xref: /openbmc/linux/kernel/dma/swiotlb.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Dynamic DMA mapping support.
4  *
5  * This implementation is a fallback for platforms that do not support
6  * I/O TLBs (aka DMA address translation hardware).
7  * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8  * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9  * Copyright (C) 2000, 2003 Hewlett-Packard Co
10  *	David Mosberger-Tang <davidm@hpl.hp.com>
11  *
12  * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API.
13  * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid
14  *			unnecessary i-cache flushing.
15  * 04/07/.. ak		Better overflow handling. Assorted fixes.
16  * 05/09/10 linville	Add support for syncing ranges, support syncing for
17  *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18  * 08/12/11 beckyb	Add highmem support
19  */
20 
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22 
23 #include <linux/cache.h>
24 #include <linux/cc_platform.h>
25 #include <linux/ctype.h>
26 #include <linux/debugfs.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/export.h>
30 #include <linux/gfp.h>
31 #include <linux/highmem.h>
32 #include <linux/io.h>
33 #include <linux/iommu-helper.h>
34 #include <linux/init.h>
35 #include <linux/memblock.h>
36 #include <linux/mm.h>
37 #include <linux/pfn.h>
38 #include <linux/scatterlist.h>
39 #include <linux/set_memory.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42 #include <linux/swiotlb.h>
43 #include <linux/types.h>
44 #ifdef CONFIG_DMA_RESTRICTED_POOL
45 #include <linux/of.h>
46 #include <linux/of_fdt.h>
47 #include <linux/of_reserved_mem.h>
48 #include <linux/slab.h>
49 #endif
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/swiotlb.h>
53 
54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 
56 /*
57  * Minimum IO TLB size to bother booting with.  Systems with mainly
58  * 64bit capable cards will only lightly use the swiotlb.  If we can't
59  * allocate a contiguous 1MB, we're probably in trouble anyway.
60  */
61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
62 
63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
64 
65 static bool swiotlb_force_bounce;
66 static bool swiotlb_force_disable;
67 
68 struct io_tlb_mem io_tlb_default_mem;
69 
70 phys_addr_t swiotlb_unencrypted_base;
71 
72 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
73 
74 static int __init
75 setup_io_tlb_npages(char *str)
76 {
77 	if (isdigit(*str)) {
78 		/* avoid tail segment of size < IO_TLB_SEGSIZE */
79 		default_nslabs =
80 			ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
81 	}
82 	if (*str == ',')
83 		++str;
84 	if (!strcmp(str, "force"))
85 		swiotlb_force_bounce = true;
86 	else if (!strcmp(str, "noforce"))
87 		swiotlb_force_disable = true;
88 
89 	return 0;
90 }
91 early_param("swiotlb", setup_io_tlb_npages);
92 
93 unsigned int swiotlb_max_segment(void)
94 {
95 	if (!io_tlb_default_mem.nslabs)
96 		return 0;
97 	return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE);
98 }
99 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
100 
101 unsigned long swiotlb_size_or_default(void)
102 {
103 	return default_nslabs << IO_TLB_SHIFT;
104 }
105 
106 void __init swiotlb_adjust_size(unsigned long size)
107 {
108 	/*
109 	 * If swiotlb parameter has not been specified, give a chance to
110 	 * architectures such as those supporting memory encryption to
111 	 * adjust/expand SWIOTLB size for their use.
112 	 */
113 	if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
114 		return;
115 	size = ALIGN(size, IO_TLB_SIZE);
116 	default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
117 	pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
118 }
119 
120 void swiotlb_print_info(void)
121 {
122 	struct io_tlb_mem *mem = &io_tlb_default_mem;
123 
124 	if (!mem->nslabs) {
125 		pr_warn("No low mem\n");
126 		return;
127 	}
128 
129 	pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
130 	       (mem->nslabs << IO_TLB_SHIFT) >> 20);
131 }
132 
133 static inline unsigned long io_tlb_offset(unsigned long val)
134 {
135 	return val & (IO_TLB_SEGSIZE - 1);
136 }
137 
138 static inline unsigned long nr_slots(u64 val)
139 {
140 	return DIV_ROUND_UP(val, IO_TLB_SIZE);
141 }
142 
143 /*
144  * Remap swioltb memory in the unencrypted physical address space
145  * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
146  * Isolation VMs).
147  */
148 #ifdef CONFIG_HAS_IOMEM
149 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
150 {
151 	void *vaddr = NULL;
152 
153 	if (swiotlb_unencrypted_base) {
154 		phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
155 
156 		vaddr = memremap(paddr, bytes, MEMREMAP_WB);
157 		if (!vaddr)
158 			pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
159 			       &paddr, bytes);
160 	}
161 
162 	return vaddr;
163 }
164 #else
165 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
166 {
167 	return NULL;
168 }
169 #endif
170 
171 /*
172  * Early SWIOTLB allocation may be too early to allow an architecture to
173  * perform the desired operations.  This function allows the architecture to
174  * call SWIOTLB when the operations are possible.  It needs to be called
175  * before the SWIOTLB memory is used.
176  */
177 void __init swiotlb_update_mem_attributes(void)
178 {
179 	struct io_tlb_mem *mem = &io_tlb_default_mem;
180 	void *vaddr;
181 	unsigned long bytes;
182 
183 	if (!mem->nslabs || mem->late_alloc)
184 		return;
185 	vaddr = phys_to_virt(mem->start);
186 	bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
187 	set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
188 
189 	mem->vaddr = swiotlb_mem_remap(mem, bytes);
190 	if (!mem->vaddr)
191 		mem->vaddr = vaddr;
192 }
193 
194 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
195 				    unsigned long nslabs, bool late_alloc)
196 {
197 	void *vaddr = phys_to_virt(start);
198 	unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
199 
200 	mem->nslabs = nslabs;
201 	mem->start = start;
202 	mem->end = mem->start + bytes;
203 	mem->index = 0;
204 	mem->late_alloc = late_alloc;
205 
206 	if (swiotlb_force_bounce)
207 		mem->force_bounce = true;
208 
209 	spin_lock_init(&mem->lock);
210 	for (i = 0; i < mem->nslabs; i++) {
211 		mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
212 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
213 		mem->slots[i].alloc_size = 0;
214 	}
215 
216 	/*
217 	 * If swiotlb_unencrypted_base is set, the bounce buffer memory will
218 	 * be remapped and cleared in swiotlb_update_mem_attributes.
219 	 */
220 	if (swiotlb_unencrypted_base)
221 		return;
222 
223 	memset(vaddr, 0, bytes);
224 	mem->vaddr = vaddr;
225 	return;
226 }
227 
228 /*
229  * Statically reserve bounce buffer space and initialize bounce buffer data
230  * structures for the software IO TLB used to implement the DMA API.
231  */
232 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags,
233 		int (*remap)(void *tlb, unsigned long nslabs))
234 {
235 	struct io_tlb_mem *mem = &io_tlb_default_mem;
236 	unsigned long nslabs = default_nslabs;
237 	size_t alloc_size;
238 	size_t bytes;
239 	void *tlb;
240 
241 	if (!addressing_limit && !swiotlb_force_bounce)
242 		return;
243 	if (swiotlb_force_disable)
244 		return;
245 
246 	/*
247 	 * By default allocate the bounce buffer memory from low memory, but
248 	 * allow to pick a location everywhere for hypervisors with guest
249 	 * memory encryption.
250 	 */
251 retry:
252 	bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT);
253 	if (flags & SWIOTLB_ANY)
254 		tlb = memblock_alloc(bytes, PAGE_SIZE);
255 	else
256 		tlb = memblock_alloc_low(bytes, PAGE_SIZE);
257 	if (!tlb) {
258 		pr_warn("%s: failed to allocate tlb structure\n", __func__);
259 		return;
260 	}
261 
262 	if (remap && remap(tlb, nslabs) < 0) {
263 		memblock_free(tlb, PAGE_ALIGN(bytes));
264 
265 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
266 		if (nslabs < IO_TLB_MIN_SLABS)
267 			panic("%s: Failed to remap %zu bytes\n",
268 			      __func__, bytes);
269 		goto retry;
270 	}
271 
272 	alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
273 	mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
274 	if (!mem->slots)
275 		panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
276 		      __func__, alloc_size, PAGE_SIZE);
277 
278 	swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
279 	mem->force_bounce = flags & SWIOTLB_FORCE;
280 
281 	if (flags & SWIOTLB_VERBOSE)
282 		swiotlb_print_info();
283 }
284 
285 void __init swiotlb_init(bool addressing_limit, unsigned int flags)
286 {
287 	return swiotlb_init_remap(addressing_limit, flags, NULL);
288 }
289 
290 /*
291  * Systems with larger DMA zones (those that don't support ISA) can
292  * initialize the swiotlb later using the slab allocator if needed.
293  * This should be just like above, but with some error catching.
294  */
295 int swiotlb_init_late(size_t size, gfp_t gfp_mask,
296 		int (*remap)(void *tlb, unsigned long nslabs))
297 {
298 	struct io_tlb_mem *mem = &io_tlb_default_mem;
299 	unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
300 	unsigned char *vstart = NULL;
301 	unsigned int order;
302 	bool retried = false;
303 	int rc = 0;
304 
305 	if (swiotlb_force_disable)
306 		return 0;
307 
308 retry:
309 	order = get_order(nslabs << IO_TLB_SHIFT);
310 	nslabs = SLABS_PER_PAGE << order;
311 
312 	while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
313 		vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN,
314 						  order);
315 		if (vstart)
316 			break;
317 		order--;
318 		nslabs = SLABS_PER_PAGE << order;
319 		retried = true;
320 	}
321 
322 	if (!vstart)
323 		return -ENOMEM;
324 
325 	if (remap)
326 		rc = remap(vstart, nslabs);
327 	if (rc) {
328 		free_pages((unsigned long)vstart, order);
329 
330 		nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE);
331 		if (nslabs < IO_TLB_MIN_SLABS)
332 			return rc;
333 		retried = true;
334 		goto retry;
335 	}
336 
337 	if (retried) {
338 		pr_warn("only able to allocate %ld MB\n",
339 			(PAGE_SIZE << order) >> 20);
340 	}
341 
342 	mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
343 		get_order(array_size(sizeof(*mem->slots), nslabs)));
344 	if (!mem->slots) {
345 		free_pages((unsigned long)vstart, order);
346 		return -ENOMEM;
347 	}
348 
349 	set_memory_decrypted((unsigned long)vstart,
350 			     (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT);
351 	swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, true);
352 
353 	swiotlb_print_info();
354 	return 0;
355 }
356 
357 void __init swiotlb_exit(void)
358 {
359 	struct io_tlb_mem *mem = &io_tlb_default_mem;
360 	unsigned long tbl_vaddr;
361 	size_t tbl_size, slots_size;
362 
363 	if (swiotlb_force_bounce)
364 		return;
365 
366 	if (!mem->nslabs)
367 		return;
368 
369 	pr_info("tearing down default memory pool\n");
370 	tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
371 	tbl_size = PAGE_ALIGN(mem->end - mem->start);
372 	slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
373 
374 	set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
375 	if (mem->late_alloc) {
376 		free_pages(tbl_vaddr, get_order(tbl_size));
377 		free_pages((unsigned long)mem->slots, get_order(slots_size));
378 	} else {
379 		memblock_free_late(mem->start, tbl_size);
380 		memblock_free_late(__pa(mem->slots), slots_size);
381 	}
382 
383 	memset(mem, 0, sizeof(*mem));
384 }
385 
386 /*
387  * Return the offset into a iotlb slot required to keep the device happy.
388  */
389 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
390 {
391 	return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
392 }
393 
394 /*
395  * Bounce: copy the swiotlb buffer from or back to the original dma location
396  */
397 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
398 			   enum dma_data_direction dir)
399 {
400 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
401 	int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
402 	phys_addr_t orig_addr = mem->slots[index].orig_addr;
403 	size_t alloc_size = mem->slots[index].alloc_size;
404 	unsigned long pfn = PFN_DOWN(orig_addr);
405 	unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
406 	unsigned int tlb_offset, orig_addr_offset;
407 
408 	if (orig_addr == INVALID_PHYS_ADDR)
409 		return;
410 
411 	tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
412 	orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
413 	if (tlb_offset < orig_addr_offset) {
414 		dev_WARN_ONCE(dev, 1,
415 			"Access before mapping start detected. orig offset %u, requested offset %u.\n",
416 			orig_addr_offset, tlb_offset);
417 		return;
418 	}
419 
420 	tlb_offset -= orig_addr_offset;
421 	if (tlb_offset > alloc_size) {
422 		dev_WARN_ONCE(dev, 1,
423 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
424 			alloc_size, size, tlb_offset);
425 		return;
426 	}
427 
428 	orig_addr += tlb_offset;
429 	alloc_size -= tlb_offset;
430 
431 	if (size > alloc_size) {
432 		dev_WARN_ONCE(dev, 1,
433 			"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
434 			alloc_size, size);
435 		size = alloc_size;
436 	}
437 
438 	if (PageHighMem(pfn_to_page(pfn))) {
439 		/* The buffer does not have a mapping.  Map it in and copy */
440 		unsigned int offset = orig_addr & ~PAGE_MASK;
441 		char *buffer;
442 		unsigned int sz = 0;
443 		unsigned long flags;
444 
445 		while (size) {
446 			sz = min_t(size_t, PAGE_SIZE - offset, size);
447 
448 			local_irq_save(flags);
449 			buffer = kmap_atomic(pfn_to_page(pfn));
450 			if (dir == DMA_TO_DEVICE)
451 				memcpy(vaddr, buffer + offset, sz);
452 			else
453 				memcpy(buffer + offset, vaddr, sz);
454 			kunmap_atomic(buffer);
455 			local_irq_restore(flags);
456 
457 			size -= sz;
458 			pfn++;
459 			vaddr += sz;
460 			offset = 0;
461 		}
462 	} else if (dir == DMA_TO_DEVICE) {
463 		memcpy(vaddr, phys_to_virt(orig_addr), size);
464 	} else {
465 		memcpy(phys_to_virt(orig_addr), vaddr, size);
466 	}
467 }
468 
469 #define slot_addr(start, idx)	((start) + ((idx) << IO_TLB_SHIFT))
470 
471 /*
472  * Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
473  */
474 static inline unsigned long get_max_slots(unsigned long boundary_mask)
475 {
476 	if (boundary_mask == ~0UL)
477 		return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
478 	return nr_slots(boundary_mask + 1);
479 }
480 
481 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
482 {
483 	if (index >= mem->nslabs)
484 		return 0;
485 	return index;
486 }
487 
488 /*
489  * Find a suitable number of IO TLB entries size that will fit this request and
490  * allocate a buffer from that IO TLB pool.
491  */
492 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
493 			      size_t alloc_size, unsigned int alloc_align_mask)
494 {
495 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
496 	unsigned long boundary_mask = dma_get_seg_boundary(dev);
497 	dma_addr_t tbl_dma_addr =
498 		phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
499 	unsigned long max_slots = get_max_slots(boundary_mask);
500 	unsigned int iotlb_align_mask =
501 		dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
502 	unsigned int nslots = nr_slots(alloc_size), stride;
503 	unsigned int index, wrap, count = 0, i;
504 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
505 	unsigned long flags;
506 
507 	BUG_ON(!nslots);
508 
509 	/*
510 	 * For mappings with an alignment requirement don't bother looping to
511 	 * unaligned slots once we found an aligned one.  For allocations of
512 	 * PAGE_SIZE or larger only look for page aligned allocations.
513 	 */
514 	stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
515 	if (alloc_size >= PAGE_SIZE)
516 		stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
517 	stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
518 
519 	spin_lock_irqsave(&mem->lock, flags);
520 	if (unlikely(nslots > mem->nslabs - mem->used))
521 		goto not_found;
522 
523 	index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
524 	do {
525 		if (orig_addr &&
526 		    (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
527 			    (orig_addr & iotlb_align_mask)) {
528 			index = wrap_index(mem, index + 1);
529 			continue;
530 		}
531 
532 		/*
533 		 * If we find a slot that indicates we have 'nslots' number of
534 		 * contiguous buffers, we allocate the buffers from that slot
535 		 * and mark the entries as '0' indicating unavailable.
536 		 */
537 		if (!iommu_is_span_boundary(index, nslots,
538 					    nr_slots(tbl_dma_addr),
539 					    max_slots)) {
540 			if (mem->slots[index].list >= nslots)
541 				goto found;
542 		}
543 		index = wrap_index(mem, index + stride);
544 	} while (index != wrap);
545 
546 not_found:
547 	spin_unlock_irqrestore(&mem->lock, flags);
548 	return -1;
549 
550 found:
551 	for (i = index; i < index + nslots; i++) {
552 		mem->slots[i].list = 0;
553 		mem->slots[i].alloc_size =
554 			alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
555 	}
556 	for (i = index - 1;
557 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
558 	     mem->slots[i].list; i--)
559 		mem->slots[i].list = ++count;
560 
561 	/*
562 	 * Update the indices to avoid searching in the next round.
563 	 */
564 	if (index + nslots < mem->nslabs)
565 		mem->index = index + nslots;
566 	else
567 		mem->index = 0;
568 	mem->used += nslots;
569 
570 	spin_unlock_irqrestore(&mem->lock, flags);
571 	return index;
572 }
573 
574 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
575 		size_t mapping_size, size_t alloc_size,
576 		unsigned int alloc_align_mask, enum dma_data_direction dir,
577 		unsigned long attrs)
578 {
579 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
580 	unsigned int offset = swiotlb_align_offset(dev, orig_addr);
581 	unsigned int i;
582 	int index;
583 	phys_addr_t tlb_addr;
584 
585 	if (!mem)
586 		panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
587 
588 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
589 		pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
590 
591 	if (mapping_size > alloc_size) {
592 		dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
593 			      mapping_size, alloc_size);
594 		return (phys_addr_t)DMA_MAPPING_ERROR;
595 	}
596 
597 	index = swiotlb_find_slots(dev, orig_addr,
598 				   alloc_size + offset, alloc_align_mask);
599 	if (index == -1) {
600 		if (!(attrs & DMA_ATTR_NO_WARN))
601 			dev_warn_ratelimited(dev,
602 	"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
603 				 alloc_size, mem->nslabs, mem->used);
604 		return (phys_addr_t)DMA_MAPPING_ERROR;
605 	}
606 
607 	/*
608 	 * Save away the mapping from the original address to the DMA address.
609 	 * This is needed when we sync the memory.  Then we sync the buffer if
610 	 * needed.
611 	 */
612 	for (i = 0; i < nr_slots(alloc_size + offset); i++)
613 		mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
614 	tlb_addr = slot_addr(mem->start, index) + offset;
615 	/*
616 	 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig
617 	 * to the tlb buffer, if we knew for sure the device will
618 	 * overwirte the entire current content. But we don't. Thus
619 	 * unconditional bounce may prevent leaking swiotlb content (i.e.
620 	 * kernel memory) to user-space.
621 	 */
622 	swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
623 	return tlb_addr;
624 }
625 
626 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
627 {
628 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
629 	unsigned long flags;
630 	unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
631 	int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
632 	int nslots = nr_slots(mem->slots[index].alloc_size + offset);
633 	int count, i;
634 
635 	/*
636 	 * Return the buffer to the free list by setting the corresponding
637 	 * entries to indicate the number of contiguous entries available.
638 	 * While returning the entries to the free list, we merge the entries
639 	 * with slots below and above the pool being returned.
640 	 */
641 	spin_lock_irqsave(&mem->lock, flags);
642 	if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
643 		count = mem->slots[index + nslots].list;
644 	else
645 		count = 0;
646 
647 	/*
648 	 * Step 1: return the slots to the free list, merging the slots with
649 	 * superceeding slots
650 	 */
651 	for (i = index + nslots - 1; i >= index; i--) {
652 		mem->slots[i].list = ++count;
653 		mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
654 		mem->slots[i].alloc_size = 0;
655 	}
656 
657 	/*
658 	 * Step 2: merge the returned slots with the preceding slots, if
659 	 * available (non zero)
660 	 */
661 	for (i = index - 1;
662 	     io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
663 	     i--)
664 		mem->slots[i].list = ++count;
665 	mem->used -= nslots;
666 	spin_unlock_irqrestore(&mem->lock, flags);
667 }
668 
669 /*
670  * tlb_addr is the physical address of the bounce buffer to unmap.
671  */
672 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
673 			      size_t mapping_size, enum dma_data_direction dir,
674 			      unsigned long attrs)
675 {
676 	/*
677 	 * First, sync the memory before unmapping the entry
678 	 */
679 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
680 	    (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
681 		swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
682 
683 	swiotlb_release_slots(dev, tlb_addr);
684 }
685 
686 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
687 		size_t size, enum dma_data_direction dir)
688 {
689 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
690 		swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
691 	else
692 		BUG_ON(dir != DMA_FROM_DEVICE);
693 }
694 
695 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
696 		size_t size, enum dma_data_direction dir)
697 {
698 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
699 		swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
700 	else
701 		BUG_ON(dir != DMA_TO_DEVICE);
702 }
703 
704 /*
705  * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
706  * to the device copy the data into it as well.
707  */
708 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
709 		enum dma_data_direction dir, unsigned long attrs)
710 {
711 	phys_addr_t swiotlb_addr;
712 	dma_addr_t dma_addr;
713 
714 	trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
715 
716 	swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
717 			attrs);
718 	if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
719 		return DMA_MAPPING_ERROR;
720 
721 	/* Ensure that the address returned is DMA'ble */
722 	dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
723 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
724 		swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
725 			attrs | DMA_ATTR_SKIP_CPU_SYNC);
726 		dev_WARN_ONCE(dev, 1,
727 			"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
728 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
729 		return DMA_MAPPING_ERROR;
730 	}
731 
732 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
733 		arch_sync_dma_for_device(swiotlb_addr, size, dir);
734 	return dma_addr;
735 }
736 
737 size_t swiotlb_max_mapping_size(struct device *dev)
738 {
739 	int min_align_mask = dma_get_min_align_mask(dev);
740 	int min_align = 0;
741 
742 	/*
743 	 * swiotlb_find_slots() skips slots according to
744 	 * min align mask. This affects max mapping size.
745 	 * Take it into acount here.
746 	 */
747 	if (min_align_mask)
748 		min_align = roundup(min_align_mask, IO_TLB_SIZE);
749 
750 	return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align;
751 }
752 
753 bool is_swiotlb_active(struct device *dev)
754 {
755 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
756 
757 	return mem && mem->nslabs;
758 }
759 EXPORT_SYMBOL_GPL(is_swiotlb_active);
760 
761 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem,
762 					 const char *dirname)
763 {
764 	mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs);
765 	if (!mem->nslabs)
766 		return;
767 
768 	debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
769 	debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
770 }
771 
772 static int __init __maybe_unused swiotlb_create_default_debugfs(void)
773 {
774 	swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb");
775 	return 0;
776 }
777 
778 #ifdef CONFIG_DEBUG_FS
779 late_initcall(swiotlb_create_default_debugfs);
780 #endif
781 
782 #ifdef CONFIG_DMA_RESTRICTED_POOL
783 
784 struct page *swiotlb_alloc(struct device *dev, size_t size)
785 {
786 	struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
787 	phys_addr_t tlb_addr;
788 	int index;
789 
790 	if (!mem)
791 		return NULL;
792 
793 	index = swiotlb_find_slots(dev, 0, size, 0);
794 	if (index == -1)
795 		return NULL;
796 
797 	tlb_addr = slot_addr(mem->start, index);
798 
799 	return pfn_to_page(PFN_DOWN(tlb_addr));
800 }
801 
802 bool swiotlb_free(struct device *dev, struct page *page, size_t size)
803 {
804 	phys_addr_t tlb_addr = page_to_phys(page);
805 
806 	if (!is_swiotlb_buffer(dev, tlb_addr))
807 		return false;
808 
809 	swiotlb_release_slots(dev, tlb_addr);
810 
811 	return true;
812 }
813 
814 static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
815 				    struct device *dev)
816 {
817 	struct io_tlb_mem *mem = rmem->priv;
818 	unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
819 
820 	/*
821 	 * Since multiple devices can share the same pool, the private data,
822 	 * io_tlb_mem struct, will be initialized by the first device attached
823 	 * to it.
824 	 */
825 	if (!mem) {
826 		mem = kzalloc(sizeof(*mem), GFP_KERNEL);
827 		if (!mem)
828 			return -ENOMEM;
829 
830 		mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL);
831 		if (!mem->slots) {
832 			kfree(mem);
833 			return -ENOMEM;
834 		}
835 
836 		set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
837 				     rmem->size >> PAGE_SHIFT);
838 		swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
839 		mem->force_bounce = true;
840 		mem->for_alloc = true;
841 
842 		rmem->priv = mem;
843 
844 		swiotlb_create_debugfs_files(mem, rmem->name);
845 	}
846 
847 	dev->dma_io_tlb_mem = mem;
848 
849 	return 0;
850 }
851 
852 static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
853 					struct device *dev)
854 {
855 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
856 }
857 
858 static const struct reserved_mem_ops rmem_swiotlb_ops = {
859 	.device_init = rmem_swiotlb_device_init,
860 	.device_release = rmem_swiotlb_device_release,
861 };
862 
863 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
864 {
865 	unsigned long node = rmem->fdt_node;
866 
867 	if (of_get_flat_dt_prop(node, "reusable", NULL) ||
868 	    of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
869 	    of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
870 	    of_get_flat_dt_prop(node, "no-map", NULL))
871 		return -EINVAL;
872 
873 	if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
874 		pr_err("Restricted DMA pool must be accessible within the linear mapping.");
875 		return -EINVAL;
876 	}
877 
878 	rmem->ops = &rmem_swiotlb_ops;
879 	pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
880 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
881 	return 0;
882 }
883 
884 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
885 #endif /* CONFIG_DMA_RESTRICTED_POOL */
886