xref: /openbmc/linux/kernel/dma/swiotlb.c (revision f79e4d5f)
1 /*
2  * Dynamic DMA mapping support.
3  *
4  * This implementation is a fallback for platforms that do not support
5  * I/O TLBs (aka DMA address translation hardware).
6  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8  * Copyright (C) 2000, 2003 Hewlett-Packard Co
9  *	David Mosberger-Tang <davidm@hpl.hp.com>
10  *
11  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
12  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
13  *			unnecessary i-cache flushing.
14  * 04/07/.. ak		Better overflow handling. Assorted fixes.
15  * 05/09/10 linville	Add support for syncing ranges, support syncing for
16  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17  * 08/12/11 beckyb	Add highmem support
18  */
19 
20 #include <linux/cache.h>
21 #include <linux/dma-direct.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
34 #include <linux/set_memory.h>
35 
36 #include <asm/io.h>
37 #include <asm/dma.h>
38 
39 #include <linux/init.h>
40 #include <linux/bootmem.h>
41 #include <linux/iommu-helper.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/swiotlb.h>
45 
46 #define OFFSET(val,align) ((unsigned long)	\
47 	                   ( (val) & ( (align) - 1)))
48 
49 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50 
51 /*
52  * Minimum IO TLB size to bother booting with.  Systems with mainly
53  * 64bit capable cards will only lightly use the swiotlb.  If we can't
54  * allocate a contiguous 1MB, we're probably in trouble anyway.
55  */
56 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57 
58 enum swiotlb_force swiotlb_force;
59 
60 /*
61  * Used to do a quick range check in swiotlb_tbl_unmap_single and
62  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
63  * API.
64  */
65 static phys_addr_t io_tlb_start, io_tlb_end;
66 
67 /*
68  * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
69  * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages.
70  */
71 static unsigned long io_tlb_nslabs;
72 
73 /*
74  * When the IOMMU overflows we return a fallback buffer. This sets the size.
75  */
76 static unsigned long io_tlb_overflow = 32*1024;
77 
78 static phys_addr_t io_tlb_overflow_buffer;
79 
80 /*
81  * This is a free list describing the number of free entries available from
82  * each index
83  */
84 static unsigned int *io_tlb_list;
85 static unsigned int io_tlb_index;
86 
87 /*
88  * Max segment that we can provide which (if pages are contingous) will
89  * not be bounced (unless SWIOTLB_FORCE is set).
90  */
91 unsigned int max_segment;
92 
93 /*
94  * We need to save away the original address corresponding to a mapped entry
95  * for the sync operations.
96  */
97 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
98 static phys_addr_t *io_tlb_orig_addr;
99 
100 /*
101  * Protect the above data structures in the map and unmap calls
102  */
103 static DEFINE_SPINLOCK(io_tlb_lock);
104 
105 static int late_alloc;
106 
107 static int __init
108 setup_io_tlb_npages(char *str)
109 {
110 	if (isdigit(*str)) {
111 		io_tlb_nslabs = simple_strtoul(str, &str, 0);
112 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
113 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
114 	}
115 	if (*str == ',')
116 		++str;
117 	if (!strcmp(str, "force")) {
118 		swiotlb_force = SWIOTLB_FORCE;
119 	} else if (!strcmp(str, "noforce")) {
120 		swiotlb_force = SWIOTLB_NO_FORCE;
121 		io_tlb_nslabs = 1;
122 	}
123 
124 	return 0;
125 }
126 early_param("swiotlb", setup_io_tlb_npages);
127 /* make io_tlb_overflow tunable too? */
128 
129 unsigned long swiotlb_nr_tbl(void)
130 {
131 	return io_tlb_nslabs;
132 }
133 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
134 
135 unsigned int swiotlb_max_segment(void)
136 {
137 	return max_segment;
138 }
139 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
140 
141 void swiotlb_set_max_segment(unsigned int val)
142 {
143 	if (swiotlb_force == SWIOTLB_FORCE)
144 		max_segment = 1;
145 	else
146 		max_segment = rounddown(val, PAGE_SIZE);
147 }
148 
149 /* default to 64MB */
150 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
151 unsigned long swiotlb_size_or_default(void)
152 {
153 	unsigned long size;
154 
155 	size = io_tlb_nslabs << IO_TLB_SHIFT;
156 
157 	return size ? size : (IO_TLB_DEFAULT_SIZE);
158 }
159 
160 static bool no_iotlb_memory;
161 
162 void swiotlb_print_info(void)
163 {
164 	unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
165 	unsigned char *vstart, *vend;
166 
167 	if (no_iotlb_memory) {
168 		pr_warn("software IO TLB: No low mem\n");
169 		return;
170 	}
171 
172 	vstart = phys_to_virt(io_tlb_start);
173 	vend = phys_to_virt(io_tlb_end);
174 
175 	printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
176 	       (unsigned long long)io_tlb_start,
177 	       (unsigned long long)io_tlb_end,
178 	       bytes >> 20, vstart, vend - 1);
179 }
180 
181 /*
182  * Early SWIOTLB allocation may be too early to allow an architecture to
183  * perform the desired operations.  This function allows the architecture to
184  * call SWIOTLB when the operations are possible.  It needs to be called
185  * before the SWIOTLB memory is used.
186  */
187 void __init swiotlb_update_mem_attributes(void)
188 {
189 	void *vaddr;
190 	unsigned long bytes;
191 
192 	if (no_iotlb_memory || late_alloc)
193 		return;
194 
195 	vaddr = phys_to_virt(io_tlb_start);
196 	bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
197 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
198 	memset(vaddr, 0, bytes);
199 
200 	vaddr = phys_to_virt(io_tlb_overflow_buffer);
201 	bytes = PAGE_ALIGN(io_tlb_overflow);
202 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
203 	memset(vaddr, 0, bytes);
204 }
205 
206 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
207 {
208 	void *v_overflow_buffer;
209 	unsigned long i, bytes;
210 
211 	bytes = nslabs << IO_TLB_SHIFT;
212 
213 	io_tlb_nslabs = nslabs;
214 	io_tlb_start = __pa(tlb);
215 	io_tlb_end = io_tlb_start + bytes;
216 
217 	/*
218 	 * Get the overflow emergency buffer
219 	 */
220 	v_overflow_buffer = memblock_virt_alloc_low_nopanic(
221 						PAGE_ALIGN(io_tlb_overflow),
222 						PAGE_SIZE);
223 	if (!v_overflow_buffer)
224 		return -ENOMEM;
225 
226 	io_tlb_overflow_buffer = __pa(v_overflow_buffer);
227 
228 	/*
229 	 * Allocate and initialize the free list array.  This array is used
230 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
231 	 * between io_tlb_start and io_tlb_end.
232 	 */
233 	io_tlb_list = memblock_virt_alloc(
234 				PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
235 				PAGE_SIZE);
236 	io_tlb_orig_addr = memblock_virt_alloc(
237 				PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
238 				PAGE_SIZE);
239 	for (i = 0; i < io_tlb_nslabs; i++) {
240 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
241 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
242 	}
243 	io_tlb_index = 0;
244 
245 	if (verbose)
246 		swiotlb_print_info();
247 
248 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
249 	return 0;
250 }
251 
252 /*
253  * Statically reserve bounce buffer space and initialize bounce buffer data
254  * structures for the software IO TLB used to implement the DMA API.
255  */
256 void  __init
257 swiotlb_init(int verbose)
258 {
259 	size_t default_size = IO_TLB_DEFAULT_SIZE;
260 	unsigned char *vstart;
261 	unsigned long bytes;
262 
263 	if (!io_tlb_nslabs) {
264 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
265 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
266 	}
267 
268 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
269 
270 	/* Get IO TLB memory from the low pages */
271 	vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
272 	if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
273 		return;
274 
275 	if (io_tlb_start)
276 		memblock_free_early(io_tlb_start,
277 				    PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
278 	pr_warn("Cannot allocate SWIOTLB buffer");
279 	no_iotlb_memory = true;
280 }
281 
282 /*
283  * Systems with larger DMA zones (those that don't support ISA) can
284  * initialize the swiotlb later using the slab allocator if needed.
285  * This should be just like above, but with some error catching.
286  */
287 int
288 swiotlb_late_init_with_default_size(size_t default_size)
289 {
290 	unsigned long bytes, req_nslabs = io_tlb_nslabs;
291 	unsigned char *vstart = NULL;
292 	unsigned int order;
293 	int rc = 0;
294 
295 	if (!io_tlb_nslabs) {
296 		io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
297 		io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
298 	}
299 
300 	/*
301 	 * Get IO TLB memory from the low pages
302 	 */
303 	order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
304 	io_tlb_nslabs = SLABS_PER_PAGE << order;
305 	bytes = io_tlb_nslabs << IO_TLB_SHIFT;
306 
307 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
308 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
309 						  order);
310 		if (vstart)
311 			break;
312 		order--;
313 	}
314 
315 	if (!vstart) {
316 		io_tlb_nslabs = req_nslabs;
317 		return -ENOMEM;
318 	}
319 	if (order != get_order(bytes)) {
320 		printk(KERN_WARNING "Warning: only able to allocate %ld MB "
321 		       "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
322 		io_tlb_nslabs = SLABS_PER_PAGE << order;
323 	}
324 	rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
325 	if (rc)
326 		free_pages((unsigned long)vstart, order);
327 
328 	return rc;
329 }
330 
331 int
332 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
333 {
334 	unsigned long i, bytes;
335 	unsigned char *v_overflow_buffer;
336 
337 	bytes = nslabs << IO_TLB_SHIFT;
338 
339 	io_tlb_nslabs = nslabs;
340 	io_tlb_start = virt_to_phys(tlb);
341 	io_tlb_end = io_tlb_start + bytes;
342 
343 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
344 	memset(tlb, 0, bytes);
345 
346 	/*
347 	 * Get the overflow emergency buffer
348 	 */
349 	v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
350 						     get_order(io_tlb_overflow));
351 	if (!v_overflow_buffer)
352 		goto cleanup2;
353 
354 	set_memory_decrypted((unsigned long)v_overflow_buffer,
355 			io_tlb_overflow >> PAGE_SHIFT);
356 	memset(v_overflow_buffer, 0, io_tlb_overflow);
357 	io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
358 
359 	/*
360 	 * Allocate and initialize the free list array.  This array is used
361 	 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
362 	 * between io_tlb_start and io_tlb_end.
363 	 */
364 	io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
365 	                              get_order(io_tlb_nslabs * sizeof(int)));
366 	if (!io_tlb_list)
367 		goto cleanup3;
368 
369 	io_tlb_orig_addr = (phys_addr_t *)
370 		__get_free_pages(GFP_KERNEL,
371 				 get_order(io_tlb_nslabs *
372 					   sizeof(phys_addr_t)));
373 	if (!io_tlb_orig_addr)
374 		goto cleanup4;
375 
376 	for (i = 0; i < io_tlb_nslabs; i++) {
377 		io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
378 		io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
379 	}
380 	io_tlb_index = 0;
381 
382 	swiotlb_print_info();
383 
384 	late_alloc = 1;
385 
386 	swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
387 
388 	return 0;
389 
390 cleanup4:
391 	free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
392 	                                                 sizeof(int)));
393 	io_tlb_list = NULL;
394 cleanup3:
395 	free_pages((unsigned long)v_overflow_buffer,
396 		   get_order(io_tlb_overflow));
397 	io_tlb_overflow_buffer = 0;
398 cleanup2:
399 	io_tlb_end = 0;
400 	io_tlb_start = 0;
401 	io_tlb_nslabs = 0;
402 	max_segment = 0;
403 	return -ENOMEM;
404 }
405 
406 void __init swiotlb_exit(void)
407 {
408 	if (!io_tlb_orig_addr)
409 		return;
410 
411 	if (late_alloc) {
412 		free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
413 			   get_order(io_tlb_overflow));
414 		free_pages((unsigned long)io_tlb_orig_addr,
415 			   get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
416 		free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
417 								 sizeof(int)));
418 		free_pages((unsigned long)phys_to_virt(io_tlb_start),
419 			   get_order(io_tlb_nslabs << IO_TLB_SHIFT));
420 	} else {
421 		memblock_free_late(io_tlb_overflow_buffer,
422 				   PAGE_ALIGN(io_tlb_overflow));
423 		memblock_free_late(__pa(io_tlb_orig_addr),
424 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
425 		memblock_free_late(__pa(io_tlb_list),
426 				   PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
427 		memblock_free_late(io_tlb_start,
428 				   PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
429 	}
430 	io_tlb_nslabs = 0;
431 	max_segment = 0;
432 }
433 
434 int is_swiotlb_buffer(phys_addr_t paddr)
435 {
436 	return paddr >= io_tlb_start && paddr < io_tlb_end;
437 }
438 
439 /*
440  * Bounce: copy the swiotlb buffer back to the original dma location
441  */
442 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
443 			   size_t size, enum dma_data_direction dir)
444 {
445 	unsigned long pfn = PFN_DOWN(orig_addr);
446 	unsigned char *vaddr = phys_to_virt(tlb_addr);
447 
448 	if (PageHighMem(pfn_to_page(pfn))) {
449 		/* The buffer does not have a mapping.  Map it in and copy */
450 		unsigned int offset = orig_addr & ~PAGE_MASK;
451 		char *buffer;
452 		unsigned int sz = 0;
453 		unsigned long flags;
454 
455 		while (size) {
456 			sz = min_t(size_t, PAGE_SIZE - offset, size);
457 
458 			local_irq_save(flags);
459 			buffer = kmap_atomic(pfn_to_page(pfn));
460 			if (dir == DMA_TO_DEVICE)
461 				memcpy(vaddr, buffer + offset, sz);
462 			else
463 				memcpy(buffer + offset, vaddr, sz);
464 			kunmap_atomic(buffer);
465 			local_irq_restore(flags);
466 
467 			size -= sz;
468 			pfn++;
469 			vaddr += sz;
470 			offset = 0;
471 		}
472 	} else if (dir == DMA_TO_DEVICE) {
473 		memcpy(vaddr, phys_to_virt(orig_addr), size);
474 	} else {
475 		memcpy(phys_to_virt(orig_addr), vaddr, size);
476 	}
477 }
478 
479 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
480 				   dma_addr_t tbl_dma_addr,
481 				   phys_addr_t orig_addr, size_t size,
482 				   enum dma_data_direction dir,
483 				   unsigned long attrs)
484 {
485 	unsigned long flags;
486 	phys_addr_t tlb_addr;
487 	unsigned int nslots, stride, index, wrap;
488 	int i;
489 	unsigned long mask;
490 	unsigned long offset_slots;
491 	unsigned long max_slots;
492 
493 	if (no_iotlb_memory)
494 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
495 
496 	if (mem_encrypt_active())
497 		pr_warn_once("%s is active and system is using DMA bounce buffers\n",
498 			     sme_active() ? "SME" : "SEV");
499 
500 	mask = dma_get_seg_boundary(hwdev);
501 
502 	tbl_dma_addr &= mask;
503 
504 	offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
505 
506 	/*
507  	 * Carefully handle integer overflow which can occur when mask == ~0UL.
508  	 */
509 	max_slots = mask + 1
510 		    ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
511 		    : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
512 
513 	/*
514 	 * For mappings greater than or equal to a page, we limit the stride
515 	 * (and hence alignment) to a page size.
516 	 */
517 	nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
518 	if (size >= PAGE_SIZE)
519 		stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
520 	else
521 		stride = 1;
522 
523 	BUG_ON(!nslots);
524 
525 	/*
526 	 * Find suitable number of IO TLB entries size that will fit this
527 	 * request and allocate a buffer from that IO TLB pool.
528 	 */
529 	spin_lock_irqsave(&io_tlb_lock, flags);
530 	index = ALIGN(io_tlb_index, stride);
531 	if (index >= io_tlb_nslabs)
532 		index = 0;
533 	wrap = index;
534 
535 	do {
536 		while (iommu_is_span_boundary(index, nslots, offset_slots,
537 					      max_slots)) {
538 			index += stride;
539 			if (index >= io_tlb_nslabs)
540 				index = 0;
541 			if (index == wrap)
542 				goto not_found;
543 		}
544 
545 		/*
546 		 * If we find a slot that indicates we have 'nslots' number of
547 		 * contiguous buffers, we allocate the buffers from that slot
548 		 * and mark the entries as '0' indicating unavailable.
549 		 */
550 		if (io_tlb_list[index] >= nslots) {
551 			int count = 0;
552 
553 			for (i = index; i < (int) (index + nslots); i++)
554 				io_tlb_list[i] = 0;
555 			for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
556 				io_tlb_list[i] = ++count;
557 			tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
558 
559 			/*
560 			 * Update the indices to avoid searching in the next
561 			 * round.
562 			 */
563 			io_tlb_index = ((index + nslots) < io_tlb_nslabs
564 					? (index + nslots) : 0);
565 
566 			goto found;
567 		}
568 		index += stride;
569 		if (index >= io_tlb_nslabs)
570 			index = 0;
571 	} while (index != wrap);
572 
573 not_found:
574 	spin_unlock_irqrestore(&io_tlb_lock, flags);
575 	if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
576 		dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
577 	return SWIOTLB_MAP_ERROR;
578 found:
579 	spin_unlock_irqrestore(&io_tlb_lock, flags);
580 
581 	/*
582 	 * Save away the mapping from the original address to the DMA address.
583 	 * This is needed when we sync the memory.  Then we sync the buffer if
584 	 * needed.
585 	 */
586 	for (i = 0; i < nslots; i++)
587 		io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
588 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
589 	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
590 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
591 
592 	return tlb_addr;
593 }
594 
595 /*
596  * Allocates bounce buffer and returns its physical address.
597  */
598 static phys_addr_t
599 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
600 	   enum dma_data_direction dir, unsigned long attrs)
601 {
602 	dma_addr_t start_dma_addr;
603 
604 	if (swiotlb_force == SWIOTLB_NO_FORCE) {
605 		dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
606 				     &phys);
607 		return SWIOTLB_MAP_ERROR;
608 	}
609 
610 	start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
611 	return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
612 				      dir, attrs);
613 }
614 
615 /*
616  * tlb_addr is the physical address of the bounce buffer to unmap.
617  */
618 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
619 			      size_t size, enum dma_data_direction dir,
620 			      unsigned long attrs)
621 {
622 	unsigned long flags;
623 	int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
624 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
625 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
626 
627 	/*
628 	 * First, sync the memory before unmapping the entry
629 	 */
630 	if (orig_addr != INVALID_PHYS_ADDR &&
631 	    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
632 	    ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
633 		swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
634 
635 	/*
636 	 * Return the buffer to the free list by setting the corresponding
637 	 * entries to indicate the number of contiguous entries available.
638 	 * While returning the entries to the free list, we merge the entries
639 	 * with slots below and above the pool being returned.
640 	 */
641 	spin_lock_irqsave(&io_tlb_lock, flags);
642 	{
643 		count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
644 			 io_tlb_list[index + nslots] : 0);
645 		/*
646 		 * Step 1: return the slots to the free list, merging the
647 		 * slots with superceeding slots
648 		 */
649 		for (i = index + nslots - 1; i >= index; i--) {
650 			io_tlb_list[i] = ++count;
651 			io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
652 		}
653 		/*
654 		 * Step 2: merge the returned slots with the preceding slots,
655 		 * if available (non zero)
656 		 */
657 		for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
658 			io_tlb_list[i] = ++count;
659 	}
660 	spin_unlock_irqrestore(&io_tlb_lock, flags);
661 }
662 
663 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
664 			     size_t size, enum dma_data_direction dir,
665 			     enum dma_sync_target target)
666 {
667 	int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
668 	phys_addr_t orig_addr = io_tlb_orig_addr[index];
669 
670 	if (orig_addr == INVALID_PHYS_ADDR)
671 		return;
672 	orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
673 
674 	switch (target) {
675 	case SYNC_FOR_CPU:
676 		if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
677 			swiotlb_bounce(orig_addr, tlb_addr,
678 				       size, DMA_FROM_DEVICE);
679 		else
680 			BUG_ON(dir != DMA_TO_DEVICE);
681 		break;
682 	case SYNC_FOR_DEVICE:
683 		if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
684 			swiotlb_bounce(orig_addr, tlb_addr,
685 				       size, DMA_TO_DEVICE);
686 		else
687 			BUG_ON(dir != DMA_FROM_DEVICE);
688 		break;
689 	default:
690 		BUG();
691 	}
692 }
693 
694 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
695 		size_t size)
696 {
697 	u64 mask = DMA_BIT_MASK(32);
698 
699 	if (dev && dev->coherent_dma_mask)
700 		mask = dev->coherent_dma_mask;
701 	return addr + size - 1 <= mask;
702 }
703 
704 static void *
705 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
706 		unsigned long attrs)
707 {
708 	phys_addr_t phys_addr;
709 
710 	if (swiotlb_force == SWIOTLB_NO_FORCE)
711 		goto out_warn;
712 
713 	phys_addr = swiotlb_tbl_map_single(dev,
714 			__phys_to_dma(dev, io_tlb_start),
715 			0, size, DMA_FROM_DEVICE, attrs);
716 	if (phys_addr == SWIOTLB_MAP_ERROR)
717 		goto out_warn;
718 
719 	*dma_handle = __phys_to_dma(dev, phys_addr);
720 	if (!dma_coherent_ok(dev, *dma_handle, size))
721 		goto out_unmap;
722 
723 	memset(phys_to_virt(phys_addr), 0, size);
724 	return phys_to_virt(phys_addr);
725 
726 out_unmap:
727 	dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
728 		(unsigned long long)dev->coherent_dma_mask,
729 		(unsigned long long)*dma_handle);
730 
731 	/*
732 	 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
733 	 * DMA_ATTR_SKIP_CPU_SYNC is optional.
734 	 */
735 	swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
736 			DMA_ATTR_SKIP_CPU_SYNC);
737 out_warn:
738 	if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
739 		dev_warn(dev,
740 			"swiotlb: coherent allocation failed, size=%zu\n",
741 			size);
742 		dump_stack();
743 	}
744 	return NULL;
745 }
746 
747 static bool swiotlb_free_buffer(struct device *dev, size_t size,
748 		dma_addr_t dma_addr)
749 {
750 	phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
751 
752 	WARN_ON_ONCE(irqs_disabled());
753 
754 	if (!is_swiotlb_buffer(phys_addr))
755 		return false;
756 
757 	/*
758 	 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
759 	 * DMA_ATTR_SKIP_CPU_SYNC is optional.
760 	 */
761 	swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
762 				 DMA_ATTR_SKIP_CPU_SYNC);
763 	return true;
764 }
765 
766 static void
767 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
768 	     int do_panic)
769 {
770 	if (swiotlb_force == SWIOTLB_NO_FORCE)
771 		return;
772 
773 	/*
774 	 * Ran out of IOMMU space for this operation. This is very bad.
775 	 * Unfortunately the drivers cannot handle this operation properly.
776 	 * unless they check for dma_mapping_error (most don't)
777 	 * When the mapping is small enough return a static buffer to limit
778 	 * the damage, or panic when the transfer is too big.
779 	 */
780 	dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
781 			    size);
782 
783 	if (size <= io_tlb_overflow || !do_panic)
784 		return;
785 
786 	if (dir == DMA_BIDIRECTIONAL)
787 		panic("DMA: Random memory could be DMA accessed\n");
788 	if (dir == DMA_FROM_DEVICE)
789 		panic("DMA: Random memory could be DMA written\n");
790 	if (dir == DMA_TO_DEVICE)
791 		panic("DMA: Random memory could be DMA read\n");
792 }
793 
794 /*
795  * Map a single buffer of the indicated size for DMA in streaming mode.  The
796  * physical address to use is returned.
797  *
798  * Once the device is given the dma address, the device owns this memory until
799  * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
800  */
801 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
802 			    unsigned long offset, size_t size,
803 			    enum dma_data_direction dir,
804 			    unsigned long attrs)
805 {
806 	phys_addr_t map, phys = page_to_phys(page) + offset;
807 	dma_addr_t dev_addr = phys_to_dma(dev, phys);
808 
809 	BUG_ON(dir == DMA_NONE);
810 	/*
811 	 * If the address happens to be in the device's DMA window,
812 	 * we can safely return the device addr and not worry about bounce
813 	 * buffering it.
814 	 */
815 	if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
816 		return dev_addr;
817 
818 	trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
819 
820 	/* Oh well, have to allocate and map a bounce buffer. */
821 	map = map_single(dev, phys, size, dir, attrs);
822 	if (map == SWIOTLB_MAP_ERROR) {
823 		swiotlb_full(dev, size, dir, 1);
824 		return __phys_to_dma(dev, io_tlb_overflow_buffer);
825 	}
826 
827 	dev_addr = __phys_to_dma(dev, map);
828 
829 	/* Ensure that the address returned is DMA'ble */
830 	if (dma_capable(dev, dev_addr, size))
831 		return dev_addr;
832 
833 	attrs |= DMA_ATTR_SKIP_CPU_SYNC;
834 	swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
835 
836 	return __phys_to_dma(dev, io_tlb_overflow_buffer);
837 }
838 
839 /*
840  * Unmap a single streaming mode DMA translation.  The dma_addr and size must
841  * match what was provided for in a previous swiotlb_map_page call.  All
842  * other usages are undefined.
843  *
844  * After this call, reads by the cpu to the buffer are guaranteed to see
845  * whatever the device wrote there.
846  */
847 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
848 			 size_t size, enum dma_data_direction dir,
849 			 unsigned long attrs)
850 {
851 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
852 
853 	BUG_ON(dir == DMA_NONE);
854 
855 	if (is_swiotlb_buffer(paddr)) {
856 		swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
857 		return;
858 	}
859 
860 	if (dir != DMA_FROM_DEVICE)
861 		return;
862 
863 	/*
864 	 * phys_to_virt doesn't work with hihgmem page but we could
865 	 * call dma_mark_clean() with hihgmem page here. However, we
866 	 * are fine since dma_mark_clean() is null on POWERPC. We can
867 	 * make dma_mark_clean() take a physical address if necessary.
868 	 */
869 	dma_mark_clean(phys_to_virt(paddr), size);
870 }
871 
872 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
873 			size_t size, enum dma_data_direction dir,
874 			unsigned long attrs)
875 {
876 	unmap_single(hwdev, dev_addr, size, dir, attrs);
877 }
878 
879 /*
880  * Make physical memory consistent for a single streaming mode DMA translation
881  * after a transfer.
882  *
883  * If you perform a swiotlb_map_page() but wish to interrogate the buffer
884  * using the cpu, yet do not wish to teardown the dma mapping, you must
885  * call this function before doing so.  At the next point you give the dma
886  * address back to the card, you must first perform a
887  * swiotlb_dma_sync_for_device, and then the device again owns the buffer
888  */
889 static void
890 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
891 		    size_t size, enum dma_data_direction dir,
892 		    enum dma_sync_target target)
893 {
894 	phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
895 
896 	BUG_ON(dir == DMA_NONE);
897 
898 	if (is_swiotlb_buffer(paddr)) {
899 		swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
900 		return;
901 	}
902 
903 	if (dir != DMA_FROM_DEVICE)
904 		return;
905 
906 	dma_mark_clean(phys_to_virt(paddr), size);
907 }
908 
909 void
910 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
911 			    size_t size, enum dma_data_direction dir)
912 {
913 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
914 }
915 
916 void
917 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
918 			       size_t size, enum dma_data_direction dir)
919 {
920 	swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
921 }
922 
923 /*
924  * Map a set of buffers described by scatterlist in streaming mode for DMA.
925  * This is the scatter-gather version of the above swiotlb_map_page
926  * interface.  Here the scatter gather list elements are each tagged with the
927  * appropriate dma address and length.  They are obtained via
928  * sg_dma_{address,length}(SG).
929  *
930  * NOTE: An implementation may be able to use a smaller number of
931  *       DMA address/length pairs than there are SG table elements.
932  *       (for example via virtual mapping capabilities)
933  *       The routine returns the number of addr/length pairs actually
934  *       used, at most nents.
935  *
936  * Device ownership issues as mentioned above for swiotlb_map_page are the
937  * same here.
938  */
939 int
940 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
941 		     enum dma_data_direction dir, unsigned long attrs)
942 {
943 	struct scatterlist *sg;
944 	int i;
945 
946 	BUG_ON(dir == DMA_NONE);
947 
948 	for_each_sg(sgl, sg, nelems, i) {
949 		phys_addr_t paddr = sg_phys(sg);
950 		dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
951 
952 		if (swiotlb_force == SWIOTLB_FORCE ||
953 		    !dma_capable(hwdev, dev_addr, sg->length)) {
954 			phys_addr_t map = map_single(hwdev, sg_phys(sg),
955 						     sg->length, dir, attrs);
956 			if (map == SWIOTLB_MAP_ERROR) {
957 				/* Don't panic here, we expect map_sg users
958 				   to do proper error handling. */
959 				swiotlb_full(hwdev, sg->length, dir, 0);
960 				attrs |= DMA_ATTR_SKIP_CPU_SYNC;
961 				swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
962 						       attrs);
963 				sg_dma_len(sgl) = 0;
964 				return 0;
965 			}
966 			sg->dma_address = __phys_to_dma(hwdev, map);
967 		} else
968 			sg->dma_address = dev_addr;
969 		sg_dma_len(sg) = sg->length;
970 	}
971 	return nelems;
972 }
973 
974 /*
975  * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
976  * concerning calls here are the same as for swiotlb_unmap_page() above.
977  */
978 void
979 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
980 		       int nelems, enum dma_data_direction dir,
981 		       unsigned long attrs)
982 {
983 	struct scatterlist *sg;
984 	int i;
985 
986 	BUG_ON(dir == DMA_NONE);
987 
988 	for_each_sg(sgl, sg, nelems, i)
989 		unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
990 			     attrs);
991 }
992 
993 /*
994  * Make physical memory consistent for a set of streaming mode DMA translations
995  * after a transfer.
996  *
997  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
998  * and usage.
999  */
1000 static void
1001 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1002 		int nelems, enum dma_data_direction dir,
1003 		enum dma_sync_target target)
1004 {
1005 	struct scatterlist *sg;
1006 	int i;
1007 
1008 	for_each_sg(sgl, sg, nelems, i)
1009 		swiotlb_sync_single(hwdev, sg->dma_address,
1010 				    sg_dma_len(sg), dir, target);
1011 }
1012 
1013 void
1014 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1015 			int nelems, enum dma_data_direction dir)
1016 {
1017 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1018 }
1019 
1020 void
1021 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1022 			   int nelems, enum dma_data_direction dir)
1023 {
1024 	swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1025 }
1026 
1027 int
1028 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1029 {
1030 	return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
1031 }
1032 
1033 /*
1034  * Return whether the given device DMA address mask can be supported
1035  * properly.  For example, if your device can only drive the low 24-bits
1036  * during bus mastering, then you would pass 0x00ffffff as the mask to
1037  * this function.
1038  */
1039 int
1040 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1041 {
1042 	return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1043 }
1044 
1045 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1046 		gfp_t gfp, unsigned long attrs)
1047 {
1048 	void *vaddr;
1049 
1050 	/* temporary workaround: */
1051 	if (gfp & __GFP_NOWARN)
1052 		attrs |= DMA_ATTR_NO_WARN;
1053 
1054 	/*
1055 	 * Don't print a warning when the first allocation attempt fails.
1056 	 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1057 	 * allocation ultimately failed.
1058 	 */
1059 	gfp |= __GFP_NOWARN;
1060 
1061 	vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1062 	if (!vaddr)
1063 		vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1064 	return vaddr;
1065 }
1066 
1067 void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1068 		dma_addr_t dma_addr, unsigned long attrs)
1069 {
1070 	if (!swiotlb_free_buffer(dev, size, dma_addr))
1071 		dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1072 }
1073 
1074 const struct dma_map_ops swiotlb_dma_ops = {
1075 	.mapping_error		= swiotlb_dma_mapping_error,
1076 	.alloc			= swiotlb_alloc,
1077 	.free			= swiotlb_free,
1078 	.sync_single_for_cpu	= swiotlb_sync_single_for_cpu,
1079 	.sync_single_for_device	= swiotlb_sync_single_for_device,
1080 	.sync_sg_for_cpu	= swiotlb_sync_sg_for_cpu,
1081 	.sync_sg_for_device	= swiotlb_sync_sg_for_device,
1082 	.map_sg			= swiotlb_map_sg_attrs,
1083 	.unmap_sg		= swiotlb_unmap_sg_attrs,
1084 	.map_page		= swiotlb_map_page,
1085 	.unmap_page		= swiotlb_unmap_page,
1086 	.dma_supported		= dma_direct_supported,
1087 };
1088 EXPORT_SYMBOL(swiotlb_dma_ops);
1089