xref: /openbmc/linux/kernel/events/core.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		tfc->ret = -EAGAIN;
70 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 			return;
72 	}
73 
74 	tfc->ret = tfc->func(tfc->info);
75 }
76 
77 /**
78  * task_function_call - call a function on the cpu on which a task runs
79  * @p:		the task to evaluate
80  * @func:	the function to be called
81  * @info:	the function call argument
82  *
83  * Calls the function @func when the task is currently running. This might
84  * be on the current CPU, which just calls the function directly
85  *
86  * returns: @func return value, or
87  *	    -ESRCH  - when the process isn't running
88  *	    -EAGAIN - when the process moved away
89  */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 	struct remote_function_call data = {
94 		.p	= p,
95 		.func	= func,
96 		.info	= info,
97 		.ret	= -ESRCH, /* No such (running) process */
98 	};
99 
100 	if (task_curr(p))
101 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102 
103 	return data.ret;
104 }
105 
106 /**
107  * cpu_function_call - call a function on the cpu
108  * @func:	the function to be called
109  * @info:	the function call argument
110  *
111  * Calls the function @func on the remote cpu.
112  *
113  * returns: @func return value or -ENXIO when the cpu is offline
114  */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 	struct remote_function_call data = {
118 		.p	= NULL,
119 		.func	= func,
120 		.info	= info,
121 		.ret	= -ENXIO, /* No such CPU */
122 	};
123 
124 	smp_call_function_single(cpu, remote_function, &data, 1);
125 
126 	return data.ret;
127 }
128 
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130 
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 	return event->owner == EVENT_OWNER_KERNEL;
134 }
135 
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 		       PERF_FLAG_FD_OUTPUT  |\
138 		       PERF_FLAG_PID_CGROUP |\
139 		       PERF_FLAG_FD_CLOEXEC)
140 
141 /*
142  * branch priv levels that need permission checks
143  */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 	(PERF_SAMPLE_BRANCH_KERNEL |\
146 	 PERF_SAMPLE_BRANCH_HV)
147 
148 enum event_type_t {
149 	EVENT_FLEXIBLE = 0x1,
150 	EVENT_PINNED = 0x2,
151 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153 
154 /*
155  * perf_sched_events : >0 events exist
156  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157  */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161 
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167 
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171 
172 /*
173  * perf event paranoia level:
174  *  -1 - not paranoid at all
175  *   0 - disallow raw tracepoint access for unpriv
176  *   1 - disallow cpu events for unpriv
177  *   2 - disallow kernel profiling for unpriv
178  */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180 
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183 
184 /*
185  * max perf event sample rate
186  */
187 #define DEFAULT_MAX_SAMPLE_RATE		100000
188 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
190 
191 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
192 
193 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
195 
196 static int perf_sample_allowed_ns __read_mostly =
197 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198 
199 static void update_perf_cpu_limits(void)
200 {
201 	u64 tmp = perf_sample_period_ns;
202 
203 	tmp *= sysctl_perf_cpu_time_max_percent;
204 	do_div(tmp, 100);
205 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207 
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209 
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 		void __user *buffer, size_t *lenp,
212 		loff_t *ppos)
213 {
214 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215 
216 	if (ret || !write)
217 		return ret;
218 
219 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 	update_perf_cpu_limits();
222 
223 	return 0;
224 }
225 
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227 
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 				void __user *buffer, size_t *lenp,
230 				loff_t *ppos)
231 {
232 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233 
234 	if (ret || !write)
235 		return ret;
236 
237 	update_perf_cpu_limits();
238 
239 	return 0;
240 }
241 
242 /*
243  * perf samples are done in some very critical code paths (NMIs).
244  * If they take too much CPU time, the system can lock up and not
245  * get any real work done.  This will drop the sample rate when
246  * we detect that events are taking too long.
247  */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250 
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 	u64 avg_local_sample_len;
255 	u64 local_samples_len;
256 
257 	local_samples_len = __this_cpu_read(running_sample_length);
258 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259 
260 	printk_ratelimited(KERN_WARNING
261 			"perf interrupt took too long (%lld > %lld), lowering "
262 			"kernel.perf_event_max_sample_rate to %d\n",
263 			avg_local_sample_len, allowed_ns >> 1,
264 			sysctl_perf_event_sample_rate);
265 }
266 
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268 
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 	u64 avg_local_sample_len;
273 	u64 local_samples_len;
274 
275 	if (allowed_ns == 0)
276 		return;
277 
278 	/* decay the counter by 1 average sample */
279 	local_samples_len = __this_cpu_read(running_sample_length);
280 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 	local_samples_len += sample_len_ns;
282 	__this_cpu_write(running_sample_length, local_samples_len);
283 
284 	/*
285 	 * note: this will be biased artifically low until we have
286 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
287 	 * from having to maintain a count.
288 	 */
289 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290 
291 	if (avg_local_sample_len <= allowed_ns)
292 		return;
293 
294 	if (max_samples_per_tick <= 1)
295 		return;
296 
297 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300 
301 	update_perf_cpu_limits();
302 
303 	if (!irq_work_queue(&perf_duration_work)) {
304 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 			     "kernel.perf_event_max_sample_rate to %d\n",
306 			     avg_local_sample_len, allowed_ns >> 1,
307 			     sysctl_perf_event_sample_rate);
308 	}
309 }
310 
311 static atomic64_t perf_event_id;
312 
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 			      enum event_type_t event_type);
315 
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 			     enum event_type_t event_type,
318 			     struct task_struct *task);
319 
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322 
323 void __weak perf_event_print_debug(void)	{ }
324 
325 extern __weak const char *perf_pmu_name(void)
326 {
327 	return "pmu";
328 }
329 
330 static inline u64 perf_clock(void)
331 {
332 	return local_clock();
333 }
334 
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 	return event->clock();
338 }
339 
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345 
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 			  struct perf_event_context *ctx)
348 {
349 	raw_spin_lock(&cpuctx->ctx.lock);
350 	if (ctx)
351 		raw_spin_lock(&ctx->lock);
352 }
353 
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 			    struct perf_event_context *ctx)
356 {
357 	if (ctx)
358 		raw_spin_unlock(&ctx->lock);
359 	raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361 
362 #ifdef CONFIG_CGROUP_PERF
363 
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 	struct perf_event_context *ctx = event->ctx;
368 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369 
370 	/* @event doesn't care about cgroup */
371 	if (!event->cgrp)
372 		return true;
373 
374 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
375 	if (!cpuctx->cgrp)
376 		return false;
377 
378 	/*
379 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
380 	 * also enabled for all its descendant cgroups.  If @cpuctx's
381 	 * cgroup is a descendant of @event's (the test covers identity
382 	 * case), it's a match.
383 	 */
384 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 				    event->cgrp->css.cgroup);
386 }
387 
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 	css_put(&event->cgrp->css);
391 	event->cgrp = NULL;
392 }
393 
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 	return event->cgrp != NULL;
397 }
398 
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 	struct perf_cgroup_info *t;
402 
403 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 	return t->time;
405 }
406 
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 	struct perf_cgroup_info *info;
410 	u64 now;
411 
412 	now = perf_clock();
413 
414 	info = this_cpu_ptr(cgrp->info);
415 
416 	info->time += now - info->timestamp;
417 	info->timestamp = now;
418 }
419 
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 	if (cgrp_out)
424 		__update_cgrp_time(cgrp_out);
425 }
426 
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 	struct perf_cgroup *cgrp;
430 
431 	/*
432 	 * ensure we access cgroup data only when needed and
433 	 * when we know the cgroup is pinned (css_get)
434 	 */
435 	if (!is_cgroup_event(event))
436 		return;
437 
438 	cgrp = perf_cgroup_from_task(current);
439 	/*
440 	 * Do not update time when cgroup is not active
441 	 */
442 	if (cgrp == event->cgrp)
443 		__update_cgrp_time(event->cgrp);
444 }
445 
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 			  struct perf_event_context *ctx)
449 {
450 	struct perf_cgroup *cgrp;
451 	struct perf_cgroup_info *info;
452 
453 	/*
454 	 * ctx->lock held by caller
455 	 * ensure we do not access cgroup data
456 	 * unless we have the cgroup pinned (css_get)
457 	 */
458 	if (!task || !ctx->nr_cgroups)
459 		return;
460 
461 	cgrp = perf_cgroup_from_task(task);
462 	info = this_cpu_ptr(cgrp->info);
463 	info->timestamp = ctx->timestamp;
464 }
465 
466 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
468 
469 /*
470  * reschedule events based on the cgroup constraint of task.
471  *
472  * mode SWOUT : schedule out everything
473  * mode SWIN : schedule in based on cgroup for next
474  */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 	struct perf_cpu_context *cpuctx;
478 	struct pmu *pmu;
479 	unsigned long flags;
480 
481 	/*
482 	 * disable interrupts to avoid geting nr_cgroup
483 	 * changes via __perf_event_disable(). Also
484 	 * avoids preemption.
485 	 */
486 	local_irq_save(flags);
487 
488 	/*
489 	 * we reschedule only in the presence of cgroup
490 	 * constrained events.
491 	 */
492 	rcu_read_lock();
493 
494 	list_for_each_entry_rcu(pmu, &pmus, entry) {
495 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
496 		if (cpuctx->unique_pmu != pmu)
497 			continue; /* ensure we process each cpuctx once */
498 
499 		/*
500 		 * perf_cgroup_events says at least one
501 		 * context on this CPU has cgroup events.
502 		 *
503 		 * ctx->nr_cgroups reports the number of cgroup
504 		 * events for a context.
505 		 */
506 		if (cpuctx->ctx.nr_cgroups > 0) {
507 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
508 			perf_pmu_disable(cpuctx->ctx.pmu);
509 
510 			if (mode & PERF_CGROUP_SWOUT) {
511 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
512 				/*
513 				 * must not be done before ctxswout due
514 				 * to event_filter_match() in event_sched_out()
515 				 */
516 				cpuctx->cgrp = NULL;
517 			}
518 
519 			if (mode & PERF_CGROUP_SWIN) {
520 				WARN_ON_ONCE(cpuctx->cgrp);
521 				/*
522 				 * set cgrp before ctxsw in to allow
523 				 * event_filter_match() to not have to pass
524 				 * task around
525 				 */
526 				cpuctx->cgrp = perf_cgroup_from_task(task);
527 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
528 			}
529 			perf_pmu_enable(cpuctx->ctx.pmu);
530 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
531 		}
532 	}
533 
534 	rcu_read_unlock();
535 
536 	local_irq_restore(flags);
537 }
538 
539 static inline void perf_cgroup_sched_out(struct task_struct *task,
540 					 struct task_struct *next)
541 {
542 	struct perf_cgroup *cgrp1;
543 	struct perf_cgroup *cgrp2 = NULL;
544 
545 	/*
546 	 * we come here when we know perf_cgroup_events > 0
547 	 */
548 	cgrp1 = perf_cgroup_from_task(task);
549 
550 	/*
551 	 * next is NULL when called from perf_event_enable_on_exec()
552 	 * that will systematically cause a cgroup_switch()
553 	 */
554 	if (next)
555 		cgrp2 = perf_cgroup_from_task(next);
556 
557 	/*
558 	 * only schedule out current cgroup events if we know
559 	 * that we are switching to a different cgroup. Otherwise,
560 	 * do no touch the cgroup events.
561 	 */
562 	if (cgrp1 != cgrp2)
563 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
564 }
565 
566 static inline void perf_cgroup_sched_in(struct task_struct *prev,
567 					struct task_struct *task)
568 {
569 	struct perf_cgroup *cgrp1;
570 	struct perf_cgroup *cgrp2 = NULL;
571 
572 	/*
573 	 * we come here when we know perf_cgroup_events > 0
574 	 */
575 	cgrp1 = perf_cgroup_from_task(task);
576 
577 	/* prev can never be NULL */
578 	cgrp2 = perf_cgroup_from_task(prev);
579 
580 	/*
581 	 * only need to schedule in cgroup events if we are changing
582 	 * cgroup during ctxsw. Cgroup events were not scheduled
583 	 * out of ctxsw out if that was not the case.
584 	 */
585 	if (cgrp1 != cgrp2)
586 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
587 }
588 
589 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
590 				      struct perf_event_attr *attr,
591 				      struct perf_event *group_leader)
592 {
593 	struct perf_cgroup *cgrp;
594 	struct cgroup_subsys_state *css;
595 	struct fd f = fdget(fd);
596 	int ret = 0;
597 
598 	if (!f.file)
599 		return -EBADF;
600 
601 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
602 					 &perf_event_cgrp_subsys);
603 	if (IS_ERR(css)) {
604 		ret = PTR_ERR(css);
605 		goto out;
606 	}
607 
608 	cgrp = container_of(css, struct perf_cgroup, css);
609 	event->cgrp = cgrp;
610 
611 	/*
612 	 * all events in a group must monitor
613 	 * the same cgroup because a task belongs
614 	 * to only one perf cgroup at a time
615 	 */
616 	if (group_leader && group_leader->cgrp != cgrp) {
617 		perf_detach_cgroup(event);
618 		ret = -EINVAL;
619 	}
620 out:
621 	fdput(f);
622 	return ret;
623 }
624 
625 static inline void
626 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
627 {
628 	struct perf_cgroup_info *t;
629 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
630 	event->shadow_ctx_time = now - t->timestamp;
631 }
632 
633 static inline void
634 perf_cgroup_defer_enabled(struct perf_event *event)
635 {
636 	/*
637 	 * when the current task's perf cgroup does not match
638 	 * the event's, we need to remember to call the
639 	 * perf_mark_enable() function the first time a task with
640 	 * a matching perf cgroup is scheduled in.
641 	 */
642 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
643 		event->cgrp_defer_enabled = 1;
644 }
645 
646 static inline void
647 perf_cgroup_mark_enabled(struct perf_event *event,
648 			 struct perf_event_context *ctx)
649 {
650 	struct perf_event *sub;
651 	u64 tstamp = perf_event_time(event);
652 
653 	if (!event->cgrp_defer_enabled)
654 		return;
655 
656 	event->cgrp_defer_enabled = 0;
657 
658 	event->tstamp_enabled = tstamp - event->total_time_enabled;
659 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
660 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
661 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
662 			sub->cgrp_defer_enabled = 0;
663 		}
664 	}
665 }
666 #else /* !CONFIG_CGROUP_PERF */
667 
668 static inline bool
669 perf_cgroup_match(struct perf_event *event)
670 {
671 	return true;
672 }
673 
674 static inline void perf_detach_cgroup(struct perf_event *event)
675 {}
676 
677 static inline int is_cgroup_event(struct perf_event *event)
678 {
679 	return 0;
680 }
681 
682 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
683 {
684 	return 0;
685 }
686 
687 static inline void update_cgrp_time_from_event(struct perf_event *event)
688 {
689 }
690 
691 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
692 {
693 }
694 
695 static inline void perf_cgroup_sched_out(struct task_struct *task,
696 					 struct task_struct *next)
697 {
698 }
699 
700 static inline void perf_cgroup_sched_in(struct task_struct *prev,
701 					struct task_struct *task)
702 {
703 }
704 
705 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
706 				      struct perf_event_attr *attr,
707 				      struct perf_event *group_leader)
708 {
709 	return -EINVAL;
710 }
711 
712 static inline void
713 perf_cgroup_set_timestamp(struct task_struct *task,
714 			  struct perf_event_context *ctx)
715 {
716 }
717 
718 void
719 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
720 {
721 }
722 
723 static inline void
724 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
725 {
726 }
727 
728 static inline u64 perf_cgroup_event_time(struct perf_event *event)
729 {
730 	return 0;
731 }
732 
733 static inline void
734 perf_cgroup_defer_enabled(struct perf_event *event)
735 {
736 }
737 
738 static inline void
739 perf_cgroup_mark_enabled(struct perf_event *event,
740 			 struct perf_event_context *ctx)
741 {
742 }
743 #endif
744 
745 /*
746  * set default to be dependent on timer tick just
747  * like original code
748  */
749 #define PERF_CPU_HRTIMER (1000 / HZ)
750 /*
751  * function must be called with interrupts disbled
752  */
753 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
754 {
755 	struct perf_cpu_context *cpuctx;
756 	int rotations = 0;
757 
758 	WARN_ON(!irqs_disabled());
759 
760 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
761 	rotations = perf_rotate_context(cpuctx);
762 
763 	raw_spin_lock(&cpuctx->hrtimer_lock);
764 	if (rotations)
765 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
766 	else
767 		cpuctx->hrtimer_active = 0;
768 	raw_spin_unlock(&cpuctx->hrtimer_lock);
769 
770 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
771 }
772 
773 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
774 {
775 	struct hrtimer *timer = &cpuctx->hrtimer;
776 	struct pmu *pmu = cpuctx->ctx.pmu;
777 	u64 interval;
778 
779 	/* no multiplexing needed for SW PMU */
780 	if (pmu->task_ctx_nr == perf_sw_context)
781 		return;
782 
783 	/*
784 	 * check default is sane, if not set then force to
785 	 * default interval (1/tick)
786 	 */
787 	interval = pmu->hrtimer_interval_ms;
788 	if (interval < 1)
789 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
790 
791 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
792 
793 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
794 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
795 	timer->function = perf_mux_hrtimer_handler;
796 }
797 
798 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
799 {
800 	struct hrtimer *timer = &cpuctx->hrtimer;
801 	struct pmu *pmu = cpuctx->ctx.pmu;
802 	unsigned long flags;
803 
804 	/* not for SW PMU */
805 	if (pmu->task_ctx_nr == perf_sw_context)
806 		return 0;
807 
808 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
809 	if (!cpuctx->hrtimer_active) {
810 		cpuctx->hrtimer_active = 1;
811 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
812 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
813 	}
814 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
815 
816 	return 0;
817 }
818 
819 void perf_pmu_disable(struct pmu *pmu)
820 {
821 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
822 	if (!(*count)++)
823 		pmu->pmu_disable(pmu);
824 }
825 
826 void perf_pmu_enable(struct pmu *pmu)
827 {
828 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
829 	if (!--(*count))
830 		pmu->pmu_enable(pmu);
831 }
832 
833 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
834 
835 /*
836  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
837  * perf_event_task_tick() are fully serialized because they're strictly cpu
838  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
839  * disabled, while perf_event_task_tick is called from IRQ context.
840  */
841 static void perf_event_ctx_activate(struct perf_event_context *ctx)
842 {
843 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
844 
845 	WARN_ON(!irqs_disabled());
846 
847 	WARN_ON(!list_empty(&ctx->active_ctx_list));
848 
849 	list_add(&ctx->active_ctx_list, head);
850 }
851 
852 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
853 {
854 	WARN_ON(!irqs_disabled());
855 
856 	WARN_ON(list_empty(&ctx->active_ctx_list));
857 
858 	list_del_init(&ctx->active_ctx_list);
859 }
860 
861 static void get_ctx(struct perf_event_context *ctx)
862 {
863 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
864 }
865 
866 static void free_ctx(struct rcu_head *head)
867 {
868 	struct perf_event_context *ctx;
869 
870 	ctx = container_of(head, struct perf_event_context, rcu_head);
871 	kfree(ctx->task_ctx_data);
872 	kfree(ctx);
873 }
874 
875 static void put_ctx(struct perf_event_context *ctx)
876 {
877 	if (atomic_dec_and_test(&ctx->refcount)) {
878 		if (ctx->parent_ctx)
879 			put_ctx(ctx->parent_ctx);
880 		if (ctx->task)
881 			put_task_struct(ctx->task);
882 		call_rcu(&ctx->rcu_head, free_ctx);
883 	}
884 }
885 
886 /*
887  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
888  * perf_pmu_migrate_context() we need some magic.
889  *
890  * Those places that change perf_event::ctx will hold both
891  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
892  *
893  * Lock ordering is by mutex address. There are two other sites where
894  * perf_event_context::mutex nests and those are:
895  *
896  *  - perf_event_exit_task_context()	[ child , 0 ]
897  *      __perf_event_exit_task()
898  *        sync_child_event()
899  *          put_event()			[ parent, 1 ]
900  *
901  *  - perf_event_init_context()		[ parent, 0 ]
902  *      inherit_task_group()
903  *        inherit_group()
904  *          inherit_event()
905  *            perf_event_alloc()
906  *              perf_init_event()
907  *                perf_try_init_event()	[ child , 1 ]
908  *
909  * While it appears there is an obvious deadlock here -- the parent and child
910  * nesting levels are inverted between the two. This is in fact safe because
911  * life-time rules separate them. That is an exiting task cannot fork, and a
912  * spawning task cannot (yet) exit.
913  *
914  * But remember that that these are parent<->child context relations, and
915  * migration does not affect children, therefore these two orderings should not
916  * interact.
917  *
918  * The change in perf_event::ctx does not affect children (as claimed above)
919  * because the sys_perf_event_open() case will install a new event and break
920  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
921  * concerned with cpuctx and that doesn't have children.
922  *
923  * The places that change perf_event::ctx will issue:
924  *
925  *   perf_remove_from_context();
926  *   synchronize_rcu();
927  *   perf_install_in_context();
928  *
929  * to affect the change. The remove_from_context() + synchronize_rcu() should
930  * quiesce the event, after which we can install it in the new location. This
931  * means that only external vectors (perf_fops, prctl) can perturb the event
932  * while in transit. Therefore all such accessors should also acquire
933  * perf_event_context::mutex to serialize against this.
934  *
935  * However; because event->ctx can change while we're waiting to acquire
936  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
937  * function.
938  *
939  * Lock order:
940  *	task_struct::perf_event_mutex
941  *	  perf_event_context::mutex
942  *	    perf_event_context::lock
943  *	    perf_event::child_mutex;
944  *	    perf_event::mmap_mutex
945  *	    mmap_sem
946  */
947 static struct perf_event_context *
948 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
949 {
950 	struct perf_event_context *ctx;
951 
952 again:
953 	rcu_read_lock();
954 	ctx = ACCESS_ONCE(event->ctx);
955 	if (!atomic_inc_not_zero(&ctx->refcount)) {
956 		rcu_read_unlock();
957 		goto again;
958 	}
959 	rcu_read_unlock();
960 
961 	mutex_lock_nested(&ctx->mutex, nesting);
962 	if (event->ctx != ctx) {
963 		mutex_unlock(&ctx->mutex);
964 		put_ctx(ctx);
965 		goto again;
966 	}
967 
968 	return ctx;
969 }
970 
971 static inline struct perf_event_context *
972 perf_event_ctx_lock(struct perf_event *event)
973 {
974 	return perf_event_ctx_lock_nested(event, 0);
975 }
976 
977 static void perf_event_ctx_unlock(struct perf_event *event,
978 				  struct perf_event_context *ctx)
979 {
980 	mutex_unlock(&ctx->mutex);
981 	put_ctx(ctx);
982 }
983 
984 /*
985  * This must be done under the ctx->lock, such as to serialize against
986  * context_equiv(), therefore we cannot call put_ctx() since that might end up
987  * calling scheduler related locks and ctx->lock nests inside those.
988  */
989 static __must_check struct perf_event_context *
990 unclone_ctx(struct perf_event_context *ctx)
991 {
992 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
993 
994 	lockdep_assert_held(&ctx->lock);
995 
996 	if (parent_ctx)
997 		ctx->parent_ctx = NULL;
998 	ctx->generation++;
999 
1000 	return parent_ctx;
1001 }
1002 
1003 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1004 {
1005 	/*
1006 	 * only top level events have the pid namespace they were created in
1007 	 */
1008 	if (event->parent)
1009 		event = event->parent;
1010 
1011 	return task_tgid_nr_ns(p, event->ns);
1012 }
1013 
1014 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1015 {
1016 	/*
1017 	 * only top level events have the pid namespace they were created in
1018 	 */
1019 	if (event->parent)
1020 		event = event->parent;
1021 
1022 	return task_pid_nr_ns(p, event->ns);
1023 }
1024 
1025 /*
1026  * If we inherit events we want to return the parent event id
1027  * to userspace.
1028  */
1029 static u64 primary_event_id(struct perf_event *event)
1030 {
1031 	u64 id = event->id;
1032 
1033 	if (event->parent)
1034 		id = event->parent->id;
1035 
1036 	return id;
1037 }
1038 
1039 /*
1040  * Get the perf_event_context for a task and lock it.
1041  * This has to cope with with the fact that until it is locked,
1042  * the context could get moved to another task.
1043  */
1044 static struct perf_event_context *
1045 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1046 {
1047 	struct perf_event_context *ctx;
1048 
1049 retry:
1050 	/*
1051 	 * One of the few rules of preemptible RCU is that one cannot do
1052 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1053 	 * part of the read side critical section was irqs-enabled -- see
1054 	 * rcu_read_unlock_special().
1055 	 *
1056 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1057 	 * side critical section has interrupts disabled.
1058 	 */
1059 	local_irq_save(*flags);
1060 	rcu_read_lock();
1061 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1062 	if (ctx) {
1063 		/*
1064 		 * If this context is a clone of another, it might
1065 		 * get swapped for another underneath us by
1066 		 * perf_event_task_sched_out, though the
1067 		 * rcu_read_lock() protects us from any context
1068 		 * getting freed.  Lock the context and check if it
1069 		 * got swapped before we could get the lock, and retry
1070 		 * if so.  If we locked the right context, then it
1071 		 * can't get swapped on us any more.
1072 		 */
1073 		raw_spin_lock(&ctx->lock);
1074 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1075 			raw_spin_unlock(&ctx->lock);
1076 			rcu_read_unlock();
1077 			local_irq_restore(*flags);
1078 			goto retry;
1079 		}
1080 
1081 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1082 			raw_spin_unlock(&ctx->lock);
1083 			ctx = NULL;
1084 		}
1085 	}
1086 	rcu_read_unlock();
1087 	if (!ctx)
1088 		local_irq_restore(*flags);
1089 	return ctx;
1090 }
1091 
1092 /*
1093  * Get the context for a task and increment its pin_count so it
1094  * can't get swapped to another task.  This also increments its
1095  * reference count so that the context can't get freed.
1096  */
1097 static struct perf_event_context *
1098 perf_pin_task_context(struct task_struct *task, int ctxn)
1099 {
1100 	struct perf_event_context *ctx;
1101 	unsigned long flags;
1102 
1103 	ctx = perf_lock_task_context(task, ctxn, &flags);
1104 	if (ctx) {
1105 		++ctx->pin_count;
1106 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1107 	}
1108 	return ctx;
1109 }
1110 
1111 static void perf_unpin_context(struct perf_event_context *ctx)
1112 {
1113 	unsigned long flags;
1114 
1115 	raw_spin_lock_irqsave(&ctx->lock, flags);
1116 	--ctx->pin_count;
1117 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1118 }
1119 
1120 /*
1121  * Update the record of the current time in a context.
1122  */
1123 static void update_context_time(struct perf_event_context *ctx)
1124 {
1125 	u64 now = perf_clock();
1126 
1127 	ctx->time += now - ctx->timestamp;
1128 	ctx->timestamp = now;
1129 }
1130 
1131 static u64 perf_event_time(struct perf_event *event)
1132 {
1133 	struct perf_event_context *ctx = event->ctx;
1134 
1135 	if (is_cgroup_event(event))
1136 		return perf_cgroup_event_time(event);
1137 
1138 	return ctx ? ctx->time : 0;
1139 }
1140 
1141 /*
1142  * Update the total_time_enabled and total_time_running fields for a event.
1143  * The caller of this function needs to hold the ctx->lock.
1144  */
1145 static void update_event_times(struct perf_event *event)
1146 {
1147 	struct perf_event_context *ctx = event->ctx;
1148 	u64 run_end;
1149 
1150 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1151 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1152 		return;
1153 	/*
1154 	 * in cgroup mode, time_enabled represents
1155 	 * the time the event was enabled AND active
1156 	 * tasks were in the monitored cgroup. This is
1157 	 * independent of the activity of the context as
1158 	 * there may be a mix of cgroup and non-cgroup events.
1159 	 *
1160 	 * That is why we treat cgroup events differently
1161 	 * here.
1162 	 */
1163 	if (is_cgroup_event(event))
1164 		run_end = perf_cgroup_event_time(event);
1165 	else if (ctx->is_active)
1166 		run_end = ctx->time;
1167 	else
1168 		run_end = event->tstamp_stopped;
1169 
1170 	event->total_time_enabled = run_end - event->tstamp_enabled;
1171 
1172 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1173 		run_end = event->tstamp_stopped;
1174 	else
1175 		run_end = perf_event_time(event);
1176 
1177 	event->total_time_running = run_end - event->tstamp_running;
1178 
1179 }
1180 
1181 /*
1182  * Update total_time_enabled and total_time_running for all events in a group.
1183  */
1184 static void update_group_times(struct perf_event *leader)
1185 {
1186 	struct perf_event *event;
1187 
1188 	update_event_times(leader);
1189 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1190 		update_event_times(event);
1191 }
1192 
1193 static struct list_head *
1194 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1195 {
1196 	if (event->attr.pinned)
1197 		return &ctx->pinned_groups;
1198 	else
1199 		return &ctx->flexible_groups;
1200 }
1201 
1202 /*
1203  * Add a event from the lists for its context.
1204  * Must be called with ctx->mutex and ctx->lock held.
1205  */
1206 static void
1207 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1208 {
1209 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1210 	event->attach_state |= PERF_ATTACH_CONTEXT;
1211 
1212 	/*
1213 	 * If we're a stand alone event or group leader, we go to the context
1214 	 * list, group events are kept attached to the group so that
1215 	 * perf_group_detach can, at all times, locate all siblings.
1216 	 */
1217 	if (event->group_leader == event) {
1218 		struct list_head *list;
1219 
1220 		if (is_software_event(event))
1221 			event->group_flags |= PERF_GROUP_SOFTWARE;
1222 
1223 		list = ctx_group_list(event, ctx);
1224 		list_add_tail(&event->group_entry, list);
1225 	}
1226 
1227 	if (is_cgroup_event(event))
1228 		ctx->nr_cgroups++;
1229 
1230 	list_add_rcu(&event->event_entry, &ctx->event_list);
1231 	ctx->nr_events++;
1232 	if (event->attr.inherit_stat)
1233 		ctx->nr_stat++;
1234 
1235 	ctx->generation++;
1236 }
1237 
1238 /*
1239  * Initialize event state based on the perf_event_attr::disabled.
1240  */
1241 static inline void perf_event__state_init(struct perf_event *event)
1242 {
1243 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1244 					      PERF_EVENT_STATE_INACTIVE;
1245 }
1246 
1247 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1248 {
1249 	int entry = sizeof(u64); /* value */
1250 	int size = 0;
1251 	int nr = 1;
1252 
1253 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1254 		size += sizeof(u64);
1255 
1256 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1257 		size += sizeof(u64);
1258 
1259 	if (event->attr.read_format & PERF_FORMAT_ID)
1260 		entry += sizeof(u64);
1261 
1262 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1263 		nr += nr_siblings;
1264 		size += sizeof(u64);
1265 	}
1266 
1267 	size += entry * nr;
1268 	event->read_size = size;
1269 }
1270 
1271 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1272 {
1273 	struct perf_sample_data *data;
1274 	u16 size = 0;
1275 
1276 	if (sample_type & PERF_SAMPLE_IP)
1277 		size += sizeof(data->ip);
1278 
1279 	if (sample_type & PERF_SAMPLE_ADDR)
1280 		size += sizeof(data->addr);
1281 
1282 	if (sample_type & PERF_SAMPLE_PERIOD)
1283 		size += sizeof(data->period);
1284 
1285 	if (sample_type & PERF_SAMPLE_WEIGHT)
1286 		size += sizeof(data->weight);
1287 
1288 	if (sample_type & PERF_SAMPLE_READ)
1289 		size += event->read_size;
1290 
1291 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1292 		size += sizeof(data->data_src.val);
1293 
1294 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1295 		size += sizeof(data->txn);
1296 
1297 	event->header_size = size;
1298 }
1299 
1300 /*
1301  * Called at perf_event creation and when events are attached/detached from a
1302  * group.
1303  */
1304 static void perf_event__header_size(struct perf_event *event)
1305 {
1306 	__perf_event_read_size(event,
1307 			       event->group_leader->nr_siblings);
1308 	__perf_event_header_size(event, event->attr.sample_type);
1309 }
1310 
1311 static void perf_event__id_header_size(struct perf_event *event)
1312 {
1313 	struct perf_sample_data *data;
1314 	u64 sample_type = event->attr.sample_type;
1315 	u16 size = 0;
1316 
1317 	if (sample_type & PERF_SAMPLE_TID)
1318 		size += sizeof(data->tid_entry);
1319 
1320 	if (sample_type & PERF_SAMPLE_TIME)
1321 		size += sizeof(data->time);
1322 
1323 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1324 		size += sizeof(data->id);
1325 
1326 	if (sample_type & PERF_SAMPLE_ID)
1327 		size += sizeof(data->id);
1328 
1329 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1330 		size += sizeof(data->stream_id);
1331 
1332 	if (sample_type & PERF_SAMPLE_CPU)
1333 		size += sizeof(data->cpu_entry);
1334 
1335 	event->id_header_size = size;
1336 }
1337 
1338 static bool perf_event_validate_size(struct perf_event *event)
1339 {
1340 	/*
1341 	 * The values computed here will be over-written when we actually
1342 	 * attach the event.
1343 	 */
1344 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1345 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1346 	perf_event__id_header_size(event);
1347 
1348 	/*
1349 	 * Sum the lot; should not exceed the 64k limit we have on records.
1350 	 * Conservative limit to allow for callchains and other variable fields.
1351 	 */
1352 	if (event->read_size + event->header_size +
1353 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1354 		return false;
1355 
1356 	return true;
1357 }
1358 
1359 static void perf_group_attach(struct perf_event *event)
1360 {
1361 	struct perf_event *group_leader = event->group_leader, *pos;
1362 
1363 	/*
1364 	 * We can have double attach due to group movement in perf_event_open.
1365 	 */
1366 	if (event->attach_state & PERF_ATTACH_GROUP)
1367 		return;
1368 
1369 	event->attach_state |= PERF_ATTACH_GROUP;
1370 
1371 	if (group_leader == event)
1372 		return;
1373 
1374 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1375 
1376 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1377 			!is_software_event(event))
1378 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1379 
1380 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1381 	group_leader->nr_siblings++;
1382 
1383 	perf_event__header_size(group_leader);
1384 
1385 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1386 		perf_event__header_size(pos);
1387 }
1388 
1389 /*
1390  * Remove a event from the lists for its context.
1391  * Must be called with ctx->mutex and ctx->lock held.
1392  */
1393 static void
1394 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1395 {
1396 	struct perf_cpu_context *cpuctx;
1397 
1398 	WARN_ON_ONCE(event->ctx != ctx);
1399 	lockdep_assert_held(&ctx->lock);
1400 
1401 	/*
1402 	 * We can have double detach due to exit/hot-unplug + close.
1403 	 */
1404 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1405 		return;
1406 
1407 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1408 
1409 	if (is_cgroup_event(event)) {
1410 		ctx->nr_cgroups--;
1411 		cpuctx = __get_cpu_context(ctx);
1412 		/*
1413 		 * if there are no more cgroup events
1414 		 * then cler cgrp to avoid stale pointer
1415 		 * in update_cgrp_time_from_cpuctx()
1416 		 */
1417 		if (!ctx->nr_cgroups)
1418 			cpuctx->cgrp = NULL;
1419 	}
1420 
1421 	ctx->nr_events--;
1422 	if (event->attr.inherit_stat)
1423 		ctx->nr_stat--;
1424 
1425 	list_del_rcu(&event->event_entry);
1426 
1427 	if (event->group_leader == event)
1428 		list_del_init(&event->group_entry);
1429 
1430 	update_group_times(event);
1431 
1432 	/*
1433 	 * If event was in error state, then keep it
1434 	 * that way, otherwise bogus counts will be
1435 	 * returned on read(). The only way to get out
1436 	 * of error state is by explicit re-enabling
1437 	 * of the event
1438 	 */
1439 	if (event->state > PERF_EVENT_STATE_OFF)
1440 		event->state = PERF_EVENT_STATE_OFF;
1441 
1442 	ctx->generation++;
1443 }
1444 
1445 static void perf_group_detach(struct perf_event *event)
1446 {
1447 	struct perf_event *sibling, *tmp;
1448 	struct list_head *list = NULL;
1449 
1450 	/*
1451 	 * We can have double detach due to exit/hot-unplug + close.
1452 	 */
1453 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1454 		return;
1455 
1456 	event->attach_state &= ~PERF_ATTACH_GROUP;
1457 
1458 	/*
1459 	 * If this is a sibling, remove it from its group.
1460 	 */
1461 	if (event->group_leader != event) {
1462 		list_del_init(&event->group_entry);
1463 		event->group_leader->nr_siblings--;
1464 		goto out;
1465 	}
1466 
1467 	if (!list_empty(&event->group_entry))
1468 		list = &event->group_entry;
1469 
1470 	/*
1471 	 * If this was a group event with sibling events then
1472 	 * upgrade the siblings to singleton events by adding them
1473 	 * to whatever list we are on.
1474 	 */
1475 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1476 		if (list)
1477 			list_move_tail(&sibling->group_entry, list);
1478 		sibling->group_leader = sibling;
1479 
1480 		/* Inherit group flags from the previous leader */
1481 		sibling->group_flags = event->group_flags;
1482 
1483 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1484 	}
1485 
1486 out:
1487 	perf_event__header_size(event->group_leader);
1488 
1489 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1490 		perf_event__header_size(tmp);
1491 }
1492 
1493 /*
1494  * User event without the task.
1495  */
1496 static bool is_orphaned_event(struct perf_event *event)
1497 {
1498 	return event && !is_kernel_event(event) && !event->owner;
1499 }
1500 
1501 /*
1502  * Event has a parent but parent's task finished and it's
1503  * alive only because of children holding refference.
1504  */
1505 static bool is_orphaned_child(struct perf_event *event)
1506 {
1507 	return is_orphaned_event(event->parent);
1508 }
1509 
1510 static void orphans_remove_work(struct work_struct *work);
1511 
1512 static void schedule_orphans_remove(struct perf_event_context *ctx)
1513 {
1514 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1515 		return;
1516 
1517 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1518 		get_ctx(ctx);
1519 		ctx->orphans_remove_sched = true;
1520 	}
1521 }
1522 
1523 static int __init perf_workqueue_init(void)
1524 {
1525 	perf_wq = create_singlethread_workqueue("perf");
1526 	WARN(!perf_wq, "failed to create perf workqueue\n");
1527 	return perf_wq ? 0 : -1;
1528 }
1529 
1530 core_initcall(perf_workqueue_init);
1531 
1532 static inline int pmu_filter_match(struct perf_event *event)
1533 {
1534 	struct pmu *pmu = event->pmu;
1535 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1536 }
1537 
1538 static inline int
1539 event_filter_match(struct perf_event *event)
1540 {
1541 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1542 	    && perf_cgroup_match(event) && pmu_filter_match(event);
1543 }
1544 
1545 static void
1546 event_sched_out(struct perf_event *event,
1547 		  struct perf_cpu_context *cpuctx,
1548 		  struct perf_event_context *ctx)
1549 {
1550 	u64 tstamp = perf_event_time(event);
1551 	u64 delta;
1552 
1553 	WARN_ON_ONCE(event->ctx != ctx);
1554 	lockdep_assert_held(&ctx->lock);
1555 
1556 	/*
1557 	 * An event which could not be activated because of
1558 	 * filter mismatch still needs to have its timings
1559 	 * maintained, otherwise bogus information is return
1560 	 * via read() for time_enabled, time_running:
1561 	 */
1562 	if (event->state == PERF_EVENT_STATE_INACTIVE
1563 	    && !event_filter_match(event)) {
1564 		delta = tstamp - event->tstamp_stopped;
1565 		event->tstamp_running += delta;
1566 		event->tstamp_stopped = tstamp;
1567 	}
1568 
1569 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1570 		return;
1571 
1572 	perf_pmu_disable(event->pmu);
1573 
1574 	event->state = PERF_EVENT_STATE_INACTIVE;
1575 	if (event->pending_disable) {
1576 		event->pending_disable = 0;
1577 		event->state = PERF_EVENT_STATE_OFF;
1578 	}
1579 	event->tstamp_stopped = tstamp;
1580 	event->pmu->del(event, 0);
1581 	event->oncpu = -1;
1582 
1583 	if (!is_software_event(event))
1584 		cpuctx->active_oncpu--;
1585 	if (!--ctx->nr_active)
1586 		perf_event_ctx_deactivate(ctx);
1587 	if (event->attr.freq && event->attr.sample_freq)
1588 		ctx->nr_freq--;
1589 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1590 		cpuctx->exclusive = 0;
1591 
1592 	if (is_orphaned_child(event))
1593 		schedule_orphans_remove(ctx);
1594 
1595 	perf_pmu_enable(event->pmu);
1596 }
1597 
1598 static void
1599 group_sched_out(struct perf_event *group_event,
1600 		struct perf_cpu_context *cpuctx,
1601 		struct perf_event_context *ctx)
1602 {
1603 	struct perf_event *event;
1604 	int state = group_event->state;
1605 
1606 	event_sched_out(group_event, cpuctx, ctx);
1607 
1608 	/*
1609 	 * Schedule out siblings (if any):
1610 	 */
1611 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1612 		event_sched_out(event, cpuctx, ctx);
1613 
1614 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1615 		cpuctx->exclusive = 0;
1616 }
1617 
1618 struct remove_event {
1619 	struct perf_event *event;
1620 	bool detach_group;
1621 };
1622 
1623 /*
1624  * Cross CPU call to remove a performance event
1625  *
1626  * We disable the event on the hardware level first. After that we
1627  * remove it from the context list.
1628  */
1629 static int __perf_remove_from_context(void *info)
1630 {
1631 	struct remove_event *re = info;
1632 	struct perf_event *event = re->event;
1633 	struct perf_event_context *ctx = event->ctx;
1634 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1635 
1636 	raw_spin_lock(&ctx->lock);
1637 	event_sched_out(event, cpuctx, ctx);
1638 	if (re->detach_group)
1639 		perf_group_detach(event);
1640 	list_del_event(event, ctx);
1641 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1642 		ctx->is_active = 0;
1643 		cpuctx->task_ctx = NULL;
1644 	}
1645 	raw_spin_unlock(&ctx->lock);
1646 
1647 	return 0;
1648 }
1649 
1650 
1651 /*
1652  * Remove the event from a task's (or a CPU's) list of events.
1653  *
1654  * CPU events are removed with a smp call. For task events we only
1655  * call when the task is on a CPU.
1656  *
1657  * If event->ctx is a cloned context, callers must make sure that
1658  * every task struct that event->ctx->task could possibly point to
1659  * remains valid.  This is OK when called from perf_release since
1660  * that only calls us on the top-level context, which can't be a clone.
1661  * When called from perf_event_exit_task, it's OK because the
1662  * context has been detached from its task.
1663  */
1664 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1665 {
1666 	struct perf_event_context *ctx = event->ctx;
1667 	struct task_struct *task = ctx->task;
1668 	struct remove_event re = {
1669 		.event = event,
1670 		.detach_group = detach_group,
1671 	};
1672 
1673 	lockdep_assert_held(&ctx->mutex);
1674 
1675 	if (!task) {
1676 		/*
1677 		 * Per cpu events are removed via an smp call. The removal can
1678 		 * fail if the CPU is currently offline, but in that case we
1679 		 * already called __perf_remove_from_context from
1680 		 * perf_event_exit_cpu.
1681 		 */
1682 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1683 		return;
1684 	}
1685 
1686 retry:
1687 	if (!task_function_call(task, __perf_remove_from_context, &re))
1688 		return;
1689 
1690 	raw_spin_lock_irq(&ctx->lock);
1691 	/*
1692 	 * If we failed to find a running task, but find the context active now
1693 	 * that we've acquired the ctx->lock, retry.
1694 	 */
1695 	if (ctx->is_active) {
1696 		raw_spin_unlock_irq(&ctx->lock);
1697 		/*
1698 		 * Reload the task pointer, it might have been changed by
1699 		 * a concurrent perf_event_context_sched_out().
1700 		 */
1701 		task = ctx->task;
1702 		goto retry;
1703 	}
1704 
1705 	/*
1706 	 * Since the task isn't running, its safe to remove the event, us
1707 	 * holding the ctx->lock ensures the task won't get scheduled in.
1708 	 */
1709 	if (detach_group)
1710 		perf_group_detach(event);
1711 	list_del_event(event, ctx);
1712 	raw_spin_unlock_irq(&ctx->lock);
1713 }
1714 
1715 /*
1716  * Cross CPU call to disable a performance event
1717  */
1718 int __perf_event_disable(void *info)
1719 {
1720 	struct perf_event *event = info;
1721 	struct perf_event_context *ctx = event->ctx;
1722 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1723 
1724 	/*
1725 	 * If this is a per-task event, need to check whether this
1726 	 * event's task is the current task on this cpu.
1727 	 *
1728 	 * Can trigger due to concurrent perf_event_context_sched_out()
1729 	 * flipping contexts around.
1730 	 */
1731 	if (ctx->task && cpuctx->task_ctx != ctx)
1732 		return -EINVAL;
1733 
1734 	raw_spin_lock(&ctx->lock);
1735 
1736 	/*
1737 	 * If the event is on, turn it off.
1738 	 * If it is in error state, leave it in error state.
1739 	 */
1740 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1741 		update_context_time(ctx);
1742 		update_cgrp_time_from_event(event);
1743 		update_group_times(event);
1744 		if (event == event->group_leader)
1745 			group_sched_out(event, cpuctx, ctx);
1746 		else
1747 			event_sched_out(event, cpuctx, ctx);
1748 		event->state = PERF_EVENT_STATE_OFF;
1749 	}
1750 
1751 	raw_spin_unlock(&ctx->lock);
1752 
1753 	return 0;
1754 }
1755 
1756 /*
1757  * Disable a event.
1758  *
1759  * If event->ctx is a cloned context, callers must make sure that
1760  * every task struct that event->ctx->task could possibly point to
1761  * remains valid.  This condition is satisifed when called through
1762  * perf_event_for_each_child or perf_event_for_each because they
1763  * hold the top-level event's child_mutex, so any descendant that
1764  * goes to exit will block in sync_child_event.
1765  * When called from perf_pending_event it's OK because event->ctx
1766  * is the current context on this CPU and preemption is disabled,
1767  * hence we can't get into perf_event_task_sched_out for this context.
1768  */
1769 static void _perf_event_disable(struct perf_event *event)
1770 {
1771 	struct perf_event_context *ctx = event->ctx;
1772 	struct task_struct *task = ctx->task;
1773 
1774 	if (!task) {
1775 		/*
1776 		 * Disable the event on the cpu that it's on
1777 		 */
1778 		cpu_function_call(event->cpu, __perf_event_disable, event);
1779 		return;
1780 	}
1781 
1782 retry:
1783 	if (!task_function_call(task, __perf_event_disable, event))
1784 		return;
1785 
1786 	raw_spin_lock_irq(&ctx->lock);
1787 	/*
1788 	 * If the event is still active, we need to retry the cross-call.
1789 	 */
1790 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1791 		raw_spin_unlock_irq(&ctx->lock);
1792 		/*
1793 		 * Reload the task pointer, it might have been changed by
1794 		 * a concurrent perf_event_context_sched_out().
1795 		 */
1796 		task = ctx->task;
1797 		goto retry;
1798 	}
1799 
1800 	/*
1801 	 * Since we have the lock this context can't be scheduled
1802 	 * in, so we can change the state safely.
1803 	 */
1804 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1805 		update_group_times(event);
1806 		event->state = PERF_EVENT_STATE_OFF;
1807 	}
1808 	raw_spin_unlock_irq(&ctx->lock);
1809 }
1810 
1811 /*
1812  * Strictly speaking kernel users cannot create groups and therefore this
1813  * interface does not need the perf_event_ctx_lock() magic.
1814  */
1815 void perf_event_disable(struct perf_event *event)
1816 {
1817 	struct perf_event_context *ctx;
1818 
1819 	ctx = perf_event_ctx_lock(event);
1820 	_perf_event_disable(event);
1821 	perf_event_ctx_unlock(event, ctx);
1822 }
1823 EXPORT_SYMBOL_GPL(perf_event_disable);
1824 
1825 static void perf_set_shadow_time(struct perf_event *event,
1826 				 struct perf_event_context *ctx,
1827 				 u64 tstamp)
1828 {
1829 	/*
1830 	 * use the correct time source for the time snapshot
1831 	 *
1832 	 * We could get by without this by leveraging the
1833 	 * fact that to get to this function, the caller
1834 	 * has most likely already called update_context_time()
1835 	 * and update_cgrp_time_xx() and thus both timestamp
1836 	 * are identical (or very close). Given that tstamp is,
1837 	 * already adjusted for cgroup, we could say that:
1838 	 *    tstamp - ctx->timestamp
1839 	 * is equivalent to
1840 	 *    tstamp - cgrp->timestamp.
1841 	 *
1842 	 * Then, in perf_output_read(), the calculation would
1843 	 * work with no changes because:
1844 	 * - event is guaranteed scheduled in
1845 	 * - no scheduled out in between
1846 	 * - thus the timestamp would be the same
1847 	 *
1848 	 * But this is a bit hairy.
1849 	 *
1850 	 * So instead, we have an explicit cgroup call to remain
1851 	 * within the time time source all along. We believe it
1852 	 * is cleaner and simpler to understand.
1853 	 */
1854 	if (is_cgroup_event(event))
1855 		perf_cgroup_set_shadow_time(event, tstamp);
1856 	else
1857 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1858 }
1859 
1860 #define MAX_INTERRUPTS (~0ULL)
1861 
1862 static void perf_log_throttle(struct perf_event *event, int enable);
1863 static void perf_log_itrace_start(struct perf_event *event);
1864 
1865 static int
1866 event_sched_in(struct perf_event *event,
1867 		 struct perf_cpu_context *cpuctx,
1868 		 struct perf_event_context *ctx)
1869 {
1870 	u64 tstamp = perf_event_time(event);
1871 	int ret = 0;
1872 
1873 	lockdep_assert_held(&ctx->lock);
1874 
1875 	if (event->state <= PERF_EVENT_STATE_OFF)
1876 		return 0;
1877 
1878 	event->state = PERF_EVENT_STATE_ACTIVE;
1879 	event->oncpu = smp_processor_id();
1880 
1881 	/*
1882 	 * Unthrottle events, since we scheduled we might have missed several
1883 	 * ticks already, also for a heavily scheduling task there is little
1884 	 * guarantee it'll get a tick in a timely manner.
1885 	 */
1886 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1887 		perf_log_throttle(event, 1);
1888 		event->hw.interrupts = 0;
1889 	}
1890 
1891 	/*
1892 	 * The new state must be visible before we turn it on in the hardware:
1893 	 */
1894 	smp_wmb();
1895 
1896 	perf_pmu_disable(event->pmu);
1897 
1898 	perf_set_shadow_time(event, ctx, tstamp);
1899 
1900 	perf_log_itrace_start(event);
1901 
1902 	if (event->pmu->add(event, PERF_EF_START)) {
1903 		event->state = PERF_EVENT_STATE_INACTIVE;
1904 		event->oncpu = -1;
1905 		ret = -EAGAIN;
1906 		goto out;
1907 	}
1908 
1909 	event->tstamp_running += tstamp - event->tstamp_stopped;
1910 
1911 	if (!is_software_event(event))
1912 		cpuctx->active_oncpu++;
1913 	if (!ctx->nr_active++)
1914 		perf_event_ctx_activate(ctx);
1915 	if (event->attr.freq && event->attr.sample_freq)
1916 		ctx->nr_freq++;
1917 
1918 	if (event->attr.exclusive)
1919 		cpuctx->exclusive = 1;
1920 
1921 	if (is_orphaned_child(event))
1922 		schedule_orphans_remove(ctx);
1923 
1924 out:
1925 	perf_pmu_enable(event->pmu);
1926 
1927 	return ret;
1928 }
1929 
1930 static int
1931 group_sched_in(struct perf_event *group_event,
1932 	       struct perf_cpu_context *cpuctx,
1933 	       struct perf_event_context *ctx)
1934 {
1935 	struct perf_event *event, *partial_group = NULL;
1936 	struct pmu *pmu = ctx->pmu;
1937 	u64 now = ctx->time;
1938 	bool simulate = false;
1939 
1940 	if (group_event->state == PERF_EVENT_STATE_OFF)
1941 		return 0;
1942 
1943 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1944 
1945 	if (event_sched_in(group_event, cpuctx, ctx)) {
1946 		pmu->cancel_txn(pmu);
1947 		perf_mux_hrtimer_restart(cpuctx);
1948 		return -EAGAIN;
1949 	}
1950 
1951 	/*
1952 	 * Schedule in siblings as one group (if any):
1953 	 */
1954 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1955 		if (event_sched_in(event, cpuctx, ctx)) {
1956 			partial_group = event;
1957 			goto group_error;
1958 		}
1959 	}
1960 
1961 	if (!pmu->commit_txn(pmu))
1962 		return 0;
1963 
1964 group_error:
1965 	/*
1966 	 * Groups can be scheduled in as one unit only, so undo any
1967 	 * partial group before returning:
1968 	 * The events up to the failed event are scheduled out normally,
1969 	 * tstamp_stopped will be updated.
1970 	 *
1971 	 * The failed events and the remaining siblings need to have
1972 	 * their timings updated as if they had gone thru event_sched_in()
1973 	 * and event_sched_out(). This is required to get consistent timings
1974 	 * across the group. This also takes care of the case where the group
1975 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1976 	 * the time the event was actually stopped, such that time delta
1977 	 * calculation in update_event_times() is correct.
1978 	 */
1979 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1980 		if (event == partial_group)
1981 			simulate = true;
1982 
1983 		if (simulate) {
1984 			event->tstamp_running += now - event->tstamp_stopped;
1985 			event->tstamp_stopped = now;
1986 		} else {
1987 			event_sched_out(event, cpuctx, ctx);
1988 		}
1989 	}
1990 	event_sched_out(group_event, cpuctx, ctx);
1991 
1992 	pmu->cancel_txn(pmu);
1993 
1994 	perf_mux_hrtimer_restart(cpuctx);
1995 
1996 	return -EAGAIN;
1997 }
1998 
1999 /*
2000  * Work out whether we can put this event group on the CPU now.
2001  */
2002 static int group_can_go_on(struct perf_event *event,
2003 			   struct perf_cpu_context *cpuctx,
2004 			   int can_add_hw)
2005 {
2006 	/*
2007 	 * Groups consisting entirely of software events can always go on.
2008 	 */
2009 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2010 		return 1;
2011 	/*
2012 	 * If an exclusive group is already on, no other hardware
2013 	 * events can go on.
2014 	 */
2015 	if (cpuctx->exclusive)
2016 		return 0;
2017 	/*
2018 	 * If this group is exclusive and there are already
2019 	 * events on the CPU, it can't go on.
2020 	 */
2021 	if (event->attr.exclusive && cpuctx->active_oncpu)
2022 		return 0;
2023 	/*
2024 	 * Otherwise, try to add it if all previous groups were able
2025 	 * to go on.
2026 	 */
2027 	return can_add_hw;
2028 }
2029 
2030 static void add_event_to_ctx(struct perf_event *event,
2031 			       struct perf_event_context *ctx)
2032 {
2033 	u64 tstamp = perf_event_time(event);
2034 
2035 	list_add_event(event, ctx);
2036 	perf_group_attach(event);
2037 	event->tstamp_enabled = tstamp;
2038 	event->tstamp_running = tstamp;
2039 	event->tstamp_stopped = tstamp;
2040 }
2041 
2042 static void task_ctx_sched_out(struct perf_event_context *ctx);
2043 static void
2044 ctx_sched_in(struct perf_event_context *ctx,
2045 	     struct perf_cpu_context *cpuctx,
2046 	     enum event_type_t event_type,
2047 	     struct task_struct *task);
2048 
2049 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2050 				struct perf_event_context *ctx,
2051 				struct task_struct *task)
2052 {
2053 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2054 	if (ctx)
2055 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2056 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2057 	if (ctx)
2058 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2059 }
2060 
2061 /*
2062  * Cross CPU call to install and enable a performance event
2063  *
2064  * Must be called with ctx->mutex held
2065  */
2066 static int  __perf_install_in_context(void *info)
2067 {
2068 	struct perf_event *event = info;
2069 	struct perf_event_context *ctx = event->ctx;
2070 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2071 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2072 	struct task_struct *task = current;
2073 
2074 	perf_ctx_lock(cpuctx, task_ctx);
2075 	perf_pmu_disable(cpuctx->ctx.pmu);
2076 
2077 	/*
2078 	 * If there was an active task_ctx schedule it out.
2079 	 */
2080 	if (task_ctx)
2081 		task_ctx_sched_out(task_ctx);
2082 
2083 	/*
2084 	 * If the context we're installing events in is not the
2085 	 * active task_ctx, flip them.
2086 	 */
2087 	if (ctx->task && task_ctx != ctx) {
2088 		if (task_ctx)
2089 			raw_spin_unlock(&task_ctx->lock);
2090 		raw_spin_lock(&ctx->lock);
2091 		task_ctx = ctx;
2092 	}
2093 
2094 	if (task_ctx) {
2095 		cpuctx->task_ctx = task_ctx;
2096 		task = task_ctx->task;
2097 	}
2098 
2099 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2100 
2101 	update_context_time(ctx);
2102 	/*
2103 	 * update cgrp time only if current cgrp
2104 	 * matches event->cgrp. Must be done before
2105 	 * calling add_event_to_ctx()
2106 	 */
2107 	update_cgrp_time_from_event(event);
2108 
2109 	add_event_to_ctx(event, ctx);
2110 
2111 	/*
2112 	 * Schedule everything back in
2113 	 */
2114 	perf_event_sched_in(cpuctx, task_ctx, task);
2115 
2116 	perf_pmu_enable(cpuctx->ctx.pmu);
2117 	perf_ctx_unlock(cpuctx, task_ctx);
2118 
2119 	return 0;
2120 }
2121 
2122 /*
2123  * Attach a performance event to a context
2124  *
2125  * First we add the event to the list with the hardware enable bit
2126  * in event->hw_config cleared.
2127  *
2128  * If the event is attached to a task which is on a CPU we use a smp
2129  * call to enable it in the task context. The task might have been
2130  * scheduled away, but we check this in the smp call again.
2131  */
2132 static void
2133 perf_install_in_context(struct perf_event_context *ctx,
2134 			struct perf_event *event,
2135 			int cpu)
2136 {
2137 	struct task_struct *task = ctx->task;
2138 
2139 	lockdep_assert_held(&ctx->mutex);
2140 
2141 	event->ctx = ctx;
2142 	if (event->cpu != -1)
2143 		event->cpu = cpu;
2144 
2145 	if (!task) {
2146 		/*
2147 		 * Per cpu events are installed via an smp call and
2148 		 * the install is always successful.
2149 		 */
2150 		cpu_function_call(cpu, __perf_install_in_context, event);
2151 		return;
2152 	}
2153 
2154 retry:
2155 	if (!task_function_call(task, __perf_install_in_context, event))
2156 		return;
2157 
2158 	raw_spin_lock_irq(&ctx->lock);
2159 	/*
2160 	 * If we failed to find a running task, but find the context active now
2161 	 * that we've acquired the ctx->lock, retry.
2162 	 */
2163 	if (ctx->is_active) {
2164 		raw_spin_unlock_irq(&ctx->lock);
2165 		/*
2166 		 * Reload the task pointer, it might have been changed by
2167 		 * a concurrent perf_event_context_sched_out().
2168 		 */
2169 		task = ctx->task;
2170 		goto retry;
2171 	}
2172 
2173 	/*
2174 	 * Since the task isn't running, its safe to add the event, us holding
2175 	 * the ctx->lock ensures the task won't get scheduled in.
2176 	 */
2177 	add_event_to_ctx(event, ctx);
2178 	raw_spin_unlock_irq(&ctx->lock);
2179 }
2180 
2181 /*
2182  * Put a event into inactive state and update time fields.
2183  * Enabling the leader of a group effectively enables all
2184  * the group members that aren't explicitly disabled, so we
2185  * have to update their ->tstamp_enabled also.
2186  * Note: this works for group members as well as group leaders
2187  * since the non-leader members' sibling_lists will be empty.
2188  */
2189 static void __perf_event_mark_enabled(struct perf_event *event)
2190 {
2191 	struct perf_event *sub;
2192 	u64 tstamp = perf_event_time(event);
2193 
2194 	event->state = PERF_EVENT_STATE_INACTIVE;
2195 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2196 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2197 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2198 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2199 	}
2200 }
2201 
2202 /*
2203  * Cross CPU call to enable a performance event
2204  */
2205 static int __perf_event_enable(void *info)
2206 {
2207 	struct perf_event *event = info;
2208 	struct perf_event_context *ctx = event->ctx;
2209 	struct perf_event *leader = event->group_leader;
2210 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2211 	int err;
2212 
2213 	/*
2214 	 * There's a time window between 'ctx->is_active' check
2215 	 * in perf_event_enable function and this place having:
2216 	 *   - IRQs on
2217 	 *   - ctx->lock unlocked
2218 	 *
2219 	 * where the task could be killed and 'ctx' deactivated
2220 	 * by perf_event_exit_task.
2221 	 */
2222 	if (!ctx->is_active)
2223 		return -EINVAL;
2224 
2225 	raw_spin_lock(&ctx->lock);
2226 	update_context_time(ctx);
2227 
2228 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2229 		goto unlock;
2230 
2231 	/*
2232 	 * set current task's cgroup time reference point
2233 	 */
2234 	perf_cgroup_set_timestamp(current, ctx);
2235 
2236 	__perf_event_mark_enabled(event);
2237 
2238 	if (!event_filter_match(event)) {
2239 		if (is_cgroup_event(event))
2240 			perf_cgroup_defer_enabled(event);
2241 		goto unlock;
2242 	}
2243 
2244 	/*
2245 	 * If the event is in a group and isn't the group leader,
2246 	 * then don't put it on unless the group is on.
2247 	 */
2248 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2249 		goto unlock;
2250 
2251 	if (!group_can_go_on(event, cpuctx, 1)) {
2252 		err = -EEXIST;
2253 	} else {
2254 		if (event == leader)
2255 			err = group_sched_in(event, cpuctx, ctx);
2256 		else
2257 			err = event_sched_in(event, cpuctx, ctx);
2258 	}
2259 
2260 	if (err) {
2261 		/*
2262 		 * If this event can't go on and it's part of a
2263 		 * group, then the whole group has to come off.
2264 		 */
2265 		if (leader != event) {
2266 			group_sched_out(leader, cpuctx, ctx);
2267 			perf_mux_hrtimer_restart(cpuctx);
2268 		}
2269 		if (leader->attr.pinned) {
2270 			update_group_times(leader);
2271 			leader->state = PERF_EVENT_STATE_ERROR;
2272 		}
2273 	}
2274 
2275 unlock:
2276 	raw_spin_unlock(&ctx->lock);
2277 
2278 	return 0;
2279 }
2280 
2281 /*
2282  * Enable a event.
2283  *
2284  * If event->ctx is a cloned context, callers must make sure that
2285  * every task struct that event->ctx->task could possibly point to
2286  * remains valid.  This condition is satisfied when called through
2287  * perf_event_for_each_child or perf_event_for_each as described
2288  * for perf_event_disable.
2289  */
2290 static void _perf_event_enable(struct perf_event *event)
2291 {
2292 	struct perf_event_context *ctx = event->ctx;
2293 	struct task_struct *task = ctx->task;
2294 
2295 	if (!task) {
2296 		/*
2297 		 * Enable the event on the cpu that it's on
2298 		 */
2299 		cpu_function_call(event->cpu, __perf_event_enable, event);
2300 		return;
2301 	}
2302 
2303 	raw_spin_lock_irq(&ctx->lock);
2304 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2305 		goto out;
2306 
2307 	/*
2308 	 * If the event is in error state, clear that first.
2309 	 * That way, if we see the event in error state below, we
2310 	 * know that it has gone back into error state, as distinct
2311 	 * from the task having been scheduled away before the
2312 	 * cross-call arrived.
2313 	 */
2314 	if (event->state == PERF_EVENT_STATE_ERROR)
2315 		event->state = PERF_EVENT_STATE_OFF;
2316 
2317 retry:
2318 	if (!ctx->is_active) {
2319 		__perf_event_mark_enabled(event);
2320 		goto out;
2321 	}
2322 
2323 	raw_spin_unlock_irq(&ctx->lock);
2324 
2325 	if (!task_function_call(task, __perf_event_enable, event))
2326 		return;
2327 
2328 	raw_spin_lock_irq(&ctx->lock);
2329 
2330 	/*
2331 	 * If the context is active and the event is still off,
2332 	 * we need to retry the cross-call.
2333 	 */
2334 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2335 		/*
2336 		 * task could have been flipped by a concurrent
2337 		 * perf_event_context_sched_out()
2338 		 */
2339 		task = ctx->task;
2340 		goto retry;
2341 	}
2342 
2343 out:
2344 	raw_spin_unlock_irq(&ctx->lock);
2345 }
2346 
2347 /*
2348  * See perf_event_disable();
2349  */
2350 void perf_event_enable(struct perf_event *event)
2351 {
2352 	struct perf_event_context *ctx;
2353 
2354 	ctx = perf_event_ctx_lock(event);
2355 	_perf_event_enable(event);
2356 	perf_event_ctx_unlock(event, ctx);
2357 }
2358 EXPORT_SYMBOL_GPL(perf_event_enable);
2359 
2360 static int _perf_event_refresh(struct perf_event *event, int refresh)
2361 {
2362 	/*
2363 	 * not supported on inherited events
2364 	 */
2365 	if (event->attr.inherit || !is_sampling_event(event))
2366 		return -EINVAL;
2367 
2368 	atomic_add(refresh, &event->event_limit);
2369 	_perf_event_enable(event);
2370 
2371 	return 0;
2372 }
2373 
2374 /*
2375  * See perf_event_disable()
2376  */
2377 int perf_event_refresh(struct perf_event *event, int refresh)
2378 {
2379 	struct perf_event_context *ctx;
2380 	int ret;
2381 
2382 	ctx = perf_event_ctx_lock(event);
2383 	ret = _perf_event_refresh(event, refresh);
2384 	perf_event_ctx_unlock(event, ctx);
2385 
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(perf_event_refresh);
2389 
2390 static void ctx_sched_out(struct perf_event_context *ctx,
2391 			  struct perf_cpu_context *cpuctx,
2392 			  enum event_type_t event_type)
2393 {
2394 	struct perf_event *event;
2395 	int is_active = ctx->is_active;
2396 
2397 	ctx->is_active &= ~event_type;
2398 	if (likely(!ctx->nr_events))
2399 		return;
2400 
2401 	update_context_time(ctx);
2402 	update_cgrp_time_from_cpuctx(cpuctx);
2403 	if (!ctx->nr_active)
2404 		return;
2405 
2406 	perf_pmu_disable(ctx->pmu);
2407 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2408 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2409 			group_sched_out(event, cpuctx, ctx);
2410 	}
2411 
2412 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2413 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2414 			group_sched_out(event, cpuctx, ctx);
2415 	}
2416 	perf_pmu_enable(ctx->pmu);
2417 }
2418 
2419 /*
2420  * Test whether two contexts are equivalent, i.e. whether they have both been
2421  * cloned from the same version of the same context.
2422  *
2423  * Equivalence is measured using a generation number in the context that is
2424  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2425  * and list_del_event().
2426  */
2427 static int context_equiv(struct perf_event_context *ctx1,
2428 			 struct perf_event_context *ctx2)
2429 {
2430 	lockdep_assert_held(&ctx1->lock);
2431 	lockdep_assert_held(&ctx2->lock);
2432 
2433 	/* Pinning disables the swap optimization */
2434 	if (ctx1->pin_count || ctx2->pin_count)
2435 		return 0;
2436 
2437 	/* If ctx1 is the parent of ctx2 */
2438 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2439 		return 1;
2440 
2441 	/* If ctx2 is the parent of ctx1 */
2442 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2443 		return 1;
2444 
2445 	/*
2446 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2447 	 * hierarchy, see perf_event_init_context().
2448 	 */
2449 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2450 			ctx1->parent_gen == ctx2->parent_gen)
2451 		return 1;
2452 
2453 	/* Unmatched */
2454 	return 0;
2455 }
2456 
2457 static void __perf_event_sync_stat(struct perf_event *event,
2458 				     struct perf_event *next_event)
2459 {
2460 	u64 value;
2461 
2462 	if (!event->attr.inherit_stat)
2463 		return;
2464 
2465 	/*
2466 	 * Update the event value, we cannot use perf_event_read()
2467 	 * because we're in the middle of a context switch and have IRQs
2468 	 * disabled, which upsets smp_call_function_single(), however
2469 	 * we know the event must be on the current CPU, therefore we
2470 	 * don't need to use it.
2471 	 */
2472 	switch (event->state) {
2473 	case PERF_EVENT_STATE_ACTIVE:
2474 		event->pmu->read(event);
2475 		/* fall-through */
2476 
2477 	case PERF_EVENT_STATE_INACTIVE:
2478 		update_event_times(event);
2479 		break;
2480 
2481 	default:
2482 		break;
2483 	}
2484 
2485 	/*
2486 	 * In order to keep per-task stats reliable we need to flip the event
2487 	 * values when we flip the contexts.
2488 	 */
2489 	value = local64_read(&next_event->count);
2490 	value = local64_xchg(&event->count, value);
2491 	local64_set(&next_event->count, value);
2492 
2493 	swap(event->total_time_enabled, next_event->total_time_enabled);
2494 	swap(event->total_time_running, next_event->total_time_running);
2495 
2496 	/*
2497 	 * Since we swizzled the values, update the user visible data too.
2498 	 */
2499 	perf_event_update_userpage(event);
2500 	perf_event_update_userpage(next_event);
2501 }
2502 
2503 static void perf_event_sync_stat(struct perf_event_context *ctx,
2504 				   struct perf_event_context *next_ctx)
2505 {
2506 	struct perf_event *event, *next_event;
2507 
2508 	if (!ctx->nr_stat)
2509 		return;
2510 
2511 	update_context_time(ctx);
2512 
2513 	event = list_first_entry(&ctx->event_list,
2514 				   struct perf_event, event_entry);
2515 
2516 	next_event = list_first_entry(&next_ctx->event_list,
2517 					struct perf_event, event_entry);
2518 
2519 	while (&event->event_entry != &ctx->event_list &&
2520 	       &next_event->event_entry != &next_ctx->event_list) {
2521 
2522 		__perf_event_sync_stat(event, next_event);
2523 
2524 		event = list_next_entry(event, event_entry);
2525 		next_event = list_next_entry(next_event, event_entry);
2526 	}
2527 }
2528 
2529 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2530 					 struct task_struct *next)
2531 {
2532 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2533 	struct perf_event_context *next_ctx;
2534 	struct perf_event_context *parent, *next_parent;
2535 	struct perf_cpu_context *cpuctx;
2536 	int do_switch = 1;
2537 
2538 	if (likely(!ctx))
2539 		return;
2540 
2541 	cpuctx = __get_cpu_context(ctx);
2542 	if (!cpuctx->task_ctx)
2543 		return;
2544 
2545 	rcu_read_lock();
2546 	next_ctx = next->perf_event_ctxp[ctxn];
2547 	if (!next_ctx)
2548 		goto unlock;
2549 
2550 	parent = rcu_dereference(ctx->parent_ctx);
2551 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2552 
2553 	/* If neither context have a parent context; they cannot be clones. */
2554 	if (!parent && !next_parent)
2555 		goto unlock;
2556 
2557 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2558 		/*
2559 		 * Looks like the two contexts are clones, so we might be
2560 		 * able to optimize the context switch.  We lock both
2561 		 * contexts and check that they are clones under the
2562 		 * lock (including re-checking that neither has been
2563 		 * uncloned in the meantime).  It doesn't matter which
2564 		 * order we take the locks because no other cpu could
2565 		 * be trying to lock both of these tasks.
2566 		 */
2567 		raw_spin_lock(&ctx->lock);
2568 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2569 		if (context_equiv(ctx, next_ctx)) {
2570 			/*
2571 			 * XXX do we need a memory barrier of sorts
2572 			 * wrt to rcu_dereference() of perf_event_ctxp
2573 			 */
2574 			task->perf_event_ctxp[ctxn] = next_ctx;
2575 			next->perf_event_ctxp[ctxn] = ctx;
2576 			ctx->task = next;
2577 			next_ctx->task = task;
2578 
2579 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2580 
2581 			do_switch = 0;
2582 
2583 			perf_event_sync_stat(ctx, next_ctx);
2584 		}
2585 		raw_spin_unlock(&next_ctx->lock);
2586 		raw_spin_unlock(&ctx->lock);
2587 	}
2588 unlock:
2589 	rcu_read_unlock();
2590 
2591 	if (do_switch) {
2592 		raw_spin_lock(&ctx->lock);
2593 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2594 		cpuctx->task_ctx = NULL;
2595 		raw_spin_unlock(&ctx->lock);
2596 	}
2597 }
2598 
2599 void perf_sched_cb_dec(struct pmu *pmu)
2600 {
2601 	this_cpu_dec(perf_sched_cb_usages);
2602 }
2603 
2604 void perf_sched_cb_inc(struct pmu *pmu)
2605 {
2606 	this_cpu_inc(perf_sched_cb_usages);
2607 }
2608 
2609 /*
2610  * This function provides the context switch callback to the lower code
2611  * layer. It is invoked ONLY when the context switch callback is enabled.
2612  */
2613 static void perf_pmu_sched_task(struct task_struct *prev,
2614 				struct task_struct *next,
2615 				bool sched_in)
2616 {
2617 	struct perf_cpu_context *cpuctx;
2618 	struct pmu *pmu;
2619 	unsigned long flags;
2620 
2621 	if (prev == next)
2622 		return;
2623 
2624 	local_irq_save(flags);
2625 
2626 	rcu_read_lock();
2627 
2628 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2629 		if (pmu->sched_task) {
2630 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2631 
2632 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2633 
2634 			perf_pmu_disable(pmu);
2635 
2636 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2637 
2638 			perf_pmu_enable(pmu);
2639 
2640 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2641 		}
2642 	}
2643 
2644 	rcu_read_unlock();
2645 
2646 	local_irq_restore(flags);
2647 }
2648 
2649 static void perf_event_switch(struct task_struct *task,
2650 			      struct task_struct *next_prev, bool sched_in);
2651 
2652 #define for_each_task_context_nr(ctxn)					\
2653 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2654 
2655 /*
2656  * Called from scheduler to remove the events of the current task,
2657  * with interrupts disabled.
2658  *
2659  * We stop each event and update the event value in event->count.
2660  *
2661  * This does not protect us against NMI, but disable()
2662  * sets the disabled bit in the control field of event _before_
2663  * accessing the event control register. If a NMI hits, then it will
2664  * not restart the event.
2665  */
2666 void __perf_event_task_sched_out(struct task_struct *task,
2667 				 struct task_struct *next)
2668 {
2669 	int ctxn;
2670 
2671 	if (__this_cpu_read(perf_sched_cb_usages))
2672 		perf_pmu_sched_task(task, next, false);
2673 
2674 	if (atomic_read(&nr_switch_events))
2675 		perf_event_switch(task, next, false);
2676 
2677 	for_each_task_context_nr(ctxn)
2678 		perf_event_context_sched_out(task, ctxn, next);
2679 
2680 	/*
2681 	 * if cgroup events exist on this CPU, then we need
2682 	 * to check if we have to switch out PMU state.
2683 	 * cgroup event are system-wide mode only
2684 	 */
2685 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2686 		perf_cgroup_sched_out(task, next);
2687 }
2688 
2689 static void task_ctx_sched_out(struct perf_event_context *ctx)
2690 {
2691 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2692 
2693 	if (!cpuctx->task_ctx)
2694 		return;
2695 
2696 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2697 		return;
2698 
2699 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2700 	cpuctx->task_ctx = NULL;
2701 }
2702 
2703 /*
2704  * Called with IRQs disabled
2705  */
2706 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2707 			      enum event_type_t event_type)
2708 {
2709 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2710 }
2711 
2712 static void
2713 ctx_pinned_sched_in(struct perf_event_context *ctx,
2714 		    struct perf_cpu_context *cpuctx)
2715 {
2716 	struct perf_event *event;
2717 
2718 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2719 		if (event->state <= PERF_EVENT_STATE_OFF)
2720 			continue;
2721 		if (!event_filter_match(event))
2722 			continue;
2723 
2724 		/* may need to reset tstamp_enabled */
2725 		if (is_cgroup_event(event))
2726 			perf_cgroup_mark_enabled(event, ctx);
2727 
2728 		if (group_can_go_on(event, cpuctx, 1))
2729 			group_sched_in(event, cpuctx, ctx);
2730 
2731 		/*
2732 		 * If this pinned group hasn't been scheduled,
2733 		 * put it in error state.
2734 		 */
2735 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2736 			update_group_times(event);
2737 			event->state = PERF_EVENT_STATE_ERROR;
2738 		}
2739 	}
2740 }
2741 
2742 static void
2743 ctx_flexible_sched_in(struct perf_event_context *ctx,
2744 		      struct perf_cpu_context *cpuctx)
2745 {
2746 	struct perf_event *event;
2747 	int can_add_hw = 1;
2748 
2749 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2750 		/* Ignore events in OFF or ERROR state */
2751 		if (event->state <= PERF_EVENT_STATE_OFF)
2752 			continue;
2753 		/*
2754 		 * Listen to the 'cpu' scheduling filter constraint
2755 		 * of events:
2756 		 */
2757 		if (!event_filter_match(event))
2758 			continue;
2759 
2760 		/* may need to reset tstamp_enabled */
2761 		if (is_cgroup_event(event))
2762 			perf_cgroup_mark_enabled(event, ctx);
2763 
2764 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2765 			if (group_sched_in(event, cpuctx, ctx))
2766 				can_add_hw = 0;
2767 		}
2768 	}
2769 }
2770 
2771 static void
2772 ctx_sched_in(struct perf_event_context *ctx,
2773 	     struct perf_cpu_context *cpuctx,
2774 	     enum event_type_t event_type,
2775 	     struct task_struct *task)
2776 {
2777 	u64 now;
2778 	int is_active = ctx->is_active;
2779 
2780 	ctx->is_active |= event_type;
2781 	if (likely(!ctx->nr_events))
2782 		return;
2783 
2784 	now = perf_clock();
2785 	ctx->timestamp = now;
2786 	perf_cgroup_set_timestamp(task, ctx);
2787 	/*
2788 	 * First go through the list and put on any pinned groups
2789 	 * in order to give them the best chance of going on.
2790 	 */
2791 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2792 		ctx_pinned_sched_in(ctx, cpuctx);
2793 
2794 	/* Then walk through the lower prio flexible groups */
2795 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2796 		ctx_flexible_sched_in(ctx, cpuctx);
2797 }
2798 
2799 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2800 			     enum event_type_t event_type,
2801 			     struct task_struct *task)
2802 {
2803 	struct perf_event_context *ctx = &cpuctx->ctx;
2804 
2805 	ctx_sched_in(ctx, cpuctx, event_type, task);
2806 }
2807 
2808 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2809 					struct task_struct *task)
2810 {
2811 	struct perf_cpu_context *cpuctx;
2812 
2813 	cpuctx = __get_cpu_context(ctx);
2814 	if (cpuctx->task_ctx == ctx)
2815 		return;
2816 
2817 	perf_ctx_lock(cpuctx, ctx);
2818 	perf_pmu_disable(ctx->pmu);
2819 	/*
2820 	 * We want to keep the following priority order:
2821 	 * cpu pinned (that don't need to move), task pinned,
2822 	 * cpu flexible, task flexible.
2823 	 */
2824 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2825 
2826 	if (ctx->nr_events)
2827 		cpuctx->task_ctx = ctx;
2828 
2829 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2830 
2831 	perf_pmu_enable(ctx->pmu);
2832 	perf_ctx_unlock(cpuctx, ctx);
2833 }
2834 
2835 /*
2836  * Called from scheduler to add the events of the current task
2837  * with interrupts disabled.
2838  *
2839  * We restore the event value and then enable it.
2840  *
2841  * This does not protect us against NMI, but enable()
2842  * sets the enabled bit in the control field of event _before_
2843  * accessing the event control register. If a NMI hits, then it will
2844  * keep the event running.
2845  */
2846 void __perf_event_task_sched_in(struct task_struct *prev,
2847 				struct task_struct *task)
2848 {
2849 	struct perf_event_context *ctx;
2850 	int ctxn;
2851 
2852 	for_each_task_context_nr(ctxn) {
2853 		ctx = task->perf_event_ctxp[ctxn];
2854 		if (likely(!ctx))
2855 			continue;
2856 
2857 		perf_event_context_sched_in(ctx, task);
2858 	}
2859 	/*
2860 	 * if cgroup events exist on this CPU, then we need
2861 	 * to check if we have to switch in PMU state.
2862 	 * cgroup event are system-wide mode only
2863 	 */
2864 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2865 		perf_cgroup_sched_in(prev, task);
2866 
2867 	if (atomic_read(&nr_switch_events))
2868 		perf_event_switch(task, prev, true);
2869 
2870 	if (__this_cpu_read(perf_sched_cb_usages))
2871 		perf_pmu_sched_task(prev, task, true);
2872 }
2873 
2874 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2875 {
2876 	u64 frequency = event->attr.sample_freq;
2877 	u64 sec = NSEC_PER_SEC;
2878 	u64 divisor, dividend;
2879 
2880 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2881 
2882 	count_fls = fls64(count);
2883 	nsec_fls = fls64(nsec);
2884 	frequency_fls = fls64(frequency);
2885 	sec_fls = 30;
2886 
2887 	/*
2888 	 * We got @count in @nsec, with a target of sample_freq HZ
2889 	 * the target period becomes:
2890 	 *
2891 	 *             @count * 10^9
2892 	 * period = -------------------
2893 	 *          @nsec * sample_freq
2894 	 *
2895 	 */
2896 
2897 	/*
2898 	 * Reduce accuracy by one bit such that @a and @b converge
2899 	 * to a similar magnitude.
2900 	 */
2901 #define REDUCE_FLS(a, b)		\
2902 do {					\
2903 	if (a##_fls > b##_fls) {	\
2904 		a >>= 1;		\
2905 		a##_fls--;		\
2906 	} else {			\
2907 		b >>= 1;		\
2908 		b##_fls--;		\
2909 	}				\
2910 } while (0)
2911 
2912 	/*
2913 	 * Reduce accuracy until either term fits in a u64, then proceed with
2914 	 * the other, so that finally we can do a u64/u64 division.
2915 	 */
2916 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2917 		REDUCE_FLS(nsec, frequency);
2918 		REDUCE_FLS(sec, count);
2919 	}
2920 
2921 	if (count_fls + sec_fls > 64) {
2922 		divisor = nsec * frequency;
2923 
2924 		while (count_fls + sec_fls > 64) {
2925 			REDUCE_FLS(count, sec);
2926 			divisor >>= 1;
2927 		}
2928 
2929 		dividend = count * sec;
2930 	} else {
2931 		dividend = count * sec;
2932 
2933 		while (nsec_fls + frequency_fls > 64) {
2934 			REDUCE_FLS(nsec, frequency);
2935 			dividend >>= 1;
2936 		}
2937 
2938 		divisor = nsec * frequency;
2939 	}
2940 
2941 	if (!divisor)
2942 		return dividend;
2943 
2944 	return div64_u64(dividend, divisor);
2945 }
2946 
2947 static DEFINE_PER_CPU(int, perf_throttled_count);
2948 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2949 
2950 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2951 {
2952 	struct hw_perf_event *hwc = &event->hw;
2953 	s64 period, sample_period;
2954 	s64 delta;
2955 
2956 	period = perf_calculate_period(event, nsec, count);
2957 
2958 	delta = (s64)(period - hwc->sample_period);
2959 	delta = (delta + 7) / 8; /* low pass filter */
2960 
2961 	sample_period = hwc->sample_period + delta;
2962 
2963 	if (!sample_period)
2964 		sample_period = 1;
2965 
2966 	hwc->sample_period = sample_period;
2967 
2968 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2969 		if (disable)
2970 			event->pmu->stop(event, PERF_EF_UPDATE);
2971 
2972 		local64_set(&hwc->period_left, 0);
2973 
2974 		if (disable)
2975 			event->pmu->start(event, PERF_EF_RELOAD);
2976 	}
2977 }
2978 
2979 /*
2980  * combine freq adjustment with unthrottling to avoid two passes over the
2981  * events. At the same time, make sure, having freq events does not change
2982  * the rate of unthrottling as that would introduce bias.
2983  */
2984 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2985 					   int needs_unthr)
2986 {
2987 	struct perf_event *event;
2988 	struct hw_perf_event *hwc;
2989 	u64 now, period = TICK_NSEC;
2990 	s64 delta;
2991 
2992 	/*
2993 	 * only need to iterate over all events iff:
2994 	 * - context have events in frequency mode (needs freq adjust)
2995 	 * - there are events to unthrottle on this cpu
2996 	 */
2997 	if (!(ctx->nr_freq || needs_unthr))
2998 		return;
2999 
3000 	raw_spin_lock(&ctx->lock);
3001 	perf_pmu_disable(ctx->pmu);
3002 
3003 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3004 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3005 			continue;
3006 
3007 		if (!event_filter_match(event))
3008 			continue;
3009 
3010 		perf_pmu_disable(event->pmu);
3011 
3012 		hwc = &event->hw;
3013 
3014 		if (hwc->interrupts == MAX_INTERRUPTS) {
3015 			hwc->interrupts = 0;
3016 			perf_log_throttle(event, 1);
3017 			event->pmu->start(event, 0);
3018 		}
3019 
3020 		if (!event->attr.freq || !event->attr.sample_freq)
3021 			goto next;
3022 
3023 		/*
3024 		 * stop the event and update event->count
3025 		 */
3026 		event->pmu->stop(event, PERF_EF_UPDATE);
3027 
3028 		now = local64_read(&event->count);
3029 		delta = now - hwc->freq_count_stamp;
3030 		hwc->freq_count_stamp = now;
3031 
3032 		/*
3033 		 * restart the event
3034 		 * reload only if value has changed
3035 		 * we have stopped the event so tell that
3036 		 * to perf_adjust_period() to avoid stopping it
3037 		 * twice.
3038 		 */
3039 		if (delta > 0)
3040 			perf_adjust_period(event, period, delta, false);
3041 
3042 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3043 	next:
3044 		perf_pmu_enable(event->pmu);
3045 	}
3046 
3047 	perf_pmu_enable(ctx->pmu);
3048 	raw_spin_unlock(&ctx->lock);
3049 }
3050 
3051 /*
3052  * Round-robin a context's events:
3053  */
3054 static void rotate_ctx(struct perf_event_context *ctx)
3055 {
3056 	/*
3057 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3058 	 * disabled by the inheritance code.
3059 	 */
3060 	if (!ctx->rotate_disable)
3061 		list_rotate_left(&ctx->flexible_groups);
3062 }
3063 
3064 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3065 {
3066 	struct perf_event_context *ctx = NULL;
3067 	int rotate = 0;
3068 
3069 	if (cpuctx->ctx.nr_events) {
3070 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3071 			rotate = 1;
3072 	}
3073 
3074 	ctx = cpuctx->task_ctx;
3075 	if (ctx && ctx->nr_events) {
3076 		if (ctx->nr_events != ctx->nr_active)
3077 			rotate = 1;
3078 	}
3079 
3080 	if (!rotate)
3081 		goto done;
3082 
3083 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3084 	perf_pmu_disable(cpuctx->ctx.pmu);
3085 
3086 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3087 	if (ctx)
3088 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3089 
3090 	rotate_ctx(&cpuctx->ctx);
3091 	if (ctx)
3092 		rotate_ctx(ctx);
3093 
3094 	perf_event_sched_in(cpuctx, ctx, current);
3095 
3096 	perf_pmu_enable(cpuctx->ctx.pmu);
3097 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3098 done:
3099 
3100 	return rotate;
3101 }
3102 
3103 #ifdef CONFIG_NO_HZ_FULL
3104 bool perf_event_can_stop_tick(void)
3105 {
3106 	if (atomic_read(&nr_freq_events) ||
3107 	    __this_cpu_read(perf_throttled_count))
3108 		return false;
3109 	else
3110 		return true;
3111 }
3112 #endif
3113 
3114 void perf_event_task_tick(void)
3115 {
3116 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3117 	struct perf_event_context *ctx, *tmp;
3118 	int throttled;
3119 
3120 	WARN_ON(!irqs_disabled());
3121 
3122 	__this_cpu_inc(perf_throttled_seq);
3123 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3124 
3125 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3126 		perf_adjust_freq_unthr_context(ctx, throttled);
3127 }
3128 
3129 static int event_enable_on_exec(struct perf_event *event,
3130 				struct perf_event_context *ctx)
3131 {
3132 	if (!event->attr.enable_on_exec)
3133 		return 0;
3134 
3135 	event->attr.enable_on_exec = 0;
3136 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3137 		return 0;
3138 
3139 	__perf_event_mark_enabled(event);
3140 
3141 	return 1;
3142 }
3143 
3144 /*
3145  * Enable all of a task's events that have been marked enable-on-exec.
3146  * This expects task == current.
3147  */
3148 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3149 {
3150 	struct perf_event_context *clone_ctx = NULL;
3151 	struct perf_event *event;
3152 	unsigned long flags;
3153 	int enabled = 0;
3154 	int ret;
3155 
3156 	local_irq_save(flags);
3157 	if (!ctx || !ctx->nr_events)
3158 		goto out;
3159 
3160 	/*
3161 	 * We must ctxsw out cgroup events to avoid conflict
3162 	 * when invoking perf_task_event_sched_in() later on
3163 	 * in this function. Otherwise we end up trying to
3164 	 * ctxswin cgroup events which are already scheduled
3165 	 * in.
3166 	 */
3167 	perf_cgroup_sched_out(current, NULL);
3168 
3169 	raw_spin_lock(&ctx->lock);
3170 	task_ctx_sched_out(ctx);
3171 
3172 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3173 		ret = event_enable_on_exec(event, ctx);
3174 		if (ret)
3175 			enabled = 1;
3176 	}
3177 
3178 	/*
3179 	 * Unclone this context if we enabled any event.
3180 	 */
3181 	if (enabled)
3182 		clone_ctx = unclone_ctx(ctx);
3183 
3184 	raw_spin_unlock(&ctx->lock);
3185 
3186 	/*
3187 	 * Also calls ctxswin for cgroup events, if any:
3188 	 */
3189 	perf_event_context_sched_in(ctx, ctx->task);
3190 out:
3191 	local_irq_restore(flags);
3192 
3193 	if (clone_ctx)
3194 		put_ctx(clone_ctx);
3195 }
3196 
3197 void perf_event_exec(void)
3198 {
3199 	struct perf_event_context *ctx;
3200 	int ctxn;
3201 
3202 	rcu_read_lock();
3203 	for_each_task_context_nr(ctxn) {
3204 		ctx = current->perf_event_ctxp[ctxn];
3205 		if (!ctx)
3206 			continue;
3207 
3208 		perf_event_enable_on_exec(ctx);
3209 	}
3210 	rcu_read_unlock();
3211 }
3212 
3213 struct perf_read_data {
3214 	struct perf_event *event;
3215 	bool group;
3216 	int ret;
3217 };
3218 
3219 /*
3220  * Cross CPU call to read the hardware event
3221  */
3222 static void __perf_event_read(void *info)
3223 {
3224 	struct perf_read_data *data = info;
3225 	struct perf_event *sub, *event = data->event;
3226 	struct perf_event_context *ctx = event->ctx;
3227 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3228 	struct pmu *pmu = event->pmu;
3229 
3230 	/*
3231 	 * If this is a task context, we need to check whether it is
3232 	 * the current task context of this cpu.  If not it has been
3233 	 * scheduled out before the smp call arrived.  In that case
3234 	 * event->count would have been updated to a recent sample
3235 	 * when the event was scheduled out.
3236 	 */
3237 	if (ctx->task && cpuctx->task_ctx != ctx)
3238 		return;
3239 
3240 	raw_spin_lock(&ctx->lock);
3241 	if (ctx->is_active) {
3242 		update_context_time(ctx);
3243 		update_cgrp_time_from_event(event);
3244 	}
3245 
3246 	update_event_times(event);
3247 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3248 		goto unlock;
3249 
3250 	if (!data->group) {
3251 		pmu->read(event);
3252 		data->ret = 0;
3253 		goto unlock;
3254 	}
3255 
3256 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3257 
3258 	pmu->read(event);
3259 
3260 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3261 		update_event_times(sub);
3262 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3263 			/*
3264 			 * Use sibling's PMU rather than @event's since
3265 			 * sibling could be on different (eg: software) PMU.
3266 			 */
3267 			sub->pmu->read(sub);
3268 		}
3269 	}
3270 
3271 	data->ret = pmu->commit_txn(pmu);
3272 
3273 unlock:
3274 	raw_spin_unlock(&ctx->lock);
3275 }
3276 
3277 static inline u64 perf_event_count(struct perf_event *event)
3278 {
3279 	if (event->pmu->count)
3280 		return event->pmu->count(event);
3281 
3282 	return __perf_event_count(event);
3283 }
3284 
3285 /*
3286  * NMI-safe method to read a local event, that is an event that
3287  * is:
3288  *   - either for the current task, or for this CPU
3289  *   - does not have inherit set, for inherited task events
3290  *     will not be local and we cannot read them atomically
3291  *   - must not have a pmu::count method
3292  */
3293 u64 perf_event_read_local(struct perf_event *event)
3294 {
3295 	unsigned long flags;
3296 	u64 val;
3297 
3298 	/*
3299 	 * Disabling interrupts avoids all counter scheduling (context
3300 	 * switches, timer based rotation and IPIs).
3301 	 */
3302 	local_irq_save(flags);
3303 
3304 	/* If this is a per-task event, it must be for current */
3305 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3306 		     event->hw.target != current);
3307 
3308 	/* If this is a per-CPU event, it must be for this CPU */
3309 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3310 		     event->cpu != smp_processor_id());
3311 
3312 	/*
3313 	 * It must not be an event with inherit set, we cannot read
3314 	 * all child counters from atomic context.
3315 	 */
3316 	WARN_ON_ONCE(event->attr.inherit);
3317 
3318 	/*
3319 	 * It must not have a pmu::count method, those are not
3320 	 * NMI safe.
3321 	 */
3322 	WARN_ON_ONCE(event->pmu->count);
3323 
3324 	/*
3325 	 * If the event is currently on this CPU, its either a per-task event,
3326 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3327 	 * oncpu == -1).
3328 	 */
3329 	if (event->oncpu == smp_processor_id())
3330 		event->pmu->read(event);
3331 
3332 	val = local64_read(&event->count);
3333 	local_irq_restore(flags);
3334 
3335 	return val;
3336 }
3337 
3338 static int perf_event_read(struct perf_event *event, bool group)
3339 {
3340 	int ret = 0;
3341 
3342 	/*
3343 	 * If event is enabled and currently active on a CPU, update the
3344 	 * value in the event structure:
3345 	 */
3346 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3347 		struct perf_read_data data = {
3348 			.event = event,
3349 			.group = group,
3350 			.ret = 0,
3351 		};
3352 		smp_call_function_single(event->oncpu,
3353 					 __perf_event_read, &data, 1);
3354 		ret = data.ret;
3355 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3356 		struct perf_event_context *ctx = event->ctx;
3357 		unsigned long flags;
3358 
3359 		raw_spin_lock_irqsave(&ctx->lock, flags);
3360 		/*
3361 		 * may read while context is not active
3362 		 * (e.g., thread is blocked), in that case
3363 		 * we cannot update context time
3364 		 */
3365 		if (ctx->is_active) {
3366 			update_context_time(ctx);
3367 			update_cgrp_time_from_event(event);
3368 		}
3369 		if (group)
3370 			update_group_times(event);
3371 		else
3372 			update_event_times(event);
3373 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3374 	}
3375 
3376 	return ret;
3377 }
3378 
3379 /*
3380  * Initialize the perf_event context in a task_struct:
3381  */
3382 static void __perf_event_init_context(struct perf_event_context *ctx)
3383 {
3384 	raw_spin_lock_init(&ctx->lock);
3385 	mutex_init(&ctx->mutex);
3386 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3387 	INIT_LIST_HEAD(&ctx->pinned_groups);
3388 	INIT_LIST_HEAD(&ctx->flexible_groups);
3389 	INIT_LIST_HEAD(&ctx->event_list);
3390 	atomic_set(&ctx->refcount, 1);
3391 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3392 }
3393 
3394 static struct perf_event_context *
3395 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3396 {
3397 	struct perf_event_context *ctx;
3398 
3399 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3400 	if (!ctx)
3401 		return NULL;
3402 
3403 	__perf_event_init_context(ctx);
3404 	if (task) {
3405 		ctx->task = task;
3406 		get_task_struct(task);
3407 	}
3408 	ctx->pmu = pmu;
3409 
3410 	return ctx;
3411 }
3412 
3413 static struct task_struct *
3414 find_lively_task_by_vpid(pid_t vpid)
3415 {
3416 	struct task_struct *task;
3417 	int err;
3418 
3419 	rcu_read_lock();
3420 	if (!vpid)
3421 		task = current;
3422 	else
3423 		task = find_task_by_vpid(vpid);
3424 	if (task)
3425 		get_task_struct(task);
3426 	rcu_read_unlock();
3427 
3428 	if (!task)
3429 		return ERR_PTR(-ESRCH);
3430 
3431 	/* Reuse ptrace permission checks for now. */
3432 	err = -EACCES;
3433 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
3434 		goto errout;
3435 
3436 	return task;
3437 errout:
3438 	put_task_struct(task);
3439 	return ERR_PTR(err);
3440 
3441 }
3442 
3443 /*
3444  * Returns a matching context with refcount and pincount.
3445  */
3446 static struct perf_event_context *
3447 find_get_context(struct pmu *pmu, struct task_struct *task,
3448 		struct perf_event *event)
3449 {
3450 	struct perf_event_context *ctx, *clone_ctx = NULL;
3451 	struct perf_cpu_context *cpuctx;
3452 	void *task_ctx_data = NULL;
3453 	unsigned long flags;
3454 	int ctxn, err;
3455 	int cpu = event->cpu;
3456 
3457 	if (!task) {
3458 		/* Must be root to operate on a CPU event: */
3459 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3460 			return ERR_PTR(-EACCES);
3461 
3462 		/*
3463 		 * We could be clever and allow to attach a event to an
3464 		 * offline CPU and activate it when the CPU comes up, but
3465 		 * that's for later.
3466 		 */
3467 		if (!cpu_online(cpu))
3468 			return ERR_PTR(-ENODEV);
3469 
3470 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3471 		ctx = &cpuctx->ctx;
3472 		get_ctx(ctx);
3473 		++ctx->pin_count;
3474 
3475 		return ctx;
3476 	}
3477 
3478 	err = -EINVAL;
3479 	ctxn = pmu->task_ctx_nr;
3480 	if (ctxn < 0)
3481 		goto errout;
3482 
3483 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3484 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3485 		if (!task_ctx_data) {
3486 			err = -ENOMEM;
3487 			goto errout;
3488 		}
3489 	}
3490 
3491 retry:
3492 	ctx = perf_lock_task_context(task, ctxn, &flags);
3493 	if (ctx) {
3494 		clone_ctx = unclone_ctx(ctx);
3495 		++ctx->pin_count;
3496 
3497 		if (task_ctx_data && !ctx->task_ctx_data) {
3498 			ctx->task_ctx_data = task_ctx_data;
3499 			task_ctx_data = NULL;
3500 		}
3501 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3502 
3503 		if (clone_ctx)
3504 			put_ctx(clone_ctx);
3505 	} else {
3506 		ctx = alloc_perf_context(pmu, task);
3507 		err = -ENOMEM;
3508 		if (!ctx)
3509 			goto errout;
3510 
3511 		if (task_ctx_data) {
3512 			ctx->task_ctx_data = task_ctx_data;
3513 			task_ctx_data = NULL;
3514 		}
3515 
3516 		err = 0;
3517 		mutex_lock(&task->perf_event_mutex);
3518 		/*
3519 		 * If it has already passed perf_event_exit_task().
3520 		 * we must see PF_EXITING, it takes this mutex too.
3521 		 */
3522 		if (task->flags & PF_EXITING)
3523 			err = -ESRCH;
3524 		else if (task->perf_event_ctxp[ctxn])
3525 			err = -EAGAIN;
3526 		else {
3527 			get_ctx(ctx);
3528 			++ctx->pin_count;
3529 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3530 		}
3531 		mutex_unlock(&task->perf_event_mutex);
3532 
3533 		if (unlikely(err)) {
3534 			put_ctx(ctx);
3535 
3536 			if (err == -EAGAIN)
3537 				goto retry;
3538 			goto errout;
3539 		}
3540 	}
3541 
3542 	kfree(task_ctx_data);
3543 	return ctx;
3544 
3545 errout:
3546 	kfree(task_ctx_data);
3547 	return ERR_PTR(err);
3548 }
3549 
3550 static void perf_event_free_filter(struct perf_event *event);
3551 static void perf_event_free_bpf_prog(struct perf_event *event);
3552 
3553 static void free_event_rcu(struct rcu_head *head)
3554 {
3555 	struct perf_event *event;
3556 
3557 	event = container_of(head, struct perf_event, rcu_head);
3558 	if (event->ns)
3559 		put_pid_ns(event->ns);
3560 	perf_event_free_filter(event);
3561 	kfree(event);
3562 }
3563 
3564 static void ring_buffer_attach(struct perf_event *event,
3565 			       struct ring_buffer *rb);
3566 
3567 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3568 {
3569 	if (event->parent)
3570 		return;
3571 
3572 	if (is_cgroup_event(event))
3573 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3574 }
3575 
3576 static void unaccount_event(struct perf_event *event)
3577 {
3578 	if (event->parent)
3579 		return;
3580 
3581 	if (event->attach_state & PERF_ATTACH_TASK)
3582 		static_key_slow_dec_deferred(&perf_sched_events);
3583 	if (event->attr.mmap || event->attr.mmap_data)
3584 		atomic_dec(&nr_mmap_events);
3585 	if (event->attr.comm)
3586 		atomic_dec(&nr_comm_events);
3587 	if (event->attr.task)
3588 		atomic_dec(&nr_task_events);
3589 	if (event->attr.freq)
3590 		atomic_dec(&nr_freq_events);
3591 	if (event->attr.context_switch) {
3592 		static_key_slow_dec_deferred(&perf_sched_events);
3593 		atomic_dec(&nr_switch_events);
3594 	}
3595 	if (is_cgroup_event(event))
3596 		static_key_slow_dec_deferred(&perf_sched_events);
3597 	if (has_branch_stack(event))
3598 		static_key_slow_dec_deferred(&perf_sched_events);
3599 
3600 	unaccount_event_cpu(event, event->cpu);
3601 }
3602 
3603 /*
3604  * The following implement mutual exclusion of events on "exclusive" pmus
3605  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3606  * at a time, so we disallow creating events that might conflict, namely:
3607  *
3608  *  1) cpu-wide events in the presence of per-task events,
3609  *  2) per-task events in the presence of cpu-wide events,
3610  *  3) two matching events on the same context.
3611  *
3612  * The former two cases are handled in the allocation path (perf_event_alloc(),
3613  * __free_event()), the latter -- before the first perf_install_in_context().
3614  */
3615 static int exclusive_event_init(struct perf_event *event)
3616 {
3617 	struct pmu *pmu = event->pmu;
3618 
3619 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3620 		return 0;
3621 
3622 	/*
3623 	 * Prevent co-existence of per-task and cpu-wide events on the
3624 	 * same exclusive pmu.
3625 	 *
3626 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3627 	 * events on this "exclusive" pmu, positive means there are
3628 	 * per-task events.
3629 	 *
3630 	 * Since this is called in perf_event_alloc() path, event::ctx
3631 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3632 	 * to mean "per-task event", because unlike other attach states it
3633 	 * never gets cleared.
3634 	 */
3635 	if (event->attach_state & PERF_ATTACH_TASK) {
3636 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3637 			return -EBUSY;
3638 	} else {
3639 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3640 			return -EBUSY;
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 static void exclusive_event_destroy(struct perf_event *event)
3647 {
3648 	struct pmu *pmu = event->pmu;
3649 
3650 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3651 		return;
3652 
3653 	/* see comment in exclusive_event_init() */
3654 	if (event->attach_state & PERF_ATTACH_TASK)
3655 		atomic_dec(&pmu->exclusive_cnt);
3656 	else
3657 		atomic_inc(&pmu->exclusive_cnt);
3658 }
3659 
3660 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3661 {
3662 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3663 	    (e1->cpu == e2->cpu ||
3664 	     e1->cpu == -1 ||
3665 	     e2->cpu == -1))
3666 		return true;
3667 	return false;
3668 }
3669 
3670 /* Called under the same ctx::mutex as perf_install_in_context() */
3671 static bool exclusive_event_installable(struct perf_event *event,
3672 					struct perf_event_context *ctx)
3673 {
3674 	struct perf_event *iter_event;
3675 	struct pmu *pmu = event->pmu;
3676 
3677 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3678 		return true;
3679 
3680 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3681 		if (exclusive_event_match(iter_event, event))
3682 			return false;
3683 	}
3684 
3685 	return true;
3686 }
3687 
3688 static void __free_event(struct perf_event *event)
3689 {
3690 	if (!event->parent) {
3691 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3692 			put_callchain_buffers();
3693 	}
3694 
3695 	perf_event_free_bpf_prog(event);
3696 
3697 	if (event->destroy)
3698 		event->destroy(event);
3699 
3700 	if (event->ctx)
3701 		put_ctx(event->ctx);
3702 
3703 	if (event->pmu) {
3704 		exclusive_event_destroy(event);
3705 		module_put(event->pmu->module);
3706 	}
3707 
3708 	call_rcu(&event->rcu_head, free_event_rcu);
3709 }
3710 
3711 static void _free_event(struct perf_event *event)
3712 {
3713 	irq_work_sync(&event->pending);
3714 
3715 	unaccount_event(event);
3716 
3717 	if (event->rb) {
3718 		/*
3719 		 * Can happen when we close an event with re-directed output.
3720 		 *
3721 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3722 		 * over us; possibly making our ring_buffer_put() the last.
3723 		 */
3724 		mutex_lock(&event->mmap_mutex);
3725 		ring_buffer_attach(event, NULL);
3726 		mutex_unlock(&event->mmap_mutex);
3727 	}
3728 
3729 	if (is_cgroup_event(event))
3730 		perf_detach_cgroup(event);
3731 
3732 	__free_event(event);
3733 }
3734 
3735 /*
3736  * Used to free events which have a known refcount of 1, such as in error paths
3737  * where the event isn't exposed yet and inherited events.
3738  */
3739 static void free_event(struct perf_event *event)
3740 {
3741 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3742 				"unexpected event refcount: %ld; ptr=%p\n",
3743 				atomic_long_read(&event->refcount), event)) {
3744 		/* leak to avoid use-after-free */
3745 		return;
3746 	}
3747 
3748 	_free_event(event);
3749 }
3750 
3751 /*
3752  * Remove user event from the owner task.
3753  */
3754 static void perf_remove_from_owner(struct perf_event *event)
3755 {
3756 	struct task_struct *owner;
3757 
3758 	rcu_read_lock();
3759 	owner = ACCESS_ONCE(event->owner);
3760 	/*
3761 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3762 	 * !owner it means the list deletion is complete and we can indeed
3763 	 * free this event, otherwise we need to serialize on
3764 	 * owner->perf_event_mutex.
3765 	 */
3766 	smp_read_barrier_depends();
3767 	if (owner) {
3768 		/*
3769 		 * Since delayed_put_task_struct() also drops the last
3770 		 * task reference we can safely take a new reference
3771 		 * while holding the rcu_read_lock().
3772 		 */
3773 		get_task_struct(owner);
3774 	}
3775 	rcu_read_unlock();
3776 
3777 	if (owner) {
3778 		/*
3779 		 * If we're here through perf_event_exit_task() we're already
3780 		 * holding ctx->mutex which would be an inversion wrt. the
3781 		 * normal lock order.
3782 		 *
3783 		 * However we can safely take this lock because its the child
3784 		 * ctx->mutex.
3785 		 */
3786 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3787 
3788 		/*
3789 		 * We have to re-check the event->owner field, if it is cleared
3790 		 * we raced with perf_event_exit_task(), acquiring the mutex
3791 		 * ensured they're done, and we can proceed with freeing the
3792 		 * event.
3793 		 */
3794 		if (event->owner)
3795 			list_del_init(&event->owner_entry);
3796 		mutex_unlock(&owner->perf_event_mutex);
3797 		put_task_struct(owner);
3798 	}
3799 }
3800 
3801 static void put_event(struct perf_event *event)
3802 {
3803 	struct perf_event_context *ctx;
3804 
3805 	if (!atomic_long_dec_and_test(&event->refcount))
3806 		return;
3807 
3808 	if (!is_kernel_event(event))
3809 		perf_remove_from_owner(event);
3810 
3811 	/*
3812 	 * There are two ways this annotation is useful:
3813 	 *
3814 	 *  1) there is a lock recursion from perf_event_exit_task
3815 	 *     see the comment there.
3816 	 *
3817 	 *  2) there is a lock-inversion with mmap_sem through
3818 	 *     perf_read_group(), which takes faults while
3819 	 *     holding ctx->mutex, however this is called after
3820 	 *     the last filedesc died, so there is no possibility
3821 	 *     to trigger the AB-BA case.
3822 	 */
3823 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3824 	WARN_ON_ONCE(ctx->parent_ctx);
3825 	perf_remove_from_context(event, true);
3826 	perf_event_ctx_unlock(event, ctx);
3827 
3828 	_free_event(event);
3829 }
3830 
3831 int perf_event_release_kernel(struct perf_event *event)
3832 {
3833 	put_event(event);
3834 	return 0;
3835 }
3836 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3837 
3838 /*
3839  * Called when the last reference to the file is gone.
3840  */
3841 static int perf_release(struct inode *inode, struct file *file)
3842 {
3843 	put_event(file->private_data);
3844 	return 0;
3845 }
3846 
3847 /*
3848  * Remove all orphanes events from the context.
3849  */
3850 static void orphans_remove_work(struct work_struct *work)
3851 {
3852 	struct perf_event_context *ctx;
3853 	struct perf_event *event, *tmp;
3854 
3855 	ctx = container_of(work, struct perf_event_context,
3856 			   orphans_remove.work);
3857 
3858 	mutex_lock(&ctx->mutex);
3859 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3860 		struct perf_event *parent_event = event->parent;
3861 
3862 		if (!is_orphaned_child(event))
3863 			continue;
3864 
3865 		perf_remove_from_context(event, true);
3866 
3867 		mutex_lock(&parent_event->child_mutex);
3868 		list_del_init(&event->child_list);
3869 		mutex_unlock(&parent_event->child_mutex);
3870 
3871 		free_event(event);
3872 		put_event(parent_event);
3873 	}
3874 
3875 	raw_spin_lock_irq(&ctx->lock);
3876 	ctx->orphans_remove_sched = false;
3877 	raw_spin_unlock_irq(&ctx->lock);
3878 	mutex_unlock(&ctx->mutex);
3879 
3880 	put_ctx(ctx);
3881 }
3882 
3883 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3884 {
3885 	struct perf_event *child;
3886 	u64 total = 0;
3887 
3888 	*enabled = 0;
3889 	*running = 0;
3890 
3891 	mutex_lock(&event->child_mutex);
3892 
3893 	(void)perf_event_read(event, false);
3894 	total += perf_event_count(event);
3895 
3896 	*enabled += event->total_time_enabled +
3897 			atomic64_read(&event->child_total_time_enabled);
3898 	*running += event->total_time_running +
3899 			atomic64_read(&event->child_total_time_running);
3900 
3901 	list_for_each_entry(child, &event->child_list, child_list) {
3902 		(void)perf_event_read(child, false);
3903 		total += perf_event_count(child);
3904 		*enabled += child->total_time_enabled;
3905 		*running += child->total_time_running;
3906 	}
3907 	mutex_unlock(&event->child_mutex);
3908 
3909 	return total;
3910 }
3911 EXPORT_SYMBOL_GPL(perf_event_read_value);
3912 
3913 static int __perf_read_group_add(struct perf_event *leader,
3914 					u64 read_format, u64 *values)
3915 {
3916 	struct perf_event *sub;
3917 	int n = 1; /* skip @nr */
3918 	int ret;
3919 
3920 	ret = perf_event_read(leader, true);
3921 	if (ret)
3922 		return ret;
3923 
3924 	/*
3925 	 * Since we co-schedule groups, {enabled,running} times of siblings
3926 	 * will be identical to those of the leader, so we only publish one
3927 	 * set.
3928 	 */
3929 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3930 		values[n++] += leader->total_time_enabled +
3931 			atomic64_read(&leader->child_total_time_enabled);
3932 	}
3933 
3934 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3935 		values[n++] += leader->total_time_running +
3936 			atomic64_read(&leader->child_total_time_running);
3937 	}
3938 
3939 	/*
3940 	 * Write {count,id} tuples for every sibling.
3941 	 */
3942 	values[n++] += perf_event_count(leader);
3943 	if (read_format & PERF_FORMAT_ID)
3944 		values[n++] = primary_event_id(leader);
3945 
3946 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3947 		values[n++] += perf_event_count(sub);
3948 		if (read_format & PERF_FORMAT_ID)
3949 			values[n++] = primary_event_id(sub);
3950 	}
3951 
3952 	return 0;
3953 }
3954 
3955 static int perf_read_group(struct perf_event *event,
3956 				   u64 read_format, char __user *buf)
3957 {
3958 	struct perf_event *leader = event->group_leader, *child;
3959 	struct perf_event_context *ctx = leader->ctx;
3960 	int ret;
3961 	u64 *values;
3962 
3963 	lockdep_assert_held(&ctx->mutex);
3964 
3965 	values = kzalloc(event->read_size, GFP_KERNEL);
3966 	if (!values)
3967 		return -ENOMEM;
3968 
3969 	values[0] = 1 + leader->nr_siblings;
3970 
3971 	/*
3972 	 * By locking the child_mutex of the leader we effectively
3973 	 * lock the child list of all siblings.. XXX explain how.
3974 	 */
3975 	mutex_lock(&leader->child_mutex);
3976 
3977 	ret = __perf_read_group_add(leader, read_format, values);
3978 	if (ret)
3979 		goto unlock;
3980 
3981 	list_for_each_entry(child, &leader->child_list, child_list) {
3982 		ret = __perf_read_group_add(child, read_format, values);
3983 		if (ret)
3984 			goto unlock;
3985 	}
3986 
3987 	mutex_unlock(&leader->child_mutex);
3988 
3989 	ret = event->read_size;
3990 	if (copy_to_user(buf, values, event->read_size))
3991 		ret = -EFAULT;
3992 	goto out;
3993 
3994 unlock:
3995 	mutex_unlock(&leader->child_mutex);
3996 out:
3997 	kfree(values);
3998 	return ret;
3999 }
4000 
4001 static int perf_read_one(struct perf_event *event,
4002 				 u64 read_format, char __user *buf)
4003 {
4004 	u64 enabled, running;
4005 	u64 values[4];
4006 	int n = 0;
4007 
4008 	values[n++] = perf_event_read_value(event, &enabled, &running);
4009 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4010 		values[n++] = enabled;
4011 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4012 		values[n++] = running;
4013 	if (read_format & PERF_FORMAT_ID)
4014 		values[n++] = primary_event_id(event);
4015 
4016 	if (copy_to_user(buf, values, n * sizeof(u64)))
4017 		return -EFAULT;
4018 
4019 	return n * sizeof(u64);
4020 }
4021 
4022 static bool is_event_hup(struct perf_event *event)
4023 {
4024 	bool no_children;
4025 
4026 	if (event->state != PERF_EVENT_STATE_EXIT)
4027 		return false;
4028 
4029 	mutex_lock(&event->child_mutex);
4030 	no_children = list_empty(&event->child_list);
4031 	mutex_unlock(&event->child_mutex);
4032 	return no_children;
4033 }
4034 
4035 /*
4036  * Read the performance event - simple non blocking version for now
4037  */
4038 static ssize_t
4039 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4040 {
4041 	u64 read_format = event->attr.read_format;
4042 	int ret;
4043 
4044 	/*
4045 	 * Return end-of-file for a read on a event that is in
4046 	 * error state (i.e. because it was pinned but it couldn't be
4047 	 * scheduled on to the CPU at some point).
4048 	 */
4049 	if (event->state == PERF_EVENT_STATE_ERROR)
4050 		return 0;
4051 
4052 	if (count < event->read_size)
4053 		return -ENOSPC;
4054 
4055 	WARN_ON_ONCE(event->ctx->parent_ctx);
4056 	if (read_format & PERF_FORMAT_GROUP)
4057 		ret = perf_read_group(event, read_format, buf);
4058 	else
4059 		ret = perf_read_one(event, read_format, buf);
4060 
4061 	return ret;
4062 }
4063 
4064 static ssize_t
4065 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4066 {
4067 	struct perf_event *event = file->private_data;
4068 	struct perf_event_context *ctx;
4069 	int ret;
4070 
4071 	ctx = perf_event_ctx_lock(event);
4072 	ret = __perf_read(event, buf, count);
4073 	perf_event_ctx_unlock(event, ctx);
4074 
4075 	return ret;
4076 }
4077 
4078 static unsigned int perf_poll(struct file *file, poll_table *wait)
4079 {
4080 	struct perf_event *event = file->private_data;
4081 	struct ring_buffer *rb;
4082 	unsigned int events = POLLHUP;
4083 
4084 	poll_wait(file, &event->waitq, wait);
4085 
4086 	if (is_event_hup(event))
4087 		return events;
4088 
4089 	/*
4090 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4091 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4092 	 */
4093 	mutex_lock(&event->mmap_mutex);
4094 	rb = event->rb;
4095 	if (rb)
4096 		events = atomic_xchg(&rb->poll, 0);
4097 	mutex_unlock(&event->mmap_mutex);
4098 	return events;
4099 }
4100 
4101 static void _perf_event_reset(struct perf_event *event)
4102 {
4103 	(void)perf_event_read(event, false);
4104 	local64_set(&event->count, 0);
4105 	perf_event_update_userpage(event);
4106 }
4107 
4108 /*
4109  * Holding the top-level event's child_mutex means that any
4110  * descendant process that has inherited this event will block
4111  * in sync_child_event if it goes to exit, thus satisfying the
4112  * task existence requirements of perf_event_enable/disable.
4113  */
4114 static void perf_event_for_each_child(struct perf_event *event,
4115 					void (*func)(struct perf_event *))
4116 {
4117 	struct perf_event *child;
4118 
4119 	WARN_ON_ONCE(event->ctx->parent_ctx);
4120 
4121 	mutex_lock(&event->child_mutex);
4122 	func(event);
4123 	list_for_each_entry(child, &event->child_list, child_list)
4124 		func(child);
4125 	mutex_unlock(&event->child_mutex);
4126 }
4127 
4128 static void perf_event_for_each(struct perf_event *event,
4129 				  void (*func)(struct perf_event *))
4130 {
4131 	struct perf_event_context *ctx = event->ctx;
4132 	struct perf_event *sibling;
4133 
4134 	lockdep_assert_held(&ctx->mutex);
4135 
4136 	event = event->group_leader;
4137 
4138 	perf_event_for_each_child(event, func);
4139 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4140 		perf_event_for_each_child(sibling, func);
4141 }
4142 
4143 struct period_event {
4144 	struct perf_event *event;
4145 	u64 value;
4146 };
4147 
4148 static int __perf_event_period(void *info)
4149 {
4150 	struct period_event *pe = info;
4151 	struct perf_event *event = pe->event;
4152 	struct perf_event_context *ctx = event->ctx;
4153 	u64 value = pe->value;
4154 	bool active;
4155 
4156 	raw_spin_lock(&ctx->lock);
4157 	if (event->attr.freq) {
4158 		event->attr.sample_freq = value;
4159 	} else {
4160 		event->attr.sample_period = value;
4161 		event->hw.sample_period = value;
4162 	}
4163 
4164 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4165 	if (active) {
4166 		perf_pmu_disable(ctx->pmu);
4167 		event->pmu->stop(event, PERF_EF_UPDATE);
4168 	}
4169 
4170 	local64_set(&event->hw.period_left, 0);
4171 
4172 	if (active) {
4173 		event->pmu->start(event, PERF_EF_RELOAD);
4174 		perf_pmu_enable(ctx->pmu);
4175 	}
4176 	raw_spin_unlock(&ctx->lock);
4177 
4178 	return 0;
4179 }
4180 
4181 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4182 {
4183 	struct period_event pe = { .event = event, };
4184 	struct perf_event_context *ctx = event->ctx;
4185 	struct task_struct *task;
4186 	u64 value;
4187 
4188 	if (!is_sampling_event(event))
4189 		return -EINVAL;
4190 
4191 	if (copy_from_user(&value, arg, sizeof(value)))
4192 		return -EFAULT;
4193 
4194 	if (!value)
4195 		return -EINVAL;
4196 
4197 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4198 		return -EINVAL;
4199 
4200 	task = ctx->task;
4201 	pe.value = value;
4202 
4203 	if (!task) {
4204 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4205 		return 0;
4206 	}
4207 
4208 retry:
4209 	if (!task_function_call(task, __perf_event_period, &pe))
4210 		return 0;
4211 
4212 	raw_spin_lock_irq(&ctx->lock);
4213 	if (ctx->is_active) {
4214 		raw_spin_unlock_irq(&ctx->lock);
4215 		task = ctx->task;
4216 		goto retry;
4217 	}
4218 
4219 	__perf_event_period(&pe);
4220 	raw_spin_unlock_irq(&ctx->lock);
4221 
4222 	return 0;
4223 }
4224 
4225 static const struct file_operations perf_fops;
4226 
4227 static inline int perf_fget_light(int fd, struct fd *p)
4228 {
4229 	struct fd f = fdget(fd);
4230 	if (!f.file)
4231 		return -EBADF;
4232 
4233 	if (f.file->f_op != &perf_fops) {
4234 		fdput(f);
4235 		return -EBADF;
4236 	}
4237 	*p = f;
4238 	return 0;
4239 }
4240 
4241 static int perf_event_set_output(struct perf_event *event,
4242 				 struct perf_event *output_event);
4243 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4244 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4245 
4246 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4247 {
4248 	void (*func)(struct perf_event *);
4249 	u32 flags = arg;
4250 
4251 	switch (cmd) {
4252 	case PERF_EVENT_IOC_ENABLE:
4253 		func = _perf_event_enable;
4254 		break;
4255 	case PERF_EVENT_IOC_DISABLE:
4256 		func = _perf_event_disable;
4257 		break;
4258 	case PERF_EVENT_IOC_RESET:
4259 		func = _perf_event_reset;
4260 		break;
4261 
4262 	case PERF_EVENT_IOC_REFRESH:
4263 		return _perf_event_refresh(event, arg);
4264 
4265 	case PERF_EVENT_IOC_PERIOD:
4266 		return perf_event_period(event, (u64 __user *)arg);
4267 
4268 	case PERF_EVENT_IOC_ID:
4269 	{
4270 		u64 id = primary_event_id(event);
4271 
4272 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4273 			return -EFAULT;
4274 		return 0;
4275 	}
4276 
4277 	case PERF_EVENT_IOC_SET_OUTPUT:
4278 	{
4279 		int ret;
4280 		if (arg != -1) {
4281 			struct perf_event *output_event;
4282 			struct fd output;
4283 			ret = perf_fget_light(arg, &output);
4284 			if (ret)
4285 				return ret;
4286 			output_event = output.file->private_data;
4287 			ret = perf_event_set_output(event, output_event);
4288 			fdput(output);
4289 		} else {
4290 			ret = perf_event_set_output(event, NULL);
4291 		}
4292 		return ret;
4293 	}
4294 
4295 	case PERF_EVENT_IOC_SET_FILTER:
4296 		return perf_event_set_filter(event, (void __user *)arg);
4297 
4298 	case PERF_EVENT_IOC_SET_BPF:
4299 		return perf_event_set_bpf_prog(event, arg);
4300 
4301 	default:
4302 		return -ENOTTY;
4303 	}
4304 
4305 	if (flags & PERF_IOC_FLAG_GROUP)
4306 		perf_event_for_each(event, func);
4307 	else
4308 		perf_event_for_each_child(event, func);
4309 
4310 	return 0;
4311 }
4312 
4313 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4314 {
4315 	struct perf_event *event = file->private_data;
4316 	struct perf_event_context *ctx;
4317 	long ret;
4318 
4319 	ctx = perf_event_ctx_lock(event);
4320 	ret = _perf_ioctl(event, cmd, arg);
4321 	perf_event_ctx_unlock(event, ctx);
4322 
4323 	return ret;
4324 }
4325 
4326 #ifdef CONFIG_COMPAT
4327 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4328 				unsigned long arg)
4329 {
4330 	switch (_IOC_NR(cmd)) {
4331 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4332 	case _IOC_NR(PERF_EVENT_IOC_ID):
4333 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4334 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4335 			cmd &= ~IOCSIZE_MASK;
4336 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4337 		}
4338 		break;
4339 	}
4340 	return perf_ioctl(file, cmd, arg);
4341 }
4342 #else
4343 # define perf_compat_ioctl NULL
4344 #endif
4345 
4346 int perf_event_task_enable(void)
4347 {
4348 	struct perf_event_context *ctx;
4349 	struct perf_event *event;
4350 
4351 	mutex_lock(&current->perf_event_mutex);
4352 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4353 		ctx = perf_event_ctx_lock(event);
4354 		perf_event_for_each_child(event, _perf_event_enable);
4355 		perf_event_ctx_unlock(event, ctx);
4356 	}
4357 	mutex_unlock(&current->perf_event_mutex);
4358 
4359 	return 0;
4360 }
4361 
4362 int perf_event_task_disable(void)
4363 {
4364 	struct perf_event_context *ctx;
4365 	struct perf_event *event;
4366 
4367 	mutex_lock(&current->perf_event_mutex);
4368 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4369 		ctx = perf_event_ctx_lock(event);
4370 		perf_event_for_each_child(event, _perf_event_disable);
4371 		perf_event_ctx_unlock(event, ctx);
4372 	}
4373 	mutex_unlock(&current->perf_event_mutex);
4374 
4375 	return 0;
4376 }
4377 
4378 static int perf_event_index(struct perf_event *event)
4379 {
4380 	if (event->hw.state & PERF_HES_STOPPED)
4381 		return 0;
4382 
4383 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4384 		return 0;
4385 
4386 	return event->pmu->event_idx(event);
4387 }
4388 
4389 static void calc_timer_values(struct perf_event *event,
4390 				u64 *now,
4391 				u64 *enabled,
4392 				u64 *running)
4393 {
4394 	u64 ctx_time;
4395 
4396 	*now = perf_clock();
4397 	ctx_time = event->shadow_ctx_time + *now;
4398 	*enabled = ctx_time - event->tstamp_enabled;
4399 	*running = ctx_time - event->tstamp_running;
4400 }
4401 
4402 static void perf_event_init_userpage(struct perf_event *event)
4403 {
4404 	struct perf_event_mmap_page *userpg;
4405 	struct ring_buffer *rb;
4406 
4407 	rcu_read_lock();
4408 	rb = rcu_dereference(event->rb);
4409 	if (!rb)
4410 		goto unlock;
4411 
4412 	userpg = rb->user_page;
4413 
4414 	/* Allow new userspace to detect that bit 0 is deprecated */
4415 	userpg->cap_bit0_is_deprecated = 1;
4416 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4417 	userpg->data_offset = PAGE_SIZE;
4418 	userpg->data_size = perf_data_size(rb);
4419 
4420 unlock:
4421 	rcu_read_unlock();
4422 }
4423 
4424 void __weak arch_perf_update_userpage(
4425 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4426 {
4427 }
4428 
4429 /*
4430  * Callers need to ensure there can be no nesting of this function, otherwise
4431  * the seqlock logic goes bad. We can not serialize this because the arch
4432  * code calls this from NMI context.
4433  */
4434 void perf_event_update_userpage(struct perf_event *event)
4435 {
4436 	struct perf_event_mmap_page *userpg;
4437 	struct ring_buffer *rb;
4438 	u64 enabled, running, now;
4439 
4440 	rcu_read_lock();
4441 	rb = rcu_dereference(event->rb);
4442 	if (!rb)
4443 		goto unlock;
4444 
4445 	/*
4446 	 * compute total_time_enabled, total_time_running
4447 	 * based on snapshot values taken when the event
4448 	 * was last scheduled in.
4449 	 *
4450 	 * we cannot simply called update_context_time()
4451 	 * because of locking issue as we can be called in
4452 	 * NMI context
4453 	 */
4454 	calc_timer_values(event, &now, &enabled, &running);
4455 
4456 	userpg = rb->user_page;
4457 	/*
4458 	 * Disable preemption so as to not let the corresponding user-space
4459 	 * spin too long if we get preempted.
4460 	 */
4461 	preempt_disable();
4462 	++userpg->lock;
4463 	barrier();
4464 	userpg->index = perf_event_index(event);
4465 	userpg->offset = perf_event_count(event);
4466 	if (userpg->index)
4467 		userpg->offset -= local64_read(&event->hw.prev_count);
4468 
4469 	userpg->time_enabled = enabled +
4470 			atomic64_read(&event->child_total_time_enabled);
4471 
4472 	userpg->time_running = running +
4473 			atomic64_read(&event->child_total_time_running);
4474 
4475 	arch_perf_update_userpage(event, userpg, now);
4476 
4477 	barrier();
4478 	++userpg->lock;
4479 	preempt_enable();
4480 unlock:
4481 	rcu_read_unlock();
4482 }
4483 
4484 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4485 {
4486 	struct perf_event *event = vma->vm_file->private_data;
4487 	struct ring_buffer *rb;
4488 	int ret = VM_FAULT_SIGBUS;
4489 
4490 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4491 		if (vmf->pgoff == 0)
4492 			ret = 0;
4493 		return ret;
4494 	}
4495 
4496 	rcu_read_lock();
4497 	rb = rcu_dereference(event->rb);
4498 	if (!rb)
4499 		goto unlock;
4500 
4501 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4502 		goto unlock;
4503 
4504 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4505 	if (!vmf->page)
4506 		goto unlock;
4507 
4508 	get_page(vmf->page);
4509 	vmf->page->mapping = vma->vm_file->f_mapping;
4510 	vmf->page->index   = vmf->pgoff;
4511 
4512 	ret = 0;
4513 unlock:
4514 	rcu_read_unlock();
4515 
4516 	return ret;
4517 }
4518 
4519 static void ring_buffer_attach(struct perf_event *event,
4520 			       struct ring_buffer *rb)
4521 {
4522 	struct ring_buffer *old_rb = NULL;
4523 	unsigned long flags;
4524 
4525 	if (event->rb) {
4526 		/*
4527 		 * Should be impossible, we set this when removing
4528 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4529 		 */
4530 		WARN_ON_ONCE(event->rcu_pending);
4531 
4532 		old_rb = event->rb;
4533 		spin_lock_irqsave(&old_rb->event_lock, flags);
4534 		list_del_rcu(&event->rb_entry);
4535 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4536 
4537 		event->rcu_batches = get_state_synchronize_rcu();
4538 		event->rcu_pending = 1;
4539 	}
4540 
4541 	if (rb) {
4542 		if (event->rcu_pending) {
4543 			cond_synchronize_rcu(event->rcu_batches);
4544 			event->rcu_pending = 0;
4545 		}
4546 
4547 		spin_lock_irqsave(&rb->event_lock, flags);
4548 		list_add_rcu(&event->rb_entry, &rb->event_list);
4549 		spin_unlock_irqrestore(&rb->event_lock, flags);
4550 	}
4551 
4552 	rcu_assign_pointer(event->rb, rb);
4553 
4554 	if (old_rb) {
4555 		ring_buffer_put(old_rb);
4556 		/*
4557 		 * Since we detached before setting the new rb, so that we
4558 		 * could attach the new rb, we could have missed a wakeup.
4559 		 * Provide it now.
4560 		 */
4561 		wake_up_all(&event->waitq);
4562 	}
4563 }
4564 
4565 static void ring_buffer_wakeup(struct perf_event *event)
4566 {
4567 	struct ring_buffer *rb;
4568 
4569 	rcu_read_lock();
4570 	rb = rcu_dereference(event->rb);
4571 	if (rb) {
4572 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4573 			wake_up_all(&event->waitq);
4574 	}
4575 	rcu_read_unlock();
4576 }
4577 
4578 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4579 {
4580 	struct ring_buffer *rb;
4581 
4582 	rcu_read_lock();
4583 	rb = rcu_dereference(event->rb);
4584 	if (rb) {
4585 		if (!atomic_inc_not_zero(&rb->refcount))
4586 			rb = NULL;
4587 	}
4588 	rcu_read_unlock();
4589 
4590 	return rb;
4591 }
4592 
4593 void ring_buffer_put(struct ring_buffer *rb)
4594 {
4595 	if (!atomic_dec_and_test(&rb->refcount))
4596 		return;
4597 
4598 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4599 
4600 	call_rcu(&rb->rcu_head, rb_free_rcu);
4601 }
4602 
4603 static void perf_mmap_open(struct vm_area_struct *vma)
4604 {
4605 	struct perf_event *event = vma->vm_file->private_data;
4606 
4607 	atomic_inc(&event->mmap_count);
4608 	atomic_inc(&event->rb->mmap_count);
4609 
4610 	if (vma->vm_pgoff)
4611 		atomic_inc(&event->rb->aux_mmap_count);
4612 
4613 	if (event->pmu->event_mapped)
4614 		event->pmu->event_mapped(event);
4615 }
4616 
4617 /*
4618  * A buffer can be mmap()ed multiple times; either directly through the same
4619  * event, or through other events by use of perf_event_set_output().
4620  *
4621  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4622  * the buffer here, where we still have a VM context. This means we need
4623  * to detach all events redirecting to us.
4624  */
4625 static void perf_mmap_close(struct vm_area_struct *vma)
4626 {
4627 	struct perf_event *event = vma->vm_file->private_data;
4628 
4629 	struct ring_buffer *rb = ring_buffer_get(event);
4630 	struct user_struct *mmap_user = rb->mmap_user;
4631 	int mmap_locked = rb->mmap_locked;
4632 	unsigned long size = perf_data_size(rb);
4633 
4634 	if (event->pmu->event_unmapped)
4635 		event->pmu->event_unmapped(event);
4636 
4637 	/*
4638 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4639 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4640 	 * serialize with perf_mmap here.
4641 	 */
4642 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4643 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4644 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4645 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4646 
4647 		rb_free_aux(rb);
4648 		mutex_unlock(&event->mmap_mutex);
4649 	}
4650 
4651 	atomic_dec(&rb->mmap_count);
4652 
4653 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4654 		goto out_put;
4655 
4656 	ring_buffer_attach(event, NULL);
4657 	mutex_unlock(&event->mmap_mutex);
4658 
4659 	/* If there's still other mmap()s of this buffer, we're done. */
4660 	if (atomic_read(&rb->mmap_count))
4661 		goto out_put;
4662 
4663 	/*
4664 	 * No other mmap()s, detach from all other events that might redirect
4665 	 * into the now unreachable buffer. Somewhat complicated by the
4666 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4667 	 */
4668 again:
4669 	rcu_read_lock();
4670 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4671 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4672 			/*
4673 			 * This event is en-route to free_event() which will
4674 			 * detach it and remove it from the list.
4675 			 */
4676 			continue;
4677 		}
4678 		rcu_read_unlock();
4679 
4680 		mutex_lock(&event->mmap_mutex);
4681 		/*
4682 		 * Check we didn't race with perf_event_set_output() which can
4683 		 * swizzle the rb from under us while we were waiting to
4684 		 * acquire mmap_mutex.
4685 		 *
4686 		 * If we find a different rb; ignore this event, a next
4687 		 * iteration will no longer find it on the list. We have to
4688 		 * still restart the iteration to make sure we're not now
4689 		 * iterating the wrong list.
4690 		 */
4691 		if (event->rb == rb)
4692 			ring_buffer_attach(event, NULL);
4693 
4694 		mutex_unlock(&event->mmap_mutex);
4695 		put_event(event);
4696 
4697 		/*
4698 		 * Restart the iteration; either we're on the wrong list or
4699 		 * destroyed its integrity by doing a deletion.
4700 		 */
4701 		goto again;
4702 	}
4703 	rcu_read_unlock();
4704 
4705 	/*
4706 	 * It could be there's still a few 0-ref events on the list; they'll
4707 	 * get cleaned up by free_event() -- they'll also still have their
4708 	 * ref on the rb and will free it whenever they are done with it.
4709 	 *
4710 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4711 	 * undo the VM accounting.
4712 	 */
4713 
4714 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4715 	vma->vm_mm->pinned_vm -= mmap_locked;
4716 	free_uid(mmap_user);
4717 
4718 out_put:
4719 	ring_buffer_put(rb); /* could be last */
4720 }
4721 
4722 static const struct vm_operations_struct perf_mmap_vmops = {
4723 	.open		= perf_mmap_open,
4724 	.close		= perf_mmap_close, /* non mergable */
4725 	.fault		= perf_mmap_fault,
4726 	.page_mkwrite	= perf_mmap_fault,
4727 };
4728 
4729 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4730 {
4731 	struct perf_event *event = file->private_data;
4732 	unsigned long user_locked, user_lock_limit;
4733 	struct user_struct *user = current_user();
4734 	unsigned long locked, lock_limit;
4735 	struct ring_buffer *rb = NULL;
4736 	unsigned long vma_size;
4737 	unsigned long nr_pages;
4738 	long user_extra = 0, extra = 0;
4739 	int ret = 0, flags = 0;
4740 
4741 	/*
4742 	 * Don't allow mmap() of inherited per-task counters. This would
4743 	 * create a performance issue due to all children writing to the
4744 	 * same rb.
4745 	 */
4746 	if (event->cpu == -1 && event->attr.inherit)
4747 		return -EINVAL;
4748 
4749 	if (!(vma->vm_flags & VM_SHARED))
4750 		return -EINVAL;
4751 
4752 	vma_size = vma->vm_end - vma->vm_start;
4753 
4754 	if (vma->vm_pgoff == 0) {
4755 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4756 	} else {
4757 		/*
4758 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4759 		 * mapped, all subsequent mappings should have the same size
4760 		 * and offset. Must be above the normal perf buffer.
4761 		 */
4762 		u64 aux_offset, aux_size;
4763 
4764 		if (!event->rb)
4765 			return -EINVAL;
4766 
4767 		nr_pages = vma_size / PAGE_SIZE;
4768 
4769 		mutex_lock(&event->mmap_mutex);
4770 		ret = -EINVAL;
4771 
4772 		rb = event->rb;
4773 		if (!rb)
4774 			goto aux_unlock;
4775 
4776 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4777 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4778 
4779 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4780 			goto aux_unlock;
4781 
4782 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4783 			goto aux_unlock;
4784 
4785 		/* already mapped with a different offset */
4786 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4787 			goto aux_unlock;
4788 
4789 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4790 			goto aux_unlock;
4791 
4792 		/* already mapped with a different size */
4793 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4794 			goto aux_unlock;
4795 
4796 		if (!is_power_of_2(nr_pages))
4797 			goto aux_unlock;
4798 
4799 		if (!atomic_inc_not_zero(&rb->mmap_count))
4800 			goto aux_unlock;
4801 
4802 		if (rb_has_aux(rb)) {
4803 			atomic_inc(&rb->aux_mmap_count);
4804 			ret = 0;
4805 			goto unlock;
4806 		}
4807 
4808 		atomic_set(&rb->aux_mmap_count, 1);
4809 		user_extra = nr_pages;
4810 
4811 		goto accounting;
4812 	}
4813 
4814 	/*
4815 	 * If we have rb pages ensure they're a power-of-two number, so we
4816 	 * can do bitmasks instead of modulo.
4817 	 */
4818 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4819 		return -EINVAL;
4820 
4821 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4822 		return -EINVAL;
4823 
4824 	WARN_ON_ONCE(event->ctx->parent_ctx);
4825 again:
4826 	mutex_lock(&event->mmap_mutex);
4827 	if (event->rb) {
4828 		if (event->rb->nr_pages != nr_pages) {
4829 			ret = -EINVAL;
4830 			goto unlock;
4831 		}
4832 
4833 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4834 			/*
4835 			 * Raced against perf_mmap_close() through
4836 			 * perf_event_set_output(). Try again, hope for better
4837 			 * luck.
4838 			 */
4839 			mutex_unlock(&event->mmap_mutex);
4840 			goto again;
4841 		}
4842 
4843 		goto unlock;
4844 	}
4845 
4846 	user_extra = nr_pages + 1;
4847 
4848 accounting:
4849 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4850 
4851 	/*
4852 	 * Increase the limit linearly with more CPUs:
4853 	 */
4854 	user_lock_limit *= num_online_cpus();
4855 
4856 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4857 
4858 	if (user_locked > user_lock_limit)
4859 		extra = user_locked - user_lock_limit;
4860 
4861 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4862 	lock_limit >>= PAGE_SHIFT;
4863 	locked = vma->vm_mm->pinned_vm + extra;
4864 
4865 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4866 		!capable(CAP_IPC_LOCK)) {
4867 		ret = -EPERM;
4868 		goto unlock;
4869 	}
4870 
4871 	WARN_ON(!rb && event->rb);
4872 
4873 	if (vma->vm_flags & VM_WRITE)
4874 		flags |= RING_BUFFER_WRITABLE;
4875 
4876 	if (!rb) {
4877 		rb = rb_alloc(nr_pages,
4878 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4879 			      event->cpu, flags);
4880 
4881 		if (!rb) {
4882 			ret = -ENOMEM;
4883 			goto unlock;
4884 		}
4885 
4886 		atomic_set(&rb->mmap_count, 1);
4887 		rb->mmap_user = get_current_user();
4888 		rb->mmap_locked = extra;
4889 
4890 		ring_buffer_attach(event, rb);
4891 
4892 		perf_event_init_userpage(event);
4893 		perf_event_update_userpage(event);
4894 	} else {
4895 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4896 				   event->attr.aux_watermark, flags);
4897 		if (!ret)
4898 			rb->aux_mmap_locked = extra;
4899 	}
4900 
4901 unlock:
4902 	if (!ret) {
4903 		atomic_long_add(user_extra, &user->locked_vm);
4904 		vma->vm_mm->pinned_vm += extra;
4905 
4906 		atomic_inc(&event->mmap_count);
4907 	} else if (rb) {
4908 		atomic_dec(&rb->mmap_count);
4909 	}
4910 aux_unlock:
4911 	mutex_unlock(&event->mmap_mutex);
4912 
4913 	/*
4914 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4915 	 * vma.
4916 	 */
4917 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4918 	vma->vm_ops = &perf_mmap_vmops;
4919 
4920 	if (event->pmu->event_mapped)
4921 		event->pmu->event_mapped(event);
4922 
4923 	return ret;
4924 }
4925 
4926 static int perf_fasync(int fd, struct file *filp, int on)
4927 {
4928 	struct inode *inode = file_inode(filp);
4929 	struct perf_event *event = filp->private_data;
4930 	int retval;
4931 
4932 	mutex_lock(&inode->i_mutex);
4933 	retval = fasync_helper(fd, filp, on, &event->fasync);
4934 	mutex_unlock(&inode->i_mutex);
4935 
4936 	if (retval < 0)
4937 		return retval;
4938 
4939 	return 0;
4940 }
4941 
4942 static const struct file_operations perf_fops = {
4943 	.llseek			= no_llseek,
4944 	.release		= perf_release,
4945 	.read			= perf_read,
4946 	.poll			= perf_poll,
4947 	.unlocked_ioctl		= perf_ioctl,
4948 	.compat_ioctl		= perf_compat_ioctl,
4949 	.mmap			= perf_mmap,
4950 	.fasync			= perf_fasync,
4951 };
4952 
4953 /*
4954  * Perf event wakeup
4955  *
4956  * If there's data, ensure we set the poll() state and publish everything
4957  * to user-space before waking everybody up.
4958  */
4959 
4960 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4961 {
4962 	/* only the parent has fasync state */
4963 	if (event->parent)
4964 		event = event->parent;
4965 	return &event->fasync;
4966 }
4967 
4968 void perf_event_wakeup(struct perf_event *event)
4969 {
4970 	ring_buffer_wakeup(event);
4971 
4972 	if (event->pending_kill) {
4973 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4974 		event->pending_kill = 0;
4975 	}
4976 }
4977 
4978 static void perf_pending_event(struct irq_work *entry)
4979 {
4980 	struct perf_event *event = container_of(entry,
4981 			struct perf_event, pending);
4982 	int rctx;
4983 
4984 	rctx = perf_swevent_get_recursion_context();
4985 	/*
4986 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4987 	 * and we won't recurse 'further'.
4988 	 */
4989 
4990 	if (event->pending_disable) {
4991 		event->pending_disable = 0;
4992 		__perf_event_disable(event);
4993 	}
4994 
4995 	if (event->pending_wakeup) {
4996 		event->pending_wakeup = 0;
4997 		perf_event_wakeup(event);
4998 	}
4999 
5000 	if (rctx >= 0)
5001 		perf_swevent_put_recursion_context(rctx);
5002 }
5003 
5004 /*
5005  * We assume there is only KVM supporting the callbacks.
5006  * Later on, we might change it to a list if there is
5007  * another virtualization implementation supporting the callbacks.
5008  */
5009 struct perf_guest_info_callbacks *perf_guest_cbs;
5010 
5011 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5012 {
5013 	perf_guest_cbs = cbs;
5014 	return 0;
5015 }
5016 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5017 
5018 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5019 {
5020 	perf_guest_cbs = NULL;
5021 	return 0;
5022 }
5023 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5024 
5025 static void
5026 perf_output_sample_regs(struct perf_output_handle *handle,
5027 			struct pt_regs *regs, u64 mask)
5028 {
5029 	int bit;
5030 
5031 	for_each_set_bit(bit, (const unsigned long *) &mask,
5032 			 sizeof(mask) * BITS_PER_BYTE) {
5033 		u64 val;
5034 
5035 		val = perf_reg_value(regs, bit);
5036 		perf_output_put(handle, val);
5037 	}
5038 }
5039 
5040 static void perf_sample_regs_user(struct perf_regs *regs_user,
5041 				  struct pt_regs *regs,
5042 				  struct pt_regs *regs_user_copy)
5043 {
5044 	if (user_mode(regs)) {
5045 		regs_user->abi = perf_reg_abi(current);
5046 		regs_user->regs = regs;
5047 	} else if (current->mm) {
5048 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5049 	} else {
5050 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5051 		regs_user->regs = NULL;
5052 	}
5053 }
5054 
5055 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5056 				  struct pt_regs *regs)
5057 {
5058 	regs_intr->regs = regs;
5059 	regs_intr->abi  = perf_reg_abi(current);
5060 }
5061 
5062 
5063 /*
5064  * Get remaining task size from user stack pointer.
5065  *
5066  * It'd be better to take stack vma map and limit this more
5067  * precisly, but there's no way to get it safely under interrupt,
5068  * so using TASK_SIZE as limit.
5069  */
5070 static u64 perf_ustack_task_size(struct pt_regs *regs)
5071 {
5072 	unsigned long addr = perf_user_stack_pointer(regs);
5073 
5074 	if (!addr || addr >= TASK_SIZE)
5075 		return 0;
5076 
5077 	return TASK_SIZE - addr;
5078 }
5079 
5080 static u16
5081 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5082 			struct pt_regs *regs)
5083 {
5084 	u64 task_size;
5085 
5086 	/* No regs, no stack pointer, no dump. */
5087 	if (!regs)
5088 		return 0;
5089 
5090 	/*
5091 	 * Check if we fit in with the requested stack size into the:
5092 	 * - TASK_SIZE
5093 	 *   If we don't, we limit the size to the TASK_SIZE.
5094 	 *
5095 	 * - remaining sample size
5096 	 *   If we don't, we customize the stack size to
5097 	 *   fit in to the remaining sample size.
5098 	 */
5099 
5100 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5101 	stack_size = min(stack_size, (u16) task_size);
5102 
5103 	/* Current header size plus static size and dynamic size. */
5104 	header_size += 2 * sizeof(u64);
5105 
5106 	/* Do we fit in with the current stack dump size? */
5107 	if ((u16) (header_size + stack_size) < header_size) {
5108 		/*
5109 		 * If we overflow the maximum size for the sample,
5110 		 * we customize the stack dump size to fit in.
5111 		 */
5112 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5113 		stack_size = round_up(stack_size, sizeof(u64));
5114 	}
5115 
5116 	return stack_size;
5117 }
5118 
5119 static void
5120 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5121 			  struct pt_regs *regs)
5122 {
5123 	/* Case of a kernel thread, nothing to dump */
5124 	if (!regs) {
5125 		u64 size = 0;
5126 		perf_output_put(handle, size);
5127 	} else {
5128 		unsigned long sp;
5129 		unsigned int rem;
5130 		u64 dyn_size;
5131 
5132 		/*
5133 		 * We dump:
5134 		 * static size
5135 		 *   - the size requested by user or the best one we can fit
5136 		 *     in to the sample max size
5137 		 * data
5138 		 *   - user stack dump data
5139 		 * dynamic size
5140 		 *   - the actual dumped size
5141 		 */
5142 
5143 		/* Static size. */
5144 		perf_output_put(handle, dump_size);
5145 
5146 		/* Data. */
5147 		sp = perf_user_stack_pointer(regs);
5148 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5149 		dyn_size = dump_size - rem;
5150 
5151 		perf_output_skip(handle, rem);
5152 
5153 		/* Dynamic size. */
5154 		perf_output_put(handle, dyn_size);
5155 	}
5156 }
5157 
5158 static void __perf_event_header__init_id(struct perf_event_header *header,
5159 					 struct perf_sample_data *data,
5160 					 struct perf_event *event)
5161 {
5162 	u64 sample_type = event->attr.sample_type;
5163 
5164 	data->type = sample_type;
5165 	header->size += event->id_header_size;
5166 
5167 	if (sample_type & PERF_SAMPLE_TID) {
5168 		/* namespace issues */
5169 		data->tid_entry.pid = perf_event_pid(event, current);
5170 		data->tid_entry.tid = perf_event_tid(event, current);
5171 	}
5172 
5173 	if (sample_type & PERF_SAMPLE_TIME)
5174 		data->time = perf_event_clock(event);
5175 
5176 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5177 		data->id = primary_event_id(event);
5178 
5179 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5180 		data->stream_id = event->id;
5181 
5182 	if (sample_type & PERF_SAMPLE_CPU) {
5183 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5184 		data->cpu_entry.reserved = 0;
5185 	}
5186 }
5187 
5188 void perf_event_header__init_id(struct perf_event_header *header,
5189 				struct perf_sample_data *data,
5190 				struct perf_event *event)
5191 {
5192 	if (event->attr.sample_id_all)
5193 		__perf_event_header__init_id(header, data, event);
5194 }
5195 
5196 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5197 					   struct perf_sample_data *data)
5198 {
5199 	u64 sample_type = data->type;
5200 
5201 	if (sample_type & PERF_SAMPLE_TID)
5202 		perf_output_put(handle, data->tid_entry);
5203 
5204 	if (sample_type & PERF_SAMPLE_TIME)
5205 		perf_output_put(handle, data->time);
5206 
5207 	if (sample_type & PERF_SAMPLE_ID)
5208 		perf_output_put(handle, data->id);
5209 
5210 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5211 		perf_output_put(handle, data->stream_id);
5212 
5213 	if (sample_type & PERF_SAMPLE_CPU)
5214 		perf_output_put(handle, data->cpu_entry);
5215 
5216 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5217 		perf_output_put(handle, data->id);
5218 }
5219 
5220 void perf_event__output_id_sample(struct perf_event *event,
5221 				  struct perf_output_handle *handle,
5222 				  struct perf_sample_data *sample)
5223 {
5224 	if (event->attr.sample_id_all)
5225 		__perf_event__output_id_sample(handle, sample);
5226 }
5227 
5228 static void perf_output_read_one(struct perf_output_handle *handle,
5229 				 struct perf_event *event,
5230 				 u64 enabled, u64 running)
5231 {
5232 	u64 read_format = event->attr.read_format;
5233 	u64 values[4];
5234 	int n = 0;
5235 
5236 	values[n++] = perf_event_count(event);
5237 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5238 		values[n++] = enabled +
5239 			atomic64_read(&event->child_total_time_enabled);
5240 	}
5241 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5242 		values[n++] = running +
5243 			atomic64_read(&event->child_total_time_running);
5244 	}
5245 	if (read_format & PERF_FORMAT_ID)
5246 		values[n++] = primary_event_id(event);
5247 
5248 	__output_copy(handle, values, n * sizeof(u64));
5249 }
5250 
5251 /*
5252  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5253  */
5254 static void perf_output_read_group(struct perf_output_handle *handle,
5255 			    struct perf_event *event,
5256 			    u64 enabled, u64 running)
5257 {
5258 	struct perf_event *leader = event->group_leader, *sub;
5259 	u64 read_format = event->attr.read_format;
5260 	u64 values[5];
5261 	int n = 0;
5262 
5263 	values[n++] = 1 + leader->nr_siblings;
5264 
5265 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5266 		values[n++] = enabled;
5267 
5268 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5269 		values[n++] = running;
5270 
5271 	if (leader != event)
5272 		leader->pmu->read(leader);
5273 
5274 	values[n++] = perf_event_count(leader);
5275 	if (read_format & PERF_FORMAT_ID)
5276 		values[n++] = primary_event_id(leader);
5277 
5278 	__output_copy(handle, values, n * sizeof(u64));
5279 
5280 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5281 		n = 0;
5282 
5283 		if ((sub != event) &&
5284 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5285 			sub->pmu->read(sub);
5286 
5287 		values[n++] = perf_event_count(sub);
5288 		if (read_format & PERF_FORMAT_ID)
5289 			values[n++] = primary_event_id(sub);
5290 
5291 		__output_copy(handle, values, n * sizeof(u64));
5292 	}
5293 }
5294 
5295 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5296 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5297 
5298 static void perf_output_read(struct perf_output_handle *handle,
5299 			     struct perf_event *event)
5300 {
5301 	u64 enabled = 0, running = 0, now;
5302 	u64 read_format = event->attr.read_format;
5303 
5304 	/*
5305 	 * compute total_time_enabled, total_time_running
5306 	 * based on snapshot values taken when the event
5307 	 * was last scheduled in.
5308 	 *
5309 	 * we cannot simply called update_context_time()
5310 	 * because of locking issue as we are called in
5311 	 * NMI context
5312 	 */
5313 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5314 		calc_timer_values(event, &now, &enabled, &running);
5315 
5316 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5317 		perf_output_read_group(handle, event, enabled, running);
5318 	else
5319 		perf_output_read_one(handle, event, enabled, running);
5320 }
5321 
5322 void perf_output_sample(struct perf_output_handle *handle,
5323 			struct perf_event_header *header,
5324 			struct perf_sample_data *data,
5325 			struct perf_event *event)
5326 {
5327 	u64 sample_type = data->type;
5328 
5329 	perf_output_put(handle, *header);
5330 
5331 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5332 		perf_output_put(handle, data->id);
5333 
5334 	if (sample_type & PERF_SAMPLE_IP)
5335 		perf_output_put(handle, data->ip);
5336 
5337 	if (sample_type & PERF_SAMPLE_TID)
5338 		perf_output_put(handle, data->tid_entry);
5339 
5340 	if (sample_type & PERF_SAMPLE_TIME)
5341 		perf_output_put(handle, data->time);
5342 
5343 	if (sample_type & PERF_SAMPLE_ADDR)
5344 		perf_output_put(handle, data->addr);
5345 
5346 	if (sample_type & PERF_SAMPLE_ID)
5347 		perf_output_put(handle, data->id);
5348 
5349 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5350 		perf_output_put(handle, data->stream_id);
5351 
5352 	if (sample_type & PERF_SAMPLE_CPU)
5353 		perf_output_put(handle, data->cpu_entry);
5354 
5355 	if (sample_type & PERF_SAMPLE_PERIOD)
5356 		perf_output_put(handle, data->period);
5357 
5358 	if (sample_type & PERF_SAMPLE_READ)
5359 		perf_output_read(handle, event);
5360 
5361 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5362 		if (data->callchain) {
5363 			int size = 1;
5364 
5365 			if (data->callchain)
5366 				size += data->callchain->nr;
5367 
5368 			size *= sizeof(u64);
5369 
5370 			__output_copy(handle, data->callchain, size);
5371 		} else {
5372 			u64 nr = 0;
5373 			perf_output_put(handle, nr);
5374 		}
5375 	}
5376 
5377 	if (sample_type & PERF_SAMPLE_RAW) {
5378 		if (data->raw) {
5379 			u32 raw_size = data->raw->size;
5380 			u32 real_size = round_up(raw_size + sizeof(u32),
5381 						 sizeof(u64)) - sizeof(u32);
5382 			u64 zero = 0;
5383 
5384 			perf_output_put(handle, real_size);
5385 			__output_copy(handle, data->raw->data, raw_size);
5386 			if (real_size - raw_size)
5387 				__output_copy(handle, &zero, real_size - raw_size);
5388 		} else {
5389 			struct {
5390 				u32	size;
5391 				u32	data;
5392 			} raw = {
5393 				.size = sizeof(u32),
5394 				.data = 0,
5395 			};
5396 			perf_output_put(handle, raw);
5397 		}
5398 	}
5399 
5400 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5401 		if (data->br_stack) {
5402 			size_t size;
5403 
5404 			size = data->br_stack->nr
5405 			     * sizeof(struct perf_branch_entry);
5406 
5407 			perf_output_put(handle, data->br_stack->nr);
5408 			perf_output_copy(handle, data->br_stack->entries, size);
5409 		} else {
5410 			/*
5411 			 * we always store at least the value of nr
5412 			 */
5413 			u64 nr = 0;
5414 			perf_output_put(handle, nr);
5415 		}
5416 	}
5417 
5418 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5419 		u64 abi = data->regs_user.abi;
5420 
5421 		/*
5422 		 * If there are no regs to dump, notice it through
5423 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5424 		 */
5425 		perf_output_put(handle, abi);
5426 
5427 		if (abi) {
5428 			u64 mask = event->attr.sample_regs_user;
5429 			perf_output_sample_regs(handle,
5430 						data->regs_user.regs,
5431 						mask);
5432 		}
5433 	}
5434 
5435 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5436 		perf_output_sample_ustack(handle,
5437 					  data->stack_user_size,
5438 					  data->regs_user.regs);
5439 	}
5440 
5441 	if (sample_type & PERF_SAMPLE_WEIGHT)
5442 		perf_output_put(handle, data->weight);
5443 
5444 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5445 		perf_output_put(handle, data->data_src.val);
5446 
5447 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5448 		perf_output_put(handle, data->txn);
5449 
5450 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5451 		u64 abi = data->regs_intr.abi;
5452 		/*
5453 		 * If there are no regs to dump, notice it through
5454 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5455 		 */
5456 		perf_output_put(handle, abi);
5457 
5458 		if (abi) {
5459 			u64 mask = event->attr.sample_regs_intr;
5460 
5461 			perf_output_sample_regs(handle,
5462 						data->regs_intr.regs,
5463 						mask);
5464 		}
5465 	}
5466 
5467 	if (!event->attr.watermark) {
5468 		int wakeup_events = event->attr.wakeup_events;
5469 
5470 		if (wakeup_events) {
5471 			struct ring_buffer *rb = handle->rb;
5472 			int events = local_inc_return(&rb->events);
5473 
5474 			if (events >= wakeup_events) {
5475 				local_sub(wakeup_events, &rb->events);
5476 				local_inc(&rb->wakeup);
5477 			}
5478 		}
5479 	}
5480 }
5481 
5482 void perf_prepare_sample(struct perf_event_header *header,
5483 			 struct perf_sample_data *data,
5484 			 struct perf_event *event,
5485 			 struct pt_regs *regs)
5486 {
5487 	u64 sample_type = event->attr.sample_type;
5488 
5489 	header->type = PERF_RECORD_SAMPLE;
5490 	header->size = sizeof(*header) + event->header_size;
5491 
5492 	header->misc = 0;
5493 	header->misc |= perf_misc_flags(regs);
5494 
5495 	__perf_event_header__init_id(header, data, event);
5496 
5497 	if (sample_type & PERF_SAMPLE_IP)
5498 		data->ip = perf_instruction_pointer(regs);
5499 
5500 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5501 		int size = 1;
5502 
5503 		data->callchain = perf_callchain(event, regs);
5504 
5505 		if (data->callchain)
5506 			size += data->callchain->nr;
5507 
5508 		header->size += size * sizeof(u64);
5509 	}
5510 
5511 	if (sample_type & PERF_SAMPLE_RAW) {
5512 		int size = sizeof(u32);
5513 
5514 		if (data->raw)
5515 			size += data->raw->size;
5516 		else
5517 			size += sizeof(u32);
5518 
5519 		header->size += round_up(size, sizeof(u64));
5520 	}
5521 
5522 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5523 		int size = sizeof(u64); /* nr */
5524 		if (data->br_stack) {
5525 			size += data->br_stack->nr
5526 			      * sizeof(struct perf_branch_entry);
5527 		}
5528 		header->size += size;
5529 	}
5530 
5531 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5532 		perf_sample_regs_user(&data->regs_user, regs,
5533 				      &data->regs_user_copy);
5534 
5535 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5536 		/* regs dump ABI info */
5537 		int size = sizeof(u64);
5538 
5539 		if (data->regs_user.regs) {
5540 			u64 mask = event->attr.sample_regs_user;
5541 			size += hweight64(mask) * sizeof(u64);
5542 		}
5543 
5544 		header->size += size;
5545 	}
5546 
5547 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5548 		/*
5549 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5550 		 * processed as the last one or have additional check added
5551 		 * in case new sample type is added, because we could eat
5552 		 * up the rest of the sample size.
5553 		 */
5554 		u16 stack_size = event->attr.sample_stack_user;
5555 		u16 size = sizeof(u64);
5556 
5557 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5558 						     data->regs_user.regs);
5559 
5560 		/*
5561 		 * If there is something to dump, add space for the dump
5562 		 * itself and for the field that tells the dynamic size,
5563 		 * which is how many have been actually dumped.
5564 		 */
5565 		if (stack_size)
5566 			size += sizeof(u64) + stack_size;
5567 
5568 		data->stack_user_size = stack_size;
5569 		header->size += size;
5570 	}
5571 
5572 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5573 		/* regs dump ABI info */
5574 		int size = sizeof(u64);
5575 
5576 		perf_sample_regs_intr(&data->regs_intr, regs);
5577 
5578 		if (data->regs_intr.regs) {
5579 			u64 mask = event->attr.sample_regs_intr;
5580 
5581 			size += hweight64(mask) * sizeof(u64);
5582 		}
5583 
5584 		header->size += size;
5585 	}
5586 }
5587 
5588 void perf_event_output(struct perf_event *event,
5589 			struct perf_sample_data *data,
5590 			struct pt_regs *regs)
5591 {
5592 	struct perf_output_handle handle;
5593 	struct perf_event_header header;
5594 
5595 	/* protect the callchain buffers */
5596 	rcu_read_lock();
5597 
5598 	perf_prepare_sample(&header, data, event, regs);
5599 
5600 	if (perf_output_begin(&handle, event, header.size))
5601 		goto exit;
5602 
5603 	perf_output_sample(&handle, &header, data, event);
5604 
5605 	perf_output_end(&handle);
5606 
5607 exit:
5608 	rcu_read_unlock();
5609 }
5610 
5611 /*
5612  * read event_id
5613  */
5614 
5615 struct perf_read_event {
5616 	struct perf_event_header	header;
5617 
5618 	u32				pid;
5619 	u32				tid;
5620 };
5621 
5622 static void
5623 perf_event_read_event(struct perf_event *event,
5624 			struct task_struct *task)
5625 {
5626 	struct perf_output_handle handle;
5627 	struct perf_sample_data sample;
5628 	struct perf_read_event read_event = {
5629 		.header = {
5630 			.type = PERF_RECORD_READ,
5631 			.misc = 0,
5632 			.size = sizeof(read_event) + event->read_size,
5633 		},
5634 		.pid = perf_event_pid(event, task),
5635 		.tid = perf_event_tid(event, task),
5636 	};
5637 	int ret;
5638 
5639 	perf_event_header__init_id(&read_event.header, &sample, event);
5640 	ret = perf_output_begin(&handle, event, read_event.header.size);
5641 	if (ret)
5642 		return;
5643 
5644 	perf_output_put(&handle, read_event);
5645 	perf_output_read(&handle, event);
5646 	perf_event__output_id_sample(event, &handle, &sample);
5647 
5648 	perf_output_end(&handle);
5649 }
5650 
5651 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5652 
5653 static void
5654 perf_event_aux_ctx(struct perf_event_context *ctx,
5655 		   perf_event_aux_output_cb output,
5656 		   void *data)
5657 {
5658 	struct perf_event *event;
5659 
5660 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5661 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5662 			continue;
5663 		if (!event_filter_match(event))
5664 			continue;
5665 		output(event, data);
5666 	}
5667 }
5668 
5669 static void
5670 perf_event_aux(perf_event_aux_output_cb output, void *data,
5671 	       struct perf_event_context *task_ctx)
5672 {
5673 	struct perf_cpu_context *cpuctx;
5674 	struct perf_event_context *ctx;
5675 	struct pmu *pmu;
5676 	int ctxn;
5677 
5678 	rcu_read_lock();
5679 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5680 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5681 		if (cpuctx->unique_pmu != pmu)
5682 			goto next;
5683 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5684 		if (task_ctx)
5685 			goto next;
5686 		ctxn = pmu->task_ctx_nr;
5687 		if (ctxn < 0)
5688 			goto next;
5689 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5690 		if (ctx)
5691 			perf_event_aux_ctx(ctx, output, data);
5692 next:
5693 		put_cpu_ptr(pmu->pmu_cpu_context);
5694 	}
5695 
5696 	if (task_ctx) {
5697 		preempt_disable();
5698 		perf_event_aux_ctx(task_ctx, output, data);
5699 		preempt_enable();
5700 	}
5701 	rcu_read_unlock();
5702 }
5703 
5704 /*
5705  * task tracking -- fork/exit
5706  *
5707  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5708  */
5709 
5710 struct perf_task_event {
5711 	struct task_struct		*task;
5712 	struct perf_event_context	*task_ctx;
5713 
5714 	struct {
5715 		struct perf_event_header	header;
5716 
5717 		u32				pid;
5718 		u32				ppid;
5719 		u32				tid;
5720 		u32				ptid;
5721 		u64				time;
5722 	} event_id;
5723 };
5724 
5725 static int perf_event_task_match(struct perf_event *event)
5726 {
5727 	return event->attr.comm  || event->attr.mmap ||
5728 	       event->attr.mmap2 || event->attr.mmap_data ||
5729 	       event->attr.task;
5730 }
5731 
5732 static void perf_event_task_output(struct perf_event *event,
5733 				   void *data)
5734 {
5735 	struct perf_task_event *task_event = data;
5736 	struct perf_output_handle handle;
5737 	struct perf_sample_data	sample;
5738 	struct task_struct *task = task_event->task;
5739 	int ret, size = task_event->event_id.header.size;
5740 
5741 	if (!perf_event_task_match(event))
5742 		return;
5743 
5744 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5745 
5746 	ret = perf_output_begin(&handle, event,
5747 				task_event->event_id.header.size);
5748 	if (ret)
5749 		goto out;
5750 
5751 	task_event->event_id.pid = perf_event_pid(event, task);
5752 	task_event->event_id.ppid = perf_event_pid(event, current);
5753 
5754 	task_event->event_id.tid = perf_event_tid(event, task);
5755 	task_event->event_id.ptid = perf_event_tid(event, current);
5756 
5757 	task_event->event_id.time = perf_event_clock(event);
5758 
5759 	perf_output_put(&handle, task_event->event_id);
5760 
5761 	perf_event__output_id_sample(event, &handle, &sample);
5762 
5763 	perf_output_end(&handle);
5764 out:
5765 	task_event->event_id.header.size = size;
5766 }
5767 
5768 static void perf_event_task(struct task_struct *task,
5769 			      struct perf_event_context *task_ctx,
5770 			      int new)
5771 {
5772 	struct perf_task_event task_event;
5773 
5774 	if (!atomic_read(&nr_comm_events) &&
5775 	    !atomic_read(&nr_mmap_events) &&
5776 	    !atomic_read(&nr_task_events))
5777 		return;
5778 
5779 	task_event = (struct perf_task_event){
5780 		.task	  = task,
5781 		.task_ctx = task_ctx,
5782 		.event_id    = {
5783 			.header = {
5784 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5785 				.misc = 0,
5786 				.size = sizeof(task_event.event_id),
5787 			},
5788 			/* .pid  */
5789 			/* .ppid */
5790 			/* .tid  */
5791 			/* .ptid */
5792 			/* .time */
5793 		},
5794 	};
5795 
5796 	perf_event_aux(perf_event_task_output,
5797 		       &task_event,
5798 		       task_ctx);
5799 }
5800 
5801 void perf_event_fork(struct task_struct *task)
5802 {
5803 	perf_event_task(task, NULL, 1);
5804 }
5805 
5806 /*
5807  * comm tracking
5808  */
5809 
5810 struct perf_comm_event {
5811 	struct task_struct	*task;
5812 	char			*comm;
5813 	int			comm_size;
5814 
5815 	struct {
5816 		struct perf_event_header	header;
5817 
5818 		u32				pid;
5819 		u32				tid;
5820 	} event_id;
5821 };
5822 
5823 static int perf_event_comm_match(struct perf_event *event)
5824 {
5825 	return event->attr.comm;
5826 }
5827 
5828 static void perf_event_comm_output(struct perf_event *event,
5829 				   void *data)
5830 {
5831 	struct perf_comm_event *comm_event = data;
5832 	struct perf_output_handle handle;
5833 	struct perf_sample_data sample;
5834 	int size = comm_event->event_id.header.size;
5835 	int ret;
5836 
5837 	if (!perf_event_comm_match(event))
5838 		return;
5839 
5840 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5841 	ret = perf_output_begin(&handle, event,
5842 				comm_event->event_id.header.size);
5843 
5844 	if (ret)
5845 		goto out;
5846 
5847 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5848 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5849 
5850 	perf_output_put(&handle, comm_event->event_id);
5851 	__output_copy(&handle, comm_event->comm,
5852 				   comm_event->comm_size);
5853 
5854 	perf_event__output_id_sample(event, &handle, &sample);
5855 
5856 	perf_output_end(&handle);
5857 out:
5858 	comm_event->event_id.header.size = size;
5859 }
5860 
5861 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5862 {
5863 	char comm[TASK_COMM_LEN];
5864 	unsigned int size;
5865 
5866 	memset(comm, 0, sizeof(comm));
5867 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5868 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5869 
5870 	comm_event->comm = comm;
5871 	comm_event->comm_size = size;
5872 
5873 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5874 
5875 	perf_event_aux(perf_event_comm_output,
5876 		       comm_event,
5877 		       NULL);
5878 }
5879 
5880 void perf_event_comm(struct task_struct *task, bool exec)
5881 {
5882 	struct perf_comm_event comm_event;
5883 
5884 	if (!atomic_read(&nr_comm_events))
5885 		return;
5886 
5887 	comm_event = (struct perf_comm_event){
5888 		.task	= task,
5889 		/* .comm      */
5890 		/* .comm_size */
5891 		.event_id  = {
5892 			.header = {
5893 				.type = PERF_RECORD_COMM,
5894 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5895 				/* .size */
5896 			},
5897 			/* .pid */
5898 			/* .tid */
5899 		},
5900 	};
5901 
5902 	perf_event_comm_event(&comm_event);
5903 }
5904 
5905 /*
5906  * mmap tracking
5907  */
5908 
5909 struct perf_mmap_event {
5910 	struct vm_area_struct	*vma;
5911 
5912 	const char		*file_name;
5913 	int			file_size;
5914 	int			maj, min;
5915 	u64			ino;
5916 	u64			ino_generation;
5917 	u32			prot, flags;
5918 
5919 	struct {
5920 		struct perf_event_header	header;
5921 
5922 		u32				pid;
5923 		u32				tid;
5924 		u64				start;
5925 		u64				len;
5926 		u64				pgoff;
5927 	} event_id;
5928 };
5929 
5930 static int perf_event_mmap_match(struct perf_event *event,
5931 				 void *data)
5932 {
5933 	struct perf_mmap_event *mmap_event = data;
5934 	struct vm_area_struct *vma = mmap_event->vma;
5935 	int executable = vma->vm_flags & VM_EXEC;
5936 
5937 	return (!executable && event->attr.mmap_data) ||
5938 	       (executable && (event->attr.mmap || event->attr.mmap2));
5939 }
5940 
5941 static void perf_event_mmap_output(struct perf_event *event,
5942 				   void *data)
5943 {
5944 	struct perf_mmap_event *mmap_event = data;
5945 	struct perf_output_handle handle;
5946 	struct perf_sample_data sample;
5947 	int size = mmap_event->event_id.header.size;
5948 	int ret;
5949 
5950 	if (!perf_event_mmap_match(event, data))
5951 		return;
5952 
5953 	if (event->attr.mmap2) {
5954 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5955 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5956 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5957 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5958 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5959 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5960 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5961 	}
5962 
5963 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5964 	ret = perf_output_begin(&handle, event,
5965 				mmap_event->event_id.header.size);
5966 	if (ret)
5967 		goto out;
5968 
5969 	mmap_event->event_id.pid = perf_event_pid(event, current);
5970 	mmap_event->event_id.tid = perf_event_tid(event, current);
5971 
5972 	perf_output_put(&handle, mmap_event->event_id);
5973 
5974 	if (event->attr.mmap2) {
5975 		perf_output_put(&handle, mmap_event->maj);
5976 		perf_output_put(&handle, mmap_event->min);
5977 		perf_output_put(&handle, mmap_event->ino);
5978 		perf_output_put(&handle, mmap_event->ino_generation);
5979 		perf_output_put(&handle, mmap_event->prot);
5980 		perf_output_put(&handle, mmap_event->flags);
5981 	}
5982 
5983 	__output_copy(&handle, mmap_event->file_name,
5984 				   mmap_event->file_size);
5985 
5986 	perf_event__output_id_sample(event, &handle, &sample);
5987 
5988 	perf_output_end(&handle);
5989 out:
5990 	mmap_event->event_id.header.size = size;
5991 }
5992 
5993 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5994 {
5995 	struct vm_area_struct *vma = mmap_event->vma;
5996 	struct file *file = vma->vm_file;
5997 	int maj = 0, min = 0;
5998 	u64 ino = 0, gen = 0;
5999 	u32 prot = 0, flags = 0;
6000 	unsigned int size;
6001 	char tmp[16];
6002 	char *buf = NULL;
6003 	char *name;
6004 
6005 	if (file) {
6006 		struct inode *inode;
6007 		dev_t dev;
6008 
6009 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6010 		if (!buf) {
6011 			name = "//enomem";
6012 			goto cpy_name;
6013 		}
6014 		/*
6015 		 * d_path() works from the end of the rb backwards, so we
6016 		 * need to add enough zero bytes after the string to handle
6017 		 * the 64bit alignment we do later.
6018 		 */
6019 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6020 		if (IS_ERR(name)) {
6021 			name = "//toolong";
6022 			goto cpy_name;
6023 		}
6024 		inode = file_inode(vma->vm_file);
6025 		dev = inode->i_sb->s_dev;
6026 		ino = inode->i_ino;
6027 		gen = inode->i_generation;
6028 		maj = MAJOR(dev);
6029 		min = MINOR(dev);
6030 
6031 		if (vma->vm_flags & VM_READ)
6032 			prot |= PROT_READ;
6033 		if (vma->vm_flags & VM_WRITE)
6034 			prot |= PROT_WRITE;
6035 		if (vma->vm_flags & VM_EXEC)
6036 			prot |= PROT_EXEC;
6037 
6038 		if (vma->vm_flags & VM_MAYSHARE)
6039 			flags = MAP_SHARED;
6040 		else
6041 			flags = MAP_PRIVATE;
6042 
6043 		if (vma->vm_flags & VM_DENYWRITE)
6044 			flags |= MAP_DENYWRITE;
6045 		if (vma->vm_flags & VM_MAYEXEC)
6046 			flags |= MAP_EXECUTABLE;
6047 		if (vma->vm_flags & VM_LOCKED)
6048 			flags |= MAP_LOCKED;
6049 		if (vma->vm_flags & VM_HUGETLB)
6050 			flags |= MAP_HUGETLB;
6051 
6052 		goto got_name;
6053 	} else {
6054 		if (vma->vm_ops && vma->vm_ops->name) {
6055 			name = (char *) vma->vm_ops->name(vma);
6056 			if (name)
6057 				goto cpy_name;
6058 		}
6059 
6060 		name = (char *)arch_vma_name(vma);
6061 		if (name)
6062 			goto cpy_name;
6063 
6064 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6065 				vma->vm_end >= vma->vm_mm->brk) {
6066 			name = "[heap]";
6067 			goto cpy_name;
6068 		}
6069 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6070 				vma->vm_end >= vma->vm_mm->start_stack) {
6071 			name = "[stack]";
6072 			goto cpy_name;
6073 		}
6074 
6075 		name = "//anon";
6076 		goto cpy_name;
6077 	}
6078 
6079 cpy_name:
6080 	strlcpy(tmp, name, sizeof(tmp));
6081 	name = tmp;
6082 got_name:
6083 	/*
6084 	 * Since our buffer works in 8 byte units we need to align our string
6085 	 * size to a multiple of 8. However, we must guarantee the tail end is
6086 	 * zero'd out to avoid leaking random bits to userspace.
6087 	 */
6088 	size = strlen(name)+1;
6089 	while (!IS_ALIGNED(size, sizeof(u64)))
6090 		name[size++] = '\0';
6091 
6092 	mmap_event->file_name = name;
6093 	mmap_event->file_size = size;
6094 	mmap_event->maj = maj;
6095 	mmap_event->min = min;
6096 	mmap_event->ino = ino;
6097 	mmap_event->ino_generation = gen;
6098 	mmap_event->prot = prot;
6099 	mmap_event->flags = flags;
6100 
6101 	if (!(vma->vm_flags & VM_EXEC))
6102 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6103 
6104 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6105 
6106 	perf_event_aux(perf_event_mmap_output,
6107 		       mmap_event,
6108 		       NULL);
6109 
6110 	kfree(buf);
6111 }
6112 
6113 void perf_event_mmap(struct vm_area_struct *vma)
6114 {
6115 	struct perf_mmap_event mmap_event;
6116 
6117 	if (!atomic_read(&nr_mmap_events))
6118 		return;
6119 
6120 	mmap_event = (struct perf_mmap_event){
6121 		.vma	= vma,
6122 		/* .file_name */
6123 		/* .file_size */
6124 		.event_id  = {
6125 			.header = {
6126 				.type = PERF_RECORD_MMAP,
6127 				.misc = PERF_RECORD_MISC_USER,
6128 				/* .size */
6129 			},
6130 			/* .pid */
6131 			/* .tid */
6132 			.start  = vma->vm_start,
6133 			.len    = vma->vm_end - vma->vm_start,
6134 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6135 		},
6136 		/* .maj (attr_mmap2 only) */
6137 		/* .min (attr_mmap2 only) */
6138 		/* .ino (attr_mmap2 only) */
6139 		/* .ino_generation (attr_mmap2 only) */
6140 		/* .prot (attr_mmap2 only) */
6141 		/* .flags (attr_mmap2 only) */
6142 	};
6143 
6144 	perf_event_mmap_event(&mmap_event);
6145 }
6146 
6147 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6148 			  unsigned long size, u64 flags)
6149 {
6150 	struct perf_output_handle handle;
6151 	struct perf_sample_data sample;
6152 	struct perf_aux_event {
6153 		struct perf_event_header	header;
6154 		u64				offset;
6155 		u64				size;
6156 		u64				flags;
6157 	} rec = {
6158 		.header = {
6159 			.type = PERF_RECORD_AUX,
6160 			.misc = 0,
6161 			.size = sizeof(rec),
6162 		},
6163 		.offset		= head,
6164 		.size		= size,
6165 		.flags		= flags,
6166 	};
6167 	int ret;
6168 
6169 	perf_event_header__init_id(&rec.header, &sample, event);
6170 	ret = perf_output_begin(&handle, event, rec.header.size);
6171 
6172 	if (ret)
6173 		return;
6174 
6175 	perf_output_put(&handle, rec);
6176 	perf_event__output_id_sample(event, &handle, &sample);
6177 
6178 	perf_output_end(&handle);
6179 }
6180 
6181 /*
6182  * Lost/dropped samples logging
6183  */
6184 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6185 {
6186 	struct perf_output_handle handle;
6187 	struct perf_sample_data sample;
6188 	int ret;
6189 
6190 	struct {
6191 		struct perf_event_header	header;
6192 		u64				lost;
6193 	} lost_samples_event = {
6194 		.header = {
6195 			.type = PERF_RECORD_LOST_SAMPLES,
6196 			.misc = 0,
6197 			.size = sizeof(lost_samples_event),
6198 		},
6199 		.lost		= lost,
6200 	};
6201 
6202 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6203 
6204 	ret = perf_output_begin(&handle, event,
6205 				lost_samples_event.header.size);
6206 	if (ret)
6207 		return;
6208 
6209 	perf_output_put(&handle, lost_samples_event);
6210 	perf_event__output_id_sample(event, &handle, &sample);
6211 	perf_output_end(&handle);
6212 }
6213 
6214 /*
6215  * context_switch tracking
6216  */
6217 
6218 struct perf_switch_event {
6219 	struct task_struct	*task;
6220 	struct task_struct	*next_prev;
6221 
6222 	struct {
6223 		struct perf_event_header	header;
6224 		u32				next_prev_pid;
6225 		u32				next_prev_tid;
6226 	} event_id;
6227 };
6228 
6229 static int perf_event_switch_match(struct perf_event *event)
6230 {
6231 	return event->attr.context_switch;
6232 }
6233 
6234 static void perf_event_switch_output(struct perf_event *event, void *data)
6235 {
6236 	struct perf_switch_event *se = data;
6237 	struct perf_output_handle handle;
6238 	struct perf_sample_data sample;
6239 	int ret;
6240 
6241 	if (!perf_event_switch_match(event))
6242 		return;
6243 
6244 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6245 	if (event->ctx->task) {
6246 		se->event_id.header.type = PERF_RECORD_SWITCH;
6247 		se->event_id.header.size = sizeof(se->event_id.header);
6248 	} else {
6249 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6250 		se->event_id.header.size = sizeof(se->event_id);
6251 		se->event_id.next_prev_pid =
6252 					perf_event_pid(event, se->next_prev);
6253 		se->event_id.next_prev_tid =
6254 					perf_event_tid(event, se->next_prev);
6255 	}
6256 
6257 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6258 
6259 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6260 	if (ret)
6261 		return;
6262 
6263 	if (event->ctx->task)
6264 		perf_output_put(&handle, se->event_id.header);
6265 	else
6266 		perf_output_put(&handle, se->event_id);
6267 
6268 	perf_event__output_id_sample(event, &handle, &sample);
6269 
6270 	perf_output_end(&handle);
6271 }
6272 
6273 static void perf_event_switch(struct task_struct *task,
6274 			      struct task_struct *next_prev, bool sched_in)
6275 {
6276 	struct perf_switch_event switch_event;
6277 
6278 	/* N.B. caller checks nr_switch_events != 0 */
6279 
6280 	switch_event = (struct perf_switch_event){
6281 		.task		= task,
6282 		.next_prev	= next_prev,
6283 		.event_id	= {
6284 			.header = {
6285 				/* .type */
6286 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6287 				/* .size */
6288 			},
6289 			/* .next_prev_pid */
6290 			/* .next_prev_tid */
6291 		},
6292 	};
6293 
6294 	perf_event_aux(perf_event_switch_output,
6295 		       &switch_event,
6296 		       NULL);
6297 }
6298 
6299 /*
6300  * IRQ throttle logging
6301  */
6302 
6303 static void perf_log_throttle(struct perf_event *event, int enable)
6304 {
6305 	struct perf_output_handle handle;
6306 	struct perf_sample_data sample;
6307 	int ret;
6308 
6309 	struct {
6310 		struct perf_event_header	header;
6311 		u64				time;
6312 		u64				id;
6313 		u64				stream_id;
6314 	} throttle_event = {
6315 		.header = {
6316 			.type = PERF_RECORD_THROTTLE,
6317 			.misc = 0,
6318 			.size = sizeof(throttle_event),
6319 		},
6320 		.time		= perf_event_clock(event),
6321 		.id		= primary_event_id(event),
6322 		.stream_id	= event->id,
6323 	};
6324 
6325 	if (enable)
6326 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6327 
6328 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6329 
6330 	ret = perf_output_begin(&handle, event,
6331 				throttle_event.header.size);
6332 	if (ret)
6333 		return;
6334 
6335 	perf_output_put(&handle, throttle_event);
6336 	perf_event__output_id_sample(event, &handle, &sample);
6337 	perf_output_end(&handle);
6338 }
6339 
6340 static void perf_log_itrace_start(struct perf_event *event)
6341 {
6342 	struct perf_output_handle handle;
6343 	struct perf_sample_data sample;
6344 	struct perf_aux_event {
6345 		struct perf_event_header        header;
6346 		u32				pid;
6347 		u32				tid;
6348 	} rec;
6349 	int ret;
6350 
6351 	if (event->parent)
6352 		event = event->parent;
6353 
6354 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6355 	    event->hw.itrace_started)
6356 		return;
6357 
6358 	rec.header.type	= PERF_RECORD_ITRACE_START;
6359 	rec.header.misc	= 0;
6360 	rec.header.size	= sizeof(rec);
6361 	rec.pid	= perf_event_pid(event, current);
6362 	rec.tid	= perf_event_tid(event, current);
6363 
6364 	perf_event_header__init_id(&rec.header, &sample, event);
6365 	ret = perf_output_begin(&handle, event, rec.header.size);
6366 
6367 	if (ret)
6368 		return;
6369 
6370 	perf_output_put(&handle, rec);
6371 	perf_event__output_id_sample(event, &handle, &sample);
6372 
6373 	perf_output_end(&handle);
6374 }
6375 
6376 /*
6377  * Generic event overflow handling, sampling.
6378  */
6379 
6380 static int __perf_event_overflow(struct perf_event *event,
6381 				   int throttle, struct perf_sample_data *data,
6382 				   struct pt_regs *regs)
6383 {
6384 	int events = atomic_read(&event->event_limit);
6385 	struct hw_perf_event *hwc = &event->hw;
6386 	u64 seq;
6387 	int ret = 0;
6388 
6389 	/*
6390 	 * Non-sampling counters might still use the PMI to fold short
6391 	 * hardware counters, ignore those.
6392 	 */
6393 	if (unlikely(!is_sampling_event(event)))
6394 		return 0;
6395 
6396 	seq = __this_cpu_read(perf_throttled_seq);
6397 	if (seq != hwc->interrupts_seq) {
6398 		hwc->interrupts_seq = seq;
6399 		hwc->interrupts = 1;
6400 	} else {
6401 		hwc->interrupts++;
6402 		if (unlikely(throttle
6403 			     && hwc->interrupts >= max_samples_per_tick)) {
6404 			__this_cpu_inc(perf_throttled_count);
6405 			hwc->interrupts = MAX_INTERRUPTS;
6406 			perf_log_throttle(event, 0);
6407 			tick_nohz_full_kick();
6408 			ret = 1;
6409 		}
6410 	}
6411 
6412 	if (event->attr.freq) {
6413 		u64 now = perf_clock();
6414 		s64 delta = now - hwc->freq_time_stamp;
6415 
6416 		hwc->freq_time_stamp = now;
6417 
6418 		if (delta > 0 && delta < 2*TICK_NSEC)
6419 			perf_adjust_period(event, delta, hwc->last_period, true);
6420 	}
6421 
6422 	/*
6423 	 * XXX event_limit might not quite work as expected on inherited
6424 	 * events
6425 	 */
6426 
6427 	event->pending_kill = POLL_IN;
6428 	if (events && atomic_dec_and_test(&event->event_limit)) {
6429 		ret = 1;
6430 		event->pending_kill = POLL_HUP;
6431 		event->pending_disable = 1;
6432 		irq_work_queue(&event->pending);
6433 	}
6434 
6435 	if (event->overflow_handler)
6436 		event->overflow_handler(event, data, regs);
6437 	else
6438 		perf_event_output(event, data, regs);
6439 
6440 	if (*perf_event_fasync(event) && event->pending_kill) {
6441 		event->pending_wakeup = 1;
6442 		irq_work_queue(&event->pending);
6443 	}
6444 
6445 	return ret;
6446 }
6447 
6448 int perf_event_overflow(struct perf_event *event,
6449 			  struct perf_sample_data *data,
6450 			  struct pt_regs *regs)
6451 {
6452 	return __perf_event_overflow(event, 1, data, regs);
6453 }
6454 
6455 /*
6456  * Generic software event infrastructure
6457  */
6458 
6459 struct swevent_htable {
6460 	struct swevent_hlist		*swevent_hlist;
6461 	struct mutex			hlist_mutex;
6462 	int				hlist_refcount;
6463 
6464 	/* Recursion avoidance in each contexts */
6465 	int				recursion[PERF_NR_CONTEXTS];
6466 
6467 	/* Keeps track of cpu being initialized/exited */
6468 	bool				online;
6469 };
6470 
6471 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6472 
6473 /*
6474  * We directly increment event->count and keep a second value in
6475  * event->hw.period_left to count intervals. This period event
6476  * is kept in the range [-sample_period, 0] so that we can use the
6477  * sign as trigger.
6478  */
6479 
6480 u64 perf_swevent_set_period(struct perf_event *event)
6481 {
6482 	struct hw_perf_event *hwc = &event->hw;
6483 	u64 period = hwc->last_period;
6484 	u64 nr, offset;
6485 	s64 old, val;
6486 
6487 	hwc->last_period = hwc->sample_period;
6488 
6489 again:
6490 	old = val = local64_read(&hwc->period_left);
6491 	if (val < 0)
6492 		return 0;
6493 
6494 	nr = div64_u64(period + val, period);
6495 	offset = nr * period;
6496 	val -= offset;
6497 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6498 		goto again;
6499 
6500 	return nr;
6501 }
6502 
6503 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6504 				    struct perf_sample_data *data,
6505 				    struct pt_regs *regs)
6506 {
6507 	struct hw_perf_event *hwc = &event->hw;
6508 	int throttle = 0;
6509 
6510 	if (!overflow)
6511 		overflow = perf_swevent_set_period(event);
6512 
6513 	if (hwc->interrupts == MAX_INTERRUPTS)
6514 		return;
6515 
6516 	for (; overflow; overflow--) {
6517 		if (__perf_event_overflow(event, throttle,
6518 					    data, regs)) {
6519 			/*
6520 			 * We inhibit the overflow from happening when
6521 			 * hwc->interrupts == MAX_INTERRUPTS.
6522 			 */
6523 			break;
6524 		}
6525 		throttle = 1;
6526 	}
6527 }
6528 
6529 static void perf_swevent_event(struct perf_event *event, u64 nr,
6530 			       struct perf_sample_data *data,
6531 			       struct pt_regs *regs)
6532 {
6533 	struct hw_perf_event *hwc = &event->hw;
6534 
6535 	local64_add(nr, &event->count);
6536 
6537 	if (!regs)
6538 		return;
6539 
6540 	if (!is_sampling_event(event))
6541 		return;
6542 
6543 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6544 		data->period = nr;
6545 		return perf_swevent_overflow(event, 1, data, regs);
6546 	} else
6547 		data->period = event->hw.last_period;
6548 
6549 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6550 		return perf_swevent_overflow(event, 1, data, regs);
6551 
6552 	if (local64_add_negative(nr, &hwc->period_left))
6553 		return;
6554 
6555 	perf_swevent_overflow(event, 0, data, regs);
6556 }
6557 
6558 static int perf_exclude_event(struct perf_event *event,
6559 			      struct pt_regs *regs)
6560 {
6561 	if (event->hw.state & PERF_HES_STOPPED)
6562 		return 1;
6563 
6564 	if (regs) {
6565 		if (event->attr.exclude_user && user_mode(regs))
6566 			return 1;
6567 
6568 		if (event->attr.exclude_kernel && !user_mode(regs))
6569 			return 1;
6570 	}
6571 
6572 	return 0;
6573 }
6574 
6575 static int perf_swevent_match(struct perf_event *event,
6576 				enum perf_type_id type,
6577 				u32 event_id,
6578 				struct perf_sample_data *data,
6579 				struct pt_regs *regs)
6580 {
6581 	if (event->attr.type != type)
6582 		return 0;
6583 
6584 	if (event->attr.config != event_id)
6585 		return 0;
6586 
6587 	if (perf_exclude_event(event, regs))
6588 		return 0;
6589 
6590 	return 1;
6591 }
6592 
6593 static inline u64 swevent_hash(u64 type, u32 event_id)
6594 {
6595 	u64 val = event_id | (type << 32);
6596 
6597 	return hash_64(val, SWEVENT_HLIST_BITS);
6598 }
6599 
6600 static inline struct hlist_head *
6601 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6602 {
6603 	u64 hash = swevent_hash(type, event_id);
6604 
6605 	return &hlist->heads[hash];
6606 }
6607 
6608 /* For the read side: events when they trigger */
6609 static inline struct hlist_head *
6610 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6611 {
6612 	struct swevent_hlist *hlist;
6613 
6614 	hlist = rcu_dereference(swhash->swevent_hlist);
6615 	if (!hlist)
6616 		return NULL;
6617 
6618 	return __find_swevent_head(hlist, type, event_id);
6619 }
6620 
6621 /* For the event head insertion and removal in the hlist */
6622 static inline struct hlist_head *
6623 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6624 {
6625 	struct swevent_hlist *hlist;
6626 	u32 event_id = event->attr.config;
6627 	u64 type = event->attr.type;
6628 
6629 	/*
6630 	 * Event scheduling is always serialized against hlist allocation
6631 	 * and release. Which makes the protected version suitable here.
6632 	 * The context lock guarantees that.
6633 	 */
6634 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6635 					  lockdep_is_held(&event->ctx->lock));
6636 	if (!hlist)
6637 		return NULL;
6638 
6639 	return __find_swevent_head(hlist, type, event_id);
6640 }
6641 
6642 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6643 				    u64 nr,
6644 				    struct perf_sample_data *data,
6645 				    struct pt_regs *regs)
6646 {
6647 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6648 	struct perf_event *event;
6649 	struct hlist_head *head;
6650 
6651 	rcu_read_lock();
6652 	head = find_swevent_head_rcu(swhash, type, event_id);
6653 	if (!head)
6654 		goto end;
6655 
6656 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6657 		if (perf_swevent_match(event, type, event_id, data, regs))
6658 			perf_swevent_event(event, nr, data, regs);
6659 	}
6660 end:
6661 	rcu_read_unlock();
6662 }
6663 
6664 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6665 
6666 int perf_swevent_get_recursion_context(void)
6667 {
6668 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6669 
6670 	return get_recursion_context(swhash->recursion);
6671 }
6672 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6673 
6674 inline void perf_swevent_put_recursion_context(int rctx)
6675 {
6676 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6677 
6678 	put_recursion_context(swhash->recursion, rctx);
6679 }
6680 
6681 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6682 {
6683 	struct perf_sample_data data;
6684 
6685 	if (WARN_ON_ONCE(!regs))
6686 		return;
6687 
6688 	perf_sample_data_init(&data, addr, 0);
6689 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6690 }
6691 
6692 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6693 {
6694 	int rctx;
6695 
6696 	preempt_disable_notrace();
6697 	rctx = perf_swevent_get_recursion_context();
6698 	if (unlikely(rctx < 0))
6699 		goto fail;
6700 
6701 	___perf_sw_event(event_id, nr, regs, addr);
6702 
6703 	perf_swevent_put_recursion_context(rctx);
6704 fail:
6705 	preempt_enable_notrace();
6706 }
6707 
6708 static void perf_swevent_read(struct perf_event *event)
6709 {
6710 }
6711 
6712 static int perf_swevent_add(struct perf_event *event, int flags)
6713 {
6714 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6715 	struct hw_perf_event *hwc = &event->hw;
6716 	struct hlist_head *head;
6717 
6718 	if (is_sampling_event(event)) {
6719 		hwc->last_period = hwc->sample_period;
6720 		perf_swevent_set_period(event);
6721 	}
6722 
6723 	hwc->state = !(flags & PERF_EF_START);
6724 
6725 	head = find_swevent_head(swhash, event);
6726 	if (!head) {
6727 		/*
6728 		 * We can race with cpu hotplug code. Do not
6729 		 * WARN if the cpu just got unplugged.
6730 		 */
6731 		WARN_ON_ONCE(swhash->online);
6732 		return -EINVAL;
6733 	}
6734 
6735 	hlist_add_head_rcu(&event->hlist_entry, head);
6736 	perf_event_update_userpage(event);
6737 
6738 	return 0;
6739 }
6740 
6741 static void perf_swevent_del(struct perf_event *event, int flags)
6742 {
6743 	hlist_del_rcu(&event->hlist_entry);
6744 }
6745 
6746 static void perf_swevent_start(struct perf_event *event, int flags)
6747 {
6748 	event->hw.state = 0;
6749 }
6750 
6751 static void perf_swevent_stop(struct perf_event *event, int flags)
6752 {
6753 	event->hw.state = PERF_HES_STOPPED;
6754 }
6755 
6756 /* Deref the hlist from the update side */
6757 static inline struct swevent_hlist *
6758 swevent_hlist_deref(struct swevent_htable *swhash)
6759 {
6760 	return rcu_dereference_protected(swhash->swevent_hlist,
6761 					 lockdep_is_held(&swhash->hlist_mutex));
6762 }
6763 
6764 static void swevent_hlist_release(struct swevent_htable *swhash)
6765 {
6766 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6767 
6768 	if (!hlist)
6769 		return;
6770 
6771 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6772 	kfree_rcu(hlist, rcu_head);
6773 }
6774 
6775 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6776 {
6777 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6778 
6779 	mutex_lock(&swhash->hlist_mutex);
6780 
6781 	if (!--swhash->hlist_refcount)
6782 		swevent_hlist_release(swhash);
6783 
6784 	mutex_unlock(&swhash->hlist_mutex);
6785 }
6786 
6787 static void swevent_hlist_put(struct perf_event *event)
6788 {
6789 	int cpu;
6790 
6791 	for_each_possible_cpu(cpu)
6792 		swevent_hlist_put_cpu(event, cpu);
6793 }
6794 
6795 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6796 {
6797 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6798 	int err = 0;
6799 
6800 	mutex_lock(&swhash->hlist_mutex);
6801 
6802 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6803 		struct swevent_hlist *hlist;
6804 
6805 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6806 		if (!hlist) {
6807 			err = -ENOMEM;
6808 			goto exit;
6809 		}
6810 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6811 	}
6812 	swhash->hlist_refcount++;
6813 exit:
6814 	mutex_unlock(&swhash->hlist_mutex);
6815 
6816 	return err;
6817 }
6818 
6819 static int swevent_hlist_get(struct perf_event *event)
6820 {
6821 	int err;
6822 	int cpu, failed_cpu;
6823 
6824 	get_online_cpus();
6825 	for_each_possible_cpu(cpu) {
6826 		err = swevent_hlist_get_cpu(event, cpu);
6827 		if (err) {
6828 			failed_cpu = cpu;
6829 			goto fail;
6830 		}
6831 	}
6832 	put_online_cpus();
6833 
6834 	return 0;
6835 fail:
6836 	for_each_possible_cpu(cpu) {
6837 		if (cpu == failed_cpu)
6838 			break;
6839 		swevent_hlist_put_cpu(event, cpu);
6840 	}
6841 
6842 	put_online_cpus();
6843 	return err;
6844 }
6845 
6846 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6847 
6848 static void sw_perf_event_destroy(struct perf_event *event)
6849 {
6850 	u64 event_id = event->attr.config;
6851 
6852 	WARN_ON(event->parent);
6853 
6854 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6855 	swevent_hlist_put(event);
6856 }
6857 
6858 static int perf_swevent_init(struct perf_event *event)
6859 {
6860 	u64 event_id = event->attr.config;
6861 
6862 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6863 		return -ENOENT;
6864 
6865 	/*
6866 	 * no branch sampling for software events
6867 	 */
6868 	if (has_branch_stack(event))
6869 		return -EOPNOTSUPP;
6870 
6871 	switch (event_id) {
6872 	case PERF_COUNT_SW_CPU_CLOCK:
6873 	case PERF_COUNT_SW_TASK_CLOCK:
6874 		return -ENOENT;
6875 
6876 	default:
6877 		break;
6878 	}
6879 
6880 	if (event_id >= PERF_COUNT_SW_MAX)
6881 		return -ENOENT;
6882 
6883 	if (!event->parent) {
6884 		int err;
6885 
6886 		err = swevent_hlist_get(event);
6887 		if (err)
6888 			return err;
6889 
6890 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6891 		event->destroy = sw_perf_event_destroy;
6892 	}
6893 
6894 	return 0;
6895 }
6896 
6897 static struct pmu perf_swevent = {
6898 	.task_ctx_nr	= perf_sw_context,
6899 
6900 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6901 
6902 	.event_init	= perf_swevent_init,
6903 	.add		= perf_swevent_add,
6904 	.del		= perf_swevent_del,
6905 	.start		= perf_swevent_start,
6906 	.stop		= perf_swevent_stop,
6907 	.read		= perf_swevent_read,
6908 };
6909 
6910 #ifdef CONFIG_EVENT_TRACING
6911 
6912 static int perf_tp_filter_match(struct perf_event *event,
6913 				struct perf_sample_data *data)
6914 {
6915 	void *record = data->raw->data;
6916 
6917 	/* only top level events have filters set */
6918 	if (event->parent)
6919 		event = event->parent;
6920 
6921 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6922 		return 1;
6923 	return 0;
6924 }
6925 
6926 static int perf_tp_event_match(struct perf_event *event,
6927 				struct perf_sample_data *data,
6928 				struct pt_regs *regs)
6929 {
6930 	if (event->hw.state & PERF_HES_STOPPED)
6931 		return 0;
6932 	/*
6933 	 * All tracepoints are from kernel-space.
6934 	 */
6935 	if (event->attr.exclude_kernel)
6936 		return 0;
6937 
6938 	if (!perf_tp_filter_match(event, data))
6939 		return 0;
6940 
6941 	return 1;
6942 }
6943 
6944 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6945 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6946 		   struct task_struct *task)
6947 {
6948 	struct perf_sample_data data;
6949 	struct perf_event *event;
6950 
6951 	struct perf_raw_record raw = {
6952 		.size = entry_size,
6953 		.data = record,
6954 	};
6955 
6956 	perf_sample_data_init(&data, addr, 0);
6957 	data.raw = &raw;
6958 
6959 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6960 		if (perf_tp_event_match(event, &data, regs))
6961 			perf_swevent_event(event, count, &data, regs);
6962 	}
6963 
6964 	/*
6965 	 * If we got specified a target task, also iterate its context and
6966 	 * deliver this event there too.
6967 	 */
6968 	if (task && task != current) {
6969 		struct perf_event_context *ctx;
6970 		struct trace_entry *entry = record;
6971 
6972 		rcu_read_lock();
6973 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6974 		if (!ctx)
6975 			goto unlock;
6976 
6977 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6978 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6979 				continue;
6980 			if (event->attr.config != entry->type)
6981 				continue;
6982 			if (perf_tp_event_match(event, &data, regs))
6983 				perf_swevent_event(event, count, &data, regs);
6984 		}
6985 unlock:
6986 		rcu_read_unlock();
6987 	}
6988 
6989 	perf_swevent_put_recursion_context(rctx);
6990 }
6991 EXPORT_SYMBOL_GPL(perf_tp_event);
6992 
6993 static void tp_perf_event_destroy(struct perf_event *event)
6994 {
6995 	perf_trace_destroy(event);
6996 }
6997 
6998 static int perf_tp_event_init(struct perf_event *event)
6999 {
7000 	int err;
7001 
7002 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7003 		return -ENOENT;
7004 
7005 	/*
7006 	 * no branch sampling for tracepoint events
7007 	 */
7008 	if (has_branch_stack(event))
7009 		return -EOPNOTSUPP;
7010 
7011 	err = perf_trace_init(event);
7012 	if (err)
7013 		return err;
7014 
7015 	event->destroy = tp_perf_event_destroy;
7016 
7017 	return 0;
7018 }
7019 
7020 static struct pmu perf_tracepoint = {
7021 	.task_ctx_nr	= perf_sw_context,
7022 
7023 	.event_init	= perf_tp_event_init,
7024 	.add		= perf_trace_add,
7025 	.del		= perf_trace_del,
7026 	.start		= perf_swevent_start,
7027 	.stop		= perf_swevent_stop,
7028 	.read		= perf_swevent_read,
7029 };
7030 
7031 static inline void perf_tp_register(void)
7032 {
7033 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7034 }
7035 
7036 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7037 {
7038 	char *filter_str;
7039 	int ret;
7040 
7041 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7042 		return -EINVAL;
7043 
7044 	filter_str = strndup_user(arg, PAGE_SIZE);
7045 	if (IS_ERR(filter_str))
7046 		return PTR_ERR(filter_str);
7047 
7048 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7049 
7050 	kfree(filter_str);
7051 	return ret;
7052 }
7053 
7054 static void perf_event_free_filter(struct perf_event *event)
7055 {
7056 	ftrace_profile_free_filter(event);
7057 }
7058 
7059 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7060 {
7061 	struct bpf_prog *prog;
7062 
7063 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7064 		return -EINVAL;
7065 
7066 	if (event->tp_event->prog)
7067 		return -EEXIST;
7068 
7069 	if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7070 		/* bpf programs can only be attached to u/kprobes */
7071 		return -EINVAL;
7072 
7073 	prog = bpf_prog_get(prog_fd);
7074 	if (IS_ERR(prog))
7075 		return PTR_ERR(prog);
7076 
7077 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
7078 		/* valid fd, but invalid bpf program type */
7079 		bpf_prog_put(prog);
7080 		return -EINVAL;
7081 	}
7082 
7083 	event->tp_event->prog = prog;
7084 
7085 	return 0;
7086 }
7087 
7088 static void perf_event_free_bpf_prog(struct perf_event *event)
7089 {
7090 	struct bpf_prog *prog;
7091 
7092 	if (!event->tp_event)
7093 		return;
7094 
7095 	prog = event->tp_event->prog;
7096 	if (prog) {
7097 		event->tp_event->prog = NULL;
7098 		bpf_prog_put(prog);
7099 	}
7100 }
7101 
7102 #else
7103 
7104 static inline void perf_tp_register(void)
7105 {
7106 }
7107 
7108 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7109 {
7110 	return -ENOENT;
7111 }
7112 
7113 static void perf_event_free_filter(struct perf_event *event)
7114 {
7115 }
7116 
7117 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7118 {
7119 	return -ENOENT;
7120 }
7121 
7122 static void perf_event_free_bpf_prog(struct perf_event *event)
7123 {
7124 }
7125 #endif /* CONFIG_EVENT_TRACING */
7126 
7127 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7128 void perf_bp_event(struct perf_event *bp, void *data)
7129 {
7130 	struct perf_sample_data sample;
7131 	struct pt_regs *regs = data;
7132 
7133 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7134 
7135 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7136 		perf_swevent_event(bp, 1, &sample, regs);
7137 }
7138 #endif
7139 
7140 /*
7141  * hrtimer based swevent callback
7142  */
7143 
7144 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7145 {
7146 	enum hrtimer_restart ret = HRTIMER_RESTART;
7147 	struct perf_sample_data data;
7148 	struct pt_regs *regs;
7149 	struct perf_event *event;
7150 	u64 period;
7151 
7152 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7153 
7154 	if (event->state != PERF_EVENT_STATE_ACTIVE)
7155 		return HRTIMER_NORESTART;
7156 
7157 	event->pmu->read(event);
7158 
7159 	perf_sample_data_init(&data, 0, event->hw.last_period);
7160 	regs = get_irq_regs();
7161 
7162 	if (regs && !perf_exclude_event(event, regs)) {
7163 		if (!(event->attr.exclude_idle && is_idle_task(current)))
7164 			if (__perf_event_overflow(event, 1, &data, regs))
7165 				ret = HRTIMER_NORESTART;
7166 	}
7167 
7168 	period = max_t(u64, 10000, event->hw.sample_period);
7169 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7170 
7171 	return ret;
7172 }
7173 
7174 static void perf_swevent_start_hrtimer(struct perf_event *event)
7175 {
7176 	struct hw_perf_event *hwc = &event->hw;
7177 	s64 period;
7178 
7179 	if (!is_sampling_event(event))
7180 		return;
7181 
7182 	period = local64_read(&hwc->period_left);
7183 	if (period) {
7184 		if (period < 0)
7185 			period = 10000;
7186 
7187 		local64_set(&hwc->period_left, 0);
7188 	} else {
7189 		period = max_t(u64, 10000, hwc->sample_period);
7190 	}
7191 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7192 		      HRTIMER_MODE_REL_PINNED);
7193 }
7194 
7195 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7196 {
7197 	struct hw_perf_event *hwc = &event->hw;
7198 
7199 	if (is_sampling_event(event)) {
7200 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7201 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
7202 
7203 		hrtimer_cancel(&hwc->hrtimer);
7204 	}
7205 }
7206 
7207 static void perf_swevent_init_hrtimer(struct perf_event *event)
7208 {
7209 	struct hw_perf_event *hwc = &event->hw;
7210 
7211 	if (!is_sampling_event(event))
7212 		return;
7213 
7214 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7215 	hwc->hrtimer.function = perf_swevent_hrtimer;
7216 
7217 	/*
7218 	 * Since hrtimers have a fixed rate, we can do a static freq->period
7219 	 * mapping and avoid the whole period adjust feedback stuff.
7220 	 */
7221 	if (event->attr.freq) {
7222 		long freq = event->attr.sample_freq;
7223 
7224 		event->attr.sample_period = NSEC_PER_SEC / freq;
7225 		hwc->sample_period = event->attr.sample_period;
7226 		local64_set(&hwc->period_left, hwc->sample_period);
7227 		hwc->last_period = hwc->sample_period;
7228 		event->attr.freq = 0;
7229 	}
7230 }
7231 
7232 /*
7233  * Software event: cpu wall time clock
7234  */
7235 
7236 static void cpu_clock_event_update(struct perf_event *event)
7237 {
7238 	s64 prev;
7239 	u64 now;
7240 
7241 	now = local_clock();
7242 	prev = local64_xchg(&event->hw.prev_count, now);
7243 	local64_add(now - prev, &event->count);
7244 }
7245 
7246 static void cpu_clock_event_start(struct perf_event *event, int flags)
7247 {
7248 	local64_set(&event->hw.prev_count, local_clock());
7249 	perf_swevent_start_hrtimer(event);
7250 }
7251 
7252 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7253 {
7254 	perf_swevent_cancel_hrtimer(event);
7255 	cpu_clock_event_update(event);
7256 }
7257 
7258 static int cpu_clock_event_add(struct perf_event *event, int flags)
7259 {
7260 	if (flags & PERF_EF_START)
7261 		cpu_clock_event_start(event, flags);
7262 	perf_event_update_userpage(event);
7263 
7264 	return 0;
7265 }
7266 
7267 static void cpu_clock_event_del(struct perf_event *event, int flags)
7268 {
7269 	cpu_clock_event_stop(event, flags);
7270 }
7271 
7272 static void cpu_clock_event_read(struct perf_event *event)
7273 {
7274 	cpu_clock_event_update(event);
7275 }
7276 
7277 static int cpu_clock_event_init(struct perf_event *event)
7278 {
7279 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7280 		return -ENOENT;
7281 
7282 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7283 		return -ENOENT;
7284 
7285 	/*
7286 	 * no branch sampling for software events
7287 	 */
7288 	if (has_branch_stack(event))
7289 		return -EOPNOTSUPP;
7290 
7291 	perf_swevent_init_hrtimer(event);
7292 
7293 	return 0;
7294 }
7295 
7296 static struct pmu perf_cpu_clock = {
7297 	.task_ctx_nr	= perf_sw_context,
7298 
7299 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7300 
7301 	.event_init	= cpu_clock_event_init,
7302 	.add		= cpu_clock_event_add,
7303 	.del		= cpu_clock_event_del,
7304 	.start		= cpu_clock_event_start,
7305 	.stop		= cpu_clock_event_stop,
7306 	.read		= cpu_clock_event_read,
7307 };
7308 
7309 /*
7310  * Software event: task time clock
7311  */
7312 
7313 static void task_clock_event_update(struct perf_event *event, u64 now)
7314 {
7315 	u64 prev;
7316 	s64 delta;
7317 
7318 	prev = local64_xchg(&event->hw.prev_count, now);
7319 	delta = now - prev;
7320 	local64_add(delta, &event->count);
7321 }
7322 
7323 static void task_clock_event_start(struct perf_event *event, int flags)
7324 {
7325 	local64_set(&event->hw.prev_count, event->ctx->time);
7326 	perf_swevent_start_hrtimer(event);
7327 }
7328 
7329 static void task_clock_event_stop(struct perf_event *event, int flags)
7330 {
7331 	perf_swevent_cancel_hrtimer(event);
7332 	task_clock_event_update(event, event->ctx->time);
7333 }
7334 
7335 static int task_clock_event_add(struct perf_event *event, int flags)
7336 {
7337 	if (flags & PERF_EF_START)
7338 		task_clock_event_start(event, flags);
7339 	perf_event_update_userpage(event);
7340 
7341 	return 0;
7342 }
7343 
7344 static void task_clock_event_del(struct perf_event *event, int flags)
7345 {
7346 	task_clock_event_stop(event, PERF_EF_UPDATE);
7347 }
7348 
7349 static void task_clock_event_read(struct perf_event *event)
7350 {
7351 	u64 now = perf_clock();
7352 	u64 delta = now - event->ctx->timestamp;
7353 	u64 time = event->ctx->time + delta;
7354 
7355 	task_clock_event_update(event, time);
7356 }
7357 
7358 static int task_clock_event_init(struct perf_event *event)
7359 {
7360 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7361 		return -ENOENT;
7362 
7363 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7364 		return -ENOENT;
7365 
7366 	/*
7367 	 * no branch sampling for software events
7368 	 */
7369 	if (has_branch_stack(event))
7370 		return -EOPNOTSUPP;
7371 
7372 	perf_swevent_init_hrtimer(event);
7373 
7374 	return 0;
7375 }
7376 
7377 static struct pmu perf_task_clock = {
7378 	.task_ctx_nr	= perf_sw_context,
7379 
7380 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7381 
7382 	.event_init	= task_clock_event_init,
7383 	.add		= task_clock_event_add,
7384 	.del		= task_clock_event_del,
7385 	.start		= task_clock_event_start,
7386 	.stop		= task_clock_event_stop,
7387 	.read		= task_clock_event_read,
7388 };
7389 
7390 static void perf_pmu_nop_void(struct pmu *pmu)
7391 {
7392 }
7393 
7394 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7395 {
7396 }
7397 
7398 static int perf_pmu_nop_int(struct pmu *pmu)
7399 {
7400 	return 0;
7401 }
7402 
7403 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7404 
7405 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7406 {
7407 	__this_cpu_write(nop_txn_flags, flags);
7408 
7409 	if (flags & ~PERF_PMU_TXN_ADD)
7410 		return;
7411 
7412 	perf_pmu_disable(pmu);
7413 }
7414 
7415 static int perf_pmu_commit_txn(struct pmu *pmu)
7416 {
7417 	unsigned int flags = __this_cpu_read(nop_txn_flags);
7418 
7419 	__this_cpu_write(nop_txn_flags, 0);
7420 
7421 	if (flags & ~PERF_PMU_TXN_ADD)
7422 		return 0;
7423 
7424 	perf_pmu_enable(pmu);
7425 	return 0;
7426 }
7427 
7428 static void perf_pmu_cancel_txn(struct pmu *pmu)
7429 {
7430 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
7431 
7432 	__this_cpu_write(nop_txn_flags, 0);
7433 
7434 	if (flags & ~PERF_PMU_TXN_ADD)
7435 		return;
7436 
7437 	perf_pmu_enable(pmu);
7438 }
7439 
7440 static int perf_event_idx_default(struct perf_event *event)
7441 {
7442 	return 0;
7443 }
7444 
7445 /*
7446  * Ensures all contexts with the same task_ctx_nr have the same
7447  * pmu_cpu_context too.
7448  */
7449 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7450 {
7451 	struct pmu *pmu;
7452 
7453 	if (ctxn < 0)
7454 		return NULL;
7455 
7456 	list_for_each_entry(pmu, &pmus, entry) {
7457 		if (pmu->task_ctx_nr == ctxn)
7458 			return pmu->pmu_cpu_context;
7459 	}
7460 
7461 	return NULL;
7462 }
7463 
7464 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7465 {
7466 	int cpu;
7467 
7468 	for_each_possible_cpu(cpu) {
7469 		struct perf_cpu_context *cpuctx;
7470 
7471 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7472 
7473 		if (cpuctx->unique_pmu == old_pmu)
7474 			cpuctx->unique_pmu = pmu;
7475 	}
7476 }
7477 
7478 static void free_pmu_context(struct pmu *pmu)
7479 {
7480 	struct pmu *i;
7481 
7482 	mutex_lock(&pmus_lock);
7483 	/*
7484 	 * Like a real lame refcount.
7485 	 */
7486 	list_for_each_entry(i, &pmus, entry) {
7487 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7488 			update_pmu_context(i, pmu);
7489 			goto out;
7490 		}
7491 	}
7492 
7493 	free_percpu(pmu->pmu_cpu_context);
7494 out:
7495 	mutex_unlock(&pmus_lock);
7496 }
7497 static struct idr pmu_idr;
7498 
7499 static ssize_t
7500 type_show(struct device *dev, struct device_attribute *attr, char *page)
7501 {
7502 	struct pmu *pmu = dev_get_drvdata(dev);
7503 
7504 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7505 }
7506 static DEVICE_ATTR_RO(type);
7507 
7508 static ssize_t
7509 perf_event_mux_interval_ms_show(struct device *dev,
7510 				struct device_attribute *attr,
7511 				char *page)
7512 {
7513 	struct pmu *pmu = dev_get_drvdata(dev);
7514 
7515 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7516 }
7517 
7518 static DEFINE_MUTEX(mux_interval_mutex);
7519 
7520 static ssize_t
7521 perf_event_mux_interval_ms_store(struct device *dev,
7522 				 struct device_attribute *attr,
7523 				 const char *buf, size_t count)
7524 {
7525 	struct pmu *pmu = dev_get_drvdata(dev);
7526 	int timer, cpu, ret;
7527 
7528 	ret = kstrtoint(buf, 0, &timer);
7529 	if (ret)
7530 		return ret;
7531 
7532 	if (timer < 1)
7533 		return -EINVAL;
7534 
7535 	/* same value, noting to do */
7536 	if (timer == pmu->hrtimer_interval_ms)
7537 		return count;
7538 
7539 	mutex_lock(&mux_interval_mutex);
7540 	pmu->hrtimer_interval_ms = timer;
7541 
7542 	/* update all cpuctx for this PMU */
7543 	get_online_cpus();
7544 	for_each_online_cpu(cpu) {
7545 		struct perf_cpu_context *cpuctx;
7546 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7547 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7548 
7549 		cpu_function_call(cpu,
7550 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7551 	}
7552 	put_online_cpus();
7553 	mutex_unlock(&mux_interval_mutex);
7554 
7555 	return count;
7556 }
7557 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7558 
7559 static struct attribute *pmu_dev_attrs[] = {
7560 	&dev_attr_type.attr,
7561 	&dev_attr_perf_event_mux_interval_ms.attr,
7562 	NULL,
7563 };
7564 ATTRIBUTE_GROUPS(pmu_dev);
7565 
7566 static int pmu_bus_running;
7567 static struct bus_type pmu_bus = {
7568 	.name		= "event_source",
7569 	.dev_groups	= pmu_dev_groups,
7570 };
7571 
7572 static void pmu_dev_release(struct device *dev)
7573 {
7574 	kfree(dev);
7575 }
7576 
7577 static int pmu_dev_alloc(struct pmu *pmu)
7578 {
7579 	int ret = -ENOMEM;
7580 
7581 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7582 	if (!pmu->dev)
7583 		goto out;
7584 
7585 	pmu->dev->groups = pmu->attr_groups;
7586 	device_initialize(pmu->dev);
7587 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7588 	if (ret)
7589 		goto free_dev;
7590 
7591 	dev_set_drvdata(pmu->dev, pmu);
7592 	pmu->dev->bus = &pmu_bus;
7593 	pmu->dev->release = pmu_dev_release;
7594 	ret = device_add(pmu->dev);
7595 	if (ret)
7596 		goto free_dev;
7597 
7598 out:
7599 	return ret;
7600 
7601 free_dev:
7602 	put_device(pmu->dev);
7603 	goto out;
7604 }
7605 
7606 static struct lock_class_key cpuctx_mutex;
7607 static struct lock_class_key cpuctx_lock;
7608 
7609 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7610 {
7611 	int cpu, ret;
7612 
7613 	mutex_lock(&pmus_lock);
7614 	ret = -ENOMEM;
7615 	pmu->pmu_disable_count = alloc_percpu(int);
7616 	if (!pmu->pmu_disable_count)
7617 		goto unlock;
7618 
7619 	pmu->type = -1;
7620 	if (!name)
7621 		goto skip_type;
7622 	pmu->name = name;
7623 
7624 	if (type < 0) {
7625 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7626 		if (type < 0) {
7627 			ret = type;
7628 			goto free_pdc;
7629 		}
7630 	}
7631 	pmu->type = type;
7632 
7633 	if (pmu_bus_running) {
7634 		ret = pmu_dev_alloc(pmu);
7635 		if (ret)
7636 			goto free_idr;
7637 	}
7638 
7639 skip_type:
7640 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7641 	if (pmu->pmu_cpu_context)
7642 		goto got_cpu_context;
7643 
7644 	ret = -ENOMEM;
7645 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7646 	if (!pmu->pmu_cpu_context)
7647 		goto free_dev;
7648 
7649 	for_each_possible_cpu(cpu) {
7650 		struct perf_cpu_context *cpuctx;
7651 
7652 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7653 		__perf_event_init_context(&cpuctx->ctx);
7654 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7655 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7656 		cpuctx->ctx.pmu = pmu;
7657 
7658 		__perf_mux_hrtimer_init(cpuctx, cpu);
7659 
7660 		cpuctx->unique_pmu = pmu;
7661 	}
7662 
7663 got_cpu_context:
7664 	if (!pmu->start_txn) {
7665 		if (pmu->pmu_enable) {
7666 			/*
7667 			 * If we have pmu_enable/pmu_disable calls, install
7668 			 * transaction stubs that use that to try and batch
7669 			 * hardware accesses.
7670 			 */
7671 			pmu->start_txn  = perf_pmu_start_txn;
7672 			pmu->commit_txn = perf_pmu_commit_txn;
7673 			pmu->cancel_txn = perf_pmu_cancel_txn;
7674 		} else {
7675 			pmu->start_txn  = perf_pmu_nop_txn;
7676 			pmu->commit_txn = perf_pmu_nop_int;
7677 			pmu->cancel_txn = perf_pmu_nop_void;
7678 		}
7679 	}
7680 
7681 	if (!pmu->pmu_enable) {
7682 		pmu->pmu_enable  = perf_pmu_nop_void;
7683 		pmu->pmu_disable = perf_pmu_nop_void;
7684 	}
7685 
7686 	if (!pmu->event_idx)
7687 		pmu->event_idx = perf_event_idx_default;
7688 
7689 	list_add_rcu(&pmu->entry, &pmus);
7690 	atomic_set(&pmu->exclusive_cnt, 0);
7691 	ret = 0;
7692 unlock:
7693 	mutex_unlock(&pmus_lock);
7694 
7695 	return ret;
7696 
7697 free_dev:
7698 	device_del(pmu->dev);
7699 	put_device(pmu->dev);
7700 
7701 free_idr:
7702 	if (pmu->type >= PERF_TYPE_MAX)
7703 		idr_remove(&pmu_idr, pmu->type);
7704 
7705 free_pdc:
7706 	free_percpu(pmu->pmu_disable_count);
7707 	goto unlock;
7708 }
7709 EXPORT_SYMBOL_GPL(perf_pmu_register);
7710 
7711 void perf_pmu_unregister(struct pmu *pmu)
7712 {
7713 	mutex_lock(&pmus_lock);
7714 	list_del_rcu(&pmu->entry);
7715 	mutex_unlock(&pmus_lock);
7716 
7717 	/*
7718 	 * We dereference the pmu list under both SRCU and regular RCU, so
7719 	 * synchronize against both of those.
7720 	 */
7721 	synchronize_srcu(&pmus_srcu);
7722 	synchronize_rcu();
7723 
7724 	free_percpu(pmu->pmu_disable_count);
7725 	if (pmu->type >= PERF_TYPE_MAX)
7726 		idr_remove(&pmu_idr, pmu->type);
7727 	device_del(pmu->dev);
7728 	put_device(pmu->dev);
7729 	free_pmu_context(pmu);
7730 }
7731 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7732 
7733 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7734 {
7735 	struct perf_event_context *ctx = NULL;
7736 	int ret;
7737 
7738 	if (!try_module_get(pmu->module))
7739 		return -ENODEV;
7740 
7741 	if (event->group_leader != event) {
7742 		/*
7743 		 * This ctx->mutex can nest when we're called through
7744 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7745 		 */
7746 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7747 						 SINGLE_DEPTH_NESTING);
7748 		BUG_ON(!ctx);
7749 	}
7750 
7751 	event->pmu = pmu;
7752 	ret = pmu->event_init(event);
7753 
7754 	if (ctx)
7755 		perf_event_ctx_unlock(event->group_leader, ctx);
7756 
7757 	if (ret)
7758 		module_put(pmu->module);
7759 
7760 	return ret;
7761 }
7762 
7763 static struct pmu *perf_init_event(struct perf_event *event)
7764 {
7765 	struct pmu *pmu = NULL;
7766 	int idx;
7767 	int ret;
7768 
7769 	idx = srcu_read_lock(&pmus_srcu);
7770 
7771 	rcu_read_lock();
7772 	pmu = idr_find(&pmu_idr, event->attr.type);
7773 	rcu_read_unlock();
7774 	if (pmu) {
7775 		ret = perf_try_init_event(pmu, event);
7776 		if (ret)
7777 			pmu = ERR_PTR(ret);
7778 		goto unlock;
7779 	}
7780 
7781 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7782 		ret = perf_try_init_event(pmu, event);
7783 		if (!ret)
7784 			goto unlock;
7785 
7786 		if (ret != -ENOENT) {
7787 			pmu = ERR_PTR(ret);
7788 			goto unlock;
7789 		}
7790 	}
7791 	pmu = ERR_PTR(-ENOENT);
7792 unlock:
7793 	srcu_read_unlock(&pmus_srcu, idx);
7794 
7795 	return pmu;
7796 }
7797 
7798 static void account_event_cpu(struct perf_event *event, int cpu)
7799 {
7800 	if (event->parent)
7801 		return;
7802 
7803 	if (is_cgroup_event(event))
7804 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7805 }
7806 
7807 static void account_event(struct perf_event *event)
7808 {
7809 	if (event->parent)
7810 		return;
7811 
7812 	if (event->attach_state & PERF_ATTACH_TASK)
7813 		static_key_slow_inc(&perf_sched_events.key);
7814 	if (event->attr.mmap || event->attr.mmap_data)
7815 		atomic_inc(&nr_mmap_events);
7816 	if (event->attr.comm)
7817 		atomic_inc(&nr_comm_events);
7818 	if (event->attr.task)
7819 		atomic_inc(&nr_task_events);
7820 	if (event->attr.freq) {
7821 		if (atomic_inc_return(&nr_freq_events) == 1)
7822 			tick_nohz_full_kick_all();
7823 	}
7824 	if (event->attr.context_switch) {
7825 		atomic_inc(&nr_switch_events);
7826 		static_key_slow_inc(&perf_sched_events.key);
7827 	}
7828 	if (has_branch_stack(event))
7829 		static_key_slow_inc(&perf_sched_events.key);
7830 	if (is_cgroup_event(event))
7831 		static_key_slow_inc(&perf_sched_events.key);
7832 
7833 	account_event_cpu(event, event->cpu);
7834 }
7835 
7836 /*
7837  * Allocate and initialize a event structure
7838  */
7839 static struct perf_event *
7840 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7841 		 struct task_struct *task,
7842 		 struct perf_event *group_leader,
7843 		 struct perf_event *parent_event,
7844 		 perf_overflow_handler_t overflow_handler,
7845 		 void *context, int cgroup_fd)
7846 {
7847 	struct pmu *pmu;
7848 	struct perf_event *event;
7849 	struct hw_perf_event *hwc;
7850 	long err = -EINVAL;
7851 
7852 	if ((unsigned)cpu >= nr_cpu_ids) {
7853 		if (!task || cpu != -1)
7854 			return ERR_PTR(-EINVAL);
7855 	}
7856 
7857 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7858 	if (!event)
7859 		return ERR_PTR(-ENOMEM);
7860 
7861 	/*
7862 	 * Single events are their own group leaders, with an
7863 	 * empty sibling list:
7864 	 */
7865 	if (!group_leader)
7866 		group_leader = event;
7867 
7868 	mutex_init(&event->child_mutex);
7869 	INIT_LIST_HEAD(&event->child_list);
7870 
7871 	INIT_LIST_HEAD(&event->group_entry);
7872 	INIT_LIST_HEAD(&event->event_entry);
7873 	INIT_LIST_HEAD(&event->sibling_list);
7874 	INIT_LIST_HEAD(&event->rb_entry);
7875 	INIT_LIST_HEAD(&event->active_entry);
7876 	INIT_HLIST_NODE(&event->hlist_entry);
7877 
7878 
7879 	init_waitqueue_head(&event->waitq);
7880 	init_irq_work(&event->pending, perf_pending_event);
7881 
7882 	mutex_init(&event->mmap_mutex);
7883 
7884 	atomic_long_set(&event->refcount, 1);
7885 	event->cpu		= cpu;
7886 	event->attr		= *attr;
7887 	event->group_leader	= group_leader;
7888 	event->pmu		= NULL;
7889 	event->oncpu		= -1;
7890 
7891 	event->parent		= parent_event;
7892 
7893 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7894 	event->id		= atomic64_inc_return(&perf_event_id);
7895 
7896 	event->state		= PERF_EVENT_STATE_INACTIVE;
7897 
7898 	if (task) {
7899 		event->attach_state = PERF_ATTACH_TASK;
7900 		/*
7901 		 * XXX pmu::event_init needs to know what task to account to
7902 		 * and we cannot use the ctx information because we need the
7903 		 * pmu before we get a ctx.
7904 		 */
7905 		event->hw.target = task;
7906 	}
7907 
7908 	event->clock = &local_clock;
7909 	if (parent_event)
7910 		event->clock = parent_event->clock;
7911 
7912 	if (!overflow_handler && parent_event) {
7913 		overflow_handler = parent_event->overflow_handler;
7914 		context = parent_event->overflow_handler_context;
7915 	}
7916 
7917 	event->overflow_handler	= overflow_handler;
7918 	event->overflow_handler_context = context;
7919 
7920 	perf_event__state_init(event);
7921 
7922 	pmu = NULL;
7923 
7924 	hwc = &event->hw;
7925 	hwc->sample_period = attr->sample_period;
7926 	if (attr->freq && attr->sample_freq)
7927 		hwc->sample_period = 1;
7928 	hwc->last_period = hwc->sample_period;
7929 
7930 	local64_set(&hwc->period_left, hwc->sample_period);
7931 
7932 	/*
7933 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7934 	 */
7935 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7936 		goto err_ns;
7937 
7938 	if (!has_branch_stack(event))
7939 		event->attr.branch_sample_type = 0;
7940 
7941 	if (cgroup_fd != -1) {
7942 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7943 		if (err)
7944 			goto err_ns;
7945 	}
7946 
7947 	pmu = perf_init_event(event);
7948 	if (!pmu)
7949 		goto err_ns;
7950 	else if (IS_ERR(pmu)) {
7951 		err = PTR_ERR(pmu);
7952 		goto err_ns;
7953 	}
7954 
7955 	err = exclusive_event_init(event);
7956 	if (err)
7957 		goto err_pmu;
7958 
7959 	if (!event->parent) {
7960 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7961 			err = get_callchain_buffers();
7962 			if (err)
7963 				goto err_per_task;
7964 		}
7965 	}
7966 
7967 	return event;
7968 
7969 err_per_task:
7970 	exclusive_event_destroy(event);
7971 
7972 err_pmu:
7973 	if (event->destroy)
7974 		event->destroy(event);
7975 	module_put(pmu->module);
7976 err_ns:
7977 	if (is_cgroup_event(event))
7978 		perf_detach_cgroup(event);
7979 	if (event->ns)
7980 		put_pid_ns(event->ns);
7981 	kfree(event);
7982 
7983 	return ERR_PTR(err);
7984 }
7985 
7986 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7987 			  struct perf_event_attr *attr)
7988 {
7989 	u32 size;
7990 	int ret;
7991 
7992 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7993 		return -EFAULT;
7994 
7995 	/*
7996 	 * zero the full structure, so that a short copy will be nice.
7997 	 */
7998 	memset(attr, 0, sizeof(*attr));
7999 
8000 	ret = get_user(size, &uattr->size);
8001 	if (ret)
8002 		return ret;
8003 
8004 	if (size > PAGE_SIZE)	/* silly large */
8005 		goto err_size;
8006 
8007 	if (!size)		/* abi compat */
8008 		size = PERF_ATTR_SIZE_VER0;
8009 
8010 	if (size < PERF_ATTR_SIZE_VER0)
8011 		goto err_size;
8012 
8013 	/*
8014 	 * If we're handed a bigger struct than we know of,
8015 	 * ensure all the unknown bits are 0 - i.e. new
8016 	 * user-space does not rely on any kernel feature
8017 	 * extensions we dont know about yet.
8018 	 */
8019 	if (size > sizeof(*attr)) {
8020 		unsigned char __user *addr;
8021 		unsigned char __user *end;
8022 		unsigned char val;
8023 
8024 		addr = (void __user *)uattr + sizeof(*attr);
8025 		end  = (void __user *)uattr + size;
8026 
8027 		for (; addr < end; addr++) {
8028 			ret = get_user(val, addr);
8029 			if (ret)
8030 				return ret;
8031 			if (val)
8032 				goto err_size;
8033 		}
8034 		size = sizeof(*attr);
8035 	}
8036 
8037 	ret = copy_from_user(attr, uattr, size);
8038 	if (ret)
8039 		return -EFAULT;
8040 
8041 	if (attr->__reserved_1)
8042 		return -EINVAL;
8043 
8044 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8045 		return -EINVAL;
8046 
8047 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8048 		return -EINVAL;
8049 
8050 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8051 		u64 mask = attr->branch_sample_type;
8052 
8053 		/* only using defined bits */
8054 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8055 			return -EINVAL;
8056 
8057 		/* at least one branch bit must be set */
8058 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8059 			return -EINVAL;
8060 
8061 		/* propagate priv level, when not set for branch */
8062 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8063 
8064 			/* exclude_kernel checked on syscall entry */
8065 			if (!attr->exclude_kernel)
8066 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
8067 
8068 			if (!attr->exclude_user)
8069 				mask |= PERF_SAMPLE_BRANCH_USER;
8070 
8071 			if (!attr->exclude_hv)
8072 				mask |= PERF_SAMPLE_BRANCH_HV;
8073 			/*
8074 			 * adjust user setting (for HW filter setup)
8075 			 */
8076 			attr->branch_sample_type = mask;
8077 		}
8078 		/* privileged levels capture (kernel, hv): check permissions */
8079 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8080 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8081 			return -EACCES;
8082 	}
8083 
8084 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8085 		ret = perf_reg_validate(attr->sample_regs_user);
8086 		if (ret)
8087 			return ret;
8088 	}
8089 
8090 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8091 		if (!arch_perf_have_user_stack_dump())
8092 			return -ENOSYS;
8093 
8094 		/*
8095 		 * We have __u32 type for the size, but so far
8096 		 * we can only use __u16 as maximum due to the
8097 		 * __u16 sample size limit.
8098 		 */
8099 		if (attr->sample_stack_user >= USHRT_MAX)
8100 			ret = -EINVAL;
8101 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8102 			ret = -EINVAL;
8103 	}
8104 
8105 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8106 		ret = perf_reg_validate(attr->sample_regs_intr);
8107 out:
8108 	return ret;
8109 
8110 err_size:
8111 	put_user(sizeof(*attr), &uattr->size);
8112 	ret = -E2BIG;
8113 	goto out;
8114 }
8115 
8116 static int
8117 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8118 {
8119 	struct ring_buffer *rb = NULL;
8120 	int ret = -EINVAL;
8121 
8122 	if (!output_event)
8123 		goto set;
8124 
8125 	/* don't allow circular references */
8126 	if (event == output_event)
8127 		goto out;
8128 
8129 	/*
8130 	 * Don't allow cross-cpu buffers
8131 	 */
8132 	if (output_event->cpu != event->cpu)
8133 		goto out;
8134 
8135 	/*
8136 	 * If its not a per-cpu rb, it must be the same task.
8137 	 */
8138 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8139 		goto out;
8140 
8141 	/*
8142 	 * Mixing clocks in the same buffer is trouble you don't need.
8143 	 */
8144 	if (output_event->clock != event->clock)
8145 		goto out;
8146 
8147 	/*
8148 	 * If both events generate aux data, they must be on the same PMU
8149 	 */
8150 	if (has_aux(event) && has_aux(output_event) &&
8151 	    event->pmu != output_event->pmu)
8152 		goto out;
8153 
8154 set:
8155 	mutex_lock(&event->mmap_mutex);
8156 	/* Can't redirect output if we've got an active mmap() */
8157 	if (atomic_read(&event->mmap_count))
8158 		goto unlock;
8159 
8160 	if (output_event) {
8161 		/* get the rb we want to redirect to */
8162 		rb = ring_buffer_get(output_event);
8163 		if (!rb)
8164 			goto unlock;
8165 	}
8166 
8167 	ring_buffer_attach(event, rb);
8168 
8169 	ret = 0;
8170 unlock:
8171 	mutex_unlock(&event->mmap_mutex);
8172 
8173 out:
8174 	return ret;
8175 }
8176 
8177 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8178 {
8179 	if (b < a)
8180 		swap(a, b);
8181 
8182 	mutex_lock(a);
8183 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8184 }
8185 
8186 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8187 {
8188 	bool nmi_safe = false;
8189 
8190 	switch (clk_id) {
8191 	case CLOCK_MONOTONIC:
8192 		event->clock = &ktime_get_mono_fast_ns;
8193 		nmi_safe = true;
8194 		break;
8195 
8196 	case CLOCK_MONOTONIC_RAW:
8197 		event->clock = &ktime_get_raw_fast_ns;
8198 		nmi_safe = true;
8199 		break;
8200 
8201 	case CLOCK_REALTIME:
8202 		event->clock = &ktime_get_real_ns;
8203 		break;
8204 
8205 	case CLOCK_BOOTTIME:
8206 		event->clock = &ktime_get_boot_ns;
8207 		break;
8208 
8209 	case CLOCK_TAI:
8210 		event->clock = &ktime_get_tai_ns;
8211 		break;
8212 
8213 	default:
8214 		return -EINVAL;
8215 	}
8216 
8217 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8218 		return -EINVAL;
8219 
8220 	return 0;
8221 }
8222 
8223 /**
8224  * sys_perf_event_open - open a performance event, associate it to a task/cpu
8225  *
8226  * @attr_uptr:	event_id type attributes for monitoring/sampling
8227  * @pid:		target pid
8228  * @cpu:		target cpu
8229  * @group_fd:		group leader event fd
8230  */
8231 SYSCALL_DEFINE5(perf_event_open,
8232 		struct perf_event_attr __user *, attr_uptr,
8233 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8234 {
8235 	struct perf_event *group_leader = NULL, *output_event = NULL;
8236 	struct perf_event *event, *sibling;
8237 	struct perf_event_attr attr;
8238 	struct perf_event_context *ctx, *uninitialized_var(gctx);
8239 	struct file *event_file = NULL;
8240 	struct fd group = {NULL, 0};
8241 	struct task_struct *task = NULL;
8242 	struct pmu *pmu;
8243 	int event_fd;
8244 	int move_group = 0;
8245 	int err;
8246 	int f_flags = O_RDWR;
8247 	int cgroup_fd = -1;
8248 
8249 	/* for future expandability... */
8250 	if (flags & ~PERF_FLAG_ALL)
8251 		return -EINVAL;
8252 
8253 	err = perf_copy_attr(attr_uptr, &attr);
8254 	if (err)
8255 		return err;
8256 
8257 	if (!attr.exclude_kernel) {
8258 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8259 			return -EACCES;
8260 	}
8261 
8262 	if (attr.freq) {
8263 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
8264 			return -EINVAL;
8265 	} else {
8266 		if (attr.sample_period & (1ULL << 63))
8267 			return -EINVAL;
8268 	}
8269 
8270 	/*
8271 	 * In cgroup mode, the pid argument is used to pass the fd
8272 	 * opened to the cgroup directory in cgroupfs. The cpu argument
8273 	 * designates the cpu on which to monitor threads from that
8274 	 * cgroup.
8275 	 */
8276 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8277 		return -EINVAL;
8278 
8279 	if (flags & PERF_FLAG_FD_CLOEXEC)
8280 		f_flags |= O_CLOEXEC;
8281 
8282 	event_fd = get_unused_fd_flags(f_flags);
8283 	if (event_fd < 0)
8284 		return event_fd;
8285 
8286 	if (group_fd != -1) {
8287 		err = perf_fget_light(group_fd, &group);
8288 		if (err)
8289 			goto err_fd;
8290 		group_leader = group.file->private_data;
8291 		if (flags & PERF_FLAG_FD_OUTPUT)
8292 			output_event = group_leader;
8293 		if (flags & PERF_FLAG_FD_NO_GROUP)
8294 			group_leader = NULL;
8295 	}
8296 
8297 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8298 		task = find_lively_task_by_vpid(pid);
8299 		if (IS_ERR(task)) {
8300 			err = PTR_ERR(task);
8301 			goto err_group_fd;
8302 		}
8303 	}
8304 
8305 	if (task && group_leader &&
8306 	    group_leader->attr.inherit != attr.inherit) {
8307 		err = -EINVAL;
8308 		goto err_task;
8309 	}
8310 
8311 	get_online_cpus();
8312 
8313 	if (flags & PERF_FLAG_PID_CGROUP)
8314 		cgroup_fd = pid;
8315 
8316 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8317 				 NULL, NULL, cgroup_fd);
8318 	if (IS_ERR(event)) {
8319 		err = PTR_ERR(event);
8320 		goto err_cpus;
8321 	}
8322 
8323 	if (is_sampling_event(event)) {
8324 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8325 			err = -ENOTSUPP;
8326 			goto err_alloc;
8327 		}
8328 	}
8329 
8330 	account_event(event);
8331 
8332 	/*
8333 	 * Special case software events and allow them to be part of
8334 	 * any hardware group.
8335 	 */
8336 	pmu = event->pmu;
8337 
8338 	if (attr.use_clockid) {
8339 		err = perf_event_set_clock(event, attr.clockid);
8340 		if (err)
8341 			goto err_alloc;
8342 	}
8343 
8344 	if (group_leader &&
8345 	    (is_software_event(event) != is_software_event(group_leader))) {
8346 		if (is_software_event(event)) {
8347 			/*
8348 			 * If event and group_leader are not both a software
8349 			 * event, and event is, then group leader is not.
8350 			 *
8351 			 * Allow the addition of software events to !software
8352 			 * groups, this is safe because software events never
8353 			 * fail to schedule.
8354 			 */
8355 			pmu = group_leader->pmu;
8356 		} else if (is_software_event(group_leader) &&
8357 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8358 			/*
8359 			 * In case the group is a pure software group, and we
8360 			 * try to add a hardware event, move the whole group to
8361 			 * the hardware context.
8362 			 */
8363 			move_group = 1;
8364 		}
8365 	}
8366 
8367 	/*
8368 	 * Get the target context (task or percpu):
8369 	 */
8370 	ctx = find_get_context(pmu, task, event);
8371 	if (IS_ERR(ctx)) {
8372 		err = PTR_ERR(ctx);
8373 		goto err_alloc;
8374 	}
8375 
8376 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8377 		err = -EBUSY;
8378 		goto err_context;
8379 	}
8380 
8381 	if (task) {
8382 		put_task_struct(task);
8383 		task = NULL;
8384 	}
8385 
8386 	/*
8387 	 * Look up the group leader (we will attach this event to it):
8388 	 */
8389 	if (group_leader) {
8390 		err = -EINVAL;
8391 
8392 		/*
8393 		 * Do not allow a recursive hierarchy (this new sibling
8394 		 * becoming part of another group-sibling):
8395 		 */
8396 		if (group_leader->group_leader != group_leader)
8397 			goto err_context;
8398 
8399 		/* All events in a group should have the same clock */
8400 		if (group_leader->clock != event->clock)
8401 			goto err_context;
8402 
8403 		/*
8404 		 * Do not allow to attach to a group in a different
8405 		 * task or CPU context:
8406 		 */
8407 		if (move_group) {
8408 			/*
8409 			 * Make sure we're both on the same task, or both
8410 			 * per-cpu events.
8411 			 */
8412 			if (group_leader->ctx->task != ctx->task)
8413 				goto err_context;
8414 
8415 			/*
8416 			 * Make sure we're both events for the same CPU;
8417 			 * grouping events for different CPUs is broken; since
8418 			 * you can never concurrently schedule them anyhow.
8419 			 */
8420 			if (group_leader->cpu != event->cpu)
8421 				goto err_context;
8422 		} else {
8423 			if (group_leader->ctx != ctx)
8424 				goto err_context;
8425 		}
8426 
8427 		/*
8428 		 * Only a group leader can be exclusive or pinned
8429 		 */
8430 		if (attr.exclusive || attr.pinned)
8431 			goto err_context;
8432 	}
8433 
8434 	if (output_event) {
8435 		err = perf_event_set_output(event, output_event);
8436 		if (err)
8437 			goto err_context;
8438 	}
8439 
8440 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8441 					f_flags);
8442 	if (IS_ERR(event_file)) {
8443 		err = PTR_ERR(event_file);
8444 		goto err_context;
8445 	}
8446 
8447 	if (move_group) {
8448 		gctx = group_leader->ctx;
8449 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8450 	} else {
8451 		mutex_lock(&ctx->mutex);
8452 	}
8453 
8454 	if (!perf_event_validate_size(event)) {
8455 		err = -E2BIG;
8456 		goto err_locked;
8457 	}
8458 
8459 	/*
8460 	 * Must be under the same ctx::mutex as perf_install_in_context(),
8461 	 * because we need to serialize with concurrent event creation.
8462 	 */
8463 	if (!exclusive_event_installable(event, ctx)) {
8464 		/* exclusive and group stuff are assumed mutually exclusive */
8465 		WARN_ON_ONCE(move_group);
8466 
8467 		err = -EBUSY;
8468 		goto err_locked;
8469 	}
8470 
8471 	WARN_ON_ONCE(ctx->parent_ctx);
8472 
8473 	if (move_group) {
8474 		/*
8475 		 * See perf_event_ctx_lock() for comments on the details
8476 		 * of swizzling perf_event::ctx.
8477 		 */
8478 		perf_remove_from_context(group_leader, false);
8479 
8480 		list_for_each_entry(sibling, &group_leader->sibling_list,
8481 				    group_entry) {
8482 			perf_remove_from_context(sibling, false);
8483 			put_ctx(gctx);
8484 		}
8485 
8486 		/*
8487 		 * Wait for everybody to stop referencing the events through
8488 		 * the old lists, before installing it on new lists.
8489 		 */
8490 		synchronize_rcu();
8491 
8492 		/*
8493 		 * Install the group siblings before the group leader.
8494 		 *
8495 		 * Because a group leader will try and install the entire group
8496 		 * (through the sibling list, which is still in-tact), we can
8497 		 * end up with siblings installed in the wrong context.
8498 		 *
8499 		 * By installing siblings first we NO-OP because they're not
8500 		 * reachable through the group lists.
8501 		 */
8502 		list_for_each_entry(sibling, &group_leader->sibling_list,
8503 				    group_entry) {
8504 			perf_event__state_init(sibling);
8505 			perf_install_in_context(ctx, sibling, sibling->cpu);
8506 			get_ctx(ctx);
8507 		}
8508 
8509 		/*
8510 		 * Removing from the context ends up with disabled
8511 		 * event. What we want here is event in the initial
8512 		 * startup state, ready to be add into new context.
8513 		 */
8514 		perf_event__state_init(group_leader);
8515 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8516 		get_ctx(ctx);
8517 
8518 		/*
8519 		 * Now that all events are installed in @ctx, nothing
8520 		 * references @gctx anymore, so drop the last reference we have
8521 		 * on it.
8522 		 */
8523 		put_ctx(gctx);
8524 	}
8525 
8526 	/*
8527 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
8528 	 * that we're serialized against further additions and before
8529 	 * perf_install_in_context() which is the point the event is active and
8530 	 * can use these values.
8531 	 */
8532 	perf_event__header_size(event);
8533 	perf_event__id_header_size(event);
8534 
8535 	perf_install_in_context(ctx, event, event->cpu);
8536 	perf_unpin_context(ctx);
8537 
8538 	if (move_group)
8539 		mutex_unlock(&gctx->mutex);
8540 	mutex_unlock(&ctx->mutex);
8541 
8542 	put_online_cpus();
8543 
8544 	event->owner = current;
8545 
8546 	mutex_lock(&current->perf_event_mutex);
8547 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8548 	mutex_unlock(&current->perf_event_mutex);
8549 
8550 	/*
8551 	 * Drop the reference on the group_event after placing the
8552 	 * new event on the sibling_list. This ensures destruction
8553 	 * of the group leader will find the pointer to itself in
8554 	 * perf_group_detach().
8555 	 */
8556 	fdput(group);
8557 	fd_install(event_fd, event_file);
8558 	return event_fd;
8559 
8560 err_locked:
8561 	if (move_group)
8562 		mutex_unlock(&gctx->mutex);
8563 	mutex_unlock(&ctx->mutex);
8564 /* err_file: */
8565 	fput(event_file);
8566 err_context:
8567 	perf_unpin_context(ctx);
8568 	put_ctx(ctx);
8569 err_alloc:
8570 	free_event(event);
8571 err_cpus:
8572 	put_online_cpus();
8573 err_task:
8574 	if (task)
8575 		put_task_struct(task);
8576 err_group_fd:
8577 	fdput(group);
8578 err_fd:
8579 	put_unused_fd(event_fd);
8580 	return err;
8581 }
8582 
8583 /**
8584  * perf_event_create_kernel_counter
8585  *
8586  * @attr: attributes of the counter to create
8587  * @cpu: cpu in which the counter is bound
8588  * @task: task to profile (NULL for percpu)
8589  */
8590 struct perf_event *
8591 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8592 				 struct task_struct *task,
8593 				 perf_overflow_handler_t overflow_handler,
8594 				 void *context)
8595 {
8596 	struct perf_event_context *ctx;
8597 	struct perf_event *event;
8598 	int err;
8599 
8600 	/*
8601 	 * Get the target context (task or percpu):
8602 	 */
8603 
8604 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8605 				 overflow_handler, context, -1);
8606 	if (IS_ERR(event)) {
8607 		err = PTR_ERR(event);
8608 		goto err;
8609 	}
8610 
8611 	/* Mark owner so we could distinguish it from user events. */
8612 	event->owner = EVENT_OWNER_KERNEL;
8613 
8614 	account_event(event);
8615 
8616 	ctx = find_get_context(event->pmu, task, event);
8617 	if (IS_ERR(ctx)) {
8618 		err = PTR_ERR(ctx);
8619 		goto err_free;
8620 	}
8621 
8622 	WARN_ON_ONCE(ctx->parent_ctx);
8623 	mutex_lock(&ctx->mutex);
8624 	if (!exclusive_event_installable(event, ctx)) {
8625 		mutex_unlock(&ctx->mutex);
8626 		perf_unpin_context(ctx);
8627 		put_ctx(ctx);
8628 		err = -EBUSY;
8629 		goto err_free;
8630 	}
8631 
8632 	perf_install_in_context(ctx, event, cpu);
8633 	perf_unpin_context(ctx);
8634 	mutex_unlock(&ctx->mutex);
8635 
8636 	return event;
8637 
8638 err_free:
8639 	free_event(event);
8640 err:
8641 	return ERR_PTR(err);
8642 }
8643 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8644 
8645 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8646 {
8647 	struct perf_event_context *src_ctx;
8648 	struct perf_event_context *dst_ctx;
8649 	struct perf_event *event, *tmp;
8650 	LIST_HEAD(events);
8651 
8652 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8653 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8654 
8655 	/*
8656 	 * See perf_event_ctx_lock() for comments on the details
8657 	 * of swizzling perf_event::ctx.
8658 	 */
8659 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8660 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8661 				 event_entry) {
8662 		perf_remove_from_context(event, false);
8663 		unaccount_event_cpu(event, src_cpu);
8664 		put_ctx(src_ctx);
8665 		list_add(&event->migrate_entry, &events);
8666 	}
8667 
8668 	/*
8669 	 * Wait for the events to quiesce before re-instating them.
8670 	 */
8671 	synchronize_rcu();
8672 
8673 	/*
8674 	 * Re-instate events in 2 passes.
8675 	 *
8676 	 * Skip over group leaders and only install siblings on this first
8677 	 * pass, siblings will not get enabled without a leader, however a
8678 	 * leader will enable its siblings, even if those are still on the old
8679 	 * context.
8680 	 */
8681 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8682 		if (event->group_leader == event)
8683 			continue;
8684 
8685 		list_del(&event->migrate_entry);
8686 		if (event->state >= PERF_EVENT_STATE_OFF)
8687 			event->state = PERF_EVENT_STATE_INACTIVE;
8688 		account_event_cpu(event, dst_cpu);
8689 		perf_install_in_context(dst_ctx, event, dst_cpu);
8690 		get_ctx(dst_ctx);
8691 	}
8692 
8693 	/*
8694 	 * Once all the siblings are setup properly, install the group leaders
8695 	 * to make it go.
8696 	 */
8697 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8698 		list_del(&event->migrate_entry);
8699 		if (event->state >= PERF_EVENT_STATE_OFF)
8700 			event->state = PERF_EVENT_STATE_INACTIVE;
8701 		account_event_cpu(event, dst_cpu);
8702 		perf_install_in_context(dst_ctx, event, dst_cpu);
8703 		get_ctx(dst_ctx);
8704 	}
8705 	mutex_unlock(&dst_ctx->mutex);
8706 	mutex_unlock(&src_ctx->mutex);
8707 }
8708 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8709 
8710 static void sync_child_event(struct perf_event *child_event,
8711 			       struct task_struct *child)
8712 {
8713 	struct perf_event *parent_event = child_event->parent;
8714 	u64 child_val;
8715 
8716 	if (child_event->attr.inherit_stat)
8717 		perf_event_read_event(child_event, child);
8718 
8719 	child_val = perf_event_count(child_event);
8720 
8721 	/*
8722 	 * Add back the child's count to the parent's count:
8723 	 */
8724 	atomic64_add(child_val, &parent_event->child_count);
8725 	atomic64_add(child_event->total_time_enabled,
8726 		     &parent_event->child_total_time_enabled);
8727 	atomic64_add(child_event->total_time_running,
8728 		     &parent_event->child_total_time_running);
8729 
8730 	/*
8731 	 * Remove this event from the parent's list
8732 	 */
8733 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8734 	mutex_lock(&parent_event->child_mutex);
8735 	list_del_init(&child_event->child_list);
8736 	mutex_unlock(&parent_event->child_mutex);
8737 
8738 	/*
8739 	 * Make sure user/parent get notified, that we just
8740 	 * lost one event.
8741 	 */
8742 	perf_event_wakeup(parent_event);
8743 
8744 	/*
8745 	 * Release the parent event, if this was the last
8746 	 * reference to it.
8747 	 */
8748 	put_event(parent_event);
8749 }
8750 
8751 static void
8752 __perf_event_exit_task(struct perf_event *child_event,
8753 			 struct perf_event_context *child_ctx,
8754 			 struct task_struct *child)
8755 {
8756 	/*
8757 	 * Do not destroy the 'original' grouping; because of the context
8758 	 * switch optimization the original events could've ended up in a
8759 	 * random child task.
8760 	 *
8761 	 * If we were to destroy the original group, all group related
8762 	 * operations would cease to function properly after this random
8763 	 * child dies.
8764 	 *
8765 	 * Do destroy all inherited groups, we don't care about those
8766 	 * and being thorough is better.
8767 	 */
8768 	perf_remove_from_context(child_event, !!child_event->parent);
8769 
8770 	/*
8771 	 * It can happen that the parent exits first, and has events
8772 	 * that are still around due to the child reference. These
8773 	 * events need to be zapped.
8774 	 */
8775 	if (child_event->parent) {
8776 		sync_child_event(child_event, child);
8777 		free_event(child_event);
8778 	} else {
8779 		child_event->state = PERF_EVENT_STATE_EXIT;
8780 		perf_event_wakeup(child_event);
8781 	}
8782 }
8783 
8784 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8785 {
8786 	struct perf_event *child_event, *next;
8787 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8788 	unsigned long flags;
8789 
8790 	if (likely(!child->perf_event_ctxp[ctxn])) {
8791 		perf_event_task(child, NULL, 0);
8792 		return;
8793 	}
8794 
8795 	local_irq_save(flags);
8796 	/*
8797 	 * We can't reschedule here because interrupts are disabled,
8798 	 * and either child is current or it is a task that can't be
8799 	 * scheduled, so we are now safe from rescheduling changing
8800 	 * our context.
8801 	 */
8802 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8803 
8804 	/*
8805 	 * Take the context lock here so that if find_get_context is
8806 	 * reading child->perf_event_ctxp, we wait until it has
8807 	 * incremented the context's refcount before we do put_ctx below.
8808 	 */
8809 	raw_spin_lock(&child_ctx->lock);
8810 	task_ctx_sched_out(child_ctx);
8811 	child->perf_event_ctxp[ctxn] = NULL;
8812 
8813 	/*
8814 	 * If this context is a clone; unclone it so it can't get
8815 	 * swapped to another process while we're removing all
8816 	 * the events from it.
8817 	 */
8818 	clone_ctx = unclone_ctx(child_ctx);
8819 	update_context_time(child_ctx);
8820 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8821 
8822 	if (clone_ctx)
8823 		put_ctx(clone_ctx);
8824 
8825 	/*
8826 	 * Report the task dead after unscheduling the events so that we
8827 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8828 	 * get a few PERF_RECORD_READ events.
8829 	 */
8830 	perf_event_task(child, child_ctx, 0);
8831 
8832 	/*
8833 	 * We can recurse on the same lock type through:
8834 	 *
8835 	 *   __perf_event_exit_task()
8836 	 *     sync_child_event()
8837 	 *       put_event()
8838 	 *         mutex_lock(&ctx->mutex)
8839 	 *
8840 	 * But since its the parent context it won't be the same instance.
8841 	 */
8842 	mutex_lock(&child_ctx->mutex);
8843 
8844 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8845 		__perf_event_exit_task(child_event, child_ctx, child);
8846 
8847 	mutex_unlock(&child_ctx->mutex);
8848 
8849 	put_ctx(child_ctx);
8850 }
8851 
8852 /*
8853  * When a child task exits, feed back event values to parent events.
8854  */
8855 void perf_event_exit_task(struct task_struct *child)
8856 {
8857 	struct perf_event *event, *tmp;
8858 	int ctxn;
8859 
8860 	mutex_lock(&child->perf_event_mutex);
8861 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8862 				 owner_entry) {
8863 		list_del_init(&event->owner_entry);
8864 
8865 		/*
8866 		 * Ensure the list deletion is visible before we clear
8867 		 * the owner, closes a race against perf_release() where
8868 		 * we need to serialize on the owner->perf_event_mutex.
8869 		 */
8870 		smp_wmb();
8871 		event->owner = NULL;
8872 	}
8873 	mutex_unlock(&child->perf_event_mutex);
8874 
8875 	for_each_task_context_nr(ctxn)
8876 		perf_event_exit_task_context(child, ctxn);
8877 }
8878 
8879 static void perf_free_event(struct perf_event *event,
8880 			    struct perf_event_context *ctx)
8881 {
8882 	struct perf_event *parent = event->parent;
8883 
8884 	if (WARN_ON_ONCE(!parent))
8885 		return;
8886 
8887 	mutex_lock(&parent->child_mutex);
8888 	list_del_init(&event->child_list);
8889 	mutex_unlock(&parent->child_mutex);
8890 
8891 	put_event(parent);
8892 
8893 	raw_spin_lock_irq(&ctx->lock);
8894 	perf_group_detach(event);
8895 	list_del_event(event, ctx);
8896 	raw_spin_unlock_irq(&ctx->lock);
8897 	free_event(event);
8898 }
8899 
8900 /*
8901  * Free an unexposed, unused context as created by inheritance by
8902  * perf_event_init_task below, used by fork() in case of fail.
8903  *
8904  * Not all locks are strictly required, but take them anyway to be nice and
8905  * help out with the lockdep assertions.
8906  */
8907 void perf_event_free_task(struct task_struct *task)
8908 {
8909 	struct perf_event_context *ctx;
8910 	struct perf_event *event, *tmp;
8911 	int ctxn;
8912 
8913 	for_each_task_context_nr(ctxn) {
8914 		ctx = task->perf_event_ctxp[ctxn];
8915 		if (!ctx)
8916 			continue;
8917 
8918 		mutex_lock(&ctx->mutex);
8919 again:
8920 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8921 				group_entry)
8922 			perf_free_event(event, ctx);
8923 
8924 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8925 				group_entry)
8926 			perf_free_event(event, ctx);
8927 
8928 		if (!list_empty(&ctx->pinned_groups) ||
8929 				!list_empty(&ctx->flexible_groups))
8930 			goto again;
8931 
8932 		mutex_unlock(&ctx->mutex);
8933 
8934 		put_ctx(ctx);
8935 	}
8936 }
8937 
8938 void perf_event_delayed_put(struct task_struct *task)
8939 {
8940 	int ctxn;
8941 
8942 	for_each_task_context_nr(ctxn)
8943 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8944 }
8945 
8946 struct perf_event *perf_event_get(unsigned int fd)
8947 {
8948 	int err;
8949 	struct fd f;
8950 	struct perf_event *event;
8951 
8952 	err = perf_fget_light(fd, &f);
8953 	if (err)
8954 		return ERR_PTR(err);
8955 
8956 	event = f.file->private_data;
8957 	atomic_long_inc(&event->refcount);
8958 	fdput(f);
8959 
8960 	return event;
8961 }
8962 
8963 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8964 {
8965 	if (!event)
8966 		return ERR_PTR(-EINVAL);
8967 
8968 	return &event->attr;
8969 }
8970 
8971 /*
8972  * inherit a event from parent task to child task:
8973  */
8974 static struct perf_event *
8975 inherit_event(struct perf_event *parent_event,
8976 	      struct task_struct *parent,
8977 	      struct perf_event_context *parent_ctx,
8978 	      struct task_struct *child,
8979 	      struct perf_event *group_leader,
8980 	      struct perf_event_context *child_ctx)
8981 {
8982 	enum perf_event_active_state parent_state = parent_event->state;
8983 	struct perf_event *child_event;
8984 	unsigned long flags;
8985 
8986 	/*
8987 	 * Instead of creating recursive hierarchies of events,
8988 	 * we link inherited events back to the original parent,
8989 	 * which has a filp for sure, which we use as the reference
8990 	 * count:
8991 	 */
8992 	if (parent_event->parent)
8993 		parent_event = parent_event->parent;
8994 
8995 	child_event = perf_event_alloc(&parent_event->attr,
8996 					   parent_event->cpu,
8997 					   child,
8998 					   group_leader, parent_event,
8999 					   NULL, NULL, -1);
9000 	if (IS_ERR(child_event))
9001 		return child_event;
9002 
9003 	if (is_orphaned_event(parent_event) ||
9004 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
9005 		free_event(child_event);
9006 		return NULL;
9007 	}
9008 
9009 	get_ctx(child_ctx);
9010 
9011 	/*
9012 	 * Make the child state follow the state of the parent event,
9013 	 * not its attr.disabled bit.  We hold the parent's mutex,
9014 	 * so we won't race with perf_event_{en, dis}able_family.
9015 	 */
9016 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9017 		child_event->state = PERF_EVENT_STATE_INACTIVE;
9018 	else
9019 		child_event->state = PERF_EVENT_STATE_OFF;
9020 
9021 	if (parent_event->attr.freq) {
9022 		u64 sample_period = parent_event->hw.sample_period;
9023 		struct hw_perf_event *hwc = &child_event->hw;
9024 
9025 		hwc->sample_period = sample_period;
9026 		hwc->last_period   = sample_period;
9027 
9028 		local64_set(&hwc->period_left, sample_period);
9029 	}
9030 
9031 	child_event->ctx = child_ctx;
9032 	child_event->overflow_handler = parent_event->overflow_handler;
9033 	child_event->overflow_handler_context
9034 		= parent_event->overflow_handler_context;
9035 
9036 	/*
9037 	 * Precalculate sample_data sizes
9038 	 */
9039 	perf_event__header_size(child_event);
9040 	perf_event__id_header_size(child_event);
9041 
9042 	/*
9043 	 * Link it up in the child's context:
9044 	 */
9045 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
9046 	add_event_to_ctx(child_event, child_ctx);
9047 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9048 
9049 	/*
9050 	 * Link this into the parent event's child list
9051 	 */
9052 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9053 	mutex_lock(&parent_event->child_mutex);
9054 	list_add_tail(&child_event->child_list, &parent_event->child_list);
9055 	mutex_unlock(&parent_event->child_mutex);
9056 
9057 	return child_event;
9058 }
9059 
9060 static int inherit_group(struct perf_event *parent_event,
9061 	      struct task_struct *parent,
9062 	      struct perf_event_context *parent_ctx,
9063 	      struct task_struct *child,
9064 	      struct perf_event_context *child_ctx)
9065 {
9066 	struct perf_event *leader;
9067 	struct perf_event *sub;
9068 	struct perf_event *child_ctr;
9069 
9070 	leader = inherit_event(parent_event, parent, parent_ctx,
9071 				 child, NULL, child_ctx);
9072 	if (IS_ERR(leader))
9073 		return PTR_ERR(leader);
9074 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9075 		child_ctr = inherit_event(sub, parent, parent_ctx,
9076 					    child, leader, child_ctx);
9077 		if (IS_ERR(child_ctr))
9078 			return PTR_ERR(child_ctr);
9079 	}
9080 	return 0;
9081 }
9082 
9083 static int
9084 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9085 		   struct perf_event_context *parent_ctx,
9086 		   struct task_struct *child, int ctxn,
9087 		   int *inherited_all)
9088 {
9089 	int ret;
9090 	struct perf_event_context *child_ctx;
9091 
9092 	if (!event->attr.inherit) {
9093 		*inherited_all = 0;
9094 		return 0;
9095 	}
9096 
9097 	child_ctx = child->perf_event_ctxp[ctxn];
9098 	if (!child_ctx) {
9099 		/*
9100 		 * This is executed from the parent task context, so
9101 		 * inherit events that have been marked for cloning.
9102 		 * First allocate and initialize a context for the
9103 		 * child.
9104 		 */
9105 
9106 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9107 		if (!child_ctx)
9108 			return -ENOMEM;
9109 
9110 		child->perf_event_ctxp[ctxn] = child_ctx;
9111 	}
9112 
9113 	ret = inherit_group(event, parent, parent_ctx,
9114 			    child, child_ctx);
9115 
9116 	if (ret)
9117 		*inherited_all = 0;
9118 
9119 	return ret;
9120 }
9121 
9122 /*
9123  * Initialize the perf_event context in task_struct
9124  */
9125 static int perf_event_init_context(struct task_struct *child, int ctxn)
9126 {
9127 	struct perf_event_context *child_ctx, *parent_ctx;
9128 	struct perf_event_context *cloned_ctx;
9129 	struct perf_event *event;
9130 	struct task_struct *parent = current;
9131 	int inherited_all = 1;
9132 	unsigned long flags;
9133 	int ret = 0;
9134 
9135 	if (likely(!parent->perf_event_ctxp[ctxn]))
9136 		return 0;
9137 
9138 	/*
9139 	 * If the parent's context is a clone, pin it so it won't get
9140 	 * swapped under us.
9141 	 */
9142 	parent_ctx = perf_pin_task_context(parent, ctxn);
9143 	if (!parent_ctx)
9144 		return 0;
9145 
9146 	/*
9147 	 * No need to check if parent_ctx != NULL here; since we saw
9148 	 * it non-NULL earlier, the only reason for it to become NULL
9149 	 * is if we exit, and since we're currently in the middle of
9150 	 * a fork we can't be exiting at the same time.
9151 	 */
9152 
9153 	/*
9154 	 * Lock the parent list. No need to lock the child - not PID
9155 	 * hashed yet and not running, so nobody can access it.
9156 	 */
9157 	mutex_lock(&parent_ctx->mutex);
9158 
9159 	/*
9160 	 * We dont have to disable NMIs - we are only looking at
9161 	 * the list, not manipulating it:
9162 	 */
9163 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9164 		ret = inherit_task_group(event, parent, parent_ctx,
9165 					 child, ctxn, &inherited_all);
9166 		if (ret)
9167 			break;
9168 	}
9169 
9170 	/*
9171 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
9172 	 * to allocations, but we need to prevent rotation because
9173 	 * rotate_ctx() will change the list from interrupt context.
9174 	 */
9175 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9176 	parent_ctx->rotate_disable = 1;
9177 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9178 
9179 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9180 		ret = inherit_task_group(event, parent, parent_ctx,
9181 					 child, ctxn, &inherited_all);
9182 		if (ret)
9183 			break;
9184 	}
9185 
9186 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9187 	parent_ctx->rotate_disable = 0;
9188 
9189 	child_ctx = child->perf_event_ctxp[ctxn];
9190 
9191 	if (child_ctx && inherited_all) {
9192 		/*
9193 		 * Mark the child context as a clone of the parent
9194 		 * context, or of whatever the parent is a clone of.
9195 		 *
9196 		 * Note that if the parent is a clone, the holding of
9197 		 * parent_ctx->lock avoids it from being uncloned.
9198 		 */
9199 		cloned_ctx = parent_ctx->parent_ctx;
9200 		if (cloned_ctx) {
9201 			child_ctx->parent_ctx = cloned_ctx;
9202 			child_ctx->parent_gen = parent_ctx->parent_gen;
9203 		} else {
9204 			child_ctx->parent_ctx = parent_ctx;
9205 			child_ctx->parent_gen = parent_ctx->generation;
9206 		}
9207 		get_ctx(child_ctx->parent_ctx);
9208 	}
9209 
9210 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9211 	mutex_unlock(&parent_ctx->mutex);
9212 
9213 	perf_unpin_context(parent_ctx);
9214 	put_ctx(parent_ctx);
9215 
9216 	return ret;
9217 }
9218 
9219 /*
9220  * Initialize the perf_event context in task_struct
9221  */
9222 int perf_event_init_task(struct task_struct *child)
9223 {
9224 	int ctxn, ret;
9225 
9226 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9227 	mutex_init(&child->perf_event_mutex);
9228 	INIT_LIST_HEAD(&child->perf_event_list);
9229 
9230 	for_each_task_context_nr(ctxn) {
9231 		ret = perf_event_init_context(child, ctxn);
9232 		if (ret) {
9233 			perf_event_free_task(child);
9234 			return ret;
9235 		}
9236 	}
9237 
9238 	return 0;
9239 }
9240 
9241 static void __init perf_event_init_all_cpus(void)
9242 {
9243 	struct swevent_htable *swhash;
9244 	int cpu;
9245 
9246 	for_each_possible_cpu(cpu) {
9247 		swhash = &per_cpu(swevent_htable, cpu);
9248 		mutex_init(&swhash->hlist_mutex);
9249 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9250 	}
9251 }
9252 
9253 static void perf_event_init_cpu(int cpu)
9254 {
9255 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9256 
9257 	mutex_lock(&swhash->hlist_mutex);
9258 	swhash->online = true;
9259 	if (swhash->hlist_refcount > 0) {
9260 		struct swevent_hlist *hlist;
9261 
9262 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9263 		WARN_ON(!hlist);
9264 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
9265 	}
9266 	mutex_unlock(&swhash->hlist_mutex);
9267 }
9268 
9269 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9270 static void __perf_event_exit_context(void *__info)
9271 {
9272 	struct remove_event re = { .detach_group = true };
9273 	struct perf_event_context *ctx = __info;
9274 
9275 	rcu_read_lock();
9276 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9277 		__perf_remove_from_context(&re);
9278 	rcu_read_unlock();
9279 }
9280 
9281 static void perf_event_exit_cpu_context(int cpu)
9282 {
9283 	struct perf_event_context *ctx;
9284 	struct pmu *pmu;
9285 	int idx;
9286 
9287 	idx = srcu_read_lock(&pmus_srcu);
9288 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9289 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9290 
9291 		mutex_lock(&ctx->mutex);
9292 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9293 		mutex_unlock(&ctx->mutex);
9294 	}
9295 	srcu_read_unlock(&pmus_srcu, idx);
9296 }
9297 
9298 static void perf_event_exit_cpu(int cpu)
9299 {
9300 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9301 
9302 	perf_event_exit_cpu_context(cpu);
9303 
9304 	mutex_lock(&swhash->hlist_mutex);
9305 	swhash->online = false;
9306 	swevent_hlist_release(swhash);
9307 	mutex_unlock(&swhash->hlist_mutex);
9308 }
9309 #else
9310 static inline void perf_event_exit_cpu(int cpu) { }
9311 #endif
9312 
9313 static int
9314 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9315 {
9316 	int cpu;
9317 
9318 	for_each_online_cpu(cpu)
9319 		perf_event_exit_cpu(cpu);
9320 
9321 	return NOTIFY_OK;
9322 }
9323 
9324 /*
9325  * Run the perf reboot notifier at the very last possible moment so that
9326  * the generic watchdog code runs as long as possible.
9327  */
9328 static struct notifier_block perf_reboot_notifier = {
9329 	.notifier_call = perf_reboot,
9330 	.priority = INT_MIN,
9331 };
9332 
9333 static int
9334 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9335 {
9336 	unsigned int cpu = (long)hcpu;
9337 
9338 	switch (action & ~CPU_TASKS_FROZEN) {
9339 
9340 	case CPU_UP_PREPARE:
9341 	case CPU_DOWN_FAILED:
9342 		perf_event_init_cpu(cpu);
9343 		break;
9344 
9345 	case CPU_UP_CANCELED:
9346 	case CPU_DOWN_PREPARE:
9347 		perf_event_exit_cpu(cpu);
9348 		break;
9349 	default:
9350 		break;
9351 	}
9352 
9353 	return NOTIFY_OK;
9354 }
9355 
9356 void __init perf_event_init(void)
9357 {
9358 	int ret;
9359 
9360 	idr_init(&pmu_idr);
9361 
9362 	perf_event_init_all_cpus();
9363 	init_srcu_struct(&pmus_srcu);
9364 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9365 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
9366 	perf_pmu_register(&perf_task_clock, NULL, -1);
9367 	perf_tp_register();
9368 	perf_cpu_notifier(perf_cpu_notify);
9369 	register_reboot_notifier(&perf_reboot_notifier);
9370 
9371 	ret = init_hw_breakpoint();
9372 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9373 
9374 	/* do not patch jump label more than once per second */
9375 	jump_label_rate_limit(&perf_sched_events, HZ);
9376 
9377 	/*
9378 	 * Build time assertion that we keep the data_head at the intended
9379 	 * location.  IOW, validation we got the __reserved[] size right.
9380 	 */
9381 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9382 		     != 1024);
9383 }
9384 
9385 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9386 			      char *page)
9387 {
9388 	struct perf_pmu_events_attr *pmu_attr =
9389 		container_of(attr, struct perf_pmu_events_attr, attr);
9390 
9391 	if (pmu_attr->event_str)
9392 		return sprintf(page, "%s\n", pmu_attr->event_str);
9393 
9394 	return 0;
9395 }
9396 
9397 static int __init perf_event_sysfs_init(void)
9398 {
9399 	struct pmu *pmu;
9400 	int ret;
9401 
9402 	mutex_lock(&pmus_lock);
9403 
9404 	ret = bus_register(&pmu_bus);
9405 	if (ret)
9406 		goto unlock;
9407 
9408 	list_for_each_entry(pmu, &pmus, entry) {
9409 		if (!pmu->name || pmu->type < 0)
9410 			continue;
9411 
9412 		ret = pmu_dev_alloc(pmu);
9413 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9414 	}
9415 	pmu_bus_running = 1;
9416 	ret = 0;
9417 
9418 unlock:
9419 	mutex_unlock(&pmus_lock);
9420 
9421 	return ret;
9422 }
9423 device_initcall(perf_event_sysfs_init);
9424 
9425 #ifdef CONFIG_CGROUP_PERF
9426 static struct cgroup_subsys_state *
9427 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9428 {
9429 	struct perf_cgroup *jc;
9430 
9431 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9432 	if (!jc)
9433 		return ERR_PTR(-ENOMEM);
9434 
9435 	jc->info = alloc_percpu(struct perf_cgroup_info);
9436 	if (!jc->info) {
9437 		kfree(jc);
9438 		return ERR_PTR(-ENOMEM);
9439 	}
9440 
9441 	return &jc->css;
9442 }
9443 
9444 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9445 {
9446 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9447 
9448 	free_percpu(jc->info);
9449 	kfree(jc);
9450 }
9451 
9452 static int __perf_cgroup_move(void *info)
9453 {
9454 	struct task_struct *task = info;
9455 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9456 	return 0;
9457 }
9458 
9459 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9460 			       struct cgroup_taskset *tset)
9461 {
9462 	struct task_struct *task;
9463 
9464 	cgroup_taskset_for_each(task, tset)
9465 		task_function_call(task, __perf_cgroup_move, task);
9466 }
9467 
9468 struct cgroup_subsys perf_event_cgrp_subsys = {
9469 	.css_alloc	= perf_cgroup_css_alloc,
9470 	.css_free	= perf_cgroup_css_free,
9471 	.attach		= perf_cgroup_attach,
9472 };
9473 #endif /* CONFIG_CGROUP_PERF */
9474