xref: /openbmc/linux/kernel/dma/mapping.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page = virt_to_page(cpu_addr);
116 	int ret;
117 
118 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
119 	if (!ret)
120 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
121 	return ret;
122 }
123 
124 /*
125  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
126  * that the intention is to allow exporting memory allocated via the
127  * coherent DMA APIs through the dma_buf API, which only accepts a
128  * scattertable.  This presents a couple of problems:
129  * 1. Not all memory allocated via the coherent DMA APIs is backed by
130  *    a struct page
131  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
132  *    as we will try to flush the memory through a different alias to that
133  *    actually being used (and the flushes are redundant.)
134  */
135 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
136 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
137 		unsigned long attrs)
138 {
139 	const struct dma_map_ops *ops = get_dma_ops(dev);
140 
141 	if (dma_is_direct(ops))
142 		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
143 				size, attrs);
144 	if (!ops->get_sgtable)
145 		return -ENXIO;
146 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
147 }
148 EXPORT_SYMBOL(dma_get_sgtable_attrs);
149 
150 #ifdef CONFIG_MMU
151 /*
152  * Return the page attributes used for mapping dma_alloc_* memory, either in
153  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
154  */
155 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
156 {
157 	if (dev_is_dma_coherent(dev) ||
158 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
159              (attrs & DMA_ATTR_NON_CONSISTENT)))
160 		return prot;
161 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
162 	if (attrs & DMA_ATTR_WRITE_COMBINE)
163 		return pgprot_writecombine(prot);
164 #endif
165 	return pgprot_dmacoherent(prot);
166 }
167 #endif /* CONFIG_MMU */
168 
169 /*
170  * Create userspace mapping for the DMA-coherent memory.
171  */
172 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
173 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
174 		unsigned long attrs)
175 {
176 #ifdef CONFIG_MMU
177 	unsigned long user_count = vma_pages(vma);
178 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
179 	unsigned long off = vma->vm_pgoff;
180 	int ret = -ENXIO;
181 
182 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
183 
184 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
185 		return ret;
186 
187 	if (off >= count || user_count > count - off)
188 		return -ENXIO;
189 
190 	return remap_pfn_range(vma, vma->vm_start,
191 			page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
192 			user_count << PAGE_SHIFT, vma->vm_page_prot);
193 #else
194 	return -ENXIO;
195 #endif /* CONFIG_MMU */
196 }
197 
198 /**
199  * dma_can_mmap - check if a given device supports dma_mmap_*
200  * @dev: device to check
201  *
202  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
203  * map DMA allocations to userspace.
204  */
205 bool dma_can_mmap(struct device *dev)
206 {
207 	const struct dma_map_ops *ops = get_dma_ops(dev);
208 
209 	if (dma_is_direct(ops))
210 		return dma_direct_can_mmap(dev);
211 	return ops->mmap != NULL;
212 }
213 EXPORT_SYMBOL_GPL(dma_can_mmap);
214 
215 /**
216  * dma_mmap_attrs - map a coherent DMA allocation into user space
217  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
218  * @vma: vm_area_struct describing requested user mapping
219  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
220  * @dma_addr: device-view address returned from dma_alloc_attrs
221  * @size: size of memory originally requested in dma_alloc_attrs
222  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
223  *
224  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
225  * space.  The coherent DMA buffer must not be freed by the driver until the
226  * user space mapping has been released.
227  */
228 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
229 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
230 		unsigned long attrs)
231 {
232 	const struct dma_map_ops *ops = get_dma_ops(dev);
233 
234 	if (dma_is_direct(ops))
235 		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
236 				attrs);
237 	if (!ops->mmap)
238 		return -ENXIO;
239 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
240 }
241 EXPORT_SYMBOL(dma_mmap_attrs);
242 
243 u64 dma_get_required_mask(struct device *dev)
244 {
245 	const struct dma_map_ops *ops = get_dma_ops(dev);
246 
247 	if (dma_is_direct(ops))
248 		return dma_direct_get_required_mask(dev);
249 	if (ops->get_required_mask)
250 		return ops->get_required_mask(dev);
251 
252 	/*
253 	 * We require every DMA ops implementation to at least support a 32-bit
254 	 * DMA mask (and use bounce buffering if that isn't supported in
255 	 * hardware).  As the direct mapping code has its own routine to
256 	 * actually report an optimal mask we default to 32-bit here as that
257 	 * is the right thing for most IOMMUs, and at least not actively
258 	 * harmful in general.
259 	 */
260 	return DMA_BIT_MASK(32);
261 }
262 EXPORT_SYMBOL_GPL(dma_get_required_mask);
263 
264 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
265 		gfp_t flag, unsigned long attrs)
266 {
267 	const struct dma_map_ops *ops = get_dma_ops(dev);
268 	void *cpu_addr;
269 
270 	WARN_ON_ONCE(!dev->coherent_dma_mask);
271 
272 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
273 		return cpu_addr;
274 
275 	/* let the implementation decide on the zone to allocate from: */
276 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
277 
278 	if (dma_is_direct(ops))
279 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
280 	else if (ops->alloc)
281 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
282 	else
283 		return NULL;
284 
285 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
286 	return cpu_addr;
287 }
288 EXPORT_SYMBOL(dma_alloc_attrs);
289 
290 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
291 		dma_addr_t dma_handle, unsigned long attrs)
292 {
293 	const struct dma_map_ops *ops = get_dma_ops(dev);
294 
295 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
296 		return;
297 	/*
298 	 * On non-coherent platforms which implement DMA-coherent buffers via
299 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
300 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
301 	 * sleep on some machines, and b) an indication that the driver is
302 	 * probably misusing the coherent API anyway.
303 	 */
304 	WARN_ON(irqs_disabled());
305 
306 	if (!cpu_addr)
307 		return;
308 
309 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
310 	if (dma_is_direct(ops))
311 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
312 	else if (ops->free)
313 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
314 }
315 EXPORT_SYMBOL(dma_free_attrs);
316 
317 int dma_supported(struct device *dev, u64 mask)
318 {
319 	const struct dma_map_ops *ops = get_dma_ops(dev);
320 
321 	if (dma_is_direct(ops))
322 		return dma_direct_supported(dev, mask);
323 	if (!ops->dma_supported)
324 		return 1;
325 	return ops->dma_supported(dev, mask);
326 }
327 EXPORT_SYMBOL(dma_supported);
328 
329 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
330 void arch_dma_set_mask(struct device *dev, u64 mask);
331 #else
332 #define arch_dma_set_mask(dev, mask)	do { } while (0)
333 #endif
334 
335 int dma_set_mask(struct device *dev, u64 mask)
336 {
337 	/*
338 	 * Truncate the mask to the actually supported dma_addr_t width to
339 	 * avoid generating unsupportable addresses.
340 	 */
341 	mask = (dma_addr_t)mask;
342 
343 	if (!dev->dma_mask || !dma_supported(dev, mask))
344 		return -EIO;
345 
346 	arch_dma_set_mask(dev, mask);
347 	*dev->dma_mask = mask;
348 	return 0;
349 }
350 EXPORT_SYMBOL(dma_set_mask);
351 
352 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
353 int dma_set_coherent_mask(struct device *dev, u64 mask)
354 {
355 	/*
356 	 * Truncate the mask to the actually supported dma_addr_t width to
357 	 * avoid generating unsupportable addresses.
358 	 */
359 	mask = (dma_addr_t)mask;
360 
361 	if (!dma_supported(dev, mask))
362 		return -EIO;
363 
364 	dev->coherent_dma_mask = mask;
365 	return 0;
366 }
367 EXPORT_SYMBOL(dma_set_coherent_mask);
368 #endif
369 
370 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
371 		enum dma_data_direction dir)
372 {
373 	const struct dma_map_ops *ops = get_dma_ops(dev);
374 
375 	BUG_ON(!valid_dma_direction(dir));
376 
377 	if (dma_is_direct(ops))
378 		arch_dma_cache_sync(dev, vaddr, size, dir);
379 	else if (ops->cache_sync)
380 		ops->cache_sync(dev, vaddr, size, dir);
381 }
382 EXPORT_SYMBOL(dma_cache_sync);
383 
384 size_t dma_max_mapping_size(struct device *dev)
385 {
386 	const struct dma_map_ops *ops = get_dma_ops(dev);
387 	size_t size = SIZE_MAX;
388 
389 	if (dma_is_direct(ops))
390 		size = dma_direct_max_mapping_size(dev);
391 	else if (ops && ops->max_mapping_size)
392 		size = ops->max_mapping_size(dev);
393 
394 	return size;
395 }
396 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
397 
398 unsigned long dma_get_merge_boundary(struct device *dev)
399 {
400 	const struct dma_map_ops *ops = get_dma_ops(dev);
401 
402 	if (!ops || !ops->get_merge_boundary)
403 		return 0;	/* can't merge */
404 
405 	return ops->get_merge_boundary(dev);
406 }
407 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
408