1 /* 2 * Dynamic DMA mapping support. 3 * 4 * This implementation is a fallback for platforms that do not support 5 * I/O TLBs (aka DMA address translation hardware). 6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 8 * Copyright (C) 2000, 2003 Hewlett-Packard Co 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * 11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 13 * unnecessary i-cache flushing. 14 * 04/07/.. ak Better overflow handling. Assorted fixes. 15 * 05/09/10 linville Add support for syncing ranges, support syncing for 16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 17 * 08/12/11 beckyb Add highmem support 18 */ 19 20 #define pr_fmt(fmt) "software IO TLB: " fmt 21 22 #include <linux/cache.h> 23 #include <linux/dma-direct.h> 24 #include <linux/mm.h> 25 #include <linux/export.h> 26 #include <linux/spinlock.h> 27 #include <linux/string.h> 28 #include <linux/swiotlb.h> 29 #include <linux/pfn.h> 30 #include <linux/types.h> 31 #include <linux/ctype.h> 32 #include <linux/highmem.h> 33 #include <linux/gfp.h> 34 #include <linux/scatterlist.h> 35 #include <linux/mem_encrypt.h> 36 #include <linux/set_memory.h> 37 38 #include <asm/io.h> 39 #include <asm/dma.h> 40 41 #include <linux/init.h> 42 #include <linux/memblock.h> 43 #include <linux/iommu-helper.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/swiotlb.h> 47 48 #define OFFSET(val,align) ((unsigned long) \ 49 ( (val) & ( (align) - 1))) 50 51 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 52 53 /* 54 * Minimum IO TLB size to bother booting with. Systems with mainly 55 * 64bit capable cards will only lightly use the swiotlb. If we can't 56 * allocate a contiguous 1MB, we're probably in trouble anyway. 57 */ 58 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 59 60 enum swiotlb_force swiotlb_force; 61 62 /* 63 * Used to do a quick range check in swiotlb_tbl_unmap_single and 64 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 65 * API. 66 */ 67 phys_addr_t io_tlb_start, io_tlb_end; 68 69 /* 70 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 72 */ 73 static unsigned long io_tlb_nslabs; 74 75 /* 76 * This is a free list describing the number of free entries available from 77 * each index 78 */ 79 static unsigned int *io_tlb_list; 80 static unsigned int io_tlb_index; 81 82 /* 83 * Max segment that we can provide which (if pages are contingous) will 84 * not be bounced (unless SWIOTLB_FORCE is set). 85 */ 86 unsigned int max_segment; 87 88 /* 89 * We need to save away the original address corresponding to a mapped entry 90 * for the sync operations. 91 */ 92 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 93 static phys_addr_t *io_tlb_orig_addr; 94 95 /* 96 * Protect the above data structures in the map and unmap calls 97 */ 98 static DEFINE_SPINLOCK(io_tlb_lock); 99 100 static int late_alloc; 101 102 static int __init 103 setup_io_tlb_npages(char *str) 104 { 105 if (isdigit(*str)) { 106 io_tlb_nslabs = simple_strtoul(str, &str, 0); 107 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 108 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 109 } 110 if (*str == ',') 111 ++str; 112 if (!strcmp(str, "force")) { 113 swiotlb_force = SWIOTLB_FORCE; 114 } else if (!strcmp(str, "noforce")) { 115 swiotlb_force = SWIOTLB_NO_FORCE; 116 io_tlb_nslabs = 1; 117 } 118 119 return 0; 120 } 121 early_param("swiotlb", setup_io_tlb_npages); 122 123 unsigned long swiotlb_nr_tbl(void) 124 { 125 return io_tlb_nslabs; 126 } 127 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 128 129 unsigned int swiotlb_max_segment(void) 130 { 131 return max_segment; 132 } 133 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 134 135 void swiotlb_set_max_segment(unsigned int val) 136 { 137 if (swiotlb_force == SWIOTLB_FORCE) 138 max_segment = 1; 139 else 140 max_segment = rounddown(val, PAGE_SIZE); 141 } 142 143 /* default to 64MB */ 144 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 145 unsigned long swiotlb_size_or_default(void) 146 { 147 unsigned long size; 148 149 size = io_tlb_nslabs << IO_TLB_SHIFT; 150 151 return size ? size : (IO_TLB_DEFAULT_SIZE); 152 } 153 154 static bool no_iotlb_memory; 155 156 void swiotlb_print_info(void) 157 { 158 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 159 160 if (no_iotlb_memory) { 161 pr_warn("No low mem\n"); 162 return; 163 } 164 165 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", 166 (unsigned long long)io_tlb_start, 167 (unsigned long long)io_tlb_end, 168 bytes >> 20); 169 } 170 171 /* 172 * Early SWIOTLB allocation may be too early to allow an architecture to 173 * perform the desired operations. This function allows the architecture to 174 * call SWIOTLB when the operations are possible. It needs to be called 175 * before the SWIOTLB memory is used. 176 */ 177 void __init swiotlb_update_mem_attributes(void) 178 { 179 void *vaddr; 180 unsigned long bytes; 181 182 if (no_iotlb_memory || late_alloc) 183 return; 184 185 vaddr = phys_to_virt(io_tlb_start); 186 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 187 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 188 memset(vaddr, 0, bytes); 189 } 190 191 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 192 { 193 unsigned long i, bytes; 194 195 bytes = nslabs << IO_TLB_SHIFT; 196 197 io_tlb_nslabs = nslabs; 198 io_tlb_start = __pa(tlb); 199 io_tlb_end = io_tlb_start + bytes; 200 201 /* 202 * Allocate and initialize the free list array. This array is used 203 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 204 * between io_tlb_start and io_tlb_end. 205 */ 206 io_tlb_list = memblock_alloc( 207 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), 208 PAGE_SIZE); 209 io_tlb_orig_addr = memblock_alloc( 210 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), 211 PAGE_SIZE); 212 for (i = 0; i < io_tlb_nslabs; i++) { 213 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 214 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 215 } 216 io_tlb_index = 0; 217 218 if (verbose) 219 swiotlb_print_info(); 220 221 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 222 return 0; 223 } 224 225 /* 226 * Statically reserve bounce buffer space and initialize bounce buffer data 227 * structures for the software IO TLB used to implement the DMA API. 228 */ 229 void __init 230 swiotlb_init(int verbose) 231 { 232 size_t default_size = IO_TLB_DEFAULT_SIZE; 233 unsigned char *vstart; 234 unsigned long bytes; 235 236 if (!io_tlb_nslabs) { 237 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 238 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 239 } 240 241 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 242 243 /* Get IO TLB memory from the low pages */ 244 vstart = memblock_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); 245 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 246 return; 247 248 if (io_tlb_start) 249 memblock_free_early(io_tlb_start, 250 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 251 pr_warn("Cannot allocate buffer"); 252 no_iotlb_memory = true; 253 } 254 255 /* 256 * Systems with larger DMA zones (those that don't support ISA) can 257 * initialize the swiotlb later using the slab allocator if needed. 258 * This should be just like above, but with some error catching. 259 */ 260 int 261 swiotlb_late_init_with_default_size(size_t default_size) 262 { 263 unsigned long bytes, req_nslabs = io_tlb_nslabs; 264 unsigned char *vstart = NULL; 265 unsigned int order; 266 int rc = 0; 267 268 if (!io_tlb_nslabs) { 269 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 270 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 271 } 272 273 /* 274 * Get IO TLB memory from the low pages 275 */ 276 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 277 io_tlb_nslabs = SLABS_PER_PAGE << order; 278 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 279 280 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 281 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 282 order); 283 if (vstart) 284 break; 285 order--; 286 } 287 288 if (!vstart) { 289 io_tlb_nslabs = req_nslabs; 290 return -ENOMEM; 291 } 292 if (order != get_order(bytes)) { 293 pr_warn("only able to allocate %ld MB\n", 294 (PAGE_SIZE << order) >> 20); 295 io_tlb_nslabs = SLABS_PER_PAGE << order; 296 } 297 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 298 if (rc) 299 free_pages((unsigned long)vstart, order); 300 301 return rc; 302 } 303 304 int 305 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 306 { 307 unsigned long i, bytes; 308 309 bytes = nslabs << IO_TLB_SHIFT; 310 311 io_tlb_nslabs = nslabs; 312 io_tlb_start = virt_to_phys(tlb); 313 io_tlb_end = io_tlb_start + bytes; 314 315 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 316 memset(tlb, 0, bytes); 317 318 /* 319 * Allocate and initialize the free list array. This array is used 320 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 321 * between io_tlb_start and io_tlb_end. 322 */ 323 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 324 get_order(io_tlb_nslabs * sizeof(int))); 325 if (!io_tlb_list) 326 goto cleanup3; 327 328 io_tlb_orig_addr = (phys_addr_t *) 329 __get_free_pages(GFP_KERNEL, 330 get_order(io_tlb_nslabs * 331 sizeof(phys_addr_t))); 332 if (!io_tlb_orig_addr) 333 goto cleanup4; 334 335 for (i = 0; i < io_tlb_nslabs; i++) { 336 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 337 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 338 } 339 io_tlb_index = 0; 340 341 swiotlb_print_info(); 342 343 late_alloc = 1; 344 345 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 346 347 return 0; 348 349 cleanup4: 350 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 351 sizeof(int))); 352 io_tlb_list = NULL; 353 cleanup3: 354 io_tlb_end = 0; 355 io_tlb_start = 0; 356 io_tlb_nslabs = 0; 357 max_segment = 0; 358 return -ENOMEM; 359 } 360 361 void __init swiotlb_exit(void) 362 { 363 if (!io_tlb_orig_addr) 364 return; 365 366 if (late_alloc) { 367 free_pages((unsigned long)io_tlb_orig_addr, 368 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 369 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 370 sizeof(int))); 371 free_pages((unsigned long)phys_to_virt(io_tlb_start), 372 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 373 } else { 374 memblock_free_late(__pa(io_tlb_orig_addr), 375 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 376 memblock_free_late(__pa(io_tlb_list), 377 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 378 memblock_free_late(io_tlb_start, 379 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 380 } 381 io_tlb_nslabs = 0; 382 max_segment = 0; 383 } 384 385 /* 386 * Bounce: copy the swiotlb buffer back to the original dma location 387 */ 388 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 389 size_t size, enum dma_data_direction dir) 390 { 391 unsigned long pfn = PFN_DOWN(orig_addr); 392 unsigned char *vaddr = phys_to_virt(tlb_addr); 393 394 if (PageHighMem(pfn_to_page(pfn))) { 395 /* The buffer does not have a mapping. Map it in and copy */ 396 unsigned int offset = orig_addr & ~PAGE_MASK; 397 char *buffer; 398 unsigned int sz = 0; 399 unsigned long flags; 400 401 while (size) { 402 sz = min_t(size_t, PAGE_SIZE - offset, size); 403 404 local_irq_save(flags); 405 buffer = kmap_atomic(pfn_to_page(pfn)); 406 if (dir == DMA_TO_DEVICE) 407 memcpy(vaddr, buffer + offset, sz); 408 else 409 memcpy(buffer + offset, vaddr, sz); 410 kunmap_atomic(buffer); 411 local_irq_restore(flags); 412 413 size -= sz; 414 pfn++; 415 vaddr += sz; 416 offset = 0; 417 } 418 } else if (dir == DMA_TO_DEVICE) { 419 memcpy(vaddr, phys_to_virt(orig_addr), size); 420 } else { 421 memcpy(phys_to_virt(orig_addr), vaddr, size); 422 } 423 } 424 425 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 426 dma_addr_t tbl_dma_addr, 427 phys_addr_t orig_addr, size_t size, 428 enum dma_data_direction dir, 429 unsigned long attrs) 430 { 431 unsigned long flags; 432 phys_addr_t tlb_addr; 433 unsigned int nslots, stride, index, wrap; 434 int i; 435 unsigned long mask; 436 unsigned long offset_slots; 437 unsigned long max_slots; 438 439 if (no_iotlb_memory) 440 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 441 442 if (mem_encrypt_active()) 443 pr_warn_once("%s is active and system is using DMA bounce buffers\n", 444 sme_active() ? "SME" : "SEV"); 445 446 mask = dma_get_seg_boundary(hwdev); 447 448 tbl_dma_addr &= mask; 449 450 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 451 452 /* 453 * Carefully handle integer overflow which can occur when mask == ~0UL. 454 */ 455 max_slots = mask + 1 456 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 457 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 458 459 /* 460 * For mappings greater than or equal to a page, we limit the stride 461 * (and hence alignment) to a page size. 462 */ 463 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 464 if (size >= PAGE_SIZE) 465 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 466 else 467 stride = 1; 468 469 BUG_ON(!nslots); 470 471 /* 472 * Find suitable number of IO TLB entries size that will fit this 473 * request and allocate a buffer from that IO TLB pool. 474 */ 475 spin_lock_irqsave(&io_tlb_lock, flags); 476 index = ALIGN(io_tlb_index, stride); 477 if (index >= io_tlb_nslabs) 478 index = 0; 479 wrap = index; 480 481 do { 482 while (iommu_is_span_boundary(index, nslots, offset_slots, 483 max_slots)) { 484 index += stride; 485 if (index >= io_tlb_nslabs) 486 index = 0; 487 if (index == wrap) 488 goto not_found; 489 } 490 491 /* 492 * If we find a slot that indicates we have 'nslots' number of 493 * contiguous buffers, we allocate the buffers from that slot 494 * and mark the entries as '0' indicating unavailable. 495 */ 496 if (io_tlb_list[index] >= nslots) { 497 int count = 0; 498 499 for (i = index; i < (int) (index + nslots); i++) 500 io_tlb_list[i] = 0; 501 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 502 io_tlb_list[i] = ++count; 503 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 504 505 /* 506 * Update the indices to avoid searching in the next 507 * round. 508 */ 509 io_tlb_index = ((index + nslots) < io_tlb_nslabs 510 ? (index + nslots) : 0); 511 512 goto found; 513 } 514 index += stride; 515 if (index >= io_tlb_nslabs) 516 index = 0; 517 } while (index != wrap); 518 519 not_found: 520 spin_unlock_irqrestore(&io_tlb_lock, flags); 521 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 522 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); 523 return DMA_MAPPING_ERROR; 524 found: 525 spin_unlock_irqrestore(&io_tlb_lock, flags); 526 527 /* 528 * Save away the mapping from the original address to the DMA address. 529 * This is needed when we sync the memory. Then we sync the buffer if 530 * needed. 531 */ 532 for (i = 0; i < nslots; i++) 533 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 534 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 535 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 536 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); 537 538 return tlb_addr; 539 } 540 541 /* 542 * tlb_addr is the physical address of the bounce buffer to unmap. 543 */ 544 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 545 size_t size, enum dma_data_direction dir, 546 unsigned long attrs) 547 { 548 unsigned long flags; 549 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 550 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 551 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 552 553 /* 554 * First, sync the memory before unmapping the entry 555 */ 556 if (orig_addr != INVALID_PHYS_ADDR && 557 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 558 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 559 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); 560 561 /* 562 * Return the buffer to the free list by setting the corresponding 563 * entries to indicate the number of contiguous entries available. 564 * While returning the entries to the free list, we merge the entries 565 * with slots below and above the pool being returned. 566 */ 567 spin_lock_irqsave(&io_tlb_lock, flags); 568 { 569 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 570 io_tlb_list[index + nslots] : 0); 571 /* 572 * Step 1: return the slots to the free list, merging the 573 * slots with superceeding slots 574 */ 575 for (i = index + nslots - 1; i >= index; i--) { 576 io_tlb_list[i] = ++count; 577 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 578 } 579 /* 580 * Step 2: merge the returned slots with the preceding slots, 581 * if available (non zero) 582 */ 583 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 584 io_tlb_list[i] = ++count; 585 } 586 spin_unlock_irqrestore(&io_tlb_lock, flags); 587 } 588 589 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 590 size_t size, enum dma_data_direction dir, 591 enum dma_sync_target target) 592 { 593 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 594 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 595 596 if (orig_addr == INVALID_PHYS_ADDR) 597 return; 598 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 599 600 switch (target) { 601 case SYNC_FOR_CPU: 602 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 603 swiotlb_bounce(orig_addr, tlb_addr, 604 size, DMA_FROM_DEVICE); 605 else 606 BUG_ON(dir != DMA_TO_DEVICE); 607 break; 608 case SYNC_FOR_DEVICE: 609 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 610 swiotlb_bounce(orig_addr, tlb_addr, 611 size, DMA_TO_DEVICE); 612 else 613 BUG_ON(dir != DMA_FROM_DEVICE); 614 break; 615 default: 616 BUG(); 617 } 618 } 619 620 /* 621 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing 622 * to the device copy the data into it as well. 623 */ 624 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr, 625 size_t size, enum dma_data_direction dir, unsigned long attrs) 626 { 627 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force); 628 629 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { 630 dev_warn_ratelimited(dev, 631 "Cannot do DMA to address %pa\n", phys); 632 return false; 633 } 634 635 /* Oh well, have to allocate and map a bounce buffer. */ 636 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), 637 *phys, size, dir, attrs); 638 if (*phys == DMA_MAPPING_ERROR) 639 return false; 640 641 /* Ensure that the address returned is DMA'ble */ 642 *dma_addr = __phys_to_dma(dev, *phys); 643 if (unlikely(!dma_capable(dev, *dma_addr, size))) { 644 swiotlb_tbl_unmap_single(dev, *phys, size, dir, 645 attrs | DMA_ATTR_SKIP_CPU_SYNC); 646 return false; 647 } 648 649 return true; 650 } 651 652 /* 653 * Return whether the given device DMA address mask can be supported 654 * properly. For example, if your device can only drive the low 24-bits 655 * during bus mastering, then you would pass 0x00ffffff as the mask to 656 * this function. 657 */ 658 int 659 swiotlb_dma_supported(struct device *hwdev, u64 mask) 660 { 661 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; 662 } 663