1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Performance events core code: 4 * 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/cpu.h> 14 #include <linux/smp.h> 15 #include <linux/idr.h> 16 #include <linux/file.h> 17 #include <linux/poll.h> 18 #include <linux/slab.h> 19 #include <linux/hash.h> 20 #include <linux/tick.h> 21 #include <linux/sysfs.h> 22 #include <linux/dcache.h> 23 #include <linux/percpu.h> 24 #include <linux/ptrace.h> 25 #include <linux/reboot.h> 26 #include <linux/vmstat.h> 27 #include <linux/device.h> 28 #include <linux/export.h> 29 #include <linux/vmalloc.h> 30 #include <linux/hardirq.h> 31 #include <linux/rculist.h> 32 #include <linux/uaccess.h> 33 #include <linux/syscalls.h> 34 #include <linux/anon_inodes.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/cgroup.h> 37 #include <linux/perf_event.h> 38 #include <linux/trace_events.h> 39 #include <linux/hw_breakpoint.h> 40 #include <linux/mm_types.h> 41 #include <linux/module.h> 42 #include <linux/mman.h> 43 #include <linux/compat.h> 44 #include <linux/bpf.h> 45 #include <linux/filter.h> 46 #include <linux/namei.h> 47 #include <linux/parser.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/mm.h> 50 #include <linux/proc_ns.h> 51 #include <linux/mount.h> 52 53 #include "internal.h" 54 55 #include <asm/irq_regs.h> 56 57 typedef int (*remote_function_f)(void *); 58 59 struct remote_function_call { 60 struct task_struct *p; 61 remote_function_f func; 62 void *info; 63 int ret; 64 }; 65 66 static void remote_function(void *data) 67 { 68 struct remote_function_call *tfc = data; 69 struct task_struct *p = tfc->p; 70 71 if (p) { 72 /* -EAGAIN */ 73 if (task_cpu(p) != smp_processor_id()) 74 return; 75 76 /* 77 * Now that we're on right CPU with IRQs disabled, we can test 78 * if we hit the right task without races. 79 */ 80 81 tfc->ret = -ESRCH; /* No such (running) process */ 82 if (p != current) 83 return; 84 } 85 86 tfc->ret = tfc->func(tfc->info); 87 } 88 89 /** 90 * task_function_call - call a function on the cpu on which a task runs 91 * @p: the task to evaluate 92 * @func: the function to be called 93 * @info: the function call argument 94 * 95 * Calls the function @func when the task is currently running. This might 96 * be on the current CPU, which just calls the function directly 97 * 98 * returns: @func return value, or 99 * -ESRCH - when the process isn't running 100 * -EAGAIN - when the process moved away 101 */ 102 static int 103 task_function_call(struct task_struct *p, remote_function_f func, void *info) 104 { 105 struct remote_function_call data = { 106 .p = p, 107 .func = func, 108 .info = info, 109 .ret = -EAGAIN, 110 }; 111 int ret; 112 113 do { 114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1); 115 if (!ret) 116 ret = data.ret; 117 } while (ret == -EAGAIN); 118 119 return ret; 120 } 121 122 /** 123 * cpu_function_call - call a function on the cpu 124 * @func: the function to be called 125 * @info: the function call argument 126 * 127 * Calls the function @func on the remote cpu. 128 * 129 * returns: @func return value or -ENXIO when the cpu is offline 130 */ 131 static int cpu_function_call(int cpu, remote_function_f func, void *info) 132 { 133 struct remote_function_call data = { 134 .p = NULL, 135 .func = func, 136 .info = info, 137 .ret = -ENXIO, /* No such CPU */ 138 }; 139 140 smp_call_function_single(cpu, remote_function, &data, 1); 141 142 return data.ret; 143 } 144 145 static inline struct perf_cpu_context * 146 __get_cpu_context(struct perf_event_context *ctx) 147 { 148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context); 149 } 150 151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx, 152 struct perf_event_context *ctx) 153 { 154 raw_spin_lock(&cpuctx->ctx.lock); 155 if (ctx) 156 raw_spin_lock(&ctx->lock); 157 } 158 159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx, 160 struct perf_event_context *ctx) 161 { 162 if (ctx) 163 raw_spin_unlock(&ctx->lock); 164 raw_spin_unlock(&cpuctx->ctx.lock); 165 } 166 167 #define TASK_TOMBSTONE ((void *)-1L) 168 169 static bool is_kernel_event(struct perf_event *event) 170 { 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE; 172 } 173 174 /* 175 * On task ctx scheduling... 176 * 177 * When !ctx->nr_events a task context will not be scheduled. This means 178 * we can disable the scheduler hooks (for performance) without leaving 179 * pending task ctx state. 180 * 181 * This however results in two special cases: 182 * 183 * - removing the last event from a task ctx; this is relatively straight 184 * forward and is done in __perf_remove_from_context. 185 * 186 * - adding the first event to a task ctx; this is tricky because we cannot 187 * rely on ctx->is_active and therefore cannot use event_function_call(). 188 * See perf_install_in_context(). 189 * 190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set. 191 */ 192 193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *, 194 struct perf_event_context *, void *); 195 196 struct event_function_struct { 197 struct perf_event *event; 198 event_f func; 199 void *data; 200 }; 201 202 static int event_function(void *info) 203 { 204 struct event_function_struct *efs = info; 205 struct perf_event *event = efs->event; 206 struct perf_event_context *ctx = event->ctx; 207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 208 struct perf_event_context *task_ctx = cpuctx->task_ctx; 209 int ret = 0; 210 211 lockdep_assert_irqs_disabled(); 212 213 perf_ctx_lock(cpuctx, task_ctx); 214 /* 215 * Since we do the IPI call without holding ctx->lock things can have 216 * changed, double check we hit the task we set out to hit. 217 */ 218 if (ctx->task) { 219 if (ctx->task != current) { 220 ret = -ESRCH; 221 goto unlock; 222 } 223 224 /* 225 * We only use event_function_call() on established contexts, 226 * and event_function() is only ever called when active (or 227 * rather, we'll have bailed in task_function_call() or the 228 * above ctx->task != current test), therefore we must have 229 * ctx->is_active here. 230 */ 231 WARN_ON_ONCE(!ctx->is_active); 232 /* 233 * And since we have ctx->is_active, cpuctx->task_ctx must 234 * match. 235 */ 236 WARN_ON_ONCE(task_ctx != ctx); 237 } else { 238 WARN_ON_ONCE(&cpuctx->ctx != ctx); 239 } 240 241 efs->func(event, cpuctx, ctx, efs->data); 242 unlock: 243 perf_ctx_unlock(cpuctx, task_ctx); 244 245 return ret; 246 } 247 248 static void event_function_call(struct perf_event *event, event_f func, void *data) 249 { 250 struct perf_event_context *ctx = event->ctx; 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */ 252 struct event_function_struct efs = { 253 .event = event, 254 .func = func, 255 .data = data, 256 }; 257 258 if (!event->parent) { 259 /* 260 * If this is a !child event, we must hold ctx::mutex to 261 * stabilize the the event->ctx relation. See 262 * perf_event_ctx_lock(). 263 */ 264 lockdep_assert_held(&ctx->mutex); 265 } 266 267 if (!task) { 268 cpu_function_call(event->cpu, event_function, &efs); 269 return; 270 } 271 272 if (task == TASK_TOMBSTONE) 273 return; 274 275 again: 276 if (!task_function_call(task, event_function, &efs)) 277 return; 278 279 raw_spin_lock_irq(&ctx->lock); 280 /* 281 * Reload the task pointer, it might have been changed by 282 * a concurrent perf_event_context_sched_out(). 283 */ 284 task = ctx->task; 285 if (task == TASK_TOMBSTONE) { 286 raw_spin_unlock_irq(&ctx->lock); 287 return; 288 } 289 if (ctx->is_active) { 290 raw_spin_unlock_irq(&ctx->lock); 291 goto again; 292 } 293 func(event, NULL, ctx, data); 294 raw_spin_unlock_irq(&ctx->lock); 295 } 296 297 /* 298 * Similar to event_function_call() + event_function(), but hard assumes IRQs 299 * are already disabled and we're on the right CPU. 300 */ 301 static void event_function_local(struct perf_event *event, event_f func, void *data) 302 { 303 struct perf_event_context *ctx = event->ctx; 304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 305 struct task_struct *task = READ_ONCE(ctx->task); 306 struct perf_event_context *task_ctx = NULL; 307 308 lockdep_assert_irqs_disabled(); 309 310 if (task) { 311 if (task == TASK_TOMBSTONE) 312 return; 313 314 task_ctx = ctx; 315 } 316 317 perf_ctx_lock(cpuctx, task_ctx); 318 319 task = ctx->task; 320 if (task == TASK_TOMBSTONE) 321 goto unlock; 322 323 if (task) { 324 /* 325 * We must be either inactive or active and the right task, 326 * otherwise we're screwed, since we cannot IPI to somewhere 327 * else. 328 */ 329 if (ctx->is_active) { 330 if (WARN_ON_ONCE(task != current)) 331 goto unlock; 332 333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx)) 334 goto unlock; 335 } 336 } else { 337 WARN_ON_ONCE(&cpuctx->ctx != ctx); 338 } 339 340 func(event, cpuctx, ctx, data); 341 unlock: 342 perf_ctx_unlock(cpuctx, task_ctx); 343 } 344 345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\ 346 PERF_FLAG_FD_OUTPUT |\ 347 PERF_FLAG_PID_CGROUP |\ 348 PERF_FLAG_FD_CLOEXEC) 349 350 /* 351 * branch priv levels that need permission checks 352 */ 353 #define PERF_SAMPLE_BRANCH_PERM_PLM \ 354 (PERF_SAMPLE_BRANCH_KERNEL |\ 355 PERF_SAMPLE_BRANCH_HV) 356 357 enum event_type_t { 358 EVENT_FLEXIBLE = 0x1, 359 EVENT_PINNED = 0x2, 360 EVENT_TIME = 0x4, 361 /* see ctx_resched() for details */ 362 EVENT_CPU = 0x8, 363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, 364 }; 365 366 /* 367 * perf_sched_events : >0 events exist 368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu 369 */ 370 371 static void perf_sched_delayed(struct work_struct *work); 372 DEFINE_STATIC_KEY_FALSE(perf_sched_events); 373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed); 374 static DEFINE_MUTEX(perf_sched_mutex); 375 static atomic_t perf_sched_count; 376 377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events); 378 static DEFINE_PER_CPU(int, perf_sched_cb_usages); 379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events); 380 381 static atomic_t nr_mmap_events __read_mostly; 382 static atomic_t nr_comm_events __read_mostly; 383 static atomic_t nr_namespaces_events __read_mostly; 384 static atomic_t nr_task_events __read_mostly; 385 static atomic_t nr_freq_events __read_mostly; 386 static atomic_t nr_switch_events __read_mostly; 387 static atomic_t nr_ksymbol_events __read_mostly; 388 static atomic_t nr_bpf_events __read_mostly; 389 390 static LIST_HEAD(pmus); 391 static DEFINE_MUTEX(pmus_lock); 392 static struct srcu_struct pmus_srcu; 393 static cpumask_var_t perf_online_mask; 394 395 /* 396 * perf event paranoia level: 397 * -1 - not paranoid at all 398 * 0 - disallow raw tracepoint access for unpriv 399 * 1 - disallow cpu events for unpriv 400 * 2 - disallow kernel profiling for unpriv 401 */ 402 int sysctl_perf_event_paranoid __read_mostly = 2; 403 404 /* Minimum for 512 kiB + 1 user control page */ 405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */ 406 407 /* 408 * max perf event sample rate 409 */ 410 #define DEFAULT_MAX_SAMPLE_RATE 100000 411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE) 412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25 413 414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE; 415 416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ); 417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS; 418 419 static int perf_sample_allowed_ns __read_mostly = 420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100; 421 422 static void update_perf_cpu_limits(void) 423 { 424 u64 tmp = perf_sample_period_ns; 425 426 tmp *= sysctl_perf_cpu_time_max_percent; 427 tmp = div_u64(tmp, 100); 428 if (!tmp) 429 tmp = 1; 430 431 WRITE_ONCE(perf_sample_allowed_ns, tmp); 432 } 433 434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx); 435 436 int perf_proc_update_handler(struct ctl_table *table, int write, 437 void __user *buffer, size_t *lenp, 438 loff_t *ppos) 439 { 440 int ret; 441 int perf_cpu = sysctl_perf_cpu_time_max_percent; 442 /* 443 * If throttling is disabled don't allow the write: 444 */ 445 if (write && (perf_cpu == 100 || perf_cpu == 0)) 446 return -EINVAL; 447 448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 449 if (ret || !write) 450 return ret; 451 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ); 453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 454 update_perf_cpu_limits(); 455 456 return 0; 457 } 458 459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT; 460 461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 462 void __user *buffer, size_t *lenp, 463 loff_t *ppos) 464 { 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 466 467 if (ret || !write) 468 return ret; 469 470 if (sysctl_perf_cpu_time_max_percent == 100 || 471 sysctl_perf_cpu_time_max_percent == 0) { 472 printk(KERN_WARNING 473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); 474 WRITE_ONCE(perf_sample_allowed_ns, 0); 475 } else { 476 update_perf_cpu_limits(); 477 } 478 479 return 0; 480 } 481 482 /* 483 * perf samples are done in some very critical code paths (NMIs). 484 * If they take too much CPU time, the system can lock up and not 485 * get any real work done. This will drop the sample rate when 486 * we detect that events are taking too long. 487 */ 488 #define NR_ACCUMULATED_SAMPLES 128 489 static DEFINE_PER_CPU(u64, running_sample_length); 490 491 static u64 __report_avg; 492 static u64 __report_allowed; 493 494 static void perf_duration_warn(struct irq_work *w) 495 { 496 printk_ratelimited(KERN_INFO 497 "perf: interrupt took too long (%lld > %lld), lowering " 498 "kernel.perf_event_max_sample_rate to %d\n", 499 __report_avg, __report_allowed, 500 sysctl_perf_event_sample_rate); 501 } 502 503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn); 504 505 void perf_sample_event_took(u64 sample_len_ns) 506 { 507 u64 max_len = READ_ONCE(perf_sample_allowed_ns); 508 u64 running_len; 509 u64 avg_len; 510 u32 max; 511 512 if (max_len == 0) 513 return; 514 515 /* Decay the counter by 1 average sample. */ 516 running_len = __this_cpu_read(running_sample_length); 517 running_len -= running_len/NR_ACCUMULATED_SAMPLES; 518 running_len += sample_len_ns; 519 __this_cpu_write(running_sample_length, running_len); 520 521 /* 522 * Note: this will be biased artifically low until we have 523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us 524 * from having to maintain a count. 525 */ 526 avg_len = running_len/NR_ACCUMULATED_SAMPLES; 527 if (avg_len <= max_len) 528 return; 529 530 __report_avg = avg_len; 531 __report_allowed = max_len; 532 533 /* 534 * Compute a throttle threshold 25% below the current duration. 535 */ 536 avg_len += avg_len / 4; 537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent; 538 if (avg_len < max) 539 max /= (u32)avg_len; 540 else 541 max = 1; 542 543 WRITE_ONCE(perf_sample_allowed_ns, avg_len); 544 WRITE_ONCE(max_samples_per_tick, max); 545 546 sysctl_perf_event_sample_rate = max * HZ; 547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate; 548 549 if (!irq_work_queue(&perf_duration_work)) { 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering " 551 "kernel.perf_event_max_sample_rate to %d\n", 552 __report_avg, __report_allowed, 553 sysctl_perf_event_sample_rate); 554 } 555 } 556 557 static atomic64_t perf_event_id; 558 559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 560 enum event_type_t event_type); 561 562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 563 enum event_type_t event_type, 564 struct task_struct *task); 565 566 static void update_context_time(struct perf_event_context *ctx); 567 static u64 perf_event_time(struct perf_event *event); 568 569 void __weak perf_event_print_debug(void) { } 570 571 extern __weak const char *perf_pmu_name(void) 572 { 573 return "pmu"; 574 } 575 576 static inline u64 perf_clock(void) 577 { 578 return local_clock(); 579 } 580 581 static inline u64 perf_event_clock(struct perf_event *event) 582 { 583 return event->clock(); 584 } 585 586 /* 587 * State based event timekeeping... 588 * 589 * The basic idea is to use event->state to determine which (if any) time 590 * fields to increment with the current delta. This means we only need to 591 * update timestamps when we change state or when they are explicitly requested 592 * (read). 593 * 594 * Event groups make things a little more complicated, but not terribly so. The 595 * rules for a group are that if the group leader is OFF the entire group is 596 * OFF, irrespecive of what the group member states are. This results in 597 * __perf_effective_state(). 598 * 599 * A futher ramification is that when a group leader flips between OFF and 600 * !OFF, we need to update all group member times. 601 * 602 * 603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we 604 * need to make sure the relevant context time is updated before we try and 605 * update our timestamps. 606 */ 607 608 static __always_inline enum perf_event_state 609 __perf_effective_state(struct perf_event *event) 610 { 611 struct perf_event *leader = event->group_leader; 612 613 if (leader->state <= PERF_EVENT_STATE_OFF) 614 return leader->state; 615 616 return event->state; 617 } 618 619 static __always_inline void 620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running) 621 { 622 enum perf_event_state state = __perf_effective_state(event); 623 u64 delta = now - event->tstamp; 624 625 *enabled = event->total_time_enabled; 626 if (state >= PERF_EVENT_STATE_INACTIVE) 627 *enabled += delta; 628 629 *running = event->total_time_running; 630 if (state >= PERF_EVENT_STATE_ACTIVE) 631 *running += delta; 632 } 633 634 static void perf_event_update_time(struct perf_event *event) 635 { 636 u64 now = perf_event_time(event); 637 638 __perf_update_times(event, now, &event->total_time_enabled, 639 &event->total_time_running); 640 event->tstamp = now; 641 } 642 643 static void perf_event_update_sibling_time(struct perf_event *leader) 644 { 645 struct perf_event *sibling; 646 647 for_each_sibling_event(sibling, leader) 648 perf_event_update_time(sibling); 649 } 650 651 static void 652 perf_event_set_state(struct perf_event *event, enum perf_event_state state) 653 { 654 if (event->state == state) 655 return; 656 657 perf_event_update_time(event); 658 /* 659 * If a group leader gets enabled/disabled all its siblings 660 * are affected too. 661 */ 662 if ((event->state < 0) ^ (state < 0)) 663 perf_event_update_sibling_time(event); 664 665 WRITE_ONCE(event->state, state); 666 } 667 668 #ifdef CONFIG_CGROUP_PERF 669 670 static inline bool 671 perf_cgroup_match(struct perf_event *event) 672 { 673 struct perf_event_context *ctx = event->ctx; 674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 675 676 /* @event doesn't care about cgroup */ 677 if (!event->cgrp) 678 return true; 679 680 /* wants specific cgroup scope but @cpuctx isn't associated with any */ 681 if (!cpuctx->cgrp) 682 return false; 683 684 /* 685 * Cgroup scoping is recursive. An event enabled for a cgroup is 686 * also enabled for all its descendant cgroups. If @cpuctx's 687 * cgroup is a descendant of @event's (the test covers identity 688 * case), it's a match. 689 */ 690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup, 691 event->cgrp->css.cgroup); 692 } 693 694 static inline void perf_detach_cgroup(struct perf_event *event) 695 { 696 css_put(&event->cgrp->css); 697 event->cgrp = NULL; 698 } 699 700 static inline int is_cgroup_event(struct perf_event *event) 701 { 702 return event->cgrp != NULL; 703 } 704 705 static inline u64 perf_cgroup_event_time(struct perf_event *event) 706 { 707 struct perf_cgroup_info *t; 708 709 t = per_cpu_ptr(event->cgrp->info, event->cpu); 710 return t->time; 711 } 712 713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp) 714 { 715 struct perf_cgroup_info *info; 716 u64 now; 717 718 now = perf_clock(); 719 720 info = this_cpu_ptr(cgrp->info); 721 722 info->time += now - info->timestamp; 723 info->timestamp = now; 724 } 725 726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 727 { 728 struct perf_cgroup *cgrp = cpuctx->cgrp; 729 struct cgroup_subsys_state *css; 730 731 if (cgrp) { 732 for (css = &cgrp->css; css; css = css->parent) { 733 cgrp = container_of(css, struct perf_cgroup, css); 734 __update_cgrp_time(cgrp); 735 } 736 } 737 } 738 739 static inline void update_cgrp_time_from_event(struct perf_event *event) 740 { 741 struct perf_cgroup *cgrp; 742 743 /* 744 * ensure we access cgroup data only when needed and 745 * when we know the cgroup is pinned (css_get) 746 */ 747 if (!is_cgroup_event(event)) 748 return; 749 750 cgrp = perf_cgroup_from_task(current, event->ctx); 751 /* 752 * Do not update time when cgroup is not active 753 */ 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 755 __update_cgrp_time(event->cgrp); 756 } 757 758 static inline void 759 perf_cgroup_set_timestamp(struct task_struct *task, 760 struct perf_event_context *ctx) 761 { 762 struct perf_cgroup *cgrp; 763 struct perf_cgroup_info *info; 764 struct cgroup_subsys_state *css; 765 766 /* 767 * ctx->lock held by caller 768 * ensure we do not access cgroup data 769 * unless we have the cgroup pinned (css_get) 770 */ 771 if (!task || !ctx->nr_cgroups) 772 return; 773 774 cgrp = perf_cgroup_from_task(task, ctx); 775 776 for (css = &cgrp->css; css; css = css->parent) { 777 cgrp = container_of(css, struct perf_cgroup, css); 778 info = this_cpu_ptr(cgrp->info); 779 info->timestamp = ctx->timestamp; 780 } 781 } 782 783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list); 784 785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */ 786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */ 787 788 /* 789 * reschedule events based on the cgroup constraint of task. 790 * 791 * mode SWOUT : schedule out everything 792 * mode SWIN : schedule in based on cgroup for next 793 */ 794 static void perf_cgroup_switch(struct task_struct *task, int mode) 795 { 796 struct perf_cpu_context *cpuctx; 797 struct list_head *list; 798 unsigned long flags; 799 800 /* 801 * Disable interrupts and preemption to avoid this CPU's 802 * cgrp_cpuctx_entry to change under us. 803 */ 804 local_irq_save(flags); 805 806 list = this_cpu_ptr(&cgrp_cpuctx_list); 807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) { 808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0); 809 810 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 811 perf_pmu_disable(cpuctx->ctx.pmu); 812 813 if (mode & PERF_CGROUP_SWOUT) { 814 cpu_ctx_sched_out(cpuctx, EVENT_ALL); 815 /* 816 * must not be done before ctxswout due 817 * to event_filter_match() in event_sched_out() 818 */ 819 cpuctx->cgrp = NULL; 820 } 821 822 if (mode & PERF_CGROUP_SWIN) { 823 WARN_ON_ONCE(cpuctx->cgrp); 824 /* 825 * set cgrp before ctxsw in to allow 826 * event_filter_match() to not have to pass 827 * task around 828 * we pass the cpuctx->ctx to perf_cgroup_from_task() 829 * because cgorup events are only per-cpu 830 */ 831 cpuctx->cgrp = perf_cgroup_from_task(task, 832 &cpuctx->ctx); 833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task); 834 } 835 perf_pmu_enable(cpuctx->ctx.pmu); 836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 837 } 838 839 local_irq_restore(flags); 840 } 841 842 static inline void perf_cgroup_sched_out(struct task_struct *task, 843 struct task_struct *next) 844 { 845 struct perf_cgroup *cgrp1; 846 struct perf_cgroup *cgrp2 = NULL; 847 848 rcu_read_lock(); 849 /* 850 * we come here when we know perf_cgroup_events > 0 851 * we do not need to pass the ctx here because we know 852 * we are holding the rcu lock 853 */ 854 cgrp1 = perf_cgroup_from_task(task, NULL); 855 cgrp2 = perf_cgroup_from_task(next, NULL); 856 857 /* 858 * only schedule out current cgroup events if we know 859 * that we are switching to a different cgroup. Otherwise, 860 * do no touch the cgroup events. 861 */ 862 if (cgrp1 != cgrp2) 863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT); 864 865 rcu_read_unlock(); 866 } 867 868 static inline void perf_cgroup_sched_in(struct task_struct *prev, 869 struct task_struct *task) 870 { 871 struct perf_cgroup *cgrp1; 872 struct perf_cgroup *cgrp2 = NULL; 873 874 rcu_read_lock(); 875 /* 876 * we come here when we know perf_cgroup_events > 0 877 * we do not need to pass the ctx here because we know 878 * we are holding the rcu lock 879 */ 880 cgrp1 = perf_cgroup_from_task(task, NULL); 881 cgrp2 = perf_cgroup_from_task(prev, NULL); 882 883 /* 884 * only need to schedule in cgroup events if we are changing 885 * cgroup during ctxsw. Cgroup events were not scheduled 886 * out of ctxsw out if that was not the case. 887 */ 888 if (cgrp1 != cgrp2) 889 perf_cgroup_switch(task, PERF_CGROUP_SWIN); 890 891 rcu_read_unlock(); 892 } 893 894 static inline int perf_cgroup_connect(int fd, struct perf_event *event, 895 struct perf_event_attr *attr, 896 struct perf_event *group_leader) 897 { 898 struct perf_cgroup *cgrp; 899 struct cgroup_subsys_state *css; 900 struct fd f = fdget(fd); 901 int ret = 0; 902 903 if (!f.file) 904 return -EBADF; 905 906 css = css_tryget_online_from_dir(f.file->f_path.dentry, 907 &perf_event_cgrp_subsys); 908 if (IS_ERR(css)) { 909 ret = PTR_ERR(css); 910 goto out; 911 } 912 913 cgrp = container_of(css, struct perf_cgroup, css); 914 event->cgrp = cgrp; 915 916 /* 917 * all events in a group must monitor 918 * the same cgroup because a task belongs 919 * to only one perf cgroup at a time 920 */ 921 if (group_leader && group_leader->cgrp != cgrp) { 922 perf_detach_cgroup(event); 923 ret = -EINVAL; 924 } 925 out: 926 fdput(f); 927 return ret; 928 } 929 930 static inline void 931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 932 { 933 struct perf_cgroup_info *t; 934 t = per_cpu_ptr(event->cgrp->info, event->cpu); 935 event->shadow_ctx_time = now - t->timestamp; 936 } 937 938 /* 939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and 940 * cleared when last cgroup event is removed. 941 */ 942 static inline void 943 list_update_cgroup_event(struct perf_event *event, 944 struct perf_event_context *ctx, bool add) 945 { 946 struct perf_cpu_context *cpuctx; 947 struct list_head *cpuctx_entry; 948 949 if (!is_cgroup_event(event)) 950 return; 951 952 /* 953 * Because cgroup events are always per-cpu events, 954 * this will always be called from the right CPU. 955 */ 956 cpuctx = __get_cpu_context(ctx); 957 958 /* 959 * Since setting cpuctx->cgrp is conditional on the current @cgrp 960 * matching the event's cgroup, we must do this for every new event, 961 * because if the first would mismatch, the second would not try again 962 * and we would leave cpuctx->cgrp unset. 963 */ 964 if (add && !cpuctx->cgrp) { 965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 966 967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) 968 cpuctx->cgrp = cgrp; 969 } 970 971 if (add && ctx->nr_cgroups++) 972 return; 973 else if (!add && --ctx->nr_cgroups) 974 return; 975 976 /* no cgroup running */ 977 if (!add) 978 cpuctx->cgrp = NULL; 979 980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry; 981 if (add) 982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list)); 983 else 984 list_del(cpuctx_entry); 985 } 986 987 #else /* !CONFIG_CGROUP_PERF */ 988 989 static inline bool 990 perf_cgroup_match(struct perf_event *event) 991 { 992 return true; 993 } 994 995 static inline void perf_detach_cgroup(struct perf_event *event) 996 {} 997 998 static inline int is_cgroup_event(struct perf_event *event) 999 { 1000 return 0; 1001 } 1002 1003 static inline void update_cgrp_time_from_event(struct perf_event *event) 1004 { 1005 } 1006 1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx) 1008 { 1009 } 1010 1011 static inline void perf_cgroup_sched_out(struct task_struct *task, 1012 struct task_struct *next) 1013 { 1014 } 1015 1016 static inline void perf_cgroup_sched_in(struct task_struct *prev, 1017 struct task_struct *task) 1018 { 1019 } 1020 1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event, 1022 struct perf_event_attr *attr, 1023 struct perf_event *group_leader) 1024 { 1025 return -EINVAL; 1026 } 1027 1028 static inline void 1029 perf_cgroup_set_timestamp(struct task_struct *task, 1030 struct perf_event_context *ctx) 1031 { 1032 } 1033 1034 void 1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next) 1036 { 1037 } 1038 1039 static inline void 1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now) 1041 { 1042 } 1043 1044 static inline u64 perf_cgroup_event_time(struct perf_event *event) 1045 { 1046 return 0; 1047 } 1048 1049 static inline void 1050 list_update_cgroup_event(struct perf_event *event, 1051 struct perf_event_context *ctx, bool add) 1052 { 1053 } 1054 1055 #endif 1056 1057 /* 1058 * set default to be dependent on timer tick just 1059 * like original code 1060 */ 1061 #define PERF_CPU_HRTIMER (1000 / HZ) 1062 /* 1063 * function must be called with interrupts disabled 1064 */ 1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr) 1066 { 1067 struct perf_cpu_context *cpuctx; 1068 bool rotations; 1069 1070 lockdep_assert_irqs_disabled(); 1071 1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer); 1073 rotations = perf_rotate_context(cpuctx); 1074 1075 raw_spin_lock(&cpuctx->hrtimer_lock); 1076 if (rotations) 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval); 1078 else 1079 cpuctx->hrtimer_active = 0; 1080 raw_spin_unlock(&cpuctx->hrtimer_lock); 1081 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART; 1083 } 1084 1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu) 1086 { 1087 struct hrtimer *timer = &cpuctx->hrtimer; 1088 struct pmu *pmu = cpuctx->ctx.pmu; 1089 u64 interval; 1090 1091 /* no multiplexing needed for SW PMU */ 1092 if (pmu->task_ctx_nr == perf_sw_context) 1093 return; 1094 1095 /* 1096 * check default is sane, if not set then force to 1097 * default interval (1/tick) 1098 */ 1099 interval = pmu->hrtimer_interval_ms; 1100 if (interval < 1) 1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER; 1102 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval); 1104 1105 raw_spin_lock_init(&cpuctx->hrtimer_lock); 1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 1107 timer->function = perf_mux_hrtimer_handler; 1108 } 1109 1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx) 1111 { 1112 struct hrtimer *timer = &cpuctx->hrtimer; 1113 struct pmu *pmu = cpuctx->ctx.pmu; 1114 unsigned long flags; 1115 1116 /* not for SW PMU */ 1117 if (pmu->task_ctx_nr == perf_sw_context) 1118 return 0; 1119 1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags); 1121 if (!cpuctx->hrtimer_active) { 1122 cpuctx->hrtimer_active = 1; 1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval); 1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 1125 } 1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags); 1127 1128 return 0; 1129 } 1130 1131 void perf_pmu_disable(struct pmu *pmu) 1132 { 1133 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1134 if (!(*count)++) 1135 pmu->pmu_disable(pmu); 1136 } 1137 1138 void perf_pmu_enable(struct pmu *pmu) 1139 { 1140 int *count = this_cpu_ptr(pmu->pmu_disable_count); 1141 if (!--(*count)) 1142 pmu->pmu_enable(pmu); 1143 } 1144 1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list); 1146 1147 /* 1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and 1149 * perf_event_task_tick() are fully serialized because they're strictly cpu 1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs 1151 * disabled, while perf_event_task_tick is called from IRQ context. 1152 */ 1153 static void perf_event_ctx_activate(struct perf_event_context *ctx) 1154 { 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list); 1156 1157 lockdep_assert_irqs_disabled(); 1158 1159 WARN_ON(!list_empty(&ctx->active_ctx_list)); 1160 1161 list_add(&ctx->active_ctx_list, head); 1162 } 1163 1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx) 1165 { 1166 lockdep_assert_irqs_disabled(); 1167 1168 WARN_ON(list_empty(&ctx->active_ctx_list)); 1169 1170 list_del_init(&ctx->active_ctx_list); 1171 } 1172 1173 static void get_ctx(struct perf_event_context *ctx) 1174 { 1175 refcount_inc(&ctx->refcount); 1176 } 1177 1178 static void free_ctx(struct rcu_head *head) 1179 { 1180 struct perf_event_context *ctx; 1181 1182 ctx = container_of(head, struct perf_event_context, rcu_head); 1183 kfree(ctx->task_ctx_data); 1184 kfree(ctx); 1185 } 1186 1187 static void put_ctx(struct perf_event_context *ctx) 1188 { 1189 if (refcount_dec_and_test(&ctx->refcount)) { 1190 if (ctx->parent_ctx) 1191 put_ctx(ctx->parent_ctx); 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE) 1193 put_task_struct(ctx->task); 1194 call_rcu(&ctx->rcu_head, free_ctx); 1195 } 1196 } 1197 1198 /* 1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and 1200 * perf_pmu_migrate_context() we need some magic. 1201 * 1202 * Those places that change perf_event::ctx will hold both 1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value. 1204 * 1205 * Lock ordering is by mutex address. There are two other sites where 1206 * perf_event_context::mutex nests and those are: 1207 * 1208 * - perf_event_exit_task_context() [ child , 0 ] 1209 * perf_event_exit_event() 1210 * put_event() [ parent, 1 ] 1211 * 1212 * - perf_event_init_context() [ parent, 0 ] 1213 * inherit_task_group() 1214 * inherit_group() 1215 * inherit_event() 1216 * perf_event_alloc() 1217 * perf_init_event() 1218 * perf_try_init_event() [ child , 1 ] 1219 * 1220 * While it appears there is an obvious deadlock here -- the parent and child 1221 * nesting levels are inverted between the two. This is in fact safe because 1222 * life-time rules separate them. That is an exiting task cannot fork, and a 1223 * spawning task cannot (yet) exit. 1224 * 1225 * But remember that that these are parent<->child context relations, and 1226 * migration does not affect children, therefore these two orderings should not 1227 * interact. 1228 * 1229 * The change in perf_event::ctx does not affect children (as claimed above) 1230 * because the sys_perf_event_open() case will install a new event and break 1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only 1232 * concerned with cpuctx and that doesn't have children. 1233 * 1234 * The places that change perf_event::ctx will issue: 1235 * 1236 * perf_remove_from_context(); 1237 * synchronize_rcu(); 1238 * perf_install_in_context(); 1239 * 1240 * to affect the change. The remove_from_context() + synchronize_rcu() should 1241 * quiesce the event, after which we can install it in the new location. This 1242 * means that only external vectors (perf_fops, prctl) can perturb the event 1243 * while in transit. Therefore all such accessors should also acquire 1244 * perf_event_context::mutex to serialize against this. 1245 * 1246 * However; because event->ctx can change while we're waiting to acquire 1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock() 1248 * function. 1249 * 1250 * Lock order: 1251 * cred_guard_mutex 1252 * task_struct::perf_event_mutex 1253 * perf_event_context::mutex 1254 * perf_event::child_mutex; 1255 * perf_event_context::lock 1256 * perf_event::mmap_mutex 1257 * mmap_sem 1258 * perf_addr_filters_head::lock 1259 * 1260 * cpu_hotplug_lock 1261 * pmus_lock 1262 * cpuctx->mutex / perf_event_context::mutex 1263 */ 1264 static struct perf_event_context * 1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting) 1266 { 1267 struct perf_event_context *ctx; 1268 1269 again: 1270 rcu_read_lock(); 1271 ctx = READ_ONCE(event->ctx); 1272 if (!refcount_inc_not_zero(&ctx->refcount)) { 1273 rcu_read_unlock(); 1274 goto again; 1275 } 1276 rcu_read_unlock(); 1277 1278 mutex_lock_nested(&ctx->mutex, nesting); 1279 if (event->ctx != ctx) { 1280 mutex_unlock(&ctx->mutex); 1281 put_ctx(ctx); 1282 goto again; 1283 } 1284 1285 return ctx; 1286 } 1287 1288 static inline struct perf_event_context * 1289 perf_event_ctx_lock(struct perf_event *event) 1290 { 1291 return perf_event_ctx_lock_nested(event, 0); 1292 } 1293 1294 static void perf_event_ctx_unlock(struct perf_event *event, 1295 struct perf_event_context *ctx) 1296 { 1297 mutex_unlock(&ctx->mutex); 1298 put_ctx(ctx); 1299 } 1300 1301 /* 1302 * This must be done under the ctx->lock, such as to serialize against 1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up 1304 * calling scheduler related locks and ctx->lock nests inside those. 1305 */ 1306 static __must_check struct perf_event_context * 1307 unclone_ctx(struct perf_event_context *ctx) 1308 { 1309 struct perf_event_context *parent_ctx = ctx->parent_ctx; 1310 1311 lockdep_assert_held(&ctx->lock); 1312 1313 if (parent_ctx) 1314 ctx->parent_ctx = NULL; 1315 ctx->generation++; 1316 1317 return parent_ctx; 1318 } 1319 1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p, 1321 enum pid_type type) 1322 { 1323 u32 nr; 1324 /* 1325 * only top level events have the pid namespace they were created in 1326 */ 1327 if (event->parent) 1328 event = event->parent; 1329 1330 nr = __task_pid_nr_ns(p, type, event->ns); 1331 /* avoid -1 if it is idle thread or runs in another ns */ 1332 if (!nr && !pid_alive(p)) 1333 nr = -1; 1334 return nr; 1335 } 1336 1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) 1338 { 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID); 1340 } 1341 1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) 1343 { 1344 return perf_event_pid_type(event, p, PIDTYPE_PID); 1345 } 1346 1347 /* 1348 * If we inherit events we want to return the parent event id 1349 * to userspace. 1350 */ 1351 static u64 primary_event_id(struct perf_event *event) 1352 { 1353 u64 id = event->id; 1354 1355 if (event->parent) 1356 id = event->parent->id; 1357 1358 return id; 1359 } 1360 1361 /* 1362 * Get the perf_event_context for a task and lock it. 1363 * 1364 * This has to cope with with the fact that until it is locked, 1365 * the context could get moved to another task. 1366 */ 1367 static struct perf_event_context * 1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags) 1369 { 1370 struct perf_event_context *ctx; 1371 1372 retry: 1373 /* 1374 * One of the few rules of preemptible RCU is that one cannot do 1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when 1376 * part of the read side critical section was irqs-enabled -- see 1377 * rcu_read_unlock_special(). 1378 * 1379 * Since ctx->lock nests under rq->lock we must ensure the entire read 1380 * side critical section has interrupts disabled. 1381 */ 1382 local_irq_save(*flags); 1383 rcu_read_lock(); 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]); 1385 if (ctx) { 1386 /* 1387 * If this context is a clone of another, it might 1388 * get swapped for another underneath us by 1389 * perf_event_task_sched_out, though the 1390 * rcu_read_lock() protects us from any context 1391 * getting freed. Lock the context and check if it 1392 * got swapped before we could get the lock, and retry 1393 * if so. If we locked the right context, then it 1394 * can't get swapped on us any more. 1395 */ 1396 raw_spin_lock(&ctx->lock); 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) { 1398 raw_spin_unlock(&ctx->lock); 1399 rcu_read_unlock(); 1400 local_irq_restore(*flags); 1401 goto retry; 1402 } 1403 1404 if (ctx->task == TASK_TOMBSTONE || 1405 !refcount_inc_not_zero(&ctx->refcount)) { 1406 raw_spin_unlock(&ctx->lock); 1407 ctx = NULL; 1408 } else { 1409 WARN_ON_ONCE(ctx->task != task); 1410 } 1411 } 1412 rcu_read_unlock(); 1413 if (!ctx) 1414 local_irq_restore(*flags); 1415 return ctx; 1416 } 1417 1418 /* 1419 * Get the context for a task and increment its pin_count so it 1420 * can't get swapped to another task. This also increments its 1421 * reference count so that the context can't get freed. 1422 */ 1423 static struct perf_event_context * 1424 perf_pin_task_context(struct task_struct *task, int ctxn) 1425 { 1426 struct perf_event_context *ctx; 1427 unsigned long flags; 1428 1429 ctx = perf_lock_task_context(task, ctxn, &flags); 1430 if (ctx) { 1431 ++ctx->pin_count; 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1433 } 1434 return ctx; 1435 } 1436 1437 static void perf_unpin_context(struct perf_event_context *ctx) 1438 { 1439 unsigned long flags; 1440 1441 raw_spin_lock_irqsave(&ctx->lock, flags); 1442 --ctx->pin_count; 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags); 1444 } 1445 1446 /* 1447 * Update the record of the current time in a context. 1448 */ 1449 static void update_context_time(struct perf_event_context *ctx) 1450 { 1451 u64 now = perf_clock(); 1452 1453 ctx->time += now - ctx->timestamp; 1454 ctx->timestamp = now; 1455 } 1456 1457 static u64 perf_event_time(struct perf_event *event) 1458 { 1459 struct perf_event_context *ctx = event->ctx; 1460 1461 if (is_cgroup_event(event)) 1462 return perf_cgroup_event_time(event); 1463 1464 return ctx ? ctx->time : 0; 1465 } 1466 1467 static enum event_type_t get_event_type(struct perf_event *event) 1468 { 1469 struct perf_event_context *ctx = event->ctx; 1470 enum event_type_t event_type; 1471 1472 lockdep_assert_held(&ctx->lock); 1473 1474 /* 1475 * It's 'group type', really, because if our group leader is 1476 * pinned, so are we. 1477 */ 1478 if (event->group_leader != event) 1479 event = event->group_leader; 1480 1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE; 1482 if (!ctx->task) 1483 event_type |= EVENT_CPU; 1484 1485 return event_type; 1486 } 1487 1488 /* 1489 * Helper function to initialize event group nodes. 1490 */ 1491 static void init_event_group(struct perf_event *event) 1492 { 1493 RB_CLEAR_NODE(&event->group_node); 1494 event->group_index = 0; 1495 } 1496 1497 /* 1498 * Extract pinned or flexible groups from the context 1499 * based on event attrs bits. 1500 */ 1501 static struct perf_event_groups * 1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx) 1503 { 1504 if (event->attr.pinned) 1505 return &ctx->pinned_groups; 1506 else 1507 return &ctx->flexible_groups; 1508 } 1509 1510 /* 1511 * Helper function to initializes perf_event_group trees. 1512 */ 1513 static void perf_event_groups_init(struct perf_event_groups *groups) 1514 { 1515 groups->tree = RB_ROOT; 1516 groups->index = 0; 1517 } 1518 1519 /* 1520 * Compare function for event groups; 1521 * 1522 * Implements complex key that first sorts by CPU and then by virtual index 1523 * which provides ordering when rotating groups for the same CPU. 1524 */ 1525 static bool 1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right) 1527 { 1528 if (left->cpu < right->cpu) 1529 return true; 1530 if (left->cpu > right->cpu) 1531 return false; 1532 1533 if (left->group_index < right->group_index) 1534 return true; 1535 if (left->group_index > right->group_index) 1536 return false; 1537 1538 return false; 1539 } 1540 1541 /* 1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for 1543 * key (see perf_event_groups_less). This places it last inside the CPU 1544 * subtree. 1545 */ 1546 static void 1547 perf_event_groups_insert(struct perf_event_groups *groups, 1548 struct perf_event *event) 1549 { 1550 struct perf_event *node_event; 1551 struct rb_node *parent; 1552 struct rb_node **node; 1553 1554 event->group_index = ++groups->index; 1555 1556 node = &groups->tree.rb_node; 1557 parent = *node; 1558 1559 while (*node) { 1560 parent = *node; 1561 node_event = container_of(*node, struct perf_event, group_node); 1562 1563 if (perf_event_groups_less(event, node_event)) 1564 node = &parent->rb_left; 1565 else 1566 node = &parent->rb_right; 1567 } 1568 1569 rb_link_node(&event->group_node, parent, node); 1570 rb_insert_color(&event->group_node, &groups->tree); 1571 } 1572 1573 /* 1574 * Helper function to insert event into the pinned or flexible groups. 1575 */ 1576 static void 1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx) 1578 { 1579 struct perf_event_groups *groups; 1580 1581 groups = get_event_groups(event, ctx); 1582 perf_event_groups_insert(groups, event); 1583 } 1584 1585 /* 1586 * Delete a group from a tree. 1587 */ 1588 static void 1589 perf_event_groups_delete(struct perf_event_groups *groups, 1590 struct perf_event *event) 1591 { 1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) || 1593 RB_EMPTY_ROOT(&groups->tree)); 1594 1595 rb_erase(&event->group_node, &groups->tree); 1596 init_event_group(event); 1597 } 1598 1599 /* 1600 * Helper function to delete event from its groups. 1601 */ 1602 static void 1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx) 1604 { 1605 struct perf_event_groups *groups; 1606 1607 groups = get_event_groups(event, ctx); 1608 perf_event_groups_delete(groups, event); 1609 } 1610 1611 /* 1612 * Get the leftmost event in the @cpu subtree. 1613 */ 1614 static struct perf_event * 1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu) 1616 { 1617 struct perf_event *node_event = NULL, *match = NULL; 1618 struct rb_node *node = groups->tree.rb_node; 1619 1620 while (node) { 1621 node_event = container_of(node, struct perf_event, group_node); 1622 1623 if (cpu < node_event->cpu) { 1624 node = node->rb_left; 1625 } else if (cpu > node_event->cpu) { 1626 node = node->rb_right; 1627 } else { 1628 match = node_event; 1629 node = node->rb_left; 1630 } 1631 } 1632 1633 return match; 1634 } 1635 1636 /* 1637 * Like rb_entry_next_safe() for the @cpu subtree. 1638 */ 1639 static struct perf_event * 1640 perf_event_groups_next(struct perf_event *event) 1641 { 1642 struct perf_event *next; 1643 1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node); 1645 if (next && next->cpu == event->cpu) 1646 return next; 1647 1648 return NULL; 1649 } 1650 1651 /* 1652 * Iterate through the whole groups tree. 1653 */ 1654 #define perf_event_groups_for_each(event, groups) \ 1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \ 1656 typeof(*event), group_node); event; \ 1657 event = rb_entry_safe(rb_next(&event->group_node), \ 1658 typeof(*event), group_node)) 1659 1660 /* 1661 * Add an event from the lists for its context. 1662 * Must be called with ctx->mutex and ctx->lock held. 1663 */ 1664 static void 1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx) 1666 { 1667 lockdep_assert_held(&ctx->lock); 1668 1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 1670 event->attach_state |= PERF_ATTACH_CONTEXT; 1671 1672 event->tstamp = perf_event_time(event); 1673 1674 /* 1675 * If we're a stand alone event or group leader, we go to the context 1676 * list, group events are kept attached to the group so that 1677 * perf_group_detach can, at all times, locate all siblings. 1678 */ 1679 if (event->group_leader == event) { 1680 event->group_caps = event->event_caps; 1681 add_event_to_groups(event, ctx); 1682 } 1683 1684 list_update_cgroup_event(event, ctx, true); 1685 1686 list_add_rcu(&event->event_entry, &ctx->event_list); 1687 ctx->nr_events++; 1688 if (event->attr.inherit_stat) 1689 ctx->nr_stat++; 1690 1691 ctx->generation++; 1692 } 1693 1694 /* 1695 * Initialize event state based on the perf_event_attr::disabled. 1696 */ 1697 static inline void perf_event__state_init(struct perf_event *event) 1698 { 1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF : 1700 PERF_EVENT_STATE_INACTIVE; 1701 } 1702 1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings) 1704 { 1705 int entry = sizeof(u64); /* value */ 1706 int size = 0; 1707 int nr = 1; 1708 1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1710 size += sizeof(u64); 1711 1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 1713 size += sizeof(u64); 1714 1715 if (event->attr.read_format & PERF_FORMAT_ID) 1716 entry += sizeof(u64); 1717 1718 if (event->attr.read_format & PERF_FORMAT_GROUP) { 1719 nr += nr_siblings; 1720 size += sizeof(u64); 1721 } 1722 1723 size += entry * nr; 1724 event->read_size = size; 1725 } 1726 1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type) 1728 { 1729 struct perf_sample_data *data; 1730 u16 size = 0; 1731 1732 if (sample_type & PERF_SAMPLE_IP) 1733 size += sizeof(data->ip); 1734 1735 if (sample_type & PERF_SAMPLE_ADDR) 1736 size += sizeof(data->addr); 1737 1738 if (sample_type & PERF_SAMPLE_PERIOD) 1739 size += sizeof(data->period); 1740 1741 if (sample_type & PERF_SAMPLE_WEIGHT) 1742 size += sizeof(data->weight); 1743 1744 if (sample_type & PERF_SAMPLE_READ) 1745 size += event->read_size; 1746 1747 if (sample_type & PERF_SAMPLE_DATA_SRC) 1748 size += sizeof(data->data_src.val); 1749 1750 if (sample_type & PERF_SAMPLE_TRANSACTION) 1751 size += sizeof(data->txn); 1752 1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 1754 size += sizeof(data->phys_addr); 1755 1756 event->header_size = size; 1757 } 1758 1759 /* 1760 * Called at perf_event creation and when events are attached/detached from a 1761 * group. 1762 */ 1763 static void perf_event__header_size(struct perf_event *event) 1764 { 1765 __perf_event_read_size(event, 1766 event->group_leader->nr_siblings); 1767 __perf_event_header_size(event, event->attr.sample_type); 1768 } 1769 1770 static void perf_event__id_header_size(struct perf_event *event) 1771 { 1772 struct perf_sample_data *data; 1773 u64 sample_type = event->attr.sample_type; 1774 u16 size = 0; 1775 1776 if (sample_type & PERF_SAMPLE_TID) 1777 size += sizeof(data->tid_entry); 1778 1779 if (sample_type & PERF_SAMPLE_TIME) 1780 size += sizeof(data->time); 1781 1782 if (sample_type & PERF_SAMPLE_IDENTIFIER) 1783 size += sizeof(data->id); 1784 1785 if (sample_type & PERF_SAMPLE_ID) 1786 size += sizeof(data->id); 1787 1788 if (sample_type & PERF_SAMPLE_STREAM_ID) 1789 size += sizeof(data->stream_id); 1790 1791 if (sample_type & PERF_SAMPLE_CPU) 1792 size += sizeof(data->cpu_entry); 1793 1794 event->id_header_size = size; 1795 } 1796 1797 static bool perf_event_validate_size(struct perf_event *event) 1798 { 1799 /* 1800 * The values computed here will be over-written when we actually 1801 * attach the event. 1802 */ 1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1); 1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ); 1805 perf_event__id_header_size(event); 1806 1807 /* 1808 * Sum the lot; should not exceed the 64k limit we have on records. 1809 * Conservative limit to allow for callchains and other variable fields. 1810 */ 1811 if (event->read_size + event->header_size + 1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024) 1813 return false; 1814 1815 return true; 1816 } 1817 1818 static void perf_group_attach(struct perf_event *event) 1819 { 1820 struct perf_event *group_leader = event->group_leader, *pos; 1821 1822 lockdep_assert_held(&event->ctx->lock); 1823 1824 /* 1825 * We can have double attach due to group movement in perf_event_open. 1826 */ 1827 if (event->attach_state & PERF_ATTACH_GROUP) 1828 return; 1829 1830 event->attach_state |= PERF_ATTACH_GROUP; 1831 1832 if (group_leader == event) 1833 return; 1834 1835 WARN_ON_ONCE(group_leader->ctx != event->ctx); 1836 1837 group_leader->group_caps &= event->event_caps; 1838 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list); 1840 group_leader->nr_siblings++; 1841 1842 perf_event__header_size(group_leader); 1843 1844 for_each_sibling_event(pos, group_leader) 1845 perf_event__header_size(pos); 1846 } 1847 1848 /* 1849 * Remove an event from the lists for its context. 1850 * Must be called with ctx->mutex and ctx->lock held. 1851 */ 1852 static void 1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx) 1854 { 1855 WARN_ON_ONCE(event->ctx != ctx); 1856 lockdep_assert_held(&ctx->lock); 1857 1858 /* 1859 * We can have double detach due to exit/hot-unplug + close. 1860 */ 1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT)) 1862 return; 1863 1864 event->attach_state &= ~PERF_ATTACH_CONTEXT; 1865 1866 list_update_cgroup_event(event, ctx, false); 1867 1868 ctx->nr_events--; 1869 if (event->attr.inherit_stat) 1870 ctx->nr_stat--; 1871 1872 list_del_rcu(&event->event_entry); 1873 1874 if (event->group_leader == event) 1875 del_event_from_groups(event, ctx); 1876 1877 /* 1878 * If event was in error state, then keep it 1879 * that way, otherwise bogus counts will be 1880 * returned on read(). The only way to get out 1881 * of error state is by explicit re-enabling 1882 * of the event 1883 */ 1884 if (event->state > PERF_EVENT_STATE_OFF) 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 1886 1887 ctx->generation++; 1888 } 1889 1890 static void perf_group_detach(struct perf_event *event) 1891 { 1892 struct perf_event *sibling, *tmp; 1893 struct perf_event_context *ctx = event->ctx; 1894 1895 lockdep_assert_held(&ctx->lock); 1896 1897 /* 1898 * We can have double detach due to exit/hot-unplug + close. 1899 */ 1900 if (!(event->attach_state & PERF_ATTACH_GROUP)) 1901 return; 1902 1903 event->attach_state &= ~PERF_ATTACH_GROUP; 1904 1905 /* 1906 * If this is a sibling, remove it from its group. 1907 */ 1908 if (event->group_leader != event) { 1909 list_del_init(&event->sibling_list); 1910 event->group_leader->nr_siblings--; 1911 goto out; 1912 } 1913 1914 /* 1915 * If this was a group event with sibling events then 1916 * upgrade the siblings to singleton events by adding them 1917 * to whatever list we are on. 1918 */ 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) { 1920 1921 sibling->group_leader = sibling; 1922 list_del_init(&sibling->sibling_list); 1923 1924 /* Inherit group flags from the previous leader */ 1925 sibling->group_caps = event->group_caps; 1926 1927 if (!RB_EMPTY_NODE(&event->group_node)) { 1928 add_event_to_groups(sibling, event->ctx); 1929 1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) { 1931 struct list_head *list = sibling->attr.pinned ? 1932 &ctx->pinned_active : &ctx->flexible_active; 1933 1934 list_add_tail(&sibling->active_list, list); 1935 } 1936 } 1937 1938 WARN_ON_ONCE(sibling->ctx != event->ctx); 1939 } 1940 1941 out: 1942 perf_event__header_size(event->group_leader); 1943 1944 for_each_sibling_event(tmp, event->group_leader) 1945 perf_event__header_size(tmp); 1946 } 1947 1948 static bool is_orphaned_event(struct perf_event *event) 1949 { 1950 return event->state == PERF_EVENT_STATE_DEAD; 1951 } 1952 1953 static inline int __pmu_filter_match(struct perf_event *event) 1954 { 1955 struct pmu *pmu = event->pmu; 1956 return pmu->filter_match ? pmu->filter_match(event) : 1; 1957 } 1958 1959 /* 1960 * Check whether we should attempt to schedule an event group based on 1961 * PMU-specific filtering. An event group can consist of HW and SW events, 1962 * potentially with a SW leader, so we must check all the filters, to 1963 * determine whether a group is schedulable: 1964 */ 1965 static inline int pmu_filter_match(struct perf_event *event) 1966 { 1967 struct perf_event *sibling; 1968 1969 if (!__pmu_filter_match(event)) 1970 return 0; 1971 1972 for_each_sibling_event(sibling, event) { 1973 if (!__pmu_filter_match(sibling)) 1974 return 0; 1975 } 1976 1977 return 1; 1978 } 1979 1980 static inline int 1981 event_filter_match(struct perf_event *event) 1982 { 1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) && 1984 perf_cgroup_match(event) && pmu_filter_match(event); 1985 } 1986 1987 static void 1988 event_sched_out(struct perf_event *event, 1989 struct perf_cpu_context *cpuctx, 1990 struct perf_event_context *ctx) 1991 { 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE; 1993 1994 WARN_ON_ONCE(event->ctx != ctx); 1995 lockdep_assert_held(&ctx->lock); 1996 1997 if (event->state != PERF_EVENT_STATE_ACTIVE) 1998 return; 1999 2000 /* 2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but 2002 * we can schedule events _OUT_ individually through things like 2003 * __perf_remove_from_context(). 2004 */ 2005 list_del_init(&event->active_list); 2006 2007 perf_pmu_disable(event->pmu); 2008 2009 event->pmu->del(event, 0); 2010 event->oncpu = -1; 2011 2012 if (event->pending_disable) { 2013 event->pending_disable = 0; 2014 state = PERF_EVENT_STATE_OFF; 2015 } 2016 perf_event_set_state(event, state); 2017 2018 if (!is_software_event(event)) 2019 cpuctx->active_oncpu--; 2020 if (!--ctx->nr_active) 2021 perf_event_ctx_deactivate(ctx); 2022 if (event->attr.freq && event->attr.sample_freq) 2023 ctx->nr_freq--; 2024 if (event->attr.exclusive || !cpuctx->active_oncpu) 2025 cpuctx->exclusive = 0; 2026 2027 perf_pmu_enable(event->pmu); 2028 } 2029 2030 static void 2031 group_sched_out(struct perf_event *group_event, 2032 struct perf_cpu_context *cpuctx, 2033 struct perf_event_context *ctx) 2034 { 2035 struct perf_event *event; 2036 2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE) 2038 return; 2039 2040 perf_pmu_disable(ctx->pmu); 2041 2042 event_sched_out(group_event, cpuctx, ctx); 2043 2044 /* 2045 * Schedule out siblings (if any): 2046 */ 2047 for_each_sibling_event(event, group_event) 2048 event_sched_out(event, cpuctx, ctx); 2049 2050 perf_pmu_enable(ctx->pmu); 2051 2052 if (group_event->attr.exclusive) 2053 cpuctx->exclusive = 0; 2054 } 2055 2056 #define DETACH_GROUP 0x01UL 2057 2058 /* 2059 * Cross CPU call to remove a performance event 2060 * 2061 * We disable the event on the hardware level first. After that we 2062 * remove it from the context list. 2063 */ 2064 static void 2065 __perf_remove_from_context(struct perf_event *event, 2066 struct perf_cpu_context *cpuctx, 2067 struct perf_event_context *ctx, 2068 void *info) 2069 { 2070 unsigned long flags = (unsigned long)info; 2071 2072 if (ctx->is_active & EVENT_TIME) { 2073 update_context_time(ctx); 2074 update_cgrp_time_from_cpuctx(cpuctx); 2075 } 2076 2077 event_sched_out(event, cpuctx, ctx); 2078 if (flags & DETACH_GROUP) 2079 perf_group_detach(event); 2080 list_del_event(event, ctx); 2081 2082 if (!ctx->nr_events && ctx->is_active) { 2083 ctx->is_active = 0; 2084 if (ctx->task) { 2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2086 cpuctx->task_ctx = NULL; 2087 } 2088 } 2089 } 2090 2091 /* 2092 * Remove the event from a task's (or a CPU's) list of events. 2093 * 2094 * If event->ctx is a cloned context, callers must make sure that 2095 * every task struct that event->ctx->task could possibly point to 2096 * remains valid. This is OK when called from perf_release since 2097 * that only calls us on the top-level context, which can't be a clone. 2098 * When called from perf_event_exit_task, it's OK because the 2099 * context has been detached from its task. 2100 */ 2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags) 2102 { 2103 struct perf_event_context *ctx = event->ctx; 2104 2105 lockdep_assert_held(&ctx->mutex); 2106 2107 event_function_call(event, __perf_remove_from_context, (void *)flags); 2108 2109 /* 2110 * The above event_function_call() can NO-OP when it hits 2111 * TASK_TOMBSTONE. In that case we must already have been detached 2112 * from the context (by perf_event_exit_event()) but the grouping 2113 * might still be in-tact. 2114 */ 2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT); 2116 if ((flags & DETACH_GROUP) && 2117 (event->attach_state & PERF_ATTACH_GROUP)) { 2118 /* 2119 * Since in that case we cannot possibly be scheduled, simply 2120 * detach now. 2121 */ 2122 raw_spin_lock_irq(&ctx->lock); 2123 perf_group_detach(event); 2124 raw_spin_unlock_irq(&ctx->lock); 2125 } 2126 } 2127 2128 /* 2129 * Cross CPU call to disable a performance event 2130 */ 2131 static void __perf_event_disable(struct perf_event *event, 2132 struct perf_cpu_context *cpuctx, 2133 struct perf_event_context *ctx, 2134 void *info) 2135 { 2136 if (event->state < PERF_EVENT_STATE_INACTIVE) 2137 return; 2138 2139 if (ctx->is_active & EVENT_TIME) { 2140 update_context_time(ctx); 2141 update_cgrp_time_from_event(event); 2142 } 2143 2144 if (event == event->group_leader) 2145 group_sched_out(event, cpuctx, ctx); 2146 else 2147 event_sched_out(event, cpuctx, ctx); 2148 2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF); 2150 } 2151 2152 /* 2153 * Disable an event. 2154 * 2155 * If event->ctx is a cloned context, callers must make sure that 2156 * every task struct that event->ctx->task could possibly point to 2157 * remains valid. This condition is satisifed when called through 2158 * perf_event_for_each_child or perf_event_for_each because they 2159 * hold the top-level event's child_mutex, so any descendant that 2160 * goes to exit will block in perf_event_exit_event(). 2161 * 2162 * When called from perf_pending_event it's OK because event->ctx 2163 * is the current context on this CPU and preemption is disabled, 2164 * hence we can't get into perf_event_task_sched_out for this context. 2165 */ 2166 static void _perf_event_disable(struct perf_event *event) 2167 { 2168 struct perf_event_context *ctx = event->ctx; 2169 2170 raw_spin_lock_irq(&ctx->lock); 2171 if (event->state <= PERF_EVENT_STATE_OFF) { 2172 raw_spin_unlock_irq(&ctx->lock); 2173 return; 2174 } 2175 raw_spin_unlock_irq(&ctx->lock); 2176 2177 event_function_call(event, __perf_event_disable, NULL); 2178 } 2179 2180 void perf_event_disable_local(struct perf_event *event) 2181 { 2182 event_function_local(event, __perf_event_disable, NULL); 2183 } 2184 2185 /* 2186 * Strictly speaking kernel users cannot create groups and therefore this 2187 * interface does not need the perf_event_ctx_lock() magic. 2188 */ 2189 void perf_event_disable(struct perf_event *event) 2190 { 2191 struct perf_event_context *ctx; 2192 2193 ctx = perf_event_ctx_lock(event); 2194 _perf_event_disable(event); 2195 perf_event_ctx_unlock(event, ctx); 2196 } 2197 EXPORT_SYMBOL_GPL(perf_event_disable); 2198 2199 void perf_event_disable_inatomic(struct perf_event *event) 2200 { 2201 event->pending_disable = 1; 2202 irq_work_queue(&event->pending); 2203 } 2204 2205 static void perf_set_shadow_time(struct perf_event *event, 2206 struct perf_event_context *ctx) 2207 { 2208 /* 2209 * use the correct time source for the time snapshot 2210 * 2211 * We could get by without this by leveraging the 2212 * fact that to get to this function, the caller 2213 * has most likely already called update_context_time() 2214 * and update_cgrp_time_xx() and thus both timestamp 2215 * are identical (or very close). Given that tstamp is, 2216 * already adjusted for cgroup, we could say that: 2217 * tstamp - ctx->timestamp 2218 * is equivalent to 2219 * tstamp - cgrp->timestamp. 2220 * 2221 * Then, in perf_output_read(), the calculation would 2222 * work with no changes because: 2223 * - event is guaranteed scheduled in 2224 * - no scheduled out in between 2225 * - thus the timestamp would be the same 2226 * 2227 * But this is a bit hairy. 2228 * 2229 * So instead, we have an explicit cgroup call to remain 2230 * within the time time source all along. We believe it 2231 * is cleaner and simpler to understand. 2232 */ 2233 if (is_cgroup_event(event)) 2234 perf_cgroup_set_shadow_time(event, event->tstamp); 2235 else 2236 event->shadow_ctx_time = event->tstamp - ctx->timestamp; 2237 } 2238 2239 #define MAX_INTERRUPTS (~0ULL) 2240 2241 static void perf_log_throttle(struct perf_event *event, int enable); 2242 static void perf_log_itrace_start(struct perf_event *event); 2243 2244 static int 2245 event_sched_in(struct perf_event *event, 2246 struct perf_cpu_context *cpuctx, 2247 struct perf_event_context *ctx) 2248 { 2249 int ret = 0; 2250 2251 lockdep_assert_held(&ctx->lock); 2252 2253 if (event->state <= PERF_EVENT_STATE_OFF) 2254 return 0; 2255 2256 WRITE_ONCE(event->oncpu, smp_processor_id()); 2257 /* 2258 * Order event::oncpu write to happen before the ACTIVE state is 2259 * visible. This allows perf_event_{stop,read}() to observe the correct 2260 * ->oncpu if it sees ACTIVE. 2261 */ 2262 smp_wmb(); 2263 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE); 2264 2265 /* 2266 * Unthrottle events, since we scheduled we might have missed several 2267 * ticks already, also for a heavily scheduling task there is little 2268 * guarantee it'll get a tick in a timely manner. 2269 */ 2270 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) { 2271 perf_log_throttle(event, 1); 2272 event->hw.interrupts = 0; 2273 } 2274 2275 perf_pmu_disable(event->pmu); 2276 2277 perf_set_shadow_time(event, ctx); 2278 2279 perf_log_itrace_start(event); 2280 2281 if (event->pmu->add(event, PERF_EF_START)) { 2282 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2283 event->oncpu = -1; 2284 ret = -EAGAIN; 2285 goto out; 2286 } 2287 2288 if (!is_software_event(event)) 2289 cpuctx->active_oncpu++; 2290 if (!ctx->nr_active++) 2291 perf_event_ctx_activate(ctx); 2292 if (event->attr.freq && event->attr.sample_freq) 2293 ctx->nr_freq++; 2294 2295 if (event->attr.exclusive) 2296 cpuctx->exclusive = 1; 2297 2298 out: 2299 perf_pmu_enable(event->pmu); 2300 2301 return ret; 2302 } 2303 2304 static int 2305 group_sched_in(struct perf_event *group_event, 2306 struct perf_cpu_context *cpuctx, 2307 struct perf_event_context *ctx) 2308 { 2309 struct perf_event *event, *partial_group = NULL; 2310 struct pmu *pmu = ctx->pmu; 2311 2312 if (group_event->state == PERF_EVENT_STATE_OFF) 2313 return 0; 2314 2315 pmu->start_txn(pmu, PERF_PMU_TXN_ADD); 2316 2317 if (event_sched_in(group_event, cpuctx, ctx)) { 2318 pmu->cancel_txn(pmu); 2319 perf_mux_hrtimer_restart(cpuctx); 2320 return -EAGAIN; 2321 } 2322 2323 /* 2324 * Schedule in siblings as one group (if any): 2325 */ 2326 for_each_sibling_event(event, group_event) { 2327 if (event_sched_in(event, cpuctx, ctx)) { 2328 partial_group = event; 2329 goto group_error; 2330 } 2331 } 2332 2333 if (!pmu->commit_txn(pmu)) 2334 return 0; 2335 2336 group_error: 2337 /* 2338 * Groups can be scheduled in as one unit only, so undo any 2339 * partial group before returning: 2340 * The events up to the failed event are scheduled out normally. 2341 */ 2342 for_each_sibling_event(event, group_event) { 2343 if (event == partial_group) 2344 break; 2345 2346 event_sched_out(event, cpuctx, ctx); 2347 } 2348 event_sched_out(group_event, cpuctx, ctx); 2349 2350 pmu->cancel_txn(pmu); 2351 2352 perf_mux_hrtimer_restart(cpuctx); 2353 2354 return -EAGAIN; 2355 } 2356 2357 /* 2358 * Work out whether we can put this event group on the CPU now. 2359 */ 2360 static int group_can_go_on(struct perf_event *event, 2361 struct perf_cpu_context *cpuctx, 2362 int can_add_hw) 2363 { 2364 /* 2365 * Groups consisting entirely of software events can always go on. 2366 */ 2367 if (event->group_caps & PERF_EV_CAP_SOFTWARE) 2368 return 1; 2369 /* 2370 * If an exclusive group is already on, no other hardware 2371 * events can go on. 2372 */ 2373 if (cpuctx->exclusive) 2374 return 0; 2375 /* 2376 * If this group is exclusive and there are already 2377 * events on the CPU, it can't go on. 2378 */ 2379 if (event->attr.exclusive && cpuctx->active_oncpu) 2380 return 0; 2381 /* 2382 * Otherwise, try to add it if all previous groups were able 2383 * to go on. 2384 */ 2385 return can_add_hw; 2386 } 2387 2388 static void add_event_to_ctx(struct perf_event *event, 2389 struct perf_event_context *ctx) 2390 { 2391 list_add_event(event, ctx); 2392 perf_group_attach(event); 2393 } 2394 2395 static void ctx_sched_out(struct perf_event_context *ctx, 2396 struct perf_cpu_context *cpuctx, 2397 enum event_type_t event_type); 2398 static void 2399 ctx_sched_in(struct perf_event_context *ctx, 2400 struct perf_cpu_context *cpuctx, 2401 enum event_type_t event_type, 2402 struct task_struct *task); 2403 2404 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx, 2405 struct perf_event_context *ctx, 2406 enum event_type_t event_type) 2407 { 2408 if (!cpuctx->task_ctx) 2409 return; 2410 2411 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) 2412 return; 2413 2414 ctx_sched_out(ctx, cpuctx, event_type); 2415 } 2416 2417 static void perf_event_sched_in(struct perf_cpu_context *cpuctx, 2418 struct perf_event_context *ctx, 2419 struct task_struct *task) 2420 { 2421 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task); 2422 if (ctx) 2423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task); 2424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task); 2425 if (ctx) 2426 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task); 2427 } 2428 2429 /* 2430 * We want to maintain the following priority of scheduling: 2431 * - CPU pinned (EVENT_CPU | EVENT_PINNED) 2432 * - task pinned (EVENT_PINNED) 2433 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE) 2434 * - task flexible (EVENT_FLEXIBLE). 2435 * 2436 * In order to avoid unscheduling and scheduling back in everything every 2437 * time an event is added, only do it for the groups of equal priority and 2438 * below. 2439 * 2440 * This can be called after a batch operation on task events, in which case 2441 * event_type is a bit mask of the types of events involved. For CPU events, 2442 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE. 2443 */ 2444 static void ctx_resched(struct perf_cpu_context *cpuctx, 2445 struct perf_event_context *task_ctx, 2446 enum event_type_t event_type) 2447 { 2448 enum event_type_t ctx_event_type; 2449 bool cpu_event = !!(event_type & EVENT_CPU); 2450 2451 /* 2452 * If pinned groups are involved, flexible groups also need to be 2453 * scheduled out. 2454 */ 2455 if (event_type & EVENT_PINNED) 2456 event_type |= EVENT_FLEXIBLE; 2457 2458 ctx_event_type = event_type & EVENT_ALL; 2459 2460 perf_pmu_disable(cpuctx->ctx.pmu); 2461 if (task_ctx) 2462 task_ctx_sched_out(cpuctx, task_ctx, event_type); 2463 2464 /* 2465 * Decide which cpu ctx groups to schedule out based on the types 2466 * of events that caused rescheduling: 2467 * - EVENT_CPU: schedule out corresponding groups; 2468 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups; 2469 * - otherwise, do nothing more. 2470 */ 2471 if (cpu_event) 2472 cpu_ctx_sched_out(cpuctx, ctx_event_type); 2473 else if (ctx_event_type & EVENT_PINNED) 2474 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 2475 2476 perf_event_sched_in(cpuctx, task_ctx, current); 2477 perf_pmu_enable(cpuctx->ctx.pmu); 2478 } 2479 2480 /* 2481 * Cross CPU call to install and enable a performance event 2482 * 2483 * Very similar to remote_function() + event_function() but cannot assume that 2484 * things like ctx->is_active and cpuctx->task_ctx are set. 2485 */ 2486 static int __perf_install_in_context(void *info) 2487 { 2488 struct perf_event *event = info; 2489 struct perf_event_context *ctx = event->ctx; 2490 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 2491 struct perf_event_context *task_ctx = cpuctx->task_ctx; 2492 bool reprogram = true; 2493 int ret = 0; 2494 2495 raw_spin_lock(&cpuctx->ctx.lock); 2496 if (ctx->task) { 2497 raw_spin_lock(&ctx->lock); 2498 task_ctx = ctx; 2499 2500 reprogram = (ctx->task == current); 2501 2502 /* 2503 * If the task is running, it must be running on this CPU, 2504 * otherwise we cannot reprogram things. 2505 * 2506 * If its not running, we don't care, ctx->lock will 2507 * serialize against it becoming runnable. 2508 */ 2509 if (task_curr(ctx->task) && !reprogram) { 2510 ret = -ESRCH; 2511 goto unlock; 2512 } 2513 2514 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx); 2515 } else if (task_ctx) { 2516 raw_spin_lock(&task_ctx->lock); 2517 } 2518 2519 #ifdef CONFIG_CGROUP_PERF 2520 if (is_cgroup_event(event)) { 2521 /* 2522 * If the current cgroup doesn't match the event's 2523 * cgroup, we should not try to schedule it. 2524 */ 2525 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx); 2526 reprogram = cgroup_is_descendant(cgrp->css.cgroup, 2527 event->cgrp->css.cgroup); 2528 } 2529 #endif 2530 2531 if (reprogram) { 2532 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2533 add_event_to_ctx(event, ctx); 2534 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2535 } else { 2536 add_event_to_ctx(event, ctx); 2537 } 2538 2539 unlock: 2540 perf_ctx_unlock(cpuctx, task_ctx); 2541 2542 return ret; 2543 } 2544 2545 /* 2546 * Attach a performance event to a context. 2547 * 2548 * Very similar to event_function_call, see comment there. 2549 */ 2550 static void 2551 perf_install_in_context(struct perf_event_context *ctx, 2552 struct perf_event *event, 2553 int cpu) 2554 { 2555 struct task_struct *task = READ_ONCE(ctx->task); 2556 2557 lockdep_assert_held(&ctx->mutex); 2558 2559 if (event->cpu != -1) 2560 event->cpu = cpu; 2561 2562 /* 2563 * Ensures that if we can observe event->ctx, both the event and ctx 2564 * will be 'complete'. See perf_iterate_sb_cpu(). 2565 */ 2566 smp_store_release(&event->ctx, ctx); 2567 2568 if (!task) { 2569 cpu_function_call(cpu, __perf_install_in_context, event); 2570 return; 2571 } 2572 2573 /* 2574 * Should not happen, we validate the ctx is still alive before calling. 2575 */ 2576 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) 2577 return; 2578 2579 /* 2580 * Installing events is tricky because we cannot rely on ctx->is_active 2581 * to be set in case this is the nr_events 0 -> 1 transition. 2582 * 2583 * Instead we use task_curr(), which tells us if the task is running. 2584 * However, since we use task_curr() outside of rq::lock, we can race 2585 * against the actual state. This means the result can be wrong. 2586 * 2587 * If we get a false positive, we retry, this is harmless. 2588 * 2589 * If we get a false negative, things are complicated. If we are after 2590 * perf_event_context_sched_in() ctx::lock will serialize us, and the 2591 * value must be correct. If we're before, it doesn't matter since 2592 * perf_event_context_sched_in() will program the counter. 2593 * 2594 * However, this hinges on the remote context switch having observed 2595 * our task->perf_event_ctxp[] store, such that it will in fact take 2596 * ctx::lock in perf_event_context_sched_in(). 2597 * 2598 * We do this by task_function_call(), if the IPI fails to hit the task 2599 * we know any future context switch of task must see the 2600 * perf_event_ctpx[] store. 2601 */ 2602 2603 /* 2604 * This smp_mb() orders the task->perf_event_ctxp[] store with the 2605 * task_cpu() load, such that if the IPI then does not find the task 2606 * running, a future context switch of that task must observe the 2607 * store. 2608 */ 2609 smp_mb(); 2610 again: 2611 if (!task_function_call(task, __perf_install_in_context, event)) 2612 return; 2613 2614 raw_spin_lock_irq(&ctx->lock); 2615 task = ctx->task; 2616 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) { 2617 /* 2618 * Cannot happen because we already checked above (which also 2619 * cannot happen), and we hold ctx->mutex, which serializes us 2620 * against perf_event_exit_task_context(). 2621 */ 2622 raw_spin_unlock_irq(&ctx->lock); 2623 return; 2624 } 2625 /* 2626 * If the task is not running, ctx->lock will avoid it becoming so, 2627 * thus we can safely install the event. 2628 */ 2629 if (task_curr(task)) { 2630 raw_spin_unlock_irq(&ctx->lock); 2631 goto again; 2632 } 2633 add_event_to_ctx(event, ctx); 2634 raw_spin_unlock_irq(&ctx->lock); 2635 } 2636 2637 /* 2638 * Cross CPU call to enable a performance event 2639 */ 2640 static void __perf_event_enable(struct perf_event *event, 2641 struct perf_cpu_context *cpuctx, 2642 struct perf_event_context *ctx, 2643 void *info) 2644 { 2645 struct perf_event *leader = event->group_leader; 2646 struct perf_event_context *task_ctx; 2647 2648 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2649 event->state <= PERF_EVENT_STATE_ERROR) 2650 return; 2651 2652 if (ctx->is_active) 2653 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 2654 2655 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 2656 2657 if (!ctx->is_active) 2658 return; 2659 2660 if (!event_filter_match(event)) { 2661 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2662 return; 2663 } 2664 2665 /* 2666 * If the event is in a group and isn't the group leader, 2667 * then don't put it on unless the group is on. 2668 */ 2669 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) { 2670 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 2671 return; 2672 } 2673 2674 task_ctx = cpuctx->task_ctx; 2675 if (ctx->task) 2676 WARN_ON_ONCE(task_ctx != ctx); 2677 2678 ctx_resched(cpuctx, task_ctx, get_event_type(event)); 2679 } 2680 2681 /* 2682 * Enable an event. 2683 * 2684 * If event->ctx is a cloned context, callers must make sure that 2685 * every task struct that event->ctx->task could possibly point to 2686 * remains valid. This condition is satisfied when called through 2687 * perf_event_for_each_child or perf_event_for_each as described 2688 * for perf_event_disable. 2689 */ 2690 static void _perf_event_enable(struct perf_event *event) 2691 { 2692 struct perf_event_context *ctx = event->ctx; 2693 2694 raw_spin_lock_irq(&ctx->lock); 2695 if (event->state >= PERF_EVENT_STATE_INACTIVE || 2696 event->state < PERF_EVENT_STATE_ERROR) { 2697 raw_spin_unlock_irq(&ctx->lock); 2698 return; 2699 } 2700 2701 /* 2702 * If the event is in error state, clear that first. 2703 * 2704 * That way, if we see the event in error state below, we know that it 2705 * has gone back into error state, as distinct from the task having 2706 * been scheduled away before the cross-call arrived. 2707 */ 2708 if (event->state == PERF_EVENT_STATE_ERROR) 2709 event->state = PERF_EVENT_STATE_OFF; 2710 raw_spin_unlock_irq(&ctx->lock); 2711 2712 event_function_call(event, __perf_event_enable, NULL); 2713 } 2714 2715 /* 2716 * See perf_event_disable(); 2717 */ 2718 void perf_event_enable(struct perf_event *event) 2719 { 2720 struct perf_event_context *ctx; 2721 2722 ctx = perf_event_ctx_lock(event); 2723 _perf_event_enable(event); 2724 perf_event_ctx_unlock(event, ctx); 2725 } 2726 EXPORT_SYMBOL_GPL(perf_event_enable); 2727 2728 struct stop_event_data { 2729 struct perf_event *event; 2730 unsigned int restart; 2731 }; 2732 2733 static int __perf_event_stop(void *info) 2734 { 2735 struct stop_event_data *sd = info; 2736 struct perf_event *event = sd->event; 2737 2738 /* if it's already INACTIVE, do nothing */ 2739 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2740 return 0; 2741 2742 /* matches smp_wmb() in event_sched_in() */ 2743 smp_rmb(); 2744 2745 /* 2746 * There is a window with interrupts enabled before we get here, 2747 * so we need to check again lest we try to stop another CPU's event. 2748 */ 2749 if (READ_ONCE(event->oncpu) != smp_processor_id()) 2750 return -EAGAIN; 2751 2752 event->pmu->stop(event, PERF_EF_UPDATE); 2753 2754 /* 2755 * May race with the actual stop (through perf_pmu_output_stop()), 2756 * but it is only used for events with AUX ring buffer, and such 2757 * events will refuse to restart because of rb::aux_mmap_count==0, 2758 * see comments in perf_aux_output_begin(). 2759 * 2760 * Since this is happening on an event-local CPU, no trace is lost 2761 * while restarting. 2762 */ 2763 if (sd->restart) 2764 event->pmu->start(event, 0); 2765 2766 return 0; 2767 } 2768 2769 static int perf_event_stop(struct perf_event *event, int restart) 2770 { 2771 struct stop_event_data sd = { 2772 .event = event, 2773 .restart = restart, 2774 }; 2775 int ret = 0; 2776 2777 do { 2778 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE) 2779 return 0; 2780 2781 /* matches smp_wmb() in event_sched_in() */ 2782 smp_rmb(); 2783 2784 /* 2785 * We only want to restart ACTIVE events, so if the event goes 2786 * inactive here (event->oncpu==-1), there's nothing more to do; 2787 * fall through with ret==-ENXIO. 2788 */ 2789 ret = cpu_function_call(READ_ONCE(event->oncpu), 2790 __perf_event_stop, &sd); 2791 } while (ret == -EAGAIN); 2792 2793 return ret; 2794 } 2795 2796 /* 2797 * In order to contain the amount of racy and tricky in the address filter 2798 * configuration management, it is a two part process: 2799 * 2800 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below, 2801 * we update the addresses of corresponding vmas in 2802 * event::addr_filter_ranges array and bump the event::addr_filters_gen; 2803 * (p2) when an event is scheduled in (pmu::add), it calls 2804 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync() 2805 * if the generation has changed since the previous call. 2806 * 2807 * If (p1) happens while the event is active, we restart it to force (p2). 2808 * 2809 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on 2810 * pre-existing mappings, called once when new filters arrive via SET_FILTER 2811 * ioctl; 2812 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly 2813 * registered mapping, called for every new mmap(), with mm::mmap_sem down 2814 * for reading; 2815 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process 2816 * of exec. 2817 */ 2818 void perf_event_addr_filters_sync(struct perf_event *event) 2819 { 2820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 2821 2822 if (!has_addr_filter(event)) 2823 return; 2824 2825 raw_spin_lock(&ifh->lock); 2826 if (event->addr_filters_gen != event->hw.addr_filters_gen) { 2827 event->pmu->addr_filters_sync(event); 2828 event->hw.addr_filters_gen = event->addr_filters_gen; 2829 } 2830 raw_spin_unlock(&ifh->lock); 2831 } 2832 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync); 2833 2834 static int _perf_event_refresh(struct perf_event *event, int refresh) 2835 { 2836 /* 2837 * not supported on inherited events 2838 */ 2839 if (event->attr.inherit || !is_sampling_event(event)) 2840 return -EINVAL; 2841 2842 atomic_add(refresh, &event->event_limit); 2843 _perf_event_enable(event); 2844 2845 return 0; 2846 } 2847 2848 /* 2849 * See perf_event_disable() 2850 */ 2851 int perf_event_refresh(struct perf_event *event, int refresh) 2852 { 2853 struct perf_event_context *ctx; 2854 int ret; 2855 2856 ctx = perf_event_ctx_lock(event); 2857 ret = _perf_event_refresh(event, refresh); 2858 perf_event_ctx_unlock(event, ctx); 2859 2860 return ret; 2861 } 2862 EXPORT_SYMBOL_GPL(perf_event_refresh); 2863 2864 static int perf_event_modify_breakpoint(struct perf_event *bp, 2865 struct perf_event_attr *attr) 2866 { 2867 int err; 2868 2869 _perf_event_disable(bp); 2870 2871 err = modify_user_hw_breakpoint_check(bp, attr, true); 2872 2873 if (!bp->attr.disabled) 2874 _perf_event_enable(bp); 2875 2876 return err; 2877 } 2878 2879 static int perf_event_modify_attr(struct perf_event *event, 2880 struct perf_event_attr *attr) 2881 { 2882 if (event->attr.type != attr->type) 2883 return -EINVAL; 2884 2885 switch (event->attr.type) { 2886 case PERF_TYPE_BREAKPOINT: 2887 return perf_event_modify_breakpoint(event, attr); 2888 default: 2889 /* Place holder for future additions. */ 2890 return -EOPNOTSUPP; 2891 } 2892 } 2893 2894 static void ctx_sched_out(struct perf_event_context *ctx, 2895 struct perf_cpu_context *cpuctx, 2896 enum event_type_t event_type) 2897 { 2898 struct perf_event *event, *tmp; 2899 int is_active = ctx->is_active; 2900 2901 lockdep_assert_held(&ctx->lock); 2902 2903 if (likely(!ctx->nr_events)) { 2904 /* 2905 * See __perf_remove_from_context(). 2906 */ 2907 WARN_ON_ONCE(ctx->is_active); 2908 if (ctx->task) 2909 WARN_ON_ONCE(cpuctx->task_ctx); 2910 return; 2911 } 2912 2913 ctx->is_active &= ~event_type; 2914 if (!(ctx->is_active & EVENT_ALL)) 2915 ctx->is_active = 0; 2916 2917 if (ctx->task) { 2918 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 2919 if (!ctx->is_active) 2920 cpuctx->task_ctx = NULL; 2921 } 2922 2923 /* 2924 * Always update time if it was set; not only when it changes. 2925 * Otherwise we can 'forget' to update time for any but the last 2926 * context we sched out. For example: 2927 * 2928 * ctx_sched_out(.event_type = EVENT_FLEXIBLE) 2929 * ctx_sched_out(.event_type = EVENT_PINNED) 2930 * 2931 * would only update time for the pinned events. 2932 */ 2933 if (is_active & EVENT_TIME) { 2934 /* update (and stop) ctx time */ 2935 update_context_time(ctx); 2936 update_cgrp_time_from_cpuctx(cpuctx); 2937 } 2938 2939 is_active ^= ctx->is_active; /* changed bits */ 2940 2941 if (!ctx->nr_active || !(is_active & EVENT_ALL)) 2942 return; 2943 2944 perf_pmu_disable(ctx->pmu); 2945 if (is_active & EVENT_PINNED) { 2946 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list) 2947 group_sched_out(event, cpuctx, ctx); 2948 } 2949 2950 if (is_active & EVENT_FLEXIBLE) { 2951 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list) 2952 group_sched_out(event, cpuctx, ctx); 2953 } 2954 perf_pmu_enable(ctx->pmu); 2955 } 2956 2957 /* 2958 * Test whether two contexts are equivalent, i.e. whether they have both been 2959 * cloned from the same version of the same context. 2960 * 2961 * Equivalence is measured using a generation number in the context that is 2962 * incremented on each modification to it; see unclone_ctx(), list_add_event() 2963 * and list_del_event(). 2964 */ 2965 static int context_equiv(struct perf_event_context *ctx1, 2966 struct perf_event_context *ctx2) 2967 { 2968 lockdep_assert_held(&ctx1->lock); 2969 lockdep_assert_held(&ctx2->lock); 2970 2971 /* Pinning disables the swap optimization */ 2972 if (ctx1->pin_count || ctx2->pin_count) 2973 return 0; 2974 2975 /* If ctx1 is the parent of ctx2 */ 2976 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen) 2977 return 1; 2978 2979 /* If ctx2 is the parent of ctx1 */ 2980 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation) 2981 return 1; 2982 2983 /* 2984 * If ctx1 and ctx2 have the same parent; we flatten the parent 2985 * hierarchy, see perf_event_init_context(). 2986 */ 2987 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx && 2988 ctx1->parent_gen == ctx2->parent_gen) 2989 return 1; 2990 2991 /* Unmatched */ 2992 return 0; 2993 } 2994 2995 static void __perf_event_sync_stat(struct perf_event *event, 2996 struct perf_event *next_event) 2997 { 2998 u64 value; 2999 3000 if (!event->attr.inherit_stat) 3001 return; 3002 3003 /* 3004 * Update the event value, we cannot use perf_event_read() 3005 * because we're in the middle of a context switch and have IRQs 3006 * disabled, which upsets smp_call_function_single(), however 3007 * we know the event must be on the current CPU, therefore we 3008 * don't need to use it. 3009 */ 3010 if (event->state == PERF_EVENT_STATE_ACTIVE) 3011 event->pmu->read(event); 3012 3013 perf_event_update_time(event); 3014 3015 /* 3016 * In order to keep per-task stats reliable we need to flip the event 3017 * values when we flip the contexts. 3018 */ 3019 value = local64_read(&next_event->count); 3020 value = local64_xchg(&event->count, value); 3021 local64_set(&next_event->count, value); 3022 3023 swap(event->total_time_enabled, next_event->total_time_enabled); 3024 swap(event->total_time_running, next_event->total_time_running); 3025 3026 /* 3027 * Since we swizzled the values, update the user visible data too. 3028 */ 3029 perf_event_update_userpage(event); 3030 perf_event_update_userpage(next_event); 3031 } 3032 3033 static void perf_event_sync_stat(struct perf_event_context *ctx, 3034 struct perf_event_context *next_ctx) 3035 { 3036 struct perf_event *event, *next_event; 3037 3038 if (!ctx->nr_stat) 3039 return; 3040 3041 update_context_time(ctx); 3042 3043 event = list_first_entry(&ctx->event_list, 3044 struct perf_event, event_entry); 3045 3046 next_event = list_first_entry(&next_ctx->event_list, 3047 struct perf_event, event_entry); 3048 3049 while (&event->event_entry != &ctx->event_list && 3050 &next_event->event_entry != &next_ctx->event_list) { 3051 3052 __perf_event_sync_stat(event, next_event); 3053 3054 event = list_next_entry(event, event_entry); 3055 next_event = list_next_entry(next_event, event_entry); 3056 } 3057 } 3058 3059 static void perf_event_context_sched_out(struct task_struct *task, int ctxn, 3060 struct task_struct *next) 3061 { 3062 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn]; 3063 struct perf_event_context *next_ctx; 3064 struct perf_event_context *parent, *next_parent; 3065 struct perf_cpu_context *cpuctx; 3066 int do_switch = 1; 3067 3068 if (likely(!ctx)) 3069 return; 3070 3071 cpuctx = __get_cpu_context(ctx); 3072 if (!cpuctx->task_ctx) 3073 return; 3074 3075 rcu_read_lock(); 3076 next_ctx = next->perf_event_ctxp[ctxn]; 3077 if (!next_ctx) 3078 goto unlock; 3079 3080 parent = rcu_dereference(ctx->parent_ctx); 3081 next_parent = rcu_dereference(next_ctx->parent_ctx); 3082 3083 /* If neither context have a parent context; they cannot be clones. */ 3084 if (!parent && !next_parent) 3085 goto unlock; 3086 3087 if (next_parent == ctx || next_ctx == parent || next_parent == parent) { 3088 /* 3089 * Looks like the two contexts are clones, so we might be 3090 * able to optimize the context switch. We lock both 3091 * contexts and check that they are clones under the 3092 * lock (including re-checking that neither has been 3093 * uncloned in the meantime). It doesn't matter which 3094 * order we take the locks because no other cpu could 3095 * be trying to lock both of these tasks. 3096 */ 3097 raw_spin_lock(&ctx->lock); 3098 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); 3099 if (context_equiv(ctx, next_ctx)) { 3100 WRITE_ONCE(ctx->task, next); 3101 WRITE_ONCE(next_ctx->task, task); 3102 3103 swap(ctx->task_ctx_data, next_ctx->task_ctx_data); 3104 3105 /* 3106 * RCU_INIT_POINTER here is safe because we've not 3107 * modified the ctx and the above modification of 3108 * ctx->task and ctx->task_ctx_data are immaterial 3109 * since those values are always verified under 3110 * ctx->lock which we're now holding. 3111 */ 3112 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx); 3113 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx); 3114 3115 do_switch = 0; 3116 3117 perf_event_sync_stat(ctx, next_ctx); 3118 } 3119 raw_spin_unlock(&next_ctx->lock); 3120 raw_spin_unlock(&ctx->lock); 3121 } 3122 unlock: 3123 rcu_read_unlock(); 3124 3125 if (do_switch) { 3126 raw_spin_lock(&ctx->lock); 3127 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL); 3128 raw_spin_unlock(&ctx->lock); 3129 } 3130 } 3131 3132 static DEFINE_PER_CPU(struct list_head, sched_cb_list); 3133 3134 void perf_sched_cb_dec(struct pmu *pmu) 3135 { 3136 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3137 3138 this_cpu_dec(perf_sched_cb_usages); 3139 3140 if (!--cpuctx->sched_cb_usage) 3141 list_del(&cpuctx->sched_cb_entry); 3142 } 3143 3144 3145 void perf_sched_cb_inc(struct pmu *pmu) 3146 { 3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 3148 3149 if (!cpuctx->sched_cb_usage++) 3150 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list)); 3151 3152 this_cpu_inc(perf_sched_cb_usages); 3153 } 3154 3155 /* 3156 * This function provides the context switch callback to the lower code 3157 * layer. It is invoked ONLY when the context switch callback is enabled. 3158 * 3159 * This callback is relevant even to per-cpu events; for example multi event 3160 * PEBS requires this to provide PID/TID information. This requires we flush 3161 * all queued PEBS records before we context switch to a new task. 3162 */ 3163 static void perf_pmu_sched_task(struct task_struct *prev, 3164 struct task_struct *next, 3165 bool sched_in) 3166 { 3167 struct perf_cpu_context *cpuctx; 3168 struct pmu *pmu; 3169 3170 if (prev == next) 3171 return; 3172 3173 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) { 3174 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */ 3175 3176 if (WARN_ON_ONCE(!pmu->sched_task)) 3177 continue; 3178 3179 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3180 perf_pmu_disable(pmu); 3181 3182 pmu->sched_task(cpuctx->task_ctx, sched_in); 3183 3184 perf_pmu_enable(pmu); 3185 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3186 } 3187 } 3188 3189 static void perf_event_switch(struct task_struct *task, 3190 struct task_struct *next_prev, bool sched_in); 3191 3192 #define for_each_task_context_nr(ctxn) \ 3193 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++) 3194 3195 /* 3196 * Called from scheduler to remove the events of the current task, 3197 * with interrupts disabled. 3198 * 3199 * We stop each event and update the event value in event->count. 3200 * 3201 * This does not protect us against NMI, but disable() 3202 * sets the disabled bit in the control field of event _before_ 3203 * accessing the event control register. If a NMI hits, then it will 3204 * not restart the event. 3205 */ 3206 void __perf_event_task_sched_out(struct task_struct *task, 3207 struct task_struct *next) 3208 { 3209 int ctxn; 3210 3211 if (__this_cpu_read(perf_sched_cb_usages)) 3212 perf_pmu_sched_task(task, next, false); 3213 3214 if (atomic_read(&nr_switch_events)) 3215 perf_event_switch(task, next, false); 3216 3217 for_each_task_context_nr(ctxn) 3218 perf_event_context_sched_out(task, ctxn, next); 3219 3220 /* 3221 * if cgroup events exist on this CPU, then we need 3222 * to check if we have to switch out PMU state. 3223 * cgroup event are system-wide mode only 3224 */ 3225 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3226 perf_cgroup_sched_out(task, next); 3227 } 3228 3229 /* 3230 * Called with IRQs disabled 3231 */ 3232 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, 3233 enum event_type_t event_type) 3234 { 3235 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); 3236 } 3237 3238 static int visit_groups_merge(struct perf_event_groups *groups, int cpu, 3239 int (*func)(struct perf_event *, void *), void *data) 3240 { 3241 struct perf_event **evt, *evt1, *evt2; 3242 int ret; 3243 3244 evt1 = perf_event_groups_first(groups, -1); 3245 evt2 = perf_event_groups_first(groups, cpu); 3246 3247 while (evt1 || evt2) { 3248 if (evt1 && evt2) { 3249 if (evt1->group_index < evt2->group_index) 3250 evt = &evt1; 3251 else 3252 evt = &evt2; 3253 } else if (evt1) { 3254 evt = &evt1; 3255 } else { 3256 evt = &evt2; 3257 } 3258 3259 ret = func(*evt, data); 3260 if (ret) 3261 return ret; 3262 3263 *evt = perf_event_groups_next(*evt); 3264 } 3265 3266 return 0; 3267 } 3268 3269 struct sched_in_data { 3270 struct perf_event_context *ctx; 3271 struct perf_cpu_context *cpuctx; 3272 int can_add_hw; 3273 }; 3274 3275 static int pinned_sched_in(struct perf_event *event, void *data) 3276 { 3277 struct sched_in_data *sid = data; 3278 3279 if (event->state <= PERF_EVENT_STATE_OFF) 3280 return 0; 3281 3282 if (!event_filter_match(event)) 3283 return 0; 3284 3285 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3286 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3287 list_add_tail(&event->active_list, &sid->ctx->pinned_active); 3288 } 3289 3290 /* 3291 * If this pinned group hasn't been scheduled, 3292 * put it in error state. 3293 */ 3294 if (event->state == PERF_EVENT_STATE_INACTIVE) 3295 perf_event_set_state(event, PERF_EVENT_STATE_ERROR); 3296 3297 return 0; 3298 } 3299 3300 static int flexible_sched_in(struct perf_event *event, void *data) 3301 { 3302 struct sched_in_data *sid = data; 3303 3304 if (event->state <= PERF_EVENT_STATE_OFF) 3305 return 0; 3306 3307 if (!event_filter_match(event)) 3308 return 0; 3309 3310 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) { 3311 if (!group_sched_in(event, sid->cpuctx, sid->ctx)) 3312 list_add_tail(&event->active_list, &sid->ctx->flexible_active); 3313 else 3314 sid->can_add_hw = 0; 3315 } 3316 3317 return 0; 3318 } 3319 3320 static void 3321 ctx_pinned_sched_in(struct perf_event_context *ctx, 3322 struct perf_cpu_context *cpuctx) 3323 { 3324 struct sched_in_data sid = { 3325 .ctx = ctx, 3326 .cpuctx = cpuctx, 3327 .can_add_hw = 1, 3328 }; 3329 3330 visit_groups_merge(&ctx->pinned_groups, 3331 smp_processor_id(), 3332 pinned_sched_in, &sid); 3333 } 3334 3335 static void 3336 ctx_flexible_sched_in(struct perf_event_context *ctx, 3337 struct perf_cpu_context *cpuctx) 3338 { 3339 struct sched_in_data sid = { 3340 .ctx = ctx, 3341 .cpuctx = cpuctx, 3342 .can_add_hw = 1, 3343 }; 3344 3345 visit_groups_merge(&ctx->flexible_groups, 3346 smp_processor_id(), 3347 flexible_sched_in, &sid); 3348 } 3349 3350 static void 3351 ctx_sched_in(struct perf_event_context *ctx, 3352 struct perf_cpu_context *cpuctx, 3353 enum event_type_t event_type, 3354 struct task_struct *task) 3355 { 3356 int is_active = ctx->is_active; 3357 u64 now; 3358 3359 lockdep_assert_held(&ctx->lock); 3360 3361 if (likely(!ctx->nr_events)) 3362 return; 3363 3364 ctx->is_active |= (event_type | EVENT_TIME); 3365 if (ctx->task) { 3366 if (!is_active) 3367 cpuctx->task_ctx = ctx; 3368 else 3369 WARN_ON_ONCE(cpuctx->task_ctx != ctx); 3370 } 3371 3372 is_active ^= ctx->is_active; /* changed bits */ 3373 3374 if (is_active & EVENT_TIME) { 3375 /* start ctx time */ 3376 now = perf_clock(); 3377 ctx->timestamp = now; 3378 perf_cgroup_set_timestamp(task, ctx); 3379 } 3380 3381 /* 3382 * First go through the list and put on any pinned groups 3383 * in order to give them the best chance of going on. 3384 */ 3385 if (is_active & EVENT_PINNED) 3386 ctx_pinned_sched_in(ctx, cpuctx); 3387 3388 /* Then walk through the lower prio flexible groups */ 3389 if (is_active & EVENT_FLEXIBLE) 3390 ctx_flexible_sched_in(ctx, cpuctx); 3391 } 3392 3393 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, 3394 enum event_type_t event_type, 3395 struct task_struct *task) 3396 { 3397 struct perf_event_context *ctx = &cpuctx->ctx; 3398 3399 ctx_sched_in(ctx, cpuctx, event_type, task); 3400 } 3401 3402 static void perf_event_context_sched_in(struct perf_event_context *ctx, 3403 struct task_struct *task) 3404 { 3405 struct perf_cpu_context *cpuctx; 3406 3407 cpuctx = __get_cpu_context(ctx); 3408 if (cpuctx->task_ctx == ctx) 3409 return; 3410 3411 perf_ctx_lock(cpuctx, ctx); 3412 /* 3413 * We must check ctx->nr_events while holding ctx->lock, such 3414 * that we serialize against perf_install_in_context(). 3415 */ 3416 if (!ctx->nr_events) 3417 goto unlock; 3418 3419 perf_pmu_disable(ctx->pmu); 3420 /* 3421 * We want to keep the following priority order: 3422 * cpu pinned (that don't need to move), task pinned, 3423 * cpu flexible, task flexible. 3424 * 3425 * However, if task's ctx is not carrying any pinned 3426 * events, no need to flip the cpuctx's events around. 3427 */ 3428 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) 3429 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3430 perf_event_sched_in(cpuctx, ctx, task); 3431 perf_pmu_enable(ctx->pmu); 3432 3433 unlock: 3434 perf_ctx_unlock(cpuctx, ctx); 3435 } 3436 3437 /* 3438 * Called from scheduler to add the events of the current task 3439 * with interrupts disabled. 3440 * 3441 * We restore the event value and then enable it. 3442 * 3443 * This does not protect us against NMI, but enable() 3444 * sets the enabled bit in the control field of event _before_ 3445 * accessing the event control register. If a NMI hits, then it will 3446 * keep the event running. 3447 */ 3448 void __perf_event_task_sched_in(struct task_struct *prev, 3449 struct task_struct *task) 3450 { 3451 struct perf_event_context *ctx; 3452 int ctxn; 3453 3454 /* 3455 * If cgroup events exist on this CPU, then we need to check if we have 3456 * to switch in PMU state; cgroup event are system-wide mode only. 3457 * 3458 * Since cgroup events are CPU events, we must schedule these in before 3459 * we schedule in the task events. 3460 */ 3461 if (atomic_read(this_cpu_ptr(&perf_cgroup_events))) 3462 perf_cgroup_sched_in(prev, task); 3463 3464 for_each_task_context_nr(ctxn) { 3465 ctx = task->perf_event_ctxp[ctxn]; 3466 if (likely(!ctx)) 3467 continue; 3468 3469 perf_event_context_sched_in(ctx, task); 3470 } 3471 3472 if (atomic_read(&nr_switch_events)) 3473 perf_event_switch(task, prev, true); 3474 3475 if (__this_cpu_read(perf_sched_cb_usages)) 3476 perf_pmu_sched_task(prev, task, true); 3477 } 3478 3479 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) 3480 { 3481 u64 frequency = event->attr.sample_freq; 3482 u64 sec = NSEC_PER_SEC; 3483 u64 divisor, dividend; 3484 3485 int count_fls, nsec_fls, frequency_fls, sec_fls; 3486 3487 count_fls = fls64(count); 3488 nsec_fls = fls64(nsec); 3489 frequency_fls = fls64(frequency); 3490 sec_fls = 30; 3491 3492 /* 3493 * We got @count in @nsec, with a target of sample_freq HZ 3494 * the target period becomes: 3495 * 3496 * @count * 10^9 3497 * period = ------------------- 3498 * @nsec * sample_freq 3499 * 3500 */ 3501 3502 /* 3503 * Reduce accuracy by one bit such that @a and @b converge 3504 * to a similar magnitude. 3505 */ 3506 #define REDUCE_FLS(a, b) \ 3507 do { \ 3508 if (a##_fls > b##_fls) { \ 3509 a >>= 1; \ 3510 a##_fls--; \ 3511 } else { \ 3512 b >>= 1; \ 3513 b##_fls--; \ 3514 } \ 3515 } while (0) 3516 3517 /* 3518 * Reduce accuracy until either term fits in a u64, then proceed with 3519 * the other, so that finally we can do a u64/u64 division. 3520 */ 3521 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { 3522 REDUCE_FLS(nsec, frequency); 3523 REDUCE_FLS(sec, count); 3524 } 3525 3526 if (count_fls + sec_fls > 64) { 3527 divisor = nsec * frequency; 3528 3529 while (count_fls + sec_fls > 64) { 3530 REDUCE_FLS(count, sec); 3531 divisor >>= 1; 3532 } 3533 3534 dividend = count * sec; 3535 } else { 3536 dividend = count * sec; 3537 3538 while (nsec_fls + frequency_fls > 64) { 3539 REDUCE_FLS(nsec, frequency); 3540 dividend >>= 1; 3541 } 3542 3543 divisor = nsec * frequency; 3544 } 3545 3546 if (!divisor) 3547 return dividend; 3548 3549 return div64_u64(dividend, divisor); 3550 } 3551 3552 static DEFINE_PER_CPU(int, perf_throttled_count); 3553 static DEFINE_PER_CPU(u64, perf_throttled_seq); 3554 3555 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable) 3556 { 3557 struct hw_perf_event *hwc = &event->hw; 3558 s64 period, sample_period; 3559 s64 delta; 3560 3561 period = perf_calculate_period(event, nsec, count); 3562 3563 delta = (s64)(period - hwc->sample_period); 3564 delta = (delta + 7) / 8; /* low pass filter */ 3565 3566 sample_period = hwc->sample_period + delta; 3567 3568 if (!sample_period) 3569 sample_period = 1; 3570 3571 hwc->sample_period = sample_period; 3572 3573 if (local64_read(&hwc->period_left) > 8*sample_period) { 3574 if (disable) 3575 event->pmu->stop(event, PERF_EF_UPDATE); 3576 3577 local64_set(&hwc->period_left, 0); 3578 3579 if (disable) 3580 event->pmu->start(event, PERF_EF_RELOAD); 3581 } 3582 } 3583 3584 /* 3585 * combine freq adjustment with unthrottling to avoid two passes over the 3586 * events. At the same time, make sure, having freq events does not change 3587 * the rate of unthrottling as that would introduce bias. 3588 */ 3589 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx, 3590 int needs_unthr) 3591 { 3592 struct perf_event *event; 3593 struct hw_perf_event *hwc; 3594 u64 now, period = TICK_NSEC; 3595 s64 delta; 3596 3597 /* 3598 * only need to iterate over all events iff: 3599 * - context have events in frequency mode (needs freq adjust) 3600 * - there are events to unthrottle on this cpu 3601 */ 3602 if (!(ctx->nr_freq || needs_unthr)) 3603 return; 3604 3605 raw_spin_lock(&ctx->lock); 3606 perf_pmu_disable(ctx->pmu); 3607 3608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 3609 if (event->state != PERF_EVENT_STATE_ACTIVE) 3610 continue; 3611 3612 if (!event_filter_match(event)) 3613 continue; 3614 3615 perf_pmu_disable(event->pmu); 3616 3617 hwc = &event->hw; 3618 3619 if (hwc->interrupts == MAX_INTERRUPTS) { 3620 hwc->interrupts = 0; 3621 perf_log_throttle(event, 1); 3622 event->pmu->start(event, 0); 3623 } 3624 3625 if (!event->attr.freq || !event->attr.sample_freq) 3626 goto next; 3627 3628 /* 3629 * stop the event and update event->count 3630 */ 3631 event->pmu->stop(event, PERF_EF_UPDATE); 3632 3633 now = local64_read(&event->count); 3634 delta = now - hwc->freq_count_stamp; 3635 hwc->freq_count_stamp = now; 3636 3637 /* 3638 * restart the event 3639 * reload only if value has changed 3640 * we have stopped the event so tell that 3641 * to perf_adjust_period() to avoid stopping it 3642 * twice. 3643 */ 3644 if (delta > 0) 3645 perf_adjust_period(event, period, delta, false); 3646 3647 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0); 3648 next: 3649 perf_pmu_enable(event->pmu); 3650 } 3651 3652 perf_pmu_enable(ctx->pmu); 3653 raw_spin_unlock(&ctx->lock); 3654 } 3655 3656 /* 3657 * Move @event to the tail of the @ctx's elegible events. 3658 */ 3659 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event) 3660 { 3661 /* 3662 * Rotate the first entry last of non-pinned groups. Rotation might be 3663 * disabled by the inheritance code. 3664 */ 3665 if (ctx->rotate_disable) 3666 return; 3667 3668 perf_event_groups_delete(&ctx->flexible_groups, event); 3669 perf_event_groups_insert(&ctx->flexible_groups, event); 3670 } 3671 3672 static inline struct perf_event * 3673 ctx_first_active(struct perf_event_context *ctx) 3674 { 3675 return list_first_entry_or_null(&ctx->flexible_active, 3676 struct perf_event, active_list); 3677 } 3678 3679 static bool perf_rotate_context(struct perf_cpu_context *cpuctx) 3680 { 3681 struct perf_event *cpu_event = NULL, *task_event = NULL; 3682 bool cpu_rotate = false, task_rotate = false; 3683 struct perf_event_context *ctx = NULL; 3684 3685 /* 3686 * Since we run this from IRQ context, nobody can install new 3687 * events, thus the event count values are stable. 3688 */ 3689 3690 if (cpuctx->ctx.nr_events) { 3691 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) 3692 cpu_rotate = true; 3693 } 3694 3695 ctx = cpuctx->task_ctx; 3696 if (ctx && ctx->nr_events) { 3697 if (ctx->nr_events != ctx->nr_active) 3698 task_rotate = true; 3699 } 3700 3701 if (!(cpu_rotate || task_rotate)) 3702 return false; 3703 3704 perf_ctx_lock(cpuctx, cpuctx->task_ctx); 3705 perf_pmu_disable(cpuctx->ctx.pmu); 3706 3707 if (task_rotate) 3708 task_event = ctx_first_active(ctx); 3709 if (cpu_rotate) 3710 cpu_event = ctx_first_active(&cpuctx->ctx); 3711 3712 /* 3713 * As per the order given at ctx_resched() first 'pop' task flexible 3714 * and then, if needed CPU flexible. 3715 */ 3716 if (task_event || (ctx && cpu_event)) 3717 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE); 3718 if (cpu_event) 3719 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); 3720 3721 if (task_event) 3722 rotate_ctx(ctx, task_event); 3723 if (cpu_event) 3724 rotate_ctx(&cpuctx->ctx, cpu_event); 3725 3726 perf_event_sched_in(cpuctx, ctx, current); 3727 3728 perf_pmu_enable(cpuctx->ctx.pmu); 3729 perf_ctx_unlock(cpuctx, cpuctx->task_ctx); 3730 3731 return true; 3732 } 3733 3734 void perf_event_task_tick(void) 3735 { 3736 struct list_head *head = this_cpu_ptr(&active_ctx_list); 3737 struct perf_event_context *ctx, *tmp; 3738 int throttled; 3739 3740 lockdep_assert_irqs_disabled(); 3741 3742 __this_cpu_inc(perf_throttled_seq); 3743 throttled = __this_cpu_xchg(perf_throttled_count, 0); 3744 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 3745 3746 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list) 3747 perf_adjust_freq_unthr_context(ctx, throttled); 3748 } 3749 3750 static int event_enable_on_exec(struct perf_event *event, 3751 struct perf_event_context *ctx) 3752 { 3753 if (!event->attr.enable_on_exec) 3754 return 0; 3755 3756 event->attr.enable_on_exec = 0; 3757 if (event->state >= PERF_EVENT_STATE_INACTIVE) 3758 return 0; 3759 3760 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE); 3761 3762 return 1; 3763 } 3764 3765 /* 3766 * Enable all of a task's events that have been marked enable-on-exec. 3767 * This expects task == current. 3768 */ 3769 static void perf_event_enable_on_exec(int ctxn) 3770 { 3771 struct perf_event_context *ctx, *clone_ctx = NULL; 3772 enum event_type_t event_type = 0; 3773 struct perf_cpu_context *cpuctx; 3774 struct perf_event *event; 3775 unsigned long flags; 3776 int enabled = 0; 3777 3778 local_irq_save(flags); 3779 ctx = current->perf_event_ctxp[ctxn]; 3780 if (!ctx || !ctx->nr_events) 3781 goto out; 3782 3783 cpuctx = __get_cpu_context(ctx); 3784 perf_ctx_lock(cpuctx, ctx); 3785 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 3786 list_for_each_entry(event, &ctx->event_list, event_entry) { 3787 enabled |= event_enable_on_exec(event, ctx); 3788 event_type |= get_event_type(event); 3789 } 3790 3791 /* 3792 * Unclone and reschedule this context if we enabled any event. 3793 */ 3794 if (enabled) { 3795 clone_ctx = unclone_ctx(ctx); 3796 ctx_resched(cpuctx, ctx, event_type); 3797 } else { 3798 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current); 3799 } 3800 perf_ctx_unlock(cpuctx, ctx); 3801 3802 out: 3803 local_irq_restore(flags); 3804 3805 if (clone_ctx) 3806 put_ctx(clone_ctx); 3807 } 3808 3809 struct perf_read_data { 3810 struct perf_event *event; 3811 bool group; 3812 int ret; 3813 }; 3814 3815 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu) 3816 { 3817 u16 local_pkg, event_pkg; 3818 3819 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) { 3820 int local_cpu = smp_processor_id(); 3821 3822 event_pkg = topology_physical_package_id(event_cpu); 3823 local_pkg = topology_physical_package_id(local_cpu); 3824 3825 if (event_pkg == local_pkg) 3826 return local_cpu; 3827 } 3828 3829 return event_cpu; 3830 } 3831 3832 /* 3833 * Cross CPU call to read the hardware event 3834 */ 3835 static void __perf_event_read(void *info) 3836 { 3837 struct perf_read_data *data = info; 3838 struct perf_event *sub, *event = data->event; 3839 struct perf_event_context *ctx = event->ctx; 3840 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 3841 struct pmu *pmu = event->pmu; 3842 3843 /* 3844 * If this is a task context, we need to check whether it is 3845 * the current task context of this cpu. If not it has been 3846 * scheduled out before the smp call arrived. In that case 3847 * event->count would have been updated to a recent sample 3848 * when the event was scheduled out. 3849 */ 3850 if (ctx->task && cpuctx->task_ctx != ctx) 3851 return; 3852 3853 raw_spin_lock(&ctx->lock); 3854 if (ctx->is_active & EVENT_TIME) { 3855 update_context_time(ctx); 3856 update_cgrp_time_from_event(event); 3857 } 3858 3859 perf_event_update_time(event); 3860 if (data->group) 3861 perf_event_update_sibling_time(event); 3862 3863 if (event->state != PERF_EVENT_STATE_ACTIVE) 3864 goto unlock; 3865 3866 if (!data->group) { 3867 pmu->read(event); 3868 data->ret = 0; 3869 goto unlock; 3870 } 3871 3872 pmu->start_txn(pmu, PERF_PMU_TXN_READ); 3873 3874 pmu->read(event); 3875 3876 for_each_sibling_event(sub, event) { 3877 if (sub->state == PERF_EVENT_STATE_ACTIVE) { 3878 /* 3879 * Use sibling's PMU rather than @event's since 3880 * sibling could be on different (eg: software) PMU. 3881 */ 3882 sub->pmu->read(sub); 3883 } 3884 } 3885 3886 data->ret = pmu->commit_txn(pmu); 3887 3888 unlock: 3889 raw_spin_unlock(&ctx->lock); 3890 } 3891 3892 static inline u64 perf_event_count(struct perf_event *event) 3893 { 3894 return local64_read(&event->count) + atomic64_read(&event->child_count); 3895 } 3896 3897 /* 3898 * NMI-safe method to read a local event, that is an event that 3899 * is: 3900 * - either for the current task, or for this CPU 3901 * - does not have inherit set, for inherited task events 3902 * will not be local and we cannot read them atomically 3903 * - must not have a pmu::count method 3904 */ 3905 int perf_event_read_local(struct perf_event *event, u64 *value, 3906 u64 *enabled, u64 *running) 3907 { 3908 unsigned long flags; 3909 int ret = 0; 3910 3911 /* 3912 * Disabling interrupts avoids all counter scheduling (context 3913 * switches, timer based rotation and IPIs). 3914 */ 3915 local_irq_save(flags); 3916 3917 /* 3918 * It must not be an event with inherit set, we cannot read 3919 * all child counters from atomic context. 3920 */ 3921 if (event->attr.inherit) { 3922 ret = -EOPNOTSUPP; 3923 goto out; 3924 } 3925 3926 /* If this is a per-task event, it must be for current */ 3927 if ((event->attach_state & PERF_ATTACH_TASK) && 3928 event->hw.target != current) { 3929 ret = -EINVAL; 3930 goto out; 3931 } 3932 3933 /* If this is a per-CPU event, it must be for this CPU */ 3934 if (!(event->attach_state & PERF_ATTACH_TASK) && 3935 event->cpu != smp_processor_id()) { 3936 ret = -EINVAL; 3937 goto out; 3938 } 3939 3940 /* If this is a pinned event it must be running on this CPU */ 3941 if (event->attr.pinned && event->oncpu != smp_processor_id()) { 3942 ret = -EBUSY; 3943 goto out; 3944 } 3945 3946 /* 3947 * If the event is currently on this CPU, its either a per-task event, 3948 * or local to this CPU. Furthermore it means its ACTIVE (otherwise 3949 * oncpu == -1). 3950 */ 3951 if (event->oncpu == smp_processor_id()) 3952 event->pmu->read(event); 3953 3954 *value = local64_read(&event->count); 3955 if (enabled || running) { 3956 u64 now = event->shadow_ctx_time + perf_clock(); 3957 u64 __enabled, __running; 3958 3959 __perf_update_times(event, now, &__enabled, &__running); 3960 if (enabled) 3961 *enabled = __enabled; 3962 if (running) 3963 *running = __running; 3964 } 3965 out: 3966 local_irq_restore(flags); 3967 3968 return ret; 3969 } 3970 3971 static int perf_event_read(struct perf_event *event, bool group) 3972 { 3973 enum perf_event_state state = READ_ONCE(event->state); 3974 int event_cpu, ret = 0; 3975 3976 /* 3977 * If event is enabled and currently active on a CPU, update the 3978 * value in the event structure: 3979 */ 3980 again: 3981 if (state == PERF_EVENT_STATE_ACTIVE) { 3982 struct perf_read_data data; 3983 3984 /* 3985 * Orders the ->state and ->oncpu loads such that if we see 3986 * ACTIVE we must also see the right ->oncpu. 3987 * 3988 * Matches the smp_wmb() from event_sched_in(). 3989 */ 3990 smp_rmb(); 3991 3992 event_cpu = READ_ONCE(event->oncpu); 3993 if ((unsigned)event_cpu >= nr_cpu_ids) 3994 return 0; 3995 3996 data = (struct perf_read_data){ 3997 .event = event, 3998 .group = group, 3999 .ret = 0, 4000 }; 4001 4002 preempt_disable(); 4003 event_cpu = __perf_event_read_cpu(event, event_cpu); 4004 4005 /* 4006 * Purposely ignore the smp_call_function_single() return 4007 * value. 4008 * 4009 * If event_cpu isn't a valid CPU it means the event got 4010 * scheduled out and that will have updated the event count. 4011 * 4012 * Therefore, either way, we'll have an up-to-date event count 4013 * after this. 4014 */ 4015 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1); 4016 preempt_enable(); 4017 ret = data.ret; 4018 4019 } else if (state == PERF_EVENT_STATE_INACTIVE) { 4020 struct perf_event_context *ctx = event->ctx; 4021 unsigned long flags; 4022 4023 raw_spin_lock_irqsave(&ctx->lock, flags); 4024 state = event->state; 4025 if (state != PERF_EVENT_STATE_INACTIVE) { 4026 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4027 goto again; 4028 } 4029 4030 /* 4031 * May read while context is not active (e.g., thread is 4032 * blocked), in that case we cannot update context time 4033 */ 4034 if (ctx->is_active & EVENT_TIME) { 4035 update_context_time(ctx); 4036 update_cgrp_time_from_event(event); 4037 } 4038 4039 perf_event_update_time(event); 4040 if (group) 4041 perf_event_update_sibling_time(event); 4042 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4043 } 4044 4045 return ret; 4046 } 4047 4048 /* 4049 * Initialize the perf_event context in a task_struct: 4050 */ 4051 static void __perf_event_init_context(struct perf_event_context *ctx) 4052 { 4053 raw_spin_lock_init(&ctx->lock); 4054 mutex_init(&ctx->mutex); 4055 INIT_LIST_HEAD(&ctx->active_ctx_list); 4056 perf_event_groups_init(&ctx->pinned_groups); 4057 perf_event_groups_init(&ctx->flexible_groups); 4058 INIT_LIST_HEAD(&ctx->event_list); 4059 INIT_LIST_HEAD(&ctx->pinned_active); 4060 INIT_LIST_HEAD(&ctx->flexible_active); 4061 refcount_set(&ctx->refcount, 1); 4062 } 4063 4064 static struct perf_event_context * 4065 alloc_perf_context(struct pmu *pmu, struct task_struct *task) 4066 { 4067 struct perf_event_context *ctx; 4068 4069 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); 4070 if (!ctx) 4071 return NULL; 4072 4073 __perf_event_init_context(ctx); 4074 if (task) { 4075 ctx->task = task; 4076 get_task_struct(task); 4077 } 4078 ctx->pmu = pmu; 4079 4080 return ctx; 4081 } 4082 4083 static struct task_struct * 4084 find_lively_task_by_vpid(pid_t vpid) 4085 { 4086 struct task_struct *task; 4087 4088 rcu_read_lock(); 4089 if (!vpid) 4090 task = current; 4091 else 4092 task = find_task_by_vpid(vpid); 4093 if (task) 4094 get_task_struct(task); 4095 rcu_read_unlock(); 4096 4097 if (!task) 4098 return ERR_PTR(-ESRCH); 4099 4100 return task; 4101 } 4102 4103 /* 4104 * Returns a matching context with refcount and pincount. 4105 */ 4106 static struct perf_event_context * 4107 find_get_context(struct pmu *pmu, struct task_struct *task, 4108 struct perf_event *event) 4109 { 4110 struct perf_event_context *ctx, *clone_ctx = NULL; 4111 struct perf_cpu_context *cpuctx; 4112 void *task_ctx_data = NULL; 4113 unsigned long flags; 4114 int ctxn, err; 4115 int cpu = event->cpu; 4116 4117 if (!task) { 4118 /* Must be root to operate on a CPU event: */ 4119 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) 4120 return ERR_PTR(-EACCES); 4121 4122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 4123 ctx = &cpuctx->ctx; 4124 get_ctx(ctx); 4125 ++ctx->pin_count; 4126 4127 return ctx; 4128 } 4129 4130 err = -EINVAL; 4131 ctxn = pmu->task_ctx_nr; 4132 if (ctxn < 0) 4133 goto errout; 4134 4135 if (event->attach_state & PERF_ATTACH_TASK_DATA) { 4136 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL); 4137 if (!task_ctx_data) { 4138 err = -ENOMEM; 4139 goto errout; 4140 } 4141 } 4142 4143 retry: 4144 ctx = perf_lock_task_context(task, ctxn, &flags); 4145 if (ctx) { 4146 clone_ctx = unclone_ctx(ctx); 4147 ++ctx->pin_count; 4148 4149 if (task_ctx_data && !ctx->task_ctx_data) { 4150 ctx->task_ctx_data = task_ctx_data; 4151 task_ctx_data = NULL; 4152 } 4153 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4154 4155 if (clone_ctx) 4156 put_ctx(clone_ctx); 4157 } else { 4158 ctx = alloc_perf_context(pmu, task); 4159 err = -ENOMEM; 4160 if (!ctx) 4161 goto errout; 4162 4163 if (task_ctx_data) { 4164 ctx->task_ctx_data = task_ctx_data; 4165 task_ctx_data = NULL; 4166 } 4167 4168 err = 0; 4169 mutex_lock(&task->perf_event_mutex); 4170 /* 4171 * If it has already passed perf_event_exit_task(). 4172 * we must see PF_EXITING, it takes this mutex too. 4173 */ 4174 if (task->flags & PF_EXITING) 4175 err = -ESRCH; 4176 else if (task->perf_event_ctxp[ctxn]) 4177 err = -EAGAIN; 4178 else { 4179 get_ctx(ctx); 4180 ++ctx->pin_count; 4181 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx); 4182 } 4183 mutex_unlock(&task->perf_event_mutex); 4184 4185 if (unlikely(err)) { 4186 put_ctx(ctx); 4187 4188 if (err == -EAGAIN) 4189 goto retry; 4190 goto errout; 4191 } 4192 } 4193 4194 kfree(task_ctx_data); 4195 return ctx; 4196 4197 errout: 4198 kfree(task_ctx_data); 4199 return ERR_PTR(err); 4200 } 4201 4202 static void perf_event_free_filter(struct perf_event *event); 4203 static void perf_event_free_bpf_prog(struct perf_event *event); 4204 4205 static void free_event_rcu(struct rcu_head *head) 4206 { 4207 struct perf_event *event; 4208 4209 event = container_of(head, struct perf_event, rcu_head); 4210 if (event->ns) 4211 put_pid_ns(event->ns); 4212 perf_event_free_filter(event); 4213 kfree(event); 4214 } 4215 4216 static void ring_buffer_attach(struct perf_event *event, 4217 struct ring_buffer *rb); 4218 4219 static void detach_sb_event(struct perf_event *event) 4220 { 4221 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 4222 4223 raw_spin_lock(&pel->lock); 4224 list_del_rcu(&event->sb_list); 4225 raw_spin_unlock(&pel->lock); 4226 } 4227 4228 static bool is_sb_event(struct perf_event *event) 4229 { 4230 struct perf_event_attr *attr = &event->attr; 4231 4232 if (event->parent) 4233 return false; 4234 4235 if (event->attach_state & PERF_ATTACH_TASK) 4236 return false; 4237 4238 if (attr->mmap || attr->mmap_data || attr->mmap2 || 4239 attr->comm || attr->comm_exec || 4240 attr->task || attr->ksymbol || 4241 attr->context_switch || 4242 attr->bpf_event) 4243 return true; 4244 return false; 4245 } 4246 4247 static void unaccount_pmu_sb_event(struct perf_event *event) 4248 { 4249 if (is_sb_event(event)) 4250 detach_sb_event(event); 4251 } 4252 4253 static void unaccount_event_cpu(struct perf_event *event, int cpu) 4254 { 4255 if (event->parent) 4256 return; 4257 4258 if (is_cgroup_event(event)) 4259 atomic_dec(&per_cpu(perf_cgroup_events, cpu)); 4260 } 4261 4262 #ifdef CONFIG_NO_HZ_FULL 4263 static DEFINE_SPINLOCK(nr_freq_lock); 4264 #endif 4265 4266 static void unaccount_freq_event_nohz(void) 4267 { 4268 #ifdef CONFIG_NO_HZ_FULL 4269 spin_lock(&nr_freq_lock); 4270 if (atomic_dec_and_test(&nr_freq_events)) 4271 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS); 4272 spin_unlock(&nr_freq_lock); 4273 #endif 4274 } 4275 4276 static void unaccount_freq_event(void) 4277 { 4278 if (tick_nohz_full_enabled()) 4279 unaccount_freq_event_nohz(); 4280 else 4281 atomic_dec(&nr_freq_events); 4282 } 4283 4284 static void unaccount_event(struct perf_event *event) 4285 { 4286 bool dec = false; 4287 4288 if (event->parent) 4289 return; 4290 4291 if (event->attach_state & PERF_ATTACH_TASK) 4292 dec = true; 4293 if (event->attr.mmap || event->attr.mmap_data) 4294 atomic_dec(&nr_mmap_events); 4295 if (event->attr.comm) 4296 atomic_dec(&nr_comm_events); 4297 if (event->attr.namespaces) 4298 atomic_dec(&nr_namespaces_events); 4299 if (event->attr.task) 4300 atomic_dec(&nr_task_events); 4301 if (event->attr.freq) 4302 unaccount_freq_event(); 4303 if (event->attr.context_switch) { 4304 dec = true; 4305 atomic_dec(&nr_switch_events); 4306 } 4307 if (is_cgroup_event(event)) 4308 dec = true; 4309 if (has_branch_stack(event)) 4310 dec = true; 4311 if (event->attr.ksymbol) 4312 atomic_dec(&nr_ksymbol_events); 4313 if (event->attr.bpf_event) 4314 atomic_dec(&nr_bpf_events); 4315 4316 if (dec) { 4317 if (!atomic_add_unless(&perf_sched_count, -1, 1)) 4318 schedule_delayed_work(&perf_sched_work, HZ); 4319 } 4320 4321 unaccount_event_cpu(event, event->cpu); 4322 4323 unaccount_pmu_sb_event(event); 4324 } 4325 4326 static void perf_sched_delayed(struct work_struct *work) 4327 { 4328 mutex_lock(&perf_sched_mutex); 4329 if (atomic_dec_and_test(&perf_sched_count)) 4330 static_branch_disable(&perf_sched_events); 4331 mutex_unlock(&perf_sched_mutex); 4332 } 4333 4334 /* 4335 * The following implement mutual exclusion of events on "exclusive" pmus 4336 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled 4337 * at a time, so we disallow creating events that might conflict, namely: 4338 * 4339 * 1) cpu-wide events in the presence of per-task events, 4340 * 2) per-task events in the presence of cpu-wide events, 4341 * 3) two matching events on the same context. 4342 * 4343 * The former two cases are handled in the allocation path (perf_event_alloc(), 4344 * _free_event()), the latter -- before the first perf_install_in_context(). 4345 */ 4346 static int exclusive_event_init(struct perf_event *event) 4347 { 4348 struct pmu *pmu = event->pmu; 4349 4350 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4351 return 0; 4352 4353 /* 4354 * Prevent co-existence of per-task and cpu-wide events on the 4355 * same exclusive pmu. 4356 * 4357 * Negative pmu::exclusive_cnt means there are cpu-wide 4358 * events on this "exclusive" pmu, positive means there are 4359 * per-task events. 4360 * 4361 * Since this is called in perf_event_alloc() path, event::ctx 4362 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK 4363 * to mean "per-task event", because unlike other attach states it 4364 * never gets cleared. 4365 */ 4366 if (event->attach_state & PERF_ATTACH_TASK) { 4367 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt)) 4368 return -EBUSY; 4369 } else { 4370 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt)) 4371 return -EBUSY; 4372 } 4373 4374 return 0; 4375 } 4376 4377 static void exclusive_event_destroy(struct perf_event *event) 4378 { 4379 struct pmu *pmu = event->pmu; 4380 4381 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4382 return; 4383 4384 /* see comment in exclusive_event_init() */ 4385 if (event->attach_state & PERF_ATTACH_TASK) 4386 atomic_dec(&pmu->exclusive_cnt); 4387 else 4388 atomic_inc(&pmu->exclusive_cnt); 4389 } 4390 4391 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2) 4392 { 4393 if ((e1->pmu == e2->pmu) && 4394 (e1->cpu == e2->cpu || 4395 e1->cpu == -1 || 4396 e2->cpu == -1)) 4397 return true; 4398 return false; 4399 } 4400 4401 /* Called under the same ctx::mutex as perf_install_in_context() */ 4402 static bool exclusive_event_installable(struct perf_event *event, 4403 struct perf_event_context *ctx) 4404 { 4405 struct perf_event *iter_event; 4406 struct pmu *pmu = event->pmu; 4407 4408 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE)) 4409 return true; 4410 4411 list_for_each_entry(iter_event, &ctx->event_list, event_entry) { 4412 if (exclusive_event_match(iter_event, event)) 4413 return false; 4414 } 4415 4416 return true; 4417 } 4418 4419 static void perf_addr_filters_splice(struct perf_event *event, 4420 struct list_head *head); 4421 4422 static void _free_event(struct perf_event *event) 4423 { 4424 irq_work_sync(&event->pending); 4425 4426 unaccount_event(event); 4427 4428 if (event->rb) { 4429 /* 4430 * Can happen when we close an event with re-directed output. 4431 * 4432 * Since we have a 0 refcount, perf_mmap_close() will skip 4433 * over us; possibly making our ring_buffer_put() the last. 4434 */ 4435 mutex_lock(&event->mmap_mutex); 4436 ring_buffer_attach(event, NULL); 4437 mutex_unlock(&event->mmap_mutex); 4438 } 4439 4440 if (is_cgroup_event(event)) 4441 perf_detach_cgroup(event); 4442 4443 if (!event->parent) { 4444 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) 4445 put_callchain_buffers(); 4446 } 4447 4448 perf_event_free_bpf_prog(event); 4449 perf_addr_filters_splice(event, NULL); 4450 kfree(event->addr_filter_ranges); 4451 4452 if (event->destroy) 4453 event->destroy(event); 4454 4455 if (event->ctx) 4456 put_ctx(event->ctx); 4457 4458 if (event->hw.target) 4459 put_task_struct(event->hw.target); 4460 4461 exclusive_event_destroy(event); 4462 module_put(event->pmu->module); 4463 4464 call_rcu(&event->rcu_head, free_event_rcu); 4465 } 4466 4467 /* 4468 * Used to free events which have a known refcount of 1, such as in error paths 4469 * where the event isn't exposed yet and inherited events. 4470 */ 4471 static void free_event(struct perf_event *event) 4472 { 4473 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1, 4474 "unexpected event refcount: %ld; ptr=%p\n", 4475 atomic_long_read(&event->refcount), event)) { 4476 /* leak to avoid use-after-free */ 4477 return; 4478 } 4479 4480 _free_event(event); 4481 } 4482 4483 /* 4484 * Remove user event from the owner task. 4485 */ 4486 static void perf_remove_from_owner(struct perf_event *event) 4487 { 4488 struct task_struct *owner; 4489 4490 rcu_read_lock(); 4491 /* 4492 * Matches the smp_store_release() in perf_event_exit_task(). If we 4493 * observe !owner it means the list deletion is complete and we can 4494 * indeed free this event, otherwise we need to serialize on 4495 * owner->perf_event_mutex. 4496 */ 4497 owner = READ_ONCE(event->owner); 4498 if (owner) { 4499 /* 4500 * Since delayed_put_task_struct() also drops the last 4501 * task reference we can safely take a new reference 4502 * while holding the rcu_read_lock(). 4503 */ 4504 get_task_struct(owner); 4505 } 4506 rcu_read_unlock(); 4507 4508 if (owner) { 4509 /* 4510 * If we're here through perf_event_exit_task() we're already 4511 * holding ctx->mutex which would be an inversion wrt. the 4512 * normal lock order. 4513 * 4514 * However we can safely take this lock because its the child 4515 * ctx->mutex. 4516 */ 4517 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING); 4518 4519 /* 4520 * We have to re-check the event->owner field, if it is cleared 4521 * we raced with perf_event_exit_task(), acquiring the mutex 4522 * ensured they're done, and we can proceed with freeing the 4523 * event. 4524 */ 4525 if (event->owner) { 4526 list_del_init(&event->owner_entry); 4527 smp_store_release(&event->owner, NULL); 4528 } 4529 mutex_unlock(&owner->perf_event_mutex); 4530 put_task_struct(owner); 4531 } 4532 } 4533 4534 static void put_event(struct perf_event *event) 4535 { 4536 if (!atomic_long_dec_and_test(&event->refcount)) 4537 return; 4538 4539 _free_event(event); 4540 } 4541 4542 /* 4543 * Kill an event dead; while event:refcount will preserve the event 4544 * object, it will not preserve its functionality. Once the last 'user' 4545 * gives up the object, we'll destroy the thing. 4546 */ 4547 int perf_event_release_kernel(struct perf_event *event) 4548 { 4549 struct perf_event_context *ctx = event->ctx; 4550 struct perf_event *child, *tmp; 4551 LIST_HEAD(free_list); 4552 4553 /* 4554 * If we got here through err_file: fput(event_file); we will not have 4555 * attached to a context yet. 4556 */ 4557 if (!ctx) { 4558 WARN_ON_ONCE(event->attach_state & 4559 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP)); 4560 goto no_ctx; 4561 } 4562 4563 if (!is_kernel_event(event)) 4564 perf_remove_from_owner(event); 4565 4566 ctx = perf_event_ctx_lock(event); 4567 WARN_ON_ONCE(ctx->parent_ctx); 4568 perf_remove_from_context(event, DETACH_GROUP); 4569 4570 raw_spin_lock_irq(&ctx->lock); 4571 /* 4572 * Mark this event as STATE_DEAD, there is no external reference to it 4573 * anymore. 4574 * 4575 * Anybody acquiring event->child_mutex after the below loop _must_ 4576 * also see this, most importantly inherit_event() which will avoid 4577 * placing more children on the list. 4578 * 4579 * Thus this guarantees that we will in fact observe and kill _ALL_ 4580 * child events. 4581 */ 4582 event->state = PERF_EVENT_STATE_DEAD; 4583 raw_spin_unlock_irq(&ctx->lock); 4584 4585 perf_event_ctx_unlock(event, ctx); 4586 4587 again: 4588 mutex_lock(&event->child_mutex); 4589 list_for_each_entry(child, &event->child_list, child_list) { 4590 4591 /* 4592 * Cannot change, child events are not migrated, see the 4593 * comment with perf_event_ctx_lock_nested(). 4594 */ 4595 ctx = READ_ONCE(child->ctx); 4596 /* 4597 * Since child_mutex nests inside ctx::mutex, we must jump 4598 * through hoops. We start by grabbing a reference on the ctx. 4599 * 4600 * Since the event cannot get freed while we hold the 4601 * child_mutex, the context must also exist and have a !0 4602 * reference count. 4603 */ 4604 get_ctx(ctx); 4605 4606 /* 4607 * Now that we have a ctx ref, we can drop child_mutex, and 4608 * acquire ctx::mutex without fear of it going away. Then we 4609 * can re-acquire child_mutex. 4610 */ 4611 mutex_unlock(&event->child_mutex); 4612 mutex_lock(&ctx->mutex); 4613 mutex_lock(&event->child_mutex); 4614 4615 /* 4616 * Now that we hold ctx::mutex and child_mutex, revalidate our 4617 * state, if child is still the first entry, it didn't get freed 4618 * and we can continue doing so. 4619 */ 4620 tmp = list_first_entry_or_null(&event->child_list, 4621 struct perf_event, child_list); 4622 if (tmp == child) { 4623 perf_remove_from_context(child, DETACH_GROUP); 4624 list_move(&child->child_list, &free_list); 4625 /* 4626 * This matches the refcount bump in inherit_event(); 4627 * this can't be the last reference. 4628 */ 4629 put_event(event); 4630 } 4631 4632 mutex_unlock(&event->child_mutex); 4633 mutex_unlock(&ctx->mutex); 4634 put_ctx(ctx); 4635 goto again; 4636 } 4637 mutex_unlock(&event->child_mutex); 4638 4639 list_for_each_entry_safe(child, tmp, &free_list, child_list) { 4640 list_del(&child->child_list); 4641 free_event(child); 4642 } 4643 4644 no_ctx: 4645 put_event(event); /* Must be the 'last' reference */ 4646 return 0; 4647 } 4648 EXPORT_SYMBOL_GPL(perf_event_release_kernel); 4649 4650 /* 4651 * Called when the last reference to the file is gone. 4652 */ 4653 static int perf_release(struct inode *inode, struct file *file) 4654 { 4655 perf_event_release_kernel(file->private_data); 4656 return 0; 4657 } 4658 4659 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4660 { 4661 struct perf_event *child; 4662 u64 total = 0; 4663 4664 *enabled = 0; 4665 *running = 0; 4666 4667 mutex_lock(&event->child_mutex); 4668 4669 (void)perf_event_read(event, false); 4670 total += perf_event_count(event); 4671 4672 *enabled += event->total_time_enabled + 4673 atomic64_read(&event->child_total_time_enabled); 4674 *running += event->total_time_running + 4675 atomic64_read(&event->child_total_time_running); 4676 4677 list_for_each_entry(child, &event->child_list, child_list) { 4678 (void)perf_event_read(child, false); 4679 total += perf_event_count(child); 4680 *enabled += child->total_time_enabled; 4681 *running += child->total_time_running; 4682 } 4683 mutex_unlock(&event->child_mutex); 4684 4685 return total; 4686 } 4687 4688 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) 4689 { 4690 struct perf_event_context *ctx; 4691 u64 count; 4692 4693 ctx = perf_event_ctx_lock(event); 4694 count = __perf_event_read_value(event, enabled, running); 4695 perf_event_ctx_unlock(event, ctx); 4696 4697 return count; 4698 } 4699 EXPORT_SYMBOL_GPL(perf_event_read_value); 4700 4701 static int __perf_read_group_add(struct perf_event *leader, 4702 u64 read_format, u64 *values) 4703 { 4704 struct perf_event_context *ctx = leader->ctx; 4705 struct perf_event *sub; 4706 unsigned long flags; 4707 int n = 1; /* skip @nr */ 4708 int ret; 4709 4710 ret = perf_event_read(leader, true); 4711 if (ret) 4712 return ret; 4713 4714 raw_spin_lock_irqsave(&ctx->lock, flags); 4715 4716 /* 4717 * Since we co-schedule groups, {enabled,running} times of siblings 4718 * will be identical to those of the leader, so we only publish one 4719 * set. 4720 */ 4721 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 4722 values[n++] += leader->total_time_enabled + 4723 atomic64_read(&leader->child_total_time_enabled); 4724 } 4725 4726 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 4727 values[n++] += leader->total_time_running + 4728 atomic64_read(&leader->child_total_time_running); 4729 } 4730 4731 /* 4732 * Write {count,id} tuples for every sibling. 4733 */ 4734 values[n++] += perf_event_count(leader); 4735 if (read_format & PERF_FORMAT_ID) 4736 values[n++] = primary_event_id(leader); 4737 4738 for_each_sibling_event(sub, leader) { 4739 values[n++] += perf_event_count(sub); 4740 if (read_format & PERF_FORMAT_ID) 4741 values[n++] = primary_event_id(sub); 4742 } 4743 4744 raw_spin_unlock_irqrestore(&ctx->lock, flags); 4745 return 0; 4746 } 4747 4748 static int perf_read_group(struct perf_event *event, 4749 u64 read_format, char __user *buf) 4750 { 4751 struct perf_event *leader = event->group_leader, *child; 4752 struct perf_event_context *ctx = leader->ctx; 4753 int ret; 4754 u64 *values; 4755 4756 lockdep_assert_held(&ctx->mutex); 4757 4758 values = kzalloc(event->read_size, GFP_KERNEL); 4759 if (!values) 4760 return -ENOMEM; 4761 4762 values[0] = 1 + leader->nr_siblings; 4763 4764 /* 4765 * By locking the child_mutex of the leader we effectively 4766 * lock the child list of all siblings.. XXX explain how. 4767 */ 4768 mutex_lock(&leader->child_mutex); 4769 4770 ret = __perf_read_group_add(leader, read_format, values); 4771 if (ret) 4772 goto unlock; 4773 4774 list_for_each_entry(child, &leader->child_list, child_list) { 4775 ret = __perf_read_group_add(child, read_format, values); 4776 if (ret) 4777 goto unlock; 4778 } 4779 4780 mutex_unlock(&leader->child_mutex); 4781 4782 ret = event->read_size; 4783 if (copy_to_user(buf, values, event->read_size)) 4784 ret = -EFAULT; 4785 goto out; 4786 4787 unlock: 4788 mutex_unlock(&leader->child_mutex); 4789 out: 4790 kfree(values); 4791 return ret; 4792 } 4793 4794 static int perf_read_one(struct perf_event *event, 4795 u64 read_format, char __user *buf) 4796 { 4797 u64 enabled, running; 4798 u64 values[4]; 4799 int n = 0; 4800 4801 values[n++] = __perf_event_read_value(event, &enabled, &running); 4802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 4803 values[n++] = enabled; 4804 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 4805 values[n++] = running; 4806 if (read_format & PERF_FORMAT_ID) 4807 values[n++] = primary_event_id(event); 4808 4809 if (copy_to_user(buf, values, n * sizeof(u64))) 4810 return -EFAULT; 4811 4812 return n * sizeof(u64); 4813 } 4814 4815 static bool is_event_hup(struct perf_event *event) 4816 { 4817 bool no_children; 4818 4819 if (event->state > PERF_EVENT_STATE_EXIT) 4820 return false; 4821 4822 mutex_lock(&event->child_mutex); 4823 no_children = list_empty(&event->child_list); 4824 mutex_unlock(&event->child_mutex); 4825 return no_children; 4826 } 4827 4828 /* 4829 * Read the performance event - simple non blocking version for now 4830 */ 4831 static ssize_t 4832 __perf_read(struct perf_event *event, char __user *buf, size_t count) 4833 { 4834 u64 read_format = event->attr.read_format; 4835 int ret; 4836 4837 /* 4838 * Return end-of-file for a read on an event that is in 4839 * error state (i.e. because it was pinned but it couldn't be 4840 * scheduled on to the CPU at some point). 4841 */ 4842 if (event->state == PERF_EVENT_STATE_ERROR) 4843 return 0; 4844 4845 if (count < event->read_size) 4846 return -ENOSPC; 4847 4848 WARN_ON_ONCE(event->ctx->parent_ctx); 4849 if (read_format & PERF_FORMAT_GROUP) 4850 ret = perf_read_group(event, read_format, buf); 4851 else 4852 ret = perf_read_one(event, read_format, buf); 4853 4854 return ret; 4855 } 4856 4857 static ssize_t 4858 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) 4859 { 4860 struct perf_event *event = file->private_data; 4861 struct perf_event_context *ctx; 4862 int ret; 4863 4864 ctx = perf_event_ctx_lock(event); 4865 ret = __perf_read(event, buf, count); 4866 perf_event_ctx_unlock(event, ctx); 4867 4868 return ret; 4869 } 4870 4871 static __poll_t perf_poll(struct file *file, poll_table *wait) 4872 { 4873 struct perf_event *event = file->private_data; 4874 struct ring_buffer *rb; 4875 __poll_t events = EPOLLHUP; 4876 4877 poll_wait(file, &event->waitq, wait); 4878 4879 if (is_event_hup(event)) 4880 return events; 4881 4882 /* 4883 * Pin the event->rb by taking event->mmap_mutex; otherwise 4884 * perf_event_set_output() can swizzle our rb and make us miss wakeups. 4885 */ 4886 mutex_lock(&event->mmap_mutex); 4887 rb = event->rb; 4888 if (rb) 4889 events = atomic_xchg(&rb->poll, 0); 4890 mutex_unlock(&event->mmap_mutex); 4891 return events; 4892 } 4893 4894 static void _perf_event_reset(struct perf_event *event) 4895 { 4896 (void)perf_event_read(event, false); 4897 local64_set(&event->count, 0); 4898 perf_event_update_userpage(event); 4899 } 4900 4901 /* 4902 * Holding the top-level event's child_mutex means that any 4903 * descendant process that has inherited this event will block 4904 * in perf_event_exit_event() if it goes to exit, thus satisfying the 4905 * task existence requirements of perf_event_enable/disable. 4906 */ 4907 static void perf_event_for_each_child(struct perf_event *event, 4908 void (*func)(struct perf_event *)) 4909 { 4910 struct perf_event *child; 4911 4912 WARN_ON_ONCE(event->ctx->parent_ctx); 4913 4914 mutex_lock(&event->child_mutex); 4915 func(event); 4916 list_for_each_entry(child, &event->child_list, child_list) 4917 func(child); 4918 mutex_unlock(&event->child_mutex); 4919 } 4920 4921 static void perf_event_for_each(struct perf_event *event, 4922 void (*func)(struct perf_event *)) 4923 { 4924 struct perf_event_context *ctx = event->ctx; 4925 struct perf_event *sibling; 4926 4927 lockdep_assert_held(&ctx->mutex); 4928 4929 event = event->group_leader; 4930 4931 perf_event_for_each_child(event, func); 4932 for_each_sibling_event(sibling, event) 4933 perf_event_for_each_child(sibling, func); 4934 } 4935 4936 static void __perf_event_period(struct perf_event *event, 4937 struct perf_cpu_context *cpuctx, 4938 struct perf_event_context *ctx, 4939 void *info) 4940 { 4941 u64 value = *((u64 *)info); 4942 bool active; 4943 4944 if (event->attr.freq) { 4945 event->attr.sample_freq = value; 4946 } else { 4947 event->attr.sample_period = value; 4948 event->hw.sample_period = value; 4949 } 4950 4951 active = (event->state == PERF_EVENT_STATE_ACTIVE); 4952 if (active) { 4953 perf_pmu_disable(ctx->pmu); 4954 /* 4955 * We could be throttled; unthrottle now to avoid the tick 4956 * trying to unthrottle while we already re-started the event. 4957 */ 4958 if (event->hw.interrupts == MAX_INTERRUPTS) { 4959 event->hw.interrupts = 0; 4960 perf_log_throttle(event, 1); 4961 } 4962 event->pmu->stop(event, PERF_EF_UPDATE); 4963 } 4964 4965 local64_set(&event->hw.period_left, 0); 4966 4967 if (active) { 4968 event->pmu->start(event, PERF_EF_RELOAD); 4969 perf_pmu_enable(ctx->pmu); 4970 } 4971 } 4972 4973 static int perf_event_check_period(struct perf_event *event, u64 value) 4974 { 4975 return event->pmu->check_period(event, value); 4976 } 4977 4978 static int perf_event_period(struct perf_event *event, u64 __user *arg) 4979 { 4980 u64 value; 4981 4982 if (!is_sampling_event(event)) 4983 return -EINVAL; 4984 4985 if (copy_from_user(&value, arg, sizeof(value))) 4986 return -EFAULT; 4987 4988 if (!value) 4989 return -EINVAL; 4990 4991 if (event->attr.freq && value > sysctl_perf_event_sample_rate) 4992 return -EINVAL; 4993 4994 if (perf_event_check_period(event, value)) 4995 return -EINVAL; 4996 4997 event_function_call(event, __perf_event_period, &value); 4998 4999 return 0; 5000 } 5001 5002 static const struct file_operations perf_fops; 5003 5004 static inline int perf_fget_light(int fd, struct fd *p) 5005 { 5006 struct fd f = fdget(fd); 5007 if (!f.file) 5008 return -EBADF; 5009 5010 if (f.file->f_op != &perf_fops) { 5011 fdput(f); 5012 return -EBADF; 5013 } 5014 *p = f; 5015 return 0; 5016 } 5017 5018 static int perf_event_set_output(struct perf_event *event, 5019 struct perf_event *output_event); 5020 static int perf_event_set_filter(struct perf_event *event, void __user *arg); 5021 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd); 5022 static int perf_copy_attr(struct perf_event_attr __user *uattr, 5023 struct perf_event_attr *attr); 5024 5025 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg) 5026 { 5027 void (*func)(struct perf_event *); 5028 u32 flags = arg; 5029 5030 switch (cmd) { 5031 case PERF_EVENT_IOC_ENABLE: 5032 func = _perf_event_enable; 5033 break; 5034 case PERF_EVENT_IOC_DISABLE: 5035 func = _perf_event_disable; 5036 break; 5037 case PERF_EVENT_IOC_RESET: 5038 func = _perf_event_reset; 5039 break; 5040 5041 case PERF_EVENT_IOC_REFRESH: 5042 return _perf_event_refresh(event, arg); 5043 5044 case PERF_EVENT_IOC_PERIOD: 5045 return perf_event_period(event, (u64 __user *)arg); 5046 5047 case PERF_EVENT_IOC_ID: 5048 { 5049 u64 id = primary_event_id(event); 5050 5051 if (copy_to_user((void __user *)arg, &id, sizeof(id))) 5052 return -EFAULT; 5053 return 0; 5054 } 5055 5056 case PERF_EVENT_IOC_SET_OUTPUT: 5057 { 5058 int ret; 5059 if (arg != -1) { 5060 struct perf_event *output_event; 5061 struct fd output; 5062 ret = perf_fget_light(arg, &output); 5063 if (ret) 5064 return ret; 5065 output_event = output.file->private_data; 5066 ret = perf_event_set_output(event, output_event); 5067 fdput(output); 5068 } else { 5069 ret = perf_event_set_output(event, NULL); 5070 } 5071 return ret; 5072 } 5073 5074 case PERF_EVENT_IOC_SET_FILTER: 5075 return perf_event_set_filter(event, (void __user *)arg); 5076 5077 case PERF_EVENT_IOC_SET_BPF: 5078 return perf_event_set_bpf_prog(event, arg); 5079 5080 case PERF_EVENT_IOC_PAUSE_OUTPUT: { 5081 struct ring_buffer *rb; 5082 5083 rcu_read_lock(); 5084 rb = rcu_dereference(event->rb); 5085 if (!rb || !rb->nr_pages) { 5086 rcu_read_unlock(); 5087 return -EINVAL; 5088 } 5089 rb_toggle_paused(rb, !!arg); 5090 rcu_read_unlock(); 5091 return 0; 5092 } 5093 5094 case PERF_EVENT_IOC_QUERY_BPF: 5095 return perf_event_query_prog_array(event, (void __user *)arg); 5096 5097 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: { 5098 struct perf_event_attr new_attr; 5099 int err = perf_copy_attr((struct perf_event_attr __user *)arg, 5100 &new_attr); 5101 5102 if (err) 5103 return err; 5104 5105 return perf_event_modify_attr(event, &new_attr); 5106 } 5107 default: 5108 return -ENOTTY; 5109 } 5110 5111 if (flags & PERF_IOC_FLAG_GROUP) 5112 perf_event_for_each(event, func); 5113 else 5114 perf_event_for_each_child(event, func); 5115 5116 return 0; 5117 } 5118 5119 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5120 { 5121 struct perf_event *event = file->private_data; 5122 struct perf_event_context *ctx; 5123 long ret; 5124 5125 ctx = perf_event_ctx_lock(event); 5126 ret = _perf_ioctl(event, cmd, arg); 5127 perf_event_ctx_unlock(event, ctx); 5128 5129 return ret; 5130 } 5131 5132 #ifdef CONFIG_COMPAT 5133 static long perf_compat_ioctl(struct file *file, unsigned int cmd, 5134 unsigned long arg) 5135 { 5136 switch (_IOC_NR(cmd)) { 5137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER): 5138 case _IOC_NR(PERF_EVENT_IOC_ID): 5139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF): 5140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES): 5141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */ 5142 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) { 5143 cmd &= ~IOCSIZE_MASK; 5144 cmd |= sizeof(void *) << IOCSIZE_SHIFT; 5145 } 5146 break; 5147 } 5148 return perf_ioctl(file, cmd, arg); 5149 } 5150 #else 5151 # define perf_compat_ioctl NULL 5152 #endif 5153 5154 int perf_event_task_enable(void) 5155 { 5156 struct perf_event_context *ctx; 5157 struct perf_event *event; 5158 5159 mutex_lock(¤t->perf_event_mutex); 5160 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5161 ctx = perf_event_ctx_lock(event); 5162 perf_event_for_each_child(event, _perf_event_enable); 5163 perf_event_ctx_unlock(event, ctx); 5164 } 5165 mutex_unlock(¤t->perf_event_mutex); 5166 5167 return 0; 5168 } 5169 5170 int perf_event_task_disable(void) 5171 { 5172 struct perf_event_context *ctx; 5173 struct perf_event *event; 5174 5175 mutex_lock(¤t->perf_event_mutex); 5176 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) { 5177 ctx = perf_event_ctx_lock(event); 5178 perf_event_for_each_child(event, _perf_event_disable); 5179 perf_event_ctx_unlock(event, ctx); 5180 } 5181 mutex_unlock(¤t->perf_event_mutex); 5182 5183 return 0; 5184 } 5185 5186 static int perf_event_index(struct perf_event *event) 5187 { 5188 if (event->hw.state & PERF_HES_STOPPED) 5189 return 0; 5190 5191 if (event->state != PERF_EVENT_STATE_ACTIVE) 5192 return 0; 5193 5194 return event->pmu->event_idx(event); 5195 } 5196 5197 static void calc_timer_values(struct perf_event *event, 5198 u64 *now, 5199 u64 *enabled, 5200 u64 *running) 5201 { 5202 u64 ctx_time; 5203 5204 *now = perf_clock(); 5205 ctx_time = event->shadow_ctx_time + *now; 5206 __perf_update_times(event, ctx_time, enabled, running); 5207 } 5208 5209 static void perf_event_init_userpage(struct perf_event *event) 5210 { 5211 struct perf_event_mmap_page *userpg; 5212 struct ring_buffer *rb; 5213 5214 rcu_read_lock(); 5215 rb = rcu_dereference(event->rb); 5216 if (!rb) 5217 goto unlock; 5218 5219 userpg = rb->user_page; 5220 5221 /* Allow new userspace to detect that bit 0 is deprecated */ 5222 userpg->cap_bit0_is_deprecated = 1; 5223 userpg->size = offsetof(struct perf_event_mmap_page, __reserved); 5224 userpg->data_offset = PAGE_SIZE; 5225 userpg->data_size = perf_data_size(rb); 5226 5227 unlock: 5228 rcu_read_unlock(); 5229 } 5230 5231 void __weak arch_perf_update_userpage( 5232 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now) 5233 { 5234 } 5235 5236 /* 5237 * Callers need to ensure there can be no nesting of this function, otherwise 5238 * the seqlock logic goes bad. We can not serialize this because the arch 5239 * code calls this from NMI context. 5240 */ 5241 void perf_event_update_userpage(struct perf_event *event) 5242 { 5243 struct perf_event_mmap_page *userpg; 5244 struct ring_buffer *rb; 5245 u64 enabled, running, now; 5246 5247 rcu_read_lock(); 5248 rb = rcu_dereference(event->rb); 5249 if (!rb) 5250 goto unlock; 5251 5252 /* 5253 * compute total_time_enabled, total_time_running 5254 * based on snapshot values taken when the event 5255 * was last scheduled in. 5256 * 5257 * we cannot simply called update_context_time() 5258 * because of locking issue as we can be called in 5259 * NMI context 5260 */ 5261 calc_timer_values(event, &now, &enabled, &running); 5262 5263 userpg = rb->user_page; 5264 /* 5265 * Disable preemption to guarantee consistent time stamps are stored to 5266 * the user page. 5267 */ 5268 preempt_disable(); 5269 ++userpg->lock; 5270 barrier(); 5271 userpg->index = perf_event_index(event); 5272 userpg->offset = perf_event_count(event); 5273 if (userpg->index) 5274 userpg->offset -= local64_read(&event->hw.prev_count); 5275 5276 userpg->time_enabled = enabled + 5277 atomic64_read(&event->child_total_time_enabled); 5278 5279 userpg->time_running = running + 5280 atomic64_read(&event->child_total_time_running); 5281 5282 arch_perf_update_userpage(event, userpg, now); 5283 5284 barrier(); 5285 ++userpg->lock; 5286 preempt_enable(); 5287 unlock: 5288 rcu_read_unlock(); 5289 } 5290 EXPORT_SYMBOL_GPL(perf_event_update_userpage); 5291 5292 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf) 5293 { 5294 struct perf_event *event = vmf->vma->vm_file->private_data; 5295 struct ring_buffer *rb; 5296 vm_fault_t ret = VM_FAULT_SIGBUS; 5297 5298 if (vmf->flags & FAULT_FLAG_MKWRITE) { 5299 if (vmf->pgoff == 0) 5300 ret = 0; 5301 return ret; 5302 } 5303 5304 rcu_read_lock(); 5305 rb = rcu_dereference(event->rb); 5306 if (!rb) 5307 goto unlock; 5308 5309 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) 5310 goto unlock; 5311 5312 vmf->page = perf_mmap_to_page(rb, vmf->pgoff); 5313 if (!vmf->page) 5314 goto unlock; 5315 5316 get_page(vmf->page); 5317 vmf->page->mapping = vmf->vma->vm_file->f_mapping; 5318 vmf->page->index = vmf->pgoff; 5319 5320 ret = 0; 5321 unlock: 5322 rcu_read_unlock(); 5323 5324 return ret; 5325 } 5326 5327 static void ring_buffer_attach(struct perf_event *event, 5328 struct ring_buffer *rb) 5329 { 5330 struct ring_buffer *old_rb = NULL; 5331 unsigned long flags; 5332 5333 if (event->rb) { 5334 /* 5335 * Should be impossible, we set this when removing 5336 * event->rb_entry and wait/clear when adding event->rb_entry. 5337 */ 5338 WARN_ON_ONCE(event->rcu_pending); 5339 5340 old_rb = event->rb; 5341 spin_lock_irqsave(&old_rb->event_lock, flags); 5342 list_del_rcu(&event->rb_entry); 5343 spin_unlock_irqrestore(&old_rb->event_lock, flags); 5344 5345 event->rcu_batches = get_state_synchronize_rcu(); 5346 event->rcu_pending = 1; 5347 } 5348 5349 if (rb) { 5350 if (event->rcu_pending) { 5351 cond_synchronize_rcu(event->rcu_batches); 5352 event->rcu_pending = 0; 5353 } 5354 5355 spin_lock_irqsave(&rb->event_lock, flags); 5356 list_add_rcu(&event->rb_entry, &rb->event_list); 5357 spin_unlock_irqrestore(&rb->event_lock, flags); 5358 } 5359 5360 /* 5361 * Avoid racing with perf_mmap_close(AUX): stop the event 5362 * before swizzling the event::rb pointer; if it's getting 5363 * unmapped, its aux_mmap_count will be 0 and it won't 5364 * restart. See the comment in __perf_pmu_output_stop(). 5365 * 5366 * Data will inevitably be lost when set_output is done in 5367 * mid-air, but then again, whoever does it like this is 5368 * not in for the data anyway. 5369 */ 5370 if (has_aux(event)) 5371 perf_event_stop(event, 0); 5372 5373 rcu_assign_pointer(event->rb, rb); 5374 5375 if (old_rb) { 5376 ring_buffer_put(old_rb); 5377 /* 5378 * Since we detached before setting the new rb, so that we 5379 * could attach the new rb, we could have missed a wakeup. 5380 * Provide it now. 5381 */ 5382 wake_up_all(&event->waitq); 5383 } 5384 } 5385 5386 static void ring_buffer_wakeup(struct perf_event *event) 5387 { 5388 struct ring_buffer *rb; 5389 5390 rcu_read_lock(); 5391 rb = rcu_dereference(event->rb); 5392 if (rb) { 5393 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) 5394 wake_up_all(&event->waitq); 5395 } 5396 rcu_read_unlock(); 5397 } 5398 5399 struct ring_buffer *ring_buffer_get(struct perf_event *event) 5400 { 5401 struct ring_buffer *rb; 5402 5403 rcu_read_lock(); 5404 rb = rcu_dereference(event->rb); 5405 if (rb) { 5406 if (!refcount_inc_not_zero(&rb->refcount)) 5407 rb = NULL; 5408 } 5409 rcu_read_unlock(); 5410 5411 return rb; 5412 } 5413 5414 void ring_buffer_put(struct ring_buffer *rb) 5415 { 5416 if (!refcount_dec_and_test(&rb->refcount)) 5417 return; 5418 5419 WARN_ON_ONCE(!list_empty(&rb->event_list)); 5420 5421 call_rcu(&rb->rcu_head, rb_free_rcu); 5422 } 5423 5424 static void perf_mmap_open(struct vm_area_struct *vma) 5425 { 5426 struct perf_event *event = vma->vm_file->private_data; 5427 5428 atomic_inc(&event->mmap_count); 5429 atomic_inc(&event->rb->mmap_count); 5430 5431 if (vma->vm_pgoff) 5432 atomic_inc(&event->rb->aux_mmap_count); 5433 5434 if (event->pmu->event_mapped) 5435 event->pmu->event_mapped(event, vma->vm_mm); 5436 } 5437 5438 static void perf_pmu_output_stop(struct perf_event *event); 5439 5440 /* 5441 * A buffer can be mmap()ed multiple times; either directly through the same 5442 * event, or through other events by use of perf_event_set_output(). 5443 * 5444 * In order to undo the VM accounting done by perf_mmap() we need to destroy 5445 * the buffer here, where we still have a VM context. This means we need 5446 * to detach all events redirecting to us. 5447 */ 5448 static void perf_mmap_close(struct vm_area_struct *vma) 5449 { 5450 struct perf_event *event = vma->vm_file->private_data; 5451 5452 struct ring_buffer *rb = ring_buffer_get(event); 5453 struct user_struct *mmap_user = rb->mmap_user; 5454 int mmap_locked = rb->mmap_locked; 5455 unsigned long size = perf_data_size(rb); 5456 5457 if (event->pmu->event_unmapped) 5458 event->pmu->event_unmapped(event, vma->vm_mm); 5459 5460 /* 5461 * rb->aux_mmap_count will always drop before rb->mmap_count and 5462 * event->mmap_count, so it is ok to use event->mmap_mutex to 5463 * serialize with perf_mmap here. 5464 */ 5465 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff && 5466 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) { 5467 /* 5468 * Stop all AUX events that are writing to this buffer, 5469 * so that we can free its AUX pages and corresponding PMU 5470 * data. Note that after rb::aux_mmap_count dropped to zero, 5471 * they won't start any more (see perf_aux_output_begin()). 5472 */ 5473 perf_pmu_output_stop(event); 5474 5475 /* now it's safe to free the pages */ 5476 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm); 5477 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm); 5478 5479 /* this has to be the last one */ 5480 rb_free_aux(rb); 5481 WARN_ON_ONCE(refcount_read(&rb->aux_refcount)); 5482 5483 mutex_unlock(&event->mmap_mutex); 5484 } 5485 5486 atomic_dec(&rb->mmap_count); 5487 5488 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) 5489 goto out_put; 5490 5491 ring_buffer_attach(event, NULL); 5492 mutex_unlock(&event->mmap_mutex); 5493 5494 /* If there's still other mmap()s of this buffer, we're done. */ 5495 if (atomic_read(&rb->mmap_count)) 5496 goto out_put; 5497 5498 /* 5499 * No other mmap()s, detach from all other events that might redirect 5500 * into the now unreachable buffer. Somewhat complicated by the 5501 * fact that rb::event_lock otherwise nests inside mmap_mutex. 5502 */ 5503 again: 5504 rcu_read_lock(); 5505 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) { 5506 if (!atomic_long_inc_not_zero(&event->refcount)) { 5507 /* 5508 * This event is en-route to free_event() which will 5509 * detach it and remove it from the list. 5510 */ 5511 continue; 5512 } 5513 rcu_read_unlock(); 5514 5515 mutex_lock(&event->mmap_mutex); 5516 /* 5517 * Check we didn't race with perf_event_set_output() which can 5518 * swizzle the rb from under us while we were waiting to 5519 * acquire mmap_mutex. 5520 * 5521 * If we find a different rb; ignore this event, a next 5522 * iteration will no longer find it on the list. We have to 5523 * still restart the iteration to make sure we're not now 5524 * iterating the wrong list. 5525 */ 5526 if (event->rb == rb) 5527 ring_buffer_attach(event, NULL); 5528 5529 mutex_unlock(&event->mmap_mutex); 5530 put_event(event); 5531 5532 /* 5533 * Restart the iteration; either we're on the wrong list or 5534 * destroyed its integrity by doing a deletion. 5535 */ 5536 goto again; 5537 } 5538 rcu_read_unlock(); 5539 5540 /* 5541 * It could be there's still a few 0-ref events on the list; they'll 5542 * get cleaned up by free_event() -- they'll also still have their 5543 * ref on the rb and will free it whenever they are done with it. 5544 * 5545 * Aside from that, this buffer is 'fully' detached and unmapped, 5546 * undo the VM accounting. 5547 */ 5548 5549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm); 5550 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm); 5551 free_uid(mmap_user); 5552 5553 out_put: 5554 ring_buffer_put(rb); /* could be last */ 5555 } 5556 5557 static const struct vm_operations_struct perf_mmap_vmops = { 5558 .open = perf_mmap_open, 5559 .close = perf_mmap_close, /* non mergeable */ 5560 .fault = perf_mmap_fault, 5561 .page_mkwrite = perf_mmap_fault, 5562 }; 5563 5564 static int perf_mmap(struct file *file, struct vm_area_struct *vma) 5565 { 5566 struct perf_event *event = file->private_data; 5567 unsigned long user_locked, user_lock_limit; 5568 struct user_struct *user = current_user(); 5569 unsigned long locked, lock_limit; 5570 struct ring_buffer *rb = NULL; 5571 unsigned long vma_size; 5572 unsigned long nr_pages; 5573 long user_extra = 0, extra = 0; 5574 int ret = 0, flags = 0; 5575 5576 /* 5577 * Don't allow mmap() of inherited per-task counters. This would 5578 * create a performance issue due to all children writing to the 5579 * same rb. 5580 */ 5581 if (event->cpu == -1 && event->attr.inherit) 5582 return -EINVAL; 5583 5584 if (!(vma->vm_flags & VM_SHARED)) 5585 return -EINVAL; 5586 5587 vma_size = vma->vm_end - vma->vm_start; 5588 5589 if (vma->vm_pgoff == 0) { 5590 nr_pages = (vma_size / PAGE_SIZE) - 1; 5591 } else { 5592 /* 5593 * AUX area mapping: if rb->aux_nr_pages != 0, it's already 5594 * mapped, all subsequent mappings should have the same size 5595 * and offset. Must be above the normal perf buffer. 5596 */ 5597 u64 aux_offset, aux_size; 5598 5599 if (!event->rb) 5600 return -EINVAL; 5601 5602 nr_pages = vma_size / PAGE_SIZE; 5603 5604 mutex_lock(&event->mmap_mutex); 5605 ret = -EINVAL; 5606 5607 rb = event->rb; 5608 if (!rb) 5609 goto aux_unlock; 5610 5611 aux_offset = READ_ONCE(rb->user_page->aux_offset); 5612 aux_size = READ_ONCE(rb->user_page->aux_size); 5613 5614 if (aux_offset < perf_data_size(rb) + PAGE_SIZE) 5615 goto aux_unlock; 5616 5617 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT) 5618 goto aux_unlock; 5619 5620 /* already mapped with a different offset */ 5621 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff) 5622 goto aux_unlock; 5623 5624 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE) 5625 goto aux_unlock; 5626 5627 /* already mapped with a different size */ 5628 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages) 5629 goto aux_unlock; 5630 5631 if (!is_power_of_2(nr_pages)) 5632 goto aux_unlock; 5633 5634 if (!atomic_inc_not_zero(&rb->mmap_count)) 5635 goto aux_unlock; 5636 5637 if (rb_has_aux(rb)) { 5638 atomic_inc(&rb->aux_mmap_count); 5639 ret = 0; 5640 goto unlock; 5641 } 5642 5643 atomic_set(&rb->aux_mmap_count, 1); 5644 user_extra = nr_pages; 5645 5646 goto accounting; 5647 } 5648 5649 /* 5650 * If we have rb pages ensure they're a power-of-two number, so we 5651 * can do bitmasks instead of modulo. 5652 */ 5653 if (nr_pages != 0 && !is_power_of_2(nr_pages)) 5654 return -EINVAL; 5655 5656 if (vma_size != PAGE_SIZE * (1 + nr_pages)) 5657 return -EINVAL; 5658 5659 WARN_ON_ONCE(event->ctx->parent_ctx); 5660 again: 5661 mutex_lock(&event->mmap_mutex); 5662 if (event->rb) { 5663 if (event->rb->nr_pages != nr_pages) { 5664 ret = -EINVAL; 5665 goto unlock; 5666 } 5667 5668 if (!atomic_inc_not_zero(&event->rb->mmap_count)) { 5669 /* 5670 * Raced against perf_mmap_close() through 5671 * perf_event_set_output(). Try again, hope for better 5672 * luck. 5673 */ 5674 mutex_unlock(&event->mmap_mutex); 5675 goto again; 5676 } 5677 5678 goto unlock; 5679 } 5680 5681 user_extra = nr_pages + 1; 5682 5683 accounting: 5684 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); 5685 5686 /* 5687 * Increase the limit linearly with more CPUs: 5688 */ 5689 user_lock_limit *= num_online_cpus(); 5690 5691 user_locked = atomic_long_read(&user->locked_vm) + user_extra; 5692 5693 if (user_locked > user_lock_limit) 5694 extra = user_locked - user_lock_limit; 5695 5696 lock_limit = rlimit(RLIMIT_MEMLOCK); 5697 lock_limit >>= PAGE_SHIFT; 5698 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra; 5699 5700 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && 5701 !capable(CAP_IPC_LOCK)) { 5702 ret = -EPERM; 5703 goto unlock; 5704 } 5705 5706 WARN_ON(!rb && event->rb); 5707 5708 if (vma->vm_flags & VM_WRITE) 5709 flags |= RING_BUFFER_WRITABLE; 5710 5711 if (!rb) { 5712 rb = rb_alloc(nr_pages, 5713 event->attr.watermark ? event->attr.wakeup_watermark : 0, 5714 event->cpu, flags); 5715 5716 if (!rb) { 5717 ret = -ENOMEM; 5718 goto unlock; 5719 } 5720 5721 atomic_set(&rb->mmap_count, 1); 5722 rb->mmap_user = get_current_user(); 5723 rb->mmap_locked = extra; 5724 5725 ring_buffer_attach(event, rb); 5726 5727 perf_event_init_userpage(event); 5728 perf_event_update_userpage(event); 5729 } else { 5730 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages, 5731 event->attr.aux_watermark, flags); 5732 if (!ret) 5733 rb->aux_mmap_locked = extra; 5734 } 5735 5736 unlock: 5737 if (!ret) { 5738 atomic_long_add(user_extra, &user->locked_vm); 5739 atomic64_add(extra, &vma->vm_mm->pinned_vm); 5740 5741 atomic_inc(&event->mmap_count); 5742 } else if (rb) { 5743 atomic_dec(&rb->mmap_count); 5744 } 5745 aux_unlock: 5746 mutex_unlock(&event->mmap_mutex); 5747 5748 /* 5749 * Since pinned accounting is per vm we cannot allow fork() to copy our 5750 * vma. 5751 */ 5752 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP; 5753 vma->vm_ops = &perf_mmap_vmops; 5754 5755 if (event->pmu->event_mapped) 5756 event->pmu->event_mapped(event, vma->vm_mm); 5757 5758 return ret; 5759 } 5760 5761 static int perf_fasync(int fd, struct file *filp, int on) 5762 { 5763 struct inode *inode = file_inode(filp); 5764 struct perf_event *event = filp->private_data; 5765 int retval; 5766 5767 inode_lock(inode); 5768 retval = fasync_helper(fd, filp, on, &event->fasync); 5769 inode_unlock(inode); 5770 5771 if (retval < 0) 5772 return retval; 5773 5774 return 0; 5775 } 5776 5777 static const struct file_operations perf_fops = { 5778 .llseek = no_llseek, 5779 .release = perf_release, 5780 .read = perf_read, 5781 .poll = perf_poll, 5782 .unlocked_ioctl = perf_ioctl, 5783 .compat_ioctl = perf_compat_ioctl, 5784 .mmap = perf_mmap, 5785 .fasync = perf_fasync, 5786 }; 5787 5788 /* 5789 * Perf event wakeup 5790 * 5791 * If there's data, ensure we set the poll() state and publish everything 5792 * to user-space before waking everybody up. 5793 */ 5794 5795 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event) 5796 { 5797 /* only the parent has fasync state */ 5798 if (event->parent) 5799 event = event->parent; 5800 return &event->fasync; 5801 } 5802 5803 void perf_event_wakeup(struct perf_event *event) 5804 { 5805 ring_buffer_wakeup(event); 5806 5807 if (event->pending_kill) { 5808 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill); 5809 event->pending_kill = 0; 5810 } 5811 } 5812 5813 static void perf_pending_event(struct irq_work *entry) 5814 { 5815 struct perf_event *event = container_of(entry, 5816 struct perf_event, pending); 5817 int rctx; 5818 5819 rctx = perf_swevent_get_recursion_context(); 5820 /* 5821 * If we 'fail' here, that's OK, it means recursion is already disabled 5822 * and we won't recurse 'further'. 5823 */ 5824 5825 if (event->pending_disable) { 5826 event->pending_disable = 0; 5827 perf_event_disable_local(event); 5828 } 5829 5830 if (event->pending_wakeup) { 5831 event->pending_wakeup = 0; 5832 perf_event_wakeup(event); 5833 } 5834 5835 if (rctx >= 0) 5836 perf_swevent_put_recursion_context(rctx); 5837 } 5838 5839 /* 5840 * We assume there is only KVM supporting the callbacks. 5841 * Later on, we might change it to a list if there is 5842 * another virtualization implementation supporting the callbacks. 5843 */ 5844 struct perf_guest_info_callbacks *perf_guest_cbs; 5845 5846 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5847 { 5848 perf_guest_cbs = cbs; 5849 return 0; 5850 } 5851 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); 5852 5853 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) 5854 { 5855 perf_guest_cbs = NULL; 5856 return 0; 5857 } 5858 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); 5859 5860 static void 5861 perf_output_sample_regs(struct perf_output_handle *handle, 5862 struct pt_regs *regs, u64 mask) 5863 { 5864 int bit; 5865 DECLARE_BITMAP(_mask, 64); 5866 5867 bitmap_from_u64(_mask, mask); 5868 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) { 5869 u64 val; 5870 5871 val = perf_reg_value(regs, bit); 5872 perf_output_put(handle, val); 5873 } 5874 } 5875 5876 static void perf_sample_regs_user(struct perf_regs *regs_user, 5877 struct pt_regs *regs, 5878 struct pt_regs *regs_user_copy) 5879 { 5880 if (user_mode(regs)) { 5881 regs_user->abi = perf_reg_abi(current); 5882 regs_user->regs = regs; 5883 } else if (current->mm) { 5884 perf_get_regs_user(regs_user, regs, regs_user_copy); 5885 } else { 5886 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE; 5887 regs_user->regs = NULL; 5888 } 5889 } 5890 5891 static void perf_sample_regs_intr(struct perf_regs *regs_intr, 5892 struct pt_regs *regs) 5893 { 5894 regs_intr->regs = regs; 5895 regs_intr->abi = perf_reg_abi(current); 5896 } 5897 5898 5899 /* 5900 * Get remaining task size from user stack pointer. 5901 * 5902 * It'd be better to take stack vma map and limit this more 5903 * precisly, but there's no way to get it safely under interrupt, 5904 * so using TASK_SIZE as limit. 5905 */ 5906 static u64 perf_ustack_task_size(struct pt_regs *regs) 5907 { 5908 unsigned long addr = perf_user_stack_pointer(regs); 5909 5910 if (!addr || addr >= TASK_SIZE) 5911 return 0; 5912 5913 return TASK_SIZE - addr; 5914 } 5915 5916 static u16 5917 perf_sample_ustack_size(u16 stack_size, u16 header_size, 5918 struct pt_regs *regs) 5919 { 5920 u64 task_size; 5921 5922 /* No regs, no stack pointer, no dump. */ 5923 if (!regs) 5924 return 0; 5925 5926 /* 5927 * Check if we fit in with the requested stack size into the: 5928 * - TASK_SIZE 5929 * If we don't, we limit the size to the TASK_SIZE. 5930 * 5931 * - remaining sample size 5932 * If we don't, we customize the stack size to 5933 * fit in to the remaining sample size. 5934 */ 5935 5936 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs)); 5937 stack_size = min(stack_size, (u16) task_size); 5938 5939 /* Current header size plus static size and dynamic size. */ 5940 header_size += 2 * sizeof(u64); 5941 5942 /* Do we fit in with the current stack dump size? */ 5943 if ((u16) (header_size + stack_size) < header_size) { 5944 /* 5945 * If we overflow the maximum size for the sample, 5946 * we customize the stack dump size to fit in. 5947 */ 5948 stack_size = USHRT_MAX - header_size - sizeof(u64); 5949 stack_size = round_up(stack_size, sizeof(u64)); 5950 } 5951 5952 return stack_size; 5953 } 5954 5955 static void 5956 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size, 5957 struct pt_regs *regs) 5958 { 5959 /* Case of a kernel thread, nothing to dump */ 5960 if (!regs) { 5961 u64 size = 0; 5962 perf_output_put(handle, size); 5963 } else { 5964 unsigned long sp; 5965 unsigned int rem; 5966 u64 dyn_size; 5967 mm_segment_t fs; 5968 5969 /* 5970 * We dump: 5971 * static size 5972 * - the size requested by user or the best one we can fit 5973 * in to the sample max size 5974 * data 5975 * - user stack dump data 5976 * dynamic size 5977 * - the actual dumped size 5978 */ 5979 5980 /* Static size. */ 5981 perf_output_put(handle, dump_size); 5982 5983 /* Data. */ 5984 sp = perf_user_stack_pointer(regs); 5985 fs = get_fs(); 5986 set_fs(USER_DS); 5987 rem = __output_copy_user(handle, (void *) sp, dump_size); 5988 set_fs(fs); 5989 dyn_size = dump_size - rem; 5990 5991 perf_output_skip(handle, rem); 5992 5993 /* Dynamic size. */ 5994 perf_output_put(handle, dyn_size); 5995 } 5996 } 5997 5998 static void __perf_event_header__init_id(struct perf_event_header *header, 5999 struct perf_sample_data *data, 6000 struct perf_event *event) 6001 { 6002 u64 sample_type = event->attr.sample_type; 6003 6004 data->type = sample_type; 6005 header->size += event->id_header_size; 6006 6007 if (sample_type & PERF_SAMPLE_TID) { 6008 /* namespace issues */ 6009 data->tid_entry.pid = perf_event_pid(event, current); 6010 data->tid_entry.tid = perf_event_tid(event, current); 6011 } 6012 6013 if (sample_type & PERF_SAMPLE_TIME) 6014 data->time = perf_event_clock(event); 6015 6016 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER)) 6017 data->id = primary_event_id(event); 6018 6019 if (sample_type & PERF_SAMPLE_STREAM_ID) 6020 data->stream_id = event->id; 6021 6022 if (sample_type & PERF_SAMPLE_CPU) { 6023 data->cpu_entry.cpu = raw_smp_processor_id(); 6024 data->cpu_entry.reserved = 0; 6025 } 6026 } 6027 6028 void perf_event_header__init_id(struct perf_event_header *header, 6029 struct perf_sample_data *data, 6030 struct perf_event *event) 6031 { 6032 if (event->attr.sample_id_all) 6033 __perf_event_header__init_id(header, data, event); 6034 } 6035 6036 static void __perf_event__output_id_sample(struct perf_output_handle *handle, 6037 struct perf_sample_data *data) 6038 { 6039 u64 sample_type = data->type; 6040 6041 if (sample_type & PERF_SAMPLE_TID) 6042 perf_output_put(handle, data->tid_entry); 6043 6044 if (sample_type & PERF_SAMPLE_TIME) 6045 perf_output_put(handle, data->time); 6046 6047 if (sample_type & PERF_SAMPLE_ID) 6048 perf_output_put(handle, data->id); 6049 6050 if (sample_type & PERF_SAMPLE_STREAM_ID) 6051 perf_output_put(handle, data->stream_id); 6052 6053 if (sample_type & PERF_SAMPLE_CPU) 6054 perf_output_put(handle, data->cpu_entry); 6055 6056 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6057 perf_output_put(handle, data->id); 6058 } 6059 6060 void perf_event__output_id_sample(struct perf_event *event, 6061 struct perf_output_handle *handle, 6062 struct perf_sample_data *sample) 6063 { 6064 if (event->attr.sample_id_all) 6065 __perf_event__output_id_sample(handle, sample); 6066 } 6067 6068 static void perf_output_read_one(struct perf_output_handle *handle, 6069 struct perf_event *event, 6070 u64 enabled, u64 running) 6071 { 6072 u64 read_format = event->attr.read_format; 6073 u64 values[4]; 6074 int n = 0; 6075 6076 values[n++] = perf_event_count(event); 6077 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { 6078 values[n++] = enabled + 6079 atomic64_read(&event->child_total_time_enabled); 6080 } 6081 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { 6082 values[n++] = running + 6083 atomic64_read(&event->child_total_time_running); 6084 } 6085 if (read_format & PERF_FORMAT_ID) 6086 values[n++] = primary_event_id(event); 6087 6088 __output_copy(handle, values, n * sizeof(u64)); 6089 } 6090 6091 static void perf_output_read_group(struct perf_output_handle *handle, 6092 struct perf_event *event, 6093 u64 enabled, u64 running) 6094 { 6095 struct perf_event *leader = event->group_leader, *sub; 6096 u64 read_format = event->attr.read_format; 6097 u64 values[5]; 6098 int n = 0; 6099 6100 values[n++] = 1 + leader->nr_siblings; 6101 6102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 6103 values[n++] = enabled; 6104 6105 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) 6106 values[n++] = running; 6107 6108 if ((leader != event) && 6109 (leader->state == PERF_EVENT_STATE_ACTIVE)) 6110 leader->pmu->read(leader); 6111 6112 values[n++] = perf_event_count(leader); 6113 if (read_format & PERF_FORMAT_ID) 6114 values[n++] = primary_event_id(leader); 6115 6116 __output_copy(handle, values, n * sizeof(u64)); 6117 6118 for_each_sibling_event(sub, leader) { 6119 n = 0; 6120 6121 if ((sub != event) && 6122 (sub->state == PERF_EVENT_STATE_ACTIVE)) 6123 sub->pmu->read(sub); 6124 6125 values[n++] = perf_event_count(sub); 6126 if (read_format & PERF_FORMAT_ID) 6127 values[n++] = primary_event_id(sub); 6128 6129 __output_copy(handle, values, n * sizeof(u64)); 6130 } 6131 } 6132 6133 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\ 6134 PERF_FORMAT_TOTAL_TIME_RUNNING) 6135 6136 /* 6137 * XXX PERF_SAMPLE_READ vs inherited events seems difficult. 6138 * 6139 * The problem is that its both hard and excessively expensive to iterate the 6140 * child list, not to mention that its impossible to IPI the children running 6141 * on another CPU, from interrupt/NMI context. 6142 */ 6143 static void perf_output_read(struct perf_output_handle *handle, 6144 struct perf_event *event) 6145 { 6146 u64 enabled = 0, running = 0, now; 6147 u64 read_format = event->attr.read_format; 6148 6149 /* 6150 * compute total_time_enabled, total_time_running 6151 * based on snapshot values taken when the event 6152 * was last scheduled in. 6153 * 6154 * we cannot simply called update_context_time() 6155 * because of locking issue as we are called in 6156 * NMI context 6157 */ 6158 if (read_format & PERF_FORMAT_TOTAL_TIMES) 6159 calc_timer_values(event, &now, &enabled, &running); 6160 6161 if (event->attr.read_format & PERF_FORMAT_GROUP) 6162 perf_output_read_group(handle, event, enabled, running); 6163 else 6164 perf_output_read_one(handle, event, enabled, running); 6165 } 6166 6167 void perf_output_sample(struct perf_output_handle *handle, 6168 struct perf_event_header *header, 6169 struct perf_sample_data *data, 6170 struct perf_event *event) 6171 { 6172 u64 sample_type = data->type; 6173 6174 perf_output_put(handle, *header); 6175 6176 if (sample_type & PERF_SAMPLE_IDENTIFIER) 6177 perf_output_put(handle, data->id); 6178 6179 if (sample_type & PERF_SAMPLE_IP) 6180 perf_output_put(handle, data->ip); 6181 6182 if (sample_type & PERF_SAMPLE_TID) 6183 perf_output_put(handle, data->tid_entry); 6184 6185 if (sample_type & PERF_SAMPLE_TIME) 6186 perf_output_put(handle, data->time); 6187 6188 if (sample_type & PERF_SAMPLE_ADDR) 6189 perf_output_put(handle, data->addr); 6190 6191 if (sample_type & PERF_SAMPLE_ID) 6192 perf_output_put(handle, data->id); 6193 6194 if (sample_type & PERF_SAMPLE_STREAM_ID) 6195 perf_output_put(handle, data->stream_id); 6196 6197 if (sample_type & PERF_SAMPLE_CPU) 6198 perf_output_put(handle, data->cpu_entry); 6199 6200 if (sample_type & PERF_SAMPLE_PERIOD) 6201 perf_output_put(handle, data->period); 6202 6203 if (sample_type & PERF_SAMPLE_READ) 6204 perf_output_read(handle, event); 6205 6206 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6207 int size = 1; 6208 6209 size += data->callchain->nr; 6210 size *= sizeof(u64); 6211 __output_copy(handle, data->callchain, size); 6212 } 6213 6214 if (sample_type & PERF_SAMPLE_RAW) { 6215 struct perf_raw_record *raw = data->raw; 6216 6217 if (raw) { 6218 struct perf_raw_frag *frag = &raw->frag; 6219 6220 perf_output_put(handle, raw->size); 6221 do { 6222 if (frag->copy) { 6223 __output_custom(handle, frag->copy, 6224 frag->data, frag->size); 6225 } else { 6226 __output_copy(handle, frag->data, 6227 frag->size); 6228 } 6229 if (perf_raw_frag_last(frag)) 6230 break; 6231 frag = frag->next; 6232 } while (1); 6233 if (frag->pad) 6234 __output_skip(handle, NULL, frag->pad); 6235 } else { 6236 struct { 6237 u32 size; 6238 u32 data; 6239 } raw = { 6240 .size = sizeof(u32), 6241 .data = 0, 6242 }; 6243 perf_output_put(handle, raw); 6244 } 6245 } 6246 6247 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6248 if (data->br_stack) { 6249 size_t size; 6250 6251 size = data->br_stack->nr 6252 * sizeof(struct perf_branch_entry); 6253 6254 perf_output_put(handle, data->br_stack->nr); 6255 perf_output_copy(handle, data->br_stack->entries, size); 6256 } else { 6257 /* 6258 * we always store at least the value of nr 6259 */ 6260 u64 nr = 0; 6261 perf_output_put(handle, nr); 6262 } 6263 } 6264 6265 if (sample_type & PERF_SAMPLE_REGS_USER) { 6266 u64 abi = data->regs_user.abi; 6267 6268 /* 6269 * If there are no regs to dump, notice it through 6270 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6271 */ 6272 perf_output_put(handle, abi); 6273 6274 if (abi) { 6275 u64 mask = event->attr.sample_regs_user; 6276 perf_output_sample_regs(handle, 6277 data->regs_user.regs, 6278 mask); 6279 } 6280 } 6281 6282 if (sample_type & PERF_SAMPLE_STACK_USER) { 6283 perf_output_sample_ustack(handle, 6284 data->stack_user_size, 6285 data->regs_user.regs); 6286 } 6287 6288 if (sample_type & PERF_SAMPLE_WEIGHT) 6289 perf_output_put(handle, data->weight); 6290 6291 if (sample_type & PERF_SAMPLE_DATA_SRC) 6292 perf_output_put(handle, data->data_src.val); 6293 6294 if (sample_type & PERF_SAMPLE_TRANSACTION) 6295 perf_output_put(handle, data->txn); 6296 6297 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6298 u64 abi = data->regs_intr.abi; 6299 /* 6300 * If there are no regs to dump, notice it through 6301 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE). 6302 */ 6303 perf_output_put(handle, abi); 6304 6305 if (abi) { 6306 u64 mask = event->attr.sample_regs_intr; 6307 6308 perf_output_sample_regs(handle, 6309 data->regs_intr.regs, 6310 mask); 6311 } 6312 } 6313 6314 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6315 perf_output_put(handle, data->phys_addr); 6316 6317 if (!event->attr.watermark) { 6318 int wakeup_events = event->attr.wakeup_events; 6319 6320 if (wakeup_events) { 6321 struct ring_buffer *rb = handle->rb; 6322 int events = local_inc_return(&rb->events); 6323 6324 if (events >= wakeup_events) { 6325 local_sub(wakeup_events, &rb->events); 6326 local_inc(&rb->wakeup); 6327 } 6328 } 6329 } 6330 } 6331 6332 static u64 perf_virt_to_phys(u64 virt) 6333 { 6334 u64 phys_addr = 0; 6335 struct page *p = NULL; 6336 6337 if (!virt) 6338 return 0; 6339 6340 if (virt >= TASK_SIZE) { 6341 /* If it's vmalloc()d memory, leave phys_addr as 0 */ 6342 if (virt_addr_valid((void *)(uintptr_t)virt) && 6343 !(virt >= VMALLOC_START && virt < VMALLOC_END)) 6344 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt); 6345 } else { 6346 /* 6347 * Walking the pages tables for user address. 6348 * Interrupts are disabled, so it prevents any tear down 6349 * of the page tables. 6350 * Try IRQ-safe __get_user_pages_fast first. 6351 * If failed, leave phys_addr as 0. 6352 */ 6353 if ((current->mm != NULL) && 6354 (__get_user_pages_fast(virt, 1, 0, &p) == 1)) 6355 phys_addr = page_to_phys(p) + virt % PAGE_SIZE; 6356 6357 if (p) 6358 put_page(p); 6359 } 6360 6361 return phys_addr; 6362 } 6363 6364 static struct perf_callchain_entry __empty_callchain = { .nr = 0, }; 6365 6366 struct perf_callchain_entry * 6367 perf_callchain(struct perf_event *event, struct pt_regs *regs) 6368 { 6369 bool kernel = !event->attr.exclude_callchain_kernel; 6370 bool user = !event->attr.exclude_callchain_user; 6371 /* Disallow cross-task user callchains. */ 6372 bool crosstask = event->ctx->task && event->ctx->task != current; 6373 const u32 max_stack = event->attr.sample_max_stack; 6374 struct perf_callchain_entry *callchain; 6375 6376 if (!kernel && !user) 6377 return &__empty_callchain; 6378 6379 callchain = get_perf_callchain(regs, 0, kernel, user, 6380 max_stack, crosstask, true); 6381 return callchain ?: &__empty_callchain; 6382 } 6383 6384 void perf_prepare_sample(struct perf_event_header *header, 6385 struct perf_sample_data *data, 6386 struct perf_event *event, 6387 struct pt_regs *regs) 6388 { 6389 u64 sample_type = event->attr.sample_type; 6390 6391 header->type = PERF_RECORD_SAMPLE; 6392 header->size = sizeof(*header) + event->header_size; 6393 6394 header->misc = 0; 6395 header->misc |= perf_misc_flags(regs); 6396 6397 __perf_event_header__init_id(header, data, event); 6398 6399 if (sample_type & PERF_SAMPLE_IP) 6400 data->ip = perf_instruction_pointer(regs); 6401 6402 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 6403 int size = 1; 6404 6405 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 6406 data->callchain = perf_callchain(event, regs); 6407 6408 size += data->callchain->nr; 6409 6410 header->size += size * sizeof(u64); 6411 } 6412 6413 if (sample_type & PERF_SAMPLE_RAW) { 6414 struct perf_raw_record *raw = data->raw; 6415 int size; 6416 6417 if (raw) { 6418 struct perf_raw_frag *frag = &raw->frag; 6419 u32 sum = 0; 6420 6421 do { 6422 sum += frag->size; 6423 if (perf_raw_frag_last(frag)) 6424 break; 6425 frag = frag->next; 6426 } while (1); 6427 6428 size = round_up(sum + sizeof(u32), sizeof(u64)); 6429 raw->size = size - sizeof(u32); 6430 frag->pad = raw->size - sum; 6431 } else { 6432 size = sizeof(u64); 6433 } 6434 6435 header->size += size; 6436 } 6437 6438 if (sample_type & PERF_SAMPLE_BRANCH_STACK) { 6439 int size = sizeof(u64); /* nr */ 6440 if (data->br_stack) { 6441 size += data->br_stack->nr 6442 * sizeof(struct perf_branch_entry); 6443 } 6444 header->size += size; 6445 } 6446 6447 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER)) 6448 perf_sample_regs_user(&data->regs_user, regs, 6449 &data->regs_user_copy); 6450 6451 if (sample_type & PERF_SAMPLE_REGS_USER) { 6452 /* regs dump ABI info */ 6453 int size = sizeof(u64); 6454 6455 if (data->regs_user.regs) { 6456 u64 mask = event->attr.sample_regs_user; 6457 size += hweight64(mask) * sizeof(u64); 6458 } 6459 6460 header->size += size; 6461 } 6462 6463 if (sample_type & PERF_SAMPLE_STACK_USER) { 6464 /* 6465 * Either we need PERF_SAMPLE_STACK_USER bit to be allways 6466 * processed as the last one or have additional check added 6467 * in case new sample type is added, because we could eat 6468 * up the rest of the sample size. 6469 */ 6470 u16 stack_size = event->attr.sample_stack_user; 6471 u16 size = sizeof(u64); 6472 6473 stack_size = perf_sample_ustack_size(stack_size, header->size, 6474 data->regs_user.regs); 6475 6476 /* 6477 * If there is something to dump, add space for the dump 6478 * itself and for the field that tells the dynamic size, 6479 * which is how many have been actually dumped. 6480 */ 6481 if (stack_size) 6482 size += sizeof(u64) + stack_size; 6483 6484 data->stack_user_size = stack_size; 6485 header->size += size; 6486 } 6487 6488 if (sample_type & PERF_SAMPLE_REGS_INTR) { 6489 /* regs dump ABI info */ 6490 int size = sizeof(u64); 6491 6492 perf_sample_regs_intr(&data->regs_intr, regs); 6493 6494 if (data->regs_intr.regs) { 6495 u64 mask = event->attr.sample_regs_intr; 6496 6497 size += hweight64(mask) * sizeof(u64); 6498 } 6499 6500 header->size += size; 6501 } 6502 6503 if (sample_type & PERF_SAMPLE_PHYS_ADDR) 6504 data->phys_addr = perf_virt_to_phys(data->addr); 6505 } 6506 6507 static __always_inline int 6508 __perf_event_output(struct perf_event *event, 6509 struct perf_sample_data *data, 6510 struct pt_regs *regs, 6511 int (*output_begin)(struct perf_output_handle *, 6512 struct perf_event *, 6513 unsigned int)) 6514 { 6515 struct perf_output_handle handle; 6516 struct perf_event_header header; 6517 int err; 6518 6519 /* protect the callchain buffers */ 6520 rcu_read_lock(); 6521 6522 perf_prepare_sample(&header, data, event, regs); 6523 6524 err = output_begin(&handle, event, header.size); 6525 if (err) 6526 goto exit; 6527 6528 perf_output_sample(&handle, &header, data, event); 6529 6530 perf_output_end(&handle); 6531 6532 exit: 6533 rcu_read_unlock(); 6534 return err; 6535 } 6536 6537 void 6538 perf_event_output_forward(struct perf_event *event, 6539 struct perf_sample_data *data, 6540 struct pt_regs *regs) 6541 { 6542 __perf_event_output(event, data, regs, perf_output_begin_forward); 6543 } 6544 6545 void 6546 perf_event_output_backward(struct perf_event *event, 6547 struct perf_sample_data *data, 6548 struct pt_regs *regs) 6549 { 6550 __perf_event_output(event, data, regs, perf_output_begin_backward); 6551 } 6552 6553 int 6554 perf_event_output(struct perf_event *event, 6555 struct perf_sample_data *data, 6556 struct pt_regs *regs) 6557 { 6558 return __perf_event_output(event, data, regs, perf_output_begin); 6559 } 6560 6561 /* 6562 * read event_id 6563 */ 6564 6565 struct perf_read_event { 6566 struct perf_event_header header; 6567 6568 u32 pid; 6569 u32 tid; 6570 }; 6571 6572 static void 6573 perf_event_read_event(struct perf_event *event, 6574 struct task_struct *task) 6575 { 6576 struct perf_output_handle handle; 6577 struct perf_sample_data sample; 6578 struct perf_read_event read_event = { 6579 .header = { 6580 .type = PERF_RECORD_READ, 6581 .misc = 0, 6582 .size = sizeof(read_event) + event->read_size, 6583 }, 6584 .pid = perf_event_pid(event, task), 6585 .tid = perf_event_tid(event, task), 6586 }; 6587 int ret; 6588 6589 perf_event_header__init_id(&read_event.header, &sample, event); 6590 ret = perf_output_begin(&handle, event, read_event.header.size); 6591 if (ret) 6592 return; 6593 6594 perf_output_put(&handle, read_event); 6595 perf_output_read(&handle, event); 6596 perf_event__output_id_sample(event, &handle, &sample); 6597 6598 perf_output_end(&handle); 6599 } 6600 6601 typedef void (perf_iterate_f)(struct perf_event *event, void *data); 6602 6603 static void 6604 perf_iterate_ctx(struct perf_event_context *ctx, 6605 perf_iterate_f output, 6606 void *data, bool all) 6607 { 6608 struct perf_event *event; 6609 6610 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 6611 if (!all) { 6612 if (event->state < PERF_EVENT_STATE_INACTIVE) 6613 continue; 6614 if (!event_filter_match(event)) 6615 continue; 6616 } 6617 6618 output(event, data); 6619 } 6620 } 6621 6622 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data) 6623 { 6624 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events); 6625 struct perf_event *event; 6626 6627 list_for_each_entry_rcu(event, &pel->list, sb_list) { 6628 /* 6629 * Skip events that are not fully formed yet; ensure that 6630 * if we observe event->ctx, both event and ctx will be 6631 * complete enough. See perf_install_in_context(). 6632 */ 6633 if (!smp_load_acquire(&event->ctx)) 6634 continue; 6635 6636 if (event->state < PERF_EVENT_STATE_INACTIVE) 6637 continue; 6638 if (!event_filter_match(event)) 6639 continue; 6640 output(event, data); 6641 } 6642 } 6643 6644 /* 6645 * Iterate all events that need to receive side-band events. 6646 * 6647 * For new callers; ensure that account_pmu_sb_event() includes 6648 * your event, otherwise it might not get delivered. 6649 */ 6650 static void 6651 perf_iterate_sb(perf_iterate_f output, void *data, 6652 struct perf_event_context *task_ctx) 6653 { 6654 struct perf_event_context *ctx; 6655 int ctxn; 6656 6657 rcu_read_lock(); 6658 preempt_disable(); 6659 6660 /* 6661 * If we have task_ctx != NULL we only notify the task context itself. 6662 * The task_ctx is set only for EXIT events before releasing task 6663 * context. 6664 */ 6665 if (task_ctx) { 6666 perf_iterate_ctx(task_ctx, output, data, false); 6667 goto done; 6668 } 6669 6670 perf_iterate_sb_cpu(output, data); 6671 6672 for_each_task_context_nr(ctxn) { 6673 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 6674 if (ctx) 6675 perf_iterate_ctx(ctx, output, data, false); 6676 } 6677 done: 6678 preempt_enable(); 6679 rcu_read_unlock(); 6680 } 6681 6682 /* 6683 * Clear all file-based filters at exec, they'll have to be 6684 * re-instated when/if these objects are mmapped again. 6685 */ 6686 static void perf_event_addr_filters_exec(struct perf_event *event, void *data) 6687 { 6688 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 6689 struct perf_addr_filter *filter; 6690 unsigned int restart = 0, count = 0; 6691 unsigned long flags; 6692 6693 if (!has_addr_filter(event)) 6694 return; 6695 6696 raw_spin_lock_irqsave(&ifh->lock, flags); 6697 list_for_each_entry(filter, &ifh->list, entry) { 6698 if (filter->path.dentry) { 6699 event->addr_filter_ranges[count].start = 0; 6700 event->addr_filter_ranges[count].size = 0; 6701 restart++; 6702 } 6703 6704 count++; 6705 } 6706 6707 if (restart) 6708 event->addr_filters_gen++; 6709 raw_spin_unlock_irqrestore(&ifh->lock, flags); 6710 6711 if (restart) 6712 perf_event_stop(event, 1); 6713 } 6714 6715 void perf_event_exec(void) 6716 { 6717 struct perf_event_context *ctx; 6718 int ctxn; 6719 6720 rcu_read_lock(); 6721 for_each_task_context_nr(ctxn) { 6722 ctx = current->perf_event_ctxp[ctxn]; 6723 if (!ctx) 6724 continue; 6725 6726 perf_event_enable_on_exec(ctxn); 6727 6728 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, 6729 true); 6730 } 6731 rcu_read_unlock(); 6732 } 6733 6734 struct remote_output { 6735 struct ring_buffer *rb; 6736 int err; 6737 }; 6738 6739 static void __perf_event_output_stop(struct perf_event *event, void *data) 6740 { 6741 struct perf_event *parent = event->parent; 6742 struct remote_output *ro = data; 6743 struct ring_buffer *rb = ro->rb; 6744 struct stop_event_data sd = { 6745 .event = event, 6746 }; 6747 6748 if (!has_aux(event)) 6749 return; 6750 6751 if (!parent) 6752 parent = event; 6753 6754 /* 6755 * In case of inheritance, it will be the parent that links to the 6756 * ring-buffer, but it will be the child that's actually using it. 6757 * 6758 * We are using event::rb to determine if the event should be stopped, 6759 * however this may race with ring_buffer_attach() (through set_output), 6760 * which will make us skip the event that actually needs to be stopped. 6761 * So ring_buffer_attach() has to stop an aux event before re-assigning 6762 * its rb pointer. 6763 */ 6764 if (rcu_dereference(parent->rb) == rb) 6765 ro->err = __perf_event_stop(&sd); 6766 } 6767 6768 static int __perf_pmu_output_stop(void *info) 6769 { 6770 struct perf_event *event = info; 6771 struct pmu *pmu = event->pmu; 6772 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context); 6773 struct remote_output ro = { 6774 .rb = event->rb, 6775 }; 6776 6777 rcu_read_lock(); 6778 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false); 6779 if (cpuctx->task_ctx) 6780 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop, 6781 &ro, false); 6782 rcu_read_unlock(); 6783 6784 return ro.err; 6785 } 6786 6787 static void perf_pmu_output_stop(struct perf_event *event) 6788 { 6789 struct perf_event *iter; 6790 int err, cpu; 6791 6792 restart: 6793 rcu_read_lock(); 6794 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) { 6795 /* 6796 * For per-CPU events, we need to make sure that neither they 6797 * nor their children are running; for cpu==-1 events it's 6798 * sufficient to stop the event itself if it's active, since 6799 * it can't have children. 6800 */ 6801 cpu = iter->cpu; 6802 if (cpu == -1) 6803 cpu = READ_ONCE(iter->oncpu); 6804 6805 if (cpu == -1) 6806 continue; 6807 6808 err = cpu_function_call(cpu, __perf_pmu_output_stop, event); 6809 if (err == -EAGAIN) { 6810 rcu_read_unlock(); 6811 goto restart; 6812 } 6813 } 6814 rcu_read_unlock(); 6815 } 6816 6817 /* 6818 * task tracking -- fork/exit 6819 * 6820 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task 6821 */ 6822 6823 struct perf_task_event { 6824 struct task_struct *task; 6825 struct perf_event_context *task_ctx; 6826 6827 struct { 6828 struct perf_event_header header; 6829 6830 u32 pid; 6831 u32 ppid; 6832 u32 tid; 6833 u32 ptid; 6834 u64 time; 6835 } event_id; 6836 }; 6837 6838 static int perf_event_task_match(struct perf_event *event) 6839 { 6840 return event->attr.comm || event->attr.mmap || 6841 event->attr.mmap2 || event->attr.mmap_data || 6842 event->attr.task; 6843 } 6844 6845 static void perf_event_task_output(struct perf_event *event, 6846 void *data) 6847 { 6848 struct perf_task_event *task_event = data; 6849 struct perf_output_handle handle; 6850 struct perf_sample_data sample; 6851 struct task_struct *task = task_event->task; 6852 int ret, size = task_event->event_id.header.size; 6853 6854 if (!perf_event_task_match(event)) 6855 return; 6856 6857 perf_event_header__init_id(&task_event->event_id.header, &sample, event); 6858 6859 ret = perf_output_begin(&handle, event, 6860 task_event->event_id.header.size); 6861 if (ret) 6862 goto out; 6863 6864 task_event->event_id.pid = perf_event_pid(event, task); 6865 task_event->event_id.ppid = perf_event_pid(event, current); 6866 6867 task_event->event_id.tid = perf_event_tid(event, task); 6868 task_event->event_id.ptid = perf_event_tid(event, current); 6869 6870 task_event->event_id.time = perf_event_clock(event); 6871 6872 perf_output_put(&handle, task_event->event_id); 6873 6874 perf_event__output_id_sample(event, &handle, &sample); 6875 6876 perf_output_end(&handle); 6877 out: 6878 task_event->event_id.header.size = size; 6879 } 6880 6881 static void perf_event_task(struct task_struct *task, 6882 struct perf_event_context *task_ctx, 6883 int new) 6884 { 6885 struct perf_task_event task_event; 6886 6887 if (!atomic_read(&nr_comm_events) && 6888 !atomic_read(&nr_mmap_events) && 6889 !atomic_read(&nr_task_events)) 6890 return; 6891 6892 task_event = (struct perf_task_event){ 6893 .task = task, 6894 .task_ctx = task_ctx, 6895 .event_id = { 6896 .header = { 6897 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, 6898 .misc = 0, 6899 .size = sizeof(task_event.event_id), 6900 }, 6901 /* .pid */ 6902 /* .ppid */ 6903 /* .tid */ 6904 /* .ptid */ 6905 /* .time */ 6906 }, 6907 }; 6908 6909 perf_iterate_sb(perf_event_task_output, 6910 &task_event, 6911 task_ctx); 6912 } 6913 6914 void perf_event_fork(struct task_struct *task) 6915 { 6916 perf_event_task(task, NULL, 1); 6917 perf_event_namespaces(task); 6918 } 6919 6920 /* 6921 * comm tracking 6922 */ 6923 6924 struct perf_comm_event { 6925 struct task_struct *task; 6926 char *comm; 6927 int comm_size; 6928 6929 struct { 6930 struct perf_event_header header; 6931 6932 u32 pid; 6933 u32 tid; 6934 } event_id; 6935 }; 6936 6937 static int perf_event_comm_match(struct perf_event *event) 6938 { 6939 return event->attr.comm; 6940 } 6941 6942 static void perf_event_comm_output(struct perf_event *event, 6943 void *data) 6944 { 6945 struct perf_comm_event *comm_event = data; 6946 struct perf_output_handle handle; 6947 struct perf_sample_data sample; 6948 int size = comm_event->event_id.header.size; 6949 int ret; 6950 6951 if (!perf_event_comm_match(event)) 6952 return; 6953 6954 perf_event_header__init_id(&comm_event->event_id.header, &sample, event); 6955 ret = perf_output_begin(&handle, event, 6956 comm_event->event_id.header.size); 6957 6958 if (ret) 6959 goto out; 6960 6961 comm_event->event_id.pid = perf_event_pid(event, comm_event->task); 6962 comm_event->event_id.tid = perf_event_tid(event, comm_event->task); 6963 6964 perf_output_put(&handle, comm_event->event_id); 6965 __output_copy(&handle, comm_event->comm, 6966 comm_event->comm_size); 6967 6968 perf_event__output_id_sample(event, &handle, &sample); 6969 6970 perf_output_end(&handle); 6971 out: 6972 comm_event->event_id.header.size = size; 6973 } 6974 6975 static void perf_event_comm_event(struct perf_comm_event *comm_event) 6976 { 6977 char comm[TASK_COMM_LEN]; 6978 unsigned int size; 6979 6980 memset(comm, 0, sizeof(comm)); 6981 strlcpy(comm, comm_event->task->comm, sizeof(comm)); 6982 size = ALIGN(strlen(comm)+1, sizeof(u64)); 6983 6984 comm_event->comm = comm; 6985 comm_event->comm_size = size; 6986 6987 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; 6988 6989 perf_iterate_sb(perf_event_comm_output, 6990 comm_event, 6991 NULL); 6992 } 6993 6994 void perf_event_comm(struct task_struct *task, bool exec) 6995 { 6996 struct perf_comm_event comm_event; 6997 6998 if (!atomic_read(&nr_comm_events)) 6999 return; 7000 7001 comm_event = (struct perf_comm_event){ 7002 .task = task, 7003 /* .comm */ 7004 /* .comm_size */ 7005 .event_id = { 7006 .header = { 7007 .type = PERF_RECORD_COMM, 7008 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0, 7009 /* .size */ 7010 }, 7011 /* .pid */ 7012 /* .tid */ 7013 }, 7014 }; 7015 7016 perf_event_comm_event(&comm_event); 7017 } 7018 7019 /* 7020 * namespaces tracking 7021 */ 7022 7023 struct perf_namespaces_event { 7024 struct task_struct *task; 7025 7026 struct { 7027 struct perf_event_header header; 7028 7029 u32 pid; 7030 u32 tid; 7031 u64 nr_namespaces; 7032 struct perf_ns_link_info link_info[NR_NAMESPACES]; 7033 } event_id; 7034 }; 7035 7036 static int perf_event_namespaces_match(struct perf_event *event) 7037 { 7038 return event->attr.namespaces; 7039 } 7040 7041 static void perf_event_namespaces_output(struct perf_event *event, 7042 void *data) 7043 { 7044 struct perf_namespaces_event *namespaces_event = data; 7045 struct perf_output_handle handle; 7046 struct perf_sample_data sample; 7047 u16 header_size = namespaces_event->event_id.header.size; 7048 int ret; 7049 7050 if (!perf_event_namespaces_match(event)) 7051 return; 7052 7053 perf_event_header__init_id(&namespaces_event->event_id.header, 7054 &sample, event); 7055 ret = perf_output_begin(&handle, event, 7056 namespaces_event->event_id.header.size); 7057 if (ret) 7058 goto out; 7059 7060 namespaces_event->event_id.pid = perf_event_pid(event, 7061 namespaces_event->task); 7062 namespaces_event->event_id.tid = perf_event_tid(event, 7063 namespaces_event->task); 7064 7065 perf_output_put(&handle, namespaces_event->event_id); 7066 7067 perf_event__output_id_sample(event, &handle, &sample); 7068 7069 perf_output_end(&handle); 7070 out: 7071 namespaces_event->event_id.header.size = header_size; 7072 } 7073 7074 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info, 7075 struct task_struct *task, 7076 const struct proc_ns_operations *ns_ops) 7077 { 7078 struct path ns_path; 7079 struct inode *ns_inode; 7080 void *error; 7081 7082 error = ns_get_path(&ns_path, task, ns_ops); 7083 if (!error) { 7084 ns_inode = ns_path.dentry->d_inode; 7085 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev); 7086 ns_link_info->ino = ns_inode->i_ino; 7087 path_put(&ns_path); 7088 } 7089 } 7090 7091 void perf_event_namespaces(struct task_struct *task) 7092 { 7093 struct perf_namespaces_event namespaces_event; 7094 struct perf_ns_link_info *ns_link_info; 7095 7096 if (!atomic_read(&nr_namespaces_events)) 7097 return; 7098 7099 namespaces_event = (struct perf_namespaces_event){ 7100 .task = task, 7101 .event_id = { 7102 .header = { 7103 .type = PERF_RECORD_NAMESPACES, 7104 .misc = 0, 7105 .size = sizeof(namespaces_event.event_id), 7106 }, 7107 /* .pid */ 7108 /* .tid */ 7109 .nr_namespaces = NR_NAMESPACES, 7110 /* .link_info[NR_NAMESPACES] */ 7111 }, 7112 }; 7113 7114 ns_link_info = namespaces_event.event_id.link_info; 7115 7116 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX], 7117 task, &mntns_operations); 7118 7119 #ifdef CONFIG_USER_NS 7120 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX], 7121 task, &userns_operations); 7122 #endif 7123 #ifdef CONFIG_NET_NS 7124 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX], 7125 task, &netns_operations); 7126 #endif 7127 #ifdef CONFIG_UTS_NS 7128 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX], 7129 task, &utsns_operations); 7130 #endif 7131 #ifdef CONFIG_IPC_NS 7132 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX], 7133 task, &ipcns_operations); 7134 #endif 7135 #ifdef CONFIG_PID_NS 7136 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX], 7137 task, &pidns_operations); 7138 #endif 7139 #ifdef CONFIG_CGROUPS 7140 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX], 7141 task, &cgroupns_operations); 7142 #endif 7143 7144 perf_iterate_sb(perf_event_namespaces_output, 7145 &namespaces_event, 7146 NULL); 7147 } 7148 7149 /* 7150 * mmap tracking 7151 */ 7152 7153 struct perf_mmap_event { 7154 struct vm_area_struct *vma; 7155 7156 const char *file_name; 7157 int file_size; 7158 int maj, min; 7159 u64 ino; 7160 u64 ino_generation; 7161 u32 prot, flags; 7162 7163 struct { 7164 struct perf_event_header header; 7165 7166 u32 pid; 7167 u32 tid; 7168 u64 start; 7169 u64 len; 7170 u64 pgoff; 7171 } event_id; 7172 }; 7173 7174 static int perf_event_mmap_match(struct perf_event *event, 7175 void *data) 7176 { 7177 struct perf_mmap_event *mmap_event = data; 7178 struct vm_area_struct *vma = mmap_event->vma; 7179 int executable = vma->vm_flags & VM_EXEC; 7180 7181 return (!executable && event->attr.mmap_data) || 7182 (executable && (event->attr.mmap || event->attr.mmap2)); 7183 } 7184 7185 static void perf_event_mmap_output(struct perf_event *event, 7186 void *data) 7187 { 7188 struct perf_mmap_event *mmap_event = data; 7189 struct perf_output_handle handle; 7190 struct perf_sample_data sample; 7191 int size = mmap_event->event_id.header.size; 7192 u32 type = mmap_event->event_id.header.type; 7193 int ret; 7194 7195 if (!perf_event_mmap_match(event, data)) 7196 return; 7197 7198 if (event->attr.mmap2) { 7199 mmap_event->event_id.header.type = PERF_RECORD_MMAP2; 7200 mmap_event->event_id.header.size += sizeof(mmap_event->maj); 7201 mmap_event->event_id.header.size += sizeof(mmap_event->min); 7202 mmap_event->event_id.header.size += sizeof(mmap_event->ino); 7203 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation); 7204 mmap_event->event_id.header.size += sizeof(mmap_event->prot); 7205 mmap_event->event_id.header.size += sizeof(mmap_event->flags); 7206 } 7207 7208 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event); 7209 ret = perf_output_begin(&handle, event, 7210 mmap_event->event_id.header.size); 7211 if (ret) 7212 goto out; 7213 7214 mmap_event->event_id.pid = perf_event_pid(event, current); 7215 mmap_event->event_id.tid = perf_event_tid(event, current); 7216 7217 perf_output_put(&handle, mmap_event->event_id); 7218 7219 if (event->attr.mmap2) { 7220 perf_output_put(&handle, mmap_event->maj); 7221 perf_output_put(&handle, mmap_event->min); 7222 perf_output_put(&handle, mmap_event->ino); 7223 perf_output_put(&handle, mmap_event->ino_generation); 7224 perf_output_put(&handle, mmap_event->prot); 7225 perf_output_put(&handle, mmap_event->flags); 7226 } 7227 7228 __output_copy(&handle, mmap_event->file_name, 7229 mmap_event->file_size); 7230 7231 perf_event__output_id_sample(event, &handle, &sample); 7232 7233 perf_output_end(&handle); 7234 out: 7235 mmap_event->event_id.header.size = size; 7236 mmap_event->event_id.header.type = type; 7237 } 7238 7239 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) 7240 { 7241 struct vm_area_struct *vma = mmap_event->vma; 7242 struct file *file = vma->vm_file; 7243 int maj = 0, min = 0; 7244 u64 ino = 0, gen = 0; 7245 u32 prot = 0, flags = 0; 7246 unsigned int size; 7247 char tmp[16]; 7248 char *buf = NULL; 7249 char *name; 7250 7251 if (vma->vm_flags & VM_READ) 7252 prot |= PROT_READ; 7253 if (vma->vm_flags & VM_WRITE) 7254 prot |= PROT_WRITE; 7255 if (vma->vm_flags & VM_EXEC) 7256 prot |= PROT_EXEC; 7257 7258 if (vma->vm_flags & VM_MAYSHARE) 7259 flags = MAP_SHARED; 7260 else 7261 flags = MAP_PRIVATE; 7262 7263 if (vma->vm_flags & VM_DENYWRITE) 7264 flags |= MAP_DENYWRITE; 7265 if (vma->vm_flags & VM_MAYEXEC) 7266 flags |= MAP_EXECUTABLE; 7267 if (vma->vm_flags & VM_LOCKED) 7268 flags |= MAP_LOCKED; 7269 if (vma->vm_flags & VM_HUGETLB) 7270 flags |= MAP_HUGETLB; 7271 7272 if (file) { 7273 struct inode *inode; 7274 dev_t dev; 7275 7276 buf = kmalloc(PATH_MAX, GFP_KERNEL); 7277 if (!buf) { 7278 name = "//enomem"; 7279 goto cpy_name; 7280 } 7281 /* 7282 * d_path() works from the end of the rb backwards, so we 7283 * need to add enough zero bytes after the string to handle 7284 * the 64bit alignment we do later. 7285 */ 7286 name = file_path(file, buf, PATH_MAX - sizeof(u64)); 7287 if (IS_ERR(name)) { 7288 name = "//toolong"; 7289 goto cpy_name; 7290 } 7291 inode = file_inode(vma->vm_file); 7292 dev = inode->i_sb->s_dev; 7293 ino = inode->i_ino; 7294 gen = inode->i_generation; 7295 maj = MAJOR(dev); 7296 min = MINOR(dev); 7297 7298 goto got_name; 7299 } else { 7300 if (vma->vm_ops && vma->vm_ops->name) { 7301 name = (char *) vma->vm_ops->name(vma); 7302 if (name) 7303 goto cpy_name; 7304 } 7305 7306 name = (char *)arch_vma_name(vma); 7307 if (name) 7308 goto cpy_name; 7309 7310 if (vma->vm_start <= vma->vm_mm->start_brk && 7311 vma->vm_end >= vma->vm_mm->brk) { 7312 name = "[heap]"; 7313 goto cpy_name; 7314 } 7315 if (vma->vm_start <= vma->vm_mm->start_stack && 7316 vma->vm_end >= vma->vm_mm->start_stack) { 7317 name = "[stack]"; 7318 goto cpy_name; 7319 } 7320 7321 name = "//anon"; 7322 goto cpy_name; 7323 } 7324 7325 cpy_name: 7326 strlcpy(tmp, name, sizeof(tmp)); 7327 name = tmp; 7328 got_name: 7329 /* 7330 * Since our buffer works in 8 byte units we need to align our string 7331 * size to a multiple of 8. However, we must guarantee the tail end is 7332 * zero'd out to avoid leaking random bits to userspace. 7333 */ 7334 size = strlen(name)+1; 7335 while (!IS_ALIGNED(size, sizeof(u64))) 7336 name[size++] = '\0'; 7337 7338 mmap_event->file_name = name; 7339 mmap_event->file_size = size; 7340 mmap_event->maj = maj; 7341 mmap_event->min = min; 7342 mmap_event->ino = ino; 7343 mmap_event->ino_generation = gen; 7344 mmap_event->prot = prot; 7345 mmap_event->flags = flags; 7346 7347 if (!(vma->vm_flags & VM_EXEC)) 7348 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA; 7349 7350 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; 7351 7352 perf_iterate_sb(perf_event_mmap_output, 7353 mmap_event, 7354 NULL); 7355 7356 kfree(buf); 7357 } 7358 7359 /* 7360 * Check whether inode and address range match filter criteria. 7361 */ 7362 static bool perf_addr_filter_match(struct perf_addr_filter *filter, 7363 struct file *file, unsigned long offset, 7364 unsigned long size) 7365 { 7366 /* d_inode(NULL) won't be equal to any mapped user-space file */ 7367 if (!filter->path.dentry) 7368 return false; 7369 7370 if (d_inode(filter->path.dentry) != file_inode(file)) 7371 return false; 7372 7373 if (filter->offset > offset + size) 7374 return false; 7375 7376 if (filter->offset + filter->size < offset) 7377 return false; 7378 7379 return true; 7380 } 7381 7382 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter, 7383 struct vm_area_struct *vma, 7384 struct perf_addr_filter_range *fr) 7385 { 7386 unsigned long vma_size = vma->vm_end - vma->vm_start; 7387 unsigned long off = vma->vm_pgoff << PAGE_SHIFT; 7388 struct file *file = vma->vm_file; 7389 7390 if (!perf_addr_filter_match(filter, file, off, vma_size)) 7391 return false; 7392 7393 if (filter->offset < off) { 7394 fr->start = vma->vm_start; 7395 fr->size = min(vma_size, filter->size - (off - filter->offset)); 7396 } else { 7397 fr->start = vma->vm_start + filter->offset - off; 7398 fr->size = min(vma->vm_end - fr->start, filter->size); 7399 } 7400 7401 return true; 7402 } 7403 7404 static void __perf_addr_filters_adjust(struct perf_event *event, void *data) 7405 { 7406 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 7407 struct vm_area_struct *vma = data; 7408 struct perf_addr_filter *filter; 7409 unsigned int restart = 0, count = 0; 7410 unsigned long flags; 7411 7412 if (!has_addr_filter(event)) 7413 return; 7414 7415 if (!vma->vm_file) 7416 return; 7417 7418 raw_spin_lock_irqsave(&ifh->lock, flags); 7419 list_for_each_entry(filter, &ifh->list, entry) { 7420 if (perf_addr_filter_vma_adjust(filter, vma, 7421 &event->addr_filter_ranges[count])) 7422 restart++; 7423 7424 count++; 7425 } 7426 7427 if (restart) 7428 event->addr_filters_gen++; 7429 raw_spin_unlock_irqrestore(&ifh->lock, flags); 7430 7431 if (restart) 7432 perf_event_stop(event, 1); 7433 } 7434 7435 /* 7436 * Adjust all task's events' filters to the new vma 7437 */ 7438 static void perf_addr_filters_adjust(struct vm_area_struct *vma) 7439 { 7440 struct perf_event_context *ctx; 7441 int ctxn; 7442 7443 /* 7444 * Data tracing isn't supported yet and as such there is no need 7445 * to keep track of anything that isn't related to executable code: 7446 */ 7447 if (!(vma->vm_flags & VM_EXEC)) 7448 return; 7449 7450 rcu_read_lock(); 7451 for_each_task_context_nr(ctxn) { 7452 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]); 7453 if (!ctx) 7454 continue; 7455 7456 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true); 7457 } 7458 rcu_read_unlock(); 7459 } 7460 7461 void perf_event_mmap(struct vm_area_struct *vma) 7462 { 7463 struct perf_mmap_event mmap_event; 7464 7465 if (!atomic_read(&nr_mmap_events)) 7466 return; 7467 7468 mmap_event = (struct perf_mmap_event){ 7469 .vma = vma, 7470 /* .file_name */ 7471 /* .file_size */ 7472 .event_id = { 7473 .header = { 7474 .type = PERF_RECORD_MMAP, 7475 .misc = PERF_RECORD_MISC_USER, 7476 /* .size */ 7477 }, 7478 /* .pid */ 7479 /* .tid */ 7480 .start = vma->vm_start, 7481 .len = vma->vm_end - vma->vm_start, 7482 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, 7483 }, 7484 /* .maj (attr_mmap2 only) */ 7485 /* .min (attr_mmap2 only) */ 7486 /* .ino (attr_mmap2 only) */ 7487 /* .ino_generation (attr_mmap2 only) */ 7488 /* .prot (attr_mmap2 only) */ 7489 /* .flags (attr_mmap2 only) */ 7490 }; 7491 7492 perf_addr_filters_adjust(vma); 7493 perf_event_mmap_event(&mmap_event); 7494 } 7495 7496 void perf_event_aux_event(struct perf_event *event, unsigned long head, 7497 unsigned long size, u64 flags) 7498 { 7499 struct perf_output_handle handle; 7500 struct perf_sample_data sample; 7501 struct perf_aux_event { 7502 struct perf_event_header header; 7503 u64 offset; 7504 u64 size; 7505 u64 flags; 7506 } rec = { 7507 .header = { 7508 .type = PERF_RECORD_AUX, 7509 .misc = 0, 7510 .size = sizeof(rec), 7511 }, 7512 .offset = head, 7513 .size = size, 7514 .flags = flags, 7515 }; 7516 int ret; 7517 7518 perf_event_header__init_id(&rec.header, &sample, event); 7519 ret = perf_output_begin(&handle, event, rec.header.size); 7520 7521 if (ret) 7522 return; 7523 7524 perf_output_put(&handle, rec); 7525 perf_event__output_id_sample(event, &handle, &sample); 7526 7527 perf_output_end(&handle); 7528 } 7529 7530 /* 7531 * Lost/dropped samples logging 7532 */ 7533 void perf_log_lost_samples(struct perf_event *event, u64 lost) 7534 { 7535 struct perf_output_handle handle; 7536 struct perf_sample_data sample; 7537 int ret; 7538 7539 struct { 7540 struct perf_event_header header; 7541 u64 lost; 7542 } lost_samples_event = { 7543 .header = { 7544 .type = PERF_RECORD_LOST_SAMPLES, 7545 .misc = 0, 7546 .size = sizeof(lost_samples_event), 7547 }, 7548 .lost = lost, 7549 }; 7550 7551 perf_event_header__init_id(&lost_samples_event.header, &sample, event); 7552 7553 ret = perf_output_begin(&handle, event, 7554 lost_samples_event.header.size); 7555 if (ret) 7556 return; 7557 7558 perf_output_put(&handle, lost_samples_event); 7559 perf_event__output_id_sample(event, &handle, &sample); 7560 perf_output_end(&handle); 7561 } 7562 7563 /* 7564 * context_switch tracking 7565 */ 7566 7567 struct perf_switch_event { 7568 struct task_struct *task; 7569 struct task_struct *next_prev; 7570 7571 struct { 7572 struct perf_event_header header; 7573 u32 next_prev_pid; 7574 u32 next_prev_tid; 7575 } event_id; 7576 }; 7577 7578 static int perf_event_switch_match(struct perf_event *event) 7579 { 7580 return event->attr.context_switch; 7581 } 7582 7583 static void perf_event_switch_output(struct perf_event *event, void *data) 7584 { 7585 struct perf_switch_event *se = data; 7586 struct perf_output_handle handle; 7587 struct perf_sample_data sample; 7588 int ret; 7589 7590 if (!perf_event_switch_match(event)) 7591 return; 7592 7593 /* Only CPU-wide events are allowed to see next/prev pid/tid */ 7594 if (event->ctx->task) { 7595 se->event_id.header.type = PERF_RECORD_SWITCH; 7596 se->event_id.header.size = sizeof(se->event_id.header); 7597 } else { 7598 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE; 7599 se->event_id.header.size = sizeof(se->event_id); 7600 se->event_id.next_prev_pid = 7601 perf_event_pid(event, se->next_prev); 7602 se->event_id.next_prev_tid = 7603 perf_event_tid(event, se->next_prev); 7604 } 7605 7606 perf_event_header__init_id(&se->event_id.header, &sample, event); 7607 7608 ret = perf_output_begin(&handle, event, se->event_id.header.size); 7609 if (ret) 7610 return; 7611 7612 if (event->ctx->task) 7613 perf_output_put(&handle, se->event_id.header); 7614 else 7615 perf_output_put(&handle, se->event_id); 7616 7617 perf_event__output_id_sample(event, &handle, &sample); 7618 7619 perf_output_end(&handle); 7620 } 7621 7622 static void perf_event_switch(struct task_struct *task, 7623 struct task_struct *next_prev, bool sched_in) 7624 { 7625 struct perf_switch_event switch_event; 7626 7627 /* N.B. caller checks nr_switch_events != 0 */ 7628 7629 switch_event = (struct perf_switch_event){ 7630 .task = task, 7631 .next_prev = next_prev, 7632 .event_id = { 7633 .header = { 7634 /* .type */ 7635 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT, 7636 /* .size */ 7637 }, 7638 /* .next_prev_pid */ 7639 /* .next_prev_tid */ 7640 }, 7641 }; 7642 7643 if (!sched_in && task->state == TASK_RUNNING) 7644 switch_event.event_id.header.misc |= 7645 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT; 7646 7647 perf_iterate_sb(perf_event_switch_output, 7648 &switch_event, 7649 NULL); 7650 } 7651 7652 /* 7653 * IRQ throttle logging 7654 */ 7655 7656 static void perf_log_throttle(struct perf_event *event, int enable) 7657 { 7658 struct perf_output_handle handle; 7659 struct perf_sample_data sample; 7660 int ret; 7661 7662 struct { 7663 struct perf_event_header header; 7664 u64 time; 7665 u64 id; 7666 u64 stream_id; 7667 } throttle_event = { 7668 .header = { 7669 .type = PERF_RECORD_THROTTLE, 7670 .misc = 0, 7671 .size = sizeof(throttle_event), 7672 }, 7673 .time = perf_event_clock(event), 7674 .id = primary_event_id(event), 7675 .stream_id = event->id, 7676 }; 7677 7678 if (enable) 7679 throttle_event.header.type = PERF_RECORD_UNTHROTTLE; 7680 7681 perf_event_header__init_id(&throttle_event.header, &sample, event); 7682 7683 ret = perf_output_begin(&handle, event, 7684 throttle_event.header.size); 7685 if (ret) 7686 return; 7687 7688 perf_output_put(&handle, throttle_event); 7689 perf_event__output_id_sample(event, &handle, &sample); 7690 perf_output_end(&handle); 7691 } 7692 7693 /* 7694 * ksymbol register/unregister tracking 7695 */ 7696 7697 struct perf_ksymbol_event { 7698 const char *name; 7699 int name_len; 7700 struct { 7701 struct perf_event_header header; 7702 u64 addr; 7703 u32 len; 7704 u16 ksym_type; 7705 u16 flags; 7706 } event_id; 7707 }; 7708 7709 static int perf_event_ksymbol_match(struct perf_event *event) 7710 { 7711 return event->attr.ksymbol; 7712 } 7713 7714 static void perf_event_ksymbol_output(struct perf_event *event, void *data) 7715 { 7716 struct perf_ksymbol_event *ksymbol_event = data; 7717 struct perf_output_handle handle; 7718 struct perf_sample_data sample; 7719 int ret; 7720 7721 if (!perf_event_ksymbol_match(event)) 7722 return; 7723 7724 perf_event_header__init_id(&ksymbol_event->event_id.header, 7725 &sample, event); 7726 ret = perf_output_begin(&handle, event, 7727 ksymbol_event->event_id.header.size); 7728 if (ret) 7729 return; 7730 7731 perf_output_put(&handle, ksymbol_event->event_id); 7732 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len); 7733 perf_event__output_id_sample(event, &handle, &sample); 7734 7735 perf_output_end(&handle); 7736 } 7737 7738 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister, 7739 const char *sym) 7740 { 7741 struct perf_ksymbol_event ksymbol_event; 7742 char name[KSYM_NAME_LEN]; 7743 u16 flags = 0; 7744 int name_len; 7745 7746 if (!atomic_read(&nr_ksymbol_events)) 7747 return; 7748 7749 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX || 7750 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN) 7751 goto err; 7752 7753 strlcpy(name, sym, KSYM_NAME_LEN); 7754 name_len = strlen(name) + 1; 7755 while (!IS_ALIGNED(name_len, sizeof(u64))) 7756 name[name_len++] = '\0'; 7757 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64)); 7758 7759 if (unregister) 7760 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER; 7761 7762 ksymbol_event = (struct perf_ksymbol_event){ 7763 .name = name, 7764 .name_len = name_len, 7765 .event_id = { 7766 .header = { 7767 .type = PERF_RECORD_KSYMBOL, 7768 .size = sizeof(ksymbol_event.event_id) + 7769 name_len, 7770 }, 7771 .addr = addr, 7772 .len = len, 7773 .ksym_type = ksym_type, 7774 .flags = flags, 7775 }, 7776 }; 7777 7778 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL); 7779 return; 7780 err: 7781 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type); 7782 } 7783 7784 /* 7785 * bpf program load/unload tracking 7786 */ 7787 7788 struct perf_bpf_event { 7789 struct bpf_prog *prog; 7790 struct { 7791 struct perf_event_header header; 7792 u16 type; 7793 u16 flags; 7794 u32 id; 7795 u8 tag[BPF_TAG_SIZE]; 7796 } event_id; 7797 }; 7798 7799 static int perf_event_bpf_match(struct perf_event *event) 7800 { 7801 return event->attr.bpf_event; 7802 } 7803 7804 static void perf_event_bpf_output(struct perf_event *event, void *data) 7805 { 7806 struct perf_bpf_event *bpf_event = data; 7807 struct perf_output_handle handle; 7808 struct perf_sample_data sample; 7809 int ret; 7810 7811 if (!perf_event_bpf_match(event)) 7812 return; 7813 7814 perf_event_header__init_id(&bpf_event->event_id.header, 7815 &sample, event); 7816 ret = perf_output_begin(&handle, event, 7817 bpf_event->event_id.header.size); 7818 if (ret) 7819 return; 7820 7821 perf_output_put(&handle, bpf_event->event_id); 7822 perf_event__output_id_sample(event, &handle, &sample); 7823 7824 perf_output_end(&handle); 7825 } 7826 7827 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog, 7828 enum perf_bpf_event_type type) 7829 { 7830 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD; 7831 char sym[KSYM_NAME_LEN]; 7832 int i; 7833 7834 if (prog->aux->func_cnt == 0) { 7835 bpf_get_prog_name(prog, sym); 7836 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, 7837 (u64)(unsigned long)prog->bpf_func, 7838 prog->jited_len, unregister, sym); 7839 } else { 7840 for (i = 0; i < prog->aux->func_cnt; i++) { 7841 struct bpf_prog *subprog = prog->aux->func[i]; 7842 7843 bpf_get_prog_name(subprog, sym); 7844 perf_event_ksymbol( 7845 PERF_RECORD_KSYMBOL_TYPE_BPF, 7846 (u64)(unsigned long)subprog->bpf_func, 7847 subprog->jited_len, unregister, sym); 7848 } 7849 } 7850 } 7851 7852 void perf_event_bpf_event(struct bpf_prog *prog, 7853 enum perf_bpf_event_type type, 7854 u16 flags) 7855 { 7856 struct perf_bpf_event bpf_event; 7857 7858 if (type <= PERF_BPF_EVENT_UNKNOWN || 7859 type >= PERF_BPF_EVENT_MAX) 7860 return; 7861 7862 switch (type) { 7863 case PERF_BPF_EVENT_PROG_LOAD: 7864 case PERF_BPF_EVENT_PROG_UNLOAD: 7865 if (atomic_read(&nr_ksymbol_events)) 7866 perf_event_bpf_emit_ksymbols(prog, type); 7867 break; 7868 default: 7869 break; 7870 } 7871 7872 if (!atomic_read(&nr_bpf_events)) 7873 return; 7874 7875 bpf_event = (struct perf_bpf_event){ 7876 .prog = prog, 7877 .event_id = { 7878 .header = { 7879 .type = PERF_RECORD_BPF_EVENT, 7880 .size = sizeof(bpf_event.event_id), 7881 }, 7882 .type = type, 7883 .flags = flags, 7884 .id = prog->aux->id, 7885 }, 7886 }; 7887 7888 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64)); 7889 7890 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE); 7891 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL); 7892 } 7893 7894 void perf_event_itrace_started(struct perf_event *event) 7895 { 7896 event->attach_state |= PERF_ATTACH_ITRACE; 7897 } 7898 7899 static void perf_log_itrace_start(struct perf_event *event) 7900 { 7901 struct perf_output_handle handle; 7902 struct perf_sample_data sample; 7903 struct perf_aux_event { 7904 struct perf_event_header header; 7905 u32 pid; 7906 u32 tid; 7907 } rec; 7908 int ret; 7909 7910 if (event->parent) 7911 event = event->parent; 7912 7913 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) || 7914 event->attach_state & PERF_ATTACH_ITRACE) 7915 return; 7916 7917 rec.header.type = PERF_RECORD_ITRACE_START; 7918 rec.header.misc = 0; 7919 rec.header.size = sizeof(rec); 7920 rec.pid = perf_event_pid(event, current); 7921 rec.tid = perf_event_tid(event, current); 7922 7923 perf_event_header__init_id(&rec.header, &sample, event); 7924 ret = perf_output_begin(&handle, event, rec.header.size); 7925 7926 if (ret) 7927 return; 7928 7929 perf_output_put(&handle, rec); 7930 perf_event__output_id_sample(event, &handle, &sample); 7931 7932 perf_output_end(&handle); 7933 } 7934 7935 static int 7936 __perf_event_account_interrupt(struct perf_event *event, int throttle) 7937 { 7938 struct hw_perf_event *hwc = &event->hw; 7939 int ret = 0; 7940 u64 seq; 7941 7942 seq = __this_cpu_read(perf_throttled_seq); 7943 if (seq != hwc->interrupts_seq) { 7944 hwc->interrupts_seq = seq; 7945 hwc->interrupts = 1; 7946 } else { 7947 hwc->interrupts++; 7948 if (unlikely(throttle 7949 && hwc->interrupts >= max_samples_per_tick)) { 7950 __this_cpu_inc(perf_throttled_count); 7951 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS); 7952 hwc->interrupts = MAX_INTERRUPTS; 7953 perf_log_throttle(event, 0); 7954 ret = 1; 7955 } 7956 } 7957 7958 if (event->attr.freq) { 7959 u64 now = perf_clock(); 7960 s64 delta = now - hwc->freq_time_stamp; 7961 7962 hwc->freq_time_stamp = now; 7963 7964 if (delta > 0 && delta < 2*TICK_NSEC) 7965 perf_adjust_period(event, delta, hwc->last_period, true); 7966 } 7967 7968 return ret; 7969 } 7970 7971 int perf_event_account_interrupt(struct perf_event *event) 7972 { 7973 return __perf_event_account_interrupt(event, 1); 7974 } 7975 7976 /* 7977 * Generic event overflow handling, sampling. 7978 */ 7979 7980 static int __perf_event_overflow(struct perf_event *event, 7981 int throttle, struct perf_sample_data *data, 7982 struct pt_regs *regs) 7983 { 7984 int events = atomic_read(&event->event_limit); 7985 int ret = 0; 7986 7987 /* 7988 * Non-sampling counters might still use the PMI to fold short 7989 * hardware counters, ignore those. 7990 */ 7991 if (unlikely(!is_sampling_event(event))) 7992 return 0; 7993 7994 ret = __perf_event_account_interrupt(event, throttle); 7995 7996 /* 7997 * XXX event_limit might not quite work as expected on inherited 7998 * events 7999 */ 8000 8001 event->pending_kill = POLL_IN; 8002 if (events && atomic_dec_and_test(&event->event_limit)) { 8003 ret = 1; 8004 event->pending_kill = POLL_HUP; 8005 8006 perf_event_disable_inatomic(event); 8007 } 8008 8009 READ_ONCE(event->overflow_handler)(event, data, regs); 8010 8011 if (*perf_event_fasync(event) && event->pending_kill) { 8012 event->pending_wakeup = 1; 8013 irq_work_queue(&event->pending); 8014 } 8015 8016 return ret; 8017 } 8018 8019 int perf_event_overflow(struct perf_event *event, 8020 struct perf_sample_data *data, 8021 struct pt_regs *regs) 8022 { 8023 return __perf_event_overflow(event, 1, data, regs); 8024 } 8025 8026 /* 8027 * Generic software event infrastructure 8028 */ 8029 8030 struct swevent_htable { 8031 struct swevent_hlist *swevent_hlist; 8032 struct mutex hlist_mutex; 8033 int hlist_refcount; 8034 8035 /* Recursion avoidance in each contexts */ 8036 int recursion[PERF_NR_CONTEXTS]; 8037 }; 8038 8039 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable); 8040 8041 /* 8042 * We directly increment event->count and keep a second value in 8043 * event->hw.period_left to count intervals. This period event 8044 * is kept in the range [-sample_period, 0] so that we can use the 8045 * sign as trigger. 8046 */ 8047 8048 u64 perf_swevent_set_period(struct perf_event *event) 8049 { 8050 struct hw_perf_event *hwc = &event->hw; 8051 u64 period = hwc->last_period; 8052 u64 nr, offset; 8053 s64 old, val; 8054 8055 hwc->last_period = hwc->sample_period; 8056 8057 again: 8058 old = val = local64_read(&hwc->period_left); 8059 if (val < 0) 8060 return 0; 8061 8062 nr = div64_u64(period + val, period); 8063 offset = nr * period; 8064 val -= offset; 8065 if (local64_cmpxchg(&hwc->period_left, old, val) != old) 8066 goto again; 8067 8068 return nr; 8069 } 8070 8071 static void perf_swevent_overflow(struct perf_event *event, u64 overflow, 8072 struct perf_sample_data *data, 8073 struct pt_regs *regs) 8074 { 8075 struct hw_perf_event *hwc = &event->hw; 8076 int throttle = 0; 8077 8078 if (!overflow) 8079 overflow = perf_swevent_set_period(event); 8080 8081 if (hwc->interrupts == MAX_INTERRUPTS) 8082 return; 8083 8084 for (; overflow; overflow--) { 8085 if (__perf_event_overflow(event, throttle, 8086 data, regs)) { 8087 /* 8088 * We inhibit the overflow from happening when 8089 * hwc->interrupts == MAX_INTERRUPTS. 8090 */ 8091 break; 8092 } 8093 throttle = 1; 8094 } 8095 } 8096 8097 static void perf_swevent_event(struct perf_event *event, u64 nr, 8098 struct perf_sample_data *data, 8099 struct pt_regs *regs) 8100 { 8101 struct hw_perf_event *hwc = &event->hw; 8102 8103 local64_add(nr, &event->count); 8104 8105 if (!regs) 8106 return; 8107 8108 if (!is_sampling_event(event)) 8109 return; 8110 8111 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) { 8112 data->period = nr; 8113 return perf_swevent_overflow(event, 1, data, regs); 8114 } else 8115 data->period = event->hw.last_period; 8116 8117 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) 8118 return perf_swevent_overflow(event, 1, data, regs); 8119 8120 if (local64_add_negative(nr, &hwc->period_left)) 8121 return; 8122 8123 perf_swevent_overflow(event, 0, data, regs); 8124 } 8125 8126 static int perf_exclude_event(struct perf_event *event, 8127 struct pt_regs *regs) 8128 { 8129 if (event->hw.state & PERF_HES_STOPPED) 8130 return 1; 8131 8132 if (regs) { 8133 if (event->attr.exclude_user && user_mode(regs)) 8134 return 1; 8135 8136 if (event->attr.exclude_kernel && !user_mode(regs)) 8137 return 1; 8138 } 8139 8140 return 0; 8141 } 8142 8143 static int perf_swevent_match(struct perf_event *event, 8144 enum perf_type_id type, 8145 u32 event_id, 8146 struct perf_sample_data *data, 8147 struct pt_regs *regs) 8148 { 8149 if (event->attr.type != type) 8150 return 0; 8151 8152 if (event->attr.config != event_id) 8153 return 0; 8154 8155 if (perf_exclude_event(event, regs)) 8156 return 0; 8157 8158 return 1; 8159 } 8160 8161 static inline u64 swevent_hash(u64 type, u32 event_id) 8162 { 8163 u64 val = event_id | (type << 32); 8164 8165 return hash_64(val, SWEVENT_HLIST_BITS); 8166 } 8167 8168 static inline struct hlist_head * 8169 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id) 8170 { 8171 u64 hash = swevent_hash(type, event_id); 8172 8173 return &hlist->heads[hash]; 8174 } 8175 8176 /* For the read side: events when they trigger */ 8177 static inline struct hlist_head * 8178 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id) 8179 { 8180 struct swevent_hlist *hlist; 8181 8182 hlist = rcu_dereference(swhash->swevent_hlist); 8183 if (!hlist) 8184 return NULL; 8185 8186 return __find_swevent_head(hlist, type, event_id); 8187 } 8188 8189 /* For the event head insertion and removal in the hlist */ 8190 static inline struct hlist_head * 8191 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event) 8192 { 8193 struct swevent_hlist *hlist; 8194 u32 event_id = event->attr.config; 8195 u64 type = event->attr.type; 8196 8197 /* 8198 * Event scheduling is always serialized against hlist allocation 8199 * and release. Which makes the protected version suitable here. 8200 * The context lock guarantees that. 8201 */ 8202 hlist = rcu_dereference_protected(swhash->swevent_hlist, 8203 lockdep_is_held(&event->ctx->lock)); 8204 if (!hlist) 8205 return NULL; 8206 8207 return __find_swevent_head(hlist, type, event_id); 8208 } 8209 8210 static void do_perf_sw_event(enum perf_type_id type, u32 event_id, 8211 u64 nr, 8212 struct perf_sample_data *data, 8213 struct pt_regs *regs) 8214 { 8215 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8216 struct perf_event *event; 8217 struct hlist_head *head; 8218 8219 rcu_read_lock(); 8220 head = find_swevent_head_rcu(swhash, type, event_id); 8221 if (!head) 8222 goto end; 8223 8224 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8225 if (perf_swevent_match(event, type, event_id, data, regs)) 8226 perf_swevent_event(event, nr, data, regs); 8227 } 8228 end: 8229 rcu_read_unlock(); 8230 } 8231 8232 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]); 8233 8234 int perf_swevent_get_recursion_context(void) 8235 { 8236 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8237 8238 return get_recursion_context(swhash->recursion); 8239 } 8240 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); 8241 8242 void perf_swevent_put_recursion_context(int rctx) 8243 { 8244 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8245 8246 put_recursion_context(swhash->recursion, rctx); 8247 } 8248 8249 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8250 { 8251 struct perf_sample_data data; 8252 8253 if (WARN_ON_ONCE(!regs)) 8254 return; 8255 8256 perf_sample_data_init(&data, addr, 0); 8257 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs); 8258 } 8259 8260 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 8261 { 8262 int rctx; 8263 8264 preempt_disable_notrace(); 8265 rctx = perf_swevent_get_recursion_context(); 8266 if (unlikely(rctx < 0)) 8267 goto fail; 8268 8269 ___perf_sw_event(event_id, nr, regs, addr); 8270 8271 perf_swevent_put_recursion_context(rctx); 8272 fail: 8273 preempt_enable_notrace(); 8274 } 8275 8276 static void perf_swevent_read(struct perf_event *event) 8277 { 8278 } 8279 8280 static int perf_swevent_add(struct perf_event *event, int flags) 8281 { 8282 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable); 8283 struct hw_perf_event *hwc = &event->hw; 8284 struct hlist_head *head; 8285 8286 if (is_sampling_event(event)) { 8287 hwc->last_period = hwc->sample_period; 8288 perf_swevent_set_period(event); 8289 } 8290 8291 hwc->state = !(flags & PERF_EF_START); 8292 8293 head = find_swevent_head(swhash, event); 8294 if (WARN_ON_ONCE(!head)) 8295 return -EINVAL; 8296 8297 hlist_add_head_rcu(&event->hlist_entry, head); 8298 perf_event_update_userpage(event); 8299 8300 return 0; 8301 } 8302 8303 static void perf_swevent_del(struct perf_event *event, int flags) 8304 { 8305 hlist_del_rcu(&event->hlist_entry); 8306 } 8307 8308 static void perf_swevent_start(struct perf_event *event, int flags) 8309 { 8310 event->hw.state = 0; 8311 } 8312 8313 static void perf_swevent_stop(struct perf_event *event, int flags) 8314 { 8315 event->hw.state = PERF_HES_STOPPED; 8316 } 8317 8318 /* Deref the hlist from the update side */ 8319 static inline struct swevent_hlist * 8320 swevent_hlist_deref(struct swevent_htable *swhash) 8321 { 8322 return rcu_dereference_protected(swhash->swevent_hlist, 8323 lockdep_is_held(&swhash->hlist_mutex)); 8324 } 8325 8326 static void swevent_hlist_release(struct swevent_htable *swhash) 8327 { 8328 struct swevent_hlist *hlist = swevent_hlist_deref(swhash); 8329 8330 if (!hlist) 8331 return; 8332 8333 RCU_INIT_POINTER(swhash->swevent_hlist, NULL); 8334 kfree_rcu(hlist, rcu_head); 8335 } 8336 8337 static void swevent_hlist_put_cpu(int cpu) 8338 { 8339 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8340 8341 mutex_lock(&swhash->hlist_mutex); 8342 8343 if (!--swhash->hlist_refcount) 8344 swevent_hlist_release(swhash); 8345 8346 mutex_unlock(&swhash->hlist_mutex); 8347 } 8348 8349 static void swevent_hlist_put(void) 8350 { 8351 int cpu; 8352 8353 for_each_possible_cpu(cpu) 8354 swevent_hlist_put_cpu(cpu); 8355 } 8356 8357 static int swevent_hlist_get_cpu(int cpu) 8358 { 8359 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 8360 int err = 0; 8361 8362 mutex_lock(&swhash->hlist_mutex); 8363 if (!swevent_hlist_deref(swhash) && 8364 cpumask_test_cpu(cpu, perf_online_mask)) { 8365 struct swevent_hlist *hlist; 8366 8367 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); 8368 if (!hlist) { 8369 err = -ENOMEM; 8370 goto exit; 8371 } 8372 rcu_assign_pointer(swhash->swevent_hlist, hlist); 8373 } 8374 swhash->hlist_refcount++; 8375 exit: 8376 mutex_unlock(&swhash->hlist_mutex); 8377 8378 return err; 8379 } 8380 8381 static int swevent_hlist_get(void) 8382 { 8383 int err, cpu, failed_cpu; 8384 8385 mutex_lock(&pmus_lock); 8386 for_each_possible_cpu(cpu) { 8387 err = swevent_hlist_get_cpu(cpu); 8388 if (err) { 8389 failed_cpu = cpu; 8390 goto fail; 8391 } 8392 } 8393 mutex_unlock(&pmus_lock); 8394 return 0; 8395 fail: 8396 for_each_possible_cpu(cpu) { 8397 if (cpu == failed_cpu) 8398 break; 8399 swevent_hlist_put_cpu(cpu); 8400 } 8401 mutex_unlock(&pmus_lock); 8402 return err; 8403 } 8404 8405 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 8406 8407 static void sw_perf_event_destroy(struct perf_event *event) 8408 { 8409 u64 event_id = event->attr.config; 8410 8411 WARN_ON(event->parent); 8412 8413 static_key_slow_dec(&perf_swevent_enabled[event_id]); 8414 swevent_hlist_put(); 8415 } 8416 8417 static int perf_swevent_init(struct perf_event *event) 8418 { 8419 u64 event_id = event->attr.config; 8420 8421 if (event->attr.type != PERF_TYPE_SOFTWARE) 8422 return -ENOENT; 8423 8424 /* 8425 * no branch sampling for software events 8426 */ 8427 if (has_branch_stack(event)) 8428 return -EOPNOTSUPP; 8429 8430 switch (event_id) { 8431 case PERF_COUNT_SW_CPU_CLOCK: 8432 case PERF_COUNT_SW_TASK_CLOCK: 8433 return -ENOENT; 8434 8435 default: 8436 break; 8437 } 8438 8439 if (event_id >= PERF_COUNT_SW_MAX) 8440 return -ENOENT; 8441 8442 if (!event->parent) { 8443 int err; 8444 8445 err = swevent_hlist_get(); 8446 if (err) 8447 return err; 8448 8449 static_key_slow_inc(&perf_swevent_enabled[event_id]); 8450 event->destroy = sw_perf_event_destroy; 8451 } 8452 8453 return 0; 8454 } 8455 8456 static struct pmu perf_swevent = { 8457 .task_ctx_nr = perf_sw_context, 8458 8459 .capabilities = PERF_PMU_CAP_NO_NMI, 8460 8461 .event_init = perf_swevent_init, 8462 .add = perf_swevent_add, 8463 .del = perf_swevent_del, 8464 .start = perf_swevent_start, 8465 .stop = perf_swevent_stop, 8466 .read = perf_swevent_read, 8467 }; 8468 8469 #ifdef CONFIG_EVENT_TRACING 8470 8471 static int perf_tp_filter_match(struct perf_event *event, 8472 struct perf_sample_data *data) 8473 { 8474 void *record = data->raw->frag.data; 8475 8476 /* only top level events have filters set */ 8477 if (event->parent) 8478 event = event->parent; 8479 8480 if (likely(!event->filter) || filter_match_preds(event->filter, record)) 8481 return 1; 8482 return 0; 8483 } 8484 8485 static int perf_tp_event_match(struct perf_event *event, 8486 struct perf_sample_data *data, 8487 struct pt_regs *regs) 8488 { 8489 if (event->hw.state & PERF_HES_STOPPED) 8490 return 0; 8491 /* 8492 * All tracepoints are from kernel-space. 8493 */ 8494 if (event->attr.exclude_kernel) 8495 return 0; 8496 8497 if (!perf_tp_filter_match(event, data)) 8498 return 0; 8499 8500 return 1; 8501 } 8502 8503 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx, 8504 struct trace_event_call *call, u64 count, 8505 struct pt_regs *regs, struct hlist_head *head, 8506 struct task_struct *task) 8507 { 8508 if (bpf_prog_array_valid(call)) { 8509 *(struct pt_regs **)raw_data = regs; 8510 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) { 8511 perf_swevent_put_recursion_context(rctx); 8512 return; 8513 } 8514 } 8515 perf_tp_event(call->event.type, count, raw_data, size, regs, head, 8516 rctx, task); 8517 } 8518 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit); 8519 8520 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size, 8521 struct pt_regs *regs, struct hlist_head *head, int rctx, 8522 struct task_struct *task) 8523 { 8524 struct perf_sample_data data; 8525 struct perf_event *event; 8526 8527 struct perf_raw_record raw = { 8528 .frag = { 8529 .size = entry_size, 8530 .data = record, 8531 }, 8532 }; 8533 8534 perf_sample_data_init(&data, 0, 0); 8535 data.raw = &raw; 8536 8537 perf_trace_buf_update(record, event_type); 8538 8539 hlist_for_each_entry_rcu(event, head, hlist_entry) { 8540 if (perf_tp_event_match(event, &data, regs)) 8541 perf_swevent_event(event, count, &data, regs); 8542 } 8543 8544 /* 8545 * If we got specified a target task, also iterate its context and 8546 * deliver this event there too. 8547 */ 8548 if (task && task != current) { 8549 struct perf_event_context *ctx; 8550 struct trace_entry *entry = record; 8551 8552 rcu_read_lock(); 8553 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]); 8554 if (!ctx) 8555 goto unlock; 8556 8557 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { 8558 if (event->cpu != smp_processor_id()) 8559 continue; 8560 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8561 continue; 8562 if (event->attr.config != entry->type) 8563 continue; 8564 if (perf_tp_event_match(event, &data, regs)) 8565 perf_swevent_event(event, count, &data, regs); 8566 } 8567 unlock: 8568 rcu_read_unlock(); 8569 } 8570 8571 perf_swevent_put_recursion_context(rctx); 8572 } 8573 EXPORT_SYMBOL_GPL(perf_tp_event); 8574 8575 static void tp_perf_event_destroy(struct perf_event *event) 8576 { 8577 perf_trace_destroy(event); 8578 } 8579 8580 static int perf_tp_event_init(struct perf_event *event) 8581 { 8582 int err; 8583 8584 if (event->attr.type != PERF_TYPE_TRACEPOINT) 8585 return -ENOENT; 8586 8587 /* 8588 * no branch sampling for tracepoint events 8589 */ 8590 if (has_branch_stack(event)) 8591 return -EOPNOTSUPP; 8592 8593 err = perf_trace_init(event); 8594 if (err) 8595 return err; 8596 8597 event->destroy = tp_perf_event_destroy; 8598 8599 return 0; 8600 } 8601 8602 static struct pmu perf_tracepoint = { 8603 .task_ctx_nr = perf_sw_context, 8604 8605 .event_init = perf_tp_event_init, 8606 .add = perf_trace_add, 8607 .del = perf_trace_del, 8608 .start = perf_swevent_start, 8609 .stop = perf_swevent_stop, 8610 .read = perf_swevent_read, 8611 }; 8612 8613 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS) 8614 /* 8615 * Flags in config, used by dynamic PMU kprobe and uprobe 8616 * The flags should match following PMU_FORMAT_ATTR(). 8617 * 8618 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe 8619 * if not set, create kprobe/uprobe 8620 * 8621 * The following values specify a reference counter (or semaphore in the 8622 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically 8623 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset. 8624 * 8625 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset 8626 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left 8627 */ 8628 enum perf_probe_config { 8629 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */ 8630 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32, 8631 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS, 8632 }; 8633 8634 PMU_FORMAT_ATTR(retprobe, "config:0"); 8635 #endif 8636 8637 #ifdef CONFIG_KPROBE_EVENTS 8638 static struct attribute *kprobe_attrs[] = { 8639 &format_attr_retprobe.attr, 8640 NULL, 8641 }; 8642 8643 static struct attribute_group kprobe_format_group = { 8644 .name = "format", 8645 .attrs = kprobe_attrs, 8646 }; 8647 8648 static const struct attribute_group *kprobe_attr_groups[] = { 8649 &kprobe_format_group, 8650 NULL, 8651 }; 8652 8653 static int perf_kprobe_event_init(struct perf_event *event); 8654 static struct pmu perf_kprobe = { 8655 .task_ctx_nr = perf_sw_context, 8656 .event_init = perf_kprobe_event_init, 8657 .add = perf_trace_add, 8658 .del = perf_trace_del, 8659 .start = perf_swevent_start, 8660 .stop = perf_swevent_stop, 8661 .read = perf_swevent_read, 8662 .attr_groups = kprobe_attr_groups, 8663 }; 8664 8665 static int perf_kprobe_event_init(struct perf_event *event) 8666 { 8667 int err; 8668 bool is_retprobe; 8669 8670 if (event->attr.type != perf_kprobe.type) 8671 return -ENOENT; 8672 8673 if (!capable(CAP_SYS_ADMIN)) 8674 return -EACCES; 8675 8676 /* 8677 * no branch sampling for probe events 8678 */ 8679 if (has_branch_stack(event)) 8680 return -EOPNOTSUPP; 8681 8682 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8683 err = perf_kprobe_init(event, is_retprobe); 8684 if (err) 8685 return err; 8686 8687 event->destroy = perf_kprobe_destroy; 8688 8689 return 0; 8690 } 8691 #endif /* CONFIG_KPROBE_EVENTS */ 8692 8693 #ifdef CONFIG_UPROBE_EVENTS 8694 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63"); 8695 8696 static struct attribute *uprobe_attrs[] = { 8697 &format_attr_retprobe.attr, 8698 &format_attr_ref_ctr_offset.attr, 8699 NULL, 8700 }; 8701 8702 static struct attribute_group uprobe_format_group = { 8703 .name = "format", 8704 .attrs = uprobe_attrs, 8705 }; 8706 8707 static const struct attribute_group *uprobe_attr_groups[] = { 8708 &uprobe_format_group, 8709 NULL, 8710 }; 8711 8712 static int perf_uprobe_event_init(struct perf_event *event); 8713 static struct pmu perf_uprobe = { 8714 .task_ctx_nr = perf_sw_context, 8715 .event_init = perf_uprobe_event_init, 8716 .add = perf_trace_add, 8717 .del = perf_trace_del, 8718 .start = perf_swevent_start, 8719 .stop = perf_swevent_stop, 8720 .read = perf_swevent_read, 8721 .attr_groups = uprobe_attr_groups, 8722 }; 8723 8724 static int perf_uprobe_event_init(struct perf_event *event) 8725 { 8726 int err; 8727 unsigned long ref_ctr_offset; 8728 bool is_retprobe; 8729 8730 if (event->attr.type != perf_uprobe.type) 8731 return -ENOENT; 8732 8733 if (!capable(CAP_SYS_ADMIN)) 8734 return -EACCES; 8735 8736 /* 8737 * no branch sampling for probe events 8738 */ 8739 if (has_branch_stack(event)) 8740 return -EOPNOTSUPP; 8741 8742 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE; 8743 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 8744 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe); 8745 if (err) 8746 return err; 8747 8748 event->destroy = perf_uprobe_destroy; 8749 8750 return 0; 8751 } 8752 #endif /* CONFIG_UPROBE_EVENTS */ 8753 8754 static inline void perf_tp_register(void) 8755 { 8756 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT); 8757 #ifdef CONFIG_KPROBE_EVENTS 8758 perf_pmu_register(&perf_kprobe, "kprobe", -1); 8759 #endif 8760 #ifdef CONFIG_UPROBE_EVENTS 8761 perf_pmu_register(&perf_uprobe, "uprobe", -1); 8762 #endif 8763 } 8764 8765 static void perf_event_free_filter(struct perf_event *event) 8766 { 8767 ftrace_profile_free_filter(event); 8768 } 8769 8770 #ifdef CONFIG_BPF_SYSCALL 8771 static void bpf_overflow_handler(struct perf_event *event, 8772 struct perf_sample_data *data, 8773 struct pt_regs *regs) 8774 { 8775 struct bpf_perf_event_data_kern ctx = { 8776 .data = data, 8777 .event = event, 8778 }; 8779 int ret = 0; 8780 8781 ctx.regs = perf_arch_bpf_user_pt_regs(regs); 8782 preempt_disable(); 8783 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) 8784 goto out; 8785 rcu_read_lock(); 8786 ret = BPF_PROG_RUN(event->prog, &ctx); 8787 rcu_read_unlock(); 8788 out: 8789 __this_cpu_dec(bpf_prog_active); 8790 preempt_enable(); 8791 if (!ret) 8792 return; 8793 8794 event->orig_overflow_handler(event, data, regs); 8795 } 8796 8797 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8798 { 8799 struct bpf_prog *prog; 8800 8801 if (event->overflow_handler_context) 8802 /* hw breakpoint or kernel counter */ 8803 return -EINVAL; 8804 8805 if (event->prog) 8806 return -EEXIST; 8807 8808 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT); 8809 if (IS_ERR(prog)) 8810 return PTR_ERR(prog); 8811 8812 event->prog = prog; 8813 event->orig_overflow_handler = READ_ONCE(event->overflow_handler); 8814 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler); 8815 return 0; 8816 } 8817 8818 static void perf_event_free_bpf_handler(struct perf_event *event) 8819 { 8820 struct bpf_prog *prog = event->prog; 8821 8822 if (!prog) 8823 return; 8824 8825 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler); 8826 event->prog = NULL; 8827 bpf_prog_put(prog); 8828 } 8829 #else 8830 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd) 8831 { 8832 return -EOPNOTSUPP; 8833 } 8834 static void perf_event_free_bpf_handler(struct perf_event *event) 8835 { 8836 } 8837 #endif 8838 8839 /* 8840 * returns true if the event is a tracepoint, or a kprobe/upprobe created 8841 * with perf_event_open() 8842 */ 8843 static inline bool perf_event_is_tracing(struct perf_event *event) 8844 { 8845 if (event->pmu == &perf_tracepoint) 8846 return true; 8847 #ifdef CONFIG_KPROBE_EVENTS 8848 if (event->pmu == &perf_kprobe) 8849 return true; 8850 #endif 8851 #ifdef CONFIG_UPROBE_EVENTS 8852 if (event->pmu == &perf_uprobe) 8853 return true; 8854 #endif 8855 return false; 8856 } 8857 8858 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8859 { 8860 bool is_kprobe, is_tracepoint, is_syscall_tp; 8861 struct bpf_prog *prog; 8862 int ret; 8863 8864 if (!perf_event_is_tracing(event)) 8865 return perf_event_set_bpf_handler(event, prog_fd); 8866 8867 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE; 8868 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT; 8869 is_syscall_tp = is_syscall_trace_event(event->tp_event); 8870 if (!is_kprobe && !is_tracepoint && !is_syscall_tp) 8871 /* bpf programs can only be attached to u/kprobe or tracepoint */ 8872 return -EINVAL; 8873 8874 prog = bpf_prog_get(prog_fd); 8875 if (IS_ERR(prog)) 8876 return PTR_ERR(prog); 8877 8878 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) || 8879 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) || 8880 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) { 8881 /* valid fd, but invalid bpf program type */ 8882 bpf_prog_put(prog); 8883 return -EINVAL; 8884 } 8885 8886 /* Kprobe override only works for kprobes, not uprobes. */ 8887 if (prog->kprobe_override && 8888 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) { 8889 bpf_prog_put(prog); 8890 return -EINVAL; 8891 } 8892 8893 if (is_tracepoint || is_syscall_tp) { 8894 int off = trace_event_get_offsets(event->tp_event); 8895 8896 if (prog->aux->max_ctx_offset > off) { 8897 bpf_prog_put(prog); 8898 return -EACCES; 8899 } 8900 } 8901 8902 ret = perf_event_attach_bpf_prog(event, prog); 8903 if (ret) 8904 bpf_prog_put(prog); 8905 return ret; 8906 } 8907 8908 static void perf_event_free_bpf_prog(struct perf_event *event) 8909 { 8910 if (!perf_event_is_tracing(event)) { 8911 perf_event_free_bpf_handler(event); 8912 return; 8913 } 8914 perf_event_detach_bpf_prog(event); 8915 } 8916 8917 #else 8918 8919 static inline void perf_tp_register(void) 8920 { 8921 } 8922 8923 static void perf_event_free_filter(struct perf_event *event) 8924 { 8925 } 8926 8927 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd) 8928 { 8929 return -ENOENT; 8930 } 8931 8932 static void perf_event_free_bpf_prog(struct perf_event *event) 8933 { 8934 } 8935 #endif /* CONFIG_EVENT_TRACING */ 8936 8937 #ifdef CONFIG_HAVE_HW_BREAKPOINT 8938 void perf_bp_event(struct perf_event *bp, void *data) 8939 { 8940 struct perf_sample_data sample; 8941 struct pt_regs *regs = data; 8942 8943 perf_sample_data_init(&sample, bp->attr.bp_addr, 0); 8944 8945 if (!bp->hw.state && !perf_exclude_event(bp, regs)) 8946 perf_swevent_event(bp, 1, &sample, regs); 8947 } 8948 #endif 8949 8950 /* 8951 * Allocate a new address filter 8952 */ 8953 static struct perf_addr_filter * 8954 perf_addr_filter_new(struct perf_event *event, struct list_head *filters) 8955 { 8956 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu); 8957 struct perf_addr_filter *filter; 8958 8959 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node); 8960 if (!filter) 8961 return NULL; 8962 8963 INIT_LIST_HEAD(&filter->entry); 8964 list_add_tail(&filter->entry, filters); 8965 8966 return filter; 8967 } 8968 8969 static void free_filters_list(struct list_head *filters) 8970 { 8971 struct perf_addr_filter *filter, *iter; 8972 8973 list_for_each_entry_safe(filter, iter, filters, entry) { 8974 path_put(&filter->path); 8975 list_del(&filter->entry); 8976 kfree(filter); 8977 } 8978 } 8979 8980 /* 8981 * Free existing address filters and optionally install new ones 8982 */ 8983 static void perf_addr_filters_splice(struct perf_event *event, 8984 struct list_head *head) 8985 { 8986 unsigned long flags; 8987 LIST_HEAD(list); 8988 8989 if (!has_addr_filter(event)) 8990 return; 8991 8992 /* don't bother with children, they don't have their own filters */ 8993 if (event->parent) 8994 return; 8995 8996 raw_spin_lock_irqsave(&event->addr_filters.lock, flags); 8997 8998 list_splice_init(&event->addr_filters.list, &list); 8999 if (head) 9000 list_splice(head, &event->addr_filters.list); 9001 9002 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags); 9003 9004 free_filters_list(&list); 9005 } 9006 9007 /* 9008 * Scan through mm's vmas and see if one of them matches the 9009 * @filter; if so, adjust filter's address range. 9010 * Called with mm::mmap_sem down for reading. 9011 */ 9012 static void perf_addr_filter_apply(struct perf_addr_filter *filter, 9013 struct mm_struct *mm, 9014 struct perf_addr_filter_range *fr) 9015 { 9016 struct vm_area_struct *vma; 9017 9018 for (vma = mm->mmap; vma; vma = vma->vm_next) { 9019 if (!vma->vm_file) 9020 continue; 9021 9022 if (perf_addr_filter_vma_adjust(filter, vma, fr)) 9023 return; 9024 } 9025 } 9026 9027 /* 9028 * Update event's address range filters based on the 9029 * task's existing mappings, if any. 9030 */ 9031 static void perf_event_addr_filters_apply(struct perf_event *event) 9032 { 9033 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 9034 struct task_struct *task = READ_ONCE(event->ctx->task); 9035 struct perf_addr_filter *filter; 9036 struct mm_struct *mm = NULL; 9037 unsigned int count = 0; 9038 unsigned long flags; 9039 9040 /* 9041 * We may observe TASK_TOMBSTONE, which means that the event tear-down 9042 * will stop on the parent's child_mutex that our caller is also holding 9043 */ 9044 if (task == TASK_TOMBSTONE) 9045 return; 9046 9047 if (!ifh->nr_file_filters) 9048 return; 9049 9050 mm = get_task_mm(event->ctx->task); 9051 if (!mm) 9052 goto restart; 9053 9054 down_read(&mm->mmap_sem); 9055 9056 raw_spin_lock_irqsave(&ifh->lock, flags); 9057 list_for_each_entry(filter, &ifh->list, entry) { 9058 event->addr_filter_ranges[count].start = 0; 9059 event->addr_filter_ranges[count].size = 0; 9060 9061 /* 9062 * Adjust base offset if the filter is associated to a binary 9063 * that needs to be mapped: 9064 */ 9065 if (filter->path.dentry) 9066 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]); 9067 9068 count++; 9069 } 9070 9071 event->addr_filters_gen++; 9072 raw_spin_unlock_irqrestore(&ifh->lock, flags); 9073 9074 up_read(&mm->mmap_sem); 9075 9076 mmput(mm); 9077 9078 restart: 9079 perf_event_stop(event, 1); 9080 } 9081 9082 /* 9083 * Address range filtering: limiting the data to certain 9084 * instruction address ranges. Filters are ioctl()ed to us from 9085 * userspace as ascii strings. 9086 * 9087 * Filter string format: 9088 * 9089 * ACTION RANGE_SPEC 9090 * where ACTION is one of the 9091 * * "filter": limit the trace to this region 9092 * * "start": start tracing from this address 9093 * * "stop": stop tracing at this address/region; 9094 * RANGE_SPEC is 9095 * * for kernel addresses: <start address>[/<size>] 9096 * * for object files: <start address>[/<size>]@</path/to/object/file> 9097 * 9098 * if <size> is not specified or is zero, the range is treated as a single 9099 * address; not valid for ACTION=="filter". 9100 */ 9101 enum { 9102 IF_ACT_NONE = -1, 9103 IF_ACT_FILTER, 9104 IF_ACT_START, 9105 IF_ACT_STOP, 9106 IF_SRC_FILE, 9107 IF_SRC_KERNEL, 9108 IF_SRC_FILEADDR, 9109 IF_SRC_KERNELADDR, 9110 }; 9111 9112 enum { 9113 IF_STATE_ACTION = 0, 9114 IF_STATE_SOURCE, 9115 IF_STATE_END, 9116 }; 9117 9118 static const match_table_t if_tokens = { 9119 { IF_ACT_FILTER, "filter" }, 9120 { IF_ACT_START, "start" }, 9121 { IF_ACT_STOP, "stop" }, 9122 { IF_SRC_FILE, "%u/%u@%s" }, 9123 { IF_SRC_KERNEL, "%u/%u" }, 9124 { IF_SRC_FILEADDR, "%u@%s" }, 9125 { IF_SRC_KERNELADDR, "%u" }, 9126 { IF_ACT_NONE, NULL }, 9127 }; 9128 9129 /* 9130 * Address filter string parser 9131 */ 9132 static int 9133 perf_event_parse_addr_filter(struct perf_event *event, char *fstr, 9134 struct list_head *filters) 9135 { 9136 struct perf_addr_filter *filter = NULL; 9137 char *start, *orig, *filename = NULL; 9138 substring_t args[MAX_OPT_ARGS]; 9139 int state = IF_STATE_ACTION, token; 9140 unsigned int kernel = 0; 9141 int ret = -EINVAL; 9142 9143 orig = fstr = kstrdup(fstr, GFP_KERNEL); 9144 if (!fstr) 9145 return -ENOMEM; 9146 9147 while ((start = strsep(&fstr, " ,\n")) != NULL) { 9148 static const enum perf_addr_filter_action_t actions[] = { 9149 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER, 9150 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START, 9151 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP, 9152 }; 9153 ret = -EINVAL; 9154 9155 if (!*start) 9156 continue; 9157 9158 /* filter definition begins */ 9159 if (state == IF_STATE_ACTION) { 9160 filter = perf_addr_filter_new(event, filters); 9161 if (!filter) 9162 goto fail; 9163 } 9164 9165 token = match_token(start, if_tokens, args); 9166 switch (token) { 9167 case IF_ACT_FILTER: 9168 case IF_ACT_START: 9169 case IF_ACT_STOP: 9170 if (state != IF_STATE_ACTION) 9171 goto fail; 9172 9173 filter->action = actions[token]; 9174 state = IF_STATE_SOURCE; 9175 break; 9176 9177 case IF_SRC_KERNELADDR: 9178 case IF_SRC_KERNEL: 9179 kernel = 1; 9180 /* fall through */ 9181 9182 case IF_SRC_FILEADDR: 9183 case IF_SRC_FILE: 9184 if (state != IF_STATE_SOURCE) 9185 goto fail; 9186 9187 *args[0].to = 0; 9188 ret = kstrtoul(args[0].from, 0, &filter->offset); 9189 if (ret) 9190 goto fail; 9191 9192 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) { 9193 *args[1].to = 0; 9194 ret = kstrtoul(args[1].from, 0, &filter->size); 9195 if (ret) 9196 goto fail; 9197 } 9198 9199 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) { 9200 int fpos = token == IF_SRC_FILE ? 2 : 1; 9201 9202 filename = match_strdup(&args[fpos]); 9203 if (!filename) { 9204 ret = -ENOMEM; 9205 goto fail; 9206 } 9207 } 9208 9209 state = IF_STATE_END; 9210 break; 9211 9212 default: 9213 goto fail; 9214 } 9215 9216 /* 9217 * Filter definition is fully parsed, validate and install it. 9218 * Make sure that it doesn't contradict itself or the event's 9219 * attribute. 9220 */ 9221 if (state == IF_STATE_END) { 9222 ret = -EINVAL; 9223 if (kernel && event->attr.exclude_kernel) 9224 goto fail; 9225 9226 /* 9227 * ACTION "filter" must have a non-zero length region 9228 * specified. 9229 */ 9230 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER && 9231 !filter->size) 9232 goto fail; 9233 9234 if (!kernel) { 9235 if (!filename) 9236 goto fail; 9237 9238 /* 9239 * For now, we only support file-based filters 9240 * in per-task events; doing so for CPU-wide 9241 * events requires additional context switching 9242 * trickery, since same object code will be 9243 * mapped at different virtual addresses in 9244 * different processes. 9245 */ 9246 ret = -EOPNOTSUPP; 9247 if (!event->ctx->task) 9248 goto fail_free_name; 9249 9250 /* look up the path and grab its inode */ 9251 ret = kern_path(filename, LOOKUP_FOLLOW, 9252 &filter->path); 9253 if (ret) 9254 goto fail_free_name; 9255 9256 kfree(filename); 9257 filename = NULL; 9258 9259 ret = -EINVAL; 9260 if (!filter->path.dentry || 9261 !S_ISREG(d_inode(filter->path.dentry) 9262 ->i_mode)) 9263 goto fail; 9264 9265 event->addr_filters.nr_file_filters++; 9266 } 9267 9268 /* ready to consume more filters */ 9269 state = IF_STATE_ACTION; 9270 filter = NULL; 9271 } 9272 } 9273 9274 if (state != IF_STATE_ACTION) 9275 goto fail; 9276 9277 kfree(orig); 9278 9279 return 0; 9280 9281 fail_free_name: 9282 kfree(filename); 9283 fail: 9284 free_filters_list(filters); 9285 kfree(orig); 9286 9287 return ret; 9288 } 9289 9290 static int 9291 perf_event_set_addr_filter(struct perf_event *event, char *filter_str) 9292 { 9293 LIST_HEAD(filters); 9294 int ret; 9295 9296 /* 9297 * Since this is called in perf_ioctl() path, we're already holding 9298 * ctx::mutex. 9299 */ 9300 lockdep_assert_held(&event->ctx->mutex); 9301 9302 if (WARN_ON_ONCE(event->parent)) 9303 return -EINVAL; 9304 9305 ret = perf_event_parse_addr_filter(event, filter_str, &filters); 9306 if (ret) 9307 goto fail_clear_files; 9308 9309 ret = event->pmu->addr_filters_validate(&filters); 9310 if (ret) 9311 goto fail_free_filters; 9312 9313 /* remove existing filters, if any */ 9314 perf_addr_filters_splice(event, &filters); 9315 9316 /* install new filters */ 9317 perf_event_for_each_child(event, perf_event_addr_filters_apply); 9318 9319 return ret; 9320 9321 fail_free_filters: 9322 free_filters_list(&filters); 9323 9324 fail_clear_files: 9325 event->addr_filters.nr_file_filters = 0; 9326 9327 return ret; 9328 } 9329 9330 static int perf_event_set_filter(struct perf_event *event, void __user *arg) 9331 { 9332 int ret = -EINVAL; 9333 char *filter_str; 9334 9335 filter_str = strndup_user(arg, PAGE_SIZE); 9336 if (IS_ERR(filter_str)) 9337 return PTR_ERR(filter_str); 9338 9339 #ifdef CONFIG_EVENT_TRACING 9340 if (perf_event_is_tracing(event)) { 9341 struct perf_event_context *ctx = event->ctx; 9342 9343 /* 9344 * Beware, here be dragons!! 9345 * 9346 * the tracepoint muck will deadlock against ctx->mutex, but 9347 * the tracepoint stuff does not actually need it. So 9348 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we 9349 * already have a reference on ctx. 9350 * 9351 * This can result in event getting moved to a different ctx, 9352 * but that does not affect the tracepoint state. 9353 */ 9354 mutex_unlock(&ctx->mutex); 9355 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); 9356 mutex_lock(&ctx->mutex); 9357 } else 9358 #endif 9359 if (has_addr_filter(event)) 9360 ret = perf_event_set_addr_filter(event, filter_str); 9361 9362 kfree(filter_str); 9363 return ret; 9364 } 9365 9366 /* 9367 * hrtimer based swevent callback 9368 */ 9369 9370 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) 9371 { 9372 enum hrtimer_restart ret = HRTIMER_RESTART; 9373 struct perf_sample_data data; 9374 struct pt_regs *regs; 9375 struct perf_event *event; 9376 u64 period; 9377 9378 event = container_of(hrtimer, struct perf_event, hw.hrtimer); 9379 9380 if (event->state != PERF_EVENT_STATE_ACTIVE) 9381 return HRTIMER_NORESTART; 9382 9383 event->pmu->read(event); 9384 9385 perf_sample_data_init(&data, 0, event->hw.last_period); 9386 regs = get_irq_regs(); 9387 9388 if (regs && !perf_exclude_event(event, regs)) { 9389 if (!(event->attr.exclude_idle && is_idle_task(current))) 9390 if (__perf_event_overflow(event, 1, &data, regs)) 9391 ret = HRTIMER_NORESTART; 9392 } 9393 9394 period = max_t(u64, 10000, event->hw.sample_period); 9395 hrtimer_forward_now(hrtimer, ns_to_ktime(period)); 9396 9397 return ret; 9398 } 9399 9400 static void perf_swevent_start_hrtimer(struct perf_event *event) 9401 { 9402 struct hw_perf_event *hwc = &event->hw; 9403 s64 period; 9404 9405 if (!is_sampling_event(event)) 9406 return; 9407 9408 period = local64_read(&hwc->period_left); 9409 if (period) { 9410 if (period < 0) 9411 period = 10000; 9412 9413 local64_set(&hwc->period_left, 0); 9414 } else { 9415 period = max_t(u64, 10000, hwc->sample_period); 9416 } 9417 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), 9418 HRTIMER_MODE_REL_PINNED); 9419 } 9420 9421 static void perf_swevent_cancel_hrtimer(struct perf_event *event) 9422 { 9423 struct hw_perf_event *hwc = &event->hw; 9424 9425 if (is_sampling_event(event)) { 9426 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); 9427 local64_set(&hwc->period_left, ktime_to_ns(remaining)); 9428 9429 hrtimer_cancel(&hwc->hrtimer); 9430 } 9431 } 9432 9433 static void perf_swevent_init_hrtimer(struct perf_event *event) 9434 { 9435 struct hw_perf_event *hwc = &event->hw; 9436 9437 if (!is_sampling_event(event)) 9438 return; 9439 9440 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 9441 hwc->hrtimer.function = perf_swevent_hrtimer; 9442 9443 /* 9444 * Since hrtimers have a fixed rate, we can do a static freq->period 9445 * mapping and avoid the whole period adjust feedback stuff. 9446 */ 9447 if (event->attr.freq) { 9448 long freq = event->attr.sample_freq; 9449 9450 event->attr.sample_period = NSEC_PER_SEC / freq; 9451 hwc->sample_period = event->attr.sample_period; 9452 local64_set(&hwc->period_left, hwc->sample_period); 9453 hwc->last_period = hwc->sample_period; 9454 event->attr.freq = 0; 9455 } 9456 } 9457 9458 /* 9459 * Software event: cpu wall time clock 9460 */ 9461 9462 static void cpu_clock_event_update(struct perf_event *event) 9463 { 9464 s64 prev; 9465 u64 now; 9466 9467 now = local_clock(); 9468 prev = local64_xchg(&event->hw.prev_count, now); 9469 local64_add(now - prev, &event->count); 9470 } 9471 9472 static void cpu_clock_event_start(struct perf_event *event, int flags) 9473 { 9474 local64_set(&event->hw.prev_count, local_clock()); 9475 perf_swevent_start_hrtimer(event); 9476 } 9477 9478 static void cpu_clock_event_stop(struct perf_event *event, int flags) 9479 { 9480 perf_swevent_cancel_hrtimer(event); 9481 cpu_clock_event_update(event); 9482 } 9483 9484 static int cpu_clock_event_add(struct perf_event *event, int flags) 9485 { 9486 if (flags & PERF_EF_START) 9487 cpu_clock_event_start(event, flags); 9488 perf_event_update_userpage(event); 9489 9490 return 0; 9491 } 9492 9493 static void cpu_clock_event_del(struct perf_event *event, int flags) 9494 { 9495 cpu_clock_event_stop(event, flags); 9496 } 9497 9498 static void cpu_clock_event_read(struct perf_event *event) 9499 { 9500 cpu_clock_event_update(event); 9501 } 9502 9503 static int cpu_clock_event_init(struct perf_event *event) 9504 { 9505 if (event->attr.type != PERF_TYPE_SOFTWARE) 9506 return -ENOENT; 9507 9508 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK) 9509 return -ENOENT; 9510 9511 /* 9512 * no branch sampling for software events 9513 */ 9514 if (has_branch_stack(event)) 9515 return -EOPNOTSUPP; 9516 9517 perf_swevent_init_hrtimer(event); 9518 9519 return 0; 9520 } 9521 9522 static struct pmu perf_cpu_clock = { 9523 .task_ctx_nr = perf_sw_context, 9524 9525 .capabilities = PERF_PMU_CAP_NO_NMI, 9526 9527 .event_init = cpu_clock_event_init, 9528 .add = cpu_clock_event_add, 9529 .del = cpu_clock_event_del, 9530 .start = cpu_clock_event_start, 9531 .stop = cpu_clock_event_stop, 9532 .read = cpu_clock_event_read, 9533 }; 9534 9535 /* 9536 * Software event: task time clock 9537 */ 9538 9539 static void task_clock_event_update(struct perf_event *event, u64 now) 9540 { 9541 u64 prev; 9542 s64 delta; 9543 9544 prev = local64_xchg(&event->hw.prev_count, now); 9545 delta = now - prev; 9546 local64_add(delta, &event->count); 9547 } 9548 9549 static void task_clock_event_start(struct perf_event *event, int flags) 9550 { 9551 local64_set(&event->hw.prev_count, event->ctx->time); 9552 perf_swevent_start_hrtimer(event); 9553 } 9554 9555 static void task_clock_event_stop(struct perf_event *event, int flags) 9556 { 9557 perf_swevent_cancel_hrtimer(event); 9558 task_clock_event_update(event, event->ctx->time); 9559 } 9560 9561 static int task_clock_event_add(struct perf_event *event, int flags) 9562 { 9563 if (flags & PERF_EF_START) 9564 task_clock_event_start(event, flags); 9565 perf_event_update_userpage(event); 9566 9567 return 0; 9568 } 9569 9570 static void task_clock_event_del(struct perf_event *event, int flags) 9571 { 9572 task_clock_event_stop(event, PERF_EF_UPDATE); 9573 } 9574 9575 static void task_clock_event_read(struct perf_event *event) 9576 { 9577 u64 now = perf_clock(); 9578 u64 delta = now - event->ctx->timestamp; 9579 u64 time = event->ctx->time + delta; 9580 9581 task_clock_event_update(event, time); 9582 } 9583 9584 static int task_clock_event_init(struct perf_event *event) 9585 { 9586 if (event->attr.type != PERF_TYPE_SOFTWARE) 9587 return -ENOENT; 9588 9589 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK) 9590 return -ENOENT; 9591 9592 /* 9593 * no branch sampling for software events 9594 */ 9595 if (has_branch_stack(event)) 9596 return -EOPNOTSUPP; 9597 9598 perf_swevent_init_hrtimer(event); 9599 9600 return 0; 9601 } 9602 9603 static struct pmu perf_task_clock = { 9604 .task_ctx_nr = perf_sw_context, 9605 9606 .capabilities = PERF_PMU_CAP_NO_NMI, 9607 9608 .event_init = task_clock_event_init, 9609 .add = task_clock_event_add, 9610 .del = task_clock_event_del, 9611 .start = task_clock_event_start, 9612 .stop = task_clock_event_stop, 9613 .read = task_clock_event_read, 9614 }; 9615 9616 static void perf_pmu_nop_void(struct pmu *pmu) 9617 { 9618 } 9619 9620 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags) 9621 { 9622 } 9623 9624 static int perf_pmu_nop_int(struct pmu *pmu) 9625 { 9626 return 0; 9627 } 9628 9629 static int perf_event_nop_int(struct perf_event *event, u64 value) 9630 { 9631 return 0; 9632 } 9633 9634 static DEFINE_PER_CPU(unsigned int, nop_txn_flags); 9635 9636 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags) 9637 { 9638 __this_cpu_write(nop_txn_flags, flags); 9639 9640 if (flags & ~PERF_PMU_TXN_ADD) 9641 return; 9642 9643 perf_pmu_disable(pmu); 9644 } 9645 9646 static int perf_pmu_commit_txn(struct pmu *pmu) 9647 { 9648 unsigned int flags = __this_cpu_read(nop_txn_flags); 9649 9650 __this_cpu_write(nop_txn_flags, 0); 9651 9652 if (flags & ~PERF_PMU_TXN_ADD) 9653 return 0; 9654 9655 perf_pmu_enable(pmu); 9656 return 0; 9657 } 9658 9659 static void perf_pmu_cancel_txn(struct pmu *pmu) 9660 { 9661 unsigned int flags = __this_cpu_read(nop_txn_flags); 9662 9663 __this_cpu_write(nop_txn_flags, 0); 9664 9665 if (flags & ~PERF_PMU_TXN_ADD) 9666 return; 9667 9668 perf_pmu_enable(pmu); 9669 } 9670 9671 static int perf_event_idx_default(struct perf_event *event) 9672 { 9673 return 0; 9674 } 9675 9676 /* 9677 * Ensures all contexts with the same task_ctx_nr have the same 9678 * pmu_cpu_context too. 9679 */ 9680 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn) 9681 { 9682 struct pmu *pmu; 9683 9684 if (ctxn < 0) 9685 return NULL; 9686 9687 list_for_each_entry(pmu, &pmus, entry) { 9688 if (pmu->task_ctx_nr == ctxn) 9689 return pmu->pmu_cpu_context; 9690 } 9691 9692 return NULL; 9693 } 9694 9695 static void free_pmu_context(struct pmu *pmu) 9696 { 9697 /* 9698 * Static contexts such as perf_sw_context have a global lifetime 9699 * and may be shared between different PMUs. Avoid freeing them 9700 * when a single PMU is going away. 9701 */ 9702 if (pmu->task_ctx_nr > perf_invalid_context) 9703 return; 9704 9705 free_percpu(pmu->pmu_cpu_context); 9706 } 9707 9708 /* 9709 * Let userspace know that this PMU supports address range filtering: 9710 */ 9711 static ssize_t nr_addr_filters_show(struct device *dev, 9712 struct device_attribute *attr, 9713 char *page) 9714 { 9715 struct pmu *pmu = dev_get_drvdata(dev); 9716 9717 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters); 9718 } 9719 DEVICE_ATTR_RO(nr_addr_filters); 9720 9721 static struct idr pmu_idr; 9722 9723 static ssize_t 9724 type_show(struct device *dev, struct device_attribute *attr, char *page) 9725 { 9726 struct pmu *pmu = dev_get_drvdata(dev); 9727 9728 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type); 9729 } 9730 static DEVICE_ATTR_RO(type); 9731 9732 static ssize_t 9733 perf_event_mux_interval_ms_show(struct device *dev, 9734 struct device_attribute *attr, 9735 char *page) 9736 { 9737 struct pmu *pmu = dev_get_drvdata(dev); 9738 9739 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms); 9740 } 9741 9742 static DEFINE_MUTEX(mux_interval_mutex); 9743 9744 static ssize_t 9745 perf_event_mux_interval_ms_store(struct device *dev, 9746 struct device_attribute *attr, 9747 const char *buf, size_t count) 9748 { 9749 struct pmu *pmu = dev_get_drvdata(dev); 9750 int timer, cpu, ret; 9751 9752 ret = kstrtoint(buf, 0, &timer); 9753 if (ret) 9754 return ret; 9755 9756 if (timer < 1) 9757 return -EINVAL; 9758 9759 /* same value, noting to do */ 9760 if (timer == pmu->hrtimer_interval_ms) 9761 return count; 9762 9763 mutex_lock(&mux_interval_mutex); 9764 pmu->hrtimer_interval_ms = timer; 9765 9766 /* update all cpuctx for this PMU */ 9767 cpus_read_lock(); 9768 for_each_online_cpu(cpu) { 9769 struct perf_cpu_context *cpuctx; 9770 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9771 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer); 9772 9773 cpu_function_call(cpu, 9774 (remote_function_f)perf_mux_hrtimer_restart, cpuctx); 9775 } 9776 cpus_read_unlock(); 9777 mutex_unlock(&mux_interval_mutex); 9778 9779 return count; 9780 } 9781 static DEVICE_ATTR_RW(perf_event_mux_interval_ms); 9782 9783 static struct attribute *pmu_dev_attrs[] = { 9784 &dev_attr_type.attr, 9785 &dev_attr_perf_event_mux_interval_ms.attr, 9786 NULL, 9787 }; 9788 ATTRIBUTE_GROUPS(pmu_dev); 9789 9790 static int pmu_bus_running; 9791 static struct bus_type pmu_bus = { 9792 .name = "event_source", 9793 .dev_groups = pmu_dev_groups, 9794 }; 9795 9796 static void pmu_dev_release(struct device *dev) 9797 { 9798 kfree(dev); 9799 } 9800 9801 static int pmu_dev_alloc(struct pmu *pmu) 9802 { 9803 int ret = -ENOMEM; 9804 9805 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL); 9806 if (!pmu->dev) 9807 goto out; 9808 9809 pmu->dev->groups = pmu->attr_groups; 9810 device_initialize(pmu->dev); 9811 ret = dev_set_name(pmu->dev, "%s", pmu->name); 9812 if (ret) 9813 goto free_dev; 9814 9815 dev_set_drvdata(pmu->dev, pmu); 9816 pmu->dev->bus = &pmu_bus; 9817 pmu->dev->release = pmu_dev_release; 9818 ret = device_add(pmu->dev); 9819 if (ret) 9820 goto free_dev; 9821 9822 /* For PMUs with address filters, throw in an extra attribute: */ 9823 if (pmu->nr_addr_filters) 9824 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters); 9825 9826 if (ret) 9827 goto del_dev; 9828 9829 out: 9830 return ret; 9831 9832 del_dev: 9833 device_del(pmu->dev); 9834 9835 free_dev: 9836 put_device(pmu->dev); 9837 goto out; 9838 } 9839 9840 static struct lock_class_key cpuctx_mutex; 9841 static struct lock_class_key cpuctx_lock; 9842 9843 int perf_pmu_register(struct pmu *pmu, const char *name, int type) 9844 { 9845 int cpu, ret; 9846 9847 mutex_lock(&pmus_lock); 9848 ret = -ENOMEM; 9849 pmu->pmu_disable_count = alloc_percpu(int); 9850 if (!pmu->pmu_disable_count) 9851 goto unlock; 9852 9853 pmu->type = -1; 9854 if (!name) 9855 goto skip_type; 9856 pmu->name = name; 9857 9858 if (type < 0) { 9859 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL); 9860 if (type < 0) { 9861 ret = type; 9862 goto free_pdc; 9863 } 9864 } 9865 pmu->type = type; 9866 9867 if (pmu_bus_running) { 9868 ret = pmu_dev_alloc(pmu); 9869 if (ret) 9870 goto free_idr; 9871 } 9872 9873 skip_type: 9874 if (pmu->task_ctx_nr == perf_hw_context) { 9875 static int hw_context_taken = 0; 9876 9877 /* 9878 * Other than systems with heterogeneous CPUs, it never makes 9879 * sense for two PMUs to share perf_hw_context. PMUs which are 9880 * uncore must use perf_invalid_context. 9881 */ 9882 if (WARN_ON_ONCE(hw_context_taken && 9883 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS))) 9884 pmu->task_ctx_nr = perf_invalid_context; 9885 9886 hw_context_taken = 1; 9887 } 9888 9889 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr); 9890 if (pmu->pmu_cpu_context) 9891 goto got_cpu_context; 9892 9893 ret = -ENOMEM; 9894 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context); 9895 if (!pmu->pmu_cpu_context) 9896 goto free_dev; 9897 9898 for_each_possible_cpu(cpu) { 9899 struct perf_cpu_context *cpuctx; 9900 9901 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 9902 __perf_event_init_context(&cpuctx->ctx); 9903 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex); 9904 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock); 9905 cpuctx->ctx.pmu = pmu; 9906 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask); 9907 9908 __perf_mux_hrtimer_init(cpuctx, cpu); 9909 } 9910 9911 got_cpu_context: 9912 if (!pmu->start_txn) { 9913 if (pmu->pmu_enable) { 9914 /* 9915 * If we have pmu_enable/pmu_disable calls, install 9916 * transaction stubs that use that to try and batch 9917 * hardware accesses. 9918 */ 9919 pmu->start_txn = perf_pmu_start_txn; 9920 pmu->commit_txn = perf_pmu_commit_txn; 9921 pmu->cancel_txn = perf_pmu_cancel_txn; 9922 } else { 9923 pmu->start_txn = perf_pmu_nop_txn; 9924 pmu->commit_txn = perf_pmu_nop_int; 9925 pmu->cancel_txn = perf_pmu_nop_void; 9926 } 9927 } 9928 9929 if (!pmu->pmu_enable) { 9930 pmu->pmu_enable = perf_pmu_nop_void; 9931 pmu->pmu_disable = perf_pmu_nop_void; 9932 } 9933 9934 if (!pmu->check_period) 9935 pmu->check_period = perf_event_nop_int; 9936 9937 if (!pmu->event_idx) 9938 pmu->event_idx = perf_event_idx_default; 9939 9940 list_add_rcu(&pmu->entry, &pmus); 9941 atomic_set(&pmu->exclusive_cnt, 0); 9942 ret = 0; 9943 unlock: 9944 mutex_unlock(&pmus_lock); 9945 9946 return ret; 9947 9948 free_dev: 9949 device_del(pmu->dev); 9950 put_device(pmu->dev); 9951 9952 free_idr: 9953 if (pmu->type >= PERF_TYPE_MAX) 9954 idr_remove(&pmu_idr, pmu->type); 9955 9956 free_pdc: 9957 free_percpu(pmu->pmu_disable_count); 9958 goto unlock; 9959 } 9960 EXPORT_SYMBOL_GPL(perf_pmu_register); 9961 9962 void perf_pmu_unregister(struct pmu *pmu) 9963 { 9964 mutex_lock(&pmus_lock); 9965 list_del_rcu(&pmu->entry); 9966 9967 /* 9968 * We dereference the pmu list under both SRCU and regular RCU, so 9969 * synchronize against both of those. 9970 */ 9971 synchronize_srcu(&pmus_srcu); 9972 synchronize_rcu(); 9973 9974 free_percpu(pmu->pmu_disable_count); 9975 if (pmu->type >= PERF_TYPE_MAX) 9976 idr_remove(&pmu_idr, pmu->type); 9977 if (pmu_bus_running) { 9978 if (pmu->nr_addr_filters) 9979 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters); 9980 device_del(pmu->dev); 9981 put_device(pmu->dev); 9982 } 9983 free_pmu_context(pmu); 9984 mutex_unlock(&pmus_lock); 9985 } 9986 EXPORT_SYMBOL_GPL(perf_pmu_unregister); 9987 9988 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event) 9989 { 9990 struct perf_event_context *ctx = NULL; 9991 int ret; 9992 9993 if (!try_module_get(pmu->module)) 9994 return -ENODEV; 9995 9996 /* 9997 * A number of pmu->event_init() methods iterate the sibling_list to, 9998 * for example, validate if the group fits on the PMU. Therefore, 9999 * if this is a sibling event, acquire the ctx->mutex to protect 10000 * the sibling_list. 10001 */ 10002 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) { 10003 /* 10004 * This ctx->mutex can nest when we're called through 10005 * inheritance. See the perf_event_ctx_lock_nested() comment. 10006 */ 10007 ctx = perf_event_ctx_lock_nested(event->group_leader, 10008 SINGLE_DEPTH_NESTING); 10009 BUG_ON(!ctx); 10010 } 10011 10012 event->pmu = pmu; 10013 ret = pmu->event_init(event); 10014 10015 if (ctx) 10016 perf_event_ctx_unlock(event->group_leader, ctx); 10017 10018 if (!ret) { 10019 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE && 10020 event_has_any_exclude_flag(event)) { 10021 if (event->destroy) 10022 event->destroy(event); 10023 ret = -EINVAL; 10024 } 10025 } 10026 10027 if (ret) 10028 module_put(pmu->module); 10029 10030 return ret; 10031 } 10032 10033 static struct pmu *perf_init_event(struct perf_event *event) 10034 { 10035 struct pmu *pmu; 10036 int idx; 10037 int ret; 10038 10039 idx = srcu_read_lock(&pmus_srcu); 10040 10041 /* Try parent's PMU first: */ 10042 if (event->parent && event->parent->pmu) { 10043 pmu = event->parent->pmu; 10044 ret = perf_try_init_event(pmu, event); 10045 if (!ret) 10046 goto unlock; 10047 } 10048 10049 rcu_read_lock(); 10050 pmu = idr_find(&pmu_idr, event->attr.type); 10051 rcu_read_unlock(); 10052 if (pmu) { 10053 ret = perf_try_init_event(pmu, event); 10054 if (ret) 10055 pmu = ERR_PTR(ret); 10056 goto unlock; 10057 } 10058 10059 list_for_each_entry_rcu(pmu, &pmus, entry) { 10060 ret = perf_try_init_event(pmu, event); 10061 if (!ret) 10062 goto unlock; 10063 10064 if (ret != -ENOENT) { 10065 pmu = ERR_PTR(ret); 10066 goto unlock; 10067 } 10068 } 10069 pmu = ERR_PTR(-ENOENT); 10070 unlock: 10071 srcu_read_unlock(&pmus_srcu, idx); 10072 10073 return pmu; 10074 } 10075 10076 static void attach_sb_event(struct perf_event *event) 10077 { 10078 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu); 10079 10080 raw_spin_lock(&pel->lock); 10081 list_add_rcu(&event->sb_list, &pel->list); 10082 raw_spin_unlock(&pel->lock); 10083 } 10084 10085 /* 10086 * We keep a list of all !task (and therefore per-cpu) events 10087 * that need to receive side-band records. 10088 * 10089 * This avoids having to scan all the various PMU per-cpu contexts 10090 * looking for them. 10091 */ 10092 static void account_pmu_sb_event(struct perf_event *event) 10093 { 10094 if (is_sb_event(event)) 10095 attach_sb_event(event); 10096 } 10097 10098 static void account_event_cpu(struct perf_event *event, int cpu) 10099 { 10100 if (event->parent) 10101 return; 10102 10103 if (is_cgroup_event(event)) 10104 atomic_inc(&per_cpu(perf_cgroup_events, cpu)); 10105 } 10106 10107 /* Freq events need the tick to stay alive (see perf_event_task_tick). */ 10108 static void account_freq_event_nohz(void) 10109 { 10110 #ifdef CONFIG_NO_HZ_FULL 10111 /* Lock so we don't race with concurrent unaccount */ 10112 spin_lock(&nr_freq_lock); 10113 if (atomic_inc_return(&nr_freq_events) == 1) 10114 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS); 10115 spin_unlock(&nr_freq_lock); 10116 #endif 10117 } 10118 10119 static void account_freq_event(void) 10120 { 10121 if (tick_nohz_full_enabled()) 10122 account_freq_event_nohz(); 10123 else 10124 atomic_inc(&nr_freq_events); 10125 } 10126 10127 10128 static void account_event(struct perf_event *event) 10129 { 10130 bool inc = false; 10131 10132 if (event->parent) 10133 return; 10134 10135 if (event->attach_state & PERF_ATTACH_TASK) 10136 inc = true; 10137 if (event->attr.mmap || event->attr.mmap_data) 10138 atomic_inc(&nr_mmap_events); 10139 if (event->attr.comm) 10140 atomic_inc(&nr_comm_events); 10141 if (event->attr.namespaces) 10142 atomic_inc(&nr_namespaces_events); 10143 if (event->attr.task) 10144 atomic_inc(&nr_task_events); 10145 if (event->attr.freq) 10146 account_freq_event(); 10147 if (event->attr.context_switch) { 10148 atomic_inc(&nr_switch_events); 10149 inc = true; 10150 } 10151 if (has_branch_stack(event)) 10152 inc = true; 10153 if (is_cgroup_event(event)) 10154 inc = true; 10155 if (event->attr.ksymbol) 10156 atomic_inc(&nr_ksymbol_events); 10157 if (event->attr.bpf_event) 10158 atomic_inc(&nr_bpf_events); 10159 10160 if (inc) { 10161 /* 10162 * We need the mutex here because static_branch_enable() 10163 * must complete *before* the perf_sched_count increment 10164 * becomes visible. 10165 */ 10166 if (atomic_inc_not_zero(&perf_sched_count)) 10167 goto enabled; 10168 10169 mutex_lock(&perf_sched_mutex); 10170 if (!atomic_read(&perf_sched_count)) { 10171 static_branch_enable(&perf_sched_events); 10172 /* 10173 * Guarantee that all CPUs observe they key change and 10174 * call the perf scheduling hooks before proceeding to 10175 * install events that need them. 10176 */ 10177 synchronize_rcu(); 10178 } 10179 /* 10180 * Now that we have waited for the sync_sched(), allow further 10181 * increments to by-pass the mutex. 10182 */ 10183 atomic_inc(&perf_sched_count); 10184 mutex_unlock(&perf_sched_mutex); 10185 } 10186 enabled: 10187 10188 account_event_cpu(event, event->cpu); 10189 10190 account_pmu_sb_event(event); 10191 } 10192 10193 /* 10194 * Allocate and initialize an event structure 10195 */ 10196 static struct perf_event * 10197 perf_event_alloc(struct perf_event_attr *attr, int cpu, 10198 struct task_struct *task, 10199 struct perf_event *group_leader, 10200 struct perf_event *parent_event, 10201 perf_overflow_handler_t overflow_handler, 10202 void *context, int cgroup_fd) 10203 { 10204 struct pmu *pmu; 10205 struct perf_event *event; 10206 struct hw_perf_event *hwc; 10207 long err = -EINVAL; 10208 10209 if ((unsigned)cpu >= nr_cpu_ids) { 10210 if (!task || cpu != -1) 10211 return ERR_PTR(-EINVAL); 10212 } 10213 10214 event = kzalloc(sizeof(*event), GFP_KERNEL); 10215 if (!event) 10216 return ERR_PTR(-ENOMEM); 10217 10218 /* 10219 * Single events are their own group leaders, with an 10220 * empty sibling list: 10221 */ 10222 if (!group_leader) 10223 group_leader = event; 10224 10225 mutex_init(&event->child_mutex); 10226 INIT_LIST_HEAD(&event->child_list); 10227 10228 INIT_LIST_HEAD(&event->event_entry); 10229 INIT_LIST_HEAD(&event->sibling_list); 10230 INIT_LIST_HEAD(&event->active_list); 10231 init_event_group(event); 10232 INIT_LIST_HEAD(&event->rb_entry); 10233 INIT_LIST_HEAD(&event->active_entry); 10234 INIT_LIST_HEAD(&event->addr_filters.list); 10235 INIT_HLIST_NODE(&event->hlist_entry); 10236 10237 10238 init_waitqueue_head(&event->waitq); 10239 init_irq_work(&event->pending, perf_pending_event); 10240 10241 mutex_init(&event->mmap_mutex); 10242 raw_spin_lock_init(&event->addr_filters.lock); 10243 10244 atomic_long_set(&event->refcount, 1); 10245 event->cpu = cpu; 10246 event->attr = *attr; 10247 event->group_leader = group_leader; 10248 event->pmu = NULL; 10249 event->oncpu = -1; 10250 10251 event->parent = parent_event; 10252 10253 event->ns = get_pid_ns(task_active_pid_ns(current)); 10254 event->id = atomic64_inc_return(&perf_event_id); 10255 10256 event->state = PERF_EVENT_STATE_INACTIVE; 10257 10258 if (task) { 10259 event->attach_state = PERF_ATTACH_TASK; 10260 /* 10261 * XXX pmu::event_init needs to know what task to account to 10262 * and we cannot use the ctx information because we need the 10263 * pmu before we get a ctx. 10264 */ 10265 get_task_struct(task); 10266 event->hw.target = task; 10267 } 10268 10269 event->clock = &local_clock; 10270 if (parent_event) 10271 event->clock = parent_event->clock; 10272 10273 if (!overflow_handler && parent_event) { 10274 overflow_handler = parent_event->overflow_handler; 10275 context = parent_event->overflow_handler_context; 10276 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING) 10277 if (overflow_handler == bpf_overflow_handler) { 10278 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog); 10279 10280 if (IS_ERR(prog)) { 10281 err = PTR_ERR(prog); 10282 goto err_ns; 10283 } 10284 event->prog = prog; 10285 event->orig_overflow_handler = 10286 parent_event->orig_overflow_handler; 10287 } 10288 #endif 10289 } 10290 10291 if (overflow_handler) { 10292 event->overflow_handler = overflow_handler; 10293 event->overflow_handler_context = context; 10294 } else if (is_write_backward(event)){ 10295 event->overflow_handler = perf_event_output_backward; 10296 event->overflow_handler_context = NULL; 10297 } else { 10298 event->overflow_handler = perf_event_output_forward; 10299 event->overflow_handler_context = NULL; 10300 } 10301 10302 perf_event__state_init(event); 10303 10304 pmu = NULL; 10305 10306 hwc = &event->hw; 10307 hwc->sample_period = attr->sample_period; 10308 if (attr->freq && attr->sample_freq) 10309 hwc->sample_period = 1; 10310 hwc->last_period = hwc->sample_period; 10311 10312 local64_set(&hwc->period_left, hwc->sample_period); 10313 10314 /* 10315 * We currently do not support PERF_SAMPLE_READ on inherited events. 10316 * See perf_output_read(). 10317 */ 10318 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ)) 10319 goto err_ns; 10320 10321 if (!has_branch_stack(event)) 10322 event->attr.branch_sample_type = 0; 10323 10324 if (cgroup_fd != -1) { 10325 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader); 10326 if (err) 10327 goto err_ns; 10328 } 10329 10330 pmu = perf_init_event(event); 10331 if (IS_ERR(pmu)) { 10332 err = PTR_ERR(pmu); 10333 goto err_ns; 10334 } 10335 10336 err = exclusive_event_init(event); 10337 if (err) 10338 goto err_pmu; 10339 10340 if (has_addr_filter(event)) { 10341 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters, 10342 sizeof(struct perf_addr_filter_range), 10343 GFP_KERNEL); 10344 if (!event->addr_filter_ranges) { 10345 err = -ENOMEM; 10346 goto err_per_task; 10347 } 10348 10349 /* 10350 * Clone the parent's vma offsets: they are valid until exec() 10351 * even if the mm is not shared with the parent. 10352 */ 10353 if (event->parent) { 10354 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event); 10355 10356 raw_spin_lock_irq(&ifh->lock); 10357 memcpy(event->addr_filter_ranges, 10358 event->parent->addr_filter_ranges, 10359 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range)); 10360 raw_spin_unlock_irq(&ifh->lock); 10361 } 10362 10363 /* force hw sync on the address filters */ 10364 event->addr_filters_gen = 1; 10365 } 10366 10367 if (!event->parent) { 10368 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) { 10369 err = get_callchain_buffers(attr->sample_max_stack); 10370 if (err) 10371 goto err_addr_filters; 10372 } 10373 } 10374 10375 /* symmetric to unaccount_event() in _free_event() */ 10376 account_event(event); 10377 10378 return event; 10379 10380 err_addr_filters: 10381 kfree(event->addr_filter_ranges); 10382 10383 err_per_task: 10384 exclusive_event_destroy(event); 10385 10386 err_pmu: 10387 if (event->destroy) 10388 event->destroy(event); 10389 module_put(pmu->module); 10390 err_ns: 10391 if (is_cgroup_event(event)) 10392 perf_detach_cgroup(event); 10393 if (event->ns) 10394 put_pid_ns(event->ns); 10395 if (event->hw.target) 10396 put_task_struct(event->hw.target); 10397 kfree(event); 10398 10399 return ERR_PTR(err); 10400 } 10401 10402 static int perf_copy_attr(struct perf_event_attr __user *uattr, 10403 struct perf_event_attr *attr) 10404 { 10405 u32 size; 10406 int ret; 10407 10408 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0)) 10409 return -EFAULT; 10410 10411 /* 10412 * zero the full structure, so that a short copy will be nice. 10413 */ 10414 memset(attr, 0, sizeof(*attr)); 10415 10416 ret = get_user(size, &uattr->size); 10417 if (ret) 10418 return ret; 10419 10420 if (size > PAGE_SIZE) /* silly large */ 10421 goto err_size; 10422 10423 if (!size) /* abi compat */ 10424 size = PERF_ATTR_SIZE_VER0; 10425 10426 if (size < PERF_ATTR_SIZE_VER0) 10427 goto err_size; 10428 10429 /* 10430 * If we're handed a bigger struct than we know of, 10431 * ensure all the unknown bits are 0 - i.e. new 10432 * user-space does not rely on any kernel feature 10433 * extensions we dont know about yet. 10434 */ 10435 if (size > sizeof(*attr)) { 10436 unsigned char __user *addr; 10437 unsigned char __user *end; 10438 unsigned char val; 10439 10440 addr = (void __user *)uattr + sizeof(*attr); 10441 end = (void __user *)uattr + size; 10442 10443 for (; addr < end; addr++) { 10444 ret = get_user(val, addr); 10445 if (ret) 10446 return ret; 10447 if (val) 10448 goto err_size; 10449 } 10450 size = sizeof(*attr); 10451 } 10452 10453 ret = copy_from_user(attr, uattr, size); 10454 if (ret) 10455 return -EFAULT; 10456 10457 attr->size = size; 10458 10459 if (attr->__reserved_1) 10460 return -EINVAL; 10461 10462 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) 10463 return -EINVAL; 10464 10465 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) 10466 return -EINVAL; 10467 10468 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) { 10469 u64 mask = attr->branch_sample_type; 10470 10471 /* only using defined bits */ 10472 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1)) 10473 return -EINVAL; 10474 10475 /* at least one branch bit must be set */ 10476 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL)) 10477 return -EINVAL; 10478 10479 /* propagate priv level, when not set for branch */ 10480 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) { 10481 10482 /* exclude_kernel checked on syscall entry */ 10483 if (!attr->exclude_kernel) 10484 mask |= PERF_SAMPLE_BRANCH_KERNEL; 10485 10486 if (!attr->exclude_user) 10487 mask |= PERF_SAMPLE_BRANCH_USER; 10488 10489 if (!attr->exclude_hv) 10490 mask |= PERF_SAMPLE_BRANCH_HV; 10491 /* 10492 * adjust user setting (for HW filter setup) 10493 */ 10494 attr->branch_sample_type = mask; 10495 } 10496 /* privileged levels capture (kernel, hv): check permissions */ 10497 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM) 10498 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10499 return -EACCES; 10500 } 10501 10502 if (attr->sample_type & PERF_SAMPLE_REGS_USER) { 10503 ret = perf_reg_validate(attr->sample_regs_user); 10504 if (ret) 10505 return ret; 10506 } 10507 10508 if (attr->sample_type & PERF_SAMPLE_STACK_USER) { 10509 if (!arch_perf_have_user_stack_dump()) 10510 return -ENOSYS; 10511 10512 /* 10513 * We have __u32 type for the size, but so far 10514 * we can only use __u16 as maximum due to the 10515 * __u16 sample size limit. 10516 */ 10517 if (attr->sample_stack_user >= USHRT_MAX) 10518 return -EINVAL; 10519 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64))) 10520 return -EINVAL; 10521 } 10522 10523 if (!attr->sample_max_stack) 10524 attr->sample_max_stack = sysctl_perf_event_max_stack; 10525 10526 if (attr->sample_type & PERF_SAMPLE_REGS_INTR) 10527 ret = perf_reg_validate(attr->sample_regs_intr); 10528 out: 10529 return ret; 10530 10531 err_size: 10532 put_user(sizeof(*attr), &uattr->size); 10533 ret = -E2BIG; 10534 goto out; 10535 } 10536 10537 static int 10538 perf_event_set_output(struct perf_event *event, struct perf_event *output_event) 10539 { 10540 struct ring_buffer *rb = NULL; 10541 int ret = -EINVAL; 10542 10543 if (!output_event) 10544 goto set; 10545 10546 /* don't allow circular references */ 10547 if (event == output_event) 10548 goto out; 10549 10550 /* 10551 * Don't allow cross-cpu buffers 10552 */ 10553 if (output_event->cpu != event->cpu) 10554 goto out; 10555 10556 /* 10557 * If its not a per-cpu rb, it must be the same task. 10558 */ 10559 if (output_event->cpu == -1 && output_event->ctx != event->ctx) 10560 goto out; 10561 10562 /* 10563 * Mixing clocks in the same buffer is trouble you don't need. 10564 */ 10565 if (output_event->clock != event->clock) 10566 goto out; 10567 10568 /* 10569 * Either writing ring buffer from beginning or from end. 10570 * Mixing is not allowed. 10571 */ 10572 if (is_write_backward(output_event) != is_write_backward(event)) 10573 goto out; 10574 10575 /* 10576 * If both events generate aux data, they must be on the same PMU 10577 */ 10578 if (has_aux(event) && has_aux(output_event) && 10579 event->pmu != output_event->pmu) 10580 goto out; 10581 10582 set: 10583 mutex_lock(&event->mmap_mutex); 10584 /* Can't redirect output if we've got an active mmap() */ 10585 if (atomic_read(&event->mmap_count)) 10586 goto unlock; 10587 10588 if (output_event) { 10589 /* get the rb we want to redirect to */ 10590 rb = ring_buffer_get(output_event); 10591 if (!rb) 10592 goto unlock; 10593 } 10594 10595 ring_buffer_attach(event, rb); 10596 10597 ret = 0; 10598 unlock: 10599 mutex_unlock(&event->mmap_mutex); 10600 10601 out: 10602 return ret; 10603 } 10604 10605 static void mutex_lock_double(struct mutex *a, struct mutex *b) 10606 { 10607 if (b < a) 10608 swap(a, b); 10609 10610 mutex_lock(a); 10611 mutex_lock_nested(b, SINGLE_DEPTH_NESTING); 10612 } 10613 10614 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id) 10615 { 10616 bool nmi_safe = false; 10617 10618 switch (clk_id) { 10619 case CLOCK_MONOTONIC: 10620 event->clock = &ktime_get_mono_fast_ns; 10621 nmi_safe = true; 10622 break; 10623 10624 case CLOCK_MONOTONIC_RAW: 10625 event->clock = &ktime_get_raw_fast_ns; 10626 nmi_safe = true; 10627 break; 10628 10629 case CLOCK_REALTIME: 10630 event->clock = &ktime_get_real_ns; 10631 break; 10632 10633 case CLOCK_BOOTTIME: 10634 event->clock = &ktime_get_boot_ns; 10635 break; 10636 10637 case CLOCK_TAI: 10638 event->clock = &ktime_get_tai_ns; 10639 break; 10640 10641 default: 10642 return -EINVAL; 10643 } 10644 10645 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI)) 10646 return -EINVAL; 10647 10648 return 0; 10649 } 10650 10651 /* 10652 * Variation on perf_event_ctx_lock_nested(), except we take two context 10653 * mutexes. 10654 */ 10655 static struct perf_event_context * 10656 __perf_event_ctx_lock_double(struct perf_event *group_leader, 10657 struct perf_event_context *ctx) 10658 { 10659 struct perf_event_context *gctx; 10660 10661 again: 10662 rcu_read_lock(); 10663 gctx = READ_ONCE(group_leader->ctx); 10664 if (!refcount_inc_not_zero(&gctx->refcount)) { 10665 rcu_read_unlock(); 10666 goto again; 10667 } 10668 rcu_read_unlock(); 10669 10670 mutex_lock_double(&gctx->mutex, &ctx->mutex); 10671 10672 if (group_leader->ctx != gctx) { 10673 mutex_unlock(&ctx->mutex); 10674 mutex_unlock(&gctx->mutex); 10675 put_ctx(gctx); 10676 goto again; 10677 } 10678 10679 return gctx; 10680 } 10681 10682 /** 10683 * sys_perf_event_open - open a performance event, associate it to a task/cpu 10684 * 10685 * @attr_uptr: event_id type attributes for monitoring/sampling 10686 * @pid: target pid 10687 * @cpu: target cpu 10688 * @group_fd: group leader event fd 10689 */ 10690 SYSCALL_DEFINE5(perf_event_open, 10691 struct perf_event_attr __user *, attr_uptr, 10692 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) 10693 { 10694 struct perf_event *group_leader = NULL, *output_event = NULL; 10695 struct perf_event *event, *sibling; 10696 struct perf_event_attr attr; 10697 struct perf_event_context *ctx, *uninitialized_var(gctx); 10698 struct file *event_file = NULL; 10699 struct fd group = {NULL, 0}; 10700 struct task_struct *task = NULL; 10701 struct pmu *pmu; 10702 int event_fd; 10703 int move_group = 0; 10704 int err; 10705 int f_flags = O_RDWR; 10706 int cgroup_fd = -1; 10707 10708 /* for future expandability... */ 10709 if (flags & ~PERF_FLAG_ALL) 10710 return -EINVAL; 10711 10712 err = perf_copy_attr(attr_uptr, &attr); 10713 if (err) 10714 return err; 10715 10716 if (!attr.exclude_kernel) { 10717 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10718 return -EACCES; 10719 } 10720 10721 if (attr.namespaces) { 10722 if (!capable(CAP_SYS_ADMIN)) 10723 return -EACCES; 10724 } 10725 10726 if (attr.freq) { 10727 if (attr.sample_freq > sysctl_perf_event_sample_rate) 10728 return -EINVAL; 10729 } else { 10730 if (attr.sample_period & (1ULL << 63)) 10731 return -EINVAL; 10732 } 10733 10734 /* Only privileged users can get physical addresses */ 10735 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) && 10736 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) 10737 return -EACCES; 10738 10739 /* 10740 * In cgroup mode, the pid argument is used to pass the fd 10741 * opened to the cgroup directory in cgroupfs. The cpu argument 10742 * designates the cpu on which to monitor threads from that 10743 * cgroup. 10744 */ 10745 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1)) 10746 return -EINVAL; 10747 10748 if (flags & PERF_FLAG_FD_CLOEXEC) 10749 f_flags |= O_CLOEXEC; 10750 10751 event_fd = get_unused_fd_flags(f_flags); 10752 if (event_fd < 0) 10753 return event_fd; 10754 10755 if (group_fd != -1) { 10756 err = perf_fget_light(group_fd, &group); 10757 if (err) 10758 goto err_fd; 10759 group_leader = group.file->private_data; 10760 if (flags & PERF_FLAG_FD_OUTPUT) 10761 output_event = group_leader; 10762 if (flags & PERF_FLAG_FD_NO_GROUP) 10763 group_leader = NULL; 10764 } 10765 10766 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) { 10767 task = find_lively_task_by_vpid(pid); 10768 if (IS_ERR(task)) { 10769 err = PTR_ERR(task); 10770 goto err_group_fd; 10771 } 10772 } 10773 10774 if (task && group_leader && 10775 group_leader->attr.inherit != attr.inherit) { 10776 err = -EINVAL; 10777 goto err_task; 10778 } 10779 10780 if (task) { 10781 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex); 10782 if (err) 10783 goto err_task; 10784 10785 /* 10786 * Reuse ptrace permission checks for now. 10787 * 10788 * We must hold cred_guard_mutex across this and any potential 10789 * perf_install_in_context() call for this new event to 10790 * serialize against exec() altering our credentials (and the 10791 * perf_event_exit_task() that could imply). 10792 */ 10793 err = -EACCES; 10794 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) 10795 goto err_cred; 10796 } 10797 10798 if (flags & PERF_FLAG_PID_CGROUP) 10799 cgroup_fd = pid; 10800 10801 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, 10802 NULL, NULL, cgroup_fd); 10803 if (IS_ERR(event)) { 10804 err = PTR_ERR(event); 10805 goto err_cred; 10806 } 10807 10808 if (is_sampling_event(event)) { 10809 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) { 10810 err = -EOPNOTSUPP; 10811 goto err_alloc; 10812 } 10813 } 10814 10815 /* 10816 * Special case software events and allow them to be part of 10817 * any hardware group. 10818 */ 10819 pmu = event->pmu; 10820 10821 if (attr.use_clockid) { 10822 err = perf_event_set_clock(event, attr.clockid); 10823 if (err) 10824 goto err_alloc; 10825 } 10826 10827 if (pmu->task_ctx_nr == perf_sw_context) 10828 event->event_caps |= PERF_EV_CAP_SOFTWARE; 10829 10830 if (group_leader) { 10831 if (is_software_event(event) && 10832 !in_software_context(group_leader)) { 10833 /* 10834 * If the event is a sw event, but the group_leader 10835 * is on hw context. 10836 * 10837 * Allow the addition of software events to hw 10838 * groups, this is safe because software events 10839 * never fail to schedule. 10840 */ 10841 pmu = group_leader->ctx->pmu; 10842 } else if (!is_software_event(event) && 10843 is_software_event(group_leader) && 10844 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10845 /* 10846 * In case the group is a pure software group, and we 10847 * try to add a hardware event, move the whole group to 10848 * the hardware context. 10849 */ 10850 move_group = 1; 10851 } 10852 } 10853 10854 /* 10855 * Get the target context (task or percpu): 10856 */ 10857 ctx = find_get_context(pmu, task, event); 10858 if (IS_ERR(ctx)) { 10859 err = PTR_ERR(ctx); 10860 goto err_alloc; 10861 } 10862 10863 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) { 10864 err = -EBUSY; 10865 goto err_context; 10866 } 10867 10868 /* 10869 * Look up the group leader (we will attach this event to it): 10870 */ 10871 if (group_leader) { 10872 err = -EINVAL; 10873 10874 /* 10875 * Do not allow a recursive hierarchy (this new sibling 10876 * becoming part of another group-sibling): 10877 */ 10878 if (group_leader->group_leader != group_leader) 10879 goto err_context; 10880 10881 /* All events in a group should have the same clock */ 10882 if (group_leader->clock != event->clock) 10883 goto err_context; 10884 10885 /* 10886 * Make sure we're both events for the same CPU; 10887 * grouping events for different CPUs is broken; since 10888 * you can never concurrently schedule them anyhow. 10889 */ 10890 if (group_leader->cpu != event->cpu) 10891 goto err_context; 10892 10893 /* 10894 * Make sure we're both on the same task, or both 10895 * per-CPU events. 10896 */ 10897 if (group_leader->ctx->task != ctx->task) 10898 goto err_context; 10899 10900 /* 10901 * Do not allow to attach to a group in a different task 10902 * or CPU context. If we're moving SW events, we'll fix 10903 * this up later, so allow that. 10904 */ 10905 if (!move_group && group_leader->ctx != ctx) 10906 goto err_context; 10907 10908 /* 10909 * Only a group leader can be exclusive or pinned 10910 */ 10911 if (attr.exclusive || attr.pinned) 10912 goto err_context; 10913 } 10914 10915 if (output_event) { 10916 err = perf_event_set_output(event, output_event); 10917 if (err) 10918 goto err_context; 10919 } 10920 10921 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, 10922 f_flags); 10923 if (IS_ERR(event_file)) { 10924 err = PTR_ERR(event_file); 10925 event_file = NULL; 10926 goto err_context; 10927 } 10928 10929 if (move_group) { 10930 gctx = __perf_event_ctx_lock_double(group_leader, ctx); 10931 10932 if (gctx->task == TASK_TOMBSTONE) { 10933 err = -ESRCH; 10934 goto err_locked; 10935 } 10936 10937 /* 10938 * Check if we raced against another sys_perf_event_open() call 10939 * moving the software group underneath us. 10940 */ 10941 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) { 10942 /* 10943 * If someone moved the group out from under us, check 10944 * if this new event wound up on the same ctx, if so 10945 * its the regular !move_group case, otherwise fail. 10946 */ 10947 if (gctx != ctx) { 10948 err = -EINVAL; 10949 goto err_locked; 10950 } else { 10951 perf_event_ctx_unlock(group_leader, gctx); 10952 move_group = 0; 10953 } 10954 } 10955 } else { 10956 mutex_lock(&ctx->mutex); 10957 } 10958 10959 if (ctx->task == TASK_TOMBSTONE) { 10960 err = -ESRCH; 10961 goto err_locked; 10962 } 10963 10964 if (!perf_event_validate_size(event)) { 10965 err = -E2BIG; 10966 goto err_locked; 10967 } 10968 10969 if (!task) { 10970 /* 10971 * Check if the @cpu we're creating an event for is online. 10972 * 10973 * We use the perf_cpu_context::ctx::mutex to serialize against 10974 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 10975 */ 10976 struct perf_cpu_context *cpuctx = 10977 container_of(ctx, struct perf_cpu_context, ctx); 10978 10979 if (!cpuctx->online) { 10980 err = -ENODEV; 10981 goto err_locked; 10982 } 10983 } 10984 10985 10986 /* 10987 * Must be under the same ctx::mutex as perf_install_in_context(), 10988 * because we need to serialize with concurrent event creation. 10989 */ 10990 if (!exclusive_event_installable(event, ctx)) { 10991 /* exclusive and group stuff are assumed mutually exclusive */ 10992 WARN_ON_ONCE(move_group); 10993 10994 err = -EBUSY; 10995 goto err_locked; 10996 } 10997 10998 WARN_ON_ONCE(ctx->parent_ctx); 10999 11000 /* 11001 * This is the point on no return; we cannot fail hereafter. This is 11002 * where we start modifying current state. 11003 */ 11004 11005 if (move_group) { 11006 /* 11007 * See perf_event_ctx_lock() for comments on the details 11008 * of swizzling perf_event::ctx. 11009 */ 11010 perf_remove_from_context(group_leader, 0); 11011 put_ctx(gctx); 11012 11013 for_each_sibling_event(sibling, group_leader) { 11014 perf_remove_from_context(sibling, 0); 11015 put_ctx(gctx); 11016 } 11017 11018 /* 11019 * Wait for everybody to stop referencing the events through 11020 * the old lists, before installing it on new lists. 11021 */ 11022 synchronize_rcu(); 11023 11024 /* 11025 * Install the group siblings before the group leader. 11026 * 11027 * Because a group leader will try and install the entire group 11028 * (through the sibling list, which is still in-tact), we can 11029 * end up with siblings installed in the wrong context. 11030 * 11031 * By installing siblings first we NO-OP because they're not 11032 * reachable through the group lists. 11033 */ 11034 for_each_sibling_event(sibling, group_leader) { 11035 perf_event__state_init(sibling); 11036 perf_install_in_context(ctx, sibling, sibling->cpu); 11037 get_ctx(ctx); 11038 } 11039 11040 /* 11041 * Removing from the context ends up with disabled 11042 * event. What we want here is event in the initial 11043 * startup state, ready to be add into new context. 11044 */ 11045 perf_event__state_init(group_leader); 11046 perf_install_in_context(ctx, group_leader, group_leader->cpu); 11047 get_ctx(ctx); 11048 } 11049 11050 /* 11051 * Precalculate sample_data sizes; do while holding ctx::mutex such 11052 * that we're serialized against further additions and before 11053 * perf_install_in_context() which is the point the event is active and 11054 * can use these values. 11055 */ 11056 perf_event__header_size(event); 11057 perf_event__id_header_size(event); 11058 11059 event->owner = current; 11060 11061 perf_install_in_context(ctx, event, event->cpu); 11062 perf_unpin_context(ctx); 11063 11064 if (move_group) 11065 perf_event_ctx_unlock(group_leader, gctx); 11066 mutex_unlock(&ctx->mutex); 11067 11068 if (task) { 11069 mutex_unlock(&task->signal->cred_guard_mutex); 11070 put_task_struct(task); 11071 } 11072 11073 mutex_lock(¤t->perf_event_mutex); 11074 list_add_tail(&event->owner_entry, ¤t->perf_event_list); 11075 mutex_unlock(¤t->perf_event_mutex); 11076 11077 /* 11078 * Drop the reference on the group_event after placing the 11079 * new event on the sibling_list. This ensures destruction 11080 * of the group leader will find the pointer to itself in 11081 * perf_group_detach(). 11082 */ 11083 fdput(group); 11084 fd_install(event_fd, event_file); 11085 return event_fd; 11086 11087 err_locked: 11088 if (move_group) 11089 perf_event_ctx_unlock(group_leader, gctx); 11090 mutex_unlock(&ctx->mutex); 11091 /* err_file: */ 11092 fput(event_file); 11093 err_context: 11094 perf_unpin_context(ctx); 11095 put_ctx(ctx); 11096 err_alloc: 11097 /* 11098 * If event_file is set, the fput() above will have called ->release() 11099 * and that will take care of freeing the event. 11100 */ 11101 if (!event_file) 11102 free_event(event); 11103 err_cred: 11104 if (task) 11105 mutex_unlock(&task->signal->cred_guard_mutex); 11106 err_task: 11107 if (task) 11108 put_task_struct(task); 11109 err_group_fd: 11110 fdput(group); 11111 err_fd: 11112 put_unused_fd(event_fd); 11113 return err; 11114 } 11115 11116 /** 11117 * perf_event_create_kernel_counter 11118 * 11119 * @attr: attributes of the counter to create 11120 * @cpu: cpu in which the counter is bound 11121 * @task: task to profile (NULL for percpu) 11122 */ 11123 struct perf_event * 11124 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, 11125 struct task_struct *task, 11126 perf_overflow_handler_t overflow_handler, 11127 void *context) 11128 { 11129 struct perf_event_context *ctx; 11130 struct perf_event *event; 11131 int err; 11132 11133 /* 11134 * Get the target context (task or percpu): 11135 */ 11136 11137 event = perf_event_alloc(attr, cpu, task, NULL, NULL, 11138 overflow_handler, context, -1); 11139 if (IS_ERR(event)) { 11140 err = PTR_ERR(event); 11141 goto err; 11142 } 11143 11144 /* Mark owner so we could distinguish it from user events. */ 11145 event->owner = TASK_TOMBSTONE; 11146 11147 ctx = find_get_context(event->pmu, task, event); 11148 if (IS_ERR(ctx)) { 11149 err = PTR_ERR(ctx); 11150 goto err_free; 11151 } 11152 11153 WARN_ON_ONCE(ctx->parent_ctx); 11154 mutex_lock(&ctx->mutex); 11155 if (ctx->task == TASK_TOMBSTONE) { 11156 err = -ESRCH; 11157 goto err_unlock; 11158 } 11159 11160 if (!task) { 11161 /* 11162 * Check if the @cpu we're creating an event for is online. 11163 * 11164 * We use the perf_cpu_context::ctx::mutex to serialize against 11165 * the hotplug notifiers. See perf_event_{init,exit}_cpu(). 11166 */ 11167 struct perf_cpu_context *cpuctx = 11168 container_of(ctx, struct perf_cpu_context, ctx); 11169 if (!cpuctx->online) { 11170 err = -ENODEV; 11171 goto err_unlock; 11172 } 11173 } 11174 11175 if (!exclusive_event_installable(event, ctx)) { 11176 err = -EBUSY; 11177 goto err_unlock; 11178 } 11179 11180 perf_install_in_context(ctx, event, cpu); 11181 perf_unpin_context(ctx); 11182 mutex_unlock(&ctx->mutex); 11183 11184 return event; 11185 11186 err_unlock: 11187 mutex_unlock(&ctx->mutex); 11188 perf_unpin_context(ctx); 11189 put_ctx(ctx); 11190 err_free: 11191 free_event(event); 11192 err: 11193 return ERR_PTR(err); 11194 } 11195 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); 11196 11197 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu) 11198 { 11199 struct perf_event_context *src_ctx; 11200 struct perf_event_context *dst_ctx; 11201 struct perf_event *event, *tmp; 11202 LIST_HEAD(events); 11203 11204 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx; 11205 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx; 11206 11207 /* 11208 * See perf_event_ctx_lock() for comments on the details 11209 * of swizzling perf_event::ctx. 11210 */ 11211 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex); 11212 list_for_each_entry_safe(event, tmp, &src_ctx->event_list, 11213 event_entry) { 11214 perf_remove_from_context(event, 0); 11215 unaccount_event_cpu(event, src_cpu); 11216 put_ctx(src_ctx); 11217 list_add(&event->migrate_entry, &events); 11218 } 11219 11220 /* 11221 * Wait for the events to quiesce before re-instating them. 11222 */ 11223 synchronize_rcu(); 11224 11225 /* 11226 * Re-instate events in 2 passes. 11227 * 11228 * Skip over group leaders and only install siblings on this first 11229 * pass, siblings will not get enabled without a leader, however a 11230 * leader will enable its siblings, even if those are still on the old 11231 * context. 11232 */ 11233 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11234 if (event->group_leader == event) 11235 continue; 11236 11237 list_del(&event->migrate_entry); 11238 if (event->state >= PERF_EVENT_STATE_OFF) 11239 event->state = PERF_EVENT_STATE_INACTIVE; 11240 account_event_cpu(event, dst_cpu); 11241 perf_install_in_context(dst_ctx, event, dst_cpu); 11242 get_ctx(dst_ctx); 11243 } 11244 11245 /* 11246 * Once all the siblings are setup properly, install the group leaders 11247 * to make it go. 11248 */ 11249 list_for_each_entry_safe(event, tmp, &events, migrate_entry) { 11250 list_del(&event->migrate_entry); 11251 if (event->state >= PERF_EVENT_STATE_OFF) 11252 event->state = PERF_EVENT_STATE_INACTIVE; 11253 account_event_cpu(event, dst_cpu); 11254 perf_install_in_context(dst_ctx, event, dst_cpu); 11255 get_ctx(dst_ctx); 11256 } 11257 mutex_unlock(&dst_ctx->mutex); 11258 mutex_unlock(&src_ctx->mutex); 11259 } 11260 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context); 11261 11262 static void sync_child_event(struct perf_event *child_event, 11263 struct task_struct *child) 11264 { 11265 struct perf_event *parent_event = child_event->parent; 11266 u64 child_val; 11267 11268 if (child_event->attr.inherit_stat) 11269 perf_event_read_event(child_event, child); 11270 11271 child_val = perf_event_count(child_event); 11272 11273 /* 11274 * Add back the child's count to the parent's count: 11275 */ 11276 atomic64_add(child_val, &parent_event->child_count); 11277 atomic64_add(child_event->total_time_enabled, 11278 &parent_event->child_total_time_enabled); 11279 atomic64_add(child_event->total_time_running, 11280 &parent_event->child_total_time_running); 11281 } 11282 11283 static void 11284 perf_event_exit_event(struct perf_event *child_event, 11285 struct perf_event_context *child_ctx, 11286 struct task_struct *child) 11287 { 11288 struct perf_event *parent_event = child_event->parent; 11289 11290 /* 11291 * Do not destroy the 'original' grouping; because of the context 11292 * switch optimization the original events could've ended up in a 11293 * random child task. 11294 * 11295 * If we were to destroy the original group, all group related 11296 * operations would cease to function properly after this random 11297 * child dies. 11298 * 11299 * Do destroy all inherited groups, we don't care about those 11300 * and being thorough is better. 11301 */ 11302 raw_spin_lock_irq(&child_ctx->lock); 11303 WARN_ON_ONCE(child_ctx->is_active); 11304 11305 if (parent_event) 11306 perf_group_detach(child_event); 11307 list_del_event(child_event, child_ctx); 11308 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */ 11309 raw_spin_unlock_irq(&child_ctx->lock); 11310 11311 /* 11312 * Parent events are governed by their filedesc, retain them. 11313 */ 11314 if (!parent_event) { 11315 perf_event_wakeup(child_event); 11316 return; 11317 } 11318 /* 11319 * Child events can be cleaned up. 11320 */ 11321 11322 sync_child_event(child_event, child); 11323 11324 /* 11325 * Remove this event from the parent's list 11326 */ 11327 WARN_ON_ONCE(parent_event->ctx->parent_ctx); 11328 mutex_lock(&parent_event->child_mutex); 11329 list_del_init(&child_event->child_list); 11330 mutex_unlock(&parent_event->child_mutex); 11331 11332 /* 11333 * Kick perf_poll() for is_event_hup(). 11334 */ 11335 perf_event_wakeup(parent_event); 11336 free_event(child_event); 11337 put_event(parent_event); 11338 } 11339 11340 static void perf_event_exit_task_context(struct task_struct *child, int ctxn) 11341 { 11342 struct perf_event_context *child_ctx, *clone_ctx = NULL; 11343 struct perf_event *child_event, *next; 11344 11345 WARN_ON_ONCE(child != current); 11346 11347 child_ctx = perf_pin_task_context(child, ctxn); 11348 if (!child_ctx) 11349 return; 11350 11351 /* 11352 * In order to reduce the amount of tricky in ctx tear-down, we hold 11353 * ctx::mutex over the entire thing. This serializes against almost 11354 * everything that wants to access the ctx. 11355 * 11356 * The exception is sys_perf_event_open() / 11357 * perf_event_create_kernel_count() which does find_get_context() 11358 * without ctx::mutex (it cannot because of the move_group double mutex 11359 * lock thing). See the comments in perf_install_in_context(). 11360 */ 11361 mutex_lock(&child_ctx->mutex); 11362 11363 /* 11364 * In a single ctx::lock section, de-schedule the events and detach the 11365 * context from the task such that we cannot ever get it scheduled back 11366 * in. 11367 */ 11368 raw_spin_lock_irq(&child_ctx->lock); 11369 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL); 11370 11371 /* 11372 * Now that the context is inactive, destroy the task <-> ctx relation 11373 * and mark the context dead. 11374 */ 11375 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL); 11376 put_ctx(child_ctx); /* cannot be last */ 11377 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE); 11378 put_task_struct(current); /* cannot be last */ 11379 11380 clone_ctx = unclone_ctx(child_ctx); 11381 raw_spin_unlock_irq(&child_ctx->lock); 11382 11383 if (clone_ctx) 11384 put_ctx(clone_ctx); 11385 11386 /* 11387 * Report the task dead after unscheduling the events so that we 11388 * won't get any samples after PERF_RECORD_EXIT. We can however still 11389 * get a few PERF_RECORD_READ events. 11390 */ 11391 perf_event_task(child, child_ctx, 0); 11392 11393 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry) 11394 perf_event_exit_event(child_event, child_ctx, child); 11395 11396 mutex_unlock(&child_ctx->mutex); 11397 11398 put_ctx(child_ctx); 11399 } 11400 11401 /* 11402 * When a child task exits, feed back event values to parent events. 11403 * 11404 * Can be called with cred_guard_mutex held when called from 11405 * install_exec_creds(). 11406 */ 11407 void perf_event_exit_task(struct task_struct *child) 11408 { 11409 struct perf_event *event, *tmp; 11410 int ctxn; 11411 11412 mutex_lock(&child->perf_event_mutex); 11413 list_for_each_entry_safe(event, tmp, &child->perf_event_list, 11414 owner_entry) { 11415 list_del_init(&event->owner_entry); 11416 11417 /* 11418 * Ensure the list deletion is visible before we clear 11419 * the owner, closes a race against perf_release() where 11420 * we need to serialize on the owner->perf_event_mutex. 11421 */ 11422 smp_store_release(&event->owner, NULL); 11423 } 11424 mutex_unlock(&child->perf_event_mutex); 11425 11426 for_each_task_context_nr(ctxn) 11427 perf_event_exit_task_context(child, ctxn); 11428 11429 /* 11430 * The perf_event_exit_task_context calls perf_event_task 11431 * with child's task_ctx, which generates EXIT events for 11432 * child contexts and sets child->perf_event_ctxp[] to NULL. 11433 * At this point we need to send EXIT events to cpu contexts. 11434 */ 11435 perf_event_task(child, NULL, 0); 11436 } 11437 11438 static void perf_free_event(struct perf_event *event, 11439 struct perf_event_context *ctx) 11440 { 11441 struct perf_event *parent = event->parent; 11442 11443 if (WARN_ON_ONCE(!parent)) 11444 return; 11445 11446 mutex_lock(&parent->child_mutex); 11447 list_del_init(&event->child_list); 11448 mutex_unlock(&parent->child_mutex); 11449 11450 put_event(parent); 11451 11452 raw_spin_lock_irq(&ctx->lock); 11453 perf_group_detach(event); 11454 list_del_event(event, ctx); 11455 raw_spin_unlock_irq(&ctx->lock); 11456 free_event(event); 11457 } 11458 11459 /* 11460 * Free an unexposed, unused context as created by inheritance by 11461 * perf_event_init_task below, used by fork() in case of fail. 11462 * 11463 * Not all locks are strictly required, but take them anyway to be nice and 11464 * help out with the lockdep assertions. 11465 */ 11466 void perf_event_free_task(struct task_struct *task) 11467 { 11468 struct perf_event_context *ctx; 11469 struct perf_event *event, *tmp; 11470 int ctxn; 11471 11472 for_each_task_context_nr(ctxn) { 11473 ctx = task->perf_event_ctxp[ctxn]; 11474 if (!ctx) 11475 continue; 11476 11477 mutex_lock(&ctx->mutex); 11478 raw_spin_lock_irq(&ctx->lock); 11479 /* 11480 * Destroy the task <-> ctx relation and mark the context dead. 11481 * 11482 * This is important because even though the task hasn't been 11483 * exposed yet the context has been (through child_list). 11484 */ 11485 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); 11486 WRITE_ONCE(ctx->task, TASK_TOMBSTONE); 11487 put_task_struct(task); /* cannot be last */ 11488 raw_spin_unlock_irq(&ctx->lock); 11489 11490 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) 11491 perf_free_event(event, ctx); 11492 11493 mutex_unlock(&ctx->mutex); 11494 put_ctx(ctx); 11495 } 11496 } 11497 11498 void perf_event_delayed_put(struct task_struct *task) 11499 { 11500 int ctxn; 11501 11502 for_each_task_context_nr(ctxn) 11503 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]); 11504 } 11505 11506 struct file *perf_event_get(unsigned int fd) 11507 { 11508 struct file *file; 11509 11510 file = fget_raw(fd); 11511 if (!file) 11512 return ERR_PTR(-EBADF); 11513 11514 if (file->f_op != &perf_fops) { 11515 fput(file); 11516 return ERR_PTR(-EBADF); 11517 } 11518 11519 return file; 11520 } 11521 11522 const struct perf_event *perf_get_event(struct file *file) 11523 { 11524 if (file->f_op != &perf_fops) 11525 return ERR_PTR(-EINVAL); 11526 11527 return file->private_data; 11528 } 11529 11530 const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 11531 { 11532 if (!event) 11533 return ERR_PTR(-EINVAL); 11534 11535 return &event->attr; 11536 } 11537 11538 /* 11539 * Inherit an event from parent task to child task. 11540 * 11541 * Returns: 11542 * - valid pointer on success 11543 * - NULL for orphaned events 11544 * - IS_ERR() on error 11545 */ 11546 static struct perf_event * 11547 inherit_event(struct perf_event *parent_event, 11548 struct task_struct *parent, 11549 struct perf_event_context *parent_ctx, 11550 struct task_struct *child, 11551 struct perf_event *group_leader, 11552 struct perf_event_context *child_ctx) 11553 { 11554 enum perf_event_state parent_state = parent_event->state; 11555 struct perf_event *child_event; 11556 unsigned long flags; 11557 11558 /* 11559 * Instead of creating recursive hierarchies of events, 11560 * we link inherited events back to the original parent, 11561 * which has a filp for sure, which we use as the reference 11562 * count: 11563 */ 11564 if (parent_event->parent) 11565 parent_event = parent_event->parent; 11566 11567 child_event = perf_event_alloc(&parent_event->attr, 11568 parent_event->cpu, 11569 child, 11570 group_leader, parent_event, 11571 NULL, NULL, -1); 11572 if (IS_ERR(child_event)) 11573 return child_event; 11574 11575 11576 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) && 11577 !child_ctx->task_ctx_data) { 11578 struct pmu *pmu = child_event->pmu; 11579 11580 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size, 11581 GFP_KERNEL); 11582 if (!child_ctx->task_ctx_data) { 11583 free_event(child_event); 11584 return NULL; 11585 } 11586 } 11587 11588 /* 11589 * is_orphaned_event() and list_add_tail(&parent_event->child_list) 11590 * must be under the same lock in order to serialize against 11591 * perf_event_release_kernel(), such that either we must observe 11592 * is_orphaned_event() or they will observe us on the child_list. 11593 */ 11594 mutex_lock(&parent_event->child_mutex); 11595 if (is_orphaned_event(parent_event) || 11596 !atomic_long_inc_not_zero(&parent_event->refcount)) { 11597 mutex_unlock(&parent_event->child_mutex); 11598 /* task_ctx_data is freed with child_ctx */ 11599 free_event(child_event); 11600 return NULL; 11601 } 11602 11603 get_ctx(child_ctx); 11604 11605 /* 11606 * Make the child state follow the state of the parent event, 11607 * not its attr.disabled bit. We hold the parent's mutex, 11608 * so we won't race with perf_event_{en, dis}able_family. 11609 */ 11610 if (parent_state >= PERF_EVENT_STATE_INACTIVE) 11611 child_event->state = PERF_EVENT_STATE_INACTIVE; 11612 else 11613 child_event->state = PERF_EVENT_STATE_OFF; 11614 11615 if (parent_event->attr.freq) { 11616 u64 sample_period = parent_event->hw.sample_period; 11617 struct hw_perf_event *hwc = &child_event->hw; 11618 11619 hwc->sample_period = sample_period; 11620 hwc->last_period = sample_period; 11621 11622 local64_set(&hwc->period_left, sample_period); 11623 } 11624 11625 child_event->ctx = child_ctx; 11626 child_event->overflow_handler = parent_event->overflow_handler; 11627 child_event->overflow_handler_context 11628 = parent_event->overflow_handler_context; 11629 11630 /* 11631 * Precalculate sample_data sizes 11632 */ 11633 perf_event__header_size(child_event); 11634 perf_event__id_header_size(child_event); 11635 11636 /* 11637 * Link it up in the child's context: 11638 */ 11639 raw_spin_lock_irqsave(&child_ctx->lock, flags); 11640 add_event_to_ctx(child_event, child_ctx); 11641 raw_spin_unlock_irqrestore(&child_ctx->lock, flags); 11642 11643 /* 11644 * Link this into the parent event's child list 11645 */ 11646 list_add_tail(&child_event->child_list, &parent_event->child_list); 11647 mutex_unlock(&parent_event->child_mutex); 11648 11649 return child_event; 11650 } 11651 11652 /* 11653 * Inherits an event group. 11654 * 11655 * This will quietly suppress orphaned events; !inherit_event() is not an error. 11656 * This matches with perf_event_release_kernel() removing all child events. 11657 * 11658 * Returns: 11659 * - 0 on success 11660 * - <0 on error 11661 */ 11662 static int inherit_group(struct perf_event *parent_event, 11663 struct task_struct *parent, 11664 struct perf_event_context *parent_ctx, 11665 struct task_struct *child, 11666 struct perf_event_context *child_ctx) 11667 { 11668 struct perf_event *leader; 11669 struct perf_event *sub; 11670 struct perf_event *child_ctr; 11671 11672 leader = inherit_event(parent_event, parent, parent_ctx, 11673 child, NULL, child_ctx); 11674 if (IS_ERR(leader)) 11675 return PTR_ERR(leader); 11676 /* 11677 * @leader can be NULL here because of is_orphaned_event(). In this 11678 * case inherit_event() will create individual events, similar to what 11679 * perf_group_detach() would do anyway. 11680 */ 11681 for_each_sibling_event(sub, parent_event) { 11682 child_ctr = inherit_event(sub, parent, parent_ctx, 11683 child, leader, child_ctx); 11684 if (IS_ERR(child_ctr)) 11685 return PTR_ERR(child_ctr); 11686 } 11687 return 0; 11688 } 11689 11690 /* 11691 * Creates the child task context and tries to inherit the event-group. 11692 * 11693 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave 11694 * inherited_all set when we 'fail' to inherit an orphaned event; this is 11695 * consistent with perf_event_release_kernel() removing all child events. 11696 * 11697 * Returns: 11698 * - 0 on success 11699 * - <0 on error 11700 */ 11701 static int 11702 inherit_task_group(struct perf_event *event, struct task_struct *parent, 11703 struct perf_event_context *parent_ctx, 11704 struct task_struct *child, int ctxn, 11705 int *inherited_all) 11706 { 11707 int ret; 11708 struct perf_event_context *child_ctx; 11709 11710 if (!event->attr.inherit) { 11711 *inherited_all = 0; 11712 return 0; 11713 } 11714 11715 child_ctx = child->perf_event_ctxp[ctxn]; 11716 if (!child_ctx) { 11717 /* 11718 * This is executed from the parent task context, so 11719 * inherit events that have been marked for cloning. 11720 * First allocate and initialize a context for the 11721 * child. 11722 */ 11723 child_ctx = alloc_perf_context(parent_ctx->pmu, child); 11724 if (!child_ctx) 11725 return -ENOMEM; 11726 11727 child->perf_event_ctxp[ctxn] = child_ctx; 11728 } 11729 11730 ret = inherit_group(event, parent, parent_ctx, 11731 child, child_ctx); 11732 11733 if (ret) 11734 *inherited_all = 0; 11735 11736 return ret; 11737 } 11738 11739 /* 11740 * Initialize the perf_event context in task_struct 11741 */ 11742 static int perf_event_init_context(struct task_struct *child, int ctxn) 11743 { 11744 struct perf_event_context *child_ctx, *parent_ctx; 11745 struct perf_event_context *cloned_ctx; 11746 struct perf_event *event; 11747 struct task_struct *parent = current; 11748 int inherited_all = 1; 11749 unsigned long flags; 11750 int ret = 0; 11751 11752 if (likely(!parent->perf_event_ctxp[ctxn])) 11753 return 0; 11754 11755 /* 11756 * If the parent's context is a clone, pin it so it won't get 11757 * swapped under us. 11758 */ 11759 parent_ctx = perf_pin_task_context(parent, ctxn); 11760 if (!parent_ctx) 11761 return 0; 11762 11763 /* 11764 * No need to check if parent_ctx != NULL here; since we saw 11765 * it non-NULL earlier, the only reason for it to become NULL 11766 * is if we exit, and since we're currently in the middle of 11767 * a fork we can't be exiting at the same time. 11768 */ 11769 11770 /* 11771 * Lock the parent list. No need to lock the child - not PID 11772 * hashed yet and not running, so nobody can access it. 11773 */ 11774 mutex_lock(&parent_ctx->mutex); 11775 11776 /* 11777 * We dont have to disable NMIs - we are only looking at 11778 * the list, not manipulating it: 11779 */ 11780 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) { 11781 ret = inherit_task_group(event, parent, parent_ctx, 11782 child, ctxn, &inherited_all); 11783 if (ret) 11784 goto out_unlock; 11785 } 11786 11787 /* 11788 * We can't hold ctx->lock when iterating the ->flexible_group list due 11789 * to allocations, but we need to prevent rotation because 11790 * rotate_ctx() will change the list from interrupt context. 11791 */ 11792 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11793 parent_ctx->rotate_disable = 1; 11794 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11795 11796 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) { 11797 ret = inherit_task_group(event, parent, parent_ctx, 11798 child, ctxn, &inherited_all); 11799 if (ret) 11800 goto out_unlock; 11801 } 11802 11803 raw_spin_lock_irqsave(&parent_ctx->lock, flags); 11804 parent_ctx->rotate_disable = 0; 11805 11806 child_ctx = child->perf_event_ctxp[ctxn]; 11807 11808 if (child_ctx && inherited_all) { 11809 /* 11810 * Mark the child context as a clone of the parent 11811 * context, or of whatever the parent is a clone of. 11812 * 11813 * Note that if the parent is a clone, the holding of 11814 * parent_ctx->lock avoids it from being uncloned. 11815 */ 11816 cloned_ctx = parent_ctx->parent_ctx; 11817 if (cloned_ctx) { 11818 child_ctx->parent_ctx = cloned_ctx; 11819 child_ctx->parent_gen = parent_ctx->parent_gen; 11820 } else { 11821 child_ctx->parent_ctx = parent_ctx; 11822 child_ctx->parent_gen = parent_ctx->generation; 11823 } 11824 get_ctx(child_ctx->parent_ctx); 11825 } 11826 11827 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); 11828 out_unlock: 11829 mutex_unlock(&parent_ctx->mutex); 11830 11831 perf_unpin_context(parent_ctx); 11832 put_ctx(parent_ctx); 11833 11834 return ret; 11835 } 11836 11837 /* 11838 * Initialize the perf_event context in task_struct 11839 */ 11840 int perf_event_init_task(struct task_struct *child) 11841 { 11842 int ctxn, ret; 11843 11844 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp)); 11845 mutex_init(&child->perf_event_mutex); 11846 INIT_LIST_HEAD(&child->perf_event_list); 11847 11848 for_each_task_context_nr(ctxn) { 11849 ret = perf_event_init_context(child, ctxn); 11850 if (ret) { 11851 perf_event_free_task(child); 11852 return ret; 11853 } 11854 } 11855 11856 return 0; 11857 } 11858 11859 static void __init perf_event_init_all_cpus(void) 11860 { 11861 struct swevent_htable *swhash; 11862 int cpu; 11863 11864 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL); 11865 11866 for_each_possible_cpu(cpu) { 11867 swhash = &per_cpu(swevent_htable, cpu); 11868 mutex_init(&swhash->hlist_mutex); 11869 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu)); 11870 11871 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu)); 11872 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu)); 11873 11874 #ifdef CONFIG_CGROUP_PERF 11875 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu)); 11876 #endif 11877 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu)); 11878 } 11879 } 11880 11881 void perf_swevent_init_cpu(unsigned int cpu) 11882 { 11883 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu); 11884 11885 mutex_lock(&swhash->hlist_mutex); 11886 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) { 11887 struct swevent_hlist *hlist; 11888 11889 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu)); 11890 WARN_ON(!hlist); 11891 rcu_assign_pointer(swhash->swevent_hlist, hlist); 11892 } 11893 mutex_unlock(&swhash->hlist_mutex); 11894 } 11895 11896 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE 11897 static void __perf_event_exit_context(void *__info) 11898 { 11899 struct perf_event_context *ctx = __info; 11900 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx); 11901 struct perf_event *event; 11902 11903 raw_spin_lock(&ctx->lock); 11904 ctx_sched_out(ctx, cpuctx, EVENT_TIME); 11905 list_for_each_entry(event, &ctx->event_list, event_entry) 11906 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP); 11907 raw_spin_unlock(&ctx->lock); 11908 } 11909 11910 static void perf_event_exit_cpu_context(int cpu) 11911 { 11912 struct perf_cpu_context *cpuctx; 11913 struct perf_event_context *ctx; 11914 struct pmu *pmu; 11915 11916 mutex_lock(&pmus_lock); 11917 list_for_each_entry(pmu, &pmus, entry) { 11918 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11919 ctx = &cpuctx->ctx; 11920 11921 mutex_lock(&ctx->mutex); 11922 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1); 11923 cpuctx->online = 0; 11924 mutex_unlock(&ctx->mutex); 11925 } 11926 cpumask_clear_cpu(cpu, perf_online_mask); 11927 mutex_unlock(&pmus_lock); 11928 } 11929 #else 11930 11931 static void perf_event_exit_cpu_context(int cpu) { } 11932 11933 #endif 11934 11935 int perf_event_init_cpu(unsigned int cpu) 11936 { 11937 struct perf_cpu_context *cpuctx; 11938 struct perf_event_context *ctx; 11939 struct pmu *pmu; 11940 11941 perf_swevent_init_cpu(cpu); 11942 11943 mutex_lock(&pmus_lock); 11944 cpumask_set_cpu(cpu, perf_online_mask); 11945 list_for_each_entry(pmu, &pmus, entry) { 11946 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); 11947 ctx = &cpuctx->ctx; 11948 11949 mutex_lock(&ctx->mutex); 11950 cpuctx->online = 1; 11951 mutex_unlock(&ctx->mutex); 11952 } 11953 mutex_unlock(&pmus_lock); 11954 11955 return 0; 11956 } 11957 11958 int perf_event_exit_cpu(unsigned int cpu) 11959 { 11960 perf_event_exit_cpu_context(cpu); 11961 return 0; 11962 } 11963 11964 static int 11965 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v) 11966 { 11967 int cpu; 11968 11969 for_each_online_cpu(cpu) 11970 perf_event_exit_cpu(cpu); 11971 11972 return NOTIFY_OK; 11973 } 11974 11975 /* 11976 * Run the perf reboot notifier at the very last possible moment so that 11977 * the generic watchdog code runs as long as possible. 11978 */ 11979 static struct notifier_block perf_reboot_notifier = { 11980 .notifier_call = perf_reboot, 11981 .priority = INT_MIN, 11982 }; 11983 11984 void __init perf_event_init(void) 11985 { 11986 int ret; 11987 11988 idr_init(&pmu_idr); 11989 11990 perf_event_init_all_cpus(); 11991 init_srcu_struct(&pmus_srcu); 11992 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE); 11993 perf_pmu_register(&perf_cpu_clock, NULL, -1); 11994 perf_pmu_register(&perf_task_clock, NULL, -1); 11995 perf_tp_register(); 11996 perf_event_init_cpu(smp_processor_id()); 11997 register_reboot_notifier(&perf_reboot_notifier); 11998 11999 ret = init_hw_breakpoint(); 12000 WARN(ret, "hw_breakpoint initialization failed with: %d", ret); 12001 12002 /* 12003 * Build time assertion that we keep the data_head at the intended 12004 * location. IOW, validation we got the __reserved[] size right. 12005 */ 12006 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head)) 12007 != 1024); 12008 } 12009 12010 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 12011 char *page) 12012 { 12013 struct perf_pmu_events_attr *pmu_attr = 12014 container_of(attr, struct perf_pmu_events_attr, attr); 12015 12016 if (pmu_attr->event_str) 12017 return sprintf(page, "%s\n", pmu_attr->event_str); 12018 12019 return 0; 12020 } 12021 EXPORT_SYMBOL_GPL(perf_event_sysfs_show); 12022 12023 static int __init perf_event_sysfs_init(void) 12024 { 12025 struct pmu *pmu; 12026 int ret; 12027 12028 mutex_lock(&pmus_lock); 12029 12030 ret = bus_register(&pmu_bus); 12031 if (ret) 12032 goto unlock; 12033 12034 list_for_each_entry(pmu, &pmus, entry) { 12035 if (!pmu->name || pmu->type < 0) 12036 continue; 12037 12038 ret = pmu_dev_alloc(pmu); 12039 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret); 12040 } 12041 pmu_bus_running = 1; 12042 ret = 0; 12043 12044 unlock: 12045 mutex_unlock(&pmus_lock); 12046 12047 return ret; 12048 } 12049 device_initcall(perf_event_sysfs_init); 12050 12051 #ifdef CONFIG_CGROUP_PERF 12052 static struct cgroup_subsys_state * 12053 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 12054 { 12055 struct perf_cgroup *jc; 12056 12057 jc = kzalloc(sizeof(*jc), GFP_KERNEL); 12058 if (!jc) 12059 return ERR_PTR(-ENOMEM); 12060 12061 jc->info = alloc_percpu(struct perf_cgroup_info); 12062 if (!jc->info) { 12063 kfree(jc); 12064 return ERR_PTR(-ENOMEM); 12065 } 12066 12067 return &jc->css; 12068 } 12069 12070 static void perf_cgroup_css_free(struct cgroup_subsys_state *css) 12071 { 12072 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css); 12073 12074 free_percpu(jc->info); 12075 kfree(jc); 12076 } 12077 12078 static int __perf_cgroup_move(void *info) 12079 { 12080 struct task_struct *task = info; 12081 rcu_read_lock(); 12082 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN); 12083 rcu_read_unlock(); 12084 return 0; 12085 } 12086 12087 static void perf_cgroup_attach(struct cgroup_taskset *tset) 12088 { 12089 struct task_struct *task; 12090 struct cgroup_subsys_state *css; 12091 12092 cgroup_taskset_for_each(task, css, tset) 12093 task_function_call(task, __perf_cgroup_move, task); 12094 } 12095 12096 struct cgroup_subsys perf_event_cgrp_subsys = { 12097 .css_alloc = perf_cgroup_css_alloc, 12098 .css_free = perf_cgroup_css_free, 12099 .attach = perf_cgroup_attach, 12100 /* 12101 * Implicitly enable on dfl hierarchy so that perf events can 12102 * always be filtered by cgroup2 path as long as perf_event 12103 * controller is not mounted on a legacy hierarchy. 12104 */ 12105 .implicit_on_dfl = true, 12106 .threaded = true, 12107 }; 12108 #endif /* CONFIG_CGROUP_PERF */ 12109