1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/scatterlist.h> 39 #include <linux/set_memory.h> 40 #include <linux/spinlock.h> 41 #include <linux/string.h> 42 #include <linux/swiotlb.h> 43 #include <linux/types.h> 44 #ifdef CONFIG_DMA_RESTRICTED_POOL 45 #include <linux/of.h> 46 #include <linux/of_fdt.h> 47 #include <linux/of_reserved_mem.h> 48 #include <linux/slab.h> 49 #endif 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/swiotlb.h> 53 54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 55 56 /* 57 * Minimum IO TLB size to bother booting with. Systems with mainly 58 * 64bit capable cards will only lightly use the swiotlb. If we can't 59 * allocate a contiguous 1MB, we're probably in trouble anyway. 60 */ 61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 62 63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 64 65 struct io_tlb_slot { 66 phys_addr_t orig_addr; 67 size_t alloc_size; 68 unsigned int list; 69 }; 70 71 static bool swiotlb_force_bounce; 72 static bool swiotlb_force_disable; 73 74 struct io_tlb_mem io_tlb_default_mem; 75 76 phys_addr_t swiotlb_unencrypted_base; 77 78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 79 static unsigned long default_nareas; 80 81 /** 82 * struct io_tlb_area - IO TLB memory area descriptor 83 * 84 * This is a single area with a single lock. 85 * 86 * @used: The number of used IO TLB block. 87 * @index: The slot index to start searching in this area for next round. 88 * @lock: The lock to protect the above data structures in the map and 89 * unmap calls. 90 */ 91 struct io_tlb_area { 92 unsigned long used; 93 unsigned int index; 94 spinlock_t lock; 95 }; 96 97 /* 98 * Round up number of slabs to the next power of 2. The last area is going 99 * be smaller than the rest if default_nslabs is not power of two. 100 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 101 * otherwise a segment may span two or more areas. It conflicts with free 102 * contiguous slots tracking: free slots are treated contiguous no matter 103 * whether they cross an area boundary. 104 * 105 * Return true if default_nslabs is rounded up. 106 */ 107 static bool round_up_default_nslabs(void) 108 { 109 if (!default_nareas) 110 return false; 111 112 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 113 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 114 else if (is_power_of_2(default_nslabs)) 115 return false; 116 default_nslabs = roundup_pow_of_two(default_nslabs); 117 return true; 118 } 119 120 static void swiotlb_adjust_nareas(unsigned int nareas) 121 { 122 /* use a single area when non is specified */ 123 if (!nareas) 124 nareas = 1; 125 else if (!is_power_of_2(nareas)) 126 nareas = roundup_pow_of_two(nareas); 127 128 default_nareas = nareas; 129 130 pr_info("area num %d.\n", nareas); 131 if (round_up_default_nslabs()) 132 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 133 (default_nslabs << IO_TLB_SHIFT) >> 20); 134 } 135 136 static int __init 137 setup_io_tlb_npages(char *str) 138 { 139 if (isdigit(*str)) { 140 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 141 default_nslabs = 142 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 143 } 144 if (*str == ',') 145 ++str; 146 if (isdigit(*str)) 147 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 148 if (*str == ',') 149 ++str; 150 if (!strcmp(str, "force")) 151 swiotlb_force_bounce = true; 152 else if (!strcmp(str, "noforce")) 153 swiotlb_force_disable = true; 154 155 return 0; 156 } 157 early_param("swiotlb", setup_io_tlb_npages); 158 159 unsigned int swiotlb_max_segment(void) 160 { 161 if (!io_tlb_default_mem.nslabs) 162 return 0; 163 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE); 164 } 165 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 166 167 unsigned long swiotlb_size_or_default(void) 168 { 169 return default_nslabs << IO_TLB_SHIFT; 170 } 171 172 void __init swiotlb_adjust_size(unsigned long size) 173 { 174 /* 175 * If swiotlb parameter has not been specified, give a chance to 176 * architectures such as those supporting memory encryption to 177 * adjust/expand SWIOTLB size for their use. 178 */ 179 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 180 return; 181 182 size = ALIGN(size, IO_TLB_SIZE); 183 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 184 if (round_up_default_nslabs()) 185 size = default_nslabs << IO_TLB_SHIFT; 186 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 187 } 188 189 void swiotlb_print_info(void) 190 { 191 struct io_tlb_mem *mem = &io_tlb_default_mem; 192 193 if (!mem->nslabs) { 194 pr_warn("No low mem\n"); 195 return; 196 } 197 198 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 199 (mem->nslabs << IO_TLB_SHIFT) >> 20); 200 } 201 202 static inline unsigned long io_tlb_offset(unsigned long val) 203 { 204 return val & (IO_TLB_SEGSIZE - 1); 205 } 206 207 static inline unsigned long nr_slots(u64 val) 208 { 209 return DIV_ROUND_UP(val, IO_TLB_SIZE); 210 } 211 212 /* 213 * Remap swioltb memory in the unencrypted physical address space 214 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP 215 * Isolation VMs). 216 */ 217 #ifdef CONFIG_HAS_IOMEM 218 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 219 { 220 void *vaddr = NULL; 221 222 if (swiotlb_unencrypted_base) { 223 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base; 224 225 vaddr = memremap(paddr, bytes, MEMREMAP_WB); 226 if (!vaddr) 227 pr_err("Failed to map the unencrypted memory %pa size %lx.\n", 228 &paddr, bytes); 229 } 230 231 return vaddr; 232 } 233 #else 234 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 235 { 236 return NULL; 237 } 238 #endif 239 240 /* 241 * Early SWIOTLB allocation may be too early to allow an architecture to 242 * perform the desired operations. This function allows the architecture to 243 * call SWIOTLB when the operations are possible. It needs to be called 244 * before the SWIOTLB memory is used. 245 */ 246 void __init swiotlb_update_mem_attributes(void) 247 { 248 struct io_tlb_mem *mem = &io_tlb_default_mem; 249 void *vaddr; 250 unsigned long bytes; 251 252 if (!mem->nslabs || mem->late_alloc) 253 return; 254 vaddr = phys_to_virt(mem->start); 255 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 256 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 257 258 mem->vaddr = swiotlb_mem_remap(mem, bytes); 259 if (!mem->vaddr) 260 mem->vaddr = vaddr; 261 } 262 263 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, 264 unsigned long nslabs, unsigned int flags, 265 bool late_alloc, unsigned int nareas) 266 { 267 void *vaddr = phys_to_virt(start); 268 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 269 270 mem->nslabs = nslabs; 271 mem->start = start; 272 mem->end = mem->start + bytes; 273 mem->late_alloc = late_alloc; 274 mem->nareas = nareas; 275 mem->area_nslabs = nslabs / mem->nareas; 276 277 mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 278 279 for (i = 0; i < mem->nareas; i++) { 280 spin_lock_init(&mem->areas[i].lock); 281 mem->areas[i].index = 0; 282 mem->areas[i].used = 0; 283 } 284 285 for (i = 0; i < mem->nslabs; i++) { 286 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 287 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 288 mem->slots[i].alloc_size = 0; 289 } 290 291 /* 292 * If swiotlb_unencrypted_base is set, the bounce buffer memory will 293 * be remapped and cleared in swiotlb_update_mem_attributes. 294 */ 295 if (swiotlb_unencrypted_base) 296 return; 297 298 memset(vaddr, 0, bytes); 299 mem->vaddr = vaddr; 300 return; 301 } 302 303 /* 304 * Statically reserve bounce buffer space and initialize bounce buffer data 305 * structures for the software IO TLB used to implement the DMA API. 306 */ 307 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 308 int (*remap)(void *tlb, unsigned long nslabs)) 309 { 310 struct io_tlb_mem *mem = &io_tlb_default_mem; 311 unsigned long nslabs; 312 size_t alloc_size; 313 size_t bytes; 314 void *tlb; 315 316 if (!addressing_limit && !swiotlb_force_bounce) 317 return; 318 if (swiotlb_force_disable) 319 return; 320 321 /* 322 * default_nslabs maybe changed when adjust area number. 323 * So allocate bounce buffer after adjusting area number. 324 */ 325 if (!default_nareas) 326 swiotlb_adjust_nareas(num_possible_cpus()); 327 328 nslabs = default_nslabs; 329 /* 330 * By default allocate the bounce buffer memory from low memory, but 331 * allow to pick a location everywhere for hypervisors with guest 332 * memory encryption. 333 */ 334 retry: 335 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 336 if (flags & SWIOTLB_ANY) 337 tlb = memblock_alloc(bytes, PAGE_SIZE); 338 else 339 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 340 if (!tlb) { 341 pr_warn("%s: failed to allocate tlb structure\n", __func__); 342 return; 343 } 344 345 if (remap && remap(tlb, nslabs) < 0) { 346 memblock_free(tlb, PAGE_ALIGN(bytes)); 347 348 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 349 if (nslabs >= IO_TLB_MIN_SLABS) 350 goto retry; 351 352 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); 353 return; 354 } 355 356 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 357 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 358 if (!mem->slots) { 359 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", 360 __func__, alloc_size, PAGE_SIZE); 361 return; 362 } 363 364 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 365 default_nareas), SMP_CACHE_BYTES); 366 if (!mem->areas) { 367 pr_warn("%s: Failed to allocate mem->areas.\n", __func__); 368 return; 369 } 370 371 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false, 372 default_nareas); 373 374 if (flags & SWIOTLB_VERBOSE) 375 swiotlb_print_info(); 376 } 377 378 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 379 { 380 swiotlb_init_remap(addressing_limit, flags, NULL); 381 } 382 383 /* 384 * Systems with larger DMA zones (those that don't support ISA) can 385 * initialize the swiotlb later using the slab allocator if needed. 386 * This should be just like above, but with some error catching. 387 */ 388 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 389 int (*remap)(void *tlb, unsigned long nslabs)) 390 { 391 struct io_tlb_mem *mem = &io_tlb_default_mem; 392 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 393 unsigned char *vstart = NULL; 394 unsigned int order, area_order; 395 bool retried = false; 396 int rc = 0; 397 398 if (swiotlb_force_disable) 399 return 0; 400 401 retry: 402 order = get_order(nslabs << IO_TLB_SHIFT); 403 nslabs = SLABS_PER_PAGE << order; 404 405 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 406 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 407 order); 408 if (vstart) 409 break; 410 order--; 411 nslabs = SLABS_PER_PAGE << order; 412 retried = true; 413 } 414 415 if (!vstart) 416 return -ENOMEM; 417 418 if (remap) 419 rc = remap(vstart, nslabs); 420 if (rc) { 421 free_pages((unsigned long)vstart, order); 422 423 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 424 if (nslabs < IO_TLB_MIN_SLABS) 425 return rc; 426 retried = true; 427 goto retry; 428 } 429 430 if (retried) { 431 pr_warn("only able to allocate %ld MB\n", 432 (PAGE_SIZE << order) >> 20); 433 } 434 435 if (!default_nareas) 436 swiotlb_adjust_nareas(num_possible_cpus()); 437 438 area_order = get_order(array_size(sizeof(*mem->areas), 439 default_nareas)); 440 mem->areas = (struct io_tlb_area *) 441 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 442 if (!mem->areas) 443 goto error_area; 444 445 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 446 get_order(array_size(sizeof(*mem->slots), nslabs))); 447 if (!mem->slots) 448 goto error_slots; 449 450 set_memory_decrypted((unsigned long)vstart, 451 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 452 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true, 453 default_nareas); 454 455 swiotlb_print_info(); 456 return 0; 457 458 error_slots: 459 free_pages((unsigned long)mem->areas, area_order); 460 error_area: 461 free_pages((unsigned long)vstart, order); 462 return -ENOMEM; 463 } 464 465 void __init swiotlb_exit(void) 466 { 467 struct io_tlb_mem *mem = &io_tlb_default_mem; 468 unsigned long tbl_vaddr; 469 size_t tbl_size, slots_size; 470 unsigned int area_order; 471 472 if (swiotlb_force_bounce) 473 return; 474 475 if (!mem->nslabs) 476 return; 477 478 pr_info("tearing down default memory pool\n"); 479 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 480 tbl_size = PAGE_ALIGN(mem->end - mem->start); 481 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 482 483 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 484 if (mem->late_alloc) { 485 area_order = get_order(array_size(sizeof(*mem->areas), 486 mem->nareas)); 487 free_pages((unsigned long)mem->areas, area_order); 488 free_pages(tbl_vaddr, get_order(tbl_size)); 489 free_pages((unsigned long)mem->slots, get_order(slots_size)); 490 } else { 491 memblock_free_late(__pa(mem->areas), 492 array_size(sizeof(*mem->areas), mem->nareas)); 493 memblock_free_late(mem->start, tbl_size); 494 memblock_free_late(__pa(mem->slots), slots_size); 495 } 496 497 memset(mem, 0, sizeof(*mem)); 498 } 499 500 /* 501 * Return the offset into a iotlb slot required to keep the device happy. 502 */ 503 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 504 { 505 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 506 } 507 508 /* 509 * Bounce: copy the swiotlb buffer from or back to the original dma location 510 */ 511 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 512 enum dma_data_direction dir) 513 { 514 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 515 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 516 phys_addr_t orig_addr = mem->slots[index].orig_addr; 517 size_t alloc_size = mem->slots[index].alloc_size; 518 unsigned long pfn = PFN_DOWN(orig_addr); 519 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 520 unsigned int tlb_offset, orig_addr_offset; 521 522 if (orig_addr == INVALID_PHYS_ADDR) 523 return; 524 525 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 526 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 527 if (tlb_offset < orig_addr_offset) { 528 dev_WARN_ONCE(dev, 1, 529 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 530 orig_addr_offset, tlb_offset); 531 return; 532 } 533 534 tlb_offset -= orig_addr_offset; 535 if (tlb_offset > alloc_size) { 536 dev_WARN_ONCE(dev, 1, 537 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 538 alloc_size, size, tlb_offset); 539 return; 540 } 541 542 orig_addr += tlb_offset; 543 alloc_size -= tlb_offset; 544 545 if (size > alloc_size) { 546 dev_WARN_ONCE(dev, 1, 547 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 548 alloc_size, size); 549 size = alloc_size; 550 } 551 552 if (PageHighMem(pfn_to_page(pfn))) { 553 unsigned int offset = orig_addr & ~PAGE_MASK; 554 struct page *page; 555 unsigned int sz = 0; 556 unsigned long flags; 557 558 while (size) { 559 sz = min_t(size_t, PAGE_SIZE - offset, size); 560 561 local_irq_save(flags); 562 page = pfn_to_page(pfn); 563 if (dir == DMA_TO_DEVICE) 564 memcpy_from_page(vaddr, page, offset, sz); 565 else 566 memcpy_to_page(page, offset, vaddr, sz); 567 local_irq_restore(flags); 568 569 size -= sz; 570 pfn++; 571 vaddr += sz; 572 offset = 0; 573 } 574 } else if (dir == DMA_TO_DEVICE) { 575 memcpy(vaddr, phys_to_virt(orig_addr), size); 576 } else { 577 memcpy(phys_to_virt(orig_addr), vaddr, size); 578 } 579 } 580 581 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) 582 { 583 return start + (idx << IO_TLB_SHIFT); 584 } 585 586 /* 587 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 588 */ 589 static inline unsigned long get_max_slots(unsigned long boundary_mask) 590 { 591 if (boundary_mask == ~0UL) 592 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 593 return nr_slots(boundary_mask + 1); 594 } 595 596 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index) 597 { 598 if (index >= mem->area_nslabs) 599 return 0; 600 return index; 601 } 602 603 /* 604 * Find a suitable number of IO TLB entries size that will fit this request and 605 * allocate a buffer from that IO TLB pool. 606 */ 607 static int swiotlb_do_find_slots(struct device *dev, int area_index, 608 phys_addr_t orig_addr, size_t alloc_size, 609 unsigned int alloc_align_mask) 610 { 611 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 612 struct io_tlb_area *area = mem->areas + area_index; 613 unsigned long boundary_mask = dma_get_seg_boundary(dev); 614 dma_addr_t tbl_dma_addr = 615 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; 616 unsigned long max_slots = get_max_slots(boundary_mask); 617 unsigned int iotlb_align_mask = 618 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); 619 unsigned int nslots = nr_slots(alloc_size), stride; 620 unsigned int index, wrap, count = 0, i; 621 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 622 unsigned long flags; 623 unsigned int slot_base; 624 unsigned int slot_index; 625 626 BUG_ON(!nslots); 627 BUG_ON(area_index >= mem->nareas); 628 629 /* 630 * For mappings with an alignment requirement don't bother looping to 631 * unaligned slots once we found an aligned one. For allocations of 632 * PAGE_SIZE or larger only look for page aligned allocations. 633 */ 634 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 635 if (alloc_size >= PAGE_SIZE) 636 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); 637 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); 638 639 spin_lock_irqsave(&area->lock, flags); 640 if (unlikely(nslots > mem->area_nslabs - area->used)) 641 goto not_found; 642 643 slot_base = area_index * mem->area_nslabs; 644 index = wrap = wrap_area_index(mem, ALIGN(area->index, stride)); 645 646 do { 647 slot_index = slot_base + index; 648 649 if (orig_addr && 650 (slot_addr(tbl_dma_addr, slot_index) & 651 iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { 652 index = wrap_area_index(mem, index + 1); 653 continue; 654 } 655 656 /* 657 * If we find a slot that indicates we have 'nslots' number of 658 * contiguous buffers, we allocate the buffers from that slot 659 * and mark the entries as '0' indicating unavailable. 660 */ 661 if (!iommu_is_span_boundary(slot_index, nslots, 662 nr_slots(tbl_dma_addr), 663 max_slots)) { 664 if (mem->slots[slot_index].list >= nslots) 665 goto found; 666 } 667 index = wrap_area_index(mem, index + stride); 668 } while (index != wrap); 669 670 not_found: 671 spin_unlock_irqrestore(&area->lock, flags); 672 return -1; 673 674 found: 675 for (i = slot_index; i < slot_index + nslots; i++) { 676 mem->slots[i].list = 0; 677 mem->slots[i].alloc_size = alloc_size - (offset + 678 ((i - slot_index) << IO_TLB_SHIFT)); 679 } 680 for (i = slot_index - 1; 681 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 682 mem->slots[i].list; i--) 683 mem->slots[i].list = ++count; 684 685 /* 686 * Update the indices to avoid searching in the next round. 687 */ 688 if (index + nslots < mem->area_nslabs) 689 area->index = index + nslots; 690 else 691 area->index = 0; 692 area->used += nslots; 693 spin_unlock_irqrestore(&area->lock, flags); 694 return slot_index; 695 } 696 697 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 698 size_t alloc_size, unsigned int alloc_align_mask) 699 { 700 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 701 int start = raw_smp_processor_id() & (mem->nareas - 1); 702 int i = start, index; 703 704 do { 705 index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size, 706 alloc_align_mask); 707 if (index >= 0) 708 return index; 709 if (++i >= mem->nareas) 710 i = 0; 711 } while (i != start); 712 713 return -1; 714 } 715 716 static unsigned long mem_used(struct io_tlb_mem *mem) 717 { 718 int i; 719 unsigned long used = 0; 720 721 for (i = 0; i < mem->nareas; i++) 722 used += mem->areas[i].used; 723 return used; 724 } 725 726 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 727 size_t mapping_size, size_t alloc_size, 728 unsigned int alloc_align_mask, enum dma_data_direction dir, 729 unsigned long attrs) 730 { 731 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 732 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 733 unsigned int i; 734 int index; 735 phys_addr_t tlb_addr; 736 737 if (!mem || !mem->nslabs) { 738 dev_warn_ratelimited(dev, 739 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 740 return (phys_addr_t)DMA_MAPPING_ERROR; 741 } 742 743 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 744 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 745 746 if (mapping_size > alloc_size) { 747 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 748 mapping_size, alloc_size); 749 return (phys_addr_t)DMA_MAPPING_ERROR; 750 } 751 752 index = swiotlb_find_slots(dev, orig_addr, 753 alloc_size + offset, alloc_align_mask); 754 if (index == -1) { 755 if (!(attrs & DMA_ATTR_NO_WARN)) 756 dev_warn_ratelimited(dev, 757 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 758 alloc_size, mem->nslabs, mem_used(mem)); 759 return (phys_addr_t)DMA_MAPPING_ERROR; 760 } 761 762 /* 763 * Save away the mapping from the original address to the DMA address. 764 * This is needed when we sync the memory. Then we sync the buffer if 765 * needed. 766 */ 767 for (i = 0; i < nr_slots(alloc_size + offset); i++) 768 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); 769 tlb_addr = slot_addr(mem->start, index) + offset; 770 /* 771 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 772 * to the tlb buffer, if we knew for sure the device will 773 * overwrite the entire current content. But we don't. Thus 774 * unconditional bounce may prevent leaking swiotlb content (i.e. 775 * kernel memory) to user-space. 776 */ 777 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 778 return tlb_addr; 779 } 780 781 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 782 { 783 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 784 unsigned long flags; 785 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 786 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 787 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 788 int aindex = index / mem->area_nslabs; 789 struct io_tlb_area *area = &mem->areas[aindex]; 790 int count, i; 791 792 /* 793 * Return the buffer to the free list by setting the corresponding 794 * entries to indicate the number of contiguous entries available. 795 * While returning the entries to the free list, we merge the entries 796 * with slots below and above the pool being returned. 797 */ 798 BUG_ON(aindex >= mem->nareas); 799 800 spin_lock_irqsave(&area->lock, flags); 801 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 802 count = mem->slots[index + nslots].list; 803 else 804 count = 0; 805 806 /* 807 * Step 1: return the slots to the free list, merging the slots with 808 * superceeding slots 809 */ 810 for (i = index + nslots - 1; i >= index; i--) { 811 mem->slots[i].list = ++count; 812 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 813 mem->slots[i].alloc_size = 0; 814 } 815 816 /* 817 * Step 2: merge the returned slots with the preceding slots, if 818 * available (non zero) 819 */ 820 for (i = index - 1; 821 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 822 i--) 823 mem->slots[i].list = ++count; 824 area->used -= nslots; 825 spin_unlock_irqrestore(&area->lock, flags); 826 } 827 828 /* 829 * tlb_addr is the physical address of the bounce buffer to unmap. 830 */ 831 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 832 size_t mapping_size, enum dma_data_direction dir, 833 unsigned long attrs) 834 { 835 /* 836 * First, sync the memory before unmapping the entry 837 */ 838 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 839 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 840 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 841 842 swiotlb_release_slots(dev, tlb_addr); 843 } 844 845 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 846 size_t size, enum dma_data_direction dir) 847 { 848 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 849 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 850 else 851 BUG_ON(dir != DMA_FROM_DEVICE); 852 } 853 854 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 855 size_t size, enum dma_data_direction dir) 856 { 857 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 858 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 859 else 860 BUG_ON(dir != DMA_TO_DEVICE); 861 } 862 863 /* 864 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 865 * to the device copy the data into it as well. 866 */ 867 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 868 enum dma_data_direction dir, unsigned long attrs) 869 { 870 phys_addr_t swiotlb_addr; 871 dma_addr_t dma_addr; 872 873 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 874 875 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 876 attrs); 877 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 878 return DMA_MAPPING_ERROR; 879 880 /* Ensure that the address returned is DMA'ble */ 881 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 882 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 883 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 884 attrs | DMA_ATTR_SKIP_CPU_SYNC); 885 dev_WARN_ONCE(dev, 1, 886 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 887 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 888 return DMA_MAPPING_ERROR; 889 } 890 891 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 892 arch_sync_dma_for_device(swiotlb_addr, size, dir); 893 return dma_addr; 894 } 895 896 size_t swiotlb_max_mapping_size(struct device *dev) 897 { 898 int min_align_mask = dma_get_min_align_mask(dev); 899 int min_align = 0; 900 901 /* 902 * swiotlb_find_slots() skips slots according to 903 * min align mask. This affects max mapping size. 904 * Take it into acount here. 905 */ 906 if (min_align_mask) 907 min_align = roundup(min_align_mask, IO_TLB_SIZE); 908 909 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 910 } 911 912 bool is_swiotlb_active(struct device *dev) 913 { 914 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 915 916 return mem && mem->nslabs; 917 } 918 EXPORT_SYMBOL_GPL(is_swiotlb_active); 919 920 static int io_tlb_used_get(void *data, u64 *val) 921 { 922 *val = mem_used(&io_tlb_default_mem); 923 return 0; 924 } 925 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 926 927 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 928 const char *dirname) 929 { 930 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 931 if (!mem->nslabs) 932 return; 933 934 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 935 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL, 936 &fops_io_tlb_used); 937 } 938 939 static int __init __maybe_unused swiotlb_create_default_debugfs(void) 940 { 941 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 942 return 0; 943 } 944 945 #ifdef CONFIG_DEBUG_FS 946 late_initcall(swiotlb_create_default_debugfs); 947 #endif 948 949 #ifdef CONFIG_DMA_RESTRICTED_POOL 950 951 struct page *swiotlb_alloc(struct device *dev, size_t size) 952 { 953 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 954 phys_addr_t tlb_addr; 955 int index; 956 957 if (!mem) 958 return NULL; 959 960 index = swiotlb_find_slots(dev, 0, size, 0); 961 if (index == -1) 962 return NULL; 963 964 tlb_addr = slot_addr(mem->start, index); 965 966 return pfn_to_page(PFN_DOWN(tlb_addr)); 967 } 968 969 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 970 { 971 phys_addr_t tlb_addr = page_to_phys(page); 972 973 if (!is_swiotlb_buffer(dev, tlb_addr)) 974 return false; 975 976 swiotlb_release_slots(dev, tlb_addr); 977 978 return true; 979 } 980 981 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 982 struct device *dev) 983 { 984 struct io_tlb_mem *mem = rmem->priv; 985 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 986 987 /* Set Per-device io tlb area to one */ 988 unsigned int nareas = 1; 989 990 /* 991 * Since multiple devices can share the same pool, the private data, 992 * io_tlb_mem struct, will be initialized by the first device attached 993 * to it. 994 */ 995 if (!mem) { 996 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 997 if (!mem) 998 return -ENOMEM; 999 1000 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL); 1001 if (!mem->slots) { 1002 kfree(mem); 1003 return -ENOMEM; 1004 } 1005 1006 mem->areas = kcalloc(nareas, sizeof(*mem->areas), 1007 GFP_KERNEL); 1008 if (!mem->areas) { 1009 kfree(mem->slots); 1010 kfree(mem); 1011 return -ENOMEM; 1012 } 1013 1014 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1015 rmem->size >> PAGE_SHIFT); 1016 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE, 1017 false, nareas); 1018 mem->for_alloc = true; 1019 1020 rmem->priv = mem; 1021 1022 swiotlb_create_debugfs_files(mem, rmem->name); 1023 } 1024 1025 dev->dma_io_tlb_mem = mem; 1026 1027 return 0; 1028 } 1029 1030 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1031 struct device *dev) 1032 { 1033 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1034 } 1035 1036 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1037 .device_init = rmem_swiotlb_device_init, 1038 .device_release = rmem_swiotlb_device_release, 1039 }; 1040 1041 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1042 { 1043 unsigned long node = rmem->fdt_node; 1044 1045 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1046 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1047 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1048 of_get_flat_dt_prop(node, "no-map", NULL)) 1049 return -EINVAL; 1050 1051 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1052 pr_err("Restricted DMA pool must be accessible within the linear mapping."); 1053 return -EINVAL; 1054 } 1055 1056 rmem->ops = &rmem_swiotlb_ops; 1057 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1058 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1059 return 0; 1060 } 1061 1062 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1063 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1064