1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/scatterlist.h> 39 #include <linux/set_memory.h> 40 #include <linux/spinlock.h> 41 #include <linux/string.h> 42 #include <linux/swiotlb.h> 43 #include <linux/types.h> 44 #ifdef CONFIG_DMA_RESTRICTED_POOL 45 #include <linux/of.h> 46 #include <linux/of_fdt.h> 47 #include <linux/of_reserved_mem.h> 48 #include <linux/slab.h> 49 #endif 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/swiotlb.h> 53 54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 55 56 /* 57 * Minimum IO TLB size to bother booting with. Systems with mainly 58 * 64bit capable cards will only lightly use the swiotlb. If we can't 59 * allocate a contiguous 1MB, we're probably in trouble anyway. 60 */ 61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 62 63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 64 65 static bool swiotlb_force_bounce; 66 static bool swiotlb_force_disable; 67 68 struct io_tlb_mem io_tlb_default_mem; 69 70 phys_addr_t swiotlb_unencrypted_base; 71 72 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 73 74 static int __init 75 setup_io_tlb_npages(char *str) 76 { 77 if (isdigit(*str)) { 78 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 79 default_nslabs = 80 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 81 } 82 if (*str == ',') 83 ++str; 84 if (!strcmp(str, "force")) 85 swiotlb_force_bounce = true; 86 else if (!strcmp(str, "noforce")) 87 swiotlb_force_disable = true; 88 89 return 0; 90 } 91 early_param("swiotlb", setup_io_tlb_npages); 92 93 unsigned int swiotlb_max_segment(void) 94 { 95 if (!io_tlb_default_mem.nslabs) 96 return 0; 97 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE); 98 } 99 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 100 101 unsigned long swiotlb_size_or_default(void) 102 { 103 return default_nslabs << IO_TLB_SHIFT; 104 } 105 106 void __init swiotlb_adjust_size(unsigned long size) 107 { 108 /* 109 * If swiotlb parameter has not been specified, give a chance to 110 * architectures such as those supporting memory encryption to 111 * adjust/expand SWIOTLB size for their use. 112 */ 113 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 114 return; 115 size = ALIGN(size, IO_TLB_SIZE); 116 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 117 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 118 } 119 120 void swiotlb_print_info(void) 121 { 122 struct io_tlb_mem *mem = &io_tlb_default_mem; 123 124 if (!mem->nslabs) { 125 pr_warn("No low mem\n"); 126 return; 127 } 128 129 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 130 (mem->nslabs << IO_TLB_SHIFT) >> 20); 131 } 132 133 static inline unsigned long io_tlb_offset(unsigned long val) 134 { 135 return val & (IO_TLB_SEGSIZE - 1); 136 } 137 138 static inline unsigned long nr_slots(u64 val) 139 { 140 return DIV_ROUND_UP(val, IO_TLB_SIZE); 141 } 142 143 /* 144 * Remap swioltb memory in the unencrypted physical address space 145 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP 146 * Isolation VMs). 147 */ 148 #ifdef CONFIG_HAS_IOMEM 149 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 150 { 151 void *vaddr = NULL; 152 153 if (swiotlb_unencrypted_base) { 154 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base; 155 156 vaddr = memremap(paddr, bytes, MEMREMAP_WB); 157 if (!vaddr) 158 pr_err("Failed to map the unencrypted memory %pa size %lx.\n", 159 &paddr, bytes); 160 } 161 162 return vaddr; 163 } 164 #else 165 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 166 { 167 return NULL; 168 } 169 #endif 170 171 /* 172 * Early SWIOTLB allocation may be too early to allow an architecture to 173 * perform the desired operations. This function allows the architecture to 174 * call SWIOTLB when the operations are possible. It needs to be called 175 * before the SWIOTLB memory is used. 176 */ 177 void __init swiotlb_update_mem_attributes(void) 178 { 179 struct io_tlb_mem *mem = &io_tlb_default_mem; 180 void *vaddr; 181 unsigned long bytes; 182 183 if (!mem->nslabs || mem->late_alloc) 184 return; 185 vaddr = phys_to_virt(mem->start); 186 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 187 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 188 189 mem->vaddr = swiotlb_mem_remap(mem, bytes); 190 if (!mem->vaddr) 191 mem->vaddr = vaddr; 192 } 193 194 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, 195 unsigned long nslabs, unsigned int flags, bool late_alloc) 196 { 197 void *vaddr = phys_to_virt(start); 198 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 199 200 mem->nslabs = nslabs; 201 mem->start = start; 202 mem->end = mem->start + bytes; 203 mem->index = 0; 204 mem->late_alloc = late_alloc; 205 206 mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 207 208 spin_lock_init(&mem->lock); 209 for (i = 0; i < mem->nslabs; i++) { 210 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 211 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 212 mem->slots[i].alloc_size = 0; 213 } 214 215 /* 216 * If swiotlb_unencrypted_base is set, the bounce buffer memory will 217 * be remapped and cleared in swiotlb_update_mem_attributes. 218 */ 219 if (swiotlb_unencrypted_base) 220 return; 221 222 memset(vaddr, 0, bytes); 223 mem->vaddr = vaddr; 224 return; 225 } 226 227 /* 228 * Statically reserve bounce buffer space and initialize bounce buffer data 229 * structures for the software IO TLB used to implement the DMA API. 230 */ 231 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 232 int (*remap)(void *tlb, unsigned long nslabs)) 233 { 234 struct io_tlb_mem *mem = &io_tlb_default_mem; 235 unsigned long nslabs = default_nslabs; 236 size_t alloc_size; 237 size_t bytes; 238 void *tlb; 239 240 if (!addressing_limit && !swiotlb_force_bounce) 241 return; 242 if (swiotlb_force_disable) 243 return; 244 245 /* 246 * By default allocate the bounce buffer memory from low memory, but 247 * allow to pick a location everywhere for hypervisors with guest 248 * memory encryption. 249 */ 250 retry: 251 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 252 if (flags & SWIOTLB_ANY) 253 tlb = memblock_alloc(bytes, PAGE_SIZE); 254 else 255 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 256 if (!tlb) { 257 pr_warn("%s: failed to allocate tlb structure\n", __func__); 258 return; 259 } 260 261 if (remap && remap(tlb, nslabs) < 0) { 262 memblock_free(tlb, PAGE_ALIGN(bytes)); 263 264 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 265 if (nslabs < IO_TLB_MIN_SLABS) 266 panic("%s: Failed to remap %zu bytes\n", 267 __func__, bytes); 268 goto retry; 269 } 270 271 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 272 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 273 if (!mem->slots) 274 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 275 __func__, alloc_size, PAGE_SIZE); 276 277 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false); 278 279 if (flags & SWIOTLB_VERBOSE) 280 swiotlb_print_info(); 281 } 282 283 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 284 { 285 return swiotlb_init_remap(addressing_limit, flags, NULL); 286 } 287 288 /* 289 * Systems with larger DMA zones (those that don't support ISA) can 290 * initialize the swiotlb later using the slab allocator if needed. 291 * This should be just like above, but with some error catching. 292 */ 293 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 294 int (*remap)(void *tlb, unsigned long nslabs)) 295 { 296 struct io_tlb_mem *mem = &io_tlb_default_mem; 297 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 298 unsigned char *vstart = NULL; 299 unsigned int order; 300 bool retried = false; 301 int rc = 0; 302 303 if (swiotlb_force_disable) 304 return 0; 305 306 retry: 307 order = get_order(nslabs << IO_TLB_SHIFT); 308 nslabs = SLABS_PER_PAGE << order; 309 310 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 311 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 312 order); 313 if (vstart) 314 break; 315 order--; 316 nslabs = SLABS_PER_PAGE << order; 317 retried = true; 318 } 319 320 if (!vstart) 321 return -ENOMEM; 322 323 if (remap) 324 rc = remap(vstart, nslabs); 325 if (rc) { 326 free_pages((unsigned long)vstart, order); 327 328 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 329 if (nslabs < IO_TLB_MIN_SLABS) 330 return rc; 331 retried = true; 332 goto retry; 333 } 334 335 if (retried) { 336 pr_warn("only able to allocate %ld MB\n", 337 (PAGE_SIZE << order) >> 20); 338 } 339 340 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 341 get_order(array_size(sizeof(*mem->slots), nslabs))); 342 if (!mem->slots) { 343 free_pages((unsigned long)vstart, order); 344 return -ENOMEM; 345 } 346 347 set_memory_decrypted((unsigned long)vstart, 348 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 349 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true); 350 351 swiotlb_print_info(); 352 return 0; 353 } 354 355 void __init swiotlb_exit(void) 356 { 357 struct io_tlb_mem *mem = &io_tlb_default_mem; 358 unsigned long tbl_vaddr; 359 size_t tbl_size, slots_size; 360 361 if (swiotlb_force_bounce) 362 return; 363 364 if (!mem->nslabs) 365 return; 366 367 pr_info("tearing down default memory pool\n"); 368 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 369 tbl_size = PAGE_ALIGN(mem->end - mem->start); 370 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 371 372 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 373 if (mem->late_alloc) { 374 free_pages(tbl_vaddr, get_order(tbl_size)); 375 free_pages((unsigned long)mem->slots, get_order(slots_size)); 376 } else { 377 memblock_free_late(mem->start, tbl_size); 378 memblock_free_late(__pa(mem->slots), slots_size); 379 } 380 381 memset(mem, 0, sizeof(*mem)); 382 } 383 384 /* 385 * Return the offset into a iotlb slot required to keep the device happy. 386 */ 387 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 388 { 389 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 390 } 391 392 /* 393 * Bounce: copy the swiotlb buffer from or back to the original dma location 394 */ 395 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 396 enum dma_data_direction dir) 397 { 398 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 399 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 400 phys_addr_t orig_addr = mem->slots[index].orig_addr; 401 size_t alloc_size = mem->slots[index].alloc_size; 402 unsigned long pfn = PFN_DOWN(orig_addr); 403 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 404 unsigned int tlb_offset, orig_addr_offset; 405 406 if (orig_addr == INVALID_PHYS_ADDR) 407 return; 408 409 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 410 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 411 if (tlb_offset < orig_addr_offset) { 412 dev_WARN_ONCE(dev, 1, 413 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 414 orig_addr_offset, tlb_offset); 415 return; 416 } 417 418 tlb_offset -= orig_addr_offset; 419 if (tlb_offset > alloc_size) { 420 dev_WARN_ONCE(dev, 1, 421 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 422 alloc_size, size, tlb_offset); 423 return; 424 } 425 426 orig_addr += tlb_offset; 427 alloc_size -= tlb_offset; 428 429 if (size > alloc_size) { 430 dev_WARN_ONCE(dev, 1, 431 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 432 alloc_size, size); 433 size = alloc_size; 434 } 435 436 if (PageHighMem(pfn_to_page(pfn))) { 437 /* The buffer does not have a mapping. Map it in and copy */ 438 unsigned int offset = orig_addr & ~PAGE_MASK; 439 char *buffer; 440 unsigned int sz = 0; 441 unsigned long flags; 442 443 while (size) { 444 sz = min_t(size_t, PAGE_SIZE - offset, size); 445 446 local_irq_save(flags); 447 buffer = kmap_atomic(pfn_to_page(pfn)); 448 if (dir == DMA_TO_DEVICE) 449 memcpy(vaddr, buffer + offset, sz); 450 else 451 memcpy(buffer + offset, vaddr, sz); 452 kunmap_atomic(buffer); 453 local_irq_restore(flags); 454 455 size -= sz; 456 pfn++; 457 vaddr += sz; 458 offset = 0; 459 } 460 } else if (dir == DMA_TO_DEVICE) { 461 memcpy(vaddr, phys_to_virt(orig_addr), size); 462 } else { 463 memcpy(phys_to_virt(orig_addr), vaddr, size); 464 } 465 } 466 467 #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT)) 468 469 /* 470 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 471 */ 472 static inline unsigned long get_max_slots(unsigned long boundary_mask) 473 { 474 if (boundary_mask == ~0UL) 475 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 476 return nr_slots(boundary_mask + 1); 477 } 478 479 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index) 480 { 481 if (index >= mem->nslabs) 482 return 0; 483 return index; 484 } 485 486 /* 487 * Find a suitable number of IO TLB entries size that will fit this request and 488 * allocate a buffer from that IO TLB pool. 489 */ 490 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 491 size_t alloc_size, unsigned int alloc_align_mask) 492 { 493 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 494 unsigned long boundary_mask = dma_get_seg_boundary(dev); 495 dma_addr_t tbl_dma_addr = 496 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; 497 unsigned long max_slots = get_max_slots(boundary_mask); 498 unsigned int iotlb_align_mask = 499 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); 500 unsigned int nslots = nr_slots(alloc_size), stride; 501 unsigned int index, wrap, count = 0, i; 502 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 503 unsigned long flags; 504 505 BUG_ON(!nslots); 506 507 /* 508 * For mappings with an alignment requirement don't bother looping to 509 * unaligned slots once we found an aligned one. For allocations of 510 * PAGE_SIZE or larger only look for page aligned allocations. 511 */ 512 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 513 if (alloc_size >= PAGE_SIZE) 514 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); 515 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); 516 517 spin_lock_irqsave(&mem->lock, flags); 518 if (unlikely(nslots > mem->nslabs - mem->used)) 519 goto not_found; 520 521 index = wrap = wrap_index(mem, ALIGN(mem->index, stride)); 522 do { 523 if (orig_addr && 524 (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) != 525 (orig_addr & iotlb_align_mask)) { 526 index = wrap_index(mem, index + 1); 527 continue; 528 } 529 530 /* 531 * If we find a slot that indicates we have 'nslots' number of 532 * contiguous buffers, we allocate the buffers from that slot 533 * and mark the entries as '0' indicating unavailable. 534 */ 535 if (!iommu_is_span_boundary(index, nslots, 536 nr_slots(tbl_dma_addr), 537 max_slots)) { 538 if (mem->slots[index].list >= nslots) 539 goto found; 540 } 541 index = wrap_index(mem, index + stride); 542 } while (index != wrap); 543 544 not_found: 545 spin_unlock_irqrestore(&mem->lock, flags); 546 return -1; 547 548 found: 549 for (i = index; i < index + nslots; i++) { 550 mem->slots[i].list = 0; 551 mem->slots[i].alloc_size = 552 alloc_size - (offset + ((i - index) << IO_TLB_SHIFT)); 553 } 554 for (i = index - 1; 555 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 556 mem->slots[i].list; i--) 557 mem->slots[i].list = ++count; 558 559 /* 560 * Update the indices to avoid searching in the next round. 561 */ 562 if (index + nslots < mem->nslabs) 563 mem->index = index + nslots; 564 else 565 mem->index = 0; 566 mem->used += nslots; 567 568 spin_unlock_irqrestore(&mem->lock, flags); 569 return index; 570 } 571 572 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 573 size_t mapping_size, size_t alloc_size, 574 unsigned int alloc_align_mask, enum dma_data_direction dir, 575 unsigned long attrs) 576 { 577 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 578 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 579 unsigned int i; 580 int index; 581 phys_addr_t tlb_addr; 582 583 if (!mem) 584 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 585 586 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 587 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 588 589 if (mapping_size > alloc_size) { 590 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 591 mapping_size, alloc_size); 592 return (phys_addr_t)DMA_MAPPING_ERROR; 593 } 594 595 index = swiotlb_find_slots(dev, orig_addr, 596 alloc_size + offset, alloc_align_mask); 597 if (index == -1) { 598 if (!(attrs & DMA_ATTR_NO_WARN)) 599 dev_warn_ratelimited(dev, 600 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 601 alloc_size, mem->nslabs, mem->used); 602 return (phys_addr_t)DMA_MAPPING_ERROR; 603 } 604 605 /* 606 * Save away the mapping from the original address to the DMA address. 607 * This is needed when we sync the memory. Then we sync the buffer if 608 * needed. 609 */ 610 for (i = 0; i < nr_slots(alloc_size + offset); i++) 611 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); 612 tlb_addr = slot_addr(mem->start, index) + offset; 613 /* 614 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 615 * to the tlb buffer, if we knew for sure the device will 616 * overwirte the entire current content. But we don't. Thus 617 * unconditional bounce may prevent leaking swiotlb content (i.e. 618 * kernel memory) to user-space. 619 */ 620 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 621 return tlb_addr; 622 } 623 624 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 625 { 626 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 627 unsigned long flags; 628 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 629 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 630 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 631 int count, i; 632 633 /* 634 * Return the buffer to the free list by setting the corresponding 635 * entries to indicate the number of contiguous entries available. 636 * While returning the entries to the free list, we merge the entries 637 * with slots below and above the pool being returned. 638 */ 639 spin_lock_irqsave(&mem->lock, flags); 640 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 641 count = mem->slots[index + nslots].list; 642 else 643 count = 0; 644 645 /* 646 * Step 1: return the slots to the free list, merging the slots with 647 * superceeding slots 648 */ 649 for (i = index + nslots - 1; i >= index; i--) { 650 mem->slots[i].list = ++count; 651 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 652 mem->slots[i].alloc_size = 0; 653 } 654 655 /* 656 * Step 2: merge the returned slots with the preceding slots, if 657 * available (non zero) 658 */ 659 for (i = index - 1; 660 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 661 i--) 662 mem->slots[i].list = ++count; 663 mem->used -= nslots; 664 spin_unlock_irqrestore(&mem->lock, flags); 665 } 666 667 /* 668 * tlb_addr is the physical address of the bounce buffer to unmap. 669 */ 670 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 671 size_t mapping_size, enum dma_data_direction dir, 672 unsigned long attrs) 673 { 674 /* 675 * First, sync the memory before unmapping the entry 676 */ 677 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 678 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 679 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 680 681 swiotlb_release_slots(dev, tlb_addr); 682 } 683 684 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 685 size_t size, enum dma_data_direction dir) 686 { 687 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 688 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 689 else 690 BUG_ON(dir != DMA_FROM_DEVICE); 691 } 692 693 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 694 size_t size, enum dma_data_direction dir) 695 { 696 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 697 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 698 else 699 BUG_ON(dir != DMA_TO_DEVICE); 700 } 701 702 /* 703 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 704 * to the device copy the data into it as well. 705 */ 706 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 707 enum dma_data_direction dir, unsigned long attrs) 708 { 709 phys_addr_t swiotlb_addr; 710 dma_addr_t dma_addr; 711 712 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 713 714 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 715 attrs); 716 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 717 return DMA_MAPPING_ERROR; 718 719 /* Ensure that the address returned is DMA'ble */ 720 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 721 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 722 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 723 attrs | DMA_ATTR_SKIP_CPU_SYNC); 724 dev_WARN_ONCE(dev, 1, 725 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 726 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 727 return DMA_MAPPING_ERROR; 728 } 729 730 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 731 arch_sync_dma_for_device(swiotlb_addr, size, dir); 732 return dma_addr; 733 } 734 735 size_t swiotlb_max_mapping_size(struct device *dev) 736 { 737 int min_align_mask = dma_get_min_align_mask(dev); 738 int min_align = 0; 739 740 /* 741 * swiotlb_find_slots() skips slots according to 742 * min align mask. This affects max mapping size. 743 * Take it into acount here. 744 */ 745 if (min_align_mask) 746 min_align = roundup(min_align_mask, IO_TLB_SIZE); 747 748 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 749 } 750 751 bool is_swiotlb_active(struct device *dev) 752 { 753 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 754 755 return mem && mem->nslabs; 756 } 757 EXPORT_SYMBOL_GPL(is_swiotlb_active); 758 759 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 760 const char *dirname) 761 { 762 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 763 if (!mem->nslabs) 764 return; 765 766 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 767 debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used); 768 } 769 770 static int __init __maybe_unused swiotlb_create_default_debugfs(void) 771 { 772 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 773 return 0; 774 } 775 776 #ifdef CONFIG_DEBUG_FS 777 late_initcall(swiotlb_create_default_debugfs); 778 #endif 779 780 #ifdef CONFIG_DMA_RESTRICTED_POOL 781 782 struct page *swiotlb_alloc(struct device *dev, size_t size) 783 { 784 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 785 phys_addr_t tlb_addr; 786 int index; 787 788 if (!mem) 789 return NULL; 790 791 index = swiotlb_find_slots(dev, 0, size, 0); 792 if (index == -1) 793 return NULL; 794 795 tlb_addr = slot_addr(mem->start, index); 796 797 return pfn_to_page(PFN_DOWN(tlb_addr)); 798 } 799 800 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 801 { 802 phys_addr_t tlb_addr = page_to_phys(page); 803 804 if (!is_swiotlb_buffer(dev, tlb_addr)) 805 return false; 806 807 swiotlb_release_slots(dev, tlb_addr); 808 809 return true; 810 } 811 812 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 813 struct device *dev) 814 { 815 struct io_tlb_mem *mem = rmem->priv; 816 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 817 818 /* 819 * Since multiple devices can share the same pool, the private data, 820 * io_tlb_mem struct, will be initialized by the first device attached 821 * to it. 822 */ 823 if (!mem) { 824 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 825 if (!mem) 826 return -ENOMEM; 827 828 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL); 829 if (!mem->slots) { 830 kfree(mem); 831 return -ENOMEM; 832 } 833 834 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 835 rmem->size >> PAGE_SHIFT); 836 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE, 837 false); 838 mem->for_alloc = true; 839 840 rmem->priv = mem; 841 842 swiotlb_create_debugfs_files(mem, rmem->name); 843 } 844 845 dev->dma_io_tlb_mem = mem; 846 847 return 0; 848 } 849 850 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 851 struct device *dev) 852 { 853 dev->dma_io_tlb_mem = &io_tlb_default_mem; 854 } 855 856 static const struct reserved_mem_ops rmem_swiotlb_ops = { 857 .device_init = rmem_swiotlb_device_init, 858 .device_release = rmem_swiotlb_device_release, 859 }; 860 861 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 862 { 863 unsigned long node = rmem->fdt_node; 864 865 if (of_get_flat_dt_prop(node, "reusable", NULL) || 866 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 867 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 868 of_get_flat_dt_prop(node, "no-map", NULL)) 869 return -EINVAL; 870 871 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 872 pr_err("Restricted DMA pool must be accessible within the linear mapping."); 873 return -EINVAL; 874 } 875 876 rmem->ops = &rmem_swiotlb_ops; 877 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 878 &rmem->base, (unsigned long)rmem->size / SZ_1M); 879 return 0; 880 } 881 882 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 883 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 884