xref: /openbmc/linux/kernel/events/callchain.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include <linux/sched/task_stack.h>
15 
16 #include "internal.h"
17 
18 struct callchain_cpus_entries {
19 	struct rcu_head			rcu_head;
20 	struct perf_callchain_entry	*cpu_entries[0];
21 };
22 
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25 
26 static inline size_t perf_callchain_entry__sizeof(void)
27 {
28 	return (sizeof(struct perf_callchain_entry) +
29 		sizeof(__u64) * (sysctl_perf_event_max_stack +
30 				 sysctl_perf_event_max_contexts_per_stack));
31 }
32 
33 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
34 static atomic_t nr_callchain_events;
35 static DEFINE_MUTEX(callchain_mutex);
36 static struct callchain_cpus_entries *callchain_cpus_entries;
37 
38 
39 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
40 				  struct pt_regs *regs)
41 {
42 }
43 
44 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
45 				struct pt_regs *regs)
46 {
47 }
48 
49 static void release_callchain_buffers_rcu(struct rcu_head *head)
50 {
51 	struct callchain_cpus_entries *entries;
52 	int cpu;
53 
54 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
55 
56 	for_each_possible_cpu(cpu)
57 		kfree(entries->cpu_entries[cpu]);
58 
59 	kfree(entries);
60 }
61 
62 static void release_callchain_buffers(void)
63 {
64 	struct callchain_cpus_entries *entries;
65 
66 	entries = callchain_cpus_entries;
67 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
68 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
69 }
70 
71 static int alloc_callchain_buffers(void)
72 {
73 	int cpu;
74 	int size;
75 	struct callchain_cpus_entries *entries;
76 
77 	/*
78 	 * We can't use the percpu allocation API for data that can be
79 	 * accessed from NMI. Use a temporary manual per cpu allocation
80 	 * until that gets sorted out.
81 	 */
82 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
83 
84 	entries = kzalloc(size, GFP_KERNEL);
85 	if (!entries)
86 		return -ENOMEM;
87 
88 	size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
89 
90 	for_each_possible_cpu(cpu) {
91 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
92 							 cpu_to_node(cpu));
93 		if (!entries->cpu_entries[cpu])
94 			goto fail;
95 	}
96 
97 	rcu_assign_pointer(callchain_cpus_entries, entries);
98 
99 	return 0;
100 
101 fail:
102 	for_each_possible_cpu(cpu)
103 		kfree(entries->cpu_entries[cpu]);
104 	kfree(entries);
105 
106 	return -ENOMEM;
107 }
108 
109 int get_callchain_buffers(int event_max_stack)
110 {
111 	int err = 0;
112 	int count;
113 
114 	mutex_lock(&callchain_mutex);
115 
116 	count = atomic_inc_return(&nr_callchain_events);
117 	if (WARN_ON_ONCE(count < 1)) {
118 		err = -EINVAL;
119 		goto exit;
120 	}
121 
122 	if (count > 1) {
123 		/* If the allocation failed, give up */
124 		if (!callchain_cpus_entries)
125 			err = -ENOMEM;
126 		/*
127 		 * If requesting per event more than the global cap,
128 		 * return a different error to help userspace figure
129 		 * this out.
130 		 *
131 		 * And also do it here so that we have &callchain_mutex held.
132 		 */
133 		if (event_max_stack > sysctl_perf_event_max_stack)
134 			err = -EOVERFLOW;
135 		goto exit;
136 	}
137 
138 	err = alloc_callchain_buffers();
139 exit:
140 	if (err)
141 		atomic_dec(&nr_callchain_events);
142 
143 	mutex_unlock(&callchain_mutex);
144 
145 	return err;
146 }
147 
148 void put_callchain_buffers(void)
149 {
150 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
151 		release_callchain_buffers();
152 		mutex_unlock(&callchain_mutex);
153 	}
154 }
155 
156 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
157 {
158 	int cpu;
159 	struct callchain_cpus_entries *entries;
160 
161 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
162 	if (*rctx == -1)
163 		return NULL;
164 
165 	entries = rcu_dereference(callchain_cpus_entries);
166 	if (!entries)
167 		return NULL;
168 
169 	cpu = smp_processor_id();
170 
171 	return (((void *)entries->cpu_entries[cpu]) +
172 		(*rctx * perf_callchain_entry__sizeof()));
173 }
174 
175 static void
176 put_callchain_entry(int rctx)
177 {
178 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
179 }
180 
181 struct perf_callchain_entry *
182 perf_callchain(struct perf_event *event, struct pt_regs *regs)
183 {
184 	bool kernel = !event->attr.exclude_callchain_kernel;
185 	bool user   = !event->attr.exclude_callchain_user;
186 	/* Disallow cross-task user callchains. */
187 	bool crosstask = event->ctx->task && event->ctx->task != current;
188 	const u32 max_stack = event->attr.sample_max_stack;
189 
190 	if (!kernel && !user)
191 		return NULL;
192 
193 	return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
194 }
195 
196 struct perf_callchain_entry *
197 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
198 		   u32 max_stack, bool crosstask, bool add_mark)
199 {
200 	struct perf_callchain_entry *entry;
201 	struct perf_callchain_entry_ctx ctx;
202 	int rctx;
203 
204 	entry = get_callchain_entry(&rctx);
205 	if (rctx == -1)
206 		return NULL;
207 
208 	if (!entry)
209 		goto exit_put;
210 
211 	ctx.entry     = entry;
212 	ctx.max_stack = max_stack;
213 	ctx.nr	      = entry->nr = init_nr;
214 	ctx.contexts       = 0;
215 	ctx.contexts_maxed = false;
216 
217 	if (kernel && !user_mode(regs)) {
218 		if (add_mark)
219 			perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
220 		perf_callchain_kernel(&ctx, regs);
221 	}
222 
223 	if (user) {
224 		if (!user_mode(regs)) {
225 			if  (current->mm)
226 				regs = task_pt_regs(current);
227 			else
228 				regs = NULL;
229 		}
230 
231 		if (regs) {
232 			mm_segment_t fs;
233 
234 			if (crosstask)
235 				goto exit_put;
236 
237 			if (add_mark)
238 				perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
239 
240 			fs = get_fs();
241 			set_fs(USER_DS);
242 			perf_callchain_user(&ctx, regs);
243 			set_fs(fs);
244 		}
245 	}
246 
247 exit_put:
248 	put_callchain_entry(rctx);
249 
250 	return entry;
251 }
252 
253 /*
254  * Used for sysctl_perf_event_max_stack and
255  * sysctl_perf_event_max_contexts_per_stack.
256  */
257 int perf_event_max_stack_handler(struct ctl_table *table, int write,
258 				 void __user *buffer, size_t *lenp, loff_t *ppos)
259 {
260 	int *value = table->data;
261 	int new_value = *value, ret;
262 	struct ctl_table new_table = *table;
263 
264 	new_table.data = &new_value;
265 	ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
266 	if (ret || !write)
267 		return ret;
268 
269 	mutex_lock(&callchain_mutex);
270 	if (atomic_read(&nr_callchain_events))
271 		ret = -EBUSY;
272 	else
273 		*value = new_value;
274 
275 	mutex_unlock(&callchain_mutex);
276 
277 	return ret;
278 }
279