xref: /openbmc/linux/kernel/dma/mapping.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page = virt_to_page(cpu_addr);
116 	int ret;
117 
118 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
119 	if (!ret)
120 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
121 	return ret;
122 }
123 
124 /*
125  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
126  * that the intention is to allow exporting memory allocated via the
127  * coherent DMA APIs through the dma_buf API, which only accepts a
128  * scattertable.  This presents a couple of problems:
129  * 1. Not all memory allocated via the coherent DMA APIs is backed by
130  *    a struct page
131  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
132  *    as we will try to flush the memory through a different alias to that
133  *    actually being used (and the flushes are redundant.)
134  */
135 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
136 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
137 		unsigned long attrs)
138 {
139 	const struct dma_map_ops *ops = get_dma_ops(dev);
140 
141 	if (dma_is_direct(ops))
142 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
143 				size, attrs);
144 	if (!ops->get_sgtable)
145 		return -ENXIO;
146 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
147 }
148 EXPORT_SYMBOL(dma_get_sgtable_attrs);
149 
150 #ifdef CONFIG_MMU
151 /*
152  * Return the page attributes used for mapping dma_alloc_* memory, either in
153  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
154  */
155 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
156 {
157 	if (force_dma_unencrypted(dev))
158 		prot = pgprot_decrypted(prot);
159 	if (dev_is_dma_coherent(dev) ||
160 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
161              (attrs & DMA_ATTR_NON_CONSISTENT)))
162 		return prot;
163 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
164 	if (attrs & DMA_ATTR_WRITE_COMBINE)
165 		return pgprot_writecombine(prot);
166 #endif
167 	return pgprot_dmacoherent(prot);
168 }
169 #endif /* CONFIG_MMU */
170 
171 /*
172  * Create userspace mapping for the DMA-coherent memory.
173  */
174 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
175 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
176 		unsigned long attrs)
177 {
178 #ifdef CONFIG_MMU
179 	unsigned long user_count = vma_pages(vma);
180 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
181 	unsigned long off = vma->vm_pgoff;
182 	int ret = -ENXIO;
183 
184 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
185 
186 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
187 		return ret;
188 
189 	if (off >= count || user_count > count - off)
190 		return -ENXIO;
191 
192 	return remap_pfn_range(vma, vma->vm_start,
193 			page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
194 			user_count << PAGE_SHIFT, vma->vm_page_prot);
195 #else
196 	return -ENXIO;
197 #endif /* CONFIG_MMU */
198 }
199 
200 /**
201  * dma_can_mmap - check if a given device supports dma_mmap_*
202  * @dev: device to check
203  *
204  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
205  * map DMA allocations to userspace.
206  */
207 bool dma_can_mmap(struct device *dev)
208 {
209 	const struct dma_map_ops *ops = get_dma_ops(dev);
210 
211 	if (dma_is_direct(ops))
212 		return dma_direct_can_mmap(dev);
213 	return ops->mmap != NULL;
214 }
215 EXPORT_SYMBOL_GPL(dma_can_mmap);
216 
217 /**
218  * dma_mmap_attrs - map a coherent DMA allocation into user space
219  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
220  * @vma: vm_area_struct describing requested user mapping
221  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
222  * @dma_addr: device-view address returned from dma_alloc_attrs
223  * @size: size of memory originally requested in dma_alloc_attrs
224  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
225  *
226  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
227  * space.  The coherent DMA buffer must not be freed by the driver until the
228  * user space mapping has been released.
229  */
230 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
231 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
232 		unsigned long attrs)
233 {
234 	const struct dma_map_ops *ops = get_dma_ops(dev);
235 
236 	if (dma_is_direct(ops))
237 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
238 				attrs);
239 	if (!ops->mmap)
240 		return -ENXIO;
241 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
242 }
243 EXPORT_SYMBOL(dma_mmap_attrs);
244 
245 u64 dma_get_required_mask(struct device *dev)
246 {
247 	const struct dma_map_ops *ops = get_dma_ops(dev);
248 
249 	if (dma_is_direct(ops))
250 		return dma_direct_get_required_mask(dev);
251 	if (ops->get_required_mask)
252 		return ops->get_required_mask(dev);
253 
254 	/*
255 	 * We require every DMA ops implementation to at least support a 32-bit
256 	 * DMA mask (and use bounce buffering if that isn't supported in
257 	 * hardware).  As the direct mapping code has its own routine to
258 	 * actually report an optimal mask we default to 32-bit here as that
259 	 * is the right thing for most IOMMUs, and at least not actively
260 	 * harmful in general.
261 	 */
262 	return DMA_BIT_MASK(32);
263 }
264 EXPORT_SYMBOL_GPL(dma_get_required_mask);
265 
266 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
267 		gfp_t flag, unsigned long attrs)
268 {
269 	const struct dma_map_ops *ops = get_dma_ops(dev);
270 	void *cpu_addr;
271 
272 	WARN_ON_ONCE(!dev->coherent_dma_mask);
273 
274 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
275 		return cpu_addr;
276 
277 	/* let the implementation decide on the zone to allocate from: */
278 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
279 
280 	if (dma_is_direct(ops))
281 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
282 	else if (ops->alloc)
283 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
284 	else
285 		return NULL;
286 
287 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
288 	return cpu_addr;
289 }
290 EXPORT_SYMBOL(dma_alloc_attrs);
291 
292 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
293 		dma_addr_t dma_handle, unsigned long attrs)
294 {
295 	const struct dma_map_ops *ops = get_dma_ops(dev);
296 
297 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
298 		return;
299 	/*
300 	 * On non-coherent platforms which implement DMA-coherent buffers via
301 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
302 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
303 	 * sleep on some machines, and b) an indication that the driver is
304 	 * probably misusing the coherent API anyway.
305 	 */
306 	WARN_ON(irqs_disabled());
307 
308 	if (!cpu_addr)
309 		return;
310 
311 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
312 	if (dma_is_direct(ops))
313 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
314 	else if (ops->free)
315 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
316 }
317 EXPORT_SYMBOL(dma_free_attrs);
318 
319 int dma_supported(struct device *dev, u64 mask)
320 {
321 	const struct dma_map_ops *ops = get_dma_ops(dev);
322 
323 	if (dma_is_direct(ops))
324 		return dma_direct_supported(dev, mask);
325 	if (!ops->dma_supported)
326 		return 1;
327 	return ops->dma_supported(dev, mask);
328 }
329 EXPORT_SYMBOL(dma_supported);
330 
331 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
332 void arch_dma_set_mask(struct device *dev, u64 mask);
333 #else
334 #define arch_dma_set_mask(dev, mask)	do { } while (0)
335 #endif
336 
337 int dma_set_mask(struct device *dev, u64 mask)
338 {
339 	/*
340 	 * Truncate the mask to the actually supported dma_addr_t width to
341 	 * avoid generating unsupportable addresses.
342 	 */
343 	mask = (dma_addr_t)mask;
344 
345 	if (!dev->dma_mask || !dma_supported(dev, mask))
346 		return -EIO;
347 
348 	arch_dma_set_mask(dev, mask);
349 	*dev->dma_mask = mask;
350 	return 0;
351 }
352 EXPORT_SYMBOL(dma_set_mask);
353 
354 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
355 int dma_set_coherent_mask(struct device *dev, u64 mask)
356 {
357 	/*
358 	 * Truncate the mask to the actually supported dma_addr_t width to
359 	 * avoid generating unsupportable addresses.
360 	 */
361 	mask = (dma_addr_t)mask;
362 
363 	if (!dma_supported(dev, mask))
364 		return -EIO;
365 
366 	dev->coherent_dma_mask = mask;
367 	return 0;
368 }
369 EXPORT_SYMBOL(dma_set_coherent_mask);
370 #endif
371 
372 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
373 		enum dma_data_direction dir)
374 {
375 	const struct dma_map_ops *ops = get_dma_ops(dev);
376 
377 	BUG_ON(!valid_dma_direction(dir));
378 
379 	if (dma_is_direct(ops))
380 		arch_dma_cache_sync(dev, vaddr, size, dir);
381 	else if (ops->cache_sync)
382 		ops->cache_sync(dev, vaddr, size, dir);
383 }
384 EXPORT_SYMBOL(dma_cache_sync);
385 
386 size_t dma_max_mapping_size(struct device *dev)
387 {
388 	const struct dma_map_ops *ops = get_dma_ops(dev);
389 	size_t size = SIZE_MAX;
390 
391 	if (dma_is_direct(ops))
392 		size = dma_direct_max_mapping_size(dev);
393 	else if (ops && ops->max_mapping_size)
394 		size = ops->max_mapping_size(dev);
395 
396 	return size;
397 }
398 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
399 
400 unsigned long dma_get_merge_boundary(struct device *dev)
401 {
402 	const struct dma_map_ops *ops = get_dma_ops(dev);
403 
404 	if (!ops || !ops->get_merge_boundary)
405 		return 0;	/* can't merge */
406 
407 	return ops->get_merge_boundary(dev);
408 }
409 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
410