1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/scatterlist.h> 39 #include <linux/set_memory.h> 40 #include <linux/spinlock.h> 41 #include <linux/string.h> 42 #include <linux/swiotlb.h> 43 #include <linux/types.h> 44 #ifdef CONFIG_DMA_RESTRICTED_POOL 45 #include <linux/of.h> 46 #include <linux/of_fdt.h> 47 #include <linux/of_reserved_mem.h> 48 #include <linux/slab.h> 49 #endif 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/swiotlb.h> 53 54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 55 56 /* 57 * Minimum IO TLB size to bother booting with. Systems with mainly 58 * 64bit capable cards will only lightly use the swiotlb. If we can't 59 * allocate a contiguous 1MB, we're probably in trouble anyway. 60 */ 61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 62 63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 64 65 static bool swiotlb_force_bounce; 66 static bool swiotlb_force_disable; 67 68 struct io_tlb_mem io_tlb_default_mem; 69 70 phys_addr_t swiotlb_unencrypted_base; 71 72 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 73 74 static int __init 75 setup_io_tlb_npages(char *str) 76 { 77 if (isdigit(*str)) { 78 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 79 default_nslabs = 80 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 81 } 82 if (*str == ',') 83 ++str; 84 if (!strcmp(str, "force")) 85 swiotlb_force_bounce = true; 86 else if (!strcmp(str, "noforce")) 87 swiotlb_force_disable = true; 88 89 return 0; 90 } 91 early_param("swiotlb", setup_io_tlb_npages); 92 93 unsigned int swiotlb_max_segment(void) 94 { 95 if (!io_tlb_default_mem.nslabs) 96 return 0; 97 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE); 98 } 99 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 100 101 unsigned long swiotlb_size_or_default(void) 102 { 103 return default_nslabs << IO_TLB_SHIFT; 104 } 105 106 void __init swiotlb_adjust_size(unsigned long size) 107 { 108 /* 109 * If swiotlb parameter has not been specified, give a chance to 110 * architectures such as those supporting memory encryption to 111 * adjust/expand SWIOTLB size for their use. 112 */ 113 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 114 return; 115 size = ALIGN(size, IO_TLB_SIZE); 116 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 117 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 118 } 119 120 void swiotlb_print_info(void) 121 { 122 struct io_tlb_mem *mem = &io_tlb_default_mem; 123 124 if (!mem->nslabs) { 125 pr_warn("No low mem\n"); 126 return; 127 } 128 129 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 130 (mem->nslabs << IO_TLB_SHIFT) >> 20); 131 } 132 133 static inline unsigned long io_tlb_offset(unsigned long val) 134 { 135 return val & (IO_TLB_SEGSIZE - 1); 136 } 137 138 static inline unsigned long nr_slots(u64 val) 139 { 140 return DIV_ROUND_UP(val, IO_TLB_SIZE); 141 } 142 143 /* 144 * Remap swioltb memory in the unencrypted physical address space 145 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP 146 * Isolation VMs). 147 */ 148 #ifdef CONFIG_HAS_IOMEM 149 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 150 { 151 void *vaddr = NULL; 152 153 if (swiotlb_unencrypted_base) { 154 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base; 155 156 vaddr = memremap(paddr, bytes, MEMREMAP_WB); 157 if (!vaddr) 158 pr_err("Failed to map the unencrypted memory %pa size %lx.\n", 159 &paddr, bytes); 160 } 161 162 return vaddr; 163 } 164 #else 165 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 166 { 167 return NULL; 168 } 169 #endif 170 171 /* 172 * Early SWIOTLB allocation may be too early to allow an architecture to 173 * perform the desired operations. This function allows the architecture to 174 * call SWIOTLB when the operations are possible. It needs to be called 175 * before the SWIOTLB memory is used. 176 */ 177 void __init swiotlb_update_mem_attributes(void) 178 { 179 struct io_tlb_mem *mem = &io_tlb_default_mem; 180 void *vaddr; 181 unsigned long bytes; 182 183 if (!mem->nslabs || mem->late_alloc) 184 return; 185 vaddr = phys_to_virt(mem->start); 186 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 187 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 188 189 mem->vaddr = swiotlb_mem_remap(mem, bytes); 190 if (!mem->vaddr) 191 mem->vaddr = vaddr; 192 } 193 194 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, 195 unsigned long nslabs, bool late_alloc) 196 { 197 void *vaddr = phys_to_virt(start); 198 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 199 200 mem->nslabs = nslabs; 201 mem->start = start; 202 mem->end = mem->start + bytes; 203 mem->index = 0; 204 mem->late_alloc = late_alloc; 205 206 if (swiotlb_force_bounce) 207 mem->force_bounce = true; 208 209 spin_lock_init(&mem->lock); 210 for (i = 0; i < mem->nslabs; i++) { 211 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 212 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 213 mem->slots[i].alloc_size = 0; 214 } 215 216 /* 217 * If swiotlb_unencrypted_base is set, the bounce buffer memory will 218 * be remapped and cleared in swiotlb_update_mem_attributes. 219 */ 220 if (swiotlb_unencrypted_base) 221 return; 222 223 memset(vaddr, 0, bytes); 224 mem->vaddr = vaddr; 225 return; 226 } 227 228 /* 229 * Statically reserve bounce buffer space and initialize bounce buffer data 230 * structures for the software IO TLB used to implement the DMA API. 231 */ 232 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 233 int (*remap)(void *tlb, unsigned long nslabs)) 234 { 235 struct io_tlb_mem *mem = &io_tlb_default_mem; 236 unsigned long nslabs = default_nslabs; 237 size_t alloc_size; 238 size_t bytes; 239 void *tlb; 240 241 if (!addressing_limit && !swiotlb_force_bounce) 242 return; 243 if (swiotlb_force_disable) 244 return; 245 246 /* 247 * By default allocate the bounce buffer memory from low memory, but 248 * allow to pick a location everywhere for hypervisors with guest 249 * memory encryption. 250 */ 251 retry: 252 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 253 if (flags & SWIOTLB_ANY) 254 tlb = memblock_alloc(bytes, PAGE_SIZE); 255 else 256 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 257 if (!tlb) { 258 pr_warn("%s: failed to allocate tlb structure\n", __func__); 259 return; 260 } 261 262 if (remap && remap(tlb, nslabs) < 0) { 263 memblock_free(tlb, PAGE_ALIGN(bytes)); 264 265 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 266 if (nslabs < IO_TLB_MIN_SLABS) 267 panic("%s: Failed to remap %zu bytes\n", 268 __func__, bytes); 269 goto retry; 270 } 271 272 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 273 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 274 if (!mem->slots) 275 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 276 __func__, alloc_size, PAGE_SIZE); 277 278 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false); 279 mem->force_bounce = flags & SWIOTLB_FORCE; 280 281 if (flags & SWIOTLB_VERBOSE) 282 swiotlb_print_info(); 283 } 284 285 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 286 { 287 return swiotlb_init_remap(addressing_limit, flags, NULL); 288 } 289 290 /* 291 * Systems with larger DMA zones (those that don't support ISA) can 292 * initialize the swiotlb later using the slab allocator if needed. 293 * This should be just like above, but with some error catching. 294 */ 295 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 296 int (*remap)(void *tlb, unsigned long nslabs)) 297 { 298 struct io_tlb_mem *mem = &io_tlb_default_mem; 299 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 300 unsigned char *vstart = NULL; 301 unsigned int order; 302 bool retried = false; 303 int rc = 0; 304 305 if (swiotlb_force_disable) 306 return 0; 307 308 retry: 309 order = get_order(nslabs << IO_TLB_SHIFT); 310 nslabs = SLABS_PER_PAGE << order; 311 312 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 313 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 314 order); 315 if (vstart) 316 break; 317 order--; 318 nslabs = SLABS_PER_PAGE << order; 319 retried = true; 320 } 321 322 if (!vstart) 323 return -ENOMEM; 324 325 if (remap) 326 rc = remap(vstart, nslabs); 327 if (rc) { 328 free_pages((unsigned long)vstart, order); 329 330 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 331 if (nslabs < IO_TLB_MIN_SLABS) 332 return rc; 333 retried = true; 334 goto retry; 335 } 336 337 if (retried) { 338 pr_warn("only able to allocate %ld MB\n", 339 (PAGE_SIZE << order) >> 20); 340 } 341 342 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 343 get_order(array_size(sizeof(*mem->slots), nslabs))); 344 if (!mem->slots) { 345 free_pages((unsigned long)vstart, order); 346 return -ENOMEM; 347 } 348 349 set_memory_decrypted((unsigned long)vstart, 350 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 351 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, true); 352 353 swiotlb_print_info(); 354 return 0; 355 } 356 357 void __init swiotlb_exit(void) 358 { 359 struct io_tlb_mem *mem = &io_tlb_default_mem; 360 unsigned long tbl_vaddr; 361 size_t tbl_size, slots_size; 362 363 if (swiotlb_force_bounce) 364 return; 365 366 if (!mem->nslabs) 367 return; 368 369 pr_info("tearing down default memory pool\n"); 370 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 371 tbl_size = PAGE_ALIGN(mem->end - mem->start); 372 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 373 374 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 375 if (mem->late_alloc) { 376 free_pages(tbl_vaddr, get_order(tbl_size)); 377 free_pages((unsigned long)mem->slots, get_order(slots_size)); 378 } else { 379 memblock_free_late(mem->start, tbl_size); 380 memblock_free_late(__pa(mem->slots), slots_size); 381 } 382 383 memset(mem, 0, sizeof(*mem)); 384 } 385 386 /* 387 * Return the offset into a iotlb slot required to keep the device happy. 388 */ 389 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 390 { 391 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 392 } 393 394 /* 395 * Bounce: copy the swiotlb buffer from or back to the original dma location 396 */ 397 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 398 enum dma_data_direction dir) 399 { 400 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 401 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 402 phys_addr_t orig_addr = mem->slots[index].orig_addr; 403 size_t alloc_size = mem->slots[index].alloc_size; 404 unsigned long pfn = PFN_DOWN(orig_addr); 405 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 406 unsigned int tlb_offset, orig_addr_offset; 407 408 if (orig_addr == INVALID_PHYS_ADDR) 409 return; 410 411 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 412 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 413 if (tlb_offset < orig_addr_offset) { 414 dev_WARN_ONCE(dev, 1, 415 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 416 orig_addr_offset, tlb_offset); 417 return; 418 } 419 420 tlb_offset -= orig_addr_offset; 421 if (tlb_offset > alloc_size) { 422 dev_WARN_ONCE(dev, 1, 423 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 424 alloc_size, size, tlb_offset); 425 return; 426 } 427 428 orig_addr += tlb_offset; 429 alloc_size -= tlb_offset; 430 431 if (size > alloc_size) { 432 dev_WARN_ONCE(dev, 1, 433 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 434 alloc_size, size); 435 size = alloc_size; 436 } 437 438 if (PageHighMem(pfn_to_page(pfn))) { 439 /* The buffer does not have a mapping. Map it in and copy */ 440 unsigned int offset = orig_addr & ~PAGE_MASK; 441 char *buffer; 442 unsigned int sz = 0; 443 unsigned long flags; 444 445 while (size) { 446 sz = min_t(size_t, PAGE_SIZE - offset, size); 447 448 local_irq_save(flags); 449 buffer = kmap_atomic(pfn_to_page(pfn)); 450 if (dir == DMA_TO_DEVICE) 451 memcpy(vaddr, buffer + offset, sz); 452 else 453 memcpy(buffer + offset, vaddr, sz); 454 kunmap_atomic(buffer); 455 local_irq_restore(flags); 456 457 size -= sz; 458 pfn++; 459 vaddr += sz; 460 offset = 0; 461 } 462 } else if (dir == DMA_TO_DEVICE) { 463 memcpy(vaddr, phys_to_virt(orig_addr), size); 464 } else { 465 memcpy(phys_to_virt(orig_addr), vaddr, size); 466 } 467 } 468 469 #define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT)) 470 471 /* 472 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 473 */ 474 static inline unsigned long get_max_slots(unsigned long boundary_mask) 475 { 476 if (boundary_mask == ~0UL) 477 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 478 return nr_slots(boundary_mask + 1); 479 } 480 481 static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index) 482 { 483 if (index >= mem->nslabs) 484 return 0; 485 return index; 486 } 487 488 /* 489 * Find a suitable number of IO TLB entries size that will fit this request and 490 * allocate a buffer from that IO TLB pool. 491 */ 492 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 493 size_t alloc_size, unsigned int alloc_align_mask) 494 { 495 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 496 unsigned long boundary_mask = dma_get_seg_boundary(dev); 497 dma_addr_t tbl_dma_addr = 498 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; 499 unsigned long max_slots = get_max_slots(boundary_mask); 500 unsigned int iotlb_align_mask = 501 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); 502 unsigned int nslots = nr_slots(alloc_size), stride; 503 unsigned int index, wrap, count = 0, i; 504 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 505 unsigned long flags; 506 507 BUG_ON(!nslots); 508 509 /* 510 * For mappings with an alignment requirement don't bother looping to 511 * unaligned slots once we found an aligned one. For allocations of 512 * PAGE_SIZE or larger only look for page aligned allocations. 513 */ 514 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 515 if (alloc_size >= PAGE_SIZE) 516 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); 517 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); 518 519 spin_lock_irqsave(&mem->lock, flags); 520 if (unlikely(nslots > mem->nslabs - mem->used)) 521 goto not_found; 522 523 index = wrap = wrap_index(mem, ALIGN(mem->index, stride)); 524 do { 525 if (orig_addr && 526 (slot_addr(tbl_dma_addr, index) & iotlb_align_mask) != 527 (orig_addr & iotlb_align_mask)) { 528 index = wrap_index(mem, index + 1); 529 continue; 530 } 531 532 /* 533 * If we find a slot that indicates we have 'nslots' number of 534 * contiguous buffers, we allocate the buffers from that slot 535 * and mark the entries as '0' indicating unavailable. 536 */ 537 if (!iommu_is_span_boundary(index, nslots, 538 nr_slots(tbl_dma_addr), 539 max_slots)) { 540 if (mem->slots[index].list >= nslots) 541 goto found; 542 } 543 index = wrap_index(mem, index + stride); 544 } while (index != wrap); 545 546 not_found: 547 spin_unlock_irqrestore(&mem->lock, flags); 548 return -1; 549 550 found: 551 for (i = index; i < index + nslots; i++) { 552 mem->slots[i].list = 0; 553 mem->slots[i].alloc_size = 554 alloc_size - (offset + ((i - index) << IO_TLB_SHIFT)); 555 } 556 for (i = index - 1; 557 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 558 mem->slots[i].list; i--) 559 mem->slots[i].list = ++count; 560 561 /* 562 * Update the indices to avoid searching in the next round. 563 */ 564 if (index + nslots < mem->nslabs) 565 mem->index = index + nslots; 566 else 567 mem->index = 0; 568 mem->used += nslots; 569 570 spin_unlock_irqrestore(&mem->lock, flags); 571 return index; 572 } 573 574 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 575 size_t mapping_size, size_t alloc_size, 576 unsigned int alloc_align_mask, enum dma_data_direction dir, 577 unsigned long attrs) 578 { 579 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 580 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 581 unsigned int i; 582 int index; 583 phys_addr_t tlb_addr; 584 585 if (!mem) 586 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 587 588 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 589 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 590 591 if (mapping_size > alloc_size) { 592 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 593 mapping_size, alloc_size); 594 return (phys_addr_t)DMA_MAPPING_ERROR; 595 } 596 597 index = swiotlb_find_slots(dev, orig_addr, 598 alloc_size + offset, alloc_align_mask); 599 if (index == -1) { 600 if (!(attrs & DMA_ATTR_NO_WARN)) 601 dev_warn_ratelimited(dev, 602 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 603 alloc_size, mem->nslabs, mem->used); 604 return (phys_addr_t)DMA_MAPPING_ERROR; 605 } 606 607 /* 608 * Save away the mapping from the original address to the DMA address. 609 * This is needed when we sync the memory. Then we sync the buffer if 610 * needed. 611 */ 612 for (i = 0; i < nr_slots(alloc_size + offset); i++) 613 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); 614 tlb_addr = slot_addr(mem->start, index) + offset; 615 /* 616 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 617 * to the tlb buffer, if we knew for sure the device will 618 * overwirte the entire current content. But we don't. Thus 619 * unconditional bounce may prevent leaking swiotlb content (i.e. 620 * kernel memory) to user-space. 621 */ 622 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 623 return tlb_addr; 624 } 625 626 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 627 { 628 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 629 unsigned long flags; 630 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 631 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 632 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 633 int count, i; 634 635 /* 636 * Return the buffer to the free list by setting the corresponding 637 * entries to indicate the number of contiguous entries available. 638 * While returning the entries to the free list, we merge the entries 639 * with slots below and above the pool being returned. 640 */ 641 spin_lock_irqsave(&mem->lock, flags); 642 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 643 count = mem->slots[index + nslots].list; 644 else 645 count = 0; 646 647 /* 648 * Step 1: return the slots to the free list, merging the slots with 649 * superceeding slots 650 */ 651 for (i = index + nslots - 1; i >= index; i--) { 652 mem->slots[i].list = ++count; 653 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 654 mem->slots[i].alloc_size = 0; 655 } 656 657 /* 658 * Step 2: merge the returned slots with the preceding slots, if 659 * available (non zero) 660 */ 661 for (i = index - 1; 662 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 663 i--) 664 mem->slots[i].list = ++count; 665 mem->used -= nslots; 666 spin_unlock_irqrestore(&mem->lock, flags); 667 } 668 669 /* 670 * tlb_addr is the physical address of the bounce buffer to unmap. 671 */ 672 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 673 size_t mapping_size, enum dma_data_direction dir, 674 unsigned long attrs) 675 { 676 /* 677 * First, sync the memory before unmapping the entry 678 */ 679 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 680 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 681 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 682 683 swiotlb_release_slots(dev, tlb_addr); 684 } 685 686 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 687 size_t size, enum dma_data_direction dir) 688 { 689 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 690 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 691 else 692 BUG_ON(dir != DMA_FROM_DEVICE); 693 } 694 695 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 696 size_t size, enum dma_data_direction dir) 697 { 698 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 699 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 700 else 701 BUG_ON(dir != DMA_TO_DEVICE); 702 } 703 704 /* 705 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 706 * to the device copy the data into it as well. 707 */ 708 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 709 enum dma_data_direction dir, unsigned long attrs) 710 { 711 phys_addr_t swiotlb_addr; 712 dma_addr_t dma_addr; 713 714 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 715 716 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 717 attrs); 718 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 719 return DMA_MAPPING_ERROR; 720 721 /* Ensure that the address returned is DMA'ble */ 722 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 723 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 724 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 725 attrs | DMA_ATTR_SKIP_CPU_SYNC); 726 dev_WARN_ONCE(dev, 1, 727 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 728 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 729 return DMA_MAPPING_ERROR; 730 } 731 732 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 733 arch_sync_dma_for_device(swiotlb_addr, size, dir); 734 return dma_addr; 735 } 736 737 size_t swiotlb_max_mapping_size(struct device *dev) 738 { 739 int min_align_mask = dma_get_min_align_mask(dev); 740 int min_align = 0; 741 742 /* 743 * swiotlb_find_slots() skips slots according to 744 * min align mask. This affects max mapping size. 745 * Take it into acount here. 746 */ 747 if (min_align_mask) 748 min_align = roundup(min_align_mask, IO_TLB_SIZE); 749 750 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 751 } 752 753 bool is_swiotlb_active(struct device *dev) 754 { 755 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 756 757 return mem && mem->nslabs; 758 } 759 EXPORT_SYMBOL_GPL(is_swiotlb_active); 760 761 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 762 const char *dirname) 763 { 764 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 765 if (!mem->nslabs) 766 return; 767 768 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 769 debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used); 770 } 771 772 static int __init __maybe_unused swiotlb_create_default_debugfs(void) 773 { 774 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 775 return 0; 776 } 777 778 #ifdef CONFIG_DEBUG_FS 779 late_initcall(swiotlb_create_default_debugfs); 780 #endif 781 782 #ifdef CONFIG_DMA_RESTRICTED_POOL 783 784 struct page *swiotlb_alloc(struct device *dev, size_t size) 785 { 786 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 787 phys_addr_t tlb_addr; 788 int index; 789 790 if (!mem) 791 return NULL; 792 793 index = swiotlb_find_slots(dev, 0, size, 0); 794 if (index == -1) 795 return NULL; 796 797 tlb_addr = slot_addr(mem->start, index); 798 799 return pfn_to_page(PFN_DOWN(tlb_addr)); 800 } 801 802 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 803 { 804 phys_addr_t tlb_addr = page_to_phys(page); 805 806 if (!is_swiotlb_buffer(dev, tlb_addr)) 807 return false; 808 809 swiotlb_release_slots(dev, tlb_addr); 810 811 return true; 812 } 813 814 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 815 struct device *dev) 816 { 817 struct io_tlb_mem *mem = rmem->priv; 818 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 819 820 /* 821 * Since multiple devices can share the same pool, the private data, 822 * io_tlb_mem struct, will be initialized by the first device attached 823 * to it. 824 */ 825 if (!mem) { 826 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 827 if (!mem) 828 return -ENOMEM; 829 830 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL); 831 if (!mem->slots) { 832 kfree(mem); 833 return -ENOMEM; 834 } 835 836 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 837 rmem->size >> PAGE_SHIFT); 838 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false); 839 mem->force_bounce = true; 840 mem->for_alloc = true; 841 842 rmem->priv = mem; 843 844 swiotlb_create_debugfs_files(mem, rmem->name); 845 } 846 847 dev->dma_io_tlb_mem = mem; 848 849 return 0; 850 } 851 852 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 853 struct device *dev) 854 { 855 dev->dma_io_tlb_mem = &io_tlb_default_mem; 856 } 857 858 static const struct reserved_mem_ops rmem_swiotlb_ops = { 859 .device_init = rmem_swiotlb_device_init, 860 .device_release = rmem_swiotlb_device_release, 861 }; 862 863 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 864 { 865 unsigned long node = rmem->fdt_node; 866 867 if (of_get_flat_dt_prop(node, "reusable", NULL) || 868 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 869 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 870 of_get_flat_dt_prop(node, "no-map", NULL)) 871 return -EINVAL; 872 873 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 874 pr_err("Restricted DMA pool must be accessible within the linear mapping."); 875 return -EINVAL; 876 } 877 878 rmem->ops = &rmem_swiotlb_ops; 879 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 880 &rmem->base, (unsigned long)rmem->size / SZ_1M); 881 return 0; 882 } 883 884 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 885 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 886