1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * arch-independent dma-mapping routines 4 * 5 * Copyright (c) 2006 SUSE Linux Products GmbH 6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de> 7 */ 8 #include <linux/memblock.h> /* for max_pfn */ 9 #include <linux/acpi.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/export.h> 12 #include <linux/gfp.h> 13 #include <linux/of_device.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include "debug.h" 17 #include "direct.h" 18 19 bool dma_default_coherent; 20 21 /* 22 * Managed DMA API 23 */ 24 struct dma_devres { 25 size_t size; 26 void *vaddr; 27 dma_addr_t dma_handle; 28 unsigned long attrs; 29 }; 30 31 static void dmam_release(struct device *dev, void *res) 32 { 33 struct dma_devres *this = res; 34 35 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, 36 this->attrs); 37 } 38 39 static int dmam_match(struct device *dev, void *res, void *match_data) 40 { 41 struct dma_devres *this = res, *match = match_data; 42 43 if (this->vaddr == match->vaddr) { 44 WARN_ON(this->size != match->size || 45 this->dma_handle != match->dma_handle); 46 return 1; 47 } 48 return 0; 49 } 50 51 /** 52 * dmam_free_coherent - Managed dma_free_coherent() 53 * @dev: Device to free coherent memory for 54 * @size: Size of allocation 55 * @vaddr: Virtual address of the memory to free 56 * @dma_handle: DMA handle of the memory to free 57 * 58 * Managed dma_free_coherent(). 59 */ 60 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 61 dma_addr_t dma_handle) 62 { 63 struct dma_devres match_data = { size, vaddr, dma_handle }; 64 65 dma_free_coherent(dev, size, vaddr, dma_handle); 66 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); 67 } 68 EXPORT_SYMBOL(dmam_free_coherent); 69 70 /** 71 * dmam_alloc_attrs - Managed dma_alloc_attrs() 72 * @dev: Device to allocate non_coherent memory for 73 * @size: Size of allocation 74 * @dma_handle: Out argument for allocated DMA handle 75 * @gfp: Allocation flags 76 * @attrs: Flags in the DMA_ATTR_* namespace. 77 * 78 * Managed dma_alloc_attrs(). Memory allocated using this function will be 79 * automatically released on driver detach. 80 * 81 * RETURNS: 82 * Pointer to allocated memory on success, NULL on failure. 83 */ 84 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 85 gfp_t gfp, unsigned long attrs) 86 { 87 struct dma_devres *dr; 88 void *vaddr; 89 90 dr = devres_alloc(dmam_release, sizeof(*dr), gfp); 91 if (!dr) 92 return NULL; 93 94 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); 95 if (!vaddr) { 96 devres_free(dr); 97 return NULL; 98 } 99 100 dr->vaddr = vaddr; 101 dr->dma_handle = *dma_handle; 102 dr->size = size; 103 dr->attrs = attrs; 104 105 devres_add(dev, dr); 106 107 return vaddr; 108 } 109 EXPORT_SYMBOL(dmam_alloc_attrs); 110 111 static bool dma_go_direct(struct device *dev, dma_addr_t mask, 112 const struct dma_map_ops *ops) 113 { 114 if (likely(!ops)) 115 return true; 116 #ifdef CONFIG_DMA_OPS_BYPASS 117 if (dev->dma_ops_bypass) 118 return min_not_zero(mask, dev->bus_dma_limit) >= 119 dma_direct_get_required_mask(dev); 120 #endif 121 return false; 122 } 123 124 125 /* 126 * Check if the devices uses a direct mapping for streaming DMA operations. 127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large 128 * enough. 129 */ 130 static inline bool dma_alloc_direct(struct device *dev, 131 const struct dma_map_ops *ops) 132 { 133 return dma_go_direct(dev, dev->coherent_dma_mask, ops); 134 } 135 136 static inline bool dma_map_direct(struct device *dev, 137 const struct dma_map_ops *ops) 138 { 139 return dma_go_direct(dev, *dev->dma_mask, ops); 140 } 141 142 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 143 size_t offset, size_t size, enum dma_data_direction dir, 144 unsigned long attrs) 145 { 146 const struct dma_map_ops *ops = get_dma_ops(dev); 147 dma_addr_t addr; 148 149 BUG_ON(!valid_dma_direction(dir)); 150 151 if (WARN_ON_ONCE(!dev->dma_mask)) 152 return DMA_MAPPING_ERROR; 153 154 if (dma_map_direct(dev, ops) || 155 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size)) 156 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); 157 else 158 addr = ops->map_page(dev, page, offset, size, dir, attrs); 159 debug_dma_map_page(dev, page, offset, size, dir, addr); 160 161 return addr; 162 } 163 EXPORT_SYMBOL(dma_map_page_attrs); 164 165 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 166 enum dma_data_direction dir, unsigned long attrs) 167 { 168 const struct dma_map_ops *ops = get_dma_ops(dev); 169 170 BUG_ON(!valid_dma_direction(dir)); 171 if (dma_map_direct(dev, ops) || 172 arch_dma_unmap_page_direct(dev, addr + size)) 173 dma_direct_unmap_page(dev, addr, size, dir, attrs); 174 else if (ops->unmap_page) 175 ops->unmap_page(dev, addr, size, dir, attrs); 176 debug_dma_unmap_page(dev, addr, size, dir); 177 } 178 EXPORT_SYMBOL(dma_unmap_page_attrs); 179 180 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 181 int nents, enum dma_data_direction dir, unsigned long attrs) 182 { 183 const struct dma_map_ops *ops = get_dma_ops(dev); 184 int ents; 185 186 BUG_ON(!valid_dma_direction(dir)); 187 188 if (WARN_ON_ONCE(!dev->dma_mask)) 189 return 0; 190 191 if (dma_map_direct(dev, ops) || 192 arch_dma_map_sg_direct(dev, sg, nents)) 193 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs); 194 else 195 ents = ops->map_sg(dev, sg, nents, dir, attrs); 196 197 if (ents > 0) 198 debug_dma_map_sg(dev, sg, nents, ents, dir); 199 else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM && 200 ents != -EIO)) 201 return -EIO; 202 203 return ents; 204 } 205 206 /** 207 * dma_map_sg_attrs - Map the given buffer for DMA 208 * @dev: The device for which to perform the DMA operation 209 * @sg: The sg_table object describing the buffer 210 * @dir: DMA direction 211 * @attrs: Optional DMA attributes for the map operation 212 * 213 * Maps a buffer described by a scatterlist passed in the sg argument with 214 * nents segments for the @dir DMA operation by the @dev device. 215 * 216 * Returns the number of mapped entries (which can be less than nents) 217 * on success. Zero is returned for any error. 218 * 219 * dma_unmap_sg_attrs() should be used to unmap the buffer with the 220 * original sg and original nents (not the value returned by this funciton). 221 */ 222 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 223 int nents, enum dma_data_direction dir, unsigned long attrs) 224 { 225 int ret; 226 227 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs); 228 if (ret < 0) 229 return 0; 230 return ret; 231 } 232 EXPORT_SYMBOL(dma_map_sg_attrs); 233 234 /** 235 * dma_map_sgtable - Map the given buffer for DMA 236 * @dev: The device for which to perform the DMA operation 237 * @sgt: The sg_table object describing the buffer 238 * @dir: DMA direction 239 * @attrs: Optional DMA attributes for the map operation 240 * 241 * Maps a buffer described by a scatterlist stored in the given sg_table 242 * object for the @dir DMA operation by the @dev device. After success, the 243 * ownership for the buffer is transferred to the DMA domain. One has to 244 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the 245 * ownership of the buffer back to the CPU domain before touching the 246 * buffer by the CPU. 247 * 248 * Returns 0 on success or a negative error code on error. The following 249 * error codes are supported with the given meaning: 250 * 251 * -EINVAL - An invalid argument, unaligned access or other error 252 * in usage. Will not succeed if retried. 253 * -ENOMEM - Insufficient resources (like memory or IOVA space) to 254 * complete the mapping. Should succeed if retried later. 255 * -EIO - Legacy error code with an unknown meaning. eg. this is 256 * returned if a lower level call returned DMA_MAPPING_ERROR. 257 */ 258 int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 259 enum dma_data_direction dir, unsigned long attrs) 260 { 261 int nents; 262 263 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 264 if (nents < 0) 265 return nents; 266 sgt->nents = nents; 267 return 0; 268 } 269 EXPORT_SYMBOL_GPL(dma_map_sgtable); 270 271 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 272 int nents, enum dma_data_direction dir, 273 unsigned long attrs) 274 { 275 const struct dma_map_ops *ops = get_dma_ops(dev); 276 277 BUG_ON(!valid_dma_direction(dir)); 278 debug_dma_unmap_sg(dev, sg, nents, dir); 279 if (dma_map_direct(dev, ops) || 280 arch_dma_unmap_sg_direct(dev, sg, nents)) 281 dma_direct_unmap_sg(dev, sg, nents, dir, attrs); 282 else if (ops->unmap_sg) 283 ops->unmap_sg(dev, sg, nents, dir, attrs); 284 } 285 EXPORT_SYMBOL(dma_unmap_sg_attrs); 286 287 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 288 size_t size, enum dma_data_direction dir, unsigned long attrs) 289 { 290 const struct dma_map_ops *ops = get_dma_ops(dev); 291 dma_addr_t addr = DMA_MAPPING_ERROR; 292 293 BUG_ON(!valid_dma_direction(dir)); 294 295 if (WARN_ON_ONCE(!dev->dma_mask)) 296 return DMA_MAPPING_ERROR; 297 298 /* Don't allow RAM to be mapped */ 299 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr)))) 300 return DMA_MAPPING_ERROR; 301 302 if (dma_map_direct(dev, ops)) 303 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs); 304 else if (ops->map_resource) 305 addr = ops->map_resource(dev, phys_addr, size, dir, attrs); 306 307 debug_dma_map_resource(dev, phys_addr, size, dir, addr); 308 return addr; 309 } 310 EXPORT_SYMBOL(dma_map_resource); 311 312 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 313 enum dma_data_direction dir, unsigned long attrs) 314 { 315 const struct dma_map_ops *ops = get_dma_ops(dev); 316 317 BUG_ON(!valid_dma_direction(dir)); 318 if (!dma_map_direct(dev, ops) && ops->unmap_resource) 319 ops->unmap_resource(dev, addr, size, dir, attrs); 320 debug_dma_unmap_resource(dev, addr, size, dir); 321 } 322 EXPORT_SYMBOL(dma_unmap_resource); 323 324 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 325 enum dma_data_direction dir) 326 { 327 const struct dma_map_ops *ops = get_dma_ops(dev); 328 329 BUG_ON(!valid_dma_direction(dir)); 330 if (dma_map_direct(dev, ops)) 331 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 332 else if (ops->sync_single_for_cpu) 333 ops->sync_single_for_cpu(dev, addr, size, dir); 334 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 335 } 336 EXPORT_SYMBOL(dma_sync_single_for_cpu); 337 338 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 339 size_t size, enum dma_data_direction dir) 340 { 341 const struct dma_map_ops *ops = get_dma_ops(dev); 342 343 BUG_ON(!valid_dma_direction(dir)); 344 if (dma_map_direct(dev, ops)) 345 dma_direct_sync_single_for_device(dev, addr, size, dir); 346 else if (ops->sync_single_for_device) 347 ops->sync_single_for_device(dev, addr, size, dir); 348 debug_dma_sync_single_for_device(dev, addr, size, dir); 349 } 350 EXPORT_SYMBOL(dma_sync_single_for_device); 351 352 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 353 int nelems, enum dma_data_direction dir) 354 { 355 const struct dma_map_ops *ops = get_dma_ops(dev); 356 357 BUG_ON(!valid_dma_direction(dir)); 358 if (dma_map_direct(dev, ops)) 359 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir); 360 else if (ops->sync_sg_for_cpu) 361 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 362 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 363 } 364 EXPORT_SYMBOL(dma_sync_sg_for_cpu); 365 366 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 367 int nelems, enum dma_data_direction dir) 368 { 369 const struct dma_map_ops *ops = get_dma_ops(dev); 370 371 BUG_ON(!valid_dma_direction(dir)); 372 if (dma_map_direct(dev, ops)) 373 dma_direct_sync_sg_for_device(dev, sg, nelems, dir); 374 else if (ops->sync_sg_for_device) 375 ops->sync_sg_for_device(dev, sg, nelems, dir); 376 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 377 } 378 EXPORT_SYMBOL(dma_sync_sg_for_device); 379 380 /* 381 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems 382 * that the intention is to allow exporting memory allocated via the 383 * coherent DMA APIs through the dma_buf API, which only accepts a 384 * scattertable. This presents a couple of problems: 385 * 1. Not all memory allocated via the coherent DMA APIs is backed by 386 * a struct page 387 * 2. Passing coherent DMA memory into the streaming APIs is not allowed 388 * as we will try to flush the memory through a different alias to that 389 * actually being used (and the flushes are redundant.) 390 */ 391 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 392 void *cpu_addr, dma_addr_t dma_addr, size_t size, 393 unsigned long attrs) 394 { 395 const struct dma_map_ops *ops = get_dma_ops(dev); 396 397 if (dma_alloc_direct(dev, ops)) 398 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr, 399 size, attrs); 400 if (!ops->get_sgtable) 401 return -ENXIO; 402 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs); 403 } 404 EXPORT_SYMBOL(dma_get_sgtable_attrs); 405 406 #ifdef CONFIG_MMU 407 /* 408 * Return the page attributes used for mapping dma_alloc_* memory, either in 409 * kernel space if remapping is needed, or to userspace through dma_mmap_*. 410 */ 411 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs) 412 { 413 if (force_dma_unencrypted(dev)) 414 prot = pgprot_decrypted(prot); 415 if (dev_is_dma_coherent(dev)) 416 return prot; 417 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE 418 if (attrs & DMA_ATTR_WRITE_COMBINE) 419 return pgprot_writecombine(prot); 420 #endif 421 return pgprot_dmacoherent(prot); 422 } 423 #endif /* CONFIG_MMU */ 424 425 /** 426 * dma_can_mmap - check if a given device supports dma_mmap_* 427 * @dev: device to check 428 * 429 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to 430 * map DMA allocations to userspace. 431 */ 432 bool dma_can_mmap(struct device *dev) 433 { 434 const struct dma_map_ops *ops = get_dma_ops(dev); 435 436 if (dma_alloc_direct(dev, ops)) 437 return dma_direct_can_mmap(dev); 438 return ops->mmap != NULL; 439 } 440 EXPORT_SYMBOL_GPL(dma_can_mmap); 441 442 /** 443 * dma_mmap_attrs - map a coherent DMA allocation into user space 444 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 445 * @vma: vm_area_struct describing requested user mapping 446 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 447 * @dma_addr: device-view address returned from dma_alloc_attrs 448 * @size: size of memory originally requested in dma_alloc_attrs 449 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 450 * 451 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user 452 * space. The coherent DMA buffer must not be freed by the driver until the 453 * user space mapping has been released. 454 */ 455 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 456 void *cpu_addr, dma_addr_t dma_addr, size_t size, 457 unsigned long attrs) 458 { 459 const struct dma_map_ops *ops = get_dma_ops(dev); 460 461 if (dma_alloc_direct(dev, ops)) 462 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size, 463 attrs); 464 if (!ops->mmap) 465 return -ENXIO; 466 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 467 } 468 EXPORT_SYMBOL(dma_mmap_attrs); 469 470 u64 dma_get_required_mask(struct device *dev) 471 { 472 const struct dma_map_ops *ops = get_dma_ops(dev); 473 474 if (dma_alloc_direct(dev, ops)) 475 return dma_direct_get_required_mask(dev); 476 if (ops->get_required_mask) 477 return ops->get_required_mask(dev); 478 479 /* 480 * We require every DMA ops implementation to at least support a 32-bit 481 * DMA mask (and use bounce buffering if that isn't supported in 482 * hardware). As the direct mapping code has its own routine to 483 * actually report an optimal mask we default to 32-bit here as that 484 * is the right thing for most IOMMUs, and at least not actively 485 * harmful in general. 486 */ 487 return DMA_BIT_MASK(32); 488 } 489 EXPORT_SYMBOL_GPL(dma_get_required_mask); 490 491 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 492 gfp_t flag, unsigned long attrs) 493 { 494 const struct dma_map_ops *ops = get_dma_ops(dev); 495 void *cpu_addr; 496 497 WARN_ON_ONCE(!dev->coherent_dma_mask); 498 499 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) 500 return cpu_addr; 501 502 /* let the implementation decide on the zone to allocate from: */ 503 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); 504 505 if (dma_alloc_direct(dev, ops)) 506 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); 507 else if (ops->alloc) 508 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 509 else 510 return NULL; 511 512 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 513 return cpu_addr; 514 } 515 EXPORT_SYMBOL(dma_alloc_attrs); 516 517 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 518 dma_addr_t dma_handle, unsigned long attrs) 519 { 520 const struct dma_map_ops *ops = get_dma_ops(dev); 521 522 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) 523 return; 524 /* 525 * On non-coherent platforms which implement DMA-coherent buffers via 526 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting 527 * this far in IRQ context is a) at risk of a BUG_ON() or trying to 528 * sleep on some machines, and b) an indication that the driver is 529 * probably misusing the coherent API anyway. 530 */ 531 WARN_ON(irqs_disabled()); 532 533 if (!cpu_addr) 534 return; 535 536 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 537 if (dma_alloc_direct(dev, ops)) 538 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); 539 else if (ops->free) 540 ops->free(dev, size, cpu_addr, dma_handle, attrs); 541 } 542 EXPORT_SYMBOL(dma_free_attrs); 543 544 static struct page *__dma_alloc_pages(struct device *dev, size_t size, 545 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 546 { 547 const struct dma_map_ops *ops = get_dma_ops(dev); 548 549 if (WARN_ON_ONCE(!dev->coherent_dma_mask)) 550 return NULL; 551 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM))) 552 return NULL; 553 554 size = PAGE_ALIGN(size); 555 if (dma_alloc_direct(dev, ops)) 556 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp); 557 if (!ops->alloc_pages) 558 return NULL; 559 return ops->alloc_pages(dev, size, dma_handle, dir, gfp); 560 } 561 562 struct page *dma_alloc_pages(struct device *dev, size_t size, 563 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 564 { 565 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp); 566 567 if (page) 568 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle); 569 return page; 570 } 571 EXPORT_SYMBOL_GPL(dma_alloc_pages); 572 573 static void __dma_free_pages(struct device *dev, size_t size, struct page *page, 574 dma_addr_t dma_handle, enum dma_data_direction dir) 575 { 576 const struct dma_map_ops *ops = get_dma_ops(dev); 577 578 size = PAGE_ALIGN(size); 579 if (dma_alloc_direct(dev, ops)) 580 dma_direct_free_pages(dev, size, page, dma_handle, dir); 581 else if (ops->free_pages) 582 ops->free_pages(dev, size, page, dma_handle, dir); 583 } 584 585 void dma_free_pages(struct device *dev, size_t size, struct page *page, 586 dma_addr_t dma_handle, enum dma_data_direction dir) 587 { 588 debug_dma_unmap_page(dev, dma_handle, size, dir); 589 __dma_free_pages(dev, size, page, dma_handle, dir); 590 } 591 EXPORT_SYMBOL_GPL(dma_free_pages); 592 593 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 594 size_t size, struct page *page) 595 { 596 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 597 598 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff) 599 return -ENXIO; 600 return remap_pfn_range(vma, vma->vm_start, 601 page_to_pfn(page) + vma->vm_pgoff, 602 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot); 603 } 604 EXPORT_SYMBOL_GPL(dma_mmap_pages); 605 606 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size, 607 enum dma_data_direction dir, gfp_t gfp) 608 { 609 struct sg_table *sgt; 610 struct page *page; 611 612 sgt = kmalloc(sizeof(*sgt), gfp); 613 if (!sgt) 614 return NULL; 615 if (sg_alloc_table(sgt, 1, gfp)) 616 goto out_free_sgt; 617 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp); 618 if (!page) 619 goto out_free_table; 620 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 621 sg_dma_len(sgt->sgl) = sgt->sgl->length; 622 return sgt; 623 out_free_table: 624 sg_free_table(sgt); 625 out_free_sgt: 626 kfree(sgt); 627 return NULL; 628 } 629 630 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 631 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs) 632 { 633 const struct dma_map_ops *ops = get_dma_ops(dev); 634 struct sg_table *sgt; 635 636 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES)) 637 return NULL; 638 639 if (ops && ops->alloc_noncontiguous) 640 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs); 641 else 642 sgt = alloc_single_sgt(dev, size, dir, gfp); 643 644 if (sgt) { 645 sgt->nents = 1; 646 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir); 647 } 648 return sgt; 649 } 650 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous); 651 652 static void free_single_sgt(struct device *dev, size_t size, 653 struct sg_table *sgt, enum dma_data_direction dir) 654 { 655 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address, 656 dir); 657 sg_free_table(sgt); 658 kfree(sgt); 659 } 660 661 void dma_free_noncontiguous(struct device *dev, size_t size, 662 struct sg_table *sgt, enum dma_data_direction dir) 663 { 664 const struct dma_map_ops *ops = get_dma_ops(dev); 665 666 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 667 if (ops && ops->free_noncontiguous) 668 ops->free_noncontiguous(dev, size, sgt, dir); 669 else 670 free_single_sgt(dev, size, sgt, dir); 671 } 672 EXPORT_SYMBOL_GPL(dma_free_noncontiguous); 673 674 void *dma_vmap_noncontiguous(struct device *dev, size_t size, 675 struct sg_table *sgt) 676 { 677 const struct dma_map_ops *ops = get_dma_ops(dev); 678 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 679 680 if (ops && ops->alloc_noncontiguous) 681 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL); 682 return page_address(sg_page(sgt->sgl)); 683 } 684 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous); 685 686 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 687 { 688 const struct dma_map_ops *ops = get_dma_ops(dev); 689 690 if (ops && ops->alloc_noncontiguous) 691 vunmap(vaddr); 692 } 693 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous); 694 695 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 696 size_t size, struct sg_table *sgt) 697 { 698 const struct dma_map_ops *ops = get_dma_ops(dev); 699 700 if (ops && ops->alloc_noncontiguous) { 701 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 702 703 if (vma->vm_pgoff >= count || 704 vma_pages(vma) > count - vma->vm_pgoff) 705 return -ENXIO; 706 return vm_map_pages(vma, sgt_handle(sgt)->pages, count); 707 } 708 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl)); 709 } 710 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous); 711 712 int dma_supported(struct device *dev, u64 mask) 713 { 714 const struct dma_map_ops *ops = get_dma_ops(dev); 715 716 /* 717 * ->dma_supported sets the bypass flag, so we must always call 718 * into the method here unless the device is truly direct mapped. 719 */ 720 if (!ops) 721 return dma_direct_supported(dev, mask); 722 if (!ops->dma_supported) 723 return 1; 724 return ops->dma_supported(dev, mask); 725 } 726 EXPORT_SYMBOL(dma_supported); 727 728 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK 729 void arch_dma_set_mask(struct device *dev, u64 mask); 730 #else 731 #define arch_dma_set_mask(dev, mask) do { } while (0) 732 #endif 733 734 int dma_set_mask(struct device *dev, u64 mask) 735 { 736 /* 737 * Truncate the mask to the actually supported dma_addr_t width to 738 * avoid generating unsupportable addresses. 739 */ 740 mask = (dma_addr_t)mask; 741 742 if (!dev->dma_mask || !dma_supported(dev, mask)) 743 return -EIO; 744 745 arch_dma_set_mask(dev, mask); 746 *dev->dma_mask = mask; 747 return 0; 748 } 749 EXPORT_SYMBOL(dma_set_mask); 750 751 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 752 int dma_set_coherent_mask(struct device *dev, u64 mask) 753 { 754 /* 755 * Truncate the mask to the actually supported dma_addr_t width to 756 * avoid generating unsupportable addresses. 757 */ 758 mask = (dma_addr_t)mask; 759 760 if (!dma_supported(dev, mask)) 761 return -EIO; 762 763 dev->coherent_dma_mask = mask; 764 return 0; 765 } 766 EXPORT_SYMBOL(dma_set_coherent_mask); 767 #endif 768 769 size_t dma_max_mapping_size(struct device *dev) 770 { 771 const struct dma_map_ops *ops = get_dma_ops(dev); 772 size_t size = SIZE_MAX; 773 774 if (dma_map_direct(dev, ops)) 775 size = dma_direct_max_mapping_size(dev); 776 else if (ops && ops->max_mapping_size) 777 size = ops->max_mapping_size(dev); 778 779 return size; 780 } 781 EXPORT_SYMBOL_GPL(dma_max_mapping_size); 782 783 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 784 { 785 const struct dma_map_ops *ops = get_dma_ops(dev); 786 787 if (dma_map_direct(dev, ops)) 788 return dma_direct_need_sync(dev, dma_addr); 789 return ops->sync_single_for_cpu || ops->sync_single_for_device; 790 } 791 EXPORT_SYMBOL_GPL(dma_need_sync); 792 793 unsigned long dma_get_merge_boundary(struct device *dev) 794 { 795 const struct dma_map_ops *ops = get_dma_ops(dev); 796 797 if (!ops || !ops->get_merge_boundary) 798 return 0; /* can't merge */ 799 800 return ops->get_merge_boundary(dev); 801 } 802 EXPORT_SYMBOL_GPL(dma_get_merge_boundary); 803