xref: /openbmc/linux/kernel/dma/mapping.c (revision c496daeb863093a046e0bb8db7265bf45d91775a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/kmsan.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include "debug.h"
18 #include "direct.h"
19 
20 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
21 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
22 	defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
23 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
24 #endif
25 
26 /*
27  * Managed DMA API
28  */
29 struct dma_devres {
30 	size_t		size;
31 	void		*vaddr;
32 	dma_addr_t	dma_handle;
33 	unsigned long	attrs;
34 };
35 
36 static void dmam_release(struct device *dev, void *res)
37 {
38 	struct dma_devres *this = res;
39 
40 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
41 			this->attrs);
42 }
43 
44 static int dmam_match(struct device *dev, void *res, void *match_data)
45 {
46 	struct dma_devres *this = res, *match = match_data;
47 
48 	if (this->vaddr == match->vaddr) {
49 		WARN_ON(this->size != match->size ||
50 			this->dma_handle != match->dma_handle);
51 		return 1;
52 	}
53 	return 0;
54 }
55 
56 /**
57  * dmam_free_coherent - Managed dma_free_coherent()
58  * @dev: Device to free coherent memory for
59  * @size: Size of allocation
60  * @vaddr: Virtual address of the memory to free
61  * @dma_handle: DMA handle of the memory to free
62  *
63  * Managed dma_free_coherent().
64  */
65 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
66 			dma_addr_t dma_handle)
67 {
68 	struct dma_devres match_data = { size, vaddr, dma_handle };
69 
70 	dma_free_coherent(dev, size, vaddr, dma_handle);
71 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
72 }
73 EXPORT_SYMBOL(dmam_free_coherent);
74 
75 /**
76  * dmam_alloc_attrs - Managed dma_alloc_attrs()
77  * @dev: Device to allocate non_coherent memory for
78  * @size: Size of allocation
79  * @dma_handle: Out argument for allocated DMA handle
80  * @gfp: Allocation flags
81  * @attrs: Flags in the DMA_ATTR_* namespace.
82  *
83  * Managed dma_alloc_attrs().  Memory allocated using this function will be
84  * automatically released on driver detach.
85  *
86  * RETURNS:
87  * Pointer to allocated memory on success, NULL on failure.
88  */
89 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
90 		gfp_t gfp, unsigned long attrs)
91 {
92 	struct dma_devres *dr;
93 	void *vaddr;
94 
95 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
96 	if (!dr)
97 		return NULL;
98 
99 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
100 	if (!vaddr) {
101 		devres_free(dr);
102 		return NULL;
103 	}
104 
105 	dr->vaddr = vaddr;
106 	dr->dma_handle = *dma_handle;
107 	dr->size = size;
108 	dr->attrs = attrs;
109 
110 	devres_add(dev, dr);
111 
112 	return vaddr;
113 }
114 EXPORT_SYMBOL(dmam_alloc_attrs);
115 
116 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
117 		const struct dma_map_ops *ops)
118 {
119 	if (likely(!ops))
120 		return true;
121 #ifdef CONFIG_DMA_OPS_BYPASS
122 	if (dev->dma_ops_bypass)
123 		return min_not_zero(mask, dev->bus_dma_limit) >=
124 			    dma_direct_get_required_mask(dev);
125 #endif
126 	return false;
127 }
128 
129 
130 /*
131  * Check if the devices uses a direct mapping for streaming DMA operations.
132  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
133  * enough.
134  */
135 static inline bool dma_alloc_direct(struct device *dev,
136 		const struct dma_map_ops *ops)
137 {
138 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
139 }
140 
141 static inline bool dma_map_direct(struct device *dev,
142 		const struct dma_map_ops *ops)
143 {
144 	return dma_go_direct(dev, *dev->dma_mask, ops);
145 }
146 
147 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
148 		size_t offset, size_t size, enum dma_data_direction dir,
149 		unsigned long attrs)
150 {
151 	const struct dma_map_ops *ops = get_dma_ops(dev);
152 	dma_addr_t addr;
153 
154 	BUG_ON(!valid_dma_direction(dir));
155 
156 	if (WARN_ON_ONCE(!dev->dma_mask))
157 		return DMA_MAPPING_ERROR;
158 
159 	if (dma_map_direct(dev, ops) ||
160 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
161 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
162 	else
163 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
164 	kmsan_handle_dma(page, offset, size, dir);
165 	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
166 
167 	return addr;
168 }
169 EXPORT_SYMBOL(dma_map_page_attrs);
170 
171 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
172 		enum dma_data_direction dir, unsigned long attrs)
173 {
174 	const struct dma_map_ops *ops = get_dma_ops(dev);
175 
176 	BUG_ON(!valid_dma_direction(dir));
177 	if (dma_map_direct(dev, ops) ||
178 	    arch_dma_unmap_page_direct(dev, addr + size))
179 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
180 	else if (ops->unmap_page)
181 		ops->unmap_page(dev, addr, size, dir, attrs);
182 	debug_dma_unmap_page(dev, addr, size, dir);
183 }
184 EXPORT_SYMBOL(dma_unmap_page_attrs);
185 
186 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
187 	 int nents, enum dma_data_direction dir, unsigned long attrs)
188 {
189 	const struct dma_map_ops *ops = get_dma_ops(dev);
190 	int ents;
191 
192 	BUG_ON(!valid_dma_direction(dir));
193 
194 	if (WARN_ON_ONCE(!dev->dma_mask))
195 		return 0;
196 
197 	if (dma_map_direct(dev, ops) ||
198 	    arch_dma_map_sg_direct(dev, sg, nents))
199 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
200 	else
201 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
202 
203 	if (ents > 0) {
204 		kmsan_handle_dma_sg(sg, nents, dir);
205 		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
206 	} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
207 				ents != -EIO && ents != -EREMOTEIO)) {
208 		return -EIO;
209 	}
210 
211 	return ents;
212 }
213 
214 /**
215  * dma_map_sg_attrs - Map the given buffer for DMA
216  * @dev:	The device for which to perform the DMA operation
217  * @sg:		The sg_table object describing the buffer
218  * @nents:	Number of entries to map
219  * @dir:	DMA direction
220  * @attrs:	Optional DMA attributes for the map operation
221  *
222  * Maps a buffer described by a scatterlist passed in the sg argument with
223  * nents segments for the @dir DMA operation by the @dev device.
224  *
225  * Returns the number of mapped entries (which can be less than nents)
226  * on success. Zero is returned for any error.
227  *
228  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
229  * original sg and original nents (not the value returned by this funciton).
230  */
231 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
232 		    int nents, enum dma_data_direction dir, unsigned long attrs)
233 {
234 	int ret;
235 
236 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
237 	if (ret < 0)
238 		return 0;
239 	return ret;
240 }
241 EXPORT_SYMBOL(dma_map_sg_attrs);
242 
243 /**
244  * dma_map_sgtable - Map the given buffer for DMA
245  * @dev:	The device for which to perform the DMA operation
246  * @sgt:	The sg_table object describing the buffer
247  * @dir:	DMA direction
248  * @attrs:	Optional DMA attributes for the map operation
249  *
250  * Maps a buffer described by a scatterlist stored in the given sg_table
251  * object for the @dir DMA operation by the @dev device. After success, the
252  * ownership for the buffer is transferred to the DMA domain.  One has to
253  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
254  * ownership of the buffer back to the CPU domain before touching the
255  * buffer by the CPU.
256  *
257  * Returns 0 on success or a negative error code on error. The following
258  * error codes are supported with the given meaning:
259  *
260  *   -EINVAL		An invalid argument, unaligned access or other error
261  *			in usage. Will not succeed if retried.
262  *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
263  *			complete the mapping. Should succeed if retried later.
264  *   -EIO		Legacy error code with an unknown meaning. eg. this is
265  *			returned if a lower level call returned
266  *			DMA_MAPPING_ERROR.
267  *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
268  *			in the sg_table. This will not succeed if retried.
269  */
270 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
271 		    enum dma_data_direction dir, unsigned long attrs)
272 {
273 	int nents;
274 
275 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
276 	if (nents < 0)
277 		return nents;
278 	sgt->nents = nents;
279 	return 0;
280 }
281 EXPORT_SYMBOL_GPL(dma_map_sgtable);
282 
283 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
284 				      int nents, enum dma_data_direction dir,
285 				      unsigned long attrs)
286 {
287 	const struct dma_map_ops *ops = get_dma_ops(dev);
288 
289 	BUG_ON(!valid_dma_direction(dir));
290 	debug_dma_unmap_sg(dev, sg, nents, dir);
291 	if (dma_map_direct(dev, ops) ||
292 	    arch_dma_unmap_sg_direct(dev, sg, nents))
293 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
294 	else if (ops->unmap_sg)
295 		ops->unmap_sg(dev, sg, nents, dir, attrs);
296 }
297 EXPORT_SYMBOL(dma_unmap_sg_attrs);
298 
299 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
300 		size_t size, enum dma_data_direction dir, unsigned long attrs)
301 {
302 	const struct dma_map_ops *ops = get_dma_ops(dev);
303 	dma_addr_t addr = DMA_MAPPING_ERROR;
304 
305 	BUG_ON(!valid_dma_direction(dir));
306 
307 	if (WARN_ON_ONCE(!dev->dma_mask))
308 		return DMA_MAPPING_ERROR;
309 
310 	if (dma_map_direct(dev, ops))
311 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
312 	else if (ops->map_resource)
313 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
314 
315 	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
316 	return addr;
317 }
318 EXPORT_SYMBOL(dma_map_resource);
319 
320 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
321 		enum dma_data_direction dir, unsigned long attrs)
322 {
323 	const struct dma_map_ops *ops = get_dma_ops(dev);
324 
325 	BUG_ON(!valid_dma_direction(dir));
326 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
327 		ops->unmap_resource(dev, addr, size, dir, attrs);
328 	debug_dma_unmap_resource(dev, addr, size, dir);
329 }
330 EXPORT_SYMBOL(dma_unmap_resource);
331 
332 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
333 		enum dma_data_direction dir)
334 {
335 	const struct dma_map_ops *ops = get_dma_ops(dev);
336 
337 	BUG_ON(!valid_dma_direction(dir));
338 	if (dma_map_direct(dev, ops))
339 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
340 	else if (ops->sync_single_for_cpu)
341 		ops->sync_single_for_cpu(dev, addr, size, dir);
342 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
343 }
344 EXPORT_SYMBOL(dma_sync_single_for_cpu);
345 
346 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
347 		size_t size, enum dma_data_direction dir)
348 {
349 	const struct dma_map_ops *ops = get_dma_ops(dev);
350 
351 	BUG_ON(!valid_dma_direction(dir));
352 	if (dma_map_direct(dev, ops))
353 		dma_direct_sync_single_for_device(dev, addr, size, dir);
354 	else if (ops->sync_single_for_device)
355 		ops->sync_single_for_device(dev, addr, size, dir);
356 	debug_dma_sync_single_for_device(dev, addr, size, dir);
357 }
358 EXPORT_SYMBOL(dma_sync_single_for_device);
359 
360 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
361 		    int nelems, enum dma_data_direction dir)
362 {
363 	const struct dma_map_ops *ops = get_dma_ops(dev);
364 
365 	BUG_ON(!valid_dma_direction(dir));
366 	if (dma_map_direct(dev, ops))
367 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
368 	else if (ops->sync_sg_for_cpu)
369 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
370 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
371 }
372 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
373 
374 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
375 		       int nelems, enum dma_data_direction dir)
376 {
377 	const struct dma_map_ops *ops = get_dma_ops(dev);
378 
379 	BUG_ON(!valid_dma_direction(dir));
380 	if (dma_map_direct(dev, ops))
381 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
382 	else if (ops->sync_sg_for_device)
383 		ops->sync_sg_for_device(dev, sg, nelems, dir);
384 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
385 }
386 EXPORT_SYMBOL(dma_sync_sg_for_device);
387 
388 /*
389  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
390  * that the intention is to allow exporting memory allocated via the
391  * coherent DMA APIs through the dma_buf API, which only accepts a
392  * scattertable.  This presents a couple of problems:
393  * 1. Not all memory allocated via the coherent DMA APIs is backed by
394  *    a struct page
395  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
396  *    as we will try to flush the memory through a different alias to that
397  *    actually being used (and the flushes are redundant.)
398  */
399 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
400 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
401 		unsigned long attrs)
402 {
403 	const struct dma_map_ops *ops = get_dma_ops(dev);
404 
405 	if (dma_alloc_direct(dev, ops))
406 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
407 				size, attrs);
408 	if (!ops->get_sgtable)
409 		return -ENXIO;
410 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
411 }
412 EXPORT_SYMBOL(dma_get_sgtable_attrs);
413 
414 #ifdef CONFIG_MMU
415 /*
416  * Return the page attributes used for mapping dma_alloc_* memory, either in
417  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
418  */
419 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
420 {
421 	if (dev_is_dma_coherent(dev))
422 		return prot;
423 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
424 	if (attrs & DMA_ATTR_WRITE_COMBINE)
425 		return pgprot_writecombine(prot);
426 #endif
427 	return pgprot_dmacoherent(prot);
428 }
429 #endif /* CONFIG_MMU */
430 
431 /**
432  * dma_can_mmap - check if a given device supports dma_mmap_*
433  * @dev: device to check
434  *
435  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
436  * map DMA allocations to userspace.
437  */
438 bool dma_can_mmap(struct device *dev)
439 {
440 	const struct dma_map_ops *ops = get_dma_ops(dev);
441 
442 	if (dma_alloc_direct(dev, ops))
443 		return dma_direct_can_mmap(dev);
444 	return ops->mmap != NULL;
445 }
446 EXPORT_SYMBOL_GPL(dma_can_mmap);
447 
448 /**
449  * dma_mmap_attrs - map a coherent DMA allocation into user space
450  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
451  * @vma: vm_area_struct describing requested user mapping
452  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
453  * @dma_addr: device-view address returned from dma_alloc_attrs
454  * @size: size of memory originally requested in dma_alloc_attrs
455  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
456  *
457  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
458  * space.  The coherent DMA buffer must not be freed by the driver until the
459  * user space mapping has been released.
460  */
461 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
462 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
463 		unsigned long attrs)
464 {
465 	const struct dma_map_ops *ops = get_dma_ops(dev);
466 
467 	if (dma_alloc_direct(dev, ops))
468 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
469 				attrs);
470 	if (!ops->mmap)
471 		return -ENXIO;
472 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
473 }
474 EXPORT_SYMBOL(dma_mmap_attrs);
475 
476 u64 dma_get_required_mask(struct device *dev)
477 {
478 	const struct dma_map_ops *ops = get_dma_ops(dev);
479 
480 	if (dma_alloc_direct(dev, ops))
481 		return dma_direct_get_required_mask(dev);
482 	if (ops->get_required_mask)
483 		return ops->get_required_mask(dev);
484 
485 	/*
486 	 * We require every DMA ops implementation to at least support a 32-bit
487 	 * DMA mask (and use bounce buffering if that isn't supported in
488 	 * hardware).  As the direct mapping code has its own routine to
489 	 * actually report an optimal mask we default to 32-bit here as that
490 	 * is the right thing for most IOMMUs, and at least not actively
491 	 * harmful in general.
492 	 */
493 	return DMA_BIT_MASK(32);
494 }
495 EXPORT_SYMBOL_GPL(dma_get_required_mask);
496 
497 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
498 		gfp_t flag, unsigned long attrs)
499 {
500 	const struct dma_map_ops *ops = get_dma_ops(dev);
501 	void *cpu_addr;
502 
503 	WARN_ON_ONCE(!dev->coherent_dma_mask);
504 
505 	/*
506 	 * DMA allocations can never be turned back into a page pointer, so
507 	 * requesting compound pages doesn't make sense (and can't even be
508 	 * supported at all by various backends).
509 	 */
510 	if (WARN_ON_ONCE(flag & __GFP_COMP))
511 		return NULL;
512 
513 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
514 		return cpu_addr;
515 
516 	/* let the implementation decide on the zone to allocate from: */
517 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
518 
519 	if (dma_alloc_direct(dev, ops))
520 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
521 	else if (ops->alloc)
522 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
523 	else
524 		return NULL;
525 
526 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
527 	return cpu_addr;
528 }
529 EXPORT_SYMBOL(dma_alloc_attrs);
530 
531 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
532 		dma_addr_t dma_handle, unsigned long attrs)
533 {
534 	const struct dma_map_ops *ops = get_dma_ops(dev);
535 
536 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
537 		return;
538 	/*
539 	 * On non-coherent platforms which implement DMA-coherent buffers via
540 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
541 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
542 	 * sleep on some machines, and b) an indication that the driver is
543 	 * probably misusing the coherent API anyway.
544 	 */
545 	WARN_ON(irqs_disabled());
546 
547 	if (!cpu_addr)
548 		return;
549 
550 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
551 	if (dma_alloc_direct(dev, ops))
552 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
553 	else if (ops->free)
554 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
555 }
556 EXPORT_SYMBOL(dma_free_attrs);
557 
558 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
559 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
560 {
561 	const struct dma_map_ops *ops = get_dma_ops(dev);
562 
563 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
564 		return NULL;
565 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
566 		return NULL;
567 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
568 		return NULL;
569 
570 	size = PAGE_ALIGN(size);
571 	if (dma_alloc_direct(dev, ops))
572 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
573 	if (!ops->alloc_pages)
574 		return NULL;
575 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
576 }
577 
578 struct page *dma_alloc_pages(struct device *dev, size_t size,
579 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
580 {
581 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
582 
583 	if (page)
584 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
585 	return page;
586 }
587 EXPORT_SYMBOL_GPL(dma_alloc_pages);
588 
589 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
590 		dma_addr_t dma_handle, enum dma_data_direction dir)
591 {
592 	const struct dma_map_ops *ops = get_dma_ops(dev);
593 
594 	size = PAGE_ALIGN(size);
595 	if (dma_alloc_direct(dev, ops))
596 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
597 	else if (ops->free_pages)
598 		ops->free_pages(dev, size, page, dma_handle, dir);
599 }
600 
601 void dma_free_pages(struct device *dev, size_t size, struct page *page,
602 		dma_addr_t dma_handle, enum dma_data_direction dir)
603 {
604 	debug_dma_unmap_page(dev, dma_handle, size, dir);
605 	__dma_free_pages(dev, size, page, dma_handle, dir);
606 }
607 EXPORT_SYMBOL_GPL(dma_free_pages);
608 
609 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
610 		size_t size, struct page *page)
611 {
612 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
613 
614 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
615 		return -ENXIO;
616 	return remap_pfn_range(vma, vma->vm_start,
617 			       page_to_pfn(page) + vma->vm_pgoff,
618 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
619 }
620 EXPORT_SYMBOL_GPL(dma_mmap_pages);
621 
622 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
623 		enum dma_data_direction dir, gfp_t gfp)
624 {
625 	struct sg_table *sgt;
626 	struct page *page;
627 
628 	sgt = kmalloc(sizeof(*sgt), gfp);
629 	if (!sgt)
630 		return NULL;
631 	if (sg_alloc_table(sgt, 1, gfp))
632 		goto out_free_sgt;
633 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
634 	if (!page)
635 		goto out_free_table;
636 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
637 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
638 	return sgt;
639 out_free_table:
640 	sg_free_table(sgt);
641 out_free_sgt:
642 	kfree(sgt);
643 	return NULL;
644 }
645 
646 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
647 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
648 {
649 	const struct dma_map_ops *ops = get_dma_ops(dev);
650 	struct sg_table *sgt;
651 
652 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
653 		return NULL;
654 	if (WARN_ON_ONCE(gfp & __GFP_COMP))
655 		return NULL;
656 
657 	if (ops && ops->alloc_noncontiguous)
658 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
659 	else
660 		sgt = alloc_single_sgt(dev, size, dir, gfp);
661 
662 	if (sgt) {
663 		sgt->nents = 1;
664 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
665 	}
666 	return sgt;
667 }
668 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
669 
670 static void free_single_sgt(struct device *dev, size_t size,
671 		struct sg_table *sgt, enum dma_data_direction dir)
672 {
673 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
674 			 dir);
675 	sg_free_table(sgt);
676 	kfree(sgt);
677 }
678 
679 void dma_free_noncontiguous(struct device *dev, size_t size,
680 		struct sg_table *sgt, enum dma_data_direction dir)
681 {
682 	const struct dma_map_ops *ops = get_dma_ops(dev);
683 
684 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
685 	if (ops && ops->free_noncontiguous)
686 		ops->free_noncontiguous(dev, size, sgt, dir);
687 	else
688 		free_single_sgt(dev, size, sgt, dir);
689 }
690 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
691 
692 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
693 		struct sg_table *sgt)
694 {
695 	const struct dma_map_ops *ops = get_dma_ops(dev);
696 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
697 
698 	if (ops && ops->alloc_noncontiguous)
699 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
700 	return page_address(sg_page(sgt->sgl));
701 }
702 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
703 
704 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
705 {
706 	const struct dma_map_ops *ops = get_dma_ops(dev);
707 
708 	if (ops && ops->alloc_noncontiguous)
709 		vunmap(vaddr);
710 }
711 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
712 
713 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
714 		size_t size, struct sg_table *sgt)
715 {
716 	const struct dma_map_ops *ops = get_dma_ops(dev);
717 
718 	if (ops && ops->alloc_noncontiguous) {
719 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
720 
721 		if (vma->vm_pgoff >= count ||
722 		    vma_pages(vma) > count - vma->vm_pgoff)
723 			return -ENXIO;
724 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
725 	}
726 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
727 }
728 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
729 
730 static int dma_supported(struct device *dev, u64 mask)
731 {
732 	const struct dma_map_ops *ops = get_dma_ops(dev);
733 
734 	/*
735 	 * ->dma_supported sets the bypass flag, so we must always call
736 	 * into the method here unless the device is truly direct mapped.
737 	 */
738 	if (!ops)
739 		return dma_direct_supported(dev, mask);
740 	if (!ops->dma_supported)
741 		return 1;
742 	return ops->dma_supported(dev, mask);
743 }
744 
745 bool dma_pci_p2pdma_supported(struct device *dev)
746 {
747 	const struct dma_map_ops *ops = get_dma_ops(dev);
748 
749 	/* if ops is not set, dma direct will be used which supports P2PDMA */
750 	if (!ops)
751 		return true;
752 
753 	/*
754 	 * Note: dma_ops_bypass is not checked here because P2PDMA should
755 	 * not be used with dma mapping ops that do not have support even
756 	 * if the specific device is bypassing them.
757 	 */
758 
759 	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
760 }
761 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
762 
763 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
764 void arch_dma_set_mask(struct device *dev, u64 mask);
765 #else
766 #define arch_dma_set_mask(dev, mask)	do { } while (0)
767 #endif
768 
769 int dma_set_mask(struct device *dev, u64 mask)
770 {
771 	/*
772 	 * Truncate the mask to the actually supported dma_addr_t width to
773 	 * avoid generating unsupportable addresses.
774 	 */
775 	mask = (dma_addr_t)mask;
776 
777 	if (!dev->dma_mask || !dma_supported(dev, mask))
778 		return -EIO;
779 
780 	arch_dma_set_mask(dev, mask);
781 	*dev->dma_mask = mask;
782 	return 0;
783 }
784 EXPORT_SYMBOL(dma_set_mask);
785 
786 int dma_set_coherent_mask(struct device *dev, u64 mask)
787 {
788 	/*
789 	 * Truncate the mask to the actually supported dma_addr_t width to
790 	 * avoid generating unsupportable addresses.
791 	 */
792 	mask = (dma_addr_t)mask;
793 
794 	if (!dma_supported(dev, mask))
795 		return -EIO;
796 
797 	dev->coherent_dma_mask = mask;
798 	return 0;
799 }
800 EXPORT_SYMBOL(dma_set_coherent_mask);
801 
802 size_t dma_max_mapping_size(struct device *dev)
803 {
804 	const struct dma_map_ops *ops = get_dma_ops(dev);
805 	size_t size = SIZE_MAX;
806 
807 	if (dma_map_direct(dev, ops))
808 		size = dma_direct_max_mapping_size(dev);
809 	else if (ops && ops->max_mapping_size)
810 		size = ops->max_mapping_size(dev);
811 
812 	return size;
813 }
814 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
815 
816 size_t dma_opt_mapping_size(struct device *dev)
817 {
818 	const struct dma_map_ops *ops = get_dma_ops(dev);
819 	size_t size = SIZE_MAX;
820 
821 	if (ops && ops->opt_mapping_size)
822 		size = ops->opt_mapping_size();
823 
824 	return min(dma_max_mapping_size(dev), size);
825 }
826 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
827 
828 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
829 {
830 	const struct dma_map_ops *ops = get_dma_ops(dev);
831 
832 	if (dma_map_direct(dev, ops))
833 		return dma_direct_need_sync(dev, dma_addr);
834 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
835 }
836 EXPORT_SYMBOL_GPL(dma_need_sync);
837 
838 unsigned long dma_get_merge_boundary(struct device *dev)
839 {
840 	const struct dma_map_ops *ops = get_dma_ops(dev);
841 
842 	if (!ops || !ops->get_merge_boundary)
843 		return 0;	/* can't merge */
844 
845 	return ops->get_merge_boundary(dev);
846 }
847 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
848