xref: /openbmc/linux/kernel/events/callchain.c (revision 3e26a691)
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include "internal.h"
15 
16 struct callchain_cpus_entries {
17 	struct rcu_head			rcu_head;
18 	struct perf_callchain_entry	*cpu_entries[0];
19 };
20 
21 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
22 static atomic_t nr_callchain_events;
23 static DEFINE_MUTEX(callchain_mutex);
24 static struct callchain_cpus_entries *callchain_cpus_entries;
25 
26 
27 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
28 				  struct pt_regs *regs)
29 {
30 }
31 
32 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
33 				struct pt_regs *regs)
34 {
35 }
36 
37 static void release_callchain_buffers_rcu(struct rcu_head *head)
38 {
39 	struct callchain_cpus_entries *entries;
40 	int cpu;
41 
42 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
43 
44 	for_each_possible_cpu(cpu)
45 		kfree(entries->cpu_entries[cpu]);
46 
47 	kfree(entries);
48 }
49 
50 static void release_callchain_buffers(void)
51 {
52 	struct callchain_cpus_entries *entries;
53 
54 	entries = callchain_cpus_entries;
55 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
56 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
57 }
58 
59 static int alloc_callchain_buffers(void)
60 {
61 	int cpu;
62 	int size;
63 	struct callchain_cpus_entries *entries;
64 
65 	/*
66 	 * We can't use the percpu allocation API for data that can be
67 	 * accessed from NMI. Use a temporary manual per cpu allocation
68 	 * until that gets sorted out.
69 	 */
70 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
71 
72 	entries = kzalloc(size, GFP_KERNEL);
73 	if (!entries)
74 		return -ENOMEM;
75 
76 	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
77 
78 	for_each_possible_cpu(cpu) {
79 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
80 							 cpu_to_node(cpu));
81 		if (!entries->cpu_entries[cpu])
82 			goto fail;
83 	}
84 
85 	rcu_assign_pointer(callchain_cpus_entries, entries);
86 
87 	return 0;
88 
89 fail:
90 	for_each_possible_cpu(cpu)
91 		kfree(entries->cpu_entries[cpu]);
92 	kfree(entries);
93 
94 	return -ENOMEM;
95 }
96 
97 int get_callchain_buffers(void)
98 {
99 	int err = 0;
100 	int count;
101 
102 	mutex_lock(&callchain_mutex);
103 
104 	count = atomic_inc_return(&nr_callchain_events);
105 	if (WARN_ON_ONCE(count < 1)) {
106 		err = -EINVAL;
107 		goto exit;
108 	}
109 
110 	if (count > 1) {
111 		/* If the allocation failed, give up */
112 		if (!callchain_cpus_entries)
113 			err = -ENOMEM;
114 		goto exit;
115 	}
116 
117 	err = alloc_callchain_buffers();
118 exit:
119 	if (err)
120 		atomic_dec(&nr_callchain_events);
121 
122 	mutex_unlock(&callchain_mutex);
123 
124 	return err;
125 }
126 
127 void put_callchain_buffers(void)
128 {
129 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
130 		release_callchain_buffers();
131 		mutex_unlock(&callchain_mutex);
132 	}
133 }
134 
135 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
136 {
137 	int cpu;
138 	struct callchain_cpus_entries *entries;
139 
140 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
141 	if (*rctx == -1)
142 		return NULL;
143 
144 	entries = rcu_dereference(callchain_cpus_entries);
145 	if (!entries)
146 		return NULL;
147 
148 	cpu = smp_processor_id();
149 
150 	return &entries->cpu_entries[cpu][*rctx];
151 }
152 
153 static void
154 put_callchain_entry(int rctx)
155 {
156 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
157 }
158 
159 struct perf_callchain_entry *
160 perf_callchain(struct perf_event *event, struct pt_regs *regs)
161 {
162 	bool kernel = !event->attr.exclude_callchain_kernel;
163 	bool user   = !event->attr.exclude_callchain_user;
164 	/* Disallow cross-task user callchains. */
165 	bool crosstask = event->ctx->task && event->ctx->task != current;
166 
167 	if (!kernel && !user)
168 		return NULL;
169 
170 	return get_perf_callchain(regs, 0, kernel, user, crosstask, true);
171 }
172 
173 struct perf_callchain_entry *
174 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
175 		   bool crosstask, bool add_mark)
176 {
177 	struct perf_callchain_entry *entry;
178 	int rctx;
179 
180 	entry = get_callchain_entry(&rctx);
181 	if (rctx == -1)
182 		return NULL;
183 
184 	if (!entry)
185 		goto exit_put;
186 
187 	entry->nr = init_nr;
188 
189 	if (kernel && !user_mode(regs)) {
190 		if (add_mark)
191 			perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
192 		perf_callchain_kernel(entry, regs);
193 	}
194 
195 	if (user) {
196 		if (!user_mode(regs)) {
197 			if  (current->mm)
198 				regs = task_pt_regs(current);
199 			else
200 				regs = NULL;
201 		}
202 
203 		if (regs) {
204 			if (crosstask)
205 				goto exit_put;
206 
207 			if (add_mark)
208 				perf_callchain_store(entry, PERF_CONTEXT_USER);
209 			perf_callchain_user(entry, regs);
210 		}
211 	}
212 
213 exit_put:
214 	put_callchain_entry(rctx);
215 
216 	return entry;
217 }
218