xref: /openbmc/linux/kernel/events/core.c (revision c4b69bee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58 
59 #include "internal.h"
60 
61 #include <asm/irq_regs.h>
62 
63 typedef int (*remote_function_f)(void *);
64 
65 struct remote_function_call {
66 	struct task_struct	*p;
67 	remote_function_f	func;
68 	void			*info;
69 	int			ret;
70 };
71 
72 static void remote_function(void *data)
73 {
74 	struct remote_function_call *tfc = data;
75 	struct task_struct *p = tfc->p;
76 
77 	if (p) {
78 		/* -EAGAIN */
79 		if (task_cpu(p) != smp_processor_id())
80 			return;
81 
82 		/*
83 		 * Now that we're on right CPU with IRQs disabled, we can test
84 		 * if we hit the right task without races.
85 		 */
86 
87 		tfc->ret = -ESRCH; /* No such (running) process */
88 		if (p != current)
89 			return;
90 	}
91 
92 	tfc->ret = tfc->func(tfc->info);
93 }
94 
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:		the task to evaluate
98  * @func:	the function to be called
99  * @info:	the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 	struct remote_function_call data = {
112 		.p	= p,
113 		.func	= func,
114 		.info	= info,
115 		.ret	= -EAGAIN,
116 	};
117 	int ret;
118 
119 	for (;;) {
120 		ret = smp_call_function_single(task_cpu(p), remote_function,
121 					       &data, 1);
122 		if (!ret)
123 			ret = data.ret;
124 
125 		if (ret != -EAGAIN)
126 			break;
127 
128 		cond_resched();
129 	}
130 
131 	return ret;
132 }
133 
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:	target cpu to queue this function
137  * @func:	the function to be called
138  * @info:	the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 	struct remote_function_call data = {
147 		.p	= NULL,
148 		.func	= func,
149 		.info	= info,
150 		.ret	= -ENXIO, /* No such CPU */
151 	};
152 
153 	smp_call_function_single(cpu, remote_function, &data, 1);
154 
155 	return data.ret;
156 }
157 
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 			  struct perf_event_context *ctx)
160 {
161 	raw_spin_lock(&cpuctx->ctx.lock);
162 	if (ctx)
163 		raw_spin_lock(&ctx->lock);
164 }
165 
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 			    struct perf_event_context *ctx)
168 {
169 	if (ctx)
170 		raw_spin_unlock(&ctx->lock);
171 	raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173 
174 #define TASK_TOMBSTONE ((void *)-1L)
175 
176 static bool is_kernel_event(struct perf_event *event)
177 {
178 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180 
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182 
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 	lockdep_assert_irqs_disabled();
186 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188 
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207 
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 			struct perf_event_context *, void *);
210 
211 struct event_function_struct {
212 	struct perf_event *event;
213 	event_f func;
214 	void *data;
215 };
216 
217 static int event_function(void *info)
218 {
219 	struct event_function_struct *efs = info;
220 	struct perf_event *event = efs->event;
221 	struct perf_event_context *ctx = event->ctx;
222 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 	int ret = 0;
225 
226 	lockdep_assert_irqs_disabled();
227 
228 	perf_ctx_lock(cpuctx, task_ctx);
229 	/*
230 	 * Since we do the IPI call without holding ctx->lock things can have
231 	 * changed, double check we hit the task we set out to hit.
232 	 */
233 	if (ctx->task) {
234 		if (ctx->task != current) {
235 			ret = -ESRCH;
236 			goto unlock;
237 		}
238 
239 		/*
240 		 * We only use event_function_call() on established contexts,
241 		 * and event_function() is only ever called when active (or
242 		 * rather, we'll have bailed in task_function_call() or the
243 		 * above ctx->task != current test), therefore we must have
244 		 * ctx->is_active here.
245 		 */
246 		WARN_ON_ONCE(!ctx->is_active);
247 		/*
248 		 * And since we have ctx->is_active, cpuctx->task_ctx must
249 		 * match.
250 		 */
251 		WARN_ON_ONCE(task_ctx != ctx);
252 	} else {
253 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 	}
255 
256 	efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 	perf_ctx_unlock(cpuctx, task_ctx);
259 
260 	return ret;
261 }
262 
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 	struct perf_event_context *ctx = event->ctx;
266 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 	struct event_function_struct efs = {
268 		.event = event,
269 		.func = func,
270 		.data = data,
271 	};
272 
273 	if (!event->parent) {
274 		/*
275 		 * If this is a !child event, we must hold ctx::mutex to
276 		 * stabilize the event->ctx relation. See
277 		 * perf_event_ctx_lock().
278 		 */
279 		lockdep_assert_held(&ctx->mutex);
280 	}
281 
282 	if (!task) {
283 		cpu_function_call(event->cpu, event_function, &efs);
284 		return;
285 	}
286 
287 	if (task == TASK_TOMBSTONE)
288 		return;
289 
290 again:
291 	if (!task_function_call(task, event_function, &efs))
292 		return;
293 
294 	raw_spin_lock_irq(&ctx->lock);
295 	/*
296 	 * Reload the task pointer, it might have been changed by
297 	 * a concurrent perf_event_context_sched_out().
298 	 */
299 	task = ctx->task;
300 	if (task == TASK_TOMBSTONE) {
301 		raw_spin_unlock_irq(&ctx->lock);
302 		return;
303 	}
304 	if (ctx->is_active) {
305 		raw_spin_unlock_irq(&ctx->lock);
306 		goto again;
307 	}
308 	func(event, NULL, ctx, data);
309 	raw_spin_unlock_irq(&ctx->lock);
310 }
311 
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318 	struct perf_event_context *ctx = event->ctx;
319 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 	struct task_struct *task = READ_ONCE(ctx->task);
321 	struct perf_event_context *task_ctx = NULL;
322 
323 	lockdep_assert_irqs_disabled();
324 
325 	if (task) {
326 		if (task == TASK_TOMBSTONE)
327 			return;
328 
329 		task_ctx = ctx;
330 	}
331 
332 	perf_ctx_lock(cpuctx, task_ctx);
333 
334 	task = ctx->task;
335 	if (task == TASK_TOMBSTONE)
336 		goto unlock;
337 
338 	if (task) {
339 		/*
340 		 * We must be either inactive or active and the right task,
341 		 * otherwise we're screwed, since we cannot IPI to somewhere
342 		 * else.
343 		 */
344 		if (ctx->is_active) {
345 			if (WARN_ON_ONCE(task != current))
346 				goto unlock;
347 
348 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 				goto unlock;
350 		}
351 	} else {
352 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 	}
354 
355 	func(event, cpuctx, ctx, data);
356 unlock:
357 	perf_ctx_unlock(cpuctx, task_ctx);
358 }
359 
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 		       PERF_FLAG_FD_OUTPUT  |\
362 		       PERF_FLAG_PID_CGROUP |\
363 		       PERF_FLAG_FD_CLOEXEC)
364 
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369 	(PERF_SAMPLE_BRANCH_KERNEL |\
370 	 PERF_SAMPLE_BRANCH_HV)
371 
372 enum event_type_t {
373 	EVENT_FLEXIBLE = 0x1,
374 	EVENT_PINNED = 0x2,
375 	EVENT_TIME = 0x4,
376 	/* see ctx_resched() for details */
377 	EVENT_CPU = 0x8,
378 	EVENT_CGROUP = 0x10,
379 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381 
382 /*
383  * perf_sched_events : >0 events exist
384  */
385 
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391 
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393 
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405 
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411 
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420 
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423 
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE		100000
428 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
430 
431 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
432 
433 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
435 
436 static int perf_sample_allowed_ns __read_mostly =
437 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438 
439 static void update_perf_cpu_limits(void)
440 {
441 	u64 tmp = perf_sample_period_ns;
442 
443 	tmp *= sysctl_perf_cpu_time_max_percent;
444 	tmp = div_u64(tmp, 100);
445 	if (!tmp)
446 		tmp = 1;
447 
448 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450 
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452 
453 int perf_proc_update_handler(struct ctl_table *table, int write,
454 		void *buffer, size_t *lenp, loff_t *ppos)
455 {
456 	int ret;
457 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 	/*
459 	 * If throttling is disabled don't allow the write:
460 	 */
461 	if (write && (perf_cpu == 100 || perf_cpu == 0))
462 		return -EINVAL;
463 
464 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 	if (ret || !write)
466 		return ret;
467 
468 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 	update_perf_cpu_limits();
471 
472 	return 0;
473 }
474 
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476 
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 		void *buffer, size_t *lenp, loff_t *ppos)
479 {
480 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481 
482 	if (ret || !write)
483 		return ret;
484 
485 	if (sysctl_perf_cpu_time_max_percent == 100 ||
486 	    sysctl_perf_cpu_time_max_percent == 0) {
487 		printk(KERN_WARNING
488 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 		WRITE_ONCE(perf_sample_allowed_ns, 0);
490 	} else {
491 		update_perf_cpu_limits();
492 	}
493 
494 	return 0;
495 }
496 
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505 
506 static u64 __report_avg;
507 static u64 __report_allowed;
508 
509 static void perf_duration_warn(struct irq_work *w)
510 {
511 	printk_ratelimited(KERN_INFO
512 		"perf: interrupt took too long (%lld > %lld), lowering "
513 		"kernel.perf_event_max_sample_rate to %d\n",
514 		__report_avg, __report_allowed,
515 		sysctl_perf_event_sample_rate);
516 }
517 
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519 
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 	u64 running_len;
524 	u64 avg_len;
525 	u32 max;
526 
527 	if (max_len == 0)
528 		return;
529 
530 	/* Decay the counter by 1 average sample. */
531 	running_len = __this_cpu_read(running_sample_length);
532 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 	running_len += sample_len_ns;
534 	__this_cpu_write(running_sample_length, running_len);
535 
536 	/*
537 	 * Note: this will be biased artifically low until we have
538 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 	 * from having to maintain a count.
540 	 */
541 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 	if (avg_len <= max_len)
543 		return;
544 
545 	__report_avg = avg_len;
546 	__report_allowed = max_len;
547 
548 	/*
549 	 * Compute a throttle threshold 25% below the current duration.
550 	 */
551 	avg_len += avg_len / 4;
552 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 	if (avg_len < max)
554 		max /= (u32)avg_len;
555 	else
556 		max = 1;
557 
558 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 	WRITE_ONCE(max_samples_per_tick, max);
560 
561 	sysctl_perf_event_sample_rate = max * HZ;
562 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563 
564 	if (!irq_work_queue(&perf_duration_work)) {
565 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566 			     "kernel.perf_event_max_sample_rate to %d\n",
567 			     __report_avg, __report_allowed,
568 			     sysctl_perf_event_sample_rate);
569 	}
570 }
571 
572 static atomic64_t perf_event_id;
573 
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576 
577 void __weak perf_event_print_debug(void)	{ }
578 
579 static inline u64 perf_clock(void)
580 {
581 	return local_clock();
582 }
583 
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586 	return event->clock();
587 }
588 
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610 
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614 	struct perf_event *leader = event->group_leader;
615 
616 	if (leader->state <= PERF_EVENT_STATE_OFF)
617 		return leader->state;
618 
619 	return event->state;
620 }
621 
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625 	enum perf_event_state state = __perf_effective_state(event);
626 	u64 delta = now - event->tstamp;
627 
628 	*enabled = event->total_time_enabled;
629 	if (state >= PERF_EVENT_STATE_INACTIVE)
630 		*enabled += delta;
631 
632 	*running = event->total_time_running;
633 	if (state >= PERF_EVENT_STATE_ACTIVE)
634 		*running += delta;
635 }
636 
637 static void perf_event_update_time(struct perf_event *event)
638 {
639 	u64 now = perf_event_time(event);
640 
641 	__perf_update_times(event, now, &event->total_time_enabled,
642 					&event->total_time_running);
643 	event->tstamp = now;
644 }
645 
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648 	struct perf_event *sibling;
649 
650 	for_each_sibling_event(sibling, leader)
651 		perf_event_update_time(sibling);
652 }
653 
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657 	if (event->state == state)
658 		return;
659 
660 	perf_event_update_time(event);
661 	/*
662 	 * If a group leader gets enabled/disabled all its siblings
663 	 * are affected too.
664 	 */
665 	if ((event->state < 0) ^ (state < 0))
666 		perf_event_update_sibling_time(event);
667 
668 	WRITE_ONCE(event->state, state);
669 }
670 
671 /*
672  * UP store-release, load-acquire
673  */
674 
675 #define __store_release(ptr, val)					\
676 do {									\
677 	barrier();							\
678 	WRITE_ONCE(*(ptr), (val));					\
679 } while (0)
680 
681 #define __load_acquire(ptr)						\
682 ({									\
683 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
684 	barrier();							\
685 	___p;								\
686 })
687 
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690 	struct perf_event_pmu_context *pmu_ctx;
691 
692 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 		if (cgroup && !pmu_ctx->nr_cgroups)
694 			continue;
695 		perf_pmu_disable(pmu_ctx->pmu);
696 	}
697 }
698 
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701 	struct perf_event_pmu_context *pmu_ctx;
702 
703 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 		if (cgroup && !pmu_ctx->nr_cgroups)
705 			continue;
706 		perf_pmu_enable(pmu_ctx->pmu);
707 	}
708 }
709 
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712 
713 #ifdef CONFIG_CGROUP_PERF
714 
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719 
720 	/* @event doesn't care about cgroup */
721 	if (!event->cgrp)
722 		return true;
723 
724 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
725 	if (!cpuctx->cgrp)
726 		return false;
727 
728 	/*
729 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
730 	 * also enabled for all its descendant cgroups.  If @cpuctx's
731 	 * cgroup is a descendant of @event's (the test covers identity
732 	 * case), it's a match.
733 	 */
734 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735 				    event->cgrp->css.cgroup);
736 }
737 
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740 	css_put(&event->cgrp->css);
741 	event->cgrp = NULL;
742 }
743 
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746 	return event->cgrp != NULL;
747 }
748 
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751 	struct perf_cgroup_info *t;
752 
753 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 	return t->time;
755 }
756 
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759 	struct perf_cgroup_info *t;
760 
761 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 	if (!__load_acquire(&t->active))
763 		return t->time;
764 	now += READ_ONCE(t->timeoffset);
765 	return now;
766 }
767 
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770 	if (adv)
771 		info->time += now - info->timestamp;
772 	info->timestamp = now;
773 	/*
774 	 * see update_context_time()
775 	 */
776 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778 
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781 	struct perf_cgroup *cgrp = cpuctx->cgrp;
782 	struct cgroup_subsys_state *css;
783 	struct perf_cgroup_info *info;
784 
785 	if (cgrp) {
786 		u64 now = perf_clock();
787 
788 		for (css = &cgrp->css; css; css = css->parent) {
789 			cgrp = container_of(css, struct perf_cgroup, css);
790 			info = this_cpu_ptr(cgrp->info);
791 
792 			__update_cgrp_time(info, now, true);
793 			if (final)
794 				__store_release(&info->active, 0);
795 		}
796 	}
797 }
798 
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *info;
802 
803 	/*
804 	 * ensure we access cgroup data only when needed and
805 	 * when we know the cgroup is pinned (css_get)
806 	 */
807 	if (!is_cgroup_event(event))
808 		return;
809 
810 	info = this_cpu_ptr(event->cgrp->info);
811 	/*
812 	 * Do not update time when cgroup is not active
813 	 */
814 	if (info->active)
815 		__update_cgrp_time(info, perf_clock(), true);
816 }
817 
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821 	struct perf_event_context *ctx = &cpuctx->ctx;
822 	struct perf_cgroup *cgrp = cpuctx->cgrp;
823 	struct perf_cgroup_info *info;
824 	struct cgroup_subsys_state *css;
825 
826 	/*
827 	 * ctx->lock held by caller
828 	 * ensure we do not access cgroup data
829 	 * unless we have the cgroup pinned (css_get)
830 	 */
831 	if (!cgrp)
832 		return;
833 
834 	WARN_ON_ONCE(!ctx->nr_cgroups);
835 
836 	for (css = &cgrp->css; css; css = css->parent) {
837 		cgrp = container_of(css, struct perf_cgroup, css);
838 		info = this_cpu_ptr(cgrp->info);
839 		__update_cgrp_time(info, ctx->timestamp, false);
840 		__store_release(&info->active, 1);
841 	}
842 }
843 
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 	struct perf_cgroup *cgrp;
851 
852 	/*
853 	 * cpuctx->cgrp is set when the first cgroup event enabled,
854 	 * and is cleared when the last cgroup event disabled.
855 	 */
856 	if (READ_ONCE(cpuctx->cgrp) == NULL)
857 		return;
858 
859 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860 
861 	cgrp = perf_cgroup_from_task(task, NULL);
862 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 		return;
864 
865 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866 	perf_ctx_disable(&cpuctx->ctx, true);
867 
868 	ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869 	/*
870 	 * must not be done before ctxswout due
871 	 * to update_cgrp_time_from_cpuctx() in
872 	 * ctx_sched_out()
873 	 */
874 	cpuctx->cgrp = cgrp;
875 	/*
876 	 * set cgrp before ctxsw in to allow
877 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 	 * to not have to pass task around
879 	 */
880 	ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881 
882 	perf_ctx_enable(&cpuctx->ctx, true);
883 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885 
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887 				struct cgroup_subsys_state *css)
888 {
889 	struct perf_cpu_context *cpuctx;
890 	struct perf_event **storage;
891 	int cpu, heap_size, ret = 0;
892 
893 	/*
894 	 * Allow storage to have sufficent space for an iterator for each
895 	 * possibly nested cgroup plus an iterator for events with no cgroup.
896 	 */
897 	for (heap_size = 1; css; css = css->parent)
898 		heap_size++;
899 
900 	for_each_possible_cpu(cpu) {
901 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 		if (heap_size <= cpuctx->heap_size)
903 			continue;
904 
905 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906 				       GFP_KERNEL, cpu_to_node(cpu));
907 		if (!storage) {
908 			ret = -ENOMEM;
909 			break;
910 		}
911 
912 		raw_spin_lock_irq(&cpuctx->ctx.lock);
913 		if (cpuctx->heap_size < heap_size) {
914 			swap(cpuctx->heap, storage);
915 			if (storage == cpuctx->heap_default)
916 				storage = NULL;
917 			cpuctx->heap_size = heap_size;
918 		}
919 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
920 
921 		kfree(storage);
922 	}
923 
924 	return ret;
925 }
926 
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 				      struct perf_event_attr *attr,
929 				      struct perf_event *group_leader)
930 {
931 	struct perf_cgroup *cgrp;
932 	struct cgroup_subsys_state *css;
933 	struct fd f = fdget(fd);
934 	int ret = 0;
935 
936 	if (!f.file)
937 		return -EBADF;
938 
939 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
940 					 &perf_event_cgrp_subsys);
941 	if (IS_ERR(css)) {
942 		ret = PTR_ERR(css);
943 		goto out;
944 	}
945 
946 	ret = perf_cgroup_ensure_storage(event, css);
947 	if (ret)
948 		goto out;
949 
950 	cgrp = container_of(css, struct perf_cgroup, css);
951 	event->cgrp = cgrp;
952 
953 	/*
954 	 * all events in a group must monitor
955 	 * the same cgroup because a task belongs
956 	 * to only one perf cgroup at a time
957 	 */
958 	if (group_leader && group_leader->cgrp != cgrp) {
959 		perf_detach_cgroup(event);
960 		ret = -EINVAL;
961 	}
962 out:
963 	fdput(f);
964 	return ret;
965 }
966 
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970 	struct perf_cpu_context *cpuctx;
971 
972 	if (!is_cgroup_event(event))
973 		return;
974 
975 	event->pmu_ctx->nr_cgroups++;
976 
977 	/*
978 	 * Because cgroup events are always per-cpu events,
979 	 * @ctx == &cpuctx->ctx.
980 	 */
981 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982 
983 	if (ctx->nr_cgroups++)
984 		return;
985 
986 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988 
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992 	struct perf_cpu_context *cpuctx;
993 
994 	if (!is_cgroup_event(event))
995 		return;
996 
997 	event->pmu_ctx->nr_cgroups--;
998 
999 	/*
1000 	 * Because cgroup events are always per-cpu events,
1001 	 * @ctx == &cpuctx->ctx.
1002 	 */
1003 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004 
1005 	if (--ctx->nr_cgroups)
1006 		return;
1007 
1008 	cpuctx->cgrp = NULL;
1009 }
1010 
1011 #else /* !CONFIG_CGROUP_PERF */
1012 
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016 	return true;
1017 }
1018 
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021 
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024 	return 0;
1025 }
1026 
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030 
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 						bool final)
1033 {
1034 }
1035 
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 				      struct perf_event_attr *attr,
1038 				      struct perf_event *group_leader)
1039 {
1040 	return -EINVAL;
1041 }
1042 
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047 
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050 	return 0;
1051 }
1052 
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055 	return 0;
1056 }
1057 
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062 
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067 
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072 
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083 	struct perf_cpu_pmu_context *cpc;
1084 	bool rotations;
1085 
1086 	lockdep_assert_irqs_disabled();
1087 
1088 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 	rotations = perf_rotate_context(cpc);
1090 
1091 	raw_spin_lock(&cpc->hrtimer_lock);
1092 	if (rotations)
1093 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094 	else
1095 		cpc->hrtimer_active = 0;
1096 	raw_spin_unlock(&cpc->hrtimer_lock);
1097 
1098 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100 
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103 	struct hrtimer *timer = &cpc->hrtimer;
1104 	struct pmu *pmu = cpc->epc.pmu;
1105 	u64 interval;
1106 
1107 	/*
1108 	 * check default is sane, if not set then force to
1109 	 * default interval (1/tick)
1110 	 */
1111 	interval = pmu->hrtimer_interval_ms;
1112 	if (interval < 1)
1113 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 
1115 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 
1117 	raw_spin_lock_init(&cpc->hrtimer_lock);
1118 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119 	timer->function = perf_mux_hrtimer_handler;
1120 }
1121 
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124 	struct hrtimer *timer = &cpc->hrtimer;
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 	if (!cpc->hrtimer_active) {
1129 		cpc->hrtimer_active = 1;
1130 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132 	}
1133 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134 
1135 	return 0;
1136 }
1137 
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140 	return perf_mux_hrtimer_restart(arg);
1141 }
1142 
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 	if (!(*count)++)
1147 		pmu->pmu_disable(pmu);
1148 }
1149 
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 	if (!--(*count))
1154 		pmu->pmu_enable(pmu);
1155 }
1156 
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161 
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164 	refcount_inc(&ctx->refcount);
1165 }
1166 
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169 	if (pmu->task_ctx_cache)
1170 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171 
1172 	return NULL;
1173 }
1174 
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177 	if (pmu->task_ctx_cache && task_ctx_data)
1178 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180 
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183 	struct perf_event_context *ctx;
1184 
1185 	ctx = container_of(head, struct perf_event_context, rcu_head);
1186 	kfree(ctx);
1187 }
1188 
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191 	if (refcount_dec_and_test(&ctx->refcount)) {
1192 		if (ctx->parent_ctx)
1193 			put_ctx(ctx->parent_ctx);
1194 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 			put_task_struct(ctx->task);
1196 		call_rcu(&ctx->rcu_head, free_ctx);
1197 	}
1198 }
1199 
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()	[ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()			[ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()		[ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event()	[ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *	task_struct::perf_event_mutex
1255  *	  perf_event_context::mutex
1256  *	    perf_event::child_mutex;
1257  *	      perf_event_context::lock
1258  *	    mmap_lock
1259  *	      perf_event::mmap_mutex
1260  *	        perf_buffer::aux_mutex
1261  *	      perf_addr_filters_head::lock
1262  *
1263  *    cpu_hotplug_lock
1264  *      pmus_lock
1265  *	  cpuctx->mutex / perf_event_context::mutex
1266  */
1267 static struct perf_event_context *
1268 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1269 {
1270 	struct perf_event_context *ctx;
1271 
1272 again:
1273 	rcu_read_lock();
1274 	ctx = READ_ONCE(event->ctx);
1275 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1276 		rcu_read_unlock();
1277 		goto again;
1278 	}
1279 	rcu_read_unlock();
1280 
1281 	mutex_lock_nested(&ctx->mutex, nesting);
1282 	if (event->ctx != ctx) {
1283 		mutex_unlock(&ctx->mutex);
1284 		put_ctx(ctx);
1285 		goto again;
1286 	}
1287 
1288 	return ctx;
1289 }
1290 
1291 static inline struct perf_event_context *
1292 perf_event_ctx_lock(struct perf_event *event)
1293 {
1294 	return perf_event_ctx_lock_nested(event, 0);
1295 }
1296 
1297 static void perf_event_ctx_unlock(struct perf_event *event,
1298 				  struct perf_event_context *ctx)
1299 {
1300 	mutex_unlock(&ctx->mutex);
1301 	put_ctx(ctx);
1302 }
1303 
1304 /*
1305  * This must be done under the ctx->lock, such as to serialize against
1306  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1307  * calling scheduler related locks and ctx->lock nests inside those.
1308  */
1309 static __must_check struct perf_event_context *
1310 unclone_ctx(struct perf_event_context *ctx)
1311 {
1312 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1313 
1314 	lockdep_assert_held(&ctx->lock);
1315 
1316 	if (parent_ctx)
1317 		ctx->parent_ctx = NULL;
1318 	ctx->generation++;
1319 
1320 	return parent_ctx;
1321 }
1322 
1323 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1324 				enum pid_type type)
1325 {
1326 	u32 nr;
1327 	/*
1328 	 * only top level events have the pid namespace they were created in
1329 	 */
1330 	if (event->parent)
1331 		event = event->parent;
1332 
1333 	nr = __task_pid_nr_ns(p, type, event->ns);
1334 	/* avoid -1 if it is idle thread or runs in another ns */
1335 	if (!nr && !pid_alive(p))
1336 		nr = -1;
1337 	return nr;
1338 }
1339 
1340 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1341 {
1342 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1343 }
1344 
1345 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1346 {
1347 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1348 }
1349 
1350 /*
1351  * If we inherit events we want to return the parent event id
1352  * to userspace.
1353  */
1354 static u64 primary_event_id(struct perf_event *event)
1355 {
1356 	u64 id = event->id;
1357 
1358 	if (event->parent)
1359 		id = event->parent->id;
1360 
1361 	return id;
1362 }
1363 
1364 /*
1365  * Get the perf_event_context for a task and lock it.
1366  *
1367  * This has to cope with the fact that until it is locked,
1368  * the context could get moved to another task.
1369  */
1370 static struct perf_event_context *
1371 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1372 {
1373 	struct perf_event_context *ctx;
1374 
1375 retry:
1376 	/*
1377 	 * One of the few rules of preemptible RCU is that one cannot do
1378 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1379 	 * part of the read side critical section was irqs-enabled -- see
1380 	 * rcu_read_unlock_special().
1381 	 *
1382 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1383 	 * side critical section has interrupts disabled.
1384 	 */
1385 	local_irq_save(*flags);
1386 	rcu_read_lock();
1387 	ctx = rcu_dereference(task->perf_event_ctxp);
1388 	if (ctx) {
1389 		/*
1390 		 * If this context is a clone of another, it might
1391 		 * get swapped for another underneath us by
1392 		 * perf_event_task_sched_out, though the
1393 		 * rcu_read_lock() protects us from any context
1394 		 * getting freed.  Lock the context and check if it
1395 		 * got swapped before we could get the lock, and retry
1396 		 * if so.  If we locked the right context, then it
1397 		 * can't get swapped on us any more.
1398 		 */
1399 		raw_spin_lock(&ctx->lock);
1400 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1401 			raw_spin_unlock(&ctx->lock);
1402 			rcu_read_unlock();
1403 			local_irq_restore(*flags);
1404 			goto retry;
1405 		}
1406 
1407 		if (ctx->task == TASK_TOMBSTONE ||
1408 		    !refcount_inc_not_zero(&ctx->refcount)) {
1409 			raw_spin_unlock(&ctx->lock);
1410 			ctx = NULL;
1411 		} else {
1412 			WARN_ON_ONCE(ctx->task != task);
1413 		}
1414 	}
1415 	rcu_read_unlock();
1416 	if (!ctx)
1417 		local_irq_restore(*flags);
1418 	return ctx;
1419 }
1420 
1421 /*
1422  * Get the context for a task and increment its pin_count so it
1423  * can't get swapped to another task.  This also increments its
1424  * reference count so that the context can't get freed.
1425  */
1426 static struct perf_event_context *
1427 perf_pin_task_context(struct task_struct *task)
1428 {
1429 	struct perf_event_context *ctx;
1430 	unsigned long flags;
1431 
1432 	ctx = perf_lock_task_context(task, &flags);
1433 	if (ctx) {
1434 		++ctx->pin_count;
1435 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1436 	}
1437 	return ctx;
1438 }
1439 
1440 static void perf_unpin_context(struct perf_event_context *ctx)
1441 {
1442 	unsigned long flags;
1443 
1444 	raw_spin_lock_irqsave(&ctx->lock, flags);
1445 	--ctx->pin_count;
1446 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1447 }
1448 
1449 /*
1450  * Update the record of the current time in a context.
1451  */
1452 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1453 {
1454 	u64 now = perf_clock();
1455 
1456 	lockdep_assert_held(&ctx->lock);
1457 
1458 	if (adv)
1459 		ctx->time += now - ctx->timestamp;
1460 	ctx->timestamp = now;
1461 
1462 	/*
1463 	 * The above: time' = time + (now - timestamp), can be re-arranged
1464 	 * into: time` = now + (time - timestamp), which gives a single value
1465 	 * offset to compute future time without locks on.
1466 	 *
1467 	 * See perf_event_time_now(), which can be used from NMI context where
1468 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1469 	 * both the above values in a consistent manner.
1470 	 */
1471 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1472 }
1473 
1474 static void update_context_time(struct perf_event_context *ctx)
1475 {
1476 	__update_context_time(ctx, true);
1477 }
1478 
1479 static u64 perf_event_time(struct perf_event *event)
1480 {
1481 	struct perf_event_context *ctx = event->ctx;
1482 
1483 	if (unlikely(!ctx))
1484 		return 0;
1485 
1486 	if (is_cgroup_event(event))
1487 		return perf_cgroup_event_time(event);
1488 
1489 	return ctx->time;
1490 }
1491 
1492 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1493 {
1494 	struct perf_event_context *ctx = event->ctx;
1495 
1496 	if (unlikely(!ctx))
1497 		return 0;
1498 
1499 	if (is_cgroup_event(event))
1500 		return perf_cgroup_event_time_now(event, now);
1501 
1502 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1503 		return ctx->time;
1504 
1505 	now += READ_ONCE(ctx->timeoffset);
1506 	return now;
1507 }
1508 
1509 static enum event_type_t get_event_type(struct perf_event *event)
1510 {
1511 	struct perf_event_context *ctx = event->ctx;
1512 	enum event_type_t event_type;
1513 
1514 	lockdep_assert_held(&ctx->lock);
1515 
1516 	/*
1517 	 * It's 'group type', really, because if our group leader is
1518 	 * pinned, so are we.
1519 	 */
1520 	if (event->group_leader != event)
1521 		event = event->group_leader;
1522 
1523 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1524 	if (!ctx->task)
1525 		event_type |= EVENT_CPU;
1526 
1527 	return event_type;
1528 }
1529 
1530 /*
1531  * Helper function to initialize event group nodes.
1532  */
1533 static void init_event_group(struct perf_event *event)
1534 {
1535 	RB_CLEAR_NODE(&event->group_node);
1536 	event->group_index = 0;
1537 }
1538 
1539 /*
1540  * Extract pinned or flexible groups from the context
1541  * based on event attrs bits.
1542  */
1543 static struct perf_event_groups *
1544 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1545 {
1546 	if (event->attr.pinned)
1547 		return &ctx->pinned_groups;
1548 	else
1549 		return &ctx->flexible_groups;
1550 }
1551 
1552 /*
1553  * Helper function to initializes perf_event_group trees.
1554  */
1555 static void perf_event_groups_init(struct perf_event_groups *groups)
1556 {
1557 	groups->tree = RB_ROOT;
1558 	groups->index = 0;
1559 }
1560 
1561 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1562 {
1563 	struct cgroup *cgroup = NULL;
1564 
1565 #ifdef CONFIG_CGROUP_PERF
1566 	if (event->cgrp)
1567 		cgroup = event->cgrp->css.cgroup;
1568 #endif
1569 
1570 	return cgroup;
1571 }
1572 
1573 /*
1574  * Compare function for event groups;
1575  *
1576  * Implements complex key that first sorts by CPU and then by virtual index
1577  * which provides ordering when rotating groups for the same CPU.
1578  */
1579 static __always_inline int
1580 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1581 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1582 		      const struct perf_event *right)
1583 {
1584 	if (left_cpu < right->cpu)
1585 		return -1;
1586 	if (left_cpu > right->cpu)
1587 		return 1;
1588 
1589 	if (left_pmu) {
1590 		if (left_pmu < right->pmu_ctx->pmu)
1591 			return -1;
1592 		if (left_pmu > right->pmu_ctx->pmu)
1593 			return 1;
1594 	}
1595 
1596 #ifdef CONFIG_CGROUP_PERF
1597 	{
1598 		const struct cgroup *right_cgroup = event_cgroup(right);
1599 
1600 		if (left_cgroup != right_cgroup) {
1601 			if (!left_cgroup) {
1602 				/*
1603 				 * Left has no cgroup but right does, no
1604 				 * cgroups come first.
1605 				 */
1606 				return -1;
1607 			}
1608 			if (!right_cgroup) {
1609 				/*
1610 				 * Right has no cgroup but left does, no
1611 				 * cgroups come first.
1612 				 */
1613 				return 1;
1614 			}
1615 			/* Two dissimilar cgroups, order by id. */
1616 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1617 				return -1;
1618 
1619 			return 1;
1620 		}
1621 	}
1622 #endif
1623 
1624 	if (left_group_index < right->group_index)
1625 		return -1;
1626 	if (left_group_index > right->group_index)
1627 		return 1;
1628 
1629 	return 0;
1630 }
1631 
1632 #define __node_2_pe(node) \
1633 	rb_entry((node), struct perf_event, group_node)
1634 
1635 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1636 {
1637 	struct perf_event *e = __node_2_pe(a);
1638 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1639 				     e->group_index, __node_2_pe(b)) < 0;
1640 }
1641 
1642 struct __group_key {
1643 	int cpu;
1644 	struct pmu *pmu;
1645 	struct cgroup *cgroup;
1646 };
1647 
1648 static inline int __group_cmp(const void *key, const struct rb_node *node)
1649 {
1650 	const struct __group_key *a = key;
1651 	const struct perf_event *b = __node_2_pe(node);
1652 
1653 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1654 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1655 }
1656 
1657 static inline int
1658 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1659 {
1660 	const struct __group_key *a = key;
1661 	const struct perf_event *b = __node_2_pe(node);
1662 
1663 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1664 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1665 				     b->group_index, b);
1666 }
1667 
1668 /*
1669  * Insert @event into @groups' tree; using
1670  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1671  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1672  */
1673 static void
1674 perf_event_groups_insert(struct perf_event_groups *groups,
1675 			 struct perf_event *event)
1676 {
1677 	event->group_index = ++groups->index;
1678 
1679 	rb_add(&event->group_node, &groups->tree, __group_less);
1680 }
1681 
1682 /*
1683  * Helper function to insert event into the pinned or flexible groups.
1684  */
1685 static void
1686 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1687 {
1688 	struct perf_event_groups *groups;
1689 
1690 	groups = get_event_groups(event, ctx);
1691 	perf_event_groups_insert(groups, event);
1692 }
1693 
1694 /*
1695  * Delete a group from a tree.
1696  */
1697 static void
1698 perf_event_groups_delete(struct perf_event_groups *groups,
1699 			 struct perf_event *event)
1700 {
1701 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1702 		     RB_EMPTY_ROOT(&groups->tree));
1703 
1704 	rb_erase(&event->group_node, &groups->tree);
1705 	init_event_group(event);
1706 }
1707 
1708 /*
1709  * Helper function to delete event from its groups.
1710  */
1711 static void
1712 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1713 {
1714 	struct perf_event_groups *groups;
1715 
1716 	groups = get_event_groups(event, ctx);
1717 	perf_event_groups_delete(groups, event);
1718 }
1719 
1720 /*
1721  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1722  */
1723 static struct perf_event *
1724 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1725 			struct pmu *pmu, struct cgroup *cgrp)
1726 {
1727 	struct __group_key key = {
1728 		.cpu = cpu,
1729 		.pmu = pmu,
1730 		.cgroup = cgrp,
1731 	};
1732 	struct rb_node *node;
1733 
1734 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1735 	if (node)
1736 		return __node_2_pe(node);
1737 
1738 	return NULL;
1739 }
1740 
1741 static struct perf_event *
1742 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1743 {
1744 	struct __group_key key = {
1745 		.cpu = event->cpu,
1746 		.pmu = pmu,
1747 		.cgroup = event_cgroup(event),
1748 	};
1749 	struct rb_node *next;
1750 
1751 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1752 	if (next)
1753 		return __node_2_pe(next);
1754 
1755 	return NULL;
1756 }
1757 
1758 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1759 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1760 	     event; event = perf_event_groups_next(event, pmu))
1761 
1762 /*
1763  * Iterate through the whole groups tree.
1764  */
1765 #define perf_event_groups_for_each(event, groups)			\
1766 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1767 				typeof(*event), group_node); event;	\
1768 		event = rb_entry_safe(rb_next(&event->group_node),	\
1769 				typeof(*event), group_node))
1770 
1771 /*
1772  * Add an event from the lists for its context.
1773  * Must be called with ctx->mutex and ctx->lock held.
1774  */
1775 static void
1776 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1777 {
1778 	lockdep_assert_held(&ctx->lock);
1779 
1780 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1781 	event->attach_state |= PERF_ATTACH_CONTEXT;
1782 
1783 	event->tstamp = perf_event_time(event);
1784 
1785 	/*
1786 	 * If we're a stand alone event or group leader, we go to the context
1787 	 * list, group events are kept attached to the group so that
1788 	 * perf_group_detach can, at all times, locate all siblings.
1789 	 */
1790 	if (event->group_leader == event) {
1791 		event->group_caps = event->event_caps;
1792 		add_event_to_groups(event, ctx);
1793 	}
1794 
1795 	list_add_rcu(&event->event_entry, &ctx->event_list);
1796 	ctx->nr_events++;
1797 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1798 		ctx->nr_user++;
1799 	if (event->attr.inherit_stat)
1800 		ctx->nr_stat++;
1801 
1802 	if (event->state > PERF_EVENT_STATE_OFF)
1803 		perf_cgroup_event_enable(event, ctx);
1804 
1805 	ctx->generation++;
1806 	event->pmu_ctx->nr_events++;
1807 }
1808 
1809 /*
1810  * Initialize event state based on the perf_event_attr::disabled.
1811  */
1812 static inline void perf_event__state_init(struct perf_event *event)
1813 {
1814 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1815 					      PERF_EVENT_STATE_INACTIVE;
1816 }
1817 
1818 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1819 {
1820 	int entry = sizeof(u64); /* value */
1821 	int size = 0;
1822 	int nr = 1;
1823 
1824 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1825 		size += sizeof(u64);
1826 
1827 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1828 		size += sizeof(u64);
1829 
1830 	if (read_format & PERF_FORMAT_ID)
1831 		entry += sizeof(u64);
1832 
1833 	if (read_format & PERF_FORMAT_LOST)
1834 		entry += sizeof(u64);
1835 
1836 	if (read_format & PERF_FORMAT_GROUP) {
1837 		nr += nr_siblings;
1838 		size += sizeof(u64);
1839 	}
1840 
1841 	/*
1842 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1843 	 * adding more siblings, this will never overflow.
1844 	 */
1845 	return size + nr * entry;
1846 }
1847 
1848 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1849 {
1850 	struct perf_sample_data *data;
1851 	u16 size = 0;
1852 
1853 	if (sample_type & PERF_SAMPLE_IP)
1854 		size += sizeof(data->ip);
1855 
1856 	if (sample_type & PERF_SAMPLE_ADDR)
1857 		size += sizeof(data->addr);
1858 
1859 	if (sample_type & PERF_SAMPLE_PERIOD)
1860 		size += sizeof(data->period);
1861 
1862 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1863 		size += sizeof(data->weight.full);
1864 
1865 	if (sample_type & PERF_SAMPLE_READ)
1866 		size += event->read_size;
1867 
1868 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1869 		size += sizeof(data->data_src.val);
1870 
1871 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1872 		size += sizeof(data->txn);
1873 
1874 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1875 		size += sizeof(data->phys_addr);
1876 
1877 	if (sample_type & PERF_SAMPLE_CGROUP)
1878 		size += sizeof(data->cgroup);
1879 
1880 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1881 		size += sizeof(data->data_page_size);
1882 
1883 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1884 		size += sizeof(data->code_page_size);
1885 
1886 	event->header_size = size;
1887 }
1888 
1889 /*
1890  * Called at perf_event creation and when events are attached/detached from a
1891  * group.
1892  */
1893 static void perf_event__header_size(struct perf_event *event)
1894 {
1895 	event->read_size =
1896 		__perf_event_read_size(event->attr.read_format,
1897 				       event->group_leader->nr_siblings);
1898 	__perf_event_header_size(event, event->attr.sample_type);
1899 }
1900 
1901 static void perf_event__id_header_size(struct perf_event *event)
1902 {
1903 	struct perf_sample_data *data;
1904 	u64 sample_type = event->attr.sample_type;
1905 	u16 size = 0;
1906 
1907 	if (sample_type & PERF_SAMPLE_TID)
1908 		size += sizeof(data->tid_entry);
1909 
1910 	if (sample_type & PERF_SAMPLE_TIME)
1911 		size += sizeof(data->time);
1912 
1913 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1914 		size += sizeof(data->id);
1915 
1916 	if (sample_type & PERF_SAMPLE_ID)
1917 		size += sizeof(data->id);
1918 
1919 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1920 		size += sizeof(data->stream_id);
1921 
1922 	if (sample_type & PERF_SAMPLE_CPU)
1923 		size += sizeof(data->cpu_entry);
1924 
1925 	event->id_header_size = size;
1926 }
1927 
1928 /*
1929  * Check that adding an event to the group does not result in anybody
1930  * overflowing the 64k event limit imposed by the output buffer.
1931  *
1932  * Specifically, check that the read_size for the event does not exceed 16k,
1933  * read_size being the one term that grows with groups size. Since read_size
1934  * depends on per-event read_format, also (re)check the existing events.
1935  *
1936  * This leaves 48k for the constant size fields and things like callchains,
1937  * branch stacks and register sets.
1938  */
1939 static bool perf_event_validate_size(struct perf_event *event)
1940 {
1941 	struct perf_event *sibling, *group_leader = event->group_leader;
1942 
1943 	if (__perf_event_read_size(event->attr.read_format,
1944 				   group_leader->nr_siblings + 1) > 16*1024)
1945 		return false;
1946 
1947 	if (__perf_event_read_size(group_leader->attr.read_format,
1948 				   group_leader->nr_siblings + 1) > 16*1024)
1949 		return false;
1950 
1951 	/*
1952 	 * When creating a new group leader, group_leader->ctx is initialized
1953 	 * after the size has been validated, but we cannot safely use
1954 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
1955 	 * leader cannot have any siblings yet, so we can safely skip checking
1956 	 * the non-existent siblings.
1957 	 */
1958 	if (event == group_leader)
1959 		return true;
1960 
1961 	for_each_sibling_event(sibling, group_leader) {
1962 		if (__perf_event_read_size(sibling->attr.read_format,
1963 					   group_leader->nr_siblings + 1) > 16*1024)
1964 			return false;
1965 	}
1966 
1967 	return true;
1968 }
1969 
1970 static void perf_group_attach(struct perf_event *event)
1971 {
1972 	struct perf_event *group_leader = event->group_leader, *pos;
1973 
1974 	lockdep_assert_held(&event->ctx->lock);
1975 
1976 	/*
1977 	 * We can have double attach due to group movement (move_group) in
1978 	 * perf_event_open().
1979 	 */
1980 	if (event->attach_state & PERF_ATTACH_GROUP)
1981 		return;
1982 
1983 	event->attach_state |= PERF_ATTACH_GROUP;
1984 
1985 	if (group_leader == event)
1986 		return;
1987 
1988 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1989 
1990 	group_leader->group_caps &= event->event_caps;
1991 
1992 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1993 	group_leader->nr_siblings++;
1994 	group_leader->group_generation++;
1995 
1996 	perf_event__header_size(group_leader);
1997 
1998 	for_each_sibling_event(pos, group_leader)
1999 		perf_event__header_size(pos);
2000 }
2001 
2002 /*
2003  * Remove an event from the lists for its context.
2004  * Must be called with ctx->mutex and ctx->lock held.
2005  */
2006 static void
2007 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2008 {
2009 	WARN_ON_ONCE(event->ctx != ctx);
2010 	lockdep_assert_held(&ctx->lock);
2011 
2012 	/*
2013 	 * We can have double detach due to exit/hot-unplug + close.
2014 	 */
2015 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2016 		return;
2017 
2018 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2019 
2020 	ctx->nr_events--;
2021 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2022 		ctx->nr_user--;
2023 	if (event->attr.inherit_stat)
2024 		ctx->nr_stat--;
2025 
2026 	list_del_rcu(&event->event_entry);
2027 
2028 	if (event->group_leader == event)
2029 		del_event_from_groups(event, ctx);
2030 
2031 	/*
2032 	 * If event was in error state, then keep it
2033 	 * that way, otherwise bogus counts will be
2034 	 * returned on read(). The only way to get out
2035 	 * of error state is by explicit re-enabling
2036 	 * of the event
2037 	 */
2038 	if (event->state > PERF_EVENT_STATE_OFF) {
2039 		perf_cgroup_event_disable(event, ctx);
2040 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2041 	}
2042 
2043 	ctx->generation++;
2044 	event->pmu_ctx->nr_events--;
2045 }
2046 
2047 static int
2048 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2049 {
2050 	if (!has_aux(aux_event))
2051 		return 0;
2052 
2053 	if (!event->pmu->aux_output_match)
2054 		return 0;
2055 
2056 	return event->pmu->aux_output_match(aux_event);
2057 }
2058 
2059 static void put_event(struct perf_event *event);
2060 static void event_sched_out(struct perf_event *event,
2061 			    struct perf_event_context *ctx);
2062 
2063 static void perf_put_aux_event(struct perf_event *event)
2064 {
2065 	struct perf_event_context *ctx = event->ctx;
2066 	struct perf_event *iter;
2067 
2068 	/*
2069 	 * If event uses aux_event tear down the link
2070 	 */
2071 	if (event->aux_event) {
2072 		iter = event->aux_event;
2073 		event->aux_event = NULL;
2074 		put_event(iter);
2075 		return;
2076 	}
2077 
2078 	/*
2079 	 * If the event is an aux_event, tear down all links to
2080 	 * it from other events.
2081 	 */
2082 	for_each_sibling_event(iter, event->group_leader) {
2083 		if (iter->aux_event != event)
2084 			continue;
2085 
2086 		iter->aux_event = NULL;
2087 		put_event(event);
2088 
2089 		/*
2090 		 * If it's ACTIVE, schedule it out and put it into ERROR
2091 		 * state so that we don't try to schedule it again. Note
2092 		 * that perf_event_enable() will clear the ERROR status.
2093 		 */
2094 		event_sched_out(iter, ctx);
2095 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2096 	}
2097 }
2098 
2099 static bool perf_need_aux_event(struct perf_event *event)
2100 {
2101 	return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2102 }
2103 
2104 static int perf_get_aux_event(struct perf_event *event,
2105 			      struct perf_event *group_leader)
2106 {
2107 	/*
2108 	 * Our group leader must be an aux event if we want to be
2109 	 * an aux_output. This way, the aux event will precede its
2110 	 * aux_output events in the group, and therefore will always
2111 	 * schedule first.
2112 	 */
2113 	if (!group_leader)
2114 		return 0;
2115 
2116 	/*
2117 	 * aux_output and aux_sample_size are mutually exclusive.
2118 	 */
2119 	if (event->attr.aux_output && event->attr.aux_sample_size)
2120 		return 0;
2121 
2122 	if (event->attr.aux_output &&
2123 	    !perf_aux_output_match(event, group_leader))
2124 		return 0;
2125 
2126 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2127 		return 0;
2128 
2129 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2130 		return 0;
2131 
2132 	/*
2133 	 * Link aux_outputs to their aux event; this is undone in
2134 	 * perf_group_detach() by perf_put_aux_event(). When the
2135 	 * group in torn down, the aux_output events loose their
2136 	 * link to the aux_event and can't schedule any more.
2137 	 */
2138 	event->aux_event = group_leader;
2139 
2140 	return 1;
2141 }
2142 
2143 static inline struct list_head *get_event_list(struct perf_event *event)
2144 {
2145 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2146 				    &event->pmu_ctx->flexible_active;
2147 }
2148 
2149 /*
2150  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2151  * cannot exist on their own, schedule them out and move them into the ERROR
2152  * state. Also see _perf_event_enable(), it will not be able to recover
2153  * this ERROR state.
2154  */
2155 static inline void perf_remove_sibling_event(struct perf_event *event)
2156 {
2157 	event_sched_out(event, event->ctx);
2158 	perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2159 }
2160 
2161 static void perf_group_detach(struct perf_event *event)
2162 {
2163 	struct perf_event *leader = event->group_leader;
2164 	struct perf_event *sibling, *tmp;
2165 	struct perf_event_context *ctx = event->ctx;
2166 
2167 	lockdep_assert_held(&ctx->lock);
2168 
2169 	/*
2170 	 * We can have double detach due to exit/hot-unplug + close.
2171 	 */
2172 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2173 		return;
2174 
2175 	event->attach_state &= ~PERF_ATTACH_GROUP;
2176 
2177 	perf_put_aux_event(event);
2178 
2179 	/*
2180 	 * If this is a sibling, remove it from its group.
2181 	 */
2182 	if (leader != event) {
2183 		list_del_init(&event->sibling_list);
2184 		event->group_leader->nr_siblings--;
2185 		event->group_leader->group_generation++;
2186 		goto out;
2187 	}
2188 
2189 	/*
2190 	 * If this was a group event with sibling events then
2191 	 * upgrade the siblings to singleton events by adding them
2192 	 * to whatever list we are on.
2193 	 */
2194 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2195 
2196 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2197 			perf_remove_sibling_event(sibling);
2198 
2199 		sibling->group_leader = sibling;
2200 		list_del_init(&sibling->sibling_list);
2201 
2202 		/* Inherit group flags from the previous leader */
2203 		sibling->group_caps = event->group_caps;
2204 
2205 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2206 			add_event_to_groups(sibling, event->ctx);
2207 
2208 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2209 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2210 		}
2211 
2212 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2213 	}
2214 
2215 out:
2216 	for_each_sibling_event(tmp, leader)
2217 		perf_event__header_size(tmp);
2218 
2219 	perf_event__header_size(leader);
2220 }
2221 
2222 static void sync_child_event(struct perf_event *child_event);
2223 
2224 static void perf_child_detach(struct perf_event *event)
2225 {
2226 	struct perf_event *parent_event = event->parent;
2227 
2228 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2229 		return;
2230 
2231 	event->attach_state &= ~PERF_ATTACH_CHILD;
2232 
2233 	if (WARN_ON_ONCE(!parent_event))
2234 		return;
2235 
2236 	lockdep_assert_held(&parent_event->child_mutex);
2237 
2238 	sync_child_event(event);
2239 	list_del_init(&event->child_list);
2240 }
2241 
2242 static bool is_orphaned_event(struct perf_event *event)
2243 {
2244 	return event->state == PERF_EVENT_STATE_DEAD;
2245 }
2246 
2247 static inline int
2248 event_filter_match(struct perf_event *event)
2249 {
2250 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2251 	       perf_cgroup_match(event);
2252 }
2253 
2254 static void
2255 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2256 {
2257 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2258 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2259 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2260 
2261 	// XXX cpc serialization, probably per-cpu IRQ disabled
2262 
2263 	WARN_ON_ONCE(event->ctx != ctx);
2264 	lockdep_assert_held(&ctx->lock);
2265 
2266 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2267 		return;
2268 
2269 	/*
2270 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2271 	 * we can schedule events _OUT_ individually through things like
2272 	 * __perf_remove_from_context().
2273 	 */
2274 	list_del_init(&event->active_list);
2275 
2276 	perf_pmu_disable(event->pmu);
2277 
2278 	event->pmu->del(event, 0);
2279 	event->oncpu = -1;
2280 
2281 	if (event->pending_disable) {
2282 		event->pending_disable = 0;
2283 		perf_cgroup_event_disable(event, ctx);
2284 		state = PERF_EVENT_STATE_OFF;
2285 	}
2286 
2287 	if (event->pending_sigtrap) {
2288 		event->pending_sigtrap = 0;
2289 		if (state != PERF_EVENT_STATE_OFF &&
2290 		    !event->pending_work &&
2291 		    !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2292 			event->pending_work = 1;
2293 		} else {
2294 			local_dec(&event->ctx->nr_pending);
2295 		}
2296 	}
2297 
2298 	perf_event_set_state(event, state);
2299 
2300 	if (!is_software_event(event))
2301 		cpc->active_oncpu--;
2302 	if (event->attr.freq && event->attr.sample_freq)
2303 		ctx->nr_freq--;
2304 	if (event->attr.exclusive || !cpc->active_oncpu)
2305 		cpc->exclusive = 0;
2306 
2307 	perf_pmu_enable(event->pmu);
2308 }
2309 
2310 static void
2311 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2312 {
2313 	struct perf_event *event;
2314 
2315 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2316 		return;
2317 
2318 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2319 
2320 	event_sched_out(group_event, ctx);
2321 
2322 	/*
2323 	 * Schedule out siblings (if any):
2324 	 */
2325 	for_each_sibling_event(event, group_event)
2326 		event_sched_out(event, ctx);
2327 }
2328 
2329 #define DETACH_GROUP	0x01UL
2330 #define DETACH_CHILD	0x02UL
2331 #define DETACH_DEAD	0x04UL
2332 
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341 			   struct perf_cpu_context *cpuctx,
2342 			   struct perf_event_context *ctx,
2343 			   void *info)
2344 {
2345 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2346 	unsigned long flags = (unsigned long)info;
2347 
2348 	if (ctx->is_active & EVENT_TIME) {
2349 		update_context_time(ctx);
2350 		update_cgrp_time_from_cpuctx(cpuctx, false);
2351 	}
2352 
2353 	/*
2354 	 * Ensure event_sched_out() switches to OFF, at the very least
2355 	 * this avoids raising perf_pending_task() at this time.
2356 	 */
2357 	if (flags & DETACH_DEAD)
2358 		event->pending_disable = 1;
2359 	event_sched_out(event, ctx);
2360 	if (flags & DETACH_GROUP)
2361 		perf_group_detach(event);
2362 	if (flags & DETACH_CHILD)
2363 		perf_child_detach(event);
2364 	list_del_event(event, ctx);
2365 	if (flags & DETACH_DEAD)
2366 		event->state = PERF_EVENT_STATE_DEAD;
2367 
2368 	if (!pmu_ctx->nr_events) {
2369 		pmu_ctx->rotate_necessary = 0;
2370 
2371 		if (ctx->task && ctx->is_active) {
2372 			struct perf_cpu_pmu_context *cpc;
2373 
2374 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2375 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2376 			cpc->task_epc = NULL;
2377 		}
2378 	}
2379 
2380 	if (!ctx->nr_events && ctx->is_active) {
2381 		if (ctx == &cpuctx->ctx)
2382 			update_cgrp_time_from_cpuctx(cpuctx, true);
2383 
2384 		ctx->is_active = 0;
2385 		if (ctx->task) {
2386 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2387 			cpuctx->task_ctx = NULL;
2388 		}
2389 	}
2390 }
2391 
2392 /*
2393  * Remove the event from a task's (or a CPU's) list of events.
2394  *
2395  * If event->ctx is a cloned context, callers must make sure that
2396  * every task struct that event->ctx->task could possibly point to
2397  * remains valid.  This is OK when called from perf_release since
2398  * that only calls us on the top-level context, which can't be a clone.
2399  * When called from perf_event_exit_task, it's OK because the
2400  * context has been detached from its task.
2401  */
2402 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2403 {
2404 	struct perf_event_context *ctx = event->ctx;
2405 
2406 	lockdep_assert_held(&ctx->mutex);
2407 
2408 	/*
2409 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2410 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2411 	 * event_function_call() user.
2412 	 */
2413 	raw_spin_lock_irq(&ctx->lock);
2414 	if (!ctx->is_active) {
2415 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2416 					   ctx, (void *)flags);
2417 		raw_spin_unlock_irq(&ctx->lock);
2418 		return;
2419 	}
2420 	raw_spin_unlock_irq(&ctx->lock);
2421 
2422 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2423 }
2424 
2425 /*
2426  * Cross CPU call to disable a performance event
2427  */
2428 static void __perf_event_disable(struct perf_event *event,
2429 				 struct perf_cpu_context *cpuctx,
2430 				 struct perf_event_context *ctx,
2431 				 void *info)
2432 {
2433 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2434 		return;
2435 
2436 	if (ctx->is_active & EVENT_TIME) {
2437 		update_context_time(ctx);
2438 		update_cgrp_time_from_event(event);
2439 	}
2440 
2441 	perf_pmu_disable(event->pmu_ctx->pmu);
2442 
2443 	if (event == event->group_leader)
2444 		group_sched_out(event, ctx);
2445 	else
2446 		event_sched_out(event, ctx);
2447 
2448 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2449 	perf_cgroup_event_disable(event, ctx);
2450 
2451 	perf_pmu_enable(event->pmu_ctx->pmu);
2452 }
2453 
2454 /*
2455  * Disable an event.
2456  *
2457  * If event->ctx is a cloned context, callers must make sure that
2458  * every task struct that event->ctx->task could possibly point to
2459  * remains valid.  This condition is satisfied when called through
2460  * perf_event_for_each_child or perf_event_for_each because they
2461  * hold the top-level event's child_mutex, so any descendant that
2462  * goes to exit will block in perf_event_exit_event().
2463  *
2464  * When called from perf_pending_irq it's OK because event->ctx
2465  * is the current context on this CPU and preemption is disabled,
2466  * hence we can't get into perf_event_task_sched_out for this context.
2467  */
2468 static void _perf_event_disable(struct perf_event *event)
2469 {
2470 	struct perf_event_context *ctx = event->ctx;
2471 
2472 	raw_spin_lock_irq(&ctx->lock);
2473 	if (event->state <= PERF_EVENT_STATE_OFF) {
2474 		raw_spin_unlock_irq(&ctx->lock);
2475 		return;
2476 	}
2477 	raw_spin_unlock_irq(&ctx->lock);
2478 
2479 	event_function_call(event, __perf_event_disable, NULL);
2480 }
2481 
2482 void perf_event_disable_local(struct perf_event *event)
2483 {
2484 	event_function_local(event, __perf_event_disable, NULL);
2485 }
2486 
2487 /*
2488  * Strictly speaking kernel users cannot create groups and therefore this
2489  * interface does not need the perf_event_ctx_lock() magic.
2490  */
2491 void perf_event_disable(struct perf_event *event)
2492 {
2493 	struct perf_event_context *ctx;
2494 
2495 	ctx = perf_event_ctx_lock(event);
2496 	_perf_event_disable(event);
2497 	perf_event_ctx_unlock(event, ctx);
2498 }
2499 EXPORT_SYMBOL_GPL(perf_event_disable);
2500 
2501 void perf_event_disable_inatomic(struct perf_event *event)
2502 {
2503 	event->pending_disable = 1;
2504 	irq_work_queue(&event->pending_irq);
2505 }
2506 
2507 #define MAX_INTERRUPTS (~0ULL)
2508 
2509 static void perf_log_throttle(struct perf_event *event, int enable);
2510 static void perf_log_itrace_start(struct perf_event *event);
2511 
2512 static int
2513 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2514 {
2515 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2516 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2517 	int ret = 0;
2518 
2519 	WARN_ON_ONCE(event->ctx != ctx);
2520 
2521 	lockdep_assert_held(&ctx->lock);
2522 
2523 	if (event->state <= PERF_EVENT_STATE_OFF)
2524 		return 0;
2525 
2526 	WRITE_ONCE(event->oncpu, smp_processor_id());
2527 	/*
2528 	 * Order event::oncpu write to happen before the ACTIVE state is
2529 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2530 	 * ->oncpu if it sees ACTIVE.
2531 	 */
2532 	smp_wmb();
2533 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2534 
2535 	/*
2536 	 * Unthrottle events, since we scheduled we might have missed several
2537 	 * ticks already, also for a heavily scheduling task there is little
2538 	 * guarantee it'll get a tick in a timely manner.
2539 	 */
2540 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2541 		perf_log_throttle(event, 1);
2542 		event->hw.interrupts = 0;
2543 	}
2544 
2545 	perf_pmu_disable(event->pmu);
2546 
2547 	perf_log_itrace_start(event);
2548 
2549 	if (event->pmu->add(event, PERF_EF_START)) {
2550 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2551 		event->oncpu = -1;
2552 		ret = -EAGAIN;
2553 		goto out;
2554 	}
2555 
2556 	if (!is_software_event(event))
2557 		cpc->active_oncpu++;
2558 	if (event->attr.freq && event->attr.sample_freq)
2559 		ctx->nr_freq++;
2560 
2561 	if (event->attr.exclusive)
2562 		cpc->exclusive = 1;
2563 
2564 out:
2565 	perf_pmu_enable(event->pmu);
2566 
2567 	return ret;
2568 }
2569 
2570 static int
2571 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2572 {
2573 	struct perf_event *event, *partial_group = NULL;
2574 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2575 
2576 	if (group_event->state == PERF_EVENT_STATE_OFF)
2577 		return 0;
2578 
2579 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2580 
2581 	if (event_sched_in(group_event, ctx))
2582 		goto error;
2583 
2584 	/*
2585 	 * Schedule in siblings as one group (if any):
2586 	 */
2587 	for_each_sibling_event(event, group_event) {
2588 		if (event_sched_in(event, ctx)) {
2589 			partial_group = event;
2590 			goto group_error;
2591 		}
2592 	}
2593 
2594 	if (!pmu->commit_txn(pmu))
2595 		return 0;
2596 
2597 group_error:
2598 	/*
2599 	 * Groups can be scheduled in as one unit only, so undo any
2600 	 * partial group before returning:
2601 	 * The events up to the failed event are scheduled out normally.
2602 	 */
2603 	for_each_sibling_event(event, group_event) {
2604 		if (event == partial_group)
2605 			break;
2606 
2607 		event_sched_out(event, ctx);
2608 	}
2609 	event_sched_out(group_event, ctx);
2610 
2611 error:
2612 	pmu->cancel_txn(pmu);
2613 	return -EAGAIN;
2614 }
2615 
2616 /*
2617  * Work out whether we can put this event group on the CPU now.
2618  */
2619 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2620 {
2621 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2622 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2623 
2624 	/*
2625 	 * Groups consisting entirely of software events can always go on.
2626 	 */
2627 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2628 		return 1;
2629 	/*
2630 	 * If an exclusive group is already on, no other hardware
2631 	 * events can go on.
2632 	 */
2633 	if (cpc->exclusive)
2634 		return 0;
2635 	/*
2636 	 * If this group is exclusive and there are already
2637 	 * events on the CPU, it can't go on.
2638 	 */
2639 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2640 		return 0;
2641 	/*
2642 	 * Otherwise, try to add it if all previous groups were able
2643 	 * to go on.
2644 	 */
2645 	return can_add_hw;
2646 }
2647 
2648 static void add_event_to_ctx(struct perf_event *event,
2649 			       struct perf_event_context *ctx)
2650 {
2651 	list_add_event(event, ctx);
2652 	perf_group_attach(event);
2653 }
2654 
2655 static void task_ctx_sched_out(struct perf_event_context *ctx,
2656 				enum event_type_t event_type)
2657 {
2658 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2659 
2660 	if (!cpuctx->task_ctx)
2661 		return;
2662 
2663 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2664 		return;
2665 
2666 	ctx_sched_out(ctx, event_type);
2667 }
2668 
2669 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2670 				struct perf_event_context *ctx)
2671 {
2672 	ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2673 	if (ctx)
2674 		 ctx_sched_in(ctx, EVENT_PINNED);
2675 	ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2676 	if (ctx)
2677 		 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2678 }
2679 
2680 /*
2681  * We want to maintain the following priority of scheduling:
2682  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2683  *  - task pinned (EVENT_PINNED)
2684  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2685  *  - task flexible (EVENT_FLEXIBLE).
2686  *
2687  * In order to avoid unscheduling and scheduling back in everything every
2688  * time an event is added, only do it for the groups of equal priority and
2689  * below.
2690  *
2691  * This can be called after a batch operation on task events, in which case
2692  * event_type is a bit mask of the types of events involved. For CPU events,
2693  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2694  */
2695 /*
2696  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2697  * event to the context or enabling existing event in the context. We can
2698  * probably optimize it by rescheduling only affected pmu_ctx.
2699  */
2700 static void ctx_resched(struct perf_cpu_context *cpuctx,
2701 			struct perf_event_context *task_ctx,
2702 			enum event_type_t event_type)
2703 {
2704 	bool cpu_event = !!(event_type & EVENT_CPU);
2705 
2706 	/*
2707 	 * If pinned groups are involved, flexible groups also need to be
2708 	 * scheduled out.
2709 	 */
2710 	if (event_type & EVENT_PINNED)
2711 		event_type |= EVENT_FLEXIBLE;
2712 
2713 	event_type &= EVENT_ALL;
2714 
2715 	perf_ctx_disable(&cpuctx->ctx, false);
2716 	if (task_ctx) {
2717 		perf_ctx_disable(task_ctx, false);
2718 		task_ctx_sched_out(task_ctx, event_type);
2719 	}
2720 
2721 	/*
2722 	 * Decide which cpu ctx groups to schedule out based on the types
2723 	 * of events that caused rescheduling:
2724 	 *  - EVENT_CPU: schedule out corresponding groups;
2725 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2726 	 *  - otherwise, do nothing more.
2727 	 */
2728 	if (cpu_event)
2729 		ctx_sched_out(&cpuctx->ctx, event_type);
2730 	else if (event_type & EVENT_PINNED)
2731 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2732 
2733 	perf_event_sched_in(cpuctx, task_ctx);
2734 
2735 	perf_ctx_enable(&cpuctx->ctx, false);
2736 	if (task_ctx)
2737 		perf_ctx_enable(task_ctx, false);
2738 }
2739 
2740 void perf_pmu_resched(struct pmu *pmu)
2741 {
2742 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2743 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2744 
2745 	perf_ctx_lock(cpuctx, task_ctx);
2746 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2747 	perf_ctx_unlock(cpuctx, task_ctx);
2748 }
2749 
2750 /*
2751  * Cross CPU call to install and enable a performance event
2752  *
2753  * Very similar to remote_function() + event_function() but cannot assume that
2754  * things like ctx->is_active and cpuctx->task_ctx are set.
2755  */
2756 static int  __perf_install_in_context(void *info)
2757 {
2758 	struct perf_event *event = info;
2759 	struct perf_event_context *ctx = event->ctx;
2760 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2761 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2762 	bool reprogram = true;
2763 	int ret = 0;
2764 
2765 	raw_spin_lock(&cpuctx->ctx.lock);
2766 	if (ctx->task) {
2767 		raw_spin_lock(&ctx->lock);
2768 		task_ctx = ctx;
2769 
2770 		reprogram = (ctx->task == current);
2771 
2772 		/*
2773 		 * If the task is running, it must be running on this CPU,
2774 		 * otherwise we cannot reprogram things.
2775 		 *
2776 		 * If its not running, we don't care, ctx->lock will
2777 		 * serialize against it becoming runnable.
2778 		 */
2779 		if (task_curr(ctx->task) && !reprogram) {
2780 			ret = -ESRCH;
2781 			goto unlock;
2782 		}
2783 
2784 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2785 	} else if (task_ctx) {
2786 		raw_spin_lock(&task_ctx->lock);
2787 	}
2788 
2789 #ifdef CONFIG_CGROUP_PERF
2790 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2791 		/*
2792 		 * If the current cgroup doesn't match the event's
2793 		 * cgroup, we should not try to schedule it.
2794 		 */
2795 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2796 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2797 					event->cgrp->css.cgroup);
2798 	}
2799 #endif
2800 
2801 	if (reprogram) {
2802 		ctx_sched_out(ctx, EVENT_TIME);
2803 		add_event_to_ctx(event, ctx);
2804 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2805 	} else {
2806 		add_event_to_ctx(event, ctx);
2807 	}
2808 
2809 unlock:
2810 	perf_ctx_unlock(cpuctx, task_ctx);
2811 
2812 	return ret;
2813 }
2814 
2815 static bool exclusive_event_installable(struct perf_event *event,
2816 					struct perf_event_context *ctx);
2817 
2818 /*
2819  * Attach a performance event to a context.
2820  *
2821  * Very similar to event_function_call, see comment there.
2822  */
2823 static void
2824 perf_install_in_context(struct perf_event_context *ctx,
2825 			struct perf_event *event,
2826 			int cpu)
2827 {
2828 	struct task_struct *task = READ_ONCE(ctx->task);
2829 
2830 	lockdep_assert_held(&ctx->mutex);
2831 
2832 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2833 
2834 	if (event->cpu != -1)
2835 		WARN_ON_ONCE(event->cpu != cpu);
2836 
2837 	/*
2838 	 * Ensures that if we can observe event->ctx, both the event and ctx
2839 	 * will be 'complete'. See perf_iterate_sb_cpu().
2840 	 */
2841 	smp_store_release(&event->ctx, ctx);
2842 
2843 	/*
2844 	 * perf_event_attr::disabled events will not run and can be initialized
2845 	 * without IPI. Except when this is the first event for the context, in
2846 	 * that case we need the magic of the IPI to set ctx->is_active.
2847 	 *
2848 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2849 	 * event will issue the IPI and reprogram the hardware.
2850 	 */
2851 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2852 	    ctx->nr_events && !is_cgroup_event(event)) {
2853 		raw_spin_lock_irq(&ctx->lock);
2854 		if (ctx->task == TASK_TOMBSTONE) {
2855 			raw_spin_unlock_irq(&ctx->lock);
2856 			return;
2857 		}
2858 		add_event_to_ctx(event, ctx);
2859 		raw_spin_unlock_irq(&ctx->lock);
2860 		return;
2861 	}
2862 
2863 	if (!task) {
2864 		cpu_function_call(cpu, __perf_install_in_context, event);
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * Should not happen, we validate the ctx is still alive before calling.
2870 	 */
2871 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872 		return;
2873 
2874 	/*
2875 	 * Installing events is tricky because we cannot rely on ctx->is_active
2876 	 * to be set in case this is the nr_events 0 -> 1 transition.
2877 	 *
2878 	 * Instead we use task_curr(), which tells us if the task is running.
2879 	 * However, since we use task_curr() outside of rq::lock, we can race
2880 	 * against the actual state. This means the result can be wrong.
2881 	 *
2882 	 * If we get a false positive, we retry, this is harmless.
2883 	 *
2884 	 * If we get a false negative, things are complicated. If we are after
2885 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886 	 * value must be correct. If we're before, it doesn't matter since
2887 	 * perf_event_context_sched_in() will program the counter.
2888 	 *
2889 	 * However, this hinges on the remote context switch having observed
2890 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2891 	 * ctx::lock in perf_event_context_sched_in().
2892 	 *
2893 	 * We do this by task_function_call(), if the IPI fails to hit the task
2894 	 * we know any future context switch of task must see the
2895 	 * perf_event_ctpx[] store.
2896 	 */
2897 
2898 	/*
2899 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900 	 * task_cpu() load, such that if the IPI then does not find the task
2901 	 * running, a future context switch of that task must observe the
2902 	 * store.
2903 	 */
2904 	smp_mb();
2905 again:
2906 	if (!task_function_call(task, __perf_install_in_context, event))
2907 		return;
2908 
2909 	raw_spin_lock_irq(&ctx->lock);
2910 	task = ctx->task;
2911 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912 		/*
2913 		 * Cannot happen because we already checked above (which also
2914 		 * cannot happen), and we hold ctx->mutex, which serializes us
2915 		 * against perf_event_exit_task_context().
2916 		 */
2917 		raw_spin_unlock_irq(&ctx->lock);
2918 		return;
2919 	}
2920 	/*
2921 	 * If the task is not running, ctx->lock will avoid it becoming so,
2922 	 * thus we can safely install the event.
2923 	 */
2924 	if (task_curr(task)) {
2925 		raw_spin_unlock_irq(&ctx->lock);
2926 		goto again;
2927 	}
2928 	add_event_to_ctx(event, ctx);
2929 	raw_spin_unlock_irq(&ctx->lock);
2930 }
2931 
2932 /*
2933  * Cross CPU call to enable a performance event
2934  */
2935 static void __perf_event_enable(struct perf_event *event,
2936 				struct perf_cpu_context *cpuctx,
2937 				struct perf_event_context *ctx,
2938 				void *info)
2939 {
2940 	struct perf_event *leader = event->group_leader;
2941 	struct perf_event_context *task_ctx;
2942 
2943 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944 	    event->state <= PERF_EVENT_STATE_ERROR)
2945 		return;
2946 
2947 	if (ctx->is_active)
2948 		ctx_sched_out(ctx, EVENT_TIME);
2949 
2950 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951 	perf_cgroup_event_enable(event, ctx);
2952 
2953 	if (!ctx->is_active)
2954 		return;
2955 
2956 	if (!event_filter_match(event)) {
2957 		ctx_sched_in(ctx, EVENT_TIME);
2958 		return;
2959 	}
2960 
2961 	/*
2962 	 * If the event is in a group and isn't the group leader,
2963 	 * then don't put it on unless the group is on.
2964 	 */
2965 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966 		ctx_sched_in(ctx, EVENT_TIME);
2967 		return;
2968 	}
2969 
2970 	task_ctx = cpuctx->task_ctx;
2971 	if (ctx->task)
2972 		WARN_ON_ONCE(task_ctx != ctx);
2973 
2974 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975 }
2976 
2977 /*
2978  * Enable an event.
2979  *
2980  * If event->ctx is a cloned context, callers must make sure that
2981  * every task struct that event->ctx->task could possibly point to
2982  * remains valid.  This condition is satisfied when called through
2983  * perf_event_for_each_child or perf_event_for_each as described
2984  * for perf_event_disable.
2985  */
2986 static void _perf_event_enable(struct perf_event *event)
2987 {
2988 	struct perf_event_context *ctx = event->ctx;
2989 
2990 	raw_spin_lock_irq(&ctx->lock);
2991 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992 	    event->state <  PERF_EVENT_STATE_ERROR) {
2993 out:
2994 		raw_spin_unlock_irq(&ctx->lock);
2995 		return;
2996 	}
2997 
2998 	/*
2999 	 * If the event is in error state, clear that first.
3000 	 *
3001 	 * That way, if we see the event in error state below, we know that it
3002 	 * has gone back into error state, as distinct from the task having
3003 	 * been scheduled away before the cross-call arrived.
3004 	 */
3005 	if (event->state == PERF_EVENT_STATE_ERROR) {
3006 		/*
3007 		 * Detached SIBLING events cannot leave ERROR state.
3008 		 */
3009 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010 		    event->group_leader == event)
3011 			goto out;
3012 
3013 		event->state = PERF_EVENT_STATE_OFF;
3014 	}
3015 	raw_spin_unlock_irq(&ctx->lock);
3016 
3017 	event_function_call(event, __perf_event_enable, NULL);
3018 }
3019 
3020 /*
3021  * See perf_event_disable();
3022  */
3023 void perf_event_enable(struct perf_event *event)
3024 {
3025 	struct perf_event_context *ctx;
3026 
3027 	ctx = perf_event_ctx_lock(event);
3028 	_perf_event_enable(event);
3029 	perf_event_ctx_unlock(event, ctx);
3030 }
3031 EXPORT_SYMBOL_GPL(perf_event_enable);
3032 
3033 struct stop_event_data {
3034 	struct perf_event	*event;
3035 	unsigned int		restart;
3036 };
3037 
3038 static int __perf_event_stop(void *info)
3039 {
3040 	struct stop_event_data *sd = info;
3041 	struct perf_event *event = sd->event;
3042 
3043 	/* if it's already INACTIVE, do nothing */
3044 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045 		return 0;
3046 
3047 	/* matches smp_wmb() in event_sched_in() */
3048 	smp_rmb();
3049 
3050 	/*
3051 	 * There is a window with interrupts enabled before we get here,
3052 	 * so we need to check again lest we try to stop another CPU's event.
3053 	 */
3054 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3055 		return -EAGAIN;
3056 
3057 	event->pmu->stop(event, PERF_EF_UPDATE);
3058 
3059 	/*
3060 	 * May race with the actual stop (through perf_pmu_output_stop()),
3061 	 * but it is only used for events with AUX ring buffer, and such
3062 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3063 	 * see comments in perf_aux_output_begin().
3064 	 *
3065 	 * Since this is happening on an event-local CPU, no trace is lost
3066 	 * while restarting.
3067 	 */
3068 	if (sd->restart)
3069 		event->pmu->start(event, 0);
3070 
3071 	return 0;
3072 }
3073 
3074 static int perf_event_stop(struct perf_event *event, int restart)
3075 {
3076 	struct stop_event_data sd = {
3077 		.event		= event,
3078 		.restart	= restart,
3079 	};
3080 	int ret = 0;
3081 
3082 	do {
3083 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084 			return 0;
3085 
3086 		/* matches smp_wmb() in event_sched_in() */
3087 		smp_rmb();
3088 
3089 		/*
3090 		 * We only want to restart ACTIVE events, so if the event goes
3091 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3092 		 * fall through with ret==-ENXIO.
3093 		 */
3094 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3095 					__perf_event_stop, &sd);
3096 	} while (ret == -EAGAIN);
3097 
3098 	return ret;
3099 }
3100 
3101 /*
3102  * In order to contain the amount of racy and tricky in the address filter
3103  * configuration management, it is a two part process:
3104  *
3105  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106  *      we update the addresses of corresponding vmas in
3107  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108  * (p2) when an event is scheduled in (pmu::add), it calls
3109  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110  *      if the generation has changed since the previous call.
3111  *
3112  * If (p1) happens while the event is active, we restart it to force (p2).
3113  *
3114  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3116  *     ioctl;
3117  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3119  *     for reading;
3120  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121  *     of exec.
3122  */
3123 void perf_event_addr_filters_sync(struct perf_event *event)
3124 {
3125 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126 
3127 	if (!has_addr_filter(event))
3128 		return;
3129 
3130 	raw_spin_lock(&ifh->lock);
3131 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132 		event->pmu->addr_filters_sync(event);
3133 		event->hw.addr_filters_gen = event->addr_filters_gen;
3134 	}
3135 	raw_spin_unlock(&ifh->lock);
3136 }
3137 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138 
3139 static int _perf_event_refresh(struct perf_event *event, int refresh)
3140 {
3141 	/*
3142 	 * not supported on inherited events
3143 	 */
3144 	if (event->attr.inherit || !is_sampling_event(event))
3145 		return -EINVAL;
3146 
3147 	atomic_add(refresh, &event->event_limit);
3148 	_perf_event_enable(event);
3149 
3150 	return 0;
3151 }
3152 
3153 /*
3154  * See perf_event_disable()
3155  */
3156 int perf_event_refresh(struct perf_event *event, int refresh)
3157 {
3158 	struct perf_event_context *ctx;
3159 	int ret;
3160 
3161 	ctx = perf_event_ctx_lock(event);
3162 	ret = _perf_event_refresh(event, refresh);
3163 	perf_event_ctx_unlock(event, ctx);
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(perf_event_refresh);
3168 
3169 static int perf_event_modify_breakpoint(struct perf_event *bp,
3170 					 struct perf_event_attr *attr)
3171 {
3172 	int err;
3173 
3174 	_perf_event_disable(bp);
3175 
3176 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3177 
3178 	if (!bp->attr.disabled)
3179 		_perf_event_enable(bp);
3180 
3181 	return err;
3182 }
3183 
3184 /*
3185  * Copy event-type-independent attributes that may be modified.
3186  */
3187 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3188 					const struct perf_event_attr *from)
3189 {
3190 	to->sig_data = from->sig_data;
3191 }
3192 
3193 static int perf_event_modify_attr(struct perf_event *event,
3194 				  struct perf_event_attr *attr)
3195 {
3196 	int (*func)(struct perf_event *, struct perf_event_attr *);
3197 	struct perf_event *child;
3198 	int err;
3199 
3200 	if (event->attr.type != attr->type)
3201 		return -EINVAL;
3202 
3203 	switch (event->attr.type) {
3204 	case PERF_TYPE_BREAKPOINT:
3205 		func = perf_event_modify_breakpoint;
3206 		break;
3207 	default:
3208 		/* Place holder for future additions. */
3209 		return -EOPNOTSUPP;
3210 	}
3211 
3212 	WARN_ON_ONCE(event->ctx->parent_ctx);
3213 
3214 	mutex_lock(&event->child_mutex);
3215 	/*
3216 	 * Event-type-independent attributes must be copied before event-type
3217 	 * modification, which will validate that final attributes match the
3218 	 * source attributes after all relevant attributes have been copied.
3219 	 */
3220 	perf_event_modify_copy_attr(&event->attr, attr);
3221 	err = func(event, attr);
3222 	if (err)
3223 		goto out;
3224 	list_for_each_entry(child, &event->child_list, child_list) {
3225 		perf_event_modify_copy_attr(&child->attr, attr);
3226 		err = func(child, attr);
3227 		if (err)
3228 			goto out;
3229 	}
3230 out:
3231 	mutex_unlock(&event->child_mutex);
3232 	return err;
3233 }
3234 
3235 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3236 				enum event_type_t event_type)
3237 {
3238 	struct perf_event_context *ctx = pmu_ctx->ctx;
3239 	struct perf_event *event, *tmp;
3240 	struct pmu *pmu = pmu_ctx->pmu;
3241 
3242 	if (ctx->task && !ctx->is_active) {
3243 		struct perf_cpu_pmu_context *cpc;
3244 
3245 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3246 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3247 		cpc->task_epc = NULL;
3248 	}
3249 
3250 	if (!event_type)
3251 		return;
3252 
3253 	perf_pmu_disable(pmu);
3254 	if (event_type & EVENT_PINNED) {
3255 		list_for_each_entry_safe(event, tmp,
3256 					 &pmu_ctx->pinned_active,
3257 					 active_list)
3258 			group_sched_out(event, ctx);
3259 	}
3260 
3261 	if (event_type & EVENT_FLEXIBLE) {
3262 		list_for_each_entry_safe(event, tmp,
3263 					 &pmu_ctx->flexible_active,
3264 					 active_list)
3265 			group_sched_out(event, ctx);
3266 		/*
3267 		 * Since we cleared EVENT_FLEXIBLE, also clear
3268 		 * rotate_necessary, is will be reset by
3269 		 * ctx_flexible_sched_in() when needed.
3270 		 */
3271 		pmu_ctx->rotate_necessary = 0;
3272 	}
3273 	perf_pmu_enable(pmu);
3274 }
3275 
3276 static void
3277 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3278 {
3279 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3280 	struct perf_event_pmu_context *pmu_ctx;
3281 	int is_active = ctx->is_active;
3282 	bool cgroup = event_type & EVENT_CGROUP;
3283 
3284 	event_type &= ~EVENT_CGROUP;
3285 
3286 	lockdep_assert_held(&ctx->lock);
3287 
3288 	if (likely(!ctx->nr_events)) {
3289 		/*
3290 		 * See __perf_remove_from_context().
3291 		 */
3292 		WARN_ON_ONCE(ctx->is_active);
3293 		if (ctx->task)
3294 			WARN_ON_ONCE(cpuctx->task_ctx);
3295 		return;
3296 	}
3297 
3298 	/*
3299 	 * Always update time if it was set; not only when it changes.
3300 	 * Otherwise we can 'forget' to update time for any but the last
3301 	 * context we sched out. For example:
3302 	 *
3303 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3304 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3305 	 *
3306 	 * would only update time for the pinned events.
3307 	 */
3308 	if (is_active & EVENT_TIME) {
3309 		/* update (and stop) ctx time */
3310 		update_context_time(ctx);
3311 		update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3312 		/*
3313 		 * CPU-release for the below ->is_active store,
3314 		 * see __load_acquire() in perf_event_time_now()
3315 		 */
3316 		barrier();
3317 	}
3318 
3319 	ctx->is_active &= ~event_type;
3320 	if (!(ctx->is_active & EVENT_ALL))
3321 		ctx->is_active = 0;
3322 
3323 	if (ctx->task) {
3324 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3325 		if (!ctx->is_active)
3326 			cpuctx->task_ctx = NULL;
3327 	}
3328 
3329 	is_active ^= ctx->is_active; /* changed bits */
3330 
3331 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3332 		if (cgroup && !pmu_ctx->nr_cgroups)
3333 			continue;
3334 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3335 	}
3336 }
3337 
3338 /*
3339  * Test whether two contexts are equivalent, i.e. whether they have both been
3340  * cloned from the same version of the same context.
3341  *
3342  * Equivalence is measured using a generation number in the context that is
3343  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3344  * and list_del_event().
3345  */
3346 static int context_equiv(struct perf_event_context *ctx1,
3347 			 struct perf_event_context *ctx2)
3348 {
3349 	lockdep_assert_held(&ctx1->lock);
3350 	lockdep_assert_held(&ctx2->lock);
3351 
3352 	/* Pinning disables the swap optimization */
3353 	if (ctx1->pin_count || ctx2->pin_count)
3354 		return 0;
3355 
3356 	/* If ctx1 is the parent of ctx2 */
3357 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3358 		return 1;
3359 
3360 	/* If ctx2 is the parent of ctx1 */
3361 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3362 		return 1;
3363 
3364 	/*
3365 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3366 	 * hierarchy, see perf_event_init_context().
3367 	 */
3368 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3369 			ctx1->parent_gen == ctx2->parent_gen)
3370 		return 1;
3371 
3372 	/* Unmatched */
3373 	return 0;
3374 }
3375 
3376 static void __perf_event_sync_stat(struct perf_event *event,
3377 				     struct perf_event *next_event)
3378 {
3379 	u64 value;
3380 
3381 	if (!event->attr.inherit_stat)
3382 		return;
3383 
3384 	/*
3385 	 * Update the event value, we cannot use perf_event_read()
3386 	 * because we're in the middle of a context switch and have IRQs
3387 	 * disabled, which upsets smp_call_function_single(), however
3388 	 * we know the event must be on the current CPU, therefore we
3389 	 * don't need to use it.
3390 	 */
3391 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3392 		event->pmu->read(event);
3393 
3394 	perf_event_update_time(event);
3395 
3396 	/*
3397 	 * In order to keep per-task stats reliable we need to flip the event
3398 	 * values when we flip the contexts.
3399 	 */
3400 	value = local64_read(&next_event->count);
3401 	value = local64_xchg(&event->count, value);
3402 	local64_set(&next_event->count, value);
3403 
3404 	swap(event->total_time_enabled, next_event->total_time_enabled);
3405 	swap(event->total_time_running, next_event->total_time_running);
3406 
3407 	/*
3408 	 * Since we swizzled the values, update the user visible data too.
3409 	 */
3410 	perf_event_update_userpage(event);
3411 	perf_event_update_userpage(next_event);
3412 }
3413 
3414 static void perf_event_sync_stat(struct perf_event_context *ctx,
3415 				   struct perf_event_context *next_ctx)
3416 {
3417 	struct perf_event *event, *next_event;
3418 
3419 	if (!ctx->nr_stat)
3420 		return;
3421 
3422 	update_context_time(ctx);
3423 
3424 	event = list_first_entry(&ctx->event_list,
3425 				   struct perf_event, event_entry);
3426 
3427 	next_event = list_first_entry(&next_ctx->event_list,
3428 					struct perf_event, event_entry);
3429 
3430 	while (&event->event_entry != &ctx->event_list &&
3431 	       &next_event->event_entry != &next_ctx->event_list) {
3432 
3433 		__perf_event_sync_stat(event, next_event);
3434 
3435 		event = list_next_entry(event, event_entry);
3436 		next_event = list_next_entry(next_event, event_entry);
3437 	}
3438 }
3439 
3440 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3441 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3442 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3443 	     !list_entry_is_head(pos1, head1, member) &&		\
3444 	     !list_entry_is_head(pos2, head2, member);			\
3445 	     pos1 = list_next_entry(pos1, member),			\
3446 	     pos2 = list_next_entry(pos2, member))
3447 
3448 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3449 					  struct perf_event_context *next_ctx)
3450 {
3451 	struct perf_event_pmu_context *prev_epc, *next_epc;
3452 
3453 	if (!prev_ctx->nr_task_data)
3454 		return;
3455 
3456 	double_list_for_each_entry(prev_epc, next_epc,
3457 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3458 				   pmu_ctx_entry) {
3459 
3460 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3461 			continue;
3462 
3463 		/*
3464 		 * PMU specific parts of task perf context can require
3465 		 * additional synchronization. As an example of such
3466 		 * synchronization see implementation details of Intel
3467 		 * LBR call stack data profiling;
3468 		 */
3469 		if (prev_epc->pmu->swap_task_ctx)
3470 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3471 		else
3472 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3473 	}
3474 }
3475 
3476 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3477 {
3478 	struct perf_event_pmu_context *pmu_ctx;
3479 	struct perf_cpu_pmu_context *cpc;
3480 
3481 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3482 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3483 
3484 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3485 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3486 	}
3487 }
3488 
3489 static void
3490 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3491 {
3492 	struct perf_event_context *ctx = task->perf_event_ctxp;
3493 	struct perf_event_context *next_ctx;
3494 	struct perf_event_context *parent, *next_parent;
3495 	int do_switch = 1;
3496 
3497 	if (likely(!ctx))
3498 		return;
3499 
3500 	rcu_read_lock();
3501 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3502 	if (!next_ctx)
3503 		goto unlock;
3504 
3505 	parent = rcu_dereference(ctx->parent_ctx);
3506 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3507 
3508 	/* If neither context have a parent context; they cannot be clones. */
3509 	if (!parent && !next_parent)
3510 		goto unlock;
3511 
3512 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3513 		/*
3514 		 * Looks like the two contexts are clones, so we might be
3515 		 * able to optimize the context switch.  We lock both
3516 		 * contexts and check that they are clones under the
3517 		 * lock (including re-checking that neither has been
3518 		 * uncloned in the meantime).  It doesn't matter which
3519 		 * order we take the locks because no other cpu could
3520 		 * be trying to lock both of these tasks.
3521 		 */
3522 		raw_spin_lock(&ctx->lock);
3523 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3524 		if (context_equiv(ctx, next_ctx)) {
3525 
3526 			perf_ctx_disable(ctx, false);
3527 
3528 			/* PMIs are disabled; ctx->nr_pending is stable. */
3529 			if (local_read(&ctx->nr_pending) ||
3530 			    local_read(&next_ctx->nr_pending)) {
3531 				/*
3532 				 * Must not swap out ctx when there's pending
3533 				 * events that rely on the ctx->task relation.
3534 				 */
3535 				raw_spin_unlock(&next_ctx->lock);
3536 				rcu_read_unlock();
3537 				goto inside_switch;
3538 			}
3539 
3540 			WRITE_ONCE(ctx->task, next);
3541 			WRITE_ONCE(next_ctx->task, task);
3542 
3543 			perf_ctx_sched_task_cb(ctx, false);
3544 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3545 
3546 			perf_ctx_enable(ctx, false);
3547 
3548 			/*
3549 			 * RCU_INIT_POINTER here is safe because we've not
3550 			 * modified the ctx and the above modification of
3551 			 * ctx->task and ctx->task_ctx_data are immaterial
3552 			 * since those values are always verified under
3553 			 * ctx->lock which we're now holding.
3554 			 */
3555 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3556 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3557 
3558 			do_switch = 0;
3559 
3560 			perf_event_sync_stat(ctx, next_ctx);
3561 		}
3562 		raw_spin_unlock(&next_ctx->lock);
3563 		raw_spin_unlock(&ctx->lock);
3564 	}
3565 unlock:
3566 	rcu_read_unlock();
3567 
3568 	if (do_switch) {
3569 		raw_spin_lock(&ctx->lock);
3570 		perf_ctx_disable(ctx, false);
3571 
3572 inside_switch:
3573 		perf_ctx_sched_task_cb(ctx, false);
3574 		task_ctx_sched_out(ctx, EVENT_ALL);
3575 
3576 		perf_ctx_enable(ctx, false);
3577 		raw_spin_unlock(&ctx->lock);
3578 	}
3579 }
3580 
3581 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3582 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3583 
3584 void perf_sched_cb_dec(struct pmu *pmu)
3585 {
3586 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3587 
3588 	this_cpu_dec(perf_sched_cb_usages);
3589 	barrier();
3590 
3591 	if (!--cpc->sched_cb_usage)
3592 		list_del(&cpc->sched_cb_entry);
3593 }
3594 
3595 
3596 void perf_sched_cb_inc(struct pmu *pmu)
3597 {
3598 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3599 
3600 	if (!cpc->sched_cb_usage++)
3601 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3602 
3603 	barrier();
3604 	this_cpu_inc(perf_sched_cb_usages);
3605 }
3606 
3607 /*
3608  * This function provides the context switch callback to the lower code
3609  * layer. It is invoked ONLY when the context switch callback is enabled.
3610  *
3611  * This callback is relevant even to per-cpu events; for example multi event
3612  * PEBS requires this to provide PID/TID information. This requires we flush
3613  * all queued PEBS records before we context switch to a new task.
3614  */
3615 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3616 {
3617 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 	struct pmu *pmu;
3619 
3620 	pmu = cpc->epc.pmu;
3621 
3622 	/* software PMUs will not have sched_task */
3623 	if (WARN_ON_ONCE(!pmu->sched_task))
3624 		return;
3625 
3626 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3627 	perf_pmu_disable(pmu);
3628 
3629 	pmu->sched_task(cpc->task_epc, sched_in);
3630 
3631 	perf_pmu_enable(pmu);
3632 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3633 }
3634 
3635 static void perf_pmu_sched_task(struct task_struct *prev,
3636 				struct task_struct *next,
3637 				bool sched_in)
3638 {
3639 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3640 	struct perf_cpu_pmu_context *cpc;
3641 
3642 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3643 	if (prev == next || cpuctx->task_ctx)
3644 		return;
3645 
3646 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3647 		__perf_pmu_sched_task(cpc, sched_in);
3648 }
3649 
3650 static void perf_event_switch(struct task_struct *task,
3651 			      struct task_struct *next_prev, bool sched_in);
3652 
3653 /*
3654  * Called from scheduler to remove the events of the current task,
3655  * with interrupts disabled.
3656  *
3657  * We stop each event and update the event value in event->count.
3658  *
3659  * This does not protect us against NMI, but disable()
3660  * sets the disabled bit in the control field of event _before_
3661  * accessing the event control register. If a NMI hits, then it will
3662  * not restart the event.
3663  */
3664 void __perf_event_task_sched_out(struct task_struct *task,
3665 				 struct task_struct *next)
3666 {
3667 	if (__this_cpu_read(perf_sched_cb_usages))
3668 		perf_pmu_sched_task(task, next, false);
3669 
3670 	if (atomic_read(&nr_switch_events))
3671 		perf_event_switch(task, next, false);
3672 
3673 	perf_event_context_sched_out(task, next);
3674 
3675 	/*
3676 	 * if cgroup events exist on this CPU, then we need
3677 	 * to check if we have to switch out PMU state.
3678 	 * cgroup event are system-wide mode only
3679 	 */
3680 	perf_cgroup_switch(next);
3681 }
3682 
3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685 	const struct perf_event *le = *(const struct perf_event **)l;
3686 	const struct perf_event *re = *(const struct perf_event **)r;
3687 
3688 	return le->group_index < re->group_index;
3689 }
3690 
3691 static void swap_ptr(void *l, void *r)
3692 {
3693 	void **lp = l, **rp = r;
3694 
3695 	swap(*lp, *rp);
3696 }
3697 
3698 static const struct min_heap_callbacks perf_min_heap = {
3699 	.elem_size = sizeof(struct perf_event *),
3700 	.less = perf_less_group_idx,
3701 	.swp = swap_ptr,
3702 };
3703 
3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706 	struct perf_event **itrs = heap->data;
3707 
3708 	if (event) {
3709 		itrs[heap->nr] = event;
3710 		heap->nr++;
3711 	}
3712 }
3713 
3714 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3715 {
3716 	struct perf_cpu_pmu_context *cpc;
3717 
3718 	if (!pmu_ctx->ctx->task)
3719 		return;
3720 
3721 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3722 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3723 	cpc->task_epc = pmu_ctx;
3724 }
3725 
3726 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3727 				struct perf_event_groups *groups, int cpu,
3728 				struct pmu *pmu,
3729 				int (*func)(struct perf_event *, void *),
3730 				void *data)
3731 {
3732 #ifdef CONFIG_CGROUP_PERF
3733 	struct cgroup_subsys_state *css = NULL;
3734 #endif
3735 	struct perf_cpu_context *cpuctx = NULL;
3736 	/* Space for per CPU and/or any CPU event iterators. */
3737 	struct perf_event *itrs[2];
3738 	struct min_heap event_heap;
3739 	struct perf_event **evt;
3740 	int ret;
3741 
3742 	if (pmu->filter && pmu->filter(pmu, cpu))
3743 		return 0;
3744 
3745 	if (!ctx->task) {
3746 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3747 		event_heap = (struct min_heap){
3748 			.data = cpuctx->heap,
3749 			.nr = 0,
3750 			.size = cpuctx->heap_size,
3751 		};
3752 
3753 		lockdep_assert_held(&cpuctx->ctx.lock);
3754 
3755 #ifdef CONFIG_CGROUP_PERF
3756 		if (cpuctx->cgrp)
3757 			css = &cpuctx->cgrp->css;
3758 #endif
3759 	} else {
3760 		event_heap = (struct min_heap){
3761 			.data = itrs,
3762 			.nr = 0,
3763 			.size = ARRAY_SIZE(itrs),
3764 		};
3765 		/* Events not within a CPU context may be on any CPU. */
3766 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3767 	}
3768 	evt = event_heap.data;
3769 
3770 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3771 
3772 #ifdef CONFIG_CGROUP_PERF
3773 	for (; css; css = css->parent)
3774 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3775 #endif
3776 
3777 	if (event_heap.nr) {
3778 		__link_epc((*evt)->pmu_ctx);
3779 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3780 	}
3781 
3782 	min_heapify_all(&event_heap, &perf_min_heap);
3783 
3784 	while (event_heap.nr) {
3785 		ret = func(*evt, data);
3786 		if (ret)
3787 			return ret;
3788 
3789 		*evt = perf_event_groups_next(*evt, pmu);
3790 		if (*evt)
3791 			min_heapify(&event_heap, 0, &perf_min_heap);
3792 		else
3793 			min_heap_pop(&event_heap, &perf_min_heap);
3794 	}
3795 
3796 	return 0;
3797 }
3798 
3799 /*
3800  * Because the userpage is strictly per-event (there is no concept of context,
3801  * so there cannot be a context indirection), every userpage must be updated
3802  * when context time starts :-(
3803  *
3804  * IOW, we must not miss EVENT_TIME edges.
3805  */
3806 static inline bool event_update_userpage(struct perf_event *event)
3807 {
3808 	if (likely(!atomic_read(&event->mmap_count)))
3809 		return false;
3810 
3811 	perf_event_update_time(event);
3812 	perf_event_update_userpage(event);
3813 
3814 	return true;
3815 }
3816 
3817 static inline void group_update_userpage(struct perf_event *group_event)
3818 {
3819 	struct perf_event *event;
3820 
3821 	if (!event_update_userpage(group_event))
3822 		return;
3823 
3824 	for_each_sibling_event(event, group_event)
3825 		event_update_userpage(event);
3826 }
3827 
3828 static int merge_sched_in(struct perf_event *event, void *data)
3829 {
3830 	struct perf_event_context *ctx = event->ctx;
3831 	int *can_add_hw = data;
3832 
3833 	if (event->state <= PERF_EVENT_STATE_OFF)
3834 		return 0;
3835 
3836 	if (!event_filter_match(event))
3837 		return 0;
3838 
3839 	if (group_can_go_on(event, *can_add_hw)) {
3840 		if (!group_sched_in(event, ctx))
3841 			list_add_tail(&event->active_list, get_event_list(event));
3842 	}
3843 
3844 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3845 		*can_add_hw = 0;
3846 		if (event->attr.pinned) {
3847 			perf_cgroup_event_disable(event, ctx);
3848 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3849 		} else {
3850 			struct perf_cpu_pmu_context *cpc;
3851 
3852 			event->pmu_ctx->rotate_necessary = 1;
3853 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3854 			perf_mux_hrtimer_restart(cpc);
3855 			group_update_userpage(event);
3856 		}
3857 	}
3858 
3859 	return 0;
3860 }
3861 
3862 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3863 				struct perf_event_groups *groups,
3864 				struct pmu *pmu)
3865 {
3866 	int can_add_hw = 1;
3867 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3868 			   merge_sched_in, &can_add_hw);
3869 }
3870 
3871 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3872 				struct perf_event_groups *groups,
3873 				bool cgroup)
3874 {
3875 	struct perf_event_pmu_context *pmu_ctx;
3876 
3877 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3878 		if (cgroup && !pmu_ctx->nr_cgroups)
3879 			continue;
3880 		pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3881 	}
3882 }
3883 
3884 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3885 			       struct pmu *pmu)
3886 {
3887 	pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3888 }
3889 
3890 static void
3891 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3892 {
3893 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3894 	int is_active = ctx->is_active;
3895 	bool cgroup = event_type & EVENT_CGROUP;
3896 
3897 	event_type &= ~EVENT_CGROUP;
3898 
3899 	lockdep_assert_held(&ctx->lock);
3900 
3901 	if (likely(!ctx->nr_events))
3902 		return;
3903 
3904 	if (!(is_active & EVENT_TIME)) {
3905 		/* start ctx time */
3906 		__update_context_time(ctx, false);
3907 		perf_cgroup_set_timestamp(cpuctx);
3908 		/*
3909 		 * CPU-release for the below ->is_active store,
3910 		 * see __load_acquire() in perf_event_time_now()
3911 		 */
3912 		barrier();
3913 	}
3914 
3915 	ctx->is_active |= (event_type | EVENT_TIME);
3916 	if (ctx->task) {
3917 		if (!is_active)
3918 			cpuctx->task_ctx = ctx;
3919 		else
3920 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3921 	}
3922 
3923 	is_active ^= ctx->is_active; /* changed bits */
3924 
3925 	/*
3926 	 * First go through the list and put on any pinned groups
3927 	 * in order to give them the best chance of going on.
3928 	 */
3929 	if (is_active & EVENT_PINNED)
3930 		ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3931 
3932 	/* Then walk through the lower prio flexible groups */
3933 	if (is_active & EVENT_FLEXIBLE)
3934 		ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3935 }
3936 
3937 static void perf_event_context_sched_in(struct task_struct *task)
3938 {
3939 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3940 	struct perf_event_context *ctx;
3941 
3942 	rcu_read_lock();
3943 	ctx = rcu_dereference(task->perf_event_ctxp);
3944 	if (!ctx)
3945 		goto rcu_unlock;
3946 
3947 	if (cpuctx->task_ctx == ctx) {
3948 		perf_ctx_lock(cpuctx, ctx);
3949 		perf_ctx_disable(ctx, false);
3950 
3951 		perf_ctx_sched_task_cb(ctx, true);
3952 
3953 		perf_ctx_enable(ctx, false);
3954 		perf_ctx_unlock(cpuctx, ctx);
3955 		goto rcu_unlock;
3956 	}
3957 
3958 	perf_ctx_lock(cpuctx, ctx);
3959 	/*
3960 	 * We must check ctx->nr_events while holding ctx->lock, such
3961 	 * that we serialize against perf_install_in_context().
3962 	 */
3963 	if (!ctx->nr_events)
3964 		goto unlock;
3965 
3966 	perf_ctx_disable(ctx, false);
3967 	/*
3968 	 * We want to keep the following priority order:
3969 	 * cpu pinned (that don't need to move), task pinned,
3970 	 * cpu flexible, task flexible.
3971 	 *
3972 	 * However, if task's ctx is not carrying any pinned
3973 	 * events, no need to flip the cpuctx's events around.
3974 	 */
3975 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3976 		perf_ctx_disable(&cpuctx->ctx, false);
3977 		ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3978 	}
3979 
3980 	perf_event_sched_in(cpuctx, ctx);
3981 
3982 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3983 
3984 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3985 		perf_ctx_enable(&cpuctx->ctx, false);
3986 
3987 	perf_ctx_enable(ctx, false);
3988 
3989 unlock:
3990 	perf_ctx_unlock(cpuctx, ctx);
3991 rcu_unlock:
3992 	rcu_read_unlock();
3993 }
3994 
3995 /*
3996  * Called from scheduler to add the events of the current task
3997  * with interrupts disabled.
3998  *
3999  * We restore the event value and then enable it.
4000  *
4001  * This does not protect us against NMI, but enable()
4002  * sets the enabled bit in the control field of event _before_
4003  * accessing the event control register. If a NMI hits, then it will
4004  * keep the event running.
4005  */
4006 void __perf_event_task_sched_in(struct task_struct *prev,
4007 				struct task_struct *task)
4008 {
4009 	perf_event_context_sched_in(task);
4010 
4011 	if (atomic_read(&nr_switch_events))
4012 		perf_event_switch(task, prev, true);
4013 
4014 	if (__this_cpu_read(perf_sched_cb_usages))
4015 		perf_pmu_sched_task(prev, task, true);
4016 }
4017 
4018 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4019 {
4020 	u64 frequency = event->attr.sample_freq;
4021 	u64 sec = NSEC_PER_SEC;
4022 	u64 divisor, dividend;
4023 
4024 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4025 
4026 	count_fls = fls64(count);
4027 	nsec_fls = fls64(nsec);
4028 	frequency_fls = fls64(frequency);
4029 	sec_fls = 30;
4030 
4031 	/*
4032 	 * We got @count in @nsec, with a target of sample_freq HZ
4033 	 * the target period becomes:
4034 	 *
4035 	 *             @count * 10^9
4036 	 * period = -------------------
4037 	 *          @nsec * sample_freq
4038 	 *
4039 	 */
4040 
4041 	/*
4042 	 * Reduce accuracy by one bit such that @a and @b converge
4043 	 * to a similar magnitude.
4044 	 */
4045 #define REDUCE_FLS(a, b)		\
4046 do {					\
4047 	if (a##_fls > b##_fls) {	\
4048 		a >>= 1;		\
4049 		a##_fls--;		\
4050 	} else {			\
4051 		b >>= 1;		\
4052 		b##_fls--;		\
4053 	}				\
4054 } while (0)
4055 
4056 	/*
4057 	 * Reduce accuracy until either term fits in a u64, then proceed with
4058 	 * the other, so that finally we can do a u64/u64 division.
4059 	 */
4060 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4061 		REDUCE_FLS(nsec, frequency);
4062 		REDUCE_FLS(sec, count);
4063 	}
4064 
4065 	if (count_fls + sec_fls > 64) {
4066 		divisor = nsec * frequency;
4067 
4068 		while (count_fls + sec_fls > 64) {
4069 			REDUCE_FLS(count, sec);
4070 			divisor >>= 1;
4071 		}
4072 
4073 		dividend = count * sec;
4074 	} else {
4075 		dividend = count * sec;
4076 
4077 		while (nsec_fls + frequency_fls > 64) {
4078 			REDUCE_FLS(nsec, frequency);
4079 			dividend >>= 1;
4080 		}
4081 
4082 		divisor = nsec * frequency;
4083 	}
4084 
4085 	if (!divisor)
4086 		return dividend;
4087 
4088 	return div64_u64(dividend, divisor);
4089 }
4090 
4091 static DEFINE_PER_CPU(int, perf_throttled_count);
4092 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4093 
4094 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4095 {
4096 	struct hw_perf_event *hwc = &event->hw;
4097 	s64 period, sample_period;
4098 	s64 delta;
4099 
4100 	period = perf_calculate_period(event, nsec, count);
4101 
4102 	delta = (s64)(period - hwc->sample_period);
4103 	delta = (delta + 7) / 8; /* low pass filter */
4104 
4105 	sample_period = hwc->sample_period + delta;
4106 
4107 	if (!sample_period)
4108 		sample_period = 1;
4109 
4110 	hwc->sample_period = sample_period;
4111 
4112 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4113 		if (disable)
4114 			event->pmu->stop(event, PERF_EF_UPDATE);
4115 
4116 		local64_set(&hwc->period_left, 0);
4117 
4118 		if (disable)
4119 			event->pmu->start(event, PERF_EF_RELOAD);
4120 	}
4121 }
4122 
4123 /*
4124  * combine freq adjustment with unthrottling to avoid two passes over the
4125  * events. At the same time, make sure, having freq events does not change
4126  * the rate of unthrottling as that would introduce bias.
4127  */
4128 static void
4129 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4130 {
4131 	struct perf_event *event;
4132 	struct hw_perf_event *hwc;
4133 	u64 now, period = TICK_NSEC;
4134 	s64 delta;
4135 
4136 	/*
4137 	 * only need to iterate over all events iff:
4138 	 * - context have events in frequency mode (needs freq adjust)
4139 	 * - there are events to unthrottle on this cpu
4140 	 */
4141 	if (!(ctx->nr_freq || unthrottle))
4142 		return;
4143 
4144 	raw_spin_lock(&ctx->lock);
4145 
4146 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4147 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4148 			continue;
4149 
4150 		// XXX use visit thingy to avoid the -1,cpu match
4151 		if (!event_filter_match(event))
4152 			continue;
4153 
4154 		perf_pmu_disable(event->pmu);
4155 
4156 		hwc = &event->hw;
4157 
4158 		if (hwc->interrupts == MAX_INTERRUPTS) {
4159 			hwc->interrupts = 0;
4160 			perf_log_throttle(event, 1);
4161 			event->pmu->start(event, 0);
4162 		}
4163 
4164 		if (!event->attr.freq || !event->attr.sample_freq)
4165 			goto next;
4166 
4167 		/*
4168 		 * stop the event and update event->count
4169 		 */
4170 		event->pmu->stop(event, PERF_EF_UPDATE);
4171 
4172 		now = local64_read(&event->count);
4173 		delta = now - hwc->freq_count_stamp;
4174 		hwc->freq_count_stamp = now;
4175 
4176 		/*
4177 		 * restart the event
4178 		 * reload only if value has changed
4179 		 * we have stopped the event so tell that
4180 		 * to perf_adjust_period() to avoid stopping it
4181 		 * twice.
4182 		 */
4183 		if (delta > 0)
4184 			perf_adjust_period(event, period, delta, false);
4185 
4186 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4187 	next:
4188 		perf_pmu_enable(event->pmu);
4189 	}
4190 
4191 	raw_spin_unlock(&ctx->lock);
4192 }
4193 
4194 /*
4195  * Move @event to the tail of the @ctx's elegible events.
4196  */
4197 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4198 {
4199 	/*
4200 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4201 	 * disabled by the inheritance code.
4202 	 */
4203 	if (ctx->rotate_disable)
4204 		return;
4205 
4206 	perf_event_groups_delete(&ctx->flexible_groups, event);
4207 	perf_event_groups_insert(&ctx->flexible_groups, event);
4208 }
4209 
4210 /* pick an event from the flexible_groups to rotate */
4211 static inline struct perf_event *
4212 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4213 {
4214 	struct perf_event *event;
4215 	struct rb_node *node;
4216 	struct rb_root *tree;
4217 	struct __group_key key = {
4218 		.pmu = pmu_ctx->pmu,
4219 	};
4220 
4221 	/* pick the first active flexible event */
4222 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4223 					 struct perf_event, active_list);
4224 	if (event)
4225 		goto out;
4226 
4227 	/* if no active flexible event, pick the first event */
4228 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4229 
4230 	if (!pmu_ctx->ctx->task) {
4231 		key.cpu = smp_processor_id();
4232 
4233 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4234 		if (node)
4235 			event = __node_2_pe(node);
4236 		goto out;
4237 	}
4238 
4239 	key.cpu = -1;
4240 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4241 	if (node) {
4242 		event = __node_2_pe(node);
4243 		goto out;
4244 	}
4245 
4246 	key.cpu = smp_processor_id();
4247 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4248 	if (node)
4249 		event = __node_2_pe(node);
4250 
4251 out:
4252 	/*
4253 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4254 	 * finds there are unschedulable events, it will set it again.
4255 	 */
4256 	pmu_ctx->rotate_necessary = 0;
4257 
4258 	return event;
4259 }
4260 
4261 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4262 {
4263 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4264 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4265 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4266 	int cpu_rotate, task_rotate;
4267 	struct pmu *pmu;
4268 
4269 	/*
4270 	 * Since we run this from IRQ context, nobody can install new
4271 	 * events, thus the event count values are stable.
4272 	 */
4273 
4274 	cpu_epc = &cpc->epc;
4275 	pmu = cpu_epc->pmu;
4276 	task_epc = cpc->task_epc;
4277 
4278 	cpu_rotate = cpu_epc->rotate_necessary;
4279 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4280 
4281 	if (!(cpu_rotate || task_rotate))
4282 		return false;
4283 
4284 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4285 	perf_pmu_disable(pmu);
4286 
4287 	if (task_rotate)
4288 		task_event = ctx_event_to_rotate(task_epc);
4289 	if (cpu_rotate)
4290 		cpu_event = ctx_event_to_rotate(cpu_epc);
4291 
4292 	/*
4293 	 * As per the order given at ctx_resched() first 'pop' task flexible
4294 	 * and then, if needed CPU flexible.
4295 	 */
4296 	if (task_event || (task_epc && cpu_event)) {
4297 		update_context_time(task_epc->ctx);
4298 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4299 	}
4300 
4301 	if (cpu_event) {
4302 		update_context_time(&cpuctx->ctx);
4303 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4304 		rotate_ctx(&cpuctx->ctx, cpu_event);
4305 		__pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4306 	}
4307 
4308 	if (task_event)
4309 		rotate_ctx(task_epc->ctx, task_event);
4310 
4311 	if (task_event || (task_epc && cpu_event))
4312 		__pmu_ctx_sched_in(task_epc->ctx, pmu);
4313 
4314 	perf_pmu_enable(pmu);
4315 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4316 
4317 	return true;
4318 }
4319 
4320 void perf_event_task_tick(void)
4321 {
4322 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4323 	struct perf_event_context *ctx;
4324 	int throttled;
4325 
4326 	lockdep_assert_irqs_disabled();
4327 
4328 	__this_cpu_inc(perf_throttled_seq);
4329 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4330 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4331 
4332 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4333 
4334 	rcu_read_lock();
4335 	ctx = rcu_dereference(current->perf_event_ctxp);
4336 	if (ctx)
4337 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4338 	rcu_read_unlock();
4339 }
4340 
4341 static int event_enable_on_exec(struct perf_event *event,
4342 				struct perf_event_context *ctx)
4343 {
4344 	if (!event->attr.enable_on_exec)
4345 		return 0;
4346 
4347 	event->attr.enable_on_exec = 0;
4348 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4349 		return 0;
4350 
4351 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4352 
4353 	return 1;
4354 }
4355 
4356 /*
4357  * Enable all of a task's events that have been marked enable-on-exec.
4358  * This expects task == current.
4359  */
4360 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4361 {
4362 	struct perf_event_context *clone_ctx = NULL;
4363 	enum event_type_t event_type = 0;
4364 	struct perf_cpu_context *cpuctx;
4365 	struct perf_event *event;
4366 	unsigned long flags;
4367 	int enabled = 0;
4368 
4369 	local_irq_save(flags);
4370 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4371 		goto out;
4372 
4373 	if (!ctx->nr_events)
4374 		goto out;
4375 
4376 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4377 	perf_ctx_lock(cpuctx, ctx);
4378 	ctx_sched_out(ctx, EVENT_TIME);
4379 
4380 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4381 		enabled |= event_enable_on_exec(event, ctx);
4382 		event_type |= get_event_type(event);
4383 	}
4384 
4385 	/*
4386 	 * Unclone and reschedule this context if we enabled any event.
4387 	 */
4388 	if (enabled) {
4389 		clone_ctx = unclone_ctx(ctx);
4390 		ctx_resched(cpuctx, ctx, event_type);
4391 	} else {
4392 		ctx_sched_in(ctx, EVENT_TIME);
4393 	}
4394 	perf_ctx_unlock(cpuctx, ctx);
4395 
4396 out:
4397 	local_irq_restore(flags);
4398 
4399 	if (clone_ctx)
4400 		put_ctx(clone_ctx);
4401 }
4402 
4403 static void perf_remove_from_owner(struct perf_event *event);
4404 static void perf_event_exit_event(struct perf_event *event,
4405 				  struct perf_event_context *ctx);
4406 
4407 /*
4408  * Removes all events from the current task that have been marked
4409  * remove-on-exec, and feeds their values back to parent events.
4410  */
4411 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4412 {
4413 	struct perf_event_context *clone_ctx = NULL;
4414 	struct perf_event *event, *next;
4415 	unsigned long flags;
4416 	bool modified = false;
4417 
4418 	mutex_lock(&ctx->mutex);
4419 
4420 	if (WARN_ON_ONCE(ctx->task != current))
4421 		goto unlock;
4422 
4423 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4424 		if (!event->attr.remove_on_exec)
4425 			continue;
4426 
4427 		if (!is_kernel_event(event))
4428 			perf_remove_from_owner(event);
4429 
4430 		modified = true;
4431 
4432 		perf_event_exit_event(event, ctx);
4433 	}
4434 
4435 	raw_spin_lock_irqsave(&ctx->lock, flags);
4436 	if (modified)
4437 		clone_ctx = unclone_ctx(ctx);
4438 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4439 
4440 unlock:
4441 	mutex_unlock(&ctx->mutex);
4442 
4443 	if (clone_ctx)
4444 		put_ctx(clone_ctx);
4445 }
4446 
4447 struct perf_read_data {
4448 	struct perf_event *event;
4449 	bool group;
4450 	int ret;
4451 };
4452 
4453 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4454 {
4455 	u16 local_pkg, event_pkg;
4456 
4457 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4458 		int local_cpu = smp_processor_id();
4459 
4460 		event_pkg = topology_physical_package_id(event_cpu);
4461 		local_pkg = topology_physical_package_id(local_cpu);
4462 
4463 		if (event_pkg == local_pkg)
4464 			return local_cpu;
4465 	}
4466 
4467 	return event_cpu;
4468 }
4469 
4470 /*
4471  * Cross CPU call to read the hardware event
4472  */
4473 static void __perf_event_read(void *info)
4474 {
4475 	struct perf_read_data *data = info;
4476 	struct perf_event *sub, *event = data->event;
4477 	struct perf_event_context *ctx = event->ctx;
4478 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4479 	struct pmu *pmu = event->pmu;
4480 
4481 	/*
4482 	 * If this is a task context, we need to check whether it is
4483 	 * the current task context of this cpu.  If not it has been
4484 	 * scheduled out before the smp call arrived.  In that case
4485 	 * event->count would have been updated to a recent sample
4486 	 * when the event was scheduled out.
4487 	 */
4488 	if (ctx->task && cpuctx->task_ctx != ctx)
4489 		return;
4490 
4491 	raw_spin_lock(&ctx->lock);
4492 	if (ctx->is_active & EVENT_TIME) {
4493 		update_context_time(ctx);
4494 		update_cgrp_time_from_event(event);
4495 	}
4496 
4497 	perf_event_update_time(event);
4498 	if (data->group)
4499 		perf_event_update_sibling_time(event);
4500 
4501 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4502 		goto unlock;
4503 
4504 	if (!data->group) {
4505 		pmu->read(event);
4506 		data->ret = 0;
4507 		goto unlock;
4508 	}
4509 
4510 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4511 
4512 	pmu->read(event);
4513 
4514 	for_each_sibling_event(sub, event) {
4515 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4516 			/*
4517 			 * Use sibling's PMU rather than @event's since
4518 			 * sibling could be on different (eg: software) PMU.
4519 			 */
4520 			sub->pmu->read(sub);
4521 		}
4522 	}
4523 
4524 	data->ret = pmu->commit_txn(pmu);
4525 
4526 unlock:
4527 	raw_spin_unlock(&ctx->lock);
4528 }
4529 
4530 static inline u64 perf_event_count(struct perf_event *event)
4531 {
4532 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4533 }
4534 
4535 static void calc_timer_values(struct perf_event *event,
4536 				u64 *now,
4537 				u64 *enabled,
4538 				u64 *running)
4539 {
4540 	u64 ctx_time;
4541 
4542 	*now = perf_clock();
4543 	ctx_time = perf_event_time_now(event, *now);
4544 	__perf_update_times(event, ctx_time, enabled, running);
4545 }
4546 
4547 /*
4548  * NMI-safe method to read a local event, that is an event that
4549  * is:
4550  *   - either for the current task, or for this CPU
4551  *   - does not have inherit set, for inherited task events
4552  *     will not be local and we cannot read them atomically
4553  *   - must not have a pmu::count method
4554  */
4555 int perf_event_read_local(struct perf_event *event, u64 *value,
4556 			  u64 *enabled, u64 *running)
4557 {
4558 	unsigned long flags;
4559 	int ret = 0;
4560 
4561 	/*
4562 	 * Disabling interrupts avoids all counter scheduling (context
4563 	 * switches, timer based rotation and IPIs).
4564 	 */
4565 	local_irq_save(flags);
4566 
4567 	/*
4568 	 * It must not be an event with inherit set, we cannot read
4569 	 * all child counters from atomic context.
4570 	 */
4571 	if (event->attr.inherit) {
4572 		ret = -EOPNOTSUPP;
4573 		goto out;
4574 	}
4575 
4576 	/* If this is a per-task event, it must be for current */
4577 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4578 	    event->hw.target != current) {
4579 		ret = -EINVAL;
4580 		goto out;
4581 	}
4582 
4583 	/* If this is a per-CPU event, it must be for this CPU */
4584 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4585 	    event->cpu != smp_processor_id()) {
4586 		ret = -EINVAL;
4587 		goto out;
4588 	}
4589 
4590 	/* If this is a pinned event it must be running on this CPU */
4591 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4592 		ret = -EBUSY;
4593 		goto out;
4594 	}
4595 
4596 	/*
4597 	 * If the event is currently on this CPU, its either a per-task event,
4598 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4599 	 * oncpu == -1).
4600 	 */
4601 	if (event->oncpu == smp_processor_id())
4602 		event->pmu->read(event);
4603 
4604 	*value = local64_read(&event->count);
4605 	if (enabled || running) {
4606 		u64 __enabled, __running, __now;
4607 
4608 		calc_timer_values(event, &__now, &__enabled, &__running);
4609 		if (enabled)
4610 			*enabled = __enabled;
4611 		if (running)
4612 			*running = __running;
4613 	}
4614 out:
4615 	local_irq_restore(flags);
4616 
4617 	return ret;
4618 }
4619 
4620 static int perf_event_read(struct perf_event *event, bool group)
4621 {
4622 	enum perf_event_state state = READ_ONCE(event->state);
4623 	int event_cpu, ret = 0;
4624 
4625 	/*
4626 	 * If event is enabled and currently active on a CPU, update the
4627 	 * value in the event structure:
4628 	 */
4629 again:
4630 	if (state == PERF_EVENT_STATE_ACTIVE) {
4631 		struct perf_read_data data;
4632 
4633 		/*
4634 		 * Orders the ->state and ->oncpu loads such that if we see
4635 		 * ACTIVE we must also see the right ->oncpu.
4636 		 *
4637 		 * Matches the smp_wmb() from event_sched_in().
4638 		 */
4639 		smp_rmb();
4640 
4641 		event_cpu = READ_ONCE(event->oncpu);
4642 		if ((unsigned)event_cpu >= nr_cpu_ids)
4643 			return 0;
4644 
4645 		data = (struct perf_read_data){
4646 			.event = event,
4647 			.group = group,
4648 			.ret = 0,
4649 		};
4650 
4651 		preempt_disable();
4652 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4653 
4654 		/*
4655 		 * Purposely ignore the smp_call_function_single() return
4656 		 * value.
4657 		 *
4658 		 * If event_cpu isn't a valid CPU it means the event got
4659 		 * scheduled out and that will have updated the event count.
4660 		 *
4661 		 * Therefore, either way, we'll have an up-to-date event count
4662 		 * after this.
4663 		 */
4664 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4665 		preempt_enable();
4666 		ret = data.ret;
4667 
4668 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4669 		struct perf_event_context *ctx = event->ctx;
4670 		unsigned long flags;
4671 
4672 		raw_spin_lock_irqsave(&ctx->lock, flags);
4673 		state = event->state;
4674 		if (state != PERF_EVENT_STATE_INACTIVE) {
4675 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4676 			goto again;
4677 		}
4678 
4679 		/*
4680 		 * May read while context is not active (e.g., thread is
4681 		 * blocked), in that case we cannot update context time
4682 		 */
4683 		if (ctx->is_active & EVENT_TIME) {
4684 			update_context_time(ctx);
4685 			update_cgrp_time_from_event(event);
4686 		}
4687 
4688 		perf_event_update_time(event);
4689 		if (group)
4690 			perf_event_update_sibling_time(event);
4691 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4692 	}
4693 
4694 	return ret;
4695 }
4696 
4697 /*
4698  * Initialize the perf_event context in a task_struct:
4699  */
4700 static void __perf_event_init_context(struct perf_event_context *ctx)
4701 {
4702 	raw_spin_lock_init(&ctx->lock);
4703 	mutex_init(&ctx->mutex);
4704 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4705 	perf_event_groups_init(&ctx->pinned_groups);
4706 	perf_event_groups_init(&ctx->flexible_groups);
4707 	INIT_LIST_HEAD(&ctx->event_list);
4708 	refcount_set(&ctx->refcount, 1);
4709 }
4710 
4711 static void
4712 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4713 {
4714 	epc->pmu = pmu;
4715 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4716 	INIT_LIST_HEAD(&epc->pinned_active);
4717 	INIT_LIST_HEAD(&epc->flexible_active);
4718 	atomic_set(&epc->refcount, 1);
4719 }
4720 
4721 static struct perf_event_context *
4722 alloc_perf_context(struct task_struct *task)
4723 {
4724 	struct perf_event_context *ctx;
4725 
4726 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4727 	if (!ctx)
4728 		return NULL;
4729 
4730 	__perf_event_init_context(ctx);
4731 	if (task)
4732 		ctx->task = get_task_struct(task);
4733 
4734 	return ctx;
4735 }
4736 
4737 static struct task_struct *
4738 find_lively_task_by_vpid(pid_t vpid)
4739 {
4740 	struct task_struct *task;
4741 
4742 	rcu_read_lock();
4743 	if (!vpid)
4744 		task = current;
4745 	else
4746 		task = find_task_by_vpid(vpid);
4747 	if (task)
4748 		get_task_struct(task);
4749 	rcu_read_unlock();
4750 
4751 	if (!task)
4752 		return ERR_PTR(-ESRCH);
4753 
4754 	return task;
4755 }
4756 
4757 /*
4758  * Returns a matching context with refcount and pincount.
4759  */
4760 static struct perf_event_context *
4761 find_get_context(struct task_struct *task, struct perf_event *event)
4762 {
4763 	struct perf_event_context *ctx, *clone_ctx = NULL;
4764 	struct perf_cpu_context *cpuctx;
4765 	unsigned long flags;
4766 	int err;
4767 
4768 	if (!task) {
4769 		/* Must be root to operate on a CPU event: */
4770 		err = perf_allow_cpu(&event->attr);
4771 		if (err)
4772 			return ERR_PTR(err);
4773 
4774 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4775 		ctx = &cpuctx->ctx;
4776 		get_ctx(ctx);
4777 		raw_spin_lock_irqsave(&ctx->lock, flags);
4778 		++ctx->pin_count;
4779 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4780 
4781 		return ctx;
4782 	}
4783 
4784 	err = -EINVAL;
4785 retry:
4786 	ctx = perf_lock_task_context(task, &flags);
4787 	if (ctx) {
4788 		clone_ctx = unclone_ctx(ctx);
4789 		++ctx->pin_count;
4790 
4791 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4792 
4793 		if (clone_ctx)
4794 			put_ctx(clone_ctx);
4795 	} else {
4796 		ctx = alloc_perf_context(task);
4797 		err = -ENOMEM;
4798 		if (!ctx)
4799 			goto errout;
4800 
4801 		err = 0;
4802 		mutex_lock(&task->perf_event_mutex);
4803 		/*
4804 		 * If it has already passed perf_event_exit_task().
4805 		 * we must see PF_EXITING, it takes this mutex too.
4806 		 */
4807 		if (task->flags & PF_EXITING)
4808 			err = -ESRCH;
4809 		else if (task->perf_event_ctxp)
4810 			err = -EAGAIN;
4811 		else {
4812 			get_ctx(ctx);
4813 			++ctx->pin_count;
4814 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4815 		}
4816 		mutex_unlock(&task->perf_event_mutex);
4817 
4818 		if (unlikely(err)) {
4819 			put_ctx(ctx);
4820 
4821 			if (err == -EAGAIN)
4822 				goto retry;
4823 			goto errout;
4824 		}
4825 	}
4826 
4827 	return ctx;
4828 
4829 errout:
4830 	return ERR_PTR(err);
4831 }
4832 
4833 static struct perf_event_pmu_context *
4834 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4835 		     struct perf_event *event)
4836 {
4837 	struct perf_event_pmu_context *new = NULL, *epc;
4838 	void *task_ctx_data = NULL;
4839 
4840 	if (!ctx->task) {
4841 		/*
4842 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4843 		 * relies on the fact that find_get_pmu_context() cannot fail
4844 		 * for CPU contexts.
4845 		 */
4846 		struct perf_cpu_pmu_context *cpc;
4847 
4848 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4849 		epc = &cpc->epc;
4850 		raw_spin_lock_irq(&ctx->lock);
4851 		if (!epc->ctx) {
4852 			atomic_set(&epc->refcount, 1);
4853 			epc->embedded = 1;
4854 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4855 			epc->ctx = ctx;
4856 		} else {
4857 			WARN_ON_ONCE(epc->ctx != ctx);
4858 			atomic_inc(&epc->refcount);
4859 		}
4860 		raw_spin_unlock_irq(&ctx->lock);
4861 		return epc;
4862 	}
4863 
4864 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
4865 	if (!new)
4866 		return ERR_PTR(-ENOMEM);
4867 
4868 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4869 		task_ctx_data = alloc_task_ctx_data(pmu);
4870 		if (!task_ctx_data) {
4871 			kfree(new);
4872 			return ERR_PTR(-ENOMEM);
4873 		}
4874 	}
4875 
4876 	__perf_init_event_pmu_context(new, pmu);
4877 
4878 	/*
4879 	 * XXX
4880 	 *
4881 	 * lockdep_assert_held(&ctx->mutex);
4882 	 *
4883 	 * can't because perf_event_init_task() doesn't actually hold the
4884 	 * child_ctx->mutex.
4885 	 */
4886 
4887 	raw_spin_lock_irq(&ctx->lock);
4888 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4889 		if (epc->pmu == pmu) {
4890 			WARN_ON_ONCE(epc->ctx != ctx);
4891 			atomic_inc(&epc->refcount);
4892 			goto found_epc;
4893 		}
4894 	}
4895 
4896 	epc = new;
4897 	new = NULL;
4898 
4899 	list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4900 	epc->ctx = ctx;
4901 
4902 found_epc:
4903 	if (task_ctx_data && !epc->task_ctx_data) {
4904 		epc->task_ctx_data = task_ctx_data;
4905 		task_ctx_data = NULL;
4906 		ctx->nr_task_data++;
4907 	}
4908 	raw_spin_unlock_irq(&ctx->lock);
4909 
4910 	free_task_ctx_data(pmu, task_ctx_data);
4911 	kfree(new);
4912 
4913 	return epc;
4914 }
4915 
4916 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4917 {
4918 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4919 }
4920 
4921 static void free_epc_rcu(struct rcu_head *head)
4922 {
4923 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4924 
4925 	kfree(epc->task_ctx_data);
4926 	kfree(epc);
4927 }
4928 
4929 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4930 {
4931 	struct perf_event_context *ctx = epc->ctx;
4932 	unsigned long flags;
4933 
4934 	/*
4935 	 * XXX
4936 	 *
4937 	 * lockdep_assert_held(&ctx->mutex);
4938 	 *
4939 	 * can't because of the call-site in _free_event()/put_event()
4940 	 * which isn't always called under ctx->mutex.
4941 	 */
4942 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4943 		return;
4944 
4945 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4946 
4947 	list_del_init(&epc->pmu_ctx_entry);
4948 	epc->ctx = NULL;
4949 
4950 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4951 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4952 
4953 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4954 
4955 	if (epc->embedded)
4956 		return;
4957 
4958 	call_rcu(&epc->rcu_head, free_epc_rcu);
4959 }
4960 
4961 static void perf_event_free_filter(struct perf_event *event);
4962 
4963 static void free_event_rcu(struct rcu_head *head)
4964 {
4965 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4966 
4967 	if (event->ns)
4968 		put_pid_ns(event->ns);
4969 	perf_event_free_filter(event);
4970 	kmem_cache_free(perf_event_cache, event);
4971 }
4972 
4973 static void ring_buffer_attach(struct perf_event *event,
4974 			       struct perf_buffer *rb);
4975 
4976 static void detach_sb_event(struct perf_event *event)
4977 {
4978 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4979 
4980 	raw_spin_lock(&pel->lock);
4981 	list_del_rcu(&event->sb_list);
4982 	raw_spin_unlock(&pel->lock);
4983 }
4984 
4985 static bool is_sb_event(struct perf_event *event)
4986 {
4987 	struct perf_event_attr *attr = &event->attr;
4988 
4989 	if (event->parent)
4990 		return false;
4991 
4992 	if (event->attach_state & PERF_ATTACH_TASK)
4993 		return false;
4994 
4995 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4996 	    attr->comm || attr->comm_exec ||
4997 	    attr->task || attr->ksymbol ||
4998 	    attr->context_switch || attr->text_poke ||
4999 	    attr->bpf_event)
5000 		return true;
5001 	return false;
5002 }
5003 
5004 static void unaccount_pmu_sb_event(struct perf_event *event)
5005 {
5006 	if (is_sb_event(event))
5007 		detach_sb_event(event);
5008 }
5009 
5010 #ifdef CONFIG_NO_HZ_FULL
5011 static DEFINE_SPINLOCK(nr_freq_lock);
5012 #endif
5013 
5014 static void unaccount_freq_event_nohz(void)
5015 {
5016 #ifdef CONFIG_NO_HZ_FULL
5017 	spin_lock(&nr_freq_lock);
5018 	if (atomic_dec_and_test(&nr_freq_events))
5019 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5020 	spin_unlock(&nr_freq_lock);
5021 #endif
5022 }
5023 
5024 static void unaccount_freq_event(void)
5025 {
5026 	if (tick_nohz_full_enabled())
5027 		unaccount_freq_event_nohz();
5028 	else
5029 		atomic_dec(&nr_freq_events);
5030 }
5031 
5032 static void unaccount_event(struct perf_event *event)
5033 {
5034 	bool dec = false;
5035 
5036 	if (event->parent)
5037 		return;
5038 
5039 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5040 		dec = true;
5041 	if (event->attr.mmap || event->attr.mmap_data)
5042 		atomic_dec(&nr_mmap_events);
5043 	if (event->attr.build_id)
5044 		atomic_dec(&nr_build_id_events);
5045 	if (event->attr.comm)
5046 		atomic_dec(&nr_comm_events);
5047 	if (event->attr.namespaces)
5048 		atomic_dec(&nr_namespaces_events);
5049 	if (event->attr.cgroup)
5050 		atomic_dec(&nr_cgroup_events);
5051 	if (event->attr.task)
5052 		atomic_dec(&nr_task_events);
5053 	if (event->attr.freq)
5054 		unaccount_freq_event();
5055 	if (event->attr.context_switch) {
5056 		dec = true;
5057 		atomic_dec(&nr_switch_events);
5058 	}
5059 	if (is_cgroup_event(event))
5060 		dec = true;
5061 	if (has_branch_stack(event))
5062 		dec = true;
5063 	if (event->attr.ksymbol)
5064 		atomic_dec(&nr_ksymbol_events);
5065 	if (event->attr.bpf_event)
5066 		atomic_dec(&nr_bpf_events);
5067 	if (event->attr.text_poke)
5068 		atomic_dec(&nr_text_poke_events);
5069 
5070 	if (dec) {
5071 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5072 			schedule_delayed_work(&perf_sched_work, HZ);
5073 	}
5074 
5075 	unaccount_pmu_sb_event(event);
5076 }
5077 
5078 static void perf_sched_delayed(struct work_struct *work)
5079 {
5080 	mutex_lock(&perf_sched_mutex);
5081 	if (atomic_dec_and_test(&perf_sched_count))
5082 		static_branch_disable(&perf_sched_events);
5083 	mutex_unlock(&perf_sched_mutex);
5084 }
5085 
5086 /*
5087  * The following implement mutual exclusion of events on "exclusive" pmus
5088  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5089  * at a time, so we disallow creating events that might conflict, namely:
5090  *
5091  *  1) cpu-wide events in the presence of per-task events,
5092  *  2) per-task events in the presence of cpu-wide events,
5093  *  3) two matching events on the same perf_event_context.
5094  *
5095  * The former two cases are handled in the allocation path (perf_event_alloc(),
5096  * _free_event()), the latter -- before the first perf_install_in_context().
5097  */
5098 static int exclusive_event_init(struct perf_event *event)
5099 {
5100 	struct pmu *pmu = event->pmu;
5101 
5102 	if (!is_exclusive_pmu(pmu))
5103 		return 0;
5104 
5105 	/*
5106 	 * Prevent co-existence of per-task and cpu-wide events on the
5107 	 * same exclusive pmu.
5108 	 *
5109 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5110 	 * events on this "exclusive" pmu, positive means there are
5111 	 * per-task events.
5112 	 *
5113 	 * Since this is called in perf_event_alloc() path, event::ctx
5114 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5115 	 * to mean "per-task event", because unlike other attach states it
5116 	 * never gets cleared.
5117 	 */
5118 	if (event->attach_state & PERF_ATTACH_TASK) {
5119 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5120 			return -EBUSY;
5121 	} else {
5122 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5123 			return -EBUSY;
5124 	}
5125 
5126 	return 0;
5127 }
5128 
5129 static void exclusive_event_destroy(struct perf_event *event)
5130 {
5131 	struct pmu *pmu = event->pmu;
5132 
5133 	if (!is_exclusive_pmu(pmu))
5134 		return;
5135 
5136 	/* see comment in exclusive_event_init() */
5137 	if (event->attach_state & PERF_ATTACH_TASK)
5138 		atomic_dec(&pmu->exclusive_cnt);
5139 	else
5140 		atomic_inc(&pmu->exclusive_cnt);
5141 }
5142 
5143 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5144 {
5145 	if ((e1->pmu == e2->pmu) &&
5146 	    (e1->cpu == e2->cpu ||
5147 	     e1->cpu == -1 ||
5148 	     e2->cpu == -1))
5149 		return true;
5150 	return false;
5151 }
5152 
5153 static bool exclusive_event_installable(struct perf_event *event,
5154 					struct perf_event_context *ctx)
5155 {
5156 	struct perf_event *iter_event;
5157 	struct pmu *pmu = event->pmu;
5158 
5159 	lockdep_assert_held(&ctx->mutex);
5160 
5161 	if (!is_exclusive_pmu(pmu))
5162 		return true;
5163 
5164 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5165 		if (exclusive_event_match(iter_event, event))
5166 			return false;
5167 	}
5168 
5169 	return true;
5170 }
5171 
5172 static void perf_addr_filters_splice(struct perf_event *event,
5173 				       struct list_head *head);
5174 
5175 static void perf_pending_task_sync(struct perf_event *event)
5176 {
5177 	struct callback_head *head = &event->pending_task;
5178 
5179 	if (!event->pending_work)
5180 		return;
5181 	/*
5182 	 * If the task is queued to the current task's queue, we
5183 	 * obviously can't wait for it to complete. Simply cancel it.
5184 	 */
5185 	if (task_work_cancel(current, head)) {
5186 		event->pending_work = 0;
5187 		local_dec(&event->ctx->nr_pending);
5188 		return;
5189 	}
5190 
5191 	/*
5192 	 * All accesses related to the event are within the same
5193 	 * non-preemptible section in perf_pending_task(). The RCU
5194 	 * grace period before the event is freed will make sure all
5195 	 * those accesses are complete by then.
5196 	 */
5197 	rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5198 }
5199 
5200 static void _free_event(struct perf_event *event)
5201 {
5202 	irq_work_sync(&event->pending_irq);
5203 	perf_pending_task_sync(event);
5204 
5205 	unaccount_event(event);
5206 
5207 	security_perf_event_free(event);
5208 
5209 	if (event->rb) {
5210 		/*
5211 		 * Can happen when we close an event with re-directed output.
5212 		 *
5213 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5214 		 * over us; possibly making our ring_buffer_put() the last.
5215 		 */
5216 		mutex_lock(&event->mmap_mutex);
5217 		ring_buffer_attach(event, NULL);
5218 		mutex_unlock(&event->mmap_mutex);
5219 	}
5220 
5221 	if (is_cgroup_event(event))
5222 		perf_detach_cgroup(event);
5223 
5224 	if (!event->parent) {
5225 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5226 			put_callchain_buffers();
5227 	}
5228 
5229 	perf_event_free_bpf_prog(event);
5230 	perf_addr_filters_splice(event, NULL);
5231 	kfree(event->addr_filter_ranges);
5232 
5233 	if (event->destroy)
5234 		event->destroy(event);
5235 
5236 	/*
5237 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5238 	 * hw.target.
5239 	 */
5240 	if (event->hw.target)
5241 		put_task_struct(event->hw.target);
5242 
5243 	if (event->pmu_ctx)
5244 		put_pmu_ctx(event->pmu_ctx);
5245 
5246 	/*
5247 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5248 	 * all task references must be cleaned up.
5249 	 */
5250 	if (event->ctx)
5251 		put_ctx(event->ctx);
5252 
5253 	exclusive_event_destroy(event);
5254 	module_put(event->pmu->module);
5255 
5256 	call_rcu(&event->rcu_head, free_event_rcu);
5257 }
5258 
5259 /*
5260  * Used to free events which have a known refcount of 1, such as in error paths
5261  * where the event isn't exposed yet and inherited events.
5262  */
5263 static void free_event(struct perf_event *event)
5264 {
5265 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5266 				"unexpected event refcount: %ld; ptr=%p\n",
5267 				atomic_long_read(&event->refcount), event)) {
5268 		/* leak to avoid use-after-free */
5269 		return;
5270 	}
5271 
5272 	_free_event(event);
5273 }
5274 
5275 /*
5276  * Remove user event from the owner task.
5277  */
5278 static void perf_remove_from_owner(struct perf_event *event)
5279 {
5280 	struct task_struct *owner;
5281 
5282 	rcu_read_lock();
5283 	/*
5284 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5285 	 * observe !owner it means the list deletion is complete and we can
5286 	 * indeed free this event, otherwise we need to serialize on
5287 	 * owner->perf_event_mutex.
5288 	 */
5289 	owner = READ_ONCE(event->owner);
5290 	if (owner) {
5291 		/*
5292 		 * Since delayed_put_task_struct() also drops the last
5293 		 * task reference we can safely take a new reference
5294 		 * while holding the rcu_read_lock().
5295 		 */
5296 		get_task_struct(owner);
5297 	}
5298 	rcu_read_unlock();
5299 
5300 	if (owner) {
5301 		/*
5302 		 * If we're here through perf_event_exit_task() we're already
5303 		 * holding ctx->mutex which would be an inversion wrt. the
5304 		 * normal lock order.
5305 		 *
5306 		 * However we can safely take this lock because its the child
5307 		 * ctx->mutex.
5308 		 */
5309 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5310 
5311 		/*
5312 		 * We have to re-check the event->owner field, if it is cleared
5313 		 * we raced with perf_event_exit_task(), acquiring the mutex
5314 		 * ensured they're done, and we can proceed with freeing the
5315 		 * event.
5316 		 */
5317 		if (event->owner) {
5318 			list_del_init(&event->owner_entry);
5319 			smp_store_release(&event->owner, NULL);
5320 		}
5321 		mutex_unlock(&owner->perf_event_mutex);
5322 		put_task_struct(owner);
5323 	}
5324 }
5325 
5326 static void put_event(struct perf_event *event)
5327 {
5328 	if (!atomic_long_dec_and_test(&event->refcount))
5329 		return;
5330 
5331 	_free_event(event);
5332 }
5333 
5334 /*
5335  * Kill an event dead; while event:refcount will preserve the event
5336  * object, it will not preserve its functionality. Once the last 'user'
5337  * gives up the object, we'll destroy the thing.
5338  */
5339 int perf_event_release_kernel(struct perf_event *event)
5340 {
5341 	struct perf_event_context *ctx = event->ctx;
5342 	struct perf_event *child, *tmp;
5343 	LIST_HEAD(free_list);
5344 
5345 	/*
5346 	 * If we got here through err_alloc: free_event(event); we will not
5347 	 * have attached to a context yet.
5348 	 */
5349 	if (!ctx) {
5350 		WARN_ON_ONCE(event->attach_state &
5351 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5352 		goto no_ctx;
5353 	}
5354 
5355 	if (!is_kernel_event(event))
5356 		perf_remove_from_owner(event);
5357 
5358 	ctx = perf_event_ctx_lock(event);
5359 	WARN_ON_ONCE(ctx->parent_ctx);
5360 
5361 	/*
5362 	 * Mark this event as STATE_DEAD, there is no external reference to it
5363 	 * anymore.
5364 	 *
5365 	 * Anybody acquiring event->child_mutex after the below loop _must_
5366 	 * also see this, most importantly inherit_event() which will avoid
5367 	 * placing more children on the list.
5368 	 *
5369 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5370 	 * child events.
5371 	 */
5372 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5373 
5374 	perf_event_ctx_unlock(event, ctx);
5375 
5376 again:
5377 	mutex_lock(&event->child_mutex);
5378 	list_for_each_entry(child, &event->child_list, child_list) {
5379 		void *var = NULL;
5380 
5381 		/*
5382 		 * Cannot change, child events are not migrated, see the
5383 		 * comment with perf_event_ctx_lock_nested().
5384 		 */
5385 		ctx = READ_ONCE(child->ctx);
5386 		/*
5387 		 * Since child_mutex nests inside ctx::mutex, we must jump
5388 		 * through hoops. We start by grabbing a reference on the ctx.
5389 		 *
5390 		 * Since the event cannot get freed while we hold the
5391 		 * child_mutex, the context must also exist and have a !0
5392 		 * reference count.
5393 		 */
5394 		get_ctx(ctx);
5395 
5396 		/*
5397 		 * Now that we have a ctx ref, we can drop child_mutex, and
5398 		 * acquire ctx::mutex without fear of it going away. Then we
5399 		 * can re-acquire child_mutex.
5400 		 */
5401 		mutex_unlock(&event->child_mutex);
5402 		mutex_lock(&ctx->mutex);
5403 		mutex_lock(&event->child_mutex);
5404 
5405 		/*
5406 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5407 		 * state, if child is still the first entry, it didn't get freed
5408 		 * and we can continue doing so.
5409 		 */
5410 		tmp = list_first_entry_or_null(&event->child_list,
5411 					       struct perf_event, child_list);
5412 		if (tmp == child) {
5413 			perf_remove_from_context(child, DETACH_GROUP);
5414 			list_move(&child->child_list, &free_list);
5415 			/*
5416 			 * This matches the refcount bump in inherit_event();
5417 			 * this can't be the last reference.
5418 			 */
5419 			put_event(event);
5420 		} else {
5421 			var = &ctx->refcount;
5422 		}
5423 
5424 		mutex_unlock(&event->child_mutex);
5425 		mutex_unlock(&ctx->mutex);
5426 		put_ctx(ctx);
5427 
5428 		if (var) {
5429 			/*
5430 			 * If perf_event_free_task() has deleted all events from the
5431 			 * ctx while the child_mutex got released above, make sure to
5432 			 * notify about the preceding put_ctx().
5433 			 */
5434 			smp_mb(); /* pairs with wait_var_event() */
5435 			wake_up_var(var);
5436 		}
5437 		goto again;
5438 	}
5439 	mutex_unlock(&event->child_mutex);
5440 
5441 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5442 		void *var = &child->ctx->refcount;
5443 
5444 		list_del(&child->child_list);
5445 		free_event(child);
5446 
5447 		/*
5448 		 * Wake any perf_event_free_task() waiting for this event to be
5449 		 * freed.
5450 		 */
5451 		smp_mb(); /* pairs with wait_var_event() */
5452 		wake_up_var(var);
5453 	}
5454 
5455 no_ctx:
5456 	put_event(event); /* Must be the 'last' reference */
5457 	return 0;
5458 }
5459 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5460 
5461 /*
5462  * Called when the last reference to the file is gone.
5463  */
5464 static int perf_release(struct inode *inode, struct file *file)
5465 {
5466 	perf_event_release_kernel(file->private_data);
5467 	return 0;
5468 }
5469 
5470 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5471 {
5472 	struct perf_event *child;
5473 	u64 total = 0;
5474 
5475 	*enabled = 0;
5476 	*running = 0;
5477 
5478 	mutex_lock(&event->child_mutex);
5479 
5480 	(void)perf_event_read(event, false);
5481 	total += perf_event_count(event);
5482 
5483 	*enabled += event->total_time_enabled +
5484 			atomic64_read(&event->child_total_time_enabled);
5485 	*running += event->total_time_running +
5486 			atomic64_read(&event->child_total_time_running);
5487 
5488 	list_for_each_entry(child, &event->child_list, child_list) {
5489 		(void)perf_event_read(child, false);
5490 		total += perf_event_count(child);
5491 		*enabled += child->total_time_enabled;
5492 		*running += child->total_time_running;
5493 	}
5494 	mutex_unlock(&event->child_mutex);
5495 
5496 	return total;
5497 }
5498 
5499 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5500 {
5501 	struct perf_event_context *ctx;
5502 	u64 count;
5503 
5504 	ctx = perf_event_ctx_lock(event);
5505 	count = __perf_event_read_value(event, enabled, running);
5506 	perf_event_ctx_unlock(event, ctx);
5507 
5508 	return count;
5509 }
5510 EXPORT_SYMBOL_GPL(perf_event_read_value);
5511 
5512 static int __perf_read_group_add(struct perf_event *leader,
5513 					u64 read_format, u64 *values)
5514 {
5515 	struct perf_event_context *ctx = leader->ctx;
5516 	struct perf_event *sub, *parent;
5517 	unsigned long flags;
5518 	int n = 1; /* skip @nr */
5519 	int ret;
5520 
5521 	ret = perf_event_read(leader, true);
5522 	if (ret)
5523 		return ret;
5524 
5525 	raw_spin_lock_irqsave(&ctx->lock, flags);
5526 	/*
5527 	 * Verify the grouping between the parent and child (inherited)
5528 	 * events is still in tact.
5529 	 *
5530 	 * Specifically:
5531 	 *  - leader->ctx->lock pins leader->sibling_list
5532 	 *  - parent->child_mutex pins parent->child_list
5533 	 *  - parent->ctx->mutex pins parent->sibling_list
5534 	 *
5535 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5536 	 * ctx->mutex), group destruction is not atomic between children, also
5537 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5538 	 * group.
5539 	 *
5540 	 * Therefore it is possible to have parent and child groups in a
5541 	 * different configuration and summing over such a beast makes no sense
5542 	 * what so ever.
5543 	 *
5544 	 * Reject this.
5545 	 */
5546 	parent = leader->parent;
5547 	if (parent &&
5548 	    (parent->group_generation != leader->group_generation ||
5549 	     parent->nr_siblings != leader->nr_siblings)) {
5550 		ret = -ECHILD;
5551 		goto unlock;
5552 	}
5553 
5554 	/*
5555 	 * Since we co-schedule groups, {enabled,running} times of siblings
5556 	 * will be identical to those of the leader, so we only publish one
5557 	 * set.
5558 	 */
5559 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5560 		values[n++] += leader->total_time_enabled +
5561 			atomic64_read(&leader->child_total_time_enabled);
5562 	}
5563 
5564 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5565 		values[n++] += leader->total_time_running +
5566 			atomic64_read(&leader->child_total_time_running);
5567 	}
5568 
5569 	/*
5570 	 * Write {count,id} tuples for every sibling.
5571 	 */
5572 	values[n++] += perf_event_count(leader);
5573 	if (read_format & PERF_FORMAT_ID)
5574 		values[n++] = primary_event_id(leader);
5575 	if (read_format & PERF_FORMAT_LOST)
5576 		values[n++] = atomic64_read(&leader->lost_samples);
5577 
5578 	for_each_sibling_event(sub, leader) {
5579 		values[n++] += perf_event_count(sub);
5580 		if (read_format & PERF_FORMAT_ID)
5581 			values[n++] = primary_event_id(sub);
5582 		if (read_format & PERF_FORMAT_LOST)
5583 			values[n++] = atomic64_read(&sub->lost_samples);
5584 	}
5585 
5586 unlock:
5587 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5588 	return ret;
5589 }
5590 
5591 static int perf_read_group(struct perf_event *event,
5592 				   u64 read_format, char __user *buf)
5593 {
5594 	struct perf_event *leader = event->group_leader, *child;
5595 	struct perf_event_context *ctx = leader->ctx;
5596 	int ret;
5597 	u64 *values;
5598 
5599 	lockdep_assert_held(&ctx->mutex);
5600 
5601 	values = kzalloc(event->read_size, GFP_KERNEL);
5602 	if (!values)
5603 		return -ENOMEM;
5604 
5605 	values[0] = 1 + leader->nr_siblings;
5606 
5607 	mutex_lock(&leader->child_mutex);
5608 
5609 	ret = __perf_read_group_add(leader, read_format, values);
5610 	if (ret)
5611 		goto unlock;
5612 
5613 	list_for_each_entry(child, &leader->child_list, child_list) {
5614 		ret = __perf_read_group_add(child, read_format, values);
5615 		if (ret)
5616 			goto unlock;
5617 	}
5618 
5619 	mutex_unlock(&leader->child_mutex);
5620 
5621 	ret = event->read_size;
5622 	if (copy_to_user(buf, values, event->read_size))
5623 		ret = -EFAULT;
5624 	goto out;
5625 
5626 unlock:
5627 	mutex_unlock(&leader->child_mutex);
5628 out:
5629 	kfree(values);
5630 	return ret;
5631 }
5632 
5633 static int perf_read_one(struct perf_event *event,
5634 				 u64 read_format, char __user *buf)
5635 {
5636 	u64 enabled, running;
5637 	u64 values[5];
5638 	int n = 0;
5639 
5640 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5641 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5642 		values[n++] = enabled;
5643 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5644 		values[n++] = running;
5645 	if (read_format & PERF_FORMAT_ID)
5646 		values[n++] = primary_event_id(event);
5647 	if (read_format & PERF_FORMAT_LOST)
5648 		values[n++] = atomic64_read(&event->lost_samples);
5649 
5650 	if (copy_to_user(buf, values, n * sizeof(u64)))
5651 		return -EFAULT;
5652 
5653 	return n * sizeof(u64);
5654 }
5655 
5656 static bool is_event_hup(struct perf_event *event)
5657 {
5658 	bool no_children;
5659 
5660 	if (event->state > PERF_EVENT_STATE_EXIT)
5661 		return false;
5662 
5663 	mutex_lock(&event->child_mutex);
5664 	no_children = list_empty(&event->child_list);
5665 	mutex_unlock(&event->child_mutex);
5666 	return no_children;
5667 }
5668 
5669 /*
5670  * Read the performance event - simple non blocking version for now
5671  */
5672 static ssize_t
5673 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5674 {
5675 	u64 read_format = event->attr.read_format;
5676 	int ret;
5677 
5678 	/*
5679 	 * Return end-of-file for a read on an event that is in
5680 	 * error state (i.e. because it was pinned but it couldn't be
5681 	 * scheduled on to the CPU at some point).
5682 	 */
5683 	if (event->state == PERF_EVENT_STATE_ERROR)
5684 		return 0;
5685 
5686 	if (count < event->read_size)
5687 		return -ENOSPC;
5688 
5689 	WARN_ON_ONCE(event->ctx->parent_ctx);
5690 	if (read_format & PERF_FORMAT_GROUP)
5691 		ret = perf_read_group(event, read_format, buf);
5692 	else
5693 		ret = perf_read_one(event, read_format, buf);
5694 
5695 	return ret;
5696 }
5697 
5698 static ssize_t
5699 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5700 {
5701 	struct perf_event *event = file->private_data;
5702 	struct perf_event_context *ctx;
5703 	int ret;
5704 
5705 	ret = security_perf_event_read(event);
5706 	if (ret)
5707 		return ret;
5708 
5709 	ctx = perf_event_ctx_lock(event);
5710 	ret = __perf_read(event, buf, count);
5711 	perf_event_ctx_unlock(event, ctx);
5712 
5713 	return ret;
5714 }
5715 
5716 static __poll_t perf_poll(struct file *file, poll_table *wait)
5717 {
5718 	struct perf_event *event = file->private_data;
5719 	struct perf_buffer *rb;
5720 	__poll_t events = EPOLLHUP;
5721 
5722 	poll_wait(file, &event->waitq, wait);
5723 
5724 	if (is_event_hup(event))
5725 		return events;
5726 
5727 	/*
5728 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5729 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5730 	 */
5731 	mutex_lock(&event->mmap_mutex);
5732 	rb = event->rb;
5733 	if (rb)
5734 		events = atomic_xchg(&rb->poll, 0);
5735 	mutex_unlock(&event->mmap_mutex);
5736 	return events;
5737 }
5738 
5739 static void _perf_event_reset(struct perf_event *event)
5740 {
5741 	(void)perf_event_read(event, false);
5742 	local64_set(&event->count, 0);
5743 	perf_event_update_userpage(event);
5744 }
5745 
5746 /* Assume it's not an event with inherit set. */
5747 u64 perf_event_pause(struct perf_event *event, bool reset)
5748 {
5749 	struct perf_event_context *ctx;
5750 	u64 count;
5751 
5752 	ctx = perf_event_ctx_lock(event);
5753 	WARN_ON_ONCE(event->attr.inherit);
5754 	_perf_event_disable(event);
5755 	count = local64_read(&event->count);
5756 	if (reset)
5757 		local64_set(&event->count, 0);
5758 	perf_event_ctx_unlock(event, ctx);
5759 
5760 	return count;
5761 }
5762 EXPORT_SYMBOL_GPL(perf_event_pause);
5763 
5764 /*
5765  * Holding the top-level event's child_mutex means that any
5766  * descendant process that has inherited this event will block
5767  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5768  * task existence requirements of perf_event_enable/disable.
5769  */
5770 static void perf_event_for_each_child(struct perf_event *event,
5771 					void (*func)(struct perf_event *))
5772 {
5773 	struct perf_event *child;
5774 
5775 	WARN_ON_ONCE(event->ctx->parent_ctx);
5776 
5777 	mutex_lock(&event->child_mutex);
5778 	func(event);
5779 	list_for_each_entry(child, &event->child_list, child_list)
5780 		func(child);
5781 	mutex_unlock(&event->child_mutex);
5782 }
5783 
5784 static void perf_event_for_each(struct perf_event *event,
5785 				  void (*func)(struct perf_event *))
5786 {
5787 	struct perf_event_context *ctx = event->ctx;
5788 	struct perf_event *sibling;
5789 
5790 	lockdep_assert_held(&ctx->mutex);
5791 
5792 	event = event->group_leader;
5793 
5794 	perf_event_for_each_child(event, func);
5795 	for_each_sibling_event(sibling, event)
5796 		perf_event_for_each_child(sibling, func);
5797 }
5798 
5799 static void __perf_event_period(struct perf_event *event,
5800 				struct perf_cpu_context *cpuctx,
5801 				struct perf_event_context *ctx,
5802 				void *info)
5803 {
5804 	u64 value = *((u64 *)info);
5805 	bool active;
5806 
5807 	if (event->attr.freq) {
5808 		event->attr.sample_freq = value;
5809 	} else {
5810 		event->attr.sample_period = value;
5811 		event->hw.sample_period = value;
5812 	}
5813 
5814 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5815 	if (active) {
5816 		perf_pmu_disable(event->pmu);
5817 		/*
5818 		 * We could be throttled; unthrottle now to avoid the tick
5819 		 * trying to unthrottle while we already re-started the event.
5820 		 */
5821 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5822 			event->hw.interrupts = 0;
5823 			perf_log_throttle(event, 1);
5824 		}
5825 		event->pmu->stop(event, PERF_EF_UPDATE);
5826 	}
5827 
5828 	local64_set(&event->hw.period_left, 0);
5829 
5830 	if (active) {
5831 		event->pmu->start(event, PERF_EF_RELOAD);
5832 		perf_pmu_enable(event->pmu);
5833 	}
5834 }
5835 
5836 static int perf_event_check_period(struct perf_event *event, u64 value)
5837 {
5838 	return event->pmu->check_period(event, value);
5839 }
5840 
5841 static int _perf_event_period(struct perf_event *event, u64 value)
5842 {
5843 	if (!is_sampling_event(event))
5844 		return -EINVAL;
5845 
5846 	if (!value)
5847 		return -EINVAL;
5848 
5849 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5850 		return -EINVAL;
5851 
5852 	if (perf_event_check_period(event, value))
5853 		return -EINVAL;
5854 
5855 	if (!event->attr.freq && (value & (1ULL << 63)))
5856 		return -EINVAL;
5857 
5858 	event_function_call(event, __perf_event_period, &value);
5859 
5860 	return 0;
5861 }
5862 
5863 int perf_event_period(struct perf_event *event, u64 value)
5864 {
5865 	struct perf_event_context *ctx;
5866 	int ret;
5867 
5868 	ctx = perf_event_ctx_lock(event);
5869 	ret = _perf_event_period(event, value);
5870 	perf_event_ctx_unlock(event, ctx);
5871 
5872 	return ret;
5873 }
5874 EXPORT_SYMBOL_GPL(perf_event_period);
5875 
5876 static const struct file_operations perf_fops;
5877 
5878 static inline int perf_fget_light(int fd, struct fd *p)
5879 {
5880 	struct fd f = fdget(fd);
5881 	if (!f.file)
5882 		return -EBADF;
5883 
5884 	if (f.file->f_op != &perf_fops) {
5885 		fdput(f);
5886 		return -EBADF;
5887 	}
5888 	*p = f;
5889 	return 0;
5890 }
5891 
5892 static int perf_event_set_output(struct perf_event *event,
5893 				 struct perf_event *output_event);
5894 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5895 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5896 			  struct perf_event_attr *attr);
5897 
5898 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5899 {
5900 	void (*func)(struct perf_event *);
5901 	u32 flags = arg;
5902 
5903 	switch (cmd) {
5904 	case PERF_EVENT_IOC_ENABLE:
5905 		func = _perf_event_enable;
5906 		break;
5907 	case PERF_EVENT_IOC_DISABLE:
5908 		func = _perf_event_disable;
5909 		break;
5910 	case PERF_EVENT_IOC_RESET:
5911 		func = _perf_event_reset;
5912 		break;
5913 
5914 	case PERF_EVENT_IOC_REFRESH:
5915 		return _perf_event_refresh(event, arg);
5916 
5917 	case PERF_EVENT_IOC_PERIOD:
5918 	{
5919 		u64 value;
5920 
5921 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5922 			return -EFAULT;
5923 
5924 		return _perf_event_period(event, value);
5925 	}
5926 	case PERF_EVENT_IOC_ID:
5927 	{
5928 		u64 id = primary_event_id(event);
5929 
5930 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5931 			return -EFAULT;
5932 		return 0;
5933 	}
5934 
5935 	case PERF_EVENT_IOC_SET_OUTPUT:
5936 	{
5937 		int ret;
5938 		if (arg != -1) {
5939 			struct perf_event *output_event;
5940 			struct fd output;
5941 			ret = perf_fget_light(arg, &output);
5942 			if (ret)
5943 				return ret;
5944 			output_event = output.file->private_data;
5945 			ret = perf_event_set_output(event, output_event);
5946 			fdput(output);
5947 		} else {
5948 			ret = perf_event_set_output(event, NULL);
5949 		}
5950 		return ret;
5951 	}
5952 
5953 	case PERF_EVENT_IOC_SET_FILTER:
5954 		return perf_event_set_filter(event, (void __user *)arg);
5955 
5956 	case PERF_EVENT_IOC_SET_BPF:
5957 	{
5958 		struct bpf_prog *prog;
5959 		int err;
5960 
5961 		prog = bpf_prog_get(arg);
5962 		if (IS_ERR(prog))
5963 			return PTR_ERR(prog);
5964 
5965 		err = perf_event_set_bpf_prog(event, prog, 0);
5966 		if (err) {
5967 			bpf_prog_put(prog);
5968 			return err;
5969 		}
5970 
5971 		return 0;
5972 	}
5973 
5974 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5975 		struct perf_buffer *rb;
5976 
5977 		rcu_read_lock();
5978 		rb = rcu_dereference(event->rb);
5979 		if (!rb || !rb->nr_pages) {
5980 			rcu_read_unlock();
5981 			return -EINVAL;
5982 		}
5983 		rb_toggle_paused(rb, !!arg);
5984 		rcu_read_unlock();
5985 		return 0;
5986 	}
5987 
5988 	case PERF_EVENT_IOC_QUERY_BPF:
5989 		return perf_event_query_prog_array(event, (void __user *)arg);
5990 
5991 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5992 		struct perf_event_attr new_attr;
5993 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5994 					 &new_attr);
5995 
5996 		if (err)
5997 			return err;
5998 
5999 		return perf_event_modify_attr(event,  &new_attr);
6000 	}
6001 	default:
6002 		return -ENOTTY;
6003 	}
6004 
6005 	if (flags & PERF_IOC_FLAG_GROUP)
6006 		perf_event_for_each(event, func);
6007 	else
6008 		perf_event_for_each_child(event, func);
6009 
6010 	return 0;
6011 }
6012 
6013 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6014 {
6015 	struct perf_event *event = file->private_data;
6016 	struct perf_event_context *ctx;
6017 	long ret;
6018 
6019 	/* Treat ioctl like writes as it is likely a mutating operation. */
6020 	ret = security_perf_event_write(event);
6021 	if (ret)
6022 		return ret;
6023 
6024 	ctx = perf_event_ctx_lock(event);
6025 	ret = _perf_ioctl(event, cmd, arg);
6026 	perf_event_ctx_unlock(event, ctx);
6027 
6028 	return ret;
6029 }
6030 
6031 #ifdef CONFIG_COMPAT
6032 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6033 				unsigned long arg)
6034 {
6035 	switch (_IOC_NR(cmd)) {
6036 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6037 	case _IOC_NR(PERF_EVENT_IOC_ID):
6038 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6039 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6040 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6041 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6042 			cmd &= ~IOCSIZE_MASK;
6043 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6044 		}
6045 		break;
6046 	}
6047 	return perf_ioctl(file, cmd, arg);
6048 }
6049 #else
6050 # define perf_compat_ioctl NULL
6051 #endif
6052 
6053 int perf_event_task_enable(void)
6054 {
6055 	struct perf_event_context *ctx;
6056 	struct perf_event *event;
6057 
6058 	mutex_lock(&current->perf_event_mutex);
6059 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6060 		ctx = perf_event_ctx_lock(event);
6061 		perf_event_for_each_child(event, _perf_event_enable);
6062 		perf_event_ctx_unlock(event, ctx);
6063 	}
6064 	mutex_unlock(&current->perf_event_mutex);
6065 
6066 	return 0;
6067 }
6068 
6069 int perf_event_task_disable(void)
6070 {
6071 	struct perf_event_context *ctx;
6072 	struct perf_event *event;
6073 
6074 	mutex_lock(&current->perf_event_mutex);
6075 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6076 		ctx = perf_event_ctx_lock(event);
6077 		perf_event_for_each_child(event, _perf_event_disable);
6078 		perf_event_ctx_unlock(event, ctx);
6079 	}
6080 	mutex_unlock(&current->perf_event_mutex);
6081 
6082 	return 0;
6083 }
6084 
6085 static int perf_event_index(struct perf_event *event)
6086 {
6087 	if (event->hw.state & PERF_HES_STOPPED)
6088 		return 0;
6089 
6090 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6091 		return 0;
6092 
6093 	return event->pmu->event_idx(event);
6094 }
6095 
6096 static void perf_event_init_userpage(struct perf_event *event)
6097 {
6098 	struct perf_event_mmap_page *userpg;
6099 	struct perf_buffer *rb;
6100 
6101 	rcu_read_lock();
6102 	rb = rcu_dereference(event->rb);
6103 	if (!rb)
6104 		goto unlock;
6105 
6106 	userpg = rb->user_page;
6107 
6108 	/* Allow new userspace to detect that bit 0 is deprecated */
6109 	userpg->cap_bit0_is_deprecated = 1;
6110 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6111 	userpg->data_offset = PAGE_SIZE;
6112 	userpg->data_size = perf_data_size(rb);
6113 
6114 unlock:
6115 	rcu_read_unlock();
6116 }
6117 
6118 void __weak arch_perf_update_userpage(
6119 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6120 {
6121 }
6122 
6123 /*
6124  * Callers need to ensure there can be no nesting of this function, otherwise
6125  * the seqlock logic goes bad. We can not serialize this because the arch
6126  * code calls this from NMI context.
6127  */
6128 void perf_event_update_userpage(struct perf_event *event)
6129 {
6130 	struct perf_event_mmap_page *userpg;
6131 	struct perf_buffer *rb;
6132 	u64 enabled, running, now;
6133 
6134 	rcu_read_lock();
6135 	rb = rcu_dereference(event->rb);
6136 	if (!rb)
6137 		goto unlock;
6138 
6139 	/*
6140 	 * compute total_time_enabled, total_time_running
6141 	 * based on snapshot values taken when the event
6142 	 * was last scheduled in.
6143 	 *
6144 	 * we cannot simply called update_context_time()
6145 	 * because of locking issue as we can be called in
6146 	 * NMI context
6147 	 */
6148 	calc_timer_values(event, &now, &enabled, &running);
6149 
6150 	userpg = rb->user_page;
6151 	/*
6152 	 * Disable preemption to guarantee consistent time stamps are stored to
6153 	 * the user page.
6154 	 */
6155 	preempt_disable();
6156 	++userpg->lock;
6157 	barrier();
6158 	userpg->index = perf_event_index(event);
6159 	userpg->offset = perf_event_count(event);
6160 	if (userpg->index)
6161 		userpg->offset -= local64_read(&event->hw.prev_count);
6162 
6163 	userpg->time_enabled = enabled +
6164 			atomic64_read(&event->child_total_time_enabled);
6165 
6166 	userpg->time_running = running +
6167 			atomic64_read(&event->child_total_time_running);
6168 
6169 	arch_perf_update_userpage(event, userpg, now);
6170 
6171 	barrier();
6172 	++userpg->lock;
6173 	preempt_enable();
6174 unlock:
6175 	rcu_read_unlock();
6176 }
6177 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6178 
6179 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6180 {
6181 	struct perf_event *event = vmf->vma->vm_file->private_data;
6182 	struct perf_buffer *rb;
6183 	vm_fault_t ret = VM_FAULT_SIGBUS;
6184 
6185 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6186 		if (vmf->pgoff == 0)
6187 			ret = 0;
6188 		return ret;
6189 	}
6190 
6191 	rcu_read_lock();
6192 	rb = rcu_dereference(event->rb);
6193 	if (!rb)
6194 		goto unlock;
6195 
6196 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6197 		goto unlock;
6198 
6199 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6200 	if (!vmf->page)
6201 		goto unlock;
6202 
6203 	get_page(vmf->page);
6204 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6205 	vmf->page->index   = vmf->pgoff;
6206 
6207 	ret = 0;
6208 unlock:
6209 	rcu_read_unlock();
6210 
6211 	return ret;
6212 }
6213 
6214 static void ring_buffer_attach(struct perf_event *event,
6215 			       struct perf_buffer *rb)
6216 {
6217 	struct perf_buffer *old_rb = NULL;
6218 	unsigned long flags;
6219 
6220 	WARN_ON_ONCE(event->parent);
6221 
6222 	if (event->rb) {
6223 		/*
6224 		 * Should be impossible, we set this when removing
6225 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6226 		 */
6227 		WARN_ON_ONCE(event->rcu_pending);
6228 
6229 		old_rb = event->rb;
6230 		spin_lock_irqsave(&old_rb->event_lock, flags);
6231 		list_del_rcu(&event->rb_entry);
6232 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6233 
6234 		event->rcu_batches = get_state_synchronize_rcu();
6235 		event->rcu_pending = 1;
6236 	}
6237 
6238 	if (rb) {
6239 		if (event->rcu_pending) {
6240 			cond_synchronize_rcu(event->rcu_batches);
6241 			event->rcu_pending = 0;
6242 		}
6243 
6244 		spin_lock_irqsave(&rb->event_lock, flags);
6245 		list_add_rcu(&event->rb_entry, &rb->event_list);
6246 		spin_unlock_irqrestore(&rb->event_lock, flags);
6247 	}
6248 
6249 	/*
6250 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6251 	 * before swizzling the event::rb pointer; if it's getting
6252 	 * unmapped, its aux_mmap_count will be 0 and it won't
6253 	 * restart. See the comment in __perf_pmu_output_stop().
6254 	 *
6255 	 * Data will inevitably be lost when set_output is done in
6256 	 * mid-air, but then again, whoever does it like this is
6257 	 * not in for the data anyway.
6258 	 */
6259 	if (has_aux(event))
6260 		perf_event_stop(event, 0);
6261 
6262 	rcu_assign_pointer(event->rb, rb);
6263 
6264 	if (old_rb) {
6265 		ring_buffer_put(old_rb);
6266 		/*
6267 		 * Since we detached before setting the new rb, so that we
6268 		 * could attach the new rb, we could have missed a wakeup.
6269 		 * Provide it now.
6270 		 */
6271 		wake_up_all(&event->waitq);
6272 	}
6273 }
6274 
6275 static void ring_buffer_wakeup(struct perf_event *event)
6276 {
6277 	struct perf_buffer *rb;
6278 
6279 	if (event->parent)
6280 		event = event->parent;
6281 
6282 	rcu_read_lock();
6283 	rb = rcu_dereference(event->rb);
6284 	if (rb) {
6285 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6286 			wake_up_all(&event->waitq);
6287 	}
6288 	rcu_read_unlock();
6289 }
6290 
6291 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6292 {
6293 	struct perf_buffer *rb;
6294 
6295 	if (event->parent)
6296 		event = event->parent;
6297 
6298 	rcu_read_lock();
6299 	rb = rcu_dereference(event->rb);
6300 	if (rb) {
6301 		if (!refcount_inc_not_zero(&rb->refcount))
6302 			rb = NULL;
6303 	}
6304 	rcu_read_unlock();
6305 
6306 	return rb;
6307 }
6308 
6309 void ring_buffer_put(struct perf_buffer *rb)
6310 {
6311 	if (!refcount_dec_and_test(&rb->refcount))
6312 		return;
6313 
6314 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6315 
6316 	call_rcu(&rb->rcu_head, rb_free_rcu);
6317 }
6318 
6319 static void perf_mmap_open(struct vm_area_struct *vma)
6320 {
6321 	struct perf_event *event = vma->vm_file->private_data;
6322 
6323 	atomic_inc(&event->mmap_count);
6324 	atomic_inc(&event->rb->mmap_count);
6325 
6326 	if (vma->vm_pgoff)
6327 		atomic_inc(&event->rb->aux_mmap_count);
6328 
6329 	if (event->pmu->event_mapped)
6330 		event->pmu->event_mapped(event, vma->vm_mm);
6331 }
6332 
6333 static void perf_pmu_output_stop(struct perf_event *event);
6334 
6335 /*
6336  * A buffer can be mmap()ed multiple times; either directly through the same
6337  * event, or through other events by use of perf_event_set_output().
6338  *
6339  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6340  * the buffer here, where we still have a VM context. This means we need
6341  * to detach all events redirecting to us.
6342  */
6343 static void perf_mmap_close(struct vm_area_struct *vma)
6344 {
6345 	struct perf_event *event = vma->vm_file->private_data;
6346 	struct perf_buffer *rb = ring_buffer_get(event);
6347 	struct user_struct *mmap_user = rb->mmap_user;
6348 	int mmap_locked = rb->mmap_locked;
6349 	unsigned long size = perf_data_size(rb);
6350 	bool detach_rest = false;
6351 
6352 	if (event->pmu->event_unmapped)
6353 		event->pmu->event_unmapped(event, vma->vm_mm);
6354 
6355 	/*
6356 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6357 	 * to avoid complications.
6358 	 */
6359 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6360 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6361 		/*
6362 		 * Stop all AUX events that are writing to this buffer,
6363 		 * so that we can free its AUX pages and corresponding PMU
6364 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6365 		 * they won't start any more (see perf_aux_output_begin()).
6366 		 */
6367 		perf_pmu_output_stop(event);
6368 
6369 		/* now it's safe to free the pages */
6370 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6371 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6372 
6373 		/* this has to be the last one */
6374 		rb_free_aux(rb);
6375 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6376 
6377 		mutex_unlock(&rb->aux_mutex);
6378 	}
6379 
6380 	if (atomic_dec_and_test(&rb->mmap_count))
6381 		detach_rest = true;
6382 
6383 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6384 		goto out_put;
6385 
6386 	ring_buffer_attach(event, NULL);
6387 	mutex_unlock(&event->mmap_mutex);
6388 
6389 	/* If there's still other mmap()s of this buffer, we're done. */
6390 	if (!detach_rest)
6391 		goto out_put;
6392 
6393 	/*
6394 	 * No other mmap()s, detach from all other events that might redirect
6395 	 * into the now unreachable buffer. Somewhat complicated by the
6396 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6397 	 */
6398 again:
6399 	rcu_read_lock();
6400 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6401 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6402 			/*
6403 			 * This event is en-route to free_event() which will
6404 			 * detach it and remove it from the list.
6405 			 */
6406 			continue;
6407 		}
6408 		rcu_read_unlock();
6409 
6410 		mutex_lock(&event->mmap_mutex);
6411 		/*
6412 		 * Check we didn't race with perf_event_set_output() which can
6413 		 * swizzle the rb from under us while we were waiting to
6414 		 * acquire mmap_mutex.
6415 		 *
6416 		 * If we find a different rb; ignore this event, a next
6417 		 * iteration will no longer find it on the list. We have to
6418 		 * still restart the iteration to make sure we're not now
6419 		 * iterating the wrong list.
6420 		 */
6421 		if (event->rb == rb)
6422 			ring_buffer_attach(event, NULL);
6423 
6424 		mutex_unlock(&event->mmap_mutex);
6425 		put_event(event);
6426 
6427 		/*
6428 		 * Restart the iteration; either we're on the wrong list or
6429 		 * destroyed its integrity by doing a deletion.
6430 		 */
6431 		goto again;
6432 	}
6433 	rcu_read_unlock();
6434 
6435 	/*
6436 	 * It could be there's still a few 0-ref events on the list; they'll
6437 	 * get cleaned up by free_event() -- they'll also still have their
6438 	 * ref on the rb and will free it whenever they are done with it.
6439 	 *
6440 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6441 	 * undo the VM accounting.
6442 	 */
6443 
6444 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6445 			&mmap_user->locked_vm);
6446 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6447 	free_uid(mmap_user);
6448 
6449 out_put:
6450 	ring_buffer_put(rb); /* could be last */
6451 }
6452 
6453 static const struct vm_operations_struct perf_mmap_vmops = {
6454 	.open		= perf_mmap_open,
6455 	.close		= perf_mmap_close, /* non mergeable */
6456 	.fault		= perf_mmap_fault,
6457 	.page_mkwrite	= perf_mmap_fault,
6458 };
6459 
6460 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6461 {
6462 	struct perf_event *event = file->private_data;
6463 	unsigned long user_locked, user_lock_limit;
6464 	struct user_struct *user = current_user();
6465 	struct mutex *aux_mutex = NULL;
6466 	struct perf_buffer *rb = NULL;
6467 	unsigned long locked, lock_limit;
6468 	unsigned long vma_size;
6469 	unsigned long nr_pages;
6470 	long user_extra = 0, extra = 0;
6471 	int ret = 0, flags = 0;
6472 
6473 	/*
6474 	 * Don't allow mmap() of inherited per-task counters. This would
6475 	 * create a performance issue due to all children writing to the
6476 	 * same rb.
6477 	 */
6478 	if (event->cpu == -1 && event->attr.inherit)
6479 		return -EINVAL;
6480 
6481 	if (!(vma->vm_flags & VM_SHARED))
6482 		return -EINVAL;
6483 
6484 	ret = security_perf_event_read(event);
6485 	if (ret)
6486 		return ret;
6487 
6488 	vma_size = vma->vm_end - vma->vm_start;
6489 
6490 	if (vma->vm_pgoff == 0) {
6491 		nr_pages = (vma_size / PAGE_SIZE) - 1;
6492 	} else {
6493 		/*
6494 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6495 		 * mapped, all subsequent mappings should have the same size
6496 		 * and offset. Must be above the normal perf buffer.
6497 		 */
6498 		u64 aux_offset, aux_size;
6499 
6500 		if (!event->rb)
6501 			return -EINVAL;
6502 
6503 		nr_pages = vma_size / PAGE_SIZE;
6504 		if (nr_pages > INT_MAX)
6505 			return -ENOMEM;
6506 
6507 		mutex_lock(&event->mmap_mutex);
6508 		ret = -EINVAL;
6509 
6510 		rb = event->rb;
6511 		if (!rb)
6512 			goto aux_unlock;
6513 
6514 		aux_mutex = &rb->aux_mutex;
6515 		mutex_lock(aux_mutex);
6516 
6517 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6518 		aux_size = READ_ONCE(rb->user_page->aux_size);
6519 
6520 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6521 			goto aux_unlock;
6522 
6523 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6524 			goto aux_unlock;
6525 
6526 		/* already mapped with a different offset */
6527 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6528 			goto aux_unlock;
6529 
6530 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6531 			goto aux_unlock;
6532 
6533 		/* already mapped with a different size */
6534 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6535 			goto aux_unlock;
6536 
6537 		if (!is_power_of_2(nr_pages))
6538 			goto aux_unlock;
6539 
6540 		if (!atomic_inc_not_zero(&rb->mmap_count))
6541 			goto aux_unlock;
6542 
6543 		if (rb_has_aux(rb)) {
6544 			atomic_inc(&rb->aux_mmap_count);
6545 			ret = 0;
6546 			goto unlock;
6547 		}
6548 
6549 		atomic_set(&rb->aux_mmap_count, 1);
6550 		user_extra = nr_pages;
6551 
6552 		goto accounting;
6553 	}
6554 
6555 	/*
6556 	 * If we have rb pages ensure they're a power-of-two number, so we
6557 	 * can do bitmasks instead of modulo.
6558 	 */
6559 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6560 		return -EINVAL;
6561 
6562 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
6563 		return -EINVAL;
6564 
6565 	WARN_ON_ONCE(event->ctx->parent_ctx);
6566 again:
6567 	mutex_lock(&event->mmap_mutex);
6568 	if (event->rb) {
6569 		if (data_page_nr(event->rb) != nr_pages) {
6570 			ret = -EINVAL;
6571 			goto unlock;
6572 		}
6573 
6574 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6575 			/*
6576 			 * Raced against perf_mmap_close(); remove the
6577 			 * event and try again.
6578 			 */
6579 			ring_buffer_attach(event, NULL);
6580 			mutex_unlock(&event->mmap_mutex);
6581 			goto again;
6582 		}
6583 
6584 		goto unlock;
6585 	}
6586 
6587 	user_extra = nr_pages + 1;
6588 
6589 accounting:
6590 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6591 
6592 	/*
6593 	 * Increase the limit linearly with more CPUs:
6594 	 */
6595 	user_lock_limit *= num_online_cpus();
6596 
6597 	user_locked = atomic_long_read(&user->locked_vm);
6598 
6599 	/*
6600 	 * sysctl_perf_event_mlock may have changed, so that
6601 	 *     user->locked_vm > user_lock_limit
6602 	 */
6603 	if (user_locked > user_lock_limit)
6604 		user_locked = user_lock_limit;
6605 	user_locked += user_extra;
6606 
6607 	if (user_locked > user_lock_limit) {
6608 		/*
6609 		 * charge locked_vm until it hits user_lock_limit;
6610 		 * charge the rest from pinned_vm
6611 		 */
6612 		extra = user_locked - user_lock_limit;
6613 		user_extra -= extra;
6614 	}
6615 
6616 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6617 	lock_limit >>= PAGE_SHIFT;
6618 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6619 
6620 	if ((locked > lock_limit) && perf_is_paranoid() &&
6621 		!capable(CAP_IPC_LOCK)) {
6622 		ret = -EPERM;
6623 		goto unlock;
6624 	}
6625 
6626 	WARN_ON(!rb && event->rb);
6627 
6628 	if (vma->vm_flags & VM_WRITE)
6629 		flags |= RING_BUFFER_WRITABLE;
6630 
6631 	if (!rb) {
6632 		rb = rb_alloc(nr_pages,
6633 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6634 			      event->cpu, flags);
6635 
6636 		if (!rb) {
6637 			ret = -ENOMEM;
6638 			goto unlock;
6639 		}
6640 
6641 		atomic_set(&rb->mmap_count, 1);
6642 		rb->mmap_user = get_current_user();
6643 		rb->mmap_locked = extra;
6644 
6645 		ring_buffer_attach(event, rb);
6646 
6647 		perf_event_update_time(event);
6648 		perf_event_init_userpage(event);
6649 		perf_event_update_userpage(event);
6650 	} else {
6651 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6652 				   event->attr.aux_watermark, flags);
6653 		if (!ret)
6654 			rb->aux_mmap_locked = extra;
6655 	}
6656 
6657 unlock:
6658 	if (!ret) {
6659 		atomic_long_add(user_extra, &user->locked_vm);
6660 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6661 
6662 		atomic_inc(&event->mmap_count);
6663 	} else if (rb) {
6664 		atomic_dec(&rb->mmap_count);
6665 	}
6666 aux_unlock:
6667 	if (aux_mutex)
6668 		mutex_unlock(aux_mutex);
6669 	mutex_unlock(&event->mmap_mutex);
6670 
6671 	/*
6672 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6673 	 * vma.
6674 	 */
6675 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6676 	vma->vm_ops = &perf_mmap_vmops;
6677 
6678 	if (event->pmu->event_mapped)
6679 		event->pmu->event_mapped(event, vma->vm_mm);
6680 
6681 	return ret;
6682 }
6683 
6684 static int perf_fasync(int fd, struct file *filp, int on)
6685 {
6686 	struct inode *inode = file_inode(filp);
6687 	struct perf_event *event = filp->private_data;
6688 	int retval;
6689 
6690 	inode_lock(inode);
6691 	retval = fasync_helper(fd, filp, on, &event->fasync);
6692 	inode_unlock(inode);
6693 
6694 	if (retval < 0)
6695 		return retval;
6696 
6697 	return 0;
6698 }
6699 
6700 static const struct file_operations perf_fops = {
6701 	.llseek			= no_llseek,
6702 	.release		= perf_release,
6703 	.read			= perf_read,
6704 	.poll			= perf_poll,
6705 	.unlocked_ioctl		= perf_ioctl,
6706 	.compat_ioctl		= perf_compat_ioctl,
6707 	.mmap			= perf_mmap,
6708 	.fasync			= perf_fasync,
6709 };
6710 
6711 /*
6712  * Perf event wakeup
6713  *
6714  * If there's data, ensure we set the poll() state and publish everything
6715  * to user-space before waking everybody up.
6716  */
6717 
6718 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6719 {
6720 	/* only the parent has fasync state */
6721 	if (event->parent)
6722 		event = event->parent;
6723 	return &event->fasync;
6724 }
6725 
6726 void perf_event_wakeup(struct perf_event *event)
6727 {
6728 	ring_buffer_wakeup(event);
6729 
6730 	if (event->pending_kill) {
6731 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6732 		event->pending_kill = 0;
6733 	}
6734 }
6735 
6736 static void perf_sigtrap(struct perf_event *event)
6737 {
6738 	/*
6739 	 * We'd expect this to only occur if the irq_work is delayed and either
6740 	 * ctx->task or current has changed in the meantime. This can be the
6741 	 * case on architectures that do not implement arch_irq_work_raise().
6742 	 */
6743 	if (WARN_ON_ONCE(event->ctx->task != current))
6744 		return;
6745 
6746 	/*
6747 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6748 	 * task exiting.
6749 	 */
6750 	if (current->flags & PF_EXITING)
6751 		return;
6752 
6753 	send_sig_perf((void __user *)event->pending_addr,
6754 		      event->orig_type, event->attr.sig_data);
6755 }
6756 
6757 /*
6758  * Deliver the pending work in-event-context or follow the context.
6759  */
6760 static void __perf_pending_irq(struct perf_event *event)
6761 {
6762 	int cpu = READ_ONCE(event->oncpu);
6763 
6764 	/*
6765 	 * If the event isn't running; we done. event_sched_out() will have
6766 	 * taken care of things.
6767 	 */
6768 	if (cpu < 0)
6769 		return;
6770 
6771 	/*
6772 	 * Yay, we hit home and are in the context of the event.
6773 	 */
6774 	if (cpu == smp_processor_id()) {
6775 		if (event->pending_sigtrap) {
6776 			event->pending_sigtrap = 0;
6777 			perf_sigtrap(event);
6778 			local_dec(&event->ctx->nr_pending);
6779 		}
6780 		if (event->pending_disable) {
6781 			event->pending_disable = 0;
6782 			perf_event_disable_local(event);
6783 		}
6784 		return;
6785 	}
6786 
6787 	/*
6788 	 *  CPU-A			CPU-B
6789 	 *
6790 	 *  perf_event_disable_inatomic()
6791 	 *    @pending_disable = CPU-A;
6792 	 *    irq_work_queue();
6793 	 *
6794 	 *  sched-out
6795 	 *    @pending_disable = -1;
6796 	 *
6797 	 *				sched-in
6798 	 *				perf_event_disable_inatomic()
6799 	 *				  @pending_disable = CPU-B;
6800 	 *				  irq_work_queue(); // FAILS
6801 	 *
6802 	 *  irq_work_run()
6803 	 *    perf_pending_irq()
6804 	 *
6805 	 * But the event runs on CPU-B and wants disabling there.
6806 	 */
6807 	irq_work_queue_on(&event->pending_irq, cpu);
6808 }
6809 
6810 static void perf_pending_irq(struct irq_work *entry)
6811 {
6812 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6813 	int rctx;
6814 
6815 	/*
6816 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6817 	 * and we won't recurse 'further'.
6818 	 */
6819 	rctx = perf_swevent_get_recursion_context();
6820 
6821 	/*
6822 	 * The wakeup isn't bound to the context of the event -- it can happen
6823 	 * irrespective of where the event is.
6824 	 */
6825 	if (event->pending_wakeup) {
6826 		event->pending_wakeup = 0;
6827 		perf_event_wakeup(event);
6828 	}
6829 
6830 	__perf_pending_irq(event);
6831 
6832 	if (rctx >= 0)
6833 		perf_swevent_put_recursion_context(rctx);
6834 }
6835 
6836 static void perf_pending_task(struct callback_head *head)
6837 {
6838 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
6839 	int rctx;
6840 
6841 	/*
6842 	 * All accesses to the event must belong to the same implicit RCU read-side
6843 	 * critical section as the ->pending_work reset. See comment in
6844 	 * perf_pending_task_sync().
6845 	 */
6846 	preempt_disable_notrace();
6847 	/*
6848 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6849 	 * and we won't recurse 'further'.
6850 	 */
6851 	rctx = perf_swevent_get_recursion_context();
6852 
6853 	if (event->pending_work) {
6854 		event->pending_work = 0;
6855 		perf_sigtrap(event);
6856 		local_dec(&event->ctx->nr_pending);
6857 		rcuwait_wake_up(&event->pending_work_wait);
6858 	}
6859 
6860 	if (rctx >= 0)
6861 		perf_swevent_put_recursion_context(rctx);
6862 	preempt_enable_notrace();
6863 }
6864 
6865 #ifdef CONFIG_GUEST_PERF_EVENTS
6866 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6867 
6868 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6869 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6870 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6871 
6872 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6873 {
6874 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6875 		return;
6876 
6877 	rcu_assign_pointer(perf_guest_cbs, cbs);
6878 	static_call_update(__perf_guest_state, cbs->state);
6879 	static_call_update(__perf_guest_get_ip, cbs->get_ip);
6880 
6881 	/* Implementing ->handle_intel_pt_intr is optional. */
6882 	if (cbs->handle_intel_pt_intr)
6883 		static_call_update(__perf_guest_handle_intel_pt_intr,
6884 				   cbs->handle_intel_pt_intr);
6885 }
6886 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6887 
6888 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6889 {
6890 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6891 		return;
6892 
6893 	rcu_assign_pointer(perf_guest_cbs, NULL);
6894 	static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6895 	static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6896 	static_call_update(__perf_guest_handle_intel_pt_intr,
6897 			   (void *)&__static_call_return0);
6898 	synchronize_rcu();
6899 }
6900 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6901 #endif
6902 
6903 static void
6904 perf_output_sample_regs(struct perf_output_handle *handle,
6905 			struct pt_regs *regs, u64 mask)
6906 {
6907 	int bit;
6908 	DECLARE_BITMAP(_mask, 64);
6909 
6910 	bitmap_from_u64(_mask, mask);
6911 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6912 		u64 val;
6913 
6914 		val = perf_reg_value(regs, bit);
6915 		perf_output_put(handle, val);
6916 	}
6917 }
6918 
6919 static void perf_sample_regs_user(struct perf_regs *regs_user,
6920 				  struct pt_regs *regs)
6921 {
6922 	if (user_mode(regs)) {
6923 		regs_user->abi = perf_reg_abi(current);
6924 		regs_user->regs = regs;
6925 	} else if (!(current->flags & PF_KTHREAD)) {
6926 		perf_get_regs_user(regs_user, regs);
6927 	} else {
6928 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6929 		regs_user->regs = NULL;
6930 	}
6931 }
6932 
6933 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6934 				  struct pt_regs *regs)
6935 {
6936 	regs_intr->regs = regs;
6937 	regs_intr->abi  = perf_reg_abi(current);
6938 }
6939 
6940 
6941 /*
6942  * Get remaining task size from user stack pointer.
6943  *
6944  * It'd be better to take stack vma map and limit this more
6945  * precisely, but there's no way to get it safely under interrupt,
6946  * so using TASK_SIZE as limit.
6947  */
6948 static u64 perf_ustack_task_size(struct pt_regs *regs)
6949 {
6950 	unsigned long addr = perf_user_stack_pointer(regs);
6951 
6952 	if (!addr || addr >= TASK_SIZE)
6953 		return 0;
6954 
6955 	return TASK_SIZE - addr;
6956 }
6957 
6958 static u16
6959 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6960 			struct pt_regs *regs)
6961 {
6962 	u64 task_size;
6963 
6964 	/* No regs, no stack pointer, no dump. */
6965 	if (!regs)
6966 		return 0;
6967 
6968 	/*
6969 	 * Check if we fit in with the requested stack size into the:
6970 	 * - TASK_SIZE
6971 	 *   If we don't, we limit the size to the TASK_SIZE.
6972 	 *
6973 	 * - remaining sample size
6974 	 *   If we don't, we customize the stack size to
6975 	 *   fit in to the remaining sample size.
6976 	 */
6977 
6978 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6979 	stack_size = min(stack_size, (u16) task_size);
6980 
6981 	/* Current header size plus static size and dynamic size. */
6982 	header_size += 2 * sizeof(u64);
6983 
6984 	/* Do we fit in with the current stack dump size? */
6985 	if ((u16) (header_size + stack_size) < header_size) {
6986 		/*
6987 		 * If we overflow the maximum size for the sample,
6988 		 * we customize the stack dump size to fit in.
6989 		 */
6990 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6991 		stack_size = round_up(stack_size, sizeof(u64));
6992 	}
6993 
6994 	return stack_size;
6995 }
6996 
6997 static void
6998 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6999 			  struct pt_regs *regs)
7000 {
7001 	/* Case of a kernel thread, nothing to dump */
7002 	if (!regs) {
7003 		u64 size = 0;
7004 		perf_output_put(handle, size);
7005 	} else {
7006 		unsigned long sp;
7007 		unsigned int rem;
7008 		u64 dyn_size;
7009 
7010 		/*
7011 		 * We dump:
7012 		 * static size
7013 		 *   - the size requested by user or the best one we can fit
7014 		 *     in to the sample max size
7015 		 * data
7016 		 *   - user stack dump data
7017 		 * dynamic size
7018 		 *   - the actual dumped size
7019 		 */
7020 
7021 		/* Static size. */
7022 		perf_output_put(handle, dump_size);
7023 
7024 		/* Data. */
7025 		sp = perf_user_stack_pointer(regs);
7026 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7027 		dyn_size = dump_size - rem;
7028 
7029 		perf_output_skip(handle, rem);
7030 
7031 		/* Dynamic size. */
7032 		perf_output_put(handle, dyn_size);
7033 	}
7034 }
7035 
7036 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7037 					  struct perf_sample_data *data,
7038 					  size_t size)
7039 {
7040 	struct perf_event *sampler = event->aux_event;
7041 	struct perf_buffer *rb;
7042 
7043 	data->aux_size = 0;
7044 
7045 	if (!sampler)
7046 		goto out;
7047 
7048 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7049 		goto out;
7050 
7051 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7052 		goto out;
7053 
7054 	rb = ring_buffer_get(sampler);
7055 	if (!rb)
7056 		goto out;
7057 
7058 	/*
7059 	 * If this is an NMI hit inside sampling code, don't take
7060 	 * the sample. See also perf_aux_sample_output().
7061 	 */
7062 	if (READ_ONCE(rb->aux_in_sampling)) {
7063 		data->aux_size = 0;
7064 	} else {
7065 		size = min_t(size_t, size, perf_aux_size(rb));
7066 		data->aux_size = ALIGN(size, sizeof(u64));
7067 	}
7068 	ring_buffer_put(rb);
7069 
7070 out:
7071 	return data->aux_size;
7072 }
7073 
7074 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7075                                  struct perf_event *event,
7076                                  struct perf_output_handle *handle,
7077                                  unsigned long size)
7078 {
7079 	unsigned long flags;
7080 	long ret;
7081 
7082 	/*
7083 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7084 	 * paths. If we start calling them in NMI context, they may race with
7085 	 * the IRQ ones, that is, for example, re-starting an event that's just
7086 	 * been stopped, which is why we're using a separate callback that
7087 	 * doesn't change the event state.
7088 	 *
7089 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7090 	 */
7091 	local_irq_save(flags);
7092 	/*
7093 	 * Guard against NMI hits inside the critical section;
7094 	 * see also perf_prepare_sample_aux().
7095 	 */
7096 	WRITE_ONCE(rb->aux_in_sampling, 1);
7097 	barrier();
7098 
7099 	ret = event->pmu->snapshot_aux(event, handle, size);
7100 
7101 	barrier();
7102 	WRITE_ONCE(rb->aux_in_sampling, 0);
7103 	local_irq_restore(flags);
7104 
7105 	return ret;
7106 }
7107 
7108 static void perf_aux_sample_output(struct perf_event *event,
7109 				   struct perf_output_handle *handle,
7110 				   struct perf_sample_data *data)
7111 {
7112 	struct perf_event *sampler = event->aux_event;
7113 	struct perf_buffer *rb;
7114 	unsigned long pad;
7115 	long size;
7116 
7117 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7118 		return;
7119 
7120 	rb = ring_buffer_get(sampler);
7121 	if (!rb)
7122 		return;
7123 
7124 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7125 
7126 	/*
7127 	 * An error here means that perf_output_copy() failed (returned a
7128 	 * non-zero surplus that it didn't copy), which in its current
7129 	 * enlightened implementation is not possible. If that changes, we'd
7130 	 * like to know.
7131 	 */
7132 	if (WARN_ON_ONCE(size < 0))
7133 		goto out_put;
7134 
7135 	/*
7136 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7137 	 * perf_prepare_sample_aux(), so should not be more than that.
7138 	 */
7139 	pad = data->aux_size - size;
7140 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7141 		pad = 8;
7142 
7143 	if (pad) {
7144 		u64 zero = 0;
7145 		perf_output_copy(handle, &zero, pad);
7146 	}
7147 
7148 out_put:
7149 	ring_buffer_put(rb);
7150 }
7151 
7152 /*
7153  * A set of common sample data types saved even for non-sample records
7154  * when event->attr.sample_id_all is set.
7155  */
7156 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7157 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7158 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7159 
7160 static void __perf_event_header__init_id(struct perf_sample_data *data,
7161 					 struct perf_event *event,
7162 					 u64 sample_type)
7163 {
7164 	data->type = event->attr.sample_type;
7165 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7166 
7167 	if (sample_type & PERF_SAMPLE_TID) {
7168 		/* namespace issues */
7169 		data->tid_entry.pid = perf_event_pid(event, current);
7170 		data->tid_entry.tid = perf_event_tid(event, current);
7171 	}
7172 
7173 	if (sample_type & PERF_SAMPLE_TIME)
7174 		data->time = perf_event_clock(event);
7175 
7176 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7177 		data->id = primary_event_id(event);
7178 
7179 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7180 		data->stream_id = event->id;
7181 
7182 	if (sample_type & PERF_SAMPLE_CPU) {
7183 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7184 		data->cpu_entry.reserved = 0;
7185 	}
7186 }
7187 
7188 void perf_event_header__init_id(struct perf_event_header *header,
7189 				struct perf_sample_data *data,
7190 				struct perf_event *event)
7191 {
7192 	if (event->attr.sample_id_all) {
7193 		header->size += event->id_header_size;
7194 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7195 	}
7196 }
7197 
7198 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7199 					   struct perf_sample_data *data)
7200 {
7201 	u64 sample_type = data->type;
7202 
7203 	if (sample_type & PERF_SAMPLE_TID)
7204 		perf_output_put(handle, data->tid_entry);
7205 
7206 	if (sample_type & PERF_SAMPLE_TIME)
7207 		perf_output_put(handle, data->time);
7208 
7209 	if (sample_type & PERF_SAMPLE_ID)
7210 		perf_output_put(handle, data->id);
7211 
7212 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7213 		perf_output_put(handle, data->stream_id);
7214 
7215 	if (sample_type & PERF_SAMPLE_CPU)
7216 		perf_output_put(handle, data->cpu_entry);
7217 
7218 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7219 		perf_output_put(handle, data->id);
7220 }
7221 
7222 void perf_event__output_id_sample(struct perf_event *event,
7223 				  struct perf_output_handle *handle,
7224 				  struct perf_sample_data *sample)
7225 {
7226 	if (event->attr.sample_id_all)
7227 		__perf_event__output_id_sample(handle, sample);
7228 }
7229 
7230 static void perf_output_read_one(struct perf_output_handle *handle,
7231 				 struct perf_event *event,
7232 				 u64 enabled, u64 running)
7233 {
7234 	u64 read_format = event->attr.read_format;
7235 	u64 values[5];
7236 	int n = 0;
7237 
7238 	values[n++] = perf_event_count(event);
7239 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7240 		values[n++] = enabled +
7241 			atomic64_read(&event->child_total_time_enabled);
7242 	}
7243 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7244 		values[n++] = running +
7245 			atomic64_read(&event->child_total_time_running);
7246 	}
7247 	if (read_format & PERF_FORMAT_ID)
7248 		values[n++] = primary_event_id(event);
7249 	if (read_format & PERF_FORMAT_LOST)
7250 		values[n++] = atomic64_read(&event->lost_samples);
7251 
7252 	__output_copy(handle, values, n * sizeof(u64));
7253 }
7254 
7255 static void perf_output_read_group(struct perf_output_handle *handle,
7256 			    struct perf_event *event,
7257 			    u64 enabled, u64 running)
7258 {
7259 	struct perf_event *leader = event->group_leader, *sub;
7260 	u64 read_format = event->attr.read_format;
7261 	unsigned long flags;
7262 	u64 values[6];
7263 	int n = 0;
7264 
7265 	/*
7266 	 * Disabling interrupts avoids all counter scheduling
7267 	 * (context switches, timer based rotation and IPIs).
7268 	 */
7269 	local_irq_save(flags);
7270 
7271 	values[n++] = 1 + leader->nr_siblings;
7272 
7273 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7274 		values[n++] = enabled;
7275 
7276 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7277 		values[n++] = running;
7278 
7279 	if ((leader != event) &&
7280 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7281 		leader->pmu->read(leader);
7282 
7283 	values[n++] = perf_event_count(leader);
7284 	if (read_format & PERF_FORMAT_ID)
7285 		values[n++] = primary_event_id(leader);
7286 	if (read_format & PERF_FORMAT_LOST)
7287 		values[n++] = atomic64_read(&leader->lost_samples);
7288 
7289 	__output_copy(handle, values, n * sizeof(u64));
7290 
7291 	for_each_sibling_event(sub, leader) {
7292 		n = 0;
7293 
7294 		if ((sub != event) &&
7295 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7296 			sub->pmu->read(sub);
7297 
7298 		values[n++] = perf_event_count(sub);
7299 		if (read_format & PERF_FORMAT_ID)
7300 			values[n++] = primary_event_id(sub);
7301 		if (read_format & PERF_FORMAT_LOST)
7302 			values[n++] = atomic64_read(&sub->lost_samples);
7303 
7304 		__output_copy(handle, values, n * sizeof(u64));
7305 	}
7306 
7307 	local_irq_restore(flags);
7308 }
7309 
7310 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7311 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7312 
7313 /*
7314  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7315  *
7316  * The problem is that its both hard and excessively expensive to iterate the
7317  * child list, not to mention that its impossible to IPI the children running
7318  * on another CPU, from interrupt/NMI context.
7319  */
7320 static void perf_output_read(struct perf_output_handle *handle,
7321 			     struct perf_event *event)
7322 {
7323 	u64 enabled = 0, running = 0, now;
7324 	u64 read_format = event->attr.read_format;
7325 
7326 	/*
7327 	 * compute total_time_enabled, total_time_running
7328 	 * based on snapshot values taken when the event
7329 	 * was last scheduled in.
7330 	 *
7331 	 * we cannot simply called update_context_time()
7332 	 * because of locking issue as we are called in
7333 	 * NMI context
7334 	 */
7335 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7336 		calc_timer_values(event, &now, &enabled, &running);
7337 
7338 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7339 		perf_output_read_group(handle, event, enabled, running);
7340 	else
7341 		perf_output_read_one(handle, event, enabled, running);
7342 }
7343 
7344 void perf_output_sample(struct perf_output_handle *handle,
7345 			struct perf_event_header *header,
7346 			struct perf_sample_data *data,
7347 			struct perf_event *event)
7348 {
7349 	u64 sample_type = data->type;
7350 
7351 	perf_output_put(handle, *header);
7352 
7353 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7354 		perf_output_put(handle, data->id);
7355 
7356 	if (sample_type & PERF_SAMPLE_IP)
7357 		perf_output_put(handle, data->ip);
7358 
7359 	if (sample_type & PERF_SAMPLE_TID)
7360 		perf_output_put(handle, data->tid_entry);
7361 
7362 	if (sample_type & PERF_SAMPLE_TIME)
7363 		perf_output_put(handle, data->time);
7364 
7365 	if (sample_type & PERF_SAMPLE_ADDR)
7366 		perf_output_put(handle, data->addr);
7367 
7368 	if (sample_type & PERF_SAMPLE_ID)
7369 		perf_output_put(handle, data->id);
7370 
7371 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7372 		perf_output_put(handle, data->stream_id);
7373 
7374 	if (sample_type & PERF_SAMPLE_CPU)
7375 		perf_output_put(handle, data->cpu_entry);
7376 
7377 	if (sample_type & PERF_SAMPLE_PERIOD)
7378 		perf_output_put(handle, data->period);
7379 
7380 	if (sample_type & PERF_SAMPLE_READ)
7381 		perf_output_read(handle, event);
7382 
7383 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7384 		int size = 1;
7385 
7386 		size += data->callchain->nr;
7387 		size *= sizeof(u64);
7388 		__output_copy(handle, data->callchain, size);
7389 	}
7390 
7391 	if (sample_type & PERF_SAMPLE_RAW) {
7392 		struct perf_raw_record *raw = data->raw;
7393 
7394 		if (raw) {
7395 			struct perf_raw_frag *frag = &raw->frag;
7396 
7397 			perf_output_put(handle, raw->size);
7398 			do {
7399 				if (frag->copy) {
7400 					__output_custom(handle, frag->copy,
7401 							frag->data, frag->size);
7402 				} else {
7403 					__output_copy(handle, frag->data,
7404 						      frag->size);
7405 				}
7406 				if (perf_raw_frag_last(frag))
7407 					break;
7408 				frag = frag->next;
7409 			} while (1);
7410 			if (frag->pad)
7411 				__output_skip(handle, NULL, frag->pad);
7412 		} else {
7413 			struct {
7414 				u32	size;
7415 				u32	data;
7416 			} raw = {
7417 				.size = sizeof(u32),
7418 				.data = 0,
7419 			};
7420 			perf_output_put(handle, raw);
7421 		}
7422 	}
7423 
7424 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7425 		if (data->br_stack) {
7426 			size_t size;
7427 
7428 			size = data->br_stack->nr
7429 			     * sizeof(struct perf_branch_entry);
7430 
7431 			perf_output_put(handle, data->br_stack->nr);
7432 			if (branch_sample_hw_index(event))
7433 				perf_output_put(handle, data->br_stack->hw_idx);
7434 			perf_output_copy(handle, data->br_stack->entries, size);
7435 		} else {
7436 			/*
7437 			 * we always store at least the value of nr
7438 			 */
7439 			u64 nr = 0;
7440 			perf_output_put(handle, nr);
7441 		}
7442 	}
7443 
7444 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7445 		u64 abi = data->regs_user.abi;
7446 
7447 		/*
7448 		 * If there are no regs to dump, notice it through
7449 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7450 		 */
7451 		perf_output_put(handle, abi);
7452 
7453 		if (abi) {
7454 			u64 mask = event->attr.sample_regs_user;
7455 			perf_output_sample_regs(handle,
7456 						data->regs_user.regs,
7457 						mask);
7458 		}
7459 	}
7460 
7461 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7462 		perf_output_sample_ustack(handle,
7463 					  data->stack_user_size,
7464 					  data->regs_user.regs);
7465 	}
7466 
7467 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7468 		perf_output_put(handle, data->weight.full);
7469 
7470 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7471 		perf_output_put(handle, data->data_src.val);
7472 
7473 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7474 		perf_output_put(handle, data->txn);
7475 
7476 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7477 		u64 abi = data->regs_intr.abi;
7478 		/*
7479 		 * If there are no regs to dump, notice it through
7480 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7481 		 */
7482 		perf_output_put(handle, abi);
7483 
7484 		if (abi) {
7485 			u64 mask = event->attr.sample_regs_intr;
7486 
7487 			perf_output_sample_regs(handle,
7488 						data->regs_intr.regs,
7489 						mask);
7490 		}
7491 	}
7492 
7493 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7494 		perf_output_put(handle, data->phys_addr);
7495 
7496 	if (sample_type & PERF_SAMPLE_CGROUP)
7497 		perf_output_put(handle, data->cgroup);
7498 
7499 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7500 		perf_output_put(handle, data->data_page_size);
7501 
7502 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7503 		perf_output_put(handle, data->code_page_size);
7504 
7505 	if (sample_type & PERF_SAMPLE_AUX) {
7506 		perf_output_put(handle, data->aux_size);
7507 
7508 		if (data->aux_size)
7509 			perf_aux_sample_output(event, handle, data);
7510 	}
7511 
7512 	if (!event->attr.watermark) {
7513 		int wakeup_events = event->attr.wakeup_events;
7514 
7515 		if (wakeup_events) {
7516 			struct perf_buffer *rb = handle->rb;
7517 			int events = local_inc_return(&rb->events);
7518 
7519 			if (events >= wakeup_events) {
7520 				local_sub(wakeup_events, &rb->events);
7521 				local_inc(&rb->wakeup);
7522 			}
7523 		}
7524 	}
7525 }
7526 
7527 static u64 perf_virt_to_phys(u64 virt)
7528 {
7529 	u64 phys_addr = 0;
7530 
7531 	if (!virt)
7532 		return 0;
7533 
7534 	if (virt >= TASK_SIZE) {
7535 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7536 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7537 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7538 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7539 	} else {
7540 		/*
7541 		 * Walking the pages tables for user address.
7542 		 * Interrupts are disabled, so it prevents any tear down
7543 		 * of the page tables.
7544 		 * Try IRQ-safe get_user_page_fast_only first.
7545 		 * If failed, leave phys_addr as 0.
7546 		 */
7547 		if (current->mm != NULL) {
7548 			struct page *p;
7549 
7550 			pagefault_disable();
7551 			if (get_user_page_fast_only(virt, 0, &p)) {
7552 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7553 				put_page(p);
7554 			}
7555 			pagefault_enable();
7556 		}
7557 	}
7558 
7559 	return phys_addr;
7560 }
7561 
7562 /*
7563  * Return the pagetable size of a given virtual address.
7564  */
7565 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7566 {
7567 	u64 size = 0;
7568 
7569 #ifdef CONFIG_HAVE_FAST_GUP
7570 	pgd_t *pgdp, pgd;
7571 	p4d_t *p4dp, p4d;
7572 	pud_t *pudp, pud;
7573 	pmd_t *pmdp, pmd;
7574 	pte_t *ptep, pte;
7575 
7576 	pgdp = pgd_offset(mm, addr);
7577 	pgd = READ_ONCE(*pgdp);
7578 	if (pgd_none(pgd))
7579 		return 0;
7580 
7581 	if (pgd_leaf(pgd))
7582 		return pgd_leaf_size(pgd);
7583 
7584 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7585 	p4d = READ_ONCE(*p4dp);
7586 	if (!p4d_present(p4d))
7587 		return 0;
7588 
7589 	if (p4d_leaf(p4d))
7590 		return p4d_leaf_size(p4d);
7591 
7592 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7593 	pud = READ_ONCE(*pudp);
7594 	if (!pud_present(pud))
7595 		return 0;
7596 
7597 	if (pud_leaf(pud))
7598 		return pud_leaf_size(pud);
7599 
7600 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7601 again:
7602 	pmd = pmdp_get_lockless(pmdp);
7603 	if (!pmd_present(pmd))
7604 		return 0;
7605 
7606 	if (pmd_leaf(pmd))
7607 		return pmd_leaf_size(pmd);
7608 
7609 	ptep = pte_offset_map(&pmd, addr);
7610 	if (!ptep)
7611 		goto again;
7612 
7613 	pte = ptep_get_lockless(ptep);
7614 	if (pte_present(pte))
7615 		size = pte_leaf_size(pte);
7616 	pte_unmap(ptep);
7617 #endif /* CONFIG_HAVE_FAST_GUP */
7618 
7619 	return size;
7620 }
7621 
7622 static u64 perf_get_page_size(unsigned long addr)
7623 {
7624 	struct mm_struct *mm;
7625 	unsigned long flags;
7626 	u64 size;
7627 
7628 	if (!addr)
7629 		return 0;
7630 
7631 	/*
7632 	 * Software page-table walkers must disable IRQs,
7633 	 * which prevents any tear down of the page tables.
7634 	 */
7635 	local_irq_save(flags);
7636 
7637 	mm = current->mm;
7638 	if (!mm) {
7639 		/*
7640 		 * For kernel threads and the like, use init_mm so that
7641 		 * we can find kernel memory.
7642 		 */
7643 		mm = &init_mm;
7644 	}
7645 
7646 	size = perf_get_pgtable_size(mm, addr);
7647 
7648 	local_irq_restore(flags);
7649 
7650 	return size;
7651 }
7652 
7653 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7654 
7655 struct perf_callchain_entry *
7656 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7657 {
7658 	bool kernel = !event->attr.exclude_callchain_kernel;
7659 	bool user   = !event->attr.exclude_callchain_user;
7660 	/* Disallow cross-task user callchains. */
7661 	bool crosstask = event->ctx->task && event->ctx->task != current;
7662 	const u32 max_stack = event->attr.sample_max_stack;
7663 	struct perf_callchain_entry *callchain;
7664 
7665 	if (!kernel && !user)
7666 		return &__empty_callchain;
7667 
7668 	callchain = get_perf_callchain(regs, 0, kernel, user,
7669 				       max_stack, crosstask, true);
7670 	return callchain ?: &__empty_callchain;
7671 }
7672 
7673 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7674 {
7675 	return d * !!(flags & s);
7676 }
7677 
7678 void perf_prepare_sample(struct perf_sample_data *data,
7679 			 struct perf_event *event,
7680 			 struct pt_regs *regs)
7681 {
7682 	u64 sample_type = event->attr.sample_type;
7683 	u64 filtered_sample_type;
7684 
7685 	/*
7686 	 * Add the sample flags that are dependent to others.  And clear the
7687 	 * sample flags that have already been done by the PMU driver.
7688 	 */
7689 	filtered_sample_type = sample_type;
7690 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7691 					   PERF_SAMPLE_IP);
7692 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7693 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7694 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7695 					   PERF_SAMPLE_REGS_USER);
7696 	filtered_sample_type &= ~data->sample_flags;
7697 
7698 	if (filtered_sample_type == 0) {
7699 		/* Make sure it has the correct data->type for output */
7700 		data->type = event->attr.sample_type;
7701 		return;
7702 	}
7703 
7704 	__perf_event_header__init_id(data, event, filtered_sample_type);
7705 
7706 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7707 		data->ip = perf_instruction_pointer(regs);
7708 		data->sample_flags |= PERF_SAMPLE_IP;
7709 	}
7710 
7711 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7712 		perf_sample_save_callchain(data, event, regs);
7713 
7714 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7715 		data->raw = NULL;
7716 		data->dyn_size += sizeof(u64);
7717 		data->sample_flags |= PERF_SAMPLE_RAW;
7718 	}
7719 
7720 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7721 		data->br_stack = NULL;
7722 		data->dyn_size += sizeof(u64);
7723 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7724 	}
7725 
7726 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7727 		perf_sample_regs_user(&data->regs_user, regs);
7728 
7729 	/*
7730 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7731 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7732 	 * the dyn_size if it's not requested by users.
7733 	 */
7734 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7735 		/* regs dump ABI info */
7736 		int size = sizeof(u64);
7737 
7738 		if (data->regs_user.regs) {
7739 			u64 mask = event->attr.sample_regs_user;
7740 			size += hweight64(mask) * sizeof(u64);
7741 		}
7742 
7743 		data->dyn_size += size;
7744 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7745 	}
7746 
7747 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7748 		/*
7749 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7750 		 * processed as the last one or have additional check added
7751 		 * in case new sample type is added, because we could eat
7752 		 * up the rest of the sample size.
7753 		 */
7754 		u16 stack_size = event->attr.sample_stack_user;
7755 		u16 header_size = perf_sample_data_size(data, event);
7756 		u16 size = sizeof(u64);
7757 
7758 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7759 						     data->regs_user.regs);
7760 
7761 		/*
7762 		 * If there is something to dump, add space for the dump
7763 		 * itself and for the field that tells the dynamic size,
7764 		 * which is how many have been actually dumped.
7765 		 */
7766 		if (stack_size)
7767 			size += sizeof(u64) + stack_size;
7768 
7769 		data->stack_user_size = stack_size;
7770 		data->dyn_size += size;
7771 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7772 	}
7773 
7774 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7775 		data->weight.full = 0;
7776 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7777 	}
7778 
7779 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7780 		data->data_src.val = PERF_MEM_NA;
7781 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7782 	}
7783 
7784 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7785 		data->txn = 0;
7786 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7787 	}
7788 
7789 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7790 		data->addr = 0;
7791 		data->sample_flags |= PERF_SAMPLE_ADDR;
7792 	}
7793 
7794 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7795 		/* regs dump ABI info */
7796 		int size = sizeof(u64);
7797 
7798 		perf_sample_regs_intr(&data->regs_intr, regs);
7799 
7800 		if (data->regs_intr.regs) {
7801 			u64 mask = event->attr.sample_regs_intr;
7802 
7803 			size += hweight64(mask) * sizeof(u64);
7804 		}
7805 
7806 		data->dyn_size += size;
7807 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7808 	}
7809 
7810 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7811 		data->phys_addr = perf_virt_to_phys(data->addr);
7812 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7813 	}
7814 
7815 #ifdef CONFIG_CGROUP_PERF
7816 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7817 		struct cgroup *cgrp;
7818 
7819 		/* protected by RCU */
7820 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7821 		data->cgroup = cgroup_id(cgrp);
7822 		data->sample_flags |= PERF_SAMPLE_CGROUP;
7823 	}
7824 #endif
7825 
7826 	/*
7827 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7828 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7829 	 * but the value will not dump to the userspace.
7830 	 */
7831 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7832 		data->data_page_size = perf_get_page_size(data->addr);
7833 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7834 	}
7835 
7836 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7837 		data->code_page_size = perf_get_page_size(data->ip);
7838 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7839 	}
7840 
7841 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
7842 		u64 size;
7843 		u16 header_size = perf_sample_data_size(data, event);
7844 
7845 		header_size += sizeof(u64); /* size */
7846 
7847 		/*
7848 		 * Given the 16bit nature of header::size, an AUX sample can
7849 		 * easily overflow it, what with all the preceding sample bits.
7850 		 * Make sure this doesn't happen by using up to U16_MAX bytes
7851 		 * per sample in total (rounded down to 8 byte boundary).
7852 		 */
7853 		size = min_t(size_t, U16_MAX - header_size,
7854 			     event->attr.aux_sample_size);
7855 		size = rounddown(size, 8);
7856 		size = perf_prepare_sample_aux(event, data, size);
7857 
7858 		WARN_ON_ONCE(size + header_size > U16_MAX);
7859 		data->dyn_size += size + sizeof(u64); /* size above */
7860 		data->sample_flags |= PERF_SAMPLE_AUX;
7861 	}
7862 }
7863 
7864 void perf_prepare_header(struct perf_event_header *header,
7865 			 struct perf_sample_data *data,
7866 			 struct perf_event *event,
7867 			 struct pt_regs *regs)
7868 {
7869 	header->type = PERF_RECORD_SAMPLE;
7870 	header->size = perf_sample_data_size(data, event);
7871 	header->misc = perf_misc_flags(regs);
7872 
7873 	/*
7874 	 * If you're adding more sample types here, you likely need to do
7875 	 * something about the overflowing header::size, like repurpose the
7876 	 * lowest 3 bits of size, which should be always zero at the moment.
7877 	 * This raises a more important question, do we really need 512k sized
7878 	 * samples and why, so good argumentation is in order for whatever you
7879 	 * do here next.
7880 	 */
7881 	WARN_ON_ONCE(header->size & 7);
7882 }
7883 
7884 static __always_inline int
7885 __perf_event_output(struct perf_event *event,
7886 		    struct perf_sample_data *data,
7887 		    struct pt_regs *regs,
7888 		    int (*output_begin)(struct perf_output_handle *,
7889 					struct perf_sample_data *,
7890 					struct perf_event *,
7891 					unsigned int))
7892 {
7893 	struct perf_output_handle handle;
7894 	struct perf_event_header header;
7895 	int err;
7896 
7897 	/* protect the callchain buffers */
7898 	rcu_read_lock();
7899 
7900 	perf_prepare_sample(data, event, regs);
7901 	perf_prepare_header(&header, data, event, regs);
7902 
7903 	err = output_begin(&handle, data, event, header.size);
7904 	if (err)
7905 		goto exit;
7906 
7907 	perf_output_sample(&handle, &header, data, event);
7908 
7909 	perf_output_end(&handle);
7910 
7911 exit:
7912 	rcu_read_unlock();
7913 	return err;
7914 }
7915 
7916 void
7917 perf_event_output_forward(struct perf_event *event,
7918 			 struct perf_sample_data *data,
7919 			 struct pt_regs *regs)
7920 {
7921 	__perf_event_output(event, data, regs, perf_output_begin_forward);
7922 }
7923 
7924 void
7925 perf_event_output_backward(struct perf_event *event,
7926 			   struct perf_sample_data *data,
7927 			   struct pt_regs *regs)
7928 {
7929 	__perf_event_output(event, data, regs, perf_output_begin_backward);
7930 }
7931 
7932 int
7933 perf_event_output(struct perf_event *event,
7934 		  struct perf_sample_data *data,
7935 		  struct pt_regs *regs)
7936 {
7937 	return __perf_event_output(event, data, regs, perf_output_begin);
7938 }
7939 
7940 /*
7941  * read event_id
7942  */
7943 
7944 struct perf_read_event {
7945 	struct perf_event_header	header;
7946 
7947 	u32				pid;
7948 	u32				tid;
7949 };
7950 
7951 static void
7952 perf_event_read_event(struct perf_event *event,
7953 			struct task_struct *task)
7954 {
7955 	struct perf_output_handle handle;
7956 	struct perf_sample_data sample;
7957 	struct perf_read_event read_event = {
7958 		.header = {
7959 			.type = PERF_RECORD_READ,
7960 			.misc = 0,
7961 			.size = sizeof(read_event) + event->read_size,
7962 		},
7963 		.pid = perf_event_pid(event, task),
7964 		.tid = perf_event_tid(event, task),
7965 	};
7966 	int ret;
7967 
7968 	perf_event_header__init_id(&read_event.header, &sample, event);
7969 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7970 	if (ret)
7971 		return;
7972 
7973 	perf_output_put(&handle, read_event);
7974 	perf_output_read(&handle, event);
7975 	perf_event__output_id_sample(event, &handle, &sample);
7976 
7977 	perf_output_end(&handle);
7978 }
7979 
7980 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7981 
7982 static void
7983 perf_iterate_ctx(struct perf_event_context *ctx,
7984 		   perf_iterate_f output,
7985 		   void *data, bool all)
7986 {
7987 	struct perf_event *event;
7988 
7989 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7990 		if (!all) {
7991 			if (event->state < PERF_EVENT_STATE_INACTIVE)
7992 				continue;
7993 			if (!event_filter_match(event))
7994 				continue;
7995 		}
7996 
7997 		output(event, data);
7998 	}
7999 }
8000 
8001 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8002 {
8003 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8004 	struct perf_event *event;
8005 
8006 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8007 		/*
8008 		 * Skip events that are not fully formed yet; ensure that
8009 		 * if we observe event->ctx, both event and ctx will be
8010 		 * complete enough. See perf_install_in_context().
8011 		 */
8012 		if (!smp_load_acquire(&event->ctx))
8013 			continue;
8014 
8015 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8016 			continue;
8017 		if (!event_filter_match(event))
8018 			continue;
8019 		output(event, data);
8020 	}
8021 }
8022 
8023 /*
8024  * Iterate all events that need to receive side-band events.
8025  *
8026  * For new callers; ensure that account_pmu_sb_event() includes
8027  * your event, otherwise it might not get delivered.
8028  */
8029 static void
8030 perf_iterate_sb(perf_iterate_f output, void *data,
8031 	       struct perf_event_context *task_ctx)
8032 {
8033 	struct perf_event_context *ctx;
8034 
8035 	rcu_read_lock();
8036 	preempt_disable();
8037 
8038 	/*
8039 	 * If we have task_ctx != NULL we only notify the task context itself.
8040 	 * The task_ctx is set only for EXIT events before releasing task
8041 	 * context.
8042 	 */
8043 	if (task_ctx) {
8044 		perf_iterate_ctx(task_ctx, output, data, false);
8045 		goto done;
8046 	}
8047 
8048 	perf_iterate_sb_cpu(output, data);
8049 
8050 	ctx = rcu_dereference(current->perf_event_ctxp);
8051 	if (ctx)
8052 		perf_iterate_ctx(ctx, output, data, false);
8053 done:
8054 	preempt_enable();
8055 	rcu_read_unlock();
8056 }
8057 
8058 /*
8059  * Clear all file-based filters at exec, they'll have to be
8060  * re-instated when/if these objects are mmapped again.
8061  */
8062 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8063 {
8064 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8065 	struct perf_addr_filter *filter;
8066 	unsigned int restart = 0, count = 0;
8067 	unsigned long flags;
8068 
8069 	if (!has_addr_filter(event))
8070 		return;
8071 
8072 	raw_spin_lock_irqsave(&ifh->lock, flags);
8073 	list_for_each_entry(filter, &ifh->list, entry) {
8074 		if (filter->path.dentry) {
8075 			event->addr_filter_ranges[count].start = 0;
8076 			event->addr_filter_ranges[count].size = 0;
8077 			restart++;
8078 		}
8079 
8080 		count++;
8081 	}
8082 
8083 	if (restart)
8084 		event->addr_filters_gen++;
8085 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8086 
8087 	if (restart)
8088 		perf_event_stop(event, 1);
8089 }
8090 
8091 void perf_event_exec(void)
8092 {
8093 	struct perf_event_context *ctx;
8094 
8095 	ctx = perf_pin_task_context(current);
8096 	if (!ctx)
8097 		return;
8098 
8099 	perf_event_enable_on_exec(ctx);
8100 	perf_event_remove_on_exec(ctx);
8101 	perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8102 
8103 	perf_unpin_context(ctx);
8104 	put_ctx(ctx);
8105 }
8106 
8107 struct remote_output {
8108 	struct perf_buffer	*rb;
8109 	int			err;
8110 };
8111 
8112 static void __perf_event_output_stop(struct perf_event *event, void *data)
8113 {
8114 	struct perf_event *parent = event->parent;
8115 	struct remote_output *ro = data;
8116 	struct perf_buffer *rb = ro->rb;
8117 	struct stop_event_data sd = {
8118 		.event	= event,
8119 	};
8120 
8121 	if (!has_aux(event))
8122 		return;
8123 
8124 	if (!parent)
8125 		parent = event;
8126 
8127 	/*
8128 	 * In case of inheritance, it will be the parent that links to the
8129 	 * ring-buffer, but it will be the child that's actually using it.
8130 	 *
8131 	 * We are using event::rb to determine if the event should be stopped,
8132 	 * however this may race with ring_buffer_attach() (through set_output),
8133 	 * which will make us skip the event that actually needs to be stopped.
8134 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8135 	 * its rb pointer.
8136 	 */
8137 	if (rcu_dereference(parent->rb) == rb)
8138 		ro->err = __perf_event_stop(&sd);
8139 }
8140 
8141 static int __perf_pmu_output_stop(void *info)
8142 {
8143 	struct perf_event *event = info;
8144 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8145 	struct remote_output ro = {
8146 		.rb	= event->rb,
8147 	};
8148 
8149 	rcu_read_lock();
8150 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8151 	if (cpuctx->task_ctx)
8152 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8153 				   &ro, false);
8154 	rcu_read_unlock();
8155 
8156 	return ro.err;
8157 }
8158 
8159 static void perf_pmu_output_stop(struct perf_event *event)
8160 {
8161 	struct perf_event *iter;
8162 	int err, cpu;
8163 
8164 restart:
8165 	rcu_read_lock();
8166 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8167 		/*
8168 		 * For per-CPU events, we need to make sure that neither they
8169 		 * nor their children are running; for cpu==-1 events it's
8170 		 * sufficient to stop the event itself if it's active, since
8171 		 * it can't have children.
8172 		 */
8173 		cpu = iter->cpu;
8174 		if (cpu == -1)
8175 			cpu = READ_ONCE(iter->oncpu);
8176 
8177 		if (cpu == -1)
8178 			continue;
8179 
8180 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8181 		if (err == -EAGAIN) {
8182 			rcu_read_unlock();
8183 			goto restart;
8184 		}
8185 	}
8186 	rcu_read_unlock();
8187 }
8188 
8189 /*
8190  * task tracking -- fork/exit
8191  *
8192  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8193  */
8194 
8195 struct perf_task_event {
8196 	struct task_struct		*task;
8197 	struct perf_event_context	*task_ctx;
8198 
8199 	struct {
8200 		struct perf_event_header	header;
8201 
8202 		u32				pid;
8203 		u32				ppid;
8204 		u32				tid;
8205 		u32				ptid;
8206 		u64				time;
8207 	} event_id;
8208 };
8209 
8210 static int perf_event_task_match(struct perf_event *event)
8211 {
8212 	return event->attr.comm  || event->attr.mmap ||
8213 	       event->attr.mmap2 || event->attr.mmap_data ||
8214 	       event->attr.task;
8215 }
8216 
8217 static void perf_event_task_output(struct perf_event *event,
8218 				   void *data)
8219 {
8220 	struct perf_task_event *task_event = data;
8221 	struct perf_output_handle handle;
8222 	struct perf_sample_data	sample;
8223 	struct task_struct *task = task_event->task;
8224 	int ret, size = task_event->event_id.header.size;
8225 
8226 	if (!perf_event_task_match(event))
8227 		return;
8228 
8229 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8230 
8231 	ret = perf_output_begin(&handle, &sample, event,
8232 				task_event->event_id.header.size);
8233 	if (ret)
8234 		goto out;
8235 
8236 	task_event->event_id.pid = perf_event_pid(event, task);
8237 	task_event->event_id.tid = perf_event_tid(event, task);
8238 
8239 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8240 		task_event->event_id.ppid = perf_event_pid(event,
8241 							task->real_parent);
8242 		task_event->event_id.ptid = perf_event_pid(event,
8243 							task->real_parent);
8244 	} else {  /* PERF_RECORD_FORK */
8245 		task_event->event_id.ppid = perf_event_pid(event, current);
8246 		task_event->event_id.ptid = perf_event_tid(event, current);
8247 	}
8248 
8249 	task_event->event_id.time = perf_event_clock(event);
8250 
8251 	perf_output_put(&handle, task_event->event_id);
8252 
8253 	perf_event__output_id_sample(event, &handle, &sample);
8254 
8255 	perf_output_end(&handle);
8256 out:
8257 	task_event->event_id.header.size = size;
8258 }
8259 
8260 static void perf_event_task(struct task_struct *task,
8261 			      struct perf_event_context *task_ctx,
8262 			      int new)
8263 {
8264 	struct perf_task_event task_event;
8265 
8266 	if (!atomic_read(&nr_comm_events) &&
8267 	    !atomic_read(&nr_mmap_events) &&
8268 	    !atomic_read(&nr_task_events))
8269 		return;
8270 
8271 	task_event = (struct perf_task_event){
8272 		.task	  = task,
8273 		.task_ctx = task_ctx,
8274 		.event_id    = {
8275 			.header = {
8276 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8277 				.misc = 0,
8278 				.size = sizeof(task_event.event_id),
8279 			},
8280 			/* .pid  */
8281 			/* .ppid */
8282 			/* .tid  */
8283 			/* .ptid */
8284 			/* .time */
8285 		},
8286 	};
8287 
8288 	perf_iterate_sb(perf_event_task_output,
8289 		       &task_event,
8290 		       task_ctx);
8291 }
8292 
8293 void perf_event_fork(struct task_struct *task)
8294 {
8295 	perf_event_task(task, NULL, 1);
8296 	perf_event_namespaces(task);
8297 }
8298 
8299 /*
8300  * comm tracking
8301  */
8302 
8303 struct perf_comm_event {
8304 	struct task_struct	*task;
8305 	char			*comm;
8306 	int			comm_size;
8307 
8308 	struct {
8309 		struct perf_event_header	header;
8310 
8311 		u32				pid;
8312 		u32				tid;
8313 	} event_id;
8314 };
8315 
8316 static int perf_event_comm_match(struct perf_event *event)
8317 {
8318 	return event->attr.comm;
8319 }
8320 
8321 static void perf_event_comm_output(struct perf_event *event,
8322 				   void *data)
8323 {
8324 	struct perf_comm_event *comm_event = data;
8325 	struct perf_output_handle handle;
8326 	struct perf_sample_data sample;
8327 	int size = comm_event->event_id.header.size;
8328 	int ret;
8329 
8330 	if (!perf_event_comm_match(event))
8331 		return;
8332 
8333 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8334 	ret = perf_output_begin(&handle, &sample, event,
8335 				comm_event->event_id.header.size);
8336 
8337 	if (ret)
8338 		goto out;
8339 
8340 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8341 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8342 
8343 	perf_output_put(&handle, comm_event->event_id);
8344 	__output_copy(&handle, comm_event->comm,
8345 				   comm_event->comm_size);
8346 
8347 	perf_event__output_id_sample(event, &handle, &sample);
8348 
8349 	perf_output_end(&handle);
8350 out:
8351 	comm_event->event_id.header.size = size;
8352 }
8353 
8354 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8355 {
8356 	char comm[TASK_COMM_LEN];
8357 	unsigned int size;
8358 
8359 	memset(comm, 0, sizeof(comm));
8360 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8361 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8362 
8363 	comm_event->comm = comm;
8364 	comm_event->comm_size = size;
8365 
8366 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8367 
8368 	perf_iterate_sb(perf_event_comm_output,
8369 		       comm_event,
8370 		       NULL);
8371 }
8372 
8373 void perf_event_comm(struct task_struct *task, bool exec)
8374 {
8375 	struct perf_comm_event comm_event;
8376 
8377 	if (!atomic_read(&nr_comm_events))
8378 		return;
8379 
8380 	comm_event = (struct perf_comm_event){
8381 		.task	= task,
8382 		/* .comm      */
8383 		/* .comm_size */
8384 		.event_id  = {
8385 			.header = {
8386 				.type = PERF_RECORD_COMM,
8387 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8388 				/* .size */
8389 			},
8390 			/* .pid */
8391 			/* .tid */
8392 		},
8393 	};
8394 
8395 	perf_event_comm_event(&comm_event);
8396 }
8397 
8398 /*
8399  * namespaces tracking
8400  */
8401 
8402 struct perf_namespaces_event {
8403 	struct task_struct		*task;
8404 
8405 	struct {
8406 		struct perf_event_header	header;
8407 
8408 		u32				pid;
8409 		u32				tid;
8410 		u64				nr_namespaces;
8411 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8412 	} event_id;
8413 };
8414 
8415 static int perf_event_namespaces_match(struct perf_event *event)
8416 {
8417 	return event->attr.namespaces;
8418 }
8419 
8420 static void perf_event_namespaces_output(struct perf_event *event,
8421 					 void *data)
8422 {
8423 	struct perf_namespaces_event *namespaces_event = data;
8424 	struct perf_output_handle handle;
8425 	struct perf_sample_data sample;
8426 	u16 header_size = namespaces_event->event_id.header.size;
8427 	int ret;
8428 
8429 	if (!perf_event_namespaces_match(event))
8430 		return;
8431 
8432 	perf_event_header__init_id(&namespaces_event->event_id.header,
8433 				   &sample, event);
8434 	ret = perf_output_begin(&handle, &sample, event,
8435 				namespaces_event->event_id.header.size);
8436 	if (ret)
8437 		goto out;
8438 
8439 	namespaces_event->event_id.pid = perf_event_pid(event,
8440 							namespaces_event->task);
8441 	namespaces_event->event_id.tid = perf_event_tid(event,
8442 							namespaces_event->task);
8443 
8444 	perf_output_put(&handle, namespaces_event->event_id);
8445 
8446 	perf_event__output_id_sample(event, &handle, &sample);
8447 
8448 	perf_output_end(&handle);
8449 out:
8450 	namespaces_event->event_id.header.size = header_size;
8451 }
8452 
8453 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8454 				   struct task_struct *task,
8455 				   const struct proc_ns_operations *ns_ops)
8456 {
8457 	struct path ns_path;
8458 	struct inode *ns_inode;
8459 	int error;
8460 
8461 	error = ns_get_path(&ns_path, task, ns_ops);
8462 	if (!error) {
8463 		ns_inode = ns_path.dentry->d_inode;
8464 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8465 		ns_link_info->ino = ns_inode->i_ino;
8466 		path_put(&ns_path);
8467 	}
8468 }
8469 
8470 void perf_event_namespaces(struct task_struct *task)
8471 {
8472 	struct perf_namespaces_event namespaces_event;
8473 	struct perf_ns_link_info *ns_link_info;
8474 
8475 	if (!atomic_read(&nr_namespaces_events))
8476 		return;
8477 
8478 	namespaces_event = (struct perf_namespaces_event){
8479 		.task	= task,
8480 		.event_id  = {
8481 			.header = {
8482 				.type = PERF_RECORD_NAMESPACES,
8483 				.misc = 0,
8484 				.size = sizeof(namespaces_event.event_id),
8485 			},
8486 			/* .pid */
8487 			/* .tid */
8488 			.nr_namespaces = NR_NAMESPACES,
8489 			/* .link_info[NR_NAMESPACES] */
8490 		},
8491 	};
8492 
8493 	ns_link_info = namespaces_event.event_id.link_info;
8494 
8495 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8496 			       task, &mntns_operations);
8497 
8498 #ifdef CONFIG_USER_NS
8499 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8500 			       task, &userns_operations);
8501 #endif
8502 #ifdef CONFIG_NET_NS
8503 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8504 			       task, &netns_operations);
8505 #endif
8506 #ifdef CONFIG_UTS_NS
8507 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8508 			       task, &utsns_operations);
8509 #endif
8510 #ifdef CONFIG_IPC_NS
8511 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8512 			       task, &ipcns_operations);
8513 #endif
8514 #ifdef CONFIG_PID_NS
8515 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8516 			       task, &pidns_operations);
8517 #endif
8518 #ifdef CONFIG_CGROUPS
8519 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8520 			       task, &cgroupns_operations);
8521 #endif
8522 
8523 	perf_iterate_sb(perf_event_namespaces_output,
8524 			&namespaces_event,
8525 			NULL);
8526 }
8527 
8528 /*
8529  * cgroup tracking
8530  */
8531 #ifdef CONFIG_CGROUP_PERF
8532 
8533 struct perf_cgroup_event {
8534 	char				*path;
8535 	int				path_size;
8536 	struct {
8537 		struct perf_event_header	header;
8538 		u64				id;
8539 		char				path[];
8540 	} event_id;
8541 };
8542 
8543 static int perf_event_cgroup_match(struct perf_event *event)
8544 {
8545 	return event->attr.cgroup;
8546 }
8547 
8548 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8549 {
8550 	struct perf_cgroup_event *cgroup_event = data;
8551 	struct perf_output_handle handle;
8552 	struct perf_sample_data sample;
8553 	u16 header_size = cgroup_event->event_id.header.size;
8554 	int ret;
8555 
8556 	if (!perf_event_cgroup_match(event))
8557 		return;
8558 
8559 	perf_event_header__init_id(&cgroup_event->event_id.header,
8560 				   &sample, event);
8561 	ret = perf_output_begin(&handle, &sample, event,
8562 				cgroup_event->event_id.header.size);
8563 	if (ret)
8564 		goto out;
8565 
8566 	perf_output_put(&handle, cgroup_event->event_id);
8567 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8568 
8569 	perf_event__output_id_sample(event, &handle, &sample);
8570 
8571 	perf_output_end(&handle);
8572 out:
8573 	cgroup_event->event_id.header.size = header_size;
8574 }
8575 
8576 static void perf_event_cgroup(struct cgroup *cgrp)
8577 {
8578 	struct perf_cgroup_event cgroup_event;
8579 	char path_enomem[16] = "//enomem";
8580 	char *pathname;
8581 	size_t size;
8582 
8583 	if (!atomic_read(&nr_cgroup_events))
8584 		return;
8585 
8586 	cgroup_event = (struct perf_cgroup_event){
8587 		.event_id  = {
8588 			.header = {
8589 				.type = PERF_RECORD_CGROUP,
8590 				.misc = 0,
8591 				.size = sizeof(cgroup_event.event_id),
8592 			},
8593 			.id = cgroup_id(cgrp),
8594 		},
8595 	};
8596 
8597 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8598 	if (pathname == NULL) {
8599 		cgroup_event.path = path_enomem;
8600 	} else {
8601 		/* just to be sure to have enough space for alignment */
8602 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8603 		cgroup_event.path = pathname;
8604 	}
8605 
8606 	/*
8607 	 * Since our buffer works in 8 byte units we need to align our string
8608 	 * size to a multiple of 8. However, we must guarantee the tail end is
8609 	 * zero'd out to avoid leaking random bits to userspace.
8610 	 */
8611 	size = strlen(cgroup_event.path) + 1;
8612 	while (!IS_ALIGNED(size, sizeof(u64)))
8613 		cgroup_event.path[size++] = '\0';
8614 
8615 	cgroup_event.event_id.header.size += size;
8616 	cgroup_event.path_size = size;
8617 
8618 	perf_iterate_sb(perf_event_cgroup_output,
8619 			&cgroup_event,
8620 			NULL);
8621 
8622 	kfree(pathname);
8623 }
8624 
8625 #endif
8626 
8627 /*
8628  * mmap tracking
8629  */
8630 
8631 struct perf_mmap_event {
8632 	struct vm_area_struct	*vma;
8633 
8634 	const char		*file_name;
8635 	int			file_size;
8636 	int			maj, min;
8637 	u64			ino;
8638 	u64			ino_generation;
8639 	u32			prot, flags;
8640 	u8			build_id[BUILD_ID_SIZE_MAX];
8641 	u32			build_id_size;
8642 
8643 	struct {
8644 		struct perf_event_header	header;
8645 
8646 		u32				pid;
8647 		u32				tid;
8648 		u64				start;
8649 		u64				len;
8650 		u64				pgoff;
8651 	} event_id;
8652 };
8653 
8654 static int perf_event_mmap_match(struct perf_event *event,
8655 				 void *data)
8656 {
8657 	struct perf_mmap_event *mmap_event = data;
8658 	struct vm_area_struct *vma = mmap_event->vma;
8659 	int executable = vma->vm_flags & VM_EXEC;
8660 
8661 	return (!executable && event->attr.mmap_data) ||
8662 	       (executable && (event->attr.mmap || event->attr.mmap2));
8663 }
8664 
8665 static void perf_event_mmap_output(struct perf_event *event,
8666 				   void *data)
8667 {
8668 	struct perf_mmap_event *mmap_event = data;
8669 	struct perf_output_handle handle;
8670 	struct perf_sample_data sample;
8671 	int size = mmap_event->event_id.header.size;
8672 	u32 type = mmap_event->event_id.header.type;
8673 	bool use_build_id;
8674 	int ret;
8675 
8676 	if (!perf_event_mmap_match(event, data))
8677 		return;
8678 
8679 	if (event->attr.mmap2) {
8680 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8681 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8682 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8683 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8684 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8685 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8686 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8687 	}
8688 
8689 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8690 	ret = perf_output_begin(&handle, &sample, event,
8691 				mmap_event->event_id.header.size);
8692 	if (ret)
8693 		goto out;
8694 
8695 	mmap_event->event_id.pid = perf_event_pid(event, current);
8696 	mmap_event->event_id.tid = perf_event_tid(event, current);
8697 
8698 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8699 
8700 	if (event->attr.mmap2 && use_build_id)
8701 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8702 
8703 	perf_output_put(&handle, mmap_event->event_id);
8704 
8705 	if (event->attr.mmap2) {
8706 		if (use_build_id) {
8707 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8708 
8709 			__output_copy(&handle, size, 4);
8710 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8711 		} else {
8712 			perf_output_put(&handle, mmap_event->maj);
8713 			perf_output_put(&handle, mmap_event->min);
8714 			perf_output_put(&handle, mmap_event->ino);
8715 			perf_output_put(&handle, mmap_event->ino_generation);
8716 		}
8717 		perf_output_put(&handle, mmap_event->prot);
8718 		perf_output_put(&handle, mmap_event->flags);
8719 	}
8720 
8721 	__output_copy(&handle, mmap_event->file_name,
8722 				   mmap_event->file_size);
8723 
8724 	perf_event__output_id_sample(event, &handle, &sample);
8725 
8726 	perf_output_end(&handle);
8727 out:
8728 	mmap_event->event_id.header.size = size;
8729 	mmap_event->event_id.header.type = type;
8730 }
8731 
8732 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8733 {
8734 	struct vm_area_struct *vma = mmap_event->vma;
8735 	struct file *file = vma->vm_file;
8736 	int maj = 0, min = 0;
8737 	u64 ino = 0, gen = 0;
8738 	u32 prot = 0, flags = 0;
8739 	unsigned int size;
8740 	char tmp[16];
8741 	char *buf = NULL;
8742 	char *name = NULL;
8743 
8744 	if (vma->vm_flags & VM_READ)
8745 		prot |= PROT_READ;
8746 	if (vma->vm_flags & VM_WRITE)
8747 		prot |= PROT_WRITE;
8748 	if (vma->vm_flags & VM_EXEC)
8749 		prot |= PROT_EXEC;
8750 
8751 	if (vma->vm_flags & VM_MAYSHARE)
8752 		flags = MAP_SHARED;
8753 	else
8754 		flags = MAP_PRIVATE;
8755 
8756 	if (vma->vm_flags & VM_LOCKED)
8757 		flags |= MAP_LOCKED;
8758 	if (is_vm_hugetlb_page(vma))
8759 		flags |= MAP_HUGETLB;
8760 
8761 	if (file) {
8762 		struct inode *inode;
8763 		dev_t dev;
8764 
8765 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8766 		if (!buf) {
8767 			name = "//enomem";
8768 			goto cpy_name;
8769 		}
8770 		/*
8771 		 * d_path() works from the end of the rb backwards, so we
8772 		 * need to add enough zero bytes after the string to handle
8773 		 * the 64bit alignment we do later.
8774 		 */
8775 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
8776 		if (IS_ERR(name)) {
8777 			name = "//toolong";
8778 			goto cpy_name;
8779 		}
8780 		inode = file_inode(vma->vm_file);
8781 		dev = inode->i_sb->s_dev;
8782 		ino = inode->i_ino;
8783 		gen = inode->i_generation;
8784 		maj = MAJOR(dev);
8785 		min = MINOR(dev);
8786 
8787 		goto got_name;
8788 	} else {
8789 		if (vma->vm_ops && vma->vm_ops->name)
8790 			name = (char *) vma->vm_ops->name(vma);
8791 		if (!name)
8792 			name = (char *)arch_vma_name(vma);
8793 		if (!name) {
8794 			if (vma_is_initial_heap(vma))
8795 				name = "[heap]";
8796 			else if (vma_is_initial_stack(vma))
8797 				name = "[stack]";
8798 			else
8799 				name = "//anon";
8800 		}
8801 	}
8802 
8803 cpy_name:
8804 	strscpy(tmp, name, sizeof(tmp));
8805 	name = tmp;
8806 got_name:
8807 	/*
8808 	 * Since our buffer works in 8 byte units we need to align our string
8809 	 * size to a multiple of 8. However, we must guarantee the tail end is
8810 	 * zero'd out to avoid leaking random bits to userspace.
8811 	 */
8812 	size = strlen(name)+1;
8813 	while (!IS_ALIGNED(size, sizeof(u64)))
8814 		name[size++] = '\0';
8815 
8816 	mmap_event->file_name = name;
8817 	mmap_event->file_size = size;
8818 	mmap_event->maj = maj;
8819 	mmap_event->min = min;
8820 	mmap_event->ino = ino;
8821 	mmap_event->ino_generation = gen;
8822 	mmap_event->prot = prot;
8823 	mmap_event->flags = flags;
8824 
8825 	if (!(vma->vm_flags & VM_EXEC))
8826 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8827 
8828 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8829 
8830 	if (atomic_read(&nr_build_id_events))
8831 		build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8832 
8833 	perf_iterate_sb(perf_event_mmap_output,
8834 		       mmap_event,
8835 		       NULL);
8836 
8837 	kfree(buf);
8838 }
8839 
8840 /*
8841  * Check whether inode and address range match filter criteria.
8842  */
8843 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8844 				     struct file *file, unsigned long offset,
8845 				     unsigned long size)
8846 {
8847 	/* d_inode(NULL) won't be equal to any mapped user-space file */
8848 	if (!filter->path.dentry)
8849 		return false;
8850 
8851 	if (d_inode(filter->path.dentry) != file_inode(file))
8852 		return false;
8853 
8854 	if (filter->offset > offset + size)
8855 		return false;
8856 
8857 	if (filter->offset + filter->size < offset)
8858 		return false;
8859 
8860 	return true;
8861 }
8862 
8863 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8864 					struct vm_area_struct *vma,
8865 					struct perf_addr_filter_range *fr)
8866 {
8867 	unsigned long vma_size = vma->vm_end - vma->vm_start;
8868 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8869 	struct file *file = vma->vm_file;
8870 
8871 	if (!perf_addr_filter_match(filter, file, off, vma_size))
8872 		return false;
8873 
8874 	if (filter->offset < off) {
8875 		fr->start = vma->vm_start;
8876 		fr->size = min(vma_size, filter->size - (off - filter->offset));
8877 	} else {
8878 		fr->start = vma->vm_start + filter->offset - off;
8879 		fr->size = min(vma->vm_end - fr->start, filter->size);
8880 	}
8881 
8882 	return true;
8883 }
8884 
8885 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8886 {
8887 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8888 	struct vm_area_struct *vma = data;
8889 	struct perf_addr_filter *filter;
8890 	unsigned int restart = 0, count = 0;
8891 	unsigned long flags;
8892 
8893 	if (!has_addr_filter(event))
8894 		return;
8895 
8896 	if (!vma->vm_file)
8897 		return;
8898 
8899 	raw_spin_lock_irqsave(&ifh->lock, flags);
8900 	list_for_each_entry(filter, &ifh->list, entry) {
8901 		if (perf_addr_filter_vma_adjust(filter, vma,
8902 						&event->addr_filter_ranges[count]))
8903 			restart++;
8904 
8905 		count++;
8906 	}
8907 
8908 	if (restart)
8909 		event->addr_filters_gen++;
8910 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8911 
8912 	if (restart)
8913 		perf_event_stop(event, 1);
8914 }
8915 
8916 /*
8917  * Adjust all task's events' filters to the new vma
8918  */
8919 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8920 {
8921 	struct perf_event_context *ctx;
8922 
8923 	/*
8924 	 * Data tracing isn't supported yet and as such there is no need
8925 	 * to keep track of anything that isn't related to executable code:
8926 	 */
8927 	if (!(vma->vm_flags & VM_EXEC))
8928 		return;
8929 
8930 	rcu_read_lock();
8931 	ctx = rcu_dereference(current->perf_event_ctxp);
8932 	if (ctx)
8933 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8934 	rcu_read_unlock();
8935 }
8936 
8937 void perf_event_mmap(struct vm_area_struct *vma)
8938 {
8939 	struct perf_mmap_event mmap_event;
8940 
8941 	if (!atomic_read(&nr_mmap_events))
8942 		return;
8943 
8944 	mmap_event = (struct perf_mmap_event){
8945 		.vma	= vma,
8946 		/* .file_name */
8947 		/* .file_size */
8948 		.event_id  = {
8949 			.header = {
8950 				.type = PERF_RECORD_MMAP,
8951 				.misc = PERF_RECORD_MISC_USER,
8952 				/* .size */
8953 			},
8954 			/* .pid */
8955 			/* .tid */
8956 			.start  = vma->vm_start,
8957 			.len    = vma->vm_end - vma->vm_start,
8958 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8959 		},
8960 		/* .maj (attr_mmap2 only) */
8961 		/* .min (attr_mmap2 only) */
8962 		/* .ino (attr_mmap2 only) */
8963 		/* .ino_generation (attr_mmap2 only) */
8964 		/* .prot (attr_mmap2 only) */
8965 		/* .flags (attr_mmap2 only) */
8966 	};
8967 
8968 	perf_addr_filters_adjust(vma);
8969 	perf_event_mmap_event(&mmap_event);
8970 }
8971 
8972 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8973 			  unsigned long size, u64 flags)
8974 {
8975 	struct perf_output_handle handle;
8976 	struct perf_sample_data sample;
8977 	struct perf_aux_event {
8978 		struct perf_event_header	header;
8979 		u64				offset;
8980 		u64				size;
8981 		u64				flags;
8982 	} rec = {
8983 		.header = {
8984 			.type = PERF_RECORD_AUX,
8985 			.misc = 0,
8986 			.size = sizeof(rec),
8987 		},
8988 		.offset		= head,
8989 		.size		= size,
8990 		.flags		= flags,
8991 	};
8992 	int ret;
8993 
8994 	perf_event_header__init_id(&rec.header, &sample, event);
8995 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8996 
8997 	if (ret)
8998 		return;
8999 
9000 	perf_output_put(&handle, rec);
9001 	perf_event__output_id_sample(event, &handle, &sample);
9002 
9003 	perf_output_end(&handle);
9004 }
9005 
9006 /*
9007  * Lost/dropped samples logging
9008  */
9009 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9010 {
9011 	struct perf_output_handle handle;
9012 	struct perf_sample_data sample;
9013 	int ret;
9014 
9015 	struct {
9016 		struct perf_event_header	header;
9017 		u64				lost;
9018 	} lost_samples_event = {
9019 		.header = {
9020 			.type = PERF_RECORD_LOST_SAMPLES,
9021 			.misc = 0,
9022 			.size = sizeof(lost_samples_event),
9023 		},
9024 		.lost		= lost,
9025 	};
9026 
9027 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9028 
9029 	ret = perf_output_begin(&handle, &sample, event,
9030 				lost_samples_event.header.size);
9031 	if (ret)
9032 		return;
9033 
9034 	perf_output_put(&handle, lost_samples_event);
9035 	perf_event__output_id_sample(event, &handle, &sample);
9036 	perf_output_end(&handle);
9037 }
9038 
9039 /*
9040  * context_switch tracking
9041  */
9042 
9043 struct perf_switch_event {
9044 	struct task_struct	*task;
9045 	struct task_struct	*next_prev;
9046 
9047 	struct {
9048 		struct perf_event_header	header;
9049 		u32				next_prev_pid;
9050 		u32				next_prev_tid;
9051 	} event_id;
9052 };
9053 
9054 static int perf_event_switch_match(struct perf_event *event)
9055 {
9056 	return event->attr.context_switch;
9057 }
9058 
9059 static void perf_event_switch_output(struct perf_event *event, void *data)
9060 {
9061 	struct perf_switch_event *se = data;
9062 	struct perf_output_handle handle;
9063 	struct perf_sample_data sample;
9064 	int ret;
9065 
9066 	if (!perf_event_switch_match(event))
9067 		return;
9068 
9069 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9070 	if (event->ctx->task) {
9071 		se->event_id.header.type = PERF_RECORD_SWITCH;
9072 		se->event_id.header.size = sizeof(se->event_id.header);
9073 	} else {
9074 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9075 		se->event_id.header.size = sizeof(se->event_id);
9076 		se->event_id.next_prev_pid =
9077 					perf_event_pid(event, se->next_prev);
9078 		se->event_id.next_prev_tid =
9079 					perf_event_tid(event, se->next_prev);
9080 	}
9081 
9082 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9083 
9084 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9085 	if (ret)
9086 		return;
9087 
9088 	if (event->ctx->task)
9089 		perf_output_put(&handle, se->event_id.header);
9090 	else
9091 		perf_output_put(&handle, se->event_id);
9092 
9093 	perf_event__output_id_sample(event, &handle, &sample);
9094 
9095 	perf_output_end(&handle);
9096 }
9097 
9098 static void perf_event_switch(struct task_struct *task,
9099 			      struct task_struct *next_prev, bool sched_in)
9100 {
9101 	struct perf_switch_event switch_event;
9102 
9103 	/* N.B. caller checks nr_switch_events != 0 */
9104 
9105 	switch_event = (struct perf_switch_event){
9106 		.task		= task,
9107 		.next_prev	= next_prev,
9108 		.event_id	= {
9109 			.header = {
9110 				/* .type */
9111 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9112 				/* .size */
9113 			},
9114 			/* .next_prev_pid */
9115 			/* .next_prev_tid */
9116 		},
9117 	};
9118 
9119 	if (!sched_in && task->on_rq) {
9120 		switch_event.event_id.header.misc |=
9121 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9122 	}
9123 
9124 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9125 }
9126 
9127 /*
9128  * IRQ throttle logging
9129  */
9130 
9131 static void perf_log_throttle(struct perf_event *event, int enable)
9132 {
9133 	struct perf_output_handle handle;
9134 	struct perf_sample_data sample;
9135 	int ret;
9136 
9137 	struct {
9138 		struct perf_event_header	header;
9139 		u64				time;
9140 		u64				id;
9141 		u64				stream_id;
9142 	} throttle_event = {
9143 		.header = {
9144 			.type = PERF_RECORD_THROTTLE,
9145 			.misc = 0,
9146 			.size = sizeof(throttle_event),
9147 		},
9148 		.time		= perf_event_clock(event),
9149 		.id		= primary_event_id(event),
9150 		.stream_id	= event->id,
9151 	};
9152 
9153 	if (enable)
9154 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9155 
9156 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9157 
9158 	ret = perf_output_begin(&handle, &sample, event,
9159 				throttle_event.header.size);
9160 	if (ret)
9161 		return;
9162 
9163 	perf_output_put(&handle, throttle_event);
9164 	perf_event__output_id_sample(event, &handle, &sample);
9165 	perf_output_end(&handle);
9166 }
9167 
9168 /*
9169  * ksymbol register/unregister tracking
9170  */
9171 
9172 struct perf_ksymbol_event {
9173 	const char	*name;
9174 	int		name_len;
9175 	struct {
9176 		struct perf_event_header        header;
9177 		u64				addr;
9178 		u32				len;
9179 		u16				ksym_type;
9180 		u16				flags;
9181 	} event_id;
9182 };
9183 
9184 static int perf_event_ksymbol_match(struct perf_event *event)
9185 {
9186 	return event->attr.ksymbol;
9187 }
9188 
9189 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9190 {
9191 	struct perf_ksymbol_event *ksymbol_event = data;
9192 	struct perf_output_handle handle;
9193 	struct perf_sample_data sample;
9194 	int ret;
9195 
9196 	if (!perf_event_ksymbol_match(event))
9197 		return;
9198 
9199 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9200 				   &sample, event);
9201 	ret = perf_output_begin(&handle, &sample, event,
9202 				ksymbol_event->event_id.header.size);
9203 	if (ret)
9204 		return;
9205 
9206 	perf_output_put(&handle, ksymbol_event->event_id);
9207 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9208 	perf_event__output_id_sample(event, &handle, &sample);
9209 
9210 	perf_output_end(&handle);
9211 }
9212 
9213 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9214 			const char *sym)
9215 {
9216 	struct perf_ksymbol_event ksymbol_event;
9217 	char name[KSYM_NAME_LEN];
9218 	u16 flags = 0;
9219 	int name_len;
9220 
9221 	if (!atomic_read(&nr_ksymbol_events))
9222 		return;
9223 
9224 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9225 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9226 		goto err;
9227 
9228 	strscpy(name, sym, KSYM_NAME_LEN);
9229 	name_len = strlen(name) + 1;
9230 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9231 		name[name_len++] = '\0';
9232 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9233 
9234 	if (unregister)
9235 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9236 
9237 	ksymbol_event = (struct perf_ksymbol_event){
9238 		.name = name,
9239 		.name_len = name_len,
9240 		.event_id = {
9241 			.header = {
9242 				.type = PERF_RECORD_KSYMBOL,
9243 				.size = sizeof(ksymbol_event.event_id) +
9244 					name_len,
9245 			},
9246 			.addr = addr,
9247 			.len = len,
9248 			.ksym_type = ksym_type,
9249 			.flags = flags,
9250 		},
9251 	};
9252 
9253 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9254 	return;
9255 err:
9256 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9257 }
9258 
9259 /*
9260  * bpf program load/unload tracking
9261  */
9262 
9263 struct perf_bpf_event {
9264 	struct bpf_prog	*prog;
9265 	struct {
9266 		struct perf_event_header        header;
9267 		u16				type;
9268 		u16				flags;
9269 		u32				id;
9270 		u8				tag[BPF_TAG_SIZE];
9271 	} event_id;
9272 };
9273 
9274 static int perf_event_bpf_match(struct perf_event *event)
9275 {
9276 	return event->attr.bpf_event;
9277 }
9278 
9279 static void perf_event_bpf_output(struct perf_event *event, void *data)
9280 {
9281 	struct perf_bpf_event *bpf_event = data;
9282 	struct perf_output_handle handle;
9283 	struct perf_sample_data sample;
9284 	int ret;
9285 
9286 	if (!perf_event_bpf_match(event))
9287 		return;
9288 
9289 	perf_event_header__init_id(&bpf_event->event_id.header,
9290 				   &sample, event);
9291 	ret = perf_output_begin(&handle, &sample, event,
9292 				bpf_event->event_id.header.size);
9293 	if (ret)
9294 		return;
9295 
9296 	perf_output_put(&handle, bpf_event->event_id);
9297 	perf_event__output_id_sample(event, &handle, &sample);
9298 
9299 	perf_output_end(&handle);
9300 }
9301 
9302 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9303 					 enum perf_bpf_event_type type)
9304 {
9305 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9306 	int i;
9307 
9308 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9309 			   (u64)(unsigned long)prog->bpf_func,
9310 			   prog->jited_len, unregister,
9311 			   prog->aux->ksym.name);
9312 
9313 	for (i = 1; i < prog->aux->func_cnt; i++) {
9314 		struct bpf_prog *subprog = prog->aux->func[i];
9315 
9316 		perf_event_ksymbol(
9317 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9318 			(u64)(unsigned long)subprog->bpf_func,
9319 			subprog->jited_len, unregister,
9320 			subprog->aux->ksym.name);
9321 	}
9322 }
9323 
9324 void perf_event_bpf_event(struct bpf_prog *prog,
9325 			  enum perf_bpf_event_type type,
9326 			  u16 flags)
9327 {
9328 	struct perf_bpf_event bpf_event;
9329 
9330 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
9331 	    type >= PERF_BPF_EVENT_MAX)
9332 		return;
9333 
9334 	switch (type) {
9335 	case PERF_BPF_EVENT_PROG_LOAD:
9336 	case PERF_BPF_EVENT_PROG_UNLOAD:
9337 		if (atomic_read(&nr_ksymbol_events))
9338 			perf_event_bpf_emit_ksymbols(prog, type);
9339 		break;
9340 	default:
9341 		break;
9342 	}
9343 
9344 	if (!atomic_read(&nr_bpf_events))
9345 		return;
9346 
9347 	bpf_event = (struct perf_bpf_event){
9348 		.prog = prog,
9349 		.event_id = {
9350 			.header = {
9351 				.type = PERF_RECORD_BPF_EVENT,
9352 				.size = sizeof(bpf_event.event_id),
9353 			},
9354 			.type = type,
9355 			.flags = flags,
9356 			.id = prog->aux->id,
9357 		},
9358 	};
9359 
9360 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9361 
9362 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9363 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9364 }
9365 
9366 struct perf_text_poke_event {
9367 	const void		*old_bytes;
9368 	const void		*new_bytes;
9369 	size_t			pad;
9370 	u16			old_len;
9371 	u16			new_len;
9372 
9373 	struct {
9374 		struct perf_event_header	header;
9375 
9376 		u64				addr;
9377 	} event_id;
9378 };
9379 
9380 static int perf_event_text_poke_match(struct perf_event *event)
9381 {
9382 	return event->attr.text_poke;
9383 }
9384 
9385 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9386 {
9387 	struct perf_text_poke_event *text_poke_event = data;
9388 	struct perf_output_handle handle;
9389 	struct perf_sample_data sample;
9390 	u64 padding = 0;
9391 	int ret;
9392 
9393 	if (!perf_event_text_poke_match(event))
9394 		return;
9395 
9396 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9397 
9398 	ret = perf_output_begin(&handle, &sample, event,
9399 				text_poke_event->event_id.header.size);
9400 	if (ret)
9401 		return;
9402 
9403 	perf_output_put(&handle, text_poke_event->event_id);
9404 	perf_output_put(&handle, text_poke_event->old_len);
9405 	perf_output_put(&handle, text_poke_event->new_len);
9406 
9407 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9408 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9409 
9410 	if (text_poke_event->pad)
9411 		__output_copy(&handle, &padding, text_poke_event->pad);
9412 
9413 	perf_event__output_id_sample(event, &handle, &sample);
9414 
9415 	perf_output_end(&handle);
9416 }
9417 
9418 void perf_event_text_poke(const void *addr, const void *old_bytes,
9419 			  size_t old_len, const void *new_bytes, size_t new_len)
9420 {
9421 	struct perf_text_poke_event text_poke_event;
9422 	size_t tot, pad;
9423 
9424 	if (!atomic_read(&nr_text_poke_events))
9425 		return;
9426 
9427 	tot  = sizeof(text_poke_event.old_len) + old_len;
9428 	tot += sizeof(text_poke_event.new_len) + new_len;
9429 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9430 
9431 	text_poke_event = (struct perf_text_poke_event){
9432 		.old_bytes    = old_bytes,
9433 		.new_bytes    = new_bytes,
9434 		.pad          = pad,
9435 		.old_len      = old_len,
9436 		.new_len      = new_len,
9437 		.event_id  = {
9438 			.header = {
9439 				.type = PERF_RECORD_TEXT_POKE,
9440 				.misc = PERF_RECORD_MISC_KERNEL,
9441 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9442 			},
9443 			.addr = (unsigned long)addr,
9444 		},
9445 	};
9446 
9447 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9448 }
9449 
9450 void perf_event_itrace_started(struct perf_event *event)
9451 {
9452 	event->attach_state |= PERF_ATTACH_ITRACE;
9453 }
9454 
9455 static void perf_log_itrace_start(struct perf_event *event)
9456 {
9457 	struct perf_output_handle handle;
9458 	struct perf_sample_data sample;
9459 	struct perf_aux_event {
9460 		struct perf_event_header        header;
9461 		u32				pid;
9462 		u32				tid;
9463 	} rec;
9464 	int ret;
9465 
9466 	if (event->parent)
9467 		event = event->parent;
9468 
9469 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9470 	    event->attach_state & PERF_ATTACH_ITRACE)
9471 		return;
9472 
9473 	rec.header.type	= PERF_RECORD_ITRACE_START;
9474 	rec.header.misc	= 0;
9475 	rec.header.size	= sizeof(rec);
9476 	rec.pid	= perf_event_pid(event, current);
9477 	rec.tid	= perf_event_tid(event, current);
9478 
9479 	perf_event_header__init_id(&rec.header, &sample, event);
9480 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9481 
9482 	if (ret)
9483 		return;
9484 
9485 	perf_output_put(&handle, rec);
9486 	perf_event__output_id_sample(event, &handle, &sample);
9487 
9488 	perf_output_end(&handle);
9489 }
9490 
9491 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9492 {
9493 	struct perf_output_handle handle;
9494 	struct perf_sample_data sample;
9495 	struct perf_aux_event {
9496 		struct perf_event_header        header;
9497 		u64				hw_id;
9498 	} rec;
9499 	int ret;
9500 
9501 	if (event->parent)
9502 		event = event->parent;
9503 
9504 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9505 	rec.header.misc	= 0;
9506 	rec.header.size	= sizeof(rec);
9507 	rec.hw_id	= hw_id;
9508 
9509 	perf_event_header__init_id(&rec.header, &sample, event);
9510 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9511 
9512 	if (ret)
9513 		return;
9514 
9515 	perf_output_put(&handle, rec);
9516 	perf_event__output_id_sample(event, &handle, &sample);
9517 
9518 	perf_output_end(&handle);
9519 }
9520 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9521 
9522 static int
9523 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9524 {
9525 	struct hw_perf_event *hwc = &event->hw;
9526 	int ret = 0;
9527 	u64 seq;
9528 
9529 	seq = __this_cpu_read(perf_throttled_seq);
9530 	if (seq != hwc->interrupts_seq) {
9531 		hwc->interrupts_seq = seq;
9532 		hwc->interrupts = 1;
9533 	} else {
9534 		hwc->interrupts++;
9535 		if (unlikely(throttle &&
9536 			     hwc->interrupts > max_samples_per_tick)) {
9537 			__this_cpu_inc(perf_throttled_count);
9538 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9539 			hwc->interrupts = MAX_INTERRUPTS;
9540 			perf_log_throttle(event, 0);
9541 			ret = 1;
9542 		}
9543 	}
9544 
9545 	if (event->attr.freq) {
9546 		u64 now = perf_clock();
9547 		s64 delta = now - hwc->freq_time_stamp;
9548 
9549 		hwc->freq_time_stamp = now;
9550 
9551 		if (delta > 0 && delta < 2*TICK_NSEC)
9552 			perf_adjust_period(event, delta, hwc->last_period, true);
9553 	}
9554 
9555 	return ret;
9556 }
9557 
9558 int perf_event_account_interrupt(struct perf_event *event)
9559 {
9560 	return __perf_event_account_interrupt(event, 1);
9561 }
9562 
9563 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9564 {
9565 	/*
9566 	 * Due to interrupt latency (AKA "skid"), we may enter the
9567 	 * kernel before taking an overflow, even if the PMU is only
9568 	 * counting user events.
9569 	 */
9570 	if (event->attr.exclude_kernel && !user_mode(regs))
9571 		return false;
9572 
9573 	return true;
9574 }
9575 
9576 /*
9577  * Generic event overflow handling, sampling.
9578  */
9579 
9580 static int __perf_event_overflow(struct perf_event *event,
9581 				 int throttle, struct perf_sample_data *data,
9582 				 struct pt_regs *regs)
9583 {
9584 	int events = atomic_read(&event->event_limit);
9585 	int ret = 0;
9586 
9587 	/*
9588 	 * Non-sampling counters might still use the PMI to fold short
9589 	 * hardware counters, ignore those.
9590 	 */
9591 	if (unlikely(!is_sampling_event(event)))
9592 		return 0;
9593 
9594 	ret = __perf_event_account_interrupt(event, throttle);
9595 
9596 	/*
9597 	 * XXX event_limit might not quite work as expected on inherited
9598 	 * events
9599 	 */
9600 
9601 	event->pending_kill = POLL_IN;
9602 	if (events && atomic_dec_and_test(&event->event_limit)) {
9603 		ret = 1;
9604 		event->pending_kill = POLL_HUP;
9605 		perf_event_disable_inatomic(event);
9606 	}
9607 
9608 	if (event->attr.sigtrap) {
9609 		/*
9610 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9611 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9612 		 * it is the first event, on the other hand, we should also not
9613 		 * trigger the WARN or override the data address.
9614 		 */
9615 		bool valid_sample = sample_is_allowed(event, regs);
9616 		unsigned int pending_id = 1;
9617 
9618 		if (regs)
9619 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9620 		if (!event->pending_sigtrap) {
9621 			event->pending_sigtrap = pending_id;
9622 			local_inc(&event->ctx->nr_pending);
9623 		} else if (event->attr.exclude_kernel && valid_sample) {
9624 			/*
9625 			 * Should not be able to return to user space without
9626 			 * consuming pending_sigtrap; with exceptions:
9627 			 *
9628 			 *  1. Where !exclude_kernel, events can overflow again
9629 			 *     in the kernel without returning to user space.
9630 			 *
9631 			 *  2. Events that can overflow again before the IRQ-
9632 			 *     work without user space progress (e.g. hrtimer).
9633 			 *     To approximate progress (with false negatives),
9634 			 *     check 32-bit hash of the current IP.
9635 			 */
9636 			WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9637 		}
9638 
9639 		event->pending_addr = 0;
9640 		if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9641 			event->pending_addr = data->addr;
9642 		irq_work_queue(&event->pending_irq);
9643 	}
9644 
9645 	READ_ONCE(event->overflow_handler)(event, data, regs);
9646 
9647 	if (*perf_event_fasync(event) && event->pending_kill) {
9648 		event->pending_wakeup = 1;
9649 		irq_work_queue(&event->pending_irq);
9650 	}
9651 
9652 	return ret;
9653 }
9654 
9655 int perf_event_overflow(struct perf_event *event,
9656 			struct perf_sample_data *data,
9657 			struct pt_regs *regs)
9658 {
9659 	return __perf_event_overflow(event, 1, data, regs);
9660 }
9661 
9662 /*
9663  * Generic software event infrastructure
9664  */
9665 
9666 struct swevent_htable {
9667 	struct swevent_hlist		*swevent_hlist;
9668 	struct mutex			hlist_mutex;
9669 	int				hlist_refcount;
9670 
9671 	/* Recursion avoidance in each contexts */
9672 	int				recursion[PERF_NR_CONTEXTS];
9673 };
9674 
9675 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9676 
9677 /*
9678  * We directly increment event->count and keep a second value in
9679  * event->hw.period_left to count intervals. This period event
9680  * is kept in the range [-sample_period, 0] so that we can use the
9681  * sign as trigger.
9682  */
9683 
9684 u64 perf_swevent_set_period(struct perf_event *event)
9685 {
9686 	struct hw_perf_event *hwc = &event->hw;
9687 	u64 period = hwc->last_period;
9688 	u64 nr, offset;
9689 	s64 old, val;
9690 
9691 	hwc->last_period = hwc->sample_period;
9692 
9693 	old = local64_read(&hwc->period_left);
9694 	do {
9695 		val = old;
9696 		if (val < 0)
9697 			return 0;
9698 
9699 		nr = div64_u64(period + val, period);
9700 		offset = nr * period;
9701 		val -= offset;
9702 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9703 
9704 	return nr;
9705 }
9706 
9707 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9708 				    struct perf_sample_data *data,
9709 				    struct pt_regs *regs)
9710 {
9711 	struct hw_perf_event *hwc = &event->hw;
9712 	int throttle = 0;
9713 
9714 	if (!overflow)
9715 		overflow = perf_swevent_set_period(event);
9716 
9717 	if (hwc->interrupts == MAX_INTERRUPTS)
9718 		return;
9719 
9720 	for (; overflow; overflow--) {
9721 		if (__perf_event_overflow(event, throttle,
9722 					    data, regs)) {
9723 			/*
9724 			 * We inhibit the overflow from happening when
9725 			 * hwc->interrupts == MAX_INTERRUPTS.
9726 			 */
9727 			break;
9728 		}
9729 		throttle = 1;
9730 	}
9731 }
9732 
9733 static void perf_swevent_event(struct perf_event *event, u64 nr,
9734 			       struct perf_sample_data *data,
9735 			       struct pt_regs *regs)
9736 {
9737 	struct hw_perf_event *hwc = &event->hw;
9738 
9739 	local64_add(nr, &event->count);
9740 
9741 	if (!regs)
9742 		return;
9743 
9744 	if (!is_sampling_event(event))
9745 		return;
9746 
9747 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9748 		data->period = nr;
9749 		return perf_swevent_overflow(event, 1, data, regs);
9750 	} else
9751 		data->period = event->hw.last_period;
9752 
9753 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9754 		return perf_swevent_overflow(event, 1, data, regs);
9755 
9756 	if (local64_add_negative(nr, &hwc->period_left))
9757 		return;
9758 
9759 	perf_swevent_overflow(event, 0, data, regs);
9760 }
9761 
9762 static int perf_exclude_event(struct perf_event *event,
9763 			      struct pt_regs *regs)
9764 {
9765 	if (event->hw.state & PERF_HES_STOPPED)
9766 		return 1;
9767 
9768 	if (regs) {
9769 		if (event->attr.exclude_user && user_mode(regs))
9770 			return 1;
9771 
9772 		if (event->attr.exclude_kernel && !user_mode(regs))
9773 			return 1;
9774 	}
9775 
9776 	return 0;
9777 }
9778 
9779 static int perf_swevent_match(struct perf_event *event,
9780 				enum perf_type_id type,
9781 				u32 event_id,
9782 				struct perf_sample_data *data,
9783 				struct pt_regs *regs)
9784 {
9785 	if (event->attr.type != type)
9786 		return 0;
9787 
9788 	if (event->attr.config != event_id)
9789 		return 0;
9790 
9791 	if (perf_exclude_event(event, regs))
9792 		return 0;
9793 
9794 	return 1;
9795 }
9796 
9797 static inline u64 swevent_hash(u64 type, u32 event_id)
9798 {
9799 	u64 val = event_id | (type << 32);
9800 
9801 	return hash_64(val, SWEVENT_HLIST_BITS);
9802 }
9803 
9804 static inline struct hlist_head *
9805 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9806 {
9807 	u64 hash = swevent_hash(type, event_id);
9808 
9809 	return &hlist->heads[hash];
9810 }
9811 
9812 /* For the read side: events when they trigger */
9813 static inline struct hlist_head *
9814 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9815 {
9816 	struct swevent_hlist *hlist;
9817 
9818 	hlist = rcu_dereference(swhash->swevent_hlist);
9819 	if (!hlist)
9820 		return NULL;
9821 
9822 	return __find_swevent_head(hlist, type, event_id);
9823 }
9824 
9825 /* For the event head insertion and removal in the hlist */
9826 static inline struct hlist_head *
9827 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9828 {
9829 	struct swevent_hlist *hlist;
9830 	u32 event_id = event->attr.config;
9831 	u64 type = event->attr.type;
9832 
9833 	/*
9834 	 * Event scheduling is always serialized against hlist allocation
9835 	 * and release. Which makes the protected version suitable here.
9836 	 * The context lock guarantees that.
9837 	 */
9838 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
9839 					  lockdep_is_held(&event->ctx->lock));
9840 	if (!hlist)
9841 		return NULL;
9842 
9843 	return __find_swevent_head(hlist, type, event_id);
9844 }
9845 
9846 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9847 				    u64 nr,
9848 				    struct perf_sample_data *data,
9849 				    struct pt_regs *regs)
9850 {
9851 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9852 	struct perf_event *event;
9853 	struct hlist_head *head;
9854 
9855 	rcu_read_lock();
9856 	head = find_swevent_head_rcu(swhash, type, event_id);
9857 	if (!head)
9858 		goto end;
9859 
9860 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
9861 		if (perf_swevent_match(event, type, event_id, data, regs))
9862 			perf_swevent_event(event, nr, data, regs);
9863 	}
9864 end:
9865 	rcu_read_unlock();
9866 }
9867 
9868 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9869 
9870 int perf_swevent_get_recursion_context(void)
9871 {
9872 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9873 
9874 	return get_recursion_context(swhash->recursion);
9875 }
9876 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9877 
9878 void perf_swevent_put_recursion_context(int rctx)
9879 {
9880 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9881 
9882 	put_recursion_context(swhash->recursion, rctx);
9883 }
9884 
9885 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9886 {
9887 	struct perf_sample_data data;
9888 
9889 	if (WARN_ON_ONCE(!regs))
9890 		return;
9891 
9892 	perf_sample_data_init(&data, addr, 0);
9893 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9894 }
9895 
9896 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9897 {
9898 	int rctx;
9899 
9900 	preempt_disable_notrace();
9901 	rctx = perf_swevent_get_recursion_context();
9902 	if (unlikely(rctx < 0))
9903 		goto fail;
9904 
9905 	___perf_sw_event(event_id, nr, regs, addr);
9906 
9907 	perf_swevent_put_recursion_context(rctx);
9908 fail:
9909 	preempt_enable_notrace();
9910 }
9911 
9912 static void perf_swevent_read(struct perf_event *event)
9913 {
9914 }
9915 
9916 static int perf_swevent_add(struct perf_event *event, int flags)
9917 {
9918 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9919 	struct hw_perf_event *hwc = &event->hw;
9920 	struct hlist_head *head;
9921 
9922 	if (is_sampling_event(event)) {
9923 		hwc->last_period = hwc->sample_period;
9924 		perf_swevent_set_period(event);
9925 	}
9926 
9927 	hwc->state = !(flags & PERF_EF_START);
9928 
9929 	head = find_swevent_head(swhash, event);
9930 	if (WARN_ON_ONCE(!head))
9931 		return -EINVAL;
9932 
9933 	hlist_add_head_rcu(&event->hlist_entry, head);
9934 	perf_event_update_userpage(event);
9935 
9936 	return 0;
9937 }
9938 
9939 static void perf_swevent_del(struct perf_event *event, int flags)
9940 {
9941 	hlist_del_rcu(&event->hlist_entry);
9942 }
9943 
9944 static void perf_swevent_start(struct perf_event *event, int flags)
9945 {
9946 	event->hw.state = 0;
9947 }
9948 
9949 static void perf_swevent_stop(struct perf_event *event, int flags)
9950 {
9951 	event->hw.state = PERF_HES_STOPPED;
9952 }
9953 
9954 /* Deref the hlist from the update side */
9955 static inline struct swevent_hlist *
9956 swevent_hlist_deref(struct swevent_htable *swhash)
9957 {
9958 	return rcu_dereference_protected(swhash->swevent_hlist,
9959 					 lockdep_is_held(&swhash->hlist_mutex));
9960 }
9961 
9962 static void swevent_hlist_release(struct swevent_htable *swhash)
9963 {
9964 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9965 
9966 	if (!hlist)
9967 		return;
9968 
9969 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9970 	kfree_rcu(hlist, rcu_head);
9971 }
9972 
9973 static void swevent_hlist_put_cpu(int cpu)
9974 {
9975 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9976 
9977 	mutex_lock(&swhash->hlist_mutex);
9978 
9979 	if (!--swhash->hlist_refcount)
9980 		swevent_hlist_release(swhash);
9981 
9982 	mutex_unlock(&swhash->hlist_mutex);
9983 }
9984 
9985 static void swevent_hlist_put(void)
9986 {
9987 	int cpu;
9988 
9989 	for_each_possible_cpu(cpu)
9990 		swevent_hlist_put_cpu(cpu);
9991 }
9992 
9993 static int swevent_hlist_get_cpu(int cpu)
9994 {
9995 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9996 	int err = 0;
9997 
9998 	mutex_lock(&swhash->hlist_mutex);
9999 	if (!swevent_hlist_deref(swhash) &&
10000 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10001 		struct swevent_hlist *hlist;
10002 
10003 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10004 		if (!hlist) {
10005 			err = -ENOMEM;
10006 			goto exit;
10007 		}
10008 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10009 	}
10010 	swhash->hlist_refcount++;
10011 exit:
10012 	mutex_unlock(&swhash->hlist_mutex);
10013 
10014 	return err;
10015 }
10016 
10017 static int swevent_hlist_get(void)
10018 {
10019 	int err, cpu, failed_cpu;
10020 
10021 	mutex_lock(&pmus_lock);
10022 	for_each_possible_cpu(cpu) {
10023 		err = swevent_hlist_get_cpu(cpu);
10024 		if (err) {
10025 			failed_cpu = cpu;
10026 			goto fail;
10027 		}
10028 	}
10029 	mutex_unlock(&pmus_lock);
10030 	return 0;
10031 fail:
10032 	for_each_possible_cpu(cpu) {
10033 		if (cpu == failed_cpu)
10034 			break;
10035 		swevent_hlist_put_cpu(cpu);
10036 	}
10037 	mutex_unlock(&pmus_lock);
10038 	return err;
10039 }
10040 
10041 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10042 
10043 static void sw_perf_event_destroy(struct perf_event *event)
10044 {
10045 	u64 event_id = event->attr.config;
10046 
10047 	WARN_ON(event->parent);
10048 
10049 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10050 	swevent_hlist_put();
10051 }
10052 
10053 static struct pmu perf_cpu_clock; /* fwd declaration */
10054 static struct pmu perf_task_clock;
10055 
10056 static int perf_swevent_init(struct perf_event *event)
10057 {
10058 	u64 event_id = event->attr.config;
10059 
10060 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10061 		return -ENOENT;
10062 
10063 	/*
10064 	 * no branch sampling for software events
10065 	 */
10066 	if (has_branch_stack(event))
10067 		return -EOPNOTSUPP;
10068 
10069 	switch (event_id) {
10070 	case PERF_COUNT_SW_CPU_CLOCK:
10071 		event->attr.type = perf_cpu_clock.type;
10072 		return -ENOENT;
10073 	case PERF_COUNT_SW_TASK_CLOCK:
10074 		event->attr.type = perf_task_clock.type;
10075 		return -ENOENT;
10076 
10077 	default:
10078 		break;
10079 	}
10080 
10081 	if (event_id >= PERF_COUNT_SW_MAX)
10082 		return -ENOENT;
10083 
10084 	if (!event->parent) {
10085 		int err;
10086 
10087 		err = swevent_hlist_get();
10088 		if (err)
10089 			return err;
10090 
10091 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10092 		event->destroy = sw_perf_event_destroy;
10093 	}
10094 
10095 	return 0;
10096 }
10097 
10098 static struct pmu perf_swevent = {
10099 	.task_ctx_nr	= perf_sw_context,
10100 
10101 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10102 
10103 	.event_init	= perf_swevent_init,
10104 	.add		= perf_swevent_add,
10105 	.del		= perf_swevent_del,
10106 	.start		= perf_swevent_start,
10107 	.stop		= perf_swevent_stop,
10108 	.read		= perf_swevent_read,
10109 };
10110 
10111 #ifdef CONFIG_EVENT_TRACING
10112 
10113 static void tp_perf_event_destroy(struct perf_event *event)
10114 {
10115 	perf_trace_destroy(event);
10116 }
10117 
10118 static int perf_tp_event_init(struct perf_event *event)
10119 {
10120 	int err;
10121 
10122 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10123 		return -ENOENT;
10124 
10125 	/*
10126 	 * no branch sampling for tracepoint events
10127 	 */
10128 	if (has_branch_stack(event))
10129 		return -EOPNOTSUPP;
10130 
10131 	err = perf_trace_init(event);
10132 	if (err)
10133 		return err;
10134 
10135 	event->destroy = tp_perf_event_destroy;
10136 
10137 	return 0;
10138 }
10139 
10140 static struct pmu perf_tracepoint = {
10141 	.task_ctx_nr	= perf_sw_context,
10142 
10143 	.event_init	= perf_tp_event_init,
10144 	.add		= perf_trace_add,
10145 	.del		= perf_trace_del,
10146 	.start		= perf_swevent_start,
10147 	.stop		= perf_swevent_stop,
10148 	.read		= perf_swevent_read,
10149 };
10150 
10151 static int perf_tp_filter_match(struct perf_event *event,
10152 				struct perf_sample_data *data)
10153 {
10154 	void *record = data->raw->frag.data;
10155 
10156 	/* only top level events have filters set */
10157 	if (event->parent)
10158 		event = event->parent;
10159 
10160 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10161 		return 1;
10162 	return 0;
10163 }
10164 
10165 static int perf_tp_event_match(struct perf_event *event,
10166 				struct perf_sample_data *data,
10167 				struct pt_regs *regs)
10168 {
10169 	if (event->hw.state & PERF_HES_STOPPED)
10170 		return 0;
10171 	/*
10172 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10173 	 */
10174 	if (event->attr.exclude_kernel && !user_mode(regs))
10175 		return 0;
10176 
10177 	if (!perf_tp_filter_match(event, data))
10178 		return 0;
10179 
10180 	return 1;
10181 }
10182 
10183 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10184 			       struct trace_event_call *call, u64 count,
10185 			       struct pt_regs *regs, struct hlist_head *head,
10186 			       struct task_struct *task)
10187 {
10188 	if (bpf_prog_array_valid(call)) {
10189 		*(struct pt_regs **)raw_data = regs;
10190 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10191 			perf_swevent_put_recursion_context(rctx);
10192 			return;
10193 		}
10194 	}
10195 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10196 		      rctx, task);
10197 }
10198 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10199 
10200 static void __perf_tp_event_target_task(u64 count, void *record,
10201 					struct pt_regs *regs,
10202 					struct perf_sample_data *data,
10203 					struct perf_event *event)
10204 {
10205 	struct trace_entry *entry = record;
10206 
10207 	if (event->attr.config != entry->type)
10208 		return;
10209 	/* Cannot deliver synchronous signal to other task. */
10210 	if (event->attr.sigtrap)
10211 		return;
10212 	if (perf_tp_event_match(event, data, regs))
10213 		perf_swevent_event(event, count, data, regs);
10214 }
10215 
10216 static void perf_tp_event_target_task(u64 count, void *record,
10217 				      struct pt_regs *regs,
10218 				      struct perf_sample_data *data,
10219 				      struct perf_event_context *ctx)
10220 {
10221 	unsigned int cpu = smp_processor_id();
10222 	struct pmu *pmu = &perf_tracepoint;
10223 	struct perf_event *event, *sibling;
10224 
10225 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10226 		__perf_tp_event_target_task(count, record, regs, data, event);
10227 		for_each_sibling_event(sibling, event)
10228 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10229 	}
10230 
10231 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10232 		__perf_tp_event_target_task(count, record, regs, data, event);
10233 		for_each_sibling_event(sibling, event)
10234 			__perf_tp_event_target_task(count, record, regs, data, sibling);
10235 	}
10236 }
10237 
10238 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10239 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10240 		   struct task_struct *task)
10241 {
10242 	struct perf_sample_data data;
10243 	struct perf_event *event;
10244 
10245 	struct perf_raw_record raw = {
10246 		.frag = {
10247 			.size = entry_size,
10248 			.data = record,
10249 		},
10250 	};
10251 
10252 	perf_sample_data_init(&data, 0, 0);
10253 	perf_sample_save_raw_data(&data, &raw);
10254 
10255 	perf_trace_buf_update(record, event_type);
10256 
10257 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10258 		if (perf_tp_event_match(event, &data, regs)) {
10259 			perf_swevent_event(event, count, &data, regs);
10260 
10261 			/*
10262 			 * Here use the same on-stack perf_sample_data,
10263 			 * some members in data are event-specific and
10264 			 * need to be re-computed for different sweveents.
10265 			 * Re-initialize data->sample_flags safely to avoid
10266 			 * the problem that next event skips preparing data
10267 			 * because data->sample_flags is set.
10268 			 */
10269 			perf_sample_data_init(&data, 0, 0);
10270 			perf_sample_save_raw_data(&data, &raw);
10271 		}
10272 	}
10273 
10274 	/*
10275 	 * If we got specified a target task, also iterate its context and
10276 	 * deliver this event there too.
10277 	 */
10278 	if (task && task != current) {
10279 		struct perf_event_context *ctx;
10280 
10281 		rcu_read_lock();
10282 		ctx = rcu_dereference(task->perf_event_ctxp);
10283 		if (!ctx)
10284 			goto unlock;
10285 
10286 		raw_spin_lock(&ctx->lock);
10287 		perf_tp_event_target_task(count, record, regs, &data, ctx);
10288 		raw_spin_unlock(&ctx->lock);
10289 unlock:
10290 		rcu_read_unlock();
10291 	}
10292 
10293 	perf_swevent_put_recursion_context(rctx);
10294 }
10295 EXPORT_SYMBOL_GPL(perf_tp_event);
10296 
10297 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10298 /*
10299  * Flags in config, used by dynamic PMU kprobe and uprobe
10300  * The flags should match following PMU_FORMAT_ATTR().
10301  *
10302  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10303  *                               if not set, create kprobe/uprobe
10304  *
10305  * The following values specify a reference counter (or semaphore in the
10306  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10307  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10308  *
10309  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10310  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10311  */
10312 enum perf_probe_config {
10313 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10314 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10315 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10316 };
10317 
10318 PMU_FORMAT_ATTR(retprobe, "config:0");
10319 #endif
10320 
10321 #ifdef CONFIG_KPROBE_EVENTS
10322 static struct attribute *kprobe_attrs[] = {
10323 	&format_attr_retprobe.attr,
10324 	NULL,
10325 };
10326 
10327 static struct attribute_group kprobe_format_group = {
10328 	.name = "format",
10329 	.attrs = kprobe_attrs,
10330 };
10331 
10332 static const struct attribute_group *kprobe_attr_groups[] = {
10333 	&kprobe_format_group,
10334 	NULL,
10335 };
10336 
10337 static int perf_kprobe_event_init(struct perf_event *event);
10338 static struct pmu perf_kprobe = {
10339 	.task_ctx_nr	= perf_sw_context,
10340 	.event_init	= perf_kprobe_event_init,
10341 	.add		= perf_trace_add,
10342 	.del		= perf_trace_del,
10343 	.start		= perf_swevent_start,
10344 	.stop		= perf_swevent_stop,
10345 	.read		= perf_swevent_read,
10346 	.attr_groups	= kprobe_attr_groups,
10347 };
10348 
10349 static int perf_kprobe_event_init(struct perf_event *event)
10350 {
10351 	int err;
10352 	bool is_retprobe;
10353 
10354 	if (event->attr.type != perf_kprobe.type)
10355 		return -ENOENT;
10356 
10357 	if (!perfmon_capable())
10358 		return -EACCES;
10359 
10360 	/*
10361 	 * no branch sampling for probe events
10362 	 */
10363 	if (has_branch_stack(event))
10364 		return -EOPNOTSUPP;
10365 
10366 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10367 	err = perf_kprobe_init(event, is_retprobe);
10368 	if (err)
10369 		return err;
10370 
10371 	event->destroy = perf_kprobe_destroy;
10372 
10373 	return 0;
10374 }
10375 #endif /* CONFIG_KPROBE_EVENTS */
10376 
10377 #ifdef CONFIG_UPROBE_EVENTS
10378 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10379 
10380 static struct attribute *uprobe_attrs[] = {
10381 	&format_attr_retprobe.attr,
10382 	&format_attr_ref_ctr_offset.attr,
10383 	NULL,
10384 };
10385 
10386 static struct attribute_group uprobe_format_group = {
10387 	.name = "format",
10388 	.attrs = uprobe_attrs,
10389 };
10390 
10391 static const struct attribute_group *uprobe_attr_groups[] = {
10392 	&uprobe_format_group,
10393 	NULL,
10394 };
10395 
10396 static int perf_uprobe_event_init(struct perf_event *event);
10397 static struct pmu perf_uprobe = {
10398 	.task_ctx_nr	= perf_sw_context,
10399 	.event_init	= perf_uprobe_event_init,
10400 	.add		= perf_trace_add,
10401 	.del		= perf_trace_del,
10402 	.start		= perf_swevent_start,
10403 	.stop		= perf_swevent_stop,
10404 	.read		= perf_swevent_read,
10405 	.attr_groups	= uprobe_attr_groups,
10406 };
10407 
10408 static int perf_uprobe_event_init(struct perf_event *event)
10409 {
10410 	int err;
10411 	unsigned long ref_ctr_offset;
10412 	bool is_retprobe;
10413 
10414 	if (event->attr.type != perf_uprobe.type)
10415 		return -ENOENT;
10416 
10417 	if (!perfmon_capable())
10418 		return -EACCES;
10419 
10420 	/*
10421 	 * no branch sampling for probe events
10422 	 */
10423 	if (has_branch_stack(event))
10424 		return -EOPNOTSUPP;
10425 
10426 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10427 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10428 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10429 	if (err)
10430 		return err;
10431 
10432 	event->destroy = perf_uprobe_destroy;
10433 
10434 	return 0;
10435 }
10436 #endif /* CONFIG_UPROBE_EVENTS */
10437 
10438 static inline void perf_tp_register(void)
10439 {
10440 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10441 #ifdef CONFIG_KPROBE_EVENTS
10442 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10443 #endif
10444 #ifdef CONFIG_UPROBE_EVENTS
10445 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10446 #endif
10447 }
10448 
10449 static void perf_event_free_filter(struct perf_event *event)
10450 {
10451 	ftrace_profile_free_filter(event);
10452 }
10453 
10454 #ifdef CONFIG_BPF_SYSCALL
10455 static void bpf_overflow_handler(struct perf_event *event,
10456 				 struct perf_sample_data *data,
10457 				 struct pt_regs *regs)
10458 {
10459 	struct bpf_perf_event_data_kern ctx = {
10460 		.data = data,
10461 		.event = event,
10462 	};
10463 	struct bpf_prog *prog;
10464 	int ret = 0;
10465 
10466 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10467 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10468 		goto out;
10469 	rcu_read_lock();
10470 	prog = READ_ONCE(event->prog);
10471 	if (prog) {
10472 		perf_prepare_sample(data, event, regs);
10473 		ret = bpf_prog_run(prog, &ctx);
10474 	}
10475 	rcu_read_unlock();
10476 out:
10477 	__this_cpu_dec(bpf_prog_active);
10478 	if (!ret)
10479 		return;
10480 
10481 	event->orig_overflow_handler(event, data, regs);
10482 }
10483 
10484 static int perf_event_set_bpf_handler(struct perf_event *event,
10485 				      struct bpf_prog *prog,
10486 				      u64 bpf_cookie)
10487 {
10488 	if (event->overflow_handler_context)
10489 		/* hw breakpoint or kernel counter */
10490 		return -EINVAL;
10491 
10492 	if (event->prog)
10493 		return -EEXIST;
10494 
10495 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10496 		return -EINVAL;
10497 
10498 	if (event->attr.precise_ip &&
10499 	    prog->call_get_stack &&
10500 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10501 	     event->attr.exclude_callchain_kernel ||
10502 	     event->attr.exclude_callchain_user)) {
10503 		/*
10504 		 * On perf_event with precise_ip, calling bpf_get_stack()
10505 		 * may trigger unwinder warnings and occasional crashes.
10506 		 * bpf_get_[stack|stackid] works around this issue by using
10507 		 * callchain attached to perf_sample_data. If the
10508 		 * perf_event does not full (kernel and user) callchain
10509 		 * attached to perf_sample_data, do not allow attaching BPF
10510 		 * program that calls bpf_get_[stack|stackid].
10511 		 */
10512 		return -EPROTO;
10513 	}
10514 
10515 	event->prog = prog;
10516 	event->bpf_cookie = bpf_cookie;
10517 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10518 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10519 	return 0;
10520 }
10521 
10522 static void perf_event_free_bpf_handler(struct perf_event *event)
10523 {
10524 	struct bpf_prog *prog = event->prog;
10525 
10526 	if (!prog)
10527 		return;
10528 
10529 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10530 	event->prog = NULL;
10531 	bpf_prog_put(prog);
10532 }
10533 #else
10534 static int perf_event_set_bpf_handler(struct perf_event *event,
10535 				      struct bpf_prog *prog,
10536 				      u64 bpf_cookie)
10537 {
10538 	return -EOPNOTSUPP;
10539 }
10540 static void perf_event_free_bpf_handler(struct perf_event *event)
10541 {
10542 }
10543 #endif
10544 
10545 /*
10546  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10547  * with perf_event_open()
10548  */
10549 static inline bool perf_event_is_tracing(struct perf_event *event)
10550 {
10551 	if (event->pmu == &perf_tracepoint)
10552 		return true;
10553 #ifdef CONFIG_KPROBE_EVENTS
10554 	if (event->pmu == &perf_kprobe)
10555 		return true;
10556 #endif
10557 #ifdef CONFIG_UPROBE_EVENTS
10558 	if (event->pmu == &perf_uprobe)
10559 		return true;
10560 #endif
10561 	return false;
10562 }
10563 
10564 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10565 			    u64 bpf_cookie)
10566 {
10567 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10568 
10569 	if (!perf_event_is_tracing(event))
10570 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10571 
10572 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10573 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10574 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10575 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10576 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10577 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10578 		return -EINVAL;
10579 
10580 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10581 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10582 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10583 		return -EINVAL;
10584 
10585 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10586 		/* only uprobe programs are allowed to be sleepable */
10587 		return -EINVAL;
10588 
10589 	/* Kprobe override only works for kprobes, not uprobes. */
10590 	if (prog->kprobe_override && !is_kprobe)
10591 		return -EINVAL;
10592 
10593 	if (is_tracepoint || is_syscall_tp) {
10594 		int off = trace_event_get_offsets(event->tp_event);
10595 
10596 		if (prog->aux->max_ctx_offset > off)
10597 			return -EACCES;
10598 	}
10599 
10600 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10601 }
10602 
10603 void perf_event_free_bpf_prog(struct perf_event *event)
10604 {
10605 	if (!perf_event_is_tracing(event)) {
10606 		perf_event_free_bpf_handler(event);
10607 		return;
10608 	}
10609 	perf_event_detach_bpf_prog(event);
10610 }
10611 
10612 #else
10613 
10614 static inline void perf_tp_register(void)
10615 {
10616 }
10617 
10618 static void perf_event_free_filter(struct perf_event *event)
10619 {
10620 }
10621 
10622 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10623 			    u64 bpf_cookie)
10624 {
10625 	return -ENOENT;
10626 }
10627 
10628 void perf_event_free_bpf_prog(struct perf_event *event)
10629 {
10630 }
10631 #endif /* CONFIG_EVENT_TRACING */
10632 
10633 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10634 void perf_bp_event(struct perf_event *bp, void *data)
10635 {
10636 	struct perf_sample_data sample;
10637 	struct pt_regs *regs = data;
10638 
10639 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10640 
10641 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10642 		perf_swevent_event(bp, 1, &sample, regs);
10643 }
10644 #endif
10645 
10646 /*
10647  * Allocate a new address filter
10648  */
10649 static struct perf_addr_filter *
10650 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10651 {
10652 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10653 	struct perf_addr_filter *filter;
10654 
10655 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10656 	if (!filter)
10657 		return NULL;
10658 
10659 	INIT_LIST_HEAD(&filter->entry);
10660 	list_add_tail(&filter->entry, filters);
10661 
10662 	return filter;
10663 }
10664 
10665 static void free_filters_list(struct list_head *filters)
10666 {
10667 	struct perf_addr_filter *filter, *iter;
10668 
10669 	list_for_each_entry_safe(filter, iter, filters, entry) {
10670 		path_put(&filter->path);
10671 		list_del(&filter->entry);
10672 		kfree(filter);
10673 	}
10674 }
10675 
10676 /*
10677  * Free existing address filters and optionally install new ones
10678  */
10679 static void perf_addr_filters_splice(struct perf_event *event,
10680 				     struct list_head *head)
10681 {
10682 	unsigned long flags;
10683 	LIST_HEAD(list);
10684 
10685 	if (!has_addr_filter(event))
10686 		return;
10687 
10688 	/* don't bother with children, they don't have their own filters */
10689 	if (event->parent)
10690 		return;
10691 
10692 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10693 
10694 	list_splice_init(&event->addr_filters.list, &list);
10695 	if (head)
10696 		list_splice(head, &event->addr_filters.list);
10697 
10698 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10699 
10700 	free_filters_list(&list);
10701 }
10702 
10703 /*
10704  * Scan through mm's vmas and see if one of them matches the
10705  * @filter; if so, adjust filter's address range.
10706  * Called with mm::mmap_lock down for reading.
10707  */
10708 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10709 				   struct mm_struct *mm,
10710 				   struct perf_addr_filter_range *fr)
10711 {
10712 	struct vm_area_struct *vma;
10713 	VMA_ITERATOR(vmi, mm, 0);
10714 
10715 	for_each_vma(vmi, vma) {
10716 		if (!vma->vm_file)
10717 			continue;
10718 
10719 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10720 			return;
10721 	}
10722 }
10723 
10724 /*
10725  * Update event's address range filters based on the
10726  * task's existing mappings, if any.
10727  */
10728 static void perf_event_addr_filters_apply(struct perf_event *event)
10729 {
10730 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10731 	struct task_struct *task = READ_ONCE(event->ctx->task);
10732 	struct perf_addr_filter *filter;
10733 	struct mm_struct *mm = NULL;
10734 	unsigned int count = 0;
10735 	unsigned long flags;
10736 
10737 	/*
10738 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10739 	 * will stop on the parent's child_mutex that our caller is also holding
10740 	 */
10741 	if (task == TASK_TOMBSTONE)
10742 		return;
10743 
10744 	if (ifh->nr_file_filters) {
10745 		mm = get_task_mm(task);
10746 		if (!mm)
10747 			goto restart;
10748 
10749 		mmap_read_lock(mm);
10750 	}
10751 
10752 	raw_spin_lock_irqsave(&ifh->lock, flags);
10753 	list_for_each_entry(filter, &ifh->list, entry) {
10754 		if (filter->path.dentry) {
10755 			/*
10756 			 * Adjust base offset if the filter is associated to a
10757 			 * binary that needs to be mapped:
10758 			 */
10759 			event->addr_filter_ranges[count].start = 0;
10760 			event->addr_filter_ranges[count].size = 0;
10761 
10762 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10763 		} else {
10764 			event->addr_filter_ranges[count].start = filter->offset;
10765 			event->addr_filter_ranges[count].size  = filter->size;
10766 		}
10767 
10768 		count++;
10769 	}
10770 
10771 	event->addr_filters_gen++;
10772 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
10773 
10774 	if (ifh->nr_file_filters) {
10775 		mmap_read_unlock(mm);
10776 
10777 		mmput(mm);
10778 	}
10779 
10780 restart:
10781 	perf_event_stop(event, 1);
10782 }
10783 
10784 /*
10785  * Address range filtering: limiting the data to certain
10786  * instruction address ranges. Filters are ioctl()ed to us from
10787  * userspace as ascii strings.
10788  *
10789  * Filter string format:
10790  *
10791  * ACTION RANGE_SPEC
10792  * where ACTION is one of the
10793  *  * "filter": limit the trace to this region
10794  *  * "start": start tracing from this address
10795  *  * "stop": stop tracing at this address/region;
10796  * RANGE_SPEC is
10797  *  * for kernel addresses: <start address>[/<size>]
10798  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10799  *
10800  * if <size> is not specified or is zero, the range is treated as a single
10801  * address; not valid for ACTION=="filter".
10802  */
10803 enum {
10804 	IF_ACT_NONE = -1,
10805 	IF_ACT_FILTER,
10806 	IF_ACT_START,
10807 	IF_ACT_STOP,
10808 	IF_SRC_FILE,
10809 	IF_SRC_KERNEL,
10810 	IF_SRC_FILEADDR,
10811 	IF_SRC_KERNELADDR,
10812 };
10813 
10814 enum {
10815 	IF_STATE_ACTION = 0,
10816 	IF_STATE_SOURCE,
10817 	IF_STATE_END,
10818 };
10819 
10820 static const match_table_t if_tokens = {
10821 	{ IF_ACT_FILTER,	"filter" },
10822 	{ IF_ACT_START,		"start" },
10823 	{ IF_ACT_STOP,		"stop" },
10824 	{ IF_SRC_FILE,		"%u/%u@%s" },
10825 	{ IF_SRC_KERNEL,	"%u/%u" },
10826 	{ IF_SRC_FILEADDR,	"%u@%s" },
10827 	{ IF_SRC_KERNELADDR,	"%u" },
10828 	{ IF_ACT_NONE,		NULL },
10829 };
10830 
10831 /*
10832  * Address filter string parser
10833  */
10834 static int
10835 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10836 			     struct list_head *filters)
10837 {
10838 	struct perf_addr_filter *filter = NULL;
10839 	char *start, *orig, *filename = NULL;
10840 	substring_t args[MAX_OPT_ARGS];
10841 	int state = IF_STATE_ACTION, token;
10842 	unsigned int kernel = 0;
10843 	int ret = -EINVAL;
10844 
10845 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
10846 	if (!fstr)
10847 		return -ENOMEM;
10848 
10849 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
10850 		static const enum perf_addr_filter_action_t actions[] = {
10851 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
10852 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
10853 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
10854 		};
10855 		ret = -EINVAL;
10856 
10857 		if (!*start)
10858 			continue;
10859 
10860 		/* filter definition begins */
10861 		if (state == IF_STATE_ACTION) {
10862 			filter = perf_addr_filter_new(event, filters);
10863 			if (!filter)
10864 				goto fail;
10865 		}
10866 
10867 		token = match_token(start, if_tokens, args);
10868 		switch (token) {
10869 		case IF_ACT_FILTER:
10870 		case IF_ACT_START:
10871 		case IF_ACT_STOP:
10872 			if (state != IF_STATE_ACTION)
10873 				goto fail;
10874 
10875 			filter->action = actions[token];
10876 			state = IF_STATE_SOURCE;
10877 			break;
10878 
10879 		case IF_SRC_KERNELADDR:
10880 		case IF_SRC_KERNEL:
10881 			kernel = 1;
10882 			fallthrough;
10883 
10884 		case IF_SRC_FILEADDR:
10885 		case IF_SRC_FILE:
10886 			if (state != IF_STATE_SOURCE)
10887 				goto fail;
10888 
10889 			*args[0].to = 0;
10890 			ret = kstrtoul(args[0].from, 0, &filter->offset);
10891 			if (ret)
10892 				goto fail;
10893 
10894 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10895 				*args[1].to = 0;
10896 				ret = kstrtoul(args[1].from, 0, &filter->size);
10897 				if (ret)
10898 					goto fail;
10899 			}
10900 
10901 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10902 				int fpos = token == IF_SRC_FILE ? 2 : 1;
10903 
10904 				kfree(filename);
10905 				filename = match_strdup(&args[fpos]);
10906 				if (!filename) {
10907 					ret = -ENOMEM;
10908 					goto fail;
10909 				}
10910 			}
10911 
10912 			state = IF_STATE_END;
10913 			break;
10914 
10915 		default:
10916 			goto fail;
10917 		}
10918 
10919 		/*
10920 		 * Filter definition is fully parsed, validate and install it.
10921 		 * Make sure that it doesn't contradict itself or the event's
10922 		 * attribute.
10923 		 */
10924 		if (state == IF_STATE_END) {
10925 			ret = -EINVAL;
10926 
10927 			/*
10928 			 * ACTION "filter" must have a non-zero length region
10929 			 * specified.
10930 			 */
10931 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10932 			    !filter->size)
10933 				goto fail;
10934 
10935 			if (!kernel) {
10936 				if (!filename)
10937 					goto fail;
10938 
10939 				/*
10940 				 * For now, we only support file-based filters
10941 				 * in per-task events; doing so for CPU-wide
10942 				 * events requires additional context switching
10943 				 * trickery, since same object code will be
10944 				 * mapped at different virtual addresses in
10945 				 * different processes.
10946 				 */
10947 				ret = -EOPNOTSUPP;
10948 				if (!event->ctx->task)
10949 					goto fail;
10950 
10951 				/* look up the path and grab its inode */
10952 				ret = kern_path(filename, LOOKUP_FOLLOW,
10953 						&filter->path);
10954 				if (ret)
10955 					goto fail;
10956 
10957 				ret = -EINVAL;
10958 				if (!filter->path.dentry ||
10959 				    !S_ISREG(d_inode(filter->path.dentry)
10960 					     ->i_mode))
10961 					goto fail;
10962 
10963 				event->addr_filters.nr_file_filters++;
10964 			}
10965 
10966 			/* ready to consume more filters */
10967 			kfree(filename);
10968 			filename = NULL;
10969 			state = IF_STATE_ACTION;
10970 			filter = NULL;
10971 			kernel = 0;
10972 		}
10973 	}
10974 
10975 	if (state != IF_STATE_ACTION)
10976 		goto fail;
10977 
10978 	kfree(filename);
10979 	kfree(orig);
10980 
10981 	return 0;
10982 
10983 fail:
10984 	kfree(filename);
10985 	free_filters_list(filters);
10986 	kfree(orig);
10987 
10988 	return ret;
10989 }
10990 
10991 static int
10992 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10993 {
10994 	LIST_HEAD(filters);
10995 	int ret;
10996 
10997 	/*
10998 	 * Since this is called in perf_ioctl() path, we're already holding
10999 	 * ctx::mutex.
11000 	 */
11001 	lockdep_assert_held(&event->ctx->mutex);
11002 
11003 	if (WARN_ON_ONCE(event->parent))
11004 		return -EINVAL;
11005 
11006 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11007 	if (ret)
11008 		goto fail_clear_files;
11009 
11010 	ret = event->pmu->addr_filters_validate(&filters);
11011 	if (ret)
11012 		goto fail_free_filters;
11013 
11014 	/* remove existing filters, if any */
11015 	perf_addr_filters_splice(event, &filters);
11016 
11017 	/* install new filters */
11018 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11019 
11020 	return ret;
11021 
11022 fail_free_filters:
11023 	free_filters_list(&filters);
11024 
11025 fail_clear_files:
11026 	event->addr_filters.nr_file_filters = 0;
11027 
11028 	return ret;
11029 }
11030 
11031 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11032 {
11033 	int ret = -EINVAL;
11034 	char *filter_str;
11035 
11036 	filter_str = strndup_user(arg, PAGE_SIZE);
11037 	if (IS_ERR(filter_str))
11038 		return PTR_ERR(filter_str);
11039 
11040 #ifdef CONFIG_EVENT_TRACING
11041 	if (perf_event_is_tracing(event)) {
11042 		struct perf_event_context *ctx = event->ctx;
11043 
11044 		/*
11045 		 * Beware, here be dragons!!
11046 		 *
11047 		 * the tracepoint muck will deadlock against ctx->mutex, but
11048 		 * the tracepoint stuff does not actually need it. So
11049 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11050 		 * already have a reference on ctx.
11051 		 *
11052 		 * This can result in event getting moved to a different ctx,
11053 		 * but that does not affect the tracepoint state.
11054 		 */
11055 		mutex_unlock(&ctx->mutex);
11056 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11057 		mutex_lock(&ctx->mutex);
11058 	} else
11059 #endif
11060 	if (has_addr_filter(event))
11061 		ret = perf_event_set_addr_filter(event, filter_str);
11062 
11063 	kfree(filter_str);
11064 	return ret;
11065 }
11066 
11067 /*
11068  * hrtimer based swevent callback
11069  */
11070 
11071 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11072 {
11073 	enum hrtimer_restart ret = HRTIMER_RESTART;
11074 	struct perf_sample_data data;
11075 	struct pt_regs *regs;
11076 	struct perf_event *event;
11077 	u64 period;
11078 
11079 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11080 
11081 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11082 		return HRTIMER_NORESTART;
11083 
11084 	event->pmu->read(event);
11085 
11086 	perf_sample_data_init(&data, 0, event->hw.last_period);
11087 	regs = get_irq_regs();
11088 
11089 	if (regs && !perf_exclude_event(event, regs)) {
11090 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11091 			if (__perf_event_overflow(event, 1, &data, regs))
11092 				ret = HRTIMER_NORESTART;
11093 	}
11094 
11095 	period = max_t(u64, 10000, event->hw.sample_period);
11096 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11097 
11098 	return ret;
11099 }
11100 
11101 static void perf_swevent_start_hrtimer(struct perf_event *event)
11102 {
11103 	struct hw_perf_event *hwc = &event->hw;
11104 	s64 period;
11105 
11106 	if (!is_sampling_event(event))
11107 		return;
11108 
11109 	period = local64_read(&hwc->period_left);
11110 	if (period) {
11111 		if (period < 0)
11112 			period = 10000;
11113 
11114 		local64_set(&hwc->period_left, 0);
11115 	} else {
11116 		period = max_t(u64, 10000, hwc->sample_period);
11117 	}
11118 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11119 		      HRTIMER_MODE_REL_PINNED_HARD);
11120 }
11121 
11122 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11123 {
11124 	struct hw_perf_event *hwc = &event->hw;
11125 
11126 	if (is_sampling_event(event)) {
11127 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11128 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11129 
11130 		hrtimer_cancel(&hwc->hrtimer);
11131 	}
11132 }
11133 
11134 static void perf_swevent_init_hrtimer(struct perf_event *event)
11135 {
11136 	struct hw_perf_event *hwc = &event->hw;
11137 
11138 	if (!is_sampling_event(event))
11139 		return;
11140 
11141 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11142 	hwc->hrtimer.function = perf_swevent_hrtimer;
11143 
11144 	/*
11145 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11146 	 * mapping and avoid the whole period adjust feedback stuff.
11147 	 */
11148 	if (event->attr.freq) {
11149 		long freq = event->attr.sample_freq;
11150 
11151 		event->attr.sample_period = NSEC_PER_SEC / freq;
11152 		hwc->sample_period = event->attr.sample_period;
11153 		local64_set(&hwc->period_left, hwc->sample_period);
11154 		hwc->last_period = hwc->sample_period;
11155 		event->attr.freq = 0;
11156 	}
11157 }
11158 
11159 /*
11160  * Software event: cpu wall time clock
11161  */
11162 
11163 static void cpu_clock_event_update(struct perf_event *event)
11164 {
11165 	s64 prev;
11166 	u64 now;
11167 
11168 	now = local_clock();
11169 	prev = local64_xchg(&event->hw.prev_count, now);
11170 	local64_add(now - prev, &event->count);
11171 }
11172 
11173 static void cpu_clock_event_start(struct perf_event *event, int flags)
11174 {
11175 	local64_set(&event->hw.prev_count, local_clock());
11176 	perf_swevent_start_hrtimer(event);
11177 }
11178 
11179 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11180 {
11181 	perf_swevent_cancel_hrtimer(event);
11182 	cpu_clock_event_update(event);
11183 }
11184 
11185 static int cpu_clock_event_add(struct perf_event *event, int flags)
11186 {
11187 	if (flags & PERF_EF_START)
11188 		cpu_clock_event_start(event, flags);
11189 	perf_event_update_userpage(event);
11190 
11191 	return 0;
11192 }
11193 
11194 static void cpu_clock_event_del(struct perf_event *event, int flags)
11195 {
11196 	cpu_clock_event_stop(event, flags);
11197 }
11198 
11199 static void cpu_clock_event_read(struct perf_event *event)
11200 {
11201 	cpu_clock_event_update(event);
11202 }
11203 
11204 static int cpu_clock_event_init(struct perf_event *event)
11205 {
11206 	if (event->attr.type != perf_cpu_clock.type)
11207 		return -ENOENT;
11208 
11209 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11210 		return -ENOENT;
11211 
11212 	/*
11213 	 * no branch sampling for software events
11214 	 */
11215 	if (has_branch_stack(event))
11216 		return -EOPNOTSUPP;
11217 
11218 	perf_swevent_init_hrtimer(event);
11219 
11220 	return 0;
11221 }
11222 
11223 static struct pmu perf_cpu_clock = {
11224 	.task_ctx_nr	= perf_sw_context,
11225 
11226 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11227 	.dev		= PMU_NULL_DEV,
11228 
11229 	.event_init	= cpu_clock_event_init,
11230 	.add		= cpu_clock_event_add,
11231 	.del		= cpu_clock_event_del,
11232 	.start		= cpu_clock_event_start,
11233 	.stop		= cpu_clock_event_stop,
11234 	.read		= cpu_clock_event_read,
11235 };
11236 
11237 /*
11238  * Software event: task time clock
11239  */
11240 
11241 static void task_clock_event_update(struct perf_event *event, u64 now)
11242 {
11243 	u64 prev;
11244 	s64 delta;
11245 
11246 	prev = local64_xchg(&event->hw.prev_count, now);
11247 	delta = now - prev;
11248 	local64_add(delta, &event->count);
11249 }
11250 
11251 static void task_clock_event_start(struct perf_event *event, int flags)
11252 {
11253 	local64_set(&event->hw.prev_count, event->ctx->time);
11254 	perf_swevent_start_hrtimer(event);
11255 }
11256 
11257 static void task_clock_event_stop(struct perf_event *event, int flags)
11258 {
11259 	perf_swevent_cancel_hrtimer(event);
11260 	task_clock_event_update(event, event->ctx->time);
11261 }
11262 
11263 static int task_clock_event_add(struct perf_event *event, int flags)
11264 {
11265 	if (flags & PERF_EF_START)
11266 		task_clock_event_start(event, flags);
11267 	perf_event_update_userpage(event);
11268 
11269 	return 0;
11270 }
11271 
11272 static void task_clock_event_del(struct perf_event *event, int flags)
11273 {
11274 	task_clock_event_stop(event, PERF_EF_UPDATE);
11275 }
11276 
11277 static void task_clock_event_read(struct perf_event *event)
11278 {
11279 	u64 now = perf_clock();
11280 	u64 delta = now - event->ctx->timestamp;
11281 	u64 time = event->ctx->time + delta;
11282 
11283 	task_clock_event_update(event, time);
11284 }
11285 
11286 static int task_clock_event_init(struct perf_event *event)
11287 {
11288 	if (event->attr.type != perf_task_clock.type)
11289 		return -ENOENT;
11290 
11291 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11292 		return -ENOENT;
11293 
11294 	/*
11295 	 * no branch sampling for software events
11296 	 */
11297 	if (has_branch_stack(event))
11298 		return -EOPNOTSUPP;
11299 
11300 	perf_swevent_init_hrtimer(event);
11301 
11302 	return 0;
11303 }
11304 
11305 static struct pmu perf_task_clock = {
11306 	.task_ctx_nr	= perf_sw_context,
11307 
11308 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11309 	.dev		= PMU_NULL_DEV,
11310 
11311 	.event_init	= task_clock_event_init,
11312 	.add		= task_clock_event_add,
11313 	.del		= task_clock_event_del,
11314 	.start		= task_clock_event_start,
11315 	.stop		= task_clock_event_stop,
11316 	.read		= task_clock_event_read,
11317 };
11318 
11319 static void perf_pmu_nop_void(struct pmu *pmu)
11320 {
11321 }
11322 
11323 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11324 {
11325 }
11326 
11327 static int perf_pmu_nop_int(struct pmu *pmu)
11328 {
11329 	return 0;
11330 }
11331 
11332 static int perf_event_nop_int(struct perf_event *event, u64 value)
11333 {
11334 	return 0;
11335 }
11336 
11337 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11338 
11339 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11340 {
11341 	__this_cpu_write(nop_txn_flags, flags);
11342 
11343 	if (flags & ~PERF_PMU_TXN_ADD)
11344 		return;
11345 
11346 	perf_pmu_disable(pmu);
11347 }
11348 
11349 static int perf_pmu_commit_txn(struct pmu *pmu)
11350 {
11351 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11352 
11353 	__this_cpu_write(nop_txn_flags, 0);
11354 
11355 	if (flags & ~PERF_PMU_TXN_ADD)
11356 		return 0;
11357 
11358 	perf_pmu_enable(pmu);
11359 	return 0;
11360 }
11361 
11362 static void perf_pmu_cancel_txn(struct pmu *pmu)
11363 {
11364 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11365 
11366 	__this_cpu_write(nop_txn_flags, 0);
11367 
11368 	if (flags & ~PERF_PMU_TXN_ADD)
11369 		return;
11370 
11371 	perf_pmu_enable(pmu);
11372 }
11373 
11374 static int perf_event_idx_default(struct perf_event *event)
11375 {
11376 	return 0;
11377 }
11378 
11379 static void free_pmu_context(struct pmu *pmu)
11380 {
11381 	free_percpu(pmu->cpu_pmu_context);
11382 }
11383 
11384 /*
11385  * Let userspace know that this PMU supports address range filtering:
11386  */
11387 static ssize_t nr_addr_filters_show(struct device *dev,
11388 				    struct device_attribute *attr,
11389 				    char *page)
11390 {
11391 	struct pmu *pmu = dev_get_drvdata(dev);
11392 
11393 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11394 }
11395 DEVICE_ATTR_RO(nr_addr_filters);
11396 
11397 static struct idr pmu_idr;
11398 
11399 static ssize_t
11400 type_show(struct device *dev, struct device_attribute *attr, char *page)
11401 {
11402 	struct pmu *pmu = dev_get_drvdata(dev);
11403 
11404 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11405 }
11406 static DEVICE_ATTR_RO(type);
11407 
11408 static ssize_t
11409 perf_event_mux_interval_ms_show(struct device *dev,
11410 				struct device_attribute *attr,
11411 				char *page)
11412 {
11413 	struct pmu *pmu = dev_get_drvdata(dev);
11414 
11415 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11416 }
11417 
11418 static DEFINE_MUTEX(mux_interval_mutex);
11419 
11420 static ssize_t
11421 perf_event_mux_interval_ms_store(struct device *dev,
11422 				 struct device_attribute *attr,
11423 				 const char *buf, size_t count)
11424 {
11425 	struct pmu *pmu = dev_get_drvdata(dev);
11426 	int timer, cpu, ret;
11427 
11428 	ret = kstrtoint(buf, 0, &timer);
11429 	if (ret)
11430 		return ret;
11431 
11432 	if (timer < 1)
11433 		return -EINVAL;
11434 
11435 	/* same value, noting to do */
11436 	if (timer == pmu->hrtimer_interval_ms)
11437 		return count;
11438 
11439 	mutex_lock(&mux_interval_mutex);
11440 	pmu->hrtimer_interval_ms = timer;
11441 
11442 	/* update all cpuctx for this PMU */
11443 	cpus_read_lock();
11444 	for_each_online_cpu(cpu) {
11445 		struct perf_cpu_pmu_context *cpc;
11446 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11447 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11448 
11449 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11450 	}
11451 	cpus_read_unlock();
11452 	mutex_unlock(&mux_interval_mutex);
11453 
11454 	return count;
11455 }
11456 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11457 
11458 static struct attribute *pmu_dev_attrs[] = {
11459 	&dev_attr_type.attr,
11460 	&dev_attr_perf_event_mux_interval_ms.attr,
11461 	&dev_attr_nr_addr_filters.attr,
11462 	NULL,
11463 };
11464 
11465 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11466 {
11467 	struct device *dev = kobj_to_dev(kobj);
11468 	struct pmu *pmu = dev_get_drvdata(dev);
11469 
11470 	if (n == 2 && !pmu->nr_addr_filters)
11471 		return 0;
11472 
11473 	return a->mode;
11474 }
11475 
11476 static struct attribute_group pmu_dev_attr_group = {
11477 	.is_visible = pmu_dev_is_visible,
11478 	.attrs = pmu_dev_attrs,
11479 };
11480 
11481 static const struct attribute_group *pmu_dev_groups[] = {
11482 	&pmu_dev_attr_group,
11483 	NULL,
11484 };
11485 
11486 static int pmu_bus_running;
11487 static struct bus_type pmu_bus = {
11488 	.name		= "event_source",
11489 	.dev_groups	= pmu_dev_groups,
11490 };
11491 
11492 static void pmu_dev_release(struct device *dev)
11493 {
11494 	kfree(dev);
11495 }
11496 
11497 static int pmu_dev_alloc(struct pmu *pmu)
11498 {
11499 	int ret = -ENOMEM;
11500 
11501 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11502 	if (!pmu->dev)
11503 		goto out;
11504 
11505 	pmu->dev->groups = pmu->attr_groups;
11506 	device_initialize(pmu->dev);
11507 
11508 	dev_set_drvdata(pmu->dev, pmu);
11509 	pmu->dev->bus = &pmu_bus;
11510 	pmu->dev->parent = pmu->parent;
11511 	pmu->dev->release = pmu_dev_release;
11512 
11513 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11514 	if (ret)
11515 		goto free_dev;
11516 
11517 	ret = device_add(pmu->dev);
11518 	if (ret)
11519 		goto free_dev;
11520 
11521 	if (pmu->attr_update) {
11522 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11523 		if (ret)
11524 			goto del_dev;
11525 	}
11526 
11527 out:
11528 	return ret;
11529 
11530 del_dev:
11531 	device_del(pmu->dev);
11532 
11533 free_dev:
11534 	put_device(pmu->dev);
11535 	goto out;
11536 }
11537 
11538 static struct lock_class_key cpuctx_mutex;
11539 static struct lock_class_key cpuctx_lock;
11540 
11541 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11542 {
11543 	int cpu, ret, max = PERF_TYPE_MAX;
11544 
11545 	mutex_lock(&pmus_lock);
11546 	ret = -ENOMEM;
11547 	pmu->pmu_disable_count = alloc_percpu(int);
11548 	if (!pmu->pmu_disable_count)
11549 		goto unlock;
11550 
11551 	pmu->type = -1;
11552 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11553 		ret = -EINVAL;
11554 		goto free_pdc;
11555 	}
11556 
11557 	pmu->name = name;
11558 
11559 	if (type >= 0)
11560 		max = type;
11561 
11562 	ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11563 	if (ret < 0)
11564 		goto free_pdc;
11565 
11566 	WARN_ON(type >= 0 && ret != type);
11567 
11568 	type = ret;
11569 	pmu->type = type;
11570 
11571 	if (pmu_bus_running && !pmu->dev) {
11572 		ret = pmu_dev_alloc(pmu);
11573 		if (ret)
11574 			goto free_idr;
11575 	}
11576 
11577 	ret = -ENOMEM;
11578 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11579 	if (!pmu->cpu_pmu_context)
11580 		goto free_dev;
11581 
11582 	for_each_possible_cpu(cpu) {
11583 		struct perf_cpu_pmu_context *cpc;
11584 
11585 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11586 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11587 		__perf_mux_hrtimer_init(cpc, cpu);
11588 	}
11589 
11590 	if (!pmu->start_txn) {
11591 		if (pmu->pmu_enable) {
11592 			/*
11593 			 * If we have pmu_enable/pmu_disable calls, install
11594 			 * transaction stubs that use that to try and batch
11595 			 * hardware accesses.
11596 			 */
11597 			pmu->start_txn  = perf_pmu_start_txn;
11598 			pmu->commit_txn = perf_pmu_commit_txn;
11599 			pmu->cancel_txn = perf_pmu_cancel_txn;
11600 		} else {
11601 			pmu->start_txn  = perf_pmu_nop_txn;
11602 			pmu->commit_txn = perf_pmu_nop_int;
11603 			pmu->cancel_txn = perf_pmu_nop_void;
11604 		}
11605 	}
11606 
11607 	if (!pmu->pmu_enable) {
11608 		pmu->pmu_enable  = perf_pmu_nop_void;
11609 		pmu->pmu_disable = perf_pmu_nop_void;
11610 	}
11611 
11612 	if (!pmu->check_period)
11613 		pmu->check_period = perf_event_nop_int;
11614 
11615 	if (!pmu->event_idx)
11616 		pmu->event_idx = perf_event_idx_default;
11617 
11618 	list_add_rcu(&pmu->entry, &pmus);
11619 	atomic_set(&pmu->exclusive_cnt, 0);
11620 	ret = 0;
11621 unlock:
11622 	mutex_unlock(&pmus_lock);
11623 
11624 	return ret;
11625 
11626 free_dev:
11627 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11628 		device_del(pmu->dev);
11629 		put_device(pmu->dev);
11630 	}
11631 
11632 free_idr:
11633 	idr_remove(&pmu_idr, pmu->type);
11634 
11635 free_pdc:
11636 	free_percpu(pmu->pmu_disable_count);
11637 	goto unlock;
11638 }
11639 EXPORT_SYMBOL_GPL(perf_pmu_register);
11640 
11641 void perf_pmu_unregister(struct pmu *pmu)
11642 {
11643 	mutex_lock(&pmus_lock);
11644 	list_del_rcu(&pmu->entry);
11645 
11646 	/*
11647 	 * We dereference the pmu list under both SRCU and regular RCU, so
11648 	 * synchronize against both of those.
11649 	 */
11650 	synchronize_srcu(&pmus_srcu);
11651 	synchronize_rcu();
11652 
11653 	free_percpu(pmu->pmu_disable_count);
11654 	idr_remove(&pmu_idr, pmu->type);
11655 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11656 		if (pmu->nr_addr_filters)
11657 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11658 		device_del(pmu->dev);
11659 		put_device(pmu->dev);
11660 	}
11661 	free_pmu_context(pmu);
11662 	mutex_unlock(&pmus_lock);
11663 }
11664 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11665 
11666 static inline bool has_extended_regs(struct perf_event *event)
11667 {
11668 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11669 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11670 }
11671 
11672 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11673 {
11674 	struct perf_event_context *ctx = NULL;
11675 	int ret;
11676 
11677 	if (!try_module_get(pmu->module))
11678 		return -ENODEV;
11679 
11680 	/*
11681 	 * A number of pmu->event_init() methods iterate the sibling_list to,
11682 	 * for example, validate if the group fits on the PMU. Therefore,
11683 	 * if this is a sibling event, acquire the ctx->mutex to protect
11684 	 * the sibling_list.
11685 	 */
11686 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11687 		/*
11688 		 * This ctx->mutex can nest when we're called through
11689 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
11690 		 */
11691 		ctx = perf_event_ctx_lock_nested(event->group_leader,
11692 						 SINGLE_DEPTH_NESTING);
11693 		BUG_ON(!ctx);
11694 	}
11695 
11696 	event->pmu = pmu;
11697 	ret = pmu->event_init(event);
11698 
11699 	if (ctx)
11700 		perf_event_ctx_unlock(event->group_leader, ctx);
11701 
11702 	if (!ret) {
11703 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11704 		    has_extended_regs(event))
11705 			ret = -EOPNOTSUPP;
11706 
11707 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11708 		    event_has_any_exclude_flag(event))
11709 			ret = -EINVAL;
11710 
11711 		if (ret && event->destroy)
11712 			event->destroy(event);
11713 	}
11714 
11715 	if (ret)
11716 		module_put(pmu->module);
11717 
11718 	return ret;
11719 }
11720 
11721 static struct pmu *perf_init_event(struct perf_event *event)
11722 {
11723 	bool extended_type = false;
11724 	int idx, type, ret;
11725 	struct pmu *pmu;
11726 
11727 	idx = srcu_read_lock(&pmus_srcu);
11728 
11729 	/*
11730 	 * Save original type before calling pmu->event_init() since certain
11731 	 * pmus overwrites event->attr.type to forward event to another pmu.
11732 	 */
11733 	event->orig_type = event->attr.type;
11734 
11735 	/* Try parent's PMU first: */
11736 	if (event->parent && event->parent->pmu) {
11737 		pmu = event->parent->pmu;
11738 		ret = perf_try_init_event(pmu, event);
11739 		if (!ret)
11740 			goto unlock;
11741 	}
11742 
11743 	/*
11744 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11745 	 * are often aliases for PERF_TYPE_RAW.
11746 	 */
11747 	type = event->attr.type;
11748 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11749 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11750 		if (!type) {
11751 			type = PERF_TYPE_RAW;
11752 		} else {
11753 			extended_type = true;
11754 			event->attr.config &= PERF_HW_EVENT_MASK;
11755 		}
11756 	}
11757 
11758 again:
11759 	rcu_read_lock();
11760 	pmu = idr_find(&pmu_idr, type);
11761 	rcu_read_unlock();
11762 	if (pmu) {
11763 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
11764 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11765 			goto fail;
11766 
11767 		ret = perf_try_init_event(pmu, event);
11768 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11769 			type = event->attr.type;
11770 			goto again;
11771 		}
11772 
11773 		if (ret)
11774 			pmu = ERR_PTR(ret);
11775 
11776 		goto unlock;
11777 	}
11778 
11779 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11780 		ret = perf_try_init_event(pmu, event);
11781 		if (!ret)
11782 			goto unlock;
11783 
11784 		if (ret != -ENOENT) {
11785 			pmu = ERR_PTR(ret);
11786 			goto unlock;
11787 		}
11788 	}
11789 fail:
11790 	pmu = ERR_PTR(-ENOENT);
11791 unlock:
11792 	srcu_read_unlock(&pmus_srcu, idx);
11793 
11794 	return pmu;
11795 }
11796 
11797 static void attach_sb_event(struct perf_event *event)
11798 {
11799 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11800 
11801 	raw_spin_lock(&pel->lock);
11802 	list_add_rcu(&event->sb_list, &pel->list);
11803 	raw_spin_unlock(&pel->lock);
11804 }
11805 
11806 /*
11807  * We keep a list of all !task (and therefore per-cpu) events
11808  * that need to receive side-band records.
11809  *
11810  * This avoids having to scan all the various PMU per-cpu contexts
11811  * looking for them.
11812  */
11813 static void account_pmu_sb_event(struct perf_event *event)
11814 {
11815 	if (is_sb_event(event))
11816 		attach_sb_event(event);
11817 }
11818 
11819 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11820 static void account_freq_event_nohz(void)
11821 {
11822 #ifdef CONFIG_NO_HZ_FULL
11823 	/* Lock so we don't race with concurrent unaccount */
11824 	spin_lock(&nr_freq_lock);
11825 	if (atomic_inc_return(&nr_freq_events) == 1)
11826 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11827 	spin_unlock(&nr_freq_lock);
11828 #endif
11829 }
11830 
11831 static void account_freq_event(void)
11832 {
11833 	if (tick_nohz_full_enabled())
11834 		account_freq_event_nohz();
11835 	else
11836 		atomic_inc(&nr_freq_events);
11837 }
11838 
11839 
11840 static void account_event(struct perf_event *event)
11841 {
11842 	bool inc = false;
11843 
11844 	if (event->parent)
11845 		return;
11846 
11847 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11848 		inc = true;
11849 	if (event->attr.mmap || event->attr.mmap_data)
11850 		atomic_inc(&nr_mmap_events);
11851 	if (event->attr.build_id)
11852 		atomic_inc(&nr_build_id_events);
11853 	if (event->attr.comm)
11854 		atomic_inc(&nr_comm_events);
11855 	if (event->attr.namespaces)
11856 		atomic_inc(&nr_namespaces_events);
11857 	if (event->attr.cgroup)
11858 		atomic_inc(&nr_cgroup_events);
11859 	if (event->attr.task)
11860 		atomic_inc(&nr_task_events);
11861 	if (event->attr.freq)
11862 		account_freq_event();
11863 	if (event->attr.context_switch) {
11864 		atomic_inc(&nr_switch_events);
11865 		inc = true;
11866 	}
11867 	if (has_branch_stack(event))
11868 		inc = true;
11869 	if (is_cgroup_event(event))
11870 		inc = true;
11871 	if (event->attr.ksymbol)
11872 		atomic_inc(&nr_ksymbol_events);
11873 	if (event->attr.bpf_event)
11874 		atomic_inc(&nr_bpf_events);
11875 	if (event->attr.text_poke)
11876 		atomic_inc(&nr_text_poke_events);
11877 
11878 	if (inc) {
11879 		/*
11880 		 * We need the mutex here because static_branch_enable()
11881 		 * must complete *before* the perf_sched_count increment
11882 		 * becomes visible.
11883 		 */
11884 		if (atomic_inc_not_zero(&perf_sched_count))
11885 			goto enabled;
11886 
11887 		mutex_lock(&perf_sched_mutex);
11888 		if (!atomic_read(&perf_sched_count)) {
11889 			static_branch_enable(&perf_sched_events);
11890 			/*
11891 			 * Guarantee that all CPUs observe they key change and
11892 			 * call the perf scheduling hooks before proceeding to
11893 			 * install events that need them.
11894 			 */
11895 			synchronize_rcu();
11896 		}
11897 		/*
11898 		 * Now that we have waited for the sync_sched(), allow further
11899 		 * increments to by-pass the mutex.
11900 		 */
11901 		atomic_inc(&perf_sched_count);
11902 		mutex_unlock(&perf_sched_mutex);
11903 	}
11904 enabled:
11905 
11906 	account_pmu_sb_event(event);
11907 }
11908 
11909 /*
11910  * Allocate and initialize an event structure
11911  */
11912 static struct perf_event *
11913 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11914 		 struct task_struct *task,
11915 		 struct perf_event *group_leader,
11916 		 struct perf_event *parent_event,
11917 		 perf_overflow_handler_t overflow_handler,
11918 		 void *context, int cgroup_fd)
11919 {
11920 	struct pmu *pmu;
11921 	struct perf_event *event;
11922 	struct hw_perf_event *hwc;
11923 	long err = -EINVAL;
11924 	int node;
11925 
11926 	if ((unsigned)cpu >= nr_cpu_ids) {
11927 		if (!task || cpu != -1)
11928 			return ERR_PTR(-EINVAL);
11929 	}
11930 	if (attr->sigtrap && !task) {
11931 		/* Requires a task: avoid signalling random tasks. */
11932 		return ERR_PTR(-EINVAL);
11933 	}
11934 
11935 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11936 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11937 				      node);
11938 	if (!event)
11939 		return ERR_PTR(-ENOMEM);
11940 
11941 	/*
11942 	 * Single events are their own group leaders, with an
11943 	 * empty sibling list:
11944 	 */
11945 	if (!group_leader)
11946 		group_leader = event;
11947 
11948 	mutex_init(&event->child_mutex);
11949 	INIT_LIST_HEAD(&event->child_list);
11950 
11951 	INIT_LIST_HEAD(&event->event_entry);
11952 	INIT_LIST_HEAD(&event->sibling_list);
11953 	INIT_LIST_HEAD(&event->active_list);
11954 	init_event_group(event);
11955 	INIT_LIST_HEAD(&event->rb_entry);
11956 	INIT_LIST_HEAD(&event->active_entry);
11957 	INIT_LIST_HEAD(&event->addr_filters.list);
11958 	INIT_HLIST_NODE(&event->hlist_entry);
11959 
11960 
11961 	init_waitqueue_head(&event->waitq);
11962 	init_irq_work(&event->pending_irq, perf_pending_irq);
11963 	init_task_work(&event->pending_task, perf_pending_task);
11964 	rcuwait_init(&event->pending_work_wait);
11965 
11966 	mutex_init(&event->mmap_mutex);
11967 	raw_spin_lock_init(&event->addr_filters.lock);
11968 
11969 	atomic_long_set(&event->refcount, 1);
11970 	event->cpu		= cpu;
11971 	event->attr		= *attr;
11972 	event->group_leader	= group_leader;
11973 	event->pmu		= NULL;
11974 	event->oncpu		= -1;
11975 
11976 	event->parent		= parent_event;
11977 
11978 	event->ns		= get_pid_ns(task_active_pid_ns(current));
11979 	event->id		= atomic64_inc_return(&perf_event_id);
11980 
11981 	event->state		= PERF_EVENT_STATE_INACTIVE;
11982 
11983 	if (parent_event)
11984 		event->event_caps = parent_event->event_caps;
11985 
11986 	if (task) {
11987 		event->attach_state = PERF_ATTACH_TASK;
11988 		/*
11989 		 * XXX pmu::event_init needs to know what task to account to
11990 		 * and we cannot use the ctx information because we need the
11991 		 * pmu before we get a ctx.
11992 		 */
11993 		event->hw.target = get_task_struct(task);
11994 	}
11995 
11996 	event->clock = &local_clock;
11997 	if (parent_event)
11998 		event->clock = parent_event->clock;
11999 
12000 	if (!overflow_handler && parent_event) {
12001 		overflow_handler = parent_event->overflow_handler;
12002 		context = parent_event->overflow_handler_context;
12003 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12004 		if (overflow_handler == bpf_overflow_handler) {
12005 			struct bpf_prog *prog = parent_event->prog;
12006 
12007 			bpf_prog_inc(prog);
12008 			event->prog = prog;
12009 			event->orig_overflow_handler =
12010 				parent_event->orig_overflow_handler;
12011 		}
12012 #endif
12013 	}
12014 
12015 	if (overflow_handler) {
12016 		event->overflow_handler	= overflow_handler;
12017 		event->overflow_handler_context = context;
12018 	} else if (is_write_backward(event)){
12019 		event->overflow_handler = perf_event_output_backward;
12020 		event->overflow_handler_context = NULL;
12021 	} else {
12022 		event->overflow_handler = perf_event_output_forward;
12023 		event->overflow_handler_context = NULL;
12024 	}
12025 
12026 	perf_event__state_init(event);
12027 
12028 	pmu = NULL;
12029 
12030 	hwc = &event->hw;
12031 	hwc->sample_period = attr->sample_period;
12032 	if (attr->freq && attr->sample_freq)
12033 		hwc->sample_period = 1;
12034 	hwc->last_period = hwc->sample_period;
12035 
12036 	local64_set(&hwc->period_left, hwc->sample_period);
12037 
12038 	/*
12039 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
12040 	 * See perf_output_read().
12041 	 */
12042 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12043 		goto err_ns;
12044 
12045 	if (!has_branch_stack(event))
12046 		event->attr.branch_sample_type = 0;
12047 
12048 	pmu = perf_init_event(event);
12049 	if (IS_ERR(pmu)) {
12050 		err = PTR_ERR(pmu);
12051 		goto err_ns;
12052 	}
12053 
12054 	/*
12055 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12056 	 * events (they don't make sense as the cgroup will be different
12057 	 * on other CPUs in the uncore mask).
12058 	 */
12059 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12060 		err = -EINVAL;
12061 		goto err_pmu;
12062 	}
12063 
12064 	if (event->attr.aux_output &&
12065 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12066 		err = -EOPNOTSUPP;
12067 		goto err_pmu;
12068 	}
12069 
12070 	if (cgroup_fd != -1) {
12071 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12072 		if (err)
12073 			goto err_pmu;
12074 	}
12075 
12076 	err = exclusive_event_init(event);
12077 	if (err)
12078 		goto err_pmu;
12079 
12080 	if (has_addr_filter(event)) {
12081 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12082 						    sizeof(struct perf_addr_filter_range),
12083 						    GFP_KERNEL);
12084 		if (!event->addr_filter_ranges) {
12085 			err = -ENOMEM;
12086 			goto err_per_task;
12087 		}
12088 
12089 		/*
12090 		 * Clone the parent's vma offsets: they are valid until exec()
12091 		 * even if the mm is not shared with the parent.
12092 		 */
12093 		if (event->parent) {
12094 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12095 
12096 			raw_spin_lock_irq(&ifh->lock);
12097 			memcpy(event->addr_filter_ranges,
12098 			       event->parent->addr_filter_ranges,
12099 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12100 			raw_spin_unlock_irq(&ifh->lock);
12101 		}
12102 
12103 		/* force hw sync on the address filters */
12104 		event->addr_filters_gen = 1;
12105 	}
12106 
12107 	if (!event->parent) {
12108 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12109 			err = get_callchain_buffers(attr->sample_max_stack);
12110 			if (err)
12111 				goto err_addr_filters;
12112 		}
12113 	}
12114 
12115 	err = security_perf_event_alloc(event);
12116 	if (err)
12117 		goto err_callchain_buffer;
12118 
12119 	/* symmetric to unaccount_event() in _free_event() */
12120 	account_event(event);
12121 
12122 	return event;
12123 
12124 err_callchain_buffer:
12125 	if (!event->parent) {
12126 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12127 			put_callchain_buffers();
12128 	}
12129 err_addr_filters:
12130 	kfree(event->addr_filter_ranges);
12131 
12132 err_per_task:
12133 	exclusive_event_destroy(event);
12134 
12135 err_pmu:
12136 	if (is_cgroup_event(event))
12137 		perf_detach_cgroup(event);
12138 	if (event->destroy)
12139 		event->destroy(event);
12140 	module_put(pmu->module);
12141 err_ns:
12142 	if (event->hw.target)
12143 		put_task_struct(event->hw.target);
12144 	call_rcu(&event->rcu_head, free_event_rcu);
12145 
12146 	return ERR_PTR(err);
12147 }
12148 
12149 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12150 			  struct perf_event_attr *attr)
12151 {
12152 	u32 size;
12153 	int ret;
12154 
12155 	/* Zero the full structure, so that a short copy will be nice. */
12156 	memset(attr, 0, sizeof(*attr));
12157 
12158 	ret = get_user(size, &uattr->size);
12159 	if (ret)
12160 		return ret;
12161 
12162 	/* ABI compatibility quirk: */
12163 	if (!size)
12164 		size = PERF_ATTR_SIZE_VER0;
12165 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12166 		goto err_size;
12167 
12168 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12169 	if (ret) {
12170 		if (ret == -E2BIG)
12171 			goto err_size;
12172 		return ret;
12173 	}
12174 
12175 	attr->size = size;
12176 
12177 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12178 		return -EINVAL;
12179 
12180 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12181 		return -EINVAL;
12182 
12183 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12184 		return -EINVAL;
12185 
12186 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12187 		u64 mask = attr->branch_sample_type;
12188 
12189 		/* only using defined bits */
12190 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12191 			return -EINVAL;
12192 
12193 		/* at least one branch bit must be set */
12194 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12195 			return -EINVAL;
12196 
12197 		/* propagate priv level, when not set for branch */
12198 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12199 
12200 			/* exclude_kernel checked on syscall entry */
12201 			if (!attr->exclude_kernel)
12202 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12203 
12204 			if (!attr->exclude_user)
12205 				mask |= PERF_SAMPLE_BRANCH_USER;
12206 
12207 			if (!attr->exclude_hv)
12208 				mask |= PERF_SAMPLE_BRANCH_HV;
12209 			/*
12210 			 * adjust user setting (for HW filter setup)
12211 			 */
12212 			attr->branch_sample_type = mask;
12213 		}
12214 		/* privileged levels capture (kernel, hv): check permissions */
12215 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12216 			ret = perf_allow_kernel(attr);
12217 			if (ret)
12218 				return ret;
12219 		}
12220 	}
12221 
12222 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12223 		ret = perf_reg_validate(attr->sample_regs_user);
12224 		if (ret)
12225 			return ret;
12226 	}
12227 
12228 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12229 		if (!arch_perf_have_user_stack_dump())
12230 			return -ENOSYS;
12231 
12232 		/*
12233 		 * We have __u32 type for the size, but so far
12234 		 * we can only use __u16 as maximum due to the
12235 		 * __u16 sample size limit.
12236 		 */
12237 		if (attr->sample_stack_user >= USHRT_MAX)
12238 			return -EINVAL;
12239 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12240 			return -EINVAL;
12241 	}
12242 
12243 	if (!attr->sample_max_stack)
12244 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12245 
12246 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12247 		ret = perf_reg_validate(attr->sample_regs_intr);
12248 
12249 #ifndef CONFIG_CGROUP_PERF
12250 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12251 		return -EINVAL;
12252 #endif
12253 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12254 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12255 		return -EINVAL;
12256 
12257 	if (!attr->inherit && attr->inherit_thread)
12258 		return -EINVAL;
12259 
12260 	if (attr->remove_on_exec && attr->enable_on_exec)
12261 		return -EINVAL;
12262 
12263 	if (attr->sigtrap && !attr->remove_on_exec)
12264 		return -EINVAL;
12265 
12266 out:
12267 	return ret;
12268 
12269 err_size:
12270 	put_user(sizeof(*attr), &uattr->size);
12271 	ret = -E2BIG;
12272 	goto out;
12273 }
12274 
12275 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12276 {
12277 	if (b < a)
12278 		swap(a, b);
12279 
12280 	mutex_lock(a);
12281 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12282 }
12283 
12284 static int
12285 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12286 {
12287 	struct perf_buffer *rb = NULL;
12288 	int ret = -EINVAL;
12289 
12290 	if (!output_event) {
12291 		mutex_lock(&event->mmap_mutex);
12292 		goto set;
12293 	}
12294 
12295 	/* don't allow circular references */
12296 	if (event == output_event)
12297 		goto out;
12298 
12299 	/*
12300 	 * Don't allow cross-cpu buffers
12301 	 */
12302 	if (output_event->cpu != event->cpu)
12303 		goto out;
12304 
12305 	/*
12306 	 * If its not a per-cpu rb, it must be the same task.
12307 	 */
12308 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12309 		goto out;
12310 
12311 	/*
12312 	 * Mixing clocks in the same buffer is trouble you don't need.
12313 	 */
12314 	if (output_event->clock != event->clock)
12315 		goto out;
12316 
12317 	/*
12318 	 * Either writing ring buffer from beginning or from end.
12319 	 * Mixing is not allowed.
12320 	 */
12321 	if (is_write_backward(output_event) != is_write_backward(event))
12322 		goto out;
12323 
12324 	/*
12325 	 * If both events generate aux data, they must be on the same PMU
12326 	 */
12327 	if (has_aux(event) && has_aux(output_event) &&
12328 	    event->pmu != output_event->pmu)
12329 		goto out;
12330 
12331 	/*
12332 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12333 	 * output_event is already on rb->event_list, and the list iteration
12334 	 * restarts after every removal, it is guaranteed this new event is
12335 	 * observed *OR* if output_event is already removed, it's guaranteed we
12336 	 * observe !rb->mmap_count.
12337 	 */
12338 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12339 set:
12340 	/* Can't redirect output if we've got an active mmap() */
12341 	if (atomic_read(&event->mmap_count))
12342 		goto unlock;
12343 
12344 	if (output_event) {
12345 		/* get the rb we want to redirect to */
12346 		rb = ring_buffer_get(output_event);
12347 		if (!rb)
12348 			goto unlock;
12349 
12350 		/* did we race against perf_mmap_close() */
12351 		if (!atomic_read(&rb->mmap_count)) {
12352 			ring_buffer_put(rb);
12353 			goto unlock;
12354 		}
12355 	}
12356 
12357 	ring_buffer_attach(event, rb);
12358 
12359 	ret = 0;
12360 unlock:
12361 	mutex_unlock(&event->mmap_mutex);
12362 	if (output_event)
12363 		mutex_unlock(&output_event->mmap_mutex);
12364 
12365 out:
12366 	return ret;
12367 }
12368 
12369 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12370 {
12371 	bool nmi_safe = false;
12372 
12373 	switch (clk_id) {
12374 	case CLOCK_MONOTONIC:
12375 		event->clock = &ktime_get_mono_fast_ns;
12376 		nmi_safe = true;
12377 		break;
12378 
12379 	case CLOCK_MONOTONIC_RAW:
12380 		event->clock = &ktime_get_raw_fast_ns;
12381 		nmi_safe = true;
12382 		break;
12383 
12384 	case CLOCK_REALTIME:
12385 		event->clock = &ktime_get_real_ns;
12386 		break;
12387 
12388 	case CLOCK_BOOTTIME:
12389 		event->clock = &ktime_get_boottime_ns;
12390 		break;
12391 
12392 	case CLOCK_TAI:
12393 		event->clock = &ktime_get_clocktai_ns;
12394 		break;
12395 
12396 	default:
12397 		return -EINVAL;
12398 	}
12399 
12400 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12401 		return -EINVAL;
12402 
12403 	return 0;
12404 }
12405 
12406 static bool
12407 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12408 {
12409 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12410 	bool is_capable = perfmon_capable();
12411 
12412 	if (attr->sigtrap) {
12413 		/*
12414 		 * perf_event_attr::sigtrap sends signals to the other task.
12415 		 * Require the current task to also have CAP_KILL.
12416 		 */
12417 		rcu_read_lock();
12418 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12419 		rcu_read_unlock();
12420 
12421 		/*
12422 		 * If the required capabilities aren't available, checks for
12423 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12424 		 * can effectively change the target task.
12425 		 */
12426 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12427 	}
12428 
12429 	/*
12430 	 * Preserve ptrace permission check for backwards compatibility. The
12431 	 * ptrace check also includes checks that the current task and other
12432 	 * task have matching uids, and is therefore not done here explicitly.
12433 	 */
12434 	return is_capable || ptrace_may_access(task, ptrace_mode);
12435 }
12436 
12437 /**
12438  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12439  *
12440  * @attr_uptr:	event_id type attributes for monitoring/sampling
12441  * @pid:		target pid
12442  * @cpu:		target cpu
12443  * @group_fd:		group leader event fd
12444  * @flags:		perf event open flags
12445  */
12446 SYSCALL_DEFINE5(perf_event_open,
12447 		struct perf_event_attr __user *, attr_uptr,
12448 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12449 {
12450 	struct perf_event *group_leader = NULL, *output_event = NULL;
12451 	struct perf_event_pmu_context *pmu_ctx;
12452 	struct perf_event *event, *sibling;
12453 	struct perf_event_attr attr;
12454 	struct perf_event_context *ctx;
12455 	struct file *event_file = NULL;
12456 	struct fd group = {NULL, 0};
12457 	struct task_struct *task = NULL;
12458 	struct pmu *pmu;
12459 	int event_fd;
12460 	int move_group = 0;
12461 	int err;
12462 	int f_flags = O_RDWR;
12463 	int cgroup_fd = -1;
12464 
12465 	/* for future expandability... */
12466 	if (flags & ~PERF_FLAG_ALL)
12467 		return -EINVAL;
12468 
12469 	err = perf_copy_attr(attr_uptr, &attr);
12470 	if (err)
12471 		return err;
12472 
12473 	/* Do we allow access to perf_event_open(2) ? */
12474 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12475 	if (err)
12476 		return err;
12477 
12478 	if (!attr.exclude_kernel) {
12479 		err = perf_allow_kernel(&attr);
12480 		if (err)
12481 			return err;
12482 	}
12483 
12484 	if (attr.namespaces) {
12485 		if (!perfmon_capable())
12486 			return -EACCES;
12487 	}
12488 
12489 	if (attr.freq) {
12490 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12491 			return -EINVAL;
12492 	} else {
12493 		if (attr.sample_period & (1ULL << 63))
12494 			return -EINVAL;
12495 	}
12496 
12497 	/* Only privileged users can get physical addresses */
12498 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12499 		err = perf_allow_kernel(&attr);
12500 		if (err)
12501 			return err;
12502 	}
12503 
12504 	/* REGS_INTR can leak data, lockdown must prevent this */
12505 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12506 		err = security_locked_down(LOCKDOWN_PERF);
12507 		if (err)
12508 			return err;
12509 	}
12510 
12511 	/*
12512 	 * In cgroup mode, the pid argument is used to pass the fd
12513 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12514 	 * designates the cpu on which to monitor threads from that
12515 	 * cgroup.
12516 	 */
12517 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12518 		return -EINVAL;
12519 
12520 	if (flags & PERF_FLAG_FD_CLOEXEC)
12521 		f_flags |= O_CLOEXEC;
12522 
12523 	event_fd = get_unused_fd_flags(f_flags);
12524 	if (event_fd < 0)
12525 		return event_fd;
12526 
12527 	if (group_fd != -1) {
12528 		err = perf_fget_light(group_fd, &group);
12529 		if (err)
12530 			goto err_fd;
12531 		group_leader = group.file->private_data;
12532 		if (flags & PERF_FLAG_FD_OUTPUT)
12533 			output_event = group_leader;
12534 		if (flags & PERF_FLAG_FD_NO_GROUP)
12535 			group_leader = NULL;
12536 	}
12537 
12538 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12539 		task = find_lively_task_by_vpid(pid);
12540 		if (IS_ERR(task)) {
12541 			err = PTR_ERR(task);
12542 			goto err_group_fd;
12543 		}
12544 	}
12545 
12546 	if (task && group_leader &&
12547 	    group_leader->attr.inherit != attr.inherit) {
12548 		err = -EINVAL;
12549 		goto err_task;
12550 	}
12551 
12552 	if (flags & PERF_FLAG_PID_CGROUP)
12553 		cgroup_fd = pid;
12554 
12555 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12556 				 NULL, NULL, cgroup_fd);
12557 	if (IS_ERR(event)) {
12558 		err = PTR_ERR(event);
12559 		goto err_task;
12560 	}
12561 
12562 	if (is_sampling_event(event)) {
12563 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12564 			err = -EOPNOTSUPP;
12565 			goto err_alloc;
12566 		}
12567 	}
12568 
12569 	/*
12570 	 * Special case software events and allow them to be part of
12571 	 * any hardware group.
12572 	 */
12573 	pmu = event->pmu;
12574 
12575 	if (attr.use_clockid) {
12576 		err = perf_event_set_clock(event, attr.clockid);
12577 		if (err)
12578 			goto err_alloc;
12579 	}
12580 
12581 	if (pmu->task_ctx_nr == perf_sw_context)
12582 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12583 
12584 	if (task) {
12585 		err = down_read_interruptible(&task->signal->exec_update_lock);
12586 		if (err)
12587 			goto err_alloc;
12588 
12589 		/*
12590 		 * We must hold exec_update_lock across this and any potential
12591 		 * perf_install_in_context() call for this new event to
12592 		 * serialize against exec() altering our credentials (and the
12593 		 * perf_event_exit_task() that could imply).
12594 		 */
12595 		err = -EACCES;
12596 		if (!perf_check_permission(&attr, task))
12597 			goto err_cred;
12598 	}
12599 
12600 	/*
12601 	 * Get the target context (task or percpu):
12602 	 */
12603 	ctx = find_get_context(task, event);
12604 	if (IS_ERR(ctx)) {
12605 		err = PTR_ERR(ctx);
12606 		goto err_cred;
12607 	}
12608 
12609 	mutex_lock(&ctx->mutex);
12610 
12611 	if (ctx->task == TASK_TOMBSTONE) {
12612 		err = -ESRCH;
12613 		goto err_locked;
12614 	}
12615 
12616 	if (!task) {
12617 		/*
12618 		 * Check if the @cpu we're creating an event for is online.
12619 		 *
12620 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12621 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12622 		 */
12623 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12624 
12625 		if (!cpuctx->online) {
12626 			err = -ENODEV;
12627 			goto err_locked;
12628 		}
12629 	}
12630 
12631 	if (group_leader) {
12632 		err = -EINVAL;
12633 
12634 		/*
12635 		 * Do not allow a recursive hierarchy (this new sibling
12636 		 * becoming part of another group-sibling):
12637 		 */
12638 		if (group_leader->group_leader != group_leader)
12639 			goto err_locked;
12640 
12641 		/* All events in a group should have the same clock */
12642 		if (group_leader->clock != event->clock)
12643 			goto err_locked;
12644 
12645 		/*
12646 		 * Make sure we're both events for the same CPU;
12647 		 * grouping events for different CPUs is broken; since
12648 		 * you can never concurrently schedule them anyhow.
12649 		 */
12650 		if (group_leader->cpu != event->cpu)
12651 			goto err_locked;
12652 
12653 		/*
12654 		 * Make sure we're both on the same context; either task or cpu.
12655 		 */
12656 		if (group_leader->ctx != ctx)
12657 			goto err_locked;
12658 
12659 		/*
12660 		 * Only a group leader can be exclusive or pinned
12661 		 */
12662 		if (attr.exclusive || attr.pinned)
12663 			goto err_locked;
12664 
12665 		if (is_software_event(event) &&
12666 		    !in_software_context(group_leader)) {
12667 			/*
12668 			 * If the event is a sw event, but the group_leader
12669 			 * is on hw context.
12670 			 *
12671 			 * Allow the addition of software events to hw
12672 			 * groups, this is safe because software events
12673 			 * never fail to schedule.
12674 			 *
12675 			 * Note the comment that goes with struct
12676 			 * perf_event_pmu_context.
12677 			 */
12678 			pmu = group_leader->pmu_ctx->pmu;
12679 		} else if (!is_software_event(event)) {
12680 			if (is_software_event(group_leader) &&
12681 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12682 				/*
12683 				 * In case the group is a pure software group, and we
12684 				 * try to add a hardware event, move the whole group to
12685 				 * the hardware context.
12686 				 */
12687 				move_group = 1;
12688 			}
12689 
12690 			/* Don't allow group of multiple hw events from different pmus */
12691 			if (!in_software_context(group_leader) &&
12692 			    group_leader->pmu_ctx->pmu != pmu)
12693 				goto err_locked;
12694 		}
12695 	}
12696 
12697 	/*
12698 	 * Now that we're certain of the pmu; find the pmu_ctx.
12699 	 */
12700 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12701 	if (IS_ERR(pmu_ctx)) {
12702 		err = PTR_ERR(pmu_ctx);
12703 		goto err_locked;
12704 	}
12705 	event->pmu_ctx = pmu_ctx;
12706 
12707 	if (output_event) {
12708 		err = perf_event_set_output(event, output_event);
12709 		if (err)
12710 			goto err_context;
12711 	}
12712 
12713 	if (!perf_event_validate_size(event)) {
12714 		err = -E2BIG;
12715 		goto err_context;
12716 	}
12717 
12718 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12719 		err = -EINVAL;
12720 		goto err_context;
12721 	}
12722 
12723 	/*
12724 	 * Must be under the same ctx::mutex as perf_install_in_context(),
12725 	 * because we need to serialize with concurrent event creation.
12726 	 */
12727 	if (!exclusive_event_installable(event, ctx)) {
12728 		err = -EBUSY;
12729 		goto err_context;
12730 	}
12731 
12732 	WARN_ON_ONCE(ctx->parent_ctx);
12733 
12734 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12735 	if (IS_ERR(event_file)) {
12736 		err = PTR_ERR(event_file);
12737 		event_file = NULL;
12738 		goto err_context;
12739 	}
12740 
12741 	/*
12742 	 * This is the point on no return; we cannot fail hereafter. This is
12743 	 * where we start modifying current state.
12744 	 */
12745 
12746 	if (move_group) {
12747 		perf_remove_from_context(group_leader, 0);
12748 		put_pmu_ctx(group_leader->pmu_ctx);
12749 
12750 		for_each_sibling_event(sibling, group_leader) {
12751 			perf_remove_from_context(sibling, 0);
12752 			put_pmu_ctx(sibling->pmu_ctx);
12753 		}
12754 
12755 		/*
12756 		 * Install the group siblings before the group leader.
12757 		 *
12758 		 * Because a group leader will try and install the entire group
12759 		 * (through the sibling list, which is still in-tact), we can
12760 		 * end up with siblings installed in the wrong context.
12761 		 *
12762 		 * By installing siblings first we NO-OP because they're not
12763 		 * reachable through the group lists.
12764 		 */
12765 		for_each_sibling_event(sibling, group_leader) {
12766 			sibling->pmu_ctx = pmu_ctx;
12767 			get_pmu_ctx(pmu_ctx);
12768 			perf_event__state_init(sibling);
12769 			perf_install_in_context(ctx, sibling, sibling->cpu);
12770 		}
12771 
12772 		/*
12773 		 * Removing from the context ends up with disabled
12774 		 * event. What we want here is event in the initial
12775 		 * startup state, ready to be add into new context.
12776 		 */
12777 		group_leader->pmu_ctx = pmu_ctx;
12778 		get_pmu_ctx(pmu_ctx);
12779 		perf_event__state_init(group_leader);
12780 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
12781 	}
12782 
12783 	/*
12784 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
12785 	 * that we're serialized against further additions and before
12786 	 * perf_install_in_context() which is the point the event is active and
12787 	 * can use these values.
12788 	 */
12789 	perf_event__header_size(event);
12790 	perf_event__id_header_size(event);
12791 
12792 	event->owner = current;
12793 
12794 	perf_install_in_context(ctx, event, event->cpu);
12795 	perf_unpin_context(ctx);
12796 
12797 	mutex_unlock(&ctx->mutex);
12798 
12799 	if (task) {
12800 		up_read(&task->signal->exec_update_lock);
12801 		put_task_struct(task);
12802 	}
12803 
12804 	mutex_lock(&current->perf_event_mutex);
12805 	list_add_tail(&event->owner_entry, &current->perf_event_list);
12806 	mutex_unlock(&current->perf_event_mutex);
12807 
12808 	/*
12809 	 * Drop the reference on the group_event after placing the
12810 	 * new event on the sibling_list. This ensures destruction
12811 	 * of the group leader will find the pointer to itself in
12812 	 * perf_group_detach().
12813 	 */
12814 	fdput(group);
12815 	fd_install(event_fd, event_file);
12816 	return event_fd;
12817 
12818 err_context:
12819 	put_pmu_ctx(event->pmu_ctx);
12820 	event->pmu_ctx = NULL; /* _free_event() */
12821 err_locked:
12822 	mutex_unlock(&ctx->mutex);
12823 	perf_unpin_context(ctx);
12824 	put_ctx(ctx);
12825 err_cred:
12826 	if (task)
12827 		up_read(&task->signal->exec_update_lock);
12828 err_alloc:
12829 	free_event(event);
12830 err_task:
12831 	if (task)
12832 		put_task_struct(task);
12833 err_group_fd:
12834 	fdput(group);
12835 err_fd:
12836 	put_unused_fd(event_fd);
12837 	return err;
12838 }
12839 
12840 /**
12841  * perf_event_create_kernel_counter
12842  *
12843  * @attr: attributes of the counter to create
12844  * @cpu: cpu in which the counter is bound
12845  * @task: task to profile (NULL for percpu)
12846  * @overflow_handler: callback to trigger when we hit the event
12847  * @context: context data could be used in overflow_handler callback
12848  */
12849 struct perf_event *
12850 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12851 				 struct task_struct *task,
12852 				 perf_overflow_handler_t overflow_handler,
12853 				 void *context)
12854 {
12855 	struct perf_event_pmu_context *pmu_ctx;
12856 	struct perf_event_context *ctx;
12857 	struct perf_event *event;
12858 	struct pmu *pmu;
12859 	int err;
12860 
12861 	/*
12862 	 * Grouping is not supported for kernel events, neither is 'AUX',
12863 	 * make sure the caller's intentions are adjusted.
12864 	 */
12865 	if (attr->aux_output)
12866 		return ERR_PTR(-EINVAL);
12867 
12868 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12869 				 overflow_handler, context, -1);
12870 	if (IS_ERR(event)) {
12871 		err = PTR_ERR(event);
12872 		goto err;
12873 	}
12874 
12875 	/* Mark owner so we could distinguish it from user events. */
12876 	event->owner = TASK_TOMBSTONE;
12877 	pmu = event->pmu;
12878 
12879 	if (pmu->task_ctx_nr == perf_sw_context)
12880 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12881 
12882 	/*
12883 	 * Get the target context (task or percpu):
12884 	 */
12885 	ctx = find_get_context(task, event);
12886 	if (IS_ERR(ctx)) {
12887 		err = PTR_ERR(ctx);
12888 		goto err_alloc;
12889 	}
12890 
12891 	WARN_ON_ONCE(ctx->parent_ctx);
12892 	mutex_lock(&ctx->mutex);
12893 	if (ctx->task == TASK_TOMBSTONE) {
12894 		err = -ESRCH;
12895 		goto err_unlock;
12896 	}
12897 
12898 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12899 	if (IS_ERR(pmu_ctx)) {
12900 		err = PTR_ERR(pmu_ctx);
12901 		goto err_unlock;
12902 	}
12903 	event->pmu_ctx = pmu_ctx;
12904 
12905 	if (!task) {
12906 		/*
12907 		 * Check if the @cpu we're creating an event for is online.
12908 		 *
12909 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12910 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12911 		 */
12912 		struct perf_cpu_context *cpuctx =
12913 			container_of(ctx, struct perf_cpu_context, ctx);
12914 		if (!cpuctx->online) {
12915 			err = -ENODEV;
12916 			goto err_pmu_ctx;
12917 		}
12918 	}
12919 
12920 	if (!exclusive_event_installable(event, ctx)) {
12921 		err = -EBUSY;
12922 		goto err_pmu_ctx;
12923 	}
12924 
12925 	perf_install_in_context(ctx, event, event->cpu);
12926 	perf_unpin_context(ctx);
12927 	mutex_unlock(&ctx->mutex);
12928 
12929 	return event;
12930 
12931 err_pmu_ctx:
12932 	put_pmu_ctx(pmu_ctx);
12933 	event->pmu_ctx = NULL; /* _free_event() */
12934 err_unlock:
12935 	mutex_unlock(&ctx->mutex);
12936 	perf_unpin_context(ctx);
12937 	put_ctx(ctx);
12938 err_alloc:
12939 	free_event(event);
12940 err:
12941 	return ERR_PTR(err);
12942 }
12943 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12944 
12945 static void __perf_pmu_remove(struct perf_event_context *ctx,
12946 			      int cpu, struct pmu *pmu,
12947 			      struct perf_event_groups *groups,
12948 			      struct list_head *events)
12949 {
12950 	struct perf_event *event, *sibling;
12951 
12952 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12953 		perf_remove_from_context(event, 0);
12954 		put_pmu_ctx(event->pmu_ctx);
12955 		list_add(&event->migrate_entry, events);
12956 
12957 		for_each_sibling_event(sibling, event) {
12958 			perf_remove_from_context(sibling, 0);
12959 			put_pmu_ctx(sibling->pmu_ctx);
12960 			list_add(&sibling->migrate_entry, events);
12961 		}
12962 	}
12963 }
12964 
12965 static void __perf_pmu_install_event(struct pmu *pmu,
12966 				     struct perf_event_context *ctx,
12967 				     int cpu, struct perf_event *event)
12968 {
12969 	struct perf_event_pmu_context *epc;
12970 	struct perf_event_context *old_ctx = event->ctx;
12971 
12972 	get_ctx(ctx); /* normally find_get_context() */
12973 
12974 	event->cpu = cpu;
12975 	epc = find_get_pmu_context(pmu, ctx, event);
12976 	event->pmu_ctx = epc;
12977 
12978 	if (event->state >= PERF_EVENT_STATE_OFF)
12979 		event->state = PERF_EVENT_STATE_INACTIVE;
12980 	perf_install_in_context(ctx, event, cpu);
12981 
12982 	/*
12983 	 * Now that event->ctx is updated and visible, put the old ctx.
12984 	 */
12985 	put_ctx(old_ctx);
12986 }
12987 
12988 static void __perf_pmu_install(struct perf_event_context *ctx,
12989 			       int cpu, struct pmu *pmu, struct list_head *events)
12990 {
12991 	struct perf_event *event, *tmp;
12992 
12993 	/*
12994 	 * Re-instate events in 2 passes.
12995 	 *
12996 	 * Skip over group leaders and only install siblings on this first
12997 	 * pass, siblings will not get enabled without a leader, however a
12998 	 * leader will enable its siblings, even if those are still on the old
12999 	 * context.
13000 	 */
13001 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13002 		if (event->group_leader == event)
13003 			continue;
13004 
13005 		list_del(&event->migrate_entry);
13006 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13007 	}
13008 
13009 	/*
13010 	 * Once all the siblings are setup properly, install the group leaders
13011 	 * to make it go.
13012 	 */
13013 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13014 		list_del(&event->migrate_entry);
13015 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13016 	}
13017 }
13018 
13019 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13020 {
13021 	struct perf_event_context *src_ctx, *dst_ctx;
13022 	LIST_HEAD(events);
13023 
13024 	/*
13025 	 * Since per-cpu context is persistent, no need to grab an extra
13026 	 * reference.
13027 	 */
13028 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13029 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13030 
13031 	/*
13032 	 * See perf_event_ctx_lock() for comments on the details
13033 	 * of swizzling perf_event::ctx.
13034 	 */
13035 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13036 
13037 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13038 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13039 
13040 	if (!list_empty(&events)) {
13041 		/*
13042 		 * Wait for the events to quiesce before re-instating them.
13043 		 */
13044 		synchronize_rcu();
13045 
13046 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13047 	}
13048 
13049 	mutex_unlock(&dst_ctx->mutex);
13050 	mutex_unlock(&src_ctx->mutex);
13051 }
13052 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13053 
13054 static void sync_child_event(struct perf_event *child_event)
13055 {
13056 	struct perf_event *parent_event = child_event->parent;
13057 	u64 child_val;
13058 
13059 	if (child_event->attr.inherit_stat) {
13060 		struct task_struct *task = child_event->ctx->task;
13061 
13062 		if (task && task != TASK_TOMBSTONE)
13063 			perf_event_read_event(child_event, task);
13064 	}
13065 
13066 	child_val = perf_event_count(child_event);
13067 
13068 	/*
13069 	 * Add back the child's count to the parent's count:
13070 	 */
13071 	atomic64_add(child_val, &parent_event->child_count);
13072 	atomic64_add(child_event->total_time_enabled,
13073 		     &parent_event->child_total_time_enabled);
13074 	atomic64_add(child_event->total_time_running,
13075 		     &parent_event->child_total_time_running);
13076 }
13077 
13078 static void
13079 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13080 {
13081 	struct perf_event *parent_event = event->parent;
13082 	unsigned long detach_flags = 0;
13083 
13084 	if (parent_event) {
13085 		/*
13086 		 * Do not destroy the 'original' grouping; because of the
13087 		 * context switch optimization the original events could've
13088 		 * ended up in a random child task.
13089 		 *
13090 		 * If we were to destroy the original group, all group related
13091 		 * operations would cease to function properly after this
13092 		 * random child dies.
13093 		 *
13094 		 * Do destroy all inherited groups, we don't care about those
13095 		 * and being thorough is better.
13096 		 */
13097 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13098 		mutex_lock(&parent_event->child_mutex);
13099 	}
13100 
13101 	perf_remove_from_context(event, detach_flags);
13102 
13103 	raw_spin_lock_irq(&ctx->lock);
13104 	if (event->state > PERF_EVENT_STATE_EXIT)
13105 		perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13106 	raw_spin_unlock_irq(&ctx->lock);
13107 
13108 	/*
13109 	 * Child events can be freed.
13110 	 */
13111 	if (parent_event) {
13112 		mutex_unlock(&parent_event->child_mutex);
13113 		/*
13114 		 * Kick perf_poll() for is_event_hup();
13115 		 */
13116 		perf_event_wakeup(parent_event);
13117 		free_event(event);
13118 		put_event(parent_event);
13119 		return;
13120 	}
13121 
13122 	/*
13123 	 * Parent events are governed by their filedesc, retain them.
13124 	 */
13125 	perf_event_wakeup(event);
13126 }
13127 
13128 static void perf_event_exit_task_context(struct task_struct *child)
13129 {
13130 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13131 	struct perf_event *child_event, *next;
13132 
13133 	WARN_ON_ONCE(child != current);
13134 
13135 	child_ctx = perf_pin_task_context(child);
13136 	if (!child_ctx)
13137 		return;
13138 
13139 	/*
13140 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13141 	 * ctx::mutex over the entire thing. This serializes against almost
13142 	 * everything that wants to access the ctx.
13143 	 *
13144 	 * The exception is sys_perf_event_open() /
13145 	 * perf_event_create_kernel_count() which does find_get_context()
13146 	 * without ctx::mutex (it cannot because of the move_group double mutex
13147 	 * lock thing). See the comments in perf_install_in_context().
13148 	 */
13149 	mutex_lock(&child_ctx->mutex);
13150 
13151 	/*
13152 	 * In a single ctx::lock section, de-schedule the events and detach the
13153 	 * context from the task such that we cannot ever get it scheduled back
13154 	 * in.
13155 	 */
13156 	raw_spin_lock_irq(&child_ctx->lock);
13157 	task_ctx_sched_out(child_ctx, EVENT_ALL);
13158 
13159 	/*
13160 	 * Now that the context is inactive, destroy the task <-> ctx relation
13161 	 * and mark the context dead.
13162 	 */
13163 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13164 	put_ctx(child_ctx); /* cannot be last */
13165 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13166 	put_task_struct(current); /* cannot be last */
13167 
13168 	clone_ctx = unclone_ctx(child_ctx);
13169 	raw_spin_unlock_irq(&child_ctx->lock);
13170 
13171 	if (clone_ctx)
13172 		put_ctx(clone_ctx);
13173 
13174 	/*
13175 	 * Report the task dead after unscheduling the events so that we
13176 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13177 	 * get a few PERF_RECORD_READ events.
13178 	 */
13179 	perf_event_task(child, child_ctx, 0);
13180 
13181 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13182 		perf_event_exit_event(child_event, child_ctx);
13183 
13184 	mutex_unlock(&child_ctx->mutex);
13185 
13186 	put_ctx(child_ctx);
13187 }
13188 
13189 /*
13190  * When a child task exits, feed back event values to parent events.
13191  *
13192  * Can be called with exec_update_lock held when called from
13193  * setup_new_exec().
13194  */
13195 void perf_event_exit_task(struct task_struct *child)
13196 {
13197 	struct perf_event *event, *tmp;
13198 
13199 	mutex_lock(&child->perf_event_mutex);
13200 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13201 				 owner_entry) {
13202 		list_del_init(&event->owner_entry);
13203 
13204 		/*
13205 		 * Ensure the list deletion is visible before we clear
13206 		 * the owner, closes a race against perf_release() where
13207 		 * we need to serialize on the owner->perf_event_mutex.
13208 		 */
13209 		smp_store_release(&event->owner, NULL);
13210 	}
13211 	mutex_unlock(&child->perf_event_mutex);
13212 
13213 	perf_event_exit_task_context(child);
13214 
13215 	/*
13216 	 * The perf_event_exit_task_context calls perf_event_task
13217 	 * with child's task_ctx, which generates EXIT events for
13218 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13219 	 * At this point we need to send EXIT events to cpu contexts.
13220 	 */
13221 	perf_event_task(child, NULL, 0);
13222 }
13223 
13224 static void perf_free_event(struct perf_event *event,
13225 			    struct perf_event_context *ctx)
13226 {
13227 	struct perf_event *parent = event->parent;
13228 
13229 	if (WARN_ON_ONCE(!parent))
13230 		return;
13231 
13232 	mutex_lock(&parent->child_mutex);
13233 	list_del_init(&event->child_list);
13234 	mutex_unlock(&parent->child_mutex);
13235 
13236 	put_event(parent);
13237 
13238 	raw_spin_lock_irq(&ctx->lock);
13239 	perf_group_detach(event);
13240 	list_del_event(event, ctx);
13241 	raw_spin_unlock_irq(&ctx->lock);
13242 	free_event(event);
13243 }
13244 
13245 /*
13246  * Free a context as created by inheritance by perf_event_init_task() below,
13247  * used by fork() in case of fail.
13248  *
13249  * Even though the task has never lived, the context and events have been
13250  * exposed through the child_list, so we must take care tearing it all down.
13251  */
13252 void perf_event_free_task(struct task_struct *task)
13253 {
13254 	struct perf_event_context *ctx;
13255 	struct perf_event *event, *tmp;
13256 
13257 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13258 	if (!ctx)
13259 		return;
13260 
13261 	mutex_lock(&ctx->mutex);
13262 	raw_spin_lock_irq(&ctx->lock);
13263 	/*
13264 	 * Destroy the task <-> ctx relation and mark the context dead.
13265 	 *
13266 	 * This is important because even though the task hasn't been
13267 	 * exposed yet the context has been (through child_list).
13268 	 */
13269 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13270 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13271 	put_task_struct(task); /* cannot be last */
13272 	raw_spin_unlock_irq(&ctx->lock);
13273 
13274 
13275 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13276 		perf_free_event(event, ctx);
13277 
13278 	mutex_unlock(&ctx->mutex);
13279 
13280 	/*
13281 	 * perf_event_release_kernel() could've stolen some of our
13282 	 * child events and still have them on its free_list. In that
13283 	 * case we must wait for these events to have been freed (in
13284 	 * particular all their references to this task must've been
13285 	 * dropped).
13286 	 *
13287 	 * Without this copy_process() will unconditionally free this
13288 	 * task (irrespective of its reference count) and
13289 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13290 	 * use-after-free.
13291 	 *
13292 	 * Wait for all events to drop their context reference.
13293 	 */
13294 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13295 	put_ctx(ctx); /* must be last */
13296 }
13297 
13298 void perf_event_delayed_put(struct task_struct *task)
13299 {
13300 	WARN_ON_ONCE(task->perf_event_ctxp);
13301 }
13302 
13303 struct file *perf_event_get(unsigned int fd)
13304 {
13305 	struct file *file = fget(fd);
13306 	if (!file)
13307 		return ERR_PTR(-EBADF);
13308 
13309 	if (file->f_op != &perf_fops) {
13310 		fput(file);
13311 		return ERR_PTR(-EBADF);
13312 	}
13313 
13314 	return file;
13315 }
13316 
13317 const struct perf_event *perf_get_event(struct file *file)
13318 {
13319 	if (file->f_op != &perf_fops)
13320 		return ERR_PTR(-EINVAL);
13321 
13322 	return file->private_data;
13323 }
13324 
13325 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13326 {
13327 	if (!event)
13328 		return ERR_PTR(-EINVAL);
13329 
13330 	return &event->attr;
13331 }
13332 
13333 /*
13334  * Inherit an event from parent task to child task.
13335  *
13336  * Returns:
13337  *  - valid pointer on success
13338  *  - NULL for orphaned events
13339  *  - IS_ERR() on error
13340  */
13341 static struct perf_event *
13342 inherit_event(struct perf_event *parent_event,
13343 	      struct task_struct *parent,
13344 	      struct perf_event_context *parent_ctx,
13345 	      struct task_struct *child,
13346 	      struct perf_event *group_leader,
13347 	      struct perf_event_context *child_ctx)
13348 {
13349 	enum perf_event_state parent_state = parent_event->state;
13350 	struct perf_event_pmu_context *pmu_ctx;
13351 	struct perf_event *child_event;
13352 	unsigned long flags;
13353 
13354 	/*
13355 	 * Instead of creating recursive hierarchies of events,
13356 	 * we link inherited events back to the original parent,
13357 	 * which has a filp for sure, which we use as the reference
13358 	 * count:
13359 	 */
13360 	if (parent_event->parent)
13361 		parent_event = parent_event->parent;
13362 
13363 	child_event = perf_event_alloc(&parent_event->attr,
13364 					   parent_event->cpu,
13365 					   child,
13366 					   group_leader, parent_event,
13367 					   NULL, NULL, -1);
13368 	if (IS_ERR(child_event))
13369 		return child_event;
13370 
13371 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13372 	if (IS_ERR(pmu_ctx)) {
13373 		free_event(child_event);
13374 		return ERR_CAST(pmu_ctx);
13375 	}
13376 	child_event->pmu_ctx = pmu_ctx;
13377 
13378 	/*
13379 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13380 	 * must be under the same lock in order to serialize against
13381 	 * perf_event_release_kernel(), such that either we must observe
13382 	 * is_orphaned_event() or they will observe us on the child_list.
13383 	 */
13384 	mutex_lock(&parent_event->child_mutex);
13385 	if (is_orphaned_event(parent_event) ||
13386 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13387 		mutex_unlock(&parent_event->child_mutex);
13388 		/* task_ctx_data is freed with child_ctx */
13389 		free_event(child_event);
13390 		return NULL;
13391 	}
13392 
13393 	get_ctx(child_ctx);
13394 
13395 	/*
13396 	 * Make the child state follow the state of the parent event,
13397 	 * not its attr.disabled bit.  We hold the parent's mutex,
13398 	 * so we won't race with perf_event_{en, dis}able_family.
13399 	 */
13400 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13401 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13402 	else
13403 		child_event->state = PERF_EVENT_STATE_OFF;
13404 
13405 	if (parent_event->attr.freq) {
13406 		u64 sample_period = parent_event->hw.sample_period;
13407 		struct hw_perf_event *hwc = &child_event->hw;
13408 
13409 		hwc->sample_period = sample_period;
13410 		hwc->last_period   = sample_period;
13411 
13412 		local64_set(&hwc->period_left, sample_period);
13413 	}
13414 
13415 	child_event->ctx = child_ctx;
13416 	child_event->overflow_handler = parent_event->overflow_handler;
13417 	child_event->overflow_handler_context
13418 		= parent_event->overflow_handler_context;
13419 
13420 	/*
13421 	 * Precalculate sample_data sizes
13422 	 */
13423 	perf_event__header_size(child_event);
13424 	perf_event__id_header_size(child_event);
13425 
13426 	/*
13427 	 * Link it up in the child's context:
13428 	 */
13429 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13430 	add_event_to_ctx(child_event, child_ctx);
13431 	child_event->attach_state |= PERF_ATTACH_CHILD;
13432 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13433 
13434 	/*
13435 	 * Link this into the parent event's child list
13436 	 */
13437 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13438 	mutex_unlock(&parent_event->child_mutex);
13439 
13440 	return child_event;
13441 }
13442 
13443 /*
13444  * Inherits an event group.
13445  *
13446  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13447  * This matches with perf_event_release_kernel() removing all child events.
13448  *
13449  * Returns:
13450  *  - 0 on success
13451  *  - <0 on error
13452  */
13453 static int inherit_group(struct perf_event *parent_event,
13454 	      struct task_struct *parent,
13455 	      struct perf_event_context *parent_ctx,
13456 	      struct task_struct *child,
13457 	      struct perf_event_context *child_ctx)
13458 {
13459 	struct perf_event *leader;
13460 	struct perf_event *sub;
13461 	struct perf_event *child_ctr;
13462 
13463 	leader = inherit_event(parent_event, parent, parent_ctx,
13464 				 child, NULL, child_ctx);
13465 	if (IS_ERR(leader))
13466 		return PTR_ERR(leader);
13467 	/*
13468 	 * @leader can be NULL here because of is_orphaned_event(). In this
13469 	 * case inherit_event() will create individual events, similar to what
13470 	 * perf_group_detach() would do anyway.
13471 	 */
13472 	for_each_sibling_event(sub, parent_event) {
13473 		child_ctr = inherit_event(sub, parent, parent_ctx,
13474 					    child, leader, child_ctx);
13475 		if (IS_ERR(child_ctr))
13476 			return PTR_ERR(child_ctr);
13477 
13478 		if (sub->aux_event == parent_event && child_ctr &&
13479 		    !perf_get_aux_event(child_ctr, leader))
13480 			return -EINVAL;
13481 	}
13482 	if (leader)
13483 		leader->group_generation = parent_event->group_generation;
13484 	return 0;
13485 }
13486 
13487 /*
13488  * Creates the child task context and tries to inherit the event-group.
13489  *
13490  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13491  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13492  * consistent with perf_event_release_kernel() removing all child events.
13493  *
13494  * Returns:
13495  *  - 0 on success
13496  *  - <0 on error
13497  */
13498 static int
13499 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13500 		   struct perf_event_context *parent_ctx,
13501 		   struct task_struct *child,
13502 		   u64 clone_flags, int *inherited_all)
13503 {
13504 	struct perf_event_context *child_ctx;
13505 	int ret;
13506 
13507 	if (!event->attr.inherit ||
13508 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13509 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13510 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13511 		*inherited_all = 0;
13512 		return 0;
13513 	}
13514 
13515 	child_ctx = child->perf_event_ctxp;
13516 	if (!child_ctx) {
13517 		/*
13518 		 * This is executed from the parent task context, so
13519 		 * inherit events that have been marked for cloning.
13520 		 * First allocate and initialize a context for the
13521 		 * child.
13522 		 */
13523 		child_ctx = alloc_perf_context(child);
13524 		if (!child_ctx)
13525 			return -ENOMEM;
13526 
13527 		child->perf_event_ctxp = child_ctx;
13528 	}
13529 
13530 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13531 	if (ret)
13532 		*inherited_all = 0;
13533 
13534 	return ret;
13535 }
13536 
13537 /*
13538  * Initialize the perf_event context in task_struct
13539  */
13540 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13541 {
13542 	struct perf_event_context *child_ctx, *parent_ctx;
13543 	struct perf_event_context *cloned_ctx;
13544 	struct perf_event *event;
13545 	struct task_struct *parent = current;
13546 	int inherited_all = 1;
13547 	unsigned long flags;
13548 	int ret = 0;
13549 
13550 	if (likely(!parent->perf_event_ctxp))
13551 		return 0;
13552 
13553 	/*
13554 	 * If the parent's context is a clone, pin it so it won't get
13555 	 * swapped under us.
13556 	 */
13557 	parent_ctx = perf_pin_task_context(parent);
13558 	if (!parent_ctx)
13559 		return 0;
13560 
13561 	/*
13562 	 * No need to check if parent_ctx != NULL here; since we saw
13563 	 * it non-NULL earlier, the only reason for it to become NULL
13564 	 * is if we exit, and since we're currently in the middle of
13565 	 * a fork we can't be exiting at the same time.
13566 	 */
13567 
13568 	/*
13569 	 * Lock the parent list. No need to lock the child - not PID
13570 	 * hashed yet and not running, so nobody can access it.
13571 	 */
13572 	mutex_lock(&parent_ctx->mutex);
13573 
13574 	/*
13575 	 * We dont have to disable NMIs - we are only looking at
13576 	 * the list, not manipulating it:
13577 	 */
13578 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13579 		ret = inherit_task_group(event, parent, parent_ctx,
13580 					 child, clone_flags, &inherited_all);
13581 		if (ret)
13582 			goto out_unlock;
13583 	}
13584 
13585 	/*
13586 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13587 	 * to allocations, but we need to prevent rotation because
13588 	 * rotate_ctx() will change the list from interrupt context.
13589 	 */
13590 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13591 	parent_ctx->rotate_disable = 1;
13592 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13593 
13594 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13595 		ret = inherit_task_group(event, parent, parent_ctx,
13596 					 child, clone_flags, &inherited_all);
13597 		if (ret)
13598 			goto out_unlock;
13599 	}
13600 
13601 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13602 	parent_ctx->rotate_disable = 0;
13603 
13604 	child_ctx = child->perf_event_ctxp;
13605 
13606 	if (child_ctx && inherited_all) {
13607 		/*
13608 		 * Mark the child context as a clone of the parent
13609 		 * context, or of whatever the parent is a clone of.
13610 		 *
13611 		 * Note that if the parent is a clone, the holding of
13612 		 * parent_ctx->lock avoids it from being uncloned.
13613 		 */
13614 		cloned_ctx = parent_ctx->parent_ctx;
13615 		if (cloned_ctx) {
13616 			child_ctx->parent_ctx = cloned_ctx;
13617 			child_ctx->parent_gen = parent_ctx->parent_gen;
13618 		} else {
13619 			child_ctx->parent_ctx = parent_ctx;
13620 			child_ctx->parent_gen = parent_ctx->generation;
13621 		}
13622 		get_ctx(child_ctx->parent_ctx);
13623 	}
13624 
13625 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13626 out_unlock:
13627 	mutex_unlock(&parent_ctx->mutex);
13628 
13629 	perf_unpin_context(parent_ctx);
13630 	put_ctx(parent_ctx);
13631 
13632 	return ret;
13633 }
13634 
13635 /*
13636  * Initialize the perf_event context in task_struct
13637  */
13638 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13639 {
13640 	int ret;
13641 
13642 	child->perf_event_ctxp = NULL;
13643 	mutex_init(&child->perf_event_mutex);
13644 	INIT_LIST_HEAD(&child->perf_event_list);
13645 
13646 	ret = perf_event_init_context(child, clone_flags);
13647 	if (ret) {
13648 		perf_event_free_task(child);
13649 		return ret;
13650 	}
13651 
13652 	return 0;
13653 }
13654 
13655 static void __init perf_event_init_all_cpus(void)
13656 {
13657 	struct swevent_htable *swhash;
13658 	struct perf_cpu_context *cpuctx;
13659 	int cpu;
13660 
13661 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13662 
13663 	for_each_possible_cpu(cpu) {
13664 		swhash = &per_cpu(swevent_htable, cpu);
13665 		mutex_init(&swhash->hlist_mutex);
13666 
13667 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13668 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13669 
13670 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13671 
13672 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13673 		__perf_event_init_context(&cpuctx->ctx);
13674 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13675 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13676 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13677 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13678 		cpuctx->heap = cpuctx->heap_default;
13679 	}
13680 }
13681 
13682 static void perf_swevent_init_cpu(unsigned int cpu)
13683 {
13684 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13685 
13686 	mutex_lock(&swhash->hlist_mutex);
13687 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13688 		struct swevent_hlist *hlist;
13689 
13690 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13691 		WARN_ON(!hlist);
13692 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
13693 	}
13694 	mutex_unlock(&swhash->hlist_mutex);
13695 }
13696 
13697 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13698 static void __perf_event_exit_context(void *__info)
13699 {
13700 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13701 	struct perf_event_context *ctx = __info;
13702 	struct perf_event *event;
13703 
13704 	raw_spin_lock(&ctx->lock);
13705 	ctx_sched_out(ctx, EVENT_TIME);
13706 	list_for_each_entry(event, &ctx->event_list, event_entry)
13707 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13708 	raw_spin_unlock(&ctx->lock);
13709 }
13710 
13711 static void perf_event_exit_cpu_context(int cpu)
13712 {
13713 	struct perf_cpu_context *cpuctx;
13714 	struct perf_event_context *ctx;
13715 
13716 	// XXX simplify cpuctx->online
13717 	mutex_lock(&pmus_lock);
13718 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13719 	ctx = &cpuctx->ctx;
13720 
13721 	mutex_lock(&ctx->mutex);
13722 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13723 	cpuctx->online = 0;
13724 	mutex_unlock(&ctx->mutex);
13725 	cpumask_clear_cpu(cpu, perf_online_mask);
13726 	mutex_unlock(&pmus_lock);
13727 }
13728 #else
13729 
13730 static void perf_event_exit_cpu_context(int cpu) { }
13731 
13732 #endif
13733 
13734 int perf_event_init_cpu(unsigned int cpu)
13735 {
13736 	struct perf_cpu_context *cpuctx;
13737 	struct perf_event_context *ctx;
13738 
13739 	perf_swevent_init_cpu(cpu);
13740 
13741 	mutex_lock(&pmus_lock);
13742 	cpumask_set_cpu(cpu, perf_online_mask);
13743 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13744 	ctx = &cpuctx->ctx;
13745 
13746 	mutex_lock(&ctx->mutex);
13747 	cpuctx->online = 1;
13748 	mutex_unlock(&ctx->mutex);
13749 	mutex_unlock(&pmus_lock);
13750 
13751 	return 0;
13752 }
13753 
13754 int perf_event_exit_cpu(unsigned int cpu)
13755 {
13756 	perf_event_exit_cpu_context(cpu);
13757 	return 0;
13758 }
13759 
13760 static int
13761 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13762 {
13763 	int cpu;
13764 
13765 	for_each_online_cpu(cpu)
13766 		perf_event_exit_cpu(cpu);
13767 
13768 	return NOTIFY_OK;
13769 }
13770 
13771 /*
13772  * Run the perf reboot notifier at the very last possible moment so that
13773  * the generic watchdog code runs as long as possible.
13774  */
13775 static struct notifier_block perf_reboot_notifier = {
13776 	.notifier_call = perf_reboot,
13777 	.priority = INT_MIN,
13778 };
13779 
13780 void __init perf_event_init(void)
13781 {
13782 	int ret;
13783 
13784 	idr_init(&pmu_idr);
13785 
13786 	perf_event_init_all_cpus();
13787 	init_srcu_struct(&pmus_srcu);
13788 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13789 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13790 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
13791 	perf_tp_register();
13792 	perf_event_init_cpu(smp_processor_id());
13793 	register_reboot_notifier(&perf_reboot_notifier);
13794 
13795 	ret = init_hw_breakpoint();
13796 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13797 
13798 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13799 
13800 	/*
13801 	 * Build time assertion that we keep the data_head at the intended
13802 	 * location.  IOW, validation we got the __reserved[] size right.
13803 	 */
13804 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13805 		     != 1024);
13806 }
13807 
13808 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13809 			      char *page)
13810 {
13811 	struct perf_pmu_events_attr *pmu_attr =
13812 		container_of(attr, struct perf_pmu_events_attr, attr);
13813 
13814 	if (pmu_attr->event_str)
13815 		return sprintf(page, "%s\n", pmu_attr->event_str);
13816 
13817 	return 0;
13818 }
13819 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13820 
13821 static int __init perf_event_sysfs_init(void)
13822 {
13823 	struct pmu *pmu;
13824 	int ret;
13825 
13826 	mutex_lock(&pmus_lock);
13827 
13828 	ret = bus_register(&pmu_bus);
13829 	if (ret)
13830 		goto unlock;
13831 
13832 	list_for_each_entry(pmu, &pmus, entry) {
13833 		if (pmu->dev)
13834 			continue;
13835 
13836 		ret = pmu_dev_alloc(pmu);
13837 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13838 	}
13839 	pmu_bus_running = 1;
13840 	ret = 0;
13841 
13842 unlock:
13843 	mutex_unlock(&pmus_lock);
13844 
13845 	return ret;
13846 }
13847 device_initcall(perf_event_sysfs_init);
13848 
13849 #ifdef CONFIG_CGROUP_PERF
13850 static struct cgroup_subsys_state *
13851 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13852 {
13853 	struct perf_cgroup *jc;
13854 
13855 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13856 	if (!jc)
13857 		return ERR_PTR(-ENOMEM);
13858 
13859 	jc->info = alloc_percpu(struct perf_cgroup_info);
13860 	if (!jc->info) {
13861 		kfree(jc);
13862 		return ERR_PTR(-ENOMEM);
13863 	}
13864 
13865 	return &jc->css;
13866 }
13867 
13868 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13869 {
13870 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13871 
13872 	free_percpu(jc->info);
13873 	kfree(jc);
13874 }
13875 
13876 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13877 {
13878 	perf_event_cgroup(css->cgroup);
13879 	return 0;
13880 }
13881 
13882 static int __perf_cgroup_move(void *info)
13883 {
13884 	struct task_struct *task = info;
13885 
13886 	preempt_disable();
13887 	perf_cgroup_switch(task);
13888 	preempt_enable();
13889 
13890 	return 0;
13891 }
13892 
13893 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13894 {
13895 	struct task_struct *task;
13896 	struct cgroup_subsys_state *css;
13897 
13898 	cgroup_taskset_for_each(task, css, tset)
13899 		task_function_call(task, __perf_cgroup_move, task);
13900 }
13901 
13902 struct cgroup_subsys perf_event_cgrp_subsys = {
13903 	.css_alloc	= perf_cgroup_css_alloc,
13904 	.css_free	= perf_cgroup_css_free,
13905 	.css_online	= perf_cgroup_css_online,
13906 	.attach		= perf_cgroup_attach,
13907 	/*
13908 	 * Implicitly enable on dfl hierarchy so that perf events can
13909 	 * always be filtered by cgroup2 path as long as perf_event
13910 	 * controller is not mounted on a legacy hierarchy.
13911 	 */
13912 	.implicit_on_dfl = true,
13913 	.threaded	= true,
13914 };
13915 #endif /* CONFIG_CGROUP_PERF */
13916 
13917 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13918