xref: /openbmc/linux/kernel/dma/mapping.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/dma-noncoherent.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 
17 /*
18  * Managed DMA API
19  */
20 struct dma_devres {
21 	size_t		size;
22 	void		*vaddr;
23 	dma_addr_t	dma_handle;
24 	unsigned long	attrs;
25 };
26 
27 static void dmam_release(struct device *dev, void *res)
28 {
29 	struct dma_devres *this = res;
30 
31 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
32 			this->attrs);
33 }
34 
35 static int dmam_match(struct device *dev, void *res, void *match_data)
36 {
37 	struct dma_devres *this = res, *match = match_data;
38 
39 	if (this->vaddr == match->vaddr) {
40 		WARN_ON(this->size != match->size ||
41 			this->dma_handle != match->dma_handle);
42 		return 1;
43 	}
44 	return 0;
45 }
46 
47 /**
48  * dmam_alloc_coherent - Managed dma_alloc_coherent()
49  * @dev: Device to allocate coherent memory for
50  * @size: Size of allocation
51  * @dma_handle: Out argument for allocated DMA handle
52  * @gfp: Allocation flags
53  *
54  * Managed dma_alloc_coherent().  Memory allocated using this function
55  * will be automatically released on driver detach.
56  *
57  * RETURNS:
58  * Pointer to allocated memory on success, NULL on failure.
59  */
60 void *dmam_alloc_coherent(struct device *dev, size_t size,
61 			   dma_addr_t *dma_handle, gfp_t gfp)
62 {
63 	struct dma_devres *dr;
64 	void *vaddr;
65 
66 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
67 	if (!dr)
68 		return NULL;
69 
70 	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
71 	if (!vaddr) {
72 		devres_free(dr);
73 		return NULL;
74 	}
75 
76 	dr->vaddr = vaddr;
77 	dr->dma_handle = *dma_handle;
78 	dr->size = size;
79 
80 	devres_add(dev, dr);
81 
82 	return vaddr;
83 }
84 EXPORT_SYMBOL(dmam_alloc_coherent);
85 
86 /**
87  * dmam_free_coherent - Managed dma_free_coherent()
88  * @dev: Device to free coherent memory for
89  * @size: Size of allocation
90  * @vaddr: Virtual address of the memory to free
91  * @dma_handle: DMA handle of the memory to free
92  *
93  * Managed dma_free_coherent().
94  */
95 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
96 			dma_addr_t dma_handle)
97 {
98 	struct dma_devres match_data = { size, vaddr, dma_handle };
99 
100 	dma_free_coherent(dev, size, vaddr, dma_handle);
101 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
102 }
103 EXPORT_SYMBOL(dmam_free_coherent);
104 
105 /**
106  * dmam_alloc_attrs - Managed dma_alloc_attrs()
107  * @dev: Device to allocate non_coherent memory for
108  * @size: Size of allocation
109  * @dma_handle: Out argument for allocated DMA handle
110  * @gfp: Allocation flags
111  * @attrs: Flags in the DMA_ATTR_* namespace.
112  *
113  * Managed dma_alloc_attrs().  Memory allocated using this function will be
114  * automatically released on driver detach.
115  *
116  * RETURNS:
117  * Pointer to allocated memory on success, NULL on failure.
118  */
119 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
120 		gfp_t gfp, unsigned long attrs)
121 {
122 	struct dma_devres *dr;
123 	void *vaddr;
124 
125 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
126 	if (!dr)
127 		return NULL;
128 
129 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
130 	if (!vaddr) {
131 		devres_free(dr);
132 		return NULL;
133 	}
134 
135 	dr->vaddr = vaddr;
136 	dr->dma_handle = *dma_handle;
137 	dr->size = size;
138 	dr->attrs = attrs;
139 
140 	devres_add(dev, dr);
141 
142 	return vaddr;
143 }
144 EXPORT_SYMBOL(dmam_alloc_attrs);
145 
146 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
147 
148 static void dmam_coherent_decl_release(struct device *dev, void *res)
149 {
150 	dma_release_declared_memory(dev);
151 }
152 
153 /**
154  * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
155  * @dev: Device to declare coherent memory for
156  * @phys_addr: Physical address of coherent memory to be declared
157  * @device_addr: Device address of coherent memory to be declared
158  * @size: Size of coherent memory to be declared
159  * @flags: Flags
160  *
161  * Managed dma_declare_coherent_memory().
162  *
163  * RETURNS:
164  * 0 on success, -errno on failure.
165  */
166 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
167 				 dma_addr_t device_addr, size_t size, int flags)
168 {
169 	void *res;
170 	int rc;
171 
172 	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
173 	if (!res)
174 		return -ENOMEM;
175 
176 	rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
177 					 flags);
178 	if (!rc)
179 		devres_add(dev, res);
180 	else
181 		devres_free(res);
182 
183 	return rc;
184 }
185 EXPORT_SYMBOL(dmam_declare_coherent_memory);
186 
187 /**
188  * dmam_release_declared_memory - Managed dma_release_declared_memory().
189  * @dev: Device to release declared coherent memory for
190  *
191  * Managed dmam_release_declared_memory().
192  */
193 void dmam_release_declared_memory(struct device *dev)
194 {
195 	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
196 }
197 EXPORT_SYMBOL(dmam_release_declared_memory);
198 
199 #endif
200 
201 /*
202  * Create scatter-list for the already allocated DMA buffer.
203  */
204 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
205 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
206 		 unsigned long attrs)
207 {
208 	struct page *page;
209 	int ret;
210 
211 	if (!dev_is_dma_coherent(dev)) {
212 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
213 			return -ENXIO;
214 
215 		page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
216 				dma_addr));
217 	} else {
218 		page = virt_to_page(cpu_addr);
219 	}
220 
221 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
222 	if (!ret)
223 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
224 	return ret;
225 }
226 EXPORT_SYMBOL(dma_common_get_sgtable);
227 
228 /*
229  * Create userspace mapping for the DMA-coherent memory.
230  */
231 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
232 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
233 		unsigned long attrs)
234 {
235 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
236 	unsigned long user_count = vma_pages(vma);
237 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
238 	unsigned long off = vma->vm_pgoff;
239 	unsigned long pfn;
240 	int ret = -ENXIO;
241 
242 	vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
243 
244 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
245 		return ret;
246 
247 	if (off >= count || user_count > count - off)
248 		return -ENXIO;
249 
250 	if (!dev_is_dma_coherent(dev)) {
251 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
252 			return -ENXIO;
253 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
254 	} else {
255 		pfn = page_to_pfn(virt_to_page(cpu_addr));
256 	}
257 
258 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
259 			user_count << PAGE_SHIFT, vma->vm_page_prot);
260 #else
261 	return -ENXIO;
262 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
263 }
264 EXPORT_SYMBOL(dma_common_mmap);
265 
266 #ifdef CONFIG_MMU
267 static struct vm_struct *__dma_common_pages_remap(struct page **pages,
268 			size_t size, unsigned long vm_flags, pgprot_t prot,
269 			const void *caller)
270 {
271 	struct vm_struct *area;
272 
273 	area = get_vm_area_caller(size, vm_flags, caller);
274 	if (!area)
275 		return NULL;
276 
277 	if (map_vm_area(area, prot, pages)) {
278 		vunmap(area->addr);
279 		return NULL;
280 	}
281 
282 	return area;
283 }
284 
285 /*
286  * remaps an array of PAGE_SIZE pages into another vm_area
287  * Cannot be used in non-sleeping contexts
288  */
289 void *dma_common_pages_remap(struct page **pages, size_t size,
290 			unsigned long vm_flags, pgprot_t prot,
291 			const void *caller)
292 {
293 	struct vm_struct *area;
294 
295 	area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
296 	if (!area)
297 		return NULL;
298 
299 	area->pages = pages;
300 
301 	return area->addr;
302 }
303 
304 /*
305  * remaps an allocated contiguous region into another vm_area.
306  * Cannot be used in non-sleeping contexts
307  */
308 
309 void *dma_common_contiguous_remap(struct page *page, size_t size,
310 			unsigned long vm_flags,
311 			pgprot_t prot, const void *caller)
312 {
313 	int i;
314 	struct page **pages;
315 	struct vm_struct *area;
316 
317 	pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
318 	if (!pages)
319 		return NULL;
320 
321 	for (i = 0; i < (size >> PAGE_SHIFT); i++)
322 		pages[i] = nth_page(page, i);
323 
324 	area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
325 
326 	kfree(pages);
327 
328 	if (!area)
329 		return NULL;
330 	return area->addr;
331 }
332 
333 /*
334  * unmaps a range previously mapped by dma_common_*_remap
335  */
336 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
337 {
338 	struct vm_struct *area = find_vm_area(cpu_addr);
339 
340 	if (!area || (area->flags & vm_flags) != vm_flags) {
341 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
342 		return;
343 	}
344 
345 	unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
346 	vunmap(cpu_addr);
347 }
348 #endif
349