1 /* 2 * Dynamic DMA mapping support. 3 * 4 * This implementation is a fallback for platforms that do not support 5 * I/O TLBs (aka DMA address translation hardware). 6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 8 * Copyright (C) 2000, 2003 Hewlett-Packard Co 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * 11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 13 * unnecessary i-cache flushing. 14 * 04/07/.. ak Better overflow handling. Assorted fixes. 15 * 05/09/10 linville Add support for syncing ranges, support syncing for 16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 17 * 08/12/11 beckyb Add highmem support 18 */ 19 20 #define pr_fmt(fmt) "software IO TLB: " fmt 21 22 #include <linux/cache.h> 23 #include <linux/dma-direct.h> 24 #include <linux/mm.h> 25 #include <linux/export.h> 26 #include <linux/spinlock.h> 27 #include <linux/string.h> 28 #include <linux/swiotlb.h> 29 #include <linux/pfn.h> 30 #include <linux/types.h> 31 #include <linux/ctype.h> 32 #include <linux/highmem.h> 33 #include <linux/gfp.h> 34 #include <linux/scatterlist.h> 35 #include <linux/mem_encrypt.h> 36 #include <linux/set_memory.h> 37 38 #include <asm/io.h> 39 #include <asm/dma.h> 40 41 #include <linux/init.h> 42 #include <linux/bootmem.h> 43 #include <linux/iommu-helper.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/swiotlb.h> 47 48 #define OFFSET(val,align) ((unsigned long) \ 49 ( (val) & ( (align) - 1))) 50 51 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 52 53 /* 54 * Minimum IO TLB size to bother booting with. Systems with mainly 55 * 64bit capable cards will only lightly use the swiotlb. If we can't 56 * allocate a contiguous 1MB, we're probably in trouble anyway. 57 */ 58 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 59 60 enum swiotlb_force swiotlb_force; 61 62 /* 63 * Used to do a quick range check in swiotlb_tbl_unmap_single and 64 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 65 * API. 66 */ 67 static phys_addr_t io_tlb_start, io_tlb_end; 68 69 /* 70 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 72 */ 73 static unsigned long io_tlb_nslabs; 74 75 /* 76 * When the IOMMU overflows we return a fallback buffer. This sets the size. 77 */ 78 static unsigned long io_tlb_overflow = 32*1024; 79 80 static phys_addr_t io_tlb_overflow_buffer; 81 82 /* 83 * This is a free list describing the number of free entries available from 84 * each index 85 */ 86 static unsigned int *io_tlb_list; 87 static unsigned int io_tlb_index; 88 89 /* 90 * Max segment that we can provide which (if pages are contingous) will 91 * not be bounced (unless SWIOTLB_FORCE is set). 92 */ 93 unsigned int max_segment; 94 95 /* 96 * We need to save away the original address corresponding to a mapped entry 97 * for the sync operations. 98 */ 99 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 100 static phys_addr_t *io_tlb_orig_addr; 101 102 /* 103 * Protect the above data structures in the map and unmap calls 104 */ 105 static DEFINE_SPINLOCK(io_tlb_lock); 106 107 static int late_alloc; 108 109 static int __init 110 setup_io_tlb_npages(char *str) 111 { 112 if (isdigit(*str)) { 113 io_tlb_nslabs = simple_strtoul(str, &str, 0); 114 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 115 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 116 } 117 if (*str == ',') 118 ++str; 119 if (!strcmp(str, "force")) { 120 swiotlb_force = SWIOTLB_FORCE; 121 } else if (!strcmp(str, "noforce")) { 122 swiotlb_force = SWIOTLB_NO_FORCE; 123 io_tlb_nslabs = 1; 124 } 125 126 return 0; 127 } 128 early_param("swiotlb", setup_io_tlb_npages); 129 /* make io_tlb_overflow tunable too? */ 130 131 unsigned long swiotlb_nr_tbl(void) 132 { 133 return io_tlb_nslabs; 134 } 135 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 136 137 unsigned int swiotlb_max_segment(void) 138 { 139 return max_segment; 140 } 141 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 142 143 void swiotlb_set_max_segment(unsigned int val) 144 { 145 if (swiotlb_force == SWIOTLB_FORCE) 146 max_segment = 1; 147 else 148 max_segment = rounddown(val, PAGE_SIZE); 149 } 150 151 /* default to 64MB */ 152 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 153 unsigned long swiotlb_size_or_default(void) 154 { 155 unsigned long size; 156 157 size = io_tlb_nslabs << IO_TLB_SHIFT; 158 159 return size ? size : (IO_TLB_DEFAULT_SIZE); 160 } 161 162 static bool no_iotlb_memory; 163 164 void swiotlb_print_info(void) 165 { 166 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 167 168 if (no_iotlb_memory) { 169 pr_warn("No low mem\n"); 170 return; 171 } 172 173 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", 174 (unsigned long long)io_tlb_start, 175 (unsigned long long)io_tlb_end, 176 bytes >> 20); 177 } 178 179 /* 180 * Early SWIOTLB allocation may be too early to allow an architecture to 181 * perform the desired operations. This function allows the architecture to 182 * call SWIOTLB when the operations are possible. It needs to be called 183 * before the SWIOTLB memory is used. 184 */ 185 void __init swiotlb_update_mem_attributes(void) 186 { 187 void *vaddr; 188 unsigned long bytes; 189 190 if (no_iotlb_memory || late_alloc) 191 return; 192 193 vaddr = phys_to_virt(io_tlb_start); 194 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 195 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 196 memset(vaddr, 0, bytes); 197 198 vaddr = phys_to_virt(io_tlb_overflow_buffer); 199 bytes = PAGE_ALIGN(io_tlb_overflow); 200 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 201 memset(vaddr, 0, bytes); 202 } 203 204 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 205 { 206 void *v_overflow_buffer; 207 unsigned long i, bytes; 208 209 bytes = nslabs << IO_TLB_SHIFT; 210 211 io_tlb_nslabs = nslabs; 212 io_tlb_start = __pa(tlb); 213 io_tlb_end = io_tlb_start + bytes; 214 215 /* 216 * Get the overflow emergency buffer 217 */ 218 v_overflow_buffer = memblock_virt_alloc_low_nopanic( 219 PAGE_ALIGN(io_tlb_overflow), 220 PAGE_SIZE); 221 if (!v_overflow_buffer) 222 return -ENOMEM; 223 224 io_tlb_overflow_buffer = __pa(v_overflow_buffer); 225 226 /* 227 * Allocate and initialize the free list array. This array is used 228 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 229 * between io_tlb_start and io_tlb_end. 230 */ 231 io_tlb_list = memblock_virt_alloc( 232 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), 233 PAGE_SIZE); 234 io_tlb_orig_addr = memblock_virt_alloc( 235 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), 236 PAGE_SIZE); 237 for (i = 0; i < io_tlb_nslabs; i++) { 238 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 239 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 240 } 241 io_tlb_index = 0; 242 243 if (verbose) 244 swiotlb_print_info(); 245 246 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 247 return 0; 248 } 249 250 /* 251 * Statically reserve bounce buffer space and initialize bounce buffer data 252 * structures for the software IO TLB used to implement the DMA API. 253 */ 254 void __init 255 swiotlb_init(int verbose) 256 { 257 size_t default_size = IO_TLB_DEFAULT_SIZE; 258 unsigned char *vstart; 259 unsigned long bytes; 260 261 if (!io_tlb_nslabs) { 262 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 263 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 264 } 265 266 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 267 268 /* Get IO TLB memory from the low pages */ 269 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); 270 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 271 return; 272 273 if (io_tlb_start) 274 memblock_free_early(io_tlb_start, 275 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 276 pr_warn("Cannot allocate buffer"); 277 no_iotlb_memory = true; 278 } 279 280 /* 281 * Systems with larger DMA zones (those that don't support ISA) can 282 * initialize the swiotlb later using the slab allocator if needed. 283 * This should be just like above, but with some error catching. 284 */ 285 int 286 swiotlb_late_init_with_default_size(size_t default_size) 287 { 288 unsigned long bytes, req_nslabs = io_tlb_nslabs; 289 unsigned char *vstart = NULL; 290 unsigned int order; 291 int rc = 0; 292 293 if (!io_tlb_nslabs) { 294 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 295 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 296 } 297 298 /* 299 * Get IO TLB memory from the low pages 300 */ 301 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 302 io_tlb_nslabs = SLABS_PER_PAGE << order; 303 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 304 305 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 306 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 307 order); 308 if (vstart) 309 break; 310 order--; 311 } 312 313 if (!vstart) { 314 io_tlb_nslabs = req_nslabs; 315 return -ENOMEM; 316 } 317 if (order != get_order(bytes)) { 318 pr_warn("only able to allocate %ld MB\n", 319 (PAGE_SIZE << order) >> 20); 320 io_tlb_nslabs = SLABS_PER_PAGE << order; 321 } 322 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 323 if (rc) 324 free_pages((unsigned long)vstart, order); 325 326 return rc; 327 } 328 329 int 330 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 331 { 332 unsigned long i, bytes; 333 unsigned char *v_overflow_buffer; 334 335 bytes = nslabs << IO_TLB_SHIFT; 336 337 io_tlb_nslabs = nslabs; 338 io_tlb_start = virt_to_phys(tlb); 339 io_tlb_end = io_tlb_start + bytes; 340 341 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 342 memset(tlb, 0, bytes); 343 344 /* 345 * Get the overflow emergency buffer 346 */ 347 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, 348 get_order(io_tlb_overflow)); 349 if (!v_overflow_buffer) 350 goto cleanup2; 351 352 set_memory_decrypted((unsigned long)v_overflow_buffer, 353 io_tlb_overflow >> PAGE_SHIFT); 354 memset(v_overflow_buffer, 0, io_tlb_overflow); 355 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); 356 357 /* 358 * Allocate and initialize the free list array. This array is used 359 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 360 * between io_tlb_start and io_tlb_end. 361 */ 362 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 363 get_order(io_tlb_nslabs * sizeof(int))); 364 if (!io_tlb_list) 365 goto cleanup3; 366 367 io_tlb_orig_addr = (phys_addr_t *) 368 __get_free_pages(GFP_KERNEL, 369 get_order(io_tlb_nslabs * 370 sizeof(phys_addr_t))); 371 if (!io_tlb_orig_addr) 372 goto cleanup4; 373 374 for (i = 0; i < io_tlb_nslabs; i++) { 375 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 376 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 377 } 378 io_tlb_index = 0; 379 380 swiotlb_print_info(); 381 382 late_alloc = 1; 383 384 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 385 386 return 0; 387 388 cleanup4: 389 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 390 sizeof(int))); 391 io_tlb_list = NULL; 392 cleanup3: 393 free_pages((unsigned long)v_overflow_buffer, 394 get_order(io_tlb_overflow)); 395 io_tlb_overflow_buffer = 0; 396 cleanup2: 397 io_tlb_end = 0; 398 io_tlb_start = 0; 399 io_tlb_nslabs = 0; 400 max_segment = 0; 401 return -ENOMEM; 402 } 403 404 void __init swiotlb_exit(void) 405 { 406 if (!io_tlb_orig_addr) 407 return; 408 409 if (late_alloc) { 410 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), 411 get_order(io_tlb_overflow)); 412 free_pages((unsigned long)io_tlb_orig_addr, 413 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 414 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 415 sizeof(int))); 416 free_pages((unsigned long)phys_to_virt(io_tlb_start), 417 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 418 } else { 419 memblock_free_late(io_tlb_overflow_buffer, 420 PAGE_ALIGN(io_tlb_overflow)); 421 memblock_free_late(__pa(io_tlb_orig_addr), 422 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 423 memblock_free_late(__pa(io_tlb_list), 424 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 425 memblock_free_late(io_tlb_start, 426 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 427 } 428 io_tlb_nslabs = 0; 429 max_segment = 0; 430 } 431 432 int is_swiotlb_buffer(phys_addr_t paddr) 433 { 434 return paddr >= io_tlb_start && paddr < io_tlb_end; 435 } 436 437 /* 438 * Bounce: copy the swiotlb buffer back to the original dma location 439 */ 440 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 441 size_t size, enum dma_data_direction dir) 442 { 443 unsigned long pfn = PFN_DOWN(orig_addr); 444 unsigned char *vaddr = phys_to_virt(tlb_addr); 445 446 if (PageHighMem(pfn_to_page(pfn))) { 447 /* The buffer does not have a mapping. Map it in and copy */ 448 unsigned int offset = orig_addr & ~PAGE_MASK; 449 char *buffer; 450 unsigned int sz = 0; 451 unsigned long flags; 452 453 while (size) { 454 sz = min_t(size_t, PAGE_SIZE - offset, size); 455 456 local_irq_save(flags); 457 buffer = kmap_atomic(pfn_to_page(pfn)); 458 if (dir == DMA_TO_DEVICE) 459 memcpy(vaddr, buffer + offset, sz); 460 else 461 memcpy(buffer + offset, vaddr, sz); 462 kunmap_atomic(buffer); 463 local_irq_restore(flags); 464 465 size -= sz; 466 pfn++; 467 vaddr += sz; 468 offset = 0; 469 } 470 } else if (dir == DMA_TO_DEVICE) { 471 memcpy(vaddr, phys_to_virt(orig_addr), size); 472 } else { 473 memcpy(phys_to_virt(orig_addr), vaddr, size); 474 } 475 } 476 477 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 478 dma_addr_t tbl_dma_addr, 479 phys_addr_t orig_addr, size_t size, 480 enum dma_data_direction dir, 481 unsigned long attrs) 482 { 483 unsigned long flags; 484 phys_addr_t tlb_addr; 485 unsigned int nslots, stride, index, wrap; 486 int i; 487 unsigned long mask; 488 unsigned long offset_slots; 489 unsigned long max_slots; 490 491 if (no_iotlb_memory) 492 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 493 494 if (mem_encrypt_active()) 495 pr_warn_once("%s is active and system is using DMA bounce buffers\n", 496 sme_active() ? "SME" : "SEV"); 497 498 mask = dma_get_seg_boundary(hwdev); 499 500 tbl_dma_addr &= mask; 501 502 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 503 504 /* 505 * Carefully handle integer overflow which can occur when mask == ~0UL. 506 */ 507 max_slots = mask + 1 508 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 509 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 510 511 /* 512 * For mappings greater than or equal to a page, we limit the stride 513 * (and hence alignment) to a page size. 514 */ 515 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 516 if (size >= PAGE_SIZE) 517 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 518 else 519 stride = 1; 520 521 BUG_ON(!nslots); 522 523 /* 524 * Find suitable number of IO TLB entries size that will fit this 525 * request and allocate a buffer from that IO TLB pool. 526 */ 527 spin_lock_irqsave(&io_tlb_lock, flags); 528 index = ALIGN(io_tlb_index, stride); 529 if (index >= io_tlb_nslabs) 530 index = 0; 531 wrap = index; 532 533 do { 534 while (iommu_is_span_boundary(index, nslots, offset_slots, 535 max_slots)) { 536 index += stride; 537 if (index >= io_tlb_nslabs) 538 index = 0; 539 if (index == wrap) 540 goto not_found; 541 } 542 543 /* 544 * If we find a slot that indicates we have 'nslots' number of 545 * contiguous buffers, we allocate the buffers from that slot 546 * and mark the entries as '0' indicating unavailable. 547 */ 548 if (io_tlb_list[index] >= nslots) { 549 int count = 0; 550 551 for (i = index; i < (int) (index + nslots); i++) 552 io_tlb_list[i] = 0; 553 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 554 io_tlb_list[i] = ++count; 555 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 556 557 /* 558 * Update the indices to avoid searching in the next 559 * round. 560 */ 561 io_tlb_index = ((index + nslots) < io_tlb_nslabs 562 ? (index + nslots) : 0); 563 564 goto found; 565 } 566 index += stride; 567 if (index >= io_tlb_nslabs) 568 index = 0; 569 } while (index != wrap); 570 571 not_found: 572 spin_unlock_irqrestore(&io_tlb_lock, flags); 573 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 574 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); 575 return SWIOTLB_MAP_ERROR; 576 found: 577 spin_unlock_irqrestore(&io_tlb_lock, flags); 578 579 /* 580 * Save away the mapping from the original address to the DMA address. 581 * This is needed when we sync the memory. Then we sync the buffer if 582 * needed. 583 */ 584 for (i = 0; i < nslots; i++) 585 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 586 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 587 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 588 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); 589 590 return tlb_addr; 591 } 592 593 /* 594 * Allocates bounce buffer and returns its physical address. 595 */ 596 static phys_addr_t 597 map_single(struct device *hwdev, phys_addr_t phys, size_t size, 598 enum dma_data_direction dir, unsigned long attrs) 599 { 600 dma_addr_t start_dma_addr; 601 602 if (swiotlb_force == SWIOTLB_NO_FORCE) { 603 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", 604 &phys); 605 return SWIOTLB_MAP_ERROR; 606 } 607 608 start_dma_addr = __phys_to_dma(hwdev, io_tlb_start); 609 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, 610 dir, attrs); 611 } 612 613 /* 614 * tlb_addr is the physical address of the bounce buffer to unmap. 615 */ 616 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 617 size_t size, enum dma_data_direction dir, 618 unsigned long attrs) 619 { 620 unsigned long flags; 621 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 622 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 623 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 624 625 /* 626 * First, sync the memory before unmapping the entry 627 */ 628 if (orig_addr != INVALID_PHYS_ADDR && 629 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 630 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 631 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); 632 633 /* 634 * Return the buffer to the free list by setting the corresponding 635 * entries to indicate the number of contiguous entries available. 636 * While returning the entries to the free list, we merge the entries 637 * with slots below and above the pool being returned. 638 */ 639 spin_lock_irqsave(&io_tlb_lock, flags); 640 { 641 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 642 io_tlb_list[index + nslots] : 0); 643 /* 644 * Step 1: return the slots to the free list, merging the 645 * slots with superceeding slots 646 */ 647 for (i = index + nslots - 1; i >= index; i--) { 648 io_tlb_list[i] = ++count; 649 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 650 } 651 /* 652 * Step 2: merge the returned slots with the preceding slots, 653 * if available (non zero) 654 */ 655 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 656 io_tlb_list[i] = ++count; 657 } 658 spin_unlock_irqrestore(&io_tlb_lock, flags); 659 } 660 661 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 662 size_t size, enum dma_data_direction dir, 663 enum dma_sync_target target) 664 { 665 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 666 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 667 668 if (orig_addr == INVALID_PHYS_ADDR) 669 return; 670 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 671 672 switch (target) { 673 case SYNC_FOR_CPU: 674 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 675 swiotlb_bounce(orig_addr, tlb_addr, 676 size, DMA_FROM_DEVICE); 677 else 678 BUG_ON(dir != DMA_TO_DEVICE); 679 break; 680 case SYNC_FOR_DEVICE: 681 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 682 swiotlb_bounce(orig_addr, tlb_addr, 683 size, DMA_TO_DEVICE); 684 else 685 BUG_ON(dir != DMA_FROM_DEVICE); 686 break; 687 default: 688 BUG(); 689 } 690 } 691 692 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr, 693 size_t size) 694 { 695 u64 mask = DMA_BIT_MASK(32); 696 697 if (dev && dev->coherent_dma_mask) 698 mask = dev->coherent_dma_mask; 699 return addr + size - 1 <= mask; 700 } 701 702 static void * 703 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle, 704 unsigned long attrs) 705 { 706 phys_addr_t phys_addr; 707 708 if (swiotlb_force == SWIOTLB_NO_FORCE) 709 goto out_warn; 710 711 phys_addr = swiotlb_tbl_map_single(dev, 712 __phys_to_dma(dev, io_tlb_start), 713 0, size, DMA_FROM_DEVICE, attrs); 714 if (phys_addr == SWIOTLB_MAP_ERROR) 715 goto out_warn; 716 717 *dma_handle = __phys_to_dma(dev, phys_addr); 718 if (!dma_coherent_ok(dev, *dma_handle, size)) 719 goto out_unmap; 720 721 memset(phys_to_virt(phys_addr), 0, size); 722 return phys_to_virt(phys_addr); 723 724 out_unmap: 725 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", 726 (unsigned long long)dev->coherent_dma_mask, 727 (unsigned long long)*dma_handle); 728 729 /* 730 * DMA_TO_DEVICE to avoid memcpy in unmap_single. 731 * DMA_ATTR_SKIP_CPU_SYNC is optional. 732 */ 733 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, 734 DMA_ATTR_SKIP_CPU_SYNC); 735 out_warn: 736 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) { 737 dev_warn(dev, 738 "swiotlb: coherent allocation failed, size=%zu\n", 739 size); 740 dump_stack(); 741 } 742 return NULL; 743 } 744 745 static bool swiotlb_free_buffer(struct device *dev, size_t size, 746 dma_addr_t dma_addr) 747 { 748 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr); 749 750 WARN_ON_ONCE(irqs_disabled()); 751 752 if (!is_swiotlb_buffer(phys_addr)) 753 return false; 754 755 /* 756 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. 757 * DMA_ATTR_SKIP_CPU_SYNC is optional. 758 */ 759 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, 760 DMA_ATTR_SKIP_CPU_SYNC); 761 return true; 762 } 763 764 static void 765 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, 766 int do_panic) 767 { 768 if (swiotlb_force == SWIOTLB_NO_FORCE) 769 return; 770 771 /* 772 * Ran out of IOMMU space for this operation. This is very bad. 773 * Unfortunately the drivers cannot handle this operation properly. 774 * unless they check for dma_mapping_error (most don't) 775 * When the mapping is small enough return a static buffer to limit 776 * the damage, or panic when the transfer is too big. 777 */ 778 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", 779 size); 780 781 if (size <= io_tlb_overflow || !do_panic) 782 return; 783 784 if (dir == DMA_BIDIRECTIONAL) 785 panic("DMA: Random memory could be DMA accessed\n"); 786 if (dir == DMA_FROM_DEVICE) 787 panic("DMA: Random memory could be DMA written\n"); 788 if (dir == DMA_TO_DEVICE) 789 panic("DMA: Random memory could be DMA read\n"); 790 } 791 792 /* 793 * Map a single buffer of the indicated size for DMA in streaming mode. The 794 * physical address to use is returned. 795 * 796 * Once the device is given the dma address, the device owns this memory until 797 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. 798 */ 799 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, 800 unsigned long offset, size_t size, 801 enum dma_data_direction dir, 802 unsigned long attrs) 803 { 804 phys_addr_t map, phys = page_to_phys(page) + offset; 805 dma_addr_t dev_addr = phys_to_dma(dev, phys); 806 807 BUG_ON(dir == DMA_NONE); 808 /* 809 * If the address happens to be in the device's DMA window, 810 * we can safely return the device addr and not worry about bounce 811 * buffering it. 812 */ 813 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) 814 return dev_addr; 815 816 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 817 818 /* Oh well, have to allocate and map a bounce buffer. */ 819 map = map_single(dev, phys, size, dir, attrs); 820 if (map == SWIOTLB_MAP_ERROR) { 821 swiotlb_full(dev, size, dir, 1); 822 return __phys_to_dma(dev, io_tlb_overflow_buffer); 823 } 824 825 dev_addr = __phys_to_dma(dev, map); 826 827 /* Ensure that the address returned is DMA'ble */ 828 if (dma_capable(dev, dev_addr, size)) 829 return dev_addr; 830 831 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 832 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); 833 834 return __phys_to_dma(dev, io_tlb_overflow_buffer); 835 } 836 837 /* 838 * Unmap a single streaming mode DMA translation. The dma_addr and size must 839 * match what was provided for in a previous swiotlb_map_page call. All 840 * other usages are undefined. 841 * 842 * After this call, reads by the cpu to the buffer are guaranteed to see 843 * whatever the device wrote there. 844 */ 845 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, 846 size_t size, enum dma_data_direction dir, 847 unsigned long attrs) 848 { 849 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); 850 851 BUG_ON(dir == DMA_NONE); 852 853 if (is_swiotlb_buffer(paddr)) { 854 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 855 return; 856 } 857 858 if (dir != DMA_FROM_DEVICE) 859 return; 860 861 /* 862 * phys_to_virt doesn't work with hihgmem page but we could 863 * call dma_mark_clean() with hihgmem page here. However, we 864 * are fine since dma_mark_clean() is null on POWERPC. We can 865 * make dma_mark_clean() take a physical address if necessary. 866 */ 867 dma_mark_clean(phys_to_virt(paddr), size); 868 } 869 870 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 871 size_t size, enum dma_data_direction dir, 872 unsigned long attrs) 873 { 874 unmap_single(hwdev, dev_addr, size, dir, attrs); 875 } 876 877 /* 878 * Make physical memory consistent for a single streaming mode DMA translation 879 * after a transfer. 880 * 881 * If you perform a swiotlb_map_page() but wish to interrogate the buffer 882 * using the cpu, yet do not wish to teardown the dma mapping, you must 883 * call this function before doing so. At the next point you give the dma 884 * address back to the card, you must first perform a 885 * swiotlb_dma_sync_for_device, and then the device again owns the buffer 886 */ 887 static void 888 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 889 size_t size, enum dma_data_direction dir, 890 enum dma_sync_target target) 891 { 892 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); 893 894 BUG_ON(dir == DMA_NONE); 895 896 if (is_swiotlb_buffer(paddr)) { 897 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 898 return; 899 } 900 901 if (dir != DMA_FROM_DEVICE) 902 return; 903 904 dma_mark_clean(phys_to_virt(paddr), size); 905 } 906 907 void 908 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 909 size_t size, enum dma_data_direction dir) 910 { 911 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 912 } 913 914 void 915 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 916 size_t size, enum dma_data_direction dir) 917 { 918 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 919 } 920 921 /* 922 * Map a set of buffers described by scatterlist in streaming mode for DMA. 923 * This is the scatter-gather version of the above swiotlb_map_page 924 * interface. Here the scatter gather list elements are each tagged with the 925 * appropriate dma address and length. They are obtained via 926 * sg_dma_{address,length}(SG). 927 * 928 * NOTE: An implementation may be able to use a smaller number of 929 * DMA address/length pairs than there are SG table elements. 930 * (for example via virtual mapping capabilities) 931 * The routine returns the number of addr/length pairs actually 932 * used, at most nents. 933 * 934 * Device ownership issues as mentioned above for swiotlb_map_page are the 935 * same here. 936 */ 937 int 938 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, 939 enum dma_data_direction dir, unsigned long attrs) 940 { 941 struct scatterlist *sg; 942 int i; 943 944 BUG_ON(dir == DMA_NONE); 945 946 for_each_sg(sgl, sg, nelems, i) { 947 phys_addr_t paddr = sg_phys(sg); 948 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); 949 950 if (swiotlb_force == SWIOTLB_FORCE || 951 !dma_capable(hwdev, dev_addr, sg->length)) { 952 phys_addr_t map = map_single(hwdev, sg_phys(sg), 953 sg->length, dir, attrs); 954 if (map == SWIOTLB_MAP_ERROR) { 955 /* Don't panic here, we expect map_sg users 956 to do proper error handling. */ 957 swiotlb_full(hwdev, sg->length, dir, 0); 958 attrs |= DMA_ATTR_SKIP_CPU_SYNC; 959 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, 960 attrs); 961 sg_dma_len(sgl) = 0; 962 return 0; 963 } 964 sg->dma_address = __phys_to_dma(hwdev, map); 965 } else 966 sg->dma_address = dev_addr; 967 sg_dma_len(sg) = sg->length; 968 } 969 return nelems; 970 } 971 972 /* 973 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 974 * concerning calls here are the same as for swiotlb_unmap_page() above. 975 */ 976 void 977 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 978 int nelems, enum dma_data_direction dir, 979 unsigned long attrs) 980 { 981 struct scatterlist *sg; 982 int i; 983 984 BUG_ON(dir == DMA_NONE); 985 986 for_each_sg(sgl, sg, nelems, i) 987 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, 988 attrs); 989 } 990 991 /* 992 * Make physical memory consistent for a set of streaming mode DMA translations 993 * after a transfer. 994 * 995 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 996 * and usage. 997 */ 998 static void 999 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 1000 int nelems, enum dma_data_direction dir, 1001 enum dma_sync_target target) 1002 { 1003 struct scatterlist *sg; 1004 int i; 1005 1006 for_each_sg(sgl, sg, nelems, i) 1007 swiotlb_sync_single(hwdev, sg->dma_address, 1008 sg_dma_len(sg), dir, target); 1009 } 1010 1011 void 1012 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 1013 int nelems, enum dma_data_direction dir) 1014 { 1015 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 1016 } 1017 1018 void 1019 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 1020 int nelems, enum dma_data_direction dir) 1021 { 1022 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 1023 } 1024 1025 int 1026 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 1027 { 1028 return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer)); 1029 } 1030 1031 /* 1032 * Return whether the given device DMA address mask can be supported 1033 * properly. For example, if your device can only drive the low 24-bits 1034 * during bus mastering, then you would pass 0x00ffffff as the mask to 1035 * this function. 1036 */ 1037 int 1038 swiotlb_dma_supported(struct device *hwdev, u64 mask) 1039 { 1040 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; 1041 } 1042 1043 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 1044 gfp_t gfp, unsigned long attrs) 1045 { 1046 void *vaddr; 1047 1048 /* temporary workaround: */ 1049 if (gfp & __GFP_NOWARN) 1050 attrs |= DMA_ATTR_NO_WARN; 1051 1052 /* 1053 * Don't print a warning when the first allocation attempt fails. 1054 * swiotlb_alloc_coherent() will print a warning when the DMA memory 1055 * allocation ultimately failed. 1056 */ 1057 gfp |= __GFP_NOWARN; 1058 1059 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); 1060 if (!vaddr) 1061 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs); 1062 return vaddr; 1063 } 1064 1065 void swiotlb_free(struct device *dev, size_t size, void *vaddr, 1066 dma_addr_t dma_addr, unsigned long attrs) 1067 { 1068 if (!swiotlb_free_buffer(dev, size, dma_addr)) 1069 dma_direct_free(dev, size, vaddr, dma_addr, attrs); 1070 } 1071 1072 const struct dma_map_ops swiotlb_dma_ops = { 1073 .mapping_error = swiotlb_dma_mapping_error, 1074 .alloc = swiotlb_alloc, 1075 .free = swiotlb_free, 1076 .sync_single_for_cpu = swiotlb_sync_single_for_cpu, 1077 .sync_single_for_device = swiotlb_sync_single_for_device, 1078 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, 1079 .sync_sg_for_device = swiotlb_sync_sg_for_device, 1080 .map_sg = swiotlb_map_sg_attrs, 1081 .unmap_sg = swiotlb_unmap_sg_attrs, 1082 .map_page = swiotlb_map_page, 1083 .unmap_page = swiotlb_unmap_page, 1084 .dma_supported = dma_direct_supported, 1085 }; 1086 EXPORT_SYMBOL(swiotlb_dma_ops); 1087