1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/rculist.h> 39 #include <linux/scatterlist.h> 40 #include <linux/set_memory.h> 41 #include <linux/spinlock.h> 42 #include <linux/string.h> 43 #include <linux/swiotlb.h> 44 #include <linux/types.h> 45 #ifdef CONFIG_DMA_RESTRICTED_POOL 46 #include <linux/of.h> 47 #include <linux/of_fdt.h> 48 #include <linux/of_reserved_mem.h> 49 #include <linux/slab.h> 50 #endif 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/swiotlb.h> 54 55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 56 57 /* 58 * Minimum IO TLB size to bother booting with. Systems with mainly 59 * 64bit capable cards will only lightly use the swiotlb. If we can't 60 * allocate a contiguous 1MB, we're probably in trouble anyway. 61 */ 62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 63 64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 65 66 /** 67 * struct io_tlb_slot - IO TLB slot descriptor 68 * @orig_addr: The original address corresponding to a mapped entry. 69 * @alloc_size: Size of the allocated buffer. 70 * @list: The free list describing the number of free entries available 71 * from each index. 72 */ 73 struct io_tlb_slot { 74 phys_addr_t orig_addr; 75 size_t alloc_size; 76 unsigned int list; 77 }; 78 79 static bool swiotlb_force_bounce; 80 static bool swiotlb_force_disable; 81 82 #ifdef CONFIG_SWIOTLB_DYNAMIC 83 84 static void swiotlb_dyn_alloc(struct work_struct *work); 85 86 static struct io_tlb_mem io_tlb_default_mem = { 87 .lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock), 88 .pools = LIST_HEAD_INIT(io_tlb_default_mem.pools), 89 .dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc, 90 swiotlb_dyn_alloc), 91 }; 92 93 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 94 95 static struct io_tlb_mem io_tlb_default_mem; 96 97 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 98 99 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 100 static unsigned long default_nareas; 101 102 /** 103 * struct io_tlb_area - IO TLB memory area descriptor 104 * 105 * This is a single area with a single lock. 106 * 107 * @used: The number of used IO TLB block. 108 * @index: The slot index to start searching in this area for next round. 109 * @lock: The lock to protect the above data structures in the map and 110 * unmap calls. 111 */ 112 struct io_tlb_area { 113 unsigned long used; 114 unsigned int index; 115 spinlock_t lock; 116 }; 117 118 /* 119 * Round up number of slabs to the next power of 2. The last area is going 120 * be smaller than the rest if default_nslabs is not power of two. 121 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 122 * otherwise a segment may span two or more areas. It conflicts with free 123 * contiguous slots tracking: free slots are treated contiguous no matter 124 * whether they cross an area boundary. 125 * 126 * Return true if default_nslabs is rounded up. 127 */ 128 static bool round_up_default_nslabs(void) 129 { 130 if (!default_nareas) 131 return false; 132 133 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 134 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 135 else if (is_power_of_2(default_nslabs)) 136 return false; 137 default_nslabs = roundup_pow_of_two(default_nslabs); 138 return true; 139 } 140 141 /** 142 * swiotlb_adjust_nareas() - adjust the number of areas and slots 143 * @nareas: Desired number of areas. Zero is treated as 1. 144 * 145 * Adjust the default number of areas in a memory pool. 146 * The default size of the memory pool may also change to meet minimum area 147 * size requirements. 148 */ 149 static void swiotlb_adjust_nareas(unsigned int nareas) 150 { 151 if (!nareas) 152 nareas = 1; 153 else if (!is_power_of_2(nareas)) 154 nareas = roundup_pow_of_two(nareas); 155 156 default_nareas = nareas; 157 158 pr_info("area num %d.\n", nareas); 159 if (round_up_default_nslabs()) 160 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 161 (default_nslabs << IO_TLB_SHIFT) >> 20); 162 } 163 164 /** 165 * limit_nareas() - get the maximum number of areas for a given memory pool size 166 * @nareas: Desired number of areas. 167 * @nslots: Total number of slots in the memory pool. 168 * 169 * Limit the number of areas to the maximum possible number of areas in 170 * a memory pool of the given size. 171 * 172 * Return: Maximum possible number of areas. 173 */ 174 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots) 175 { 176 if (nslots < nareas * IO_TLB_SEGSIZE) 177 return nslots / IO_TLB_SEGSIZE; 178 return nareas; 179 } 180 181 static int __init 182 setup_io_tlb_npages(char *str) 183 { 184 if (isdigit(*str)) { 185 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 186 default_nslabs = 187 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 188 } 189 if (*str == ',') 190 ++str; 191 if (isdigit(*str)) 192 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 193 if (*str == ',') 194 ++str; 195 if (!strcmp(str, "force")) 196 swiotlb_force_bounce = true; 197 else if (!strcmp(str, "noforce")) 198 swiotlb_force_disable = true; 199 200 return 0; 201 } 202 early_param("swiotlb", setup_io_tlb_npages); 203 204 unsigned long swiotlb_size_or_default(void) 205 { 206 return default_nslabs << IO_TLB_SHIFT; 207 } 208 209 void __init swiotlb_adjust_size(unsigned long size) 210 { 211 /* 212 * If swiotlb parameter has not been specified, give a chance to 213 * architectures such as those supporting memory encryption to 214 * adjust/expand SWIOTLB size for their use. 215 */ 216 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 217 return; 218 219 size = ALIGN(size, IO_TLB_SIZE); 220 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 221 if (round_up_default_nslabs()) 222 size = default_nslabs << IO_TLB_SHIFT; 223 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 224 } 225 226 void swiotlb_print_info(void) 227 { 228 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 229 230 if (!mem->nslabs) { 231 pr_warn("No low mem\n"); 232 return; 233 } 234 235 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 236 (mem->nslabs << IO_TLB_SHIFT) >> 20); 237 } 238 239 static inline unsigned long io_tlb_offset(unsigned long val) 240 { 241 return val & (IO_TLB_SEGSIZE - 1); 242 } 243 244 static inline unsigned long nr_slots(u64 val) 245 { 246 return DIV_ROUND_UP(val, IO_TLB_SIZE); 247 } 248 249 /* 250 * Early SWIOTLB allocation may be too early to allow an architecture to 251 * perform the desired operations. This function allows the architecture to 252 * call SWIOTLB when the operations are possible. It needs to be called 253 * before the SWIOTLB memory is used. 254 */ 255 void __init swiotlb_update_mem_attributes(void) 256 { 257 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 258 unsigned long bytes; 259 260 if (!mem->nslabs || mem->late_alloc) 261 return; 262 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 263 set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT); 264 } 265 266 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start, 267 unsigned long nslabs, bool late_alloc, unsigned int nareas) 268 { 269 void *vaddr = phys_to_virt(start); 270 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 271 272 mem->nslabs = nslabs; 273 mem->start = start; 274 mem->end = mem->start + bytes; 275 mem->late_alloc = late_alloc; 276 mem->nareas = nareas; 277 mem->area_nslabs = nslabs / mem->nareas; 278 279 for (i = 0; i < mem->nareas; i++) { 280 spin_lock_init(&mem->areas[i].lock); 281 mem->areas[i].index = 0; 282 mem->areas[i].used = 0; 283 } 284 285 for (i = 0; i < mem->nslabs; i++) { 286 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 287 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 288 mem->slots[i].alloc_size = 0; 289 } 290 291 memset(vaddr, 0, bytes); 292 mem->vaddr = vaddr; 293 return; 294 } 295 296 /** 297 * add_mem_pool() - add a memory pool to the allocator 298 * @mem: Software IO TLB allocator. 299 * @pool: Memory pool to be added. 300 */ 301 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool) 302 { 303 #ifdef CONFIG_SWIOTLB_DYNAMIC 304 spin_lock(&mem->lock); 305 list_add_rcu(&pool->node, &mem->pools); 306 mem->nslabs += pool->nslabs; 307 spin_unlock(&mem->lock); 308 #else 309 mem->nslabs = pool->nslabs; 310 #endif 311 } 312 313 static void __init *swiotlb_memblock_alloc(unsigned long nslabs, 314 unsigned int flags, 315 int (*remap)(void *tlb, unsigned long nslabs)) 316 { 317 size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 318 void *tlb; 319 320 /* 321 * By default allocate the bounce buffer memory from low memory, but 322 * allow to pick a location everywhere for hypervisors with guest 323 * memory encryption. 324 */ 325 if (flags & SWIOTLB_ANY) 326 tlb = memblock_alloc(bytes, PAGE_SIZE); 327 else 328 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 329 330 if (!tlb) { 331 pr_warn("%s: Failed to allocate %zu bytes tlb structure\n", 332 __func__, bytes); 333 return NULL; 334 } 335 336 if (remap && remap(tlb, nslabs) < 0) { 337 memblock_free(tlb, PAGE_ALIGN(bytes)); 338 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); 339 return NULL; 340 } 341 342 return tlb; 343 } 344 345 /* 346 * Statically reserve bounce buffer space and initialize bounce buffer data 347 * structures for the software IO TLB used to implement the DMA API. 348 */ 349 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 350 int (*remap)(void *tlb, unsigned long nslabs)) 351 { 352 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 353 unsigned long nslabs; 354 unsigned int nareas; 355 size_t alloc_size; 356 void *tlb; 357 358 if (!addressing_limit && !swiotlb_force_bounce) 359 return; 360 if (swiotlb_force_disable) 361 return; 362 363 io_tlb_default_mem.force_bounce = 364 swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 365 366 #ifdef CONFIG_SWIOTLB_DYNAMIC 367 if (!remap) 368 io_tlb_default_mem.can_grow = true; 369 if (flags & SWIOTLB_ANY) 370 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 371 else 372 io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT; 373 #endif 374 375 if (!default_nareas) 376 swiotlb_adjust_nareas(num_possible_cpus()); 377 378 nslabs = default_nslabs; 379 nareas = limit_nareas(default_nareas, nslabs); 380 while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) { 381 if (nslabs <= IO_TLB_MIN_SLABS) 382 return; 383 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 384 nareas = limit_nareas(nareas, nslabs); 385 } 386 387 if (default_nslabs != nslabs) { 388 pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs", 389 default_nslabs, nslabs); 390 default_nslabs = nslabs; 391 } 392 393 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 394 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 395 if (!mem->slots) { 396 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", 397 __func__, alloc_size, PAGE_SIZE); 398 return; 399 } 400 401 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 402 default_nareas), SMP_CACHE_BYTES); 403 if (!mem->areas) { 404 pr_warn("%s: Failed to allocate mem->areas.\n", __func__); 405 return; 406 } 407 408 swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, 409 default_nareas); 410 add_mem_pool(&io_tlb_default_mem, mem); 411 412 if (flags & SWIOTLB_VERBOSE) 413 swiotlb_print_info(); 414 } 415 416 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 417 { 418 swiotlb_init_remap(addressing_limit, flags, NULL); 419 } 420 421 /* 422 * Systems with larger DMA zones (those that don't support ISA) can 423 * initialize the swiotlb later using the slab allocator if needed. 424 * This should be just like above, but with some error catching. 425 */ 426 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 427 int (*remap)(void *tlb, unsigned long nslabs)) 428 { 429 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 430 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 431 unsigned int nareas; 432 unsigned char *vstart = NULL; 433 unsigned int order, area_order; 434 bool retried = false; 435 int rc = 0; 436 437 if (io_tlb_default_mem.nslabs) 438 return 0; 439 440 if (swiotlb_force_disable) 441 return 0; 442 443 io_tlb_default_mem.force_bounce = swiotlb_force_bounce; 444 445 #ifdef CONFIG_SWIOTLB_DYNAMIC 446 if (!remap) 447 io_tlb_default_mem.can_grow = true; 448 if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA)) 449 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits); 450 else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32)) 451 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32); 452 else 453 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 454 #endif 455 456 if (!default_nareas) 457 swiotlb_adjust_nareas(num_possible_cpus()); 458 459 retry: 460 order = get_order(nslabs << IO_TLB_SHIFT); 461 nslabs = SLABS_PER_PAGE << order; 462 463 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 464 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 465 order); 466 if (vstart) 467 break; 468 order--; 469 nslabs = SLABS_PER_PAGE << order; 470 retried = true; 471 } 472 473 if (!vstart) 474 return -ENOMEM; 475 476 if (remap) 477 rc = remap(vstart, nslabs); 478 if (rc) { 479 free_pages((unsigned long)vstart, order); 480 481 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 482 if (nslabs < IO_TLB_MIN_SLABS) 483 return rc; 484 retried = true; 485 goto retry; 486 } 487 488 if (retried) { 489 pr_warn("only able to allocate %ld MB\n", 490 (PAGE_SIZE << order) >> 20); 491 } 492 493 nareas = limit_nareas(default_nareas, nslabs); 494 area_order = get_order(array_size(sizeof(*mem->areas), nareas)); 495 mem->areas = (struct io_tlb_area *) 496 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 497 if (!mem->areas) 498 goto error_area; 499 500 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 501 get_order(array_size(sizeof(*mem->slots), nslabs))); 502 if (!mem->slots) 503 goto error_slots; 504 505 set_memory_decrypted((unsigned long)vstart, 506 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 507 swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true, 508 nareas); 509 add_mem_pool(&io_tlb_default_mem, mem); 510 511 swiotlb_print_info(); 512 return 0; 513 514 error_slots: 515 free_pages((unsigned long)mem->areas, area_order); 516 error_area: 517 free_pages((unsigned long)vstart, order); 518 return -ENOMEM; 519 } 520 521 void __init swiotlb_exit(void) 522 { 523 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 524 unsigned long tbl_vaddr; 525 size_t tbl_size, slots_size; 526 unsigned int area_order; 527 528 if (swiotlb_force_bounce) 529 return; 530 531 if (!mem->nslabs) 532 return; 533 534 pr_info("tearing down default memory pool\n"); 535 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 536 tbl_size = PAGE_ALIGN(mem->end - mem->start); 537 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 538 539 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 540 if (mem->late_alloc) { 541 area_order = get_order(array_size(sizeof(*mem->areas), 542 mem->nareas)); 543 free_pages((unsigned long)mem->areas, area_order); 544 free_pages(tbl_vaddr, get_order(tbl_size)); 545 free_pages((unsigned long)mem->slots, get_order(slots_size)); 546 } else { 547 memblock_free_late(__pa(mem->areas), 548 array_size(sizeof(*mem->areas), mem->nareas)); 549 memblock_free_late(mem->start, tbl_size); 550 memblock_free_late(__pa(mem->slots), slots_size); 551 } 552 553 memset(mem, 0, sizeof(*mem)); 554 } 555 556 #ifdef CONFIG_SWIOTLB_DYNAMIC 557 558 /** 559 * alloc_dma_pages() - allocate pages to be used for DMA 560 * @gfp: GFP flags for the allocation. 561 * @bytes: Size of the buffer. 562 * 563 * Allocate pages from the buddy allocator. If successful, make the allocated 564 * pages decrypted that they can be used for DMA. 565 * 566 * Return: Decrypted pages, or %NULL on failure. 567 */ 568 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes) 569 { 570 unsigned int order = get_order(bytes); 571 struct page *page; 572 void *vaddr; 573 574 page = alloc_pages(gfp, order); 575 if (!page) 576 return NULL; 577 578 vaddr = page_address(page); 579 if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes))) 580 goto error; 581 return page; 582 583 error: 584 __free_pages(page, order); 585 return NULL; 586 } 587 588 /** 589 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer 590 * @dev: Device for which a memory pool is allocated. 591 * @bytes: Size of the buffer. 592 * @phys_limit: Maximum allowed physical address of the buffer. 593 * @gfp: GFP flags for the allocation. 594 * 595 * Return: Allocated pages, or %NULL on allocation failure. 596 */ 597 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes, 598 u64 phys_limit, gfp_t gfp) 599 { 600 struct page *page; 601 602 /* 603 * Allocate from the atomic pools if memory is encrypted and 604 * the allocation is atomic, because decrypting may block. 605 */ 606 if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) { 607 void *vaddr; 608 609 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) 610 return NULL; 611 612 return dma_alloc_from_pool(dev, bytes, &vaddr, gfp, 613 dma_coherent_ok); 614 } 615 616 gfp &= ~GFP_ZONEMASK; 617 if (phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 618 gfp |= __GFP_DMA; 619 else if (phys_limit <= DMA_BIT_MASK(32)) 620 gfp |= __GFP_DMA32; 621 622 while ((page = alloc_dma_pages(gfp, bytes)) && 623 page_to_phys(page) + bytes - 1 > phys_limit) { 624 /* allocated, but too high */ 625 __free_pages(page, get_order(bytes)); 626 627 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 628 phys_limit < DMA_BIT_MASK(64) && 629 !(gfp & (__GFP_DMA32 | __GFP_DMA))) 630 gfp |= __GFP_DMA32; 631 else if (IS_ENABLED(CONFIG_ZONE_DMA) && 632 !(gfp & __GFP_DMA)) 633 gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA; 634 else 635 return NULL; 636 } 637 638 return page; 639 } 640 641 /** 642 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer 643 * @vaddr: Virtual address of the buffer. 644 * @bytes: Size of the buffer. 645 */ 646 static void swiotlb_free_tlb(void *vaddr, size_t bytes) 647 { 648 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 649 dma_free_from_pool(NULL, vaddr, bytes)) 650 return; 651 652 /* Intentional leak if pages cannot be encrypted again. */ 653 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) 654 __free_pages(virt_to_page(vaddr), get_order(bytes)); 655 } 656 657 /** 658 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool 659 * @dev: Device for which a memory pool is allocated. 660 * @minslabs: Minimum number of slabs. 661 * @nslabs: Desired (maximum) number of slabs. 662 * @nareas: Number of areas. 663 * @phys_limit: Maximum DMA buffer physical address. 664 * @gfp: GFP flags for the allocations. 665 * 666 * Allocate and initialize a new IO TLB memory pool. The actual number of 667 * slabs may be reduced if allocation of @nslabs fails. If even 668 * @minslabs cannot be allocated, this function fails. 669 * 670 * Return: New memory pool, or %NULL on allocation failure. 671 */ 672 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev, 673 unsigned long minslabs, unsigned long nslabs, 674 unsigned int nareas, u64 phys_limit, gfp_t gfp) 675 { 676 struct io_tlb_pool *pool; 677 unsigned int slot_order; 678 struct page *tlb; 679 size_t pool_size; 680 size_t tlb_size; 681 682 pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas); 683 pool = kzalloc(pool_size, gfp); 684 if (!pool) 685 goto error; 686 pool->areas = (void *)pool + sizeof(*pool); 687 688 tlb_size = nslabs << IO_TLB_SHIFT; 689 while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) { 690 if (nslabs <= minslabs) 691 goto error_tlb; 692 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 693 nareas = limit_nareas(nareas, nslabs); 694 tlb_size = nslabs << IO_TLB_SHIFT; 695 } 696 697 slot_order = get_order(array_size(sizeof(*pool->slots), nslabs)); 698 pool->slots = (struct io_tlb_slot *) 699 __get_free_pages(gfp, slot_order); 700 if (!pool->slots) 701 goto error_slots; 702 703 swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas); 704 return pool; 705 706 error_slots: 707 swiotlb_free_tlb(page_address(tlb), tlb_size); 708 error_tlb: 709 kfree(pool); 710 error: 711 return NULL; 712 } 713 714 /** 715 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker 716 * @work: Pointer to dyn_alloc in struct io_tlb_mem. 717 */ 718 static void swiotlb_dyn_alloc(struct work_struct *work) 719 { 720 struct io_tlb_mem *mem = 721 container_of(work, struct io_tlb_mem, dyn_alloc); 722 struct io_tlb_pool *pool; 723 724 pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs, 725 default_nareas, mem->phys_limit, GFP_KERNEL); 726 if (!pool) { 727 pr_warn_ratelimited("Failed to allocate new pool"); 728 return; 729 } 730 731 add_mem_pool(mem, pool); 732 733 /* Pairs with smp_rmb() in is_swiotlb_buffer(). */ 734 smp_wmb(); 735 } 736 737 /** 738 * swiotlb_dyn_free() - RCU callback to free a memory pool 739 * @rcu: RCU head in the corresponding struct io_tlb_pool. 740 */ 741 static void swiotlb_dyn_free(struct rcu_head *rcu) 742 { 743 struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu); 744 size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs); 745 size_t tlb_size = pool->end - pool->start; 746 747 free_pages((unsigned long)pool->slots, get_order(slots_size)); 748 swiotlb_free_tlb(pool->vaddr, tlb_size); 749 kfree(pool); 750 } 751 752 /** 753 * swiotlb_find_pool() - find the IO TLB pool for a physical address 754 * @dev: Device which has mapped the DMA buffer. 755 * @paddr: Physical address within the DMA buffer. 756 * 757 * Find the IO TLB memory pool descriptor which contains the given physical 758 * address, if any. 759 * 760 * Return: Memory pool which contains @paddr, or %NULL if none. 761 */ 762 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr) 763 { 764 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 765 struct io_tlb_pool *pool; 766 767 rcu_read_lock(); 768 list_for_each_entry_rcu(pool, &mem->pools, node) { 769 if (paddr >= pool->start && paddr < pool->end) 770 goto out; 771 } 772 773 list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) { 774 if (paddr >= pool->start && paddr < pool->end) 775 goto out; 776 } 777 pool = NULL; 778 out: 779 rcu_read_unlock(); 780 return pool; 781 } 782 783 /** 784 * swiotlb_del_pool() - remove an IO TLB pool from a device 785 * @dev: Owning device. 786 * @pool: Memory pool to be removed. 787 */ 788 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool) 789 { 790 unsigned long flags; 791 792 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 793 list_del_rcu(&pool->node); 794 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 795 796 call_rcu(&pool->rcu, swiotlb_dyn_free); 797 } 798 799 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 800 801 /** 802 * swiotlb_dev_init() - initialize swiotlb fields in &struct device 803 * @dev: Device to be initialized. 804 */ 805 void swiotlb_dev_init(struct device *dev) 806 { 807 dev->dma_io_tlb_mem = &io_tlb_default_mem; 808 #ifdef CONFIG_SWIOTLB_DYNAMIC 809 INIT_LIST_HEAD(&dev->dma_io_tlb_pools); 810 spin_lock_init(&dev->dma_io_tlb_lock); 811 dev->dma_uses_io_tlb = false; 812 #endif 813 } 814 815 /* 816 * Return the offset into a iotlb slot required to keep the device happy. 817 */ 818 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 819 { 820 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 821 } 822 823 /* 824 * Bounce: copy the swiotlb buffer from or back to the original dma location 825 */ 826 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 827 enum dma_data_direction dir) 828 { 829 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 830 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 831 phys_addr_t orig_addr = mem->slots[index].orig_addr; 832 size_t alloc_size = mem->slots[index].alloc_size; 833 unsigned long pfn = PFN_DOWN(orig_addr); 834 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 835 unsigned int tlb_offset, orig_addr_offset; 836 837 if (orig_addr == INVALID_PHYS_ADDR) 838 return; 839 840 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 841 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 842 if (tlb_offset < orig_addr_offset) { 843 dev_WARN_ONCE(dev, 1, 844 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 845 orig_addr_offset, tlb_offset); 846 return; 847 } 848 849 tlb_offset -= orig_addr_offset; 850 if (tlb_offset > alloc_size) { 851 dev_WARN_ONCE(dev, 1, 852 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 853 alloc_size, size, tlb_offset); 854 return; 855 } 856 857 orig_addr += tlb_offset; 858 alloc_size -= tlb_offset; 859 860 if (size > alloc_size) { 861 dev_WARN_ONCE(dev, 1, 862 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 863 alloc_size, size); 864 size = alloc_size; 865 } 866 867 if (PageHighMem(pfn_to_page(pfn))) { 868 unsigned int offset = orig_addr & ~PAGE_MASK; 869 struct page *page; 870 unsigned int sz = 0; 871 unsigned long flags; 872 873 while (size) { 874 sz = min_t(size_t, PAGE_SIZE - offset, size); 875 876 local_irq_save(flags); 877 page = pfn_to_page(pfn); 878 if (dir == DMA_TO_DEVICE) 879 memcpy_from_page(vaddr, page, offset, sz); 880 else 881 memcpy_to_page(page, offset, vaddr, sz); 882 local_irq_restore(flags); 883 884 size -= sz; 885 pfn++; 886 vaddr += sz; 887 offset = 0; 888 } 889 } else if (dir == DMA_TO_DEVICE) { 890 memcpy(vaddr, phys_to_virt(orig_addr), size); 891 } else { 892 memcpy(phys_to_virt(orig_addr), vaddr, size); 893 } 894 } 895 896 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) 897 { 898 return start + (idx << IO_TLB_SHIFT); 899 } 900 901 /* 902 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 903 */ 904 static inline unsigned long get_max_slots(unsigned long boundary_mask) 905 { 906 return (boundary_mask >> IO_TLB_SHIFT) + 1; 907 } 908 909 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index) 910 { 911 if (index >= mem->area_nslabs) 912 return 0; 913 return index; 914 } 915 916 /* 917 * Track the total used slots with a global atomic value in order to have 918 * correct information to determine the high water mark. The mem_used() 919 * function gives imprecise results because there's no locking across 920 * multiple areas. 921 */ 922 #ifdef CONFIG_DEBUG_FS 923 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 924 { 925 unsigned long old_hiwater, new_used; 926 927 new_used = atomic_long_add_return(nslots, &mem->total_used); 928 old_hiwater = atomic_long_read(&mem->used_hiwater); 929 do { 930 if (new_used <= old_hiwater) 931 break; 932 } while (!atomic_long_try_cmpxchg(&mem->used_hiwater, 933 &old_hiwater, new_used)); 934 } 935 936 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 937 { 938 atomic_long_sub(nslots, &mem->total_used); 939 } 940 941 #else /* !CONFIG_DEBUG_FS */ 942 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 943 { 944 } 945 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 946 { 947 } 948 #endif /* CONFIG_DEBUG_FS */ 949 950 /** 951 * swiotlb_area_find_slots() - search for slots in one IO TLB memory area 952 * @dev: Device which maps the buffer. 953 * @pool: Memory pool to be searched. 954 * @area_index: Index of the IO TLB memory area to be searched. 955 * @orig_addr: Original (non-bounced) IO buffer address. 956 * @alloc_size: Total requested size of the bounce buffer, 957 * including initial alignment padding. 958 * @alloc_align_mask: Required alignment of the allocated buffer. 959 * 960 * Find a suitable sequence of IO TLB entries for the request and allocate 961 * a buffer from the given IO TLB memory area. 962 * This function takes care of locking. 963 * 964 * Return: Index of the first allocated slot, or -1 on error. 965 */ 966 static int swiotlb_area_find_slots(struct device *dev, struct io_tlb_pool *pool, 967 int area_index, phys_addr_t orig_addr, size_t alloc_size, 968 unsigned int alloc_align_mask) 969 { 970 struct io_tlb_area *area = pool->areas + area_index; 971 unsigned long boundary_mask = dma_get_seg_boundary(dev); 972 dma_addr_t tbl_dma_addr = 973 phys_to_dma_unencrypted(dev, pool->start) & boundary_mask; 974 unsigned long max_slots = get_max_slots(boundary_mask); 975 unsigned int iotlb_align_mask = 976 dma_get_min_align_mask(dev) | alloc_align_mask; 977 unsigned int nslots = nr_slots(alloc_size), stride; 978 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 979 unsigned int index, slots_checked, count = 0, i; 980 unsigned long flags; 981 unsigned int slot_base; 982 unsigned int slot_index; 983 984 BUG_ON(!nslots); 985 BUG_ON(area_index >= pool->nareas); 986 987 /* 988 * For allocations of PAGE_SIZE or larger only look for page aligned 989 * allocations. 990 */ 991 if (alloc_size >= PAGE_SIZE) 992 iotlb_align_mask |= ~PAGE_MASK; 993 iotlb_align_mask &= ~(IO_TLB_SIZE - 1); 994 995 /* 996 * For mappings with an alignment requirement don't bother looping to 997 * unaligned slots once we found an aligned one. 998 */ 999 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 1000 1001 spin_lock_irqsave(&area->lock, flags); 1002 if (unlikely(nslots > pool->area_nslabs - area->used)) 1003 goto not_found; 1004 1005 slot_base = area_index * pool->area_nslabs; 1006 index = area->index; 1007 1008 for (slots_checked = 0; slots_checked < pool->area_nslabs; ) { 1009 slot_index = slot_base + index; 1010 1011 if (orig_addr && 1012 (slot_addr(tbl_dma_addr, slot_index) & 1013 iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { 1014 index = wrap_area_index(pool, index + 1); 1015 slots_checked++; 1016 continue; 1017 } 1018 1019 if (!iommu_is_span_boundary(slot_index, nslots, 1020 nr_slots(tbl_dma_addr), 1021 max_slots)) { 1022 if (pool->slots[slot_index].list >= nslots) 1023 goto found; 1024 } 1025 index = wrap_area_index(pool, index + stride); 1026 slots_checked += stride; 1027 } 1028 1029 not_found: 1030 spin_unlock_irqrestore(&area->lock, flags); 1031 return -1; 1032 1033 found: 1034 /* 1035 * If we find a slot that indicates we have 'nslots' number of 1036 * contiguous buffers, we allocate the buffers from that slot onwards 1037 * and set the list of free entries to '0' indicating unavailable. 1038 */ 1039 for (i = slot_index; i < slot_index + nslots; i++) { 1040 pool->slots[i].list = 0; 1041 pool->slots[i].alloc_size = alloc_size - (offset + 1042 ((i - slot_index) << IO_TLB_SHIFT)); 1043 } 1044 for (i = slot_index - 1; 1045 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 1046 pool->slots[i].list; i--) 1047 pool->slots[i].list = ++count; 1048 1049 /* 1050 * Update the indices to avoid searching in the next round. 1051 */ 1052 area->index = wrap_area_index(pool, index + nslots); 1053 area->used += nslots; 1054 spin_unlock_irqrestore(&area->lock, flags); 1055 1056 inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots); 1057 return slot_index; 1058 } 1059 1060 /** 1061 * swiotlb_pool_find_slots() - search for slots in one memory pool 1062 * @dev: Device which maps the buffer. 1063 * @pool: Memory pool to be searched. 1064 * @orig_addr: Original (non-bounced) IO buffer address. 1065 * @alloc_size: Total requested size of the bounce buffer, 1066 * including initial alignment padding. 1067 * @alloc_align_mask: Required alignment of the allocated buffer. 1068 * 1069 * Search through one memory pool to find a sequence of slots that match the 1070 * allocation constraints. 1071 * 1072 * Return: Index of the first allocated slot, or -1 on error. 1073 */ 1074 static int swiotlb_pool_find_slots(struct device *dev, struct io_tlb_pool *pool, 1075 phys_addr_t orig_addr, size_t alloc_size, 1076 unsigned int alloc_align_mask) 1077 { 1078 int start = raw_smp_processor_id() & (pool->nareas - 1); 1079 int i = start, index; 1080 1081 do { 1082 index = swiotlb_area_find_slots(dev, pool, i, orig_addr, 1083 alloc_size, alloc_align_mask); 1084 if (index >= 0) 1085 return index; 1086 if (++i >= pool->nareas) 1087 i = 0; 1088 } while (i != start); 1089 1090 return -1; 1091 } 1092 1093 #ifdef CONFIG_SWIOTLB_DYNAMIC 1094 1095 /** 1096 * swiotlb_find_slots() - search for slots in the whole swiotlb 1097 * @dev: Device which maps the buffer. 1098 * @orig_addr: Original (non-bounced) IO buffer address. 1099 * @alloc_size: Total requested size of the bounce buffer, 1100 * including initial alignment padding. 1101 * @alloc_align_mask: Required alignment of the allocated buffer. 1102 * @retpool: Used memory pool, updated on return. 1103 * 1104 * Search through the whole software IO TLB to find a sequence of slots that 1105 * match the allocation constraints. 1106 * 1107 * Return: Index of the first allocated slot, or -1 on error. 1108 */ 1109 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1110 size_t alloc_size, unsigned int alloc_align_mask, 1111 struct io_tlb_pool **retpool) 1112 { 1113 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1114 struct io_tlb_pool *pool; 1115 unsigned long nslabs; 1116 unsigned long flags; 1117 u64 phys_limit; 1118 int index; 1119 1120 rcu_read_lock(); 1121 list_for_each_entry_rcu(pool, &mem->pools, node) { 1122 index = swiotlb_pool_find_slots(dev, pool, orig_addr, 1123 alloc_size, alloc_align_mask); 1124 if (index >= 0) { 1125 rcu_read_unlock(); 1126 goto found; 1127 } 1128 } 1129 rcu_read_unlock(); 1130 if (!mem->can_grow) 1131 return -1; 1132 1133 schedule_work(&mem->dyn_alloc); 1134 1135 nslabs = nr_slots(alloc_size); 1136 phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit); 1137 pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit, 1138 GFP_NOWAIT | __GFP_NOWARN); 1139 if (!pool) 1140 return -1; 1141 1142 index = swiotlb_pool_find_slots(dev, pool, orig_addr, 1143 alloc_size, alloc_align_mask); 1144 if (index < 0) { 1145 swiotlb_dyn_free(&pool->rcu); 1146 return -1; 1147 } 1148 1149 pool->transient = true; 1150 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 1151 list_add_rcu(&pool->node, &dev->dma_io_tlb_pools); 1152 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 1153 1154 found: 1155 dev->dma_uses_io_tlb = true; 1156 /* Pairs with smp_rmb() in is_swiotlb_buffer() */ 1157 smp_wmb(); 1158 1159 *retpool = pool; 1160 return index; 1161 } 1162 1163 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1164 1165 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1166 size_t alloc_size, unsigned int alloc_align_mask, 1167 struct io_tlb_pool **retpool) 1168 { 1169 *retpool = &dev->dma_io_tlb_mem->defpool; 1170 return swiotlb_pool_find_slots(dev, *retpool, 1171 orig_addr, alloc_size, alloc_align_mask); 1172 } 1173 1174 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1175 1176 #ifdef CONFIG_DEBUG_FS 1177 1178 /** 1179 * mem_used() - get number of used slots in an allocator 1180 * @mem: Software IO TLB allocator. 1181 * 1182 * The result is accurate in this version of the function, because an atomic 1183 * counter is available if CONFIG_DEBUG_FS is set. 1184 * 1185 * Return: Number of used slots. 1186 */ 1187 static unsigned long mem_used(struct io_tlb_mem *mem) 1188 { 1189 return atomic_long_read(&mem->total_used); 1190 } 1191 1192 #else /* !CONFIG_DEBUG_FS */ 1193 1194 /** 1195 * mem_pool_used() - get number of used slots in a memory pool 1196 * @pool: Software IO TLB memory pool. 1197 * 1198 * The result is not accurate, see mem_used(). 1199 * 1200 * Return: Approximate number of used slots. 1201 */ 1202 static unsigned long mem_pool_used(struct io_tlb_pool *pool) 1203 { 1204 int i; 1205 unsigned long used = 0; 1206 1207 for (i = 0; i < pool->nareas; i++) 1208 used += pool->areas[i].used; 1209 return used; 1210 } 1211 1212 /** 1213 * mem_used() - get number of used slots in an allocator 1214 * @mem: Software IO TLB allocator. 1215 * 1216 * The result is not accurate, because there is no locking of individual 1217 * areas. 1218 * 1219 * Return: Approximate number of used slots. 1220 */ 1221 static unsigned long mem_used(struct io_tlb_mem *mem) 1222 { 1223 #ifdef CONFIG_SWIOTLB_DYNAMIC 1224 struct io_tlb_pool *pool; 1225 unsigned long used = 0; 1226 1227 rcu_read_lock(); 1228 list_for_each_entry_rcu(pool, &mem->pools, node) 1229 used += mem_pool_used(pool); 1230 rcu_read_unlock(); 1231 1232 return used; 1233 #else 1234 return mem_pool_used(&mem->defpool); 1235 #endif 1236 } 1237 1238 #endif /* CONFIG_DEBUG_FS */ 1239 1240 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 1241 size_t mapping_size, size_t alloc_size, 1242 unsigned int alloc_align_mask, enum dma_data_direction dir, 1243 unsigned long attrs) 1244 { 1245 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1246 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 1247 struct io_tlb_pool *pool; 1248 unsigned int i; 1249 int index; 1250 phys_addr_t tlb_addr; 1251 1252 if (!mem || !mem->nslabs) { 1253 dev_warn_ratelimited(dev, 1254 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 1255 return (phys_addr_t)DMA_MAPPING_ERROR; 1256 } 1257 1258 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 1259 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 1260 1261 if (mapping_size > alloc_size) { 1262 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 1263 mapping_size, alloc_size); 1264 return (phys_addr_t)DMA_MAPPING_ERROR; 1265 } 1266 1267 index = swiotlb_find_slots(dev, orig_addr, 1268 alloc_size + offset, alloc_align_mask, &pool); 1269 if (index == -1) { 1270 if (!(attrs & DMA_ATTR_NO_WARN)) 1271 dev_warn_ratelimited(dev, 1272 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 1273 alloc_size, mem->nslabs, mem_used(mem)); 1274 return (phys_addr_t)DMA_MAPPING_ERROR; 1275 } 1276 1277 /* 1278 * Save away the mapping from the original address to the DMA address. 1279 * This is needed when we sync the memory. Then we sync the buffer if 1280 * needed. 1281 */ 1282 for (i = 0; i < nr_slots(alloc_size + offset); i++) 1283 pool->slots[index + i].orig_addr = slot_addr(orig_addr, i); 1284 tlb_addr = slot_addr(pool->start, index) + offset; 1285 /* 1286 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 1287 * to the tlb buffer, if we knew for sure the device will 1288 * overwrite the entire current content. But we don't. Thus 1289 * unconditional bounce may prevent leaking swiotlb content (i.e. 1290 * kernel memory) to user-space. 1291 */ 1292 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 1293 return tlb_addr; 1294 } 1295 1296 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 1297 { 1298 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 1299 unsigned long flags; 1300 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 1301 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 1302 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 1303 int aindex = index / mem->area_nslabs; 1304 struct io_tlb_area *area = &mem->areas[aindex]; 1305 int count, i; 1306 1307 /* 1308 * Return the buffer to the free list by setting the corresponding 1309 * entries to indicate the number of contiguous entries available. 1310 * While returning the entries to the free list, we merge the entries 1311 * with slots below and above the pool being returned. 1312 */ 1313 BUG_ON(aindex >= mem->nareas); 1314 1315 spin_lock_irqsave(&area->lock, flags); 1316 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 1317 count = mem->slots[index + nslots].list; 1318 else 1319 count = 0; 1320 1321 /* 1322 * Step 1: return the slots to the free list, merging the slots with 1323 * superceeding slots 1324 */ 1325 for (i = index + nslots - 1; i >= index; i--) { 1326 mem->slots[i].list = ++count; 1327 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 1328 mem->slots[i].alloc_size = 0; 1329 } 1330 1331 /* 1332 * Step 2: merge the returned slots with the preceding slots, if 1333 * available (non zero) 1334 */ 1335 for (i = index - 1; 1336 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 1337 i--) 1338 mem->slots[i].list = ++count; 1339 area->used -= nslots; 1340 spin_unlock_irqrestore(&area->lock, flags); 1341 1342 dec_used(dev->dma_io_tlb_mem, nslots); 1343 } 1344 1345 #ifdef CONFIG_SWIOTLB_DYNAMIC 1346 1347 /** 1348 * swiotlb_del_transient() - delete a transient memory pool 1349 * @dev: Device which mapped the buffer. 1350 * @tlb_addr: Physical address within a bounce buffer. 1351 * 1352 * Check whether the address belongs to a transient SWIOTLB memory pool. 1353 * If yes, then delete the pool. 1354 * 1355 * Return: %true if @tlb_addr belonged to a transient pool that was released. 1356 */ 1357 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr) 1358 { 1359 struct io_tlb_pool *pool; 1360 1361 pool = swiotlb_find_pool(dev, tlb_addr); 1362 if (!pool->transient) 1363 return false; 1364 1365 dec_used(dev->dma_io_tlb_mem, pool->nslabs); 1366 swiotlb_del_pool(dev, pool); 1367 return true; 1368 } 1369 1370 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1371 1372 static inline bool swiotlb_del_transient(struct device *dev, 1373 phys_addr_t tlb_addr) 1374 { 1375 return false; 1376 } 1377 1378 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1379 1380 /* 1381 * tlb_addr is the physical address of the bounce buffer to unmap. 1382 */ 1383 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 1384 size_t mapping_size, enum dma_data_direction dir, 1385 unsigned long attrs) 1386 { 1387 /* 1388 * First, sync the memory before unmapping the entry 1389 */ 1390 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1391 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 1392 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 1393 1394 if (swiotlb_del_transient(dev, tlb_addr)) 1395 return; 1396 swiotlb_release_slots(dev, tlb_addr); 1397 } 1398 1399 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 1400 size_t size, enum dma_data_direction dir) 1401 { 1402 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 1403 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 1404 else 1405 BUG_ON(dir != DMA_FROM_DEVICE); 1406 } 1407 1408 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 1409 size_t size, enum dma_data_direction dir) 1410 { 1411 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 1412 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 1413 else 1414 BUG_ON(dir != DMA_TO_DEVICE); 1415 } 1416 1417 /* 1418 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 1419 * to the device copy the data into it as well. 1420 */ 1421 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 1422 enum dma_data_direction dir, unsigned long attrs) 1423 { 1424 phys_addr_t swiotlb_addr; 1425 dma_addr_t dma_addr; 1426 1427 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 1428 1429 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 1430 attrs); 1431 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 1432 return DMA_MAPPING_ERROR; 1433 1434 /* Ensure that the address returned is DMA'ble */ 1435 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 1436 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 1437 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 1438 attrs | DMA_ATTR_SKIP_CPU_SYNC); 1439 dev_WARN_ONCE(dev, 1, 1440 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 1441 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 1442 return DMA_MAPPING_ERROR; 1443 } 1444 1445 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1446 arch_sync_dma_for_device(swiotlb_addr, size, dir); 1447 return dma_addr; 1448 } 1449 1450 size_t swiotlb_max_mapping_size(struct device *dev) 1451 { 1452 int min_align_mask = dma_get_min_align_mask(dev); 1453 int min_align = 0; 1454 1455 /* 1456 * swiotlb_find_slots() skips slots according to 1457 * min align mask. This affects max mapping size. 1458 * Take it into acount here. 1459 */ 1460 if (min_align_mask) 1461 min_align = roundup(min_align_mask, IO_TLB_SIZE); 1462 1463 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 1464 } 1465 1466 /** 1467 * is_swiotlb_allocated() - check if the default software IO TLB is initialized 1468 */ 1469 bool is_swiotlb_allocated(void) 1470 { 1471 return io_tlb_default_mem.nslabs; 1472 } 1473 1474 bool is_swiotlb_active(struct device *dev) 1475 { 1476 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1477 1478 return mem && mem->nslabs; 1479 } 1480 1481 /** 1482 * default_swiotlb_base() - get the base address of the default SWIOTLB 1483 * 1484 * Get the lowest physical address used by the default software IO TLB pool. 1485 */ 1486 phys_addr_t default_swiotlb_base(void) 1487 { 1488 #ifdef CONFIG_SWIOTLB_DYNAMIC 1489 io_tlb_default_mem.can_grow = false; 1490 #endif 1491 return io_tlb_default_mem.defpool.start; 1492 } 1493 1494 /** 1495 * default_swiotlb_limit() - get the address limit of the default SWIOTLB 1496 * 1497 * Get the highest physical address used by the default software IO TLB pool. 1498 */ 1499 phys_addr_t default_swiotlb_limit(void) 1500 { 1501 #ifdef CONFIG_SWIOTLB_DYNAMIC 1502 return io_tlb_default_mem.phys_limit; 1503 #else 1504 return io_tlb_default_mem.defpool.end - 1; 1505 #endif 1506 } 1507 1508 #ifdef CONFIG_DEBUG_FS 1509 1510 static int io_tlb_used_get(void *data, u64 *val) 1511 { 1512 struct io_tlb_mem *mem = data; 1513 1514 *val = mem_used(mem); 1515 return 0; 1516 } 1517 1518 static int io_tlb_hiwater_get(void *data, u64 *val) 1519 { 1520 struct io_tlb_mem *mem = data; 1521 1522 *val = atomic_long_read(&mem->used_hiwater); 1523 return 0; 1524 } 1525 1526 static int io_tlb_hiwater_set(void *data, u64 val) 1527 { 1528 struct io_tlb_mem *mem = data; 1529 1530 /* Only allow setting to zero */ 1531 if (val != 0) 1532 return -EINVAL; 1533 1534 atomic_long_set(&mem->used_hiwater, val); 1535 return 0; 1536 } 1537 1538 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 1539 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get, 1540 io_tlb_hiwater_set, "%llu\n"); 1541 1542 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1543 const char *dirname) 1544 { 1545 atomic_long_set(&mem->total_used, 0); 1546 atomic_long_set(&mem->used_hiwater, 0); 1547 1548 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 1549 if (!mem->nslabs) 1550 return; 1551 1552 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 1553 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem, 1554 &fops_io_tlb_used); 1555 debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem, 1556 &fops_io_tlb_hiwater); 1557 } 1558 1559 static int __init swiotlb_create_default_debugfs(void) 1560 { 1561 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 1562 return 0; 1563 } 1564 1565 late_initcall(swiotlb_create_default_debugfs); 1566 1567 #else /* !CONFIG_DEBUG_FS */ 1568 1569 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1570 const char *dirname) 1571 { 1572 } 1573 1574 #endif /* CONFIG_DEBUG_FS */ 1575 1576 #ifdef CONFIG_DMA_RESTRICTED_POOL 1577 1578 struct page *swiotlb_alloc(struct device *dev, size_t size) 1579 { 1580 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1581 struct io_tlb_pool *pool; 1582 phys_addr_t tlb_addr; 1583 int index; 1584 1585 if (!mem) 1586 return NULL; 1587 1588 index = swiotlb_find_slots(dev, 0, size, 0, &pool); 1589 if (index == -1) 1590 return NULL; 1591 1592 tlb_addr = slot_addr(pool->start, index); 1593 1594 return pfn_to_page(PFN_DOWN(tlb_addr)); 1595 } 1596 1597 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 1598 { 1599 phys_addr_t tlb_addr = page_to_phys(page); 1600 1601 if (!is_swiotlb_buffer(dev, tlb_addr)) 1602 return false; 1603 1604 swiotlb_release_slots(dev, tlb_addr); 1605 1606 return true; 1607 } 1608 1609 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 1610 struct device *dev) 1611 { 1612 struct io_tlb_mem *mem = rmem->priv; 1613 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 1614 1615 /* Set Per-device io tlb area to one */ 1616 unsigned int nareas = 1; 1617 1618 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1619 dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping."); 1620 return -EINVAL; 1621 } 1622 1623 /* 1624 * Since multiple devices can share the same pool, the private data, 1625 * io_tlb_mem struct, will be initialized by the first device attached 1626 * to it. 1627 */ 1628 if (!mem) { 1629 struct io_tlb_pool *pool; 1630 1631 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1632 if (!mem) 1633 return -ENOMEM; 1634 pool = &mem->defpool; 1635 1636 pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL); 1637 if (!pool->slots) { 1638 kfree(mem); 1639 return -ENOMEM; 1640 } 1641 1642 pool->areas = kcalloc(nareas, sizeof(*pool->areas), 1643 GFP_KERNEL); 1644 if (!pool->areas) { 1645 kfree(pool->slots); 1646 kfree(mem); 1647 return -ENOMEM; 1648 } 1649 1650 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1651 rmem->size >> PAGE_SHIFT); 1652 swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs, 1653 false, nareas); 1654 mem->force_bounce = true; 1655 mem->for_alloc = true; 1656 #ifdef CONFIG_SWIOTLB_DYNAMIC 1657 spin_lock_init(&mem->lock); 1658 #endif 1659 add_mem_pool(mem, pool); 1660 1661 rmem->priv = mem; 1662 1663 swiotlb_create_debugfs_files(mem, rmem->name); 1664 } 1665 1666 dev->dma_io_tlb_mem = mem; 1667 1668 return 0; 1669 } 1670 1671 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1672 struct device *dev) 1673 { 1674 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1675 } 1676 1677 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1678 .device_init = rmem_swiotlb_device_init, 1679 .device_release = rmem_swiotlb_device_release, 1680 }; 1681 1682 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1683 { 1684 unsigned long node = rmem->fdt_node; 1685 1686 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1687 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1688 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1689 of_get_flat_dt_prop(node, "no-map", NULL)) 1690 return -EINVAL; 1691 1692 rmem->ops = &rmem_swiotlb_ops; 1693 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1694 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1695 return 0; 1696 } 1697 1698 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1699 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1700