xref: /openbmc/linux/kernel/dma/swiotlb.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53 
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62 
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64 
65 struct io_tlb_slot {
66 	phys_addr_t orig_addr;
67 	size_t alloc_size;
68 	unsigned int list;
69 };
70 
71 static bool swiotlb_force_bounce;
72 static bool swiotlb_force_disable;
73 
74 struct io_tlb_mem io_tlb_default_mem;
75 
76 phys_addr_t swiotlb_unencrypted_base;
77 
78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
79 static unsigned long default_nareas;
80 
81 /**
82  * struct io_tlb_area - IO TLB memory area descriptor
83  *
84  * This is a single area with a single lock.
85  *
86  * @used:	The number of used IO TLB block.
87  * @index:	The slot index to start searching in this area for next round.
88  * @lock:	The lock to protect the above data structures in the map and
89  *		unmap calls.
90  */
91 struct io_tlb_area {
92 	unsigned long used;
93 	unsigned int index;
94 	spinlock_t lock;
95 };
96 
97 /*
98  * Round up number of slabs to the next power of 2. The last area is going
99  * be smaller than the rest if default_nslabs is not power of two.
100  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
101  * otherwise a segment may span two or more areas. It conflicts with free
102  * contiguous slots tracking: free slots are treated contiguous no matter
103  * whether they cross an area boundary.
104  *
105  * Return true if default_nslabs is rounded up.
106  */
107 static bool round_up_default_nslabs(void)
108 {
109 	if (!default_nareas)
110 		return false;
111 
112 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
113 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
114 	else if (is_power_of_2(default_nslabs))
115 		return false;
116 	default_nslabs = roundup_pow_of_two(default_nslabs);
117 	return true;
118 }
119 
120 static void swiotlb_adjust_nareas(unsigned int nareas)
121 {
122 	/* use a single area when non is specified */
123 	if (!nareas)
124 		nareas = 1;
125 	else if (!is_power_of_2(nareas))
126 		nareas = roundup_pow_of_two(nareas);
127 
128 	default_nareas = nareas;
129 
130 	pr_info("area num %d.\n", nareas);
131 	if (round_up_default_nslabs())
132 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
133 			(default_nslabs << IO_TLB_SHIFT) >> 20);
134 }
135 
136 static int __init
137 setup_io_tlb_npages(char *str)
138 {
139 	if (isdigit(*str)) {
140 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
141 		default_nslabs =
142 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
143 	}
144 	if (*str == ',')
145 		++str;
146 	if (isdigit(*str))
147 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
148 	if (*str == ',')
149 		++str;
150 	if (!strcmp(str, "force"))
151 		swiotlb_force_bounce = true;
152 	else if (!strcmp(str, "noforce"))
153 		swiotlb_force_disable = true;
154 
155 	return 0;
156 }
157 early_param("swiotlb", setup_io_tlb_npages);
158 
159 unsigned int swiotlb_max_segment(void)
160 {
161 	if (!io_tlb_default_mem.nslabs)
162 		return 0;
163 	return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE);
164 }
165 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
166 
167 unsigned long swiotlb_size_or_default(void)
168 {
169 	return default_nslabs << IO_TLB_SHIFT;
170 }
171 
172 void __init swiotlb_adjust_size(unsigned long size)
173 {
174 	/*
175 	 * If swiotlb parameter has not been specified, give a chance to
176 	 * architectures such as those supporting memory encryption to
177 	 * adjust/expand SWIOTLB size for their use.
178 	 */
179 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
180 		return;
181 
182 	size = ALIGN(size, IO_TLB_SIZE);
183 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
184 	if (round_up_default_nslabs())
185 		size = default_nslabs << IO_TLB_SHIFT;
186 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
187 }
188 
189 void swiotlb_print_info(void)
190 {
191 	struct io_tlb_mem *mem = &io_tlb_default_mem;
192 
193 	if (!mem->nslabs) {
194 		pr_warn("No low mem\n");
195 		return;
196 	}
197 
198 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
199 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
200 }
201 
202 static inline unsigned long io_tlb_offset(unsigned long val)
203 {
204 	return val & (IO_TLB_SEGSIZE - 1);
205 }
206 
207 static inline unsigned long nr_slots(u64 val)
208 {
209 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
210 }
211 
212 /*
213  * Remap swioltb memory in the unencrypted physical address space
214  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
215  * Isolation VMs).
216  */
217 #ifdef CONFIG_HAS_IOMEM
218 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
219 {
220 	void *vaddr = NULL;
221 
222 	if (swiotlb_unencrypted_base) {
223 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
224 
225 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
226 		if (!vaddr)
227 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
228 			       &paddr, bytes);
229 	}
230 
231 	return vaddr;
232 }
233 #else
234 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
235 {
236 	return NULL;
237 }
238 #endif
239 
240 /*
241  * Early SWIOTLB allocation may be too early to allow an architecture to
242  * perform the desired operations.  This function allows the architecture to
243  * call SWIOTLB when the operations are possible.  It needs to be called
244  * before the SWIOTLB memory is used.
245  */
246 void __init swiotlb_update_mem_attributes(void)
247 {
248 	struct io_tlb_mem *mem = &io_tlb_default_mem;
249 	void *vaddr;
250 	unsigned long bytes;
251 
252 	if (!mem->nslabs || mem->late_alloc)
253 		return;
254 	vaddr = phys_to_virt(mem->start);
255 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
256 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
257 
258 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
259 	if (!mem->vaddr)
260 		mem->vaddr = vaddr;
261 }
262 
263 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
264 		unsigned long nslabs, unsigned int flags,
265 		bool late_alloc, unsigned int nareas)
266 {
267 	void *vaddr = phys_to_virt(start);
268 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
269 
270 	mem->nslabs = nslabs;
271 	mem->start = start;
272 	mem->end = mem->start + bytes;
273 	mem->late_alloc = late_alloc;
274 	mem->nareas = nareas;
275 	mem->area_nslabs = nslabs / mem->nareas;
276 
277 	mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
278 
279 	for (i = 0; i < mem->nareas; i++) {
280 		spin_lock_init(&mem->areas[i].lock);
281 		mem->areas[i].index = 0;
282 		mem->areas[i].used = 0;
283 	}
284 
285 	for (i = 0; i < mem->nslabs; i++) {
286 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
287 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
288 		mem->slots[i].alloc_size = 0;
289 	}
290 
291 	/*
292 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
293 	 * be remapped and cleared in swiotlb_update_mem_attributes.
294 	 */
295 	if (swiotlb_unencrypted_base)
296 		return;
297 
298 	memset(vaddr, 0, bytes);
299 	mem->vaddr = vaddr;
300 	return;
301 }
302 
303 static void *swiotlb_memblock_alloc(unsigned long nslabs, unsigned int flags,
304 		int (*remap)(void *tlb, unsigned long nslabs))
305 {
306 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
307 	void *tlb;
308 
309 	/*
310 	 * By default allocate the bounce buffer memory from low memory, but
311 	 * allow to pick a location everywhere for hypervisors with guest
312 	 * memory encryption.
313 	 */
314 	if (flags & SWIOTLB_ANY)
315 		tlb = memblock_alloc(bytes, PAGE_SIZE);
316 	else
317 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
318 
319 	if (!tlb) {
320 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
321 			__func__, bytes);
322 		return NULL;
323 	}
324 
325 	if (remap && remap(tlb, nslabs) < 0) {
326 		memblock_free(tlb, PAGE_ALIGN(bytes));
327 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
328 		return NULL;
329 	}
330 
331 	return tlb;
332 }
333 
334 /*
335  * Statically reserve bounce buffer space and initialize bounce buffer data
336  * structures for the software IO TLB used to implement the DMA API.
337  */
338 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
339 		int (*remap)(void *tlb, unsigned long nslabs))
340 {
341 	struct io_tlb_mem *mem = &io_tlb_default_mem;
342 	unsigned long nslabs;
343 	size_t alloc_size;
344 	void *tlb;
345 
346 	if (!addressing_limit && !swiotlb_force_bounce)
347 		return;
348 	if (swiotlb_force_disable)
349 		return;
350 
351 	/*
352 	 * default_nslabs maybe changed when adjust area number.
353 	 * So allocate bounce buffer after adjusting area number.
354 	 */
355 	if (!default_nareas)
356 		swiotlb_adjust_nareas(num_possible_cpus());
357 
358 	nslabs = default_nslabs;
359 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
360 		if (nslabs <= IO_TLB_MIN_SLABS)
361 			return;
362 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
363 	}
364 
365 	if (default_nslabs != nslabs) {
366 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
367 			default_nslabs, nslabs);
368 		default_nslabs = nslabs;
369 	}
370 
371 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
372 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
373 	if (!mem->slots) {
374 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
375 			__func__, alloc_size, PAGE_SIZE);
376 		return;
377 	}
378 
379 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
380 		default_nareas), SMP_CACHE_BYTES);
381 	if (!mem->areas) {
382 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
383 		return;
384 	}
385 
386 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false,
387 				default_nareas);
388 
389 	if (flags & SWIOTLB_VERBOSE)
390 		swiotlb_print_info();
391 }
392 
393 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
394 {
395 	swiotlb_init_remap(addressing_limit, flags, NULL);
396 }
397 
398 /*
399  * Systems with larger DMA zones (those that don't support ISA) can
400  * initialize the swiotlb later using the slab allocator if needed.
401  * This should be just like above, but with some error catching.
402  */
403 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
404 		int (*remap)(void *tlb, unsigned long nslabs))
405 {
406 	struct io_tlb_mem *mem = &io_tlb_default_mem;
407 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
408 	unsigned char *vstart = NULL;
409 	unsigned int order, area_order;
410 	bool retried = false;
411 	int rc = 0;
412 
413 	if (swiotlb_force_disable)
414 		return 0;
415 
416 retry:
417 	order = get_order(nslabs << IO_TLB_SHIFT);
418 	nslabs = SLABS_PER_PAGE << order;
419 
420 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
421 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
422 						  order);
423 		if (vstart)
424 			break;
425 		order--;
426 		nslabs = SLABS_PER_PAGE << order;
427 		retried = true;
428 	}
429 
430 	if (!vstart)
431 		return -ENOMEM;
432 
433 	if (remap)
434 		rc = remap(vstart, nslabs);
435 	if (rc) {
436 		free_pages((unsigned long)vstart, order);
437 
438 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
439 		if (nslabs < IO_TLB_MIN_SLABS)
440 			return rc;
441 		retried = true;
442 		goto retry;
443 	}
444 
445 	if (retried) {
446 		pr_warn("only able to allocate %ld MB\n",
447 			(PAGE_SIZE << order) >> 20);
448 	}
449 
450 	if (!default_nareas)
451 		swiotlb_adjust_nareas(num_possible_cpus());
452 
453 	area_order = get_order(array_size(sizeof(*mem->areas),
454 		default_nareas));
455 	mem->areas = (struct io_tlb_area *)
456 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
457 	if (!mem->areas)
458 		goto error_area;
459 
460 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
461 		get_order(array_size(sizeof(*mem->slots), nslabs)));
462 	if (!mem->slots)
463 		goto error_slots;
464 
465 	set_memory_decrypted((unsigned long)vstart,
466 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
467 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true,
468 				default_nareas);
469 
470 	swiotlb_print_info();
471 	return 0;
472 
473 error_slots:
474 	free_pages((unsigned long)mem->areas, area_order);
475 error_area:
476 	free_pages((unsigned long)vstart, order);
477 	return -ENOMEM;
478 }
479 
480 void __init swiotlb_exit(void)
481 {
482 	struct io_tlb_mem *mem = &io_tlb_default_mem;
483 	unsigned long tbl_vaddr;
484 	size_t tbl_size, slots_size;
485 	unsigned int area_order;
486 
487 	if (swiotlb_force_bounce)
488 		return;
489 
490 	if (!mem->nslabs)
491 		return;
492 
493 	pr_info("tearing down default memory pool\n");
494 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
495 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
496 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
497 
498 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
499 	if (mem->late_alloc) {
500 		area_order = get_order(array_size(sizeof(*mem->areas),
501 			mem->nareas));
502 		free_pages((unsigned long)mem->areas, area_order);
503 		free_pages(tbl_vaddr, get_order(tbl_size));
504 		free_pages((unsigned long)mem->slots, get_order(slots_size));
505 	} else {
506 		memblock_free_late(__pa(mem->areas),
507 			array_size(sizeof(*mem->areas), mem->nareas));
508 		memblock_free_late(mem->start, tbl_size);
509 		memblock_free_late(__pa(mem->slots), slots_size);
510 	}
511 
512 	memset(mem, 0, sizeof(*mem));
513 }
514 
515 /*
516  * Return the offset into a iotlb slot required to keep the device happy.
517  */
518 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
519 {
520 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
521 }
522 
523 /*
524  * Bounce: copy the swiotlb buffer from or back to the original dma location
525  */
526 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
527 			   enum dma_data_direction dir)
528 {
529 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
530 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
531 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
532 	size_t alloc_size = mem->slots[index].alloc_size;
533 	unsigned long pfn = PFN_DOWN(orig_addr);
534 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
535 	unsigned int tlb_offset, orig_addr_offset;
536 
537 	if (orig_addr == INVALID_PHYS_ADDR)
538 		return;
539 
540 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
541 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
542 	if (tlb_offset < orig_addr_offset) {
543 		dev_WARN_ONCE(dev, 1,
544 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
545 			orig_addr_offset, tlb_offset);
546 		return;
547 	}
548 
549 	tlb_offset -= orig_addr_offset;
550 	if (tlb_offset > alloc_size) {
551 		dev_WARN_ONCE(dev, 1,
552 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
553 			alloc_size, size, tlb_offset);
554 		return;
555 	}
556 
557 	orig_addr += tlb_offset;
558 	alloc_size -= tlb_offset;
559 
560 	if (size > alloc_size) {
561 		dev_WARN_ONCE(dev, 1,
562 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
563 			alloc_size, size);
564 		size = alloc_size;
565 	}
566 
567 	if (PageHighMem(pfn_to_page(pfn))) {
568 		unsigned int offset = orig_addr & ~PAGE_MASK;
569 		struct page *page;
570 		unsigned int sz = 0;
571 		unsigned long flags;
572 
573 		while (size) {
574 			sz = min_t(size_t, PAGE_SIZE - offset, size);
575 
576 			local_irq_save(flags);
577 			page = pfn_to_page(pfn);
578 			if (dir == DMA_TO_DEVICE)
579 				memcpy_from_page(vaddr, page, offset, sz);
580 			else
581 				memcpy_to_page(page, offset, vaddr, sz);
582 			local_irq_restore(flags);
583 
584 			size -= sz;
585 			pfn++;
586 			vaddr += sz;
587 			offset = 0;
588 		}
589 	} else if (dir == DMA_TO_DEVICE) {
590 		memcpy(vaddr, phys_to_virt(orig_addr), size);
591 	} else {
592 		memcpy(phys_to_virt(orig_addr), vaddr, size);
593 	}
594 }
595 
596 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
597 {
598 	return start + (idx << IO_TLB_SHIFT);
599 }
600 
601 /*
602  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
603  */
604 static inline unsigned long get_max_slots(unsigned long boundary_mask)
605 {
606 	if (boundary_mask == ~0UL)
607 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
608 	return nr_slots(boundary_mask + 1);
609 }
610 
611 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index)
612 {
613 	if (index >= mem->area_nslabs)
614 		return 0;
615 	return index;
616 }
617 
618 /*
619  * Find a suitable number of IO TLB entries size that will fit this request and
620  * allocate a buffer from that IO TLB pool.
621  */
622 static int swiotlb_do_find_slots(struct device *dev, int area_index,
623 		phys_addr_t orig_addr, size_t alloc_size,
624 		unsigned int alloc_align_mask)
625 {
626 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
627 	struct io_tlb_area *area = mem->areas + area_index;
628 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
629 	dma_addr_t tbl_dma_addr =
630 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
631 	unsigned long max_slots = get_max_slots(boundary_mask);
632 	unsigned int iotlb_align_mask =
633 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
634 	unsigned int nslots = nr_slots(alloc_size), stride;
635 	unsigned int index, wrap, count = 0, i;
636 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
637 	unsigned long flags;
638 	unsigned int slot_base;
639 	unsigned int slot_index;
640 
641 	BUG_ON(!nslots);
642 	BUG_ON(area_index >= mem->nareas);
643 
644 	/*
645 	 * For mappings with an alignment requirement don't bother looping to
646 	 * unaligned slots once we found an aligned one.  For allocations of
647 	 * PAGE_SIZE or larger only look for page aligned allocations.
648 	 */
649 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
650 	if (alloc_size >= PAGE_SIZE)
651 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
652 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
653 
654 	spin_lock_irqsave(&area->lock, flags);
655 	if (unlikely(nslots > mem->area_nslabs - area->used))
656 		goto not_found;
657 
658 	slot_base = area_index * mem->area_nslabs;
659 	index = wrap = wrap_area_index(mem, ALIGN(area->index, stride));
660 
661 	do {
662 		slot_index = slot_base + index;
663 
664 		if (orig_addr &&
665 		    (slot_addr(tbl_dma_addr, slot_index) &
666 		     iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
667 			index = wrap_area_index(mem, index + 1);
668 			continue;
669 		}
670 
671 		/*
672 		 * If we find a slot that indicates we have 'nslots' number of
673 		 * contiguous buffers, we allocate the buffers from that slot
674 		 * and mark the entries as '0' indicating unavailable.
675 		 */
676 		if (!iommu_is_span_boundary(slot_index, nslots,
677 					    nr_slots(tbl_dma_addr),
678 					    max_slots)) {
679 			if (mem->slots[slot_index].list >= nslots)
680 				goto found;
681 		}
682 		index = wrap_area_index(mem, index + stride);
683 	} while (index != wrap);
684 
685 not_found:
686 	spin_unlock_irqrestore(&area->lock, flags);
687 	return -1;
688 
689 found:
690 	for (i = slot_index; i < slot_index + nslots; i++) {
691 		mem->slots[i].list = 0;
692 		mem->slots[i].alloc_size = alloc_size - (offset +
693 				((i - slot_index) << IO_TLB_SHIFT));
694 	}
695 	for (i = slot_index - 1;
696 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
697 	     mem->slots[i].list; i--)
698 		mem->slots[i].list = ++count;
699 
700 	/*
701 	 * Update the indices to avoid searching in the next round.
702 	 */
703 	if (index + nslots < mem->area_nslabs)
704 		area->index = index + nslots;
705 	else
706 		area->index = 0;
707 	area->used += nslots;
708 	spin_unlock_irqrestore(&area->lock, flags);
709 	return slot_index;
710 }
711 
712 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
713 		size_t alloc_size, unsigned int alloc_align_mask)
714 {
715 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
716 	int start = raw_smp_processor_id() & (mem->nareas - 1);
717 	int i = start, index;
718 
719 	do {
720 		index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size,
721 					      alloc_align_mask);
722 		if (index >= 0)
723 			return index;
724 		if (++i >= mem->nareas)
725 			i = 0;
726 	} while (i != start);
727 
728 	return -1;
729 }
730 
731 static unsigned long mem_used(struct io_tlb_mem *mem)
732 {
733 	int i;
734 	unsigned long used = 0;
735 
736 	for (i = 0; i < mem->nareas; i++)
737 		used += mem->areas[i].used;
738 	return used;
739 }
740 
741 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
742 		size_t mapping_size, size_t alloc_size,
743 		unsigned int alloc_align_mask, enum dma_data_direction dir,
744 		unsigned long attrs)
745 {
746 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
747 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
748 	unsigned int i;
749 	int index;
750 	phys_addr_t tlb_addr;
751 
752 	if (!mem || !mem->nslabs) {
753 		dev_warn_ratelimited(dev,
754 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
755 		return (phys_addr_t)DMA_MAPPING_ERROR;
756 	}
757 
758 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
759 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
760 
761 	if (mapping_size > alloc_size) {
762 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
763 			      mapping_size, alloc_size);
764 		return (phys_addr_t)DMA_MAPPING_ERROR;
765 	}
766 
767 	index = swiotlb_find_slots(dev, orig_addr,
768 				   alloc_size + offset, alloc_align_mask);
769 	if (index == -1) {
770 		if (!(attrs & DMA_ATTR_NO_WARN))
771 			dev_warn_ratelimited(dev,
772 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
773 				 alloc_size, mem->nslabs, mem_used(mem));
774 		return (phys_addr_t)DMA_MAPPING_ERROR;
775 	}
776 
777 	/*
778 	 * Save away the mapping from the original address to the DMA address.
779 	 * This is needed when we sync the memory.  Then we sync the buffer if
780 	 * needed.
781 	 */
782 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
783 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
784 	tlb_addr = slot_addr(mem->start, index) + offset;
785 	/*
786 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
787 	 * to the tlb buffer, if we knew for sure the device will
788 	 * overwrite the entire current content. But we don't. Thus
789 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
790 	 * kernel memory) to user-space.
791 	 */
792 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
793 	return tlb_addr;
794 }
795 
796 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
797 {
798 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
799 	unsigned long flags;
800 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
801 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
802 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
803 	int aindex = index / mem->area_nslabs;
804 	struct io_tlb_area *area = &mem->areas[aindex];
805 	int count, i;
806 
807 	/*
808 	 * Return the buffer to the free list by setting the corresponding
809 	 * entries to indicate the number of contiguous entries available.
810 	 * While returning the entries to the free list, we merge the entries
811 	 * with slots below and above the pool being returned.
812 	 */
813 	BUG_ON(aindex >= mem->nareas);
814 
815 	spin_lock_irqsave(&area->lock, flags);
816 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
817 		count = mem->slots[index + nslots].list;
818 	else
819 		count = 0;
820 
821 	/*
822 	 * Step 1: return the slots to the free list, merging the slots with
823 	 * superceeding slots
824 	 */
825 	for (i = index + nslots - 1; i >= index; i--) {
826 		mem->slots[i].list = ++count;
827 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
828 		mem->slots[i].alloc_size = 0;
829 	}
830 
831 	/*
832 	 * Step 2: merge the returned slots with the preceding slots, if
833 	 * available (non zero)
834 	 */
835 	for (i = index - 1;
836 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
837 	     i--)
838 		mem->slots[i].list = ++count;
839 	area->used -= nslots;
840 	spin_unlock_irqrestore(&area->lock, flags);
841 }
842 
843 /*
844  * tlb_addr is the physical address of the bounce buffer to unmap.
845  */
846 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
847 			      size_t mapping_size, enum dma_data_direction dir,
848 			      unsigned long attrs)
849 {
850 	/*
851 	 * First, sync the memory before unmapping the entry
852 	 */
853 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
854 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
855 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
856 
857 	swiotlb_release_slots(dev, tlb_addr);
858 }
859 
860 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
861 		size_t size, enum dma_data_direction dir)
862 {
863 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
864 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
865 	else
866 		BUG_ON(dir != DMA_FROM_DEVICE);
867 }
868 
869 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
870 		size_t size, enum dma_data_direction dir)
871 {
872 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
873 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
874 	else
875 		BUG_ON(dir != DMA_TO_DEVICE);
876 }
877 
878 /*
879  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
880  * to the device copy the data into it as well.
881  */
882 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
883 		enum dma_data_direction dir, unsigned long attrs)
884 {
885 	phys_addr_t swiotlb_addr;
886 	dma_addr_t dma_addr;
887 
888 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
889 
890 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
891 			attrs);
892 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
893 		return DMA_MAPPING_ERROR;
894 
895 	/* Ensure that the address returned is DMA'ble */
896 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
897 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
898 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
899 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
900 		dev_WARN_ONCE(dev, 1,
901 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
902 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
903 		return DMA_MAPPING_ERROR;
904 	}
905 
906 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
907 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
908 	return dma_addr;
909 }
910 
911 size_t swiotlb_max_mapping_size(struct device *dev)
912 {
913 	int min_align_mask = dma_get_min_align_mask(dev);
914 	int min_align = 0;
915 
916 	/*
917 	 * swiotlb_find_slots() skips slots according to
918 	 * min align mask. This affects max mapping size.
919 	 * Take it into acount here.
920 	 */
921 	if (min_align_mask)
922 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
923 
924 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
925 }
926 
927 bool is_swiotlb_active(struct device *dev)
928 {
929 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
930 
931 	return mem && mem->nslabs;
932 }
933 EXPORT_SYMBOL_GPL(is_swiotlb_active);
934 
935 static int io_tlb_used_get(void *data, u64 *val)
936 {
937 	*val = mem_used(&io_tlb_default_mem);
938 	return 0;
939 }
940 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
941 
942 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
943 					 const char *dirname)
944 {
945 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
946 	if (!mem->nslabs)
947 		return;
948 
949 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
950 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL,
951 			&fops_io_tlb_used);
952 }
953 
954 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
955 {
956 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
957 	return 0;
958 }
959 
960 #ifdef CONFIG_DEBUG_FS
961 late_initcall(swiotlb_create_default_debugfs);
962 #endif
963 
964 #ifdef CONFIG_DMA_RESTRICTED_POOL
965 
966 struct page *swiotlb_alloc(struct device *dev, size_t size)
967 {
968 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
969 	phys_addr_t tlb_addr;
970 	int index;
971 
972 	if (!mem)
973 		return NULL;
974 
975 	index = swiotlb_find_slots(dev, 0, size, 0);
976 	if (index == -1)
977 		return NULL;
978 
979 	tlb_addr = slot_addr(mem->start, index);
980 
981 	return pfn_to_page(PFN_DOWN(tlb_addr));
982 }
983 
984 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
985 {
986 	phys_addr_t tlb_addr = page_to_phys(page);
987 
988 	if (!is_swiotlb_buffer(dev, tlb_addr))
989 		return false;
990 
991 	swiotlb_release_slots(dev, tlb_addr);
992 
993 	return true;
994 }
995 
996 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
997 				    struct device *dev)
998 {
999 	struct io_tlb_mem *mem = rmem->priv;
1000 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
1001 
1002 	/* Set Per-device io tlb area to one */
1003 	unsigned int nareas = 1;
1004 
1005 	/*
1006 	 * Since multiple devices can share the same pool, the private data,
1007 	 * io_tlb_mem struct, will be initialized by the first device attached
1008 	 * to it.
1009 	 */
1010 	if (!mem) {
1011 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1012 		if (!mem)
1013 			return -ENOMEM;
1014 
1015 		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
1016 		if (!mem->slots) {
1017 			kfree(mem);
1018 			return -ENOMEM;
1019 		}
1020 
1021 		mem->areas = kcalloc(nareas, sizeof(*mem->areas),
1022 				GFP_KERNEL);
1023 		if (!mem->areas) {
1024 			kfree(mem->slots);
1025 			kfree(mem);
1026 			return -ENOMEM;
1027 		}
1028 
1029 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1030 				     rmem->size >> PAGE_SHIFT);
1031 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
1032 					false, nareas);
1033 		mem->for_alloc = true;
1034 
1035 		rmem->priv = mem;
1036 
1037 		swiotlb_create_debugfs_files(mem, rmem->name);
1038 	}
1039 
1040 	dev->dma_io_tlb_mem = mem;
1041 
1042 	return 0;
1043 }
1044 
1045 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1046 					struct device *dev)
1047 {
1048 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1049 }
1050 
1051 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1052 	.device_init = rmem_swiotlb_device_init,
1053 	.device_release = rmem_swiotlb_device_release,
1054 };
1055 
1056 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1057 {
1058 	unsigned long node = rmem->fdt_node;
1059 
1060 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1061 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1062 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1063 	    of_get_flat_dt_prop(node, "no-map", NULL))
1064 		return -EINVAL;
1065 
1066 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1067 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
1068 		return -EINVAL;
1069 	}
1070 
1071 	rmem->ops = &rmem_swiotlb_ops;
1072 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1073 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1074 	return 0;
1075 }
1076 
1077 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1078 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1079