xref: /openbmc/linux/kernel/dma/mapping.c (revision 83d3c4f2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/of_device.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include "debug.h"
17 #include "direct.h"
18 
19 bool dma_default_coherent;
20 
21 /*
22  * Managed DMA API
23  */
24 struct dma_devres {
25 	size_t		size;
26 	void		*vaddr;
27 	dma_addr_t	dma_handle;
28 	unsigned long	attrs;
29 };
30 
31 static void dmam_release(struct device *dev, void *res)
32 {
33 	struct dma_devres *this = res;
34 
35 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 			this->attrs);
37 }
38 
39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 	struct dma_devres *this = res, *match = match_data;
42 
43 	if (this->vaddr == match->vaddr) {
44 		WARN_ON(this->size != match->size ||
45 			this->dma_handle != match->dma_handle);
46 		return 1;
47 	}
48 	return 0;
49 }
50 
51 /**
52  * dmam_free_coherent - Managed dma_free_coherent()
53  * @dev: Device to free coherent memory for
54  * @size: Size of allocation
55  * @vaddr: Virtual address of the memory to free
56  * @dma_handle: DMA handle of the memory to free
57  *
58  * Managed dma_free_coherent().
59  */
60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 			dma_addr_t dma_handle)
62 {
63 	struct dma_devres match_data = { size, vaddr, dma_handle };
64 
65 	dma_free_coherent(dev, size, vaddr, dma_handle);
66 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67 }
68 EXPORT_SYMBOL(dmam_free_coherent);
69 
70 /**
71  * dmam_alloc_attrs - Managed dma_alloc_attrs()
72  * @dev: Device to allocate non_coherent memory for
73  * @size: Size of allocation
74  * @dma_handle: Out argument for allocated DMA handle
75  * @gfp: Allocation flags
76  * @attrs: Flags in the DMA_ATTR_* namespace.
77  *
78  * Managed dma_alloc_attrs().  Memory allocated using this function will be
79  * automatically released on driver detach.
80  *
81  * RETURNS:
82  * Pointer to allocated memory on success, NULL on failure.
83  */
84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 		gfp_t gfp, unsigned long attrs)
86 {
87 	struct dma_devres *dr;
88 	void *vaddr;
89 
90 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 	if (!dr)
92 		return NULL;
93 
94 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 	if (!vaddr) {
96 		devres_free(dr);
97 		return NULL;
98 	}
99 
100 	dr->vaddr = vaddr;
101 	dr->dma_handle = *dma_handle;
102 	dr->size = size;
103 	dr->attrs = attrs;
104 
105 	devres_add(dev, dr);
106 
107 	return vaddr;
108 }
109 EXPORT_SYMBOL(dmam_alloc_attrs);
110 
111 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 		const struct dma_map_ops *ops)
113 {
114 	if (likely(!ops))
115 		return true;
116 #ifdef CONFIG_DMA_OPS_BYPASS
117 	if (dev->dma_ops_bypass)
118 		return min_not_zero(mask, dev->bus_dma_limit) >=
119 			    dma_direct_get_required_mask(dev);
120 #endif
121 	return false;
122 }
123 
124 
125 /*
126  * Check if the devices uses a direct mapping for streaming DMA operations.
127  * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128  * enough.
129  */
130 static inline bool dma_alloc_direct(struct device *dev,
131 		const struct dma_map_ops *ops)
132 {
133 	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134 }
135 
136 static inline bool dma_map_direct(struct device *dev,
137 		const struct dma_map_ops *ops)
138 {
139 	return dma_go_direct(dev, *dev->dma_mask, ops);
140 }
141 
142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 		size_t offset, size_t size, enum dma_data_direction dir,
144 		unsigned long attrs)
145 {
146 	const struct dma_map_ops *ops = get_dma_ops(dev);
147 	dma_addr_t addr;
148 
149 	BUG_ON(!valid_dma_direction(dir));
150 
151 	if (WARN_ON_ONCE(!dev->dma_mask))
152 		return DMA_MAPPING_ERROR;
153 
154 	if (dma_map_direct(dev, ops) ||
155 	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 	else
158 		addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 	debug_dma_map_page(dev, page, offset, size, dir, addr);
160 
161 	return addr;
162 }
163 EXPORT_SYMBOL(dma_map_page_attrs);
164 
165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 		enum dma_data_direction dir, unsigned long attrs)
167 {
168 	const struct dma_map_ops *ops = get_dma_ops(dev);
169 
170 	BUG_ON(!valid_dma_direction(dir));
171 	if (dma_map_direct(dev, ops) ||
172 	    arch_dma_unmap_page_direct(dev, addr + size))
173 		dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 	else if (ops->unmap_page)
175 		ops->unmap_page(dev, addr, size, dir, attrs);
176 	debug_dma_unmap_page(dev, addr, size, dir);
177 }
178 EXPORT_SYMBOL(dma_unmap_page_attrs);
179 
180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
181 	 int nents, enum dma_data_direction dir, unsigned long attrs)
182 {
183 	const struct dma_map_ops *ops = get_dma_ops(dev);
184 	int ents;
185 
186 	BUG_ON(!valid_dma_direction(dir));
187 
188 	if (WARN_ON_ONCE(!dev->dma_mask))
189 		return 0;
190 
191 	if (dma_map_direct(dev, ops) ||
192 	    arch_dma_map_sg_direct(dev, sg, nents))
193 		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
194 	else
195 		ents = ops->map_sg(dev, sg, nents, dir, attrs);
196 
197 	if (ents > 0)
198 		debug_dma_map_sg(dev, sg, nents, ents, dir);
199 	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
200 			      ents != -EIO))
201 		return -EIO;
202 
203 	return ents;
204 }
205 
206 /**
207  * dma_map_sg_attrs - Map the given buffer for DMA
208  * @dev:	The device for which to perform the DMA operation
209  * @sg:		The sg_table object describing the buffer
210  * @nents:	Number of entries to map
211  * @dir:	DMA direction
212  * @attrs:	Optional DMA attributes for the map operation
213  *
214  * Maps a buffer described by a scatterlist passed in the sg argument with
215  * nents segments for the @dir DMA operation by the @dev device.
216  *
217  * Returns the number of mapped entries (which can be less than nents)
218  * on success. Zero is returned for any error.
219  *
220  * dma_unmap_sg_attrs() should be used to unmap the buffer with the
221  * original sg and original nents (not the value returned by this funciton).
222  */
223 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
224 		    int nents, enum dma_data_direction dir, unsigned long attrs)
225 {
226 	int ret;
227 
228 	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
229 	if (ret < 0)
230 		return 0;
231 	return ret;
232 }
233 EXPORT_SYMBOL(dma_map_sg_attrs);
234 
235 /**
236  * dma_map_sgtable - Map the given buffer for DMA
237  * @dev:	The device for which to perform the DMA operation
238  * @sgt:	The sg_table object describing the buffer
239  * @dir:	DMA direction
240  * @attrs:	Optional DMA attributes for the map operation
241  *
242  * Maps a buffer described by a scatterlist stored in the given sg_table
243  * object for the @dir DMA operation by the @dev device. After success, the
244  * ownership for the buffer is transferred to the DMA domain.  One has to
245  * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
246  * ownership of the buffer back to the CPU domain before touching the
247  * buffer by the CPU.
248  *
249  * Returns 0 on success or a negative error code on error. The following
250  * error codes are supported with the given meaning:
251  *
252  *   -EINVAL - An invalid argument, unaligned access or other error
253  *	       in usage. Will not succeed if retried.
254  *   -ENOMEM - Insufficient resources (like memory or IOVA space) to
255  *	       complete the mapping. Should succeed if retried later.
256  *   -EIO    - Legacy error code with an unknown meaning. eg. this is
257  *	       returned if a lower level call returned DMA_MAPPING_ERROR.
258  */
259 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
260 		    enum dma_data_direction dir, unsigned long attrs)
261 {
262 	int nents;
263 
264 	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
265 	if (nents < 0)
266 		return nents;
267 	sgt->nents = nents;
268 	return 0;
269 }
270 EXPORT_SYMBOL_GPL(dma_map_sgtable);
271 
272 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
273 				      int nents, enum dma_data_direction dir,
274 				      unsigned long attrs)
275 {
276 	const struct dma_map_ops *ops = get_dma_ops(dev);
277 
278 	BUG_ON(!valid_dma_direction(dir));
279 	debug_dma_unmap_sg(dev, sg, nents, dir);
280 	if (dma_map_direct(dev, ops) ||
281 	    arch_dma_unmap_sg_direct(dev, sg, nents))
282 		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
283 	else if (ops->unmap_sg)
284 		ops->unmap_sg(dev, sg, nents, dir, attrs);
285 }
286 EXPORT_SYMBOL(dma_unmap_sg_attrs);
287 
288 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
289 		size_t size, enum dma_data_direction dir, unsigned long attrs)
290 {
291 	const struct dma_map_ops *ops = get_dma_ops(dev);
292 	dma_addr_t addr = DMA_MAPPING_ERROR;
293 
294 	BUG_ON(!valid_dma_direction(dir));
295 
296 	if (WARN_ON_ONCE(!dev->dma_mask))
297 		return DMA_MAPPING_ERROR;
298 
299 	/* Don't allow RAM to be mapped */
300 	if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
301 		return DMA_MAPPING_ERROR;
302 
303 	if (dma_map_direct(dev, ops))
304 		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
305 	else if (ops->map_resource)
306 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
307 
308 	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
309 	return addr;
310 }
311 EXPORT_SYMBOL(dma_map_resource);
312 
313 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
314 		enum dma_data_direction dir, unsigned long attrs)
315 {
316 	const struct dma_map_ops *ops = get_dma_ops(dev);
317 
318 	BUG_ON(!valid_dma_direction(dir));
319 	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
320 		ops->unmap_resource(dev, addr, size, dir, attrs);
321 	debug_dma_unmap_resource(dev, addr, size, dir);
322 }
323 EXPORT_SYMBOL(dma_unmap_resource);
324 
325 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
326 		enum dma_data_direction dir)
327 {
328 	const struct dma_map_ops *ops = get_dma_ops(dev);
329 
330 	BUG_ON(!valid_dma_direction(dir));
331 	if (dma_map_direct(dev, ops))
332 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
333 	else if (ops->sync_single_for_cpu)
334 		ops->sync_single_for_cpu(dev, addr, size, dir);
335 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
336 }
337 EXPORT_SYMBOL(dma_sync_single_for_cpu);
338 
339 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
340 		size_t size, enum dma_data_direction dir)
341 {
342 	const struct dma_map_ops *ops = get_dma_ops(dev);
343 
344 	BUG_ON(!valid_dma_direction(dir));
345 	if (dma_map_direct(dev, ops))
346 		dma_direct_sync_single_for_device(dev, addr, size, dir);
347 	else if (ops->sync_single_for_device)
348 		ops->sync_single_for_device(dev, addr, size, dir);
349 	debug_dma_sync_single_for_device(dev, addr, size, dir);
350 }
351 EXPORT_SYMBOL(dma_sync_single_for_device);
352 
353 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
354 		    int nelems, enum dma_data_direction dir)
355 {
356 	const struct dma_map_ops *ops = get_dma_ops(dev);
357 
358 	BUG_ON(!valid_dma_direction(dir));
359 	if (dma_map_direct(dev, ops))
360 		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
361 	else if (ops->sync_sg_for_cpu)
362 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
363 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
364 }
365 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
366 
367 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
368 		       int nelems, enum dma_data_direction dir)
369 {
370 	const struct dma_map_ops *ops = get_dma_ops(dev);
371 
372 	BUG_ON(!valid_dma_direction(dir));
373 	if (dma_map_direct(dev, ops))
374 		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
375 	else if (ops->sync_sg_for_device)
376 		ops->sync_sg_for_device(dev, sg, nelems, dir);
377 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
378 }
379 EXPORT_SYMBOL(dma_sync_sg_for_device);
380 
381 /*
382  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
383  * that the intention is to allow exporting memory allocated via the
384  * coherent DMA APIs through the dma_buf API, which only accepts a
385  * scattertable.  This presents a couple of problems:
386  * 1. Not all memory allocated via the coherent DMA APIs is backed by
387  *    a struct page
388  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
389  *    as we will try to flush the memory through a different alias to that
390  *    actually being used (and the flushes are redundant.)
391  */
392 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
393 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
394 		unsigned long attrs)
395 {
396 	const struct dma_map_ops *ops = get_dma_ops(dev);
397 
398 	if (dma_alloc_direct(dev, ops))
399 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
400 				size, attrs);
401 	if (!ops->get_sgtable)
402 		return -ENXIO;
403 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
404 }
405 EXPORT_SYMBOL(dma_get_sgtable_attrs);
406 
407 #ifdef CONFIG_MMU
408 /*
409  * Return the page attributes used for mapping dma_alloc_* memory, either in
410  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
411  */
412 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
413 {
414 	if (force_dma_unencrypted(dev))
415 		prot = pgprot_decrypted(prot);
416 	if (dev_is_dma_coherent(dev))
417 		return prot;
418 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
419 	if (attrs & DMA_ATTR_WRITE_COMBINE)
420 		return pgprot_writecombine(prot);
421 #endif
422 	return pgprot_dmacoherent(prot);
423 }
424 #endif /* CONFIG_MMU */
425 
426 /**
427  * dma_can_mmap - check if a given device supports dma_mmap_*
428  * @dev: device to check
429  *
430  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
431  * map DMA allocations to userspace.
432  */
433 bool dma_can_mmap(struct device *dev)
434 {
435 	const struct dma_map_ops *ops = get_dma_ops(dev);
436 
437 	if (dma_alloc_direct(dev, ops))
438 		return dma_direct_can_mmap(dev);
439 	return ops->mmap != NULL;
440 }
441 EXPORT_SYMBOL_GPL(dma_can_mmap);
442 
443 /**
444  * dma_mmap_attrs - map a coherent DMA allocation into user space
445  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
446  * @vma: vm_area_struct describing requested user mapping
447  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
448  * @dma_addr: device-view address returned from dma_alloc_attrs
449  * @size: size of memory originally requested in dma_alloc_attrs
450  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
451  *
452  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
453  * space.  The coherent DMA buffer must not be freed by the driver until the
454  * user space mapping has been released.
455  */
456 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
457 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
458 		unsigned long attrs)
459 {
460 	const struct dma_map_ops *ops = get_dma_ops(dev);
461 
462 	if (dma_alloc_direct(dev, ops))
463 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
464 				attrs);
465 	if (!ops->mmap)
466 		return -ENXIO;
467 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
468 }
469 EXPORT_SYMBOL(dma_mmap_attrs);
470 
471 u64 dma_get_required_mask(struct device *dev)
472 {
473 	const struct dma_map_ops *ops = get_dma_ops(dev);
474 
475 	if (dma_alloc_direct(dev, ops))
476 		return dma_direct_get_required_mask(dev);
477 	if (ops->get_required_mask)
478 		return ops->get_required_mask(dev);
479 
480 	/*
481 	 * We require every DMA ops implementation to at least support a 32-bit
482 	 * DMA mask (and use bounce buffering if that isn't supported in
483 	 * hardware).  As the direct mapping code has its own routine to
484 	 * actually report an optimal mask we default to 32-bit here as that
485 	 * is the right thing for most IOMMUs, and at least not actively
486 	 * harmful in general.
487 	 */
488 	return DMA_BIT_MASK(32);
489 }
490 EXPORT_SYMBOL_GPL(dma_get_required_mask);
491 
492 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
493 		gfp_t flag, unsigned long attrs)
494 {
495 	const struct dma_map_ops *ops = get_dma_ops(dev);
496 	void *cpu_addr;
497 
498 	WARN_ON_ONCE(!dev->coherent_dma_mask);
499 
500 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
501 		return cpu_addr;
502 
503 	/* let the implementation decide on the zone to allocate from: */
504 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
505 
506 	if (dma_alloc_direct(dev, ops))
507 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
508 	else if (ops->alloc)
509 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
510 	else
511 		return NULL;
512 
513 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
514 	return cpu_addr;
515 }
516 EXPORT_SYMBOL(dma_alloc_attrs);
517 
518 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
519 		dma_addr_t dma_handle, unsigned long attrs)
520 {
521 	const struct dma_map_ops *ops = get_dma_ops(dev);
522 
523 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
524 		return;
525 	/*
526 	 * On non-coherent platforms which implement DMA-coherent buffers via
527 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
528 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
529 	 * sleep on some machines, and b) an indication that the driver is
530 	 * probably misusing the coherent API anyway.
531 	 */
532 	WARN_ON(irqs_disabled());
533 
534 	if (!cpu_addr)
535 		return;
536 
537 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
538 	if (dma_alloc_direct(dev, ops))
539 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
540 	else if (ops->free)
541 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
542 }
543 EXPORT_SYMBOL(dma_free_attrs);
544 
545 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
546 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
547 {
548 	const struct dma_map_ops *ops = get_dma_ops(dev);
549 
550 	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
551 		return NULL;
552 	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
553 		return NULL;
554 
555 	size = PAGE_ALIGN(size);
556 	if (dma_alloc_direct(dev, ops))
557 		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
558 	if (!ops->alloc_pages)
559 		return NULL;
560 	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
561 }
562 
563 struct page *dma_alloc_pages(struct device *dev, size_t size,
564 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
565 {
566 	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
567 
568 	if (page)
569 		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
570 	return page;
571 }
572 EXPORT_SYMBOL_GPL(dma_alloc_pages);
573 
574 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
575 		dma_addr_t dma_handle, enum dma_data_direction dir)
576 {
577 	const struct dma_map_ops *ops = get_dma_ops(dev);
578 
579 	size = PAGE_ALIGN(size);
580 	if (dma_alloc_direct(dev, ops))
581 		dma_direct_free_pages(dev, size, page, dma_handle, dir);
582 	else if (ops->free_pages)
583 		ops->free_pages(dev, size, page, dma_handle, dir);
584 }
585 
586 void dma_free_pages(struct device *dev, size_t size, struct page *page,
587 		dma_addr_t dma_handle, enum dma_data_direction dir)
588 {
589 	debug_dma_unmap_page(dev, dma_handle, size, dir);
590 	__dma_free_pages(dev, size, page, dma_handle, dir);
591 }
592 EXPORT_SYMBOL_GPL(dma_free_pages);
593 
594 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
595 		size_t size, struct page *page)
596 {
597 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
598 
599 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
600 		return -ENXIO;
601 	return remap_pfn_range(vma, vma->vm_start,
602 			       page_to_pfn(page) + vma->vm_pgoff,
603 			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
604 }
605 EXPORT_SYMBOL_GPL(dma_mmap_pages);
606 
607 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
608 		enum dma_data_direction dir, gfp_t gfp)
609 {
610 	struct sg_table *sgt;
611 	struct page *page;
612 
613 	sgt = kmalloc(sizeof(*sgt), gfp);
614 	if (!sgt)
615 		return NULL;
616 	if (sg_alloc_table(sgt, 1, gfp))
617 		goto out_free_sgt;
618 	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
619 	if (!page)
620 		goto out_free_table;
621 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
622 	sg_dma_len(sgt->sgl) = sgt->sgl->length;
623 	return sgt;
624 out_free_table:
625 	sg_free_table(sgt);
626 out_free_sgt:
627 	kfree(sgt);
628 	return NULL;
629 }
630 
631 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
632 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
633 {
634 	const struct dma_map_ops *ops = get_dma_ops(dev);
635 	struct sg_table *sgt;
636 
637 	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
638 		return NULL;
639 
640 	if (ops && ops->alloc_noncontiguous)
641 		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
642 	else
643 		sgt = alloc_single_sgt(dev, size, dir, gfp);
644 
645 	if (sgt) {
646 		sgt->nents = 1;
647 		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir);
648 	}
649 	return sgt;
650 }
651 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
652 
653 static void free_single_sgt(struct device *dev, size_t size,
654 		struct sg_table *sgt, enum dma_data_direction dir)
655 {
656 	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
657 			 dir);
658 	sg_free_table(sgt);
659 	kfree(sgt);
660 }
661 
662 void dma_free_noncontiguous(struct device *dev, size_t size,
663 		struct sg_table *sgt, enum dma_data_direction dir)
664 {
665 	const struct dma_map_ops *ops = get_dma_ops(dev);
666 
667 	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
668 	if (ops && ops->free_noncontiguous)
669 		ops->free_noncontiguous(dev, size, sgt, dir);
670 	else
671 		free_single_sgt(dev, size, sgt, dir);
672 }
673 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
674 
675 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
676 		struct sg_table *sgt)
677 {
678 	const struct dma_map_ops *ops = get_dma_ops(dev);
679 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
680 
681 	if (ops && ops->alloc_noncontiguous)
682 		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
683 	return page_address(sg_page(sgt->sgl));
684 }
685 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
686 
687 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
688 {
689 	const struct dma_map_ops *ops = get_dma_ops(dev);
690 
691 	if (ops && ops->alloc_noncontiguous)
692 		vunmap(vaddr);
693 }
694 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
695 
696 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
697 		size_t size, struct sg_table *sgt)
698 {
699 	const struct dma_map_ops *ops = get_dma_ops(dev);
700 
701 	if (ops && ops->alloc_noncontiguous) {
702 		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
703 
704 		if (vma->vm_pgoff >= count ||
705 		    vma_pages(vma) > count - vma->vm_pgoff)
706 			return -ENXIO;
707 		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
708 	}
709 	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
710 }
711 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
712 
713 int dma_supported(struct device *dev, u64 mask)
714 {
715 	const struct dma_map_ops *ops = get_dma_ops(dev);
716 
717 	/*
718 	 * ->dma_supported sets the bypass flag, so we must always call
719 	 * into the method here unless the device is truly direct mapped.
720 	 */
721 	if (!ops)
722 		return dma_direct_supported(dev, mask);
723 	if (!ops->dma_supported)
724 		return 1;
725 	return ops->dma_supported(dev, mask);
726 }
727 EXPORT_SYMBOL(dma_supported);
728 
729 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
730 void arch_dma_set_mask(struct device *dev, u64 mask);
731 #else
732 #define arch_dma_set_mask(dev, mask)	do { } while (0)
733 #endif
734 
735 int dma_set_mask(struct device *dev, u64 mask)
736 {
737 	/*
738 	 * Truncate the mask to the actually supported dma_addr_t width to
739 	 * avoid generating unsupportable addresses.
740 	 */
741 	mask = (dma_addr_t)mask;
742 
743 	if (!dev->dma_mask || !dma_supported(dev, mask))
744 		return -EIO;
745 
746 	arch_dma_set_mask(dev, mask);
747 	*dev->dma_mask = mask;
748 	return 0;
749 }
750 EXPORT_SYMBOL(dma_set_mask);
751 
752 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
753 int dma_set_coherent_mask(struct device *dev, u64 mask)
754 {
755 	/*
756 	 * Truncate the mask to the actually supported dma_addr_t width to
757 	 * avoid generating unsupportable addresses.
758 	 */
759 	mask = (dma_addr_t)mask;
760 
761 	if (!dma_supported(dev, mask))
762 		return -EIO;
763 
764 	dev->coherent_dma_mask = mask;
765 	return 0;
766 }
767 EXPORT_SYMBOL(dma_set_coherent_mask);
768 #endif
769 
770 size_t dma_max_mapping_size(struct device *dev)
771 {
772 	const struct dma_map_ops *ops = get_dma_ops(dev);
773 	size_t size = SIZE_MAX;
774 
775 	if (dma_map_direct(dev, ops))
776 		size = dma_direct_max_mapping_size(dev);
777 	else if (ops && ops->max_mapping_size)
778 		size = ops->max_mapping_size(dev);
779 
780 	return size;
781 }
782 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
783 
784 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
785 {
786 	const struct dma_map_ops *ops = get_dma_ops(dev);
787 
788 	if (dma_map_direct(dev, ops))
789 		return dma_direct_need_sync(dev, dma_addr);
790 	return ops->sync_single_for_cpu || ops->sync_single_for_device;
791 }
792 EXPORT_SYMBOL_GPL(dma_need_sync);
793 
794 unsigned long dma_get_merge_boundary(struct device *dev)
795 {
796 	const struct dma_map_ops *ops = get_dma_ops(dev);
797 
798 	if (!ops || !ops->get_merge_boundary)
799 		return 0;	/* can't merge */
800 
801 	return ops->get_merge_boundary(dev);
802 }
803 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
804