1 /* 2 * Dynamic DMA mapping support. 3 * 4 * This implementation is a fallback for platforms that do not support 5 * I/O TLBs (aka DMA address translation hardware). 6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 8 * Copyright (C) 2000, 2003 Hewlett-Packard Co 9 * David Mosberger-Tang <davidm@hpl.hp.com> 10 * 11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 13 * unnecessary i-cache flushing. 14 * 04/07/.. ak Better overflow handling. Assorted fixes. 15 * 05/09/10 linville Add support for syncing ranges, support syncing for 16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 17 * 08/12/11 beckyb Add highmem support 18 */ 19 20 #define pr_fmt(fmt) "software IO TLB: " fmt 21 22 #include <linux/cache.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-noncoherent.h> 25 #include <linux/mm.h> 26 #include <linux/export.h> 27 #include <linux/spinlock.h> 28 #include <linux/string.h> 29 #include <linux/swiotlb.h> 30 #include <linux/pfn.h> 31 #include <linux/types.h> 32 #include <linux/ctype.h> 33 #include <linux/highmem.h> 34 #include <linux/gfp.h> 35 #include <linux/scatterlist.h> 36 #include <linux/mem_encrypt.h> 37 #include <linux/set_memory.h> 38 39 #include <asm/io.h> 40 #include <asm/dma.h> 41 42 #include <linux/init.h> 43 #include <linux/memblock.h> 44 #include <linux/iommu-helper.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/swiotlb.h> 48 49 #define OFFSET(val,align) ((unsigned long) \ 50 ( (val) & ( (align) - 1))) 51 52 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 53 54 /* 55 * Minimum IO TLB size to bother booting with. Systems with mainly 56 * 64bit capable cards will only lightly use the swiotlb. If we can't 57 * allocate a contiguous 1MB, we're probably in trouble anyway. 58 */ 59 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 60 61 enum swiotlb_force swiotlb_force; 62 63 /* 64 * Used to do a quick range check in swiotlb_tbl_unmap_single and 65 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this 66 * API. 67 */ 68 static phys_addr_t io_tlb_start, io_tlb_end; 69 70 /* 71 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and 72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. 73 */ 74 static unsigned long io_tlb_nslabs; 75 76 /* 77 * This is a free list describing the number of free entries available from 78 * each index 79 */ 80 static unsigned int *io_tlb_list; 81 static unsigned int io_tlb_index; 82 83 /* 84 * Max segment that we can provide which (if pages are contingous) will 85 * not be bounced (unless SWIOTLB_FORCE is set). 86 */ 87 unsigned int max_segment; 88 89 /* 90 * We need to save away the original address corresponding to a mapped entry 91 * for the sync operations. 92 */ 93 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 94 static phys_addr_t *io_tlb_orig_addr; 95 96 /* 97 * Protect the above data structures in the map and unmap calls 98 */ 99 static DEFINE_SPINLOCK(io_tlb_lock); 100 101 static int late_alloc; 102 103 static int __init 104 setup_io_tlb_npages(char *str) 105 { 106 if (isdigit(*str)) { 107 io_tlb_nslabs = simple_strtoul(str, &str, 0); 108 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 109 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 110 } 111 if (*str == ',') 112 ++str; 113 if (!strcmp(str, "force")) { 114 swiotlb_force = SWIOTLB_FORCE; 115 } else if (!strcmp(str, "noforce")) { 116 swiotlb_force = SWIOTLB_NO_FORCE; 117 io_tlb_nslabs = 1; 118 } 119 120 return 0; 121 } 122 early_param("swiotlb", setup_io_tlb_npages); 123 124 unsigned long swiotlb_nr_tbl(void) 125 { 126 return io_tlb_nslabs; 127 } 128 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); 129 130 unsigned int swiotlb_max_segment(void) 131 { 132 return max_segment; 133 } 134 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 135 136 void swiotlb_set_max_segment(unsigned int val) 137 { 138 if (swiotlb_force == SWIOTLB_FORCE) 139 max_segment = 1; 140 else 141 max_segment = rounddown(val, PAGE_SIZE); 142 } 143 144 /* default to 64MB */ 145 #define IO_TLB_DEFAULT_SIZE (64UL<<20) 146 unsigned long swiotlb_size_or_default(void) 147 { 148 unsigned long size; 149 150 size = io_tlb_nslabs << IO_TLB_SHIFT; 151 152 return size ? size : (IO_TLB_DEFAULT_SIZE); 153 } 154 155 static bool no_iotlb_memory; 156 157 void swiotlb_print_info(void) 158 { 159 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; 160 161 if (no_iotlb_memory) { 162 pr_warn("No low mem\n"); 163 return; 164 } 165 166 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n", 167 (unsigned long long)io_tlb_start, 168 (unsigned long long)io_tlb_end, 169 bytes >> 20); 170 } 171 172 /* 173 * Early SWIOTLB allocation may be too early to allow an architecture to 174 * perform the desired operations. This function allows the architecture to 175 * call SWIOTLB when the operations are possible. It needs to be called 176 * before the SWIOTLB memory is used. 177 */ 178 void __init swiotlb_update_mem_attributes(void) 179 { 180 void *vaddr; 181 unsigned long bytes; 182 183 if (no_iotlb_memory || late_alloc) 184 return; 185 186 vaddr = phys_to_virt(io_tlb_start); 187 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); 188 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 189 memset(vaddr, 0, bytes); 190 } 191 192 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) 193 { 194 unsigned long i, bytes; 195 196 bytes = nslabs << IO_TLB_SHIFT; 197 198 io_tlb_nslabs = nslabs; 199 io_tlb_start = __pa(tlb); 200 io_tlb_end = io_tlb_start + bytes; 201 202 /* 203 * Allocate and initialize the free list array. This array is used 204 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 205 * between io_tlb_start and io_tlb_end. 206 */ 207 io_tlb_list = memblock_alloc( 208 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), 209 PAGE_SIZE); 210 io_tlb_orig_addr = memblock_alloc( 211 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), 212 PAGE_SIZE); 213 for (i = 0; i < io_tlb_nslabs; i++) { 214 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 215 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 216 } 217 io_tlb_index = 0; 218 219 if (verbose) 220 swiotlb_print_info(); 221 222 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 223 return 0; 224 } 225 226 /* 227 * Statically reserve bounce buffer space and initialize bounce buffer data 228 * structures for the software IO TLB used to implement the DMA API. 229 */ 230 void __init 231 swiotlb_init(int verbose) 232 { 233 size_t default_size = IO_TLB_DEFAULT_SIZE; 234 unsigned char *vstart; 235 unsigned long bytes; 236 237 if (!io_tlb_nslabs) { 238 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 239 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 240 } 241 242 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 243 244 /* Get IO TLB memory from the low pages */ 245 vstart = memblock_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); 246 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) 247 return; 248 249 if (io_tlb_start) 250 memblock_free_early(io_tlb_start, 251 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 252 pr_warn("Cannot allocate buffer"); 253 no_iotlb_memory = true; 254 } 255 256 /* 257 * Systems with larger DMA zones (those that don't support ISA) can 258 * initialize the swiotlb later using the slab allocator if needed. 259 * This should be just like above, but with some error catching. 260 */ 261 int 262 swiotlb_late_init_with_default_size(size_t default_size) 263 { 264 unsigned long bytes, req_nslabs = io_tlb_nslabs; 265 unsigned char *vstart = NULL; 266 unsigned int order; 267 int rc = 0; 268 269 if (!io_tlb_nslabs) { 270 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); 271 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); 272 } 273 274 /* 275 * Get IO TLB memory from the low pages 276 */ 277 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); 278 io_tlb_nslabs = SLABS_PER_PAGE << order; 279 bytes = io_tlb_nslabs << IO_TLB_SHIFT; 280 281 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 282 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, 283 order); 284 if (vstart) 285 break; 286 order--; 287 } 288 289 if (!vstart) { 290 io_tlb_nslabs = req_nslabs; 291 return -ENOMEM; 292 } 293 if (order != get_order(bytes)) { 294 pr_warn("only able to allocate %ld MB\n", 295 (PAGE_SIZE << order) >> 20); 296 io_tlb_nslabs = SLABS_PER_PAGE << order; 297 } 298 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); 299 if (rc) 300 free_pages((unsigned long)vstart, order); 301 302 return rc; 303 } 304 305 int 306 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) 307 { 308 unsigned long i, bytes; 309 310 bytes = nslabs << IO_TLB_SHIFT; 311 312 io_tlb_nslabs = nslabs; 313 io_tlb_start = virt_to_phys(tlb); 314 io_tlb_end = io_tlb_start + bytes; 315 316 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); 317 memset(tlb, 0, bytes); 318 319 /* 320 * Allocate and initialize the free list array. This array is used 321 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE 322 * between io_tlb_start and io_tlb_end. 323 */ 324 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, 325 get_order(io_tlb_nslabs * sizeof(int))); 326 if (!io_tlb_list) 327 goto cleanup3; 328 329 io_tlb_orig_addr = (phys_addr_t *) 330 __get_free_pages(GFP_KERNEL, 331 get_order(io_tlb_nslabs * 332 sizeof(phys_addr_t))); 333 if (!io_tlb_orig_addr) 334 goto cleanup4; 335 336 for (i = 0; i < io_tlb_nslabs; i++) { 337 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); 338 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 339 } 340 io_tlb_index = 0; 341 342 swiotlb_print_info(); 343 344 late_alloc = 1; 345 346 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); 347 348 return 0; 349 350 cleanup4: 351 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 352 sizeof(int))); 353 io_tlb_list = NULL; 354 cleanup3: 355 io_tlb_end = 0; 356 io_tlb_start = 0; 357 io_tlb_nslabs = 0; 358 max_segment = 0; 359 return -ENOMEM; 360 } 361 362 void __init swiotlb_exit(void) 363 { 364 if (!io_tlb_orig_addr) 365 return; 366 367 if (late_alloc) { 368 free_pages((unsigned long)io_tlb_orig_addr, 369 get_order(io_tlb_nslabs * sizeof(phys_addr_t))); 370 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * 371 sizeof(int))); 372 free_pages((unsigned long)phys_to_virt(io_tlb_start), 373 get_order(io_tlb_nslabs << IO_TLB_SHIFT)); 374 } else { 375 memblock_free_late(__pa(io_tlb_orig_addr), 376 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); 377 memblock_free_late(__pa(io_tlb_list), 378 PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); 379 memblock_free_late(io_tlb_start, 380 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); 381 } 382 io_tlb_nslabs = 0; 383 max_segment = 0; 384 } 385 386 static int is_swiotlb_buffer(phys_addr_t paddr) 387 { 388 return paddr >= io_tlb_start && paddr < io_tlb_end; 389 } 390 391 /* 392 * Bounce: copy the swiotlb buffer back to the original dma location 393 */ 394 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, 395 size_t size, enum dma_data_direction dir) 396 { 397 unsigned long pfn = PFN_DOWN(orig_addr); 398 unsigned char *vaddr = phys_to_virt(tlb_addr); 399 400 if (PageHighMem(pfn_to_page(pfn))) { 401 /* The buffer does not have a mapping. Map it in and copy */ 402 unsigned int offset = orig_addr & ~PAGE_MASK; 403 char *buffer; 404 unsigned int sz = 0; 405 unsigned long flags; 406 407 while (size) { 408 sz = min_t(size_t, PAGE_SIZE - offset, size); 409 410 local_irq_save(flags); 411 buffer = kmap_atomic(pfn_to_page(pfn)); 412 if (dir == DMA_TO_DEVICE) 413 memcpy(vaddr, buffer + offset, sz); 414 else 415 memcpy(buffer + offset, vaddr, sz); 416 kunmap_atomic(buffer); 417 local_irq_restore(flags); 418 419 size -= sz; 420 pfn++; 421 vaddr += sz; 422 offset = 0; 423 } 424 } else if (dir == DMA_TO_DEVICE) { 425 memcpy(vaddr, phys_to_virt(orig_addr), size); 426 } else { 427 memcpy(phys_to_virt(orig_addr), vaddr, size); 428 } 429 } 430 431 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, 432 dma_addr_t tbl_dma_addr, 433 phys_addr_t orig_addr, size_t size, 434 enum dma_data_direction dir, 435 unsigned long attrs) 436 { 437 unsigned long flags; 438 phys_addr_t tlb_addr; 439 unsigned int nslots, stride, index, wrap; 440 int i; 441 unsigned long mask; 442 unsigned long offset_slots; 443 unsigned long max_slots; 444 445 if (no_iotlb_memory) 446 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 447 448 if (mem_encrypt_active()) 449 pr_warn_once("%s is active and system is using DMA bounce buffers\n", 450 sme_active() ? "SME" : "SEV"); 451 452 mask = dma_get_seg_boundary(hwdev); 453 454 tbl_dma_addr &= mask; 455 456 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 457 458 /* 459 * Carefully handle integer overflow which can occur when mask == ~0UL. 460 */ 461 max_slots = mask + 1 462 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT 463 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 464 465 /* 466 * For mappings greater than or equal to a page, we limit the stride 467 * (and hence alignment) to a page size. 468 */ 469 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 470 if (size >= PAGE_SIZE) 471 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); 472 else 473 stride = 1; 474 475 BUG_ON(!nslots); 476 477 /* 478 * Find suitable number of IO TLB entries size that will fit this 479 * request and allocate a buffer from that IO TLB pool. 480 */ 481 spin_lock_irqsave(&io_tlb_lock, flags); 482 index = ALIGN(io_tlb_index, stride); 483 if (index >= io_tlb_nslabs) 484 index = 0; 485 wrap = index; 486 487 do { 488 while (iommu_is_span_boundary(index, nslots, offset_slots, 489 max_slots)) { 490 index += stride; 491 if (index >= io_tlb_nslabs) 492 index = 0; 493 if (index == wrap) 494 goto not_found; 495 } 496 497 /* 498 * If we find a slot that indicates we have 'nslots' number of 499 * contiguous buffers, we allocate the buffers from that slot 500 * and mark the entries as '0' indicating unavailable. 501 */ 502 if (io_tlb_list[index] >= nslots) { 503 int count = 0; 504 505 for (i = index; i < (int) (index + nslots); i++) 506 io_tlb_list[i] = 0; 507 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) 508 io_tlb_list[i] = ++count; 509 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); 510 511 /* 512 * Update the indices to avoid searching in the next 513 * round. 514 */ 515 io_tlb_index = ((index + nslots) < io_tlb_nslabs 516 ? (index + nslots) : 0); 517 518 goto found; 519 } 520 index += stride; 521 if (index >= io_tlb_nslabs) 522 index = 0; 523 } while (index != wrap); 524 525 not_found: 526 spin_unlock_irqrestore(&io_tlb_lock, flags); 527 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) 528 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); 529 return SWIOTLB_MAP_ERROR; 530 found: 531 spin_unlock_irqrestore(&io_tlb_lock, flags); 532 533 /* 534 * Save away the mapping from the original address to the DMA address. 535 * This is needed when we sync the memory. Then we sync the buffer if 536 * needed. 537 */ 538 for (i = 0; i < nslots; i++) 539 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); 540 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 541 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 542 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); 543 544 return tlb_addr; 545 } 546 547 /* 548 * tlb_addr is the physical address of the bounce buffer to unmap. 549 */ 550 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, 551 size_t size, enum dma_data_direction dir, 552 unsigned long attrs) 553 { 554 unsigned long flags; 555 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; 556 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 557 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 558 559 /* 560 * First, sync the memory before unmapping the entry 561 */ 562 if (orig_addr != INVALID_PHYS_ADDR && 563 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 564 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) 565 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); 566 567 /* 568 * Return the buffer to the free list by setting the corresponding 569 * entries to indicate the number of contiguous entries available. 570 * While returning the entries to the free list, we merge the entries 571 * with slots below and above the pool being returned. 572 */ 573 spin_lock_irqsave(&io_tlb_lock, flags); 574 { 575 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? 576 io_tlb_list[index + nslots] : 0); 577 /* 578 * Step 1: return the slots to the free list, merging the 579 * slots with superceeding slots 580 */ 581 for (i = index + nslots - 1; i >= index; i--) { 582 io_tlb_list[i] = ++count; 583 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; 584 } 585 /* 586 * Step 2: merge the returned slots with the preceding slots, 587 * if available (non zero) 588 */ 589 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) 590 io_tlb_list[i] = ++count; 591 } 592 spin_unlock_irqrestore(&io_tlb_lock, flags); 593 } 594 595 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, 596 size_t size, enum dma_data_direction dir, 597 enum dma_sync_target target) 598 { 599 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; 600 phys_addr_t orig_addr = io_tlb_orig_addr[index]; 601 602 if (orig_addr == INVALID_PHYS_ADDR) 603 return; 604 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); 605 606 switch (target) { 607 case SYNC_FOR_CPU: 608 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 609 swiotlb_bounce(orig_addr, tlb_addr, 610 size, DMA_FROM_DEVICE); 611 else 612 BUG_ON(dir != DMA_TO_DEVICE); 613 break; 614 case SYNC_FOR_DEVICE: 615 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) 616 swiotlb_bounce(orig_addr, tlb_addr, 617 size, DMA_TO_DEVICE); 618 else 619 BUG_ON(dir != DMA_FROM_DEVICE); 620 break; 621 default: 622 BUG(); 623 } 624 } 625 626 static dma_addr_t swiotlb_bounce_page(struct device *dev, phys_addr_t *phys, 627 size_t size, enum dma_data_direction dir, unsigned long attrs) 628 { 629 dma_addr_t dma_addr; 630 631 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) { 632 dev_warn_ratelimited(dev, 633 "Cannot do DMA to address %pa\n", phys); 634 return DIRECT_MAPPING_ERROR; 635 } 636 637 /* Oh well, have to allocate and map a bounce buffer. */ 638 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start), 639 *phys, size, dir, attrs); 640 if (*phys == SWIOTLB_MAP_ERROR) 641 return DIRECT_MAPPING_ERROR; 642 643 /* Ensure that the address returned is DMA'ble */ 644 dma_addr = __phys_to_dma(dev, *phys); 645 if (unlikely(!dma_capable(dev, dma_addr, size))) { 646 swiotlb_tbl_unmap_single(dev, *phys, size, dir, 647 attrs | DMA_ATTR_SKIP_CPU_SYNC); 648 return DIRECT_MAPPING_ERROR; 649 } 650 651 return dma_addr; 652 } 653 654 /* 655 * Map a single buffer of the indicated size for DMA in streaming mode. The 656 * physical address to use is returned. 657 * 658 * Once the device is given the dma address, the device owns this memory until 659 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. 660 */ 661 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, 662 unsigned long offset, size_t size, 663 enum dma_data_direction dir, 664 unsigned long attrs) 665 { 666 phys_addr_t phys = page_to_phys(page) + offset; 667 dma_addr_t dev_addr = phys_to_dma(dev, phys); 668 669 BUG_ON(dir == DMA_NONE); 670 /* 671 * If the address happens to be in the device's DMA window, 672 * we can safely return the device addr and not worry about bounce 673 * buffering it. 674 */ 675 if (!dma_capable(dev, dev_addr, size) || 676 swiotlb_force == SWIOTLB_FORCE) { 677 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); 678 dev_addr = swiotlb_bounce_page(dev, &phys, size, dir, attrs); 679 } 680 681 if (!dev_is_dma_coherent(dev) && 682 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0 && 683 dev_addr != DIRECT_MAPPING_ERROR) 684 arch_sync_dma_for_device(dev, phys, size, dir); 685 686 return dev_addr; 687 } 688 689 /* 690 * Unmap a single streaming mode DMA translation. The dma_addr and size must 691 * match what was provided for in a previous swiotlb_map_page call. All 692 * other usages are undefined. 693 * 694 * After this call, reads by the cpu to the buffer are guaranteed to see 695 * whatever the device wrote there. 696 */ 697 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, 698 size_t size, enum dma_data_direction dir, 699 unsigned long attrs) 700 { 701 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); 702 703 BUG_ON(dir == DMA_NONE); 704 705 if (!dev_is_dma_coherent(hwdev) && 706 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 707 arch_sync_dma_for_cpu(hwdev, paddr, size, dir); 708 709 if (is_swiotlb_buffer(paddr)) { 710 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); 711 return; 712 } 713 714 if (dir != DMA_FROM_DEVICE) 715 return; 716 717 /* 718 * phys_to_virt doesn't work with hihgmem page but we could 719 * call dma_mark_clean() with hihgmem page here. However, we 720 * are fine since dma_mark_clean() is null on POWERPC. We can 721 * make dma_mark_clean() take a physical address if necessary. 722 */ 723 dma_mark_clean(phys_to_virt(paddr), size); 724 } 725 726 /* 727 * Make physical memory consistent for a single streaming mode DMA translation 728 * after a transfer. 729 * 730 * If you perform a swiotlb_map_page() but wish to interrogate the buffer 731 * using the cpu, yet do not wish to teardown the dma mapping, you must 732 * call this function before doing so. At the next point you give the dma 733 * address back to the card, you must first perform a 734 * swiotlb_dma_sync_for_device, and then the device again owns the buffer 735 */ 736 static void 737 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, 738 size_t size, enum dma_data_direction dir, 739 enum dma_sync_target target) 740 { 741 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); 742 743 BUG_ON(dir == DMA_NONE); 744 745 if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_CPU) 746 arch_sync_dma_for_cpu(hwdev, paddr, size, dir); 747 748 if (is_swiotlb_buffer(paddr)) 749 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); 750 751 if (!dev_is_dma_coherent(hwdev) && target == SYNC_FOR_DEVICE) 752 arch_sync_dma_for_device(hwdev, paddr, size, dir); 753 754 if (!is_swiotlb_buffer(paddr) && dir == DMA_FROM_DEVICE) 755 dma_mark_clean(phys_to_virt(paddr), size); 756 } 757 758 void 759 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, 760 size_t size, enum dma_data_direction dir) 761 { 762 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); 763 } 764 765 void 766 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, 767 size_t size, enum dma_data_direction dir) 768 { 769 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); 770 } 771 772 /* 773 * Map a set of buffers described by scatterlist in streaming mode for DMA. 774 * This is the scatter-gather version of the above swiotlb_map_page 775 * interface. Here the scatter gather list elements are each tagged with the 776 * appropriate dma address and length. They are obtained via 777 * sg_dma_{address,length}(SG). 778 * 779 * Device ownership issues as mentioned above for swiotlb_map_page are the 780 * same here. 781 */ 782 int 783 swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, int nelems, 784 enum dma_data_direction dir, unsigned long attrs) 785 { 786 struct scatterlist *sg; 787 int i; 788 789 for_each_sg(sgl, sg, nelems, i) { 790 sg->dma_address = swiotlb_map_page(dev, sg_page(sg), sg->offset, 791 sg->length, dir, attrs); 792 if (sg->dma_address == DIRECT_MAPPING_ERROR) 793 goto out_error; 794 sg_dma_len(sg) = sg->length; 795 } 796 797 return nelems; 798 799 out_error: 800 swiotlb_unmap_sg_attrs(dev, sgl, i, dir, 801 attrs | DMA_ATTR_SKIP_CPU_SYNC); 802 sg_dma_len(sgl) = 0; 803 return 0; 804 } 805 806 /* 807 * Unmap a set of streaming mode DMA translations. Again, cpu read rules 808 * concerning calls here are the same as for swiotlb_unmap_page() above. 809 */ 810 void 811 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, 812 int nelems, enum dma_data_direction dir, 813 unsigned long attrs) 814 { 815 struct scatterlist *sg; 816 int i; 817 818 BUG_ON(dir == DMA_NONE); 819 820 for_each_sg(sgl, sg, nelems, i) 821 swiotlb_unmap_page(hwdev, sg->dma_address, sg_dma_len(sg), dir, 822 attrs); 823 } 824 825 /* 826 * Make physical memory consistent for a set of streaming mode DMA translations 827 * after a transfer. 828 * 829 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules 830 * and usage. 831 */ 832 static void 833 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, 834 int nelems, enum dma_data_direction dir, 835 enum dma_sync_target target) 836 { 837 struct scatterlist *sg; 838 int i; 839 840 for_each_sg(sgl, sg, nelems, i) 841 swiotlb_sync_single(hwdev, sg->dma_address, 842 sg_dma_len(sg), dir, target); 843 } 844 845 void 846 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, 847 int nelems, enum dma_data_direction dir) 848 { 849 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); 850 } 851 852 void 853 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, 854 int nelems, enum dma_data_direction dir) 855 { 856 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); 857 } 858 859 /* 860 * Return whether the given device DMA address mask can be supported 861 * properly. For example, if your device can only drive the low 24-bits 862 * during bus mastering, then you would pass 0x00ffffff as the mask to 863 * this function. 864 */ 865 int 866 swiotlb_dma_supported(struct device *hwdev, u64 mask) 867 { 868 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; 869 } 870 871 const struct dma_map_ops swiotlb_dma_ops = { 872 .mapping_error = dma_direct_mapping_error, 873 .alloc = dma_direct_alloc, 874 .free = dma_direct_free, 875 .sync_single_for_cpu = swiotlb_sync_single_for_cpu, 876 .sync_single_for_device = swiotlb_sync_single_for_device, 877 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, 878 .sync_sg_for_device = swiotlb_sync_sg_for_device, 879 .map_sg = swiotlb_map_sg_attrs, 880 .unmap_sg = swiotlb_unmap_sg_attrs, 881 .map_page = swiotlb_map_page, 882 .unmap_page = swiotlb_unmap_page, 883 .dma_supported = dma_direct_supported, 884 }; 885 EXPORT_SYMBOL(swiotlb_dma_ops); 886