1 /* 2 * Dynamic DMA mapping support. 3 * 4 * This implementation is a fallback for platforms that do not support 5 * I/O TLBs (aka DMA address translation hardware). 6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 8 * Copyright (C) 2000, 2003 Hewlett-Packard Co 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * 11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 13 * unnecessary i-cache flushing. 14 * 04/07/.. ak Better overflow handling. Assorted fixes. 15 * 05/09/10 linville Add support for syncing ranges, support syncing for 16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 17 * 08/12/11 beckyb Add highmem support 18 */ 19 20 #include <linux/cache.h> 21 #include <linux/dma-direct.h> 22 #include <linux/mm.h> 23 #include <linux/export.h> 24 #include <linux/spinlock.h> 25 #include <linux/string.h> 26 #include <linux/swiotlb.h> 27 #include <linux/pfn.h> 28 #include <linux/types.h> 29 #include <linux/ctype.h> 30 #include <linux/highmem.h> 31 #include <linux/gfp.h> 32 #include <linux/scatterlist.h> 33 #include <linux/mem_encrypt.h> 34 #include <linux/set_memory.h> 35 36 #include <asm/io.h> 37 #include <asm/dma.h> 38 39 #include <linux/init.h> 40 #include <linux/bootmem.h> 41 #include <linux/iommu-helper.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/swiotlb.h> 45 46 #define OFFSET(val,align) ((unsigned long) \ 47 ( (val) & ( (align) - 1))) 48 49 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 50 51 /* 52 * Minimum IO TLB size to bother booting with. Systems with mainly 53 * 64bit capable cards will only lightly use the swiotlb. If we can't 54 * allocate a contiguous 1MB, we're probably in trouble anyway. 55 */ 56 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 57 58 enum swiotlb_force swiotlb_force; 59 60 /* 61 * Used to do a quick range check in swiotlb_tbl_unmap_single and 62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 63 * API. 64 */ 65 static phys_addr_t io_tlb_start, io_tlb_end; 66 67 /* 68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 70 */ 71 static unsigned long io_tlb_nslabs; 72 73 /* 74 * When the IOMMU overflows we return a fallback buffer. This sets the size. 75 */ 76 static unsigned long io_tlb_overflow = 32*1024; 77 78 static phys_addr_t io_tlb_overflow_buffer; 79 80 /* 81 * This is a free list describing the number of free entries available from 82 * each index 83 */ 84 static unsigned int *io_tlb_list; 85 static unsigned int io_tlb_index; 86 87 /* 88 * Max segment that we can provide which (if pages are contingous) will 89 * not be bounced (unless SWIOTLB_FORCE is set). 90 */ 91 unsigned int max_segment; 92 93 /* 94 * We need to save away the original address corresponding to a mapped entry 95 * for the sync operations. 96 */ 97 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 98 static phys_addr_t *io_tlb_orig_addr; 99 100 /* 101 * Protect the above data structures in the map and unmap calls 102 */ 103 static DEFINE_SPINLOCK(io_tlb_lock); 104 105 static int late_alloc; 106 107 static int __init 108 setup_io_tlb_npages(char *str) 109 { 110 if (isdigit(*str)) { 111 io_tlb_nslabs = simple_strtoul(str, &str, 0); 112 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 113 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 114 } 115 if (*str == ',') 116 ++str; 117 if (!strcmp(str, "force")) { 118 swiotlb_force = SWIOTLB_FORCE; 119 } else if (!strcmp(str, "noforce")) { 120 swiotlb_force = SWIOTLB_NO_FORCE; 121 io_tlb_nslabs = 1; 122 } 123 124 return 0; 125 } 126 early_param("swiotlb", setup_io_tlb_npages); 127 /* make io_tlb_overflow tunable too? */ 128 129 unsigned long swiotlb_nr_tbl(void) 130 { 131 return io_tlb_nslabs; 132 } 133 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 134 135 unsigned int swiotlb_max_segment(void) 136 { 137 return max_segment; 138 } 139 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 140 141 void swiotlb_set_max_segment(unsigned int val) 142 { 143 if (swiotlb_force == SWIOTLB_FORCE) 144 max_segment = 1; 145 else 146 max_segment = rounddown(val, PAGE_SIZE); 147 } 148 149 /* default to 64MB */ 150 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 151 unsigned long swiotlb_size_or_default(void) 152 { 153 unsigned long size; 154 155 size = io_tlb_nslabs << IO_TLB_SHIFT; 156 157 return size ? size : (IO_TLB_DEFAULT_SIZE); 158 } 159 160 static bool no_iotlb_memory; 161 162 void swiotlb_print_info(void) 163 { 164 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 165 unsigned char *vstart, *vend; 166 167 if (no_iotlb_memory) { 168 pr_warn("software IO TLB: No low mem\n"); 169 return; 170 } 171 172 vstart = phys_to_virt(io_tlb_start); 173 vend = phys_to_virt(io_tlb_end); 174 175 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", 176 (unsigned long long)io_tlb_start, 177 (unsigned long long)io_tlb_end, 178 bytes >> 20, vstart, vend - 1); 179 } 180 181 /* 182 * Early SWIOTLB allocation may be too early to allow an architecture to 183 * perform the desired operations. This function allows the architecture to 184 * call SWIOTLB when the operations are possible. It needs to be called 185 * before the SWIOTLB memory is used. 186 */ 187 void __init swiotlb_update_mem_attributes(void) 188 { 189 void *vaddr; 190 unsigned long bytes; 191 192 if (no_iotlb_memory || late_alloc) 193 return; 194 195 vaddr = phys_to_virt(io_tlb_start); 196 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 197 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 198 memset(vaddr, 0, bytes); 199 200 vaddr = phys_to_virt(io_tlb_overflow_buffer); 201 bytes = PAGE_ALIGN(io_tlb_overflow); 202 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 203 memset(vaddr, 0, bytes); 204 } 205 206 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 207 { 208 void *v_overflow_buffer; 209 unsigned long i, bytes; 210 211 bytes = nslabs << IO_TLB_SHIFT; 212 213 io_tlb_nslabs = nslabs; 214 io_tlb_start = __pa(tlb); 215 io_tlb_end = io_tlb_start + bytes; 216 217 /* 218 * Get the overflow emergency buffer 219 */ 220 v_overflow_buffer = memblock_virt_alloc_low_nopanic( 221 PAGE_ALIGN(io_tlb_overflow), 222 PAGE_SIZE); 223 if (!v_overflow_buffer) 224 return -ENOMEM; 225 226 io_tlb_overflow_buffer = __pa(v_overflow_buffer); 227 228 /* 229 * Allocate and initialize the free list array. This array is used 230 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 231 * between io_tlb_start and io_tlb_end. 232 */ 233 io_tlb_list = memblock_virt_alloc( 234 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), 235 PAGE_SIZE); 236 io_tlb_orig_addr = memblock_virt_alloc( 237 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), 238 PAGE_SIZE); 239 for (i = 0; i < io_tlb_nslabs; i++) { 240 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 241 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 242 } 243 io_tlb_index = 0; 244 245 if (verbose) 246 swiotlb_print_info(); 247 248 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 249 return 0; 250 } 251 252 /* 253 * Statically reserve bounce buffer space and initialize bounce buffer data 254 * structures for the software IO TLB used to implement the DMA API. 255 */ 256 void __init 257 swiotlb_init(int verbose) 258 { 259 size_t default_size = IO_TLB_DEFAULT_SIZE; 260 unsigned char *vstart; 261 unsigned long bytes; 262 263 if (!io_tlb_nslabs) { 264 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 265 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 266 } 267 268 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 269 270 /* Get IO TLB memory from the low pages */ 271 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); 272 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 273 return; 274 275 if (io_tlb_start) 276 memblock_free_early(io_tlb_start, 277 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 278 pr_warn("Cannot allocate SWIOTLB buffer"); 279 no_iotlb_memory = true; 280 } 281 282 /* 283 * Systems with larger DMA zones (those that don't support ISA) can 284 * initialize the swiotlb later using the slab allocator if needed. 285 * This should be just like above, but with some error catching. 286 */ 287 int 288 swiotlb_late_init_with_default_size(size_t default_size) 289 { 290 unsigned long bytes, req_nslabs = io_tlb_nslabs; 291 unsigned char *vstart = NULL; 292 unsigned int order; 293 int rc = 0; 294 295 if (!io_tlb_nslabs) { 296 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 297 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 298 } 299 300 /* 301 * Get IO TLB memory from the low pages 302 */ 303 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 304 io_tlb_nslabs = SLABS_PER_PAGE << order; 305 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 306 307 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 308 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 309 order); 310 if (vstart) 311 break; 312 order--; 313 } 314 315 if (!vstart) { 316 io_tlb_nslabs = req_nslabs; 317 return -ENOMEM; 318 } 319 if (order != get_order(bytes)) { 320 printk(KERN_WARNING "Warning: only able to allocate %ld MB " 321 "for software IO TLB\n", (PAGE_SIZE << order) >> 20); 322 io_tlb_nslabs = SLABS_PER_PAGE << order; 323 } 324 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 325 if (rc) 326 free_pages((unsigned long)vstart, order); 327 328 return rc; 329 } 330 331 int 332 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 333 { 334 unsigned long i, bytes; 335 unsigned char *v_overflow_buffer; 336 337 bytes = nslabs << IO_TLB_SHIFT; 338 339 io_tlb_nslabs = nslabs; 340 io_tlb_start = virt_to_phys(tlb); 341 io_tlb_end = io_tlb_start + bytes; 342 343 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 344 memset(tlb, 0, bytes); 345 346 /* 347 * Get the overflow emergency buffer 348 */ 349 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, 350 get_order(io_tlb_overflow)); 351 if (!v_overflow_buffer) 352 goto cleanup2; 353 354 set_memory_decrypted((unsigned long)v_overflow_buffer, 355 io_tlb_overflow >> PAGE_SHIFT); 356 memset(v_overflow_buffer, 0, io_tlb_overflow); 357 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); 358 359 /* 360 * Allocate and initialize the free list array. This array is used 361 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 362 * between io_tlb_start and io_tlb_end. 363 */ 364 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 365 get_order(io_tlb_nslabs * sizeof(int))); 366 if (!io_tlb_list) 367 goto cleanup3; 368 369 io_tlb_orig_addr = (phys_addr_t *) 370 __get_free_pages(GFP_KERNEL, 371 get_order(io_tlb_nslabs * 372 sizeof(phys_addr_t))); 373 if (!io_tlb_orig_addr) 374 goto cleanup4; 375 376 for (i = 0; i < io_tlb_nslabs; i++) { 377 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 378 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 379 } 380 io_tlb_index = 0; 381 382 swiotlb_print_info(); 383 384 late_alloc = 1; 385 386 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 387 388 return 0; 389 390 cleanup4: 391 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 392 sizeof(int))); 393 io_tlb_list = NULL; 394 cleanup3: 395 free_pages((unsigned long)v_overflow_buffer, 396 get_order(io_tlb_overflow)); 397 io_tlb_overflow_buffer = 0; 398 cleanup2: 399 io_tlb_end = 0; 400 io_tlb_start = 0; 401 io_tlb_nslabs = 0; 402 max_segment = 0; 403 return -ENOMEM; 404 } 405 406 void __init swiotlb_exit(void) 407 { 408 if (!io_tlb_orig_addr) 409 return; 410 411 if (late_alloc) { 412 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), 413 get_order(io_tlb_overflow)); 414 free_pages((unsigned long)io_tlb_orig_addr, 415 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 416 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 417 sizeof(int))); 418 free_pages((unsigned long)phys_to_virt(io_tlb_start), 419 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 420 } else { 421 memblock_free_late(io_tlb_overflow_buffer, 422 PAGE_ALIGN(io_tlb_overflow)); 423 memblock_free_late(__pa(io_tlb_orig_addr), 424 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 425 memblock_free_late(__pa(io_tlb_list), 426 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 427 memblock_free_late(io_tlb_start, 428 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 429 } 430 io_tlb_nslabs = 0; 431 max_segment = 0; 432 } 433 434 int is_swiotlb_buffer(phys_addr_t paddr) 435 { 436 return paddr >= io_tlb_start && paddr < io_tlb_end; 437 } 438 439 /* 440 * Bounce: copy the swiotlb buffer back to the original dma location 441 */ 442 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 443 size_t size, enum dma_data_direction dir) 444 { 445 unsigned long pfn = PFN_DOWN(orig_addr); 446 unsigned char *vaddr = phys_to_virt(tlb_addr); 447 448 if (PageHighMem(pfn_to_page(pfn))) { 449 /* The buffer does not have a mapping. Map it in and copy */ 450 unsigned int offset = orig_addr & ~PAGE_MASK; 451 char *buffer; 452 unsigned int sz = 0; 453 unsigned long flags; 454 455 while (size) { 456 sz = min_t(size_t, PAGE_SIZE - offset, size); 457 458 local_irq_save(flags); 459 buffer = kmap_atomic(pfn_to_page(pfn)); 460 if (dir == DMA_TO_DEVICE) 461 memcpy(vaddr, buffer + offset, sz); 462 else 463 memcpy(buffer + offset, vaddr, sz); 464 kunmap_atomic(buffer); 465 local_irq_restore(flags); 466 467 size -= sz; 468 pfn++; 469 vaddr += sz; 470 offset = 0; 471 } 472 } else if (dir == DMA_TO_DEVICE) { 473 memcpy(vaddr, phys_to_virt(orig_addr), size); 474 } else { 475 memcpy(phys_to_virt(orig_addr), vaddr, size); 476 } 477 } 478 479 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 480 dma_addr_t tbl_dma_addr, 481 phys_addr_t orig_addr, size_t size, 482 enum dma_data_direction dir, 483 unsigned long attrs) 484 { 485 unsigned long flags; 486 phys_addr_t tlb_addr; 487 unsigned int nslots, stride, index, wrap; 488 int i; 489 unsigned long mask; 490 unsigned long offset_slots; 491 unsigned long max_slots; 492 493 if (no_iotlb_memory) 494 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 495 496 if (mem_encrypt_active()) 497 pr_warn_once("%s is active and system is using DMA bounce buffers\n", 498 sme_active() ? "SME" : "SEV"); 499 500 mask = dma_get_seg_boundary(hwdev); 501 502 tbl_dma_addr &= mask; 503 504 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 505 506 /* 507 * Carefully handle integer overflow which can occur when mask == ~0UL. 508 */ 509 max_slots = mask + 1 510 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 511 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 512 513 /* 514 * For mappings greater than or equal to a page, we limit the stride 515 * (and hence alignment) to a page size. 516 */ 517 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 518 if (size >= PAGE_SIZE) 519 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 520 else 521 stride = 1; 522 523 BUG_ON(!nslots); 524 525 /* 526 * Find suitable number of IO TLB entries size that will fit this 527 * request and allocate a buffer from that IO TLB pool. 528 */ 529 spin_lock_irqsave(&io_tlb_lock, flags); 530 index = ALIGN(io_tlb_index, stride); 531 if (index >= io_tlb_nslabs) 532 index = 0; 533 wrap = index; 534 535 do { 536 while (iommu_is_span_boundary(index, nslots, offset_slots, 537 max_slots)) { 538 index += stride; 539 if (index >= io_tlb_nslabs) 540 index = 0; 541 if (index == wrap) 542 goto not_found; 543 } 544 545 /* 546 * If we find a slot that indicates we have 'nslots' number of 547 * contiguous buffers, we allocate the buffers from that slot 548 * and mark the entries as '0' indicating unavailable. 549 */ 550 if (io_tlb_list[index] >= nslots) { 551 int count = 0; 552 553 for (i = index; i < (int) (index + nslots); i++) 554 io_tlb_list[i] = 0; 555 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 556 io_tlb_list[i] = ++count; 557 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 558 559 /* 560 * Update the indices to avoid searching in the next 561 * round. 562 */ 563 io_tlb_index = ((index + nslots) < io_tlb_nslabs 564 ? (index + nslots) : 0); 565 566 goto found; 567 } 568 index += stride; 569 if (index >= io_tlb_nslabs) 570 index = 0; 571 } while (index != wrap); 572 573 not_found: 574 spin_unlock_irqrestore(&io_tlb_lock, flags); 575 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 576 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); 577 return SWIOTLB_MAP_ERROR; 578 found: 579 spin_unlock_irqrestore(&io_tlb_lock, flags); 580 581 /* 582 * Save away the mapping from the original address to the DMA address. 583 * This is needed when we sync the memory. Then we sync the buffer if 584 * needed. 585 */ 586 for (i = 0; i < nslots; i++) 587 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 588 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 589 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 590 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); 591 592 return tlb_addr; 593 } 594 595 /* 596 * Allocates bounce buffer and returns its physical address. 597 */ 598 static phys_addr_t 599 map_single(struct device *hwdev, phys_addr_t phys, size_t size, 600 enum dma_data_direction dir, unsigned long attrs) 601 { 602 dma_addr_t start_dma_addr; 603 604 if (swiotlb_force == SWIOTLB_NO_FORCE) { 605 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", 606 &phys); 607 return SWIOTLB_MAP_ERROR; 608 } 609 610 start_dma_addr = __phys_to_dma(hwdev, io_tlb_start); 611 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, 612 dir, attrs); 613 } 614 615 /* 616 * tlb_addr is the physical address of the bounce buffer to unmap. 617 */ 618 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 619 size_t size, enum dma_data_direction dir, 620 unsigned long attrs) 621 { 622 unsigned long flags; 623 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 624 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 625 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 626 627 /* 628 * First, sync the memory before unmapping the entry 629 */ 630 if (orig_addr != INVALID_PHYS_ADDR && 631 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 632 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 633 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); 634 635 /* 636 * Return the buffer to the free list by setting the corresponding 637 * entries to indicate the number of contiguous entries available. 638 * While returning the entries to the free list, we merge the entries 639 * with slots below and above the pool being returned. 640 */ 641 spin_lock_irqsave(&io_tlb_lock, flags); 642 { 643 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 644 io_tlb_list[index + nslots] : 0); 645 /* 646 * Step 1: return the slots to the free list, merging the 647 * slots with superceeding slots 648 */ 649 for (i = index + nslots - 1; i >= index; i--) { 650 io_tlb_list[i] = ++count; 651 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 652 } 653 /* 654 * Step 2: merge the returned slots with the preceding slots, 655 * if available (non zero) 656 */ 657 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 658 io_tlb_list[i] = ++count; 659 } 660 spin_unlock_irqrestore(&io_tlb_lock, flags); 661 } 662 663 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 664 size_t size, enum dma_data_direction dir, 665 enum dma_sync_target target) 666 { 667 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 668 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 669 670 if (orig_addr == INVALID_PHYS_ADDR) 671 return; 672 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 673 674 switch (target) { 675 case SYNC_FOR_CPU: 676 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 677 swiotlb_bounce(orig_addr, tlb_addr, 678 size, DMA_FROM_DEVICE); 679 else 680 BUG_ON(dir != DMA_TO_DEVICE); 681 break; 682 case SYNC_FOR_DEVICE: 683 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 684 swiotlb_bounce(orig_addr, tlb_addr, 685 size, DMA_TO_DEVICE); 686 else 687 BUG_ON(dir != DMA_FROM_DEVICE); 688 break; 689 default: 690 BUG(); 691 } 692 } 693 694 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr, 695 size_t size) 696 { 697 u64 mask = DMA_BIT_MASK(32); 698 699 if (dev && dev->coherent_dma_mask) 700 mask = dev->coherent_dma_mask; 701 return addr + size - 1 <= mask; 702 } 703 704 static void * 705 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle, 706 unsigned long attrs) 707 { 708 phys_addr_t phys_addr; 709 710 if (swiotlb_force == SWIOTLB_NO_FORCE) 711 goto out_warn; 712 713 phys_addr = swiotlb_tbl_map_single(dev, 714 __phys_to_dma(dev, io_tlb_start), 715 0, size, DMA_FROM_DEVICE, attrs); 716 if (phys_addr == SWIOTLB_MAP_ERROR) 717 goto out_warn; 718 719 *dma_handle = __phys_to_dma(dev, phys_addr); 720 if (!dma_coherent_ok(dev, *dma_handle, size)) 721 goto out_unmap; 722 723 memset(phys_to_virt(phys_addr), 0, size); 724 return phys_to_virt(phys_addr); 725 726 out_unmap: 727 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", 728 (unsigned long long)dev->coherent_dma_mask, 729 (unsigned long long)*dma_handle); 730 731 /* 732 * DMA_TO_DEVICE to avoid memcpy in unmap_single. 733 * DMA_ATTR_SKIP_CPU_SYNC is optional. 734 */ 735 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, 736 DMA_ATTR_SKIP_CPU_SYNC); 737 out_warn: 738 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) { 739 dev_warn(dev, 740 "swiotlb: coherent allocation failed, size=%zu\n", 741 size); 742 dump_stack(); 743 } 744 return NULL; 745 } 746 747 static bool swiotlb_free_buffer(struct device *dev, size_t size, 748 dma_addr_t dma_addr) 749 { 750 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr); 751 752 WARN_ON_ONCE(irqs_disabled()); 753 754 if (!is_swiotlb_buffer(phys_addr)) 755 return false; 756 757 /* 758 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. 759 * DMA_ATTR_SKIP_CPU_SYNC is optional. 760 */ 761 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, 762 DMA_ATTR_SKIP_CPU_SYNC); 763 return true; 764 } 765 766 static void 767 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, 768 int do_panic) 769 { 770 if (swiotlb_force == SWIOTLB_NO_FORCE) 771 return; 772 773 /* 774 * Ran out of IOMMU space for this operation. This is very bad. 775 * Unfortunately the drivers cannot handle this operation properly. 776 * unless they check for dma_mapping_error (most don't) 777 * When the mapping is small enough return a static buffer to limit 778 * the damage, or panic when the transfer is too big. 779 */ 780 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", 781 size); 782 783 if (size <= io_tlb_overflow || !do_panic) 784 return; 785 786 if (dir == DMA_BIDIRECTIONAL) 787 panic("DMA: Random memory could be DMA accessed\n"); 788 if (dir == DMA_FROM_DEVICE) 789 panic("DMA: Random memory could be DMA written\n"); 790 if (dir == DMA_TO_DEVICE) 791 panic("DMA: Random memory could be DMA read\n"); 792 } 793 794 /* 795 * Map a single buffer of the indicated size for DMA in streaming mode. The 796 * physical address to use is returned. 797 * 798 * Once the device is given the dma address, the device owns this memory until 799 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. 800 */ 801 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, 802 unsigned long offset, size_t size, 803 enum dma_data_direction dir, 804 unsigned long attrs) 805 { 806 phys_addr_t map, phys = page_to_phys(page) + offset; 807 dma_addr_t dev_addr = phys_to_dma(dev, phys); 808 809 BUG_ON(dir == DMA_NONE); 810 /* 811 * If the address happens to be in the device's DMA window, 812 * we can safely return the device addr and not worry about bounce 813 * buffering it. 814 */ 815 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) 816 return dev_addr; 817 818 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 819 820 /* Oh well, have to allocate and map a bounce buffer. */ 821 map = map_single(dev, phys, size, dir, attrs); 822 if (map == SWIOTLB_MAP_ERROR) { 823 swiotlb_full(dev, size, dir, 1); 824 return __phys_to_dma(dev, io_tlb_overflow_buffer); 825 } 826 827 dev_addr = __phys_to_dma(dev, map); 828 829 /* Ensure that the address returned is DMA'ble */ 830 if (dma_capable(dev, dev_addr, size)) 831 return dev_addr; 832 833 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 834 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); 835 836 return __phys_to_dma(dev, io_tlb_overflow_buffer); 837 } 838 839 /* 840 * Unmap a single streaming mode DMA translation. The dma_addr and size must 841 * match what was provided for in a previous swiotlb_map_page call. All 842 * other usages are undefined. 843 * 844 * After this call, reads by the cpu to the buffer are guaranteed to see 845 * whatever the device wrote there. 846 */ 847 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, 848 size_t size, enum dma_data_direction dir, 849 unsigned long attrs) 850 { 851 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); 852 853 BUG_ON(dir == DMA_NONE); 854 855 if (is_swiotlb_buffer(paddr)) { 856 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 857 return; 858 } 859 860 if (dir != DMA_FROM_DEVICE) 861 return; 862 863 /* 864 * phys_to_virt doesn't work with hihgmem page but we could 865 * call dma_mark_clean() with hihgmem page here. However, we 866 * are fine since dma_mark_clean() is null on POWERPC. We can 867 * make dma_mark_clean() take a physical address if necessary. 868 */ 869 dma_mark_clean(phys_to_virt(paddr), size); 870 } 871 872 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 873 size_t size, enum dma_data_direction dir, 874 unsigned long attrs) 875 { 876 unmap_single(hwdev, dev_addr, size, dir, attrs); 877 } 878 879 /* 880 * Make physical memory consistent for a single streaming mode DMA translation 881 * after a transfer. 882 * 883 * If you perform a swiotlb_map_page() but wish to interrogate the buffer 884 * using the cpu, yet do not wish to teardown the dma mapping, you must 885 * call this function before doing so. At the next point you give the dma 886 * address back to the card, you must first perform a 887 * swiotlb_dma_sync_for_device, and then the device again owns the buffer 888 */ 889 static void 890 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 891 size_t size, enum dma_data_direction dir, 892 enum dma_sync_target target) 893 { 894 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); 895 896 BUG_ON(dir == DMA_NONE); 897 898 if (is_swiotlb_buffer(paddr)) { 899 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 900 return; 901 } 902 903 if (dir != DMA_FROM_DEVICE) 904 return; 905 906 dma_mark_clean(phys_to_virt(paddr), size); 907 } 908 909 void 910 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 911 size_t size, enum dma_data_direction dir) 912 { 913 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 914 } 915 916 void 917 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 918 size_t size, enum dma_data_direction dir) 919 { 920 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 921 } 922 923 /* 924 * Map a set of buffers described by scatterlist in streaming mode for DMA. 925 * This is the scatter-gather version of the above swiotlb_map_page 926 * interface. Here the scatter gather list elements are each tagged with the 927 * appropriate dma address and length. They are obtained via 928 * sg_dma_{address,length}(SG). 929 * 930 * NOTE: An implementation may be able to use a smaller number of 931 * DMA address/length pairs than there are SG table elements. 932 * (for example via virtual mapping capabilities) 933 * The routine returns the number of addr/length pairs actually 934 * used, at most nents. 935 * 936 * Device ownership issues as mentioned above for swiotlb_map_page are the 937 * same here. 938 */ 939 int 940 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, 941 enum dma_data_direction dir, unsigned long attrs) 942 { 943 struct scatterlist *sg; 944 int i; 945 946 BUG_ON(dir == DMA_NONE); 947 948 for_each_sg(sgl, sg, nelems, i) { 949 phys_addr_t paddr = sg_phys(sg); 950 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); 951 952 if (swiotlb_force == SWIOTLB_FORCE || 953 !dma_capable(hwdev, dev_addr, sg->length)) { 954 phys_addr_t map = map_single(hwdev, sg_phys(sg), 955 sg->length, dir, attrs); 956 if (map == SWIOTLB_MAP_ERROR) { 957 /* Don't panic here, we expect map_sg users 958 to do proper error handling. */ 959 swiotlb_full(hwdev, sg->length, dir, 0); 960 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 961 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 962 attrs); 963 sg_dma_len(sgl) = 0; 964 return 0; 965 } 966 sg->dma_address = __phys_to_dma(hwdev, map); 967 } else 968 sg->dma_address = dev_addr; 969 sg_dma_len(sg) = sg->length; 970 } 971 return nelems; 972 } 973 974 /* 975 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 976 * concerning calls here are the same as for swiotlb_unmap_page() above. 977 */ 978 void 979 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 980 int nelems, enum dma_data_direction dir, 981 unsigned long attrs) 982 { 983 struct scatterlist *sg; 984 int i; 985 986 BUG_ON(dir == DMA_NONE); 987 988 for_each_sg(sgl, sg, nelems, i) 989 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, 990 attrs); 991 } 992 993 /* 994 * Make physical memory consistent for a set of streaming mode DMA translations 995 * after a transfer. 996 * 997 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 998 * and usage. 999 */ 1000 static void 1001 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 1002 int nelems, enum dma_data_direction dir, 1003 enum dma_sync_target target) 1004 { 1005 struct scatterlist *sg; 1006 int i; 1007 1008 for_each_sg(sgl, sg, nelems, i) 1009 swiotlb_sync_single(hwdev, sg->dma_address, 1010 sg_dma_len(sg), dir, target); 1011 } 1012 1013 void 1014 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 1015 int nelems, enum dma_data_direction dir) 1016 { 1017 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 1018 } 1019 1020 void 1021 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 1022 int nelems, enum dma_data_direction dir) 1023 { 1024 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 1025 } 1026 1027 int 1028 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 1029 { 1030 return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer)); 1031 } 1032 1033 /* 1034 * Return whether the given device DMA address mask can be supported 1035 * properly. For example, if your device can only drive the low 24-bits 1036 * during bus mastering, then you would pass 0x00ffffff as the mask to 1037 * this function. 1038 */ 1039 int 1040 swiotlb_dma_supported(struct device *hwdev, u64 mask) 1041 { 1042 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; 1043 } 1044 1045 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 1046 gfp_t gfp, unsigned long attrs) 1047 { 1048 void *vaddr; 1049 1050 /* temporary workaround: */ 1051 if (gfp & __GFP_NOWARN) 1052 attrs |= DMA_ATTR_NO_WARN; 1053 1054 /* 1055 * Don't print a warning when the first allocation attempt fails. 1056 * swiotlb_alloc_coherent() will print a warning when the DMA memory 1057 * allocation ultimately failed. 1058 */ 1059 gfp |= __GFP_NOWARN; 1060 1061 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); 1062 if (!vaddr) 1063 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs); 1064 return vaddr; 1065 } 1066 1067 void swiotlb_free(struct device *dev, size_t size, void *vaddr, 1068 dma_addr_t dma_addr, unsigned long attrs) 1069 { 1070 if (!swiotlb_free_buffer(dev, size, dma_addr)) 1071 dma_direct_free(dev, size, vaddr, dma_addr, attrs); 1072 } 1073 1074 const struct dma_map_ops swiotlb_dma_ops = { 1075 .mapping_error = swiotlb_dma_mapping_error, 1076 .alloc = swiotlb_alloc, 1077 .free = swiotlb_free, 1078 .sync_single_for_cpu = swiotlb_sync_single_for_cpu, 1079 .sync_single_for_device = swiotlb_sync_single_for_device, 1080 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, 1081 .sync_sg_for_device = swiotlb_sync_sg_for_device, 1082 .map_sg = swiotlb_map_sg_attrs, 1083 .unmap_sg = swiotlb_unmap_sg_attrs, 1084 .map_page = swiotlb_map_page, 1085 .unmap_page = swiotlb_unmap_page, 1086 .dma_supported = dma_direct_supported, 1087 }; 1088 EXPORT_SYMBOL(swiotlb_dma_ops); 1089