1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/rculist.h> 39 #include <linux/scatterlist.h> 40 #include <linux/set_memory.h> 41 #include <linux/spinlock.h> 42 #include <linux/string.h> 43 #include <linux/swiotlb.h> 44 #include <linux/types.h> 45 #ifdef CONFIG_DMA_RESTRICTED_POOL 46 #include <linux/of.h> 47 #include <linux/of_fdt.h> 48 #include <linux/of_reserved_mem.h> 49 #include <linux/slab.h> 50 #endif 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/swiotlb.h> 54 55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 56 57 /* 58 * Minimum IO TLB size to bother booting with. Systems with mainly 59 * 64bit capable cards will only lightly use the swiotlb. If we can't 60 * allocate a contiguous 1MB, we're probably in trouble anyway. 61 */ 62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 63 64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 65 66 /** 67 * struct io_tlb_slot - IO TLB slot descriptor 68 * @orig_addr: The original address corresponding to a mapped entry. 69 * @alloc_size: Size of the allocated buffer. 70 * @list: The free list describing the number of free entries available 71 * from each index. 72 * @pad_slots: Number of preceding padding slots. Valid only in the first 73 * allocated non-padding slot. 74 */ 75 struct io_tlb_slot { 76 phys_addr_t orig_addr; 77 size_t alloc_size; 78 unsigned short list; 79 unsigned short pad_slots; 80 }; 81 82 static bool swiotlb_force_bounce; 83 static bool swiotlb_force_disable; 84 85 #ifdef CONFIG_SWIOTLB_DYNAMIC 86 87 static void swiotlb_dyn_alloc(struct work_struct *work); 88 89 static struct io_tlb_mem io_tlb_default_mem = { 90 .lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock), 91 .pools = LIST_HEAD_INIT(io_tlb_default_mem.pools), 92 .dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc, 93 swiotlb_dyn_alloc), 94 }; 95 96 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 97 98 static struct io_tlb_mem io_tlb_default_mem; 99 100 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 101 102 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 103 static unsigned long default_nareas; 104 105 /** 106 * struct io_tlb_area - IO TLB memory area descriptor 107 * 108 * This is a single area with a single lock. 109 * 110 * @used: The number of used IO TLB block. 111 * @index: The slot index to start searching in this area for next round. 112 * @lock: The lock to protect the above data structures in the map and 113 * unmap calls. 114 */ 115 struct io_tlb_area { 116 unsigned long used; 117 unsigned int index; 118 spinlock_t lock; 119 }; 120 121 /* 122 * Round up number of slabs to the next power of 2. The last area is going 123 * be smaller than the rest if default_nslabs is not power of two. 124 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 125 * otherwise a segment may span two or more areas. It conflicts with free 126 * contiguous slots tracking: free slots are treated contiguous no matter 127 * whether they cross an area boundary. 128 * 129 * Return true if default_nslabs is rounded up. 130 */ 131 static bool round_up_default_nslabs(void) 132 { 133 if (!default_nareas) 134 return false; 135 136 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 137 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 138 else if (is_power_of_2(default_nslabs)) 139 return false; 140 default_nslabs = roundup_pow_of_two(default_nslabs); 141 return true; 142 } 143 144 /** 145 * swiotlb_adjust_nareas() - adjust the number of areas and slots 146 * @nareas: Desired number of areas. Zero is treated as 1. 147 * 148 * Adjust the default number of areas in a memory pool. 149 * The default size of the memory pool may also change to meet minimum area 150 * size requirements. 151 */ 152 static void swiotlb_adjust_nareas(unsigned int nareas) 153 { 154 if (!nareas) 155 nareas = 1; 156 else if (!is_power_of_2(nareas)) 157 nareas = roundup_pow_of_two(nareas); 158 159 default_nareas = nareas; 160 161 pr_info("area num %d.\n", nareas); 162 if (round_up_default_nslabs()) 163 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 164 (default_nslabs << IO_TLB_SHIFT) >> 20); 165 } 166 167 /** 168 * limit_nareas() - get the maximum number of areas for a given memory pool size 169 * @nareas: Desired number of areas. 170 * @nslots: Total number of slots in the memory pool. 171 * 172 * Limit the number of areas to the maximum possible number of areas in 173 * a memory pool of the given size. 174 * 175 * Return: Maximum possible number of areas. 176 */ 177 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots) 178 { 179 if (nslots < nareas * IO_TLB_SEGSIZE) 180 return nslots / IO_TLB_SEGSIZE; 181 return nareas; 182 } 183 184 static int __init 185 setup_io_tlb_npages(char *str) 186 { 187 if (isdigit(*str)) { 188 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 189 default_nslabs = 190 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 191 } 192 if (*str == ',') 193 ++str; 194 if (isdigit(*str)) 195 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 196 if (*str == ',') 197 ++str; 198 if (!strcmp(str, "force")) 199 swiotlb_force_bounce = true; 200 else if (!strcmp(str, "noforce")) 201 swiotlb_force_disable = true; 202 203 return 0; 204 } 205 early_param("swiotlb", setup_io_tlb_npages); 206 207 unsigned long swiotlb_size_or_default(void) 208 { 209 return default_nslabs << IO_TLB_SHIFT; 210 } 211 212 void __init swiotlb_adjust_size(unsigned long size) 213 { 214 /* 215 * If swiotlb parameter has not been specified, give a chance to 216 * architectures such as those supporting memory encryption to 217 * adjust/expand SWIOTLB size for their use. 218 */ 219 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 220 return; 221 222 size = ALIGN(size, IO_TLB_SIZE); 223 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 224 if (round_up_default_nslabs()) 225 size = default_nslabs << IO_TLB_SHIFT; 226 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 227 } 228 229 void swiotlb_print_info(void) 230 { 231 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 232 233 if (!mem->nslabs) { 234 pr_warn("No low mem\n"); 235 return; 236 } 237 238 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 239 (mem->nslabs << IO_TLB_SHIFT) >> 20); 240 } 241 242 static inline unsigned long io_tlb_offset(unsigned long val) 243 { 244 return val & (IO_TLB_SEGSIZE - 1); 245 } 246 247 static inline unsigned long nr_slots(u64 val) 248 { 249 return DIV_ROUND_UP(val, IO_TLB_SIZE); 250 } 251 252 /* 253 * Early SWIOTLB allocation may be too early to allow an architecture to 254 * perform the desired operations. This function allows the architecture to 255 * call SWIOTLB when the operations are possible. It needs to be called 256 * before the SWIOTLB memory is used. 257 */ 258 void __init swiotlb_update_mem_attributes(void) 259 { 260 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 261 unsigned long bytes; 262 263 if (!mem->nslabs || mem->late_alloc) 264 return; 265 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 266 set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT); 267 } 268 269 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start, 270 unsigned long nslabs, bool late_alloc, unsigned int nareas) 271 { 272 void *vaddr = phys_to_virt(start); 273 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 274 275 mem->nslabs = nslabs; 276 mem->start = start; 277 mem->end = mem->start + bytes; 278 mem->late_alloc = late_alloc; 279 mem->nareas = nareas; 280 mem->area_nslabs = nslabs / mem->nareas; 281 282 for (i = 0; i < mem->nareas; i++) { 283 spin_lock_init(&mem->areas[i].lock); 284 mem->areas[i].index = 0; 285 mem->areas[i].used = 0; 286 } 287 288 for (i = 0; i < mem->nslabs; i++) { 289 mem->slots[i].list = min(IO_TLB_SEGSIZE - io_tlb_offset(i), 290 mem->nslabs - i); 291 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 292 mem->slots[i].alloc_size = 0; 293 mem->slots[i].pad_slots = 0; 294 } 295 296 memset(vaddr, 0, bytes); 297 mem->vaddr = vaddr; 298 return; 299 } 300 301 /** 302 * add_mem_pool() - add a memory pool to the allocator 303 * @mem: Software IO TLB allocator. 304 * @pool: Memory pool to be added. 305 */ 306 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool) 307 { 308 #ifdef CONFIG_SWIOTLB_DYNAMIC 309 spin_lock(&mem->lock); 310 list_add_rcu(&pool->node, &mem->pools); 311 mem->nslabs += pool->nslabs; 312 spin_unlock(&mem->lock); 313 #else 314 mem->nslabs = pool->nslabs; 315 #endif 316 } 317 318 static void __init *swiotlb_memblock_alloc(unsigned long nslabs, 319 unsigned int flags, 320 int (*remap)(void *tlb, unsigned long nslabs)) 321 { 322 size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 323 void *tlb; 324 325 /* 326 * By default allocate the bounce buffer memory from low memory, but 327 * allow to pick a location everywhere for hypervisors with guest 328 * memory encryption. 329 */ 330 if (flags & SWIOTLB_ANY) 331 tlb = memblock_alloc(bytes, PAGE_SIZE); 332 else 333 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 334 335 if (!tlb) { 336 pr_warn("%s: Failed to allocate %zu bytes tlb structure\n", 337 __func__, bytes); 338 return NULL; 339 } 340 341 if (remap && remap(tlb, nslabs) < 0) { 342 memblock_free(tlb, PAGE_ALIGN(bytes)); 343 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); 344 return NULL; 345 } 346 347 return tlb; 348 } 349 350 /* 351 * Statically reserve bounce buffer space and initialize bounce buffer data 352 * structures for the software IO TLB used to implement the DMA API. 353 */ 354 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 355 int (*remap)(void *tlb, unsigned long nslabs)) 356 { 357 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 358 unsigned long nslabs; 359 unsigned int nareas; 360 size_t alloc_size; 361 void *tlb; 362 363 if (!addressing_limit && !swiotlb_force_bounce) 364 return; 365 if (swiotlb_force_disable) 366 return; 367 368 io_tlb_default_mem.force_bounce = 369 swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 370 371 #ifdef CONFIG_SWIOTLB_DYNAMIC 372 if (!remap) 373 io_tlb_default_mem.can_grow = true; 374 if (flags & SWIOTLB_ANY) 375 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 376 else 377 io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT; 378 #endif 379 380 if (!default_nareas) 381 swiotlb_adjust_nareas(num_possible_cpus()); 382 383 nslabs = default_nslabs; 384 nareas = limit_nareas(default_nareas, nslabs); 385 while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) { 386 if (nslabs <= IO_TLB_MIN_SLABS) 387 return; 388 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 389 nareas = limit_nareas(nareas, nslabs); 390 } 391 392 if (default_nslabs != nslabs) { 393 pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs", 394 default_nslabs, nslabs); 395 default_nslabs = nslabs; 396 } 397 398 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 399 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 400 if (!mem->slots) { 401 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", 402 __func__, alloc_size, PAGE_SIZE); 403 return; 404 } 405 406 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 407 nareas), SMP_CACHE_BYTES); 408 if (!mem->areas) { 409 pr_warn("%s: Failed to allocate mem->areas.\n", __func__); 410 return; 411 } 412 413 swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas); 414 add_mem_pool(&io_tlb_default_mem, mem); 415 416 if (flags & SWIOTLB_VERBOSE) 417 swiotlb_print_info(); 418 } 419 420 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 421 { 422 swiotlb_init_remap(addressing_limit, flags, NULL); 423 } 424 425 /* 426 * Systems with larger DMA zones (those that don't support ISA) can 427 * initialize the swiotlb later using the slab allocator if needed. 428 * This should be just like above, but with some error catching. 429 */ 430 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 431 int (*remap)(void *tlb, unsigned long nslabs)) 432 { 433 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 434 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 435 unsigned int nareas; 436 unsigned char *vstart = NULL; 437 unsigned int order, area_order; 438 bool retried = false; 439 int rc = 0; 440 441 if (io_tlb_default_mem.nslabs) 442 return 0; 443 444 if (swiotlb_force_disable) 445 return 0; 446 447 io_tlb_default_mem.force_bounce = swiotlb_force_bounce; 448 449 #ifdef CONFIG_SWIOTLB_DYNAMIC 450 if (!remap) 451 io_tlb_default_mem.can_grow = true; 452 if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA)) 453 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits); 454 else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32)) 455 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32); 456 else 457 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 458 #endif 459 460 if (!default_nareas) 461 swiotlb_adjust_nareas(num_possible_cpus()); 462 463 retry: 464 order = get_order(nslabs << IO_TLB_SHIFT); 465 nslabs = SLABS_PER_PAGE << order; 466 467 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 468 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 469 order); 470 if (vstart) 471 break; 472 order--; 473 nslabs = SLABS_PER_PAGE << order; 474 retried = true; 475 } 476 477 if (!vstart) 478 return -ENOMEM; 479 480 if (remap) 481 rc = remap(vstart, nslabs); 482 if (rc) { 483 free_pages((unsigned long)vstart, order); 484 485 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 486 if (nslabs < IO_TLB_MIN_SLABS) 487 return rc; 488 retried = true; 489 goto retry; 490 } 491 492 if (retried) { 493 pr_warn("only able to allocate %ld MB\n", 494 (PAGE_SIZE << order) >> 20); 495 } 496 497 nareas = limit_nareas(default_nareas, nslabs); 498 area_order = get_order(array_size(sizeof(*mem->areas), nareas)); 499 mem->areas = (struct io_tlb_area *) 500 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 501 if (!mem->areas) 502 goto error_area; 503 504 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 505 get_order(array_size(sizeof(*mem->slots), nslabs))); 506 if (!mem->slots) 507 goto error_slots; 508 509 set_memory_decrypted((unsigned long)vstart, 510 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 511 swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true, 512 nareas); 513 add_mem_pool(&io_tlb_default_mem, mem); 514 515 swiotlb_print_info(); 516 return 0; 517 518 error_slots: 519 free_pages((unsigned long)mem->areas, area_order); 520 error_area: 521 free_pages((unsigned long)vstart, order); 522 return -ENOMEM; 523 } 524 525 void __init swiotlb_exit(void) 526 { 527 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 528 unsigned long tbl_vaddr; 529 size_t tbl_size, slots_size; 530 unsigned int area_order; 531 532 if (swiotlb_force_bounce) 533 return; 534 535 if (!mem->nslabs) 536 return; 537 538 pr_info("tearing down default memory pool\n"); 539 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 540 tbl_size = PAGE_ALIGN(mem->end - mem->start); 541 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 542 543 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 544 if (mem->late_alloc) { 545 area_order = get_order(array_size(sizeof(*mem->areas), 546 mem->nareas)); 547 free_pages((unsigned long)mem->areas, area_order); 548 free_pages(tbl_vaddr, get_order(tbl_size)); 549 free_pages((unsigned long)mem->slots, get_order(slots_size)); 550 } else { 551 memblock_free_late(__pa(mem->areas), 552 array_size(sizeof(*mem->areas), mem->nareas)); 553 memblock_free_late(mem->start, tbl_size); 554 memblock_free_late(__pa(mem->slots), slots_size); 555 } 556 557 memset(mem, 0, sizeof(*mem)); 558 } 559 560 #ifdef CONFIG_SWIOTLB_DYNAMIC 561 562 /** 563 * alloc_dma_pages() - allocate pages to be used for DMA 564 * @gfp: GFP flags for the allocation. 565 * @bytes: Size of the buffer. 566 * @phys_limit: Maximum allowed physical address of the buffer. 567 * 568 * Allocate pages from the buddy allocator. If successful, make the allocated 569 * pages decrypted that they can be used for DMA. 570 * 571 * Return: Decrypted pages, %NULL on allocation failure, or ERR_PTR(-EAGAIN) 572 * if the allocated physical address was above @phys_limit. 573 */ 574 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes, u64 phys_limit) 575 { 576 unsigned int order = get_order(bytes); 577 struct page *page; 578 phys_addr_t paddr; 579 void *vaddr; 580 581 page = alloc_pages(gfp, order); 582 if (!page) 583 return NULL; 584 585 paddr = page_to_phys(page); 586 if (paddr + bytes - 1 > phys_limit) { 587 __free_pages(page, order); 588 return ERR_PTR(-EAGAIN); 589 } 590 591 vaddr = phys_to_virt(paddr); 592 if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes))) 593 goto error; 594 return page; 595 596 error: 597 /* Intentional leak if pages cannot be encrypted again. */ 598 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) 599 __free_pages(page, order); 600 return NULL; 601 } 602 603 /** 604 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer 605 * @dev: Device for which a memory pool is allocated. 606 * @bytes: Size of the buffer. 607 * @phys_limit: Maximum allowed physical address of the buffer. 608 * @gfp: GFP flags for the allocation. 609 * 610 * Return: Allocated pages, or %NULL on allocation failure. 611 */ 612 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes, 613 u64 phys_limit, gfp_t gfp) 614 { 615 struct page *page; 616 617 /* 618 * Allocate from the atomic pools if memory is encrypted and 619 * the allocation is atomic, because decrypting may block. 620 */ 621 if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) { 622 void *vaddr; 623 624 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) 625 return NULL; 626 627 return dma_alloc_from_pool(dev, bytes, &vaddr, gfp, 628 dma_coherent_ok); 629 } 630 631 gfp &= ~GFP_ZONEMASK; 632 if (phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 633 gfp |= __GFP_DMA; 634 else if (phys_limit <= DMA_BIT_MASK(32)) 635 gfp |= __GFP_DMA32; 636 637 while (IS_ERR(page = alloc_dma_pages(gfp, bytes, phys_limit))) { 638 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 639 phys_limit < DMA_BIT_MASK(64) && 640 !(gfp & (__GFP_DMA32 | __GFP_DMA))) 641 gfp |= __GFP_DMA32; 642 else if (IS_ENABLED(CONFIG_ZONE_DMA) && 643 !(gfp & __GFP_DMA)) 644 gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA; 645 else 646 return NULL; 647 } 648 649 return page; 650 } 651 652 /** 653 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer 654 * @vaddr: Virtual address of the buffer. 655 * @bytes: Size of the buffer. 656 */ 657 static void swiotlb_free_tlb(void *vaddr, size_t bytes) 658 { 659 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 660 dma_free_from_pool(NULL, vaddr, bytes)) 661 return; 662 663 /* Intentional leak if pages cannot be encrypted again. */ 664 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) 665 __free_pages(virt_to_page(vaddr), get_order(bytes)); 666 } 667 668 /** 669 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool 670 * @dev: Device for which a memory pool is allocated. 671 * @minslabs: Minimum number of slabs. 672 * @nslabs: Desired (maximum) number of slabs. 673 * @nareas: Number of areas. 674 * @phys_limit: Maximum DMA buffer physical address. 675 * @gfp: GFP flags for the allocations. 676 * 677 * Allocate and initialize a new IO TLB memory pool. The actual number of 678 * slabs may be reduced if allocation of @nslabs fails. If even 679 * @minslabs cannot be allocated, this function fails. 680 * 681 * Return: New memory pool, or %NULL on allocation failure. 682 */ 683 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev, 684 unsigned long minslabs, unsigned long nslabs, 685 unsigned int nareas, u64 phys_limit, gfp_t gfp) 686 { 687 struct io_tlb_pool *pool; 688 unsigned int slot_order; 689 struct page *tlb; 690 size_t pool_size; 691 size_t tlb_size; 692 693 if (nslabs > SLABS_PER_PAGE << MAX_ORDER) { 694 nslabs = SLABS_PER_PAGE << MAX_ORDER; 695 nareas = limit_nareas(nareas, nslabs); 696 } 697 698 pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas); 699 pool = kzalloc(pool_size, gfp); 700 if (!pool) 701 goto error; 702 pool->areas = (void *)pool + sizeof(*pool); 703 704 tlb_size = nslabs << IO_TLB_SHIFT; 705 while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) { 706 if (nslabs <= minslabs) 707 goto error_tlb; 708 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 709 nareas = limit_nareas(nareas, nslabs); 710 tlb_size = nslabs << IO_TLB_SHIFT; 711 } 712 713 slot_order = get_order(array_size(sizeof(*pool->slots), nslabs)); 714 pool->slots = (struct io_tlb_slot *) 715 __get_free_pages(gfp, slot_order); 716 if (!pool->slots) 717 goto error_slots; 718 719 swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas); 720 return pool; 721 722 error_slots: 723 swiotlb_free_tlb(page_address(tlb), tlb_size); 724 error_tlb: 725 kfree(pool); 726 error: 727 return NULL; 728 } 729 730 /** 731 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker 732 * @work: Pointer to dyn_alloc in struct io_tlb_mem. 733 */ 734 static void swiotlb_dyn_alloc(struct work_struct *work) 735 { 736 struct io_tlb_mem *mem = 737 container_of(work, struct io_tlb_mem, dyn_alloc); 738 struct io_tlb_pool *pool; 739 740 pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs, 741 default_nareas, mem->phys_limit, GFP_KERNEL); 742 if (!pool) { 743 pr_warn_ratelimited("Failed to allocate new pool"); 744 return; 745 } 746 747 add_mem_pool(mem, pool); 748 } 749 750 /** 751 * swiotlb_dyn_free() - RCU callback to free a memory pool 752 * @rcu: RCU head in the corresponding struct io_tlb_pool. 753 */ 754 static void swiotlb_dyn_free(struct rcu_head *rcu) 755 { 756 struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu); 757 size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs); 758 size_t tlb_size = pool->end - pool->start; 759 760 free_pages((unsigned long)pool->slots, get_order(slots_size)); 761 swiotlb_free_tlb(pool->vaddr, tlb_size); 762 kfree(pool); 763 } 764 765 /** 766 * swiotlb_find_pool() - find the IO TLB pool for a physical address 767 * @dev: Device which has mapped the DMA buffer. 768 * @paddr: Physical address within the DMA buffer. 769 * 770 * Find the IO TLB memory pool descriptor which contains the given physical 771 * address, if any. 772 * 773 * Return: Memory pool which contains @paddr, or %NULL if none. 774 */ 775 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr) 776 { 777 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 778 struct io_tlb_pool *pool; 779 780 rcu_read_lock(); 781 list_for_each_entry_rcu(pool, &mem->pools, node) { 782 if (paddr >= pool->start && paddr < pool->end) 783 goto out; 784 } 785 786 list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) { 787 if (paddr >= pool->start && paddr < pool->end) 788 goto out; 789 } 790 pool = NULL; 791 out: 792 rcu_read_unlock(); 793 return pool; 794 } 795 796 /** 797 * swiotlb_del_pool() - remove an IO TLB pool from a device 798 * @dev: Owning device. 799 * @pool: Memory pool to be removed. 800 */ 801 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool) 802 { 803 unsigned long flags; 804 805 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 806 list_del_rcu(&pool->node); 807 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 808 809 call_rcu(&pool->rcu, swiotlb_dyn_free); 810 } 811 812 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 813 814 /** 815 * swiotlb_dev_init() - initialize swiotlb fields in &struct device 816 * @dev: Device to be initialized. 817 */ 818 void swiotlb_dev_init(struct device *dev) 819 { 820 dev->dma_io_tlb_mem = &io_tlb_default_mem; 821 #ifdef CONFIG_SWIOTLB_DYNAMIC 822 INIT_LIST_HEAD(&dev->dma_io_tlb_pools); 823 spin_lock_init(&dev->dma_io_tlb_lock); 824 dev->dma_uses_io_tlb = false; 825 #endif 826 } 827 828 /** 829 * swiotlb_align_offset() - Get required offset into an IO TLB allocation. 830 * @dev: Owning device. 831 * @align_mask: Allocation alignment mask. 832 * @addr: DMA address. 833 * 834 * Return the minimum offset from the start of an IO TLB allocation which is 835 * required for a given buffer address and allocation alignment to keep the 836 * device happy. 837 * 838 * First, the address bits covered by min_align_mask must be identical in the 839 * original address and the bounce buffer address. High bits are preserved by 840 * choosing a suitable IO TLB slot, but bits below IO_TLB_SHIFT require extra 841 * padding bytes before the bounce buffer. 842 * 843 * Second, @align_mask specifies which bits of the first allocated slot must 844 * be zero. This may require allocating additional padding slots, and then the 845 * offset (in bytes) from the first such padding slot is returned. 846 */ 847 static unsigned int swiotlb_align_offset(struct device *dev, 848 unsigned int align_mask, u64 addr) 849 { 850 return addr & dma_get_min_align_mask(dev) & 851 (align_mask | (IO_TLB_SIZE - 1)); 852 } 853 854 /* 855 * Bounce: copy the swiotlb buffer from or back to the original dma location 856 */ 857 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 858 enum dma_data_direction dir) 859 { 860 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 861 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 862 phys_addr_t orig_addr = mem->slots[index].orig_addr; 863 size_t alloc_size = mem->slots[index].alloc_size; 864 unsigned long pfn = PFN_DOWN(orig_addr); 865 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 866 unsigned int tlb_offset, orig_addr_offset; 867 868 if (orig_addr == INVALID_PHYS_ADDR) 869 return; 870 871 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 872 orig_addr_offset = swiotlb_align_offset(dev, 0, orig_addr); 873 if (tlb_offset < orig_addr_offset) { 874 dev_WARN_ONCE(dev, 1, 875 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 876 orig_addr_offset, tlb_offset); 877 return; 878 } 879 880 tlb_offset -= orig_addr_offset; 881 if (tlb_offset > alloc_size) { 882 dev_WARN_ONCE(dev, 1, 883 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 884 alloc_size, size, tlb_offset); 885 return; 886 } 887 888 orig_addr += tlb_offset; 889 alloc_size -= tlb_offset; 890 891 if (size > alloc_size) { 892 dev_WARN_ONCE(dev, 1, 893 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 894 alloc_size, size); 895 size = alloc_size; 896 } 897 898 if (PageHighMem(pfn_to_page(pfn))) { 899 unsigned int offset = orig_addr & ~PAGE_MASK; 900 struct page *page; 901 unsigned int sz = 0; 902 unsigned long flags; 903 904 while (size) { 905 sz = min_t(size_t, PAGE_SIZE - offset, size); 906 907 local_irq_save(flags); 908 page = pfn_to_page(pfn); 909 if (dir == DMA_TO_DEVICE) 910 memcpy_from_page(vaddr, page, offset, sz); 911 else 912 memcpy_to_page(page, offset, vaddr, sz); 913 local_irq_restore(flags); 914 915 size -= sz; 916 pfn++; 917 vaddr += sz; 918 offset = 0; 919 } 920 } else if (dir == DMA_TO_DEVICE) { 921 memcpy(vaddr, phys_to_virt(orig_addr), size); 922 } else { 923 memcpy(phys_to_virt(orig_addr), vaddr, size); 924 } 925 } 926 927 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) 928 { 929 return start + (idx << IO_TLB_SHIFT); 930 } 931 932 /* 933 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 934 */ 935 static inline unsigned long get_max_slots(unsigned long boundary_mask) 936 { 937 return (boundary_mask >> IO_TLB_SHIFT) + 1; 938 } 939 940 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index) 941 { 942 if (index >= mem->area_nslabs) 943 return 0; 944 return index; 945 } 946 947 /* 948 * Track the total used slots with a global atomic value in order to have 949 * correct information to determine the high water mark. The mem_used() 950 * function gives imprecise results because there's no locking across 951 * multiple areas. 952 */ 953 #ifdef CONFIG_DEBUG_FS 954 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 955 { 956 unsigned long old_hiwater, new_used; 957 958 new_used = atomic_long_add_return(nslots, &mem->total_used); 959 old_hiwater = atomic_long_read(&mem->used_hiwater); 960 do { 961 if (new_used <= old_hiwater) 962 break; 963 } while (!atomic_long_try_cmpxchg(&mem->used_hiwater, 964 &old_hiwater, new_used)); 965 } 966 967 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 968 { 969 atomic_long_sub(nslots, &mem->total_used); 970 } 971 972 #else /* !CONFIG_DEBUG_FS */ 973 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 974 { 975 } 976 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 977 { 978 } 979 #endif /* CONFIG_DEBUG_FS */ 980 981 /** 982 * swiotlb_area_find_slots() - search for slots in one IO TLB memory area 983 * @dev: Device which maps the buffer. 984 * @pool: Memory pool to be searched. 985 * @area_index: Index of the IO TLB memory area to be searched. 986 * @orig_addr: Original (non-bounced) IO buffer address. 987 * @alloc_size: Total requested size of the bounce buffer, 988 * including initial alignment padding. 989 * @alloc_align_mask: Required alignment of the allocated buffer. 990 * 991 * Find a suitable sequence of IO TLB entries for the request and allocate 992 * a buffer from the given IO TLB memory area. 993 * This function takes care of locking. 994 * 995 * Return: Index of the first allocated slot, or -1 on error. 996 */ 997 static int swiotlb_area_find_slots(struct device *dev, struct io_tlb_pool *pool, 998 int area_index, phys_addr_t orig_addr, size_t alloc_size, 999 unsigned int alloc_align_mask) 1000 { 1001 struct io_tlb_area *area = pool->areas + area_index; 1002 unsigned long boundary_mask = dma_get_seg_boundary(dev); 1003 dma_addr_t tbl_dma_addr = 1004 phys_to_dma_unencrypted(dev, pool->start) & boundary_mask; 1005 unsigned long max_slots = get_max_slots(boundary_mask); 1006 unsigned int iotlb_align_mask = dma_get_min_align_mask(dev); 1007 unsigned int nslots = nr_slots(alloc_size), stride; 1008 unsigned int offset = swiotlb_align_offset(dev, 0, orig_addr); 1009 unsigned int index, slots_checked, count = 0, i; 1010 unsigned long flags; 1011 unsigned int slot_base; 1012 unsigned int slot_index; 1013 1014 BUG_ON(!nslots); 1015 BUG_ON(area_index >= pool->nareas); 1016 1017 /* 1018 * Historically, swiotlb allocations >= PAGE_SIZE were guaranteed to be 1019 * page-aligned in the absence of any other alignment requirements. 1020 * 'alloc_align_mask' was later introduced to specify the alignment 1021 * explicitly, however this is passed as zero for streaming mappings 1022 * and so we preserve the old behaviour there in case any drivers are 1023 * relying on it. 1024 */ 1025 if (!alloc_align_mask && !iotlb_align_mask && alloc_size >= PAGE_SIZE) 1026 alloc_align_mask = PAGE_SIZE - 1; 1027 1028 /* 1029 * Ensure that the allocation is at least slot-aligned and update 1030 * 'iotlb_align_mask' to ignore bits that will be preserved when 1031 * offsetting into the allocation. 1032 */ 1033 alloc_align_mask |= (IO_TLB_SIZE - 1); 1034 iotlb_align_mask &= ~alloc_align_mask; 1035 1036 /* 1037 * For mappings with an alignment requirement don't bother looping to 1038 * unaligned slots once we found an aligned one. 1039 */ 1040 stride = get_max_slots(max(alloc_align_mask, iotlb_align_mask)); 1041 1042 spin_lock_irqsave(&area->lock, flags); 1043 if (unlikely(nslots > pool->area_nslabs - area->used)) 1044 goto not_found; 1045 1046 slot_base = area_index * pool->area_nslabs; 1047 index = area->index; 1048 1049 for (slots_checked = 0; slots_checked < pool->area_nslabs; ) { 1050 phys_addr_t tlb_addr; 1051 1052 slot_index = slot_base + index; 1053 tlb_addr = slot_addr(tbl_dma_addr, slot_index); 1054 1055 if ((tlb_addr & alloc_align_mask) || 1056 (orig_addr && (tlb_addr & iotlb_align_mask) != 1057 (orig_addr & iotlb_align_mask))) { 1058 index = wrap_area_index(pool, index + 1); 1059 slots_checked++; 1060 continue; 1061 } 1062 1063 if (!iommu_is_span_boundary(slot_index, nslots, 1064 nr_slots(tbl_dma_addr), 1065 max_slots)) { 1066 if (pool->slots[slot_index].list >= nslots) 1067 goto found; 1068 } 1069 index = wrap_area_index(pool, index + stride); 1070 slots_checked += stride; 1071 } 1072 1073 not_found: 1074 spin_unlock_irqrestore(&area->lock, flags); 1075 return -1; 1076 1077 found: 1078 /* 1079 * If we find a slot that indicates we have 'nslots' number of 1080 * contiguous buffers, we allocate the buffers from that slot onwards 1081 * and set the list of free entries to '0' indicating unavailable. 1082 */ 1083 for (i = slot_index; i < slot_index + nslots; i++) { 1084 pool->slots[i].list = 0; 1085 pool->slots[i].alloc_size = alloc_size - (offset + 1086 ((i - slot_index) << IO_TLB_SHIFT)); 1087 } 1088 for (i = slot_index - 1; 1089 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 1090 pool->slots[i].list; i--) 1091 pool->slots[i].list = ++count; 1092 1093 /* 1094 * Update the indices to avoid searching in the next round. 1095 */ 1096 area->index = wrap_area_index(pool, index + nslots); 1097 area->used += nslots; 1098 spin_unlock_irqrestore(&area->lock, flags); 1099 1100 inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots); 1101 return slot_index; 1102 } 1103 1104 /** 1105 * swiotlb_pool_find_slots() - search for slots in one memory pool 1106 * @dev: Device which maps the buffer. 1107 * @pool: Memory pool to be searched. 1108 * @orig_addr: Original (non-bounced) IO buffer address. 1109 * @alloc_size: Total requested size of the bounce buffer, 1110 * including initial alignment padding. 1111 * @alloc_align_mask: Required alignment of the allocated buffer. 1112 * 1113 * Search through one memory pool to find a sequence of slots that match the 1114 * allocation constraints. 1115 * 1116 * Return: Index of the first allocated slot, or -1 on error. 1117 */ 1118 static int swiotlb_pool_find_slots(struct device *dev, struct io_tlb_pool *pool, 1119 phys_addr_t orig_addr, size_t alloc_size, 1120 unsigned int alloc_align_mask) 1121 { 1122 int start = raw_smp_processor_id() & (pool->nareas - 1); 1123 int i = start, index; 1124 1125 do { 1126 index = swiotlb_area_find_slots(dev, pool, i, orig_addr, 1127 alloc_size, alloc_align_mask); 1128 if (index >= 0) 1129 return index; 1130 if (++i >= pool->nareas) 1131 i = 0; 1132 } while (i != start); 1133 1134 return -1; 1135 } 1136 1137 #ifdef CONFIG_SWIOTLB_DYNAMIC 1138 1139 /** 1140 * swiotlb_find_slots() - search for slots in the whole swiotlb 1141 * @dev: Device which maps the buffer. 1142 * @orig_addr: Original (non-bounced) IO buffer address. 1143 * @alloc_size: Total requested size of the bounce buffer, 1144 * including initial alignment padding. 1145 * @alloc_align_mask: Required alignment of the allocated buffer. 1146 * @retpool: Used memory pool, updated on return. 1147 * 1148 * Search through the whole software IO TLB to find a sequence of slots that 1149 * match the allocation constraints. 1150 * 1151 * Return: Index of the first allocated slot, or -1 on error. 1152 */ 1153 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1154 size_t alloc_size, unsigned int alloc_align_mask, 1155 struct io_tlb_pool **retpool) 1156 { 1157 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1158 struct io_tlb_pool *pool; 1159 unsigned long nslabs; 1160 unsigned long flags; 1161 u64 phys_limit; 1162 int index; 1163 1164 rcu_read_lock(); 1165 list_for_each_entry_rcu(pool, &mem->pools, node) { 1166 index = swiotlb_pool_find_slots(dev, pool, orig_addr, 1167 alloc_size, alloc_align_mask); 1168 if (index >= 0) { 1169 rcu_read_unlock(); 1170 goto found; 1171 } 1172 } 1173 rcu_read_unlock(); 1174 if (!mem->can_grow) 1175 return -1; 1176 1177 schedule_work(&mem->dyn_alloc); 1178 1179 nslabs = nr_slots(alloc_size); 1180 phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit); 1181 pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit, 1182 GFP_NOWAIT | __GFP_NOWARN); 1183 if (!pool) 1184 return -1; 1185 1186 index = swiotlb_pool_find_slots(dev, pool, orig_addr, 1187 alloc_size, alloc_align_mask); 1188 if (index < 0) { 1189 swiotlb_dyn_free(&pool->rcu); 1190 return -1; 1191 } 1192 1193 pool->transient = true; 1194 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 1195 list_add_rcu(&pool->node, &dev->dma_io_tlb_pools); 1196 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 1197 1198 found: 1199 WRITE_ONCE(dev->dma_uses_io_tlb, true); 1200 1201 /* 1202 * The general barrier orders reads and writes against a presumed store 1203 * of the SWIOTLB buffer address by a device driver (to a driver private 1204 * data structure). It serves two purposes. 1205 * 1206 * First, the store to dev->dma_uses_io_tlb must be ordered before the 1207 * presumed store. This guarantees that the returned buffer address 1208 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb. 1209 * 1210 * Second, the load from mem->pools must be ordered before the same 1211 * presumed store. This guarantees that the returned buffer address 1212 * cannot be observed by another CPU before an update of the RCU list 1213 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy 1214 * atomicity). 1215 * 1216 * See also the comment in is_swiotlb_buffer(). 1217 */ 1218 smp_mb(); 1219 1220 *retpool = pool; 1221 return index; 1222 } 1223 1224 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1225 1226 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1227 size_t alloc_size, unsigned int alloc_align_mask, 1228 struct io_tlb_pool **retpool) 1229 { 1230 *retpool = &dev->dma_io_tlb_mem->defpool; 1231 return swiotlb_pool_find_slots(dev, *retpool, 1232 orig_addr, alloc_size, alloc_align_mask); 1233 } 1234 1235 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1236 1237 #ifdef CONFIG_DEBUG_FS 1238 1239 /** 1240 * mem_used() - get number of used slots in an allocator 1241 * @mem: Software IO TLB allocator. 1242 * 1243 * The result is accurate in this version of the function, because an atomic 1244 * counter is available if CONFIG_DEBUG_FS is set. 1245 * 1246 * Return: Number of used slots. 1247 */ 1248 static unsigned long mem_used(struct io_tlb_mem *mem) 1249 { 1250 return atomic_long_read(&mem->total_used); 1251 } 1252 1253 #else /* !CONFIG_DEBUG_FS */ 1254 1255 /** 1256 * mem_pool_used() - get number of used slots in a memory pool 1257 * @pool: Software IO TLB memory pool. 1258 * 1259 * The result is not accurate, see mem_used(). 1260 * 1261 * Return: Approximate number of used slots. 1262 */ 1263 static unsigned long mem_pool_used(struct io_tlb_pool *pool) 1264 { 1265 int i; 1266 unsigned long used = 0; 1267 1268 for (i = 0; i < pool->nareas; i++) 1269 used += pool->areas[i].used; 1270 return used; 1271 } 1272 1273 /** 1274 * mem_used() - get number of used slots in an allocator 1275 * @mem: Software IO TLB allocator. 1276 * 1277 * The result is not accurate, because there is no locking of individual 1278 * areas. 1279 * 1280 * Return: Approximate number of used slots. 1281 */ 1282 static unsigned long mem_used(struct io_tlb_mem *mem) 1283 { 1284 #ifdef CONFIG_SWIOTLB_DYNAMIC 1285 struct io_tlb_pool *pool; 1286 unsigned long used = 0; 1287 1288 rcu_read_lock(); 1289 list_for_each_entry_rcu(pool, &mem->pools, node) 1290 used += mem_pool_used(pool); 1291 rcu_read_unlock(); 1292 1293 return used; 1294 #else 1295 return mem_pool_used(&mem->defpool); 1296 #endif 1297 } 1298 1299 #endif /* CONFIG_DEBUG_FS */ 1300 1301 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 1302 size_t mapping_size, size_t alloc_size, 1303 unsigned int alloc_align_mask, enum dma_data_direction dir, 1304 unsigned long attrs) 1305 { 1306 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1307 unsigned int offset; 1308 struct io_tlb_pool *pool; 1309 unsigned int i; 1310 int index; 1311 phys_addr_t tlb_addr; 1312 unsigned short pad_slots; 1313 1314 if (!mem || !mem->nslabs) { 1315 dev_warn_ratelimited(dev, 1316 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 1317 return (phys_addr_t)DMA_MAPPING_ERROR; 1318 } 1319 1320 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 1321 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 1322 1323 if (mapping_size > alloc_size) { 1324 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 1325 mapping_size, alloc_size); 1326 return (phys_addr_t)DMA_MAPPING_ERROR; 1327 } 1328 1329 offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr); 1330 index = swiotlb_find_slots(dev, orig_addr, 1331 alloc_size + offset, alloc_align_mask, &pool); 1332 if (index == -1) { 1333 if (!(attrs & DMA_ATTR_NO_WARN)) 1334 dev_warn_ratelimited(dev, 1335 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 1336 alloc_size, mem->nslabs, mem_used(mem)); 1337 return (phys_addr_t)DMA_MAPPING_ERROR; 1338 } 1339 1340 /* 1341 * Save away the mapping from the original address to the DMA address. 1342 * This is needed when we sync the memory. Then we sync the buffer if 1343 * needed. 1344 */ 1345 pad_slots = offset >> IO_TLB_SHIFT; 1346 offset &= (IO_TLB_SIZE - 1); 1347 index += pad_slots; 1348 pool->slots[index].pad_slots = pad_slots; 1349 for (i = 0; i < nr_slots(alloc_size + offset); i++) 1350 pool->slots[index + i].orig_addr = slot_addr(orig_addr, i); 1351 tlb_addr = slot_addr(pool->start, index) + offset; 1352 /* 1353 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 1354 * to the tlb buffer, if we knew for sure the device will 1355 * overwrite the entire current content. But we don't. Thus 1356 * unconditional bounce may prevent leaking swiotlb content (i.e. 1357 * kernel memory) to user-space. 1358 */ 1359 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 1360 return tlb_addr; 1361 } 1362 1363 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 1364 { 1365 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 1366 unsigned long flags; 1367 unsigned int offset = swiotlb_align_offset(dev, 0, tlb_addr); 1368 int index, nslots, aindex; 1369 struct io_tlb_area *area; 1370 int count, i; 1371 1372 index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 1373 index -= mem->slots[index].pad_slots; 1374 nslots = nr_slots(mem->slots[index].alloc_size + offset); 1375 aindex = index / mem->area_nslabs; 1376 area = &mem->areas[aindex]; 1377 1378 /* 1379 * Return the buffer to the free list by setting the corresponding 1380 * entries to indicate the number of contiguous entries available. 1381 * While returning the entries to the free list, we merge the entries 1382 * with slots below and above the pool being returned. 1383 */ 1384 BUG_ON(aindex >= mem->nareas); 1385 1386 spin_lock_irqsave(&area->lock, flags); 1387 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 1388 count = mem->slots[index + nslots].list; 1389 else 1390 count = 0; 1391 1392 /* 1393 * Step 1: return the slots to the free list, merging the slots with 1394 * superceeding slots 1395 */ 1396 for (i = index + nslots - 1; i >= index; i--) { 1397 mem->slots[i].list = ++count; 1398 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 1399 mem->slots[i].alloc_size = 0; 1400 mem->slots[i].pad_slots = 0; 1401 } 1402 1403 /* 1404 * Step 2: merge the returned slots with the preceding slots, if 1405 * available (non zero) 1406 */ 1407 for (i = index - 1; 1408 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 1409 i--) 1410 mem->slots[i].list = ++count; 1411 area->used -= nslots; 1412 spin_unlock_irqrestore(&area->lock, flags); 1413 1414 dec_used(dev->dma_io_tlb_mem, nslots); 1415 } 1416 1417 #ifdef CONFIG_SWIOTLB_DYNAMIC 1418 1419 /** 1420 * swiotlb_del_transient() - delete a transient memory pool 1421 * @dev: Device which mapped the buffer. 1422 * @tlb_addr: Physical address within a bounce buffer. 1423 * 1424 * Check whether the address belongs to a transient SWIOTLB memory pool. 1425 * If yes, then delete the pool. 1426 * 1427 * Return: %true if @tlb_addr belonged to a transient pool that was released. 1428 */ 1429 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr) 1430 { 1431 struct io_tlb_pool *pool; 1432 1433 pool = swiotlb_find_pool(dev, tlb_addr); 1434 if (!pool->transient) 1435 return false; 1436 1437 dec_used(dev->dma_io_tlb_mem, pool->nslabs); 1438 swiotlb_del_pool(dev, pool); 1439 return true; 1440 } 1441 1442 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1443 1444 static inline bool swiotlb_del_transient(struct device *dev, 1445 phys_addr_t tlb_addr) 1446 { 1447 return false; 1448 } 1449 1450 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1451 1452 /* 1453 * tlb_addr is the physical address of the bounce buffer to unmap. 1454 */ 1455 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 1456 size_t mapping_size, enum dma_data_direction dir, 1457 unsigned long attrs) 1458 { 1459 /* 1460 * First, sync the memory before unmapping the entry 1461 */ 1462 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1463 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 1464 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 1465 1466 if (swiotlb_del_transient(dev, tlb_addr)) 1467 return; 1468 swiotlb_release_slots(dev, tlb_addr); 1469 } 1470 1471 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 1472 size_t size, enum dma_data_direction dir) 1473 { 1474 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 1475 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 1476 else 1477 BUG_ON(dir != DMA_FROM_DEVICE); 1478 } 1479 1480 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 1481 size_t size, enum dma_data_direction dir) 1482 { 1483 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 1484 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 1485 else 1486 BUG_ON(dir != DMA_TO_DEVICE); 1487 } 1488 1489 /* 1490 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 1491 * to the device copy the data into it as well. 1492 */ 1493 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 1494 enum dma_data_direction dir, unsigned long attrs) 1495 { 1496 phys_addr_t swiotlb_addr; 1497 dma_addr_t dma_addr; 1498 1499 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 1500 1501 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 1502 attrs); 1503 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 1504 return DMA_MAPPING_ERROR; 1505 1506 /* Ensure that the address returned is DMA'ble */ 1507 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 1508 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 1509 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 1510 attrs | DMA_ATTR_SKIP_CPU_SYNC); 1511 dev_WARN_ONCE(dev, 1, 1512 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 1513 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 1514 return DMA_MAPPING_ERROR; 1515 } 1516 1517 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1518 arch_sync_dma_for_device(swiotlb_addr, size, dir); 1519 return dma_addr; 1520 } 1521 1522 size_t swiotlb_max_mapping_size(struct device *dev) 1523 { 1524 int min_align_mask = dma_get_min_align_mask(dev); 1525 int min_align = 0; 1526 1527 /* 1528 * swiotlb_find_slots() skips slots according to 1529 * min align mask. This affects max mapping size. 1530 * Take it into acount here. 1531 */ 1532 if (min_align_mask) 1533 min_align = roundup(min_align_mask, IO_TLB_SIZE); 1534 1535 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 1536 } 1537 1538 /** 1539 * is_swiotlb_allocated() - check if the default software IO TLB is initialized 1540 */ 1541 bool is_swiotlb_allocated(void) 1542 { 1543 return io_tlb_default_mem.nslabs; 1544 } 1545 1546 bool is_swiotlb_active(struct device *dev) 1547 { 1548 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1549 1550 return mem && mem->nslabs; 1551 } 1552 1553 /** 1554 * default_swiotlb_base() - get the base address of the default SWIOTLB 1555 * 1556 * Get the lowest physical address used by the default software IO TLB pool. 1557 */ 1558 phys_addr_t default_swiotlb_base(void) 1559 { 1560 #ifdef CONFIG_SWIOTLB_DYNAMIC 1561 io_tlb_default_mem.can_grow = false; 1562 #endif 1563 return io_tlb_default_mem.defpool.start; 1564 } 1565 1566 /** 1567 * default_swiotlb_limit() - get the address limit of the default SWIOTLB 1568 * 1569 * Get the highest physical address used by the default software IO TLB pool. 1570 */ 1571 phys_addr_t default_swiotlb_limit(void) 1572 { 1573 #ifdef CONFIG_SWIOTLB_DYNAMIC 1574 return io_tlb_default_mem.phys_limit; 1575 #else 1576 return io_tlb_default_mem.defpool.end - 1; 1577 #endif 1578 } 1579 1580 #ifdef CONFIG_DEBUG_FS 1581 1582 static int io_tlb_used_get(void *data, u64 *val) 1583 { 1584 struct io_tlb_mem *mem = data; 1585 1586 *val = mem_used(mem); 1587 return 0; 1588 } 1589 1590 static int io_tlb_hiwater_get(void *data, u64 *val) 1591 { 1592 struct io_tlb_mem *mem = data; 1593 1594 *val = atomic_long_read(&mem->used_hiwater); 1595 return 0; 1596 } 1597 1598 static int io_tlb_hiwater_set(void *data, u64 val) 1599 { 1600 struct io_tlb_mem *mem = data; 1601 1602 /* Only allow setting to zero */ 1603 if (val != 0) 1604 return -EINVAL; 1605 1606 atomic_long_set(&mem->used_hiwater, val); 1607 return 0; 1608 } 1609 1610 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 1611 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get, 1612 io_tlb_hiwater_set, "%llu\n"); 1613 1614 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1615 const char *dirname) 1616 { 1617 atomic_long_set(&mem->total_used, 0); 1618 atomic_long_set(&mem->used_hiwater, 0); 1619 1620 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 1621 if (!mem->nslabs) 1622 return; 1623 1624 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 1625 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem, 1626 &fops_io_tlb_used); 1627 debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem, 1628 &fops_io_tlb_hiwater); 1629 } 1630 1631 static int __init swiotlb_create_default_debugfs(void) 1632 { 1633 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 1634 return 0; 1635 } 1636 1637 late_initcall(swiotlb_create_default_debugfs); 1638 1639 #else /* !CONFIG_DEBUG_FS */ 1640 1641 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1642 const char *dirname) 1643 { 1644 } 1645 1646 #endif /* CONFIG_DEBUG_FS */ 1647 1648 #ifdef CONFIG_DMA_RESTRICTED_POOL 1649 1650 struct page *swiotlb_alloc(struct device *dev, size_t size) 1651 { 1652 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1653 struct io_tlb_pool *pool; 1654 phys_addr_t tlb_addr; 1655 unsigned int align; 1656 int index; 1657 1658 if (!mem) 1659 return NULL; 1660 1661 align = (1 << (get_order(size) + PAGE_SHIFT)) - 1; 1662 index = swiotlb_find_slots(dev, 0, size, align, &pool); 1663 if (index == -1) 1664 return NULL; 1665 1666 tlb_addr = slot_addr(pool->start, index); 1667 if (unlikely(!PAGE_ALIGNED(tlb_addr))) { 1668 dev_WARN_ONCE(dev, 1, "Cannot allocate pages from non page-aligned swiotlb addr 0x%pa.\n", 1669 &tlb_addr); 1670 swiotlb_release_slots(dev, tlb_addr); 1671 return NULL; 1672 } 1673 1674 return pfn_to_page(PFN_DOWN(tlb_addr)); 1675 } 1676 1677 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 1678 { 1679 phys_addr_t tlb_addr = page_to_phys(page); 1680 1681 if (!is_swiotlb_buffer(dev, tlb_addr)) 1682 return false; 1683 1684 swiotlb_release_slots(dev, tlb_addr); 1685 1686 return true; 1687 } 1688 1689 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 1690 struct device *dev) 1691 { 1692 struct io_tlb_mem *mem = rmem->priv; 1693 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 1694 1695 /* Set Per-device io tlb area to one */ 1696 unsigned int nareas = 1; 1697 1698 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1699 dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping."); 1700 return -EINVAL; 1701 } 1702 1703 /* 1704 * Since multiple devices can share the same pool, the private data, 1705 * io_tlb_mem struct, will be initialized by the first device attached 1706 * to it. 1707 */ 1708 if (!mem) { 1709 struct io_tlb_pool *pool; 1710 1711 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1712 if (!mem) 1713 return -ENOMEM; 1714 pool = &mem->defpool; 1715 1716 pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL); 1717 if (!pool->slots) { 1718 kfree(mem); 1719 return -ENOMEM; 1720 } 1721 1722 pool->areas = kcalloc(nareas, sizeof(*pool->areas), 1723 GFP_KERNEL); 1724 if (!pool->areas) { 1725 kfree(pool->slots); 1726 kfree(mem); 1727 return -ENOMEM; 1728 } 1729 1730 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1731 rmem->size >> PAGE_SHIFT); 1732 swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs, 1733 false, nareas); 1734 mem->force_bounce = true; 1735 mem->for_alloc = true; 1736 #ifdef CONFIG_SWIOTLB_DYNAMIC 1737 spin_lock_init(&mem->lock); 1738 INIT_LIST_HEAD_RCU(&mem->pools); 1739 #endif 1740 add_mem_pool(mem, pool); 1741 1742 rmem->priv = mem; 1743 1744 swiotlb_create_debugfs_files(mem, rmem->name); 1745 } 1746 1747 dev->dma_io_tlb_mem = mem; 1748 1749 return 0; 1750 } 1751 1752 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1753 struct device *dev) 1754 { 1755 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1756 } 1757 1758 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1759 .device_init = rmem_swiotlb_device_init, 1760 .device_release = rmem_swiotlb_device_release, 1761 }; 1762 1763 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1764 { 1765 unsigned long node = rmem->fdt_node; 1766 1767 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1768 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1769 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1770 of_get_flat_dt_prop(node, "no-map", NULL)) 1771 return -EINVAL; 1772 1773 rmem->ops = &rmem_swiotlb_ops; 1774 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1775 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1776 return 0; 1777 } 1778 1779 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1780 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1781