1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/of_device.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include "debug.h" 17 #include "direct.h" 18 19 bool dma_default_coherent; 20 21 /* 22 * Managed DMA API 23 */ 24 struct dma_devres { 25 size_t size; 26 void *vaddr; 27 dma_addr_t dma_handle; 28 unsigned long attrs; 29 }; 30 31 static void dmam_release(struct device *dev, void *res) 32 { 33 struct dma_devres *this = res; 34 35 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 36 this->attrs); 37 } 38 39 static int dmam_match(struct device *dev, void *res, void *match_data) 40 { 41 struct dma_devres *this = res, *match = match_data; 42 43 if (this->vaddr == match->vaddr) { 44 WARN_ON(this->size != match->size || 45 this->dma_handle != match->dma_handle); 46 return 1; 47 } 48 return 0; 49 } 50 51 /** 52 * dmam_free_coherent - Managed dma_free_coherent() 53 * @dev: Device to free coherent memory for 54 * @size: Size of allocation 55 * @vaddr: Virtual address of the memory to free 56 * @dma_handle: DMA handle of the memory to free 57 * 58 * Managed dma_free_coherent(). 59 */ 60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 61 dma_addr_t dma_handle) 62 { 63 struct dma_devres match_data = { size, vaddr, dma_handle }; 64 65 dma_free_coherent(dev, size, vaddr, dma_handle); 66 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 67 } 68 EXPORT_SYMBOL(dmam_free_coherent); 69 70 /** 71 * dmam_alloc_attrs - Managed dma_alloc_attrs() 72 * @dev: Device to allocate non_coherent memory for 73 * @size: Size of allocation 74 * @dma_handle: Out argument for allocated DMA handle 75 * @gfp: Allocation flags 76 * @attrs: Flags in the DMA_ATTR_* namespace. 77 * 78 * Managed dma_alloc_attrs(). Memory allocated using this function will be 79 * automatically released on driver detach. 80 * 81 * RETURNS: 82 * Pointer to allocated memory on success, NULL on failure. 83 */ 84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 85 gfp_t gfp, unsigned long attrs) 86 { 87 struct dma_devres *dr; 88 void *vaddr; 89 90 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 91 if (!dr) 92 return NULL; 93 94 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 95 if (!vaddr) { 96 devres_free(dr); 97 return NULL; 98 } 99 100 dr->vaddr = vaddr; 101 dr->dma_handle = *dma_handle; 102 dr->size = size; 103 dr->attrs = attrs; 104 105 devres_add(dev, dr); 106 107 return vaddr; 108 } 109 EXPORT_SYMBOL(dmam_alloc_attrs); 110 111 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 112 const struct dma_map_ops *ops) 113 { 114 if (likely(!ops)) 115 return true; 116 #ifdef CONFIG_DMA_OPS_BYPASS 117 if (dev->dma_ops_bypass) 118 return min_not_zero(mask, dev->bus_dma_limit) >= 119 dma_direct_get_required_mask(dev); 120 #endif 121 return false; 122 } 123 124 125 /* 126 * Check if the devices uses a direct mapping for streaming DMA operations. 127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 128 * enough. 129 */ 130 static inline bool dma_alloc_direct(struct device *dev, 131 const struct dma_map_ops *ops) 132 { 133 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 134 } 135 136 static inline bool dma_map_direct(struct device *dev, 137 const struct dma_map_ops *ops) 138 { 139 return dma_go_direct(dev, *dev->dma_mask, ops); 140 } 141 142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 143 size_t offset, size_t size, enum dma_data_direction dir, 144 unsigned long attrs) 145 { 146 const struct dma_map_ops *ops = get_dma_ops(dev); 147 dma_addr_t addr; 148 149 BUG_ON(!valid_dma_direction(dir)); 150 151 if (WARN_ON_ONCE(!dev->dma_mask)) 152 return DMA_MAPPING_ERROR; 153 154 if (dma_map_direct(dev, ops) || 155 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) 156 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); 157 else 158 addr = ops->map_page(dev, page, offset, size, dir, attrs); 159 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs); 160 161 return addr; 162 } 163 EXPORT_SYMBOL(dma_map_page_attrs); 164 165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 166 enum dma_data_direction dir, unsigned long attrs) 167 { 168 const struct dma_map_ops *ops = get_dma_ops(dev); 169 170 BUG_ON(!valid_dma_direction(dir)); 171 if (dma_map_direct(dev, ops) || 172 arch_dma_unmap_page_direct(dev, addr + size)) 173 dma_direct_unmap_page(dev, addr, size, dir, attrs); 174 else if (ops->unmap_page) 175 ops->unmap_page(dev, addr, size, dir, attrs); 176 debug_dma_unmap_page(dev, addr, size, dir); 177 } 178 EXPORT_SYMBOL(dma_unmap_page_attrs); 179 180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 181 int nents, enum dma_data_direction dir, unsigned long attrs) 182 { 183 const struct dma_map_ops *ops = get_dma_ops(dev); 184 int ents; 185 186 BUG_ON(!valid_dma_direction(dir)); 187 188 if (WARN_ON_ONCE(!dev->dma_mask)) 189 return 0; 190 191 if (dma_map_direct(dev, ops) || 192 arch_dma_map_sg_direct(dev, sg, nents)) 193 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 194 else 195 ents = ops->map_sg(dev, sg, nents, dir, attrs); 196 197 if (ents > 0) 198 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs); 199 else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && 200 ents != -EIO && ents != -EREMOTEIO)) 201 return -EIO; 202 203 return ents; 204 } 205 206 /** 207 * dma_map_sg_attrs - Map the given buffer for DMA 208 * @dev: The device for which to perform the DMA operation 209 * @sg: The sg_table object describing the buffer 210 * @nents: Number of entries to map 211 * @dir: DMA direction 212 * @attrs: Optional DMA attributes for the map operation 213 * 214 * Maps a buffer described by a scatterlist passed in the sg argument with 215 * nents segments for the @dir DMA operation by the @dev device. 216 * 217 * Returns the number of mapped entries (which can be less than nents) 218 * on success. Zero is returned for any error. 219 * 220 * dma_unmap_sg_attrs() should be used to unmap the buffer with the 221 * original sg and original nents (not the value returned by this funciton). 222 */ 223 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 224 int nents, enum dma_data_direction dir, unsigned long attrs) 225 { 226 int ret; 227 228 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); 229 if (ret < 0) 230 return 0; 231 return ret; 232 } 233 EXPORT_SYMBOL(dma_map_sg_attrs); 234 235 /** 236 * dma_map_sgtable - Map the given buffer for DMA 237 * @dev: The device for which to perform the DMA operation 238 * @sgt: The sg_table object describing the buffer 239 * @dir: DMA direction 240 * @attrs: Optional DMA attributes for the map operation 241 * 242 * Maps a buffer described by a scatterlist stored in the given sg_table 243 * object for the @dir DMA operation by the @dev device. After success, the 244 * ownership for the buffer is transferred to the DMA domain. One has to 245 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the 246 * ownership of the buffer back to the CPU domain before touching the 247 * buffer by the CPU. 248 * 249 * Returns 0 on success or a negative error code on error. The following 250 * error codes are supported with the given meaning: 251 * 252 * -EINVAL An invalid argument, unaligned access or other error 253 * in usage. Will not succeed if retried. 254 * -ENOMEM Insufficient resources (like memory or IOVA space) to 255 * complete the mapping. Should succeed if retried later. 256 * -EIO Legacy error code with an unknown meaning. eg. this is 257 * returned if a lower level call returned 258 * DMA_MAPPING_ERROR. 259 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified 260 * in the sg_table. This will not succeed if retried. 261 */ 262 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 263 enum dma_data_direction dir, unsigned long attrs) 264 { 265 int nents; 266 267 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 268 if (nents < 0) 269 return nents; 270 sgt->nents = nents; 271 return 0; 272 } 273 EXPORT_SYMBOL_GPL(dma_map_sgtable); 274 275 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 276 int nents, enum dma_data_direction dir, 277 unsigned long attrs) 278 { 279 const struct dma_map_ops *ops = get_dma_ops(dev); 280 281 BUG_ON(!valid_dma_direction(dir)); 282 debug_dma_unmap_sg(dev, sg, nents, dir); 283 if (dma_map_direct(dev, ops) || 284 arch_dma_unmap_sg_direct(dev, sg, nents)) 285 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 286 else if (ops->unmap_sg) 287 ops->unmap_sg(dev, sg, nents, dir, attrs); 288 } 289 EXPORT_SYMBOL(dma_unmap_sg_attrs); 290 291 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 292 size_t size, enum dma_data_direction dir, unsigned long attrs) 293 { 294 const struct dma_map_ops *ops = get_dma_ops(dev); 295 dma_addr_t addr = DMA_MAPPING_ERROR; 296 297 BUG_ON(!valid_dma_direction(dir)); 298 299 if (WARN_ON_ONCE(!dev->dma_mask)) 300 return DMA_MAPPING_ERROR; 301 302 if (dma_map_direct(dev, ops)) 303 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); 304 else if (ops->map_resource) 305 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 306 307 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs); 308 return addr; 309 } 310 EXPORT_SYMBOL(dma_map_resource); 311 312 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 313 enum dma_data_direction dir, unsigned long attrs) 314 { 315 const struct dma_map_ops *ops = get_dma_ops(dev); 316 317 BUG_ON(!valid_dma_direction(dir)); 318 if (!dma_map_direct(dev, ops) && ops->unmap_resource) 319 ops->unmap_resource(dev, addr, size, dir, attrs); 320 debug_dma_unmap_resource(dev, addr, size, dir); 321 } 322 EXPORT_SYMBOL(dma_unmap_resource); 323 324 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 325 enum dma_data_direction dir) 326 { 327 const struct dma_map_ops *ops = get_dma_ops(dev); 328 329 BUG_ON(!valid_dma_direction(dir)); 330 if (dma_map_direct(dev, ops)) 331 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 332 else if (ops->sync_single_for_cpu) 333 ops->sync_single_for_cpu(dev, addr, size, dir); 334 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 335 } 336 EXPORT_SYMBOL(dma_sync_single_for_cpu); 337 338 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 339 size_t size, enum dma_data_direction dir) 340 { 341 const struct dma_map_ops *ops = get_dma_ops(dev); 342 343 BUG_ON(!valid_dma_direction(dir)); 344 if (dma_map_direct(dev, ops)) 345 dma_direct_sync_single_for_device(dev, addr, size, dir); 346 else if (ops->sync_single_for_device) 347 ops->sync_single_for_device(dev, addr, size, dir); 348 debug_dma_sync_single_for_device(dev, addr, size, dir); 349 } 350 EXPORT_SYMBOL(dma_sync_single_for_device); 351 352 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 353 int nelems, enum dma_data_direction dir) 354 { 355 const struct dma_map_ops *ops = get_dma_ops(dev); 356 357 BUG_ON(!valid_dma_direction(dir)); 358 if (dma_map_direct(dev, ops)) 359 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 360 else if (ops->sync_sg_for_cpu) 361 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 362 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 363 } 364 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 365 366 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 367 int nelems, enum dma_data_direction dir) 368 { 369 const struct dma_map_ops *ops = get_dma_ops(dev); 370 371 BUG_ON(!valid_dma_direction(dir)); 372 if (dma_map_direct(dev, ops)) 373 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 374 else if (ops->sync_sg_for_device) 375 ops->sync_sg_for_device(dev, sg, nelems, dir); 376 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 377 } 378 EXPORT_SYMBOL(dma_sync_sg_for_device); 379 380 /* 381 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 382 * that the intention is to allow exporting memory allocated via the 383 * coherent DMA APIs through the dma_buf API, which only accepts a 384 * scattertable. This presents a couple of problems: 385 * 1. Not all memory allocated via the coherent DMA APIs is backed by 386 * a struct page 387 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 388 * as we will try to flush the memory through a different alias to that 389 * actually being used (and the flushes are redundant.) 390 */ 391 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 392 void *cpu_addr, dma_addr_t dma_addr, size_t size, 393 unsigned long attrs) 394 { 395 const struct dma_map_ops *ops = get_dma_ops(dev); 396 397 if (dma_alloc_direct(dev, ops)) 398 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 399 size, attrs); 400 if (!ops->get_sgtable) 401 return -ENXIO; 402 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 403 } 404 EXPORT_SYMBOL(dma_get_sgtable_attrs); 405 406 #ifdef CONFIG_MMU 407 /* 408 * Return the page attributes used for mapping dma_alloc_* memory, either in 409 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 410 */ 411 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 412 { 413 if (dev_is_dma_coherent(dev)) 414 return prot; 415 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 416 if (attrs & DMA_ATTR_WRITE_COMBINE) 417 return pgprot_writecombine(prot); 418 #endif 419 return pgprot_dmacoherent(prot); 420 } 421 #endif /* CONFIG_MMU */ 422 423 /** 424 * dma_can_mmap - check if a given device supports dma_mmap_* 425 * @dev: device to check 426 * 427 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 428 * map DMA allocations to userspace. 429 */ 430 bool dma_can_mmap(struct device *dev) 431 { 432 const struct dma_map_ops *ops = get_dma_ops(dev); 433 434 if (dma_alloc_direct(dev, ops)) 435 return dma_direct_can_mmap(dev); 436 return ops->mmap != NULL; 437 } 438 EXPORT_SYMBOL_GPL(dma_can_mmap); 439 440 /** 441 * dma_mmap_attrs - map a coherent DMA allocation into user space 442 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 443 * @vma: vm_area_struct describing requested user mapping 444 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 445 * @dma_addr: device-view address returned from dma_alloc_attrs 446 * @size: size of memory originally requested in dma_alloc_attrs 447 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 448 * 449 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 450 * space. The coherent DMA buffer must not be freed by the driver until the 451 * user space mapping has been released. 452 */ 453 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 454 void *cpu_addr, dma_addr_t dma_addr, size_t size, 455 unsigned long attrs) 456 { 457 const struct dma_map_ops *ops = get_dma_ops(dev); 458 459 if (dma_alloc_direct(dev, ops)) 460 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 461 attrs); 462 if (!ops->mmap) 463 return -ENXIO; 464 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 465 } 466 EXPORT_SYMBOL(dma_mmap_attrs); 467 468 u64 dma_get_required_mask(struct device *dev) 469 { 470 const struct dma_map_ops *ops = get_dma_ops(dev); 471 472 if (dma_alloc_direct(dev, ops)) 473 return dma_direct_get_required_mask(dev); 474 if (ops->get_required_mask) 475 return ops->get_required_mask(dev); 476 477 /* 478 * We require every DMA ops implementation to at least support a 32-bit 479 * DMA mask (and use bounce buffering if that isn't supported in 480 * hardware). As the direct mapping code has its own routine to 481 * actually report an optimal mask we default to 32-bit here as that 482 * is the right thing for most IOMMUs, and at least not actively 483 * harmful in general. 484 */ 485 return DMA_BIT_MASK(32); 486 } 487 EXPORT_SYMBOL_GPL(dma_get_required_mask); 488 489 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 490 gfp_t flag, unsigned long attrs) 491 { 492 const struct dma_map_ops *ops = get_dma_ops(dev); 493 void *cpu_addr; 494 495 WARN_ON_ONCE(!dev->coherent_dma_mask); 496 497 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 498 return cpu_addr; 499 500 /* let the implementation decide on the zone to allocate from: */ 501 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 502 503 if (dma_alloc_direct(dev, ops)) 504 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 505 else if (ops->alloc) 506 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 507 else 508 return NULL; 509 510 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs); 511 return cpu_addr; 512 } 513 EXPORT_SYMBOL(dma_alloc_attrs); 514 515 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 516 dma_addr_t dma_handle, unsigned long attrs) 517 { 518 const struct dma_map_ops *ops = get_dma_ops(dev); 519 520 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 521 return; 522 /* 523 * On non-coherent platforms which implement DMA-coherent buffers via 524 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 525 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 526 * sleep on some machines, and b) an indication that the driver is 527 * probably misusing the coherent API anyway. 528 */ 529 WARN_ON(irqs_disabled()); 530 531 if (!cpu_addr) 532 return; 533 534 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 535 if (dma_alloc_direct(dev, ops)) 536 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 537 else if (ops->free) 538 ops->free(dev, size, cpu_addr, dma_handle, attrs); 539 } 540 EXPORT_SYMBOL(dma_free_attrs); 541 542 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 543 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 544 { 545 const struct dma_map_ops *ops = get_dma_ops(dev); 546 547 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 548 return NULL; 549 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 550 return NULL; 551 552 size = PAGE_ALIGN(size); 553 if (dma_alloc_direct(dev, ops)) 554 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 555 if (!ops->alloc_pages) 556 return NULL; 557 return ops->alloc_pages(dev, size, dma_handle, dir, gfp); 558 } 559 560 struct page *dma_alloc_pages(struct device *dev, size_t size, 561 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 562 { 563 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 564 565 if (page) 566 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0); 567 return page; 568 } 569 EXPORT_SYMBOL_GPL(dma_alloc_pages); 570 571 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 572 dma_addr_t dma_handle, enum dma_data_direction dir) 573 { 574 const struct dma_map_ops *ops = get_dma_ops(dev); 575 576 size = PAGE_ALIGN(size); 577 if (dma_alloc_direct(dev, ops)) 578 dma_direct_free_pages(dev, size, page, dma_handle, dir); 579 else if (ops->free_pages) 580 ops->free_pages(dev, size, page, dma_handle, dir); 581 } 582 583 void dma_free_pages(struct device *dev, size_t size, struct page *page, 584 dma_addr_t dma_handle, enum dma_data_direction dir) 585 { 586 debug_dma_unmap_page(dev, dma_handle, size, dir); 587 __dma_free_pages(dev, size, page, dma_handle, dir); 588 } 589 EXPORT_SYMBOL_GPL(dma_free_pages); 590 591 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 592 size_t size, struct page *page) 593 { 594 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 595 596 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 597 return -ENXIO; 598 return remap_pfn_range(vma, vma->vm_start, 599 page_to_pfn(page) + vma->vm_pgoff, 600 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 601 } 602 EXPORT_SYMBOL_GPL(dma_mmap_pages); 603 604 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 605 enum dma_data_direction dir, gfp_t gfp) 606 { 607 struct sg_table *sgt; 608 struct page *page; 609 610 sgt = kmalloc(sizeof(*sgt), gfp); 611 if (!sgt) 612 return NULL; 613 if (sg_alloc_table(sgt, 1, gfp)) 614 goto out_free_sgt; 615 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 616 if (!page) 617 goto out_free_table; 618 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 619 sg_dma_len(sgt->sgl) = sgt->sgl->length; 620 return sgt; 621 out_free_table: 622 sg_free_table(sgt); 623 out_free_sgt: 624 kfree(sgt); 625 return NULL; 626 } 627 628 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 629 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 630 { 631 const struct dma_map_ops *ops = get_dma_ops(dev); 632 struct sg_table *sgt; 633 634 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 635 return NULL; 636 637 if (ops && ops->alloc_noncontiguous) 638 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); 639 else 640 sgt = alloc_single_sgt(dev, size, dir, gfp); 641 642 if (sgt) { 643 sgt->nents = 1; 644 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs); 645 } 646 return sgt; 647 } 648 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 649 650 static void free_single_sgt(struct device *dev, size_t size, 651 struct sg_table *sgt, enum dma_data_direction dir) 652 { 653 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 654 dir); 655 sg_free_table(sgt); 656 kfree(sgt); 657 } 658 659 void dma_free_noncontiguous(struct device *dev, size_t size, 660 struct sg_table *sgt, enum dma_data_direction dir) 661 { 662 const struct dma_map_ops *ops = get_dma_ops(dev); 663 664 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 665 if (ops && ops->free_noncontiguous) 666 ops->free_noncontiguous(dev, size, sgt, dir); 667 else 668 free_single_sgt(dev, size, sgt, dir); 669 } 670 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 671 672 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 673 struct sg_table *sgt) 674 { 675 const struct dma_map_ops *ops = get_dma_ops(dev); 676 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 677 678 if (ops && ops->alloc_noncontiguous) 679 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 680 return page_address(sg_page(sgt->sgl)); 681 } 682 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 683 684 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 685 { 686 const struct dma_map_ops *ops = get_dma_ops(dev); 687 688 if (ops && ops->alloc_noncontiguous) 689 vunmap(vaddr); 690 } 691 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 692 693 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 694 size_t size, struct sg_table *sgt) 695 { 696 const struct dma_map_ops *ops = get_dma_ops(dev); 697 698 if (ops && ops->alloc_noncontiguous) { 699 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 700 701 if (vma->vm_pgoff >= count || 702 vma_pages(vma) > count - vma->vm_pgoff) 703 return -ENXIO; 704 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 705 } 706 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 707 } 708 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 709 710 int dma_supported(struct device *dev, u64 mask) 711 { 712 const struct dma_map_ops *ops = get_dma_ops(dev); 713 714 /* 715 * ->dma_supported sets the bypass flag, so we must always call 716 * into the method here unless the device is truly direct mapped. 717 */ 718 if (!ops) 719 return dma_direct_supported(dev, mask); 720 if (!ops->dma_supported) 721 return 1; 722 return ops->dma_supported(dev, mask); 723 } 724 EXPORT_SYMBOL(dma_supported); 725 726 bool dma_pci_p2pdma_supported(struct device *dev) 727 { 728 const struct dma_map_ops *ops = get_dma_ops(dev); 729 730 /* if ops is not set, dma direct will be used which supports P2PDMA */ 731 if (!ops) 732 return true; 733 734 /* 735 * Note: dma_ops_bypass is not checked here because P2PDMA should 736 * not be used with dma mapping ops that do not have support even 737 * if the specific device is bypassing them. 738 */ 739 740 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED; 741 } 742 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported); 743 744 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK 745 void arch_dma_set_mask(struct device *dev, u64 mask); 746 #else 747 #define arch_dma_set_mask(dev, mask) do { } while (0) 748 #endif 749 750 int dma_set_mask(struct device *dev, u64 mask) 751 { 752 /* 753 * Truncate the mask to the actually supported dma_addr_t width to 754 * avoid generating unsupportable addresses. 755 */ 756 mask = (dma_addr_t)mask; 757 758 if (!dev->dma_mask || !dma_supported(dev, mask)) 759 return -EIO; 760 761 arch_dma_set_mask(dev, mask); 762 *dev->dma_mask = mask; 763 return 0; 764 } 765 EXPORT_SYMBOL(dma_set_mask); 766 767 int dma_set_coherent_mask(struct device *dev, u64 mask) 768 { 769 /* 770 * Truncate the mask to the actually supported dma_addr_t width to 771 * avoid generating unsupportable addresses. 772 */ 773 mask = (dma_addr_t)mask; 774 775 if (!dma_supported(dev, mask)) 776 return -EIO; 777 778 dev->coherent_dma_mask = mask; 779 return 0; 780 } 781 EXPORT_SYMBOL(dma_set_coherent_mask); 782 783 size_t dma_max_mapping_size(struct device *dev) 784 { 785 const struct dma_map_ops *ops = get_dma_ops(dev); 786 size_t size = SIZE_MAX; 787 788 if (dma_map_direct(dev, ops)) 789 size = dma_direct_max_mapping_size(dev); 790 else if (ops && ops->max_mapping_size) 791 size = ops->max_mapping_size(dev); 792 793 return size; 794 } 795 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 796 797 size_t dma_opt_mapping_size(struct device *dev) 798 { 799 const struct dma_map_ops *ops = get_dma_ops(dev); 800 size_t size = SIZE_MAX; 801 802 if (ops && ops->opt_mapping_size) 803 size = ops->opt_mapping_size(); 804 805 return min(dma_max_mapping_size(dev), size); 806 } 807 EXPORT_SYMBOL_GPL(dma_opt_mapping_size); 808 809 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 810 { 811 const struct dma_map_ops *ops = get_dma_ops(dev); 812 813 if (dma_map_direct(dev, ops)) 814 return dma_direct_need_sync(dev, dma_addr); 815 return ops->sync_single_for_cpu || ops->sync_single_for_device; 816 } 817 EXPORT_SYMBOL_GPL(dma_need_sync); 818 819 unsigned long dma_get_merge_boundary(struct device *dev) 820 { 821 const struct dma_map_ops *ops = get_dma_ops(dev); 822 823 if (!ops || !ops->get_merge_boundary) 824 return 0; /* can't merge */ 825 826 return ops->get_merge_boundary(dev); 827 } 828 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 829