xref: /openbmc/linux/kernel/dma/swiotlb.c (revision d15cb3da)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/mm.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pfn.h>
32 #include <linux/types.h>
33 #include <linux/ctype.h>
34 #include <linux/highmem.h>
35 #include <linux/gfp.h>
36 #include <linux/scatterlist.h>
37 #include <linux/cc_platform.h>
38 #include <linux/set_memory.h>
39 #ifdef CONFIG_DEBUG_FS
40 #include <linux/debugfs.h>
41 #endif
42 #ifdef CONFIG_DMA_RESTRICTED_POOL
43 #include <linux/io.h>
44 #include <linux/of.h>
45 #include <linux/of_fdt.h>
46 #include <linux/of_reserved_mem.h>
47 #include <linux/slab.h>
48 #endif
49 
50 #include <asm/io.h>
51 #include <asm/dma.h>
52 
53 #include <linux/io.h>
54 #include <linux/init.h>
55 #include <linux/memblock.h>
56 #include <linux/iommu-helper.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/swiotlb.h>
60 
61 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
62 
63 /*
64  * Minimum IO TLB size to bother booting with.  Systems with mainly
65  * 64bit capable cards will only lightly use the swiotlb.  If we can't
66  * allocate a contiguous 1MB, we're probably in trouble anyway.
67  */
68 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
69 
70 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
71 
72 enum swiotlb_force swiotlb_force;
73 
74 struct io_tlb_mem io_tlb_default_mem;
75 
76 phys_addr_t swiotlb_unencrypted_base;
77 
78 /*
79  * Max segment that we can provide which (if pages are contingous) will
80  * not be bounced (unless SWIOTLB_FORCE is set).
81  */
82 static unsigned int max_segment;
83 
84 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
85 
86 static int __init
87 setup_io_tlb_npages(char *str)
88 {
89 	if (isdigit(*str)) {
90 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
91 		default_nslabs =
92 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
93 	}
94 	if (*str == ',')
95 		++str;
96 	if (!strcmp(str, "force"))
97 		swiotlb_force = SWIOTLB_FORCE;
98 	else if (!strcmp(str, "noforce"))
99 		swiotlb_force = SWIOTLB_NO_FORCE;
100 
101 	return 0;
102 }
103 early_param("swiotlb", setup_io_tlb_npages);
104 
105 unsigned int swiotlb_max_segment(void)
106 {
107 	return io_tlb_default_mem.nslabs ? max_segment : 0;
108 }
109 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
110 
111 void swiotlb_set_max_segment(unsigned int val)
112 {
113 	if (swiotlb_force == SWIOTLB_FORCE)
114 		max_segment = 1;
115 	else
116 		max_segment = rounddown(val, PAGE_SIZE);
117 }
118 
119 unsigned long swiotlb_size_or_default(void)
120 {
121 	return default_nslabs << IO_TLB_SHIFT;
122 }
123 
124 void __init swiotlb_adjust_size(unsigned long size)
125 {
126 	/*
127 	 * If swiotlb parameter has not been specified, give a chance to
128 	 * architectures such as those supporting memory encryption to
129 	 * adjust/expand SWIOTLB size for their use.
130 	 */
131 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
132 		return;
133 	size = ALIGN(size, IO_TLB_SIZE);
134 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
135 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
136 }
137 
138 void swiotlb_print_info(void)
139 {
140 	struct io_tlb_mem *mem = &io_tlb_default_mem;
141 
142 	if (!mem->nslabs) {
143 		pr_warn("No low mem\n");
144 		return;
145 	}
146 
147 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
148 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
149 }
150 
151 static inline unsigned long io_tlb_offset(unsigned long val)
152 {
153 	return val & (IO_TLB_SEGSIZE - 1);
154 }
155 
156 static inline unsigned long nr_slots(u64 val)
157 {
158 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
159 }
160 
161 /*
162  * Remap swioltb memory in the unencrypted physical address space
163  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
164  * Isolation VMs).
165  */
166 #ifdef CONFIG_HAS_IOMEM
167 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
168 {
169 	void *vaddr = NULL;
170 
171 	if (swiotlb_unencrypted_base) {
172 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
173 
174 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
175 		if (!vaddr)
176 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
177 			       &paddr, bytes);
178 	}
179 
180 	return vaddr;
181 }
182 #else
183 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
184 {
185 	return NULL;
186 }
187 #endif
188 
189 /*
190  * Early SWIOTLB allocation may be too early to allow an architecture to
191  * perform the desired operations.  This function allows the architecture to
192  * call SWIOTLB when the operations are possible.  It needs to be called
193  * before the SWIOTLB memory is used.
194  */
195 void __init swiotlb_update_mem_attributes(void)
196 {
197 	struct io_tlb_mem *mem = &io_tlb_default_mem;
198 	void *vaddr;
199 	unsigned long bytes;
200 
201 	if (!mem->nslabs || mem->late_alloc)
202 		return;
203 	vaddr = phys_to_virt(mem->start);
204 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
205 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
206 
207 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
208 	if (!mem->vaddr)
209 		mem->vaddr = vaddr;
210 
211 	memset(mem->vaddr, 0, bytes);
212 }
213 
214 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
215 				    unsigned long nslabs, bool late_alloc)
216 {
217 	void *vaddr = phys_to_virt(start);
218 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
219 
220 	mem->nslabs = nslabs;
221 	mem->start = start;
222 	mem->end = mem->start + bytes;
223 	mem->index = 0;
224 	mem->late_alloc = late_alloc;
225 
226 	if (swiotlb_force == SWIOTLB_FORCE)
227 		mem->force_bounce = true;
228 
229 	spin_lock_init(&mem->lock);
230 	for (i = 0; i < mem->nslabs; i++) {
231 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
232 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
233 		mem->slots[i].alloc_size = 0;
234 	}
235 
236 	/*
237 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
238 	 * be remapped and cleared in swiotlb_update_mem_attributes.
239 	 */
240 	if (swiotlb_unencrypted_base)
241 		return;
242 
243 	memset(vaddr, 0, bytes);
244 	mem->vaddr = vaddr;
245 	return;
246 }
247 
248 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
249 {
250 	struct io_tlb_mem *mem = &io_tlb_default_mem;
251 	size_t alloc_size;
252 
253 	if (swiotlb_force == SWIOTLB_NO_FORCE)
254 		return 0;
255 
256 	/* protect against double initialization */
257 	if (WARN_ON_ONCE(mem->nslabs))
258 		return -ENOMEM;
259 
260 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
261 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
262 	if (!mem->slots)
263 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
264 		      __func__, alloc_size, PAGE_SIZE);
265 
266 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
267 
268 	if (verbose)
269 		swiotlb_print_info();
270 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
271 	return 0;
272 }
273 
274 /*
275  * Statically reserve bounce buffer space and initialize bounce buffer data
276  * structures for the software IO TLB used to implement the DMA API.
277  */
278 void  __init
279 swiotlb_init(int verbose)
280 {
281 	size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
282 	void *tlb;
283 
284 	if (swiotlb_force == SWIOTLB_NO_FORCE)
285 		return;
286 
287 	/* Get IO TLB memory from the low pages */
288 	tlb = memblock_alloc_low(bytes, PAGE_SIZE);
289 	if (!tlb)
290 		goto fail;
291 	if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
292 		goto fail_free_mem;
293 	return;
294 
295 fail_free_mem:
296 	memblock_free(tlb, bytes);
297 fail:
298 	pr_warn("Cannot allocate buffer");
299 }
300 
301 /*
302  * Systems with larger DMA zones (those that don't support ISA) can
303  * initialize the swiotlb later using the slab allocator if needed.
304  * This should be just like above, but with some error catching.
305  */
306 int
307 swiotlb_late_init_with_default_size(size_t default_size)
308 {
309 	unsigned long nslabs =
310 		ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
311 	unsigned long bytes;
312 	unsigned char *vstart = NULL;
313 	unsigned int order;
314 	int rc = 0;
315 
316 	if (swiotlb_force == SWIOTLB_NO_FORCE)
317 		return 0;
318 
319 	/*
320 	 * Get IO TLB memory from the low pages
321 	 */
322 	order = get_order(nslabs << IO_TLB_SHIFT);
323 	nslabs = SLABS_PER_PAGE << order;
324 	bytes = nslabs << IO_TLB_SHIFT;
325 
326 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
327 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
328 						  order);
329 		if (vstart)
330 			break;
331 		order--;
332 	}
333 
334 	if (!vstart)
335 		return -ENOMEM;
336 
337 	if (order != get_order(bytes)) {
338 		pr_warn("only able to allocate %ld MB\n",
339 			(PAGE_SIZE << order) >> 20);
340 		nslabs = SLABS_PER_PAGE << order;
341 	}
342 	rc = swiotlb_late_init_with_tbl(vstart, nslabs);
343 	if (rc)
344 		free_pages((unsigned long)vstart, order);
345 
346 	return rc;
347 }
348 
349 int
350 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
351 {
352 	struct io_tlb_mem *mem = &io_tlb_default_mem;
353 	unsigned long bytes = nslabs << IO_TLB_SHIFT;
354 
355 	if (swiotlb_force == SWIOTLB_NO_FORCE)
356 		return 0;
357 
358 	/* protect against double initialization */
359 	if (WARN_ON_ONCE(mem->nslabs))
360 		return -ENOMEM;
361 
362 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
363 		get_order(array_size(sizeof(*mem->slots), nslabs)));
364 	if (!mem->slots)
365 		return -ENOMEM;
366 
367 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
368 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
369 
370 	swiotlb_print_info();
371 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
372 	return 0;
373 }
374 
375 void __init swiotlb_exit(void)
376 {
377 	struct io_tlb_mem *mem = &io_tlb_default_mem;
378 	unsigned long tbl_vaddr;
379 	size_t tbl_size, slots_size;
380 
381 	if (!mem->nslabs)
382 		return;
383 
384 	pr_info("tearing down default memory pool\n");
385 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
386 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
387 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
388 
389 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
390 	if (mem->late_alloc) {
391 		free_pages(tbl_vaddr, get_order(tbl_size));
392 		free_pages((unsigned long)mem->slots, get_order(slots_size));
393 	} else {
394 		memblock_free_late(mem->start, tbl_size);
395 		memblock_free_late(__pa(mem->slots), slots_size);
396 	}
397 
398 	memset(mem, 0, sizeof(*mem));
399 }
400 
401 /*
402  * Return the offset into a iotlb slot required to keep the device happy.
403  */
404 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
405 {
406 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
407 }
408 
409 /*
410  * Bounce: copy the swiotlb buffer from or back to the original dma location
411  */
412 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
413 			   enum dma_data_direction dir)
414 {
415 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
416 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
417 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
418 	size_t alloc_size = mem->slots[index].alloc_size;
419 	unsigned long pfn = PFN_DOWN(orig_addr);
420 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
421 	unsigned int tlb_offset, orig_addr_offset;
422 
423 	if (orig_addr == INVALID_PHYS_ADDR)
424 		return;
425 
426 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
427 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
428 	if (tlb_offset < orig_addr_offset) {
429 		dev_WARN_ONCE(dev, 1,
430 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
431 			orig_addr_offset, tlb_offset);
432 		return;
433 	}
434 
435 	tlb_offset -= orig_addr_offset;
436 	if (tlb_offset > alloc_size) {
437 		dev_WARN_ONCE(dev, 1,
438 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
439 			alloc_size, size, tlb_offset);
440 		return;
441 	}
442 
443 	orig_addr += tlb_offset;
444 	alloc_size -= tlb_offset;
445 
446 	if (size > alloc_size) {
447 		dev_WARN_ONCE(dev, 1,
448 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
449 			alloc_size, size);
450 		size = alloc_size;
451 	}
452 
453 	if (PageHighMem(pfn_to_page(pfn))) {
454 		/* The buffer does not have a mapping.  Map it in and copy */
455 		unsigned int offset = orig_addr & ~PAGE_MASK;
456 		char *buffer;
457 		unsigned int sz = 0;
458 		unsigned long flags;
459 
460 		while (size) {
461 			sz = min_t(size_t, PAGE_SIZE - offset, size);
462 
463 			local_irq_save(flags);
464 			buffer = kmap_atomic(pfn_to_page(pfn));
465 			if (dir == DMA_TO_DEVICE)
466 				memcpy(vaddr, buffer + offset, sz);
467 			else
468 				memcpy(buffer + offset, vaddr, sz);
469 			kunmap_atomic(buffer);
470 			local_irq_restore(flags);
471 
472 			size -= sz;
473 			pfn++;
474 			vaddr += sz;
475 			offset = 0;
476 		}
477 	} else if (dir == DMA_TO_DEVICE) {
478 		memcpy(vaddr, phys_to_virt(orig_addr), size);
479 	} else {
480 		memcpy(phys_to_virt(orig_addr), vaddr, size);
481 	}
482 }
483 
484 #define slot_addr(start, idx)	((start) + ((idx) << IO_TLB_SHIFT))
485 
486 /*
487  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
488  */
489 static inline unsigned long get_max_slots(unsigned long boundary_mask)
490 {
491 	if (boundary_mask == ~0UL)
492 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
493 	return nr_slots(boundary_mask + 1);
494 }
495 
496 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
497 {
498 	if (index >= mem->nslabs)
499 		return 0;
500 	return index;
501 }
502 
503 /*
504  * Find a suitable number of IO TLB entries size that will fit this request and
505  * allocate a buffer from that IO TLB pool.
506  */
507 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
508 			      size_t alloc_size, unsigned int alloc_align_mask)
509 {
510 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
511 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
512 	dma_addr_t tbl_dma_addr =
513 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
514 	unsigned long max_slots = get_max_slots(boundary_mask);
515 	unsigned int iotlb_align_mask =
516 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
517 	unsigned int nslots = nr_slots(alloc_size), stride;
518 	unsigned int index, wrap, count = 0, i;
519 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
520 	unsigned long flags;
521 
522 	BUG_ON(!nslots);
523 
524 	/*
525 	 * For mappings with an alignment requirement don't bother looping to
526 	 * unaligned slots once we found an aligned one.  For allocations of
527 	 * PAGE_SIZE or larger only look for page aligned allocations.
528 	 */
529 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
530 	if (alloc_size >= PAGE_SIZE)
531 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
532 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
533 
534 	spin_lock_irqsave(&mem->lock, flags);
535 	if (unlikely(nslots > mem->nslabs - mem->used))
536 		goto not_found;
537 
538 	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
539 	do {
540 		if (orig_addr &&
541 		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
542 			    (orig_addr & iotlb_align_mask)) {
543 			index = wrap_index(mem, index + 1);
544 			continue;
545 		}
546 
547 		/*
548 		 * If we find a slot that indicates we have 'nslots' number of
549 		 * contiguous buffers, we allocate the buffers from that slot
550 		 * and mark the entries as '0' indicating unavailable.
551 		 */
552 		if (!iommu_is_span_boundary(index, nslots,
553 					    nr_slots(tbl_dma_addr),
554 					    max_slots)) {
555 			if (mem->slots[index].list >= nslots)
556 				goto found;
557 		}
558 		index = wrap_index(mem, index + stride);
559 	} while (index != wrap);
560 
561 not_found:
562 	spin_unlock_irqrestore(&mem->lock, flags);
563 	return -1;
564 
565 found:
566 	for (i = index; i < index + nslots; i++) {
567 		mem->slots[i].list = 0;
568 		mem->slots[i].alloc_size =
569 			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
570 	}
571 	for (i = index - 1;
572 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
573 	     mem->slots[i].list; i--)
574 		mem->slots[i].list = ++count;
575 
576 	/*
577 	 * Update the indices to avoid searching in the next round.
578 	 */
579 	if (index + nslots < mem->nslabs)
580 		mem->index = index + nslots;
581 	else
582 		mem->index = 0;
583 	mem->used += nslots;
584 
585 	spin_unlock_irqrestore(&mem->lock, flags);
586 	return index;
587 }
588 
589 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
590 		size_t mapping_size, size_t alloc_size,
591 		unsigned int alloc_align_mask, enum dma_data_direction dir,
592 		unsigned long attrs)
593 {
594 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
595 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
596 	unsigned int i;
597 	int index;
598 	phys_addr_t tlb_addr;
599 
600 	if (!mem)
601 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
602 
603 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
604 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
605 
606 	if (mapping_size > alloc_size) {
607 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
608 			      mapping_size, alloc_size);
609 		return (phys_addr_t)DMA_MAPPING_ERROR;
610 	}
611 
612 	index = swiotlb_find_slots(dev, orig_addr,
613 				   alloc_size + offset, alloc_align_mask);
614 	if (index == -1) {
615 		if (!(attrs & DMA_ATTR_NO_WARN))
616 			dev_warn_ratelimited(dev,
617 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
618 				 alloc_size, mem->nslabs, mem->used);
619 		return (phys_addr_t)DMA_MAPPING_ERROR;
620 	}
621 
622 	/*
623 	 * Save away the mapping from the original address to the DMA address.
624 	 * This is needed when we sync the memory.  Then we sync the buffer if
625 	 * needed.
626 	 */
627 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
628 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
629 	tlb_addr = slot_addr(mem->start, index) + offset;
630 	/*
631 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
632 	 * to the tlb buffer, if we knew for sure the device will
633 	 * overwirte the entire current content. But we don't. Thus
634 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
635 	 * kernel memory) to user-space.
636 	 */
637 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
638 	return tlb_addr;
639 }
640 
641 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
642 {
643 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
644 	unsigned long flags;
645 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
646 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
647 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
648 	int count, i;
649 
650 	/*
651 	 * Return the buffer to the free list by setting the corresponding
652 	 * entries to indicate the number of contiguous entries available.
653 	 * While returning the entries to the free list, we merge the entries
654 	 * with slots below and above the pool being returned.
655 	 */
656 	spin_lock_irqsave(&mem->lock, flags);
657 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
658 		count = mem->slots[index + nslots].list;
659 	else
660 		count = 0;
661 
662 	/*
663 	 * Step 1: return the slots to the free list, merging the slots with
664 	 * superceeding slots
665 	 */
666 	for (i = index + nslots - 1; i >= index; i--) {
667 		mem->slots[i].list = ++count;
668 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
669 		mem->slots[i].alloc_size = 0;
670 	}
671 
672 	/*
673 	 * Step 2: merge the returned slots with the preceding slots, if
674 	 * available (non zero)
675 	 */
676 	for (i = index - 1;
677 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
678 	     i--)
679 		mem->slots[i].list = ++count;
680 	mem->used -= nslots;
681 	spin_unlock_irqrestore(&mem->lock, flags);
682 }
683 
684 /*
685  * tlb_addr is the physical address of the bounce buffer to unmap.
686  */
687 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
688 			      size_t mapping_size, enum dma_data_direction dir,
689 			      unsigned long attrs)
690 {
691 	/*
692 	 * First, sync the memory before unmapping the entry
693 	 */
694 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
695 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
696 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
697 
698 	swiotlb_release_slots(dev, tlb_addr);
699 }
700 
701 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
702 		size_t size, enum dma_data_direction dir)
703 {
704 	/*
705 	 * Unconditional bounce is necessary to avoid corruption on
706 	 * sync_*_for_cpu or dma_ummap_* when the device didn't overwrite
707 	 * the whole lengt of the bounce buffer.
708 	 */
709 	swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
710 	BUG_ON(!valid_dma_direction(dir));
711 }
712 
713 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
714 		size_t size, enum dma_data_direction dir)
715 {
716 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
717 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
718 	else
719 		BUG_ON(dir != DMA_TO_DEVICE);
720 }
721 
722 /*
723  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
724  * to the device copy the data into it as well.
725  */
726 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
727 		enum dma_data_direction dir, unsigned long attrs)
728 {
729 	phys_addr_t swiotlb_addr;
730 	dma_addr_t dma_addr;
731 
732 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
733 			      swiotlb_force);
734 
735 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
736 			attrs);
737 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
738 		return DMA_MAPPING_ERROR;
739 
740 	/* Ensure that the address returned is DMA'ble */
741 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
742 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
743 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
744 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
745 		dev_WARN_ONCE(dev, 1,
746 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
747 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
748 		return DMA_MAPPING_ERROR;
749 	}
750 
751 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
752 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
753 	return dma_addr;
754 }
755 
756 size_t swiotlb_max_mapping_size(struct device *dev)
757 {
758 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
759 }
760 
761 bool is_swiotlb_active(struct device *dev)
762 {
763 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
764 
765 	return mem && mem->nslabs;
766 }
767 EXPORT_SYMBOL_GPL(is_swiotlb_active);
768 
769 #ifdef CONFIG_DEBUG_FS
770 static struct dentry *debugfs_dir;
771 
772 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
773 {
774 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
775 	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
776 }
777 
778 static int __init swiotlb_create_default_debugfs(void)
779 {
780 	struct io_tlb_mem *mem = &io_tlb_default_mem;
781 
782 	debugfs_dir = debugfs_create_dir("swiotlb", NULL);
783 	if (mem->nslabs) {
784 		mem->debugfs = debugfs_dir;
785 		swiotlb_create_debugfs_files(mem);
786 	}
787 	return 0;
788 }
789 
790 late_initcall(swiotlb_create_default_debugfs);
791 
792 #endif
793 
794 #ifdef CONFIG_DMA_RESTRICTED_POOL
795 
796 #ifdef CONFIG_DEBUG_FS
797 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
798 {
799 	struct io_tlb_mem *mem = rmem->priv;
800 
801 	mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
802 	swiotlb_create_debugfs_files(mem);
803 }
804 #else
805 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
806 {
807 }
808 #endif
809 
810 struct page *swiotlb_alloc(struct device *dev, size_t size)
811 {
812 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
813 	phys_addr_t tlb_addr;
814 	int index;
815 
816 	if (!mem)
817 		return NULL;
818 
819 	index = swiotlb_find_slots(dev, 0, size, 0);
820 	if (index == -1)
821 		return NULL;
822 
823 	tlb_addr = slot_addr(mem->start, index);
824 
825 	return pfn_to_page(PFN_DOWN(tlb_addr));
826 }
827 
828 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
829 {
830 	phys_addr_t tlb_addr = page_to_phys(page);
831 
832 	if (!is_swiotlb_buffer(dev, tlb_addr))
833 		return false;
834 
835 	swiotlb_release_slots(dev, tlb_addr);
836 
837 	return true;
838 }
839 
840 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
841 				    struct device *dev)
842 {
843 	struct io_tlb_mem *mem = rmem->priv;
844 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
845 
846 	/*
847 	 * Since multiple devices can share the same pool, the private data,
848 	 * io_tlb_mem struct, will be initialized by the first device attached
849 	 * to it.
850 	 */
851 	if (!mem) {
852 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
853 		if (!mem)
854 			return -ENOMEM;
855 
856 		mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
857 				     GFP_KERNEL);
858 		if (!mem->slots) {
859 			kfree(mem);
860 			return -ENOMEM;
861 		}
862 
863 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
864 				     rmem->size >> PAGE_SHIFT);
865 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
866 		mem->force_bounce = true;
867 		mem->for_alloc = true;
868 
869 		rmem->priv = mem;
870 
871 		rmem_swiotlb_debugfs_init(rmem);
872 	}
873 
874 	dev->dma_io_tlb_mem = mem;
875 
876 	return 0;
877 }
878 
879 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
880 					struct device *dev)
881 {
882 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
883 }
884 
885 static const struct reserved_mem_ops rmem_swiotlb_ops = {
886 	.device_init = rmem_swiotlb_device_init,
887 	.device_release = rmem_swiotlb_device_release,
888 };
889 
890 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
891 {
892 	unsigned long node = rmem->fdt_node;
893 
894 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
895 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
896 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
897 	    of_get_flat_dt_prop(node, "no-map", NULL))
898 		return -EINVAL;
899 
900 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
901 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
902 		return -EINVAL;
903 	}
904 
905 	rmem->ops = &rmem_swiotlb_ops;
906 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
907 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
908 	return 0;
909 }
910 
911 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
912 #endif /* CONFIG_DMA_RESTRICTED_POOL */
913