443 	struct task_struct *task = NULL;
6444 	struct pmu *pmu;
6445 	int event_fd;
6446 	int move_group = 0;
6447 	int err;
6448 
6449 	/* for future expandability... */
6450 	if (flags & ~PERF_FLAG_ALL)
6451 		return -EINVAL;
6452 
6453 	err = perf_copy_attr(attr_uptr, &attr);
6454 	if (err)
6455 		return err;
6456 
6457 	if (!attr.exclude_kernel) {
6458 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6459 			return -EACCES;
6460 	}
6461 
6462 	if (attr.freq) {
6463 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6464 			return -EINVAL;
6465 	}
6466 
6467 	/*
6468 	 * In cgroup mode, the pid argument is used to pass the fd
6469 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6470 	 * designates the cpu on which to monitor threads from that
6471 	 * cgroup.
6472 	 */
6473 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6474 		return -EINVAL;
6475 
6476 	event_fd = get_unused_fd();
6477 	if (event_fd < 0)
6478 		return event_fd;
6479 
6480 	if (group_fd != -1) {
6481 		err = perf_fget_light(group_fd, &group);
6482 		if (err)
6483 			goto err_fd;
6484 		group_leader = group.file->private_data;
6485 		if (flags & PERF_FLAG_FD_OUTPUT)
6486 			output_event = group_leader;
6487 		if (flags & PERF_FLAG_FD_NO_GROUP)
6488 			group_leader = NULL;
6489 	}
6490 
6491 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6492 		task = find_lively_task_by_vpid(pid);
6493 		if (IS_ERR(task)) {
6494 			err = PTR_ERR(task);
6495 			goto err_group_fd;
6496 		}
6497 	}
6498 
6499 	get_online_cpus();
6500 
6501 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6502 				 NULL, NULL);
6503 	if (IS_ERR(event)) {
6504 		err = PTR_ERR(event);
6505 		goto err_task;
6506 	}
6507 
6508 	if (flags & PERF_FLAG_PID_CGROUP) {
6509 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6510 		if (err)
6511 			goto err_alloc;
6512 		/*
6513 		 * one more event:
6514 		 * - that has cgroup constraint on event->cpu
6515 		 * - that may need work on context switch
6516 		 */
6517 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6518 		static_key_slow_inc(&perf_sched_events.key);
6519 	}
6520 
6521 	/*
6522 	 * Special case software events and allow them to be part of
6523 	 * any hardware group.
6524 	 */
6525 	pmu = event->pmu;
6526 
6527 	if (group_leader &&
6528 	    (is_software_event(event) != is_software_event(group_leader))) {
6529 		if (is_software_event(event)) {
6530 			/*
6531 			 * If event and group_leader are not both a software
6532 			 * event, and event is, then group leader is not.
6533 			 *
6534 			 * Allow the addition of software events to !software
6535 			 * groups, this is safe because software events never
6536 			 * fail to schedule.
6537 			 */
6538 			pmu = group_leader->pmu;
6539 		} else if (is_software_event(group_leader) &&
6540 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6541 			/*
6542 			 * In case the group is a pure software group, and we
6543 			 * try to add a hardware event, move the whole group to
6544 			 * the hardware context.
6545 			 */
6546 			move_group = 1;
6547 		}
6548 	}
6549 
6550 	/*
6551 	 * Get the target context (task or percpu):
6552 	 */
6553 	ctx = find_get_context(pmu, task, event->cpu);
6554 	if (IS_ERR(ctx)) {
6555 		err = PTR_ERR(ctx);
6556 		goto err_alloc;
6557 	}
6558 
6559 	if (task) {
6560 		put_task_struct(task);
6561 		task = NULL;
6562 	}
6563 
6564 	/*
6565 	 * Look up the group leader (we will attach this event to it):
6566 	 */
6567 	if (group_leader) {
6568 		err = -EINVAL;
6569 
6570 		/*
6571 		 * Do not allow a recursive hierarchy (this new sibling
6572 		 * becoming part of another group-sibling):
6573 		 */
6574 		if (group_leader->group_leader != group_leader)
6575 			goto err_context;
6576 		/*
6577 		 * Do not allow to attach to a group in a different
6578 		 * task or CPU context:
6579 		 */
6580 		if (move_group) {
6581 			if (group_leader->ctx->type != ctx->type)
6582 				goto err_context;
6583 		} else {
6584 			if (group_leader->ctx != ctx)
6585 				goto err_context;
6586 		}
6587 
6588 		/*
6589 		 * Only a group leader can be exclusive or pinned
6590 		 */
6591 		if (attr.exclusive || attr.pinned)
6592 			goto err_context;
6593 	}
6594 
6595 	if (output_event) {
6596 		err = perf_event_set_output(event, output_event);
6597 		if (err)
6598 			goto err_context;
6599 	}
6600 
6601 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6602 	if (IS_ERR(event_file)) {
6603 		err = PTR_ERR(event_file);
6604 		goto err_context;
6605 	}
6606 
6607 	if (move_group) {
6608 		struct perf_event_context *gctx = group_leader->ctx;
6609 
6610 		mutex_lock(&gctx->mutex);
6611 		perf_remove_from_context(group_leader);
6612 		list_for_each_entry(sibling, &group_leader->sibling_list,
6613 				    group_entry) {
6614 			perf_remove_from_context(sibling);
6615 			put_ctx(gctx);
6616 		}
6617 		mutex_unlock(&gctx->mutex);
6618 		put_ctx(gctx);
6619 	}
6620 
6621 	WARN_ON_ONCE(ctx->parent_ctx);
6622 	mutex_lock(&ctx->mutex);
6623 
6624 	if (move_group) {
6625 		synchronize_rcu();
6626 		perf_install_in_context(ctx, group_leader, event->cpu);
6627 		get_ctx(ctx);
6628 		list_for_each_entry(sibling, &group_leader->sibling_list,
6629 				    group_entry) {
6630 			perf_install_in_context(ctx, sibling, event->cpu);
6631 			get_ctx(ctx);
6632 		}
6633 	}
6634 
6635 	perf_install_in_context(ctx, event, event->cpu);
6636 	++ctx->generation;
6637 	perf_unpin_context(ctx);
6638 	mutex_unlock(&ctx->mutex);
6639 
6640 	put_online_cpus();
6641 
6642 	event->owner = current;
6643 
6644 	mutex_lock(&current->perf_event_mutex);
6645 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6646 	mutex_unlock(&current->perf_event_mutex);
6647 
6648 	/*
6649 	 * Precalculate sample_data sizes
6650 	 */
6651 	perf_event__header_size(event);
6652 	perf_event__id_header_size(event);
6653 
6654 	/*
6655 	 * Drop the reference on the group_event after placing the
6656 	 * new event on the sibling_list. This ensures destruction
6657 	 * of the group leader will find the pointer to itself in
6658 	 * perf_group_detach().
6659 	 */
6660 	fdput(group);
6661 	fd_install(event_fd, event_file);
6662 	return event_fd;
6663 
6664 err_context:
6665 	perf_unpin_context(ctx);
6666 	put_ctx(ctx);
6667 err_alloc:
6668 	free_event(event);
6669 err_task:
6670 	put_online_cpus();
6671 	if (task)
6672 		put_task_struct(task);
6673 err_group_fd:
6674 	fdput(group);
6675 err_fd:
6676 	put_unused_fd(event_fd);
6677 	return err;
6678 }
6679 
6680 /**
6681  * perf_event_create_kernel_counter
6682  *
6683  * @attr: attributes of the counter to create
6684  * @cpu: cpu in which the counter is bound
6685  * @task: task to profile (NULL for percpu)
6686  */
6687 struct perf_event *
6688 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6689 				 struct task_struct *task,
6690 				 perf_overflow_handler_t overflow_handler,
6691 				 void *context)
6692 {
6693 	struct perf_event_context *ctx;
6694 	struct perf_event *event;
6695 	int err;
6696 
6697 	/*
6698 	 * Get the target context (task or percpu):
6699 	 */
6700 
6701 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6702 				 overflow_handler, context);
6703 	if (IS_ERR(event)) {
6704 		err = PTR_ERR(event);
6705 		goto err;
6706 	}
6707 
6708 	ctx = find_get_context(event->pmu, task, cpu);
6709 	if (IS_ERR(ctx)) {
6710 		err = PTR_ERR(ctx);
6711 		goto err_free;
6712 	}
6713 
6714 	WARN_ON_ONCE(ctx->parent_ctx);
6715 	mutex_lock(&ctx->mutex);
6716 	perf_install_in_context(ctx, event, cpu);
6717 	++ctx->generation;
6718 	perf_unpin_context(ctx);
6719 	mutex_unlock(&ctx->mutex);
6720 
6721 	return event;
6722 
6723 err_free:
6724 	free_event(event);
6725 err:
6726 	return ERR_PTR(err);
6727 }
6728 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6729 
6730 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6731 {
6732 	struct perf_event_context *src_ctx;
6733 	struct perf_event_context *dst_ctx;
6734 	struct perf_event *event, *tmp;
6735 	LIST_HEAD(events);
6736 
6737 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6738 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6739 
6740 	mutex_lock(&src_ctx->mutex);
6741 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6742 				 event_entry) {
6743 		perf_remove_from_context(event);
6744 		put_ctx(src_ctx);
6745 		list_add(&event->event_entry, &events);
6746 	}
6747 	mutex_unlock(&src_ctx->mutex);
6748 
6749 	synchronize_rcu();
6750 
6751 	mutex_lock(&dst_ctx->mutex);
6752 	list_for_each_entry_safe(event, tmp, &events, event_entry) {
6753 		list_del(&event->event_entry);
6754 		if (event->state >= PERF_EVENT_STATE_OFF)
6755 			event->state = PERF_EVENT_STATE_INACTIVE;
6756 		perf_install_in_context(dst_ctx, event, dst_cpu);
6757 		get_ctx(dst_ctx);
6758 	}
6759 	mutex_unlock(&dst_ctx->mutex);
6760 }
6761 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6762 
6763 static void sync_child_event(struct perf_event *child_event,
6764 			       struct task_struct *child)
6765 {
6766 	struct perf_event *parent_event = child_event->parent;
6767 	u64 child_val;
6768 
6769 	if (child_event->attr.inherit_stat)
6770 		perf_event_read_event(child_event, child);
6771 
6772 	child_val = perf_event_count(child_event);
6773 
6774 	/*
6775 	 * Add back the child's count to the parent's count:
6776 	 */
6777 	atomic64_add(child_val, &parent_event->child_count);
6778 	atomic64_add(child_event->total_time_enabled,
6779 		     &parent_event->child_total_time_enabled);
6780 	atomic64_add(child_event->total_time_running,
6781 		     &parent_event->child_total_time_running);
6782 
6783 	/*
6784 	 * Remove this event from the parent's list
6785 	 */
6786 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6787 	mutex_lock(&parent_event->child_mutex);
6788 	list_del_init(&child_event->child_list);
6789 	mutex_unlock(&parent_event->child_mutex);
6790 
6791 	/*
6792 	 * Release the parent event, if this was the last
6793 	 * reference to it.
6794 	 */
6795 	put_event(parent_event);
6796 }
6797 
6798 static void
6799 __perf_event_exit_task(struct perf_event *child_event,
6800 			 struct perf_event_context *child_ctx,
6801 			 struct task_struct *child)
6802 {
6803 	if (child_event->parent) {
6804 		raw_spin_lock_irq(&child_ctx->lock);
6805 		perf_group_detach(child_event);
6806 		raw_spin_unlock_irq(&child_ctx->lock);
6807 	}
6808 
6809 	perf_remove_from_context(child_event);
6810 
6811 	/*
6812 	 * It can happen that the parent exits first, and has events
6813 	 * that are still around due to the child reference. These
6814 	 * events need to be zapped.
6815 	 */
6816 	if (child_event->parent) {
6817 		sync_child_event(child_event, child);
6818 		free_event(child_event);
6819 	}
6820 }
6821 
6822 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6823 {
6824 	struct perf_event *child_event, *tmp;
6825 	struct perf_event_context *child_ctx;
6826 	unsigned long flags;
6827 
6828 	if (likely(!child->perf_event_ctxp[ctxn])) {
6829 		perf_event_task(child, NULL, 0);
6830 		return;
6831 	}
6832 
6833 	local_irq_save(flags);
6834 	/*
6835 	 * We can't reschedule here because interrupts are disabled,
6836 	 * and either child is current or it is a task that can't be
6837 	 * scheduled, so we are now safe from rescheduling changing
6838 	 * our context.
6839 	 */
6840 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6841 
6842 	/*
6843 	 * Take the context lock here so that if find_get_context is
6844 	 * reading child->perf_event_ctxp, we wait until it has
6845 	 * incremented the context's refcount before we do put_ctx below.
6846 	 */
6847 	raw_spin_lock(&child_ctx->lock);
6848 	task_ctx_sched_out(child_ctx);
6849 	child->perf_event_ctxp[ctxn] = NULL;
6850 	/*
6851 	 * If this context is a clone; unclone it so it can't get
6852 	 * swapped to another process while we're removing all
6853 	 * the events from it.
6854 	 */
6855 	unclone_ctx(child_ctx);
6856 	update_context_time(child_ctx);
6857 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6858 
6859 	/*
6860 	 * Report the task dead after unscheduling the events so that we
6861 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6862 	 * get a few PERF_RECORD_READ events.
6863 	 */
6864 	perf_event_task(child, child_ctx, 0);
6865 
6866 	/*
6867 	 * We can recurse on the same lock type through:
6868 	 *
6869 	 *   __perf_event_exit_task()
6870 	 *     sync_child_event()
6871 	 *       put_event()
6872 	 *         mutex_lock(&ctx->mutex)
6873 	 *
6874 	 * But since its the parent context it won't be the same instance.
6875 	 */
6876 	mutex_lock(&child_ctx->mutex);
6877 
6878 again:
6879 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6880 				 group_entry)
6881 		__perf_event_exit_task(child_event, child_ctx, child);
6882 
6883 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6884 				 group_entry)
6885 		__perf_event_exit_task(child_event, child_ctx, child);
6886 
6887 	/*
6888 	 * If the last event was a group event, it will have appended all
6889 	 * its siblings to the list, but we obtained 'tmp' before that which
6890 	 * will still point to the list head terminating the iteration.
6891 	 */
6892 	if (!list_empty(&child_ctx->pinned_groups) ||
6893 	    !list_empty(&child_ctx->flexible_groups))
6894 		goto again;
6895 
6896 	mutex_unlock(&child_ctx->mutex);
6897 
6898 	put_ctx(child_ctx);
6899 }
6900 
6901 /*
6902  * When a child task exits, feed back event values to parent events.
6903  */
6904 void perf_event_exit_task(struct task_struct *child)
6905 {
6906 	struct perf_event *event, *tmp;
6907 	int ctxn;
6908 
6909 	mutex_lock(&child->perf_event_mutex);
6910 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6911 				 owner_entry) {
6912 		list_del_init(&event->owner_entry);
6913 
6914 		/*
6915 		 * Ensure the list deletion is visible before we clear
6916 		 * the owner, closes a race against perf_release() where
6917 		 * we need to serialize on the owner->perf_event_mutex.
6918 		 */
6919 		smp_wmb();
6920 		event->owner = NULL;
6921 	}
6922 	mutex_unlock(&child->perf_event_mutex);
6923 
6924 	for_each_task_context_nr(ctxn)
6925 		perf_event_exit_task_context(child, ctxn);
6926 }
6927 
6928 static void perf_free_event(struct perf_event *event,
6929 			    struct perf_event_context *ctx)
6930 {
6931 	struct perf_event *parent = event->parent;
6932 
6933 	if (WARN_ON_ONCE(!parent))
6934 		return;
6935 
6936 	mutex_lock(&parent->child_mutex);
6937 	list_del_init(&event->child_list);
6938 	mutex_unlock(&parent->child_mutex);
6939 
6940 	put_event(parent);
6941 
6942 	perf_group_detach(event);
6943 	list_del_event(event, ctx);
6944 	free_event(event);
6945 }
6946 
6947 /*
6948  * free an unexposed, unused context as created by inheritance by
6949  * perf_event_init_task below, used by fork() in case of fail.
6950  */
6951 void perf_event_free_task(struct task_struct *task)
6952 {
6953 	struct perf_event_context *ctx;
6954 	struct perf_event *event, *tmp;
6955 	int ctxn;
6956 
6957 	for_each_task_context_nr(ctxn) {
6958 		ctx = task->perf_event_ctxp[ctxn];
6959 		if (!ctx)
6960 			continue;
6961 
6962 		mutex_lock(&ctx->mutex);
6963 again:
6964 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6965 				group_entry)
6966 			perf_free_event(event, ctx);
6967 
6968 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6969 				group_entry)
6970 			perf_free_event(event, ctx);
6971 
6972 		if (!list_empty(&ctx->pinned_groups) ||
6973 				!list_empty(&ctx->flexible_groups))
6974 			goto again;
6975 
6976 		mutex_unlock(&ctx->mutex);
6977 
6978 		put_ctx(ctx);
6979 	}
6980 }
6981 
6982 void perf_event_delayed_put(struct task_struct *task)
6983 {
6984 	int ctxn;
6985 
6986 	for_each_task_context_nr(ctxn)
6987 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6988 }
6989 
6990 /*
6991  * inherit a event from parent task to child task:
6992  */
6993 static struct perf_event *
6994 inherit_event(struct perf_event *parent_event,
6995 	      struct task_struct *parent,
6996 	      struct perf_event_context *parent_ctx,
6997 	      struct task_struct *child,
6998 	      struct perf_event *group_leader,
6999 	      struct perf_event_context *child_ctx)
7000 {
7001 	struct perf_event *child_event;
7002 	unsigned long flags;
7003 
7004 	/*
7005 	 * Instead of creating recursive hierarchies of events,
7006 	 * we link inherited events back to the original parent,
7007 	 * which has a filp for sure, which we use as the reference
7008 	 * count:
7009 	 */
7010 	if (parent_event->parent)
7011 		parent_event = parent_event->parent;
7012 
7013 	child_event = perf_event_alloc(&parent_event->attr,
7014 					   parent_event->cpu,
7015 					   child,
7016 					   group_leader, parent_event,
7017 				           NULL, NULL);
7018 	if (IS_ERR(child_event))
7019 		return child_event;
7020 
7021 	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7022 		free_event(child_event);
7023 		return NULL;
7024 	}
7025 
7026 	get_ctx(child_ctx);
7027 
7028 	/*
7029 	 * Make the child state follow the state of the parent event,
7030 	 * not its attr.disabled bit.  We hold the parent's mutex,
7031 	 * so we won't race with perf_event_{en, dis}able_family.
7032 	 */
7033 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7034 		child_event->state = PERF_EVENT_STATE_INACTIVE;
7035 	else
7036 		child_event->state = PERF_EVENT_STATE_OFF;
7037 
7038 	if (parent_event->attr.freq) {
7039 		u64 sample_period = parent_event->hw.sample_period;
7040 		struct hw_perf_event *hwc = &child_event->hw;
7041 
7042 		hwc->sample_period = sample_period;
7043 		hwc->last_period   = sample_period;
7044 
7045 		local64_set(&hwc->period_left, sample_period);
7046 	}
7047 
7048 	child_event->ctx = child_ctx;
7049 	child_event->overflow_handler = parent_event->overflow_handler;
7050 	child_event->overflow_handler_context
7051 		= parent_event->overflow_handler_context;
7052 
7053 	/*
7054 	 * Precalculate sample_data sizes
7055 	 */
7056 	perf_event__header_size(child_event);
7057 	perf_event__id_header_size(child_event);
7058 
7059 	/*
7060 	 * Link it up in the child's context:
7061 	 */
7062 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
7063 	add_event_to_ctx(child_event, child_ctx);
7064 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7065 
7066 	/*
7067 	 * Link this into the parent event's child list
7068 	 */
7069 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7070 	mutex_lock(&parent_event->child_mutex);
7071 	list_add_tail(&child_event->child_list, &parent_event->child_list);
7072 	mutex_unlock(&parent_event->child_mutex);
7073 
7074 	return child_event;
7075 }
7076 
7077 static int inherit_group(struct perf_event *parent_event,
7078 	      struct task_struct *parent,
7079 	      struct perf_event_context *parent_ctx,
7080 	      struct task_struct *child,
7081 	      struct perf_event_context *child_ctx)
7082 {
7083 	struct perf_event *leader;
7084 	struct perf_event *sub;
7085 	struct perf_event *child_ctr;
7086 
7087 	leader = inherit_event(parent_event, parent, parent_ctx,
7088 				 child, NULL, child_ctx);
7089 	if (IS_ERR(leader))
7090 		return PTR_ERR(leader);
7091 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7092 		child_ctr = inherit_event(sub, parent, parent_ctx,
7093 					    child, leader, child_ctx);
7094 		if (IS_ERR(child_ctr))
7095 			return PTR_ERR(child_ctr);
7096 	}
7097 	return 0;
7098 }
7099 
7100 static int
7101 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7102 		   struct perf_event_context *parent_ctx,
7103 		   struct task_struct *child, int ctxn,
7104 		   int *inherited_all)
7105 {
7106 	int ret;
7107 	struct perf_event_context *child_ctx;
7108 
7109 	if (!event->attr.inherit) {
7110 		*inherited_all = 0;
7111 		return 0;
7112 	}
7113 
7114 	child_ctx = child->perf_event_ctxp[ctxn];
7115 	if (!child_ctx) {
7116 		/*
7117 		 * This is executed from the parent task context, so
7118 		 * inherit events that have been marked for cloning.
7119 		 * First allocate and initialize a context for the
7120 		 * child.
7121 		 */
7122 
7123 		child_ctx = alloc_perf_context(event->pmu, child);
7124 		if (!child_ctx)
7125 			return -ENOMEM;
7126 
7127 		child->perf_event_ctxp[ctxn] = child_ctx;
7128 	}
7129 
7130 	ret = inherit_group(event, parent, parent_ctx,
7131 			    child, child_ctx);
7132 
7133 	if (ret)
7134 		*inherited_all = 0;
7135 
7136 	return ret;
7137 }
7138 
7139 /*
7140  * Initialize the perf_event context in task_struct
7141  */
7142 int perf_event_init_context(struct task_struct *child, int ctxn)
7143 {
7144 	struct perf_event_context *child_ctx, *parent_ctx;
7145 	struct perf_event_context *cloned_ctx;
7146 	struct perf_event *event;
7147 	struct task_struct *parent = current;
7148 	int inherited_all = 1;
7149 	unsigned long flags;
7150 	int ret = 0;
7151 
7152 	if (likely(!parent->perf_event_ctxp[ctxn]))
7153 		return 0;
7154 
7155 	/*
7156 	 * If the parent's context is a clone, pin it so it won't get
7157 	 * swapped under us.
7158 	 */
7159 	parent_ctx = perf_pin_task_context(parent, ctxn);
7160 
7161 	/*
7162 	 * No need to check if parent_ctx != NULL here; since we saw
7163 	 * it non-NULL earlier, the only reason for it to become NULL
7164 	 * is if we exit, and since we're currently in the middle of
7165 	 * a fork we can't be exiting at the same time.
7166 	 */
7167 
7168 	/*
7169 	 * Lock the parent list. No need to lock the child - not PID
7170 	 * hashed yet and not running, so nobody can access it.
7171 	 */
7172 	mutex_lock(&parent_ctx->mutex);
7173 
7174 	/*
7175 	 * We dont have to disable NMIs - we are only looking at
7176 	 * the list, not manipulating it:
7177 	 */
7178 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7179 		ret = inherit_task_group(event, parent, parent_ctx,
7180 					 child, ctxn, &inherited_all);
7181 		if (ret)
7182 			break;
7183 	}
7184 
7185 	/*
7186 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
7187 	 * to allocations, but we need to prevent rotation because
7188 	 * rotate_ctx() will change the list from interrupt context.
7189 	 */
7190 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7191 	parent_ctx->rotate_disable = 1;
7192 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7193 
7194 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7195 		ret = inherit_task_group(event, parent, parent_ctx,
7196 					 child, ctxn, &inherited_all);
7197 		if (ret)
7198 			break;
7199 	}
7200 
7201 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7202 	parent_ctx->rotate_disable = 0;
7203 
7204 	child_ctx = child->perf_event_ctxp[ctxn];
7205 
7206 	if (child_ctx && inherited_all) {
7207 		/*
7208 		 * Mark the child context as a clone of the parent
7209 		 * context, or of whatever the parent is a clone of.
7210 		 *
7211 		 * Note that if the parent is a clone, the holding of
7212 		 * parent_ctx->lock avoids it from being uncloned.
7213 		 */
7214 		cloned_ctx = parent_ctx->parent_ctx;
7215 		if (cloned_ctx) {
7216 			child_ctx->parent_ctx = cloned_ctx;
7217 			child_ctx->parent_gen = parent_ctx->parent_gen;
7218 		} else {
7219 			child_ctx->parent_ctx = parent_ctx;
7220 			child_ctx->parent_gen = parent_ctx->generation;
7221 		}
7222 		get_ctx(child_ctx->parent_ctx);
7223 	}
7224 
7225 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7226 	mutex_unlock(&parent_ctx->mutex);
7227 
7228 	perf_unpin_context(parent_ctx);
7229 	put_ctx(parent_ctx);
7230 
7231 	return ret;
7232 }
7233 
7234 /*
7235  * Initialize the perf_event context in task_struct
7236  */
7237 int perf_event_init_task(struct task_struct *child)
7238 {
7239 	int ctxn, ret;
7240 
7241 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7242 	mutex_init(&child->perf_event_mutex);
7243 	INIT_LIST_HEAD(&child->perf_event_list);
7244 
7245 	for_each_task_context_nr(ctxn) {
7246 		ret = perf_event_init_context(child, ctxn);
7247 		if (ret)
7248 			return ret;
7249 	}
7250 
7251 	return 0;
7252 }
7253 
7254 static void __init perf_event_init_all_cpus(void)
7255 {
7256 	struct swevent_htable *swhash;
7257 	int cpu;
7258 
7259 	for_each_possible_cpu(cpu) {
7260 		swhash = &per_cpu(swevent_htable, cpu);
7261 		mutex_init(&swhash->hlist_mutex);
7262 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7263 	}
7264 }
7265 
7266 static void __cpuinit perf_event_init_cpu(int cpu)
7267 {
7268 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7269 
7270 	mutex_lock(&swhash->hlist_mutex);
7271 	if (swhash->hlist_refcount > 0) {
7272 		struct swevent_hlist *hlist;
7273 
7274 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7275 		WARN_ON(!hlist);
7276 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7277 	}
7278 	mutex_unlock(&swhash->hlist_mutex);
7279 }
7280 
7281 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7282 static void perf_pmu_rotate_stop(struct pmu *pmu)
7283 {
7284 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7285 
7286 	WARN_ON(!irqs_disabled());
7287 
7288 	list_del_init(&cpuctx->rotation_list);
7289 }
7290 
7291 static void __perf_event_exit_context(void *__info)
7292 {
7293 	struct perf_event_context *ctx = __info;
7294 	struct perf_event *event, *tmp;
7295 
7296 	perf_pmu_rotate_stop(ctx->pmu);
7297 
7298 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7299 		__perf_remove_from_context(event);
7300 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7301 		__perf_remove_from_context(event);
7302 }
7303 
7304 static void perf_event_exit_cpu_context(int cpu)
7305 {
7306 	struct perf_event_context *ctx;
7307 	struct pmu *pmu;
7308 	int idx;
7309 
7310 	idx = srcu_read_lock(&pmus_srcu);
7311 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7312 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7313 
7314 		mutex_lock(&ctx->mutex);
7315 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7316 		mutex_unlock(&ctx->mutex);
7317 	}
7318 	srcu_read_unlock(&pmus_srcu, idx);
7319 }
7320 
7321 static void perf_event_exit_cpu(int cpu)
7322 {
7323 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7324 
7325 	mutex_lock(&swhash->hlist_mutex);
7326 	swevent_hlist_release(swhash);
7327 	mutex_unlock(&swhash->hlist_mutex);
7328 
7329 	perf_event_exit_cpu_context(cpu);
7330 }
7331 #else
7332 static inline void perf_event_exit_cpu(int cpu) { }
7333 #endif
7334 
7335 static int
7336 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7337 {
7338 	int cpu;
7339 
7340 	for_each_online_cpu(cpu)
7341 		perf_event_exit_cpu(cpu);
7342 
7343 	return NOTIFY_OK;
7344 }
7345 
7346 /*
7347  * Run the perf reboot notifier at the very last possible moment so that
7348  * the generic watchdog code runs as long as possible.
7349  */
7350 static struct notifier_block perf_reboot_notifier = {
7351 	.notifier_call = perf_reboot,
7352 	.priority = INT_MIN,
7353 };
7354 
7355 static int __cpuinit
7356 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7357 {
7358 	unsigned int cpu = (long)hcpu;
7359 
7360 	switch (action & ~CPU_TASKS_FROZEN) {
7361 
7362 	case CPU_UP_PREPARE:
7363 	case CPU_DOWN_FAILED:
7364 		perf_event_init_cpu(cpu);
7365 		break;
7366 
7367 	case CPU_UP_CANCELED:
7368 	case CPU_DOWN_PREPARE:
7369 		perf_event_exit_cpu(cpu);
7370 		break;
7371 
7372 	default:
7373 		break;
7374 	}
7375 
7376 	return NOTIFY_OK;
7377 }
7378 
7379 void __init perf_event_init(void)
7380 {
7381 	int ret;
7382 
7383 	idr_init(&pmu_idr);
7384 
7385 	perf_event_init_all_cpus();
7386 	init_srcu_struct(&pmus_srcu);
7387 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7388 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
7389 	perf_pmu_register(&perf_task_clock, NULL, -1);
7390 	perf_tp_register();
7391 	perf_cpu_notifier(perf_cpu_notify);
7392 	register_reboot_notifier(&perf_reboot_notifier);
7393 
7394 	ret = init_hw_breakpoint();
7395 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7396 
7397 	/* do not patch jump label more than once per second */
7398 	jump_label_rate_limit(&perf_sched_events, HZ);
7399 
7400 	/*
7401 	 * Build time assertion that we keep the data_head at the intended
7402 	 * location.  IOW, validation we got the __reserved[] size right.
7403 	 */
7404 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7405 		     != 1024);
7406 }
7407 
7408 static int __init perf_event_sysfs_init(void)
7409 {
7410 	struct pmu *pmu;
7411 	int ret;
7412 
7413 	mutex_lock(&pmus_lock);
7414 
7415 	ret = bus_register(&pmu_bus);
7416 	if (ret)
7417 		goto unlock;
7418 
7419 	list_for_each_entry(pmu, &pmus, entry) {
7420 		if (!pmu->name || pmu->type < 0)
7421 			continue;
7422 
7423 		ret = pmu_dev_alloc(pmu);
7424 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7425 	}
7426 	pmu_bus_running = 1;
7427 	ret = 0;
7428 
7429 unlock:
7430 	mutex_unlock(&pmus_lock);
7431 
7432 	return ret;
7433 }
7434 device_initcall(perf_event_sysfs_init);
7435 
7436 #ifdef CONFIG_CGROUP_PERF
7437 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
7438 {
7439 	struct perf_cgroup *jc;
7440 
7441 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7442 	if (!jc)
7443 		return ERR_PTR(-ENOMEM);
7444 
7445 	jc->info = alloc_percpu(struct perf_cgroup_info);
7446 	if (!jc->info) {
7447 		kfree(jc);
7448 		return ERR_PTR(-ENOMEM);
7449 	}
7450 
7451 	return &jc->css;
7452 }
7453 
7454 static void perf_cgroup_destroy(struct cgroup *cont)
7455 {
7456 	struct perf_cgroup *jc;
7457 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7458 			  struct perf_cgroup, css);
7459 	free_percpu(jc->info);
7460 	kfree(jc);
7461 }
7462 
7463 static int __perf_cgroup_move(void *info)
7464 {
7465 	struct task_struct *task = info;
7466 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7467 	return 0;
7468 }
7469 
7470 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7471 {
7472 	struct task_struct *task;
7473 
7474 	cgroup_taskset_for_each(task, cgrp, tset)
7475 		task_function_call(task, __perf_cgroup_move, task);
7476 }
7477 
7478 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7479 			     struct task_struct *task)
7480 {
7481 	/*
7482 	 * cgroup_exit() is called in the copy_process() failure path.
7483 	 * Ignore this case since the task hasn't ran yet, this avoids
7484 	 * trying to poke a half freed task state from generic code.
7485 	 */
7486 	if (!(task->flags & PF_EXITING))
7487 		return;
7488 
7489 	task_function_call(task, __perf_cgroup_move, task);
7490 }
7491 
7492 struct cgroup_subsys perf_subsys = {
7493 	.name		= "perf_event",
7494 	.subsys_id	= perf_subsys_id,
7495 	.create		= perf_cgroup_create,
7496 	.destroy	= perf_cgroup_destroy,
7497 	.exit		= perf_cgroup_exit,
7498 	.attach		= perf_cgroup_attach,
7499 
7500 	/*
7501 	 * perf_event cgroup doesn't handle nesting correctly.
7502 	 * ctx->nr_cgroups adjustments should be propagated through the
7503 	 * cgroup hierarchy.  Fix it and remove the following.
7504 	 */
7505 	.broken_hierarchy = true,
7506 };
7507 #endif /* CONFIG_CGROUP_PERF */
7508