xref: /openbmc/linux/kernel/dma/mapping.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch-independent dma-mapping routines
4  *
5  * Copyright (c) 2006  SUSE Linux Products GmbH
6  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
7  */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 
18 /*
19  * Managed DMA API
20  */
21 struct dma_devres {
22 	size_t		size;
23 	void		*vaddr;
24 	dma_addr_t	dma_handle;
25 	unsigned long	attrs;
26 };
27 
28 static void dmam_release(struct device *dev, void *res)
29 {
30 	struct dma_devres *this = res;
31 
32 	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 			this->attrs);
34 }
35 
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 	struct dma_devres *this = res, *match = match_data;
39 
40 	if (this->vaddr == match->vaddr) {
41 		WARN_ON(this->size != match->size ||
42 			this->dma_handle != match->dma_handle);
43 		return 1;
44 	}
45 	return 0;
46 }
47 
48 /**
49  * dmam_free_coherent - Managed dma_free_coherent()
50  * @dev: Device to free coherent memory for
51  * @size: Size of allocation
52  * @vaddr: Virtual address of the memory to free
53  * @dma_handle: DMA handle of the memory to free
54  *
55  * Managed dma_free_coherent().
56  */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 			dma_addr_t dma_handle)
59 {
60 	struct dma_devres match_data = { size, vaddr, dma_handle };
61 
62 	dma_free_coherent(dev, size, vaddr, dma_handle);
63 	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66 
67 /**
68  * dmam_alloc_attrs - Managed dma_alloc_attrs()
69  * @dev: Device to allocate non_coherent memory for
70  * @size: Size of allocation
71  * @dma_handle: Out argument for allocated DMA handle
72  * @gfp: Allocation flags
73  * @attrs: Flags in the DMA_ATTR_* namespace.
74  *
75  * Managed dma_alloc_attrs().  Memory allocated using this function will be
76  * automatically released on driver detach.
77  *
78  * RETURNS:
79  * Pointer to allocated memory on success, NULL on failure.
80  */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 		gfp_t gfp, unsigned long attrs)
83 {
84 	struct dma_devres *dr;
85 	void *vaddr;
86 
87 	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 	if (!dr)
89 		return NULL;
90 
91 	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 	if (!vaddr) {
93 		devres_free(dr);
94 		return NULL;
95 	}
96 
97 	dr->vaddr = vaddr;
98 	dr->dma_handle = *dma_handle;
99 	dr->size = size;
100 	dr->attrs = attrs;
101 
102 	devres_add(dev, dr);
103 
104 	return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107 
108 /*
109  * Create scatter-list for the already allocated DMA buffer.
110  */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 		 unsigned long attrs)
114 {
115 	struct page *page;
116 	int ret;
117 
118 	if (!dev_is_dma_coherent(dev)) {
119 		unsigned long pfn;
120 
121 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 			return -ENXIO;
123 
124 		/* If the PFN is not valid, we do not have a struct page */
125 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 		if (!pfn_valid(pfn))
127 			return -ENXIO;
128 		page = pfn_to_page(pfn);
129 	} else {
130 		page = virt_to_page(cpu_addr);
131 	}
132 
133 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 	if (!ret)
135 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 	return ret;
137 }
138 
139 /*
140  * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
141  * that the intention is to allow exporting memory allocated via the
142  * coherent DMA APIs through the dma_buf API, which only accepts a
143  * scattertable.  This presents a couple of problems:
144  * 1. Not all memory allocated via the coherent DMA APIs is backed by
145  *    a struct page
146  * 2. Passing coherent DMA memory into the streaming APIs is not allowed
147  *    as we will try to flush the memory through a different alias to that
148  *    actually being used (and the flushes are redundant.)
149  */
150 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
151 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
152 		unsigned long attrs)
153 {
154 	const struct dma_map_ops *ops = get_dma_ops(dev);
155 
156 	if (dma_is_direct(ops))
157 		return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr,
158 				size, attrs);
159 	if (!ops->get_sgtable)
160 		return -ENXIO;
161 	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
162 }
163 EXPORT_SYMBOL(dma_get_sgtable_attrs);
164 
165 #ifdef CONFIG_MMU
166 /*
167  * Return the page attributes used for mapping dma_alloc_* memory, either in
168  * kernel space if remapping is needed, or to userspace through dma_mmap_*.
169  */
170 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
171 {
172 	if (dev_is_dma_coherent(dev) ||
173 	    (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
174              (attrs & DMA_ATTR_NON_CONSISTENT)))
175 		return prot;
176 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
177 	if (attrs & DMA_ATTR_WRITE_COMBINE)
178 		return pgprot_writecombine(prot);
179 #endif
180 	return pgprot_dmacoherent(prot);
181 }
182 #endif /* CONFIG_MMU */
183 
184 /*
185  * Create userspace mapping for the DMA-coherent memory.
186  */
187 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
188 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
189 		unsigned long attrs)
190 {
191 #ifdef CONFIG_MMU
192 	unsigned long user_count = vma_pages(vma);
193 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
194 	unsigned long off = vma->vm_pgoff;
195 	unsigned long pfn;
196 	int ret = -ENXIO;
197 
198 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
199 
200 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
201 		return ret;
202 
203 	if (off >= count || user_count > count - off)
204 		return -ENXIO;
205 
206 	if (!dev_is_dma_coherent(dev)) {
207 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
208 			return -ENXIO;
209 
210 		/* If the PFN is not valid, we do not have a struct page */
211 		pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
212 		if (!pfn_valid(pfn))
213 			return -ENXIO;
214 	} else {
215 		pfn = page_to_pfn(virt_to_page(cpu_addr));
216 	}
217 
218 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
219 			user_count << PAGE_SHIFT, vma->vm_page_prot);
220 #else
221 	return -ENXIO;
222 #endif /* CONFIG_MMU */
223 }
224 
225 /**
226  * dma_can_mmap - check if a given device supports dma_mmap_*
227  * @dev: device to check
228  *
229  * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
230  * map DMA allocations to userspace.
231  */
232 bool dma_can_mmap(struct device *dev)
233 {
234 	const struct dma_map_ops *ops = get_dma_ops(dev);
235 
236 	if (dma_is_direct(ops)) {
237 		return IS_ENABLED(CONFIG_MMU) &&
238 		       (dev_is_dma_coherent(dev) ||
239 			IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN));
240 	}
241 
242 	return ops->mmap != NULL;
243 }
244 EXPORT_SYMBOL_GPL(dma_can_mmap);
245 
246 /**
247  * dma_mmap_attrs - map a coherent DMA allocation into user space
248  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249  * @vma: vm_area_struct describing requested user mapping
250  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
251  * @dma_addr: device-view address returned from dma_alloc_attrs
252  * @size: size of memory originally requested in dma_alloc_attrs
253  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
254  *
255  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
256  * space.  The coherent DMA buffer must not be freed by the driver until the
257  * user space mapping has been released.
258  */
259 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
260 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
261 		unsigned long attrs)
262 {
263 	const struct dma_map_ops *ops = get_dma_ops(dev);
264 
265 	if (dma_is_direct(ops))
266 		return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size,
267 				attrs);
268 	if (!ops->mmap)
269 		return -ENXIO;
270 	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
271 }
272 EXPORT_SYMBOL(dma_mmap_attrs);
273 
274 u64 dma_get_required_mask(struct device *dev)
275 {
276 	const struct dma_map_ops *ops = get_dma_ops(dev);
277 
278 	if (dma_is_direct(ops))
279 		return dma_direct_get_required_mask(dev);
280 	if (ops->get_required_mask)
281 		return ops->get_required_mask(dev);
282 
283 	/*
284 	 * We require every DMA ops implementation to at least support a 32-bit
285 	 * DMA mask (and use bounce buffering if that isn't supported in
286 	 * hardware).  As the direct mapping code has its own routine to
287 	 * actually report an optimal mask we default to 32-bit here as that
288 	 * is the right thing for most IOMMUs, and at least not actively
289 	 * harmful in general.
290 	 */
291 	return DMA_BIT_MASK(32);
292 }
293 EXPORT_SYMBOL_GPL(dma_get_required_mask);
294 
295 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
296 		gfp_t flag, unsigned long attrs)
297 {
298 	const struct dma_map_ops *ops = get_dma_ops(dev);
299 	void *cpu_addr;
300 
301 	WARN_ON_ONCE(!dev->coherent_dma_mask);
302 
303 	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
304 		return cpu_addr;
305 
306 	/* let the implementation decide on the zone to allocate from: */
307 	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
308 
309 	if (dma_is_direct(ops))
310 		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
311 	else if (ops->alloc)
312 		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
313 	else
314 		return NULL;
315 
316 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
317 	return cpu_addr;
318 }
319 EXPORT_SYMBOL(dma_alloc_attrs);
320 
321 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
322 		dma_addr_t dma_handle, unsigned long attrs)
323 {
324 	const struct dma_map_ops *ops = get_dma_ops(dev);
325 
326 	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
327 		return;
328 	/*
329 	 * On non-coherent platforms which implement DMA-coherent buffers via
330 	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
331 	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
332 	 * sleep on some machines, and b) an indication that the driver is
333 	 * probably misusing the coherent API anyway.
334 	 */
335 	WARN_ON(irqs_disabled());
336 
337 	if (!cpu_addr)
338 		return;
339 
340 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
341 	if (dma_is_direct(ops))
342 		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
343 	else if (ops->free)
344 		ops->free(dev, size, cpu_addr, dma_handle, attrs);
345 }
346 EXPORT_SYMBOL(dma_free_attrs);
347 
348 int dma_supported(struct device *dev, u64 mask)
349 {
350 	const struct dma_map_ops *ops = get_dma_ops(dev);
351 
352 	if (dma_is_direct(ops))
353 		return dma_direct_supported(dev, mask);
354 	if (!ops->dma_supported)
355 		return 1;
356 	return ops->dma_supported(dev, mask);
357 }
358 EXPORT_SYMBOL(dma_supported);
359 
360 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
361 void arch_dma_set_mask(struct device *dev, u64 mask);
362 #else
363 #define arch_dma_set_mask(dev, mask)	do { } while (0)
364 #endif
365 
366 int dma_set_mask(struct device *dev, u64 mask)
367 {
368 	/*
369 	 * Truncate the mask to the actually supported dma_addr_t width to
370 	 * avoid generating unsupportable addresses.
371 	 */
372 	mask = (dma_addr_t)mask;
373 
374 	if (!dev->dma_mask || !dma_supported(dev, mask))
375 		return -EIO;
376 
377 	arch_dma_set_mask(dev, mask);
378 	*dev->dma_mask = mask;
379 	return 0;
380 }
381 EXPORT_SYMBOL(dma_set_mask);
382 
383 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
384 int dma_set_coherent_mask(struct device *dev, u64 mask)
385 {
386 	/*
387 	 * Truncate the mask to the actually supported dma_addr_t width to
388 	 * avoid generating unsupportable addresses.
389 	 */
390 	mask = (dma_addr_t)mask;
391 
392 	if (!dma_supported(dev, mask))
393 		return -EIO;
394 
395 	dev->coherent_dma_mask = mask;
396 	return 0;
397 }
398 EXPORT_SYMBOL(dma_set_coherent_mask);
399 #endif
400 
401 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
402 		enum dma_data_direction dir)
403 {
404 	const struct dma_map_ops *ops = get_dma_ops(dev);
405 
406 	BUG_ON(!valid_dma_direction(dir));
407 
408 	if (dma_is_direct(ops))
409 		arch_dma_cache_sync(dev, vaddr, size, dir);
410 	else if (ops->cache_sync)
411 		ops->cache_sync(dev, vaddr, size, dir);
412 }
413 EXPORT_SYMBOL(dma_cache_sync);
414 
415 size_t dma_max_mapping_size(struct device *dev)
416 {
417 	const struct dma_map_ops *ops = get_dma_ops(dev);
418 	size_t size = SIZE_MAX;
419 
420 	if (dma_is_direct(ops))
421 		size = dma_direct_max_mapping_size(dev);
422 	else if (ops && ops->max_mapping_size)
423 		size = ops->max_mapping_size(dev);
424 
425 	return size;
426 }
427 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
428 
429 unsigned long dma_get_merge_boundary(struct device *dev)
430 {
431 	const struct dma_map_ops *ops = get_dma_ops(dev);
432 
433 	if (!ops || !ops->get_merge_boundary)
434 		return 0;	/* can't merge */
435 
436 	return ops->get_merge_boundary(dev);
437 }
438 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
439