xref: /openbmc/linux/kernel/dma/swiotlb.c (revision 83946783)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/mm.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pfn.h>
32 #include <linux/types.h>
33 #include <linux/ctype.h>
34 #include <linux/highmem.h>
35 #include <linux/gfp.h>
36 #include <linux/scatterlist.h>
37 #include <linux/cc_platform.h>
38 #include <linux/set_memory.h>
39 #ifdef CONFIG_DEBUG_FS
40 #include <linux/debugfs.h>
41 #endif
42 #ifdef CONFIG_DMA_RESTRICTED_POOL
43 #include <linux/io.h>
44 #include <linux/of.h>
45 #include <linux/of_fdt.h>
46 #include <linux/of_reserved_mem.h>
47 #include <linux/slab.h>
48 #endif
49 
50 #include <asm/io.h>
51 #include <asm/dma.h>
52 
53 #include <linux/init.h>
54 #include <linux/memblock.h>
55 #include <linux/iommu-helper.h>
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/swiotlb.h>
59 
60 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
61 
62 /*
63  * Minimum IO TLB size to bother booting with.  Systems with mainly
64  * 64bit capable cards will only lightly use the swiotlb.  If we can't
65  * allocate a contiguous 1MB, we're probably in trouble anyway.
66  */
67 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
68 
69 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
70 
71 enum swiotlb_force swiotlb_force;
72 
73 struct io_tlb_mem io_tlb_default_mem;
74 
75 /*
76  * Max segment that we can provide which (if pages are contingous) will
77  * not be bounced (unless SWIOTLB_FORCE is set).
78  */
79 static unsigned int max_segment;
80 
81 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
82 
83 static int __init
84 setup_io_tlb_npages(char *str)
85 {
86 	if (isdigit(*str)) {
87 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
88 		default_nslabs =
89 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
90 	}
91 	if (*str == ',')
92 		++str;
93 	if (!strcmp(str, "force"))
94 		swiotlb_force = SWIOTLB_FORCE;
95 	else if (!strcmp(str, "noforce"))
96 		swiotlb_force = SWIOTLB_NO_FORCE;
97 
98 	return 0;
99 }
100 early_param("swiotlb", setup_io_tlb_npages);
101 
102 unsigned int swiotlb_max_segment(void)
103 {
104 	return io_tlb_default_mem.nslabs ? max_segment : 0;
105 }
106 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
107 
108 void swiotlb_set_max_segment(unsigned int val)
109 {
110 	if (swiotlb_force == SWIOTLB_FORCE)
111 		max_segment = 1;
112 	else
113 		max_segment = rounddown(val, PAGE_SIZE);
114 }
115 
116 unsigned long swiotlb_size_or_default(void)
117 {
118 	return default_nslabs << IO_TLB_SHIFT;
119 }
120 
121 void __init swiotlb_adjust_size(unsigned long size)
122 {
123 	/*
124 	 * If swiotlb parameter has not been specified, give a chance to
125 	 * architectures such as those supporting memory encryption to
126 	 * adjust/expand SWIOTLB size for their use.
127 	 */
128 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
129 		return;
130 	size = ALIGN(size, IO_TLB_SIZE);
131 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
132 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
133 }
134 
135 void swiotlb_print_info(void)
136 {
137 	struct io_tlb_mem *mem = &io_tlb_default_mem;
138 
139 	if (!mem->nslabs) {
140 		pr_warn("No low mem\n");
141 		return;
142 	}
143 
144 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
145 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
146 }
147 
148 static inline unsigned long io_tlb_offset(unsigned long val)
149 {
150 	return val & (IO_TLB_SEGSIZE - 1);
151 }
152 
153 static inline unsigned long nr_slots(u64 val)
154 {
155 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
156 }
157 
158 /*
159  * Early SWIOTLB allocation may be too early to allow an architecture to
160  * perform the desired operations.  This function allows the architecture to
161  * call SWIOTLB when the operations are possible.  It needs to be called
162  * before the SWIOTLB memory is used.
163  */
164 void __init swiotlb_update_mem_attributes(void)
165 {
166 	struct io_tlb_mem *mem = &io_tlb_default_mem;
167 	void *vaddr;
168 	unsigned long bytes;
169 
170 	if (!mem->nslabs || mem->late_alloc)
171 		return;
172 	vaddr = phys_to_virt(mem->start);
173 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
174 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
175 	memset(vaddr, 0, bytes);
176 }
177 
178 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
179 				    unsigned long nslabs, bool late_alloc)
180 {
181 	void *vaddr = phys_to_virt(start);
182 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
183 
184 	mem->nslabs = nslabs;
185 	mem->start = start;
186 	mem->end = mem->start + bytes;
187 	mem->index = 0;
188 	mem->late_alloc = late_alloc;
189 
190 	if (swiotlb_force == SWIOTLB_FORCE)
191 		mem->force_bounce = true;
192 
193 	spin_lock_init(&mem->lock);
194 	for (i = 0; i < mem->nslabs; i++) {
195 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
196 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
197 		mem->slots[i].alloc_size = 0;
198 	}
199 	memset(vaddr, 0, bytes);
200 }
201 
202 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
203 {
204 	struct io_tlb_mem *mem = &io_tlb_default_mem;
205 	size_t alloc_size;
206 
207 	if (swiotlb_force == SWIOTLB_NO_FORCE)
208 		return 0;
209 
210 	/* protect against double initialization */
211 	if (WARN_ON_ONCE(mem->nslabs))
212 		return -ENOMEM;
213 
214 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
215 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
216 	if (!mem->slots)
217 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
218 		      __func__, alloc_size, PAGE_SIZE);
219 
220 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
221 
222 	if (verbose)
223 		swiotlb_print_info();
224 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
225 	return 0;
226 }
227 
228 /*
229  * Statically reserve bounce buffer space and initialize bounce buffer data
230  * structures for the software IO TLB used to implement the DMA API.
231  */
232 void  __init
233 swiotlb_init(int verbose)
234 {
235 	size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
236 	void *tlb;
237 
238 	if (swiotlb_force == SWIOTLB_NO_FORCE)
239 		return;
240 
241 	/* Get IO TLB memory from the low pages */
242 	tlb = memblock_alloc_low(bytes, PAGE_SIZE);
243 	if (!tlb)
244 		goto fail;
245 	if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
246 		goto fail_free_mem;
247 	return;
248 
249 fail_free_mem:
250 	memblock_free(tlb, bytes);
251 fail:
252 	pr_warn("Cannot allocate buffer");
253 }
254 
255 /*
256  * Systems with larger DMA zones (those that don't support ISA) can
257  * initialize the swiotlb later using the slab allocator if needed.
258  * This should be just like above, but with some error catching.
259  */
260 int
261 swiotlb_late_init_with_default_size(size_t default_size)
262 {
263 	unsigned long nslabs =
264 		ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
265 	unsigned long bytes;
266 	unsigned char *vstart = NULL;
267 	unsigned int order;
268 	int rc = 0;
269 
270 	if (swiotlb_force == SWIOTLB_NO_FORCE)
271 		return 0;
272 
273 	/*
274 	 * Get IO TLB memory from the low pages
275 	 */
276 	order = get_order(nslabs << IO_TLB_SHIFT);
277 	nslabs = SLABS_PER_PAGE << order;
278 	bytes = nslabs << IO_TLB_SHIFT;
279 
280 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
281 		vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
282 						  order);
283 		if (vstart)
284 			break;
285 		order--;
286 	}
287 
288 	if (!vstart)
289 		return -ENOMEM;
290 
291 	if (order != get_order(bytes)) {
292 		pr_warn("only able to allocate %ld MB\n",
293 			(PAGE_SIZE << order) >> 20);
294 		nslabs = SLABS_PER_PAGE << order;
295 	}
296 	rc = swiotlb_late_init_with_tbl(vstart, nslabs);
297 	if (rc)
298 		free_pages((unsigned long)vstart, order);
299 
300 	return rc;
301 }
302 
303 int
304 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
305 {
306 	struct io_tlb_mem *mem = &io_tlb_default_mem;
307 	unsigned long bytes = nslabs << IO_TLB_SHIFT;
308 
309 	if (swiotlb_force == SWIOTLB_NO_FORCE)
310 		return 0;
311 
312 	/* protect against double initialization */
313 	if (WARN_ON_ONCE(mem->nslabs))
314 		return -ENOMEM;
315 
316 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
317 		get_order(array_size(sizeof(*mem->slots), nslabs)));
318 	if (!mem->slots)
319 		return -ENOMEM;
320 
321 	set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
322 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
323 
324 	swiotlb_print_info();
325 	swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
326 	return 0;
327 }
328 
329 void __init swiotlb_exit(void)
330 {
331 	struct io_tlb_mem *mem = &io_tlb_default_mem;
332 	unsigned long tbl_vaddr;
333 	size_t tbl_size, slots_size;
334 
335 	if (!mem->nslabs)
336 		return;
337 
338 	pr_info("tearing down default memory pool\n");
339 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
340 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
341 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
342 
343 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
344 	if (mem->late_alloc) {
345 		free_pages(tbl_vaddr, get_order(tbl_size));
346 		free_pages((unsigned long)mem->slots, get_order(slots_size));
347 	} else {
348 		memblock_free_late(mem->start, tbl_size);
349 		memblock_free_late(__pa(mem->slots), slots_size);
350 	}
351 
352 	memset(mem, 0, sizeof(*mem));
353 }
354 
355 /*
356  * Return the offset into a iotlb slot required to keep the device happy.
357  */
358 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
359 {
360 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
361 }
362 
363 /*
364  * Bounce: copy the swiotlb buffer from or back to the original dma location
365  */
366 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
367 			   enum dma_data_direction dir)
368 {
369 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
370 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
371 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
372 	size_t alloc_size = mem->slots[index].alloc_size;
373 	unsigned long pfn = PFN_DOWN(orig_addr);
374 	unsigned char *vaddr = phys_to_virt(tlb_addr);
375 	unsigned int tlb_offset, orig_addr_offset;
376 
377 	if (orig_addr == INVALID_PHYS_ADDR)
378 		return;
379 
380 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
381 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
382 	if (tlb_offset < orig_addr_offset) {
383 		dev_WARN_ONCE(dev, 1,
384 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
385 			orig_addr_offset, tlb_offset);
386 		return;
387 	}
388 
389 	tlb_offset -= orig_addr_offset;
390 	if (tlb_offset > alloc_size) {
391 		dev_WARN_ONCE(dev, 1,
392 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
393 			alloc_size, size, tlb_offset);
394 		return;
395 	}
396 
397 	orig_addr += tlb_offset;
398 	alloc_size -= tlb_offset;
399 
400 	if (size > alloc_size) {
401 		dev_WARN_ONCE(dev, 1,
402 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
403 			alloc_size, size);
404 		size = alloc_size;
405 	}
406 
407 	if (PageHighMem(pfn_to_page(pfn))) {
408 		/* The buffer does not have a mapping.  Map it in and copy */
409 		unsigned int offset = orig_addr & ~PAGE_MASK;
410 		char *buffer;
411 		unsigned int sz = 0;
412 		unsigned long flags;
413 
414 		while (size) {
415 			sz = min_t(size_t, PAGE_SIZE - offset, size);
416 
417 			local_irq_save(flags);
418 			buffer = kmap_atomic(pfn_to_page(pfn));
419 			if (dir == DMA_TO_DEVICE)
420 				memcpy(vaddr, buffer + offset, sz);
421 			else
422 				memcpy(buffer + offset, vaddr, sz);
423 			kunmap_atomic(buffer);
424 			local_irq_restore(flags);
425 
426 			size -= sz;
427 			pfn++;
428 			vaddr += sz;
429 			offset = 0;
430 		}
431 	} else if (dir == DMA_TO_DEVICE) {
432 		memcpy(vaddr, phys_to_virt(orig_addr), size);
433 	} else {
434 		memcpy(phys_to_virt(orig_addr), vaddr, size);
435 	}
436 }
437 
438 #define slot_addr(start, idx)	((start) + ((idx) << IO_TLB_SHIFT))
439 
440 /*
441  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
442  */
443 static inline unsigned long get_max_slots(unsigned long boundary_mask)
444 {
445 	if (boundary_mask == ~0UL)
446 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
447 	return nr_slots(boundary_mask + 1);
448 }
449 
450 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
451 {
452 	if (index >= mem->nslabs)
453 		return 0;
454 	return index;
455 }
456 
457 /*
458  * Find a suitable number of IO TLB entries size that will fit this request and
459  * allocate a buffer from that IO TLB pool.
460  */
461 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
462 			      size_t alloc_size, unsigned int alloc_align_mask)
463 {
464 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
465 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
466 	dma_addr_t tbl_dma_addr =
467 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
468 	unsigned long max_slots = get_max_slots(boundary_mask);
469 	unsigned int iotlb_align_mask =
470 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
471 	unsigned int nslots = nr_slots(alloc_size), stride;
472 	unsigned int index, wrap, count = 0, i;
473 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
474 	unsigned long flags;
475 
476 	BUG_ON(!nslots);
477 
478 	/*
479 	 * For mappings with an alignment requirement don't bother looping to
480 	 * unaligned slots once we found an aligned one.  For allocations of
481 	 * PAGE_SIZE or larger only look for page aligned allocations.
482 	 */
483 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
484 	if (alloc_size >= PAGE_SIZE)
485 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
486 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
487 
488 	spin_lock_irqsave(&mem->lock, flags);
489 	if (unlikely(nslots > mem->nslabs - mem->used))
490 		goto not_found;
491 
492 	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
493 	do {
494 		if (orig_addr &&
495 		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
496 			    (orig_addr & iotlb_align_mask)) {
497 			index = wrap_index(mem, index + 1);
498 			continue;
499 		}
500 
501 		/*
502 		 * If we find a slot that indicates we have 'nslots' number of
503 		 * contiguous buffers, we allocate the buffers from that slot
504 		 * and mark the entries as '0' indicating unavailable.
505 		 */
506 		if (!iommu_is_span_boundary(index, nslots,
507 					    nr_slots(tbl_dma_addr),
508 					    max_slots)) {
509 			if (mem->slots[index].list >= nslots)
510 				goto found;
511 		}
512 		index = wrap_index(mem, index + stride);
513 	} while (index != wrap);
514 
515 not_found:
516 	spin_unlock_irqrestore(&mem->lock, flags);
517 	return -1;
518 
519 found:
520 	for (i = index; i < index + nslots; i++) {
521 		mem->slots[i].list = 0;
522 		mem->slots[i].alloc_size =
523 			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
524 	}
525 	for (i = index - 1;
526 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
527 	     mem->slots[i].list; i--)
528 		mem->slots[i].list = ++count;
529 
530 	/*
531 	 * Update the indices to avoid searching in the next round.
532 	 */
533 	if (index + nslots < mem->nslabs)
534 		mem->index = index + nslots;
535 	else
536 		mem->index = 0;
537 	mem->used += nslots;
538 
539 	spin_unlock_irqrestore(&mem->lock, flags);
540 	return index;
541 }
542 
543 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
544 		size_t mapping_size, size_t alloc_size,
545 		unsigned int alloc_align_mask, enum dma_data_direction dir,
546 		unsigned long attrs)
547 {
548 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
549 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
550 	unsigned int i;
551 	int index;
552 	phys_addr_t tlb_addr;
553 
554 	if (!mem)
555 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
556 
557 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
558 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
559 
560 	if (mapping_size > alloc_size) {
561 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
562 			      mapping_size, alloc_size);
563 		return (phys_addr_t)DMA_MAPPING_ERROR;
564 	}
565 
566 	index = swiotlb_find_slots(dev, orig_addr,
567 				   alloc_size + offset, alloc_align_mask);
568 	if (index == -1) {
569 		if (!(attrs & DMA_ATTR_NO_WARN))
570 			dev_warn_ratelimited(dev,
571 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
572 				 alloc_size, mem->nslabs, mem->used);
573 		return (phys_addr_t)DMA_MAPPING_ERROR;
574 	}
575 
576 	/*
577 	 * Save away the mapping from the original address to the DMA address.
578 	 * This is needed when we sync the memory.  Then we sync the buffer if
579 	 * needed.
580 	 */
581 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
582 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
583 	tlb_addr = slot_addr(mem->start, index) + offset;
584 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
585 	    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
586 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
587 	return tlb_addr;
588 }
589 
590 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
591 {
592 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
593 	unsigned long flags;
594 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
595 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
596 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
597 	int count, i;
598 
599 	/*
600 	 * Return the buffer to the free list by setting the corresponding
601 	 * entries to indicate the number of contiguous entries available.
602 	 * While returning the entries to the free list, we merge the entries
603 	 * with slots below and above the pool being returned.
604 	 */
605 	spin_lock_irqsave(&mem->lock, flags);
606 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
607 		count = mem->slots[index + nslots].list;
608 	else
609 		count = 0;
610 
611 	/*
612 	 * Step 1: return the slots to the free list, merging the slots with
613 	 * superceeding slots
614 	 */
615 	for (i = index + nslots - 1; i >= index; i--) {
616 		mem->slots[i].list = ++count;
617 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
618 		mem->slots[i].alloc_size = 0;
619 	}
620 
621 	/*
622 	 * Step 2: merge the returned slots with the preceding slots, if
623 	 * available (non zero)
624 	 */
625 	for (i = index - 1;
626 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
627 	     i--)
628 		mem->slots[i].list = ++count;
629 	mem->used -= nslots;
630 	spin_unlock_irqrestore(&mem->lock, flags);
631 }
632 
633 /*
634  * tlb_addr is the physical address of the bounce buffer to unmap.
635  */
636 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
637 			      size_t mapping_size, enum dma_data_direction dir,
638 			      unsigned long attrs)
639 {
640 	/*
641 	 * First, sync the memory before unmapping the entry
642 	 */
643 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
644 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
645 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
646 
647 	swiotlb_release_slots(dev, tlb_addr);
648 }
649 
650 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
651 		size_t size, enum dma_data_direction dir)
652 {
653 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
654 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
655 	else
656 		BUG_ON(dir != DMA_FROM_DEVICE);
657 }
658 
659 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
660 		size_t size, enum dma_data_direction dir)
661 {
662 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
663 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
664 	else
665 		BUG_ON(dir != DMA_TO_DEVICE);
666 }
667 
668 /*
669  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
670  * to the device copy the data into it as well.
671  */
672 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
673 		enum dma_data_direction dir, unsigned long attrs)
674 {
675 	phys_addr_t swiotlb_addr;
676 	dma_addr_t dma_addr;
677 
678 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
679 			      swiotlb_force);
680 
681 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
682 			attrs);
683 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
684 		return DMA_MAPPING_ERROR;
685 
686 	/* Ensure that the address returned is DMA'ble */
687 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
688 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
689 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
690 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
691 		dev_WARN_ONCE(dev, 1,
692 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
693 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
694 		return DMA_MAPPING_ERROR;
695 	}
696 
697 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
698 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
699 	return dma_addr;
700 }
701 
702 size_t swiotlb_max_mapping_size(struct device *dev)
703 {
704 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
705 }
706 
707 bool is_swiotlb_active(struct device *dev)
708 {
709 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
710 
711 	return mem && mem->nslabs;
712 }
713 EXPORT_SYMBOL_GPL(is_swiotlb_active);
714 
715 #ifdef CONFIG_DEBUG_FS
716 static struct dentry *debugfs_dir;
717 
718 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
719 {
720 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
721 	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
722 }
723 
724 static int __init swiotlb_create_default_debugfs(void)
725 {
726 	struct io_tlb_mem *mem = &io_tlb_default_mem;
727 
728 	debugfs_dir = debugfs_create_dir("swiotlb", NULL);
729 	if (mem->nslabs) {
730 		mem->debugfs = debugfs_dir;
731 		swiotlb_create_debugfs_files(mem);
732 	}
733 	return 0;
734 }
735 
736 late_initcall(swiotlb_create_default_debugfs);
737 
738 #endif
739 
740 #ifdef CONFIG_DMA_RESTRICTED_POOL
741 
742 #ifdef CONFIG_DEBUG_FS
743 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
744 {
745 	struct io_tlb_mem *mem = rmem->priv;
746 
747 	mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
748 	swiotlb_create_debugfs_files(mem);
749 }
750 #else
751 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
752 {
753 }
754 #endif
755 
756 struct page *swiotlb_alloc(struct device *dev, size_t size)
757 {
758 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
759 	phys_addr_t tlb_addr;
760 	int index;
761 
762 	if (!mem)
763 		return NULL;
764 
765 	index = swiotlb_find_slots(dev, 0, size, 0);
766 	if (index == -1)
767 		return NULL;
768 
769 	tlb_addr = slot_addr(mem->start, index);
770 
771 	return pfn_to_page(PFN_DOWN(tlb_addr));
772 }
773 
774 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
775 {
776 	phys_addr_t tlb_addr = page_to_phys(page);
777 
778 	if (!is_swiotlb_buffer(dev, tlb_addr))
779 		return false;
780 
781 	swiotlb_release_slots(dev, tlb_addr);
782 
783 	return true;
784 }
785 
786 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
787 				    struct device *dev)
788 {
789 	struct io_tlb_mem *mem = rmem->priv;
790 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
791 
792 	/*
793 	 * Since multiple devices can share the same pool, the private data,
794 	 * io_tlb_mem struct, will be initialized by the first device attached
795 	 * to it.
796 	 */
797 	if (!mem) {
798 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
799 		if (!mem)
800 			return -ENOMEM;
801 
802 		mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
803 				     GFP_KERNEL);
804 		if (!mem->slots) {
805 			kfree(mem);
806 			return -ENOMEM;
807 		}
808 
809 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
810 				     rmem->size >> PAGE_SHIFT);
811 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
812 		mem->force_bounce = true;
813 		mem->for_alloc = true;
814 
815 		rmem->priv = mem;
816 
817 		rmem_swiotlb_debugfs_init(rmem);
818 	}
819 
820 	dev->dma_io_tlb_mem = mem;
821 
822 	return 0;
823 }
824 
825 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
826 					struct device *dev)
827 {
828 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
829 }
830 
831 static const struct reserved_mem_ops rmem_swiotlb_ops = {
832 	.device_init = rmem_swiotlb_device_init,
833 	.device_release = rmem_swiotlb_device_release,
834 };
835 
836 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
837 {
838 	unsigned long node = rmem->fdt_node;
839 
840 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
841 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
842 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
843 	    of_get_flat_dt_prop(node, "no-map", NULL))
844 		return -EINVAL;
845 
846 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
847 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
848 		return -EINVAL;
849 	}
850 
851 	rmem->ops = &rmem_swiotlb_ops;
852 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
853 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
854 	return 0;
855 }
856 
857 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
858 #endif /* CONFIG_DMA_RESTRICTED_POOL */
859