1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/rculist.h> 39 #include <linux/scatterlist.h> 40 #include <linux/set_memory.h> 41 #include <linux/spinlock.h> 42 #include <linux/string.h> 43 #include <linux/swiotlb.h> 44 #include <linux/types.h> 45 #ifdef CONFIG_DMA_RESTRICTED_POOL 46 #include <linux/of.h> 47 #include <linux/of_fdt.h> 48 #include <linux/of_reserved_mem.h> 49 #include <linux/slab.h> 50 #endif 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/swiotlb.h> 54 55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 56 57 /* 58 * Minimum IO TLB size to bother booting with. Systems with mainly 59 * 64bit capable cards will only lightly use the swiotlb. If we can't 60 * allocate a contiguous 1MB, we're probably in trouble anyway. 61 */ 62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 63 64 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 65 66 /** 67 * struct io_tlb_slot - IO TLB slot descriptor 68 * @orig_addr: The original address corresponding to a mapped entry. 69 * @alloc_size: Size of the allocated buffer. 70 * @list: The free list describing the number of free entries available 71 * from each index. 72 */ 73 struct io_tlb_slot { 74 phys_addr_t orig_addr; 75 size_t alloc_size; 76 unsigned int list; 77 }; 78 79 static bool swiotlb_force_bounce; 80 static bool swiotlb_force_disable; 81 82 #ifdef CONFIG_SWIOTLB_DYNAMIC 83 84 static void swiotlb_dyn_alloc(struct work_struct *work); 85 86 static struct io_tlb_mem io_tlb_default_mem = { 87 .lock = __SPIN_LOCK_UNLOCKED(io_tlb_default_mem.lock), 88 .pools = LIST_HEAD_INIT(io_tlb_default_mem.pools), 89 .dyn_alloc = __WORK_INITIALIZER(io_tlb_default_mem.dyn_alloc, 90 swiotlb_dyn_alloc), 91 }; 92 93 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 94 95 static struct io_tlb_mem io_tlb_default_mem; 96 97 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 98 99 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 100 static unsigned long default_nareas; 101 102 /** 103 * struct io_tlb_area - IO TLB memory area descriptor 104 * 105 * This is a single area with a single lock. 106 * 107 * @used: The number of used IO TLB block. 108 * @index: The slot index to start searching in this area for next round. 109 * @lock: The lock to protect the above data structures in the map and 110 * unmap calls. 111 */ 112 struct io_tlb_area { 113 unsigned long used; 114 unsigned int index; 115 spinlock_t lock; 116 }; 117 118 /* 119 * Round up number of slabs to the next power of 2. The last area is going 120 * be smaller than the rest if default_nslabs is not power of two. 121 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 122 * otherwise a segment may span two or more areas. It conflicts with free 123 * contiguous slots tracking: free slots are treated contiguous no matter 124 * whether they cross an area boundary. 125 * 126 * Return true if default_nslabs is rounded up. 127 */ 128 static bool round_up_default_nslabs(void) 129 { 130 if (!default_nareas) 131 return false; 132 133 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 134 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 135 else if (is_power_of_2(default_nslabs)) 136 return false; 137 default_nslabs = roundup_pow_of_two(default_nslabs); 138 return true; 139 } 140 141 /** 142 * swiotlb_adjust_nareas() - adjust the number of areas and slots 143 * @nareas: Desired number of areas. Zero is treated as 1. 144 * 145 * Adjust the default number of areas in a memory pool. 146 * The default size of the memory pool may also change to meet minimum area 147 * size requirements. 148 */ 149 static void swiotlb_adjust_nareas(unsigned int nareas) 150 { 151 if (!nareas) 152 nareas = 1; 153 else if (!is_power_of_2(nareas)) 154 nareas = roundup_pow_of_two(nareas); 155 156 default_nareas = nareas; 157 158 pr_info("area num %d.\n", nareas); 159 if (round_up_default_nslabs()) 160 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 161 (default_nslabs << IO_TLB_SHIFT) >> 20); 162 } 163 164 /** 165 * limit_nareas() - get the maximum number of areas for a given memory pool size 166 * @nareas: Desired number of areas. 167 * @nslots: Total number of slots in the memory pool. 168 * 169 * Limit the number of areas to the maximum possible number of areas in 170 * a memory pool of the given size. 171 * 172 * Return: Maximum possible number of areas. 173 */ 174 static unsigned int limit_nareas(unsigned int nareas, unsigned long nslots) 175 { 176 if (nslots < nareas * IO_TLB_SEGSIZE) 177 return nslots / IO_TLB_SEGSIZE; 178 return nareas; 179 } 180 181 static int __init 182 setup_io_tlb_npages(char *str) 183 { 184 if (isdigit(*str)) { 185 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 186 default_nslabs = 187 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 188 } 189 if (*str == ',') 190 ++str; 191 if (isdigit(*str)) 192 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 193 if (*str == ',') 194 ++str; 195 if (!strcmp(str, "force")) 196 swiotlb_force_bounce = true; 197 else if (!strcmp(str, "noforce")) 198 swiotlb_force_disable = true; 199 200 return 0; 201 } 202 early_param("swiotlb", setup_io_tlb_npages); 203 204 unsigned long swiotlb_size_or_default(void) 205 { 206 return default_nslabs << IO_TLB_SHIFT; 207 } 208 209 void __init swiotlb_adjust_size(unsigned long size) 210 { 211 /* 212 * If swiotlb parameter has not been specified, give a chance to 213 * architectures such as those supporting memory encryption to 214 * adjust/expand SWIOTLB size for their use. 215 */ 216 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 217 return; 218 219 size = ALIGN(size, IO_TLB_SIZE); 220 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 221 if (round_up_default_nslabs()) 222 size = default_nslabs << IO_TLB_SHIFT; 223 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 224 } 225 226 void swiotlb_print_info(void) 227 { 228 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 229 230 if (!mem->nslabs) { 231 pr_warn("No low mem\n"); 232 return; 233 } 234 235 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 236 (mem->nslabs << IO_TLB_SHIFT) >> 20); 237 } 238 239 static inline unsigned long io_tlb_offset(unsigned long val) 240 { 241 return val & (IO_TLB_SEGSIZE - 1); 242 } 243 244 static inline unsigned long nr_slots(u64 val) 245 { 246 return DIV_ROUND_UP(val, IO_TLB_SIZE); 247 } 248 249 /* 250 * Early SWIOTLB allocation may be too early to allow an architecture to 251 * perform the desired operations. This function allows the architecture to 252 * call SWIOTLB when the operations are possible. It needs to be called 253 * before the SWIOTLB memory is used. 254 */ 255 void __init swiotlb_update_mem_attributes(void) 256 { 257 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 258 unsigned long bytes; 259 260 if (!mem->nslabs || mem->late_alloc) 261 return; 262 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 263 set_memory_decrypted((unsigned long)mem->vaddr, bytes >> PAGE_SHIFT); 264 } 265 266 static void swiotlb_init_io_tlb_pool(struct io_tlb_pool *mem, phys_addr_t start, 267 unsigned long nslabs, bool late_alloc, unsigned int nareas) 268 { 269 void *vaddr = phys_to_virt(start); 270 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 271 272 mem->nslabs = nslabs; 273 mem->start = start; 274 mem->end = mem->start + bytes; 275 mem->late_alloc = late_alloc; 276 mem->nareas = nareas; 277 mem->area_nslabs = nslabs / mem->nareas; 278 279 for (i = 0; i < mem->nareas; i++) { 280 spin_lock_init(&mem->areas[i].lock); 281 mem->areas[i].index = 0; 282 mem->areas[i].used = 0; 283 } 284 285 for (i = 0; i < mem->nslabs; i++) { 286 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 287 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 288 mem->slots[i].alloc_size = 0; 289 } 290 291 memset(vaddr, 0, bytes); 292 mem->vaddr = vaddr; 293 return; 294 } 295 296 /** 297 * add_mem_pool() - add a memory pool to the allocator 298 * @mem: Software IO TLB allocator. 299 * @pool: Memory pool to be added. 300 */ 301 static void add_mem_pool(struct io_tlb_mem *mem, struct io_tlb_pool *pool) 302 { 303 #ifdef CONFIG_SWIOTLB_DYNAMIC 304 spin_lock(&mem->lock); 305 list_add_rcu(&pool->node, &mem->pools); 306 mem->nslabs += pool->nslabs; 307 spin_unlock(&mem->lock); 308 #else 309 mem->nslabs = pool->nslabs; 310 #endif 311 } 312 313 static void __init *swiotlb_memblock_alloc(unsigned long nslabs, 314 unsigned int flags, 315 int (*remap)(void *tlb, unsigned long nslabs)) 316 { 317 size_t bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 318 void *tlb; 319 320 /* 321 * By default allocate the bounce buffer memory from low memory, but 322 * allow to pick a location everywhere for hypervisors with guest 323 * memory encryption. 324 */ 325 if (flags & SWIOTLB_ANY) 326 tlb = memblock_alloc(bytes, PAGE_SIZE); 327 else 328 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 329 330 if (!tlb) { 331 pr_warn("%s: Failed to allocate %zu bytes tlb structure\n", 332 __func__, bytes); 333 return NULL; 334 } 335 336 if (remap && remap(tlb, nslabs) < 0) { 337 memblock_free(tlb, PAGE_ALIGN(bytes)); 338 pr_warn("%s: Failed to remap %zu bytes\n", __func__, bytes); 339 return NULL; 340 } 341 342 return tlb; 343 } 344 345 /* 346 * Statically reserve bounce buffer space and initialize bounce buffer data 347 * structures for the software IO TLB used to implement the DMA API. 348 */ 349 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 350 int (*remap)(void *tlb, unsigned long nslabs)) 351 { 352 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 353 unsigned long nslabs; 354 unsigned int nareas; 355 size_t alloc_size; 356 void *tlb; 357 358 if (!addressing_limit && !swiotlb_force_bounce) 359 return; 360 if (swiotlb_force_disable) 361 return; 362 363 io_tlb_default_mem.force_bounce = 364 swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 365 366 #ifdef CONFIG_SWIOTLB_DYNAMIC 367 if (!remap) 368 io_tlb_default_mem.can_grow = true; 369 if (flags & SWIOTLB_ANY) 370 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 371 else 372 io_tlb_default_mem.phys_limit = ARCH_LOW_ADDRESS_LIMIT; 373 #endif 374 375 if (!default_nareas) 376 swiotlb_adjust_nareas(num_possible_cpus()); 377 378 nslabs = default_nslabs; 379 nareas = limit_nareas(default_nareas, nslabs); 380 while ((tlb = swiotlb_memblock_alloc(nslabs, flags, remap)) == NULL) { 381 if (nslabs <= IO_TLB_MIN_SLABS) 382 return; 383 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 384 nareas = limit_nareas(nareas, nslabs); 385 } 386 387 if (default_nslabs != nslabs) { 388 pr_info("SWIOTLB bounce buffer size adjusted %lu -> %lu slabs", 389 default_nslabs, nslabs); 390 default_nslabs = nslabs; 391 } 392 393 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 394 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 395 if (!mem->slots) { 396 pr_warn("%s: Failed to allocate %zu bytes align=0x%lx\n", 397 __func__, alloc_size, PAGE_SIZE); 398 return; 399 } 400 401 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 402 nareas), SMP_CACHE_BYTES); 403 if (!mem->areas) { 404 pr_warn("%s: Failed to allocate mem->areas.\n", __func__); 405 return; 406 } 407 408 swiotlb_init_io_tlb_pool(mem, __pa(tlb), nslabs, false, nareas); 409 add_mem_pool(&io_tlb_default_mem, mem); 410 411 if (flags & SWIOTLB_VERBOSE) 412 swiotlb_print_info(); 413 } 414 415 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 416 { 417 swiotlb_init_remap(addressing_limit, flags, NULL); 418 } 419 420 /* 421 * Systems with larger DMA zones (those that don't support ISA) can 422 * initialize the swiotlb later using the slab allocator if needed. 423 * This should be just like above, but with some error catching. 424 */ 425 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 426 int (*remap)(void *tlb, unsigned long nslabs)) 427 { 428 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 429 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 430 unsigned int nareas; 431 unsigned char *vstart = NULL; 432 unsigned int order, area_order; 433 bool retried = false; 434 int rc = 0; 435 436 if (io_tlb_default_mem.nslabs) 437 return 0; 438 439 if (swiotlb_force_disable) 440 return 0; 441 442 io_tlb_default_mem.force_bounce = swiotlb_force_bounce; 443 444 #ifdef CONFIG_SWIOTLB_DYNAMIC 445 if (!remap) 446 io_tlb_default_mem.can_grow = true; 447 if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp_mask & __GFP_DMA)) 448 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(zone_dma_bits); 449 else if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp_mask & __GFP_DMA32)) 450 io_tlb_default_mem.phys_limit = DMA_BIT_MASK(32); 451 else 452 io_tlb_default_mem.phys_limit = virt_to_phys(high_memory - 1); 453 #endif 454 455 if (!default_nareas) 456 swiotlb_adjust_nareas(num_possible_cpus()); 457 458 retry: 459 order = get_order(nslabs << IO_TLB_SHIFT); 460 nslabs = SLABS_PER_PAGE << order; 461 462 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 463 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 464 order); 465 if (vstart) 466 break; 467 order--; 468 nslabs = SLABS_PER_PAGE << order; 469 retried = true; 470 } 471 472 if (!vstart) 473 return -ENOMEM; 474 475 if (remap) 476 rc = remap(vstart, nslabs); 477 if (rc) { 478 free_pages((unsigned long)vstart, order); 479 480 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 481 if (nslabs < IO_TLB_MIN_SLABS) 482 return rc; 483 retried = true; 484 goto retry; 485 } 486 487 if (retried) { 488 pr_warn("only able to allocate %ld MB\n", 489 (PAGE_SIZE << order) >> 20); 490 } 491 492 nareas = limit_nareas(default_nareas, nslabs); 493 area_order = get_order(array_size(sizeof(*mem->areas), nareas)); 494 mem->areas = (struct io_tlb_area *) 495 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 496 if (!mem->areas) 497 goto error_area; 498 499 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 500 get_order(array_size(sizeof(*mem->slots), nslabs))); 501 if (!mem->slots) 502 goto error_slots; 503 504 set_memory_decrypted((unsigned long)vstart, 505 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 506 swiotlb_init_io_tlb_pool(mem, virt_to_phys(vstart), nslabs, true, 507 nareas); 508 add_mem_pool(&io_tlb_default_mem, mem); 509 510 swiotlb_print_info(); 511 return 0; 512 513 error_slots: 514 free_pages((unsigned long)mem->areas, area_order); 515 error_area: 516 free_pages((unsigned long)vstart, order); 517 return -ENOMEM; 518 } 519 520 void __init swiotlb_exit(void) 521 { 522 struct io_tlb_pool *mem = &io_tlb_default_mem.defpool; 523 unsigned long tbl_vaddr; 524 size_t tbl_size, slots_size; 525 unsigned int area_order; 526 527 if (swiotlb_force_bounce) 528 return; 529 530 if (!mem->nslabs) 531 return; 532 533 pr_info("tearing down default memory pool\n"); 534 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 535 tbl_size = PAGE_ALIGN(mem->end - mem->start); 536 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 537 538 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 539 if (mem->late_alloc) { 540 area_order = get_order(array_size(sizeof(*mem->areas), 541 mem->nareas)); 542 free_pages((unsigned long)mem->areas, area_order); 543 free_pages(tbl_vaddr, get_order(tbl_size)); 544 free_pages((unsigned long)mem->slots, get_order(slots_size)); 545 } else { 546 memblock_free_late(__pa(mem->areas), 547 array_size(sizeof(*mem->areas), mem->nareas)); 548 memblock_free_late(mem->start, tbl_size); 549 memblock_free_late(__pa(mem->slots), slots_size); 550 } 551 552 memset(mem, 0, sizeof(*mem)); 553 } 554 555 #ifdef CONFIG_SWIOTLB_DYNAMIC 556 557 /** 558 * alloc_dma_pages() - allocate pages to be used for DMA 559 * @gfp: GFP flags for the allocation. 560 * @bytes: Size of the buffer. 561 * 562 * Allocate pages from the buddy allocator. If successful, make the allocated 563 * pages decrypted that they can be used for DMA. 564 * 565 * Return: Decrypted pages, or %NULL on failure. 566 */ 567 static struct page *alloc_dma_pages(gfp_t gfp, size_t bytes) 568 { 569 unsigned int order = get_order(bytes); 570 struct page *page; 571 void *vaddr; 572 573 page = alloc_pages(gfp, order); 574 if (!page) 575 return NULL; 576 577 vaddr = page_address(page); 578 if (set_memory_decrypted((unsigned long)vaddr, PFN_UP(bytes))) 579 goto error; 580 return page; 581 582 error: 583 __free_pages(page, order); 584 return NULL; 585 } 586 587 /** 588 * swiotlb_alloc_tlb() - allocate a dynamic IO TLB buffer 589 * @dev: Device for which a memory pool is allocated. 590 * @bytes: Size of the buffer. 591 * @phys_limit: Maximum allowed physical address of the buffer. 592 * @gfp: GFP flags for the allocation. 593 * 594 * Return: Allocated pages, or %NULL on allocation failure. 595 */ 596 static struct page *swiotlb_alloc_tlb(struct device *dev, size_t bytes, 597 u64 phys_limit, gfp_t gfp) 598 { 599 struct page *page; 600 601 /* 602 * Allocate from the atomic pools if memory is encrypted and 603 * the allocation is atomic, because decrypting may block. 604 */ 605 if (!gfpflags_allow_blocking(gfp) && dev && force_dma_unencrypted(dev)) { 606 void *vaddr; 607 608 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)) 609 return NULL; 610 611 return dma_alloc_from_pool(dev, bytes, &vaddr, gfp, 612 dma_coherent_ok); 613 } 614 615 gfp &= ~GFP_ZONEMASK; 616 if (phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 617 gfp |= __GFP_DMA; 618 else if (phys_limit <= DMA_BIT_MASK(32)) 619 gfp |= __GFP_DMA32; 620 621 while ((page = alloc_dma_pages(gfp, bytes)) && 622 page_to_phys(page) + bytes - 1 > phys_limit) { 623 /* allocated, but too high */ 624 __free_pages(page, get_order(bytes)); 625 626 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 627 phys_limit < DMA_BIT_MASK(64) && 628 !(gfp & (__GFP_DMA32 | __GFP_DMA))) 629 gfp |= __GFP_DMA32; 630 else if (IS_ENABLED(CONFIG_ZONE_DMA) && 631 !(gfp & __GFP_DMA)) 632 gfp = (gfp & ~__GFP_DMA32) | __GFP_DMA; 633 else 634 return NULL; 635 } 636 637 return page; 638 } 639 640 /** 641 * swiotlb_free_tlb() - free a dynamically allocated IO TLB buffer 642 * @vaddr: Virtual address of the buffer. 643 * @bytes: Size of the buffer. 644 */ 645 static void swiotlb_free_tlb(void *vaddr, size_t bytes) 646 { 647 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 648 dma_free_from_pool(NULL, vaddr, bytes)) 649 return; 650 651 /* Intentional leak if pages cannot be encrypted again. */ 652 if (!set_memory_encrypted((unsigned long)vaddr, PFN_UP(bytes))) 653 __free_pages(virt_to_page(vaddr), get_order(bytes)); 654 } 655 656 /** 657 * swiotlb_alloc_pool() - allocate a new IO TLB memory pool 658 * @dev: Device for which a memory pool is allocated. 659 * @minslabs: Minimum number of slabs. 660 * @nslabs: Desired (maximum) number of slabs. 661 * @nareas: Number of areas. 662 * @phys_limit: Maximum DMA buffer physical address. 663 * @gfp: GFP flags for the allocations. 664 * 665 * Allocate and initialize a new IO TLB memory pool. The actual number of 666 * slabs may be reduced if allocation of @nslabs fails. If even 667 * @minslabs cannot be allocated, this function fails. 668 * 669 * Return: New memory pool, or %NULL on allocation failure. 670 */ 671 static struct io_tlb_pool *swiotlb_alloc_pool(struct device *dev, 672 unsigned long minslabs, unsigned long nslabs, 673 unsigned int nareas, u64 phys_limit, gfp_t gfp) 674 { 675 struct io_tlb_pool *pool; 676 unsigned int slot_order; 677 struct page *tlb; 678 size_t pool_size; 679 size_t tlb_size; 680 681 pool_size = sizeof(*pool) + array_size(sizeof(*pool->areas), nareas); 682 pool = kzalloc(pool_size, gfp); 683 if (!pool) 684 goto error; 685 pool->areas = (void *)pool + sizeof(*pool); 686 687 tlb_size = nslabs << IO_TLB_SHIFT; 688 while (!(tlb = swiotlb_alloc_tlb(dev, tlb_size, phys_limit, gfp))) { 689 if (nslabs <= minslabs) 690 goto error_tlb; 691 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 692 nareas = limit_nareas(nareas, nslabs); 693 tlb_size = nslabs << IO_TLB_SHIFT; 694 } 695 696 slot_order = get_order(array_size(sizeof(*pool->slots), nslabs)); 697 pool->slots = (struct io_tlb_slot *) 698 __get_free_pages(gfp, slot_order); 699 if (!pool->slots) 700 goto error_slots; 701 702 swiotlb_init_io_tlb_pool(pool, page_to_phys(tlb), nslabs, true, nareas); 703 return pool; 704 705 error_slots: 706 swiotlb_free_tlb(page_address(tlb), tlb_size); 707 error_tlb: 708 kfree(pool); 709 error: 710 return NULL; 711 } 712 713 /** 714 * swiotlb_dyn_alloc() - dynamic memory pool allocation worker 715 * @work: Pointer to dyn_alloc in struct io_tlb_mem. 716 */ 717 static void swiotlb_dyn_alloc(struct work_struct *work) 718 { 719 struct io_tlb_mem *mem = 720 container_of(work, struct io_tlb_mem, dyn_alloc); 721 struct io_tlb_pool *pool; 722 723 pool = swiotlb_alloc_pool(NULL, IO_TLB_MIN_SLABS, default_nslabs, 724 default_nareas, mem->phys_limit, GFP_KERNEL); 725 if (!pool) { 726 pr_warn_ratelimited("Failed to allocate new pool"); 727 return; 728 } 729 730 add_mem_pool(mem, pool); 731 } 732 733 /** 734 * swiotlb_dyn_free() - RCU callback to free a memory pool 735 * @rcu: RCU head in the corresponding struct io_tlb_pool. 736 */ 737 static void swiotlb_dyn_free(struct rcu_head *rcu) 738 { 739 struct io_tlb_pool *pool = container_of(rcu, struct io_tlb_pool, rcu); 740 size_t slots_size = array_size(sizeof(*pool->slots), pool->nslabs); 741 size_t tlb_size = pool->end - pool->start; 742 743 free_pages((unsigned long)pool->slots, get_order(slots_size)); 744 swiotlb_free_tlb(pool->vaddr, tlb_size); 745 kfree(pool); 746 } 747 748 /** 749 * swiotlb_find_pool() - find the IO TLB pool for a physical address 750 * @dev: Device which has mapped the DMA buffer. 751 * @paddr: Physical address within the DMA buffer. 752 * 753 * Find the IO TLB memory pool descriptor which contains the given physical 754 * address, if any. 755 * 756 * Return: Memory pool which contains @paddr, or %NULL if none. 757 */ 758 struct io_tlb_pool *swiotlb_find_pool(struct device *dev, phys_addr_t paddr) 759 { 760 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 761 struct io_tlb_pool *pool; 762 763 rcu_read_lock(); 764 list_for_each_entry_rcu(pool, &mem->pools, node) { 765 if (paddr >= pool->start && paddr < pool->end) 766 goto out; 767 } 768 769 list_for_each_entry_rcu(pool, &dev->dma_io_tlb_pools, node) { 770 if (paddr >= pool->start && paddr < pool->end) 771 goto out; 772 } 773 pool = NULL; 774 out: 775 rcu_read_unlock(); 776 return pool; 777 } 778 779 /** 780 * swiotlb_del_pool() - remove an IO TLB pool from a device 781 * @dev: Owning device. 782 * @pool: Memory pool to be removed. 783 */ 784 static void swiotlb_del_pool(struct device *dev, struct io_tlb_pool *pool) 785 { 786 unsigned long flags; 787 788 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 789 list_del_rcu(&pool->node); 790 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 791 792 call_rcu(&pool->rcu, swiotlb_dyn_free); 793 } 794 795 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 796 797 /** 798 * swiotlb_dev_init() - initialize swiotlb fields in &struct device 799 * @dev: Device to be initialized. 800 */ 801 void swiotlb_dev_init(struct device *dev) 802 { 803 dev->dma_io_tlb_mem = &io_tlb_default_mem; 804 #ifdef CONFIG_SWIOTLB_DYNAMIC 805 INIT_LIST_HEAD(&dev->dma_io_tlb_pools); 806 spin_lock_init(&dev->dma_io_tlb_lock); 807 dev->dma_uses_io_tlb = false; 808 #endif 809 } 810 811 /* 812 * Return the offset into a iotlb slot required to keep the device happy. 813 */ 814 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 815 { 816 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 817 } 818 819 /* 820 * Bounce: copy the swiotlb buffer from or back to the original dma location 821 */ 822 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 823 enum dma_data_direction dir) 824 { 825 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 826 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 827 phys_addr_t orig_addr = mem->slots[index].orig_addr; 828 size_t alloc_size = mem->slots[index].alloc_size; 829 unsigned long pfn = PFN_DOWN(orig_addr); 830 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 831 unsigned int tlb_offset, orig_addr_offset; 832 833 if (orig_addr == INVALID_PHYS_ADDR) 834 return; 835 836 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 837 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 838 if (tlb_offset < orig_addr_offset) { 839 dev_WARN_ONCE(dev, 1, 840 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 841 orig_addr_offset, tlb_offset); 842 return; 843 } 844 845 tlb_offset -= orig_addr_offset; 846 if (tlb_offset > alloc_size) { 847 dev_WARN_ONCE(dev, 1, 848 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 849 alloc_size, size, tlb_offset); 850 return; 851 } 852 853 orig_addr += tlb_offset; 854 alloc_size -= tlb_offset; 855 856 if (size > alloc_size) { 857 dev_WARN_ONCE(dev, 1, 858 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 859 alloc_size, size); 860 size = alloc_size; 861 } 862 863 if (PageHighMem(pfn_to_page(pfn))) { 864 unsigned int offset = orig_addr & ~PAGE_MASK; 865 struct page *page; 866 unsigned int sz = 0; 867 unsigned long flags; 868 869 while (size) { 870 sz = min_t(size_t, PAGE_SIZE - offset, size); 871 872 local_irq_save(flags); 873 page = pfn_to_page(pfn); 874 if (dir == DMA_TO_DEVICE) 875 memcpy_from_page(vaddr, page, offset, sz); 876 else 877 memcpy_to_page(page, offset, vaddr, sz); 878 local_irq_restore(flags); 879 880 size -= sz; 881 pfn++; 882 vaddr += sz; 883 offset = 0; 884 } 885 } else if (dir == DMA_TO_DEVICE) { 886 memcpy(vaddr, phys_to_virt(orig_addr), size); 887 } else { 888 memcpy(phys_to_virt(orig_addr), vaddr, size); 889 } 890 } 891 892 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) 893 { 894 return start + (idx << IO_TLB_SHIFT); 895 } 896 897 /* 898 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 899 */ 900 static inline unsigned long get_max_slots(unsigned long boundary_mask) 901 { 902 return (boundary_mask >> IO_TLB_SHIFT) + 1; 903 } 904 905 static unsigned int wrap_area_index(struct io_tlb_pool *mem, unsigned int index) 906 { 907 if (index >= mem->area_nslabs) 908 return 0; 909 return index; 910 } 911 912 /* 913 * Track the total used slots with a global atomic value in order to have 914 * correct information to determine the high water mark. The mem_used() 915 * function gives imprecise results because there's no locking across 916 * multiple areas. 917 */ 918 #ifdef CONFIG_DEBUG_FS 919 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 920 { 921 unsigned long old_hiwater, new_used; 922 923 new_used = atomic_long_add_return(nslots, &mem->total_used); 924 old_hiwater = atomic_long_read(&mem->used_hiwater); 925 do { 926 if (new_used <= old_hiwater) 927 break; 928 } while (!atomic_long_try_cmpxchg(&mem->used_hiwater, 929 &old_hiwater, new_used)); 930 } 931 932 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 933 { 934 atomic_long_sub(nslots, &mem->total_used); 935 } 936 937 #else /* !CONFIG_DEBUG_FS */ 938 static void inc_used_and_hiwater(struct io_tlb_mem *mem, unsigned int nslots) 939 { 940 } 941 static void dec_used(struct io_tlb_mem *mem, unsigned int nslots) 942 { 943 } 944 #endif /* CONFIG_DEBUG_FS */ 945 946 /** 947 * swiotlb_area_find_slots() - search for slots in one IO TLB memory area 948 * @dev: Device which maps the buffer. 949 * @pool: Memory pool to be searched. 950 * @area_index: Index of the IO TLB memory area to be searched. 951 * @orig_addr: Original (non-bounced) IO buffer address. 952 * @alloc_size: Total requested size of the bounce buffer, 953 * including initial alignment padding. 954 * @alloc_align_mask: Required alignment of the allocated buffer. 955 * 956 * Find a suitable sequence of IO TLB entries for the request and allocate 957 * a buffer from the given IO TLB memory area. 958 * This function takes care of locking. 959 * 960 * Return: Index of the first allocated slot, or -1 on error. 961 */ 962 static int swiotlb_area_find_slots(struct device *dev, struct io_tlb_pool *pool, 963 int area_index, phys_addr_t orig_addr, size_t alloc_size, 964 unsigned int alloc_align_mask) 965 { 966 struct io_tlb_area *area = pool->areas + area_index; 967 unsigned long boundary_mask = dma_get_seg_boundary(dev); 968 dma_addr_t tbl_dma_addr = 969 phys_to_dma_unencrypted(dev, pool->start) & boundary_mask; 970 unsigned long max_slots = get_max_slots(boundary_mask); 971 unsigned int iotlb_align_mask = 972 dma_get_min_align_mask(dev) | alloc_align_mask; 973 unsigned int nslots = nr_slots(alloc_size), stride; 974 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 975 unsigned int index, slots_checked, count = 0, i; 976 unsigned long flags; 977 unsigned int slot_base; 978 unsigned int slot_index; 979 980 BUG_ON(!nslots); 981 BUG_ON(area_index >= pool->nareas); 982 983 /* 984 * For allocations of PAGE_SIZE or larger only look for page aligned 985 * allocations. 986 */ 987 if (alloc_size >= PAGE_SIZE) 988 iotlb_align_mask |= ~PAGE_MASK; 989 iotlb_align_mask &= ~(IO_TLB_SIZE - 1); 990 991 /* 992 * For mappings with an alignment requirement don't bother looping to 993 * unaligned slots once we found an aligned one. 994 */ 995 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 996 997 spin_lock_irqsave(&area->lock, flags); 998 if (unlikely(nslots > pool->area_nslabs - area->used)) 999 goto not_found; 1000 1001 slot_base = area_index * pool->area_nslabs; 1002 index = area->index; 1003 1004 for (slots_checked = 0; slots_checked < pool->area_nslabs; ) { 1005 slot_index = slot_base + index; 1006 1007 if (orig_addr && 1008 (slot_addr(tbl_dma_addr, slot_index) & 1009 iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { 1010 index = wrap_area_index(pool, index + 1); 1011 slots_checked++; 1012 continue; 1013 } 1014 1015 if (!iommu_is_span_boundary(slot_index, nslots, 1016 nr_slots(tbl_dma_addr), 1017 max_slots)) { 1018 if (pool->slots[slot_index].list >= nslots) 1019 goto found; 1020 } 1021 index = wrap_area_index(pool, index + stride); 1022 slots_checked += stride; 1023 } 1024 1025 not_found: 1026 spin_unlock_irqrestore(&area->lock, flags); 1027 return -1; 1028 1029 found: 1030 /* 1031 * If we find a slot that indicates we have 'nslots' number of 1032 * contiguous buffers, we allocate the buffers from that slot onwards 1033 * and set the list of free entries to '0' indicating unavailable. 1034 */ 1035 for (i = slot_index; i < slot_index + nslots; i++) { 1036 pool->slots[i].list = 0; 1037 pool->slots[i].alloc_size = alloc_size - (offset + 1038 ((i - slot_index) << IO_TLB_SHIFT)); 1039 } 1040 for (i = slot_index - 1; 1041 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 1042 pool->slots[i].list; i--) 1043 pool->slots[i].list = ++count; 1044 1045 /* 1046 * Update the indices to avoid searching in the next round. 1047 */ 1048 area->index = wrap_area_index(pool, index + nslots); 1049 area->used += nslots; 1050 spin_unlock_irqrestore(&area->lock, flags); 1051 1052 inc_used_and_hiwater(dev->dma_io_tlb_mem, nslots); 1053 return slot_index; 1054 } 1055 1056 /** 1057 * swiotlb_pool_find_slots() - search for slots in one memory pool 1058 * @dev: Device which maps the buffer. 1059 * @pool: Memory pool to be searched. 1060 * @orig_addr: Original (non-bounced) IO buffer address. 1061 * @alloc_size: Total requested size of the bounce buffer, 1062 * including initial alignment padding. 1063 * @alloc_align_mask: Required alignment of the allocated buffer. 1064 * 1065 * Search through one memory pool to find a sequence of slots that match the 1066 * allocation constraints. 1067 * 1068 * Return: Index of the first allocated slot, or -1 on error. 1069 */ 1070 static int swiotlb_pool_find_slots(struct device *dev, struct io_tlb_pool *pool, 1071 phys_addr_t orig_addr, size_t alloc_size, 1072 unsigned int alloc_align_mask) 1073 { 1074 int start = raw_smp_processor_id() & (pool->nareas - 1); 1075 int i = start, index; 1076 1077 do { 1078 index = swiotlb_area_find_slots(dev, pool, i, orig_addr, 1079 alloc_size, alloc_align_mask); 1080 if (index >= 0) 1081 return index; 1082 if (++i >= pool->nareas) 1083 i = 0; 1084 } while (i != start); 1085 1086 return -1; 1087 } 1088 1089 #ifdef CONFIG_SWIOTLB_DYNAMIC 1090 1091 /** 1092 * swiotlb_find_slots() - search for slots in the whole swiotlb 1093 * @dev: Device which maps the buffer. 1094 * @orig_addr: Original (non-bounced) IO buffer address. 1095 * @alloc_size: Total requested size of the bounce buffer, 1096 * including initial alignment padding. 1097 * @alloc_align_mask: Required alignment of the allocated buffer. 1098 * @retpool: Used memory pool, updated on return. 1099 * 1100 * Search through the whole software IO TLB to find a sequence of slots that 1101 * match the allocation constraints. 1102 * 1103 * Return: Index of the first allocated slot, or -1 on error. 1104 */ 1105 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1106 size_t alloc_size, unsigned int alloc_align_mask, 1107 struct io_tlb_pool **retpool) 1108 { 1109 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1110 struct io_tlb_pool *pool; 1111 unsigned long nslabs; 1112 unsigned long flags; 1113 u64 phys_limit; 1114 int index; 1115 1116 rcu_read_lock(); 1117 list_for_each_entry_rcu(pool, &mem->pools, node) { 1118 index = swiotlb_pool_find_slots(dev, pool, orig_addr, 1119 alloc_size, alloc_align_mask); 1120 if (index >= 0) { 1121 rcu_read_unlock(); 1122 goto found; 1123 } 1124 } 1125 rcu_read_unlock(); 1126 if (!mem->can_grow) 1127 return -1; 1128 1129 schedule_work(&mem->dyn_alloc); 1130 1131 nslabs = nr_slots(alloc_size); 1132 phys_limit = min_not_zero(*dev->dma_mask, dev->bus_dma_limit); 1133 pool = swiotlb_alloc_pool(dev, nslabs, nslabs, 1, phys_limit, 1134 GFP_NOWAIT | __GFP_NOWARN); 1135 if (!pool) 1136 return -1; 1137 1138 index = swiotlb_pool_find_slots(dev, pool, orig_addr, 1139 alloc_size, alloc_align_mask); 1140 if (index < 0) { 1141 swiotlb_dyn_free(&pool->rcu); 1142 return -1; 1143 } 1144 1145 pool->transient = true; 1146 spin_lock_irqsave(&dev->dma_io_tlb_lock, flags); 1147 list_add_rcu(&pool->node, &dev->dma_io_tlb_pools); 1148 spin_unlock_irqrestore(&dev->dma_io_tlb_lock, flags); 1149 1150 found: 1151 WRITE_ONCE(dev->dma_uses_io_tlb, true); 1152 1153 /* 1154 * The general barrier orders reads and writes against a presumed store 1155 * of the SWIOTLB buffer address by a device driver (to a driver private 1156 * data structure). It serves two purposes. 1157 * 1158 * First, the store to dev->dma_uses_io_tlb must be ordered before the 1159 * presumed store. This guarantees that the returned buffer address 1160 * cannot be passed to another CPU before updating dev->dma_uses_io_tlb. 1161 * 1162 * Second, the load from mem->pools must be ordered before the same 1163 * presumed store. This guarantees that the returned buffer address 1164 * cannot be observed by another CPU before an update of the RCU list 1165 * that was made by swiotlb_dyn_alloc() on a third CPU (cf. multicopy 1166 * atomicity). 1167 * 1168 * See also the comment in is_swiotlb_buffer(). 1169 */ 1170 smp_mb(); 1171 1172 *retpool = pool; 1173 return index; 1174 } 1175 1176 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1177 1178 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 1179 size_t alloc_size, unsigned int alloc_align_mask, 1180 struct io_tlb_pool **retpool) 1181 { 1182 *retpool = &dev->dma_io_tlb_mem->defpool; 1183 return swiotlb_pool_find_slots(dev, *retpool, 1184 orig_addr, alloc_size, alloc_align_mask); 1185 } 1186 1187 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1188 1189 #ifdef CONFIG_DEBUG_FS 1190 1191 /** 1192 * mem_used() - get number of used slots in an allocator 1193 * @mem: Software IO TLB allocator. 1194 * 1195 * The result is accurate in this version of the function, because an atomic 1196 * counter is available if CONFIG_DEBUG_FS is set. 1197 * 1198 * Return: Number of used slots. 1199 */ 1200 static unsigned long mem_used(struct io_tlb_mem *mem) 1201 { 1202 return atomic_long_read(&mem->total_used); 1203 } 1204 1205 #else /* !CONFIG_DEBUG_FS */ 1206 1207 /** 1208 * mem_pool_used() - get number of used slots in a memory pool 1209 * @pool: Software IO TLB memory pool. 1210 * 1211 * The result is not accurate, see mem_used(). 1212 * 1213 * Return: Approximate number of used slots. 1214 */ 1215 static unsigned long mem_pool_used(struct io_tlb_pool *pool) 1216 { 1217 int i; 1218 unsigned long used = 0; 1219 1220 for (i = 0; i < pool->nareas; i++) 1221 used += pool->areas[i].used; 1222 return used; 1223 } 1224 1225 /** 1226 * mem_used() - get number of used slots in an allocator 1227 * @mem: Software IO TLB allocator. 1228 * 1229 * The result is not accurate, because there is no locking of individual 1230 * areas. 1231 * 1232 * Return: Approximate number of used slots. 1233 */ 1234 static unsigned long mem_used(struct io_tlb_mem *mem) 1235 { 1236 #ifdef CONFIG_SWIOTLB_DYNAMIC 1237 struct io_tlb_pool *pool; 1238 unsigned long used = 0; 1239 1240 rcu_read_lock(); 1241 list_for_each_entry_rcu(pool, &mem->pools, node) 1242 used += mem_pool_used(pool); 1243 rcu_read_unlock(); 1244 1245 return used; 1246 #else 1247 return mem_pool_used(&mem->defpool); 1248 #endif 1249 } 1250 1251 #endif /* CONFIG_DEBUG_FS */ 1252 1253 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 1254 size_t mapping_size, size_t alloc_size, 1255 unsigned int alloc_align_mask, enum dma_data_direction dir, 1256 unsigned long attrs) 1257 { 1258 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1259 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 1260 struct io_tlb_pool *pool; 1261 unsigned int i; 1262 int index; 1263 phys_addr_t tlb_addr; 1264 1265 if (!mem || !mem->nslabs) { 1266 dev_warn_ratelimited(dev, 1267 "Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 1268 return (phys_addr_t)DMA_MAPPING_ERROR; 1269 } 1270 1271 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 1272 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 1273 1274 if (mapping_size > alloc_size) { 1275 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 1276 mapping_size, alloc_size); 1277 return (phys_addr_t)DMA_MAPPING_ERROR; 1278 } 1279 1280 index = swiotlb_find_slots(dev, orig_addr, 1281 alloc_size + offset, alloc_align_mask, &pool); 1282 if (index == -1) { 1283 if (!(attrs & DMA_ATTR_NO_WARN)) 1284 dev_warn_ratelimited(dev, 1285 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 1286 alloc_size, mem->nslabs, mem_used(mem)); 1287 return (phys_addr_t)DMA_MAPPING_ERROR; 1288 } 1289 1290 /* 1291 * Save away the mapping from the original address to the DMA address. 1292 * This is needed when we sync the memory. Then we sync the buffer if 1293 * needed. 1294 */ 1295 for (i = 0; i < nr_slots(alloc_size + offset); i++) 1296 pool->slots[index + i].orig_addr = slot_addr(orig_addr, i); 1297 tlb_addr = slot_addr(pool->start, index) + offset; 1298 /* 1299 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 1300 * to the tlb buffer, if we knew for sure the device will 1301 * overwrite the entire current content. But we don't. Thus 1302 * unconditional bounce may prevent leaking swiotlb content (i.e. 1303 * kernel memory) to user-space. 1304 */ 1305 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 1306 return tlb_addr; 1307 } 1308 1309 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 1310 { 1311 struct io_tlb_pool *mem = swiotlb_find_pool(dev, tlb_addr); 1312 unsigned long flags; 1313 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 1314 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 1315 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 1316 int aindex = index / mem->area_nslabs; 1317 struct io_tlb_area *area = &mem->areas[aindex]; 1318 int count, i; 1319 1320 /* 1321 * Return the buffer to the free list by setting the corresponding 1322 * entries to indicate the number of contiguous entries available. 1323 * While returning the entries to the free list, we merge the entries 1324 * with slots below and above the pool being returned. 1325 */ 1326 BUG_ON(aindex >= mem->nareas); 1327 1328 spin_lock_irqsave(&area->lock, flags); 1329 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 1330 count = mem->slots[index + nslots].list; 1331 else 1332 count = 0; 1333 1334 /* 1335 * Step 1: return the slots to the free list, merging the slots with 1336 * superceeding slots 1337 */ 1338 for (i = index + nslots - 1; i >= index; i--) { 1339 mem->slots[i].list = ++count; 1340 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 1341 mem->slots[i].alloc_size = 0; 1342 } 1343 1344 /* 1345 * Step 2: merge the returned slots with the preceding slots, if 1346 * available (non zero) 1347 */ 1348 for (i = index - 1; 1349 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 1350 i--) 1351 mem->slots[i].list = ++count; 1352 area->used -= nslots; 1353 spin_unlock_irqrestore(&area->lock, flags); 1354 1355 dec_used(dev->dma_io_tlb_mem, nslots); 1356 } 1357 1358 #ifdef CONFIG_SWIOTLB_DYNAMIC 1359 1360 /** 1361 * swiotlb_del_transient() - delete a transient memory pool 1362 * @dev: Device which mapped the buffer. 1363 * @tlb_addr: Physical address within a bounce buffer. 1364 * 1365 * Check whether the address belongs to a transient SWIOTLB memory pool. 1366 * If yes, then delete the pool. 1367 * 1368 * Return: %true if @tlb_addr belonged to a transient pool that was released. 1369 */ 1370 static bool swiotlb_del_transient(struct device *dev, phys_addr_t tlb_addr) 1371 { 1372 struct io_tlb_pool *pool; 1373 1374 pool = swiotlb_find_pool(dev, tlb_addr); 1375 if (!pool->transient) 1376 return false; 1377 1378 dec_used(dev->dma_io_tlb_mem, pool->nslabs); 1379 swiotlb_del_pool(dev, pool); 1380 return true; 1381 } 1382 1383 #else /* !CONFIG_SWIOTLB_DYNAMIC */ 1384 1385 static inline bool swiotlb_del_transient(struct device *dev, 1386 phys_addr_t tlb_addr) 1387 { 1388 return false; 1389 } 1390 1391 #endif /* CONFIG_SWIOTLB_DYNAMIC */ 1392 1393 /* 1394 * tlb_addr is the physical address of the bounce buffer to unmap. 1395 */ 1396 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 1397 size_t mapping_size, enum dma_data_direction dir, 1398 unsigned long attrs) 1399 { 1400 /* 1401 * First, sync the memory before unmapping the entry 1402 */ 1403 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 1404 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 1405 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 1406 1407 if (swiotlb_del_transient(dev, tlb_addr)) 1408 return; 1409 swiotlb_release_slots(dev, tlb_addr); 1410 } 1411 1412 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 1413 size_t size, enum dma_data_direction dir) 1414 { 1415 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 1416 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 1417 else 1418 BUG_ON(dir != DMA_FROM_DEVICE); 1419 } 1420 1421 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 1422 size_t size, enum dma_data_direction dir) 1423 { 1424 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 1425 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 1426 else 1427 BUG_ON(dir != DMA_TO_DEVICE); 1428 } 1429 1430 /* 1431 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 1432 * to the device copy the data into it as well. 1433 */ 1434 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 1435 enum dma_data_direction dir, unsigned long attrs) 1436 { 1437 phys_addr_t swiotlb_addr; 1438 dma_addr_t dma_addr; 1439 1440 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 1441 1442 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 1443 attrs); 1444 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 1445 return DMA_MAPPING_ERROR; 1446 1447 /* Ensure that the address returned is DMA'ble */ 1448 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 1449 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 1450 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 1451 attrs | DMA_ATTR_SKIP_CPU_SYNC); 1452 dev_WARN_ONCE(dev, 1, 1453 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 1454 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 1455 return DMA_MAPPING_ERROR; 1456 } 1457 1458 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 1459 arch_sync_dma_for_device(swiotlb_addr, size, dir); 1460 return dma_addr; 1461 } 1462 1463 size_t swiotlb_max_mapping_size(struct device *dev) 1464 { 1465 int min_align_mask = dma_get_min_align_mask(dev); 1466 int min_align = 0; 1467 1468 /* 1469 * swiotlb_find_slots() skips slots according to 1470 * min align mask. This affects max mapping size. 1471 * Take it into acount here. 1472 */ 1473 if (min_align_mask) 1474 min_align = roundup(min_align_mask, IO_TLB_SIZE); 1475 1476 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 1477 } 1478 1479 /** 1480 * is_swiotlb_allocated() - check if the default software IO TLB is initialized 1481 */ 1482 bool is_swiotlb_allocated(void) 1483 { 1484 return io_tlb_default_mem.nslabs; 1485 } 1486 1487 bool is_swiotlb_active(struct device *dev) 1488 { 1489 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1490 1491 return mem && mem->nslabs; 1492 } 1493 1494 /** 1495 * default_swiotlb_base() - get the base address of the default SWIOTLB 1496 * 1497 * Get the lowest physical address used by the default software IO TLB pool. 1498 */ 1499 phys_addr_t default_swiotlb_base(void) 1500 { 1501 #ifdef CONFIG_SWIOTLB_DYNAMIC 1502 io_tlb_default_mem.can_grow = false; 1503 #endif 1504 return io_tlb_default_mem.defpool.start; 1505 } 1506 1507 /** 1508 * default_swiotlb_limit() - get the address limit of the default SWIOTLB 1509 * 1510 * Get the highest physical address used by the default software IO TLB pool. 1511 */ 1512 phys_addr_t default_swiotlb_limit(void) 1513 { 1514 #ifdef CONFIG_SWIOTLB_DYNAMIC 1515 return io_tlb_default_mem.phys_limit; 1516 #else 1517 return io_tlb_default_mem.defpool.end - 1; 1518 #endif 1519 } 1520 1521 #ifdef CONFIG_DEBUG_FS 1522 1523 static int io_tlb_used_get(void *data, u64 *val) 1524 { 1525 struct io_tlb_mem *mem = data; 1526 1527 *val = mem_used(mem); 1528 return 0; 1529 } 1530 1531 static int io_tlb_hiwater_get(void *data, u64 *val) 1532 { 1533 struct io_tlb_mem *mem = data; 1534 1535 *val = atomic_long_read(&mem->used_hiwater); 1536 return 0; 1537 } 1538 1539 static int io_tlb_hiwater_set(void *data, u64 val) 1540 { 1541 struct io_tlb_mem *mem = data; 1542 1543 /* Only allow setting to zero */ 1544 if (val != 0) 1545 return -EINVAL; 1546 1547 atomic_long_set(&mem->used_hiwater, val); 1548 return 0; 1549 } 1550 1551 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 1552 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_hiwater, io_tlb_hiwater_get, 1553 io_tlb_hiwater_set, "%llu\n"); 1554 1555 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1556 const char *dirname) 1557 { 1558 atomic_long_set(&mem->total_used, 0); 1559 atomic_long_set(&mem->used_hiwater, 0); 1560 1561 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 1562 if (!mem->nslabs) 1563 return; 1564 1565 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 1566 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, mem, 1567 &fops_io_tlb_used); 1568 debugfs_create_file("io_tlb_used_hiwater", 0600, mem->debugfs, mem, 1569 &fops_io_tlb_hiwater); 1570 } 1571 1572 static int __init swiotlb_create_default_debugfs(void) 1573 { 1574 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 1575 return 0; 1576 } 1577 1578 late_initcall(swiotlb_create_default_debugfs); 1579 1580 #else /* !CONFIG_DEBUG_FS */ 1581 1582 static inline void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 1583 const char *dirname) 1584 { 1585 } 1586 1587 #endif /* CONFIG_DEBUG_FS */ 1588 1589 #ifdef CONFIG_DMA_RESTRICTED_POOL 1590 1591 struct page *swiotlb_alloc(struct device *dev, size_t size) 1592 { 1593 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 1594 struct io_tlb_pool *pool; 1595 phys_addr_t tlb_addr; 1596 int index; 1597 1598 if (!mem) 1599 return NULL; 1600 1601 index = swiotlb_find_slots(dev, 0, size, 0, &pool); 1602 if (index == -1) 1603 return NULL; 1604 1605 tlb_addr = slot_addr(pool->start, index); 1606 1607 return pfn_to_page(PFN_DOWN(tlb_addr)); 1608 } 1609 1610 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 1611 { 1612 phys_addr_t tlb_addr = page_to_phys(page); 1613 1614 if (!is_swiotlb_buffer(dev, tlb_addr)) 1615 return false; 1616 1617 swiotlb_release_slots(dev, tlb_addr); 1618 1619 return true; 1620 } 1621 1622 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 1623 struct device *dev) 1624 { 1625 struct io_tlb_mem *mem = rmem->priv; 1626 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 1627 1628 /* Set Per-device io tlb area to one */ 1629 unsigned int nareas = 1; 1630 1631 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1632 dev_err(dev, "Restricted DMA pool must be accessible within the linear mapping."); 1633 return -EINVAL; 1634 } 1635 1636 /* 1637 * Since multiple devices can share the same pool, the private data, 1638 * io_tlb_mem struct, will be initialized by the first device attached 1639 * to it. 1640 */ 1641 if (!mem) { 1642 struct io_tlb_pool *pool; 1643 1644 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 1645 if (!mem) 1646 return -ENOMEM; 1647 pool = &mem->defpool; 1648 1649 pool->slots = kcalloc(nslabs, sizeof(*pool->slots), GFP_KERNEL); 1650 if (!pool->slots) { 1651 kfree(mem); 1652 return -ENOMEM; 1653 } 1654 1655 pool->areas = kcalloc(nareas, sizeof(*pool->areas), 1656 GFP_KERNEL); 1657 if (!pool->areas) { 1658 kfree(pool->slots); 1659 kfree(mem); 1660 return -ENOMEM; 1661 } 1662 1663 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1664 rmem->size >> PAGE_SHIFT); 1665 swiotlb_init_io_tlb_pool(pool, rmem->base, nslabs, 1666 false, nareas); 1667 mem->force_bounce = true; 1668 mem->for_alloc = true; 1669 #ifdef CONFIG_SWIOTLB_DYNAMIC 1670 spin_lock_init(&mem->lock); 1671 #endif 1672 add_mem_pool(mem, pool); 1673 1674 rmem->priv = mem; 1675 1676 swiotlb_create_debugfs_files(mem, rmem->name); 1677 } 1678 1679 dev->dma_io_tlb_mem = mem; 1680 1681 return 0; 1682 } 1683 1684 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1685 struct device *dev) 1686 { 1687 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1688 } 1689 1690 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1691 .device_init = rmem_swiotlb_device_init, 1692 .device_release = rmem_swiotlb_device_release, 1693 }; 1694 1695 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1696 { 1697 unsigned long node = rmem->fdt_node; 1698 1699 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1700 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1701 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1702 of_get_flat_dt_prop(node, "no-map", NULL)) 1703 return -EINVAL; 1704 1705 rmem->ops = &rmem_swiotlb_ops; 1706 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1707 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1708 return 0; 1709 } 1710 1711 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1712 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1713