1 /* 2 * Performance events core code: 3 * 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 8 * 9 * For licensing details see kernel-base/COPYING 10 */ 11 12 #include <linux/fs.h> 13 #include <linux/mm.h> 14 #include <linux/cpu.h> 15 #include <linux/smp.h> 16 #include <linux/idr.h> 17 #include <linux/file.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/hash.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/perf_event.h> 37 #include <linux/ftrace_event.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/mm_types.h> 40 41 #include "internal.h" 42 43 #include <asm/irq_regs.h> 44 45 struct remote_function_call { 46 struct task_struct *p; 47 int (*func)(void *info); 48 void *info; 49 int ret; 50 }; 51 52 static void remote_function(void *data) 53 { 54 struct remote_function_call *tfc = data; 55 struct task_struct *p = tfc->p; 56 57 if (p) { 58 tfc->ret = -EAGAIN; 59 if (task_cpu(p) != smp_processor_id() || !task_curr(p)) 60 return; 61 } 62 63 tfc->ret = tfc->func(tfc->info); 64 } 65 66 /** 67 * task_function_call - call a function on the cpu on which a task runs 68 * @p: the task to evaluate 69 * @func: the function to be called 70 * @info: the function call argument 71 * 72 * Calls the function @func when the task is currently running. This might 73 * be on the current CPU, which just calls the function directly 74 * 75 * returns: @func return value, or 76 * -ESRCH - when the process isn't running 77 * -EAGAIN - when the process moved away 78 */ 79 static int 80 task_function_call(struct task_struct *p, int (*func) (void *info), void *info) 81 { 82 struct remote_function_call data = { 83 .p = p, 84 .func = func, 85 .info = info, 86 .ret = -ESRCH, /* No such (running) process */ 87 }; 88 89 if (task_curr(p)) 90 smp_call_function_single(task_cpu(p), remote_function, &data, 1); 91 92 return data.ret; 93 } 94 95 /** 96 * cpu_function_call - call a function on the cpu 97 * @func: the function to be called 98 * @info: the function call argument 99 * 100 * Calls the function @func on the remote cpu. 101 * 102 * returns: @func return value or -ENXIO when the cpu is offline 103 */ 104 static int cpu_function_call(int cpu, int (*func) (void *info), void *info) 105 { 106 struct remote_function_call data = { 107 .p = NULL, 108 .func = func, 109 .info = info, 110 .ret = -ENXIO, /* No such CPU */ 111 }; 112 113 smp_call_function_single(cpu, remote_function, &data, 1); 114 115 return data.ret; 116 } 117 118 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 119 PERF_FLAG_FD_OUTPUT |\ 120 PERF_FLAG_PID_CGROUP) 121 122 /* 123 * branch priv levels that need permission checks 124 */ 125 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 126 (PERF_SAMPLE_BRANCH_KERNEL |\ 127 PERF_SAMPLE_BRANCH_HV) 128 129 enum event_type_t { 130 EVENT_FLEXIBLE = 0x1, 131 EVENT_PINNED = 0x2, 132 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 133 }; 134 135 /* 136 * perf_sched_events : >0 events exist 137 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 138 */ 139 struct static_key_deferred perf_sched_events __read_mostly; 140 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 141 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events); 142 143 static atomic_t nr_mmap_events __read_mostly; 144 static atomic_t nr_comm_events __read_mostly; 145 static atomic_t nr_task_events __read_mostly; 146 147 static LIST_HEAD(pmus); 148 static DEFINE_MUTEX(pmus_lock); 149 static struct srcu_struct pmus_srcu; 150 151 /* 152 * perf event paranoia level: 153 * -1 - not paranoid at all 154 * 0 - disallow raw tracepoint access for unpriv 155 * 1 - disallow cpu events for unpriv 156 * 2 - disallow kernel profiling for unpriv 157 */ 158 int sysctl_perf_event_paranoid __read_mostly = 1; 159 160 /* Minimum for 512 kiB + 1 user control page */ 161 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 162 163 /* 164 * max perf event sample rate 165 */ 166 #define DEFAULT_MAX_SAMPLE_RATE 100000 167 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 168 static int max_samples_per_tick __read_mostly = 169 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 170 171 int perf_proc_update_handler(struct ctl_table *table, int write, 172 void __user *buffer, size_t *lenp, 173 loff_t *ppos) 174 { 175 int ret = proc_dointvec(table, write, buffer, lenp, ppos); 176 177 if (ret || !write) 178 return ret; 179 180 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 181 182 return 0; 183 } 184 185 static atomic64_t perf_event_id; 186 187 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 188 enum event_type_t event_type); 189 190 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 191 enum event_type_t event_type, 192 struct task_struct *task); 193 194 static void update_context_time(struct perf_event_context *ctx); 195 static u64 perf_event_time(struct perf_event *event); 196 197 static void ring_buffer_attach(struct perf_event *event, 198 struct ring_buffer *rb); 199 200 void __weak perf_event_print_debug(void) { } 201 202 extern __weak const char *perf_pmu_name(void) 203 { 204 return "pmu"; 205 } 206 207 static inline u64 perf_clock(void) 208 { 209 return local_clock(); 210 } 211 212 static inline struct perf_cpu_context * 213 __get_cpu_context(struct perf_event_context *ctx) 214 { 215 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 216 } 217 218 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 219 struct perf_event_context *ctx) 220 { 221 raw_spin_lock(&cpuctx->ctx.lock); 222 if (ctx) 223 raw_spin_lock(&ctx->lock); 224 } 225 226 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 227 struct perf_event_context *ctx) 228 { 229 if (ctx) 230 raw_spin_unlock(&ctx->lock); 231 raw_spin_unlock(&cpuctx->ctx.lock); 232 } 233 234 #ifdef CONFIG_CGROUP_PERF 235 236 /* 237 * Must ensure cgroup is pinned (css_get) before calling 238 * this function. In other words, we cannot call this function 239 * if there is no cgroup event for the current CPU context. 240 */ 241 static inline struct perf_cgroup * 242 perf_cgroup_from_task(struct task_struct *task) 243 { 244 return container_of(task_subsys_state(task, perf_subsys_id), 245 struct perf_cgroup, css); 246 } 247 248 static inline bool 249 perf_cgroup_match(struct perf_event *event) 250 { 251 struct perf_event_context *ctx = event->ctx; 252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 253 254 return !event->cgrp || event->cgrp == cpuctx->cgrp; 255 } 256 257 static inline bool perf_tryget_cgroup(struct perf_event *event) 258 { 259 return css_tryget(&event->cgrp->css); 260 } 261 262 static inline void perf_put_cgroup(struct perf_event *event) 263 { 264 css_put(&event->cgrp->css); 265 } 266 267 static inline void perf_detach_cgroup(struct perf_event *event) 268 { 269 perf_put_cgroup(event); 270 event->cgrp = NULL; 271 } 272 273 static inline int is_cgroup_event(struct perf_event *event) 274 { 275 return event->cgrp != NULL; 276 } 277 278 static inline u64 perf_cgroup_event_time(struct perf_event *event) 279 { 280 struct perf_cgroup_info *t; 281 282 t = per_cpu_ptr(event->cgrp->info, event->cpu); 283 return t->time; 284 } 285 286 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 287 { 288 struct perf_cgroup_info *info; 289 u64 now; 290 291 now = perf_clock(); 292 293 info = this_cpu_ptr(cgrp->info); 294 295 info->time += now - info->timestamp; 296 info->timestamp = now; 297 } 298 299 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 300 { 301 struct perf_cgroup *cgrp_out = cpuctx->cgrp; 302 if (cgrp_out) 303 __update_cgrp_time(cgrp_out); 304 } 305 306 static inline void update_cgrp_time_from_event(struct perf_event *event) 307 { 308 struct perf_cgroup *cgrp; 309 310 /* 311 * ensure we access cgroup data only when needed and 312 * when we know the cgroup is pinned (css_get) 313 */ 314 if (!is_cgroup_event(event)) 315 return; 316 317 cgrp = perf_cgroup_from_task(current); 318 /* 319 * Do not update time when cgroup is not active 320 */ 321 if (cgrp == event->cgrp) 322 __update_cgrp_time(event->cgrp); 323 } 324 325 static inline void 326 perf_cgroup_set_timestamp(struct task_struct *task, 327 struct perf_event_context *ctx) 328 { 329 struct perf_cgroup *cgrp; 330 struct perf_cgroup_info *info; 331 332 /* 333 * ctx->lock held by caller 334 * ensure we do not access cgroup data 335 * unless we have the cgroup pinned (css_get) 336 */ 337 if (!task || !ctx->nr_cgroups) 338 return; 339 340 cgrp = perf_cgroup_from_task(task); 341 info = this_cpu_ptr(cgrp->info); 342 info->timestamp = ctx->timestamp; 343 } 344 345 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 346 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 347 348 /* 349 * reschedule events based on the cgroup constraint of task. 350 * 351 * mode SWOUT : schedule out everything 352 * mode SWIN : schedule in based on cgroup for next 353 */ 354 void perf_cgroup_switch(struct task_struct *task, int mode) 355 { 356 struct perf_cpu_context *cpuctx; 357 struct pmu *pmu; 358 unsigned long flags; 359 360 /* 361 * disable interrupts to avoid geting nr_cgroup 362 * changes via __perf_event_disable(). Also 363 * avoids preemption. 364 */ 365 local_irq_save(flags); 366 367 /* 368 * we reschedule only in the presence of cgroup 369 * constrained events. 370 */ 371 rcu_read_lock(); 372 373 list_for_each_entry_rcu(pmu, &pmus, entry) { 374 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 375 if (cpuctx->unique_pmu != pmu) 376 continue; /* ensure we process each cpuctx once */ 377 378 /* 379 * perf_cgroup_events says at least one 380 * context on this CPU has cgroup events. 381 * 382 * ctx->nr_cgroups reports the number of cgroup 383 * events for a context. 384 */ 385 if (cpuctx->ctx.nr_cgroups > 0) { 386 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 387 perf_pmu_disable(cpuctx->ctx.pmu); 388 389 if (mode & PERF_CGROUP_SWOUT) { 390 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 391 /* 392 * must not be done before ctxswout due 393 * to event_filter_match() in event_sched_out() 394 */ 395 cpuctx->cgrp = NULL; 396 } 397 398 if (mode & PERF_CGROUP_SWIN) { 399 WARN_ON_ONCE(cpuctx->cgrp); 400 /* 401 * set cgrp before ctxsw in to allow 402 * event_filter_match() to not have to pass 403 * task around 404 */ 405 cpuctx->cgrp = perf_cgroup_from_task(task); 406 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 407 } 408 perf_pmu_enable(cpuctx->ctx.pmu); 409 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 410 } 411 } 412 413 rcu_read_unlock(); 414 415 local_irq_restore(flags); 416 } 417 418 static inline void perf_cgroup_sched_out(struct task_struct *task, 419 struct task_struct *next) 420 { 421 struct perf_cgroup *cgrp1; 422 struct perf_cgroup *cgrp2 = NULL; 423 424 /* 425 * we come here when we know perf_cgroup_events > 0 426 */ 427 cgrp1 = perf_cgroup_from_task(task); 428 429 /* 430 * next is NULL when called from perf_event_enable_on_exec() 431 * that will systematically cause a cgroup_switch() 432 */ 433 if (next) 434 cgrp2 = perf_cgroup_from_task(next); 435 436 /* 437 * only schedule out current cgroup events if we know 438 * that we are switching to a different cgroup. Otherwise, 439 * do no touch the cgroup events. 440 */ 441 if (cgrp1 != cgrp2) 442 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 443 } 444 445 static inline void perf_cgroup_sched_in(struct task_struct *prev, 446 struct task_struct *task) 447 { 448 struct perf_cgroup *cgrp1; 449 struct perf_cgroup *cgrp2 = NULL; 450 451 /* 452 * we come here when we know perf_cgroup_events > 0 453 */ 454 cgrp1 = perf_cgroup_from_task(task); 455 456 /* prev can never be NULL */ 457 cgrp2 = perf_cgroup_from_task(prev); 458 459 /* 460 * only need to schedule in cgroup events if we are changing 461 * cgroup during ctxsw. Cgroup events were not scheduled 462 * out of ctxsw out if that was not the case. 463 */ 464 if (cgrp1 != cgrp2) 465 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 466 } 467 468 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 469 struct perf_event_attr *attr, 470 struct perf_event *group_leader) 471 { 472 struct perf_cgroup *cgrp; 473 struct cgroup_subsys_state *css; 474 struct fd f = fdget(fd); 475 int ret = 0; 476 477 if (!f.file) 478 return -EBADF; 479 480 css = cgroup_css_from_dir(f.file, perf_subsys_id); 481 if (IS_ERR(css)) { 482 ret = PTR_ERR(css); 483 goto out; 484 } 485 486 cgrp = container_of(css, struct perf_cgroup, css); 487 event->cgrp = cgrp; 488 489 /* must be done before we fput() the file */ 490 if (!perf_tryget_cgroup(event)) { 491 event->cgrp = NULL; 492 ret = -ENOENT; 493 goto out; 494 } 495 496 /* 497 * all events in a group must monitor 498 * the same cgroup because a task belongs 499 * to only one perf cgroup at a time 500 */ 501 if (group_leader && group_leader->cgrp != cgrp) { 502 perf_detach_cgroup(event); 503 ret = -EINVAL; 504 } 505 out: 506 fdput(f); 507 return ret; 508 } 509 510 static inline void 511 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 512 { 513 struct perf_cgroup_info *t; 514 t = per_cpu_ptr(event->cgrp->info, event->cpu); 515 event->shadow_ctx_time = now - t->timestamp; 516 } 517 518 static inline void 519 perf_cgroup_defer_enabled(struct perf_event *event) 520 { 521 /* 522 * when the current task's perf cgroup does not match 523 * the event's, we need to remember to call the 524 * perf_mark_enable() function the first time a task with 525 * a matching perf cgroup is scheduled in. 526 */ 527 if (is_cgroup_event(event) && !perf_cgroup_match(event)) 528 event->cgrp_defer_enabled = 1; 529 } 530 531 static inline void 532 perf_cgroup_mark_enabled(struct perf_event *event, 533 struct perf_event_context *ctx) 534 { 535 struct perf_event *sub; 536 u64 tstamp = perf_event_time(event); 537 538 if (!event->cgrp_defer_enabled) 539 return; 540 541 event->cgrp_defer_enabled = 0; 542 543 event->tstamp_enabled = tstamp - event->total_time_enabled; 544 list_for_each_entry(sub, &event->sibling_list, group_entry) { 545 if (sub->state >= PERF_EVENT_STATE_INACTIVE) { 546 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 547 sub->cgrp_defer_enabled = 0; 548 } 549 } 550 } 551 #else /* !CONFIG_CGROUP_PERF */ 552 553 static inline bool 554 perf_cgroup_match(struct perf_event *event) 555 { 556 return true; 557 } 558 559 static inline void perf_detach_cgroup(struct perf_event *event) 560 {} 561 562 static inline int is_cgroup_event(struct perf_event *event) 563 { 564 return 0; 565 } 566 567 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event) 568 { 569 return 0; 570 } 571 572 static inline void update_cgrp_time_from_event(struct perf_event *event) 573 { 574 } 575 576 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 577 { 578 } 579 580 static inline void perf_cgroup_sched_out(struct task_struct *task, 581 struct task_struct *next) 582 { 583 } 584 585 static inline void perf_cgroup_sched_in(struct task_struct *prev, 586 struct task_struct *task) 587 { 588 } 589 590 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 591 struct perf_event_attr *attr, 592 struct perf_event *group_leader) 593 { 594 return -EINVAL; 595 } 596 597 static inline void 598 perf_cgroup_set_timestamp(struct task_struct *task, 599 struct perf_event_context *ctx) 600 { 601 } 602 603 void 604 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 605 { 606 } 607 608 static inline void 609 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 610 { 611 } 612 613 static inline u64 perf_cgroup_event_time(struct perf_event *event) 614 { 615 return 0; 616 } 617 618 static inline void 619 perf_cgroup_defer_enabled(struct perf_event *event) 620 { 621 } 622 623 static inline void 624 perf_cgroup_mark_enabled(struct perf_event *event, 625 struct perf_event_context *ctx) 626 { 627 } 628 #endif 629 630 void perf_pmu_disable(struct pmu *pmu) 631 { 632 int *count = this_cpu_ptr(pmu->pmu_disable_count); 633 if (!(*count)++) 634 pmu->pmu_disable(pmu); 635 } 636 637 void perf_pmu_enable(struct pmu *pmu) 638 { 639 int *count = this_cpu_ptr(pmu->pmu_disable_count); 640 if (!--(*count)) 641 pmu->pmu_enable(pmu); 642 } 643 644 static DEFINE_PER_CPU(struct list_head, rotation_list); 645 646 /* 647 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 648 * because they're strictly cpu affine and rotate_start is called with IRQs 649 * disabled, while rotate_context is called from IRQ context. 650 */ 651 static void perf_pmu_rotate_start(struct pmu *pmu) 652 { 653 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 654 struct list_head *head = &__get_cpu_var(rotation_list); 655 656 WARN_ON(!irqs_disabled()); 657 658 if (list_empty(&cpuctx->rotation_list)) 659 list_add(&cpuctx->rotation_list, head); 660 } 661 662 static void get_ctx(struct perf_event_context *ctx) 663 { 664 WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); 665 } 666 667 static void put_ctx(struct perf_event_context *ctx) 668 { 669 if (atomic_dec_and_test(&ctx->refcount)) { 670 if (ctx->parent_ctx) 671 put_ctx(ctx->parent_ctx); 672 if (ctx->task) 673 put_task_struct(ctx->task); 674 kfree_rcu(ctx, rcu_head); 675 } 676 } 677 678 static void unclone_ctx(struct perf_event_context *ctx) 679 { 680 if (ctx->parent_ctx) { 681 put_ctx(ctx->parent_ctx); 682 ctx->parent_ctx = NULL; 683 } 684 } 685 686 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 687 { 688 /* 689 * only top level events have the pid namespace they were created in 690 */ 691 if (event->parent) 692 event = event->parent; 693 694 return task_tgid_nr_ns(p, event->ns); 695 } 696 697 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 698 { 699 /* 700 * only top level events have the pid namespace they were created in 701 */ 702 if (event->parent) 703 event = event->parent; 704 705 return task_pid_nr_ns(p, event->ns); 706 } 707 708 /* 709 * If we inherit events we want to return the parent event id 710 * to userspace. 711 */ 712 static u64 primary_event_id(struct perf_event *event) 713 { 714 u64 id = event->id; 715 716 if (event->parent) 717 id = event->parent->id; 718 719 return id; 720 } 721 722 /* 723 * Get the perf_event_context for a task and lock it. 724 * This has to cope with with the fact that until it is locked, 725 * the context could get moved to another task. 726 */ 727 static struct perf_event_context * 728 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 729 { 730 struct perf_event_context *ctx; 731 732 rcu_read_lock(); 733 retry: 734 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 735 if (ctx) { 736 /* 737 * If this context is a clone of another, it might 738 * get swapped for another underneath us by 739 * perf_event_task_sched_out, though the 740 * rcu_read_lock() protects us from any context 741 * getting freed. Lock the context and check if it 742 * got swapped before we could get the lock, and retry 743 * if so. If we locked the right context, then it 744 * can't get swapped on us any more. 745 */ 746 raw_spin_lock_irqsave(&ctx->lock, *flags); 747 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 748 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 749 goto retry; 750 } 751 752 if (!atomic_inc_not_zero(&ctx->refcount)) { 753 raw_spin_unlock_irqrestore(&ctx->lock, *flags); 754 ctx = NULL; 755 } 756 } 757 rcu_read_unlock(); 758 return ctx; 759 } 760 761 /* 762 * Get the context for a task and increment its pin_count so it 763 * can't get swapped to another task. This also increments its 764 * reference count so that the context can't get freed. 765 */ 766 static struct perf_event_context * 767 perf_pin_task_context(struct task_struct *task, int ctxn) 768 { 769 struct perf_event_context *ctx; 770 unsigned long flags; 771 772 ctx = perf_lock_task_context(task, ctxn, &flags); 773 if (ctx) { 774 ++ctx->pin_count; 775 raw_spin_unlock_irqrestore(&ctx->lock, flags); 776 } 777 return ctx; 778 } 779 780 static void perf_unpin_context(struct perf_event_context *ctx) 781 { 782 unsigned long flags; 783 784 raw_spin_lock_irqsave(&ctx->lock, flags); 785 --ctx->pin_count; 786 raw_spin_unlock_irqrestore(&ctx->lock, flags); 787 } 788 789 /* 790 * Update the record of the current time in a context. 791 */ 792 static void update_context_time(struct perf_event_context *ctx) 793 { 794 u64 now = perf_clock(); 795 796 ctx->time += now - ctx->timestamp; 797 ctx->timestamp = now; 798 } 799 800 static u64 perf_event_time(struct perf_event *event) 801 { 802 struct perf_event_context *ctx = event->ctx; 803 804 if (is_cgroup_event(event)) 805 return perf_cgroup_event_time(event); 806 807 return ctx ? ctx->time : 0; 808 } 809 810 /* 811 * Update the total_time_enabled and total_time_running fields for a event. 812 * The caller of this function needs to hold the ctx->lock. 813 */ 814 static void update_event_times(struct perf_event *event) 815 { 816 struct perf_event_context *ctx = event->ctx; 817 u64 run_end; 818 819 if (event->state < PERF_EVENT_STATE_INACTIVE || 820 event->group_leader->state < PERF_EVENT_STATE_INACTIVE) 821 return; 822 /* 823 * in cgroup mode, time_enabled represents 824 * the time the event was enabled AND active 825 * tasks were in the monitored cgroup. This is 826 * independent of the activity of the context as 827 * there may be a mix of cgroup and non-cgroup events. 828 * 829 * That is why we treat cgroup events differently 830 * here. 831 */ 832 if (is_cgroup_event(event)) 833 run_end = perf_cgroup_event_time(event); 834 else if (ctx->is_active) 835 run_end = ctx->time; 836 else 837 run_end = event->tstamp_stopped; 838 839 event->total_time_enabled = run_end - event->tstamp_enabled; 840 841 if (event->state == PERF_EVENT_STATE_INACTIVE) 842 run_end = event->tstamp_stopped; 843 else 844 run_end = perf_event_time(event); 845 846 event->total_time_running = run_end - event->tstamp_running; 847 848 } 849 850 /* 851 * Update total_time_enabled and total_time_running for all events in a group. 852 */ 853 static void update_group_times(struct perf_event *leader) 854 { 855 struct perf_event *event; 856 857 update_event_times(leader); 858 list_for_each_entry(event, &leader->sibling_list, group_entry) 859 update_event_times(event); 860 } 861 862 static struct list_head * 863 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) 864 { 865 if (event->attr.pinned) 866 return &ctx->pinned_groups; 867 else 868 return &ctx->flexible_groups; 869 } 870 871 /* 872 * Add a event from the lists for its context. 873 * Must be called with ctx->mutex and ctx->lock held. 874 */ 875 static void 876 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 877 { 878 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 879 event->attach_state |= PERF_ATTACH_CONTEXT; 880 881 /* 882 * If we're a stand alone event or group leader, we go to the context 883 * list, group events are kept attached to the group so that 884 * perf_group_detach can, at all times, locate all siblings. 885 */ 886 if (event->group_leader == event) { 887 struct list_head *list; 888 889 if (is_software_event(event)) 890 event->group_flags |= PERF_GROUP_SOFTWARE; 891 892 list = ctx_group_list(event, ctx); 893 list_add_tail(&event->group_entry, list); 894 } 895 896 if (is_cgroup_event(event)) 897 ctx->nr_cgroups++; 898 899 if (has_branch_stack(event)) 900 ctx->nr_branch_stack++; 901 902 list_add_rcu(&event->event_entry, &ctx->event_list); 903 if (!ctx->nr_events) 904 perf_pmu_rotate_start(ctx->pmu); 905 ctx->nr_events++; 906 if (event->attr.inherit_stat) 907 ctx->nr_stat++; 908 } 909 910 /* 911 * Called at perf_event creation and when events are attached/detached from a 912 * group. 913 */ 914 static void perf_event__read_size(struct perf_event *event) 915 { 916 int entry = sizeof(u64); /* value */ 917 int size = 0; 918 int nr = 1; 919 920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 921 size += sizeof(u64); 922 923 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 924 size += sizeof(u64); 925 926 if (event->attr.read_format & PERF_FORMAT_ID) 927 entry += sizeof(u64); 928 929 if (event->attr.read_format & PERF_FORMAT_GROUP) { 930 nr += event->group_leader->nr_siblings; 931 size += sizeof(u64); 932 } 933 934 size += entry * nr; 935 event->read_size = size; 936 } 937 938 static void perf_event__header_size(struct perf_event *event) 939 { 940 struct perf_sample_data *data; 941 u64 sample_type = event->attr.sample_type; 942 u16 size = 0; 943 944 perf_event__read_size(event); 945 946 if (sample_type & PERF_SAMPLE_IP) 947 size += sizeof(data->ip); 948 949 if (sample_type & PERF_SAMPLE_ADDR) 950 size += sizeof(data->addr); 951 952 if (sample_type & PERF_SAMPLE_PERIOD) 953 size += sizeof(data->period); 954 955 if (sample_type & PERF_SAMPLE_READ) 956 size += event->read_size; 957 958 event->header_size = size; 959 } 960 961 static void perf_event__id_header_size(struct perf_event *event) 962 { 963 struct perf_sample_data *data; 964 u64 sample_type = event->attr.sample_type; 965 u16 size = 0; 966 967 if (sample_type & PERF_SAMPLE_TID) 968 size += sizeof(data->tid_entry); 969 970 if (sample_type & PERF_SAMPLE_TIME) 971 size += sizeof(data->time); 972 973 if (sample_type & PERF_SAMPLE_ID) 974 size += sizeof(data->id); 975 976 if (sample_type & PERF_SAMPLE_STREAM_ID) 977 size += sizeof(data->stream_id); 978 979 if (sample_type & PERF_SAMPLE_CPU) 980 size += sizeof(data->cpu_entry); 981 982 event->id_header_size = size; 983 } 984 985 static void perf_group_attach(struct perf_event *event) 986 { 987 struct perf_event *group_leader = event->group_leader, *pos; 988 989 /* 990 * We can have double attach due to group movement in perf_event_open. 991 */ 992 if (event->attach_state & PERF_ATTACH_GROUP) 993 return; 994 995 event->attach_state |= PERF_ATTACH_GROUP; 996 997 if (group_leader == event) 998 return; 999 1000 if (group_leader->group_flags & PERF_GROUP_SOFTWARE && 1001 !is_software_event(event)) 1002 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; 1003 1004 list_add_tail(&event->group_entry, &group_leader->sibling_list); 1005 group_leader->nr_siblings++; 1006 1007 perf_event__header_size(group_leader); 1008 1009 list_for_each_entry(pos, &group_leader->sibling_list, group_entry) 1010 perf_event__header_size(pos); 1011 } 1012 1013 /* 1014 * Remove a event from the lists for its context. 1015 * Must be called with ctx->mutex and ctx->lock held. 1016 */ 1017 static void 1018 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1019 { 1020 struct perf_cpu_context *cpuctx; 1021 /* 1022 * We can have double detach due to exit/hot-unplug + close. 1023 */ 1024 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1025 return; 1026 1027 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1028 1029 if (is_cgroup_event(event)) { 1030 ctx->nr_cgroups--; 1031 cpuctx = __get_cpu_context(ctx); 1032 /* 1033 * if there are no more cgroup events 1034 * then cler cgrp to avoid stale pointer 1035 * in update_cgrp_time_from_cpuctx() 1036 */ 1037 if (!ctx->nr_cgroups) 1038 cpuctx->cgrp = NULL; 1039 } 1040 1041 if (has_branch_stack(event)) 1042 ctx->nr_branch_stack--; 1043 1044 ctx->nr_events--; 1045 if (event->attr.inherit_stat) 1046 ctx->nr_stat--; 1047 1048 list_del_rcu(&event->event_entry); 1049 1050 if (event->group_leader == event) 1051 list_del_init(&event->group_entry); 1052 1053 update_group_times(event); 1054 1055 /* 1056 * If event was in error state, then keep it 1057 * that way, otherwise bogus counts will be 1058 * returned on read(). The only way to get out 1059 * of error state is by explicit re-enabling 1060 * of the event 1061 */ 1062 if (event->state > PERF_EVENT_STATE_OFF) 1063 event->state = PERF_EVENT_STATE_OFF; 1064 } 1065 1066 static void perf_group_detach(struct perf_event *event) 1067 { 1068 struct perf_event *sibling, *tmp; 1069 struct list_head *list = NULL; 1070 1071 /* 1072 * We can have double detach due to exit/hot-unplug + close. 1073 */ 1074 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1075 return; 1076 1077 event->attach_state &= ~PERF_ATTACH_GROUP; 1078 1079 /* 1080 * If this is a sibling, remove it from its group. 1081 */ 1082 if (event->group_leader != event) { 1083 list_del_init(&event->group_entry); 1084 event->group_leader->nr_siblings--; 1085 goto out; 1086 } 1087 1088 if (!list_empty(&event->group_entry)) 1089 list = &event->group_entry; 1090 1091 /* 1092 * If this was a group event with sibling events then 1093 * upgrade the siblings to singleton events by adding them 1094 * to whatever list we are on. 1095 */ 1096 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { 1097 if (list) 1098 list_move_tail(&sibling->group_entry, list); 1099 sibling->group_leader = sibling; 1100 1101 /* Inherit group flags from the previous leader */ 1102 sibling->group_flags = event->group_flags; 1103 } 1104 1105 out: 1106 perf_event__header_size(event->group_leader); 1107 1108 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry) 1109 perf_event__header_size(tmp); 1110 } 1111 1112 static inline int 1113 event_filter_match(struct perf_event *event) 1114 { 1115 return (event->cpu == -1 || event->cpu == smp_processor_id()) 1116 && perf_cgroup_match(event); 1117 } 1118 1119 static void 1120 event_sched_out(struct perf_event *event, 1121 struct perf_cpu_context *cpuctx, 1122 struct perf_event_context *ctx) 1123 { 1124 u64 tstamp = perf_event_time(event); 1125 u64 delta; 1126 /* 1127 * An event which could not be activated because of 1128 * filter mismatch still needs to have its timings 1129 * maintained, otherwise bogus information is return 1130 * via read() for time_enabled, time_running: 1131 */ 1132 if (event->state == PERF_EVENT_STATE_INACTIVE 1133 && !event_filter_match(event)) { 1134 delta = tstamp - event->tstamp_stopped; 1135 event->tstamp_running += delta; 1136 event->tstamp_stopped = tstamp; 1137 } 1138 1139 if (event->state != PERF_EVENT_STATE_ACTIVE) 1140 return; 1141 1142 event->state = PERF_EVENT_STATE_INACTIVE; 1143 if (event->pending_disable) { 1144 event->pending_disable = 0; 1145 event->state = PERF_EVENT_STATE_OFF; 1146 } 1147 event->tstamp_stopped = tstamp; 1148 event->pmu->del(event, 0); 1149 event->oncpu = -1; 1150 1151 if (!is_software_event(event)) 1152 cpuctx->active_oncpu--; 1153 ctx->nr_active--; 1154 if (event->attr.freq && event->attr.sample_freq) 1155 ctx->nr_freq--; 1156 if (event->attr.exclusive || !cpuctx->active_oncpu) 1157 cpuctx->exclusive = 0; 1158 } 1159 1160 static void 1161 group_sched_out(struct perf_event *group_event, 1162 struct perf_cpu_context *cpuctx, 1163 struct perf_event_context *ctx) 1164 { 1165 struct perf_event *event; 1166 int state = group_event->state; 1167 1168 event_sched_out(group_event, cpuctx, ctx); 1169 1170 /* 1171 * Schedule out siblings (if any): 1172 */ 1173 list_for_each_entry(event, &group_event->sibling_list, group_entry) 1174 event_sched_out(event, cpuctx, ctx); 1175 1176 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive) 1177 cpuctx->exclusive = 0; 1178 } 1179 1180 /* 1181 * Cross CPU call to remove a performance event 1182 * 1183 * We disable the event on the hardware level first. After that we 1184 * remove it from the context list. 1185 */ 1186 static int __perf_remove_from_context(void *info) 1187 { 1188 struct perf_event *event = info; 1189 struct perf_event_context *ctx = event->ctx; 1190 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1191 1192 raw_spin_lock(&ctx->lock); 1193 event_sched_out(event, cpuctx, ctx); 1194 list_del_event(event, ctx); 1195 if (!ctx->nr_events && cpuctx->task_ctx == ctx) { 1196 ctx->is_active = 0; 1197 cpuctx->task_ctx = NULL; 1198 } 1199 raw_spin_unlock(&ctx->lock); 1200 1201 return 0; 1202 } 1203 1204 1205 /* 1206 * Remove the event from a task's (or a CPU's) list of events. 1207 * 1208 * CPU events are removed with a smp call. For task events we only 1209 * call when the task is on a CPU. 1210 * 1211 * If event->ctx is a cloned context, callers must make sure that 1212 * every task struct that event->ctx->task could possibly point to 1213 * remains valid. This is OK when called from perf_release since 1214 * that only calls us on the top-level context, which can't be a clone. 1215 * When called from perf_event_exit_task, it's OK because the 1216 * context has been detached from its task. 1217 */ 1218 static void perf_remove_from_context(struct perf_event *event) 1219 { 1220 struct perf_event_context *ctx = event->ctx; 1221 struct task_struct *task = ctx->task; 1222 1223 lockdep_assert_held(&ctx->mutex); 1224 1225 if (!task) { 1226 /* 1227 * Per cpu events are removed via an smp call and 1228 * the removal is always successful. 1229 */ 1230 cpu_function_call(event->cpu, __perf_remove_from_context, event); 1231 return; 1232 } 1233 1234 retry: 1235 if (!task_function_call(task, __perf_remove_from_context, event)) 1236 return; 1237 1238 raw_spin_lock_irq(&ctx->lock); 1239 /* 1240 * If we failed to find a running task, but find the context active now 1241 * that we've acquired the ctx->lock, retry. 1242 */ 1243 if (ctx->is_active) { 1244 raw_spin_unlock_irq(&ctx->lock); 1245 goto retry; 1246 } 1247 1248 /* 1249 * Since the task isn't running, its safe to remove the event, us 1250 * holding the ctx->lock ensures the task won't get scheduled in. 1251 */ 1252 list_del_event(event, ctx); 1253 raw_spin_unlock_irq(&ctx->lock); 1254 } 1255 1256 /* 1257 * Cross CPU call to disable a performance event 1258 */ 1259 int __perf_event_disable(void *info) 1260 { 1261 struct perf_event *event = info; 1262 struct perf_event_context *ctx = event->ctx; 1263 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1264 1265 /* 1266 * If this is a per-task event, need to check whether this 1267 * event's task is the current task on this cpu. 1268 * 1269 * Can trigger due to concurrent perf_event_context_sched_out() 1270 * flipping contexts around. 1271 */ 1272 if (ctx->task && cpuctx->task_ctx != ctx) 1273 return -EINVAL; 1274 1275 raw_spin_lock(&ctx->lock); 1276 1277 /* 1278 * If the event is on, turn it off. 1279 * If it is in error state, leave it in error state. 1280 */ 1281 if (event->state >= PERF_EVENT_STATE_INACTIVE) { 1282 update_context_time(ctx); 1283 update_cgrp_time_from_event(event); 1284 update_group_times(event); 1285 if (event == event->group_leader) 1286 group_sched_out(event, cpuctx, ctx); 1287 else 1288 event_sched_out(event, cpuctx, ctx); 1289 event->state = PERF_EVENT_STATE_OFF; 1290 } 1291 1292 raw_spin_unlock(&ctx->lock); 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Disable a event. 1299 * 1300 * If event->ctx is a cloned context, callers must make sure that 1301 * every task struct that event->ctx->task could possibly point to 1302 * remains valid. This condition is satisifed when called through 1303 * perf_event_for_each_child or perf_event_for_each because they 1304 * hold the top-level event's child_mutex, so any descendant that 1305 * goes to exit will block in sync_child_event. 1306 * When called from perf_pending_event it's OK because event->ctx 1307 * is the current context on this CPU and preemption is disabled, 1308 * hence we can't get into perf_event_task_sched_out for this context. 1309 */ 1310 void perf_event_disable(struct perf_event *event) 1311 { 1312 struct perf_event_context *ctx = event->ctx; 1313 struct task_struct *task = ctx->task; 1314 1315 if (!task) { 1316 /* 1317 * Disable the event on the cpu that it's on 1318 */ 1319 cpu_function_call(event->cpu, __perf_event_disable, event); 1320 return; 1321 } 1322 1323 retry: 1324 if (!task_function_call(task, __perf_event_disable, event)) 1325 return; 1326 1327 raw_spin_lock_irq(&ctx->lock); 1328 /* 1329 * If the event is still active, we need to retry the cross-call. 1330 */ 1331 if (event->state == PERF_EVENT_STATE_ACTIVE) { 1332 raw_spin_unlock_irq(&ctx->lock); 1333 /* 1334 * Reload the task pointer, it might have been changed by 1335 * a concurrent perf_event_context_sched_out(). 1336 */ 1337 task = ctx->task; 1338 goto retry; 1339 } 1340 1341 /* 1342 * Since we have the lock this context can't be scheduled 1343 * in, so we can change the state safely. 1344 */ 1345 if (event->state == PERF_EVENT_STATE_INACTIVE) { 1346 update_group_times(event); 1347 event->state = PERF_EVENT_STATE_OFF; 1348 } 1349 raw_spin_unlock_irq(&ctx->lock); 1350 } 1351 EXPORT_SYMBOL_GPL(perf_event_disable); 1352 1353 static void perf_set_shadow_time(struct perf_event *event, 1354 struct perf_event_context *ctx, 1355 u64 tstamp) 1356 { 1357 /* 1358 * use the correct time source for the time snapshot 1359 * 1360 * We could get by without this by leveraging the 1361 * fact that to get to this function, the caller 1362 * has most likely already called update_context_time() 1363 * and update_cgrp_time_xx() and thus both timestamp 1364 * are identical (or very close). Given that tstamp is, 1365 * already adjusted for cgroup, we could say that: 1366 * tstamp - ctx->timestamp 1367 * is equivalent to 1368 * tstamp - cgrp->timestamp. 1369 * 1370 * Then, in perf_output_read(), the calculation would 1371 * work with no changes because: 1372 * - event is guaranteed scheduled in 1373 * - no scheduled out in between 1374 * - thus the timestamp would be the same 1375 * 1376 * But this is a bit hairy. 1377 * 1378 * So instead, we have an explicit cgroup call to remain 1379 * within the time time source all along. We believe it 1380 * is cleaner and simpler to understand. 1381 */ 1382 if (is_cgroup_event(event)) 1383 perf_cgroup_set_shadow_time(event, tstamp); 1384 else 1385 event->shadow_ctx_time = tstamp - ctx->timestamp; 1386 } 1387 1388 #define MAX_INTERRUPTS (~0ULL) 1389 1390 static void perf_log_throttle(struct perf_event *event, int enable); 1391 1392 static int 1393 event_sched_in(struct perf_event *event, 1394 struct perf_cpu_context *cpuctx, 1395 struct perf_event_context *ctx) 1396 { 1397 u64 tstamp = perf_event_time(event); 1398 1399 if (event->state <= PERF_EVENT_STATE_OFF) 1400 return 0; 1401 1402 event->state = PERF_EVENT_STATE_ACTIVE; 1403 event->oncpu = smp_processor_id(); 1404 1405 /* 1406 * Unthrottle events, since we scheduled we might have missed several 1407 * ticks already, also for a heavily scheduling task there is little 1408 * guarantee it'll get a tick in a timely manner. 1409 */ 1410 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 1411 perf_log_throttle(event, 1); 1412 event->hw.interrupts = 0; 1413 } 1414 1415 /* 1416 * The new state must be visible before we turn it on in the hardware: 1417 */ 1418 smp_wmb(); 1419 1420 if (event->pmu->add(event, PERF_EF_START)) { 1421 event->state = PERF_EVENT_STATE_INACTIVE; 1422 event->oncpu = -1; 1423 return -EAGAIN; 1424 } 1425 1426 event->tstamp_running += tstamp - event->tstamp_stopped; 1427 1428 perf_set_shadow_time(event, ctx, tstamp); 1429 1430 if (!is_software_event(event)) 1431 cpuctx->active_oncpu++; 1432 ctx->nr_active++; 1433 if (event->attr.freq && event->attr.sample_freq) 1434 ctx->nr_freq++; 1435 1436 if (event->attr.exclusive) 1437 cpuctx->exclusive = 1; 1438 1439 return 0; 1440 } 1441 1442 static int 1443 group_sched_in(struct perf_event *group_event, 1444 struct perf_cpu_context *cpuctx, 1445 struct perf_event_context *ctx) 1446 { 1447 struct perf_event *event, *partial_group = NULL; 1448 struct pmu *pmu = group_event->pmu; 1449 u64 now = ctx->time; 1450 bool simulate = false; 1451 1452 if (group_event->state == PERF_EVENT_STATE_OFF) 1453 return 0; 1454 1455 pmu->start_txn(pmu); 1456 1457 if (event_sched_in(group_event, cpuctx, ctx)) { 1458 pmu->cancel_txn(pmu); 1459 return -EAGAIN; 1460 } 1461 1462 /* 1463 * Schedule in siblings as one group (if any): 1464 */ 1465 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1466 if (event_sched_in(event, cpuctx, ctx)) { 1467 partial_group = event; 1468 goto group_error; 1469 } 1470 } 1471 1472 if (!pmu->commit_txn(pmu)) 1473 return 0; 1474 1475 group_error: 1476 /* 1477 * Groups can be scheduled in as one unit only, so undo any 1478 * partial group before returning: 1479 * The events up to the failed event are scheduled out normally, 1480 * tstamp_stopped will be updated. 1481 * 1482 * The failed events and the remaining siblings need to have 1483 * their timings updated as if they had gone thru event_sched_in() 1484 * and event_sched_out(). This is required to get consistent timings 1485 * across the group. This also takes care of the case where the group 1486 * could never be scheduled by ensuring tstamp_stopped is set to mark 1487 * the time the event was actually stopped, such that time delta 1488 * calculation in update_event_times() is correct. 1489 */ 1490 list_for_each_entry(event, &group_event->sibling_list, group_entry) { 1491 if (event == partial_group) 1492 simulate = true; 1493 1494 if (simulate) { 1495 event->tstamp_running += now - event->tstamp_stopped; 1496 event->tstamp_stopped = now; 1497 } else { 1498 event_sched_out(event, cpuctx, ctx); 1499 } 1500 } 1501 event_sched_out(group_event, cpuctx, ctx); 1502 1503 pmu->cancel_txn(pmu); 1504 1505 return -EAGAIN; 1506 } 1507 1508 /* 1509 * Work out whether we can put this event group on the CPU now. 1510 */ 1511 static int group_can_go_on(struct perf_event *event, 1512 struct perf_cpu_context *cpuctx, 1513 int can_add_hw) 1514 { 1515 /* 1516 * Groups consisting entirely of software events can always go on. 1517 */ 1518 if (event->group_flags & PERF_GROUP_SOFTWARE) 1519 return 1; 1520 /* 1521 * If an exclusive group is already on, no other hardware 1522 * events can go on. 1523 */ 1524 if (cpuctx->exclusive) 1525 return 0; 1526 /* 1527 * If this group is exclusive and there are already 1528 * events on the CPU, it can't go on. 1529 */ 1530 if (event->attr.exclusive && cpuctx->active_oncpu) 1531 return 0; 1532 /* 1533 * Otherwise, try to add it if all previous groups were able 1534 * to go on. 1535 */ 1536 return can_add_hw; 1537 } 1538 1539 static void add_event_to_ctx(struct perf_event *event, 1540 struct perf_event_context *ctx) 1541 { 1542 u64 tstamp = perf_event_time(event); 1543 1544 list_add_event(event, ctx); 1545 perf_group_attach(event); 1546 event->tstamp_enabled = tstamp; 1547 event->tstamp_running = tstamp; 1548 event->tstamp_stopped = tstamp; 1549 } 1550 1551 static void task_ctx_sched_out(struct perf_event_context *ctx); 1552 static void 1553 ctx_sched_in(struct perf_event_context *ctx, 1554 struct perf_cpu_context *cpuctx, 1555 enum event_type_t event_type, 1556 struct task_struct *task); 1557 1558 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 1559 struct perf_event_context *ctx, 1560 struct task_struct *task) 1561 { 1562 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 1563 if (ctx) 1564 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 1565 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 1566 if (ctx) 1567 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 1568 } 1569 1570 /* 1571 * Cross CPU call to install and enable a performance event 1572 * 1573 * Must be called with ctx->mutex held 1574 */ 1575 static int __perf_install_in_context(void *info) 1576 { 1577 struct perf_event *event = info; 1578 struct perf_event_context *ctx = event->ctx; 1579 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1580 struct perf_event_context *task_ctx = cpuctx->task_ctx; 1581 struct task_struct *task = current; 1582 1583 perf_ctx_lock(cpuctx, task_ctx); 1584 perf_pmu_disable(cpuctx->ctx.pmu); 1585 1586 /* 1587 * If there was an active task_ctx schedule it out. 1588 */ 1589 if (task_ctx) 1590 task_ctx_sched_out(task_ctx); 1591 1592 /* 1593 * If the context we're installing events in is not the 1594 * active task_ctx, flip them. 1595 */ 1596 if (ctx->task && task_ctx != ctx) { 1597 if (task_ctx) 1598 raw_spin_unlock(&task_ctx->lock); 1599 raw_spin_lock(&ctx->lock); 1600 task_ctx = ctx; 1601 } 1602 1603 if (task_ctx) { 1604 cpuctx->task_ctx = task_ctx; 1605 task = task_ctx->task; 1606 } 1607 1608 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 1609 1610 update_context_time(ctx); 1611 /* 1612 * update cgrp time only if current cgrp 1613 * matches event->cgrp. Must be done before 1614 * calling add_event_to_ctx() 1615 */ 1616 update_cgrp_time_from_event(event); 1617 1618 add_event_to_ctx(event, ctx); 1619 1620 /* 1621 * Schedule everything back in 1622 */ 1623 perf_event_sched_in(cpuctx, task_ctx, task); 1624 1625 perf_pmu_enable(cpuctx->ctx.pmu); 1626 perf_ctx_unlock(cpuctx, task_ctx); 1627 1628 return 0; 1629 } 1630 1631 /* 1632 * Attach a performance event to a context 1633 * 1634 * First we add the event to the list with the hardware enable bit 1635 * in event->hw_config cleared. 1636 * 1637 * If the event is attached to a task which is on a CPU we use a smp 1638 * call to enable it in the task context. The task might have been 1639 * scheduled away, but we check this in the smp call again. 1640 */ 1641 static void 1642 perf_install_in_context(struct perf_event_context *ctx, 1643 struct perf_event *event, 1644 int cpu) 1645 { 1646 struct task_struct *task = ctx->task; 1647 1648 lockdep_assert_held(&ctx->mutex); 1649 1650 event->ctx = ctx; 1651 if (event->cpu != -1) 1652 event->cpu = cpu; 1653 1654 if (!task) { 1655 /* 1656 * Per cpu events are installed via an smp call and 1657 * the install is always successful. 1658 */ 1659 cpu_function_call(cpu, __perf_install_in_context, event); 1660 return; 1661 } 1662 1663 retry: 1664 if (!task_function_call(task, __perf_install_in_context, event)) 1665 return; 1666 1667 raw_spin_lock_irq(&ctx->lock); 1668 /* 1669 * If we failed to find a running task, but find the context active now 1670 * that we've acquired the ctx->lock, retry. 1671 */ 1672 if (ctx->is_active) { 1673 raw_spin_unlock_irq(&ctx->lock); 1674 goto retry; 1675 } 1676 1677 /* 1678 * Since the task isn't running, its safe to add the event, us holding 1679 * the ctx->lock ensures the task won't get scheduled in. 1680 */ 1681 add_event_to_ctx(event, ctx); 1682 raw_spin_unlock_irq(&ctx->lock); 1683 } 1684 1685 /* 1686 * Put a event into inactive state and update time fields. 1687 * Enabling the leader of a group effectively enables all 1688 * the group members that aren't explicitly disabled, so we 1689 * have to update their ->tstamp_enabled also. 1690 * Note: this works for group members as well as group leaders 1691 * since the non-leader members' sibling_lists will be empty. 1692 */ 1693 static void __perf_event_mark_enabled(struct perf_event *event) 1694 { 1695 struct perf_event *sub; 1696 u64 tstamp = perf_event_time(event); 1697 1698 event->state = PERF_EVENT_STATE_INACTIVE; 1699 event->tstamp_enabled = tstamp - event->total_time_enabled; 1700 list_for_each_entry(sub, &event->sibling_list, group_entry) { 1701 if (sub->state >= PERF_EVENT_STATE_INACTIVE) 1702 sub->tstamp_enabled = tstamp - sub->total_time_enabled; 1703 } 1704 } 1705 1706 /* 1707 * Cross CPU call to enable a performance event 1708 */ 1709 static int __perf_event_enable(void *info) 1710 { 1711 struct perf_event *event = info; 1712 struct perf_event_context *ctx = event->ctx; 1713 struct perf_event *leader = event->group_leader; 1714 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 1715 int err; 1716 1717 if (WARN_ON_ONCE(!ctx->is_active)) 1718 return -EINVAL; 1719 1720 raw_spin_lock(&ctx->lock); 1721 update_context_time(ctx); 1722 1723 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1724 goto unlock; 1725 1726 /* 1727 * set current task's cgroup time reference point 1728 */ 1729 perf_cgroup_set_timestamp(current, ctx); 1730 1731 __perf_event_mark_enabled(event); 1732 1733 if (!event_filter_match(event)) { 1734 if (is_cgroup_event(event)) 1735 perf_cgroup_defer_enabled(event); 1736 goto unlock; 1737 } 1738 1739 /* 1740 * If the event is in a group and isn't the group leader, 1741 * then don't put it on unless the group is on. 1742 */ 1743 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) 1744 goto unlock; 1745 1746 if (!group_can_go_on(event, cpuctx, 1)) { 1747 err = -EEXIST; 1748 } else { 1749 if (event == leader) 1750 err = group_sched_in(event, cpuctx, ctx); 1751 else 1752 err = event_sched_in(event, cpuctx, ctx); 1753 } 1754 1755 if (err) { 1756 /* 1757 * If this event can't go on and it's part of a 1758 * group, then the whole group has to come off. 1759 */ 1760 if (leader != event) 1761 group_sched_out(leader, cpuctx, ctx); 1762 if (leader->attr.pinned) { 1763 update_group_times(leader); 1764 leader->state = PERF_EVENT_STATE_ERROR; 1765 } 1766 } 1767 1768 unlock: 1769 raw_spin_unlock(&ctx->lock); 1770 1771 return 0; 1772 } 1773 1774 /* 1775 * Enable a event. 1776 * 1777 * If event->ctx is a cloned context, callers must make sure that 1778 * every task struct that event->ctx->task could possibly point to 1779 * remains valid. This condition is satisfied when called through 1780 * perf_event_for_each_child or perf_event_for_each as described 1781 * for perf_event_disable. 1782 */ 1783 void perf_event_enable(struct perf_event *event) 1784 { 1785 struct perf_event_context *ctx = event->ctx; 1786 struct task_struct *task = ctx->task; 1787 1788 if (!task) { 1789 /* 1790 * Enable the event on the cpu that it's on 1791 */ 1792 cpu_function_call(event->cpu, __perf_event_enable, event); 1793 return; 1794 } 1795 1796 raw_spin_lock_irq(&ctx->lock); 1797 if (event->state >= PERF_EVENT_STATE_INACTIVE) 1798 goto out; 1799 1800 /* 1801 * If the event is in error state, clear that first. 1802 * That way, if we see the event in error state below, we 1803 * know that it has gone back into error state, as distinct 1804 * from the task having been scheduled away before the 1805 * cross-call arrived. 1806 */ 1807 if (event->state == PERF_EVENT_STATE_ERROR) 1808 event->state = PERF_EVENT_STATE_OFF; 1809 1810 retry: 1811 if (!ctx->is_active) { 1812 __perf_event_mark_enabled(event); 1813 goto out; 1814 } 1815 1816 raw_spin_unlock_irq(&ctx->lock); 1817 1818 if (!task_function_call(task, __perf_event_enable, event)) 1819 return; 1820 1821 raw_spin_lock_irq(&ctx->lock); 1822 1823 /* 1824 * If the context is active and the event is still off, 1825 * we need to retry the cross-call. 1826 */ 1827 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) { 1828 /* 1829 * task could have been flipped by a concurrent 1830 * perf_event_context_sched_out() 1831 */ 1832 task = ctx->task; 1833 goto retry; 1834 } 1835 1836 out: 1837 raw_spin_unlock_irq(&ctx->lock); 1838 } 1839 EXPORT_SYMBOL_GPL(perf_event_enable); 1840 1841 int perf_event_refresh(struct perf_event *event, int refresh) 1842 { 1843 /* 1844 * not supported on inherited events 1845 */ 1846 if (event->attr.inherit || !is_sampling_event(event)) 1847 return -EINVAL; 1848 1849 atomic_add(refresh, &event->event_limit); 1850 perf_event_enable(event); 1851 1852 return 0; 1853 } 1854 EXPORT_SYMBOL_GPL(perf_event_refresh); 1855 1856 static void ctx_sched_out(struct perf_event_context *ctx, 1857 struct perf_cpu_context *cpuctx, 1858 enum event_type_t event_type) 1859 { 1860 struct perf_event *event; 1861 int is_active = ctx->is_active; 1862 1863 ctx->is_active &= ~event_type; 1864 if (likely(!ctx->nr_events)) 1865 return; 1866 1867 update_context_time(ctx); 1868 update_cgrp_time_from_cpuctx(cpuctx); 1869 if (!ctx->nr_active) 1870 return; 1871 1872 perf_pmu_disable(ctx->pmu); 1873 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) { 1874 list_for_each_entry(event, &ctx->pinned_groups, group_entry) 1875 group_sched_out(event, cpuctx, ctx); 1876 } 1877 1878 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) { 1879 list_for_each_entry(event, &ctx->flexible_groups, group_entry) 1880 group_sched_out(event, cpuctx, ctx); 1881 } 1882 perf_pmu_enable(ctx->pmu); 1883 } 1884 1885 /* 1886 * Test whether two contexts are equivalent, i.e. whether they 1887 * have both been cloned from the same version of the same context 1888 * and they both have the same number of enabled events. 1889 * If the number of enabled events is the same, then the set 1890 * of enabled events should be the same, because these are both 1891 * inherited contexts, therefore we can't access individual events 1892 * in them directly with an fd; we can only enable/disable all 1893 * events via prctl, or enable/disable all events in a family 1894 * via ioctl, which will have the same effect on both contexts. 1895 */ 1896 static int context_equiv(struct perf_event_context *ctx1, 1897 struct perf_event_context *ctx2) 1898 { 1899 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx 1900 && ctx1->parent_gen == ctx2->parent_gen 1901 && !ctx1->pin_count && !ctx2->pin_count; 1902 } 1903 1904 static void __perf_event_sync_stat(struct perf_event *event, 1905 struct perf_event *next_event) 1906 { 1907 u64 value; 1908 1909 if (!event->attr.inherit_stat) 1910 return; 1911 1912 /* 1913 * Update the event value, we cannot use perf_event_read() 1914 * because we're in the middle of a context switch and have IRQs 1915 * disabled, which upsets smp_call_function_single(), however 1916 * we know the event must be on the current CPU, therefore we 1917 * don't need to use it. 1918 */ 1919 switch (event->state) { 1920 case PERF_EVENT_STATE_ACTIVE: 1921 event->pmu->read(event); 1922 /* fall-through */ 1923 1924 case PERF_EVENT_STATE_INACTIVE: 1925 update_event_times(event); 1926 break; 1927 1928 default: 1929 break; 1930 } 1931 1932 /* 1933 * In order to keep per-task stats reliable we need to flip the event 1934 * values when we flip the contexts. 1935 */ 1936 value = local64_read(&next_event->count); 1937 value = local64_xchg(&event->count, value); 1938 local64_set(&next_event->count, value); 1939 1940 swap(event->total_time_enabled, next_event->total_time_enabled); 1941 swap(event->total_time_running, next_event->total_time_running); 1942 1943 /* 1944 * Since we swizzled the values, update the user visible data too. 1945 */ 1946 perf_event_update_userpage(event); 1947 perf_event_update_userpage(next_event); 1948 } 1949 1950 #define list_next_entry(pos, member) \ 1951 list_entry(pos->member.next, typeof(*pos), member) 1952 1953 static void perf_event_sync_stat(struct perf_event_context *ctx, 1954 struct perf_event_context *next_ctx) 1955 { 1956 struct perf_event *event, *next_event; 1957 1958 if (!ctx->nr_stat) 1959 return; 1960 1961 update_context_time(ctx); 1962 1963 event = list_first_entry(&ctx->event_list, 1964 struct perf_event, event_entry); 1965 1966 next_event = list_first_entry(&next_ctx->event_list, 1967 struct perf_event, event_entry); 1968 1969 while (&event->event_entry != &ctx->event_list && 1970 &next_event->event_entry != &next_ctx->event_list) { 1971 1972 __perf_event_sync_stat(event, next_event); 1973 1974 event = list_next_entry(event, event_entry); 1975 next_event = list_next_entry(next_event, event_entry); 1976 } 1977 } 1978 1979 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 1980 struct task_struct *next) 1981 { 1982 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 1983 struct perf_event_context *next_ctx; 1984 struct perf_event_context *parent; 1985 struct perf_cpu_context *cpuctx; 1986 int do_switch = 1; 1987 1988 if (likely(!ctx)) 1989 return; 1990 1991 cpuctx = __get_cpu_context(ctx); 1992 if (!cpuctx->task_ctx) 1993 return; 1994 1995 rcu_read_lock(); 1996 parent = rcu_dereference(ctx->parent_ctx); 1997 next_ctx = next->perf_event_ctxp[ctxn]; 1998 if (parent && next_ctx && 1999 rcu_dereference(next_ctx->parent_ctx) == parent) { 2000 /* 2001 * Looks like the two contexts are clones, so we might be 2002 * able to optimize the context switch. We lock both 2003 * contexts and check that they are clones under the 2004 * lock (including re-checking that neither has been 2005 * uncloned in the meantime). It doesn't matter which 2006 * order we take the locks because no other cpu could 2007 * be trying to lock both of these tasks. 2008 */ 2009 raw_spin_lock(&ctx->lock); 2010 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 2011 if (context_equiv(ctx, next_ctx)) { 2012 /* 2013 * XXX do we need a memory barrier of sorts 2014 * wrt to rcu_dereference() of perf_event_ctxp 2015 */ 2016 task->perf_event_ctxp[ctxn] = next_ctx; 2017 next->perf_event_ctxp[ctxn] = ctx; 2018 ctx->task = next; 2019 next_ctx->task = task; 2020 do_switch = 0; 2021 2022 perf_event_sync_stat(ctx, next_ctx); 2023 } 2024 raw_spin_unlock(&next_ctx->lock); 2025 raw_spin_unlock(&ctx->lock); 2026 } 2027 rcu_read_unlock(); 2028 2029 if (do_switch) { 2030 raw_spin_lock(&ctx->lock); 2031 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2032 cpuctx->task_ctx = NULL; 2033 raw_spin_unlock(&ctx->lock); 2034 } 2035 } 2036 2037 #define for_each_task_context_nr(ctxn) \ 2038 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 2039 2040 /* 2041 * Called from scheduler to remove the events of the current task, 2042 * with interrupts disabled. 2043 * 2044 * We stop each event and update the event value in event->count. 2045 * 2046 * This does not protect us against NMI, but disable() 2047 * sets the disabled bit in the control field of event _before_ 2048 * accessing the event control register. If a NMI hits, then it will 2049 * not restart the event. 2050 */ 2051 void __perf_event_task_sched_out(struct task_struct *task, 2052 struct task_struct *next) 2053 { 2054 int ctxn; 2055 2056 for_each_task_context_nr(ctxn) 2057 perf_event_context_sched_out(task, ctxn, next); 2058 2059 /* 2060 * if cgroup events exist on this CPU, then we need 2061 * to check if we have to switch out PMU state. 2062 * cgroup event are system-wide mode only 2063 */ 2064 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2065 perf_cgroup_sched_out(task, next); 2066 } 2067 2068 static void task_ctx_sched_out(struct perf_event_context *ctx) 2069 { 2070 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2071 2072 if (!cpuctx->task_ctx) 2073 return; 2074 2075 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2076 return; 2077 2078 ctx_sched_out(ctx, cpuctx, EVENT_ALL); 2079 cpuctx->task_ctx = NULL; 2080 } 2081 2082 /* 2083 * Called with IRQs disabled 2084 */ 2085 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 2086 enum event_type_t event_type) 2087 { 2088 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 2089 } 2090 2091 static void 2092 ctx_pinned_sched_in(struct perf_event_context *ctx, 2093 struct perf_cpu_context *cpuctx) 2094 { 2095 struct perf_event *event; 2096 2097 list_for_each_entry(event, &ctx->pinned_groups, group_entry) { 2098 if (event->state <= PERF_EVENT_STATE_OFF) 2099 continue; 2100 if (!event_filter_match(event)) 2101 continue; 2102 2103 /* may need to reset tstamp_enabled */ 2104 if (is_cgroup_event(event)) 2105 perf_cgroup_mark_enabled(event, ctx); 2106 2107 if (group_can_go_on(event, cpuctx, 1)) 2108 group_sched_in(event, cpuctx, ctx); 2109 2110 /* 2111 * If this pinned group hasn't been scheduled, 2112 * put it in error state. 2113 */ 2114 if (event->state == PERF_EVENT_STATE_INACTIVE) { 2115 update_group_times(event); 2116 event->state = PERF_EVENT_STATE_ERROR; 2117 } 2118 } 2119 } 2120 2121 static void 2122 ctx_flexible_sched_in(struct perf_event_context *ctx, 2123 struct perf_cpu_context *cpuctx) 2124 { 2125 struct perf_event *event; 2126 int can_add_hw = 1; 2127 2128 list_for_each_entry(event, &ctx->flexible_groups, group_entry) { 2129 /* Ignore events in OFF or ERROR state */ 2130 if (event->state <= PERF_EVENT_STATE_OFF) 2131 continue; 2132 /* 2133 * Listen to the 'cpu' scheduling filter constraint 2134 * of events: 2135 */ 2136 if (!event_filter_match(event)) 2137 continue; 2138 2139 /* may need to reset tstamp_enabled */ 2140 if (is_cgroup_event(event)) 2141 perf_cgroup_mark_enabled(event, ctx); 2142 2143 if (group_can_go_on(event, cpuctx, can_add_hw)) { 2144 if (group_sched_in(event, cpuctx, ctx)) 2145 can_add_hw = 0; 2146 } 2147 } 2148 } 2149 2150 static void 2151 ctx_sched_in(struct perf_event_context *ctx, 2152 struct perf_cpu_context *cpuctx, 2153 enum event_type_t event_type, 2154 struct task_struct *task) 2155 { 2156 u64 now; 2157 int is_active = ctx->is_active; 2158 2159 ctx->is_active |= event_type; 2160 if (likely(!ctx->nr_events)) 2161 return; 2162 2163 now = perf_clock(); 2164 ctx->timestamp = now; 2165 perf_cgroup_set_timestamp(task, ctx); 2166 /* 2167 * First go through the list and put on any pinned groups 2168 * in order to give them the best chance of going on. 2169 */ 2170 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) 2171 ctx_pinned_sched_in(ctx, cpuctx); 2172 2173 /* Then walk through the lower prio flexible groups */ 2174 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) 2175 ctx_flexible_sched_in(ctx, cpuctx); 2176 } 2177 2178 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 2179 enum event_type_t event_type, 2180 struct task_struct *task) 2181 { 2182 struct perf_event_context *ctx = &cpuctx->ctx; 2183 2184 ctx_sched_in(ctx, cpuctx, event_type, task); 2185 } 2186 2187 static void perf_event_context_sched_in(struct perf_event_context *ctx, 2188 struct task_struct *task) 2189 { 2190 struct perf_cpu_context *cpuctx; 2191 2192 cpuctx = __get_cpu_context(ctx); 2193 if (cpuctx->task_ctx == ctx) 2194 return; 2195 2196 perf_ctx_lock(cpuctx, ctx); 2197 perf_pmu_disable(ctx->pmu); 2198 /* 2199 * We want to keep the following priority order: 2200 * cpu pinned (that don't need to move), task pinned, 2201 * cpu flexible, task flexible. 2202 */ 2203 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2204 2205 if (ctx->nr_events) 2206 cpuctx->task_ctx = ctx; 2207 2208 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task); 2209 2210 perf_pmu_enable(ctx->pmu); 2211 perf_ctx_unlock(cpuctx, ctx); 2212 2213 /* 2214 * Since these rotations are per-cpu, we need to ensure the 2215 * cpu-context we got scheduled on is actually rotating. 2216 */ 2217 perf_pmu_rotate_start(ctx->pmu); 2218 } 2219 2220 /* 2221 * When sampling the branck stack in system-wide, it may be necessary 2222 * to flush the stack on context switch. This happens when the branch 2223 * stack does not tag its entries with the pid of the current task. 2224 * Otherwise it becomes impossible to associate a branch entry with a 2225 * task. This ambiguity is more likely to appear when the branch stack 2226 * supports priv level filtering and the user sets it to monitor only 2227 * at the user level (which could be a useful measurement in system-wide 2228 * mode). In that case, the risk is high of having a branch stack with 2229 * branch from multiple tasks. Flushing may mean dropping the existing 2230 * entries or stashing them somewhere in the PMU specific code layer. 2231 * 2232 * This function provides the context switch callback to the lower code 2233 * layer. It is invoked ONLY when there is at least one system-wide context 2234 * with at least one active event using taken branch sampling. 2235 */ 2236 static void perf_branch_stack_sched_in(struct task_struct *prev, 2237 struct task_struct *task) 2238 { 2239 struct perf_cpu_context *cpuctx; 2240 struct pmu *pmu; 2241 unsigned long flags; 2242 2243 /* no need to flush branch stack if not changing task */ 2244 if (prev == task) 2245 return; 2246 2247 local_irq_save(flags); 2248 2249 rcu_read_lock(); 2250 2251 list_for_each_entry_rcu(pmu, &pmus, entry) { 2252 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 2253 2254 /* 2255 * check if the context has at least one 2256 * event using PERF_SAMPLE_BRANCH_STACK 2257 */ 2258 if (cpuctx->ctx.nr_branch_stack > 0 2259 && pmu->flush_branch_stack) { 2260 2261 pmu = cpuctx->ctx.pmu; 2262 2263 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2264 2265 perf_pmu_disable(pmu); 2266 2267 pmu->flush_branch_stack(); 2268 2269 perf_pmu_enable(pmu); 2270 2271 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2272 } 2273 } 2274 2275 rcu_read_unlock(); 2276 2277 local_irq_restore(flags); 2278 } 2279 2280 /* 2281 * Called from scheduler to add the events of the current task 2282 * with interrupts disabled. 2283 * 2284 * We restore the event value and then enable it. 2285 * 2286 * This does not protect us against NMI, but enable() 2287 * sets the enabled bit in the control field of event _before_ 2288 * accessing the event control register. If a NMI hits, then it will 2289 * keep the event running. 2290 */ 2291 void __perf_event_task_sched_in(struct task_struct *prev, 2292 struct task_struct *task) 2293 { 2294 struct perf_event_context *ctx; 2295 int ctxn; 2296 2297 for_each_task_context_nr(ctxn) { 2298 ctx = task->perf_event_ctxp[ctxn]; 2299 if (likely(!ctx)) 2300 continue; 2301 2302 perf_event_context_sched_in(ctx, task); 2303 } 2304 /* 2305 * if cgroup events exist on this CPU, then we need 2306 * to check if we have to switch in PMU state. 2307 * cgroup event are system-wide mode only 2308 */ 2309 if (atomic_read(&__get_cpu_var(perf_cgroup_events))) 2310 perf_cgroup_sched_in(prev, task); 2311 2312 /* check for system-wide branch_stack events */ 2313 if (atomic_read(&__get_cpu_var(perf_branch_stack_events))) 2314 perf_branch_stack_sched_in(prev, task); 2315 } 2316 2317 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 2318 { 2319 u64 frequency = event->attr.sample_freq; 2320 u64 sec = NSEC_PER_SEC; 2321 u64 divisor, dividend; 2322 2323 int count_fls, nsec_fls, frequency_fls, sec_fls; 2324 2325 count_fls = fls64(count); 2326 nsec_fls = fls64(nsec); 2327 frequency_fls = fls64(frequency); 2328 sec_fls = 30; 2329 2330 /* 2331 * We got @count in @nsec, with a target of sample_freq HZ 2332 * the target period becomes: 2333 * 2334 * @count * 10^9 2335 * period = ------------------- 2336 * @nsec * sample_freq 2337 * 2338 */ 2339 2340 /* 2341 * Reduce accuracy by one bit such that @a and @b converge 2342 * to a similar magnitude. 2343 */ 2344 #define REDUCE_FLS(a, b) \ 2345 do { \ 2346 if (a##_fls > b##_fls) { \ 2347 a >>= 1; \ 2348 a##_fls--; \ 2349 } else { \ 2350 b >>= 1; \ 2351 b##_fls--; \ 2352 } \ 2353 } while (0) 2354 2355 /* 2356 * Reduce accuracy until either term fits in a u64, then proceed with 2357 * the other, so that finally we can do a u64/u64 division. 2358 */ 2359 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 2360 REDUCE_FLS(nsec, frequency); 2361 REDUCE_FLS(sec, count); 2362 } 2363 2364 if (count_fls + sec_fls > 64) { 2365 divisor = nsec * frequency; 2366 2367 while (count_fls + sec_fls > 64) { 2368 REDUCE_FLS(count, sec); 2369 divisor >>= 1; 2370 } 2371 2372 dividend = count * sec; 2373 } else { 2374 dividend = count * sec; 2375 2376 while (nsec_fls + frequency_fls > 64) { 2377 REDUCE_FLS(nsec, frequency); 2378 dividend >>= 1; 2379 } 2380 2381 divisor = nsec * frequency; 2382 } 2383 2384 if (!divisor) 2385 return dividend; 2386 2387 return div64_u64(dividend, divisor); 2388 } 2389 2390 static DEFINE_PER_CPU(int, perf_throttled_count); 2391 static DEFINE_PER_CPU(u64, perf_throttled_seq); 2392 2393 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 2394 { 2395 struct hw_perf_event *hwc = &event->hw; 2396 s64 period, sample_period; 2397 s64 delta; 2398 2399 period = perf_calculate_period(event, nsec, count); 2400 2401 delta = (s64)(period - hwc->sample_period); 2402 delta = (delta + 7) / 8; /* low pass filter */ 2403 2404 sample_period = hwc->sample_period + delta; 2405 2406 if (!sample_period) 2407 sample_period = 1; 2408 2409 hwc->sample_period = sample_period; 2410 2411 if (local64_read(&hwc->period_left) > 8*sample_period) { 2412 if (disable) 2413 event->pmu->stop(event, PERF_EF_UPDATE); 2414 2415 local64_set(&hwc->period_left, 0); 2416 2417 if (disable) 2418 event->pmu->start(event, PERF_EF_RELOAD); 2419 } 2420 } 2421 2422 /* 2423 * combine freq adjustment with unthrottling to avoid two passes over the 2424 * events. At the same time, make sure, having freq events does not change 2425 * the rate of unthrottling as that would introduce bias. 2426 */ 2427 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 2428 int needs_unthr) 2429 { 2430 struct perf_event *event; 2431 struct hw_perf_event *hwc; 2432 u64 now, period = TICK_NSEC; 2433 s64 delta; 2434 2435 /* 2436 * only need to iterate over all events iff: 2437 * - context have events in frequency mode (needs freq adjust) 2438 * - there are events to unthrottle on this cpu 2439 */ 2440 if (!(ctx->nr_freq || needs_unthr)) 2441 return; 2442 2443 raw_spin_lock(&ctx->lock); 2444 perf_pmu_disable(ctx->pmu); 2445 2446 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 2447 if (event->state != PERF_EVENT_STATE_ACTIVE) 2448 continue; 2449 2450 if (!event_filter_match(event)) 2451 continue; 2452 2453 hwc = &event->hw; 2454 2455 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) { 2456 hwc->interrupts = 0; 2457 perf_log_throttle(event, 1); 2458 event->pmu->start(event, 0); 2459 } 2460 2461 if (!event->attr.freq || !event->attr.sample_freq) 2462 continue; 2463 2464 /* 2465 * stop the event and update event->count 2466 */ 2467 event->pmu->stop(event, PERF_EF_UPDATE); 2468 2469 now = local64_read(&event->count); 2470 delta = now - hwc->freq_count_stamp; 2471 hwc->freq_count_stamp = now; 2472 2473 /* 2474 * restart the event 2475 * reload only if value has changed 2476 * we have stopped the event so tell that 2477 * to perf_adjust_period() to avoid stopping it 2478 * twice. 2479 */ 2480 if (delta > 0) 2481 perf_adjust_period(event, period, delta, false); 2482 2483 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 2484 } 2485 2486 perf_pmu_enable(ctx->pmu); 2487 raw_spin_unlock(&ctx->lock); 2488 } 2489 2490 /* 2491 * Round-robin a context's events: 2492 */ 2493 static void rotate_ctx(struct perf_event_context *ctx) 2494 { 2495 /* 2496 * Rotate the first entry last of non-pinned groups. Rotation might be 2497 * disabled by the inheritance code. 2498 */ 2499 if (!ctx->rotate_disable) 2500 list_rotate_left(&ctx->flexible_groups); 2501 } 2502 2503 /* 2504 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized 2505 * because they're strictly cpu affine and rotate_start is called with IRQs 2506 * disabled, while rotate_context is called from IRQ context. 2507 */ 2508 static void perf_rotate_context(struct perf_cpu_context *cpuctx) 2509 { 2510 struct perf_event_context *ctx = NULL; 2511 int rotate = 0, remove = 1; 2512 2513 if (cpuctx->ctx.nr_events) { 2514 remove = 0; 2515 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 2516 rotate = 1; 2517 } 2518 2519 ctx = cpuctx->task_ctx; 2520 if (ctx && ctx->nr_events) { 2521 remove = 0; 2522 if (ctx->nr_events != ctx->nr_active) 2523 rotate = 1; 2524 } 2525 2526 if (!rotate) 2527 goto done; 2528 2529 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 2530 perf_pmu_disable(cpuctx->ctx.pmu); 2531 2532 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2533 if (ctx) 2534 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 2535 2536 rotate_ctx(&cpuctx->ctx); 2537 if (ctx) 2538 rotate_ctx(ctx); 2539 2540 perf_event_sched_in(cpuctx, ctx, current); 2541 2542 perf_pmu_enable(cpuctx->ctx.pmu); 2543 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 2544 done: 2545 if (remove) 2546 list_del_init(&cpuctx->rotation_list); 2547 } 2548 2549 void perf_event_task_tick(void) 2550 { 2551 struct list_head *head = &__get_cpu_var(rotation_list); 2552 struct perf_cpu_context *cpuctx, *tmp; 2553 struct perf_event_context *ctx; 2554 int throttled; 2555 2556 WARN_ON(!irqs_disabled()); 2557 2558 __this_cpu_inc(perf_throttled_seq); 2559 throttled = __this_cpu_xchg(perf_throttled_count, 0); 2560 2561 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) { 2562 ctx = &cpuctx->ctx; 2563 perf_adjust_freq_unthr_context(ctx, throttled); 2564 2565 ctx = cpuctx->task_ctx; 2566 if (ctx) 2567 perf_adjust_freq_unthr_context(ctx, throttled); 2568 2569 if (cpuctx->jiffies_interval == 1 || 2570 !(jiffies % cpuctx->jiffies_interval)) 2571 perf_rotate_context(cpuctx); 2572 } 2573 } 2574 2575 static int event_enable_on_exec(struct perf_event *event, 2576 struct perf_event_context *ctx) 2577 { 2578 if (!event->attr.enable_on_exec) 2579 return 0; 2580 2581 event->attr.enable_on_exec = 0; 2582 if (event->state >= PERF_EVENT_STATE_INACTIVE) 2583 return 0; 2584 2585 __perf_event_mark_enabled(event); 2586 2587 return 1; 2588 } 2589 2590 /* 2591 * Enable all of a task's events that have been marked enable-on-exec. 2592 * This expects task == current. 2593 */ 2594 static void perf_event_enable_on_exec(struct perf_event_context *ctx) 2595 { 2596 struct perf_event *event; 2597 unsigned long flags; 2598 int enabled = 0; 2599 int ret; 2600 2601 local_irq_save(flags); 2602 if (!ctx || !ctx->nr_events) 2603 goto out; 2604 2605 /* 2606 * We must ctxsw out cgroup events to avoid conflict 2607 * when invoking perf_task_event_sched_in() later on 2608 * in this function. Otherwise we end up trying to 2609 * ctxswin cgroup events which are already scheduled 2610 * in. 2611 */ 2612 perf_cgroup_sched_out(current, NULL); 2613 2614 raw_spin_lock(&ctx->lock); 2615 task_ctx_sched_out(ctx); 2616 2617 list_for_each_entry(event, &ctx->event_list, event_entry) { 2618 ret = event_enable_on_exec(event, ctx); 2619 if (ret) 2620 enabled = 1; 2621 } 2622 2623 /* 2624 * Unclone this context if we enabled any event. 2625 */ 2626 if (enabled) 2627 unclone_ctx(ctx); 2628 2629 raw_spin_unlock(&ctx->lock); 2630 2631 /* 2632 * Also calls ctxswin for cgroup events, if any: 2633 */ 2634 perf_event_context_sched_in(ctx, ctx->task); 2635 out: 2636 local_irq_restore(flags); 2637 } 2638 2639 /* 2640 * Cross CPU call to read the hardware event 2641 */ 2642 static void __perf_event_read(void *info) 2643 { 2644 struct perf_event *event = info; 2645 struct perf_event_context *ctx = event->ctx; 2646 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2647 2648 /* 2649 * If this is a task context, we need to check whether it is 2650 * the current task context of this cpu. If not it has been 2651 * scheduled out before the smp call arrived. In that case 2652 * event->count would have been updated to a recent sample 2653 * when the event was scheduled out. 2654 */ 2655 if (ctx->task && cpuctx->task_ctx != ctx) 2656 return; 2657 2658 raw_spin_lock(&ctx->lock); 2659 if (ctx->is_active) { 2660 update_context_time(ctx); 2661 update_cgrp_time_from_event(event); 2662 } 2663 update_event_times(event); 2664 if (event->state == PERF_EVENT_STATE_ACTIVE) 2665 event->pmu->read(event); 2666 raw_spin_unlock(&ctx->lock); 2667 } 2668 2669 static inline u64 perf_event_count(struct perf_event *event) 2670 { 2671 return local64_read(&event->count) + atomic64_read(&event->child_count); 2672 } 2673 2674 static u64 perf_event_read(struct perf_event *event) 2675 { 2676 /* 2677 * If event is enabled and currently active on a CPU, update the 2678 * value in the event structure: 2679 */ 2680 if (event->state == PERF_EVENT_STATE_ACTIVE) { 2681 smp_call_function_single(event->oncpu, 2682 __perf_event_read, event, 1); 2683 } else if (event->state == PERF_EVENT_STATE_INACTIVE) { 2684 struct perf_event_context *ctx = event->ctx; 2685 unsigned long flags; 2686 2687 raw_spin_lock_irqsave(&ctx->lock, flags); 2688 /* 2689 * may read while context is not active 2690 * (e.g., thread is blocked), in that case 2691 * we cannot update context time 2692 */ 2693 if (ctx->is_active) { 2694 update_context_time(ctx); 2695 update_cgrp_time_from_event(event); 2696 } 2697 update_event_times(event); 2698 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2699 } 2700 2701 return perf_event_count(event); 2702 } 2703 2704 /* 2705 * Initialize the perf_event context in a task_struct: 2706 */ 2707 static void __perf_event_init_context(struct perf_event_context *ctx) 2708 { 2709 raw_spin_lock_init(&ctx->lock); 2710 mutex_init(&ctx->mutex); 2711 INIT_LIST_HEAD(&ctx->pinned_groups); 2712 INIT_LIST_HEAD(&ctx->flexible_groups); 2713 INIT_LIST_HEAD(&ctx->event_list); 2714 atomic_set(&ctx->refcount, 1); 2715 } 2716 2717 static struct perf_event_context * 2718 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 2719 { 2720 struct perf_event_context *ctx; 2721 2722 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 2723 if (!ctx) 2724 return NULL; 2725 2726 __perf_event_init_context(ctx); 2727 if (task) { 2728 ctx->task = task; 2729 get_task_struct(task); 2730 } 2731 ctx->pmu = pmu; 2732 2733 return ctx; 2734 } 2735 2736 static struct task_struct * 2737 find_lively_task_by_vpid(pid_t vpid) 2738 { 2739 struct task_struct *task; 2740 int err; 2741 2742 rcu_read_lock(); 2743 if (!vpid) 2744 task = current; 2745 else 2746 task = find_task_by_vpid(vpid); 2747 if (task) 2748 get_task_struct(task); 2749 rcu_read_unlock(); 2750 2751 if (!task) 2752 return ERR_PTR(-ESRCH); 2753 2754 /* Reuse ptrace permission checks for now. */ 2755 err = -EACCES; 2756 if (!ptrace_may_access(task, PTRACE_MODE_READ)) 2757 goto errout; 2758 2759 return task; 2760 errout: 2761 put_task_struct(task); 2762 return ERR_PTR(err); 2763 2764 } 2765 2766 /* 2767 * Returns a matching context with refcount and pincount. 2768 */ 2769 static struct perf_event_context * 2770 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu) 2771 { 2772 struct perf_event_context *ctx; 2773 struct perf_cpu_context *cpuctx; 2774 unsigned long flags; 2775 int ctxn, err; 2776 2777 if (!task) { 2778 /* Must be root to operate on a CPU event: */ 2779 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 2780 return ERR_PTR(-EACCES); 2781 2782 /* 2783 * We could be clever and allow to attach a event to an 2784 * offline CPU and activate it when the CPU comes up, but 2785 * that's for later. 2786 */ 2787 if (!cpu_online(cpu)) 2788 return ERR_PTR(-ENODEV); 2789 2790 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 2791 ctx = &cpuctx->ctx; 2792 get_ctx(ctx); 2793 ++ctx->pin_count; 2794 2795 return ctx; 2796 } 2797 2798 err = -EINVAL; 2799 ctxn = pmu->task_ctx_nr; 2800 if (ctxn < 0) 2801 goto errout; 2802 2803 retry: 2804 ctx = perf_lock_task_context(task, ctxn, &flags); 2805 if (ctx) { 2806 unclone_ctx(ctx); 2807 ++ctx->pin_count; 2808 raw_spin_unlock_irqrestore(&ctx->lock, flags); 2809 } else { 2810 ctx = alloc_perf_context(pmu, task); 2811 err = -ENOMEM; 2812 if (!ctx) 2813 goto errout; 2814 2815 err = 0; 2816 mutex_lock(&task->perf_event_mutex); 2817 /* 2818 * If it has already passed perf_event_exit_task(). 2819 * we must see PF_EXITING, it takes this mutex too. 2820 */ 2821 if (task->flags & PF_EXITING) 2822 err = -ESRCH; 2823 else if (task->perf_event_ctxp[ctxn]) 2824 err = -EAGAIN; 2825 else { 2826 get_ctx(ctx); 2827 ++ctx->pin_count; 2828 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 2829 } 2830 mutex_unlock(&task->perf_event_mutex); 2831 2832 if (unlikely(err)) { 2833 put_ctx(ctx); 2834 2835 if (err == -EAGAIN) 2836 goto retry; 2837 goto errout; 2838 } 2839 } 2840 2841 return ctx; 2842 2843 errout: 2844 return ERR_PTR(err); 2845 } 2846 2847 static void perf_event_free_filter(struct perf_event *event); 2848 2849 static void free_event_rcu(struct rcu_head *head) 2850 { 2851 struct perf_event *event; 2852 2853 event = container_of(head, struct perf_event, rcu_head); 2854 if (event->ns) 2855 put_pid_ns(event->ns); 2856 perf_event_free_filter(event); 2857 kfree(event); 2858 } 2859 2860 static void ring_buffer_put(struct ring_buffer *rb); 2861 2862 static void free_event(struct perf_event *event) 2863 { 2864 irq_work_sync(&event->pending); 2865 2866 if (!event->parent) { 2867 if (event->attach_state & PERF_ATTACH_TASK) 2868 static_key_slow_dec_deferred(&perf_sched_events); 2869 if (event->attr.mmap || event->attr.mmap_data) 2870 atomic_dec(&nr_mmap_events); 2871 if (event->attr.comm) 2872 atomic_dec(&nr_comm_events); 2873 if (event->attr.task) 2874 atomic_dec(&nr_task_events); 2875 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 2876 put_callchain_buffers(); 2877 if (is_cgroup_event(event)) { 2878 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu)); 2879 static_key_slow_dec_deferred(&perf_sched_events); 2880 } 2881 2882 if (has_branch_stack(event)) { 2883 static_key_slow_dec_deferred(&perf_sched_events); 2884 /* is system-wide event */ 2885 if (!(event->attach_state & PERF_ATTACH_TASK)) 2886 atomic_dec(&per_cpu(perf_branch_stack_events, 2887 event->cpu)); 2888 } 2889 } 2890 2891 if (event->rb) { 2892 ring_buffer_put(event->rb); 2893 event->rb = NULL; 2894 } 2895 2896 if (is_cgroup_event(event)) 2897 perf_detach_cgroup(event); 2898 2899 if (event->destroy) 2900 event->destroy(event); 2901 2902 if (event->ctx) 2903 put_ctx(event->ctx); 2904 2905 call_rcu(&event->rcu_head, free_event_rcu); 2906 } 2907 2908 int perf_event_release_kernel(struct perf_event *event) 2909 { 2910 struct perf_event_context *ctx = event->ctx; 2911 2912 WARN_ON_ONCE(ctx->parent_ctx); 2913 /* 2914 * There are two ways this annotation is useful: 2915 * 2916 * 1) there is a lock recursion from perf_event_exit_task 2917 * see the comment there. 2918 * 2919 * 2) there is a lock-inversion with mmap_sem through 2920 * perf_event_read_group(), which takes faults while 2921 * holding ctx->mutex, however this is called after 2922 * the last filedesc died, so there is no possibility 2923 * to trigger the AB-BA case. 2924 */ 2925 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING); 2926 raw_spin_lock_irq(&ctx->lock); 2927 perf_group_detach(event); 2928 raw_spin_unlock_irq(&ctx->lock); 2929 perf_remove_from_context(event); 2930 mutex_unlock(&ctx->mutex); 2931 2932 free_event(event); 2933 2934 return 0; 2935 } 2936 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 2937 2938 /* 2939 * Called when the last reference to the file is gone. 2940 */ 2941 static void put_event(struct perf_event *event) 2942 { 2943 struct task_struct *owner; 2944 2945 if (!atomic_long_dec_and_test(&event->refcount)) 2946 return; 2947 2948 rcu_read_lock(); 2949 owner = ACCESS_ONCE(event->owner); 2950 /* 2951 * Matches the smp_wmb() in perf_event_exit_task(). If we observe 2952 * !owner it means the list deletion is complete and we can indeed 2953 * free this event, otherwise we need to serialize on 2954 * owner->perf_event_mutex. 2955 */ 2956 smp_read_barrier_depends(); 2957 if (owner) { 2958 /* 2959 * Since delayed_put_task_struct() also drops the last 2960 * task reference we can safely take a new reference 2961 * while holding the rcu_read_lock(). 2962 */ 2963 get_task_struct(owner); 2964 } 2965 rcu_read_unlock(); 2966 2967 if (owner) { 2968 mutex_lock(&owner->perf_event_mutex); 2969 /* 2970 * We have to re-check the event->owner field, if it is cleared 2971 * we raced with perf_event_exit_task(), acquiring the mutex 2972 * ensured they're done, and we can proceed with freeing the 2973 * event. 2974 */ 2975 if (event->owner) 2976 list_del_init(&event->owner_entry); 2977 mutex_unlock(&owner->perf_event_mutex); 2978 put_task_struct(owner); 2979 } 2980 2981 perf_event_release_kernel(event); 2982 } 2983 2984 static int perf_release(struct inode *inode, struct file *file) 2985 { 2986 put_event(file->private_data); 2987 return 0; 2988 } 2989 2990 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 2991 { 2992 struct perf_event *child; 2993 u64 total = 0; 2994 2995 *enabled = 0; 2996 *running = 0; 2997 2998 mutex_lock(&event->child_mutex); 2999 total += perf_event_read(event); 3000 *enabled += event->total_time_enabled + 3001 atomic64_read(&event->child_total_time_enabled); 3002 *running += event->total_time_running + 3003 atomic64_read(&event->child_total_time_running); 3004 3005 list_for_each_entry(child, &event->child_list, child_list) { 3006 total += perf_event_read(child); 3007 *enabled += child->total_time_enabled; 3008 *running += child->total_time_running; 3009 } 3010 mutex_unlock(&event->child_mutex); 3011 3012 return total; 3013 } 3014 EXPORT_SYMBOL_GPL(perf_event_read_value); 3015 3016 static int perf_event_read_group(struct perf_event *event, 3017 u64 read_format, char __user *buf) 3018 { 3019 struct perf_event *leader = event->group_leader, *sub; 3020 int n = 0, size = 0, ret = -EFAULT; 3021 struct perf_event_context *ctx = leader->ctx; 3022 u64 values[5]; 3023 u64 count, enabled, running; 3024 3025 mutex_lock(&ctx->mutex); 3026 count = perf_event_read_value(leader, &enabled, &running); 3027 3028 values[n++] = 1 + leader->nr_siblings; 3029 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3030 values[n++] = enabled; 3031 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3032 values[n++] = running; 3033 values[n++] = count; 3034 if (read_format & PERF_FORMAT_ID) 3035 values[n++] = primary_event_id(leader); 3036 3037 size = n * sizeof(u64); 3038 3039 if (copy_to_user(buf, values, size)) 3040 goto unlock; 3041 3042 ret = size; 3043 3044 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 3045 n = 0; 3046 3047 values[n++] = perf_event_read_value(sub, &enabled, &running); 3048 if (read_format & PERF_FORMAT_ID) 3049 values[n++] = primary_event_id(sub); 3050 3051 size = n * sizeof(u64); 3052 3053 if (copy_to_user(buf + ret, values, size)) { 3054 ret = -EFAULT; 3055 goto unlock; 3056 } 3057 3058 ret += size; 3059 } 3060 unlock: 3061 mutex_unlock(&ctx->mutex); 3062 3063 return ret; 3064 } 3065 3066 static int perf_event_read_one(struct perf_event *event, 3067 u64 read_format, char __user *buf) 3068 { 3069 u64 enabled, running; 3070 u64 values[4]; 3071 int n = 0; 3072 3073 values[n++] = perf_event_read_value(event, &enabled, &running); 3074 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3075 values[n++] = enabled; 3076 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3077 values[n++] = running; 3078 if (read_format & PERF_FORMAT_ID) 3079 values[n++] = primary_event_id(event); 3080 3081 if (copy_to_user(buf, values, n * sizeof(u64))) 3082 return -EFAULT; 3083 3084 return n * sizeof(u64); 3085 } 3086 3087 /* 3088 * Read the performance event - simple non blocking version for now 3089 */ 3090 static ssize_t 3091 perf_read_hw(struct perf_event *event, char __user *buf, size_t count) 3092 { 3093 u64 read_format = event->attr.read_format; 3094 int ret; 3095 3096 /* 3097 * Return end-of-file for a read on a event that is in 3098 * error state (i.e. because it was pinned but it couldn't be 3099 * scheduled on to the CPU at some point). 3100 */ 3101 if (event->state == PERF_EVENT_STATE_ERROR) 3102 return 0; 3103 3104 if (count < event->read_size) 3105 return -ENOSPC; 3106 3107 WARN_ON_ONCE(event->ctx->parent_ctx); 3108 if (read_format & PERF_FORMAT_GROUP) 3109 ret = perf_event_read_group(event, read_format, buf); 3110 else 3111 ret = perf_event_read_one(event, read_format, buf); 3112 3113 return ret; 3114 } 3115 3116 static ssize_t 3117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 3118 { 3119 struct perf_event *event = file->private_data; 3120 3121 return perf_read_hw(event, buf, count); 3122 } 3123 3124 static unsigned int perf_poll(struct file *file, poll_table *wait) 3125 { 3126 struct perf_event *event = file->private_data; 3127 struct ring_buffer *rb; 3128 unsigned int events = POLL_HUP; 3129 3130 /* 3131 * Race between perf_event_set_output() and perf_poll(): perf_poll() 3132 * grabs the rb reference but perf_event_set_output() overrides it. 3133 * Here is the timeline for two threads T1, T2: 3134 * t0: T1, rb = rcu_dereference(event->rb) 3135 * t1: T2, old_rb = event->rb 3136 * t2: T2, event->rb = new rb 3137 * t3: T2, ring_buffer_detach(old_rb) 3138 * t4: T1, ring_buffer_attach(rb1) 3139 * t5: T1, poll_wait(event->waitq) 3140 * 3141 * To avoid this problem, we grab mmap_mutex in perf_poll() 3142 * thereby ensuring that the assignment of the new ring buffer 3143 * and the detachment of the old buffer appear atomic to perf_poll() 3144 */ 3145 mutex_lock(&event->mmap_mutex); 3146 3147 rcu_read_lock(); 3148 rb = rcu_dereference(event->rb); 3149 if (rb) { 3150 ring_buffer_attach(event, rb); 3151 events = atomic_xchg(&rb->poll, 0); 3152 } 3153 rcu_read_unlock(); 3154 3155 mutex_unlock(&event->mmap_mutex); 3156 3157 poll_wait(file, &event->waitq, wait); 3158 3159 return events; 3160 } 3161 3162 static void perf_event_reset(struct perf_event *event) 3163 { 3164 (void)perf_event_read(event); 3165 local64_set(&event->count, 0); 3166 perf_event_update_userpage(event); 3167 } 3168 3169 /* 3170 * Holding the top-level event's child_mutex means that any 3171 * descendant process that has inherited this event will block 3172 * in sync_child_event if it goes to exit, thus satisfying the 3173 * task existence requirements of perf_event_enable/disable. 3174 */ 3175 static void perf_event_for_each_child(struct perf_event *event, 3176 void (*func)(struct perf_event *)) 3177 { 3178 struct perf_event *child; 3179 3180 WARN_ON_ONCE(event->ctx->parent_ctx); 3181 mutex_lock(&event->child_mutex); 3182 func(event); 3183 list_for_each_entry(child, &event->child_list, child_list) 3184 func(child); 3185 mutex_unlock(&event->child_mutex); 3186 } 3187 3188 static void perf_event_for_each(struct perf_event *event, 3189 void (*func)(struct perf_event *)) 3190 { 3191 struct perf_event_context *ctx = event->ctx; 3192 struct perf_event *sibling; 3193 3194 WARN_ON_ONCE(ctx->parent_ctx); 3195 mutex_lock(&ctx->mutex); 3196 event = event->group_leader; 3197 3198 perf_event_for_each_child(event, func); 3199 list_for_each_entry(sibling, &event->sibling_list, group_entry) 3200 perf_event_for_each_child(sibling, func); 3201 mutex_unlock(&ctx->mutex); 3202 } 3203 3204 static int perf_event_period(struct perf_event *event, u64 __user *arg) 3205 { 3206 struct perf_event_context *ctx = event->ctx; 3207 int ret = 0; 3208 u64 value; 3209 3210 if (!is_sampling_event(event)) 3211 return -EINVAL; 3212 3213 if (copy_from_user(&value, arg, sizeof(value))) 3214 return -EFAULT; 3215 3216 if (!value) 3217 return -EINVAL; 3218 3219 raw_spin_lock_irq(&ctx->lock); 3220 if (event->attr.freq) { 3221 if (value > sysctl_perf_event_sample_rate) { 3222 ret = -EINVAL; 3223 goto unlock; 3224 } 3225 3226 event->attr.sample_freq = value; 3227 } else { 3228 event->attr.sample_period = value; 3229 event->hw.sample_period = value; 3230 } 3231 unlock: 3232 raw_spin_unlock_irq(&ctx->lock); 3233 3234 return ret; 3235 } 3236 3237 static const struct file_operations perf_fops; 3238 3239 static inline int perf_fget_light(int fd, struct fd *p) 3240 { 3241 struct fd f = fdget(fd); 3242 if (!f.file) 3243 return -EBADF; 3244 3245 if (f.file->f_op != &perf_fops) { 3246 fdput(f); 3247 return -EBADF; 3248 } 3249 *p = f; 3250 return 0; 3251 } 3252 3253 static int perf_event_set_output(struct perf_event *event, 3254 struct perf_event *output_event); 3255 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 3256 3257 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3258 { 3259 struct perf_event *event = file->private_data; 3260 void (*func)(struct perf_event *); 3261 u32 flags = arg; 3262 3263 switch (cmd) { 3264 case PERF_EVENT_IOC_ENABLE: 3265 func = perf_event_enable; 3266 break; 3267 case PERF_EVENT_IOC_DISABLE: 3268 func = perf_event_disable; 3269 break; 3270 case PERF_EVENT_IOC_RESET: 3271 func = perf_event_reset; 3272 break; 3273 3274 case PERF_EVENT_IOC_REFRESH: 3275 return perf_event_refresh(event, arg); 3276 3277 case PERF_EVENT_IOC_PERIOD: 3278 return perf_event_period(event, (u64 __user *)arg); 3279 3280 case PERF_EVENT_IOC_SET_OUTPUT: 3281 { 3282 int ret; 3283 if (arg != -1) { 3284 struct perf_event *output_event; 3285 struct fd output; 3286 ret = perf_fget_light(arg, &output); 3287 if (ret) 3288 return ret; 3289 output_event = output.file->private_data; 3290 ret = perf_event_set_output(event, output_event); 3291 fdput(output); 3292 } else { 3293 ret = perf_event_set_output(event, NULL); 3294 } 3295 return ret; 3296 } 3297 3298 case PERF_EVENT_IOC_SET_FILTER: 3299 return perf_event_set_filter(event, (void __user *)arg); 3300 3301 default: 3302 return -ENOTTY; 3303 } 3304 3305 if (flags & PERF_IOC_FLAG_GROUP) 3306 perf_event_for_each(event, func); 3307 else 3308 perf_event_for_each_child(event, func); 3309 3310 return 0; 3311 } 3312 3313 int perf_event_task_enable(void) 3314 { 3315 struct perf_event *event; 3316 3317 mutex_lock(¤t->perf_event_mutex); 3318 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3319 perf_event_for_each_child(event, perf_event_enable); 3320 mutex_unlock(¤t->perf_event_mutex); 3321 3322 return 0; 3323 } 3324 3325 int perf_event_task_disable(void) 3326 { 3327 struct perf_event *event; 3328 3329 mutex_lock(¤t->perf_event_mutex); 3330 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) 3331 perf_event_for_each_child(event, perf_event_disable); 3332 mutex_unlock(¤t->perf_event_mutex); 3333 3334 return 0; 3335 } 3336 3337 static int perf_event_index(struct perf_event *event) 3338 { 3339 if (event->hw.state & PERF_HES_STOPPED) 3340 return 0; 3341 3342 if (event->state != PERF_EVENT_STATE_ACTIVE) 3343 return 0; 3344 3345 return event->pmu->event_idx(event); 3346 } 3347 3348 static void calc_timer_values(struct perf_event *event, 3349 u64 *now, 3350 u64 *enabled, 3351 u64 *running) 3352 { 3353 u64 ctx_time; 3354 3355 *now = perf_clock(); 3356 ctx_time = event->shadow_ctx_time + *now; 3357 *enabled = ctx_time - event->tstamp_enabled; 3358 *running = ctx_time - event->tstamp_running; 3359 } 3360 3361 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) 3362 { 3363 } 3364 3365 /* 3366 * Callers need to ensure there can be no nesting of this function, otherwise 3367 * the seqlock logic goes bad. We can not serialize this because the arch 3368 * code calls this from NMI context. 3369 */ 3370 void perf_event_update_userpage(struct perf_event *event) 3371 { 3372 struct perf_event_mmap_page *userpg; 3373 struct ring_buffer *rb; 3374 u64 enabled, running, now; 3375 3376 rcu_read_lock(); 3377 /* 3378 * compute total_time_enabled, total_time_running 3379 * based on snapshot values taken when the event 3380 * was last scheduled in. 3381 * 3382 * we cannot simply called update_context_time() 3383 * because of locking issue as we can be called in 3384 * NMI context 3385 */ 3386 calc_timer_values(event, &now, &enabled, &running); 3387 rb = rcu_dereference(event->rb); 3388 if (!rb) 3389 goto unlock; 3390 3391 userpg = rb->user_page; 3392 3393 /* 3394 * Disable preemption so as to not let the corresponding user-space 3395 * spin too long if we get preempted. 3396 */ 3397 preempt_disable(); 3398 ++userpg->lock; 3399 barrier(); 3400 userpg->index = perf_event_index(event); 3401 userpg->offset = perf_event_count(event); 3402 if (userpg->index) 3403 userpg->offset -= local64_read(&event->hw.prev_count); 3404 3405 userpg->time_enabled = enabled + 3406 atomic64_read(&event->child_total_time_enabled); 3407 3408 userpg->time_running = running + 3409 atomic64_read(&event->child_total_time_running); 3410 3411 arch_perf_update_userpage(userpg, now); 3412 3413 barrier(); 3414 ++userpg->lock; 3415 preempt_enable(); 3416 unlock: 3417 rcu_read_unlock(); 3418 } 3419 3420 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 3421 { 3422 struct perf_event *event = vma->vm_file->private_data; 3423 struct ring_buffer *rb; 3424 int ret = VM_FAULT_SIGBUS; 3425 3426 if (vmf->flags & FAULT_FLAG_MKWRITE) { 3427 if (vmf->pgoff == 0) 3428 ret = 0; 3429 return ret; 3430 } 3431 3432 rcu_read_lock(); 3433 rb = rcu_dereference(event->rb); 3434 if (!rb) 3435 goto unlock; 3436 3437 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 3438 goto unlock; 3439 3440 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 3441 if (!vmf->page) 3442 goto unlock; 3443 3444 get_page(vmf->page); 3445 vmf->page->mapping = vma->vm_file->f_mapping; 3446 vmf->page->index = vmf->pgoff; 3447 3448 ret = 0; 3449 unlock: 3450 rcu_read_unlock(); 3451 3452 return ret; 3453 } 3454 3455 static void ring_buffer_attach(struct perf_event *event, 3456 struct ring_buffer *rb) 3457 { 3458 unsigned long flags; 3459 3460 if (!list_empty(&event->rb_entry)) 3461 return; 3462 3463 spin_lock_irqsave(&rb->event_lock, flags); 3464 if (!list_empty(&event->rb_entry)) 3465 goto unlock; 3466 3467 list_add(&event->rb_entry, &rb->event_list); 3468 unlock: 3469 spin_unlock_irqrestore(&rb->event_lock, flags); 3470 } 3471 3472 static void ring_buffer_detach(struct perf_event *event, 3473 struct ring_buffer *rb) 3474 { 3475 unsigned long flags; 3476 3477 if (list_empty(&event->rb_entry)) 3478 return; 3479 3480 spin_lock_irqsave(&rb->event_lock, flags); 3481 list_del_init(&event->rb_entry); 3482 wake_up_all(&event->waitq); 3483 spin_unlock_irqrestore(&rb->event_lock, flags); 3484 } 3485 3486 static void ring_buffer_wakeup(struct perf_event *event) 3487 { 3488 struct ring_buffer *rb; 3489 3490 rcu_read_lock(); 3491 rb = rcu_dereference(event->rb); 3492 if (!rb) 3493 goto unlock; 3494 3495 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 3496 wake_up_all(&event->waitq); 3497 3498 unlock: 3499 rcu_read_unlock(); 3500 } 3501 3502 static void rb_free_rcu(struct rcu_head *rcu_head) 3503 { 3504 struct ring_buffer *rb; 3505 3506 rb = container_of(rcu_head, struct ring_buffer, rcu_head); 3507 rb_free(rb); 3508 } 3509 3510 static struct ring_buffer *ring_buffer_get(struct perf_event *event) 3511 { 3512 struct ring_buffer *rb; 3513 3514 rcu_read_lock(); 3515 rb = rcu_dereference(event->rb); 3516 if (rb) { 3517 if (!atomic_inc_not_zero(&rb->refcount)) 3518 rb = NULL; 3519 } 3520 rcu_read_unlock(); 3521 3522 return rb; 3523 } 3524 3525 static void ring_buffer_put(struct ring_buffer *rb) 3526 { 3527 struct perf_event *event, *n; 3528 unsigned long flags; 3529 3530 if (!atomic_dec_and_test(&rb->refcount)) 3531 return; 3532 3533 spin_lock_irqsave(&rb->event_lock, flags); 3534 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) { 3535 list_del_init(&event->rb_entry); 3536 wake_up_all(&event->waitq); 3537 } 3538 spin_unlock_irqrestore(&rb->event_lock, flags); 3539 3540 call_rcu(&rb->rcu_head, rb_free_rcu); 3541 } 3542 3543 static void perf_mmap_open(struct vm_area_struct *vma) 3544 { 3545 struct perf_event *event = vma->vm_file->private_data; 3546 3547 atomic_inc(&event->mmap_count); 3548 } 3549 3550 static void perf_mmap_close(struct vm_area_struct *vma) 3551 { 3552 struct perf_event *event = vma->vm_file->private_data; 3553 3554 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { 3555 unsigned long size = perf_data_size(event->rb); 3556 struct user_struct *user = event->mmap_user; 3557 struct ring_buffer *rb = event->rb; 3558 3559 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); 3560 vma->vm_mm->pinned_vm -= event->mmap_locked; 3561 rcu_assign_pointer(event->rb, NULL); 3562 ring_buffer_detach(event, rb); 3563 mutex_unlock(&event->mmap_mutex); 3564 3565 ring_buffer_put(rb); 3566 free_uid(user); 3567 } 3568 } 3569 3570 static const struct vm_operations_struct perf_mmap_vmops = { 3571 .open = perf_mmap_open, 3572 .close = perf_mmap_close, 3573 .fault = perf_mmap_fault, 3574 .page_mkwrite = perf_mmap_fault, 3575 }; 3576 3577 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 3578 { 3579 struct perf_event *event = file->private_data; 3580 unsigned long user_locked, user_lock_limit; 3581 struct user_struct *user = current_user(); 3582 unsigned long locked, lock_limit; 3583 struct ring_buffer *rb; 3584 unsigned long vma_size; 3585 unsigned long nr_pages; 3586 long user_extra, extra; 3587 int ret = 0, flags = 0; 3588 3589 /* 3590 * Don't allow mmap() of inherited per-task counters. This would 3591 * create a performance issue due to all children writing to the 3592 * same rb. 3593 */ 3594 if (event->cpu == -1 && event->attr.inherit) 3595 return -EINVAL; 3596 3597 if (!(vma->vm_flags & VM_SHARED)) 3598 return -EINVAL; 3599 3600 vma_size = vma->vm_end - vma->vm_start; 3601 nr_pages = (vma_size / PAGE_SIZE) - 1; 3602 3603 /* 3604 * If we have rb pages ensure they're a power-of-two number, so we 3605 * can do bitmasks instead of modulo. 3606 */ 3607 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 3608 return -EINVAL; 3609 3610 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 3611 return -EINVAL; 3612 3613 if (vma->vm_pgoff != 0) 3614 return -EINVAL; 3615 3616 WARN_ON_ONCE(event->ctx->parent_ctx); 3617 mutex_lock(&event->mmap_mutex); 3618 if (event->rb) { 3619 if (event->rb->nr_pages == nr_pages) 3620 atomic_inc(&event->rb->refcount); 3621 else 3622 ret = -EINVAL; 3623 goto unlock; 3624 } 3625 3626 user_extra = nr_pages + 1; 3627 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 3628 3629 /* 3630 * Increase the limit linearly with more CPUs: 3631 */ 3632 user_lock_limit *= num_online_cpus(); 3633 3634 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 3635 3636 extra = 0; 3637 if (user_locked > user_lock_limit) 3638 extra = user_locked - user_lock_limit; 3639 3640 lock_limit = rlimit(RLIMIT_MEMLOCK); 3641 lock_limit >>= PAGE_SHIFT; 3642 locked = vma->vm_mm->pinned_vm + extra; 3643 3644 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 3645 !capable(CAP_IPC_LOCK)) { 3646 ret = -EPERM; 3647 goto unlock; 3648 } 3649 3650 WARN_ON(event->rb); 3651 3652 if (vma->vm_flags & VM_WRITE) 3653 flags |= RING_BUFFER_WRITABLE; 3654 3655 rb = rb_alloc(nr_pages, 3656 event->attr.watermark ? event->attr.wakeup_watermark : 0, 3657 event->cpu, flags); 3658 3659 if (!rb) { 3660 ret = -ENOMEM; 3661 goto unlock; 3662 } 3663 rcu_assign_pointer(event->rb, rb); 3664 3665 atomic_long_add(user_extra, &user->locked_vm); 3666 event->mmap_locked = extra; 3667 event->mmap_user = get_current_user(); 3668 vma->vm_mm->pinned_vm += event->mmap_locked; 3669 3670 perf_event_update_userpage(event); 3671 3672 unlock: 3673 if (!ret) 3674 atomic_inc(&event->mmap_count); 3675 mutex_unlock(&event->mmap_mutex); 3676 3677 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3678 vma->vm_ops = &perf_mmap_vmops; 3679 3680 return ret; 3681 } 3682 3683 static int perf_fasync(int fd, struct file *filp, int on) 3684 { 3685 struct inode *inode = filp->f_path.dentry->d_inode; 3686 struct perf_event *event = filp->private_data; 3687 int retval; 3688 3689 mutex_lock(&inode->i_mutex); 3690 retval = fasync_helper(fd, filp, on, &event->fasync); 3691 mutex_unlock(&inode->i_mutex); 3692 3693 if (retval < 0) 3694 return retval; 3695 3696 return 0; 3697 } 3698 3699 static const struct file_operations perf_fops = { 3700 .llseek = no_llseek, 3701 .release = perf_release, 3702 .read = perf_read, 3703 .poll = perf_poll, 3704 .unlocked_ioctl = perf_ioctl, 3705 .compat_ioctl = perf_ioctl, 3706 .mmap = perf_mmap, 3707 .fasync = perf_fasync, 3708 }; 3709 3710 /* 3711 * Perf event wakeup 3712 * 3713 * If there's data, ensure we set the poll() state and publish everything 3714 * to user-space before waking everybody up. 3715 */ 3716 3717 void perf_event_wakeup(struct perf_event *event) 3718 { 3719 ring_buffer_wakeup(event); 3720 3721 if (event->pending_kill) { 3722 kill_fasync(&event->fasync, SIGIO, event->pending_kill); 3723 event->pending_kill = 0; 3724 } 3725 } 3726 3727 static void perf_pending_event(struct irq_work *entry) 3728 { 3729 struct perf_event *event = container_of(entry, 3730 struct perf_event, pending); 3731 3732 if (event->pending_disable) { 3733 event->pending_disable = 0; 3734 __perf_event_disable(event); 3735 } 3736 3737 if (event->pending_wakeup) { 3738 event->pending_wakeup = 0; 3739 perf_event_wakeup(event); 3740 } 3741 } 3742 3743 /* 3744 * We assume there is only KVM supporting the callbacks. 3745 * Later on, we might change it to a list if there is 3746 * another virtualization implementation supporting the callbacks. 3747 */ 3748 struct perf_guest_info_callbacks *perf_guest_cbs; 3749 3750 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3751 { 3752 perf_guest_cbs = cbs; 3753 return 0; 3754 } 3755 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 3756 3757 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 3758 { 3759 perf_guest_cbs = NULL; 3760 return 0; 3761 } 3762 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 3763 3764 static void 3765 perf_output_sample_regs(struct perf_output_handle *handle, 3766 struct pt_regs *regs, u64 mask) 3767 { 3768 int bit; 3769 3770 for_each_set_bit(bit, (const unsigned long *) &mask, 3771 sizeof(mask) * BITS_PER_BYTE) { 3772 u64 val; 3773 3774 val = perf_reg_value(regs, bit); 3775 perf_output_put(handle, val); 3776 } 3777 } 3778 3779 static void perf_sample_regs_user(struct perf_regs_user *regs_user, 3780 struct pt_regs *regs) 3781 { 3782 if (!user_mode(regs)) { 3783 if (current->mm) 3784 regs = task_pt_regs(current); 3785 else 3786 regs = NULL; 3787 } 3788 3789 if (regs) { 3790 regs_user->regs = regs; 3791 regs_user->abi = perf_reg_abi(current); 3792 } 3793 } 3794 3795 /* 3796 * Get remaining task size from user stack pointer. 3797 * 3798 * It'd be better to take stack vma map and limit this more 3799 * precisly, but there's no way to get it safely under interrupt, 3800 * so using TASK_SIZE as limit. 3801 */ 3802 static u64 perf_ustack_task_size(struct pt_regs *regs) 3803 { 3804 unsigned long addr = perf_user_stack_pointer(regs); 3805 3806 if (!addr || addr >= TASK_SIZE) 3807 return 0; 3808 3809 return TASK_SIZE - addr; 3810 } 3811 3812 static u16 3813 perf_sample_ustack_size(u16 stack_size, u16 header_size, 3814 struct pt_regs *regs) 3815 { 3816 u64 task_size; 3817 3818 /* No regs, no stack pointer, no dump. */ 3819 if (!regs) 3820 return 0; 3821 3822 /* 3823 * Check if we fit in with the requested stack size into the: 3824 * - TASK_SIZE 3825 * If we don't, we limit the size to the TASK_SIZE. 3826 * 3827 * - remaining sample size 3828 * If we don't, we customize the stack size to 3829 * fit in to the remaining sample size. 3830 */ 3831 3832 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 3833 stack_size = min(stack_size, (u16) task_size); 3834 3835 /* Current header size plus static size and dynamic size. */ 3836 header_size += 2 * sizeof(u64); 3837 3838 /* Do we fit in with the current stack dump size? */ 3839 if ((u16) (header_size + stack_size) < header_size) { 3840 /* 3841 * If we overflow the maximum size for the sample, 3842 * we customize the stack dump size to fit in. 3843 */ 3844 stack_size = USHRT_MAX - header_size - sizeof(u64); 3845 stack_size = round_up(stack_size, sizeof(u64)); 3846 } 3847 3848 return stack_size; 3849 } 3850 3851 static void 3852 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 3853 struct pt_regs *regs) 3854 { 3855 /* Case of a kernel thread, nothing to dump */ 3856 if (!regs) { 3857 u64 size = 0; 3858 perf_output_put(handle, size); 3859 } else { 3860 unsigned long sp; 3861 unsigned int rem; 3862 u64 dyn_size; 3863 3864 /* 3865 * We dump: 3866 * static size 3867 * - the size requested by user or the best one we can fit 3868 * in to the sample max size 3869 * data 3870 * - user stack dump data 3871 * dynamic size 3872 * - the actual dumped size 3873 */ 3874 3875 /* Static size. */ 3876 perf_output_put(handle, dump_size); 3877 3878 /* Data. */ 3879 sp = perf_user_stack_pointer(regs); 3880 rem = __output_copy_user(handle, (void *) sp, dump_size); 3881 dyn_size = dump_size - rem; 3882 3883 perf_output_skip(handle, rem); 3884 3885 /* Dynamic size. */ 3886 perf_output_put(handle, dyn_size); 3887 } 3888 } 3889 3890 static void __perf_event_header__init_id(struct perf_event_header *header, 3891 struct perf_sample_data *data, 3892 struct perf_event *event) 3893 { 3894 u64 sample_type = event->attr.sample_type; 3895 3896 data->type = sample_type; 3897 header->size += event->id_header_size; 3898 3899 if (sample_type & PERF_SAMPLE_TID) { 3900 /* namespace issues */ 3901 data->tid_entry.pid = perf_event_pid(event, current); 3902 data->tid_entry.tid = perf_event_tid(event, current); 3903 } 3904 3905 if (sample_type & PERF_SAMPLE_TIME) 3906 data->time = perf_clock(); 3907 3908 if (sample_type & PERF_SAMPLE_ID) 3909 data->id = primary_event_id(event); 3910 3911 if (sample_type & PERF_SAMPLE_STREAM_ID) 3912 data->stream_id = event->id; 3913 3914 if (sample_type & PERF_SAMPLE_CPU) { 3915 data->cpu_entry.cpu = raw_smp_processor_id(); 3916 data->cpu_entry.reserved = 0; 3917 } 3918 } 3919 3920 void perf_event_header__init_id(struct perf_event_header *header, 3921 struct perf_sample_data *data, 3922 struct perf_event *event) 3923 { 3924 if (event->attr.sample_id_all) 3925 __perf_event_header__init_id(header, data, event); 3926 } 3927 3928 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 3929 struct perf_sample_data *data) 3930 { 3931 u64 sample_type = data->type; 3932 3933 if (sample_type & PERF_SAMPLE_TID) 3934 perf_output_put(handle, data->tid_entry); 3935 3936 if (sample_type & PERF_SAMPLE_TIME) 3937 perf_output_put(handle, data->time); 3938 3939 if (sample_type & PERF_SAMPLE_ID) 3940 perf_output_put(handle, data->id); 3941 3942 if (sample_type & PERF_SAMPLE_STREAM_ID) 3943 perf_output_put(handle, data->stream_id); 3944 3945 if (sample_type & PERF_SAMPLE_CPU) 3946 perf_output_put(handle, data->cpu_entry); 3947 } 3948 3949 void perf_event__output_id_sample(struct perf_event *event, 3950 struct perf_output_handle *handle, 3951 struct perf_sample_data *sample) 3952 { 3953 if (event->attr.sample_id_all) 3954 __perf_event__output_id_sample(handle, sample); 3955 } 3956 3957 static void perf_output_read_one(struct perf_output_handle *handle, 3958 struct perf_event *event, 3959 u64 enabled, u64 running) 3960 { 3961 u64 read_format = event->attr.read_format; 3962 u64 values[4]; 3963 int n = 0; 3964 3965 values[n++] = perf_event_count(event); 3966 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 3967 values[n++] = enabled + 3968 atomic64_read(&event->child_total_time_enabled); 3969 } 3970 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 3971 values[n++] = running + 3972 atomic64_read(&event->child_total_time_running); 3973 } 3974 if (read_format & PERF_FORMAT_ID) 3975 values[n++] = primary_event_id(event); 3976 3977 __output_copy(handle, values, n * sizeof(u64)); 3978 } 3979 3980 /* 3981 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. 3982 */ 3983 static void perf_output_read_group(struct perf_output_handle *handle, 3984 struct perf_event *event, 3985 u64 enabled, u64 running) 3986 { 3987 struct perf_event *leader = event->group_leader, *sub; 3988 u64 read_format = event->attr.read_format; 3989 u64 values[5]; 3990 int n = 0; 3991 3992 values[n++] = 1 + leader->nr_siblings; 3993 3994 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 3995 values[n++] = enabled; 3996 3997 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 3998 values[n++] = running; 3999 4000 if (leader != event) 4001 leader->pmu->read(leader); 4002 4003 values[n++] = perf_event_count(leader); 4004 if (read_format & PERF_FORMAT_ID) 4005 values[n++] = primary_event_id(leader); 4006 4007 __output_copy(handle, values, n * sizeof(u64)); 4008 4009 list_for_each_entry(sub, &leader->sibling_list, group_entry) { 4010 n = 0; 4011 4012 if (sub != event) 4013 sub->pmu->read(sub); 4014 4015 values[n++] = perf_event_count(sub); 4016 if (read_format & PERF_FORMAT_ID) 4017 values[n++] = primary_event_id(sub); 4018 4019 __output_copy(handle, values, n * sizeof(u64)); 4020 } 4021 } 4022 4023 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 4024 PERF_FORMAT_TOTAL_TIME_RUNNING) 4025 4026 static void perf_output_read(struct perf_output_handle *handle, 4027 struct perf_event *event) 4028 { 4029 u64 enabled = 0, running = 0, now; 4030 u64 read_format = event->attr.read_format; 4031 4032 /* 4033 * compute total_time_enabled, total_time_running 4034 * based on snapshot values taken when the event 4035 * was last scheduled in. 4036 * 4037 * we cannot simply called update_context_time() 4038 * because of locking issue as we are called in 4039 * NMI context 4040 */ 4041 if (read_format & PERF_FORMAT_TOTAL_TIMES) 4042 calc_timer_values(event, &now, &enabled, &running); 4043 4044 if (event->attr.read_format & PERF_FORMAT_GROUP) 4045 perf_output_read_group(handle, event, enabled, running); 4046 else 4047 perf_output_read_one(handle, event, enabled, running); 4048 } 4049 4050 void perf_output_sample(struct perf_output_handle *handle, 4051 struct perf_event_header *header, 4052 struct perf_sample_data *data, 4053 struct perf_event *event) 4054 { 4055 u64 sample_type = data->type; 4056 4057 perf_output_put(handle, *header); 4058 4059 if (sample_type & PERF_SAMPLE_IP) 4060 perf_output_put(handle, data->ip); 4061 4062 if (sample_type & PERF_SAMPLE_TID) 4063 perf_output_put(handle, data->tid_entry); 4064 4065 if (sample_type & PERF_SAMPLE_TIME) 4066 perf_output_put(handle, data->time); 4067 4068 if (sample_type & PERF_SAMPLE_ADDR) 4069 perf_output_put(handle, data->addr); 4070 4071 if (sample_type & PERF_SAMPLE_ID) 4072 perf_output_put(handle, data->id); 4073 4074 if (sample_type & PERF_SAMPLE_STREAM_ID) 4075 perf_output_put(handle, data->stream_id); 4076 4077 if (sample_type & PERF_SAMPLE_CPU) 4078 perf_output_put(handle, data->cpu_entry); 4079 4080 if (sample_type & PERF_SAMPLE_PERIOD) 4081 perf_output_put(handle, data->period); 4082 4083 if (sample_type & PERF_SAMPLE_READ) 4084 perf_output_read(handle, event); 4085 4086 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4087 if (data->callchain) { 4088 int size = 1; 4089 4090 if (data->callchain) 4091 size += data->callchain->nr; 4092 4093 size *= sizeof(u64); 4094 4095 __output_copy(handle, data->callchain, size); 4096 } else { 4097 u64 nr = 0; 4098 perf_output_put(handle, nr); 4099 } 4100 } 4101 4102 if (sample_type & PERF_SAMPLE_RAW) { 4103 if (data->raw) { 4104 perf_output_put(handle, data->raw->size); 4105 __output_copy(handle, data->raw->data, 4106 data->raw->size); 4107 } else { 4108 struct { 4109 u32 size; 4110 u32 data; 4111 } raw = { 4112 .size = sizeof(u32), 4113 .data = 0, 4114 }; 4115 perf_output_put(handle, raw); 4116 } 4117 } 4118 4119 if (!event->attr.watermark) { 4120 int wakeup_events = event->attr.wakeup_events; 4121 4122 if (wakeup_events) { 4123 struct ring_buffer *rb = handle->rb; 4124 int events = local_inc_return(&rb->events); 4125 4126 if (events >= wakeup_events) { 4127 local_sub(wakeup_events, &rb->events); 4128 local_inc(&rb->wakeup); 4129 } 4130 } 4131 } 4132 4133 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4134 if (data->br_stack) { 4135 size_t size; 4136 4137 size = data->br_stack->nr 4138 * sizeof(struct perf_branch_entry); 4139 4140 perf_output_put(handle, data->br_stack->nr); 4141 perf_output_copy(handle, data->br_stack->entries, size); 4142 } else { 4143 /* 4144 * we always store at least the value of nr 4145 */ 4146 u64 nr = 0; 4147 perf_output_put(handle, nr); 4148 } 4149 } 4150 4151 if (sample_type & PERF_SAMPLE_REGS_USER) { 4152 u64 abi = data->regs_user.abi; 4153 4154 /* 4155 * If there are no regs to dump, notice it through 4156 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 4157 */ 4158 perf_output_put(handle, abi); 4159 4160 if (abi) { 4161 u64 mask = event->attr.sample_regs_user; 4162 perf_output_sample_regs(handle, 4163 data->regs_user.regs, 4164 mask); 4165 } 4166 } 4167 4168 if (sample_type & PERF_SAMPLE_STACK_USER) 4169 perf_output_sample_ustack(handle, 4170 data->stack_user_size, 4171 data->regs_user.regs); 4172 } 4173 4174 void perf_prepare_sample(struct perf_event_header *header, 4175 struct perf_sample_data *data, 4176 struct perf_event *event, 4177 struct pt_regs *regs) 4178 { 4179 u64 sample_type = event->attr.sample_type; 4180 4181 header->type = PERF_RECORD_SAMPLE; 4182 header->size = sizeof(*header) + event->header_size; 4183 4184 header->misc = 0; 4185 header->misc |= perf_misc_flags(regs); 4186 4187 __perf_event_header__init_id(header, data, event); 4188 4189 if (sample_type & PERF_SAMPLE_IP) 4190 data->ip = perf_instruction_pointer(regs); 4191 4192 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 4193 int size = 1; 4194 4195 data->callchain = perf_callchain(event, regs); 4196 4197 if (data->callchain) 4198 size += data->callchain->nr; 4199 4200 header->size += size * sizeof(u64); 4201 } 4202 4203 if (sample_type & PERF_SAMPLE_RAW) { 4204 int size = sizeof(u32); 4205 4206 if (data->raw) 4207 size += data->raw->size; 4208 else 4209 size += sizeof(u32); 4210 4211 WARN_ON_ONCE(size & (sizeof(u64)-1)); 4212 header->size += size; 4213 } 4214 4215 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 4216 int size = sizeof(u64); /* nr */ 4217 if (data->br_stack) { 4218 size += data->br_stack->nr 4219 * sizeof(struct perf_branch_entry); 4220 } 4221 header->size += size; 4222 } 4223 4224 if (sample_type & PERF_SAMPLE_REGS_USER) { 4225 /* regs dump ABI info */ 4226 int size = sizeof(u64); 4227 4228 perf_sample_regs_user(&data->regs_user, regs); 4229 4230 if (data->regs_user.regs) { 4231 u64 mask = event->attr.sample_regs_user; 4232 size += hweight64(mask) * sizeof(u64); 4233 } 4234 4235 header->size += size; 4236 } 4237 4238 if (sample_type & PERF_SAMPLE_STACK_USER) { 4239 /* 4240 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 4241 * processed as the last one or have additional check added 4242 * in case new sample type is added, because we could eat 4243 * up the rest of the sample size. 4244 */ 4245 struct perf_regs_user *uregs = &data->regs_user; 4246 u16 stack_size = event->attr.sample_stack_user; 4247 u16 size = sizeof(u64); 4248 4249 if (!uregs->abi) 4250 perf_sample_regs_user(uregs, regs); 4251 4252 stack_size = perf_sample_ustack_size(stack_size, header->size, 4253 uregs->regs); 4254 4255 /* 4256 * If there is something to dump, add space for the dump 4257 * itself and for the field that tells the dynamic size, 4258 * which is how many have been actually dumped. 4259 */ 4260 if (stack_size) 4261 size += sizeof(u64) + stack_size; 4262 4263 data->stack_user_size = stack_size; 4264 header->size += size; 4265 } 4266 } 4267 4268 static void perf_event_output(struct perf_event *event, 4269 struct perf_sample_data *data, 4270 struct pt_regs *regs) 4271 { 4272 struct perf_output_handle handle; 4273 struct perf_event_header header; 4274 4275 /* protect the callchain buffers */ 4276 rcu_read_lock(); 4277 4278 perf_prepare_sample(&header, data, event, regs); 4279 4280 if (perf_output_begin(&handle, event, header.size)) 4281 goto exit; 4282 4283 perf_output_sample(&handle, &header, data, event); 4284 4285 perf_output_end(&handle); 4286 4287 exit: 4288 rcu_read_unlock(); 4289 } 4290 4291 /* 4292 * read event_id 4293 */ 4294 4295 struct perf_read_event { 4296 struct perf_event_header header; 4297 4298 u32 pid; 4299 u32 tid; 4300 }; 4301 4302 static void 4303 perf_event_read_event(struct perf_event *event, 4304 struct task_struct *task) 4305 { 4306 struct perf_output_handle handle; 4307 struct perf_sample_data sample; 4308 struct perf_read_event read_event = { 4309 .header = { 4310 .type = PERF_RECORD_READ, 4311 .misc = 0, 4312 .size = sizeof(read_event) + event->read_size, 4313 }, 4314 .pid = perf_event_pid(event, task), 4315 .tid = perf_event_tid(event, task), 4316 }; 4317 int ret; 4318 4319 perf_event_header__init_id(&read_event.header, &sample, event); 4320 ret = perf_output_begin(&handle, event, read_event.header.size); 4321 if (ret) 4322 return; 4323 4324 perf_output_put(&handle, read_event); 4325 perf_output_read(&handle, event); 4326 perf_event__output_id_sample(event, &handle, &sample); 4327 4328 perf_output_end(&handle); 4329 } 4330 4331 /* 4332 * task tracking -- fork/exit 4333 * 4334 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task 4335 */ 4336 4337 struct perf_task_event { 4338 struct task_struct *task; 4339 struct perf_event_context *task_ctx; 4340 4341 struct { 4342 struct perf_event_header header; 4343 4344 u32 pid; 4345 u32 ppid; 4346 u32 tid; 4347 u32 ptid; 4348 u64 time; 4349 } event_id; 4350 }; 4351 4352 static void perf_event_task_output(struct perf_event *event, 4353 struct perf_task_event *task_event) 4354 { 4355 struct perf_output_handle handle; 4356 struct perf_sample_data sample; 4357 struct task_struct *task = task_event->task; 4358 int ret, size = task_event->event_id.header.size; 4359 4360 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 4361 4362 ret = perf_output_begin(&handle, event, 4363 task_event->event_id.header.size); 4364 if (ret) 4365 goto out; 4366 4367 task_event->event_id.pid = perf_event_pid(event, task); 4368 task_event->event_id.ppid = perf_event_pid(event, current); 4369 4370 task_event->event_id.tid = perf_event_tid(event, task); 4371 task_event->event_id.ptid = perf_event_tid(event, current); 4372 4373 perf_output_put(&handle, task_event->event_id); 4374 4375 perf_event__output_id_sample(event, &handle, &sample); 4376 4377 perf_output_end(&handle); 4378 out: 4379 task_event->event_id.header.size = size; 4380 } 4381 4382 static int perf_event_task_match(struct perf_event *event) 4383 { 4384 if (event->state < PERF_EVENT_STATE_INACTIVE) 4385 return 0; 4386 4387 if (!event_filter_match(event)) 4388 return 0; 4389 4390 if (event->attr.comm || event->attr.mmap || 4391 event->attr.mmap_data || event->attr.task) 4392 return 1; 4393 4394 return 0; 4395 } 4396 4397 static void perf_event_task_ctx(struct perf_event_context *ctx, 4398 struct perf_task_event *task_event) 4399 { 4400 struct perf_event *event; 4401 4402 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4403 if (perf_event_task_match(event)) 4404 perf_event_task_output(event, task_event); 4405 } 4406 } 4407 4408 static void perf_event_task_event(struct perf_task_event *task_event) 4409 { 4410 struct perf_cpu_context *cpuctx; 4411 struct perf_event_context *ctx; 4412 struct pmu *pmu; 4413 int ctxn; 4414 4415 rcu_read_lock(); 4416 list_for_each_entry_rcu(pmu, &pmus, entry) { 4417 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4418 if (cpuctx->unique_pmu != pmu) 4419 goto next; 4420 perf_event_task_ctx(&cpuctx->ctx, task_event); 4421 4422 ctx = task_event->task_ctx; 4423 if (!ctx) { 4424 ctxn = pmu->task_ctx_nr; 4425 if (ctxn < 0) 4426 goto next; 4427 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4428 } 4429 if (ctx) 4430 perf_event_task_ctx(ctx, task_event); 4431 next: 4432 put_cpu_ptr(pmu->pmu_cpu_context); 4433 } 4434 rcu_read_unlock(); 4435 } 4436 4437 static void perf_event_task(struct task_struct *task, 4438 struct perf_event_context *task_ctx, 4439 int new) 4440 { 4441 struct perf_task_event task_event; 4442 4443 if (!atomic_read(&nr_comm_events) && 4444 !atomic_read(&nr_mmap_events) && 4445 !atomic_read(&nr_task_events)) 4446 return; 4447 4448 task_event = (struct perf_task_event){ 4449 .task = task, 4450 .task_ctx = task_ctx, 4451 .event_id = { 4452 .header = { 4453 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 4454 .misc = 0, 4455 .size = sizeof(task_event.event_id), 4456 }, 4457 /* .pid */ 4458 /* .ppid */ 4459 /* .tid */ 4460 /* .ptid */ 4461 .time = perf_clock(), 4462 }, 4463 }; 4464 4465 perf_event_task_event(&task_event); 4466 } 4467 4468 void perf_event_fork(struct task_struct *task) 4469 { 4470 perf_event_task(task, NULL, 1); 4471 } 4472 4473 /* 4474 * comm tracking 4475 */ 4476 4477 struct perf_comm_event { 4478 struct task_struct *task; 4479 char *comm; 4480 int comm_size; 4481 4482 struct { 4483 struct perf_event_header header; 4484 4485 u32 pid; 4486 u32 tid; 4487 } event_id; 4488 }; 4489 4490 static void perf_event_comm_output(struct perf_event *event, 4491 struct perf_comm_event *comm_event) 4492 { 4493 struct perf_output_handle handle; 4494 struct perf_sample_data sample; 4495 int size = comm_event->event_id.header.size; 4496 int ret; 4497 4498 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 4499 ret = perf_output_begin(&handle, event, 4500 comm_event->event_id.header.size); 4501 4502 if (ret) 4503 goto out; 4504 4505 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 4506 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 4507 4508 perf_output_put(&handle, comm_event->event_id); 4509 __output_copy(&handle, comm_event->comm, 4510 comm_event->comm_size); 4511 4512 perf_event__output_id_sample(event, &handle, &sample); 4513 4514 perf_output_end(&handle); 4515 out: 4516 comm_event->event_id.header.size = size; 4517 } 4518 4519 static int perf_event_comm_match(struct perf_event *event) 4520 { 4521 if (event->state < PERF_EVENT_STATE_INACTIVE) 4522 return 0; 4523 4524 if (!event_filter_match(event)) 4525 return 0; 4526 4527 if (event->attr.comm) 4528 return 1; 4529 4530 return 0; 4531 } 4532 4533 static void perf_event_comm_ctx(struct perf_event_context *ctx, 4534 struct perf_comm_event *comm_event) 4535 { 4536 struct perf_event *event; 4537 4538 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4539 if (perf_event_comm_match(event)) 4540 perf_event_comm_output(event, comm_event); 4541 } 4542 } 4543 4544 static void perf_event_comm_event(struct perf_comm_event *comm_event) 4545 { 4546 struct perf_cpu_context *cpuctx; 4547 struct perf_event_context *ctx; 4548 char comm[TASK_COMM_LEN]; 4549 unsigned int size; 4550 struct pmu *pmu; 4551 int ctxn; 4552 4553 memset(comm, 0, sizeof(comm)); 4554 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 4555 size = ALIGN(strlen(comm)+1, sizeof(u64)); 4556 4557 comm_event->comm = comm; 4558 comm_event->comm_size = size; 4559 4560 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 4561 rcu_read_lock(); 4562 list_for_each_entry_rcu(pmu, &pmus, entry) { 4563 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4564 if (cpuctx->unique_pmu != pmu) 4565 goto next; 4566 perf_event_comm_ctx(&cpuctx->ctx, comm_event); 4567 4568 ctxn = pmu->task_ctx_nr; 4569 if (ctxn < 0) 4570 goto next; 4571 4572 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4573 if (ctx) 4574 perf_event_comm_ctx(ctx, comm_event); 4575 next: 4576 put_cpu_ptr(pmu->pmu_cpu_context); 4577 } 4578 rcu_read_unlock(); 4579 } 4580 4581 void perf_event_comm(struct task_struct *task) 4582 { 4583 struct perf_comm_event comm_event; 4584 struct perf_event_context *ctx; 4585 int ctxn; 4586 4587 for_each_task_context_nr(ctxn) { 4588 ctx = task->perf_event_ctxp[ctxn]; 4589 if (!ctx) 4590 continue; 4591 4592 perf_event_enable_on_exec(ctx); 4593 } 4594 4595 if (!atomic_read(&nr_comm_events)) 4596 return; 4597 4598 comm_event = (struct perf_comm_event){ 4599 .task = task, 4600 /* .comm */ 4601 /* .comm_size */ 4602 .event_id = { 4603 .header = { 4604 .type = PERF_RECORD_COMM, 4605 .misc = 0, 4606 /* .size */ 4607 }, 4608 /* .pid */ 4609 /* .tid */ 4610 }, 4611 }; 4612 4613 perf_event_comm_event(&comm_event); 4614 } 4615 4616 /* 4617 * mmap tracking 4618 */ 4619 4620 struct perf_mmap_event { 4621 struct vm_area_struct *vma; 4622 4623 const char *file_name; 4624 int file_size; 4625 4626 struct { 4627 struct perf_event_header header; 4628 4629 u32 pid; 4630 u32 tid; 4631 u64 start; 4632 u64 len; 4633 u64 pgoff; 4634 } event_id; 4635 }; 4636 4637 static void perf_event_mmap_output(struct perf_event *event, 4638 struct perf_mmap_event *mmap_event) 4639 { 4640 struct perf_output_handle handle; 4641 struct perf_sample_data sample; 4642 int size = mmap_event->event_id.header.size; 4643 int ret; 4644 4645 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 4646 ret = perf_output_begin(&handle, event, 4647 mmap_event->event_id.header.size); 4648 if (ret) 4649 goto out; 4650 4651 mmap_event->event_id.pid = perf_event_pid(event, current); 4652 mmap_event->event_id.tid = perf_event_tid(event, current); 4653 4654 perf_output_put(&handle, mmap_event->event_id); 4655 __output_copy(&handle, mmap_event->file_name, 4656 mmap_event->file_size); 4657 4658 perf_event__output_id_sample(event, &handle, &sample); 4659 4660 perf_output_end(&handle); 4661 out: 4662 mmap_event->event_id.header.size = size; 4663 } 4664 4665 static int perf_event_mmap_match(struct perf_event *event, 4666 struct perf_mmap_event *mmap_event, 4667 int executable) 4668 { 4669 if (event->state < PERF_EVENT_STATE_INACTIVE) 4670 return 0; 4671 4672 if (!event_filter_match(event)) 4673 return 0; 4674 4675 if ((!executable && event->attr.mmap_data) || 4676 (executable && event->attr.mmap)) 4677 return 1; 4678 4679 return 0; 4680 } 4681 4682 static void perf_event_mmap_ctx(struct perf_event_context *ctx, 4683 struct perf_mmap_event *mmap_event, 4684 int executable) 4685 { 4686 struct perf_event *event; 4687 4688 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 4689 if (perf_event_mmap_match(event, mmap_event, executable)) 4690 perf_event_mmap_output(event, mmap_event); 4691 } 4692 } 4693 4694 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 4695 { 4696 struct perf_cpu_context *cpuctx; 4697 struct perf_event_context *ctx; 4698 struct vm_area_struct *vma = mmap_event->vma; 4699 struct file *file = vma->vm_file; 4700 unsigned int size; 4701 char tmp[16]; 4702 char *buf = NULL; 4703 const char *name; 4704 struct pmu *pmu; 4705 int ctxn; 4706 4707 memset(tmp, 0, sizeof(tmp)); 4708 4709 if (file) { 4710 /* 4711 * d_path works from the end of the rb backwards, so we 4712 * need to add enough zero bytes after the string to handle 4713 * the 64bit alignment we do later. 4714 */ 4715 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); 4716 if (!buf) { 4717 name = strncpy(tmp, "//enomem", sizeof(tmp)); 4718 goto got_name; 4719 } 4720 name = d_path(&file->f_path, buf, PATH_MAX); 4721 if (IS_ERR(name)) { 4722 name = strncpy(tmp, "//toolong", sizeof(tmp)); 4723 goto got_name; 4724 } 4725 } else { 4726 if (arch_vma_name(mmap_event->vma)) { 4727 name = strncpy(tmp, arch_vma_name(mmap_event->vma), 4728 sizeof(tmp)); 4729 goto got_name; 4730 } 4731 4732 if (!vma->vm_mm) { 4733 name = strncpy(tmp, "[vdso]", sizeof(tmp)); 4734 goto got_name; 4735 } else if (vma->vm_start <= vma->vm_mm->start_brk && 4736 vma->vm_end >= vma->vm_mm->brk) { 4737 name = strncpy(tmp, "[heap]", sizeof(tmp)); 4738 goto got_name; 4739 } else if (vma->vm_start <= vma->vm_mm->start_stack && 4740 vma->vm_end >= vma->vm_mm->start_stack) { 4741 name = strncpy(tmp, "[stack]", sizeof(tmp)); 4742 goto got_name; 4743 } 4744 4745 name = strncpy(tmp, "//anon", sizeof(tmp)); 4746 goto got_name; 4747 } 4748 4749 got_name: 4750 size = ALIGN(strlen(name)+1, sizeof(u64)); 4751 4752 mmap_event->file_name = name; 4753 mmap_event->file_size = size; 4754 4755 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 4756 4757 rcu_read_lock(); 4758 list_for_each_entry_rcu(pmu, &pmus, entry) { 4759 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context); 4760 if (cpuctx->unique_pmu != pmu) 4761 goto next; 4762 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, 4763 vma->vm_flags & VM_EXEC); 4764 4765 ctxn = pmu->task_ctx_nr; 4766 if (ctxn < 0) 4767 goto next; 4768 4769 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 4770 if (ctx) { 4771 perf_event_mmap_ctx(ctx, mmap_event, 4772 vma->vm_flags & VM_EXEC); 4773 } 4774 next: 4775 put_cpu_ptr(pmu->pmu_cpu_context); 4776 } 4777 rcu_read_unlock(); 4778 4779 kfree(buf); 4780 } 4781 4782 void perf_event_mmap(struct vm_area_struct *vma) 4783 { 4784 struct perf_mmap_event mmap_event; 4785 4786 if (!atomic_read(&nr_mmap_events)) 4787 return; 4788 4789 mmap_event = (struct perf_mmap_event){ 4790 .vma = vma, 4791 /* .file_name */ 4792 /* .file_size */ 4793 .event_id = { 4794 .header = { 4795 .type = PERF_RECORD_MMAP, 4796 .misc = PERF_RECORD_MISC_USER, 4797 /* .size */ 4798 }, 4799 /* .pid */ 4800 /* .tid */ 4801 .start = vma->vm_start, 4802 .len = vma->vm_end - vma->vm_start, 4803 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 4804 }, 4805 }; 4806 4807 perf_event_mmap_event(&mmap_event); 4808 } 4809 4810 /* 4811 * IRQ throttle logging 4812 */ 4813 4814 static void perf_log_throttle(struct perf_event *event, int enable) 4815 { 4816 struct perf_output_handle handle; 4817 struct perf_sample_data sample; 4818 int ret; 4819 4820 struct { 4821 struct perf_event_header header; 4822 u64 time; 4823 u64 id; 4824 u64 stream_id; 4825 } throttle_event = { 4826 .header = { 4827 .type = PERF_RECORD_THROTTLE, 4828 .misc = 0, 4829 .size = sizeof(throttle_event), 4830 }, 4831 .time = perf_clock(), 4832 .id = primary_event_id(event), 4833 .stream_id = event->id, 4834 }; 4835 4836 if (enable) 4837 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 4838 4839 perf_event_header__init_id(&throttle_event.header, &sample, event); 4840 4841 ret = perf_output_begin(&handle, event, 4842 throttle_event.header.size); 4843 if (ret) 4844 return; 4845 4846 perf_output_put(&handle, throttle_event); 4847 perf_event__output_id_sample(event, &handle, &sample); 4848 perf_output_end(&handle); 4849 } 4850 4851 /* 4852 * Generic event overflow handling, sampling. 4853 */ 4854 4855 static int __perf_event_overflow(struct perf_event *event, 4856 int throttle, struct perf_sample_data *data, 4857 struct pt_regs *regs) 4858 { 4859 int events = atomic_read(&event->event_limit); 4860 struct hw_perf_event *hwc = &event->hw; 4861 u64 seq; 4862 int ret = 0; 4863 4864 /* 4865 * Non-sampling counters might still use the PMI to fold short 4866 * hardware counters, ignore those. 4867 */ 4868 if (unlikely(!is_sampling_event(event))) 4869 return 0; 4870 4871 seq = __this_cpu_read(perf_throttled_seq); 4872 if (seq != hwc->interrupts_seq) { 4873 hwc->interrupts_seq = seq; 4874 hwc->interrupts = 1; 4875 } else { 4876 hwc->interrupts++; 4877 if (unlikely(throttle 4878 && hwc->interrupts >= max_samples_per_tick)) { 4879 __this_cpu_inc(perf_throttled_count); 4880 hwc->interrupts = MAX_INTERRUPTS; 4881 perf_log_throttle(event, 0); 4882 ret = 1; 4883 } 4884 } 4885 4886 if (event->attr.freq) { 4887 u64 now = perf_clock(); 4888 s64 delta = now - hwc->freq_time_stamp; 4889 4890 hwc->freq_time_stamp = now; 4891 4892 if (delta > 0 && delta < 2*TICK_NSEC) 4893 perf_adjust_period(event, delta, hwc->last_period, true); 4894 } 4895 4896 /* 4897 * XXX event_limit might not quite work as expected on inherited 4898 * events 4899 */ 4900 4901 event->pending_kill = POLL_IN; 4902 if (events && atomic_dec_and_test(&event->event_limit)) { 4903 ret = 1; 4904 event->pending_kill = POLL_HUP; 4905 event->pending_disable = 1; 4906 irq_work_queue(&event->pending); 4907 } 4908 4909 if (event->overflow_handler) 4910 event->overflow_handler(event, data, regs); 4911 else 4912 perf_event_output(event, data, regs); 4913 4914 if (event->fasync && event->pending_kill) { 4915 event->pending_wakeup = 1; 4916 irq_work_queue(&event->pending); 4917 } 4918 4919 return ret; 4920 } 4921 4922 int perf_event_overflow(struct perf_event *event, 4923 struct perf_sample_data *data, 4924 struct pt_regs *regs) 4925 { 4926 return __perf_event_overflow(event, 1, data, regs); 4927 } 4928 4929 /* 4930 * Generic software event infrastructure 4931 */ 4932 4933 struct swevent_htable { 4934 struct swevent_hlist *swevent_hlist; 4935 struct mutex hlist_mutex; 4936 int hlist_refcount; 4937 4938 /* Recursion avoidance in each contexts */ 4939 int recursion[PERF_NR_CONTEXTS]; 4940 }; 4941 4942 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 4943 4944 /* 4945 * We directly increment event->count and keep a second value in 4946 * event->hw.period_left to count intervals. This period event 4947 * is kept in the range [-sample_period, 0] so that we can use the 4948 * sign as trigger. 4949 */ 4950 4951 static u64 perf_swevent_set_period(struct perf_event *event) 4952 { 4953 struct hw_perf_event *hwc = &event->hw; 4954 u64 period = hwc->last_period; 4955 u64 nr, offset; 4956 s64 old, val; 4957 4958 hwc->last_period = hwc->sample_period; 4959 4960 again: 4961 old = val = local64_read(&hwc->period_left); 4962 if (val < 0) 4963 return 0; 4964 4965 nr = div64_u64(period + val, period); 4966 offset = nr * period; 4967 val -= offset; 4968 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 4969 goto again; 4970 4971 return nr; 4972 } 4973 4974 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 4975 struct perf_sample_data *data, 4976 struct pt_regs *regs) 4977 { 4978 struct hw_perf_event *hwc = &event->hw; 4979 int throttle = 0; 4980 4981 if (!overflow) 4982 overflow = perf_swevent_set_period(event); 4983 4984 if (hwc->interrupts == MAX_INTERRUPTS) 4985 return; 4986 4987 for (; overflow; overflow--) { 4988 if (__perf_event_overflow(event, throttle, 4989 data, regs)) { 4990 /* 4991 * We inhibit the overflow from happening when 4992 * hwc->interrupts == MAX_INTERRUPTS. 4993 */ 4994 break; 4995 } 4996 throttle = 1; 4997 } 4998 } 4999 5000 static void perf_swevent_event(struct perf_event *event, u64 nr, 5001 struct perf_sample_data *data, 5002 struct pt_regs *regs) 5003 { 5004 struct hw_perf_event *hwc = &event->hw; 5005 5006 local64_add(nr, &event->count); 5007 5008 if (!regs) 5009 return; 5010 5011 if (!is_sampling_event(event)) 5012 return; 5013 5014 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 5015 data->period = nr; 5016 return perf_swevent_overflow(event, 1, data, regs); 5017 } else 5018 data->period = event->hw.last_period; 5019 5020 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 5021 return perf_swevent_overflow(event, 1, data, regs); 5022 5023 if (local64_add_negative(nr, &hwc->period_left)) 5024 return; 5025 5026 perf_swevent_overflow(event, 0, data, regs); 5027 } 5028 5029 static int perf_exclude_event(struct perf_event *event, 5030 struct pt_regs *regs) 5031 { 5032 if (event->hw.state & PERF_HES_STOPPED) 5033 return 1; 5034 5035 if (regs) { 5036 if (event->attr.exclude_user && user_mode(regs)) 5037 return 1; 5038 5039 if (event->attr.exclude_kernel && !user_mode(regs)) 5040 return 1; 5041 } 5042 5043 return 0; 5044 } 5045 5046 static int perf_swevent_match(struct perf_event *event, 5047 enum perf_type_id type, 5048 u32 event_id, 5049 struct perf_sample_data *data, 5050 struct pt_regs *regs) 5051 { 5052 if (event->attr.type != type) 5053 return 0; 5054 5055 if (event->attr.config != event_id) 5056 return 0; 5057 5058 if (perf_exclude_event(event, regs)) 5059 return 0; 5060 5061 return 1; 5062 } 5063 5064 static inline u64 swevent_hash(u64 type, u32 event_id) 5065 { 5066 u64 val = event_id | (type << 32); 5067 5068 return hash_64(val, SWEVENT_HLIST_BITS); 5069 } 5070 5071 static inline struct hlist_head * 5072 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 5073 { 5074 u64 hash = swevent_hash(type, event_id); 5075 5076 return &hlist->heads[hash]; 5077 } 5078 5079 /* For the read side: events when they trigger */ 5080 static inline struct hlist_head * 5081 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 5082 { 5083 struct swevent_hlist *hlist; 5084 5085 hlist = rcu_dereference(swhash->swevent_hlist); 5086 if (!hlist) 5087 return NULL; 5088 5089 return __find_swevent_head(hlist, type, event_id); 5090 } 5091 5092 /* For the event head insertion and removal in the hlist */ 5093 static inline struct hlist_head * 5094 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 5095 { 5096 struct swevent_hlist *hlist; 5097 u32 event_id = event->attr.config; 5098 u64 type = event->attr.type; 5099 5100 /* 5101 * Event scheduling is always serialized against hlist allocation 5102 * and release. Which makes the protected version suitable here. 5103 * The context lock guarantees that. 5104 */ 5105 hlist = rcu_dereference_protected(swhash->swevent_hlist, 5106 lockdep_is_held(&event->ctx->lock)); 5107 if (!hlist) 5108 return NULL; 5109 5110 return __find_swevent_head(hlist, type, event_id); 5111 } 5112 5113 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 5114 u64 nr, 5115 struct perf_sample_data *data, 5116 struct pt_regs *regs) 5117 { 5118 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5119 struct perf_event *event; 5120 struct hlist_node *node; 5121 struct hlist_head *head; 5122 5123 rcu_read_lock(); 5124 head = find_swevent_head_rcu(swhash, type, event_id); 5125 if (!head) 5126 goto end; 5127 5128 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5129 if (perf_swevent_match(event, type, event_id, data, regs)) 5130 perf_swevent_event(event, nr, data, regs); 5131 } 5132 end: 5133 rcu_read_unlock(); 5134 } 5135 5136 int perf_swevent_get_recursion_context(void) 5137 { 5138 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5139 5140 return get_recursion_context(swhash->recursion); 5141 } 5142 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 5143 5144 inline void perf_swevent_put_recursion_context(int rctx) 5145 { 5146 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5147 5148 put_recursion_context(swhash->recursion, rctx); 5149 } 5150 5151 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 5152 { 5153 struct perf_sample_data data; 5154 int rctx; 5155 5156 preempt_disable_notrace(); 5157 rctx = perf_swevent_get_recursion_context(); 5158 if (rctx < 0) 5159 return; 5160 5161 perf_sample_data_init(&data, addr, 0); 5162 5163 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 5164 5165 perf_swevent_put_recursion_context(rctx); 5166 preempt_enable_notrace(); 5167 } 5168 5169 static void perf_swevent_read(struct perf_event *event) 5170 { 5171 } 5172 5173 static int perf_swevent_add(struct perf_event *event, int flags) 5174 { 5175 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable); 5176 struct hw_perf_event *hwc = &event->hw; 5177 struct hlist_head *head; 5178 5179 if (is_sampling_event(event)) { 5180 hwc->last_period = hwc->sample_period; 5181 perf_swevent_set_period(event); 5182 } 5183 5184 hwc->state = !(flags & PERF_EF_START); 5185 5186 head = find_swevent_head(swhash, event); 5187 if (WARN_ON_ONCE(!head)) 5188 return -EINVAL; 5189 5190 hlist_add_head_rcu(&event->hlist_entry, head); 5191 5192 return 0; 5193 } 5194 5195 static void perf_swevent_del(struct perf_event *event, int flags) 5196 { 5197 hlist_del_rcu(&event->hlist_entry); 5198 } 5199 5200 static void perf_swevent_start(struct perf_event *event, int flags) 5201 { 5202 event->hw.state = 0; 5203 } 5204 5205 static void perf_swevent_stop(struct perf_event *event, int flags) 5206 { 5207 event->hw.state = PERF_HES_STOPPED; 5208 } 5209 5210 /* Deref the hlist from the update side */ 5211 static inline struct swevent_hlist * 5212 swevent_hlist_deref(struct swevent_htable *swhash) 5213 { 5214 return rcu_dereference_protected(swhash->swevent_hlist, 5215 lockdep_is_held(&swhash->hlist_mutex)); 5216 } 5217 5218 static void swevent_hlist_release(struct swevent_htable *swhash) 5219 { 5220 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 5221 5222 if (!hlist) 5223 return; 5224 5225 rcu_assign_pointer(swhash->swevent_hlist, NULL); 5226 kfree_rcu(hlist, rcu_head); 5227 } 5228 5229 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) 5230 { 5231 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5232 5233 mutex_lock(&swhash->hlist_mutex); 5234 5235 if (!--swhash->hlist_refcount) 5236 swevent_hlist_release(swhash); 5237 5238 mutex_unlock(&swhash->hlist_mutex); 5239 } 5240 5241 static void swevent_hlist_put(struct perf_event *event) 5242 { 5243 int cpu; 5244 5245 if (event->cpu != -1) { 5246 swevent_hlist_put_cpu(event, event->cpu); 5247 return; 5248 } 5249 5250 for_each_possible_cpu(cpu) 5251 swevent_hlist_put_cpu(event, cpu); 5252 } 5253 5254 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) 5255 { 5256 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 5257 int err = 0; 5258 5259 mutex_lock(&swhash->hlist_mutex); 5260 5261 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) { 5262 struct swevent_hlist *hlist; 5263 5264 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 5265 if (!hlist) { 5266 err = -ENOMEM; 5267 goto exit; 5268 } 5269 rcu_assign_pointer(swhash->swevent_hlist, hlist); 5270 } 5271 swhash->hlist_refcount++; 5272 exit: 5273 mutex_unlock(&swhash->hlist_mutex); 5274 5275 return err; 5276 } 5277 5278 static int swevent_hlist_get(struct perf_event *event) 5279 { 5280 int err; 5281 int cpu, failed_cpu; 5282 5283 if (event->cpu != -1) 5284 return swevent_hlist_get_cpu(event, event->cpu); 5285 5286 get_online_cpus(); 5287 for_each_possible_cpu(cpu) { 5288 err = swevent_hlist_get_cpu(event, cpu); 5289 if (err) { 5290 failed_cpu = cpu; 5291 goto fail; 5292 } 5293 } 5294 put_online_cpus(); 5295 5296 return 0; 5297 fail: 5298 for_each_possible_cpu(cpu) { 5299 if (cpu == failed_cpu) 5300 break; 5301 swevent_hlist_put_cpu(event, cpu); 5302 } 5303 5304 put_online_cpus(); 5305 return err; 5306 } 5307 5308 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 5309 5310 static void sw_perf_event_destroy(struct perf_event *event) 5311 { 5312 u64 event_id = event->attr.config; 5313 5314 WARN_ON(event->parent); 5315 5316 static_key_slow_dec(&perf_swevent_enabled[event_id]); 5317 swevent_hlist_put(event); 5318 } 5319 5320 static int perf_swevent_init(struct perf_event *event) 5321 { 5322 int event_id = event->attr.config; 5323 5324 if (event->attr.type != PERF_TYPE_SOFTWARE) 5325 return -ENOENT; 5326 5327 /* 5328 * no branch sampling for software events 5329 */ 5330 if (has_branch_stack(event)) 5331 return -EOPNOTSUPP; 5332 5333 switch (event_id) { 5334 case PERF_COUNT_SW_CPU_CLOCK: 5335 case PERF_COUNT_SW_TASK_CLOCK: 5336 return -ENOENT; 5337 5338 default: 5339 break; 5340 } 5341 5342 if (event_id >= PERF_COUNT_SW_MAX) 5343 return -ENOENT; 5344 5345 if (!event->parent) { 5346 int err; 5347 5348 err = swevent_hlist_get(event); 5349 if (err) 5350 return err; 5351 5352 static_key_slow_inc(&perf_swevent_enabled[event_id]); 5353 event->destroy = sw_perf_event_destroy; 5354 } 5355 5356 return 0; 5357 } 5358 5359 static int perf_swevent_event_idx(struct perf_event *event) 5360 { 5361 return 0; 5362 } 5363 5364 static struct pmu perf_swevent = { 5365 .task_ctx_nr = perf_sw_context, 5366 5367 .event_init = perf_swevent_init, 5368 .add = perf_swevent_add, 5369 .del = perf_swevent_del, 5370 .start = perf_swevent_start, 5371 .stop = perf_swevent_stop, 5372 .read = perf_swevent_read, 5373 5374 .event_idx = perf_swevent_event_idx, 5375 }; 5376 5377 #ifdef CONFIG_EVENT_TRACING 5378 5379 static int perf_tp_filter_match(struct perf_event *event, 5380 struct perf_sample_data *data) 5381 { 5382 void *record = data->raw->data; 5383 5384 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 5385 return 1; 5386 return 0; 5387 } 5388 5389 static int perf_tp_event_match(struct perf_event *event, 5390 struct perf_sample_data *data, 5391 struct pt_regs *regs) 5392 { 5393 if (event->hw.state & PERF_HES_STOPPED) 5394 return 0; 5395 /* 5396 * All tracepoints are from kernel-space. 5397 */ 5398 if (event->attr.exclude_kernel) 5399 return 0; 5400 5401 if (!perf_tp_filter_match(event, data)) 5402 return 0; 5403 5404 return 1; 5405 } 5406 5407 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size, 5408 struct pt_regs *regs, struct hlist_head *head, int rctx, 5409 struct task_struct *task) 5410 { 5411 struct perf_sample_data data; 5412 struct perf_event *event; 5413 struct hlist_node *node; 5414 5415 struct perf_raw_record raw = { 5416 .size = entry_size, 5417 .data = record, 5418 }; 5419 5420 perf_sample_data_init(&data, addr, 0); 5421 data.raw = &raw; 5422 5423 hlist_for_each_entry_rcu(event, node, head, hlist_entry) { 5424 if (perf_tp_event_match(event, &data, regs)) 5425 perf_swevent_event(event, count, &data, regs); 5426 } 5427 5428 /* 5429 * If we got specified a target task, also iterate its context and 5430 * deliver this event there too. 5431 */ 5432 if (task && task != current) { 5433 struct perf_event_context *ctx; 5434 struct trace_entry *entry = record; 5435 5436 rcu_read_lock(); 5437 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 5438 if (!ctx) 5439 goto unlock; 5440 5441 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 5442 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5443 continue; 5444 if (event->attr.config != entry->type) 5445 continue; 5446 if (perf_tp_event_match(event, &data, regs)) 5447 perf_swevent_event(event, count, &data, regs); 5448 } 5449 unlock: 5450 rcu_read_unlock(); 5451 } 5452 5453 perf_swevent_put_recursion_context(rctx); 5454 } 5455 EXPORT_SYMBOL_GPL(perf_tp_event); 5456 5457 static void tp_perf_event_destroy(struct perf_event *event) 5458 { 5459 perf_trace_destroy(event); 5460 } 5461 5462 static int perf_tp_event_init(struct perf_event *event) 5463 { 5464 int err; 5465 5466 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5467 return -ENOENT; 5468 5469 /* 5470 * no branch sampling for tracepoint events 5471 */ 5472 if (has_branch_stack(event)) 5473 return -EOPNOTSUPP; 5474 5475 err = perf_trace_init(event); 5476 if (err) 5477 return err; 5478 5479 event->destroy = tp_perf_event_destroy; 5480 5481 return 0; 5482 } 5483 5484 static struct pmu perf_tracepoint = { 5485 .task_ctx_nr = perf_sw_context, 5486 5487 .event_init = perf_tp_event_init, 5488 .add = perf_trace_add, 5489 .del = perf_trace_del, 5490 .start = perf_swevent_start, 5491 .stop = perf_swevent_stop, 5492 .read = perf_swevent_read, 5493 5494 .event_idx = perf_swevent_event_idx, 5495 }; 5496 5497 static inline void perf_tp_register(void) 5498 { 5499 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 5500 } 5501 5502 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5503 { 5504 char *filter_str; 5505 int ret; 5506 5507 if (event->attr.type != PERF_TYPE_TRACEPOINT) 5508 return -EINVAL; 5509 5510 filter_str = strndup_user(arg, PAGE_SIZE); 5511 if (IS_ERR(filter_str)) 5512 return PTR_ERR(filter_str); 5513 5514 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 5515 5516 kfree(filter_str); 5517 return ret; 5518 } 5519 5520 static void perf_event_free_filter(struct perf_event *event) 5521 { 5522 ftrace_profile_free_filter(event); 5523 } 5524 5525 #else 5526 5527 static inline void perf_tp_register(void) 5528 { 5529 } 5530 5531 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 5532 { 5533 return -ENOENT; 5534 } 5535 5536 static void perf_event_free_filter(struct perf_event *event) 5537 { 5538 } 5539 5540 #endif /* CONFIG_EVENT_TRACING */ 5541 5542 #ifdef CONFIG_HAVE_HW_BREAKPOINT 5543 void perf_bp_event(struct perf_event *bp, void *data) 5544 { 5545 struct perf_sample_data sample; 5546 struct pt_regs *regs = data; 5547 5548 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 5549 5550 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 5551 perf_swevent_event(bp, 1, &sample, regs); 5552 } 5553 #endif 5554 5555 /* 5556 * hrtimer based swevent callback 5557 */ 5558 5559 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 5560 { 5561 enum hrtimer_restart ret = HRTIMER_RESTART; 5562 struct perf_sample_data data; 5563 struct pt_regs *regs; 5564 struct perf_event *event; 5565 u64 period; 5566 5567 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 5568 5569 if (event->state != PERF_EVENT_STATE_ACTIVE) 5570 return HRTIMER_NORESTART; 5571 5572 event->pmu->read(event); 5573 5574 perf_sample_data_init(&data, 0, event->hw.last_period); 5575 regs = get_irq_regs(); 5576 5577 if (regs && !perf_exclude_event(event, regs)) { 5578 if (!(event->attr.exclude_idle && is_idle_task(current))) 5579 if (__perf_event_overflow(event, 1, &data, regs)) 5580 ret = HRTIMER_NORESTART; 5581 } 5582 5583 period = max_t(u64, 10000, event->hw.sample_period); 5584 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 5585 5586 return ret; 5587 } 5588 5589 static void perf_swevent_start_hrtimer(struct perf_event *event) 5590 { 5591 struct hw_perf_event *hwc = &event->hw; 5592 s64 period; 5593 5594 if (!is_sampling_event(event)) 5595 return; 5596 5597 period = local64_read(&hwc->period_left); 5598 if (period) { 5599 if (period < 0) 5600 period = 10000; 5601 5602 local64_set(&hwc->period_left, 0); 5603 } else { 5604 period = max_t(u64, 10000, hwc->sample_period); 5605 } 5606 __hrtimer_start_range_ns(&hwc->hrtimer, 5607 ns_to_ktime(period), 0, 5608 HRTIMER_MODE_REL_PINNED, 0); 5609 } 5610 5611 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 5612 { 5613 struct hw_perf_event *hwc = &event->hw; 5614 5615 if (is_sampling_event(event)) { 5616 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 5617 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 5618 5619 hrtimer_cancel(&hwc->hrtimer); 5620 } 5621 } 5622 5623 static void perf_swevent_init_hrtimer(struct perf_event *event) 5624 { 5625 struct hw_perf_event *hwc = &event->hw; 5626 5627 if (!is_sampling_event(event)) 5628 return; 5629 5630 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5631 hwc->hrtimer.function = perf_swevent_hrtimer; 5632 5633 /* 5634 * Since hrtimers have a fixed rate, we can do a static freq->period 5635 * mapping and avoid the whole period adjust feedback stuff. 5636 */ 5637 if (event->attr.freq) { 5638 long freq = event->attr.sample_freq; 5639 5640 event->attr.sample_period = NSEC_PER_SEC / freq; 5641 hwc->sample_period = event->attr.sample_period; 5642 local64_set(&hwc->period_left, hwc->sample_period); 5643 event->attr.freq = 0; 5644 } 5645 } 5646 5647 /* 5648 * Software event: cpu wall time clock 5649 */ 5650 5651 static void cpu_clock_event_update(struct perf_event *event) 5652 { 5653 s64 prev; 5654 u64 now; 5655 5656 now = local_clock(); 5657 prev = local64_xchg(&event->hw.prev_count, now); 5658 local64_add(now - prev, &event->count); 5659 } 5660 5661 static void cpu_clock_event_start(struct perf_event *event, int flags) 5662 { 5663 local64_set(&event->hw.prev_count, local_clock()); 5664 perf_swevent_start_hrtimer(event); 5665 } 5666 5667 static void cpu_clock_event_stop(struct perf_event *event, int flags) 5668 { 5669 perf_swevent_cancel_hrtimer(event); 5670 cpu_clock_event_update(event); 5671 } 5672 5673 static int cpu_clock_event_add(struct perf_event *event, int flags) 5674 { 5675 if (flags & PERF_EF_START) 5676 cpu_clock_event_start(event, flags); 5677 5678 return 0; 5679 } 5680 5681 static void cpu_clock_event_del(struct perf_event *event, int flags) 5682 { 5683 cpu_clock_event_stop(event, flags); 5684 } 5685 5686 static void cpu_clock_event_read(struct perf_event *event) 5687 { 5688 cpu_clock_event_update(event); 5689 } 5690 5691 static int cpu_clock_event_init(struct perf_event *event) 5692 { 5693 if (event->attr.type != PERF_TYPE_SOFTWARE) 5694 return -ENOENT; 5695 5696 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 5697 return -ENOENT; 5698 5699 /* 5700 * no branch sampling for software events 5701 */ 5702 if (has_branch_stack(event)) 5703 return -EOPNOTSUPP; 5704 5705 perf_swevent_init_hrtimer(event); 5706 5707 return 0; 5708 } 5709 5710 static struct pmu perf_cpu_clock = { 5711 .task_ctx_nr = perf_sw_context, 5712 5713 .event_init = cpu_clock_event_init, 5714 .add = cpu_clock_event_add, 5715 .del = cpu_clock_event_del, 5716 .start = cpu_clock_event_start, 5717 .stop = cpu_clock_event_stop, 5718 .read = cpu_clock_event_read, 5719 5720 .event_idx = perf_swevent_event_idx, 5721 }; 5722 5723 /* 5724 * Software event: task time clock 5725 */ 5726 5727 static void task_clock_event_update(struct perf_event *event, u64 now) 5728 { 5729 u64 prev; 5730 s64 delta; 5731 5732 prev = local64_xchg(&event->hw.prev_count, now); 5733 delta = now - prev; 5734 local64_add(delta, &event->count); 5735 } 5736 5737 static void task_clock_event_start(struct perf_event *event, int flags) 5738 { 5739 local64_set(&event->hw.prev_count, event->ctx->time); 5740 perf_swevent_start_hrtimer(event); 5741 } 5742 5743 static void task_clock_event_stop(struct perf_event *event, int flags) 5744 { 5745 perf_swevent_cancel_hrtimer(event); 5746 task_clock_event_update(event, event->ctx->time); 5747 } 5748 5749 static int task_clock_event_add(struct perf_event *event, int flags) 5750 { 5751 if (flags & PERF_EF_START) 5752 task_clock_event_start(event, flags); 5753 5754 return 0; 5755 } 5756 5757 static void task_clock_event_del(struct perf_event *event, int flags) 5758 { 5759 task_clock_event_stop(event, PERF_EF_UPDATE); 5760 } 5761 5762 static void task_clock_event_read(struct perf_event *event) 5763 { 5764 u64 now = perf_clock(); 5765 u64 delta = now - event->ctx->timestamp; 5766 u64 time = event->ctx->time + delta; 5767 5768 task_clock_event_update(event, time); 5769 } 5770 5771 static int task_clock_event_init(struct perf_event *event) 5772 { 5773 if (event->attr.type != PERF_TYPE_SOFTWARE) 5774 return -ENOENT; 5775 5776 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 5777 return -ENOENT; 5778 5779 /* 5780 * no branch sampling for software events 5781 */ 5782 if (has_branch_stack(event)) 5783 return -EOPNOTSUPP; 5784 5785 perf_swevent_init_hrtimer(event); 5786 5787 return 0; 5788 } 5789 5790 static struct pmu perf_task_clock = { 5791 .task_ctx_nr = perf_sw_context, 5792 5793 .event_init = task_clock_event_init, 5794 .add = task_clock_event_add, 5795 .del = task_clock_event_del, 5796 .start = task_clock_event_start, 5797 .stop = task_clock_event_stop, 5798 .read = task_clock_event_read, 5799 5800 .event_idx = perf_swevent_event_idx, 5801 }; 5802 5803 static void perf_pmu_nop_void(struct pmu *pmu) 5804 { 5805 } 5806 5807 static int perf_pmu_nop_int(struct pmu *pmu) 5808 { 5809 return 0; 5810 } 5811 5812 static void perf_pmu_start_txn(struct pmu *pmu) 5813 { 5814 perf_pmu_disable(pmu); 5815 } 5816 5817 static int perf_pmu_commit_txn(struct pmu *pmu) 5818 { 5819 perf_pmu_enable(pmu); 5820 return 0; 5821 } 5822 5823 static void perf_pmu_cancel_txn(struct pmu *pmu) 5824 { 5825 perf_pmu_enable(pmu); 5826 } 5827 5828 static int perf_event_idx_default(struct perf_event *event) 5829 { 5830 return event->hw.idx + 1; 5831 } 5832 5833 /* 5834 * Ensures all contexts with the same task_ctx_nr have the same 5835 * pmu_cpu_context too. 5836 */ 5837 static void *find_pmu_context(int ctxn) 5838 { 5839 struct pmu *pmu; 5840 5841 if (ctxn < 0) 5842 return NULL; 5843 5844 list_for_each_entry(pmu, &pmus, entry) { 5845 if (pmu->task_ctx_nr == ctxn) 5846 return pmu->pmu_cpu_context; 5847 } 5848 5849 return NULL; 5850 } 5851 5852 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu) 5853 { 5854 int cpu; 5855 5856 for_each_possible_cpu(cpu) { 5857 struct perf_cpu_context *cpuctx; 5858 5859 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5860 5861 if (cpuctx->unique_pmu == old_pmu) 5862 cpuctx->unique_pmu = pmu; 5863 } 5864 } 5865 5866 static void free_pmu_context(struct pmu *pmu) 5867 { 5868 struct pmu *i; 5869 5870 mutex_lock(&pmus_lock); 5871 /* 5872 * Like a real lame refcount. 5873 */ 5874 list_for_each_entry(i, &pmus, entry) { 5875 if (i->pmu_cpu_context == pmu->pmu_cpu_context) { 5876 update_pmu_context(i, pmu); 5877 goto out; 5878 } 5879 } 5880 5881 free_percpu(pmu->pmu_cpu_context); 5882 out: 5883 mutex_unlock(&pmus_lock); 5884 } 5885 static struct idr pmu_idr; 5886 5887 static ssize_t 5888 type_show(struct device *dev, struct device_attribute *attr, char *page) 5889 { 5890 struct pmu *pmu = dev_get_drvdata(dev); 5891 5892 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 5893 } 5894 5895 static struct device_attribute pmu_dev_attrs[] = { 5896 __ATTR_RO(type), 5897 __ATTR_NULL, 5898 }; 5899 5900 static int pmu_bus_running; 5901 static struct bus_type pmu_bus = { 5902 .name = "event_source", 5903 .dev_attrs = pmu_dev_attrs, 5904 }; 5905 5906 static void pmu_dev_release(struct device *dev) 5907 { 5908 kfree(dev); 5909 } 5910 5911 static int pmu_dev_alloc(struct pmu *pmu) 5912 { 5913 int ret = -ENOMEM; 5914 5915 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 5916 if (!pmu->dev) 5917 goto out; 5918 5919 pmu->dev->groups = pmu->attr_groups; 5920 device_initialize(pmu->dev); 5921 ret = dev_set_name(pmu->dev, "%s", pmu->name); 5922 if (ret) 5923 goto free_dev; 5924 5925 dev_set_drvdata(pmu->dev, pmu); 5926 pmu->dev->bus = &pmu_bus; 5927 pmu->dev->release = pmu_dev_release; 5928 ret = device_add(pmu->dev); 5929 if (ret) 5930 goto free_dev; 5931 5932 out: 5933 return ret; 5934 5935 free_dev: 5936 put_device(pmu->dev); 5937 goto out; 5938 } 5939 5940 static struct lock_class_key cpuctx_mutex; 5941 static struct lock_class_key cpuctx_lock; 5942 5943 int perf_pmu_register(struct pmu *pmu, char *name, int type) 5944 { 5945 int cpu, ret; 5946 5947 mutex_lock(&pmus_lock); 5948 ret = -ENOMEM; 5949 pmu->pmu_disable_count = alloc_percpu(int); 5950 if (!pmu->pmu_disable_count) 5951 goto unlock; 5952 5953 pmu->type = -1; 5954 if (!name) 5955 goto skip_type; 5956 pmu->name = name; 5957 5958 if (type < 0) { 5959 int err = idr_pre_get(&pmu_idr, GFP_KERNEL); 5960 if (!err) 5961 goto free_pdc; 5962 5963 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type); 5964 if (err) { 5965 ret = err; 5966 goto free_pdc; 5967 } 5968 } 5969 pmu->type = type; 5970 5971 if (pmu_bus_running) { 5972 ret = pmu_dev_alloc(pmu); 5973 if (ret) 5974 goto free_idr; 5975 } 5976 5977 skip_type: 5978 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 5979 if (pmu->pmu_cpu_context) 5980 goto got_cpu_context; 5981 5982 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 5983 if (!pmu->pmu_cpu_context) 5984 goto free_dev; 5985 5986 for_each_possible_cpu(cpu) { 5987 struct perf_cpu_context *cpuctx; 5988 5989 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 5990 __perf_event_init_context(&cpuctx->ctx); 5991 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 5992 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 5993 cpuctx->ctx.type = cpu_context; 5994 cpuctx->ctx.pmu = pmu; 5995 cpuctx->jiffies_interval = 1; 5996 INIT_LIST_HEAD(&cpuctx->rotation_list); 5997 cpuctx->unique_pmu = pmu; 5998 } 5999 6000 got_cpu_context: 6001 if (!pmu->start_txn) { 6002 if (pmu->pmu_enable) { 6003 /* 6004 * If we have pmu_enable/pmu_disable calls, install 6005 * transaction stubs that use that to try and batch 6006 * hardware accesses. 6007 */ 6008 pmu->start_txn = perf_pmu_start_txn; 6009 pmu->commit_txn = perf_pmu_commit_txn; 6010 pmu->cancel_txn = perf_pmu_cancel_txn; 6011 } else { 6012 pmu->start_txn = perf_pmu_nop_void; 6013 pmu->commit_txn = perf_pmu_nop_int; 6014 pmu->cancel_txn = perf_pmu_nop_void; 6015 } 6016 } 6017 6018 if (!pmu->pmu_enable) { 6019 pmu->pmu_enable = perf_pmu_nop_void; 6020 pmu->pmu_disable = perf_pmu_nop_void; 6021 } 6022 6023 if (!pmu->event_idx) 6024 pmu->event_idx = perf_event_idx_default; 6025 6026 list_add_rcu(&pmu->entry, &pmus); 6027 ret = 0; 6028 unlock: 6029 mutex_unlock(&pmus_lock); 6030 6031 return ret; 6032 6033 free_dev: 6034 device_del(pmu->dev); 6035 put_device(pmu->dev); 6036 6037 free_idr: 6038 if (pmu->type >= PERF_TYPE_MAX) 6039 idr_remove(&pmu_idr, pmu->type); 6040 6041 free_pdc: 6042 free_percpu(pmu->pmu_disable_count); 6043 goto unlock; 6044 } 6045 6046 void perf_pmu_unregister(struct pmu *pmu) 6047 { 6048 mutex_lock(&pmus_lock); 6049 list_del_rcu(&pmu->entry); 6050 mutex_unlock(&pmus_lock); 6051 6052 /* 6053 * We dereference the pmu list under both SRCU and regular RCU, so 6054 * synchronize against both of those. 6055 */ 6056 synchronize_srcu(&pmus_srcu); 6057 synchronize_rcu(); 6058 6059 free_percpu(pmu->pmu_disable_count); 6060 if (pmu->type >= PERF_TYPE_MAX) 6061 idr_remove(&pmu_idr, pmu->type); 6062 device_del(pmu->dev); 6063 put_device(pmu->dev); 6064 free_pmu_context(pmu); 6065 } 6066 6067 struct pmu *perf_init_event(struct perf_event *event) 6068 { 6069 struct pmu *pmu = NULL; 6070 int idx; 6071 int ret; 6072 6073 idx = srcu_read_lock(&pmus_srcu); 6074 6075 rcu_read_lock(); 6076 pmu = idr_find(&pmu_idr, event->attr.type); 6077 rcu_read_unlock(); 6078 if (pmu) { 6079 event->pmu = pmu; 6080 ret = pmu->event_init(event); 6081 if (ret) 6082 pmu = ERR_PTR(ret); 6083 goto unlock; 6084 } 6085 6086 list_for_each_entry_rcu(pmu, &pmus, entry) { 6087 event->pmu = pmu; 6088 ret = pmu->event_init(event); 6089 if (!ret) 6090 goto unlock; 6091 6092 if (ret != -ENOENT) { 6093 pmu = ERR_PTR(ret); 6094 goto unlock; 6095 } 6096 } 6097 pmu = ERR_PTR(-ENOENT); 6098 unlock: 6099 srcu_read_unlock(&pmus_srcu, idx); 6100 6101 return pmu; 6102 } 6103 6104 /* 6105 * Allocate and initialize a event structure 6106 */ 6107 static struct perf_event * 6108 perf_event_alloc(struct perf_event_attr *attr, int cpu, 6109 struct task_struct *task, 6110 struct perf_event *group_leader, 6111 struct perf_event *parent_event, 6112 perf_overflow_handler_t overflow_handler, 6113 void *context) 6114 { 6115 struct pmu *pmu; 6116 struct perf_event *event; 6117 struct hw_perf_event *hwc; 6118 long err; 6119 6120 if ((unsigned)cpu >= nr_cpu_ids) { 6121 if (!task || cpu != -1) 6122 return ERR_PTR(-EINVAL); 6123 } 6124 6125 event = kzalloc(sizeof(*event), GFP_KERNEL); 6126 if (!event) 6127 return ERR_PTR(-ENOMEM); 6128 6129 /* 6130 * Single events are their own group leaders, with an 6131 * empty sibling list: 6132 */ 6133 if (!group_leader) 6134 group_leader = event; 6135 6136 mutex_init(&event->child_mutex); 6137 INIT_LIST_HEAD(&event->child_list); 6138 6139 INIT_LIST_HEAD(&event->group_entry); 6140 INIT_LIST_HEAD(&event->event_entry); 6141 INIT_LIST_HEAD(&event->sibling_list); 6142 INIT_LIST_HEAD(&event->rb_entry); 6143 6144 init_waitqueue_head(&event->waitq); 6145 init_irq_work(&event->pending, perf_pending_event); 6146 6147 mutex_init(&event->mmap_mutex); 6148 6149 atomic_long_set(&event->refcount, 1); 6150 event->cpu = cpu; 6151 event->attr = *attr; 6152 event->group_leader = group_leader; 6153 event->pmu = NULL; 6154 event->oncpu = -1; 6155 6156 event->parent = parent_event; 6157 6158 event->ns = get_pid_ns(current->nsproxy->pid_ns); 6159 event->id = atomic64_inc_return(&perf_event_id); 6160 6161 event->state = PERF_EVENT_STATE_INACTIVE; 6162 6163 if (task) { 6164 event->attach_state = PERF_ATTACH_TASK; 6165 #ifdef CONFIG_HAVE_HW_BREAKPOINT 6166 /* 6167 * hw_breakpoint is a bit difficult here.. 6168 */ 6169 if (attr->type == PERF_TYPE_BREAKPOINT) 6170 event->hw.bp_target = task; 6171 #endif 6172 } 6173 6174 if (!overflow_handler && parent_event) { 6175 overflow_handler = parent_event->overflow_handler; 6176 context = parent_event->overflow_handler_context; 6177 } 6178 6179 event->overflow_handler = overflow_handler; 6180 event->overflow_handler_context = context; 6181 6182 if (attr->disabled) 6183 event->state = PERF_EVENT_STATE_OFF; 6184 6185 pmu = NULL; 6186 6187 hwc = &event->hw; 6188 hwc->sample_period = attr->sample_period; 6189 if (attr->freq && attr->sample_freq) 6190 hwc->sample_period = 1; 6191 hwc->last_period = hwc->sample_period; 6192 6193 local64_set(&hwc->period_left, hwc->sample_period); 6194 6195 /* 6196 * we currently do not support PERF_FORMAT_GROUP on inherited events 6197 */ 6198 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) 6199 goto done; 6200 6201 pmu = perf_init_event(event); 6202 6203 done: 6204 err = 0; 6205 if (!pmu) 6206 err = -EINVAL; 6207 else if (IS_ERR(pmu)) 6208 err = PTR_ERR(pmu); 6209 6210 if (err) { 6211 if (event->ns) 6212 put_pid_ns(event->ns); 6213 kfree(event); 6214 return ERR_PTR(err); 6215 } 6216 6217 if (!event->parent) { 6218 if (event->attach_state & PERF_ATTACH_TASK) 6219 static_key_slow_inc(&perf_sched_events.key); 6220 if (event->attr.mmap || event->attr.mmap_data) 6221 atomic_inc(&nr_mmap_events); 6222 if (event->attr.comm) 6223 atomic_inc(&nr_comm_events); 6224 if (event->attr.task) 6225 atomic_inc(&nr_task_events); 6226 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 6227 err = get_callchain_buffers(); 6228 if (err) { 6229 free_event(event); 6230 return ERR_PTR(err); 6231 } 6232 } 6233 if (has_branch_stack(event)) { 6234 static_key_slow_inc(&perf_sched_events.key); 6235 if (!(event->attach_state & PERF_ATTACH_TASK)) 6236 atomic_inc(&per_cpu(perf_branch_stack_events, 6237 event->cpu)); 6238 } 6239 } 6240 6241 return event; 6242 } 6243 6244 static int perf_copy_attr(struct perf_event_attr __user *uattr, 6245 struct perf_event_attr *attr) 6246 { 6247 u32 size; 6248 int ret; 6249 6250 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) 6251 return -EFAULT; 6252 6253 /* 6254 * zero the full structure, so that a short copy will be nice. 6255 */ 6256 memset(attr, 0, sizeof(*attr)); 6257 6258 ret = get_user(size, &uattr->size); 6259 if (ret) 6260 return ret; 6261 6262 if (size > PAGE_SIZE) /* silly large */ 6263 goto err_size; 6264 6265 if (!size) /* abi compat */ 6266 size = PERF_ATTR_SIZE_VER0; 6267 6268 if (size < PERF_ATTR_SIZE_VER0) 6269 goto err_size; 6270 6271 /* 6272 * If we're handed a bigger struct than we know of, 6273 * ensure all the unknown bits are 0 - i.e. new 6274 * user-space does not rely on any kernel feature 6275 * extensions we dont know about yet. 6276 */ 6277 if (size > sizeof(*attr)) { 6278 unsigned char __user *addr; 6279 unsigned char __user *end; 6280 unsigned char val; 6281 6282 addr = (void __user *)uattr + sizeof(*attr); 6283 end = (void __user *)uattr + size; 6284 6285 for (; addr < end; addr++) { 6286 ret = get_user(val, addr); 6287 if (ret) 6288 return ret; 6289 if (val) 6290 goto err_size; 6291 } 6292 size = sizeof(*attr); 6293 } 6294 6295 ret = copy_from_user(attr, uattr, size); 6296 if (ret) 6297 return -EFAULT; 6298 6299 if (attr->__reserved_1) 6300 return -EINVAL; 6301 6302 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 6303 return -EINVAL; 6304 6305 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 6306 return -EINVAL; 6307 6308 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 6309 u64 mask = attr->branch_sample_type; 6310 6311 /* only using defined bits */ 6312 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 6313 return -EINVAL; 6314 6315 /* at least one branch bit must be set */ 6316 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 6317 return -EINVAL; 6318 6319 /* kernel level capture: check permissions */ 6320 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 6321 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6322 return -EACCES; 6323 6324 /* propagate priv level, when not set for branch */ 6325 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 6326 6327 /* exclude_kernel checked on syscall entry */ 6328 if (!attr->exclude_kernel) 6329 mask |= PERF_SAMPLE_BRANCH_KERNEL; 6330 6331 if (!attr->exclude_user) 6332 mask |= PERF_SAMPLE_BRANCH_USER; 6333 6334 if (!attr->exclude_hv) 6335 mask |= PERF_SAMPLE_BRANCH_HV; 6336 /* 6337 * adjust user setting (for HW filter setup) 6338 */ 6339 attr->branch_sample_type = mask; 6340 } 6341 } 6342 6343 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 6344 ret = perf_reg_validate(attr->sample_regs_user); 6345 if (ret) 6346 return ret; 6347 } 6348 6349 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 6350 if (!arch_perf_have_user_stack_dump()) 6351 return -ENOSYS; 6352 6353 /* 6354 * We have __u32 type for the size, but so far 6355 * we can only use __u16 as maximum due to the 6356 * __u16 sample size limit. 6357 */ 6358 if (attr->sample_stack_user >= USHRT_MAX) 6359 ret = -EINVAL; 6360 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 6361 ret = -EINVAL; 6362 } 6363 6364 out: 6365 return ret; 6366 6367 err_size: 6368 put_user(sizeof(*attr), &uattr->size); 6369 ret = -E2BIG; 6370 goto out; 6371 } 6372 6373 static int 6374 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 6375 { 6376 struct ring_buffer *rb = NULL, *old_rb = NULL; 6377 int ret = -EINVAL; 6378 6379 if (!output_event) 6380 goto set; 6381 6382 /* don't allow circular references */ 6383 if (event == output_event) 6384 goto out; 6385 6386 /* 6387 * Don't allow cross-cpu buffers 6388 */ 6389 if (output_event->cpu != event->cpu) 6390 goto out; 6391 6392 /* 6393 * If its not a per-cpu rb, it must be the same task. 6394 */ 6395 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 6396 goto out; 6397 6398 set: 6399 mutex_lock(&event->mmap_mutex); 6400 /* Can't redirect output if we've got an active mmap() */ 6401 if (atomic_read(&event->mmap_count)) 6402 goto unlock; 6403 6404 if (output_event) { 6405 /* get the rb we want to redirect to */ 6406 rb = ring_buffer_get(output_event); 6407 if (!rb) 6408 goto unlock; 6409 } 6410 6411 old_rb = event->rb; 6412 rcu_assign_pointer(event->rb, rb); 6413 if (old_rb) 6414 ring_buffer_detach(event, old_rb); 6415 ret = 0; 6416 unlock: 6417 mutex_unlock(&event->mmap_mutex); 6418 6419 if (old_rb) 6420 ring_buffer_put(old_rb); 6421 out: 6422 return ret; 6423 } 6424 6425 /** 6426 * sys_perf_event_open - open a performance event, associate it to a task/cpu 6427 * 6428 * @attr_uptr: event_id type attributes for monitoring/sampling 6429 * @pid: target pid 6430 * @cpu: target cpu 6431 * @group_fd: group leader event fd 6432 */ 6433 SYSCALL_DEFINE5(perf_event_open, 6434 struct perf_event_attr __user *, attr_uptr, 6435 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 6436 { 6437 struct perf_event *group_leader = NULL, *output_event = NULL; 6438 struct perf_event *event, *sibling; 6439 struct perf_event_attr attr; 6440 struct perf_event_context *ctx; 6441 struct file *event_file = NULL; 6442 struct fd group = {NULL, 0}; 6443 struct task_struct *task = NULL; 6444 struct pmu *pmu; 6445 int event_fd; 6446 int move_group = 0; 6447 int err; 6448 6449 /* for future expandability... */ 6450 if (flags & ~PERF_FLAG_ALL) 6451 return -EINVAL; 6452 6453 err = perf_copy_attr(attr_uptr, &attr); 6454 if (err) 6455 return err; 6456 6457 if (!attr.exclude_kernel) { 6458 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 6459 return -EACCES; 6460 } 6461 6462 if (attr.freq) { 6463 if (attr.sample_freq > sysctl_perf_event_sample_rate) 6464 return -EINVAL; 6465 } 6466 6467 /* 6468 * In cgroup mode, the pid argument is used to pass the fd 6469 * opened to the cgroup directory in cgroupfs. The cpu argument 6470 * designates the cpu on which to monitor threads from that 6471 * cgroup. 6472 */ 6473 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 6474 return -EINVAL; 6475 6476 event_fd = get_unused_fd(); 6477 if (event_fd < 0) 6478 return event_fd; 6479 6480 if (group_fd != -1) { 6481 err = perf_fget_light(group_fd, &group); 6482 if (err) 6483 goto err_fd; 6484 group_leader = group.file->private_data; 6485 if (flags & PERF_FLAG_FD_OUTPUT) 6486 output_event = group_leader; 6487 if (flags & PERF_FLAG_FD_NO_GROUP) 6488 group_leader = NULL; 6489 } 6490 6491 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 6492 task = find_lively_task_by_vpid(pid); 6493 if (IS_ERR(task)) { 6494 err = PTR_ERR(task); 6495 goto err_group_fd; 6496 } 6497 } 6498 6499 get_online_cpus(); 6500 6501 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 6502 NULL, NULL); 6503 if (IS_ERR(event)) { 6504 err = PTR_ERR(event); 6505 goto err_task; 6506 } 6507 6508 if (flags & PERF_FLAG_PID_CGROUP) { 6509 err = perf_cgroup_connect(pid, event, &attr, group_leader); 6510 if (err) 6511 goto err_alloc; 6512 /* 6513 * one more event: 6514 * - that has cgroup constraint on event->cpu 6515 * - that may need work on context switch 6516 */ 6517 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu)); 6518 static_key_slow_inc(&perf_sched_events.key); 6519 } 6520 6521 /* 6522 * Special case software events and allow them to be part of 6523 * any hardware group. 6524 */ 6525 pmu = event->pmu; 6526 6527 if (group_leader && 6528 (is_software_event(event) != is_software_event(group_leader))) { 6529 if (is_software_event(event)) { 6530 /* 6531 * If event and group_leader are not both a software 6532 * event, and event is, then group leader is not. 6533 * 6534 * Allow the addition of software events to !software 6535 * groups, this is safe because software events never 6536 * fail to schedule. 6537 */ 6538 pmu = group_leader->pmu; 6539 } else if (is_software_event(group_leader) && 6540 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) { 6541 /* 6542 * In case the group is a pure software group, and we 6543 * try to add a hardware event, move the whole group to 6544 * the hardware context. 6545 */ 6546 move_group = 1; 6547 } 6548 } 6549 6550 /* 6551 * Get the target context (task or percpu): 6552 */ 6553 ctx = find_get_context(pmu, task, event->cpu); 6554 if (IS_ERR(ctx)) { 6555 err = PTR_ERR(ctx); 6556 goto err_alloc; 6557 } 6558 6559 if (task) { 6560 put_task_struct(task); 6561 task = NULL; 6562 } 6563 6564 /* 6565 * Look up the group leader (we will attach this event to it): 6566 */ 6567 if (group_leader) { 6568 err = -EINVAL; 6569 6570 /* 6571 * Do not allow a recursive hierarchy (this new sibling 6572 * becoming part of another group-sibling): 6573 */ 6574 if (group_leader->group_leader != group_leader) 6575 goto err_context; 6576 /* 6577 * Do not allow to attach to a group in a different 6578 * task or CPU context: 6579 */ 6580 if (move_group) { 6581 if (group_leader->ctx->type != ctx->type) 6582 goto err_context; 6583 } else { 6584 if (group_leader->ctx != ctx) 6585 goto err_context; 6586 } 6587 6588 /* 6589 * Only a group leader can be exclusive or pinned 6590 */ 6591 if (attr.exclusive || attr.pinned) 6592 goto err_context; 6593 } 6594 6595 if (output_event) { 6596 err = perf_event_set_output(event, output_event); 6597 if (err) 6598 goto err_context; 6599 } 6600 6601 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR); 6602 if (IS_ERR(event_file)) { 6603 err = PTR_ERR(event_file); 6604 goto err_context; 6605 } 6606 6607 if (move_group) { 6608 struct perf_event_context *gctx = group_leader->ctx; 6609 6610 mutex_lock(&gctx->mutex); 6611 perf_remove_from_context(group_leader); 6612 list_for_each_entry(sibling, &group_leader->sibling_list, 6613 group_entry) { 6614 perf_remove_from_context(sibling); 6615 put_ctx(gctx); 6616 } 6617 mutex_unlock(&gctx->mutex); 6618 put_ctx(gctx); 6619 } 6620 6621 WARN_ON_ONCE(ctx->parent_ctx); 6622 mutex_lock(&ctx->mutex); 6623 6624 if (move_group) { 6625 synchronize_rcu(); 6626 perf_install_in_context(ctx, group_leader, event->cpu); 6627 get_ctx(ctx); 6628 list_for_each_entry(sibling, &group_leader->sibling_list, 6629 group_entry) { 6630 perf_install_in_context(ctx, sibling, event->cpu); 6631 get_ctx(ctx); 6632 } 6633 } 6634 6635 perf_install_in_context(ctx, event, event->cpu); 6636 ++ctx->generation; 6637 perf_unpin_context(ctx); 6638 mutex_unlock(&ctx->mutex); 6639 6640 put_online_cpus(); 6641 6642 event->owner = current; 6643 6644 mutex_lock(¤t->perf_event_mutex); 6645 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 6646 mutex_unlock(¤t->perf_event_mutex); 6647 6648 /* 6649 * Precalculate sample_data sizes 6650 */ 6651 perf_event__header_size(event); 6652 perf_event__id_header_size(event); 6653 6654 /* 6655 * Drop the reference on the group_event after placing the 6656 * new event on the sibling_list. This ensures destruction 6657 * of the group leader will find the pointer to itself in 6658 * perf_group_detach(). 6659 */ 6660 fdput(group); 6661 fd_install(event_fd, event_file); 6662 return event_fd; 6663 6664 err_context: 6665 perf_unpin_context(ctx); 6666 put_ctx(ctx); 6667 err_alloc: 6668 free_event(event); 6669 err_task: 6670 put_online_cpus(); 6671 if (task) 6672 put_task_struct(task); 6673 err_group_fd: 6674 fdput(group); 6675 err_fd: 6676 put_unused_fd(event_fd); 6677 return err; 6678 } 6679 6680 /** 6681 * perf_event_create_kernel_counter 6682 * 6683 * @attr: attributes of the counter to create 6684 * @cpu: cpu in which the counter is bound 6685 * @task: task to profile (NULL for percpu) 6686 */ 6687 struct perf_event * 6688 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 6689 struct task_struct *task, 6690 perf_overflow_handler_t overflow_handler, 6691 void *context) 6692 { 6693 struct perf_event_context *ctx; 6694 struct perf_event *event; 6695 int err; 6696 6697 /* 6698 * Get the target context (task or percpu): 6699 */ 6700 6701 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 6702 overflow_handler, context); 6703 if (IS_ERR(event)) { 6704 err = PTR_ERR(event); 6705 goto err; 6706 } 6707 6708 ctx = find_get_context(event->pmu, task, cpu); 6709 if (IS_ERR(ctx)) { 6710 err = PTR_ERR(ctx); 6711 goto err_free; 6712 } 6713 6714 WARN_ON_ONCE(ctx->parent_ctx); 6715 mutex_lock(&ctx->mutex); 6716 perf_install_in_context(ctx, event, cpu); 6717 ++ctx->generation; 6718 perf_unpin_context(ctx); 6719 mutex_unlock(&ctx->mutex); 6720 6721 return event; 6722 6723 err_free: 6724 free_event(event); 6725 err: 6726 return ERR_PTR(err); 6727 } 6728 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 6729 6730 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 6731 { 6732 struct perf_event_context *src_ctx; 6733 struct perf_event_context *dst_ctx; 6734 struct perf_event *event, *tmp; 6735 LIST_HEAD(events); 6736 6737 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 6738 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 6739 6740 mutex_lock(&src_ctx->mutex); 6741 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 6742 event_entry) { 6743 perf_remove_from_context(event); 6744 put_ctx(src_ctx); 6745 list_add(&event->event_entry, &events); 6746 } 6747 mutex_unlock(&src_ctx->mutex); 6748 6749 synchronize_rcu(); 6750 6751 mutex_lock(&dst_ctx->mutex); 6752 list_for_each_entry_safe(event, tmp, &events, event_entry) { 6753 list_del(&event->event_entry); 6754 if (event->state >= PERF_EVENT_STATE_OFF) 6755 event->state = PERF_EVENT_STATE_INACTIVE; 6756 perf_install_in_context(dst_ctx, event, dst_cpu); 6757 get_ctx(dst_ctx); 6758 } 6759 mutex_unlock(&dst_ctx->mutex); 6760 } 6761 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 6762 6763 static void sync_child_event(struct perf_event *child_event, 6764 struct task_struct *child) 6765 { 6766 struct perf_event *parent_event = child_event->parent; 6767 u64 child_val; 6768 6769 if (child_event->attr.inherit_stat) 6770 perf_event_read_event(child_event, child); 6771 6772 child_val = perf_event_count(child_event); 6773 6774 /* 6775 * Add back the child's count to the parent's count: 6776 */ 6777 atomic64_add(child_val, &parent_event->child_count); 6778 atomic64_add(child_event->total_time_enabled, 6779 &parent_event->child_total_time_enabled); 6780 atomic64_add(child_event->total_time_running, 6781 &parent_event->child_total_time_running); 6782 6783 /* 6784 * Remove this event from the parent's list 6785 */ 6786 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 6787 mutex_lock(&parent_event->child_mutex); 6788 list_del_init(&child_event->child_list); 6789 mutex_unlock(&parent_event->child_mutex); 6790 6791 /* 6792 * Release the parent event, if this was the last 6793 * reference to it. 6794 */ 6795 put_event(parent_event); 6796 } 6797 6798 static void 6799 __perf_event_exit_task(struct perf_event *child_event, 6800 struct perf_event_context *child_ctx, 6801 struct task_struct *child) 6802 { 6803 if (child_event->parent) { 6804 raw_spin_lock_irq(&child_ctx->lock); 6805 perf_group_detach(child_event); 6806 raw_spin_unlock_irq(&child_ctx->lock); 6807 } 6808 6809 perf_remove_from_context(child_event); 6810 6811 /* 6812 * It can happen that the parent exits first, and has events 6813 * that are still around due to the child reference. These 6814 * events need to be zapped. 6815 */ 6816 if (child_event->parent) { 6817 sync_child_event(child_event, child); 6818 free_event(child_event); 6819 } 6820 } 6821 6822 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 6823 { 6824 struct perf_event *child_event, *tmp; 6825 struct perf_event_context *child_ctx; 6826 unsigned long flags; 6827 6828 if (likely(!child->perf_event_ctxp[ctxn])) { 6829 perf_event_task(child, NULL, 0); 6830 return; 6831 } 6832 6833 local_irq_save(flags); 6834 /* 6835 * We can't reschedule here because interrupts are disabled, 6836 * and either child is current or it is a task that can't be 6837 * scheduled, so we are now safe from rescheduling changing 6838 * our context. 6839 */ 6840 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]); 6841 6842 /* 6843 * Take the context lock here so that if find_get_context is 6844 * reading child->perf_event_ctxp, we wait until it has 6845 * incremented the context's refcount before we do put_ctx below. 6846 */ 6847 raw_spin_lock(&child_ctx->lock); 6848 task_ctx_sched_out(child_ctx); 6849 child->perf_event_ctxp[ctxn] = NULL; 6850 /* 6851 * If this context is a clone; unclone it so it can't get 6852 * swapped to another process while we're removing all 6853 * the events from it. 6854 */ 6855 unclone_ctx(child_ctx); 6856 update_context_time(child_ctx); 6857 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 6858 6859 /* 6860 * Report the task dead after unscheduling the events so that we 6861 * won't get any samples after PERF_RECORD_EXIT. We can however still 6862 * get a few PERF_RECORD_READ events. 6863 */ 6864 perf_event_task(child, child_ctx, 0); 6865 6866 /* 6867 * We can recurse on the same lock type through: 6868 * 6869 * __perf_event_exit_task() 6870 * sync_child_event() 6871 * put_event() 6872 * mutex_lock(&ctx->mutex) 6873 * 6874 * But since its the parent context it won't be the same instance. 6875 */ 6876 mutex_lock(&child_ctx->mutex); 6877 6878 again: 6879 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, 6880 group_entry) 6881 __perf_event_exit_task(child_event, child_ctx, child); 6882 6883 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, 6884 group_entry) 6885 __perf_event_exit_task(child_event, child_ctx, child); 6886 6887 /* 6888 * If the last event was a group event, it will have appended all 6889 * its siblings to the list, but we obtained 'tmp' before that which 6890 * will still point to the list head terminating the iteration. 6891 */ 6892 if (!list_empty(&child_ctx->pinned_groups) || 6893 !list_empty(&child_ctx->flexible_groups)) 6894 goto again; 6895 6896 mutex_unlock(&child_ctx->mutex); 6897 6898 put_ctx(child_ctx); 6899 } 6900 6901 /* 6902 * When a child task exits, feed back event values to parent events. 6903 */ 6904 void perf_event_exit_task(struct task_struct *child) 6905 { 6906 struct perf_event *event, *tmp; 6907 int ctxn; 6908 6909 mutex_lock(&child->perf_event_mutex); 6910 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 6911 owner_entry) { 6912 list_del_init(&event->owner_entry); 6913 6914 /* 6915 * Ensure the list deletion is visible before we clear 6916 * the owner, closes a race against perf_release() where 6917 * we need to serialize on the owner->perf_event_mutex. 6918 */ 6919 smp_wmb(); 6920 event->owner = NULL; 6921 } 6922 mutex_unlock(&child->perf_event_mutex); 6923 6924 for_each_task_context_nr(ctxn) 6925 perf_event_exit_task_context(child, ctxn); 6926 } 6927 6928 static void perf_free_event(struct perf_event *event, 6929 struct perf_event_context *ctx) 6930 { 6931 struct perf_event *parent = event->parent; 6932 6933 if (WARN_ON_ONCE(!parent)) 6934 return; 6935 6936 mutex_lock(&parent->child_mutex); 6937 list_del_init(&event->child_list); 6938 mutex_unlock(&parent->child_mutex); 6939 6940 put_event(parent); 6941 6942 perf_group_detach(event); 6943 list_del_event(event, ctx); 6944 free_event(event); 6945 } 6946 6947 /* 6948 * free an unexposed, unused context as created by inheritance by 6949 * perf_event_init_task below, used by fork() in case of fail. 6950 */ 6951 void perf_event_free_task(struct task_struct *task) 6952 { 6953 struct perf_event_context *ctx; 6954 struct perf_event *event, *tmp; 6955 int ctxn; 6956 6957 for_each_task_context_nr(ctxn) { 6958 ctx = task->perf_event_ctxp[ctxn]; 6959 if (!ctx) 6960 continue; 6961 6962 mutex_lock(&ctx->mutex); 6963 again: 6964 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, 6965 group_entry) 6966 perf_free_event(event, ctx); 6967 6968 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, 6969 group_entry) 6970 perf_free_event(event, ctx); 6971 6972 if (!list_empty(&ctx->pinned_groups) || 6973 !list_empty(&ctx->flexible_groups)) 6974 goto again; 6975 6976 mutex_unlock(&ctx->mutex); 6977 6978 put_ctx(ctx); 6979 } 6980 } 6981 6982 void perf_event_delayed_put(struct task_struct *task) 6983 { 6984 int ctxn; 6985 6986 for_each_task_context_nr(ctxn) 6987 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 6988 } 6989 6990 /* 6991 * inherit a event from parent task to child task: 6992 */ 6993 static struct perf_event * 6994 inherit_event(struct perf_event *parent_event, 6995 struct task_struct *parent, 6996 struct perf_event_context *parent_ctx, 6997 struct task_struct *child, 6998 struct perf_event *group_leader, 6999 struct perf_event_context *child_ctx) 7000 { 7001 struct perf_event *child_event; 7002 unsigned long flags; 7003 7004 /* 7005 * Instead of creating recursive hierarchies of events, 7006 * we link inherited events back to the original parent, 7007 * which has a filp for sure, which we use as the reference 7008 * count: 7009 */ 7010 if (parent_event->parent) 7011 parent_event = parent_event->parent; 7012 7013 child_event = perf_event_alloc(&parent_event->attr, 7014 parent_event->cpu, 7015 child, 7016 group_leader, parent_event, 7017 NULL, NULL); 7018 if (IS_ERR(child_event)) 7019 return child_event; 7020 7021 if (!atomic_long_inc_not_zero(&parent_event->refcount)) { 7022 free_event(child_event); 7023 return NULL; 7024 } 7025 7026 get_ctx(child_ctx); 7027 7028 /* 7029 * Make the child state follow the state of the parent event, 7030 * not its attr.disabled bit. We hold the parent's mutex, 7031 * so we won't race with perf_event_{en, dis}able_family. 7032 */ 7033 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) 7034 child_event->state = PERF_EVENT_STATE_INACTIVE; 7035 else 7036 child_event->state = PERF_EVENT_STATE_OFF; 7037 7038 if (parent_event->attr.freq) { 7039 u64 sample_period = parent_event->hw.sample_period; 7040 struct hw_perf_event *hwc = &child_event->hw; 7041 7042 hwc->sample_period = sample_period; 7043 hwc->last_period = sample_period; 7044 7045 local64_set(&hwc->period_left, sample_period); 7046 } 7047 7048 child_event->ctx = child_ctx; 7049 child_event->overflow_handler = parent_event->overflow_handler; 7050 child_event->overflow_handler_context 7051 = parent_event->overflow_handler_context; 7052 7053 /* 7054 * Precalculate sample_data sizes 7055 */ 7056 perf_event__header_size(child_event); 7057 perf_event__id_header_size(child_event); 7058 7059 /* 7060 * Link it up in the child's context: 7061 */ 7062 raw_spin_lock_irqsave(&child_ctx->lock, flags); 7063 add_event_to_ctx(child_event, child_ctx); 7064 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 7065 7066 /* 7067 * Link this into the parent event's child list 7068 */ 7069 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 7070 mutex_lock(&parent_event->child_mutex); 7071 list_add_tail(&child_event->child_list, &parent_event->child_list); 7072 mutex_unlock(&parent_event->child_mutex); 7073 7074 return child_event; 7075 } 7076 7077 static int inherit_group(struct perf_event *parent_event, 7078 struct task_struct *parent, 7079 struct perf_event_context *parent_ctx, 7080 struct task_struct *child, 7081 struct perf_event_context *child_ctx) 7082 { 7083 struct perf_event *leader; 7084 struct perf_event *sub; 7085 struct perf_event *child_ctr; 7086 7087 leader = inherit_event(parent_event, parent, parent_ctx, 7088 child, NULL, child_ctx); 7089 if (IS_ERR(leader)) 7090 return PTR_ERR(leader); 7091 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { 7092 child_ctr = inherit_event(sub, parent, parent_ctx, 7093 child, leader, child_ctx); 7094 if (IS_ERR(child_ctr)) 7095 return PTR_ERR(child_ctr); 7096 } 7097 return 0; 7098 } 7099 7100 static int 7101 inherit_task_group(struct perf_event *event, struct task_struct *parent, 7102 struct perf_event_context *parent_ctx, 7103 struct task_struct *child, int ctxn, 7104 int *inherited_all) 7105 { 7106 int ret; 7107 struct perf_event_context *child_ctx; 7108 7109 if (!event->attr.inherit) { 7110 *inherited_all = 0; 7111 return 0; 7112 } 7113 7114 child_ctx = child->perf_event_ctxp[ctxn]; 7115 if (!child_ctx) { 7116 /* 7117 * This is executed from the parent task context, so 7118 * inherit events that have been marked for cloning. 7119 * First allocate and initialize a context for the 7120 * child. 7121 */ 7122 7123 child_ctx = alloc_perf_context(event->pmu, child); 7124 if (!child_ctx) 7125 return -ENOMEM; 7126 7127 child->perf_event_ctxp[ctxn] = child_ctx; 7128 } 7129 7130 ret = inherit_group(event, parent, parent_ctx, 7131 child, child_ctx); 7132 7133 if (ret) 7134 *inherited_all = 0; 7135 7136 return ret; 7137 } 7138 7139 /* 7140 * Initialize the perf_event context in task_struct 7141 */ 7142 int perf_event_init_context(struct task_struct *child, int ctxn) 7143 { 7144 struct perf_event_context *child_ctx, *parent_ctx; 7145 struct perf_event_context *cloned_ctx; 7146 struct perf_event *event; 7147 struct task_struct *parent = current; 7148 int inherited_all = 1; 7149 unsigned long flags; 7150 int ret = 0; 7151 7152 if (likely(!parent->perf_event_ctxp[ctxn])) 7153 return 0; 7154 7155 /* 7156 * If the parent's context is a clone, pin it so it won't get 7157 * swapped under us. 7158 */ 7159 parent_ctx = perf_pin_task_context(parent, ctxn); 7160 7161 /* 7162 * No need to check if parent_ctx != NULL here; since we saw 7163 * it non-NULL earlier, the only reason for it to become NULL 7164 * is if we exit, and since we're currently in the middle of 7165 * a fork we can't be exiting at the same time. 7166 */ 7167 7168 /* 7169 * Lock the parent list. No need to lock the child - not PID 7170 * hashed yet and not running, so nobody can access it. 7171 */ 7172 mutex_lock(&parent_ctx->mutex); 7173 7174 /* 7175 * We dont have to disable NMIs - we are only looking at 7176 * the list, not manipulating it: 7177 */ 7178 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { 7179 ret = inherit_task_group(event, parent, parent_ctx, 7180 child, ctxn, &inherited_all); 7181 if (ret) 7182 break; 7183 } 7184 7185 /* 7186 * We can't hold ctx->lock when iterating the ->flexible_group list due 7187 * to allocations, but we need to prevent rotation because 7188 * rotate_ctx() will change the list from interrupt context. 7189 */ 7190 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7191 parent_ctx->rotate_disable = 1; 7192 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7193 7194 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { 7195 ret = inherit_task_group(event, parent, parent_ctx, 7196 child, ctxn, &inherited_all); 7197 if (ret) 7198 break; 7199 } 7200 7201 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 7202 parent_ctx->rotate_disable = 0; 7203 7204 child_ctx = child->perf_event_ctxp[ctxn]; 7205 7206 if (child_ctx && inherited_all) { 7207 /* 7208 * Mark the child context as a clone of the parent 7209 * context, or of whatever the parent is a clone of. 7210 * 7211 * Note that if the parent is a clone, the holding of 7212 * parent_ctx->lock avoids it from being uncloned. 7213 */ 7214 cloned_ctx = parent_ctx->parent_ctx; 7215 if (cloned_ctx) { 7216 child_ctx->parent_ctx = cloned_ctx; 7217 child_ctx->parent_gen = parent_ctx->parent_gen; 7218 } else { 7219 child_ctx->parent_ctx = parent_ctx; 7220 child_ctx->parent_gen = parent_ctx->generation; 7221 } 7222 get_ctx(child_ctx->parent_ctx); 7223 } 7224 7225 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 7226 mutex_unlock(&parent_ctx->mutex); 7227 7228 perf_unpin_context(parent_ctx); 7229 put_ctx(parent_ctx); 7230 7231 return ret; 7232 } 7233 7234 /* 7235 * Initialize the perf_event context in task_struct 7236 */ 7237 int perf_event_init_task(struct task_struct *child) 7238 { 7239 int ctxn, ret; 7240 7241 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 7242 mutex_init(&child->perf_event_mutex); 7243 INIT_LIST_HEAD(&child->perf_event_list); 7244 7245 for_each_task_context_nr(ctxn) { 7246 ret = perf_event_init_context(child, ctxn); 7247 if (ret) 7248 return ret; 7249 } 7250 7251 return 0; 7252 } 7253 7254 static void __init perf_event_init_all_cpus(void) 7255 { 7256 struct swevent_htable *swhash; 7257 int cpu; 7258 7259 for_each_possible_cpu(cpu) { 7260 swhash = &per_cpu(swevent_htable, cpu); 7261 mutex_init(&swhash->hlist_mutex); 7262 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu)); 7263 } 7264 } 7265 7266 static void __cpuinit perf_event_init_cpu(int cpu) 7267 { 7268 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7269 7270 mutex_lock(&swhash->hlist_mutex); 7271 if (swhash->hlist_refcount > 0) { 7272 struct swevent_hlist *hlist; 7273 7274 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 7275 WARN_ON(!hlist); 7276 rcu_assign_pointer(swhash->swevent_hlist, hlist); 7277 } 7278 mutex_unlock(&swhash->hlist_mutex); 7279 } 7280 7281 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC 7282 static void perf_pmu_rotate_stop(struct pmu *pmu) 7283 { 7284 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 7285 7286 WARN_ON(!irqs_disabled()); 7287 7288 list_del_init(&cpuctx->rotation_list); 7289 } 7290 7291 static void __perf_event_exit_context(void *__info) 7292 { 7293 struct perf_event_context *ctx = __info; 7294 struct perf_event *event, *tmp; 7295 7296 perf_pmu_rotate_stop(ctx->pmu); 7297 7298 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) 7299 __perf_remove_from_context(event); 7300 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) 7301 __perf_remove_from_context(event); 7302 } 7303 7304 static void perf_event_exit_cpu_context(int cpu) 7305 { 7306 struct perf_event_context *ctx; 7307 struct pmu *pmu; 7308 int idx; 7309 7310 idx = srcu_read_lock(&pmus_srcu); 7311 list_for_each_entry_rcu(pmu, &pmus, entry) { 7312 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx; 7313 7314 mutex_lock(&ctx->mutex); 7315 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 7316 mutex_unlock(&ctx->mutex); 7317 } 7318 srcu_read_unlock(&pmus_srcu, idx); 7319 } 7320 7321 static void perf_event_exit_cpu(int cpu) 7322 { 7323 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 7324 7325 mutex_lock(&swhash->hlist_mutex); 7326 swevent_hlist_release(swhash); 7327 mutex_unlock(&swhash->hlist_mutex); 7328 7329 perf_event_exit_cpu_context(cpu); 7330 } 7331 #else 7332 static inline void perf_event_exit_cpu(int cpu) { } 7333 #endif 7334 7335 static int 7336 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 7337 { 7338 int cpu; 7339 7340 for_each_online_cpu(cpu) 7341 perf_event_exit_cpu(cpu); 7342 7343 return NOTIFY_OK; 7344 } 7345 7346 /* 7347 * Run the perf reboot notifier at the very last possible moment so that 7348 * the generic watchdog code runs as long as possible. 7349 */ 7350 static struct notifier_block perf_reboot_notifier = { 7351 .notifier_call = perf_reboot, 7352 .priority = INT_MIN, 7353 }; 7354 7355 static int __cpuinit 7356 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) 7357 { 7358 unsigned int cpu = (long)hcpu; 7359 7360 switch (action & ~CPU_TASKS_FROZEN) { 7361 7362 case CPU_UP_PREPARE: 7363 case CPU_DOWN_FAILED: 7364 perf_event_init_cpu(cpu); 7365 break; 7366 7367 case CPU_UP_CANCELED: 7368 case CPU_DOWN_PREPARE: 7369 perf_event_exit_cpu(cpu); 7370 break; 7371 7372 default: 7373 break; 7374 } 7375 7376 return NOTIFY_OK; 7377 } 7378 7379 void __init perf_event_init(void) 7380 { 7381 int ret; 7382 7383 idr_init(&pmu_idr); 7384 7385 perf_event_init_all_cpus(); 7386 init_srcu_struct(&pmus_srcu); 7387 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 7388 perf_pmu_register(&perf_cpu_clock, NULL, -1); 7389 perf_pmu_register(&perf_task_clock, NULL, -1); 7390 perf_tp_register(); 7391 perf_cpu_notifier(perf_cpu_notify); 7392 register_reboot_notifier(&perf_reboot_notifier); 7393 7394 ret = init_hw_breakpoint(); 7395 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 7396 7397 /* do not patch jump label more than once per second */ 7398 jump_label_rate_limit(&perf_sched_events, HZ); 7399 7400 /* 7401 * Build time assertion that we keep the data_head at the intended 7402 * location. IOW, validation we got the __reserved[] size right. 7403 */ 7404 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 7405 != 1024); 7406 } 7407 7408 static int __init perf_event_sysfs_init(void) 7409 { 7410 struct pmu *pmu; 7411 int ret; 7412 7413 mutex_lock(&pmus_lock); 7414 7415 ret = bus_register(&pmu_bus); 7416 if (ret) 7417 goto unlock; 7418 7419 list_for_each_entry(pmu, &pmus, entry) { 7420 if (!pmu->name || pmu->type < 0) 7421 continue; 7422 7423 ret = pmu_dev_alloc(pmu); 7424 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 7425 } 7426 pmu_bus_running = 1; 7427 ret = 0; 7428 7429 unlock: 7430 mutex_unlock(&pmus_lock); 7431 7432 return ret; 7433 } 7434 device_initcall(perf_event_sysfs_init); 7435 7436 #ifdef CONFIG_CGROUP_PERF 7437 static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont) 7438 { 7439 struct perf_cgroup *jc; 7440 7441 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 7442 if (!jc) 7443 return ERR_PTR(-ENOMEM); 7444 7445 jc->info = alloc_percpu(struct perf_cgroup_info); 7446 if (!jc->info) { 7447 kfree(jc); 7448 return ERR_PTR(-ENOMEM); 7449 } 7450 7451 return &jc->css; 7452 } 7453 7454 static void perf_cgroup_destroy(struct cgroup *cont) 7455 { 7456 struct perf_cgroup *jc; 7457 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id), 7458 struct perf_cgroup, css); 7459 free_percpu(jc->info); 7460 kfree(jc); 7461 } 7462 7463 static int __perf_cgroup_move(void *info) 7464 { 7465 struct task_struct *task = info; 7466 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 7467 return 0; 7468 } 7469 7470 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) 7471 { 7472 struct task_struct *task; 7473 7474 cgroup_taskset_for_each(task, cgrp, tset) 7475 task_function_call(task, __perf_cgroup_move, task); 7476 } 7477 7478 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp, 7479 struct task_struct *task) 7480 { 7481 /* 7482 * cgroup_exit() is called in the copy_process() failure path. 7483 * Ignore this case since the task hasn't ran yet, this avoids 7484 * trying to poke a half freed task state from generic code. 7485 */ 7486 if (!(task->flags & PF_EXITING)) 7487 return; 7488 7489 task_function_call(task, __perf_cgroup_move, task); 7490 } 7491 7492 struct cgroup_subsys perf_subsys = { 7493 .name = "perf_event", 7494 .subsys_id = perf_subsys_id, 7495 .create = perf_cgroup_create, 7496 .destroy = perf_cgroup_destroy, 7497 .exit = perf_cgroup_exit, 7498 .attach = perf_cgroup_attach, 7499 7500 /* 7501 * perf_event cgroup doesn't handle nesting correctly. 7502 * ctx->nr_cgroups adjustments should be propagated through the 7503 * cgroup hierarchy. Fix it and remove the following. 7504 */ 7505 .broken_hierarchy = true, 7506 }; 7507 #endif /* CONFIG_CGROUP_PERF */ 7508