1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/dma-direct.h> 25 #include <linux/dma-map-ops.h> 26 #include <linux/mm.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/string.h> 30 #include <linux/swiotlb.h> 31 #include <linux/pfn.h> 32 #include <linux/types.h> 33 #include <linux/ctype.h> 34 #include <linux/highmem.h> 35 #include <linux/gfp.h> 36 #include <linux/scatterlist.h> 37 #include <linux/mem_encrypt.h> 38 #include <linux/set_memory.h> 39 #ifdef CONFIG_DEBUG_FS 40 #include <linux/debugfs.h> 41 #endif 42 43 #include <asm/io.h> 44 #include <asm/dma.h> 45 46 #include <linux/init.h> 47 #include <linux/memblock.h> 48 #include <linux/iommu-helper.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/swiotlb.h> 52 53 #define OFFSET(val,align) ((unsigned long) \ 54 ( (val) & ( (align) - 1))) 55 56 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 57 58 /* 59 * Minimum IO TLB size to bother booting with. Systems with mainly 60 * 64bit capable cards will only lightly use the swiotlb. If we can't 61 * allocate a contiguous 1MB, we're probably in trouble anyway. 62 */ 63 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 64 65 enum swiotlb_force swiotlb_force; 66 67 /* 68 * Used to do a quick range check in swiotlb_tbl_unmap_single and 69 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 70 * API. 71 */ 72 phys_addr_t io_tlb_start, io_tlb_end; 73 74 /* 75 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 76 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 77 */ 78 static unsigned long io_tlb_nslabs; 79 80 /* 81 * The number of used IO TLB block 82 */ 83 static unsigned long io_tlb_used; 84 85 /* 86 * This is a free list describing the number of free entries available from 87 * each index 88 */ 89 static unsigned int *io_tlb_list; 90 static unsigned int io_tlb_index; 91 92 /* 93 * Max segment that we can provide which (if pages are contingous) will 94 * not be bounced (unless SWIOTLB_FORCE is set). 95 */ 96 static unsigned int max_segment; 97 98 /* 99 * We need to save away the original address corresponding to a mapped entry 100 * for the sync operations. 101 */ 102 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 103 static phys_addr_t *io_tlb_orig_addr; 104 105 /* 106 * Protect the above data structures in the map and unmap calls 107 */ 108 static DEFINE_SPINLOCK(io_tlb_lock); 109 110 static int late_alloc; 111 112 static int __init 113 setup_io_tlb_npages(char *str) 114 { 115 if (isdigit(*str)) { 116 io_tlb_nslabs = simple_strtoul(str, &str, 0); 117 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 118 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 119 } 120 if (*str == ',') 121 ++str; 122 if (!strcmp(str, "force")) { 123 swiotlb_force = SWIOTLB_FORCE; 124 } else if (!strcmp(str, "noforce")) { 125 swiotlb_force = SWIOTLB_NO_FORCE; 126 io_tlb_nslabs = 1; 127 } 128 129 return 0; 130 } 131 early_param("swiotlb", setup_io_tlb_npages); 132 133 static bool no_iotlb_memory; 134 135 unsigned long swiotlb_nr_tbl(void) 136 { 137 return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs; 138 } 139 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 140 141 unsigned int swiotlb_max_segment(void) 142 { 143 return unlikely(no_iotlb_memory) ? 0 : max_segment; 144 } 145 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 146 147 void swiotlb_set_max_segment(unsigned int val) 148 { 149 if (swiotlb_force == SWIOTLB_FORCE) 150 max_segment = 1; 151 else 152 max_segment = rounddown(val, PAGE_SIZE); 153 } 154 155 /* default to 64MB */ 156 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 157 unsigned long swiotlb_size_or_default(void) 158 { 159 unsigned long size; 160 161 size = io_tlb_nslabs << IO_TLB_SHIFT; 162 163 return size ? size : (IO_TLB_DEFAULT_SIZE); 164 } 165 166 void swiotlb_print_info(void) 167 { 168 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 169 170 if (no_iotlb_memory) { 171 pr_warn("No low mem\n"); 172 return; 173 } 174 175 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &io_tlb_start, &io_tlb_end, 176 bytes >> 20); 177 } 178 179 /* 180 * Early SWIOTLB allocation may be too early to allow an architecture to 181 * perform the desired operations. This function allows the architecture to 182 * call SWIOTLB when the operations are possible. It needs to be called 183 * before the SWIOTLB memory is used. 184 */ 185 void __init swiotlb_update_mem_attributes(void) 186 { 187 void *vaddr; 188 unsigned long bytes; 189 190 if (no_iotlb_memory || late_alloc) 191 return; 192 193 vaddr = phys_to_virt(io_tlb_start); 194 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 195 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 196 memset(vaddr, 0, bytes); 197 } 198 199 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 200 { 201 unsigned long i, bytes; 202 size_t alloc_size; 203 204 bytes = nslabs << IO_TLB_SHIFT; 205 206 io_tlb_nslabs = nslabs; 207 io_tlb_start = __pa(tlb); 208 io_tlb_end = io_tlb_start + bytes; 209 210 /* 211 * Allocate and initialize the free list array. This array is used 212 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 213 * between io_tlb_start and io_tlb_end. 214 */ 215 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int)); 216 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE); 217 if (!io_tlb_list) 218 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 219 __func__, alloc_size, PAGE_SIZE); 220 221 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)); 222 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE); 223 if (!io_tlb_orig_addr) 224 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 225 __func__, alloc_size, PAGE_SIZE); 226 227 for (i = 0; i < io_tlb_nslabs; i++) { 228 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 229 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 230 } 231 io_tlb_index = 0; 232 233 if (verbose) 234 swiotlb_print_info(); 235 236 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 237 return 0; 238 } 239 240 /* 241 * Statically reserve bounce buffer space and initialize bounce buffer data 242 * structures for the software IO TLB used to implement the DMA API. 243 */ 244 void __init 245 swiotlb_init(int verbose) 246 { 247 size_t default_size = IO_TLB_DEFAULT_SIZE; 248 unsigned char *vstart; 249 unsigned long bytes; 250 251 if (!io_tlb_nslabs) { 252 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 253 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 254 } 255 256 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 257 258 /* Get IO TLB memory from the low pages */ 259 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE); 260 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 261 return; 262 263 if (io_tlb_start) 264 memblock_free_early(io_tlb_start, 265 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 266 pr_warn("Cannot allocate buffer"); 267 no_iotlb_memory = true; 268 } 269 270 /* 271 * Systems with larger DMA zones (those that don't support ISA) can 272 * initialize the swiotlb later using the slab allocator if needed. 273 * This should be just like above, but with some error catching. 274 */ 275 int 276 swiotlb_late_init_with_default_size(size_t default_size) 277 { 278 unsigned long bytes, req_nslabs = io_tlb_nslabs; 279 unsigned char *vstart = NULL; 280 unsigned int order; 281 int rc = 0; 282 283 if (!io_tlb_nslabs) { 284 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 285 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 286 } 287 288 /* 289 * Get IO TLB memory from the low pages 290 */ 291 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 292 io_tlb_nslabs = SLABS_PER_PAGE << order; 293 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 294 295 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 296 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 297 order); 298 if (vstart) 299 break; 300 order--; 301 } 302 303 if (!vstart) { 304 io_tlb_nslabs = req_nslabs; 305 return -ENOMEM; 306 } 307 if (order != get_order(bytes)) { 308 pr_warn("only able to allocate %ld MB\n", 309 (PAGE_SIZE << order) >> 20); 310 io_tlb_nslabs = SLABS_PER_PAGE << order; 311 } 312 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 313 if (rc) 314 free_pages((unsigned long)vstart, order); 315 316 return rc; 317 } 318 319 static void swiotlb_cleanup(void) 320 { 321 io_tlb_end = 0; 322 io_tlb_start = 0; 323 io_tlb_nslabs = 0; 324 max_segment = 0; 325 } 326 327 int 328 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 329 { 330 unsigned long i, bytes; 331 332 bytes = nslabs << IO_TLB_SHIFT; 333 334 io_tlb_nslabs = nslabs; 335 io_tlb_start = virt_to_phys(tlb); 336 io_tlb_end = io_tlb_start + bytes; 337 338 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 339 memset(tlb, 0, bytes); 340 341 /* 342 * Allocate and initialize the free list array. This array is used 343 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 344 * between io_tlb_start and io_tlb_end. 345 */ 346 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 347 get_order(io_tlb_nslabs * sizeof(int))); 348 if (!io_tlb_list) 349 goto cleanup3; 350 351 io_tlb_orig_addr = (phys_addr_t *) 352 __get_free_pages(GFP_KERNEL, 353 get_order(io_tlb_nslabs * 354 sizeof(phys_addr_t))); 355 if (!io_tlb_orig_addr) 356 goto cleanup4; 357 358 for (i = 0; i < io_tlb_nslabs; i++) { 359 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 360 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 361 } 362 io_tlb_index = 0; 363 364 swiotlb_print_info(); 365 366 late_alloc = 1; 367 368 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 369 370 return 0; 371 372 cleanup4: 373 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 374 sizeof(int))); 375 io_tlb_list = NULL; 376 cleanup3: 377 swiotlb_cleanup(); 378 return -ENOMEM; 379 } 380 381 void __init swiotlb_exit(void) 382 { 383 if (!io_tlb_orig_addr) 384 return; 385 386 if (late_alloc) { 387 free_pages((unsigned long)io_tlb_orig_addr, 388 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 389 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 390 sizeof(int))); 391 free_pages((unsigned long)phys_to_virt(io_tlb_start), 392 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 393 } else { 394 memblock_free_late(__pa(io_tlb_orig_addr), 395 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 396 memblock_free_late(__pa(io_tlb_list), 397 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 398 memblock_free_late(io_tlb_start, 399 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 400 } 401 swiotlb_cleanup(); 402 } 403 404 /* 405 * Bounce: copy the swiotlb buffer from or back to the original dma location 406 */ 407 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 408 size_t size, enum dma_data_direction dir) 409 { 410 unsigned long pfn = PFN_DOWN(orig_addr); 411 unsigned char *vaddr = phys_to_virt(tlb_addr); 412 413 if (PageHighMem(pfn_to_page(pfn))) { 414 /* The buffer does not have a mapping. Map it in and copy */ 415 unsigned int offset = orig_addr & ~PAGE_MASK; 416 char *buffer; 417 unsigned int sz = 0; 418 unsigned long flags; 419 420 while (size) { 421 sz = min_t(size_t, PAGE_SIZE - offset, size); 422 423 local_irq_save(flags); 424 buffer = kmap_atomic(pfn_to_page(pfn)); 425 if (dir == DMA_TO_DEVICE) 426 memcpy(vaddr, buffer + offset, sz); 427 else 428 memcpy(buffer + offset, vaddr, sz); 429 kunmap_atomic(buffer); 430 local_irq_restore(flags); 431 432 size -= sz; 433 pfn++; 434 vaddr += sz; 435 offset = 0; 436 } 437 } else if (dir == DMA_TO_DEVICE) { 438 memcpy(vaddr, phys_to_virt(orig_addr), size); 439 } else { 440 memcpy(phys_to_virt(orig_addr), vaddr, size); 441 } 442 } 443 444 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 445 dma_addr_t tbl_dma_addr, 446 phys_addr_t orig_addr, 447 size_t mapping_size, 448 size_t alloc_size, 449 enum dma_data_direction dir, 450 unsigned long attrs) 451 { 452 unsigned long flags; 453 phys_addr_t tlb_addr; 454 unsigned int nslots, stride, index, wrap; 455 int i; 456 unsigned long mask; 457 unsigned long offset_slots; 458 unsigned long max_slots; 459 unsigned long tmp_io_tlb_used; 460 461 if (no_iotlb_memory) 462 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 463 464 if (mem_encrypt_active()) 465 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 466 467 if (mapping_size > alloc_size) { 468 dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 469 mapping_size, alloc_size); 470 return (phys_addr_t)DMA_MAPPING_ERROR; 471 } 472 473 mask = dma_get_seg_boundary(hwdev); 474 475 tbl_dma_addr &= mask; 476 477 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 478 479 /* 480 * Carefully handle integer overflow which can occur when mask == ~0UL. 481 */ 482 max_slots = mask + 1 483 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 484 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 485 486 /* 487 * For mappings greater than or equal to a page, we limit the stride 488 * (and hence alignment) to a page size. 489 */ 490 nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 491 if (alloc_size >= PAGE_SIZE) 492 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 493 else 494 stride = 1; 495 496 BUG_ON(!nslots); 497 498 /* 499 * Find suitable number of IO TLB entries size that will fit this 500 * request and allocate a buffer from that IO TLB pool. 501 */ 502 spin_lock_irqsave(&io_tlb_lock, flags); 503 504 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) 505 goto not_found; 506 507 index = ALIGN(io_tlb_index, stride); 508 if (index >= io_tlb_nslabs) 509 index = 0; 510 wrap = index; 511 512 do { 513 while (iommu_is_span_boundary(index, nslots, offset_slots, 514 max_slots)) { 515 index += stride; 516 if (index >= io_tlb_nslabs) 517 index = 0; 518 if (index == wrap) 519 goto not_found; 520 } 521 522 /* 523 * If we find a slot that indicates we have 'nslots' number of 524 * contiguous buffers, we allocate the buffers from that slot 525 * and mark the entries as '0' indicating unavailable. 526 */ 527 if (io_tlb_list[index] >= nslots) { 528 int count = 0; 529 530 for (i = index; i < (int) (index + nslots); i++) 531 io_tlb_list[i] = 0; 532 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 533 io_tlb_list[i] = ++count; 534 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 535 536 /* 537 * Update the indices to avoid searching in the next 538 * round. 539 */ 540 io_tlb_index = ((index + nslots) < io_tlb_nslabs 541 ? (index + nslots) : 0); 542 543 goto found; 544 } 545 index += stride; 546 if (index >= io_tlb_nslabs) 547 index = 0; 548 } while (index != wrap); 549 550 not_found: 551 tmp_io_tlb_used = io_tlb_used; 552 553 spin_unlock_irqrestore(&io_tlb_lock, flags); 554 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 555 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 556 alloc_size, io_tlb_nslabs, tmp_io_tlb_used); 557 return (phys_addr_t)DMA_MAPPING_ERROR; 558 found: 559 io_tlb_used += nslots; 560 spin_unlock_irqrestore(&io_tlb_lock, flags); 561 562 /* 563 * Save away the mapping from the original address to the DMA address. 564 * This is needed when we sync the memory. Then we sync the buffer if 565 * needed. 566 */ 567 for (i = 0; i < nslots; i++) 568 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 569 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 570 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 571 swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE); 572 573 return tlb_addr; 574 } 575 576 /* 577 * tlb_addr is the physical address of the bounce buffer to unmap. 578 */ 579 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 580 size_t mapping_size, size_t alloc_size, 581 enum dma_data_direction dir, unsigned long attrs) 582 { 583 unsigned long flags; 584 int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 585 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 586 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 587 588 /* 589 * First, sync the memory before unmapping the entry 590 */ 591 if (orig_addr != INVALID_PHYS_ADDR && 592 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 593 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 594 swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE); 595 596 /* 597 * Return the buffer to the free list by setting the corresponding 598 * entries to indicate the number of contiguous entries available. 599 * While returning the entries to the free list, we merge the entries 600 * with slots below and above the pool being returned. 601 */ 602 spin_lock_irqsave(&io_tlb_lock, flags); 603 { 604 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 605 io_tlb_list[index + nslots] : 0); 606 /* 607 * Step 1: return the slots to the free list, merging the 608 * slots with superceeding slots 609 */ 610 for (i = index + nslots - 1; i >= index; i--) { 611 io_tlb_list[i] = ++count; 612 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 613 } 614 /* 615 * Step 2: merge the returned slots with the preceding slots, 616 * if available (non zero) 617 */ 618 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 619 io_tlb_list[i] = ++count; 620 621 io_tlb_used -= nslots; 622 } 623 spin_unlock_irqrestore(&io_tlb_lock, flags); 624 } 625 626 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 627 size_t size, enum dma_data_direction dir, 628 enum dma_sync_target target) 629 { 630 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 631 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 632 633 if (orig_addr == INVALID_PHYS_ADDR) 634 return; 635 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 636 637 switch (target) { 638 case SYNC_FOR_CPU: 639 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 640 swiotlb_bounce(orig_addr, tlb_addr, 641 size, DMA_FROM_DEVICE); 642 else 643 BUG_ON(dir != DMA_TO_DEVICE); 644 break; 645 case SYNC_FOR_DEVICE: 646 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 647 swiotlb_bounce(orig_addr, tlb_addr, 648 size, DMA_TO_DEVICE); 649 else 650 BUG_ON(dir != DMA_FROM_DEVICE); 651 break; 652 default: 653 BUG(); 654 } 655 } 656 657 /* 658 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 659 * to the device copy the data into it as well. 660 */ 661 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 662 enum dma_data_direction dir, unsigned long attrs) 663 { 664 phys_addr_t swiotlb_addr; 665 dma_addr_t dma_addr; 666 667 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size, 668 swiotlb_force); 669 670 swiotlb_addr = swiotlb_tbl_map_single(dev, 671 phys_to_dma_unencrypted(dev, io_tlb_start), 672 paddr, size, size, dir, attrs); 673 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 674 return DMA_MAPPING_ERROR; 675 676 /* Ensure that the address returned is DMA'ble */ 677 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 678 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 679 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, size, dir, 680 attrs | DMA_ATTR_SKIP_CPU_SYNC); 681 dev_WARN_ONCE(dev, 1, 682 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 683 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 684 return DMA_MAPPING_ERROR; 685 } 686 687 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 688 arch_sync_dma_for_device(swiotlb_addr, size, dir); 689 return dma_addr; 690 } 691 692 size_t swiotlb_max_mapping_size(struct device *dev) 693 { 694 return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE; 695 } 696 697 bool is_swiotlb_active(void) 698 { 699 /* 700 * When SWIOTLB is initialized, even if io_tlb_start points to physical 701 * address zero, io_tlb_end surely doesn't. 702 */ 703 return io_tlb_end != 0; 704 } 705 706 #ifdef CONFIG_DEBUG_FS 707 708 static int __init swiotlb_create_debugfs(void) 709 { 710 struct dentry *root; 711 712 root = debugfs_create_dir("swiotlb", NULL); 713 debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs); 714 debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used); 715 return 0; 716 } 717 718 late_initcall(swiotlb_create_debugfs); 719 720 #endif 721