1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Dynamic DMA mapping support. 4 * 5 * This implementation is a fallback for platforms that do not support 6 * I/O TLBs (aka DMA address translation hardware). 7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> 8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> 9 * Copyright (C) 2000, 2003 Hewlett-Packard Co 10 * David Mosberger-Tang <davidm@hpl.hp.com> 11 * 12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. 13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid 14 * unnecessary i-cache flushing. 15 * 04/07/.. ak Better overflow handling. Assorted fixes. 16 * 05/09/10 linville Add support for syncing ranges, support syncing for 17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. 18 * 08/12/11 beckyb Add highmem support 19 */ 20 21 #define pr_fmt(fmt) "software IO TLB: " fmt 22 23 #include <linux/cache.h> 24 #include <linux/cc_platform.h> 25 #include <linux/ctype.h> 26 #include <linux/debugfs.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-map-ops.h> 29 #include <linux/export.h> 30 #include <linux/gfp.h> 31 #include <linux/highmem.h> 32 #include <linux/io.h> 33 #include <linux/iommu-helper.h> 34 #include <linux/init.h> 35 #include <linux/memblock.h> 36 #include <linux/mm.h> 37 #include <linux/pfn.h> 38 #include <linux/scatterlist.h> 39 #include <linux/set_memory.h> 40 #include <linux/spinlock.h> 41 #include <linux/string.h> 42 #include <linux/swiotlb.h> 43 #include <linux/types.h> 44 #ifdef CONFIG_DMA_RESTRICTED_POOL 45 #include <linux/of.h> 46 #include <linux/of_fdt.h> 47 #include <linux/of_reserved_mem.h> 48 #include <linux/slab.h> 49 #endif 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/swiotlb.h> 53 54 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) 55 56 /* 57 * Minimum IO TLB size to bother booting with. Systems with mainly 58 * 64bit capable cards will only lightly use the swiotlb. If we can't 59 * allocate a contiguous 1MB, we're probably in trouble anyway. 60 */ 61 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) 62 63 #define INVALID_PHYS_ADDR (~(phys_addr_t)0) 64 65 struct io_tlb_slot { 66 phys_addr_t orig_addr; 67 size_t alloc_size; 68 unsigned int list; 69 }; 70 71 static bool swiotlb_force_bounce; 72 static bool swiotlb_force_disable; 73 74 struct io_tlb_mem io_tlb_default_mem; 75 76 phys_addr_t swiotlb_unencrypted_base; 77 78 static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT; 79 static unsigned long default_nareas; 80 81 /** 82 * struct io_tlb_area - IO TLB memory area descriptor 83 * 84 * This is a single area with a single lock. 85 * 86 * @used: The number of used IO TLB block. 87 * @index: The slot index to start searching in this area for next round. 88 * @lock: The lock to protect the above data structures in the map and 89 * unmap calls. 90 */ 91 struct io_tlb_area { 92 unsigned long used; 93 unsigned int index; 94 spinlock_t lock; 95 }; 96 97 /* 98 * Round up number of slabs to the next power of 2. The last area is going 99 * be smaller than the rest if default_nslabs is not power of two. 100 * The number of slot in an area should be a multiple of IO_TLB_SEGSIZE, 101 * otherwise a segment may span two or more areas. It conflicts with free 102 * contiguous slots tracking: free slots are treated contiguous no matter 103 * whether they cross an area boundary. 104 * 105 * Return true if default_nslabs is rounded up. 106 */ 107 static bool round_up_default_nslabs(void) 108 { 109 if (!default_nareas) 110 return false; 111 112 if (default_nslabs < IO_TLB_SEGSIZE * default_nareas) 113 default_nslabs = IO_TLB_SEGSIZE * default_nareas; 114 else if (is_power_of_2(default_nslabs)) 115 return false; 116 default_nslabs = roundup_pow_of_two(default_nslabs); 117 return true; 118 } 119 120 static void swiotlb_adjust_nareas(unsigned int nareas) 121 { 122 /* use a single area when non is specified */ 123 if (!nareas) 124 nareas = 1; 125 else if (!is_power_of_2(nareas)) 126 nareas = roundup_pow_of_two(nareas); 127 128 default_nareas = nareas; 129 130 pr_info("area num %d.\n", nareas); 131 if (round_up_default_nslabs()) 132 pr_info("SWIOTLB bounce buffer size roundup to %luMB", 133 (default_nslabs << IO_TLB_SHIFT) >> 20); 134 } 135 136 static int __init 137 setup_io_tlb_npages(char *str) 138 { 139 if (isdigit(*str)) { 140 /* avoid tail segment of size < IO_TLB_SEGSIZE */ 141 default_nslabs = 142 ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE); 143 } 144 if (*str == ',') 145 ++str; 146 if (isdigit(*str)) 147 swiotlb_adjust_nareas(simple_strtoul(str, &str, 0)); 148 if (*str == ',') 149 ++str; 150 if (!strcmp(str, "force")) 151 swiotlb_force_bounce = true; 152 else if (!strcmp(str, "noforce")) 153 swiotlb_force_disable = true; 154 155 return 0; 156 } 157 early_param("swiotlb", setup_io_tlb_npages); 158 159 unsigned int swiotlb_max_segment(void) 160 { 161 if (!io_tlb_default_mem.nslabs) 162 return 0; 163 return rounddown(io_tlb_default_mem.nslabs << IO_TLB_SHIFT, PAGE_SIZE); 164 } 165 EXPORT_SYMBOL_GPL(swiotlb_max_segment); 166 167 unsigned long swiotlb_size_or_default(void) 168 { 169 return default_nslabs << IO_TLB_SHIFT; 170 } 171 172 void __init swiotlb_adjust_size(unsigned long size) 173 { 174 /* 175 * If swiotlb parameter has not been specified, give a chance to 176 * architectures such as those supporting memory encryption to 177 * adjust/expand SWIOTLB size for their use. 178 */ 179 if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT) 180 return; 181 182 size = ALIGN(size, IO_TLB_SIZE); 183 default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 184 if (round_up_default_nslabs()) 185 size = default_nslabs << IO_TLB_SHIFT; 186 pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); 187 } 188 189 void swiotlb_print_info(void) 190 { 191 struct io_tlb_mem *mem = &io_tlb_default_mem; 192 193 if (!mem->nslabs) { 194 pr_warn("No low mem\n"); 195 return; 196 } 197 198 pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end, 199 (mem->nslabs << IO_TLB_SHIFT) >> 20); 200 } 201 202 static inline unsigned long io_tlb_offset(unsigned long val) 203 { 204 return val & (IO_TLB_SEGSIZE - 1); 205 } 206 207 static inline unsigned long nr_slots(u64 val) 208 { 209 return DIV_ROUND_UP(val, IO_TLB_SIZE); 210 } 211 212 /* 213 * Remap swioltb memory in the unencrypted physical address space 214 * when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP 215 * Isolation VMs). 216 */ 217 #ifdef CONFIG_HAS_IOMEM 218 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 219 { 220 void *vaddr = NULL; 221 222 if (swiotlb_unencrypted_base) { 223 phys_addr_t paddr = mem->start + swiotlb_unencrypted_base; 224 225 vaddr = memremap(paddr, bytes, MEMREMAP_WB); 226 if (!vaddr) 227 pr_err("Failed to map the unencrypted memory %pa size %lx.\n", 228 &paddr, bytes); 229 } 230 231 return vaddr; 232 } 233 #else 234 static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes) 235 { 236 return NULL; 237 } 238 #endif 239 240 /* 241 * Early SWIOTLB allocation may be too early to allow an architecture to 242 * perform the desired operations. This function allows the architecture to 243 * call SWIOTLB when the operations are possible. It needs to be called 244 * before the SWIOTLB memory is used. 245 */ 246 void __init swiotlb_update_mem_attributes(void) 247 { 248 struct io_tlb_mem *mem = &io_tlb_default_mem; 249 void *vaddr; 250 unsigned long bytes; 251 252 if (!mem->nslabs || mem->late_alloc) 253 return; 254 vaddr = phys_to_virt(mem->start); 255 bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT); 256 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); 257 258 mem->vaddr = swiotlb_mem_remap(mem, bytes); 259 if (!mem->vaddr) 260 mem->vaddr = vaddr; 261 } 262 263 static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start, 264 unsigned long nslabs, unsigned int flags, 265 bool late_alloc, unsigned int nareas) 266 { 267 void *vaddr = phys_to_virt(start); 268 unsigned long bytes = nslabs << IO_TLB_SHIFT, i; 269 270 mem->nslabs = nslabs; 271 mem->start = start; 272 mem->end = mem->start + bytes; 273 mem->late_alloc = late_alloc; 274 mem->nareas = nareas; 275 mem->area_nslabs = nslabs / mem->nareas; 276 277 mem->force_bounce = swiotlb_force_bounce || (flags & SWIOTLB_FORCE); 278 279 for (i = 0; i < mem->nareas; i++) { 280 spin_lock_init(&mem->areas[i].lock); 281 mem->areas[i].index = 0; 282 mem->areas[i].used = 0; 283 } 284 285 for (i = 0; i < mem->nslabs; i++) { 286 mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i); 287 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 288 mem->slots[i].alloc_size = 0; 289 } 290 291 /* 292 * If swiotlb_unencrypted_base is set, the bounce buffer memory will 293 * be remapped and cleared in swiotlb_update_mem_attributes. 294 */ 295 if (swiotlb_unencrypted_base) 296 return; 297 298 memset(vaddr, 0, bytes); 299 mem->vaddr = vaddr; 300 return; 301 } 302 303 /* 304 * Statically reserve bounce buffer space and initialize bounce buffer data 305 * structures for the software IO TLB used to implement the DMA API. 306 */ 307 void __init swiotlb_init_remap(bool addressing_limit, unsigned int flags, 308 int (*remap)(void *tlb, unsigned long nslabs)) 309 { 310 struct io_tlb_mem *mem = &io_tlb_default_mem; 311 unsigned long nslabs; 312 size_t alloc_size; 313 size_t bytes; 314 void *tlb; 315 316 if (!addressing_limit && !swiotlb_force_bounce) 317 return; 318 if (swiotlb_force_disable) 319 return; 320 321 /* 322 * default_nslabs maybe changed when adjust area number. 323 * So allocate bounce buffer after adjusting area number. 324 */ 325 if (!default_nareas) 326 swiotlb_adjust_nareas(num_possible_cpus()); 327 328 nslabs = default_nslabs; 329 /* 330 * By default allocate the bounce buffer memory from low memory, but 331 * allow to pick a location everywhere for hypervisors with guest 332 * memory encryption. 333 */ 334 retry: 335 bytes = PAGE_ALIGN(nslabs << IO_TLB_SHIFT); 336 if (flags & SWIOTLB_ANY) 337 tlb = memblock_alloc(bytes, PAGE_SIZE); 338 else 339 tlb = memblock_alloc_low(bytes, PAGE_SIZE); 340 if (!tlb) { 341 pr_warn("%s: failed to allocate tlb structure\n", __func__); 342 return; 343 } 344 345 if (remap && remap(tlb, nslabs) < 0) { 346 memblock_free(tlb, PAGE_ALIGN(bytes)); 347 348 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 349 if (nslabs < IO_TLB_MIN_SLABS) 350 panic("%s: Failed to remap %zu bytes\n", 351 __func__, bytes); 352 goto retry; 353 } 354 355 alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs)); 356 mem->slots = memblock_alloc(alloc_size, PAGE_SIZE); 357 if (!mem->slots) 358 panic("%s: Failed to allocate %zu bytes align=0x%lx\n", 359 __func__, alloc_size, PAGE_SIZE); 360 361 mem->areas = memblock_alloc(array_size(sizeof(struct io_tlb_area), 362 default_nareas), SMP_CACHE_BYTES); 363 if (!mem->areas) 364 panic("%s: Failed to allocate mem->areas.\n", __func__); 365 366 swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, flags, false, 367 default_nareas); 368 369 if (flags & SWIOTLB_VERBOSE) 370 swiotlb_print_info(); 371 } 372 373 void __init swiotlb_init(bool addressing_limit, unsigned int flags) 374 { 375 swiotlb_init_remap(addressing_limit, flags, NULL); 376 } 377 378 /* 379 * Systems with larger DMA zones (those that don't support ISA) can 380 * initialize the swiotlb later using the slab allocator if needed. 381 * This should be just like above, but with some error catching. 382 */ 383 int swiotlb_init_late(size_t size, gfp_t gfp_mask, 384 int (*remap)(void *tlb, unsigned long nslabs)) 385 { 386 struct io_tlb_mem *mem = &io_tlb_default_mem; 387 unsigned long nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE); 388 unsigned char *vstart = NULL; 389 unsigned int order, area_order; 390 bool retried = false; 391 int rc = 0; 392 393 if (swiotlb_force_disable) 394 return 0; 395 396 retry: 397 order = get_order(nslabs << IO_TLB_SHIFT); 398 nslabs = SLABS_PER_PAGE << order; 399 400 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { 401 vstart = (void *)__get_free_pages(gfp_mask | __GFP_NOWARN, 402 order); 403 if (vstart) 404 break; 405 order--; 406 nslabs = SLABS_PER_PAGE << order; 407 retried = true; 408 } 409 410 if (!vstart) 411 return -ENOMEM; 412 413 if (remap) 414 rc = remap(vstart, nslabs); 415 if (rc) { 416 free_pages((unsigned long)vstart, order); 417 418 nslabs = ALIGN(nslabs >> 1, IO_TLB_SEGSIZE); 419 if (nslabs < IO_TLB_MIN_SLABS) 420 return rc; 421 retried = true; 422 goto retry; 423 } 424 425 if (retried) { 426 pr_warn("only able to allocate %ld MB\n", 427 (PAGE_SIZE << order) >> 20); 428 } 429 430 if (!default_nareas) 431 swiotlb_adjust_nareas(num_possible_cpus()); 432 433 area_order = get_order(array_size(sizeof(*mem->areas), 434 default_nareas)); 435 mem->areas = (struct io_tlb_area *) 436 __get_free_pages(GFP_KERNEL | __GFP_ZERO, area_order); 437 if (!mem->areas) 438 goto error_area; 439 440 mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 441 get_order(array_size(sizeof(*mem->slots), nslabs))); 442 if (!mem->slots) 443 goto error_slots; 444 445 set_memory_decrypted((unsigned long)vstart, 446 (nslabs << IO_TLB_SHIFT) >> PAGE_SHIFT); 447 swiotlb_init_io_tlb_mem(mem, virt_to_phys(vstart), nslabs, 0, true, 448 default_nareas); 449 450 swiotlb_print_info(); 451 return 0; 452 453 error_slots: 454 free_pages((unsigned long)mem->areas, area_order); 455 error_area: 456 free_pages((unsigned long)vstart, order); 457 return -ENOMEM; 458 } 459 460 void __init swiotlb_exit(void) 461 { 462 struct io_tlb_mem *mem = &io_tlb_default_mem; 463 unsigned long tbl_vaddr; 464 size_t tbl_size, slots_size; 465 unsigned int area_order; 466 467 if (swiotlb_force_bounce) 468 return; 469 470 if (!mem->nslabs) 471 return; 472 473 pr_info("tearing down default memory pool\n"); 474 tbl_vaddr = (unsigned long)phys_to_virt(mem->start); 475 tbl_size = PAGE_ALIGN(mem->end - mem->start); 476 slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs)); 477 478 set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT); 479 if (mem->late_alloc) { 480 area_order = get_order(array_size(sizeof(*mem->areas), 481 mem->nareas)); 482 free_pages((unsigned long)mem->areas, area_order); 483 free_pages(tbl_vaddr, get_order(tbl_size)); 484 free_pages((unsigned long)mem->slots, get_order(slots_size)); 485 } else { 486 memblock_free_late(__pa(mem->areas), 487 array_size(sizeof(*mem->areas), mem->nareas)); 488 memblock_free_late(mem->start, tbl_size); 489 memblock_free_late(__pa(mem->slots), slots_size); 490 } 491 492 memset(mem, 0, sizeof(*mem)); 493 } 494 495 /* 496 * Return the offset into a iotlb slot required to keep the device happy. 497 */ 498 static unsigned int swiotlb_align_offset(struct device *dev, u64 addr) 499 { 500 return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1); 501 } 502 503 /* 504 * Bounce: copy the swiotlb buffer from or back to the original dma location 505 */ 506 static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size, 507 enum dma_data_direction dir) 508 { 509 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 510 int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT; 511 phys_addr_t orig_addr = mem->slots[index].orig_addr; 512 size_t alloc_size = mem->slots[index].alloc_size; 513 unsigned long pfn = PFN_DOWN(orig_addr); 514 unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start; 515 unsigned int tlb_offset, orig_addr_offset; 516 517 if (orig_addr == INVALID_PHYS_ADDR) 518 return; 519 520 tlb_offset = tlb_addr & (IO_TLB_SIZE - 1); 521 orig_addr_offset = swiotlb_align_offset(dev, orig_addr); 522 if (tlb_offset < orig_addr_offset) { 523 dev_WARN_ONCE(dev, 1, 524 "Access before mapping start detected. orig offset %u, requested offset %u.\n", 525 orig_addr_offset, tlb_offset); 526 return; 527 } 528 529 tlb_offset -= orig_addr_offset; 530 if (tlb_offset > alloc_size) { 531 dev_WARN_ONCE(dev, 1, 532 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n", 533 alloc_size, size, tlb_offset); 534 return; 535 } 536 537 orig_addr += tlb_offset; 538 alloc_size -= tlb_offset; 539 540 if (size > alloc_size) { 541 dev_WARN_ONCE(dev, 1, 542 "Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n", 543 alloc_size, size); 544 size = alloc_size; 545 } 546 547 if (PageHighMem(pfn_to_page(pfn))) { 548 /* The buffer does not have a mapping. Map it in and copy */ 549 unsigned int offset = orig_addr & ~PAGE_MASK; 550 char *buffer; 551 unsigned int sz = 0; 552 unsigned long flags; 553 554 while (size) { 555 sz = min_t(size_t, PAGE_SIZE - offset, size); 556 557 local_irq_save(flags); 558 buffer = kmap_atomic(pfn_to_page(pfn)); 559 if (dir == DMA_TO_DEVICE) 560 memcpy(vaddr, buffer + offset, sz); 561 else 562 memcpy(buffer + offset, vaddr, sz); 563 kunmap_atomic(buffer); 564 local_irq_restore(flags); 565 566 size -= sz; 567 pfn++; 568 vaddr += sz; 569 offset = 0; 570 } 571 } else if (dir == DMA_TO_DEVICE) { 572 memcpy(vaddr, phys_to_virt(orig_addr), size); 573 } else { 574 memcpy(phys_to_virt(orig_addr), vaddr, size); 575 } 576 } 577 578 static inline phys_addr_t slot_addr(phys_addr_t start, phys_addr_t idx) 579 { 580 return start + (idx << IO_TLB_SHIFT); 581 } 582 583 /* 584 * Carefully handle integer overflow which can occur when boundary_mask == ~0UL. 585 */ 586 static inline unsigned long get_max_slots(unsigned long boundary_mask) 587 { 588 if (boundary_mask == ~0UL) 589 return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); 590 return nr_slots(boundary_mask + 1); 591 } 592 593 static unsigned int wrap_area_index(struct io_tlb_mem *mem, unsigned int index) 594 { 595 if (index >= mem->area_nslabs) 596 return 0; 597 return index; 598 } 599 600 /* 601 * Find a suitable number of IO TLB entries size that will fit this request and 602 * allocate a buffer from that IO TLB pool. 603 */ 604 static int swiotlb_do_find_slots(struct device *dev, int area_index, 605 phys_addr_t orig_addr, size_t alloc_size, 606 unsigned int alloc_align_mask) 607 { 608 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 609 struct io_tlb_area *area = mem->areas + area_index; 610 unsigned long boundary_mask = dma_get_seg_boundary(dev); 611 dma_addr_t tbl_dma_addr = 612 phys_to_dma_unencrypted(dev, mem->start) & boundary_mask; 613 unsigned long max_slots = get_max_slots(boundary_mask); 614 unsigned int iotlb_align_mask = 615 dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); 616 unsigned int nslots = nr_slots(alloc_size), stride; 617 unsigned int index, wrap, count = 0, i; 618 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 619 unsigned long flags; 620 unsigned int slot_base; 621 unsigned int slot_index; 622 623 BUG_ON(!nslots); 624 BUG_ON(area_index >= mem->nareas); 625 626 /* 627 * For mappings with an alignment requirement don't bother looping to 628 * unaligned slots once we found an aligned one. For allocations of 629 * PAGE_SIZE or larger only look for page aligned allocations. 630 */ 631 stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1; 632 if (alloc_size >= PAGE_SIZE) 633 stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); 634 stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1); 635 636 spin_lock_irqsave(&area->lock, flags); 637 if (unlikely(nslots > mem->area_nslabs - area->used)) 638 goto not_found; 639 640 slot_base = area_index * mem->area_nslabs; 641 index = wrap = wrap_area_index(mem, ALIGN(area->index, stride)); 642 643 do { 644 slot_index = slot_base + index; 645 646 if (orig_addr && 647 (slot_addr(tbl_dma_addr, slot_index) & 648 iotlb_align_mask) != (orig_addr & iotlb_align_mask)) { 649 index = wrap_area_index(mem, index + 1); 650 continue; 651 } 652 653 /* 654 * If we find a slot that indicates we have 'nslots' number of 655 * contiguous buffers, we allocate the buffers from that slot 656 * and mark the entries as '0' indicating unavailable. 657 */ 658 if (!iommu_is_span_boundary(slot_index, nslots, 659 nr_slots(tbl_dma_addr), 660 max_slots)) { 661 if (mem->slots[slot_index].list >= nslots) 662 goto found; 663 } 664 index = wrap_area_index(mem, index + stride); 665 } while (index != wrap); 666 667 not_found: 668 spin_unlock_irqrestore(&area->lock, flags); 669 return -1; 670 671 found: 672 for (i = slot_index; i < slot_index + nslots; i++) { 673 mem->slots[i].list = 0; 674 mem->slots[i].alloc_size = alloc_size - (offset + 675 ((i - slot_index) << IO_TLB_SHIFT)); 676 } 677 for (i = slot_index - 1; 678 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && 679 mem->slots[i].list; i--) 680 mem->slots[i].list = ++count; 681 682 /* 683 * Update the indices to avoid searching in the next round. 684 */ 685 if (index + nslots < mem->area_nslabs) 686 area->index = index + nslots; 687 else 688 area->index = 0; 689 area->used += nslots; 690 spin_unlock_irqrestore(&area->lock, flags); 691 return slot_index; 692 } 693 694 static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr, 695 size_t alloc_size, unsigned int alloc_align_mask) 696 { 697 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 698 int start = raw_smp_processor_id() & (mem->nareas - 1); 699 int i = start, index; 700 701 do { 702 index = swiotlb_do_find_slots(dev, i, orig_addr, alloc_size, 703 alloc_align_mask); 704 if (index >= 0) 705 return index; 706 if (++i >= mem->nareas) 707 i = 0; 708 } while (i != start); 709 710 return -1; 711 } 712 713 static unsigned long mem_used(struct io_tlb_mem *mem) 714 { 715 int i; 716 unsigned long used = 0; 717 718 for (i = 0; i < mem->nareas; i++) 719 used += mem->areas[i].used; 720 return used; 721 } 722 723 phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, 724 size_t mapping_size, size_t alloc_size, 725 unsigned int alloc_align_mask, enum dma_data_direction dir, 726 unsigned long attrs) 727 { 728 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 729 unsigned int offset = swiotlb_align_offset(dev, orig_addr); 730 unsigned int i; 731 int index; 732 phys_addr_t tlb_addr; 733 734 if (!mem || !mem->nslabs) 735 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); 736 737 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) 738 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n"); 739 740 if (mapping_size > alloc_size) { 741 dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)", 742 mapping_size, alloc_size); 743 return (phys_addr_t)DMA_MAPPING_ERROR; 744 } 745 746 index = swiotlb_find_slots(dev, orig_addr, 747 alloc_size + offset, alloc_align_mask); 748 if (index == -1) { 749 if (!(attrs & DMA_ATTR_NO_WARN)) 750 dev_warn_ratelimited(dev, 751 "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", 752 alloc_size, mem->nslabs, mem_used(mem)); 753 return (phys_addr_t)DMA_MAPPING_ERROR; 754 } 755 756 /* 757 * Save away the mapping from the original address to the DMA address. 758 * This is needed when we sync the memory. Then we sync the buffer if 759 * needed. 760 */ 761 for (i = 0; i < nr_slots(alloc_size + offset); i++) 762 mem->slots[index + i].orig_addr = slot_addr(orig_addr, i); 763 tlb_addr = slot_addr(mem->start, index) + offset; 764 /* 765 * When dir == DMA_FROM_DEVICE we could omit the copy from the orig 766 * to the tlb buffer, if we knew for sure the device will 767 * overwrite the entire current content. But we don't. Thus 768 * unconditional bounce may prevent leaking swiotlb content (i.e. 769 * kernel memory) to user-space. 770 */ 771 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE); 772 return tlb_addr; 773 } 774 775 static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr) 776 { 777 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 778 unsigned long flags; 779 unsigned int offset = swiotlb_align_offset(dev, tlb_addr); 780 int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT; 781 int nslots = nr_slots(mem->slots[index].alloc_size + offset); 782 int aindex = index / mem->area_nslabs; 783 struct io_tlb_area *area = &mem->areas[aindex]; 784 int count, i; 785 786 /* 787 * Return the buffer to the free list by setting the corresponding 788 * entries to indicate the number of contiguous entries available. 789 * While returning the entries to the free list, we merge the entries 790 * with slots below and above the pool being returned. 791 */ 792 BUG_ON(aindex >= mem->nareas); 793 794 spin_lock_irqsave(&area->lock, flags); 795 if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) 796 count = mem->slots[index + nslots].list; 797 else 798 count = 0; 799 800 /* 801 * Step 1: return the slots to the free list, merging the slots with 802 * superceeding slots 803 */ 804 for (i = index + nslots - 1; i >= index; i--) { 805 mem->slots[i].list = ++count; 806 mem->slots[i].orig_addr = INVALID_PHYS_ADDR; 807 mem->slots[i].alloc_size = 0; 808 } 809 810 /* 811 * Step 2: merge the returned slots with the preceding slots, if 812 * available (non zero) 813 */ 814 for (i = index - 1; 815 io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list; 816 i--) 817 mem->slots[i].list = ++count; 818 area->used -= nslots; 819 spin_unlock_irqrestore(&area->lock, flags); 820 } 821 822 /* 823 * tlb_addr is the physical address of the bounce buffer to unmap. 824 */ 825 void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr, 826 size_t mapping_size, enum dma_data_direction dir, 827 unsigned long attrs) 828 { 829 /* 830 * First, sync the memory before unmapping the entry 831 */ 832 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && 833 (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) 834 swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE); 835 836 swiotlb_release_slots(dev, tlb_addr); 837 } 838 839 void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr, 840 size_t size, enum dma_data_direction dir) 841 { 842 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) 843 swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE); 844 else 845 BUG_ON(dir != DMA_FROM_DEVICE); 846 } 847 848 void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr, 849 size_t size, enum dma_data_direction dir) 850 { 851 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) 852 swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE); 853 else 854 BUG_ON(dir != DMA_TO_DEVICE); 855 } 856 857 /* 858 * Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing 859 * to the device copy the data into it as well. 860 */ 861 dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, 862 enum dma_data_direction dir, unsigned long attrs) 863 { 864 phys_addr_t swiotlb_addr; 865 dma_addr_t dma_addr; 866 867 trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size); 868 869 swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir, 870 attrs); 871 if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR) 872 return DMA_MAPPING_ERROR; 873 874 /* Ensure that the address returned is DMA'ble */ 875 dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); 876 if (unlikely(!dma_capable(dev, dma_addr, size, true))) { 877 swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir, 878 attrs | DMA_ATTR_SKIP_CPU_SYNC); 879 dev_WARN_ONCE(dev, 1, 880 "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 881 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 882 return DMA_MAPPING_ERROR; 883 } 884 885 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 886 arch_sync_dma_for_device(swiotlb_addr, size, dir); 887 return dma_addr; 888 } 889 890 size_t swiotlb_max_mapping_size(struct device *dev) 891 { 892 int min_align_mask = dma_get_min_align_mask(dev); 893 int min_align = 0; 894 895 /* 896 * swiotlb_find_slots() skips slots according to 897 * min align mask. This affects max mapping size. 898 * Take it into acount here. 899 */ 900 if (min_align_mask) 901 min_align = roundup(min_align_mask, IO_TLB_SIZE); 902 903 return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE - min_align; 904 } 905 906 bool is_swiotlb_active(struct device *dev) 907 { 908 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 909 910 return mem && mem->nslabs; 911 } 912 EXPORT_SYMBOL_GPL(is_swiotlb_active); 913 914 static int io_tlb_used_get(void *data, u64 *val) 915 { 916 *val = mem_used(&io_tlb_default_mem); 917 return 0; 918 } 919 DEFINE_DEBUGFS_ATTRIBUTE(fops_io_tlb_used, io_tlb_used_get, NULL, "%llu\n"); 920 921 static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem, 922 const char *dirname) 923 { 924 mem->debugfs = debugfs_create_dir(dirname, io_tlb_default_mem.debugfs); 925 if (!mem->nslabs) 926 return; 927 928 debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs); 929 debugfs_create_file("io_tlb_used", 0400, mem->debugfs, NULL, 930 &fops_io_tlb_used); 931 } 932 933 static int __init __maybe_unused swiotlb_create_default_debugfs(void) 934 { 935 swiotlb_create_debugfs_files(&io_tlb_default_mem, "swiotlb"); 936 return 0; 937 } 938 939 #ifdef CONFIG_DEBUG_FS 940 late_initcall(swiotlb_create_default_debugfs); 941 #endif 942 943 #ifdef CONFIG_DMA_RESTRICTED_POOL 944 945 struct page *swiotlb_alloc(struct device *dev, size_t size) 946 { 947 struct io_tlb_mem *mem = dev->dma_io_tlb_mem; 948 phys_addr_t tlb_addr; 949 int index; 950 951 if (!mem) 952 return NULL; 953 954 index = swiotlb_find_slots(dev, 0, size, 0); 955 if (index == -1) 956 return NULL; 957 958 tlb_addr = slot_addr(mem->start, index); 959 960 return pfn_to_page(PFN_DOWN(tlb_addr)); 961 } 962 963 bool swiotlb_free(struct device *dev, struct page *page, size_t size) 964 { 965 phys_addr_t tlb_addr = page_to_phys(page); 966 967 if (!is_swiotlb_buffer(dev, tlb_addr)) 968 return false; 969 970 swiotlb_release_slots(dev, tlb_addr); 971 972 return true; 973 } 974 975 static int rmem_swiotlb_device_init(struct reserved_mem *rmem, 976 struct device *dev) 977 { 978 struct io_tlb_mem *mem = rmem->priv; 979 unsigned long nslabs = rmem->size >> IO_TLB_SHIFT; 980 981 /* Set Per-device io tlb area to one */ 982 unsigned int nareas = 1; 983 984 /* 985 * Since multiple devices can share the same pool, the private data, 986 * io_tlb_mem struct, will be initialized by the first device attached 987 * to it. 988 */ 989 if (!mem) { 990 mem = kzalloc(sizeof(*mem), GFP_KERNEL); 991 if (!mem) 992 return -ENOMEM; 993 994 mem->slots = kcalloc(nslabs, sizeof(*mem->slots), GFP_KERNEL); 995 if (!mem->slots) { 996 kfree(mem); 997 return -ENOMEM; 998 } 999 1000 mem->areas = kcalloc(nareas, sizeof(*mem->areas), 1001 GFP_KERNEL); 1002 if (!mem->areas) { 1003 kfree(mem->slots); 1004 kfree(mem); 1005 return -ENOMEM; 1006 } 1007 1008 set_memory_decrypted((unsigned long)phys_to_virt(rmem->base), 1009 rmem->size >> PAGE_SHIFT); 1010 swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, SWIOTLB_FORCE, 1011 false, nareas); 1012 mem->for_alloc = true; 1013 1014 rmem->priv = mem; 1015 1016 swiotlb_create_debugfs_files(mem, rmem->name); 1017 } 1018 1019 dev->dma_io_tlb_mem = mem; 1020 1021 return 0; 1022 } 1023 1024 static void rmem_swiotlb_device_release(struct reserved_mem *rmem, 1025 struct device *dev) 1026 { 1027 dev->dma_io_tlb_mem = &io_tlb_default_mem; 1028 } 1029 1030 static const struct reserved_mem_ops rmem_swiotlb_ops = { 1031 .device_init = rmem_swiotlb_device_init, 1032 .device_release = rmem_swiotlb_device_release, 1033 }; 1034 1035 static int __init rmem_swiotlb_setup(struct reserved_mem *rmem) 1036 { 1037 unsigned long node = rmem->fdt_node; 1038 1039 if (of_get_flat_dt_prop(node, "reusable", NULL) || 1040 of_get_flat_dt_prop(node, "linux,cma-default", NULL) || 1041 of_get_flat_dt_prop(node, "linux,dma-default", NULL) || 1042 of_get_flat_dt_prop(node, "no-map", NULL)) 1043 return -EINVAL; 1044 1045 if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) { 1046 pr_err("Restricted DMA pool must be accessible within the linear mapping."); 1047 return -EINVAL; 1048 } 1049 1050 rmem->ops = &rmem_swiotlb_ops; 1051 pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n", 1052 &rmem->base, (unsigned long)rmem->size / SZ_1M); 1053 return 0; 1054 } 1055 1056 RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup); 1057 #endif /* CONFIG_DMA_RESTRICTED_POOL */ 1058