1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/scatterlist.h> 39 #include <linux/set_memory.h> 40 #include <linux/spinlock.h> 41 #include <linux/string.h> 42 #include <linux/swiotlb.h> 43 #include <linux/types.h> 44 #ifdef CONFIG_DMA_RESTRICTED_POOL 45 #include <linux/of.h> 46 #include <linux/of_fdt.h> 47 #include <linux/of_reserved_mem.h> 48 #include <linux/slab.h> 49 #endif 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/swiotlb.h> 53 54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 55 56 /* 57 * Minimum IO TLB size to bother booting with. Systems with mainly 58 * 64bit capable cards will only lightly use the swiotlb. If we can't 59 * allocate a contiguous 1MB, we're probably in trouble anyway. 60 */ 61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 62 63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 64 65 struct io_tlb_slot { 66 phys_addr_t orig_addr; 67 size_t alloc_size; 68 unsigned int list; 69 }; 70 71 static bool swiotlb_force_bounce; 72 static bool swiotlb_force_disable; 73 74 struct io_tlb_mem io_tlb_default_mem; 75 76 phys_addr_t swiotlb_unencrypted_base; 77 78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 79 static unsigned long default_nareas; 80 81 /** 82 * struct io_tlb_area - IO TLB memory area descriptor 83 * 84 * This is a single area with a single lock. 85 * 86 * @used: The number of used IO TLB block. 87 * @index: The slot index to start searching in this area for next round. 88 * @lock: The lock to protect the above data structures in the map and 89 * unmap calls. 90 */ 91 struct io_tlb_area { 92 unsigned long used; 93 unsigned int index; 94 spinlock_t lock; 95 }; 96 97 /* 98 * Round up number of slabs to the next power of 2. The last area is going 99 * be smaller than the rest if default_nslabs is not power of two. 100 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 101 * otherwise a segment may span two or more areas. It conflicts with free 102 * contiguous slots tracking: free slots are treated contiguous no matter 103 * whether they cross an area boundary. 104 * 105 * Return true if default_nslabs is rounded up. 106 */ 107 static bool round_up_default_nslabs(void) 108 { 109 if (!default_nareas) 110 return false; 111 112 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 113 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 114 else if (is_power_of_2(default_nslabs)) 115 return false; 116 default_nslabs = roundup_pow_of_two(default_nslabs); 117 return true; 118 } 119 120 static void swiotlb_adjust_nareas(unsigned int nareas) 121 { 122 /* use a single area when non is specified */ 123 if (!nareas) 124 nareas = 1; 125 else if (!is_power_of_2(nareas)) 126 nareas = roundup_pow_of_two(nareas); 127 128 default_nareas = nareas; 129 130 pr_info("area num %d.\n", nareas); 131 if (round_up_default_nslabs()) 132 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 133 (default_nslabs << IO_TLB_SHIFT) >> 20); 134 } 135 136 static int __init 137 setup_io_tlb_npages(char *str) 138 { 139 if (isdigit(*str)) { 140 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 141 default_nslabs = 142 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 143 } 144 if (*str == ',') 145 ++str; 146 if (isdigit(*str)) 147 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 148 if (*str == ',') 149 ++str; 150 if (!strcmp(str, "force")) 151 swiotlb_force_bounce = true; 152 else if (!strcmp(str, "noforce")) 153 swiotlb_force_disable = true; 154 155 return 0; 156 } 157 early_param("swiotlb", setup_io_tlb_npages); 158 159 unsigned int swiotlb_max_segment(void) 160 { 161 if (!io_tlb_default_mem.nslabs) 162 return 0; 163 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE); 164 } 165 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 166 167 unsigned long swiotlb_size_or_default(void) 168 { 169 return default_nslabs << IO_TLB_SHIFT; 170 } 171 172 void __init swiotlb_adjust_size(unsigned long size) 173 { 174 /* 175 * If swiotlb parameter has not been specified, give a chance to 176 * architectures such as those supporting memory encryption to 177 * adjust/expand SWIOTLB size for their use. 178 */ 179 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 180 return; 181 182 size = ALIGN(size, IO_TLB_SIZE); 183 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 184 if (round_up_default_nslabs()) 185 size = default_nslabs << IO_TLB_SHIFT; 186 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 187 } 188 189 void swiotlb_print_info(void) 190 { 191 struct io_tlb_mem *mem = &io_tlb_default_mem; 192 193 if (!mem->nslabs) { 194 pr_warn("No low mem\n"); 195 return; 196 } 197 198 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 199 (mem->nslabs << IO_TLB_SHIFT) >> 20); 200 } 201 202 static inline unsigned long io_tlb_offset(unsigned long val) 203 { 204 return val & (IO_TLB_SEGSIZE - 1); 205 } 206 207 static inline unsigned long nr_slots(u64 val) 208 { 209 return DIV_ROUND_UP(val, IO_TLB_SIZE); 210 } 211 212 /* 213 * Remap swioltb memory in the unencrypted physical address space 214 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP 215 * Isolation VMs). 216 */ 217 #ifdef CONFIG_HAS_IOMEM 218 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 219 { 220 void *vaddr = NULL; 221 222 if (swiotlb_unencrypted_base) { 223 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base; 224 225 vaddr = memremap(paddr, bytes, MEMREMAP_WB); 226 if (!vaddr) 227 pr_err("Failed to map the unencrypted memory %pa size %lx.\n", 228 &paddr, bytes); 229 } 230 231 return vaddr; 232 } 233 #else 234 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 235 { 236 return NULL; 237 } 238 #endif 239 240 /* 241 * Early SWIOTLB allocation may be too early to allow an architecture to 242 * perform the desired operations. This function allows the architecture to 243 * call SWIOTLB when the operations are possible. It needs to be called 244 * before the SWIOTLB memory is used. 245 */ 246 void __init swiotlb_update_mem_attributes(void) 247 { 248 struct io_tlb_mem *mem = &io_tlb_default_mem; 249 void *vaddr; 250 unsigned long bytes; 251 252 if (!mem->nslabs || mem->late_alloc) 253 return; 254 vaddr = phys_to_virt(mem->start); 255 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 256 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 257 258 mem->vaddr = swiotlb_mem_remap(mem, bytes); 259 if (!mem->vaddr) 260 mem->vaddr = vaddr; 261 } 262 263 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, 264 unsigned long nslabs, unsigned int flags, 265 bool late_alloc, unsigned int nareas) 266 { 267 void *vaddr = phys_to_virt(start); 268 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 269 270 mem->nslabs = nslabs; 271 mem->start = start; 272 mem->end = mem->start + bytes; 273 mem->late_alloc = late_alloc; 274 mem->nareas = nareas; 275 mem->area_nslabs = nslabs / mem->nareas; 276 277 mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 278 279 for (i = 0; i < mem->nareas; i++) { 280 spin_lock_init(&mem->areas[i].lock); 281 mem->areas[i].index = 0; 282 mem->areas[i].used = 0; 283 } 284 285 for (i = 0; i < mem->nslabs; i++) { 286 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 287 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 288 mem->slots[i].alloc_size = 0; 289 } 290 291 /* 292 * If swiotlb_unencrypted_base is set, the bounce buffer memory will 293 * be remapped and cleared in swiotlb_update_mem_attributes. 294 */ 295 if (swiotlb_unencrypted_base) 296 return; 297 298 memset(vaddr, 0, bytes); 299 mem->vaddr = vaddr; 300 return; 301 } 302 303 /* 304 * Statically reserve bounce buffer space and initialize bounce buffer data 305 * structures for the software IO TLB used to implement the DMA API. 306 */ 307 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 308 int (*remap)(void *tlb, unsigned long nslabs)) 309 { 310 struct io_tlb_mem *mem = &io_tlb_default_mem; 311 unsigned long nslabs; 312 size_t alloc_size; 313 size_t bytes; 314 void *tlb; 315 316 if (!addressing_limit && !swiotlb_force_bounce) 317 return; 318 if (swiotlb_force_disable) 319 return; 320 321 /* 322 * default_nslabs maybe changed when adjust area number. 323 * So allocate bounce buffer after adjusting area number. 324 */ 325 if (!default_nareas) 326 swiotlb_adjust_nareas(num_possible_cpus()); 327 328 nslabs = default_nslabs; 329 if (nslabs < IO_TLB_MIN_SLABS) 330 panic("%s: nslabs = %lu too small\n", __func__, nslabs); 331 332 /* 333 * By default allocate the bounce buffer memory from low memory, but 334 * allow to pick a location everywhere for hypervisors with guest 335 * memory encryption. 336 */ 337 retry: 338 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 339 if (flags & SWIOTLB_ANY) 340 tlb = memblock_alloc(bytes, PAGE_SIZE); 341 else 342 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 343 if (!tlb) { 344 pr_warn("%s: Failed to allocate %zu bytes tlb structure\n", 345 __func__, bytes); 346 return; 347 } 348 349 if (remap && remap(tlb, nslabs) < 0) { 350 memblock_free(tlb, PAGE_ALIGN(bytes)); 351 352 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 353 if (nslabs < IO_TLB_MIN_SLABS) 354 panic("%s: Failed to remap %zu bytes\n", 355 __func__, bytes); 356 goto retry; 357 } 358 359 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 360 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 361 if (!mem->slots) 362 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 363 __func__, alloc_size, PAGE_SIZE); 364 365 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 366 default_nareas), SMP_CACHE_BYTES); 367 if (!mem->areas) 368 panic("%s: Failed to allocate mem->areas.\n", __func__); 369 370 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false, 371 default_nareas); 372 373 if (flags & SWIOTLB_VERBOSE) 374 swiotlb_print_info(); 375 } 376 377 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 378 { 379 swiotlb_init_remap(addressing_limit, flags, NULL); 380 } 381 382 /* 383 * Systems with larger DMA zones (those that don't support ISA) can 384 * initialize the swiotlb later using the slab allocator if needed. 385 * This should be just like above, but with some error catching. 386 */ 387 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 388 int (*remap)(void *tlb, unsigned long nslabs)) 389 { 390 struct io_tlb_mem *mem = &io_tlb_default_mem; 391 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 392 unsigned char *vstart = NULL; 393 unsigned int order, area_order; 394 bool retried = false; 395 int rc = 0; 396 397 if (swiotlb_force_disable) 398 return 0; 399 400 retry: 401 order = get_order(nslabs << IO_TLB_SHIFT); 402 nslabs = SLABS_PER_PAGE << order; 403 404 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 405 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 406 order); 407 if (vstart) 408 break; 409 order--; 410 nslabs = SLABS_PER_PAGE << order; 411 retried = true; 412 } 413 414 if (!vstart) 415 return -ENOMEM; 416 417 if (remap) 418 rc = remap(vstart, nslabs); 419 if (rc) { 420 free_pages((unsigned long)vstart, order); 421 422 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 423 if (nslabs < IO_TLB_MIN_SLABS) 424 return rc; 425 retried = true; 426 goto retry; 427 } 428 429 if (retried) { 430 pr_warn("only able to allocate %ld MB\n", 431 (PAGE_SIZE << order) >> 20); 432 } 433 434 if (!default_nareas) 435 swiotlb_adjust_nareas(num_possible_cpus()); 436 437 area_order = get_order(array_size(sizeof(*mem->areas), 438 default_nareas)); 439 mem->areas = (struct io_tlb_area *) 440 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 441 if (!mem->areas) 442 goto error_area; 443 444 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 445 get_order(array_size(sizeof(*mem->slots), nslabs))); 446 if (!mem->slots) 447 goto error_slots; 448 449 set_memory_decrypted((unsigned long)vstart, 450 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 451 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true, 452 default_nareas); 453 454 swiotlb_print_info(); 455 return 0; 456 457 error_slots: 458 free_pages((unsigned long)mem->areas, area_order); 459 error_area: 460 free_pages((unsigned long)vstart, order); 461 return -ENOMEM; 462 } 463 464 void __init swiotlb_exit(void) 465 { 466 struct io_tlb_mem *mem = &io_tlb_default_mem; 467 unsigned long tbl_vaddr; 468 size_t tbl_size, slots_size; 469 unsigned int area_order; 470 471 if (swiotlb_force_bounce) 472 return; 473 474 if (!mem->nslabs) 475 return; 476 477 pr_info("tearing down default memory pool\n"); 478 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 479 tbl_size = PAGE_ALIGN(mem->end - mem->start); 480 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 481 482 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 483 if (mem->late_alloc) { 484 area_order = get_order(array_size(sizeof(*mem->areas), 485 mem->nareas)); 486 free_pages((unsigned long)mem->areas, area_order); 487 free_pages(tbl_vaddr, get_order(tbl_size)); 488 free_pages((unsigned long)mem->slots, get_order(slots_size)); 489 } else { 490 memblock_free_late(__pa(mem->areas), 491 array_size(sizeof(*mem->areas), mem->nareas)); 492 memblock_free_late(mem->start, tbl_size); 493 memblock_free_late(__pa(mem->slots), slots_size); 494 } 495 496 memset(mem, 0, sizeof(*mem)); 497 } 498 499 /* 500 * Return the offset into a iotlb slot required to keep the device happy. 501 */ 502 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 503 { 504 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 505 } 506 507 /* 508 * Bounce: copy the swiotlb buffer from or back to the original dma location 509 */ 510 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 511 enum dma_data_direction dir) 512 { 513 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 514 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 515 phys_addr_t orig_addr = mem->slots[index].orig_addr; 516 size_t alloc_size = mem->slots[index].alloc_size; 517 unsigned long pfn = PFN_DOWN(orig_addr); 518 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 519 unsigned int tlb_offset, orig_addr_offset; 520 521 if (orig_addr == INVALID_PHYS_ADDR) 522 return; 523 524 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 525 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 526 if (tlb_offset < orig_addr_offset) { 527 dev_WARN_ONCE(dev, 1, 528 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 529 orig_addr_offset, tlb_offset); 530 return; 531 } 532 533 tlb_offset -= orig_addr_offset; 534 if (tlb_offset > alloc_size) { 535 dev_WARN_ONCE(dev, 1, 536 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 537 alloc_size, size, tlb_offset); 538 return; 539 } 540 541 orig_addr += tlb_offset; 542 alloc_size -= tlb_offset; 543 544 if (size > alloc_size) { 545 dev_WARN_ONCE(dev, 1, 546 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 547 alloc_size, size); 548 size = alloc_size; 549 } 550 551 if (PageHighMem(pfn_to_page(pfn))) { 552 /* The buffer does not have a mapping. Map it in and copy */ 553 unsigned int offset = orig_addr & ~PAGE_MASK; 554 char *buffer; 555 unsigned int sz = 0; 556 unsigned long flags; 557 558 while (size) { 559 sz = min_t(size_t, PAGE_SIZE - offset, size); 560 561 local_irq_save(flags); 562 buffer = kmap_atomic(pfn_to_page(pfn)); 563 if (dir == DMA_TO_DEVICE) 564 memcpy(vaddr, buffer + offset, sz); 565 else 566 memcpy(buffer + offset, vaddr, sz); 567 kunmap_atomic(buffer); 568 local_irq_restore(flags); 569 570 size -= sz; 571 pfn++; 572 vaddr += sz; 573 offset = 0; 574 } 575 } else if (dir == DMA_TO_DEVICE) { 576 memcpy(vaddr, phys_to_virt(orig_addr), size); 577 } else { 578 memcpy(phys_to_virt(orig_addr), vaddr, size); 579 } 580 } 581 582 #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT)) 583 584 /* 585 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 586 */ 587 static inline unsigned long get_max_slots(unsigned long boundary_mask) 588 { 589 if (boundary_mask == ~0UL) 590 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 591 return nr_slots(boundary_mask + 1); 592 } 593 594 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index) 595 { 596 if (index >= mem->area_nslabs) 597 return 0; 598 return index; 599 } 600 601 /* 602 * Find a suitable number of IO TLB entries size that will fit this request and 603 * allocate a buffer from that IO TLB pool. 604 */ 605 static int swiotlb_do_find_slots(struct device *dev, int area_index, 606 phys_addr_t orig_addr, size_t alloc_size, 607 unsigned int alloc_align_mask) 608 { 609 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 610 struct io_tlb_area *area = mem->areas + area_index; 611 unsigned long boundary_mask = dma_get_seg_boundary(dev); 612 dma_addr_t tbl_dma_addr = 613 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; 614 unsigned long max_slots = get_max_slots(boundary_mask); 615 unsigned int iotlb_align_mask = 616 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); 617 unsigned int nslots = nr_slots(alloc_size), stride; 618 unsigned int index, wrap, count = 0, i; 619 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 620 unsigned long flags; 621 unsigned int slot_base; 622 unsigned int slot_index; 623 624 BUG_ON(!nslots); 625 BUG_ON(area_index >= mem->nareas); 626 627 /* 628 * For mappings with an alignment requirement don't bother looping to 629 * unaligned slots once we found an aligned one. For allocations of 630 * PAGE_SIZE or larger only look for page aligned allocations. 631 */ 632 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 633 if (alloc_size >= PAGE_SIZE) 634 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); 635 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); 636 637 spin_lock_irqsave(&area->lock, flags); 638 if (unlikely(nslots > mem->area_nslabs - area->used)) 639 goto not_found; 640 641 slot_base = area_index * mem->area_nslabs; 642 index = wrap = wrap_area_index(mem, ALIGN(area->index, stride)); 643 644 do { 645 slot_index = slot_base + index; 646 647 if (orig_addr && 648 (slot_addr(tbl_dma_addr, slot_index) & 649 iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { 650 index = wrap_area_index(mem, index + 1); 651 continue; 652 } 653 654 /* 655 * If we find a slot that indicates we have 'nslots' number of 656 * contiguous buffers, we allocate the buffers from that slot 657 * and mark the entries as '0' indicating unavailable. 658 */ 659 if (!iommu_is_span_boundary(slot_index, nslots, 660 nr_slots(tbl_dma_addr), 661 max_slots)) { 662 if (mem->slots[slot_index].list >= nslots) 663 goto found; 664 } 665 index = wrap_area_index(mem, index + stride); 666 } while (index != wrap); 667 668 not_found: 669 spin_unlock_irqrestore(&area->lock, flags); 670 return -1; 671 672 found: 673 for (i = slot_index; i < slot_index + nslots; i++) { 674 mem->slots[i].list = 0; 675 mem->slots[i].alloc_size = alloc_size - (offset + 676 ((i - slot_index) << IO_TLB_SHIFT)); 677 } 678 for (i = slot_index - 1; 679 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 680 mem->slots[i].list; i--) 681 mem->slots[i].list = ++count; 682 683 /* 684 * Update the indices to avoid searching in the next round. 685 */ 686 if (index + nslots < mem->area_nslabs) 687 area->index = index + nslots; 688 else 689 area->index = 0; 690 area->used += nslots; 691 spin_unlock_irqrestore(&area->lock, flags); 692 return slot_index; 693 } 694 695 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 696 size_t alloc_size, unsigned int alloc_align_mask) 697 { 698 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 699 int start = raw_smp_processor_id() & (mem->nareas - 1); 700 int i = start, index; 701 702 do { 703 index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size, 704 alloc_align_mask); 705 if (index >= 0) 706 return index; 707 if (++i >= mem->nareas) 708 i = 0; 709 } while (i != start); 710 711 return -1; 712 } 713 714 static unsigned long mem_used(struct io_tlb_mem *mem) 715 { 716 int i; 717 unsigned long used = 0; 718 719 for (i = 0; i < mem->nareas; i++) 720 used += mem->areas[i].used; 721 return used; 722 } 723 724 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 725 size_t mapping_size, size_t alloc_size, 726 unsigned int alloc_align_mask, enum dma_data_direction dir, 727 unsigned long attrs) 728 { 729 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 730 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 731 unsigned int i; 732 int index; 733 phys_addr_t tlb_addr; 734 735 if (!mem || !mem->nslabs) 736 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 737 738 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 739 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 740 741 if (mapping_size > alloc_size) { 742 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 743 mapping_size, alloc_size); 744 return (phys_addr_t)DMA_MAPPING_ERROR; 745 } 746 747 index = swiotlb_find_slots(dev, orig_addr, 748 alloc_size + offset, alloc_align_mask); 749 if (index == -1) { 750 if (!(attrs & DMA_ATTR_NO_WARN)) 751 dev_warn_ratelimited(dev, 752 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 753 alloc_size, mem->nslabs, mem_used(mem)); 754 return (phys_addr_t)DMA_MAPPING_ERROR; 755 } 756 757 /* 758 * Save away the mapping from the original address to the DMA address. 759 * This is needed when we sync the memory. Then we sync the buffer if 760 * needed. 761 */ 762 for (i = 0; i < nr_slots(alloc_size + offset); i++) 763 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); 764 tlb_addr = slot_addr(mem->start, index) + offset; 765 /* 766 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 767 * to the tlb buffer, if we knew for sure the device will 768 * overwirte the entire current content. But we don't. Thus 769 * unconditional bounce may prevent leaking swiotlb content (i.e. 770 * kernel memory) to user-space. 771 */ 772 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 773 return tlb_addr; 774 } 775 776 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 777 { 778 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 779 unsigned long flags; 780 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 781 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 782 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 783 int aindex = index / mem->area_nslabs; 784 struct io_tlb_area *area = &mem->areas[aindex]; 785 int count, i; 786 787 /* 788 * Return the buffer to the free list by setting the corresponding 789 * entries to indicate the number of contiguous entries available. 790 * While returning the entries to the free list, we merge the entries 791 * with slots below and above the pool being returned. 792 */ 793 BUG_ON(aindex >= mem->nareas); 794 795 spin_lock_irqsave(&area->lock, flags); 796 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 797 count = mem->slots[index + nslots].list; 798 else 799 count = 0; 800 801 /* 802 * Step 1: return the slots to the free list, merging the slots with 803 * superceeding slots 804 */ 805 for (i = index + nslots - 1; i >= index; i--) { 806 mem->slots[i].list = ++count; 807 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 808 mem->slots[i].alloc_size = 0; 809 } 810 811 /* 812 * Step 2: merge the returned slots with the preceding slots, if 813 * available (non zero) 814 */ 815 for (i = index - 1; 816 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 817 i--) 818 mem->slots[i].list = ++count; 819 area->used -= nslots; 820 spin_unlock_irqrestore(&area->lock, flags); 821 } 822 823 /* 824 * tlb_addr is the physical address of the bounce buffer to unmap. 825 */ 826 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 827 size_t mapping_size, enum dma_data_direction dir, 828 unsigned long attrs) 829 { 830 /* 831 * First, sync the memory before unmapping the entry 832 */ 833 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 834 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 835 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 836 837 swiotlb_release_slots(dev, tlb_addr); 838 } 839 840 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 841 size_t size, enum dma_data_direction dir) 842 { 843 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 844 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 845 else 846 BUG_ON(dir != DMA_FROM_DEVICE); 847 } 848 849 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 850 size_t size, enum dma_data_direction dir) 851 { 852 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 853 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 854 else 855 BUG_ON(dir != DMA_TO_DEVICE); 856 } 857 858 /* 859 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 860 * to the device copy the data into it as well. 861 */ 862 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 863 enum dma_data_direction dir, unsigned long attrs) 864 { 865 phys_addr_t swiotlb_addr; 866 dma_addr_t dma_addr; 867 868 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 869 870 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 871 attrs); 872 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 873 return DMA_MAPPING_ERROR; 874 875 /* Ensure that the address returned is DMA'ble */ 876 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 877 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 878 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 879 attrs | DMA_ATTR_SKIP_CPU_SYNC); 880 dev_WARN_ONCE(dev, 1, 881 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 882 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 883 return DMA_MAPPING_ERROR; 884 } 885 886 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 887 arch_sync_dma_for_device(swiotlb_addr, size, dir); 888 return dma_addr; 889 } 890 891 size_t swiotlb_max_mapping_size(struct device *dev) 892 { 893 int min_align_mask = dma_get_min_align_mask(dev); 894 int min_align = 0; 895 896 /* 897 * swiotlb_find_slots() skips slots according to 898 * min align mask. This affects max mapping size. 899 * Take it into acount here. 900 */ 901 if (min_align_mask) 902 min_align = roundup(min_align_mask, IO_TLB_SIZE); 903 904 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 905 } 906 907 bool is_swiotlb_active(struct device *dev) 908 { 909 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 910 911 return mem && mem->nslabs; 912 } 913 EXPORT_SYMBOL_GPL(is_swiotlb_active); 914 915 static int io_tlb_used_get(void *data, u64 *val) 916 { 917 *val = mem_used(&io_tlb_default_mem); 918 return 0; 919 } 920 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 921 922 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 923 const char *dirname) 924 { 925 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 926 if (!mem->nslabs) 927 return; 928 929 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 930 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL, 931 &fops_io_tlb_used); 932 } 933 934 static int __init __maybe_unused swiotlb_create_default_debugfs(void) 935 { 936 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 937 return 0; 938 } 939 940 #ifdef CONFIG_DEBUG_FS 941 late_initcall(swiotlb_create_default_debugfs); 942 #endif 943 944 #ifdef CONFIG_DMA_RESTRICTED_POOL 945 946 struct page *swiotlb_alloc(struct device *dev, size_t size) 947 { 948 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 949 phys_addr_t tlb_addr; 950 int index; 951 952 if (!mem) 953 return NULL; 954 955 index = swiotlb_find_slots(dev, 0, size, 0); 956 if (index == -1) 957 return NULL; 958 959 tlb_addr = slot_addr(mem->start, index); 960 961 return pfn_to_page(PFN_DOWN(tlb_addr)); 962 } 963 964 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 965 { 966 phys_addr_t tlb_addr = page_to_phys(page); 967 968 if (!is_swiotlb_buffer(dev, tlb_addr)) 969 return false; 970 971 swiotlb_release_slots(dev, tlb_addr); 972 973 return true; 974 } 975 976 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 977 struct device *dev) 978 { 979 struct io_tlb_mem *mem = rmem->priv; 980 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 981 982 /* Set Per-device io tlb area to one */ 983 unsigned int nareas = 1; 984 985 /* 986 * Since multiple devices can share the same pool, the private data, 987 * io_tlb_mem struct, will be initialized by the first device attached 988 * to it. 989 */ 990 if (!mem) { 991 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 992 if (!mem) 993 return -ENOMEM; 994 995 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL); 996 if (!mem->slots) { 997 kfree(mem); 998 return -ENOMEM; 999 } 1000 1001 mem->areas = kcalloc(nareas, sizeof(*mem->areas), 1002 GFP_KERNEL); 1003 if (!mem->areas) { 1004 kfree(mem->slots); 1005 kfree(mem); 1006 return -ENOMEM; 1007 } 1008 1009 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1010 rmem->size >> PAGE_SHIFT); 1011 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE, 1012 false, nareas); 1013 mem->for_alloc = true; 1014 1015 rmem->priv = mem; 1016 1017 swiotlb_create_debugfs_files(mem, rmem->name); 1018 } 1019 1020 dev->dma_io_tlb_mem = mem; 1021 1022 return 0; 1023 } 1024 1025 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1026 struct device *dev) 1027 { 1028 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1029 } 1030 1031 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1032 .device_init = rmem_swiotlb_device_init, 1033 .device_release = rmem_swiotlb_device_release, 1034 }; 1035 1036 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1037 { 1038 unsigned long node = rmem->fdt_node; 1039 1040 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1041 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1042 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1043 of_get_flat_dt_prop(node, "no-map", NULL)) 1044 return -EINVAL; 1045 1046 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1047 pr_err("Restricted DMA pool must be accessible within the linear mapping."); 1048 return -EINVAL; 1049 } 1050 1051 rmem->ops = &rmem_swiotlb_ops; 1052 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1053 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1054 return 0; 1055 } 1056 1057 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1058 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1059