xref: /openbmc/linux/kernel/dma/mapping.c (revision 62e59c4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page;
116 	int ret;
117 
118 	if (!dev_is_dma_coherent(dev)) {
119 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
120 			return -ENXIO;
121 
122 		page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
123 				dma_addr));
124 	} else {
125 		page = virt_to_page(cpu_addr);
126 	}
127 
128 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
129 	if (!ret)
130 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
131 	return ret;
132 }
133 
134 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
135 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
136 		unsigned long attrs)
137 {
138 	const struct dma_map_ops *ops = get_dma_ops(dev);
139 
140 	if (!dma_is_direct(ops) && ops->get_sgtable)
141 		return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
142 					attrs);
143 	return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
144 			attrs);
145 }
146 EXPORT_SYMBOL(dma_get_sgtable_attrs);
147 
148 /*
149  * Create userspace mapping for the DMA-coherent memory.
150  */
151 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
152 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
153 		unsigned long attrs)
154 {
155 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
156 	unsigned long user_count = vma_pages(vma);
157 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
158 	unsigned long off = vma->vm_pgoff;
159 	unsigned long pfn;
160 	int ret = -ENXIO;
161 
162 	vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
163 
164 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
165 		return ret;
166 
167 	if (off >= count || user_count > count - off)
168 		return -ENXIO;
169 
170 	if (!dev_is_dma_coherent(dev)) {
171 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
172 			return -ENXIO;
173 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
174 	} else {
175 		pfn = page_to_pfn(virt_to_page(cpu_addr));
176 	}
177 
178 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
179 			user_count << PAGE_SHIFT, vma->vm_page_prot);
180 #else
181 	return -ENXIO;
182 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
183 }
184 
185 /**
186  * dma_mmap_attrs - map a coherent DMA allocation into user space
187  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
188  * @vma: vm_area_struct describing requested user mapping
189  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
190  * @dma_addr: device-view address returned from dma_alloc_attrs
191  * @size: size of memory originally requested in dma_alloc_attrs
192  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
193  *
194  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
195  * space.  The coherent DMA buffer must not be freed by the driver until the
196  * user space mapping has been released.
197  */
198 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
199 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
200 		unsigned long attrs)
201 {
202 	const struct dma_map_ops *ops = get_dma_ops(dev);
203 
204 	if (!dma_is_direct(ops) && ops->mmap)
205 		return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
206 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
207 }
208 EXPORT_SYMBOL(dma_mmap_attrs);
209 
210 static u64 dma_default_get_required_mask(struct device *dev)
211 {
212 	u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
213 	u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
214 	u64 mask;
215 
216 	if (!high_totalram) {
217 		/* convert to mask just covering totalram */
218 		low_totalram = (1 << (fls(low_totalram) - 1));
219 		low_totalram += low_totalram - 1;
220 		mask = low_totalram;
221 	} else {
222 		high_totalram = (1 << (fls(high_totalram) - 1));
223 		high_totalram += high_totalram - 1;
224 		mask = (((u64)high_totalram) << 32) + 0xffffffff;
225 	}
226 	return mask;
227 }
228 
229 u64 dma_get_required_mask(struct device *dev)
230 {
231 	const struct dma_map_ops *ops = get_dma_ops(dev);
232 
233 	if (dma_is_direct(ops))
234 		return dma_direct_get_required_mask(dev);
235 	if (ops->get_required_mask)
236 		return ops->get_required_mask(dev);
237 	return dma_default_get_required_mask(dev);
238 }
239 EXPORT_SYMBOL_GPL(dma_get_required_mask);
240 
241 #ifndef arch_dma_alloc_attrs
242 #define arch_dma_alloc_attrs(dev)	(true)
243 #endif
244 
245 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
246 		gfp_t flag, unsigned long attrs)
247 {
248 	const struct dma_map_ops *ops = get_dma_ops(dev);
249 	void *cpu_addr;
250 
251 	WARN_ON_ONCE(dev && !dev->coherent_dma_mask);
252 
253 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
254 		return cpu_addr;
255 
256 	/* let the implementation decide on the zone to allocate from: */
257 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
258 
259 	if (!arch_dma_alloc_attrs(&dev))
260 		return NULL;
261 
262 	if (dma_is_direct(ops))
263 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
264 	else if (ops->alloc)
265 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
266 	else
267 		return NULL;
268 
269 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
270 	return cpu_addr;
271 }
272 EXPORT_SYMBOL(dma_alloc_attrs);
273 
274 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
275 		dma_addr_t dma_handle, unsigned long attrs)
276 {
277 	const struct dma_map_ops *ops = get_dma_ops(dev);
278 
279 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
280 		return;
281 	/*
282 	 * On non-coherent platforms which implement DMA-coherent buffers via
283 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
284 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
285 	 * sleep on some machines, and b) an indication that the driver is
286 	 * probably misusing the coherent API anyway.
287 	 */
288 	WARN_ON(irqs_disabled());
289 
290 	if (!cpu_addr)
291 		return;
292 
293 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
294 	if (dma_is_direct(ops))
295 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
296 	else if (ops->free)
297 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
298 }
299 EXPORT_SYMBOL(dma_free_attrs);
300 
301 static inline void dma_check_mask(struct device *dev, u64 mask)
302 {
303 	if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
304 		dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
305 }
306 
307 int dma_supported(struct device *dev, u64 mask)
308 {
309 	const struct dma_map_ops *ops = get_dma_ops(dev);
310 
311 	if (dma_is_direct(ops))
312 		return dma_direct_supported(dev, mask);
313 	if (!ops->dma_supported)
314 		return 1;
315 	return ops->dma_supported(dev, mask);
316 }
317 EXPORT_SYMBOL(dma_supported);
318 
319 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
320 void arch_dma_set_mask(struct device *dev, u64 mask);
321 #else
322 #define arch_dma_set_mask(dev, mask)	do { } while (0)
323 #endif
324 
325 int dma_set_mask(struct device *dev, u64 mask)
326 {
327 	if (!dev->dma_mask || !dma_supported(dev, mask))
328 		return -EIO;
329 
330 	arch_dma_set_mask(dev, mask);
331 	dma_check_mask(dev, mask);
332 	*dev->dma_mask = mask;
333 	return 0;
334 }
335 EXPORT_SYMBOL(dma_set_mask);
336 
337 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
338 int dma_set_coherent_mask(struct device *dev, u64 mask)
339 {
340 	if (!dma_supported(dev, mask))
341 		return -EIO;
342 
343 	dma_check_mask(dev, mask);
344 	dev->coherent_dma_mask = mask;
345 	return 0;
346 }
347 EXPORT_SYMBOL(dma_set_coherent_mask);
348 #endif
349 
350 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
351 		enum dma_data_direction dir)
352 {
353 	const struct dma_map_ops *ops = get_dma_ops(dev);
354 
355 	BUG_ON(!valid_dma_direction(dir));
356 
357 	if (dma_is_direct(ops))
358 		arch_dma_cache_sync(dev, vaddr, size, dir);
359 	else if (ops->cache_sync)
360 		ops->cache_sync(dev, vaddr, size, dir);
361 }
362 EXPORT_SYMBOL(dma_cache_sync);
363 
364 size_t dma_max_mapping_size(struct device *dev)
365 {
366 	const struct dma_map_ops *ops = get_dma_ops(dev);
367 	size_t size = SIZE_MAX;
368 
369 	if (dma_is_direct(ops))
370 		size = dma_direct_max_mapping_size(dev);
371 	else if (ops && ops->max_mapping_size)
372 		size = ops->max_mapping_size(dev);
373 
374 	return size;
375 }
376 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
377