xref: /openbmc/linux/kernel/dma/mapping.c (revision ed84ef1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 bool dma_default_coherent;
20 
21 /*
22  * Managed DMA API
23  */
24 struct dma_devres {
25 	size_t		size;
26 	void		*vaddr;
27 	dma_addr_t	dma_handle;
28 	unsigned long	attrs;
29 };
30 
31 static void dmam_release(struct device *dev, void *res)
32 {
33 	struct dma_devres *this = res;
34 
35 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 			this->attrs);
37 }
38 
39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 	struct dma_devres *this = res, *match = match_data;
42 
43 	if (this->vaddr == match->vaddr) {
44 		WARN_ON(this->size != match->size ||
45 			this->dma_handle != match->dma_handle);
46 		return 1;
47 	}
48 	return 0;
49 }
50 
51 /**
52  * dmam_free_coherent - Managed dma_free_coherent()
53  * @dev: Device to free coherent memory for
54  * @size: Size of allocation
55  * @vaddr: Virtual address of the memory to free
56  * @dma_handle: DMA handle of the memory to free
57  *
58  * Managed dma_free_coherent().
59  */
60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 			dma_addr_t dma_handle)
62 {
63 	struct dma_devres match_data = { size, vaddr, dma_handle };
64 
65 	dma_free_coherent(dev, size, vaddr, dma_handle);
66 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67 }
68 EXPORT_SYMBOL(dmam_free_coherent);
69 
70 /**
71  * dmam_alloc_attrs - Managed dma_alloc_attrs()
72  * @dev: Device to allocate non_coherent memory for
73  * @size: Size of allocation
74  * @dma_handle: Out argument for allocated DMA handle
75  * @gfp: Allocation flags
76  * @attrs: Flags in the DMA_ATTR_* namespace.
77  *
78  * Managed dma_alloc_attrs().  Memory allocated using this function will be
79  * automatically released on driver detach.
80  *
81  * RETURNS:
82  * Pointer to allocated memory on success, NULL on failure.
83  */
84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 		gfp_t gfp, unsigned long attrs)
86 {
87 	struct dma_devres *dr;
88 	void *vaddr;
89 
90 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 	if (!dr)
92 		return NULL;
93 
94 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 	if (!vaddr) {
96 		devres_free(dr);
97 		return NULL;
98 	}
99 
100 	dr->vaddr = vaddr;
101 	dr->dma_handle = *dma_handle;
102 	dr->size = size;
103 	dr->attrs = attrs;
104 
105 	devres_add(dev, dr);
106 
107 	return vaddr;
108 }
109 EXPORT_SYMBOL(dmam_alloc_attrs);
110 
111 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 		const struct dma_map_ops *ops)
113 {
114 	if (likely(!ops))
115 		return true;
116 #ifdef CONFIG_DMA_OPS_BYPASS
117 	if (dev->dma_ops_bypass)
118 		return min_not_zero(mask, dev->bus_dma_limit) >=
119 			    dma_direct_get_required_mask(dev);
120 #endif
121 	return false;
122 }
123 
124 
125 /*
126  * Check if the devices uses a direct mapping for streaming DMA operations.
127  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128  * enough.
129  */
130 static inline bool dma_alloc_direct(struct device *dev,
131 		const struct dma_map_ops *ops)
132 {
133 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134 }
135 
136 static inline bool dma_map_direct(struct device *dev,
137 		const struct dma_map_ops *ops)
138 {
139 	return dma_go_direct(dev, *dev->dma_mask, ops);
140 }
141 
142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 		size_t offset, size_t size, enum dma_data_direction dir,
144 		unsigned long attrs)
145 {
146 	const struct dma_map_ops *ops = get_dma_ops(dev);
147 	dma_addr_t addr;
148 
149 	BUG_ON(!valid_dma_direction(dir));
150 
151 	if (WARN_ON_ONCE(!dev->dma_mask))
152 		return DMA_MAPPING_ERROR;
153 
154 	if (dma_map_direct(dev, ops) ||
155 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 	else
158 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 	debug_dma_map_page(dev, page, offset, size, dir, addr);
160 
161 	return addr;
162 }
163 EXPORT_SYMBOL(dma_map_page_attrs);
164 
165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 		enum dma_data_direction dir, unsigned long attrs)
167 {
168 	const struct dma_map_ops *ops = get_dma_ops(dev);
169 
170 	BUG_ON(!valid_dma_direction(dir));
171 	if (dma_map_direct(dev, ops) ||
172 	    arch_dma_unmap_page_direct(dev, addr + size))
173 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 	else if (ops->unmap_page)
175 		ops->unmap_page(dev, addr, size, dir, attrs);
176 	debug_dma_unmap_page(dev, addr, size, dir);
177 }
178 EXPORT_SYMBOL(dma_unmap_page_attrs);
179 
180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
181 	 int nents, enum dma_data_direction dir, unsigned long attrs)
182 {
183 	const struct dma_map_ops *ops = get_dma_ops(dev);
184 	int ents;
185 
186 	BUG_ON(!valid_dma_direction(dir));
187 
188 	if (WARN_ON_ONCE(!dev->dma_mask))
189 		return 0;
190 
191 	if (dma_map_direct(dev, ops) ||
192 	    arch_dma_map_sg_direct(dev, sg, nents))
193 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
194 	else
195 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
196 
197 	if (ents > 0)
198 		debug_dma_map_sg(dev, sg, nents, ents, dir);
199 	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
200 			      ents != -EIO))
201 		return -EIO;
202 
203 	return ents;
204 }
205 
206 /**
207  * dma_map_sg_attrs - Map the given buffer for DMA
208  * @dev:	The device for which to perform the DMA operation
209  * @sg:	The sg_table object describing the buffer
210  * @dir:	DMA direction
211  * @attrs:	Optional DMA attributes for the map operation
212  *
213  * Maps a buffer described by a scatterlist passed in the sg argument with
214  * nents segments for the @dir DMA operation by the @dev device.
215  *
216  * Returns the number of mapped entries (which can be less than nents)
217  * on success. Zero is returned for any error.
218  *
219  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
220  * original sg and original nents (not the value returned by this funciton).
221  */
222 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
223 		    int nents, enum dma_data_direction dir, unsigned long attrs)
224 {
225 	int ret;
226 
227 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
228 	if (ret < 0)
229 		return 0;
230 	return ret;
231 }
232 EXPORT_SYMBOL(dma_map_sg_attrs);
233 
234 /**
235  * dma_map_sgtable - Map the given buffer for DMA
236  * @dev:	The device for which to perform the DMA operation
237  * @sgt:	The sg_table object describing the buffer
238  * @dir:	DMA direction
239  * @attrs:	Optional DMA attributes for the map operation
240  *
241  * Maps a buffer described by a scatterlist stored in the given sg_table
242  * object for the @dir DMA operation by the @dev device. After success, the
243  * ownership for the buffer is transferred to the DMA domain.  One has to
244  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
245  * ownership of the buffer back to the CPU domain before touching the
246  * buffer by the CPU.
247  *
248  * Returns 0 on success or a negative error code on error. The following
249  * error codes are supported with the given meaning:
250  *
251  *   -EINVAL - An invalid argument, unaligned access or other error
252  *	       in usage. Will not succeed if retried.
253  *   -ENOMEM - Insufficient resources (like memory or IOVA space) to
254  *	       complete the mapping. Should succeed if retried later.
255  *   -EIO    - Legacy error code with an unknown meaning. eg. this is
256  *	       returned if a lower level call returned DMA_MAPPING_ERROR.
257  */
258 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
259 		    enum dma_data_direction dir, unsigned long attrs)
260 {
261 	int nents;
262 
263 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
264 	if (nents < 0)
265 		return nents;
266 	sgt->nents = nents;
267 	return 0;
268 }
269 EXPORT_SYMBOL_GPL(dma_map_sgtable);
270 
271 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
272 				      int nents, enum dma_data_direction dir,
273 				      unsigned long attrs)
274 {
275 	const struct dma_map_ops *ops = get_dma_ops(dev);
276 
277 	BUG_ON(!valid_dma_direction(dir));
278 	debug_dma_unmap_sg(dev, sg, nents, dir);
279 	if (dma_map_direct(dev, ops) ||
280 	    arch_dma_unmap_sg_direct(dev, sg, nents))
281 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
282 	else if (ops->unmap_sg)
283 		ops->unmap_sg(dev, sg, nents, dir, attrs);
284 }
285 EXPORT_SYMBOL(dma_unmap_sg_attrs);
286 
287 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
288 		size_t size, enum dma_data_direction dir, unsigned long attrs)
289 {
290 	const struct dma_map_ops *ops = get_dma_ops(dev);
291 	dma_addr_t addr = DMA_MAPPING_ERROR;
292 
293 	BUG_ON(!valid_dma_direction(dir));
294 
295 	if (WARN_ON_ONCE(!dev->dma_mask))
296 		return DMA_MAPPING_ERROR;
297 
298 	/* Don't allow RAM to be mapped */
299 	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
300 		return DMA_MAPPING_ERROR;
301 
302 	if (dma_map_direct(dev, ops))
303 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
304 	else if (ops->map_resource)
305 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
306 
307 	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
308 	return addr;
309 }
310 EXPORT_SYMBOL(dma_map_resource);
311 
312 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
313 		enum dma_data_direction dir, unsigned long attrs)
314 {
315 	const struct dma_map_ops *ops = get_dma_ops(dev);
316 
317 	BUG_ON(!valid_dma_direction(dir));
318 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
319 		ops->unmap_resource(dev, addr, size, dir, attrs);
320 	debug_dma_unmap_resource(dev, addr, size, dir);
321 }
322 EXPORT_SYMBOL(dma_unmap_resource);
323 
324 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
325 		enum dma_data_direction dir)
326 {
327 	const struct dma_map_ops *ops = get_dma_ops(dev);
328 
329 	BUG_ON(!valid_dma_direction(dir));
330 	if (dma_map_direct(dev, ops))
331 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
332 	else if (ops->sync_single_for_cpu)
333 		ops->sync_single_for_cpu(dev, addr, size, dir);
334 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
335 }
336 EXPORT_SYMBOL(dma_sync_single_for_cpu);
337 
338 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
339 		size_t size, enum dma_data_direction dir)
340 {
341 	const struct dma_map_ops *ops = get_dma_ops(dev);
342 
343 	BUG_ON(!valid_dma_direction(dir));
344 	if (dma_map_direct(dev, ops))
345 		dma_direct_sync_single_for_device(dev, addr, size, dir);
346 	else if (ops->sync_single_for_device)
347 		ops->sync_single_for_device(dev, addr, size, dir);
348 	debug_dma_sync_single_for_device(dev, addr, size, dir);
349 }
350 EXPORT_SYMBOL(dma_sync_single_for_device);
351 
352 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
353 		    int nelems, enum dma_data_direction dir)
354 {
355 	const struct dma_map_ops *ops = get_dma_ops(dev);
356 
357 	BUG_ON(!valid_dma_direction(dir));
358 	if (dma_map_direct(dev, ops))
359 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
360 	else if (ops->sync_sg_for_cpu)
361 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
362 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
363 }
364 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
365 
366 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
367 		       int nelems, enum dma_data_direction dir)
368 {
369 	const struct dma_map_ops *ops = get_dma_ops(dev);
370 
371 	BUG_ON(!valid_dma_direction(dir));
372 	if (dma_map_direct(dev, ops))
373 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
374 	else if (ops->sync_sg_for_device)
375 		ops->sync_sg_for_device(dev, sg, nelems, dir);
376 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
377 }
378 EXPORT_SYMBOL(dma_sync_sg_for_device);
379 
380 /*
381  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
382  * that the intention is to allow exporting memory allocated via the
383  * coherent DMA APIs through the dma_buf API, which only accepts a
384  * scattertable.  This presents a couple of problems:
385  * 1. Not all memory allocated via the coherent DMA APIs is backed by
386  *    a struct page
387  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
388  *    as we will try to flush the memory through a different alias to that
389  *    actually being used (and the flushes are redundant.)
390  */
391 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
392 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
393 		unsigned long attrs)
394 {
395 	const struct dma_map_ops *ops = get_dma_ops(dev);
396 
397 	if (dma_alloc_direct(dev, ops))
398 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
399 				size, attrs);
400 	if (!ops->get_sgtable)
401 		return -ENXIO;
402 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
403 }
404 EXPORT_SYMBOL(dma_get_sgtable_attrs);
405 
406 #ifdef CONFIG_MMU
407 /*
408  * Return the page attributes used for mapping dma_alloc_* memory, either in
409  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
410  */
411 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
412 {
413 	if (force_dma_unencrypted(dev))
414 		prot = pgprot_decrypted(prot);
415 	if (dev_is_dma_coherent(dev))
416 		return prot;
417 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
418 	if (attrs & DMA_ATTR_WRITE_COMBINE)
419 		return pgprot_writecombine(prot);
420 #endif
421 	return pgprot_dmacoherent(prot);
422 }
423 #endif /* CONFIG_MMU */
424 
425 /**
426  * dma_can_mmap - check if a given device supports dma_mmap_*
427  * @dev: device to check
428  *
429  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
430  * map DMA allocations to userspace.
431  */
432 bool dma_can_mmap(struct device *dev)
433 {
434 	const struct dma_map_ops *ops = get_dma_ops(dev);
435 
436 	if (dma_alloc_direct(dev, ops))
437 		return dma_direct_can_mmap(dev);
438 	return ops->mmap != NULL;
439 }
440 EXPORT_SYMBOL_GPL(dma_can_mmap);
441 
442 /**
443  * dma_mmap_attrs - map a coherent DMA allocation into user space
444  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
445  * @vma: vm_area_struct describing requested user mapping
446  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
447  * @dma_addr: device-view address returned from dma_alloc_attrs
448  * @size: size of memory originally requested in dma_alloc_attrs
449  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
450  *
451  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
452  * space.  The coherent DMA buffer must not be freed by the driver until the
453  * user space mapping has been released.
454  */
455 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
456 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
457 		unsigned long attrs)
458 {
459 	const struct dma_map_ops *ops = get_dma_ops(dev);
460 
461 	if (dma_alloc_direct(dev, ops))
462 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
463 				attrs);
464 	if (!ops->mmap)
465 		return -ENXIO;
466 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
467 }
468 EXPORT_SYMBOL(dma_mmap_attrs);
469 
470 u64 dma_get_required_mask(struct device *dev)
471 {
472 	const struct dma_map_ops *ops = get_dma_ops(dev);
473 
474 	if (dma_alloc_direct(dev, ops))
475 		return dma_direct_get_required_mask(dev);
476 	if (ops->get_required_mask)
477 		return ops->get_required_mask(dev);
478 
479 	/*
480 	 * We require every DMA ops implementation to at least support a 32-bit
481 	 * DMA mask (and use bounce buffering if that isn't supported in
482 	 * hardware).  As the direct mapping code has its own routine to
483 	 * actually report an optimal mask we default to 32-bit here as that
484 	 * is the right thing for most IOMMUs, and at least not actively
485 	 * harmful in general.
486 	 */
487 	return DMA_BIT_MASK(32);
488 }
489 EXPORT_SYMBOL_GPL(dma_get_required_mask);
490 
491 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
492 		gfp_t flag, unsigned long attrs)
493 {
494 	const struct dma_map_ops *ops = get_dma_ops(dev);
495 	void *cpu_addr;
496 
497 	WARN_ON_ONCE(!dev->coherent_dma_mask);
498 
499 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
500 		return cpu_addr;
501 
502 	/* let the implementation decide on the zone to allocate from: */
503 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
504 
505 	if (dma_alloc_direct(dev, ops))
506 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
507 	else if (ops->alloc)
508 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
509 	else
510 		return NULL;
511 
512 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
513 	return cpu_addr;
514 }
515 EXPORT_SYMBOL(dma_alloc_attrs);
516 
517 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
518 		dma_addr_t dma_handle, unsigned long attrs)
519 {
520 	const struct dma_map_ops *ops = get_dma_ops(dev);
521 
522 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
523 		return;
524 	/*
525 	 * On non-coherent platforms which implement DMA-coherent buffers via
526 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
527 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
528 	 * sleep on some machines, and b) an indication that the driver is
529 	 * probably misusing the coherent API anyway.
530 	 */
531 	WARN_ON(irqs_disabled());
532 
533 	if (!cpu_addr)
534 		return;
535 
536 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
537 	if (dma_alloc_direct(dev, ops))
538 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
539 	else if (ops->free)
540 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
541 }
542 EXPORT_SYMBOL(dma_free_attrs);
543 
544 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
545 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
546 {
547 	const struct dma_map_ops *ops = get_dma_ops(dev);
548 
549 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
550 		return NULL;
551 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
552 		return NULL;
553 
554 	size = PAGE_ALIGN(size);
555 	if (dma_alloc_direct(dev, ops))
556 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
557 	if (!ops->alloc_pages)
558 		return NULL;
559 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
560 }
561 
562 struct page *dma_alloc_pages(struct device *dev, size_t size,
563 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
564 {
565 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
566 
567 	if (page)
568 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
569 	return page;
570 }
571 EXPORT_SYMBOL_GPL(dma_alloc_pages);
572 
573 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
574 		dma_addr_t dma_handle, enum dma_data_direction dir)
575 {
576 	const struct dma_map_ops *ops = get_dma_ops(dev);
577 
578 	size = PAGE_ALIGN(size);
579 	if (dma_alloc_direct(dev, ops))
580 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
581 	else if (ops->free_pages)
582 		ops->free_pages(dev, size, page, dma_handle, dir);
583 }
584 
585 void dma_free_pages(struct device *dev, size_t size, struct page *page,
586 		dma_addr_t dma_handle, enum dma_data_direction dir)
587 {
588 	debug_dma_unmap_page(dev, dma_handle, size, dir);
589 	__dma_free_pages(dev, size, page, dma_handle, dir);
590 }
591 EXPORT_SYMBOL_GPL(dma_free_pages);
592 
593 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
594 		size_t size, struct page *page)
595 {
596 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
597 
598 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
599 		return -ENXIO;
600 	return remap_pfn_range(vma, vma->vm_start,
601 			       page_to_pfn(page) + vma->vm_pgoff,
602 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
603 }
604 EXPORT_SYMBOL_GPL(dma_mmap_pages);
605 
606 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
607 		enum dma_data_direction dir, gfp_t gfp)
608 {
609 	struct sg_table *sgt;
610 	struct page *page;
611 
612 	sgt = kmalloc(sizeof(*sgt), gfp);
613 	if (!sgt)
614 		return NULL;
615 	if (sg_alloc_table(sgt, 1, gfp))
616 		goto out_free_sgt;
617 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
618 	if (!page)
619 		goto out_free_table;
620 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
621 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
622 	return sgt;
623 out_free_table:
624 	sg_free_table(sgt);
625 out_free_sgt:
626 	kfree(sgt);
627 	return NULL;
628 }
629 
630 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
631 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
632 {
633 	const struct dma_map_ops *ops = get_dma_ops(dev);
634 	struct sg_table *sgt;
635 
636 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
637 		return NULL;
638 
639 	if (ops && ops->alloc_noncontiguous)
640 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
641 	else
642 		sgt = alloc_single_sgt(dev, size, dir, gfp);
643 
644 	if (sgt) {
645 		sgt->nents = 1;
646 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir);
647 	}
648 	return sgt;
649 }
650 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
651 
652 static void free_single_sgt(struct device *dev, size_t size,
653 		struct sg_table *sgt, enum dma_data_direction dir)
654 {
655 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
656 			 dir);
657 	sg_free_table(sgt);
658 	kfree(sgt);
659 }
660 
661 void dma_free_noncontiguous(struct device *dev, size_t size,
662 		struct sg_table *sgt, enum dma_data_direction dir)
663 {
664 	const struct dma_map_ops *ops = get_dma_ops(dev);
665 
666 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
667 	if (ops && ops->free_noncontiguous)
668 		ops->free_noncontiguous(dev, size, sgt, dir);
669 	else
670 		free_single_sgt(dev, size, sgt, dir);
671 }
672 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
673 
674 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
675 		struct sg_table *sgt)
676 {
677 	const struct dma_map_ops *ops = get_dma_ops(dev);
678 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
679 
680 	if (ops && ops->alloc_noncontiguous)
681 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
682 	return page_address(sg_page(sgt->sgl));
683 }
684 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
685 
686 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
687 {
688 	const struct dma_map_ops *ops = get_dma_ops(dev);
689 
690 	if (ops && ops->alloc_noncontiguous)
691 		vunmap(vaddr);
692 }
693 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
694 
695 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
696 		size_t size, struct sg_table *sgt)
697 {
698 	const struct dma_map_ops *ops = get_dma_ops(dev);
699 
700 	if (ops && ops->alloc_noncontiguous) {
701 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
702 
703 		if (vma->vm_pgoff >= count ||
704 		    vma_pages(vma) > count - vma->vm_pgoff)
705 			return -ENXIO;
706 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
707 	}
708 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
709 }
710 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
711 
712 int dma_supported(struct device *dev, u64 mask)
713 {
714 	const struct dma_map_ops *ops = get_dma_ops(dev);
715 
716 	/*
717 	 * ->dma_supported sets the bypass flag, so we must always call
718 	 * into the method here unless the device is truly direct mapped.
719 	 */
720 	if (!ops)
721 		return dma_direct_supported(dev, mask);
722 	if (!ops->dma_supported)
723 		return 1;
724 	return ops->dma_supported(dev, mask);
725 }
726 EXPORT_SYMBOL(dma_supported);
727 
728 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
729 void arch_dma_set_mask(struct device *dev, u64 mask);
730 #else
731 #define arch_dma_set_mask(dev, mask)	do { } while (0)
732 #endif
733 
734 int dma_set_mask(struct device *dev, u64 mask)
735 {
736 	/*
737 	 * Truncate the mask to the actually supported dma_addr_t width to
738 	 * avoid generating unsupportable addresses.
739 	 */
740 	mask = (dma_addr_t)mask;
741 
742 	if (!dev->dma_mask || !dma_supported(dev, mask))
743 		return -EIO;
744 
745 	arch_dma_set_mask(dev, mask);
746 	*dev->dma_mask = mask;
747 	return 0;
748 }
749 EXPORT_SYMBOL(dma_set_mask);
750 
751 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
752 int dma_set_coherent_mask(struct device *dev, u64 mask)
753 {
754 	/*
755 	 * Truncate the mask to the actually supported dma_addr_t width to
756 	 * avoid generating unsupportable addresses.
757 	 */
758 	mask = (dma_addr_t)mask;
759 
760 	if (!dma_supported(dev, mask))
761 		return -EIO;
762 
763 	dev->coherent_dma_mask = mask;
764 	return 0;
765 }
766 EXPORT_SYMBOL(dma_set_coherent_mask);
767 #endif
768 
769 size_t dma_max_mapping_size(struct device *dev)
770 {
771 	const struct dma_map_ops *ops = get_dma_ops(dev);
772 	size_t size = SIZE_MAX;
773 
774 	if (dma_map_direct(dev, ops))
775 		size = dma_direct_max_mapping_size(dev);
776 	else if (ops && ops->max_mapping_size)
777 		size = ops->max_mapping_size(dev);
778 
779 	return size;
780 }
781 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
782 
783 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
784 {
785 	const struct dma_map_ops *ops = get_dma_ops(dev);
786 
787 	if (dma_map_direct(dev, ops))
788 		return dma_direct_need_sync(dev, dma_addr);
789 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
790 }
791 EXPORT_SYMBOL_GPL(dma_need_sync);
792 
793 unsigned long dma_get_merge_boundary(struct device *dev)
794 {
795 	const struct dma_map_ops *ops = get_dma_ops(dev);
796 
797 	if (!ops || !ops->get_merge_boundary)
798 		return 0;	/* can't merge */
799 
800 	return ops->get_merge_boundary(dev);
801 }
802 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
803