xref: /openbmc/linux/kernel/dma/mapping.c (revision ee21014b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
109 		const struct dma_map_ops *ops)
110 {
111 	if (likely(!ops))
112 		return true;
113 #ifdef CONFIG_DMA_OPS_BYPASS
114 	if (dev->dma_ops_bypass)
115 		return min_not_zero(mask, dev->bus_dma_limit) >=
116 			    dma_direct_get_required_mask(dev);
117 #endif
118 	return false;
119 }
120 
121 
122 /*
123  * Check if the devices uses a direct mapping for streaming DMA operations.
124  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
125  * enough.
126  */
127 static inline bool dma_alloc_direct(struct device *dev,
128 		const struct dma_map_ops *ops)
129 {
130 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
131 }
132 
133 static inline bool dma_map_direct(struct device *dev,
134 		const struct dma_map_ops *ops)
135 {
136 	return dma_go_direct(dev, *dev->dma_mask, ops);
137 }
138 
139 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
140 		size_t offset, size_t size, enum dma_data_direction dir,
141 		unsigned long attrs)
142 {
143 	const struct dma_map_ops *ops = get_dma_ops(dev);
144 	dma_addr_t addr;
145 
146 	BUG_ON(!valid_dma_direction(dir));
147 	if (dma_map_direct(dev, ops))
148 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
149 	else
150 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
151 	debug_dma_map_page(dev, page, offset, size, dir, addr);
152 
153 	return addr;
154 }
155 EXPORT_SYMBOL(dma_map_page_attrs);
156 
157 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
158 		enum dma_data_direction dir, unsigned long attrs)
159 {
160 	const struct dma_map_ops *ops = get_dma_ops(dev);
161 
162 	BUG_ON(!valid_dma_direction(dir));
163 	if (dma_map_direct(dev, ops))
164 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
165 	else if (ops->unmap_page)
166 		ops->unmap_page(dev, addr, size, dir, attrs);
167 	debug_dma_unmap_page(dev, addr, size, dir);
168 }
169 EXPORT_SYMBOL(dma_unmap_page_attrs);
170 
171 /*
172  * dma_maps_sg_attrs returns 0 on error and > 0 on success.
173  * It should never return a value < 0.
174  */
175 int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
176 		enum dma_data_direction dir, unsigned long attrs)
177 {
178 	const struct dma_map_ops *ops = get_dma_ops(dev);
179 	int ents;
180 
181 	BUG_ON(!valid_dma_direction(dir));
182 	if (dma_map_direct(dev, ops))
183 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
184 	else
185 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
186 	BUG_ON(ents < 0);
187 	debug_dma_map_sg(dev, sg, nents, ents, dir);
188 
189 	return ents;
190 }
191 EXPORT_SYMBOL(dma_map_sg_attrs);
192 
193 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
194 				      int nents, enum dma_data_direction dir,
195 				      unsigned long attrs)
196 {
197 	const struct dma_map_ops *ops = get_dma_ops(dev);
198 
199 	BUG_ON(!valid_dma_direction(dir));
200 	debug_dma_unmap_sg(dev, sg, nents, dir);
201 	if (dma_map_direct(dev, ops))
202 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
203 	else if (ops->unmap_sg)
204 		ops->unmap_sg(dev, sg, nents, dir, attrs);
205 }
206 EXPORT_SYMBOL(dma_unmap_sg_attrs);
207 
208 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
209 		size_t size, enum dma_data_direction dir, unsigned long attrs)
210 {
211 	const struct dma_map_ops *ops = get_dma_ops(dev);
212 	dma_addr_t addr = DMA_MAPPING_ERROR;
213 
214 	BUG_ON(!valid_dma_direction(dir));
215 
216 	/* Don't allow RAM to be mapped */
217 	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
218 		return DMA_MAPPING_ERROR;
219 
220 	if (dma_map_direct(dev, ops))
221 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
222 	else if (ops->map_resource)
223 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
224 
225 	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
226 	return addr;
227 }
228 EXPORT_SYMBOL(dma_map_resource);
229 
230 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
231 		enum dma_data_direction dir, unsigned long attrs)
232 {
233 	const struct dma_map_ops *ops = get_dma_ops(dev);
234 
235 	BUG_ON(!valid_dma_direction(dir));
236 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
237 		ops->unmap_resource(dev, addr, size, dir, attrs);
238 	debug_dma_unmap_resource(dev, addr, size, dir);
239 }
240 EXPORT_SYMBOL(dma_unmap_resource);
241 
242 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
243 		enum dma_data_direction dir)
244 {
245 	const struct dma_map_ops *ops = get_dma_ops(dev);
246 
247 	BUG_ON(!valid_dma_direction(dir));
248 	if (dma_map_direct(dev, ops))
249 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
250 	else if (ops->sync_single_for_cpu)
251 		ops->sync_single_for_cpu(dev, addr, size, dir);
252 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
253 }
254 EXPORT_SYMBOL(dma_sync_single_for_cpu);
255 
256 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
257 		size_t size, enum dma_data_direction dir)
258 {
259 	const struct dma_map_ops *ops = get_dma_ops(dev);
260 
261 	BUG_ON(!valid_dma_direction(dir));
262 	if (dma_map_direct(dev, ops))
263 		dma_direct_sync_single_for_device(dev, addr, size, dir);
264 	else if (ops->sync_single_for_device)
265 		ops->sync_single_for_device(dev, addr, size, dir);
266 	debug_dma_sync_single_for_device(dev, addr, size, dir);
267 }
268 EXPORT_SYMBOL(dma_sync_single_for_device);
269 
270 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
271 		    int nelems, enum dma_data_direction dir)
272 {
273 	const struct dma_map_ops *ops = get_dma_ops(dev);
274 
275 	BUG_ON(!valid_dma_direction(dir));
276 	if (dma_map_direct(dev, ops))
277 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
278 	else if (ops->sync_sg_for_cpu)
279 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
280 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
281 }
282 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
283 
284 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
285 		       int nelems, enum dma_data_direction dir)
286 {
287 	const struct dma_map_ops *ops = get_dma_ops(dev);
288 
289 	BUG_ON(!valid_dma_direction(dir));
290 	if (dma_map_direct(dev, ops))
291 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
292 	else if (ops->sync_sg_for_device)
293 		ops->sync_sg_for_device(dev, sg, nelems, dir);
294 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
295 }
296 EXPORT_SYMBOL(dma_sync_sg_for_device);
297 
298 /*
299  * Create scatter-list for the already allocated DMA buffer.
300  */
301 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
302 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
303 		 unsigned long attrs)
304 {
305 	struct page *page = virt_to_page(cpu_addr);
306 	int ret;
307 
308 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
309 	if (!ret)
310 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
311 	return ret;
312 }
313 
314 /*
315  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
316  * that the intention is to allow exporting memory allocated via the
317  * coherent DMA APIs through the dma_buf API, which only accepts a
318  * scattertable.  This presents a couple of problems:
319  * 1. Not all memory allocated via the coherent DMA APIs is backed by
320  *    a struct page
321  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
322  *    as we will try to flush the memory through a different alias to that
323  *    actually being used (and the flushes are redundant.)
324  */
325 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
326 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
327 		unsigned long attrs)
328 {
329 	const struct dma_map_ops *ops = get_dma_ops(dev);
330 
331 	if (dma_alloc_direct(dev, ops))
332 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
333 				size, attrs);
334 	if (!ops->get_sgtable)
335 		return -ENXIO;
336 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
337 }
338 EXPORT_SYMBOL(dma_get_sgtable_attrs);
339 
340 #ifdef CONFIG_MMU
341 /*
342  * Return the page attributes used for mapping dma_alloc_* memory, either in
343  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
344  */
345 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
346 {
347 	if (force_dma_unencrypted(dev))
348 		prot = pgprot_decrypted(prot);
349 	if (dev_is_dma_coherent(dev) ||
350 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
351              (attrs & DMA_ATTR_NON_CONSISTENT)))
352 		return prot;
353 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
354 	if (attrs & DMA_ATTR_WRITE_COMBINE)
355 		return pgprot_writecombine(prot);
356 #endif
357 	return pgprot_dmacoherent(prot);
358 }
359 #endif /* CONFIG_MMU */
360 
361 /*
362  * Create userspace mapping for the DMA-coherent memory.
363  */
364 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
365 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
366 		unsigned long attrs)
367 {
368 #ifdef CONFIG_MMU
369 	unsigned long user_count = vma_pages(vma);
370 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
371 	unsigned long off = vma->vm_pgoff;
372 	int ret = -ENXIO;
373 
374 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
375 
376 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
377 		return ret;
378 
379 	if (off >= count || user_count > count - off)
380 		return -ENXIO;
381 
382 	return remap_pfn_range(vma, vma->vm_start,
383 			page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
384 			user_count << PAGE_SHIFT, vma->vm_page_prot);
385 #else
386 	return -ENXIO;
387 #endif /* CONFIG_MMU */
388 }
389 
390 /**
391  * dma_can_mmap - check if a given device supports dma_mmap_*
392  * @dev: device to check
393  *
394  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
395  * map DMA allocations to userspace.
396  */
397 bool dma_can_mmap(struct device *dev)
398 {
399 	const struct dma_map_ops *ops = get_dma_ops(dev);
400 
401 	if (dma_alloc_direct(dev, ops))
402 		return dma_direct_can_mmap(dev);
403 	return ops->mmap != NULL;
404 }
405 EXPORT_SYMBOL_GPL(dma_can_mmap);
406 
407 /**
408  * dma_mmap_attrs - map a coherent DMA allocation into user space
409  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
410  * @vma: vm_area_struct describing requested user mapping
411  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
412  * @dma_addr: device-view address returned from dma_alloc_attrs
413  * @size: size of memory originally requested in dma_alloc_attrs
414  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
415  *
416  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
417  * space.  The coherent DMA buffer must not be freed by the driver until the
418  * user space mapping has been released.
419  */
420 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
421 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
422 		unsigned long attrs)
423 {
424 	const struct dma_map_ops *ops = get_dma_ops(dev);
425 
426 	if (dma_alloc_direct(dev, ops))
427 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
428 				attrs);
429 	if (!ops->mmap)
430 		return -ENXIO;
431 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
432 }
433 EXPORT_SYMBOL(dma_mmap_attrs);
434 
435 u64 dma_get_required_mask(struct device *dev)
436 {
437 	const struct dma_map_ops *ops = get_dma_ops(dev);
438 
439 	if (dma_alloc_direct(dev, ops))
440 		return dma_direct_get_required_mask(dev);
441 	if (ops->get_required_mask)
442 		return ops->get_required_mask(dev);
443 
444 	/*
445 	 * We require every DMA ops implementation to at least support a 32-bit
446 	 * DMA mask (and use bounce buffering if that isn't supported in
447 	 * hardware).  As the direct mapping code has its own routine to
448 	 * actually report an optimal mask we default to 32-bit here as that
449 	 * is the right thing for most IOMMUs, and at least not actively
450 	 * harmful in general.
451 	 */
452 	return DMA_BIT_MASK(32);
453 }
454 EXPORT_SYMBOL_GPL(dma_get_required_mask);
455 
456 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
457 		gfp_t flag, unsigned long attrs)
458 {
459 	const struct dma_map_ops *ops = get_dma_ops(dev);
460 	void *cpu_addr;
461 
462 	WARN_ON_ONCE(!dev->coherent_dma_mask);
463 
464 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
465 		return cpu_addr;
466 
467 	/* let the implementation decide on the zone to allocate from: */
468 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
469 
470 	if (dma_alloc_direct(dev, ops))
471 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
472 	else if (ops->alloc)
473 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
474 	else
475 		return NULL;
476 
477 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
478 	return cpu_addr;
479 }
480 EXPORT_SYMBOL(dma_alloc_attrs);
481 
482 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
483 		dma_addr_t dma_handle, unsigned long attrs)
484 {
485 	const struct dma_map_ops *ops = get_dma_ops(dev);
486 
487 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
488 		return;
489 	/*
490 	 * On non-coherent platforms which implement DMA-coherent buffers via
491 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
492 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
493 	 * sleep on some machines, and b) an indication that the driver is
494 	 * probably misusing the coherent API anyway.
495 	 */
496 	WARN_ON(irqs_disabled());
497 
498 	if (!cpu_addr)
499 		return;
500 
501 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
502 	if (dma_alloc_direct(dev, ops))
503 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
504 	else if (ops->free)
505 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
506 }
507 EXPORT_SYMBOL(dma_free_attrs);
508 
509 int dma_supported(struct device *dev, u64 mask)
510 {
511 	const struct dma_map_ops *ops = get_dma_ops(dev);
512 
513 	/*
514 	 * ->dma_supported sets the bypass flag, so we must always call
515 	 * into the method here unless the device is truly direct mapped.
516 	 */
517 	if (!ops)
518 		return dma_direct_supported(dev, mask);
519 	if (!ops->dma_supported)
520 		return 1;
521 	return ops->dma_supported(dev, mask);
522 }
523 EXPORT_SYMBOL(dma_supported);
524 
525 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
526 void arch_dma_set_mask(struct device *dev, u64 mask);
527 #else
528 #define arch_dma_set_mask(dev, mask)	do { } while (0)
529 #endif
530 
531 int dma_set_mask(struct device *dev, u64 mask)
532 {
533 	/*
534 	 * Truncate the mask to the actually supported dma_addr_t width to
535 	 * avoid generating unsupportable addresses.
536 	 */
537 	mask = (dma_addr_t)mask;
538 
539 	if (!dev->dma_mask || !dma_supported(dev, mask))
540 		return -EIO;
541 
542 	arch_dma_set_mask(dev, mask);
543 	*dev->dma_mask = mask;
544 	return 0;
545 }
546 EXPORT_SYMBOL(dma_set_mask);
547 
548 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
549 int dma_set_coherent_mask(struct device *dev, u64 mask)
550 {
551 	/*
552 	 * Truncate the mask to the actually supported dma_addr_t width to
553 	 * avoid generating unsupportable addresses.
554 	 */
555 	mask = (dma_addr_t)mask;
556 
557 	if (!dma_supported(dev, mask))
558 		return -EIO;
559 
560 	dev->coherent_dma_mask = mask;
561 	return 0;
562 }
563 EXPORT_SYMBOL(dma_set_coherent_mask);
564 #endif
565 
566 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
567 		enum dma_data_direction dir)
568 {
569 	const struct dma_map_ops *ops = get_dma_ops(dev);
570 
571 	BUG_ON(!valid_dma_direction(dir));
572 
573 	if (dma_alloc_direct(dev, ops))
574 		arch_dma_cache_sync(dev, vaddr, size, dir);
575 	else if (ops->cache_sync)
576 		ops->cache_sync(dev, vaddr, size, dir);
577 }
578 EXPORT_SYMBOL(dma_cache_sync);
579 
580 size_t dma_max_mapping_size(struct device *dev)
581 {
582 	const struct dma_map_ops *ops = get_dma_ops(dev);
583 	size_t size = SIZE_MAX;
584 
585 	if (dma_map_direct(dev, ops))
586 		size = dma_direct_max_mapping_size(dev);
587 	else if (ops && ops->max_mapping_size)
588 		size = ops->max_mapping_size(dev);
589 
590 	return size;
591 }
592 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
593 
594 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
595 {
596 	const struct dma_map_ops *ops = get_dma_ops(dev);
597 
598 	if (dma_map_direct(dev, ops))
599 		return dma_direct_need_sync(dev, dma_addr);
600 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
601 }
602 EXPORT_SYMBOL_GPL(dma_need_sync);
603 
604 unsigned long dma_get_merge_boundary(struct device *dev)
605 {
606 	const struct dma_map_ops *ops = get_dma_ops(dev);
607 
608 	if (!ops || !ops->get_merge_boundary)
609 		return 0;	/* can't merge */
610 
611 	return ops->get_merge_boundary(dev);
612 }
613 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
614