xref: /openbmc/linux/kernel/dma/swiotlb.c (revision 5efb685b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53 
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62 
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64 
65 struct io_tlb_slot {
66 	phys_addr_t orig_addr;
67 	size_t alloc_size;
68 	unsigned int list;
69 };
70 
71 static bool swiotlb_force_bounce;
72 static bool swiotlb_force_disable;
73 
74 struct io_tlb_mem io_tlb_default_mem;
75 
76 phys_addr_t swiotlb_unencrypted_base;
77 
78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
79 static unsigned long default_nareas;
80 
81 /**
82  * struct io_tlb_area - IO TLB memory area descriptor
83  *
84  * This is a single area with a single lock.
85  *
86  * @used:	The number of used IO TLB block.
87  * @index:	The slot index to start searching in this area for next round.
88  * @lock:	The lock to protect the above data structures in the map and
89  *		unmap calls.
90  */
91 struct io_tlb_area {
92 	unsigned long used;
93 	unsigned int index;
94 	spinlock_t lock;
95 };
96 
97 /*
98  * Round up number of slabs to the next power of 2. The last area is going
99  * be smaller than the rest if default_nslabs is not power of two.
100  * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE,
101  * otherwise a segment may span two or more areas. It conflicts with free
102  * contiguous slots tracking: free slots are treated contiguous no matter
103  * whether they cross an area boundary.
104  *
105  * Return true if default_nslabs is rounded up.
106  */
107 static bool round_up_default_nslabs(void)
108 {
109 	if (!default_nareas)
110 		return false;
111 
112 	if (default_nslabs < IO_TLB_SEGSIZE * default_nareas)
113 		default_nslabs = IO_TLB_SEGSIZE * default_nareas;
114 	else if (is_power_of_2(default_nslabs))
115 		return false;
116 	default_nslabs = roundup_pow_of_two(default_nslabs);
117 	return true;
118 }
119 
120 static void swiotlb_adjust_nareas(unsigned int nareas)
121 {
122 	/* use a single area when non is specified */
123 	if (!nareas)
124 		nareas = 1;
125 	else if (!is_power_of_2(nareas))
126 		nareas = roundup_pow_of_two(nareas);
127 
128 	default_nareas = nareas;
129 
130 	pr_info("area num %d.\n", nareas);
131 	if (round_up_default_nslabs())
132 		pr_info("SWIOTLB bounce buffer size roundup to %luMB",
133 			(default_nslabs << IO_TLB_SHIFT) >> 20);
134 }
135 
136 static int __init
137 setup_io_tlb_npages(char *str)
138 {
139 	if (isdigit(*str)) {
140 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
141 		default_nslabs =
142 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
143 	}
144 	if (*str == ',')
145 		++str;
146 	if (isdigit(*str))
147 		swiotlb_adjust_nareas(simple_strtoul(str, &str, 0));
148 	if (*str == ',')
149 		++str;
150 	if (!strcmp(str, "force"))
151 		swiotlb_force_bounce = true;
152 	else if (!strcmp(str, "noforce"))
153 		swiotlb_force_disable = true;
154 
155 	return 0;
156 }
157 early_param("swiotlb", setup_io_tlb_npages);
158 
159 unsigned long swiotlb_size_or_default(void)
160 {
161 	return default_nslabs << IO_TLB_SHIFT;
162 }
163 
164 void __init swiotlb_adjust_size(unsigned long size)
165 {
166 	/*
167 	 * If swiotlb parameter has not been specified, give a chance to
168 	 * architectures such as those supporting memory encryption to
169 	 * adjust/expand SWIOTLB size for their use.
170 	 */
171 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
172 		return;
173 
174 	size = ALIGN(size, IO_TLB_SIZE);
175 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
176 	if (round_up_default_nslabs())
177 		size = default_nslabs << IO_TLB_SHIFT;
178 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
179 }
180 
181 void swiotlb_print_info(void)
182 {
183 	struct io_tlb_mem *mem = &io_tlb_default_mem;
184 
185 	if (!mem->nslabs) {
186 		pr_warn("No low mem\n");
187 		return;
188 	}
189 
190 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
191 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
192 }
193 
194 static inline unsigned long io_tlb_offset(unsigned long val)
195 {
196 	return val & (IO_TLB_SEGSIZE - 1);
197 }
198 
199 static inline unsigned long nr_slots(u64 val)
200 {
201 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
202 }
203 
204 /*
205  * Remap swioltb memory in the unencrypted physical address space
206  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
207  * Isolation VMs).
208  */
209 #ifdef CONFIG_HAS_IOMEM
210 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
211 {
212 	void *vaddr = NULL;
213 
214 	if (swiotlb_unencrypted_base) {
215 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
216 
217 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
218 		if (!vaddr)
219 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
220 			       &paddr, bytes);
221 	}
222 
223 	return vaddr;
224 }
225 #else
226 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
227 {
228 	return NULL;
229 }
230 #endif
231 
232 /*
233  * Early SWIOTLB allocation may be too early to allow an architecture to
234  * perform the desired operations.  This function allows the architecture to
235  * call SWIOTLB when the operations are possible.  It needs to be called
236  * before the SWIOTLB memory is used.
237  */
238 void __init swiotlb_update_mem_attributes(void)
239 {
240 	struct io_tlb_mem *mem = &io_tlb_default_mem;
241 	void *vaddr;
242 	unsigned long bytes;
243 
244 	if (!mem->nslabs || mem->late_alloc)
245 		return;
246 	vaddr = phys_to_virt(mem->start);
247 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
248 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
249 
250 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
251 	if (!mem->vaddr)
252 		mem->vaddr = vaddr;
253 }
254 
255 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
256 		unsigned long nslabs, unsigned int flags,
257 		bool late_alloc, unsigned int nareas)
258 {
259 	void *vaddr = phys_to_virt(start);
260 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
261 
262 	mem->nslabs = nslabs;
263 	mem->start = start;
264 	mem->end = mem->start + bytes;
265 	mem->late_alloc = late_alloc;
266 	mem->nareas = nareas;
267 	mem->area_nslabs = nslabs / mem->nareas;
268 
269 	mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE);
270 
271 	for (i = 0; i < mem->nareas; i++) {
272 		spin_lock_init(&mem->areas[i].lock);
273 		mem->areas[i].index = 0;
274 		mem->areas[i].used = 0;
275 	}
276 
277 	for (i = 0; i < mem->nslabs; i++) {
278 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
279 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
280 		mem->slots[i].alloc_size = 0;
281 	}
282 
283 	/*
284 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
285 	 * be remapped and cleared in swiotlb_update_mem_attributes.
286 	 */
287 	if (swiotlb_unencrypted_base)
288 		return;
289 
290 	memset(vaddr, 0, bytes);
291 	mem->vaddr = vaddr;
292 	return;
293 }
294 
295 static void __init *swiotlb_memblock_alloc(unsigned long nslabs,
296 		unsigned int flags,
297 		int (*remap)(void *tlb, unsigned long nslabs))
298 {
299 	size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
300 	void *tlb;
301 
302 	/*
303 	 * By default allocate the bounce buffer memory from low memory, but
304 	 * allow to pick a location everywhere for hypervisors with guest
305 	 * memory encryption.
306 	 */
307 	if (flags & SWIOTLB_ANY)
308 		tlb = memblock_alloc(bytes, PAGE_SIZE);
309 	else
310 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
311 
312 	if (!tlb) {
313 		pr_warn("%s: Failed to allocate %zu bytes tlb structure\n",
314 			__func__, bytes);
315 		return NULL;
316 	}
317 
318 	if (remap && remap(tlb, nslabs) < 0) {
319 		memblock_free(tlb, PAGE_ALIGN(bytes));
320 		pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes);
321 		return NULL;
322 	}
323 
324 	return tlb;
325 }
326 
327 /*
328  * Statically reserve bounce buffer space and initialize bounce buffer data
329  * structures for the software IO TLB used to implement the DMA API.
330  */
331 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
332 		int (*remap)(void *tlb, unsigned long nslabs))
333 {
334 	struct io_tlb_mem *mem = &io_tlb_default_mem;
335 	unsigned long nslabs;
336 	size_t alloc_size;
337 	void *tlb;
338 
339 	if (!addressing_limit && !swiotlb_force_bounce)
340 		return;
341 	if (swiotlb_force_disable)
342 		return;
343 
344 	/*
345 	 * default_nslabs maybe changed when adjust area number.
346 	 * So allocate bounce buffer after adjusting area number.
347 	 */
348 	if (!default_nareas)
349 		swiotlb_adjust_nareas(num_possible_cpus());
350 
351 	nslabs = default_nslabs;
352 	while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) {
353 		if (nslabs <= IO_TLB_MIN_SLABS)
354 			return;
355 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
356 	}
357 
358 	if (default_nslabs != nslabs) {
359 		pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs",
360 			default_nslabs, nslabs);
361 		default_nslabs = nslabs;
362 	}
363 
364 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
365 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
366 	if (!mem->slots) {
367 		pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n",
368 			__func__, alloc_size, PAGE_SIZE);
369 		return;
370 	}
371 
372 	mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area),
373 		default_nareas), SMP_CACHE_BYTES);
374 	if (!mem->areas) {
375 		pr_warn("%s: Failed to allocate mem->areas.\n", __func__);
376 		return;
377 	}
378 
379 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false,
380 				default_nareas);
381 
382 	if (flags & SWIOTLB_VERBOSE)
383 		swiotlb_print_info();
384 }
385 
386 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
387 {
388 	swiotlb_init_remap(addressing_limit, flags, NULL);
389 }
390 
391 /*
392  * Systems with larger DMA zones (those that don't support ISA) can
393  * initialize the swiotlb later using the slab allocator if needed.
394  * This should be just like above, but with some error catching.
395  */
396 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
397 		int (*remap)(void *tlb, unsigned long nslabs))
398 {
399 	struct io_tlb_mem *mem = &io_tlb_default_mem;
400 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
401 	unsigned char *vstart = NULL;
402 	unsigned int order, area_order;
403 	bool retried = false;
404 	int rc = 0;
405 
406 	if (swiotlb_force_disable)
407 		return 0;
408 
409 retry:
410 	order = get_order(nslabs << IO_TLB_SHIFT);
411 	nslabs = SLABS_PER_PAGE << order;
412 
413 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
414 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
415 						  order);
416 		if (vstart)
417 			break;
418 		order--;
419 		nslabs = SLABS_PER_PAGE << order;
420 		retried = true;
421 	}
422 
423 	if (!vstart)
424 		return -ENOMEM;
425 
426 	if (remap)
427 		rc = remap(vstart, nslabs);
428 	if (rc) {
429 		free_pages((unsigned long)vstart, order);
430 
431 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
432 		if (nslabs < IO_TLB_MIN_SLABS)
433 			return rc;
434 		retried = true;
435 		goto retry;
436 	}
437 
438 	if (retried) {
439 		pr_warn("only able to allocate %ld MB\n",
440 			(PAGE_SIZE << order) >> 20);
441 	}
442 
443 	if (!default_nareas)
444 		swiotlb_adjust_nareas(num_possible_cpus());
445 
446 	area_order = get_order(array_size(sizeof(*mem->areas),
447 		default_nareas));
448 	mem->areas = (struct io_tlb_area *)
449 		__get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order);
450 	if (!mem->areas)
451 		goto error_area;
452 
453 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
454 		get_order(array_size(sizeof(*mem->slots), nslabs)));
455 	if (!mem->slots)
456 		goto error_slots;
457 
458 	set_memory_decrypted((unsigned long)vstart,
459 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
460 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true,
461 				default_nareas);
462 
463 	swiotlb_print_info();
464 	return 0;
465 
466 error_slots:
467 	free_pages((unsigned long)mem->areas, area_order);
468 error_area:
469 	free_pages((unsigned long)vstart, order);
470 	return -ENOMEM;
471 }
472 
473 void __init swiotlb_exit(void)
474 {
475 	struct io_tlb_mem *mem = &io_tlb_default_mem;
476 	unsigned long tbl_vaddr;
477 	size_t tbl_size, slots_size;
478 	unsigned int area_order;
479 
480 	if (swiotlb_force_bounce)
481 		return;
482 
483 	if (!mem->nslabs)
484 		return;
485 
486 	pr_info("tearing down default memory pool\n");
487 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
488 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
489 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
490 
491 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
492 	if (mem->late_alloc) {
493 		area_order = get_order(array_size(sizeof(*mem->areas),
494 			mem->nareas));
495 		free_pages((unsigned long)mem->areas, area_order);
496 		free_pages(tbl_vaddr, get_order(tbl_size));
497 		free_pages((unsigned long)mem->slots, get_order(slots_size));
498 	} else {
499 		memblock_free_late(__pa(mem->areas),
500 			array_size(sizeof(*mem->areas), mem->nareas));
501 		memblock_free_late(mem->start, tbl_size);
502 		memblock_free_late(__pa(mem->slots), slots_size);
503 	}
504 
505 	memset(mem, 0, sizeof(*mem));
506 }
507 
508 /*
509  * Return the offset into a iotlb slot required to keep the device happy.
510  */
511 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
512 {
513 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
514 }
515 
516 /*
517  * Bounce: copy the swiotlb buffer from or back to the original dma location
518  */
519 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
520 			   enum dma_data_direction dir)
521 {
522 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
523 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
524 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
525 	size_t alloc_size = mem->slots[index].alloc_size;
526 	unsigned long pfn = PFN_DOWN(orig_addr);
527 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
528 	unsigned int tlb_offset, orig_addr_offset;
529 
530 	if (orig_addr == INVALID_PHYS_ADDR)
531 		return;
532 
533 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
534 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
535 	if (tlb_offset < orig_addr_offset) {
536 		dev_WARN_ONCE(dev, 1,
537 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
538 			orig_addr_offset, tlb_offset);
539 		return;
540 	}
541 
542 	tlb_offset -= orig_addr_offset;
543 	if (tlb_offset > alloc_size) {
544 		dev_WARN_ONCE(dev, 1,
545 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
546 			alloc_size, size, tlb_offset);
547 		return;
548 	}
549 
550 	orig_addr += tlb_offset;
551 	alloc_size -= tlb_offset;
552 
553 	if (size > alloc_size) {
554 		dev_WARN_ONCE(dev, 1,
555 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
556 			alloc_size, size);
557 		size = alloc_size;
558 	}
559 
560 	if (PageHighMem(pfn_to_page(pfn))) {
561 		unsigned int offset = orig_addr & ~PAGE_MASK;
562 		struct page *page;
563 		unsigned int sz = 0;
564 		unsigned long flags;
565 
566 		while (size) {
567 			sz = min_t(size_t, PAGE_SIZE - offset, size);
568 
569 			local_irq_save(flags);
570 			page = pfn_to_page(pfn);
571 			if (dir == DMA_TO_DEVICE)
572 				memcpy_from_page(vaddr, page, offset, sz);
573 			else
574 				memcpy_to_page(page, offset, vaddr, sz);
575 			local_irq_restore(flags);
576 
577 			size -= sz;
578 			pfn++;
579 			vaddr += sz;
580 			offset = 0;
581 		}
582 	} else if (dir == DMA_TO_DEVICE) {
583 		memcpy(vaddr, phys_to_virt(orig_addr), size);
584 	} else {
585 		memcpy(phys_to_virt(orig_addr), vaddr, size);
586 	}
587 }
588 
589 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx)
590 {
591 	return start + (idx << IO_TLB_SHIFT);
592 }
593 
594 /*
595  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
596  */
597 static inline unsigned long get_max_slots(unsigned long boundary_mask)
598 {
599 	if (boundary_mask == ~0UL)
600 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
601 	return nr_slots(boundary_mask + 1);
602 }
603 
604 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index)
605 {
606 	if (index >= mem->area_nslabs)
607 		return 0;
608 	return index;
609 }
610 
611 /*
612  * Find a suitable number of IO TLB entries size that will fit this request and
613  * allocate a buffer from that IO TLB pool.
614  */
615 static int swiotlb_do_find_slots(struct device *dev, int area_index,
616 		phys_addr_t orig_addr, size_t alloc_size,
617 		unsigned int alloc_align_mask)
618 {
619 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
620 	struct io_tlb_area *area = mem->areas + area_index;
621 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
622 	dma_addr_t tbl_dma_addr =
623 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
624 	unsigned long max_slots = get_max_slots(boundary_mask);
625 	unsigned int iotlb_align_mask =
626 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
627 	unsigned int nslots = nr_slots(alloc_size), stride;
628 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
629 	unsigned int index, slots_checked, count = 0, i;
630 	unsigned long flags;
631 	unsigned int slot_base;
632 	unsigned int slot_index;
633 
634 	BUG_ON(!nslots);
635 	BUG_ON(area_index >= mem->nareas);
636 
637 	/*
638 	 * For allocations of PAGE_SIZE or larger only look for page aligned
639 	 * allocations.
640 	 */
641 	if (alloc_size >= PAGE_SIZE)
642 		iotlb_align_mask &= PAGE_MASK;
643 	iotlb_align_mask &= alloc_align_mask;
644 
645 	/*
646 	 * For mappings with an alignment requirement don't bother looping to
647 	 * unaligned slots once we found an aligned one.
648 	 */
649 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
650 
651 	spin_lock_irqsave(&area->lock, flags);
652 	if (unlikely(nslots > mem->area_nslabs - area->used))
653 		goto not_found;
654 
655 	slot_base = area_index * mem->area_nslabs;
656 	index = area->index;
657 
658 	for (slots_checked = 0; slots_checked < mem->area_nslabs; ) {
659 		slot_index = slot_base + index;
660 
661 		if (orig_addr &&
662 		    (slot_addr(tbl_dma_addr, slot_index) &
663 		     iotlb_align_mask) != (orig_addr & iotlb_align_mask)) {
664 			index = wrap_area_index(mem, index + 1);
665 			slots_checked++;
666 			continue;
667 		}
668 
669 		/*
670 		 * If we find a slot that indicates we have 'nslots' number of
671 		 * contiguous buffers, we allocate the buffers from that slot
672 		 * and mark the entries as '0' indicating unavailable.
673 		 */
674 		if (!iommu_is_span_boundary(slot_index, nslots,
675 					    nr_slots(tbl_dma_addr),
676 					    max_slots)) {
677 			if (mem->slots[slot_index].list >= nslots)
678 				goto found;
679 		}
680 		index = wrap_area_index(mem, index + stride);
681 		slots_checked += stride;
682 	}
683 
684 not_found:
685 	spin_unlock_irqrestore(&area->lock, flags);
686 	return -1;
687 
688 found:
689 	for (i = slot_index; i < slot_index + nslots; i++) {
690 		mem->slots[i].list = 0;
691 		mem->slots[i].alloc_size = alloc_size - (offset +
692 				((i - slot_index) << IO_TLB_SHIFT));
693 	}
694 	for (i = slot_index - 1;
695 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
696 	     mem->slots[i].list; i--)
697 		mem->slots[i].list = ++count;
698 
699 	/*
700 	 * Update the indices to avoid searching in the next round.
701 	 */
702 	area->index = wrap_area_index(mem, index + nslots);
703 	area->used += nslots;
704 	spin_unlock_irqrestore(&area->lock, flags);
705 	return slot_index;
706 }
707 
708 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
709 		size_t alloc_size, unsigned int alloc_align_mask)
710 {
711 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
712 	int start = raw_smp_processor_id() & (mem->nareas - 1);
713 	int i = start, index;
714 
715 	do {
716 		index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size,
717 					      alloc_align_mask);
718 		if (index >= 0)
719 			return index;
720 		if (++i >= mem->nareas)
721 			i = 0;
722 	} while (i != start);
723 
724 	return -1;
725 }
726 
727 static unsigned long mem_used(struct io_tlb_mem *mem)
728 {
729 	int i;
730 	unsigned long used = 0;
731 
732 	for (i = 0; i < mem->nareas; i++)
733 		used += mem->areas[i].used;
734 	return used;
735 }
736 
737 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
738 		size_t mapping_size, size_t alloc_size,
739 		unsigned int alloc_align_mask, enum dma_data_direction dir,
740 		unsigned long attrs)
741 {
742 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
743 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
744 	unsigned int i;
745 	int index;
746 	phys_addr_t tlb_addr;
747 
748 	if (!mem || !mem->nslabs) {
749 		dev_warn_ratelimited(dev,
750 			"Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
751 		return (phys_addr_t)DMA_MAPPING_ERROR;
752 	}
753 
754 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
755 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
756 
757 	if (mapping_size > alloc_size) {
758 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
759 			      mapping_size, alloc_size);
760 		return (phys_addr_t)DMA_MAPPING_ERROR;
761 	}
762 
763 	index = swiotlb_find_slots(dev, orig_addr,
764 				   alloc_size + offset, alloc_align_mask);
765 	if (index == -1) {
766 		if (!(attrs & DMA_ATTR_NO_WARN))
767 			dev_warn_ratelimited(dev,
768 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
769 				 alloc_size, mem->nslabs, mem_used(mem));
770 		return (phys_addr_t)DMA_MAPPING_ERROR;
771 	}
772 
773 	/*
774 	 * Save away the mapping from the original address to the DMA address.
775 	 * This is needed when we sync the memory.  Then we sync the buffer if
776 	 * needed.
777 	 */
778 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
779 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
780 	tlb_addr = slot_addr(mem->start, index) + offset;
781 	/*
782 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
783 	 * to the tlb buffer, if we knew for sure the device will
784 	 * overwrite the entire current content. But we don't. Thus
785 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
786 	 * kernel memory) to user-space.
787 	 */
788 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
789 	return tlb_addr;
790 }
791 
792 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
793 {
794 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
795 	unsigned long flags;
796 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
797 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
798 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
799 	int aindex = index / mem->area_nslabs;
800 	struct io_tlb_area *area = &mem->areas[aindex];
801 	int count, i;
802 
803 	/*
804 	 * Return the buffer to the free list by setting the corresponding
805 	 * entries to indicate the number of contiguous entries available.
806 	 * While returning the entries to the free list, we merge the entries
807 	 * with slots below and above the pool being returned.
808 	 */
809 	BUG_ON(aindex >= mem->nareas);
810 
811 	spin_lock_irqsave(&area->lock, flags);
812 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
813 		count = mem->slots[index + nslots].list;
814 	else
815 		count = 0;
816 
817 	/*
818 	 * Step 1: return the slots to the free list, merging the slots with
819 	 * superceeding slots
820 	 */
821 	for (i = index + nslots - 1; i >= index; i--) {
822 		mem->slots[i].list = ++count;
823 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
824 		mem->slots[i].alloc_size = 0;
825 	}
826 
827 	/*
828 	 * Step 2: merge the returned slots with the preceding slots, if
829 	 * available (non zero)
830 	 */
831 	for (i = index - 1;
832 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
833 	     i--)
834 		mem->slots[i].list = ++count;
835 	area->used -= nslots;
836 	spin_unlock_irqrestore(&area->lock, flags);
837 }
838 
839 /*
840  * tlb_addr is the physical address of the bounce buffer to unmap.
841  */
842 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
843 			      size_t mapping_size, enum dma_data_direction dir,
844 			      unsigned long attrs)
845 {
846 	/*
847 	 * First, sync the memory before unmapping the entry
848 	 */
849 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
850 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
851 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
852 
853 	swiotlb_release_slots(dev, tlb_addr);
854 }
855 
856 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
857 		size_t size, enum dma_data_direction dir)
858 {
859 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
860 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
861 	else
862 		BUG_ON(dir != DMA_FROM_DEVICE);
863 }
864 
865 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
866 		size_t size, enum dma_data_direction dir)
867 {
868 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
869 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
870 	else
871 		BUG_ON(dir != DMA_TO_DEVICE);
872 }
873 
874 /*
875  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
876  * to the device copy the data into it as well.
877  */
878 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
879 		enum dma_data_direction dir, unsigned long attrs)
880 {
881 	phys_addr_t swiotlb_addr;
882 	dma_addr_t dma_addr;
883 
884 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
885 
886 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
887 			attrs);
888 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
889 		return DMA_MAPPING_ERROR;
890 
891 	/* Ensure that the address returned is DMA'ble */
892 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
893 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
894 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
895 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
896 		dev_WARN_ONCE(dev, 1,
897 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
898 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
899 		return DMA_MAPPING_ERROR;
900 	}
901 
902 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
903 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
904 	return dma_addr;
905 }
906 
907 size_t swiotlb_max_mapping_size(struct device *dev)
908 {
909 	int min_align_mask = dma_get_min_align_mask(dev);
910 	int min_align = 0;
911 
912 	/*
913 	 * swiotlb_find_slots() skips slots according to
914 	 * min align mask. This affects max mapping size.
915 	 * Take it into acount here.
916 	 */
917 	if (min_align_mask)
918 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
919 
920 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
921 }
922 
923 bool is_swiotlb_active(struct device *dev)
924 {
925 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
926 
927 	return mem && mem->nslabs;
928 }
929 EXPORT_SYMBOL_GPL(is_swiotlb_active);
930 
931 static int io_tlb_used_get(void *data, u64 *val)
932 {
933 	*val = mem_used(&io_tlb_default_mem);
934 	return 0;
935 }
936 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n");
937 
938 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
939 					 const char *dirname)
940 {
941 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
942 	if (!mem->nslabs)
943 		return;
944 
945 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
946 	debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL,
947 			&fops_io_tlb_used);
948 }
949 
950 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
951 {
952 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
953 	return 0;
954 }
955 
956 #ifdef CONFIG_DEBUG_FS
957 late_initcall(swiotlb_create_default_debugfs);
958 #endif
959 
960 #ifdef CONFIG_DMA_RESTRICTED_POOL
961 
962 struct page *swiotlb_alloc(struct device *dev, size_t size)
963 {
964 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
965 	phys_addr_t tlb_addr;
966 	int index;
967 
968 	if (!mem)
969 		return NULL;
970 
971 	index = swiotlb_find_slots(dev, 0, size, 0);
972 	if (index == -1)
973 		return NULL;
974 
975 	tlb_addr = slot_addr(mem->start, index);
976 
977 	return pfn_to_page(PFN_DOWN(tlb_addr));
978 }
979 
980 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
981 {
982 	phys_addr_t tlb_addr = page_to_phys(page);
983 
984 	if (!is_swiotlb_buffer(dev, tlb_addr))
985 		return false;
986 
987 	swiotlb_release_slots(dev, tlb_addr);
988 
989 	return true;
990 }
991 
992 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
993 				    struct device *dev)
994 {
995 	struct io_tlb_mem *mem = rmem->priv;
996 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
997 
998 	/* Set Per-device io tlb area to one */
999 	unsigned int nareas = 1;
1000 
1001 	/*
1002 	 * Since multiple devices can share the same pool, the private data,
1003 	 * io_tlb_mem struct, will be initialized by the first device attached
1004 	 * to it.
1005 	 */
1006 	if (!mem) {
1007 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1008 		if (!mem)
1009 			return -ENOMEM;
1010 
1011 		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
1012 		if (!mem->slots) {
1013 			kfree(mem);
1014 			return -ENOMEM;
1015 		}
1016 
1017 		mem->areas = kcalloc(nareas, sizeof(*mem->areas),
1018 				GFP_KERNEL);
1019 		if (!mem->areas) {
1020 			kfree(mem->slots);
1021 			kfree(mem);
1022 			return -ENOMEM;
1023 		}
1024 
1025 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
1026 				     rmem->size >> PAGE_SHIFT);
1027 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE,
1028 					false, nareas);
1029 		mem->for_alloc = true;
1030 
1031 		rmem->priv = mem;
1032 
1033 		swiotlb_create_debugfs_files(mem, rmem->name);
1034 	}
1035 
1036 	dev->dma_io_tlb_mem = mem;
1037 
1038 	return 0;
1039 }
1040 
1041 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
1042 					struct device *dev)
1043 {
1044 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
1045 }
1046 
1047 static const struct reserved_mem_ops rmem_swiotlb_ops = {
1048 	.device_init = rmem_swiotlb_device_init,
1049 	.device_release = rmem_swiotlb_device_release,
1050 };
1051 
1052 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
1053 {
1054 	unsigned long node = rmem->fdt_node;
1055 
1056 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
1057 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
1058 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
1059 	    of_get_flat_dt_prop(node, "no-map", NULL))
1060 		return -EINVAL;
1061 
1062 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
1063 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
1064 		return -EINVAL;
1065 	}
1066 
1067 	rmem->ops = &rmem_swiotlb_ops;
1068 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
1069 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
1070 	return 0;
1071 }
1072 
1073 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
1074 #endif /* CONFIG_DMA_RESTRICTED_POOL */
1075