1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/dma-direct.h> 25 #include <linux/dma-map-ops.h> 26 #include <linux/mm.h> 27 #include <linux/export.h> 28 #include <linux/spinlock.h> 29 #include <linux/string.h> 30 #include <linux/swiotlb.h> 31 #include <linux/pfn.h> 32 #include <linux/types.h> 33 #include <linux/ctype.h> 34 #include <linux/highmem.h> 35 #include <linux/gfp.h> 36 #include <linux/scatterlist.h> 37 #include <linux/mem_encrypt.h> 38 #include <linux/set_memory.h> 39 #ifdef CONFIG_DEBUG_FS 40 #include <linux/debugfs.h> 41 #endif 42 #ifdef CONFIG_DMA_RESTRICTED_POOL 43 #include <linux/io.h> 44 #include <linux/of.h> 45 #include <linux/of_fdt.h> 46 #include <linux/of_reserved_mem.h> 47 #include <linux/slab.h> 48 #endif 49 50 #include <asm/io.h> 51 #include <asm/dma.h> 52 53 #include <linux/init.h> 54 #include <linux/memblock.h> 55 #include <linux/iommu-helper.h> 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/swiotlb.h> 59 60 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 61 62 /* 63 * Minimum IO TLB size to bother booting with. Systems with mainly 64 * 64bit capable cards will only lightly use the swiotlb. If we can't 65 * allocate a contiguous 1MB, we're probably in trouble anyway. 66 */ 67 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 68 69 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 70 71 enum swiotlb_force swiotlb_force; 72 73 struct io_tlb_mem io_tlb_default_mem; 74 75 /* 76 * Max segment that we can provide which (if pages are contingous) will 77 * not be bounced (unless SWIOTLB_FORCE is set). 78 */ 79 static unsigned int max_segment; 80 81 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 82 83 static int __init 84 setup_io_tlb_npages(char *str) 85 { 86 if (isdigit(*str)) { 87 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 88 default_nslabs = 89 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 90 } 91 if (*str == ',') 92 ++str; 93 if (!strcmp(str, "force")) 94 swiotlb_force = SWIOTLB_FORCE; 95 else if (!strcmp(str, "noforce")) 96 swiotlb_force = SWIOTLB_NO_FORCE; 97 98 return 0; 99 } 100 early_param("swiotlb", setup_io_tlb_npages); 101 102 unsigned int swiotlb_max_segment(void) 103 { 104 return io_tlb_default_mem.nslabs ? max_segment : 0; 105 } 106 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 107 108 void swiotlb_set_max_segment(unsigned int val) 109 { 110 if (swiotlb_force == SWIOTLB_FORCE) 111 max_segment = 1; 112 else 113 max_segment = rounddown(val, PAGE_SIZE); 114 } 115 116 unsigned long swiotlb_size_or_default(void) 117 { 118 return default_nslabs << IO_TLB_SHIFT; 119 } 120 121 void __init swiotlb_adjust_size(unsigned long size) 122 { 123 /* 124 * If swiotlb parameter has not been specified, give a chance to 125 * architectures such as those supporting memory encryption to 126 * adjust/expand SWIOTLB size for their use. 127 */ 128 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 129 return; 130 size = ALIGN(size, IO_TLB_SIZE); 131 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 132 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 133 } 134 135 void swiotlb_print_info(void) 136 { 137 struct io_tlb_mem *mem = &io_tlb_default_mem; 138 139 if (!mem->nslabs) { 140 pr_warn("No low mem\n"); 141 return; 142 } 143 144 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 145 (mem->nslabs << IO_TLB_SHIFT) >> 20); 146 } 147 148 static inline unsigned long io_tlb_offset(unsigned long val) 149 { 150 return val & (IO_TLB_SEGSIZE - 1); 151 } 152 153 static inline unsigned long nr_slots(u64 val) 154 { 155 return DIV_ROUND_UP(val, IO_TLB_SIZE); 156 } 157 158 /* 159 * Early SWIOTLB allocation may be too early to allow an architecture to 160 * perform the desired operations. This function allows the architecture to 161 * call SWIOTLB when the operations are possible. It needs to be called 162 * before the SWIOTLB memory is used. 163 */ 164 void __init swiotlb_update_mem_attributes(void) 165 { 166 struct io_tlb_mem *mem = &io_tlb_default_mem; 167 void *vaddr; 168 unsigned long bytes; 169 170 if (!mem->nslabs || mem->late_alloc) 171 return; 172 vaddr = phys_to_virt(mem->start); 173 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 174 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 175 memset(vaddr, 0, bytes); 176 } 177 178 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, 179 unsigned long nslabs, bool late_alloc) 180 { 181 void *vaddr = phys_to_virt(start); 182 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 183 184 mem->nslabs = nslabs; 185 mem->start = start; 186 mem->end = mem->start + bytes; 187 mem->index = 0; 188 mem->late_alloc = late_alloc; 189 190 if (swiotlb_force == SWIOTLB_FORCE) 191 mem->force_bounce = true; 192 193 spin_lock_init(&mem->lock); 194 for (i = 0; i < mem->nslabs; i++) { 195 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 196 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 197 mem->slots[i].alloc_size = 0; 198 } 199 memset(vaddr, 0, bytes); 200 } 201 202 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 203 { 204 struct io_tlb_mem *mem = &io_tlb_default_mem; 205 size_t alloc_size; 206 207 if (swiotlb_force == SWIOTLB_NO_FORCE) 208 return 0; 209 210 /* protect against double initialization */ 211 if (WARN_ON_ONCE(mem->nslabs)) 212 return -ENOMEM; 213 214 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 215 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 216 if (!mem->slots) 217 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 218 __func__, alloc_size, PAGE_SIZE); 219 220 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false); 221 222 if (verbose) 223 swiotlb_print_info(); 224 swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT); 225 return 0; 226 } 227 228 /* 229 * Statically reserve bounce buffer space and initialize bounce buffer data 230 * structures for the software IO TLB used to implement the DMA API. 231 */ 232 void __init 233 swiotlb_init(int verbose) 234 { 235 size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT); 236 void *tlb; 237 238 if (swiotlb_force == SWIOTLB_NO_FORCE) 239 return; 240 241 /* Get IO TLB memory from the low pages */ 242 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 243 if (!tlb) 244 goto fail; 245 if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose)) 246 goto fail_free_mem; 247 return; 248 249 fail_free_mem: 250 memblock_free_early(__pa(tlb), bytes); 251 fail: 252 pr_warn("Cannot allocate buffer"); 253 } 254 255 /* 256 * Systems with larger DMA zones (those that don't support ISA) can 257 * initialize the swiotlb later using the slab allocator if needed. 258 * This should be just like above, but with some error catching. 259 */ 260 int 261 swiotlb_late_init_with_default_size(size_t default_size) 262 { 263 unsigned long nslabs = 264 ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 265 unsigned long bytes; 266 unsigned char *vstart = NULL; 267 unsigned int order; 268 int rc = 0; 269 270 if (swiotlb_force == SWIOTLB_NO_FORCE) 271 return 0; 272 273 /* 274 * Get IO TLB memory from the low pages 275 */ 276 order = get_order(nslabs << IO_TLB_SHIFT); 277 nslabs = SLABS_PER_PAGE << order; 278 bytes = nslabs << IO_TLB_SHIFT; 279 280 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 281 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 282 order); 283 if (vstart) 284 break; 285 order--; 286 } 287 288 if (!vstart) 289 return -ENOMEM; 290 291 if (order != get_order(bytes)) { 292 pr_warn("only able to allocate %ld MB\n", 293 (PAGE_SIZE << order) >> 20); 294 nslabs = SLABS_PER_PAGE << order; 295 } 296 rc = swiotlb_late_init_with_tbl(vstart, nslabs); 297 if (rc) 298 free_pages((unsigned long)vstart, order); 299 300 return rc; 301 } 302 303 int 304 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 305 { 306 struct io_tlb_mem *mem = &io_tlb_default_mem; 307 unsigned long bytes = nslabs << IO_TLB_SHIFT; 308 309 if (swiotlb_force == SWIOTLB_NO_FORCE) 310 return 0; 311 312 /* protect against double initialization */ 313 if (WARN_ON_ONCE(mem->nslabs)) 314 return -ENOMEM; 315 316 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 317 get_order(array_size(sizeof(*mem->slots), nslabs))); 318 if (!mem->slots) 319 return -ENOMEM; 320 321 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 322 swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true); 323 324 swiotlb_print_info(); 325 swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT); 326 return 0; 327 } 328 329 void __init swiotlb_exit(void) 330 { 331 struct io_tlb_mem *mem = &io_tlb_default_mem; 332 unsigned long tbl_vaddr; 333 size_t tbl_size, slots_size; 334 335 if (!mem->nslabs) 336 return; 337 338 pr_info("tearing down default memory pool\n"); 339 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 340 tbl_size = PAGE_ALIGN(mem->end - mem->start); 341 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 342 343 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 344 if (mem->late_alloc) { 345 free_pages(tbl_vaddr, get_order(tbl_size)); 346 free_pages((unsigned long)mem->slots, get_order(slots_size)); 347 } else { 348 memblock_free_late(mem->start, tbl_size); 349 memblock_free_late(__pa(mem->slots), slots_size); 350 } 351 352 memset(mem, 0, sizeof(*mem)); 353 } 354 355 /* 356 * Return the offset into a iotlb slot required to keep the device happy. 357 */ 358 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 359 { 360 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 361 } 362 363 /* 364 * Bounce: copy the swiotlb buffer from or back to the original dma location 365 */ 366 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 367 enum dma_data_direction dir) 368 { 369 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 370 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 371 phys_addr_t orig_addr = mem->slots[index].orig_addr; 372 size_t alloc_size = mem->slots[index].alloc_size; 373 unsigned long pfn = PFN_DOWN(orig_addr); 374 unsigned char *vaddr = phys_to_virt(tlb_addr); 375 unsigned int tlb_offset, orig_addr_offset; 376 377 if (orig_addr == INVALID_PHYS_ADDR) 378 return; 379 380 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 381 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 382 if (tlb_offset < orig_addr_offset) { 383 dev_WARN_ONCE(dev, 1, 384 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 385 orig_addr_offset, tlb_offset); 386 return; 387 } 388 389 tlb_offset -= orig_addr_offset; 390 if (tlb_offset > alloc_size) { 391 dev_WARN_ONCE(dev, 1, 392 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 393 alloc_size, size, tlb_offset); 394 return; 395 } 396 397 orig_addr += tlb_offset; 398 alloc_size -= tlb_offset; 399 400 if (size > alloc_size) { 401 dev_WARN_ONCE(dev, 1, 402 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 403 alloc_size, size); 404 size = alloc_size; 405 } 406 407 if (PageHighMem(pfn_to_page(pfn))) { 408 /* The buffer does not have a mapping. Map it in and copy */ 409 unsigned int offset = orig_addr & ~PAGE_MASK; 410 char *buffer; 411 unsigned int sz = 0; 412 unsigned long flags; 413 414 while (size) { 415 sz = min_t(size_t, PAGE_SIZE - offset, size); 416 417 local_irq_save(flags); 418 buffer = kmap_atomic(pfn_to_page(pfn)); 419 if (dir == DMA_TO_DEVICE) 420 memcpy(vaddr, buffer + offset, sz); 421 else 422 memcpy(buffer + offset, vaddr, sz); 423 kunmap_atomic(buffer); 424 local_irq_restore(flags); 425 426 size -= sz; 427 pfn++; 428 vaddr += sz; 429 offset = 0; 430 } 431 } else if (dir == DMA_TO_DEVICE) { 432 memcpy(vaddr, phys_to_virt(orig_addr), size); 433 } else { 434 memcpy(phys_to_virt(orig_addr), vaddr, size); 435 } 436 } 437 438 #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT)) 439 440 /* 441 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 442 */ 443 static inline unsigned long get_max_slots(unsigned long boundary_mask) 444 { 445 if (boundary_mask == ~0UL) 446 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 447 return nr_slots(boundary_mask + 1); 448 } 449 450 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index) 451 { 452 if (index >= mem->nslabs) 453 return 0; 454 return index; 455 } 456 457 /* 458 * Find a suitable number of IO TLB entries size that will fit this request and 459 * allocate a buffer from that IO TLB pool. 460 */ 461 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 462 size_t alloc_size) 463 { 464 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 465 unsigned long boundary_mask = dma_get_seg_boundary(dev); 466 dma_addr_t tbl_dma_addr = 467 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; 468 unsigned long max_slots = get_max_slots(boundary_mask); 469 unsigned int iotlb_align_mask = 470 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); 471 unsigned int nslots = nr_slots(alloc_size), stride; 472 unsigned int index, wrap, count = 0, i; 473 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 474 unsigned long flags; 475 476 BUG_ON(!nslots); 477 478 /* 479 * For mappings with an alignment requirement don't bother looping to 480 * unaligned slots once we found an aligned one. For allocations of 481 * PAGE_SIZE or larger only look for page aligned allocations. 482 */ 483 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 484 if (alloc_size >= PAGE_SIZE) 485 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); 486 487 spin_lock_irqsave(&mem->lock, flags); 488 if (unlikely(nslots > mem->nslabs - mem->used)) 489 goto not_found; 490 491 index = wrap = wrap_index(mem, ALIGN(mem->index, stride)); 492 do { 493 if (orig_addr && 494 (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) != 495 (orig_addr & iotlb_align_mask)) { 496 index = wrap_index(mem, index + 1); 497 continue; 498 } 499 500 /* 501 * If we find a slot that indicates we have 'nslots' number of 502 * contiguous buffers, we allocate the buffers from that slot 503 * and mark the entries as '0' indicating unavailable. 504 */ 505 if (!iommu_is_span_boundary(index, nslots, 506 nr_slots(tbl_dma_addr), 507 max_slots)) { 508 if (mem->slots[index].list >= nslots) 509 goto found; 510 } 511 index = wrap_index(mem, index + stride); 512 } while (index != wrap); 513 514 not_found: 515 spin_unlock_irqrestore(&mem->lock, flags); 516 return -1; 517 518 found: 519 for (i = index; i < index + nslots; i++) { 520 mem->slots[i].list = 0; 521 mem->slots[i].alloc_size = 522 alloc_size - (offset + ((i - index) << IO_TLB_SHIFT)); 523 } 524 for (i = index - 1; 525 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 526 mem->slots[i].list; i--) 527 mem->slots[i].list = ++count; 528 529 /* 530 * Update the indices to avoid searching in the next round. 531 */ 532 if (index + nslots < mem->nslabs) 533 mem->index = index + nslots; 534 else 535 mem->index = 0; 536 mem->used += nslots; 537 538 spin_unlock_irqrestore(&mem->lock, flags); 539 return index; 540 } 541 542 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 543 size_t mapping_size, size_t alloc_size, 544 enum dma_data_direction dir, unsigned long attrs) 545 { 546 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 547 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 548 unsigned int i; 549 int index; 550 phys_addr_t tlb_addr; 551 552 if (!mem) 553 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 554 555 if (mem_encrypt_active()) 556 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 557 558 if (mapping_size > alloc_size) { 559 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 560 mapping_size, alloc_size); 561 return (phys_addr_t)DMA_MAPPING_ERROR; 562 } 563 564 index = swiotlb_find_slots(dev, orig_addr, alloc_size + offset); 565 if (index == -1) { 566 if (!(attrs & DMA_ATTR_NO_WARN)) 567 dev_warn_ratelimited(dev, 568 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 569 alloc_size, mem->nslabs, mem->used); 570 return (phys_addr_t)DMA_MAPPING_ERROR; 571 } 572 573 /* 574 * Save away the mapping from the original address to the DMA address. 575 * This is needed when we sync the memory. Then we sync the buffer if 576 * needed. 577 */ 578 for (i = 0; i < nr_slots(alloc_size + offset); i++) 579 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); 580 tlb_addr = slot_addr(mem->start, index) + offset; 581 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 582 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 583 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 584 return tlb_addr; 585 } 586 587 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 588 { 589 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 590 unsigned long flags; 591 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 592 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 593 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 594 int count, i; 595 596 /* 597 * Return the buffer to the free list by setting the corresponding 598 * entries to indicate the number of contiguous entries available. 599 * While returning the entries to the free list, we merge the entries 600 * with slots below and above the pool being returned. 601 */ 602 spin_lock_irqsave(&mem->lock, flags); 603 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 604 count = mem->slots[index + nslots].list; 605 else 606 count = 0; 607 608 /* 609 * Step 1: return the slots to the free list, merging the slots with 610 * superceeding slots 611 */ 612 for (i = index + nslots - 1; i >= index; i--) { 613 mem->slots[i].list = ++count; 614 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 615 mem->slots[i].alloc_size = 0; 616 } 617 618 /* 619 * Step 2: merge the returned slots with the preceding slots, if 620 * available (non zero) 621 */ 622 for (i = index - 1; 623 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 624 i--) 625 mem->slots[i].list = ++count; 626 mem->used -= nslots; 627 spin_unlock_irqrestore(&mem->lock, flags); 628 } 629 630 /* 631 * tlb_addr is the physical address of the bounce buffer to unmap. 632 */ 633 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 634 size_t mapping_size, enum dma_data_direction dir, 635 unsigned long attrs) 636 { 637 /* 638 * First, sync the memory before unmapping the entry 639 */ 640 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 641 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 642 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 643 644 swiotlb_release_slots(dev, tlb_addr); 645 } 646 647 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 648 size_t size, enum dma_data_direction dir) 649 { 650 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 651 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 652 else 653 BUG_ON(dir != DMA_FROM_DEVICE); 654 } 655 656 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 657 size_t size, enum dma_data_direction dir) 658 { 659 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 660 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 661 else 662 BUG_ON(dir != DMA_TO_DEVICE); 663 } 664 665 /* 666 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 667 * to the device copy the data into it as well. 668 */ 669 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 670 enum dma_data_direction dir, unsigned long attrs) 671 { 672 phys_addr_t swiotlb_addr; 673 dma_addr_t dma_addr; 674 675 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size, 676 swiotlb_force); 677 678 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, dir, 679 attrs); 680 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 681 return DMA_MAPPING_ERROR; 682 683 /* Ensure that the address returned is DMA'ble */ 684 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 685 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 686 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 687 attrs | DMA_ATTR_SKIP_CPU_SYNC); 688 dev_WARN_ONCE(dev, 1, 689 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 690 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 691 return DMA_MAPPING_ERROR; 692 } 693 694 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 695 arch_sync_dma_for_device(swiotlb_addr, size, dir); 696 return dma_addr; 697 } 698 699 size_t swiotlb_max_mapping_size(struct device *dev) 700 { 701 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE; 702 } 703 704 bool is_swiotlb_active(struct device *dev) 705 { 706 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 707 708 return mem && mem->nslabs; 709 } 710 EXPORT_SYMBOL_GPL(is_swiotlb_active); 711 712 #ifdef CONFIG_DEBUG_FS 713 static struct dentry *debugfs_dir; 714 715 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem) 716 { 717 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 718 debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used); 719 } 720 721 static int __init swiotlb_create_default_debugfs(void) 722 { 723 struct io_tlb_mem *mem = &io_tlb_default_mem; 724 725 debugfs_dir = debugfs_create_dir("swiotlb", NULL); 726 if (mem->nslabs) { 727 mem->debugfs = debugfs_dir; 728 swiotlb_create_debugfs_files(mem); 729 } 730 return 0; 731 } 732 733 late_initcall(swiotlb_create_default_debugfs); 734 735 #endif 736 737 #ifdef CONFIG_DMA_RESTRICTED_POOL 738 739 #ifdef CONFIG_DEBUG_FS 740 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem) 741 { 742 struct io_tlb_mem *mem = rmem->priv; 743 744 mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir); 745 swiotlb_create_debugfs_files(mem); 746 } 747 #else 748 static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem) 749 { 750 } 751 #endif 752 753 struct page *swiotlb_alloc(struct device *dev, size_t size) 754 { 755 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 756 phys_addr_t tlb_addr; 757 int index; 758 759 if (!mem) 760 return NULL; 761 762 index = swiotlb_find_slots(dev, 0, size); 763 if (index == -1) 764 return NULL; 765 766 tlb_addr = slot_addr(mem->start, index); 767 768 return pfn_to_page(PFN_DOWN(tlb_addr)); 769 } 770 771 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 772 { 773 phys_addr_t tlb_addr = page_to_phys(page); 774 775 if (!is_swiotlb_buffer(dev, tlb_addr)) 776 return false; 777 778 swiotlb_release_slots(dev, tlb_addr); 779 780 return true; 781 } 782 783 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 784 struct device *dev) 785 { 786 struct io_tlb_mem *mem = rmem->priv; 787 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 788 789 /* 790 * Since multiple devices can share the same pool, the private data, 791 * io_tlb_mem struct, will be initialized by the first device attached 792 * to it. 793 */ 794 if (!mem) { 795 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 796 if (!mem) 797 return -ENOMEM; 798 799 mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs), 800 GFP_KERNEL); 801 if (!mem->slots) { 802 kfree(mem); 803 return -ENOMEM; 804 } 805 806 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 807 rmem->size >> PAGE_SHIFT); 808 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false); 809 mem->force_bounce = true; 810 mem->for_alloc = true; 811 812 rmem->priv = mem; 813 814 rmem_swiotlb_debugfs_init(rmem); 815 } 816 817 dev->dma_io_tlb_mem = mem; 818 819 return 0; 820 } 821 822 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 823 struct device *dev) 824 { 825 dev->dma_io_tlb_mem = &io_tlb_default_mem; 826 } 827 828 static const struct reserved_mem_ops rmem_swiotlb_ops = { 829 .device_init = rmem_swiotlb_device_init, 830 .device_release = rmem_swiotlb_device_release, 831 }; 832 833 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 834 { 835 unsigned long node = rmem->fdt_node; 836 837 if (of_get_flat_dt_prop(node, "reusable", NULL) || 838 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 839 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 840 of_get_flat_dt_prop(node, "no-map", NULL)) 841 return -EINVAL; 842 843 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 844 pr_err("Restricted DMA pool must be accessible within the linear mapping."); 845 return -EINVAL; 846 } 847 848 rmem->ops = &rmem_swiotlb_ops; 849 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 850 &rmem->base, (unsigned long)rmem->size / SZ_1M); 851 return 0; 852 } 853 854 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 855 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 856