1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/dma-direct.h> 25 #include <linux/mm.h> 26 #include <linux/export.h> 27 #include <linux/spinlock.h> 28 #include <linux/string.h> 29 #include <linux/swiotlb.h> 30 #include <linux/pfn.h> 31 #include <linux/types.h> 32 #include <linux/ctype.h> 33 #include <linux/highmem.h> 34 #include <linux/gfp.h> 35 #include <linux/scatterlist.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/set_memory.h> 38 #ifdef CONFIG_DEBUG_FS 39 #include <linux/debugfs.h> 40 #endif 41 42 #include <asm/io.h> 43 #include <asm/dma.h> 44 45 #include <linux/init.h> 46 #include <linux/memblock.h> 47 #include <linux/iommu-helper.h> 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/swiotlb.h> 51 52 #define OFFSET(val,align) ((unsigned long) \ 53 ( (val) & ( (align) - 1))) 54 55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 56 57 /* 58 * Minimum IO TLB size to bother booting with. Systems with mainly 59 * 64bit capable cards will only lightly use the swiotlb. If we can't 60 * allocate a contiguous 1MB, we're probably in trouble anyway. 61 */ 62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 63 64 enum swiotlb_force swiotlb_force; 65 66 /* 67 * Used to do a quick range check in swiotlb_tbl_unmap_single and 68 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 69 * API. 70 */ 71 phys_addr_t io_tlb_start, io_tlb_end; 72 73 /* 74 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 75 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 76 */ 77 static unsigned long io_tlb_nslabs; 78 79 /* 80 * The number of used IO TLB block 81 */ 82 static unsigned long io_tlb_used; 83 84 /* 85 * This is a free list describing the number of free entries available from 86 * each index 87 */ 88 static unsigned int *io_tlb_list; 89 static unsigned int io_tlb_index; 90 91 /* 92 * Max segment that we can provide which (if pages are contingous) will 93 * not be bounced (unless SWIOTLB_FORCE is set). 94 */ 95 unsigned int max_segment; 96 97 /* 98 * We need to save away the original address corresponding to a mapped entry 99 * for the sync operations. 100 */ 101 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 102 static phys_addr_t *io_tlb_orig_addr; 103 104 /* 105 * Protect the above data structures in the map and unmap calls 106 */ 107 static DEFINE_SPINLOCK(io_tlb_lock); 108 109 static int late_alloc; 110 111 static int __init 112 setup_io_tlb_npages(char *str) 113 { 114 if (isdigit(*str)) { 115 io_tlb_nslabs = simple_strtoul(str, &str, 0); 116 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 117 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 118 } 119 if (*str == ',') 120 ++str; 121 if (!strcmp(str, "force")) { 122 swiotlb_force = SWIOTLB_FORCE; 123 } else if (!strcmp(str, "noforce")) { 124 swiotlb_force = SWIOTLB_NO_FORCE; 125 io_tlb_nslabs = 1; 126 } 127 128 return 0; 129 } 130 early_param("swiotlb", setup_io_tlb_npages); 131 132 static bool no_iotlb_memory; 133 134 unsigned long swiotlb_nr_tbl(void) 135 { 136 return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs; 137 } 138 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 139 140 unsigned int swiotlb_max_segment(void) 141 { 142 return unlikely(no_iotlb_memory) ? 0 : max_segment; 143 } 144 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 145 146 void swiotlb_set_max_segment(unsigned int val) 147 { 148 if (swiotlb_force == SWIOTLB_FORCE) 149 max_segment = 1; 150 else 151 max_segment = rounddown(val, PAGE_SIZE); 152 } 153 154 /* default to 64MB */ 155 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 156 unsigned long swiotlb_size_or_default(void) 157 { 158 unsigned long size; 159 160 size = io_tlb_nslabs << IO_TLB_SHIFT; 161 162 return size ? size : (IO_TLB_DEFAULT_SIZE); 163 } 164 165 void swiotlb_print_info(void) 166 { 167 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 168 169 if (no_iotlb_memory) { 170 pr_warn("No low mem\n"); 171 return; 172 } 173 174 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", 175 (unsigned long long)io_tlb_start, 176 (unsigned long long)io_tlb_end, 177 bytes >> 20); 178 } 179 180 /* 181 * Early SWIOTLB allocation may be too early to allow an architecture to 182 * perform the desired operations. This function allows the architecture to 183 * call SWIOTLB when the operations are possible. It needs to be called 184 * before the SWIOTLB memory is used. 185 */ 186 void __init swiotlb_update_mem_attributes(void) 187 { 188 void *vaddr; 189 unsigned long bytes; 190 191 if (no_iotlb_memory || late_alloc) 192 return; 193 194 vaddr = phys_to_virt(io_tlb_start); 195 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 196 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 197 memset(vaddr, 0, bytes); 198 } 199 200 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 201 { 202 unsigned long i, bytes; 203 size_t alloc_size; 204 205 bytes = nslabs << IO_TLB_SHIFT; 206 207 io_tlb_nslabs = nslabs; 208 io_tlb_start = __pa(tlb); 209 io_tlb_end = io_tlb_start + bytes; 210 211 /* 212 * Allocate and initialize the free list array. This array is used 213 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 214 * between io_tlb_start and io_tlb_end. 215 */ 216 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int)); 217 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE); 218 if (!io_tlb_list) 219 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 220 __func__, alloc_size, PAGE_SIZE); 221 222 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)); 223 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE); 224 if (!io_tlb_orig_addr) 225 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 226 __func__, alloc_size, PAGE_SIZE); 227 228 for (i = 0; i < io_tlb_nslabs; i++) { 229 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 230 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 231 } 232 io_tlb_index = 0; 233 234 if (verbose) 235 swiotlb_print_info(); 236 237 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 238 return 0; 239 } 240 241 /* 242 * Statically reserve bounce buffer space and initialize bounce buffer data 243 * structures for the software IO TLB used to implement the DMA API. 244 */ 245 void __init 246 swiotlb_init(int verbose) 247 { 248 size_t default_size = IO_TLB_DEFAULT_SIZE; 249 unsigned char *vstart; 250 unsigned long bytes; 251 252 if (!io_tlb_nslabs) { 253 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 254 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 255 } 256 257 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 258 259 /* Get IO TLB memory from the low pages */ 260 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE); 261 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 262 return; 263 264 if (io_tlb_start) 265 memblock_free_early(io_tlb_start, 266 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 267 pr_warn("Cannot allocate buffer"); 268 no_iotlb_memory = true; 269 } 270 271 /* 272 * Systems with larger DMA zones (those that don't support ISA) can 273 * initialize the swiotlb later using the slab allocator if needed. 274 * This should be just like above, but with some error catching. 275 */ 276 int 277 swiotlb_late_init_with_default_size(size_t default_size) 278 { 279 unsigned long bytes, req_nslabs = io_tlb_nslabs; 280 unsigned char *vstart = NULL; 281 unsigned int order; 282 int rc = 0; 283 284 if (!io_tlb_nslabs) { 285 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 286 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 287 } 288 289 /* 290 * Get IO TLB memory from the low pages 291 */ 292 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 293 io_tlb_nslabs = SLABS_PER_PAGE << order; 294 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 295 296 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 297 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 298 order); 299 if (vstart) 300 break; 301 order--; 302 } 303 304 if (!vstart) { 305 io_tlb_nslabs = req_nslabs; 306 return -ENOMEM; 307 } 308 if (order != get_order(bytes)) { 309 pr_warn("only able to allocate %ld MB\n", 310 (PAGE_SIZE << order) >> 20); 311 io_tlb_nslabs = SLABS_PER_PAGE << order; 312 } 313 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 314 if (rc) 315 free_pages((unsigned long)vstart, order); 316 317 return rc; 318 } 319 320 static void swiotlb_cleanup(void) 321 { 322 io_tlb_end = 0; 323 io_tlb_start = 0; 324 io_tlb_nslabs = 0; 325 max_segment = 0; 326 } 327 328 int 329 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 330 { 331 unsigned long i, bytes; 332 333 bytes = nslabs << IO_TLB_SHIFT; 334 335 io_tlb_nslabs = nslabs; 336 io_tlb_start = virt_to_phys(tlb); 337 io_tlb_end = io_tlb_start + bytes; 338 339 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 340 memset(tlb, 0, bytes); 341 342 /* 343 * Allocate and initialize the free list array. This array is used 344 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 345 * between io_tlb_start and io_tlb_end. 346 */ 347 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 348 get_order(io_tlb_nslabs * sizeof(int))); 349 if (!io_tlb_list) 350 goto cleanup3; 351 352 io_tlb_orig_addr = (phys_addr_t *) 353 __get_free_pages(GFP_KERNEL, 354 get_order(io_tlb_nslabs * 355 sizeof(phys_addr_t))); 356 if (!io_tlb_orig_addr) 357 goto cleanup4; 358 359 for (i = 0; i < io_tlb_nslabs; i++) { 360 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 361 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 362 } 363 io_tlb_index = 0; 364 365 swiotlb_print_info(); 366 367 late_alloc = 1; 368 369 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 370 371 return 0; 372 373 cleanup4: 374 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 375 sizeof(int))); 376 io_tlb_list = NULL; 377 cleanup3: 378 swiotlb_cleanup(); 379 return -ENOMEM; 380 } 381 382 void __init swiotlb_exit(void) 383 { 384 if (!io_tlb_orig_addr) 385 return; 386 387 if (late_alloc) { 388 free_pages((unsigned long)io_tlb_orig_addr, 389 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 390 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 391 sizeof(int))); 392 free_pages((unsigned long)phys_to_virt(io_tlb_start), 393 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 394 } else { 395 memblock_free_late(__pa(io_tlb_orig_addr), 396 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 397 memblock_free_late(__pa(io_tlb_list), 398 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 399 memblock_free_late(io_tlb_start, 400 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 401 } 402 swiotlb_cleanup(); 403 } 404 405 /* 406 * Bounce: copy the swiotlb buffer from or back to the original dma location 407 */ 408 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 409 size_t size, enum dma_data_direction dir) 410 { 411 unsigned long pfn = PFN_DOWN(orig_addr); 412 unsigned char *vaddr = phys_to_virt(tlb_addr); 413 414 if (PageHighMem(pfn_to_page(pfn))) { 415 /* The buffer does not have a mapping. Map it in and copy */ 416 unsigned int offset = orig_addr & ~PAGE_MASK; 417 char *buffer; 418 unsigned int sz = 0; 419 unsigned long flags; 420 421 while (size) { 422 sz = min_t(size_t, PAGE_SIZE - offset, size); 423 424 local_irq_save(flags); 425 buffer = kmap_atomic(pfn_to_page(pfn)); 426 if (dir == DMA_TO_DEVICE) 427 memcpy(vaddr, buffer + offset, sz); 428 else 429 memcpy(buffer + offset, vaddr, sz); 430 kunmap_atomic(buffer); 431 local_irq_restore(flags); 432 433 size -= sz; 434 pfn++; 435 vaddr += sz; 436 offset = 0; 437 } 438 } else if (dir == DMA_TO_DEVICE) { 439 memcpy(vaddr, phys_to_virt(orig_addr), size); 440 } else { 441 memcpy(phys_to_virt(orig_addr), vaddr, size); 442 } 443 } 444 445 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 446 dma_addr_t tbl_dma_addr, 447 phys_addr_t orig_addr, 448 size_t mapping_size, 449 size_t alloc_size, 450 enum dma_data_direction dir, 451 unsigned long attrs) 452 { 453 unsigned long flags; 454 phys_addr_t tlb_addr; 455 unsigned int nslots, stride, index, wrap; 456 int i; 457 unsigned long mask; 458 unsigned long offset_slots; 459 unsigned long max_slots; 460 unsigned long tmp_io_tlb_used; 461 462 if (no_iotlb_memory) 463 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 464 465 if (mem_encrypt_active()) 466 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 467 468 if (mapping_size > alloc_size) { 469 dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 470 mapping_size, alloc_size); 471 return (phys_addr_t)DMA_MAPPING_ERROR; 472 } 473 474 mask = dma_get_seg_boundary(hwdev); 475 476 tbl_dma_addr &= mask; 477 478 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 479 480 /* 481 * Carefully handle integer overflow which can occur when mask == ~0UL. 482 */ 483 max_slots = mask + 1 484 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 485 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 486 487 /* 488 * For mappings greater than or equal to a page, we limit the stride 489 * (and hence alignment) to a page size. 490 */ 491 nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 492 if (alloc_size >= PAGE_SIZE) 493 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 494 else 495 stride = 1; 496 497 BUG_ON(!nslots); 498 499 /* 500 * Find suitable number of IO TLB entries size that will fit this 501 * request and allocate a buffer from that IO TLB pool. 502 */ 503 spin_lock_irqsave(&io_tlb_lock, flags); 504 505 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) 506 goto not_found; 507 508 index = ALIGN(io_tlb_index, stride); 509 if (index >= io_tlb_nslabs) 510 index = 0; 511 wrap = index; 512 513 do { 514 while (iommu_is_span_boundary(index, nslots, offset_slots, 515 max_slots)) { 516 index += stride; 517 if (index >= io_tlb_nslabs) 518 index = 0; 519 if (index == wrap) 520 goto not_found; 521 } 522 523 /* 524 * If we find a slot that indicates we have 'nslots' number of 525 * contiguous buffers, we allocate the buffers from that slot 526 * and mark the entries as '0' indicating unavailable. 527 */ 528 if (io_tlb_list[index] >= nslots) { 529 int count = 0; 530 531 for (i = index; i < (int) (index + nslots); i++) 532 io_tlb_list[i] = 0; 533 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 534 io_tlb_list[i] = ++count; 535 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 536 537 /* 538 * Update the indices to avoid searching in the next 539 * round. 540 */ 541 io_tlb_index = ((index + nslots) < io_tlb_nslabs 542 ? (index + nslots) : 0); 543 544 goto found; 545 } 546 index += stride; 547 if (index >= io_tlb_nslabs) 548 index = 0; 549 } while (index != wrap); 550 551 not_found: 552 tmp_io_tlb_used = io_tlb_used; 553 554 spin_unlock_irqrestore(&io_tlb_lock, flags); 555 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 556 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 557 alloc_size, io_tlb_nslabs, tmp_io_tlb_used); 558 return (phys_addr_t)DMA_MAPPING_ERROR; 559 found: 560 io_tlb_used += nslots; 561 spin_unlock_irqrestore(&io_tlb_lock, flags); 562 563 /* 564 * Save away the mapping from the original address to the DMA address. 565 * This is needed when we sync the memory. Then we sync the buffer if 566 * needed. 567 */ 568 for (i = 0; i < nslots; i++) 569 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 570 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 571 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 572 swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE); 573 574 return tlb_addr; 575 } 576 577 /* 578 * tlb_addr is the physical address of the bounce buffer to unmap. 579 */ 580 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 581 size_t mapping_size, size_t alloc_size, 582 enum dma_data_direction dir, unsigned long attrs) 583 { 584 unsigned long flags; 585 int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 586 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 587 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 588 589 /* 590 * First, sync the memory before unmapping the entry 591 */ 592 if (orig_addr != INVALID_PHYS_ADDR && 593 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 594 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 595 swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE); 596 597 /* 598 * Return the buffer to the free list by setting the corresponding 599 * entries to indicate the number of contiguous entries available. 600 * While returning the entries to the free list, we merge the entries 601 * with slots below and above the pool being returned. 602 */ 603 spin_lock_irqsave(&io_tlb_lock, flags); 604 { 605 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 606 io_tlb_list[index + nslots] : 0); 607 /* 608 * Step 1: return the slots to the free list, merging the 609 * slots with superceeding slots 610 */ 611 for (i = index + nslots - 1; i >= index; i--) { 612 io_tlb_list[i] = ++count; 613 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 614 } 615 /* 616 * Step 2: merge the returned slots with the preceding slots, 617 * if available (non zero) 618 */ 619 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 620 io_tlb_list[i] = ++count; 621 622 io_tlb_used -= nslots; 623 } 624 spin_unlock_irqrestore(&io_tlb_lock, flags); 625 } 626 627 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 628 size_t size, enum dma_data_direction dir, 629 enum dma_sync_target target) 630 { 631 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 632 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 633 634 if (orig_addr == INVALID_PHYS_ADDR) 635 return; 636 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 637 638 switch (target) { 639 case SYNC_FOR_CPU: 640 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 641 swiotlb_bounce(orig_addr, tlb_addr, 642 size, DMA_FROM_DEVICE); 643 else 644 BUG_ON(dir != DMA_TO_DEVICE); 645 break; 646 case SYNC_FOR_DEVICE: 647 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 648 swiotlb_bounce(orig_addr, tlb_addr, 649 size, DMA_TO_DEVICE); 650 else 651 BUG_ON(dir != DMA_FROM_DEVICE); 652 break; 653 default: 654 BUG(); 655 } 656 } 657 658 /* 659 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing 660 * to the device copy the data into it as well. 661 */ 662 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr, 663 size_t size, enum dma_data_direction dir, unsigned long attrs) 664 { 665 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force); 666 667 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { 668 dev_warn_ratelimited(dev, 669 "Cannot do DMA to address %pa\n", phys); 670 return false; 671 } 672 673 /* Oh well, have to allocate and map a bounce buffer. */ 674 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), 675 *phys, size, size, dir, attrs); 676 if (*phys == (phys_addr_t)DMA_MAPPING_ERROR) 677 return false; 678 679 /* Ensure that the address returned is DMA'ble */ 680 *dma_addr = __phys_to_dma(dev, *phys); 681 if (unlikely(!dma_capable(dev, *dma_addr, size, true))) { 682 swiotlb_tbl_unmap_single(dev, *phys, size, size, dir, 683 attrs | DMA_ATTR_SKIP_CPU_SYNC); 684 return false; 685 } 686 687 return true; 688 } 689 690 size_t swiotlb_max_mapping_size(struct device *dev) 691 { 692 return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE; 693 } 694 695 bool is_swiotlb_active(void) 696 { 697 /* 698 * When SWIOTLB is initialized, even if io_tlb_start points to physical 699 * address zero, io_tlb_end surely doesn't. 700 */ 701 return io_tlb_end != 0; 702 } 703 704 #ifdef CONFIG_DEBUG_FS 705 706 static int __init swiotlb_create_debugfs(void) 707 { 708 struct dentry *root; 709 710 root = debugfs_create_dir("swiotlb", NULL); 711 debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs); 712 debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used); 713 return 0; 714 } 715 716 late_initcall(swiotlb_create_debugfs); 717 718 #endif 719