xref: /openbmc/linux/kernel/dma/mapping.c (revision e6e8c6c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 bool dma_default_coherent;
20 
21 /*
22  * Managed DMA API
23  */
24 struct dma_devres {
25 	size_t		size;
26 	void		*vaddr;
27 	dma_addr_t	dma_handle;
28 	unsigned long	attrs;
29 };
30 
31 static void dmam_release(struct device *dev, void *res)
32 {
33 	struct dma_devres *this = res;
34 
35 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 			this->attrs);
37 }
38 
39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 	struct dma_devres *this = res, *match = match_data;
42 
43 	if (this->vaddr == match->vaddr) {
44 		WARN_ON(this->size != match->size ||
45 			this->dma_handle != match->dma_handle);
46 		return 1;
47 	}
48 	return 0;
49 }
50 
51 /**
52  * dmam_free_coherent - Managed dma_free_coherent()
53  * @dev: Device to free coherent memory for
54  * @size: Size of allocation
55  * @vaddr: Virtual address of the memory to free
56  * @dma_handle: DMA handle of the memory to free
57  *
58  * Managed dma_free_coherent().
59  */
60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 			dma_addr_t dma_handle)
62 {
63 	struct dma_devres match_data = { size, vaddr, dma_handle };
64 
65 	dma_free_coherent(dev, size, vaddr, dma_handle);
66 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67 }
68 EXPORT_SYMBOL(dmam_free_coherent);
69 
70 /**
71  * dmam_alloc_attrs - Managed dma_alloc_attrs()
72  * @dev: Device to allocate non_coherent memory for
73  * @size: Size of allocation
74  * @dma_handle: Out argument for allocated DMA handle
75  * @gfp: Allocation flags
76  * @attrs: Flags in the DMA_ATTR_* namespace.
77  *
78  * Managed dma_alloc_attrs().  Memory allocated using this function will be
79  * automatically released on driver detach.
80  *
81  * RETURNS:
82  * Pointer to allocated memory on success, NULL on failure.
83  */
84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 		gfp_t gfp, unsigned long attrs)
86 {
87 	struct dma_devres *dr;
88 	void *vaddr;
89 
90 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 	if (!dr)
92 		return NULL;
93 
94 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 	if (!vaddr) {
96 		devres_free(dr);
97 		return NULL;
98 	}
99 
100 	dr->vaddr = vaddr;
101 	dr->dma_handle = *dma_handle;
102 	dr->size = size;
103 	dr->attrs = attrs;
104 
105 	devres_add(dev, dr);
106 
107 	return vaddr;
108 }
109 EXPORT_SYMBOL(dmam_alloc_attrs);
110 
111 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 		const struct dma_map_ops *ops)
113 {
114 	if (likely(!ops))
115 		return true;
116 #ifdef CONFIG_DMA_OPS_BYPASS
117 	if (dev->dma_ops_bypass)
118 		return min_not_zero(mask, dev->bus_dma_limit) >=
119 			    dma_direct_get_required_mask(dev);
120 #endif
121 	return false;
122 }
123 
124 
125 /*
126  * Check if the devices uses a direct mapping for streaming DMA operations.
127  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128  * enough.
129  */
130 static inline bool dma_alloc_direct(struct device *dev,
131 		const struct dma_map_ops *ops)
132 {
133 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134 }
135 
136 static inline bool dma_map_direct(struct device *dev,
137 		const struct dma_map_ops *ops)
138 {
139 	return dma_go_direct(dev, *dev->dma_mask, ops);
140 }
141 
142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 		size_t offset, size_t size, enum dma_data_direction dir,
144 		unsigned long attrs)
145 {
146 	const struct dma_map_ops *ops = get_dma_ops(dev);
147 	dma_addr_t addr;
148 
149 	BUG_ON(!valid_dma_direction(dir));
150 
151 	if (WARN_ON_ONCE(!dev->dma_mask))
152 		return DMA_MAPPING_ERROR;
153 
154 	if (dma_map_direct(dev, ops) ||
155 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 	else
158 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
160 
161 	return addr;
162 }
163 EXPORT_SYMBOL(dma_map_page_attrs);
164 
165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 		enum dma_data_direction dir, unsigned long attrs)
167 {
168 	const struct dma_map_ops *ops = get_dma_ops(dev);
169 
170 	BUG_ON(!valid_dma_direction(dir));
171 	if (dma_map_direct(dev, ops) ||
172 	    arch_dma_unmap_page_direct(dev, addr + size))
173 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 	else if (ops->unmap_page)
175 		ops->unmap_page(dev, addr, size, dir, attrs);
176 	debug_dma_unmap_page(dev, addr, size, dir);
177 }
178 EXPORT_SYMBOL(dma_unmap_page_attrs);
179 
180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
181 	 int nents, enum dma_data_direction dir, unsigned long attrs)
182 {
183 	const struct dma_map_ops *ops = get_dma_ops(dev);
184 	int ents;
185 
186 	BUG_ON(!valid_dma_direction(dir));
187 
188 	if (WARN_ON_ONCE(!dev->dma_mask))
189 		return 0;
190 
191 	if (dma_map_direct(dev, ops) ||
192 	    arch_dma_map_sg_direct(dev, sg, nents))
193 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
194 	else
195 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
196 
197 	if (ents > 0)
198 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
199 	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
200 			      ents != -EIO && ents != -EREMOTEIO))
201 		return -EIO;
202 
203 	return ents;
204 }
205 
206 /**
207  * dma_map_sg_attrs - Map the given buffer for DMA
208  * @dev:	The device for which to perform the DMA operation
209  * @sg:		The sg_table object describing the buffer
210  * @nents:	Number of entries to map
211  * @dir:	DMA direction
212  * @attrs:	Optional DMA attributes for the map operation
213  *
214  * Maps a buffer described by a scatterlist passed in the sg argument with
215  * nents segments for the @dir DMA operation by the @dev device.
216  *
217  * Returns the number of mapped entries (which can be less than nents)
218  * on success. Zero is returned for any error.
219  *
220  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
221  * original sg and original nents (not the value returned by this funciton).
222  */
223 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
224 		    int nents, enum dma_data_direction dir, unsigned long attrs)
225 {
226 	int ret;
227 
228 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
229 	if (ret < 0)
230 		return 0;
231 	return ret;
232 }
233 EXPORT_SYMBOL(dma_map_sg_attrs);
234 
235 /**
236  * dma_map_sgtable - Map the given buffer for DMA
237  * @dev:	The device for which to perform the DMA operation
238  * @sgt:	The sg_table object describing the buffer
239  * @dir:	DMA direction
240  * @attrs:	Optional DMA attributes for the map operation
241  *
242  * Maps a buffer described by a scatterlist stored in the given sg_table
243  * object for the @dir DMA operation by the @dev device. After success, the
244  * ownership for the buffer is transferred to the DMA domain.  One has to
245  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
246  * ownership of the buffer back to the CPU domain before touching the
247  * buffer by the CPU.
248  *
249  * Returns 0 on success or a negative error code on error. The following
250  * error codes are supported with the given meaning:
251  *
252  *   -EINVAL		An invalid argument, unaligned access or other error
253  *			in usage. Will not succeed if retried.
254  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
255  *			complete the mapping. Should succeed if retried later.
256  *   -EIO		Legacy error code with an unknown meaning. eg. this is
257  *			returned if a lower level call returned
258  *			DMA_MAPPING_ERROR.
259  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
260  *			in the sg_table. This will not succeed if retried.
261  */
262 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
263 		    enum dma_data_direction dir, unsigned long attrs)
264 {
265 	int nents;
266 
267 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
268 	if (nents < 0)
269 		return nents;
270 	sgt->nents = nents;
271 	return 0;
272 }
273 EXPORT_SYMBOL_GPL(dma_map_sgtable);
274 
275 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
276 				      int nents, enum dma_data_direction dir,
277 				      unsigned long attrs)
278 {
279 	const struct dma_map_ops *ops = get_dma_ops(dev);
280 
281 	BUG_ON(!valid_dma_direction(dir));
282 	debug_dma_unmap_sg(dev, sg, nents, dir);
283 	if (dma_map_direct(dev, ops) ||
284 	    arch_dma_unmap_sg_direct(dev, sg, nents))
285 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
286 	else if (ops->unmap_sg)
287 		ops->unmap_sg(dev, sg, nents, dir, attrs);
288 }
289 EXPORT_SYMBOL(dma_unmap_sg_attrs);
290 
291 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
292 		size_t size, enum dma_data_direction dir, unsigned long attrs)
293 {
294 	const struct dma_map_ops *ops = get_dma_ops(dev);
295 	dma_addr_t addr = DMA_MAPPING_ERROR;
296 
297 	BUG_ON(!valid_dma_direction(dir));
298 
299 	if (WARN_ON_ONCE(!dev->dma_mask))
300 		return DMA_MAPPING_ERROR;
301 
302 	if (dma_map_direct(dev, ops))
303 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
304 	else if (ops->map_resource)
305 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
306 
307 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
308 	return addr;
309 }
310 EXPORT_SYMBOL(dma_map_resource);
311 
312 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
313 		enum dma_data_direction dir, unsigned long attrs)
314 {
315 	const struct dma_map_ops *ops = get_dma_ops(dev);
316 
317 	BUG_ON(!valid_dma_direction(dir));
318 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
319 		ops->unmap_resource(dev, addr, size, dir, attrs);
320 	debug_dma_unmap_resource(dev, addr, size, dir);
321 }
322 EXPORT_SYMBOL(dma_unmap_resource);
323 
324 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
325 		enum dma_data_direction dir)
326 {
327 	const struct dma_map_ops *ops = get_dma_ops(dev);
328 
329 	BUG_ON(!valid_dma_direction(dir));
330 	if (dma_map_direct(dev, ops))
331 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
332 	else if (ops->sync_single_for_cpu)
333 		ops->sync_single_for_cpu(dev, addr, size, dir);
334 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
335 }
336 EXPORT_SYMBOL(dma_sync_single_for_cpu);
337 
338 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
339 		size_t size, enum dma_data_direction dir)
340 {
341 	const struct dma_map_ops *ops = get_dma_ops(dev);
342 
343 	BUG_ON(!valid_dma_direction(dir));
344 	if (dma_map_direct(dev, ops))
345 		dma_direct_sync_single_for_device(dev, addr, size, dir);
346 	else if (ops->sync_single_for_device)
347 		ops->sync_single_for_device(dev, addr, size, dir);
348 	debug_dma_sync_single_for_device(dev, addr, size, dir);
349 }
350 EXPORT_SYMBOL(dma_sync_single_for_device);
351 
352 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
353 		    int nelems, enum dma_data_direction dir)
354 {
355 	const struct dma_map_ops *ops = get_dma_ops(dev);
356 
357 	BUG_ON(!valid_dma_direction(dir));
358 	if (dma_map_direct(dev, ops))
359 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
360 	else if (ops->sync_sg_for_cpu)
361 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
362 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
363 }
364 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
365 
366 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
367 		       int nelems, enum dma_data_direction dir)
368 {
369 	const struct dma_map_ops *ops = get_dma_ops(dev);
370 
371 	BUG_ON(!valid_dma_direction(dir));
372 	if (dma_map_direct(dev, ops))
373 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
374 	else if (ops->sync_sg_for_device)
375 		ops->sync_sg_for_device(dev, sg, nelems, dir);
376 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
377 }
378 EXPORT_SYMBOL(dma_sync_sg_for_device);
379 
380 /*
381  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
382  * that the intention is to allow exporting memory allocated via the
383  * coherent DMA APIs through the dma_buf API, which only accepts a
384  * scattertable.  This presents a couple of problems:
385  * 1. Not all memory allocated via the coherent DMA APIs is backed by
386  *    a struct page
387  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
388  *    as we will try to flush the memory through a different alias to that
389  *    actually being used (and the flushes are redundant.)
390  */
391 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
392 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
393 		unsigned long attrs)
394 {
395 	const struct dma_map_ops *ops = get_dma_ops(dev);
396 
397 	if (dma_alloc_direct(dev, ops))
398 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
399 				size, attrs);
400 	if (!ops->get_sgtable)
401 		return -ENXIO;
402 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
403 }
404 EXPORT_SYMBOL(dma_get_sgtable_attrs);
405 
406 #ifdef CONFIG_MMU
407 /*
408  * Return the page attributes used for mapping dma_alloc_* memory, either in
409  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
410  */
411 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
412 {
413 	if (dev_is_dma_coherent(dev))
414 		return prot;
415 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
416 	if (attrs & DMA_ATTR_WRITE_COMBINE)
417 		return pgprot_writecombine(prot);
418 #endif
419 	return pgprot_dmacoherent(prot);
420 }
421 #endif /* CONFIG_MMU */
422 
423 /**
424  * dma_can_mmap - check if a given device supports dma_mmap_*
425  * @dev: device to check
426  *
427  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
428  * map DMA allocations to userspace.
429  */
430 bool dma_can_mmap(struct device *dev)
431 {
432 	const struct dma_map_ops *ops = get_dma_ops(dev);
433 
434 	if (dma_alloc_direct(dev, ops))
435 		return dma_direct_can_mmap(dev);
436 	return ops->mmap != NULL;
437 }
438 EXPORT_SYMBOL_GPL(dma_can_mmap);
439 
440 /**
441  * dma_mmap_attrs - map a coherent DMA allocation into user space
442  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
443  * @vma: vm_area_struct describing requested user mapping
444  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
445  * @dma_addr: device-view address returned from dma_alloc_attrs
446  * @size: size of memory originally requested in dma_alloc_attrs
447  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
448  *
449  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
450  * space.  The coherent DMA buffer must not be freed by the driver until the
451  * user space mapping has been released.
452  */
453 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
454 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
455 		unsigned long attrs)
456 {
457 	const struct dma_map_ops *ops = get_dma_ops(dev);
458 
459 	if (dma_alloc_direct(dev, ops))
460 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
461 				attrs);
462 	if (!ops->mmap)
463 		return -ENXIO;
464 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
465 }
466 EXPORT_SYMBOL(dma_mmap_attrs);
467 
468 u64 dma_get_required_mask(struct device *dev)
469 {
470 	const struct dma_map_ops *ops = get_dma_ops(dev);
471 
472 	if (dma_alloc_direct(dev, ops))
473 		return dma_direct_get_required_mask(dev);
474 	if (ops->get_required_mask)
475 		return ops->get_required_mask(dev);
476 
477 	/*
478 	 * We require every DMA ops implementation to at least support a 32-bit
479 	 * DMA mask (and use bounce buffering if that isn't supported in
480 	 * hardware).  As the direct mapping code has its own routine to
481 	 * actually report an optimal mask we default to 32-bit here as that
482 	 * is the right thing for most IOMMUs, and at least not actively
483 	 * harmful in general.
484 	 */
485 	return DMA_BIT_MASK(32);
486 }
487 EXPORT_SYMBOL_GPL(dma_get_required_mask);
488 
489 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
490 		gfp_t flag, unsigned long attrs)
491 {
492 	const struct dma_map_ops *ops = get_dma_ops(dev);
493 	void *cpu_addr;
494 
495 	WARN_ON_ONCE(!dev->coherent_dma_mask);
496 
497 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
498 		return cpu_addr;
499 
500 	/* let the implementation decide on the zone to allocate from: */
501 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
502 
503 	if (dma_alloc_direct(dev, ops))
504 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
505 	else if (ops->alloc)
506 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
507 	else
508 		return NULL;
509 
510 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
511 	return cpu_addr;
512 }
513 EXPORT_SYMBOL(dma_alloc_attrs);
514 
515 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
516 		dma_addr_t dma_handle, unsigned long attrs)
517 {
518 	const struct dma_map_ops *ops = get_dma_ops(dev);
519 
520 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
521 		return;
522 	/*
523 	 * On non-coherent platforms which implement DMA-coherent buffers via
524 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
525 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
526 	 * sleep on some machines, and b) an indication that the driver is
527 	 * probably misusing the coherent API anyway.
528 	 */
529 	WARN_ON(irqs_disabled());
530 
531 	if (!cpu_addr)
532 		return;
533 
534 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
535 	if (dma_alloc_direct(dev, ops))
536 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
537 	else if (ops->free)
538 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
539 }
540 EXPORT_SYMBOL(dma_free_attrs);
541 
542 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
543 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
544 {
545 	const struct dma_map_ops *ops = get_dma_ops(dev);
546 
547 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
548 		return NULL;
549 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
550 		return NULL;
551 
552 	size = PAGE_ALIGN(size);
553 	if (dma_alloc_direct(dev, ops))
554 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
555 	if (!ops->alloc_pages)
556 		return NULL;
557 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
558 }
559 
560 struct page *dma_alloc_pages(struct device *dev, size_t size,
561 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
562 {
563 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
564 
565 	if (page)
566 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
567 	return page;
568 }
569 EXPORT_SYMBOL_GPL(dma_alloc_pages);
570 
571 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
572 		dma_addr_t dma_handle, enum dma_data_direction dir)
573 {
574 	const struct dma_map_ops *ops = get_dma_ops(dev);
575 
576 	size = PAGE_ALIGN(size);
577 	if (dma_alloc_direct(dev, ops))
578 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
579 	else if (ops->free_pages)
580 		ops->free_pages(dev, size, page, dma_handle, dir);
581 }
582 
583 void dma_free_pages(struct device *dev, size_t size, struct page *page,
584 		dma_addr_t dma_handle, enum dma_data_direction dir)
585 {
586 	debug_dma_unmap_page(dev, dma_handle, size, dir);
587 	__dma_free_pages(dev, size, page, dma_handle, dir);
588 }
589 EXPORT_SYMBOL_GPL(dma_free_pages);
590 
591 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
592 		size_t size, struct page *page)
593 {
594 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
595 
596 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
597 		return -ENXIO;
598 	return remap_pfn_range(vma, vma->vm_start,
599 			       page_to_pfn(page) + vma->vm_pgoff,
600 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
601 }
602 EXPORT_SYMBOL_GPL(dma_mmap_pages);
603 
604 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
605 		enum dma_data_direction dir, gfp_t gfp)
606 {
607 	struct sg_table *sgt;
608 	struct page *page;
609 
610 	sgt = kmalloc(sizeof(*sgt), gfp);
611 	if (!sgt)
612 		return NULL;
613 	if (sg_alloc_table(sgt, 1, gfp))
614 		goto out_free_sgt;
615 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
616 	if (!page)
617 		goto out_free_table;
618 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
619 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
620 	return sgt;
621 out_free_table:
622 	sg_free_table(sgt);
623 out_free_sgt:
624 	kfree(sgt);
625 	return NULL;
626 }
627 
628 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
629 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
630 {
631 	const struct dma_map_ops *ops = get_dma_ops(dev);
632 	struct sg_table *sgt;
633 
634 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
635 		return NULL;
636 
637 	if (ops && ops->alloc_noncontiguous)
638 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
639 	else
640 		sgt = alloc_single_sgt(dev, size, dir, gfp);
641 
642 	if (sgt) {
643 		sgt->nents = 1;
644 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
645 	}
646 	return sgt;
647 }
648 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
649 
650 static void free_single_sgt(struct device *dev, size_t size,
651 		struct sg_table *sgt, enum dma_data_direction dir)
652 {
653 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
654 			 dir);
655 	sg_free_table(sgt);
656 	kfree(sgt);
657 }
658 
659 void dma_free_noncontiguous(struct device *dev, size_t size,
660 		struct sg_table *sgt, enum dma_data_direction dir)
661 {
662 	const struct dma_map_ops *ops = get_dma_ops(dev);
663 
664 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
665 	if (ops && ops->free_noncontiguous)
666 		ops->free_noncontiguous(dev, size, sgt, dir);
667 	else
668 		free_single_sgt(dev, size, sgt, dir);
669 }
670 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
671 
672 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
673 		struct sg_table *sgt)
674 {
675 	const struct dma_map_ops *ops = get_dma_ops(dev);
676 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
677 
678 	if (ops && ops->alloc_noncontiguous)
679 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
680 	return page_address(sg_page(sgt->sgl));
681 }
682 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
683 
684 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
685 {
686 	const struct dma_map_ops *ops = get_dma_ops(dev);
687 
688 	if (ops && ops->alloc_noncontiguous)
689 		vunmap(vaddr);
690 }
691 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
692 
693 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
694 		size_t size, struct sg_table *sgt)
695 {
696 	const struct dma_map_ops *ops = get_dma_ops(dev);
697 
698 	if (ops && ops->alloc_noncontiguous) {
699 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
700 
701 		if (vma->vm_pgoff >= count ||
702 		    vma_pages(vma) > count - vma->vm_pgoff)
703 			return -ENXIO;
704 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
705 	}
706 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
707 }
708 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
709 
710 int dma_supported(struct device *dev, u64 mask)
711 {
712 	const struct dma_map_ops *ops = get_dma_ops(dev);
713 
714 	/*
715 	 * ->dma_supported sets the bypass flag, so we must always call
716 	 * into the method here unless the device is truly direct mapped.
717 	 */
718 	if (!ops)
719 		return dma_direct_supported(dev, mask);
720 	if (!ops->dma_supported)
721 		return 1;
722 	return ops->dma_supported(dev, mask);
723 }
724 EXPORT_SYMBOL(dma_supported);
725 
726 bool dma_pci_p2pdma_supported(struct device *dev)
727 {
728 	const struct dma_map_ops *ops = get_dma_ops(dev);
729 
730 	/* if ops is not set, dma direct will be used which supports P2PDMA */
731 	if (!ops)
732 		return true;
733 
734 	/*
735 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
736 	 * not be used with dma mapping ops that do not have support even
737 	 * if the specific device is bypassing them.
738 	 */
739 
740 	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
741 }
742 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
743 
744 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
745 void arch_dma_set_mask(struct device *dev, u64 mask);
746 #else
747 #define arch_dma_set_mask(dev, mask)	do { } while (0)
748 #endif
749 
750 int dma_set_mask(struct device *dev, u64 mask)
751 {
752 	/*
753 	 * Truncate the mask to the actually supported dma_addr_t width to
754 	 * avoid generating unsupportable addresses.
755 	 */
756 	mask = (dma_addr_t)mask;
757 
758 	if (!dev->dma_mask || !dma_supported(dev, mask))
759 		return -EIO;
760 
761 	arch_dma_set_mask(dev, mask);
762 	*dev->dma_mask = mask;
763 	return 0;
764 }
765 EXPORT_SYMBOL(dma_set_mask);
766 
767 int dma_set_coherent_mask(struct device *dev, u64 mask)
768 {
769 	/*
770 	 * Truncate the mask to the actually supported dma_addr_t width to
771 	 * avoid generating unsupportable addresses.
772 	 */
773 	mask = (dma_addr_t)mask;
774 
775 	if (!dma_supported(dev, mask))
776 		return -EIO;
777 
778 	dev->coherent_dma_mask = mask;
779 	return 0;
780 }
781 EXPORT_SYMBOL(dma_set_coherent_mask);
782 
783 size_t dma_max_mapping_size(struct device *dev)
784 {
785 	const struct dma_map_ops *ops = get_dma_ops(dev);
786 	size_t size = SIZE_MAX;
787 
788 	if (dma_map_direct(dev, ops))
789 		size = dma_direct_max_mapping_size(dev);
790 	else if (ops && ops->max_mapping_size)
791 		size = ops->max_mapping_size(dev);
792 
793 	return size;
794 }
795 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
796 
797 size_t dma_opt_mapping_size(struct device *dev)
798 {
799 	const struct dma_map_ops *ops = get_dma_ops(dev);
800 	size_t size = SIZE_MAX;
801 
802 	if (ops && ops->opt_mapping_size)
803 		size = ops->opt_mapping_size();
804 
805 	return min(dma_max_mapping_size(dev), size);
806 }
807 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
808 
809 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
810 {
811 	const struct dma_map_ops *ops = get_dma_ops(dev);
812 
813 	if (dma_map_direct(dev, ops))
814 		return dma_direct_need_sync(dev, dma_addr);
815 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
816 }
817 EXPORT_SYMBOL_GPL(dma_need_sync);
818 
819 unsigned long dma_get_merge_boundary(struct device *dev)
820 {
821 	const struct dma_map_ops *ops = get_dma_ops(dev);
822 
823 	if (!ops || !ops->get_merge_boundary)
824 		return 0;	/* can't merge */
825 
826 	return ops->get_merge_boundary(dev);
827 }
828 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
829